Sample records for sem study revealed

  1. Discopersicus n. gen., a New Member of the Family Tylenchidae Örley, 1880 with Detailed SEM Study on Two Known Species of the Genus Discotylenchus Siddiqi, 1980 (Nematoda; Tylenchidae) from Iran.

    PubMed

    Yaghoubi, Ali; Pourjam, Ebrahim; Álvarez-Ortega, Sergio; Liébanas, Gracia; Atighi, Mohammad Reza; Pedram, Majid

    2016-09-01

    Discopersicus iranicus n. gen., n. comb., previously described from Iran as a new species under the genus Discotylenchus , is illustrated using light microscope and scanning electron microscope (SEM) observations and further studied using molecular characters. SEM studies revealed the newly proposed genus has oblique amphidial apertures on the lateral sides of the lip region. SEM images are also provided for two species of Discotylenchus , namely D. discretus and D. brevicaudatus , as the first SEM study of the genus . These results confirmed longitudinal amphidial aperture type on lateral sides of the lip region in genus Discotylenchus , as noted by Siddiqi while erecting the genus with D. discretus as the type species . Molecular phylogenetic analyses using partial small subunit (SSU) and large subunit (LSU) rDNA sequences revealed the affinity of the genus Discopersicus n. gen. with members of the subfamily Boleodorinae, as supported by morphological characters (mainly, the oblique amphidial opening).

  2. Risk assessment of heavy metals in Vembanad Lake sediments (south-west coast of India), based on acid-volatile sulfide (AVS)-simultaneously extracted metal (SEM) approach.

    PubMed

    Shyleshchandran, Mohanachandran Nair; Mohan, Mahesh; Ramasamy, Eswara Venkatesaperumal

    2018-03-01

    Contamination of estuarine system due to heavy metals is a severe issue in tropical countries, especially in India. For the evaluation of the risk due to heavy metals, the current study assessed spatial and temporal variation of acid-volatile sulfide (AVS), simultaneously extracted metal (SEM), and total metal concentration as toxicity indicator of aquatic sediments in Vembanad Lake System (VLS), India. Surface sediment samples collected from 12 locations from the northern portion of VLS for 4 years during different seasons. The results suggest, in post-monsoon season, 91% of the sampling locations possessed high bioavailability of metals and results in toxicity to aquatic biota. The average seasonal distribution of SEM during the period of observations was in the order post-monsoon > pre-monsoon > monsoon (1.76 ± 2.00 > 1.35 ± 0.60 > 0.80 ± 0.54 μmol/g). The concentration of individual metals on ∑SEM are in the order SEM Zn > SEM Cu> SEM Cd ≈ SEM Pb > SEM Hg. Considering annual ΣSEM/AVS ratio, 83% of the sites cross the critical value of 'One,' reveals that active sulfide phase of the sediment for fixing the metals is saturated. The molar ratio (differences between SEM and AVS) and its normalized organic carbon ratio reveals that in the post-monsoon season, about 42% of the sites are in the category of adverse effects are possible. The study suggests the toxicity and mobility of the metals largely depend on the available AVS, and the current situation may pose harm to benthic organisms.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vilches, J.; Lopez, A.; Martinez, M.C.

    This paper discusses the value of scanning electron microscopy (SEM) and x-ray microanalysis in the classification of craniopharyngiomas. This neoplasm shows epithelial nest, cords of cuboid cells, foci of squamous metaplasia, and microcystic degeneration. SEM reveals that the epithelial cysts are lined with elongated cells that possess numerous microvilli and blebs and that some cysts are lined with polyhedral cells. The microvilli are interpreted as characteristic of the fast growing craniopharyngiomas. A microanalytical study of the calcified areas reveals the presence of magnesium, phosphorus, and calcium.

  4. The effects of sexually explicit material use on romantic relationship dynamics

    PubMed Central

    Minarcik, Jenny; Wetterneck, Chad T.; Short, MARY B.

    2016-01-01

    Background and aims Pornography use has become increasingly common. Studies have shown that individuals who use sexually explicit materials (SEMs) report negative effects (Schneider, 2000b). However, Bridges (2008b) found that couples who use SEM together have higher relationship satisfaction than those who use SEM independently. A further investigation into various types of SEM use in relationships may highlight how SEM is related to various areas of couple satisfaction. Thus, the purpose of the current study is to examine the impact of SEM use related to different relationship dynamics. Methods The current study included a college and Internet sample of 296 participants divided into groups based upon the SEM use in relationships (i.e., SEM alone, SEM use with partner, and no SEM use). Results There were significant differences between groups in relationship satisfaction [F(2, 252) = 3.69, p = .026], intimacy [F(2, 252) = 7.95, p = <.001], and commitment [F(2, 252) = 5.30, p = .006]. Post-hoc analyses revealed additional differences in relationship satisfaction [t(174) = 2.13, p = .035] and intimacy [t(174) = 2.76, p = .006] based on the frequency of SEM use. Discussion Further exploration of the SEM use function in couples will provide greater understanding of its role in romantic relationships. PMID:27784182

  5. Broadly Applicable Nanowafer Drug Delivery System for Treating Eye Injuries

    DTIC Science & Technology

    2014-09-01

    the drug molecular transport into the cornea. Intravital laser confocal imaging of the live mouse cornea demonstrating the presence of drug in the...vivo drug release in the mouse cornea by laser confocal fluorescence imaging study revealed that the nanowafers upon instillation on mouse eye were...C) 500nm; (D) 1µm; (E) 1.5µm; and (F) 3µm A B C D E F microscopy (SEM) for the feature integrity and uniformity. The SEM images revealed the presence

  6. Determination of anisotropy and multimorphology in fly ash based geopolymers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khan, M. Irfan, E-mail: mirfanwazir@gmail.com; Azizli, Khairun, E-mail: khairun-azizli@petronas.com.my; Sufian, Suriati, E-mail: suriati@petronas.com.my

    2015-07-22

    In this study, Malaysian coal fly ash-based geopolymers were investigated for its morphology and chemical composition using scanning electron microscopy coupled with energy dispersive X-rays (SEM-EDX). Geopolymer was synthesized using sodium hydroxide as activator. SEM studies revealed multiphasous structure of the material, composed of geopolymeric gel, partially reacted fly ashparticles and selectively leached particles. EDX analysis confirmed the chemical composition of different regions. Infra red spectroscopic studies supported the SEM-EDX analysis by confirming presence of unreacted quartzite and mullite in geopolymers. It is concluded that geopolymers possese a non uniform chemistry through out the structure.

  7. Determination of anisotropy and multimorphology in fly ash based geopolymers

    NASA Astrophysics Data System (ADS)

    Khan, M. Irfan; Azizli, Khairun; Sufian, Suriati; Man, Zakaria; Siyal, Ahmer Ali; Ullah, Hafeez

    2015-07-01

    In this study, Malaysian coal fly ash-based geopolymers were investigated for its morphology and chemical composition using scanning electron microscopy coupled with energy dispersive X-rays (SEM-EDX). Geopolymer was synthesized using sodium hydroxide as activator. SEM studies revealed multiphasous structure of the material, composed of geopolymeric gel, partially reacted fly ashparticles and selectively leached particles. EDX analysis confirmed the chemical composition of different regions. Infra red spectroscopic studies supported the SEM-EDX analysis by confirming presence of unreacted quartzite and mullite in geopolymers. It is concluded that geopolymers possese a non uniform chemistry through out the structure.

  8. Scanning electron microscopy of clays and clay minerals

    USGS Publications Warehouse

    Bohor, B.F.; Hughes, R.E.

    1971-01-01

    The scanning electron microscope (SEM) proves to be ideally suited for studying the configuration, texture, and fabric of clay samples. Growth mechanics of crystalline units—interpenetration and interlocking of crystallites, crystal habits, twinning, helical growth, and topotaxis—also are uniquely revealed by the SEM.Authigenic kaolins make up the bulk of the examples because their larger crystallite size, better crystallinity, and open texture make them more suited to examination by the SEM than most other clay mineral types.

  9. In Search of Search Engine Marketing Strategy Amongst SME's in Ireland

    NASA Astrophysics Data System (ADS)

    Barry, Chris; Charleton, Debbie

    Researchers have identified the Web as a searchers first port of call for locating information. Search Engine Marketing (SEM) strategies have been noted as a key consideration when developing, maintaining and managing Websites. A study presented here of SEM practices of Irish small to medium enterprises (SMEs) reveals they plan to spend more resources on SEM in the future. Most firms utilize an informal SEM strategy, where Website optimization is perceived most effective in attracting traffic. Respondents cite the use of ‘keywords in title and description tags’ as the most used SEM technique, followed by the use of ‘keywords throughout the whole Website’; while ‘Pay for Placement’ was most widely used Paid Search technique. In concurrence with the literature, measuring SEM performance remains a significant challenge with many firms unsure if they measure it effectively. An encouraging finding is that Irish SMEs adopt a positive ethical posture when undertaking SEM.

  10. Biocompatibility evaluation of cigarette and carbon papers used in repair of traumatic tympanic membrane perforations: experimental study.

    PubMed

    Altuntaş, Emine Elif; Sümer, Zeynep

    2013-01-01

    The purposes of this study were to investigate the biocompatibility of two different paper patches (carbon and cigarette papers) and compare the adhesion and proliferation features of L929 fibroblast cells by using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT Test) test and scanning electron microscopy (SEM). In this study, time-dependent cytotoxic effects of cigarette and carbon papers used in repairing small traumatic TM perforations were investigated in vitro by using MTT test. And also adhesion and spreading of cells over disk surface were observed by SEM. Cytotoxicity test carried out by MTT analysis on leakage products collected from two types of paper patches at the end of 24 and 48 h revealed no cytotoxicity (P > 0.05). In SEM studies, it was observed that cells started to proliferate over disk surface as a result of 48-h incubation, and SEM revealed that the cell proliferation over cigarette paper was more compared to the one over carbon paper. We believe that this is the first study where biocompatibility and adhesion features of carbon and cigarette paper have been studied by using L929 fibroblast cell culture. As a result, biocompatibility of cigarette paper and also whether cigarette paper was superior to carbon paper in cell attachment and biocompatibility were studied. It was found, by MTT test and SEM test, that cigarette paper had a higher biocompatibility and cell attachment, and thus cigarette paper should be the patch to be preferred in cases where TM perforations are repaired by paper-patch method.

  11. A scanning electron microscopy study of early development in vitro of Contracaecum multipapillatum s.l. (Nematoda: Anisakidae) from a brown pelican (Pelecanus occidentalis) from the Gulf of California, Mexico.

    PubMed

    Molina-Fernández, Dolores; Valles-Vega, Isabel; Hernández-Trujillo, Sergio; Adroher, Francisco Javier; Benítez, Rocío

    2017-10-01

    Eggs obtained from the uteri of female nematodes, genetically identified as Contracaecum multipapillatum s.l., found in a brown pelican (Pelecanus occidentalis) from Bahía de La Paz, Gulf of California, Mexico, were used to study the early developmental stages of this anisakid by scanning electron microscopy (SEM). Egg dimensions were approximately 54 × 45 μm measured by SEM. Observation of the eggs revealed an outer surface of fibrous appearance. The newly hatched larvae were ensheathed and highly motile. Observation with SEM showed that the sheaths of the larvae were striated and revealed an excretory pore and a cleft near the anterior end of the sheath, presumably to facilitate the opening of the sheath for the emergence of the larva. The hatched larvae were placed in nutritive culture medium, where they grew within their sheath, some exsheathing completely 2 weeks later. The surface patterns of the sheath and the cuticle of the exsheathed larvae were clearly different. Although they did not moult during culture, SEM revealed a morphology typical of third-stage larvae of Contracaecum from fish, as previously observed by optical microscopy. Thus, we suggest that newly hatched larvae from eggs of C. multipapillatum are third larval stage but with sheath of the second larval stage, as occuring in other anisakids.

  12. A study of the UV and VUV degradation of FEP

    NASA Technical Reports Server (NTRS)

    George, Graeme A.; Hill, David J. T.; Odonnell, James H.; Pomery, Peter J.; Rasoul, Firas A.

    1993-01-01

    UV and VUV degradation of fluorinated ethylene propylene (FEP) copolymer was studied using electron spin resonance (ESR) spectroscopy, x-ray photoelectron spectroscopy (XPS), and scanning electron microscopy (SEM). The ESR study revealed the formation of a terminal polymer radical. The stability of this radical was investigated under different environments. An XPS study of FEP film exposed to VUV and atomic oxygen showed that oxidation takes place on the polymer surface. The study revealed also that the percentage of CF2 in the polymer surface decreased with exposure time and the percentage of CF, CF3, and carbon attached to oxygen increased. SEM micrographs of FEP film exposed to VUV and atomic oxygen identified a rough surface with undulations similar to sand dunes.

  13. Human bloodstains on bone artefacts: an SEM intra- and inter-sample comparative study using ratite bird tibiotarsus.

    PubMed

    Hortolà, Policarp

    2016-11-01

    Apart from their forensic significance in crime investigation, human bloodstains have an anthropological interest due to their occurrence on certain traditional weapons and ritual objects. Previously, a guiding study of erythrocytes in experimental samples including domestic sheep (Ovis aries) tibia was carried out using a scanning electron microscope (SEM). Here, a comparative SEM study to reveal the potential differences in bloodstain surface morphology as a function of intra-sample (smear region) and inter-sample (individual smear, smearing mechanism, bone origin) parameters is reported. A fragment of emu (Dromaius novaehollandiae) tibiotarsus was smeared with an adult man's peripheral blood. After air-drying and storing indoors, the boundary and neighbouring inner areas of the three individual bloodstains obtained were examined via secondary electrons in a variable-pressure SEM working in low-vacuum mode. As a whole, desiccation microcracks were present, the limits between the smear and the substrate appeared poorly defined, and no erythrocyte negative replicas were observed in the examined areas. In addition, a putative fibrin network, more or less embedded in the dried plasma matrix, was observed in the smears' boundary. Regarding the smear region in sliding smears, the periphery and boundary revealed to be different, while the head and tail were similar. Considering individual sliding smears, they had similar characteristics. Relating to the smear region as a function of the smearing mechanism, the periphery was different whether sliding or touching, while the boundary was similar in sliding and touching smears. Concerning the smear region as a function of the bone origin, the periphery revealed to be similar in both ratite and mammalian bone, while the boundary did different in ratite and mammalian bone. The results of this study show that SEM examination can be used fruitfully to detect bloodstains on ratite bone. Combined with previous SEM results in domestic sheep bone, they suggest, further, that blood remains can be detected on objects made of bone irrespectively of the mammalian or ratite origin of this raw material. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guener, M.; Gueler, E.; Aktas, H.

    Kinetic, morphological and some thermal properties of thermally induced and deformation-induced martensite were studied in a Fe-32%Ni-0.4%Cr alloy. Scanning electron microscopy (SEM), differential scanning calorimetry (DSC) and compression deformation test techniques were used for these studies. SEM observations revealed the occurrence of both athermal and isothermal martensitic transformation kinetics for producing a lenticular martensite morphology for different homogenization conditions of the prior austenite phase. The DSC measurement results showed a fair agreement with those of previous studies on ferrous alloys.

  15. Preliminary SEM Observations on the Surface of Elastomeric Impression Materials after Immersion or Ozone Disinfection

    PubMed Central

    Prombonas, Anthony; Yannikakis, Stavros; Karampotsos, Thanasis; Katsarou, Martha-Spyridoula; Drakoulis, Nikolaos

    2016-01-01

    Introduction Surface integrity of dental elastomeric impression materials that are subjected to disinfection is of major importance for the quality of the final prosthetic restorations. Aim The aim of this qualitative Scanning Electronic Microscopy (SEM) study was to reveal the effects of immersion or ozone disinfection on the surface of four dental elastomeric impression materials. Materials and Methods Four dental elastomeric impression material brands were used (two vinyl polysiloxane silicones, one polyether, and one vinyl polyether silicone). Total of 32 specimens were fabricated, eight from each impression material. Specimens were immersion (0.525% sodium hypochlorite solution or 0.3% benzalkonium chloride solution) or ozone disinfected or served as controls and examined with SEM. Results Surface degradation was observed on several speci-mens disinfected with 0.525% sodium hypochlorite solution. Similar wavy-wrinkling surface structures were observed in almost all specimens, when treated either with 0.3% benzalkonium chloride solution or ozone. Conclusion The SEM images obtained from this study revealed that both immersion disinfectants and ozone show similar impression material surface alterations. Ozone seems to be non-inferior as compared to immersion disinfectants, but superior as to environmental protection. PMID:28208993

  16. An ultrastructural study on corkscrew hairs and cigarette-ash-shaped hairs observed by dermoscopy of tinea capitis.

    PubMed

    Lu, Mao; Ran, Yuping; Dai, Yaling; Lei, Song; Zhang, Chaoliang; Zhuang, Kaiwen; Hu, Wenying

    2016-01-01

    This study was aimed to explain the formation mechanisms of corkscrew hairs and cigarette-ash-shaped hairs observed by dermoscopy of tinea capitis. In the present work, the ultrastructure of the involved hairs collected from a girl with tinea capitis caused by Trichophyton violaceum was observed by scanning electron microscope (SEM) and transmission electron microscope (TEM). SEM observation of the corkscrew hair revealed bent hair shaft and asymmetrically disrupted cuticle layer. TEM findings demonstrated the hair shaft became weak. The corkscrew hairs closely covered by scales on the scalp were observed under dermoscopy. We speculate that the formation of corkscrew hairs is a result of a combination of internal damage due to hair degradation by T. violaceum and external resistance due to scales covering the hair. SEM observation of the cigarette-ash-shaped hair revealed irregularly disrupted and incompact end, which might represent the stump of the broken corkscrew hair after treatment. © Wiley Periodicals, Inc.

  17. CdZnO coated film: A material for photovoltaic applications

    NASA Astrophysics Data System (ADS)

    Zargar, R. A.; Bhat, M. A.; Reshi, H. A.; Khan, S. D.

    2018-06-01

    The present study reports structural and optical parameters of wide band gap oxide thick film prepared by screen-printing followed by sintering route. Characterization of the samples was carried out with UV-spectroscopy, XRD, SEM, and Photoluminous study. The XRD and SEM studies reveal that the film deposited is polycrystalline, double phase, and porous with unsymmetrical grain distributions. Optical diffused reflection spectroscopy and Pl measurements give optical band gap of 2.87 eV and near band edge emission at 430 nm.

  18. Detailed methodology for high resolution scanning electron microscopy (SEM) of murine malaria parasitized-erythrocytes.

    PubMed

    Hayakawa, Eri H; Matsuoka, Hiroyuki

    2016-10-01

    Scanning electron microscopy (SEM) is a powerful tool used to investigate object surfaces and has been widely applied in both material science and biology. With respect to the study of malaria, SEM revealed that erythrocytes infected with Plasmodium falciparum, a human parasite, display 'knob-like' structures on their surface comprising parasitized proteins. However, detailed methodology for SEM studies of malaria parasites is lacking in the literature making such studies challenging. Here, we provide a step-by-step guide to preparing Plasmodium-infected erythrocytes from two mouse strains for SEM analysis with minimal structural deterioration. We tested three species of murine malaria parasites, P. berghei, P. yoelii, and P. chabaudi, as well as non-parasitized human erythrocytes and P. falciparum-infected erythrocytes for comparisons. Our data demonstrated that the surface structures of parasitized erythrocytes between the three species of murine parasites in the two different strains of mice were indistinguishable and no surface alterations were observed in P. falciparum-erythrocytes. Our SEM observations contribute towards an understanding of the molecular mechanisms of parasite maturation in the erythrocyte cytoplasm and, along with future studies using our detailed methodology, may help to gain insight into the clinical phenomena of human malaria. Copyright © 2016 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.

  19. A Golden Drachma From Bruttia: Counterfeit Money Revealed By Scanning Electron Microscopy and Cathodoluminescence.

    NASA Astrophysics Data System (ADS)

    Pingitore, Valentino; Barberio, Marianna; Oliva, Antonino; Noce, Nicoletta; Gattuso, Caterina; Davoli, Mariano

    Diagnostic studies performed on an ancient coin are presented in order to find if the coin is authentic or is a coinage proof. Our investigation includes Scanning Electron Microscopy - Energy Dispersive X-ray (SEM-EDX) and Cathodoluminescence (CL). The coin is a Drachma representing on the obverse the portrait of Poseidon and, on the reverse the figure of Anfitrite riding a seahorse while Eros is shooting an arrow. The coin is well known in the numismatic studies and originals can also be found in Catanzaro, Naples or Milan museums. The EDX analysis, executed on narrow points of the surface, revealed Pb and Cu as main components of the coin on both sides: 51% of Pb and 35% of Cu their weight and surprisingly on both sides traces of gold was found. The maximum dimensions and the percentage in weight of the small revealed gold spots were respectively on the order of 20 μm and 95%. At the same time luminescence emission induced by electron bombardment (CL) on these spots was executed. This analysis confirmed SEM results, though the presence of Au was more evident than in SEM analysis. In fact CL analysis showed a little presence of Au throughout the sample surface.

  20. Synthesis and structural characterization of polyaniline/cobalt chloride composites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Asha, E-mail: arana5752@gmail.com; Goyal, Sneh Lata; Kishore, Nawal

    2016-05-23

    Polyaniline (PANI) and PANI /cobalt chloride composites were synthesized by in situ chemical oxidative polymerization of aniline with CoCl{sub 2}.6H{sub 2}O using ammonium peroxidisulphate as an oxidant. These composites were characterized by X-ray diffraction (XRD) and Scanning electron microscopy (SEM). The XRD study reveals that both PANI and composites are amorphous. The XRD and SEM results confirm the presence of cobalt chloride in the composites.

  1. Freeze-fracture of infected plant leaves in ethanol for scanning electron microscopic study of fungal pathogens.

    PubMed

    Moore, Jayma A; Payne, Scott A

    2012-01-01

    Fungi often are found within plant tissues where they cannot be visualized with the scanning electron microscope (SEM). We present a simple way to reveal cell interiors while avoiding many common causes of artifact. Freeze-fracture of leaf tissue using liquid nitrogen during the 100% ethanol step of the dehydration process just before critical point drying is useful in exposing intracellular fungi to the SEM.

  2. Morphology selection for cupric oxide thin films by electrodeposition.

    PubMed

    Dhanasekaran, V; Mahalingam, T; Chandramohan, R

    2011-10-01

    Polycrystalline cupric oxide thin films were deposited using alkaline solution bath employing cathodic electrodeposition method. The thin films were electrodeposited at various solution pH. The surface morphology and elemental analyzes of the films were studied using scanning electron microscopy (SEM) and energy dispersive X-ray analysis, respectively. SEM studies revealed that the surface morphology could be tailored suitably by adjusting the pH value during deposition. Mesh average on multiple lattice mode atomic force microscopy image was obtained and reported. Copyright © 2011 Wiley-Liss, Inc.

  3. [Revisiting the chemical diversity in prostatic calculi: a SEM and FT-IR investigation].

    PubMed

    Dessombz, A; Méria, P; Bazin, D; Foy, E; Rouzière, S; Weil, R; Daudon, M

    2011-12-01

    Revisiting the chemical diversity of the crystalline phases of prostatic calculi by means of SEM and FT-IR analysis. A set of 32 prostatic calculi has been studied by FT-IR and SEM. FT-IR analysis has determined the chemical composition of each prostatic calculus and the SEM observation has described the morphology of the calculi surfaces and layers. Infrared analysis revealed that 90.7% of the stones were mainly composed of calcium phosphates. However, several mineral phases previously not reported in prostatic calculi were observed, as brushite or octocalcium phosphate pentahydrate. Prostatic calculi exhibited a diversity of crystalline composition and morphology. As previously reported for urinary calculi, relationships between composition and morphology of prostatic stones and étiopathogenic conditions could be of interest in clinical practice. Copyright © 2011 Elsevier Masson SAS. All rights reserved.

  4. X-ray diffraction, FTIR, UV-VIS and SEM studies on chromium (III) complexes

    NASA Astrophysics Data System (ADS)

    Mishra, Ashutosh; Dwivedi, Jagrati; Shukla, Kritika

    2015-06-01

    Five Chromium (III) complexes have been prepared using Schiff base ligands which derived from benzoin and five different amino acids (H2N-R). Samples were characterized by XRD, FTIR, UV-VIS and SEM method. X-Ray diffraction pattern analyzed that all chromium (III) complexes have hexagonal structure and crystalline, in nature, using Bruker D8 Advance instrument. Using VERTAX 70, FTIR spectroscopy reveals that Samples have (C=N), (C-O), (M-N) and (M-O) bonds in the range of 4000-400cm-1. UV-VIS spectroscopy give information that samples absorb the visible light which is in the range of 380-780nm. For this, Lambda 960 spectrometer used. SEM is designed for studying of the solid objects, using JEOL JSM 5600 instrument.

  5. Microscopy based studies on the interaction of bio-based silver nanoparticles with Bombyx mori Nuclear Polyhedrosis virus.

    PubMed

    Tamilselvan, Selvaraj; Ashokkumar, Thirunavukkarasu; Govindaraju, Kasivelu

    2017-04-01

    In the present investigation, silver nanoparticles (AgNPs) interactions with Bombyx mori Nuclear Polyhedrosis virus (BmNPV) were characterized using High-Resolution Scanning Electron Microscopy (HR-SEM), Energy Dispersive X-ray Analysis (EDAX), Transmission Electron Microscopy (TEM), Atomic Force Microcopy (AFM) and Confocal Microscope (CM). HR-SEM study reveals that the biosynthesized AgNPs have interacted with BmNPV and were found on the surface. TEM micrographs of normal and viral polyhedra treated with AgNPs showed that the nanoparticles were accumulated in the membrane and it was noted that some of the AgNPs successfully penetrated the membrane by reaching the capsid of BmNPV. AFM and confocal microscopy studies reveal that the disruption in the shell membrane tends to lose its stability due to exposure of AgNPs to BmNPV. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Experimental Study on Purification of Low Grade Diatomite

    NASA Astrophysics Data System (ADS)

    Xiao, Liguang; Pang, Bo

    2017-04-01

    This paper presented an innovation for purification of low grade diatomite(DE) by grinding, ultrasonic pretreatment, acid leaching of closed stirring and calcination. The optimum process parameters of DE purification were obtained, the characterizations of original and purified DE were determined by SEM and BET. The results showed that the specific surface area of DE increased from 12.65m2/g to 23.23m2/g, which increased by 45.54%. SEM analysis revealed that the pore structure of purified DE was dredged highly.

  7. Cryo-Scanning Electron Microscopy (SEM) and Scanning Transmission Electron Microscopy (STEM)-in-SEM for Bio- and Organo-Mineral Interface Characterization in the Environment.

    PubMed

    Wille, Guillaume; Hellal, Jennifer; Ollivier, Patrick; Richard, Annie; Burel, Agnes; Jolly, Louis; Crampon, Marc; Michel, Caroline

    2017-12-01

    Understanding biofilm interactions with surrounding substratum and pollutants/particles can benefit from the application of existing microscopy tools. Using the example of biofilm interactions with zero-valent iron nanoparticles (nZVI), this study aims to apply various approaches in biofilm preparation and labeling for fluorescent or electron microscopy and energy dispersive X-ray spectrometry (EDS) microanalysis for accurate observations. According to the targeted microscopy method, biofilms were sampled as flocs or attached biofilm, submitted to labeling using 4',6-diamidino-2-phenylindol, lectins PNA and ConA coupled to fluorescent dye or gold nanoparticles, and prepared for observation (fixation, cross-section, freezing, ultramicrotomy). Fluorescent microscopy revealed that nZVI were embedded in the biofilm structure as aggregates but the resolution was insufficient to observe individual nZVI. Cryo-scanning electron microscopy (SEM) observations showed nZVI aggregates close to bacteria, but it was not possible to confirm direct interactions between nZVI and cell membranes. Scanning transmission electron microscopy in the SEM (STEM-in-SEM) showed that nZVI aggregates could enter the biofilm to a depth of 7-11 µm. Bacteria were surrounded by a ring of extracellular polymeric substances (EPS) preventing direct nZVI/membrane interactions. STEM/EDS mapping revealed a co-localization of nZVI aggregates with lectins suggesting a potential role of EPS in nZVI embedding. Thus, the combination of divergent microscopy approaches is a good approach to better understand and characterize biofilm/metal interactions.

  8. Labyrinths, columns and cavities: new internal features of pollen grain walls in the Acanthaceae detected by FIB-SEM.

    PubMed

    House, Alisoun; Balkwill, Kevin

    2016-03-01

    External pollen grain morphology has been widely used in the taxonomy and systematics of flowering plants, especially the Acanthaceae which are noted for pollen diversity. However internal pollen wall features have received far less attention due to the difficulty of examining the wall structure. Advancing technology in the field of microscopy has made it possible, with the use of a focused ion beam-scanning electron microscope (FIB-SEM), to view the structure of pollen grain walls in far greater detail and in three dimensions. In this study the wall structures of 13 species from the Acanthaceae were investigated for features of potential systematic relevance. FIB-SEM was applied to obtain precise cross sections of pollen grains at selected positions for examining the wall ultrastructure. Exploratory studies of the exine have thus far identified five basic structural types. The investigations also show that similar external pollen wall features may have a distinctly different internal structure. FIB-SEM studies have revealed diverse internal pollen wall features which may now be investigated for their systematic and functional significance.

  9. A comparative study of heterostructured CuO/CuWO4 nanowires and thin films

    NASA Astrophysics Data System (ADS)

    Polyakov, Boris; Kuzmin, Alexei; Vlassov, Sergei; Butanovs, Edgars; Zideluns, Janis; Butikova, Jelena; Kalendarev, Robert; Zubkins, Martins

    2017-12-01

    A comparative study of heterostructured CuO/CuWO4 core/shell nanowires and double-layer thin films was performed through X-ray diffraction, confocal micro-Raman spectroscopy and electron (SEM and TEM) microscopies. The heterostructures were produced using a two-step process, starting from a deposition of amorphous WO3 layer on top of CuO nanowires and thin films by reactive DC magnetron sputtering and followed by annealing at 650 °C in air. The second step induced a solid-state reaction between CuO and WO3 oxides through a thermal diffusion process, revealed by SEM-EDX analysis. Morphology evolution of core/shell nanowires and double-layer thin films upon heating was studied by electron (SEM and TEM) microscopies. A formation of CuWO4 phase was confirmed by X-ray diffraction and confocal micro-Raman spectroscopy.

  10. Three-dimensional ultrastructure of osteocytes assessed by focused ion beam-scanning electron microscopy (FIB-SEM).

    PubMed

    Hasegawa, Tomoka; Yamamoto, Tomomaya; Hongo, Hiromi; Qiu, Zixuan; Abe, Miki; Kanesaki, Takuma; Tanaka, Kawori; Endo, Takashi; de Freitas, Paulo Henrique Luiz; Li, Minqi; Amizuka, Norio

    2018-04-01

    The aim of this study is to demonstrate the application of focused ion beam-scanning electron microscopy, FIB-SEM for revealing the three-dimensional features of osteocytic cytoplasmic processes in metaphyseal (immature) and diaphyseal (mature) trabeculae. Tibiae of eight-week-old male mice were fixed with aldehyde solution, and treated with block staining prior to FIB-SEM observation. While two-dimensional backscattered SEM images showed osteocytes' cytoplasmic processes in a fragmented fashion, three-dimensional reconstructions of FIB-SEM images demonstrated that osteocytes in primary metaphyseal trabeculae extended their cytoplasmic processes randomly, thus maintaining contact with neighboring osteocytes and osteoblasts. In contrast, diaphyseal osteocytes extended thin cytoplasmic processes from their cell bodies, which ran perpendicular to the bone surface. In addition, these osteocytes featured thick processes that branched into thinner, transverse cytoplasmic processes; at some point, however, these transverse processes bend at a right angle to run perpendicular to the bone surface. Osteoblasts also possessed thicker cytoplasmic processes that branched off as thinner processes, which then connected with cytoplasmic processes of neighboring osteocytes. Thus, FIB-SEM is a useful technology for visualizing the three-dimensional structures of osteocytes and their cytoplasmic processes.

  11. Risk factors for technical failure of endoscopic double self-expandable metallic stent placement by partial stent-in-stent method.

    PubMed

    Kawakubo, Kazumichi; Kawakami, Hiroshi; Toyokawa, Yoshihide; Otani, Koichi; Kuwatani, Masaki; Abe, Yoko; Kawahata, Shuhei; Kubo, Kimitoshi; Kubota, Yoshimasa; Sakamoto, Naoya

    2015-01-01

    Endoscopic double self-expandable metallic stent (SEMS) placement by the partial stent-in-stent (PSIS) method has been reported to be useful for the management of unresectable hilar malignant biliary obstruction. However, it is technically challenging, and the optimal SEMS for the procedure remains unknown. The aim of this study was to identify the risk factors for technical failure of endoscopic double SEMS placement for unresectable malignant hilar biliary obstruction (MHBO). Between December 2009 and May 2013, 50 consecutive patients with MHBO underwent endoscopic double SEMS placement by the PSIS method. We retrospectively evaluated the rate of successful double SEMS placement and identified the risk factors for technical failure. The technical success rate for double SEMS placement was 82.0% (95% confidence interval [CI]: 69.2-90.2). On univariate analysis, the rate of technical failure was high in patients with metastatic disease and unilateral placement. Multivariate analysis revealed that metastatic disease was a significant risk factor for technical failure (odds ratio: 9.63, 95% CI: 1.11-105.5). The subgroup analysis after double guidewire insertion showed that the rate of technical success was higher in the laser-cut type SEMS with a large mesh and thick delivery system than in the braided type SEMS with a small mesh and thick delivery system. Metastatic disease was a significant risk factor for technical failure of double SEMS placement for unresectable MHBO. The laser-cut type SEMS with a large mesh and thin delivery system might be preferable for the PSIS procedure. © 2014 Japanese Society of Hepato-Biliary-Pancreatic Surgery.

  12. SD-SEM: sparse-dense correspondence for 3D reconstruction of microscopic samples.

    PubMed

    Baghaie, Ahmadreza; Tafti, Ahmad P; Owen, Heather A; D'Souza, Roshan M; Yu, Zeyun

    2017-06-01

    Scanning electron microscopy (SEM) imaging has been a principal component of many studies in biomedical, mechanical, and materials sciences since its emergence. Despite the high resolution of captured images, they remain two-dimensional (2D). In this work, a novel framework using sparse-dense correspondence is introduced and investigated for 3D reconstruction of stereo SEM images. SEM micrographs from microscopic samples are captured by tilting the specimen stage by a known angle. The pair of SEM micrographs is then rectified using sparse scale invariant feature transform (SIFT) features/descriptors and a contrario RANSAC for matching outlier removal to ensure a gross horizontal displacement between corresponding points. This is followed by dense correspondence estimation using dense SIFT descriptors and employing a factor graph representation of the energy minimization functional and loopy belief propagation (LBP) as means of optimization. Given the pixel-by-pixel correspondence and the tilt angle of the specimen stage during the acquisition of micrographs, depth can be recovered. Extensive tests reveal the strength of the proposed method for high-quality reconstruction of microscopic samples. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Scanning electron microscopy analysis of hair index on Karachi's population for social and professional appearance enhancement.

    PubMed

    Ali, N; Zohra, R R; Qader, S A U; Mumtaz, M

    2015-06-01

    Hair texture, appearance and pigment play an important role in social and professional communication and maintaining an overall appearance. This study was especially designed for morphological assessment of hair damage caused to Karachi's population due to natural factors and cosmetic treatments using scanning electron microscopy (SEM) technique. Hair samples under the study of synthetic factor's effect were given several cosmetic treatments (hot straightened, bleached, synthetic dyed and henna dyed) whereas samples under natural factor's effect (variation in gender, age and pigmentation) were left untreated. Morphological assessment was performed using SEM technique. Results obtained were statistically analysed using minitab 16 and spss 18 softwares. Scanning electron microscopy images revealed less number of cuticular scales in males than females of same age although size of cuticular scales was found to be larger in males than in females. Mean hair index of white hair was greater than black hair of the same head as it is comparatively newly originated. Tukey's method revealed that among cosmetic treatments, bleaching and synthetic henna caused most of the damage to the hair. Statistical evaluation of results obtained from SEM analysis revealed that human scalp hair index show morphological variation with respect to age, gender, hair pigmentation, chemical and physical treatments. Individuals opting for cosmetic treatments could clearly visualize the extent of hair damage these may cause in long run. © 2015 Society of Cosmetic Scientists and the Société Française de Cosmétologie.

  14. In situ SEM Study of Lithium Intercalation in individual V 2O 5 Nanowires

    DOE PAGES

    Strelcov, Evgheni; Cothren, Joshua E.; Leonard, Donovan N.; ...

    2015-01-08

    Progress in rational engineering of Li-ion batteries requires better understanding of the electrochemical processes and accompanying transformations in the electrode materials on multiple length scales. In spite of recent progress in utilizing transmission electron microscopy (TEM) to analyze these materials, in situ scanning electron microscopy (SEM) was mostly overlooked as a powerful tool that allows probing these phenomena on the nano and mesoscale. In this paper, we report on in situ SEM study of lithiation in a V 2O 5-based single-nanobelt battery with ionic liquid electrolyte. Coupled with cyclic voltammetry measurements, in situ SEM revealed the peculiarities of subsurface intercalation,more » formation of solid-electrolyte interface (SEI) and electromigration of liquid. We observed that single-crystalline vanadia nanobelts do not undergo large-scale amorphization or fracture during electrochemical cycling, but rather transform topochemically with only a slight shape distortion. Lastly, the SEI layer seems to have significant influence on the lithium ion diffusion and overall capacity of the single-nanobelt battery.« less

  15. Dealing with Multiple Solutions in Structural Vector Autoregressive Models.

    PubMed

    Beltz, Adriene M; Molenaar, Peter C M

    2016-01-01

    Structural vector autoregressive models (VARs) hold great potential for psychological science, particularly for time series data analysis. They capture the magnitude, direction of influence, and temporal (lagged and contemporaneous) nature of relations among variables. Unified structural equation modeling (uSEM) is an optimal structural VAR instantiation, according to large-scale simulation studies, and it is implemented within an SEM framework. However, little is known about the uniqueness of uSEM results. Thus, the goal of this study was to investigate whether multiple solutions result from uSEM analysis and, if so, to demonstrate ways to select an optimal solution. This was accomplished with two simulated data sets, an empirical data set concerning children's dyadic play, and modifications to the group iterative multiple model estimation (GIMME) program, which implements uSEMs with group- and individual-level relations in a data-driven manner. Results revealed multiple solutions when there were large contemporaneous relations among variables. Results also verified several ways to select the correct solution when the complete solution set was generated, such as the use of cross-validation, maximum standardized residuals, and information criteria. This work has immediate and direct implications for the analysis of time series data and for the inferences drawn from those data concerning human behavior.

  16. Spinal electro-magnetic stimulation combined with transgene delivery of neurotrophin NT-3 and exercise: novel combination therapy for spinal contusion injury

    PubMed Central

    Petrosyan, Hayk A.; Alessi, Valentina; Hunanyan, Arsen S.; Sisto, Sue A.

    2015-01-01

    Our recent terminal experiments revealed that administration of a single train of repetitive spinal electromagnetic stimulation (sEMS; 35 min) enhanced synaptic plasticity in spinal circuitry following lateral hemisection spinal cord injury. In the current study, we have examined effects of repetitive sEMS applied as a single train and chronically (5 wk, every other day) following thoracic T10 contusion. Chronic studies involved examination of systematic sEMS administration alone and combined with exercise training and transgene delivery of neurotrophin [adeno-associated virus 10-neurotrophin 3 (AAV10-NT3)]. Electrophysiological intracellular/extracellular recordings, immunohistochemistry, behavioral testing, and anatomical tracing were performed to assess effects of treatments. We found that administration of a single sEMS train induced transient facilitation of transmission through preserved lateral white matter to motoneurons and hindlimb muscles in chronically contused rats with effects lasting for at least 2 h. These physiological changes associated with increased immunoreactivity of GluR1 and GluR2/3 glutamate receptors in lumbar neurons. Systematic administration of sEMS alone for 5 wk, however, was unable to induce cumulative improvements of transmission in spinomuscular circuitry or improve impaired motor function following thoracic contusion. Encouragingly, chronic administration of sEMS, followed by exercise training (running in an exercise ball and swimming), induced the following: 1) sustained strengthening of transmission to lumbar motoneurons and hindlimb muscles, 2) better retrograde transport of anatomical tracer, and 3) improved locomotor function. Greatest improvements were seen in the group that received exercise combined with sEMS and AAV-NT3. PMID:26424579

  17. Spinal electro-magnetic stimulation combined with transgene delivery of neurotrophin NT-3 and exercise: novel combination therapy for spinal contusion injury.

    PubMed

    Petrosyan, Hayk A; Alessi, Valentina; Hunanyan, Arsen S; Sisto, Sue A; Arvanian, Victor L

    2015-11-01

    Our recent terminal experiments revealed that administration of a single train of repetitive spinal electromagnetic stimulation (sEMS; 35 min) enhanced synaptic plasticity in spinal circuitry following lateral hemisection spinal cord injury. In the current study, we have examined effects of repetitive sEMS applied as a single train and chronically (5 wk, every other day) following thoracic T10 contusion. Chronic studies involved examination of systematic sEMS administration alone and combined with exercise training and transgene delivery of neurotrophin [adeno-associated virus 10-neurotrophin 3 (AAV10-NT3)]. Electrophysiological intracellular/extracellular recordings, immunohistochemistry, behavioral testing, and anatomical tracing were performed to assess effects of treatments. We found that administration of a single sEMS train induced transient facilitation of transmission through preserved lateral white matter to motoneurons and hindlimb muscles in chronically contused rats with effects lasting for at least 2 h. These physiological changes associated with increased immunoreactivity of GluR1 and GluR2/3 glutamate receptors in lumbar neurons. Systematic administration of sEMS alone for 5 wk, however, was unable to induce cumulative improvements of transmission in spinomuscular circuitry or improve impaired motor function following thoracic contusion. Encouragingly, chronic administration of sEMS, followed by exercise training (running in an exercise ball and swimming), induced the following: 1) sustained strengthening of transmission to lumbar motoneurons and hindlimb muscles, 2) better retrograde transport of anatomical tracer, and 3) improved locomotor function. Greatest improvements were seen in the group that received exercise combined with sEMS and AAV-NT3.

  18. Scanning electron microscopic and X-ray micro analysis on tooth enamel exposed to alkaline agents.

    PubMed

    Taubee, Fabian; Steiniger, Frank; Nietzsche, Sandor; Norén, Jörgen G

    2010-01-01

    The background of this study comprises two clinical cases, where patients exposed to aerosols of an alkaline and surface active cleaning agent developed loss of enamel substance on their teeth, further resulting in loss of teeth and partially destroyed soft tissues. The alkaline cleaning agent consisted of potassium hydroxide and various surfactants. The purpose of this study was to investigate possible changes in morphology and composition in human teeth enamel exposed to alkaline solutions, by means of X-ray micro analysis (XRMA), FTIR-spectroscopic analyses and scanning electron microscopy (SEM). Extracted premolars, exposed to potassium hydroxide solutions and alkaline cleaning solution,were analyzed by means of XRMA and SEM. Enamel powder, exposed to cleaning solution, was analyzed by means of FTIR. The SEM analysis revealed an increased porosity of the enamel surface and partially loss of enamel substance after exposure to alkaline solutions. The XRMA analyses revealed a decrease in carbon concentration while phosphorous and calcium showed no marked changes. The FTIR analyses showed no significant changes in peak heights or peak positions for phosphate, carbonate or hydroxide. It was concluded that human teeth enamel exposed to alkaline solutions showed loss of organic substance, marked pores in enamel surface and loss of substance in the enamel surface.

  19. Morphology of the European species of the aphid genus Eulachnus (Hemiptera: Aphididae: Lachninae) - A SEM comparative and integrative study.

    PubMed

    Kanturski, Mariusz; Karcz, Jagna; Wieczorek, Karina

    2015-09-01

    Scanning electron microscopy (SEM) methods were used for the first time to elucidate the external morphology of the European species of the genus Eulachnus (Hemiptera: Aphididae: Lachninae), a representative genus of the conifer-feeding aphids tribe Eulachnini. We examined and compared the external morphology of apterous and alate viviparous females from the parthenogenetic generation as well as oviparous females and alate males belonging to the sexual generation. FE-SEM images based on HMDS and cryo-SEM preparation techniques revealed better image quality than the CPD technique in regard to surface tension and morphological signs of cell deteriorations (i.e., existence of depressions, drying artifacts and membrane blebs). Three morphologically different species groups "agilis", "brevipilosus" and "cembrae" were proposed due to the differences in head, antennae, legs and dorsal chaetotaxy as well as dorsal sclerotization. The most characteristic features and differences of representatives of these groups are presented and discussed. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Synthesis, characterization and visible-light driven photocatalysis by differently structured CdS/ZnS sandwich and core-shell nanocomposites

    NASA Astrophysics Data System (ADS)

    Qutub, Nida; Pirzada, Bilal Masood; Umar, Khalid; Mehraj, Owais; Muneer, M.; Sabir, Suhail

    2015-11-01

    CdS/ZnS sandwich and core-shell nanocomposites were synthesized by a simple and modified Chemical Precipitation method under ambient conditions. The synthesized composites were characterized by XRD, SEM, TEM, EDAX and FTIR. Optical properties were analyzed by UV-vis. Spectroscopy and the photoluminescence study was done to monitor the recombination of photo-generated charge-carriers. Thermal stability of the synthesized composites was analyzed by Thermal Gravimetric Analysis (TGA). XRD revealed the formation of nanocomposites as mixed diffraction peaks were observed in the XRD pattern. SEM and TEM showed the morphology of the nanocomposites particles and their fine particle size. EDAX revealed the appropriate molar ratios exhibited by the constituent elements in the composites and FTIR gave some characteristic peaks which indicated the formation of CdS/ZnS nanocomposites. Electrochemical Impedance Spectroscopy was done to study charge transfer properties along the nanocomposites. Photocatalytic properties of the synthesized composites were monitored by the photocatalytic kinetic study of Acid Blue dye and p-chlorophenol under visible light irradiation. Results revealed the formation of stable core-shell nanocomposites and their efficient photocatalytic properties.

  1. Alteration of Rock Fragments from Columbia River Basalt Microcosms

    NASA Technical Reports Server (NTRS)

    Wentworth, Susan J.; Thomas-Keprta, Kathie L.; Velbel, Michael A.; McKay, David S.; Stevens, Todd O.

    1999-01-01

    During an earlier study, microorganisms were grown microcosms consisting of sterilized chips of Columbia River Basalt (CRB) and natural CRB ground water with its natural microflora; environmental conditions simulated a deep subsurface, anaerobic, dark environment. Subsequent scanning and transmission electron microscope (SEM and TEM) studies revealed the presence of several types of bacteria and biofilm, some of which were mineralized. Some of these biological features are very similar to possible biogenic features found in two meteorites from Mars, ALH84001 (found in Antarctica) and Nakhla (observed to fall in Egypt). Both ALH84001 and Nakhla contain traces of low-temperature aqueous alteration of silicates, oxides, and sulfides. The goals of this study are to use high-resolution field-emission SEM (FE-SEM) to examine the CRB samples for evidence of alteration features similar to those in the martian meteorites, to determine the extent of alteration during the CRB microcosm experiments, and to determine whether effects of biological activity can be distinguished from inorganic effects.

  2. Mapping temporal dynamics in social interactions with unified structural equation modeling: A description and demonstration revealing time-dependent sex differences in play behavior

    PubMed Central

    Beltz, Adriene M.; Beekman, Charles; Molenaar, Peter C. M.; Buss, Kristin A.

    2013-01-01

    Developmental science is rich with observations of social interactions, but few available methodological and statistical approaches take full advantage of the information provided by these data. The authors propose implementation of the unified structural equation model (uSEM), a network analysis technique, for observational data coded repeatedly across time; uSEM captures the temporal dynamics underlying changes in behavior at the individual level by revealing the ways in which a single person influences – concurrently and in the future – other people. To demonstrate the utility of uSEM, the authors applied it to ratings of positive affect and vigor of activity during children’s unstructured laboratory play with unfamiliar, same-sex peers. Results revealed the time-dependent nature of sex differences in play behavior. For girls more than boys, positive affect was dependent upon peers’ prior positive affect. For boys more than girls, vigor of activity was dependent upon peers’ current vigor of activity. PMID:24039386

  3. Information or resolution: Which is required from an SEM to study bulk inorganic materials?: Evaluate SEMs’ practical performance

    DOE PAGES

    Xing, Q.

    2016-07-11

    Significant technological advances in scanning electron microscopy (SEM) have been achieved over the past years. Different SEMs can have significant differences in functionality and performance. This work presents the perspectives on selecting an SEM for research on bulk inorganic materials. Understanding materials demands quantitative composition and orientation information, and informative and interpretable images that reveal subtle differences in chemistry, orientation/structure, topography, and electronic structure. The capability to yield informative and interpretable images with high signal-to-noise ratios and spatial resolutions is an overall result of the SEM system as a whole, from the electron optical column to the detection system. Themore » electron optical column determines probe performance. The roles of the detection system are to capture, filter or discriminate, and convert signal electrons to imaging information. The capability to control practical operating parameters including electron probe size and current, acceleration voltage or landing voltage, working distance, detector selection, and signal filtration is inherently determined by the SEM itself. As a platform for various accessories, e.g. an energydispersive spectrometer and an electron backscatter diffraction detector, the properties of the electron optical column, specimen chamber, and stage greatly affect the performance of accessories. Ease-of-use and ease-of-maintenance are of practical importance. It is practically important to select appropriate test specimens, design suitable imaging conditions, and analyze the specimen chamber geometry and dimensions to assess the overall functionality and performance of an SEM. Finally, for an SEM that is controlled/operated with a computer, the stable software and user-friendly interface significantly affect the usability of the SEM.« less

  4. Information or resolution: Which is required from an SEM to study bulk inorganic materials?

    PubMed

    Xing, Q

    2016-11-01

    Significant technological advances in scanning electron microscopy (SEM) have been achieved over the past years. Different SEMs can have significant differences in functionality and performance. This work presents the perspectives on selecting an SEM for research on bulk inorganic materials. Understanding materials demands quantitative composition and orientation information, and informative and interpretable images that reveal subtle differences in chemistry, orientation/structure, topography, and electronic structure. The capability to yield informative and interpretable images with high signal-to-noise ratios and spatial resolutions is an overall result of the SEM system as a whole, from the electron optical column to the detection system. The electron optical column determines probe performance. The roles of the detection system are to capture, filter or discriminate, and convert signal electrons to imaging information. The capability to control practical operating parameters including electron probe size and current, acceleration voltage or landing voltage, working distance, detector selection, and signal filtration is inherently determined by the SEM itself. As a platform for various accessories, e.g. an energy-dispersive spectrometer and an electron backscatter diffraction detector, the properties of the electron optical column, specimen chamber, and stage greatly affect the performance of accessories. Ease-of-use and ease-of-maintenance are of practical importance. It is practically important to select appropriate test specimens, design suitable imaging conditions, and analyze the specimen chamber geometry and dimensions to assess the overall functionality and performance of an SEM. For an SEM that is controlled/operated with a computer, the stable software and user-friendly interface significantly improve the usability of the SEM. SCANNING 38:864-879, 2016. © 2016 Wiley Periodicals, Inc. © Wiley Periodicals, Inc.

  5. Information or resolution: Which is required from an SEM to study bulk inorganic materials?: Evaluate SEMs’ practical performance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xing, Q.

    Significant technological advances in scanning electron microscopy (SEM) have been achieved over the past years. Different SEMs can have significant differences in functionality and performance. This work presents the perspectives on selecting an SEM for research on bulk inorganic materials. Understanding materials demands quantitative composition and orientation information, and informative and interpretable images that reveal subtle differences in chemistry, orientation/structure, topography, and electronic structure. The capability to yield informative and interpretable images with high signal-to-noise ratios and spatial resolutions is an overall result of the SEM system as a whole, from the electron optical column to the detection system. Themore » electron optical column determines probe performance. The roles of the detection system are to capture, filter or discriminate, and convert signal electrons to imaging information. The capability to control practical operating parameters including electron probe size and current, acceleration voltage or landing voltage, working distance, detector selection, and signal filtration is inherently determined by the SEM itself. As a platform for various accessories, e.g. an energydispersive spectrometer and an electron backscatter diffraction detector, the properties of the electron optical column, specimen chamber, and stage greatly affect the performance of accessories. Ease-of-use and ease-of-maintenance are of practical importance. It is practically important to select appropriate test specimens, design suitable imaging conditions, and analyze the specimen chamber geometry and dimensions to assess the overall functionality and performance of an SEM. Finally, for an SEM that is controlled/operated with a computer, the stable software and user-friendly interface significantly affect the usability of the SEM.« less

  6. Fine-structural analysis of black band disease-infected coral reveals boring cyanobacteria and novel bacteria.

    PubMed

    Miller, Aaron W; Blackwelder, Patricia; Al-Sayegh, Husain; Richardson, Laurie L

    2011-02-22

    Examination of coral fragments infected with black band disease (BBD) at the fine- and ultrastructural levels using scanning (SEM) and transmission electron microscopy (TEM) revealed novel features of the disease. SEM images of the skeleton from the host coral investigated (Montastraea annularis species complex) revealed extensive boring underneath the BBD mat, with cyanobacterial filaments present within some of the bore holes. Cyanobacteria were observed to penetrate into the overlying coral tissue from within the skeleton and were present throughout the mesoglea between tissue layers (coral epidermis and gastrodermis). A population of novel, as yet unidentified, small filamentous bacteria was found at the leading edge of the migrating band. This population increased in number within the band and was present within degrading coral epithelium, suggesting a role in disease etiology. In coral tissue in front of the leading edge of the band, cyanobacterial filaments were observed to be emerging from bundles of sloughed-off epidermal tissue. Degraded gastrodermis that contained actively dividing zooxanthellae was observed using both TEM and SEM. The BBD mat contained cyanobacterial filaments that were twisted, characteristic of negative-tactic responses. Some evidence of boring was found in apparently healthy control coral fragments; however, unlike in BBD-infected fragments, there were no associated cyanobacteria. These results suggest the coral skeleton as a possible source of pathogenic BBD cyanobacteria. Additionally, SEM revealed the presence of a potentially important group of small, filamentous BBD-associated bacteria yet to be identified.

  7. Balantioides coli: morphological and ultrastructural characteristics of pig and non-human primate isolates.

    PubMed

    Barbosa, Alynne da Silva; Barbosa, Helene Santos; Souza, Sandra Maria de Oliveira; Dib, Laís Verdan; Uchôa, Claudia Maria Antunes; Bastos, Otilio Machado Pereira; Amendoeira, Maria Regina Reis

    2018-06-26

    Balantioides coli is a ciliated protozoon that inhabits the intestine of pigs, non-human primates and humans. Light microscopy studies have described over 50 species of the genus Balantioides but their validity is in doubt. Due to the limited information about this genus, this study is aimed to identify morphological characteristics of Balantioides coli isolated using fluorescence microscopy and both scanning (SEM) and transmission electron microscopy (TEM). Trophozoites isolated from the feces of pig and macaque were washed and subjected to centrifugation. These cells were fixed with paraformaldehyde for immunofluorescence. Other aliquots of these trophozoites were fixed with glutaraldehyde, post fixed with osmium tetroxide and processed for SEM and TEM. Immunofluorescence studies revealed microtubules with a longitudinal distribution to the main axis of the parasite and in the constitution of cilia. SEM demonstrated a high concentration of cilia covering the oral apparatus and a poor presence of such structures in cytopyge. TEM revealed in the plasma membrane, several associated structures were observed to delineate the cellular cortex and mucocysts. The cytoskeleton of the oral region was observed in detail and had an organization pattern consisting of microtubules, which formed files and nematodesmal networks. Organelles such as hydrogenosomes like and peroxisomes were observed close to the cortex. Macronuclei were observed, but structures that were consistent with micronuclei were not identified. Ultrastructural morphological analysis of isolates confirms its similarity to Balantioides coli. In this study were identified structures that had not yet been described, such as hydrogenosomes like and cytoskeletal structures.

  8. A grounded theory study on the academic success of undergraduate women in science, engineering, and mathematics fields at a private, research university

    NASA Astrophysics Data System (ADS)

    Hroch, Amber Michelle

    2011-12-01

    This grounded theory study revealed the common factors of backgrounds, strategies, and motivators in academically successful undergraduate women in science, engineering, and mathematics (SEM) fields at a private, research university in the West. Data from interviews with 15 women with 3.25 or better grade point averages indicated that current academic achievement in their college SEM fields can be attributed to previous academic success, self awareness, time management and organizational skills, and maintaining a strong support network. Participants were motivated by an internal drive to academically succeed and attend graduate school. Recommendations are provided for professors, advisors, and student affairs professionals.

  9. Microstructural and thermal study of Al-Si-Mg/melon shell ash particulate composite

    NASA Astrophysics Data System (ADS)

    Abdulwahab, M.; Umaru, O. B.; Bawa, M. A.; Jibo, H. A.

    The microstructural study via scanning electron microscope (SEM) and thermal study via differential scanning calorimetric (DSC) study of Al-7%Si-0.3Mg/melon shell ash particulate composite has been carried out. The melon shell ash was used in the production of MMC ranging from 5% to 20% at interval of 5% addition using stir casting method. The melon shell ash was characterized using X-ray fluorescent (XRF) that reveal the presence of CaO, SiO2, Al2O3, MgO, and TiO2 as major compounds. The composite was machined and subjected to heat treatment. Microstructural analyses of the composite produced were done using scanning electron microscope (SEM). The microstructure obtained reveals a dark ceramic (reinforcer) and white metallic phase. Equally, the 5 wt% DSC result gives better thermal conductivity than other proportions (10 wt%, 15 wt%, and 20 wt%). These results showed that an improved property of Al-Si-Mg alloy was achieved using melon shell ash particles as reinforcement up to a maximum of 20 wt% for microstructural and 5% wt DSC respectively.

  10. Studies on the Inhibition of Mild Steel Corrosion by Rauvolfia serpentina in Acid Media

    NASA Astrophysics Data System (ADS)

    Bothi Raja, P.; Sethuraman, M. G.

    2010-07-01

    Alkaloid extract of Rauvolfia serpentina was tested as corrosion inhibitor for mild steel in 1 M HCl and H2SO4 using weight loss method at three different temperatures, viz., 303, 313, and 323 K, potentiodynamic polarization, electrochemical impedance spectroscopy and scanning electron microscope (SEM) studies. It is evident from the results of this study that R. serpentina effectively inhibits the corrosion in both the acids through adsorption process following Tempkin adsorption isotherm. The protection efficiency increased with increase in inhibitor concentration and temperature. Free energy of adsorption calculated from the temperature studies also revealed the chemisorption. The mixed mode of action exhibited by the inhibitor was confirmed by the polarization studies while SEM analysis substantiated the formation of protective layer over the mild steel surface.

  11. Surface characterization of LDEF carbon fiber/polymer matrix composites

    NASA Technical Reports Server (NTRS)

    Grammer, Holly L.; Wightman, James P.; Young, Philip R.; Slemp, Wayne S.

    1995-01-01

    XPS (x-ray photoelectron spectroscopy) and SEM (scanning electron microscopy) analysis of both carbon fiber/epoxy matrix and carbon fiber/polysulfone matrix composites revealed significant changes in the surface composition as a result of exposure to low-earth orbit. The carbon 1s curve fit XPS analysis in conjunction with the SEM photomicrographs revealed significant erosion of the polymer matrix resins by atomic oxygen to expose the carbon fibers of the composite samples. This erosion effect on the composites was seen after 10 months in orbit and was even more obvious after 69 months.

  12. Morphological changes in diseased cementum layers: a scanning electron microscopy study.

    PubMed

    Bilgin, E; Gürgan, C A; Arpak, M Nejat; Bostanci, H S; Güven, K

    2004-05-01

    The aim of this study was to compare the morphological changes that occurred in root cementum layers due to periodontal disease by using scanning electron microscopy (SEM). Ninety-two periodontally hopeless teeth extracted from 29 patients were studied. Measurements of probing depth (PD) and clinical attachment loss (CAL) were taken prior to extractions. After the longitudinal fracturing process of root specimens, healthy and diseased cementum layers of roots were evaluated by SEM for the thickness of the cementum and the morphological changes in collagen fibers. The result of SEM evaluation revealed a significant ( P < 0.001) decrease in the thickness of cementum layer on the diseased root surfaces compared to the healthy surfaces. There were denser and conspicuous collagen fibers with their interfibrillar matrix in cementum layers on the healthy root surfaces compared to the diseased surfaces. Within the limits of this study, the thickness of cementum layers in diseased areas was found to be significantly less than that in the healthy areas of root surfaces. However, there exist variations in the density and visibility of cemental fibers between individuals and within the individual.

  13. Improved cell viability and hydroxyapatite growth on nitrogen ion-implanted surfaces

    NASA Astrophysics Data System (ADS)

    Shafique, Muhammad Ahsan; Murtaza, G.; Saadat, Shahzad; Uddin, Muhammad K. H.; Ahmad, Riaz

    2017-08-01

    Stainless steel 306 is implanted with various doses of nitrogen ions using a 2 MV pelletron accelerator for the improvement of its surface biomedical properties. Raman spectroscopy reveals incubation of hydroxyapatite (HA) on all the samples and it is found that the growth of incubated HA is greater in higher ion dose samples. SEM profiles depict uniform growth and greater spread of HA with higher ion implantation. Human oral fibroblast response is also found consistent with Raman spectroscopy and SEM results; the cell viability is found maximum in samples treated with the highest (more than 300%) dose. XRD profiles signified greater peak intensity of HA with ion implantation; a contact angle study revealed hydrophilic behavior of all the samples but the treated samples were found to be lesser hydrophilic compared to the control samples. Nitrogen implantation yields greater bioactivity, improved surface affinity for HA incubation and improved hardness of the surface.

  14. Three-dimensional textures and defects of soft material layering revealed by thermal sublimation.

    PubMed

    Yoon, Dong Ki; Kim, Yun Ho; Kim, Dae Seok; Oh, Seong Dae; Smalyukh, Ivan I; Clark, Noel A; Jung, Hee-Tae

    2013-11-26

    Layering is found and exploited in a variety of soft material systems, ranging from complex macromolecular self-assemblies to block copolymer and small-molecule liquid crystals. Because the control of layer structure is required for applications and characterization, and because defects reveal key features of the symmetries of layered phases, a variety of techniques have been developed for the study of soft-layer structure and defects, including X-ray diffraction and visualization using optical transmission and fluorescence confocal polarizing microscopy, atomic force microscopy, and SEM and transmission electron microscopy, including freeze-fracture transmission electron microscopy. Here, it is shown that thermal sublimation can be usefully combined with such techniques to enable visualization of the 3D structure of soft materials. Sequential sublimation removes material in a stepwise fashion, leaving a remnant layer structure largely unchanged and viewable using SEM, as demonstrated here using a lamellar smectic liquid crystal.

  15. Third order nonlinear optical properties of Mn doped CeO2 nanostructures

    NASA Astrophysics Data System (ADS)

    Mani Rahulan, K.; Angeline Little Flower, N.; Annie Sujatha, R.; Mohana Priya, P.; Gopalakrishnan, C.

    2018-05-01

    Mn doped CeO2 nanoparticles with different ratios of Mn were synthesized by hydrothermal method and their structural properties were characterized using X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and Scanning electron microscopy (SEM). XRD patterns revealed that the peaks are highly crystalline structure with no segregation of Mn. The surface morphology from SEM reveals that particle size decreases with increase in Mn concentration. Nonlinear optical studies of the samples were measured by single-beam open aperture Z-scan technique using 5 ns laser pulses at 532 nm. The measured optical nonlinearity of all the samples exhibit typical third order nonlinear optical behavior including two-photon absorption (2 PA) and reverse saturable absorption (RSA). The experimental results show that the presence of RSA in these nanoparticles makes them a promising material for the fabrication of optical limiting devices. .

  16. Effects of subacute ingestion of chlorogenic acids on sleep architecture and energy metabolism through activity of the autonomic nervous system: a randomised, placebo-controlled, double-blinded cross-over trial.

    PubMed

    Park, Insung; Ochiai, Ryuji; Ogata, Hitomi; Kayaba, Momoko; Hari, Sayaka; Hibi, Masanobu; Katsuragi, Yoshihisa; Satoh, Makoto; Tokuyama, Kumpei

    2017-04-01

    Chlorogenic acids (CGA) are the most abundant polyphenols in coffee. Continuous consumption of CGA reduces body fat and body weight. Since energy metabolism and sleep are controlled by common regulatory factors, consumption of CGA might modulate sleep. Lack of sleep has been identified as a risk factor for obesity, hypertension and type 2 diabetes. The aim of this study was to determine the effects of ingesting CGA over 5 d on energy metabolism and sleep quality in humans. A total of nine healthy subjects (four male and five female) completed a placebo-controlled, double-blinded, cross-over intervention study. Subjects consumed a test beverage containing 0 or 600 mg of CGA for 5 d. On the fifth night, subjects stayed in a whole-room metabolic chamber to measure energy metabolism; sleep was evaluated using polysomnographic recording. It was found that CGA shortened sleep latency (9 (sem 2) v. 16 (sem 4) min, P<0·05) compared with the control, whereas no effect on sleep architecture, such as slow-wave sleep, rapid eye movement or waking after sleep onset, was observed. Indirect calorimetry revealed that consumption of CGA increased fat oxidation (510 (sem 84) kJ/8 h (122 (sem 20) kcal/8 h) v. 331 (sem 79) kJ/8 h (81 (sem 19) kcal/8 h), P<0·05) but did not affect energy expenditure during sleep. Consumption of CGA enhanced parasympathetic activity assessed from heart-rate variability during sleep (999 (sem 77) v. 919 (sem 54), P<0·05). A period of 5-d CGA consumption significantly increased fat oxidation during sleep, suggesting that beverages containing CGA may be beneficial to reduce body fat and prevent obesity. Consumption of CGA shortened sleep latency and did not adversely affect sleep quality.

  17. Re-examination of Chinese semantic processing and syntactic processing: evidence from conventional ERPs and reconstructed ERPs by residue iteration decomposition (RIDE).

    PubMed

    Wang, Fang; Ouyang, Guang; Zhou, Changsong; Wang, Suiping

    2015-01-01

    A number of studies have explored the time course of Chinese semantic and syntactic processing. However, whether syntactic processing occurs earlier than semantics during Chinese sentence reading is still under debate. To further explore this issue, an event-related potentials (ERPs) experiment was conducted on 21 native Chinese speakers who read individually-presented Chinese simple sentences (NP1+VP+NP2) word-by-word for comprehension and made semantic plausibility judgments. The transitivity of the verbs was manipulated to form three types of stimuli: congruent sentences (CON), sentences with a semantically violated NP2 following a transitive verb (semantic violation, SEM), and sentences with a semantically violated NP2 following an intransitive verb (combined semantic and syntactic violation, SEM+SYN). The ERPs evoked from the target NP2 were analyzed by using the Residue Iteration Decomposition (RIDE) method to reconstruct the ERP waveform blurred by trial-to-trial variability, as well as by using the conventional ERP method based on stimulus-locked averaging. The conventional ERP analysis showed that, compared with the critical words in CON, those in SEM and SEM+SYN elicited an N400-P600 biphasic pattern. The N400 effects in both violation conditions were of similar size and distribution, but the P600 in SEM+SYN was bigger than that in SEM. Compared with the conventional ERP analysis, RIDE analysis revealed a larger N400 effect and an earlier P600 effect (in the time window of 500-800 ms instead of 570-810ms). Overall, the combination of conventional ERP analysis and the RIDE method for compensating for trial-to-trial variability confirmed the non-significant difference between SEM and SEM+SYN in the earlier N400 time window. Converging with previous findings on other Chinese structures, the current study provides further precise evidence that syntactic processing in Chinese does not occur earlier than semantic processing.

  18. SEM and AFM studies of dip-coated CuO nanofilms.

    PubMed

    Dhanasekaran, V; Mahalingam, T; Ganesan, V

    2013-01-01

    Cupric oxide (CuO) semiconducting thin films were prepared at various copper sulfate concentrations by dip coating. The copper sulfate concentration was varied to yield films of thicknesses in the range of 445-685 nm by surface profilometer. X-ray diffraction patterns revealed that the deposited films were polycrystalline in nature with monoclinic structure of (-111) plane. The surface morphology and topography of monoclinic-phase CuO thin films were examined using scanning electron microscopy (SEM) and atomic force microscopy (AFM), respectively. Surface roughness profile was plotted using WSxM software and the estimated surface roughness was about ∼19.4 nm at 30 mM molar concentration. The nanosheets shaped grains were observed by SEM and AFM studies. The stoichiometric compound formation was observed at 30 mM copper sulfate concentration prepared film by EDX. The indirect band gap energy of CuO films was increased from 1.08 to 1.20 eV with the increase of copper sulfate concentrations. Copyright © 2012 Wiley Periodicals, Inc.

  19. Characterization of a multi-metal binding biosorbent: Chemical modification and desorption studies.

    PubMed

    Abdolali, Atefeh; Ngo, Huu Hao; Guo, Wenshan; Zhou, John L; Du, Bin; Wei, Qin; Wang, Xiaochang C; Nguyen, Phuoc Dan

    2015-10-01

    This work attends to preparation and characterization of a novel multi-metal binding biosorbent after chemical modification and desorption studies. Biomass is a combination of tea waste, maple leaves and mandarin peels with a certain proportion to adsorb cadmium, copper, lead and zinc ions from aqueous solutions. The mechanism involved in metal removal was investigated by SEM, SEM/EDS and FTIR. SEM/EDS showed the presence of different chemicals and adsorbed heavy metal ions on the surface of biosorbent. FTIR of both unmodified and modified biosorbents revealed the important role of carboxylate groups in heavy metal biosorption. Desorption using different eluents and 0.1 M HCl showed the best desorption performance. The effectiveness of regeneration step by 1 M CaCl2 on five successive cycles of sorption and desorption displays this multi-metal binding biosorbent (MMBB) can effectively be utilized as an adsorbent to remove heavy metal ions from aqueous solutions in five cycles of sorption/desorption/regeneration. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Revisiting the Swaziland Supergroup: New Approaches to Examining Evidence for Early Life on Earth

    NASA Technical Reports Server (NTRS)

    Walsh, M. M.; Westall, F.

    2000-01-01

    The re-examination by SEM of 3.4 Ga fossiliferous carbonaceous cherts reveals fungal contaminants in addition to indigenous microfossils. Weathered volcanic flows associated with fossiliferous chert layers offer a promising area for further study of early life on Earth.

  1. Redescription of Mehdiella microstoma and description of Mehdiella petterae sp. n., with a new definition of the genus Mehdiella Seurat, 1918 (Nematoda: Pharyngodonidae).

    PubMed

    Bouamer, S; Morand, S; Bourgat, R

    2001-01-01

    The generic diagnosis of Mehdiella Seurat, 1918 is emended based on study and redescription of Mehdiella microstoma (Drasche, 1884) from the caecum of Testudo graeca Linnaeus, 1758 collected in Settat, Morocco and on study and description of a new species, Mehdiella petterae sp. n., from the large intestine of Testudo hermanni (Gmelin, 1789) collected in Catalonia, Spain. Scanning electron microscopy (SEM) studies revealed substantial differences in the structure of the mouth and the caudal end, and made possible to differentiate the new species from the others. SEM studies showed the real and sound characteristics of the genus Mehdiella, namely number of anal papillae 2 instead of 3, post-anal papillae pedunculate or sessile instead sessile.

  2. Phase study and surface morphology of beta-alumina

    NASA Astrophysics Data System (ADS)

    Tak, S. K.

    2018-05-01

    Beta alumina ceramic is well known as a polycrystalline ceramic material. The characteristic crystal structure of beta-alumina makes it useful as a separator in sodium sulphur batteries and other electrochemical devices requiring the passage of sodium ions. β"-alumina powders for this study were prepared by zeta process. The pellets were sintered at different microwave power levels and power schedule to optimize the sintering conditions to obtain preferred β" phase with improved microstructure. Phase identification was studied by X-ray diffraction (XRD). XRD analysis shows increase in β'' phase as the sintering temperature was increased from 1400°C to 1600°C. Surface morphology of the pellets was carried out by Scanning Electron microscopy (SEM). SEM studies revealed the formation and growth of platelet grains with interconnected porosity.

  3. Maternal risk factors predicting child physical characteristics and dysmorphology in fetal alcohol syndrome and partial fetal alcohol syndrome.

    PubMed

    May, Philip A; Tabachnick, Barbara G; Gossage, J Phillip; Kalberg, Wendy O; Marais, Anna-Susan; Robinson, Luther K; Manning, Melanie; Buckley, David; Hoyme, H Eugene

    2011-12-01

    Previous research in South Africa revealed very high rates of fetal alcohol syndrome (FAS), of 46-89 per 1000 among young children. Maternal and child data from studies in this community summarize the multiple predictors of FAS and partial fetal alcohol syndrome (PFAS). Sequential regression was employed to examine influences on child physical characteristics and dysmorphology from four categories of maternal traits: physical, demographic, childbearing, and drinking. Then, a structural equation model (SEM) was constructed to predict influences on child physical characteristics. Individual sequential regressions revealed that maternal drinking measures were the most powerful predictors of a child's physical anomalies (R² = .30, p < .001), followed by maternal demographics (R² = .24, p < .001), maternal physical characteristics (R²=.15, p < .001), and childbearing variables (R² = .06, p < .001). The SEM utilized both individual variables and the four composite categories of maternal traits to predict a set of child physical characteristics, including a total dysmorphology score. As predicted, drinking behavior is a relatively strong predictor of child physical characteristics (β = 0.61, p < .001), even when all other maternal risk variables are included; higher levels of drinking predict child physical anomalies. Overall, the SEM model explains 62% of the variance in child physical anomalies. As expected, drinking variables explain the most variance. But this highly controlled estimation of multiple effects also reveals a significant contribution played by maternal demographics and, to a lesser degree, maternal physical and childbearing variables. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  4. Correlation of two-photon in vivo imaging and FIB/SEM microscopy

    PubMed Central

    Blazquez-Llorca, L; Hummel, E; Zimmerman, H; Zou, C; Burgold, S; Rietdorf, J; Herms, J

    2015-01-01

    Advances in the understanding of brain functions are closely linked to the technical developments in microscopy. In this study, we describe a correlative microscopy technique that offers a possibility of combining two-photon in vivo imaging with focus ion beam/scanning electron microscope (FIB/SEM) techniques. Long-term two-photon in vivo imaging allows the visualization of functional interactions within the brain of a living organism over the time, and therefore, is emerging as a new tool for studying the dynamics of neurodegenerative diseases, such as Alzheimer’s disease. However, light microscopy has important limitations in revealing alterations occurring at the synaptic level and when this is required, electron microscopy is mandatory. FIB/SEM microscopy is a novel tool for three-dimensional high-resolution reconstructions, since it acquires automated serial images at ultrastructural level. Using FIB/SEM imaging, we observed, at 10 nm isotropic resolution, the same dendrites that were imaged in vivo over 9 days. Thus, we analyzed their ultrastructure and monitored the dynamics of the neuropil around them. We found that stable spines (present during the 9 days of imaging) formed typical asymmetric contacts with axons, whereas transient spines (present only during one day of imaging) did not form a synaptic contact. Our data suggest that the morphological classification that was assigned to a dendritic spine according to the in vivo images did not fit with its ultrastructural morphology. The correlative technique described herein is likely to open opportunities for unravelling the earlier unrecognized complexity of the nervous system. Lay Description Neuroscience and the understanding of brain functions are closely linked to the technical advances in microscopy. In this study we performed a correlative microscopy technique that offers the possibility to combine 2 photon in vivo imaging and FIB/SEM microscopy. Long term 2 photon in vivo imaging allows the visualization of functional interactions within the brain of a living organism over the time, and therefore, is emerging as a new tool to study the dynamics of neurodegenerative diseases, such as Alzheimer’s disease. However, light microscopy has important limitations in revealing synapses that are the connections between neurons, and for this purpose, the electron microscopy is necessary. FIB/SEM microscopy is a novel tool for three-dimensional (3D) high resolution reconstructions since it acquires automated serial images at ultrastructural level. This correlative technique will open up new horizons and opportunities for unravelling the complexity of the nervous system. PMID:25786682

  5. Predictors of Satisfaction in Geographically Close and Long-Distance Relationships

    ERIC Educational Resources Information Center

    Lee, Ji-yeon; Pistole, M. Carole

    2012-01-01

    In this study, the authors examined geographically close (GCRs) and long-distance (LDRs) romantic relationship satisfaction as explained by insecure attachment, self-disclosure, gossip, and idealization. After college student participants (N = 536) completed a Web survey, structural equation modeling (SEM) multigroup analysis revealed that the GCR…

  6. Liesegang banding and multiple precipitate formation in cobalt phosphate systems

    NASA Astrophysics Data System (ADS)

    Karam, Tony; El-Rassy, Houssam; Zaknoun, Farah; Moussa, Zeinab; Sultan, Rabih

    2012-02-01

    We study a cobalt phosphate Liesegang pattern from cobalt(II) and phosphate ions in a 1D tube. The system yields a complex, multi-component pattern. Characterization of the different precipitates by FTIR, SEM and XRD reveals that they are cobalt phosphate polymorphs with different degrees of hydration.

  7. SEM and TEM Analyses of Minerals Xifengite, Gupeiite, Fe2Si (Hapkeite?), Titanium Carbide (TiC) and Cubic Moissanite (SiC) from the Subsoil in the Alpine Foreland: Are they Cosmochemical?

    NASA Astrophysics Data System (ADS)

    Hiltl, M.; Bauer, F.; Ernstson, K.; Mayer, W.; Neumair, A.; Rappenglück, M. A.

    2011-03-01

    SEM and TEM analyses of millimeter- to centimeter-sized particles from Holocene soils reveal a multi-stoichiometric iron silicide matrix containing purest crystals of titanium carbide and cubic moissanite. A cosmochemical origin is suggested.

  8. A facile synthesis of metal nanoparticle - graphene composites for better absorption of solar radiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sharma, Bindu; Mulla, Rafiq; Rabinal, M. K., E-mail: mkrabinal@yahoo.com

    2015-06-24

    Herein, a facile chemical approach has been adopted to prepare silver nanoparticles (AgNPs)- graphene (G) composite to study photothermal effect. Sodium borohydride (SBH), a strong reducing agent has been selected for this work. Effect of SBH concentrations on optical behavior of AgNPs-G composite was also investigated. Resultant materials were characterized by various techniques including X-ray diffraction (XRD), fourier transform infrared spectroscopy (FTIR), optical absorption, scanning electron microscopy (SEM) and transmission electron microscopy (TEM). SEM micrographs confirm wrapping of AgNPs into graphene whereas XRD analysis reveals their particle size variation between 47 nm to 69 nm. Optical studies throw a light on theirmore » strong absorption behavior towards solar radiation.« less

  9. Inhibitive effect of Xylopia ferruginea extract on the corrosion of mild steel in 1M HCl medium

    NASA Astrophysics Data System (ADS)

    Raja, Pandian Bothi; Rahim, Afidah Abdul; Osman, Hasnah; Awang, Khalijah

    2011-08-01

    The alkaloid content of the leaves and stem bark of Xylopia ferruginea plant was isolated and tested for its anticorrosion potential on mild steel corrosion in a hydrochloric acid medium by using electrochemical impedance spectroscopy, potentiodynamic polarization measurement, scanning electron microscopy (SEM), and Fourier transform infra red (FTIR) analysis. The experimental results reveal the effective anticorrosion potential of the plant extract. The mixed mode of action exhibited by the plant extract is evidenced from the polarization study. SEM images proof the formation of a protective layer over the mild steel surface, and this is supported by the FTIR study. The possible mode of the corrosion inhibition mechanism has also been discussed.

  10. Effect of rotary cutting instruments on the resin-tooth interfacial ultra structure: An in vivo study.

    PubMed

    Sherawat, Sudhir; Tewari, Sanjay; Duhan, Jigyasa; Gupta, Alpa; Singla, Rakesh

    2014-12-01

    To evaluate the effect of cutting teeth with different types of burs at various speeds on surface topography of tooth surface and interfacial gap formation at resin-tooth interface. The human molars were divided into seven groups: Diamond bur in airrotor (DA) & micromotor (DM), crosscut carbide bur in airrotor (CCA) & micromotor (CCM), plain carbide bur in airrotor (CA) & micromotor (CM) and #600-grit silicon carbide paper (SiC). In five samples from each group Class II box-only cavities were restored. The occlusal surface of four teeth per group was flattened. Two out of four teeth were acid etched. Teeth were subjected for scanning electron microscopy (SEM). Interfacial gap was observed in all groups with no significant difference. SEM observations revealed CA, CCA & DA were coarser than CM, CCM, DM and SiC. SEM of etched tooth surfaces revealed complete removal of amorphous smear layer in CA & CM, partial removal in CCA, CCM, DA & DM and no removal in SiC. Selecting an appropriate bur and its speed may not play an important role in bonding in terms of interfacial gap formation. Variable changes were observed in surface topography with different burs before and after acid etching. Key words:Surface topography, resin-tooth interface, interfacial gap, bonding.

  11. Effect of rotary cutting instruments on the resin-tooth interfacial ultra structure: An in vivo study

    PubMed Central

    Sherawat, Sudhir; Tewari, Sanjay; Duhan, Jigyasa; Singla, Rakesh

    2014-01-01

    Objectives: To evaluate the effect of cutting teeth with different types of burs at various speeds on surface topography of tooth surface and interfacial gap formation at resin-tooth interface. Material and Methods: The human molars were divided into seven groups: Diamond bur in airrotor (DA) & micromotor (DM), crosscut carbide bur in airrotor (CCA) & micromotor (CCM), plain carbide bur in airrotor (CA) & micromotor (CM) and #600-grit silicon carbide paper (SiC). In five samples from each group Class II box-only cavities were restored. The occlusal surface of four teeth per group was flattened. Two out of four teeth were acid etched. Teeth were subjected for scanning electron microscopy (SEM). Results: Interfacial gap was observed in all groups with no significant difference. SEM observations revealed CA, CCA & DA were coarser than CM, CCM, DM and SiC. SEM of etched tooth surfaces revealed complete removal of amorphous smear layer in CA & CM, partial removal in CCA, CCM, DA & DM and no removal in SiC. Conclusions: Selecting an appropriate bur and its speed may not play an important role in bonding in terms of interfacial gap formation. Variable changes were observed in surface topography with different burs before and after acid etching. Key words:Surface topography, resin-tooth interface, interfacial gap, bonding. PMID:25674310

  12. Serial sectioning for examination of photoreceptor cell architecture by focused ion beam technology

    PubMed Central

    Mustafi, Debarshi; Avishai, Amir; Avishai, Nanthawan; Engel, Andreas; Heuer, Arthur; Palczewski, Krzysztof

    2011-01-01

    Structurally deciphering complex neural networks requires technology with sufficient resolution to allow visualization of single cells and their intimate surrounding connections. Scanning electron microscopy (SEM), coupled with serial ion ablation (SIA) technology, presents a new avenue to study these networks. SIA allows ion ablation to remove nanometer sections of tissue for SEM imaging, resulting in serial section data collection for three-dimensional reconstruction. Here we highlight a method for preparing retinal tissues for imaging of photoreceptors by SIA-SEM technology. We show that this technique can be used to visualize whole rod photoreceptors and the internal disc elements from wild-type (wt) mice. The distance parameters of the discs and photoreceptors are in good agreement with previous work with other methods. Moreover, we show that large planes of retinal tissue can be imaged at high resolution to display the packing of normal rods. Finally, SIA-SEM imaging of retinal tissue from a mouse model (Nrl−/−) with phenotypic changes akin to the human disease enhanced S-cone syndrome (ESCS) revealed a structural profile of overall photoreceptor ultrastructure and internal elements that accompany this disease. Overall, this work presents a new method to study photoreceptor cells at high structural resolution that has a broad applicability to the visual neuroscience field. PMID:21439323

  13. Scanning electron microscopy study of new bone formation following small and large defects preserved with xenografts supplemented with pamidronate-A pilot study in Fox-Hound dogs at 4 and 8 weeks.

    PubMed

    Lozano-Carrascal, Naroa; Satorres-Nieto, Marta; Delgado-Ruiz, Rafael; Maté-Sánchez de Val, José Eduardo; Gehrke, Sergio Alexandre; Gargallo-Albiol, Jorge; Calvo-Guirado, José Luis

    2017-01-01

    The aim of the present study was to evaluate the feasibility of SEM and EDX microanalysis on evaluating the effect of porcine xenografts (MP3 ® ) supplemented with pamidronate during socket healing. Mandibular second premolars (P2) and first molars (M1) were extracted from six Beagle dogs. P2 were categorized as small defects (SD) and M1 as large defects (LD). Four random groups were created: SC (small control defects with MP3 ® ), ST (small test defects MP3 ® +pamidronate), LC (large control defects with MP3 ® ), and LT (large test defects MP3 ® +pamidronate). At four and eight weeks of healing the samples were evaluated fisically through scanning electron microscopy (SEM), and chemical element mapping was carried out by Energy dispersive X-ray spectroscopy (EDX). After four weeks of healing, SEM and EDX analysis revealed more mineralized bone in ST and LT groups compared with control groups (p<0.05). After eight weeks, Ca/P ratios were slightly higher for small defects (groups SC and ST); in SEM description, in both control and test groups, trabecular bone density was similar to the adjacent mineralized cortical bone. Within the limitations of this experimental study, SEM description and EDX elemental microanalysis have demonstrated to be useful techniques to assess bone remodelling of small and large defects. Both techniques show increased bone formation in test groups (MP3 ® modified with pamidronate) after four and eight weeks of healing. Copyright © 2016 Elsevier GmbH. All rights reserved.

  14. Viewing Integrated-Circuit Interconnections By SEM

    NASA Technical Reports Server (NTRS)

    Lawton, Russel A.; Gauldin, Robert E.; Ruiz, Ronald P.

    1990-01-01

    Back-scattering of energetic electrons reveals hidden metal layers. Experiment shows that with suitable operating adjustments, scanning electron microscopy (SEM) used to look for defects in aluminum interconnections in integrated circuits. Enables monitoring, in situ, of changes in defects caused by changes in temperature. Gives truer picture of defects, as etching can change stress field of metal-and-passivation pattern, causing changes in defects.

  15. Development of uncertainty-based work injury model using Bayesian structural equation modelling.

    PubMed

    Chatterjee, Snehamoy

    2014-01-01

    This paper proposed a Bayesian method-based structural equation model (SEM) of miners' work injury for an underground coal mine in India. The environmental and behavioural variables for work injury were identified and causal relationships were developed. For Bayesian modelling, prior distributions of SEM parameters are necessary to develop the model. In this paper, two approaches were adopted to obtain prior distribution for factor loading parameters and structural parameters of SEM. In the first approach, the prior distributions were considered as a fixed distribution function with specific parameter values, whereas, in the second approach, prior distributions of the parameters were generated from experts' opinions. The posterior distributions of these parameters were obtained by applying Bayesian rule. The Markov Chain Monte Carlo sampling in the form Gibbs sampling was applied for sampling from the posterior distribution. The results revealed that all coefficients of structural and measurement model parameters are statistically significant in experts' opinion-based priors, whereas, two coefficients are not statistically significant when fixed prior-based distributions are applied. The error statistics reveals that Bayesian structural model provides reasonably good fit of work injury with high coefficient of determination (0.91) and less mean squared error as compared to traditional SEM.

  16. SEM method for direct visual tracking of nanoscale morphological changes of platinum based electrocatalysts on fixed locations upon electrochemical or thermal treatments.

    PubMed

    Zorko, Milena; Jozinović, Barbara; Bele, Marjan; Hodnik, Nejc; Gaberšček, Miran

    2014-05-01

    A general method for tracking morphological surface changes on a nanometer scale with scanning electron microscopy (SEM) is introduced. We exemplify the usefulness of the method by showing consecutive SEM images of an identical location before and after the electrochemical and thermal treatments of platinum-based nanoparticles deposited on a high surface area carbon. Observations reveal an insight into platinum based catalyst degradation occurring during potential cycling treatment. The presence of chloride clearly increases the rate of degradation. At these conditions the dominant degradation mechanism seems to be the platinum dissolution with some subsequent redeposition on the top of the catalyst film. By contrast, at the temperature of 60°C, under potentiostatic conditions some carbon corrosion and particle aggregation was observed. Temperature treatment simulating the annealing step of the synthesis reveals sintering of small platinum based composite aggregates into uniform spherical particles. The method provides a direct proof of induced surface phenomena occurring on a chosen location without the usual statistical uncertainty in usual, random SEM observations across relatively large surface areas. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Morphological studies of the developing human esophageal epithelium.

    PubMed

    Ménard, D

    1995-06-15

    This article focusses on the structural development of human esophageal ciliated epithelium. A combination of transmission electron microscopic (TEM), scanning electron microscopic (SEM), radioautographic, and light microscopic (LM) analyses were carried out using intact fetal tissues between 8 and 20 weeks of gestation as well as cultured esophageal explants. Up to the age of 10 weeks, the stratified esophageal epithelium consisted of two longitudinal primary folds. The surface cells were undifferentiated and contained large glycogen aggregates. Between 11 and 16 weeks, the primary folds (now up to four) had developed secondary folds. The thickness of the epithelium drastically increased (123%) in concomittance with a differentiation of surface columnar ciliated cells. These highly specialized surface cells exhibited junctional complexes and well-developed organelles with numerous microvilli interspersed among the cilia. Transverse sections revealed the internal structure of the cilia with a consistent pattern of nine doublet microtubules surrounding a central pair of single microtubules. Freeze-fracture studies illustrated the presence of a ciliary necklace composed of 6 ring-like rows of intramembranous particles. They also revealed the structure of ciliary cell tight junctions consisting of up to nine anastomosing strands (P-face) or complementary grooves (E-face). Ultrastructural studies (LM, TEM, SEM) of the esophageal squamous epithelium obtained after 15 days of culture showed that the newly formed epithelium was similar to adult human epithelium. Finally LM and SEM observations established that the esophagogastric junction was not yet well delineated, consisting of a transitional area composed of a mixture of esophageal ciliated cells and gastric columnar mucous cells.

  18. Fully vs. partially covered selfexpandable metal stent for palliation of malignant esophageal strictures: a randomized trial (the COPAC study).

    PubMed

    Didden, Paul; Reijm, Agnes N; Erler, Nicole S; Wolters, Leonieke M M; Tang, Thjon J; Ter Borg, Pieter C J; Leeuwenburgh, Ivonne; Bruno, Marco J; Spaander, Manon C W

    2018-06-12

     Covered esophageal self-expandable metal stents (SEMSs) are currently used for palliation of malignant dysphagia. The optimal extent of the covering to prevent recurrent obstruction is unknown. Therefore, we aimed to compare fully covered (FC) versus partially covered (PC) SEMSs in patients with incurable malignant esophageal stenosis.  In this multicenter randomized controlled trial, 98 incurable patients with dysphagia caused by a malignant stricture of the esophagus or cardia were randomized 1:1 to an FC-SEMS or PC-SEMS. The primary outcome was recurrent obstruction after endoscopic SEMS placement. Secondary outcomes were technical and clinical success, adverse events, and health-related quality of life (HRQoL). Patients were followed until 6 months after SEMS placement or to SEMS removal, second SEMS insertion, or death, whichever came first.  Recurrent obstruction after SEMS placement was similar for both types of stents: 19 % for FC-SEMSs and 22 % for PC-SEMSs ( P  = 0.65). The times to recurrent obstruction did not differ. The frequency of adverse events was similar between the two groups, with major adverse events occurring in 38 % and 47 % of patients for FC-SEMSs and PC-SEMSs, respectively ( P  = 0.34). No significant differences were seen in technical success, improvement of dysphagia, and HRQoL. Proximal esophageal stenosis and female sex were independently associated with recurrent obstruction and/or major adverse events.  Esophageal FC-SEMSs did not reveal a lower recurrent obstruction rate compared with PC-SEMSs in the palliative management of malignant dysphagia. © Georg Thieme Verlag KG Stuttgart · New York.

  19. Study of environmental biodegradation of LDPE films in soil using optical and scanning electron microscopy.

    PubMed

    Mumtaz, Tabassum; Khan, M R; Hassan, Mohd Ali

    2010-07-01

    An outdoor soil burial test was carried out to evaluate the degradation of commercially available LDPE carrier bags in natural soil for up to 2 years. Biodegradability of low density polyethylene films in soil was monitored using both optical and scanning electron microscopy (SEM). After 7-9 months of soil exposure, microbial colonization was evident on the film surface. Exposed LDPE samples exhibit progressive changes towards degradation after 17-22 months. SEM images reveal signs of degradation such as exfoliation and formation of cracks on film leading to disintegration. The possible degradation mode and consequences on the use and disposal of LDPE films is discussed. Copyright 2010 Elsevier Ltd. All rights reserved.

  20. Extraction and characterization of the auricularia auricular polysaccharide

    NASA Astrophysics Data System (ADS)

    Zhang, Q. T.

    2016-07-01

    To study a new protein drugs carrier, the Auricularia auricular polysaccharide (AAP) was extracted and purified from Auricularia auricular, and then characterized by the micrOTOF-Q mass spectrometer, UV/Vis spectrophotometer, moisture analyzer and SEM. The results showed that the AAP sample was water- soluble and white flocculence, its molecular weight were 20506.9 Da∼⃒63923.7 Da, and the yield, moisture, and total sugar contents of the AAP were 4.5%, 6.2% and 90.12%(w/w), respectively. The results of the SEM revealed that the AAP dried by vacuum were spherical particles with a smooth surface, and the AAP freeze-dried had continuous porous sheet shape with the loose structure.

  1. Non-platinum metal-organic framework based electro-catalyst for promoting oxygen reduction reaction

    NASA Astrophysics Data System (ADS)

    Das, Dipanwita; Raut, Vrushali; Kireeti, Kota V. M. K.; Jha, Neetu

    2018-04-01

    We developed two non-precious Metal Organic Framework (MOF) based electrocatalysts, MOF-5 and MOF-i using solvothermal and refluxing methods. The MOFs prepared has been characterized by powder X-ray diffractometer (XRD), Fourier Transform Infra-Red Spectroscopy (FTIR) and Scanning Electron Microscopy (SEM) for structural and morphological insights. SEM images reveal cubic shape for solvothermally synthesized MOF-5, whereas refluxing method leads to platelet morphology of MOF-i. The synthesized MOFs has been investigated for Oxygen Reduction Reaction (ORR) studies using Cyclic Voltammetry (CV) and Linear Sweep Voltammetry (LSV), with MOF modified Glassy Carbon (GC) as working electrode. The electrochemical data suggests higher activity of MOF-5 towards ORR compared to MOF-i.

  2. [Trust in organizations concerned with risks of the Great East Japan Earthquake].

    PubMed

    Nakayachi, Kazuya; Kudo, Daisuke; Ozaki, Taku

    2014-06-01

    This study investigated the levels of public trust in organizations associated with the Great East Japan Earthquake. In Study 1 (N = 639), the levels of trust in eight organizations as well as the determinants of trust--perceived salient value similarity (SVS), ability, and motivation--were measured twice, first immediately after the earthquake and then a year later. The results indicated that the trust levels for six of the eight organizations had been preserved, supporting the double asymmetric effect of trust. The results of structural equation modeling (SEM) revealed that SVS explained trust more when the organization had been less trusted. Trust in the organization explains well the perceived reduction of the target risk. The results of SEM in Study 2 (N = 1,030) replicated those of Study 1, suggesting the stability of the explanatory power of the determinants of trust. Implications of the study for risk management practices are discussed.

  3. Effect of fluorine doping on highly transparent conductive spray deposited nanocrystalline tin oxide thin films

    NASA Astrophysics Data System (ADS)

    Moholkar, A. V.; Pawar, S. M.; Rajpure, K. Y.; Bhosale, C. H.; Kim, J. H.

    2009-09-01

    The undoped and fluorine doped thin films are synthesized by using cost-effective spray pyrolysis technique. The dependence of optical, structural and electrical properties of SnO 2 films, on the concentration of fluorine is reported. Optical absorption, X-ray diffraction, scanning electron microscope (SEM) and Hall effect studies have been performed on SnO 2:F (FTO) films coated on glass substrates. The film thickness varies from 800 to 1572 nm. X-ray diffraction pattern reveals the presence of cassiterite structure with (2 0 0) preferential orientation for FTO films. The crystallite size varies from 35 to 66 nm. SEM and AFM study reveals the surface of FTO to be made of nanocrystalline particles. The electrical study reveals that the films are degenerate and exhibit n-type electrical conductivity. The 20 wt% F doped film has a minimum resistivity of 3.8 × 10 -4 Ω cm, carrier density of 24.9 × 10 20 cm -3 and mobility of 6.59 cm 2 V -1 s -1. The sprayed FTO film having minimum resistance of 3.42 Ω/cm 2, highest figure of merit of 6.18 × 10 -2 Ω -1 at 550 nm and 96% IR reflectivity suggest, these films are useful as conducting layers in electrochromic and photovoltaic devices and also as the passive counter electrode.

  4. UV-blocking properties of Zn/ZnO coatings on wood deposited by cold plasma spraying at atmospheric pressure

    NASA Astrophysics Data System (ADS)

    Wallenhorst, L.; Gurău, L.; Gellerich, A.; Militz, H.; Ohms, G.; Viöl, W.

    2018-03-01

    In this study, artificial ageing of beech wood coated with Zn/ZnO particles by means of a cold plasma spraying process as well as coating systems including a Zn/ZnO layer and additional conventional sealings were examined. As ascertained by colour measurements, the particle coatings significantly decreased UV light-induced discolouration. Even though no significant colour changes were observed for particle-coated and alkyd-sealed samples, ATR-FTIR measurements revealed photocatalytic degradation of the alkyd matrix. In contrast, the polyurethane sealing appeared to be stabilised by the Zn/ZnO coating. Furthermore, morphologic properties of the pure particle coatings were studied by SEM and roughness measurements. SEM measurements confirmed a melting and solidifying process during deposition.

  5. Desmosomes: A light microscopic and ultrastructural analysis of desmosomes in odontogenic cysts.

    PubMed

    Raju, Pratima; Wadhwan, Vijay; Chaudhary, Minal S

    2014-01-01

    Desmosomes together with adherens junctions represent the major adhesive cell-cell junctions of epithelial cells. Any damage to these junctions leads to loss of structural balance. The present study was designed to analyze the desmosomal junctions in different odontogenic cysts and compare them with their corresponding hematoxylin and eosin (H and E)   stained sections. Ten cases each of odontogenic keratocyst (OKC), dentigerous cysts (DCs), radicular cysts (RCs) and normal mucosa were stained with hematoxylin and eosin. Scanning electron microscopy (SEM) analysis of the sections was then carried out of all the sections. The area of interest on H and E stained section was marked and this marking was later superimposed onto the corresponding unstained sections and were subjected to SEM analysis. OKC at ×1000 magnification showed many prominent desmosomes. However, an increase in the intercellular space was also noted. SEM analysis demonstrated similar findings with the presence of many desmosomes, though they were seen to be damaged and fragile. H and E stained DC under oil immersion did not show any prominent desmosomes. SEM analysis of the same confirmed the observation and very minimal number were seen with a very condense arrangement of the epithelial cells. RC at ×1000 magnification revealed plenty of desmosomes, which were again confirmed by SEM. The number and quality of desmosomal junctions in all the cysts has a role in the clinical behavior of the cyst.

  6. Mechanistic Insight into the Elastin Degradation Process by the Metalloprotease Myroilysin from the Deep-Sea Bacterium Myroides profundi D25

    PubMed Central

    Yang, Jie; Zhao, Hui-Lin; Tang, Bai-Lu; Chen, Xiu-Lan; Su, Hai-Nan; Zhang, Xi-Ying; Song, Xiao-Yan; Zhou, Bai-Cheng; Xie, Bin-Bin; Weiss, Anthony S.; Zhang, Yu-Zhong

    2015-01-01

    Elastases have been widely studied because of their important uses as medicine and meat tenderizers. However, there are relatively few studies on marine elastases. Myroilysin, secreted by Myroides profundi D25 from deep-sea sediment, is a novel elastase. In this study, we examined the elastin degradation mechanism of myroilysin. When mixed with insoluble bovine elastin, myroilysin bound hydrophobically, suggesting that this elastase may interact with the hydrophobic domains of elastin. Consistent with this, analysis of the cleavage pattern of myroilysin on bovine elastin and recombinant tropoelastin revealed that myroilysin preferentially cleaves peptide bonds with hydrophobic residues at the P1 and/or P1′ positions. Scanning electron microscopy (SEM) of cross-linked recombinant tropoelastin degraded by myroilysin showed preferential damages of spherules over cross-links, as expected for a hydrophobic preference. The degradation process of myroilysin on bovine elastin fibres was followed by light microscopy and SEM, revealing that degradation begins with the formation of crevices and cavities at the fibre surface, with these openings increasing in number and size until the fibre breaks into small pieces, which are subsequently fragmented. Our results are helpful for developing biotechnological applications for myroilysin. PMID:25793427

  7. Comparison between gastrostomy feeding and self-expandable metal stent insertion for patients with esophageal cancer and dysphagia.

    PubMed

    Min, Yang Won; Jang, Eun Young; Jung, Ji Hey; Lee, Hyuk; Min, Byung-Hoon; Lee, Jun Haeng; Rhee, Poong-Lyul; Kim, Jae J

    2017-01-01

    Self-expandable metal stent (SEMS) insertion and percutaneous gastrostomy (PG) feeding are commonly used for patients with esophageal cancer and dysphagia. This study aimed to compare outcomes between SEMS insertion and PG feeding for them. We retrospectively analyzed 308 patients with esophageal cancer who underwent fully covered SEMS insertion (stent group) or PG (gastrostomy group) for dysphagia due to tumor. Patients with other causes of dysphagia, such as radiation-induced or postoperative stricture, were excluded from the study. Clinical outcomes were compared between the two groups, including overall survival and need for additional intervention and postprocedural nutritional status. At baseline, the stent group (n = 169) had more stage IV patients, less cervical cancers, and received radiotherapy and esophagectomy less often than the gastrostomy group (n = 64). The Kaplan-Meier curves showed higher overall survival in the gastrostomy group than in the stent group. Multivariate analysis revealed that PG was associated with better survival compared with SEMS insertion (hazard ratio 0.541, 95% confidence interval 0.346-0.848, p = 0.007). In addition, the gastrostomy group needed additional intervention less often (3.1% vs. 21.9%, p < 0.001) and experienced less decrease in serum albumin levels (-0.15 ± 0.56 g/dL vs. -0.39 ± 0.58 g/dL, p = 0.011) than the stent group after procedure. Our data suggested that, compared with SEMS insertion, PG is associated with better overall survival in patients with esophageal cancer and dysphagia. Stabilized nutritional status by PG may play a role in improving patient survival.

  8. Investigation of Structure and Property of Indian Cocos nucifera L. Fibre

    NASA Astrophysics Data System (ADS)

    Basu, Gautam; Mishra, Leena; Samanta, Ashis Kumar

    2017-12-01

    Structure and physico-mechanical properties of Cocos nucifera L. fibre from a specific agro-climatic region of India, was thoroughly studied. Fine structure of the fibre was examined by Fourier Transform Infra-Red (FTIR) spectroscopy, Thermo-Gravimetric Analysis (TGA), X-Ray Diffraction (XRD), component analysis, Scanning Electron Microscope (SEM) and optical microscope. SEM shows prominent longitudinal cracks and micro-pores on the surface. XRD shows a low degree of crystallinity (45%), bigger crystallite size, and even the presence of appreciable amount of non-cellulose matter. FTIR reveals presence of large quantities of hydroxyl, phenolic and aldehyde groups. Component and thermal analyses indicates presence of cellulose and lignin as major components. Physical parameters reveal that, fibres are highly variable in length (range 44-305 mm), and diameter (range 100-795 µm). Mechanical properties of the fibre viz. breaking tenacity, breaking extensibility, specific work of rupture, and coefficient of friction were measured. Microbial decomposition test under soil reveals excellent durability of coconut fibre which makes it appropriate for the application in geotextiles. Mass specific electrical resistance of 4 Ω-kg/m2 indicates its enhanced insulation as compared to the jute.

  9. Morphological and ultrastructural comparative analysis of bone tissue after Er:YAG laser and surgical drill osteotomy.

    PubMed

    Panduric, Dragana Gabric; Juric, Ivona Bago; Music, Svetozar; Molčanov, Krešimir; Sušic, Mato; Anic, Ivica

    2014-07-01

    The purpose of this study was to analyze morphological, chemical, and crystallographic changes of bone tissue after osteotomy performed with an erbium:yttrium-aluminium-garnet (Er:YAG) laser and a low speed pilot drill. Bone blocks were prepared from porcine ribs, and on each block, two tunnel preparations were performed using the Er:YAG laser (pulse energy: 1000 mJ, pulse duration: 300 μs, pulse repetition rate: 20 Hz) or the low-speed surgical pilot drill. The morphological changes of the cortical and the spongious surface of the tunnel preparations were analyzed under the field emission scanning electron microscopy (FE-SEM) at low and high resolution. The distribution and the level of chemical elements in the treated surfaces were evaluated by qualitative and semiquantitative energy dispersive x-ray analysis (SEM-EDX). Diffraction x-ray analysis was used to detect any differences and thermally induced modifications of hydroxyapatite crystals. FE-SEM revealed sharp edges of the Er:YAG preparations, with empty intertrabecular spaces and no signs of carbonization. In the drill group, the surface of the preparations was smooth, completely covered with smear layer and microcracks, and with hairy-like irregularities on the edges. SEM-EDX analysis did not reveal any differences in the number of specific chemical elements between the laser and the drill group. There were no thermally induced modifications of hydroxyapatite crystal structure in the bone tissue in either group. The Er:YAG laser ablation did not cause any chemical or crystallographic changes of the bone tissue. Compared with the drill, Er:YAG laser created well-defined edges of the preparations, and cortical bone had no smear layer.

  10. Relationships among Communication Self-Efficacy, Communication Burden, and the Mental Health of the Families of Persons with Aphasia.

    PubMed

    Tatsumi, Hiroshi; Nakaaki, Shutaro; Satoh, Masayuki; Yamamoto, Masahiko; Chino, Naohito; Hadano, Kazuo

    2016-01-01

    The purpose of this study was to elucidate the relationships among communication self-efficacy (SE), communication burden, and the mental health of the families of persons with aphasia using structural equation modeling (SEM). This study examined 110 pairs of persons with aphasia receiving home care and 1 family caregiver per person with aphasia. The survey items for this study consisted of the Communication Self-efficacy Scale, the Communication Burden Scale, the Geriatric Depression Scale-Short Form-Japanese, and the Health-Related Quality of Life: SF-8 Health Survey. The relationships between the constructive concept of "communication self-efficacy" and "communication burden," and "mental-health status" were analyzed using SEM. The results of the SEM analysis revealed that a high communication SE of the families was associated with low burden of communication and good mental-health status. Psychoeducational programs that address the communication SE of family caregivers may have the potential to reduce the burden of communication and to improve the mental health of caregivers. These programs could lead to an enhanced quality of life for both persons with aphasia and their families. Copyright © 2015 National Stroke Association. Published by Elsevier Inc. All rights reserved.

  11. Modeling of Individual and Organizational Factors Affecting Traumatic Occupational Injuries Based on the Structural Equation Modeling: A Case Study in Large Construction Industries.

    PubMed

    Mohammadfam, Iraj; Soltanzadeh, Ahmad; Moghimbeigi, Abbas; Akbarzadeh, Mehdi

    2016-09-01

    Individual and organizational factors are the factors influencing traumatic occupational injuries. The aim of the present study was the short path analysis of the severity of occupational injuries based on individual and organizational factors. The present cross-sectional analytical study was implemented on traumatic occupational injuries within a ten-year timeframe in 13 large Iranian construction industries. Modeling and data analysis were done using the structural equation modeling (SEM) approach and the IBM SPSS AMOS statistical software version 22.0, respectively. The mean age and working experience of the injured workers were 28.03 ± 5.33 and 4.53 ± 3.82 years, respectively. The portions of construction and installation activities of traumatic occupational injuries were 64.4% and 18.1%, respectively. The SEM findings showed that the individual, organizational and accident type factors significantly were considered as effective factors on occupational injuries' severity (P < 0.05). Path analysis of occupational injuries based on the SEM reveals that individual and organizational factors and their indicator variables are very influential on the severity of traumatic occupational injuries. So, these should be considered to reduce occupational accidents' severity in large construction industries.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Strelcov, Evgheni; Cothren, Joshua E.; Leonard, Donovan N.

    Progress in rational engineering of Li-ion batteries requires better understanding of the electrochemical processes and accompanying transformations in the electrode materials on multiple length scales. In spite of recent progress in utilizing transmission electron microscopy (TEM) to analyze these materials, in situ scanning electron microscopy (SEM) was mostly overlooked as a powerful tool that allows probing these phenomena on the nano and mesoscale. In this paper, we report on in situ SEM study of lithiation in a V 2O 5-based single-nanobelt battery with ionic liquid electrolyte. Coupled with cyclic voltammetry measurements, in situ SEM revealed the peculiarities of subsurface intercalation,more » formation of solid-electrolyte interface (SEI) and electromigration of liquid. We observed that single-crystalline vanadia nanobelts do not undergo large-scale amorphization or fracture during electrochemical cycling, but rather transform topochemically with only a slight shape distortion. Lastly, the SEI layer seems to have significant influence on the lithium ion diffusion and overall capacity of the single-nanobelt battery.« less

  13. Sustainable conversion of agro-wastes into useful adsorbents

    NASA Astrophysics Data System (ADS)

    Bello, Olugbenga Solomon; Owojuyigbe, Emmanuel Seun; Babatunde, Monsurat Abiodun; Folaranmi, Folasayo Eunice

    2017-11-01

    Preparation and characterization of raw and activated carbon derived from three different selected agricultural wastes: kola nut pod raw and activated (KNPR and KNPA), bean husk raw and activated (BHR and BHA) and coconut husk raw and activated (CHR and CHA) were investigated, respectively. Influences of carbonization and acid activation on the activated carbon were investigated using SEM, FTIR, EDX, pHpzc and Boehm titration techniques, respectively. Carbonization was done at 350 °C for 2 h followed by activation with 0.3 M H3PO4 (ortho-phosphoric acid). Results obtained from SEM, FTIR, and EDX revealed that, carbonization followed by acid activation had a significant influence on morphology and elemental composition of the samples. SEM showed well-developed pores on the surface of the precursors after acid treatment, FTIR spectra revealed reduction, broadening, disappearance or appearance of new peaks after acid activation. EDX results showed highest percentage of carbon by atom respectively in the order BHA > KNPA > CHA respectively. The pHpzc was found to be 5.32, 4.57 and 3.69 for KNPA, BHA and CHA, respectively. Boehm titration result compliments that of pHpzc, indicating that the surfaces of the prepared adsorbents are predominantly acidic. This study promotes a sustainable innovative use of agro-wastes in the production of cheap and readily available activated carbons, thereby ensuring more affordable water and effluent treatment adsorbents.

  14. [The use of self-adapting system files (SAF) for controlling microbial biofilms of root canals in the treatment of apical periodontitis].

    PubMed

    Tsarev, V N; Mamedova, L A; Siukaeva, T N; Podporin, M S

    The aim of this study was to conduct a clinical and laboratory study and evaluate the effectiveness of endodontic root canal treatment using a self-adapting files system (SAF) in the complex treatment of patients with chronic apical periodontitis. 3% sodium hypochlorite solution was used as irrigation agent in all groups which included 20 patients treated with conventional manual tools, 21 patients receiving treatment with ultrasonic activation of irrigant and 26 patients treated with SAF system. Root canal biofilm structure was studied by scanning electron microscopy (SEM) using a Quantum 3D microscope (USA). Clinical efficiency of the root canal treatment was assessed by complications frequency a year after treatment. SEM revealed the presence of high levels of microbial contamination of dentine tubules in the apical portion of the tooth. In standard method group the percentage of re-treatment and surgery was higher than in the studied groups. Use of SAF irrigation system was associated with a decrease in the number of identified pathogens. However, the study revealed high resistance of Enterococcus spp., Porphyromonas gingivalis, Candida albicans to all types of endodontic treatment, so the improvement of methods of root canal microbial biofilms removing need to be continued.

  15. A SEM-correlation of the anatomy of the vitreous body: making visible the invisible.

    PubMed

    Jongebloed, W L; Humalda, D; Worst, J F

    1986-12-30

    The naked human vitreous (sclera, iris and cornea removed) suspended in water does not reveal inner structures. After ink injection into the vitreous, the presence of different compartments and the existence of cisterns becomes evident. A concept of the internal system of cisterns is given on the basis of stereoscopic-lightmicroscopic images. An attempt is made to correlate images of the complete vitreous body, obtained with a stereo-lightmicroscope, with images of segments of cisternal walls produced with a scanning electron-microscope (SEM). A comparison is made between SEM-images of the vitreous bodies of human and rabbit eyes.

  16. Sun, Moon and Earthquakes

    NASA Astrophysics Data System (ADS)

    Kolvankar, V. G.

    2013-12-01

    During a study conducted to find the effect of Earth tides on the occurrence of earthquakes, for small areas [typically 1000km X1000km] of high-seismicity regions, it was noticed that the Sun's position in terms of universal time [GMT] shows links to the sum of EMD [longitude of earthquake location - longitude of Moon's foot print on earth] and SEM [Sun-Earth-Moon angle]. This paper provides the details of this relationship after studying earthquake data for over forty high-seismicity regions of the world. It was found that over 98% of the earthquakes for these different regions, examined for the period 1973-2008, show a direct relationship between the Sun's position [GMT] and [EMD+SEM]. As the time changes from 00-24 hours, the factor [EMD+SEM] changes through 360 degree, and plotting these two variables for earthquakes from different small regions reveals a simple 45 degree straight-line relationship between them. This relationship was tested for all earthquakes and earthquake sequences for magnitude 2.0 and above. This study conclusively proves how Sun and the Moon govern all earthquakes. Fig. 12 [A+B]. The left-hand figure provides a 24-hour plot for forty consecutive days including the main event (00:58:23 on 26.12.2004, Lat.+3.30, Long+95.980, Mb 9.0, EQ count 376). The right-hand figure provides an earthquake plot for (EMD+SEM) vs GMT timings for the same data. All the 376 events including the main event faithfully follow the straight-line curve.

  17. Why semicarbazide (SEM) is not an appropriate marker for the usage of nitrofurazone on agricultural animals.

    PubMed

    Stadler, Richard H; Verzegnassi, Ludovica; Seefelder, Walburga; Racault, Lucie

    2015-01-01

    A comprehensive global database on semicarbazide (SEM) in foodstuffs and food ingredients is presented, with over 4000 data collected in foods such as seafood (crustaceans, fish powders), meat (beef, chicken powders), dairy products (e.g. raw milk, milk powders, whey, sweet buttermilk powder, caseinate, yoghurt, cheese), honey and other ingredients. The results provide evidence that the presence of SEM in certain dairy ingredients (whey, milk protein concentrates) is a by-product of chemical reactions taking place during the manufacturing process. Of the dairy ingredients tested (c. 2000 samples), 5.3% showed traces of SEM > 0.5 µg/kg. The highest incidence of SEM-positive samples in the dairy category were whey (powders, liquid) and milk protein concentrates (35% positive), with up to 13 µg/kg measured in a whey powder. Sweet buttermilk powder and caseinate followed, with 27% and 9.3% positives, respectively. SEM was not detected in raw milk, or in yoghurt or cheese. Of the crustacean products (shrimp and prawn powders) tested, 44% were positive for SEM, the highest value measured at 284 µg/kg. Fish powders revealed an unexpectedly high incidence of positive samples (25%); in this case, fraudulent addition of shellfish shells or carry-over during processing cannot be excluded. Overall, the data provide new insights into the occurrence of SEM (for dairy products and fish powders), substantially strengthening the arguments that SEM in certain food categories is not a conclusive marker of the use of the illegal antibiotic nitrofurazone.

  18. Attempt of correlative observation of morphological synaptic connectivity by combining confocal laser-scanning microscope and FIB-SEM for immunohistochemical staining technique.

    PubMed

    Sonomura, Takahiro; Furuta, Takahiro; Nakatani, Ikuko; Yamamoto, Yo; Honma, Satoru; Kaneko, Takeshi

    2014-11-01

    Ten years have passed since a serial block-face scanning electron microscopy (SBF-SEM) method was developed [1]. In this innovative method, samples were automatically sectioned with an ultramicrotome placed inside a scanning electron microscope column, and the block surfaces were imaged one after another by SEM to capture back-scattered electrons. The contrast-inverted images obtained by the SBF-SEM were very similar to those acquired using conventional TEM. SFB-SEM has made easy to acquire image stacks of the transmission electron microscopy (TEM) in the mesoscale, which is taken with the confocal laser-scanning microcopy(CF-LSM).Furthermore, serial-section SEM has been combined with the focused ion beam (FIB) milling method [2]. FIB-incorporated SEM (FIB-SEM) has enabled the acquisition of three-dimensional images with a higher z-axis resolution com- pared to ultramicrotome-equipped SEM.We tried immunocytochemistry for FIB-SEM and correlated this immunoreactivity with that in CF-LSM. Dendrites of neurons in the rat neostriatum were visualized using a recombinant viral vector. Moreover, the thalamostriatal afferent terminals were immunolabeled with Cy5 fluorescence for vesicular glutamate transporter 2 (VGluT2). After detection of the sites of terminals apposed to the dendrites by using CF-LSM, GFP and VGluT2 immunoreactivities were further developed for EM by using immunogold/silver enhancement and immunoperoxidase/diaminobenzidine (DAB) methods, respectively.We showed that conventional immuno-cytochemical staining for TEM was applicable to FIB-SEM. Furthermore, several synaptic contacts, which were thought to exist on the basis of CF-LSM findings, were confirmed with FIB-SEM, revealing the usefulness of the combined method of CF-LSM and FIB-SEM. © The Author 2014. Published by Oxford University Press on behalf of The Japanese Society of Microscopy. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  19. Performance of SEM scintillation detector evaluated by modulation transfer function and detective quantum efficiency function.

    PubMed

    Bok, Jan; Schauer, Petr

    2014-01-01

    In the paper, the SEM detector is evaluated by the modulation transfer function (MTF) which expresses the detector's influence on the SEM image contrast. This is a novel approach, since the MTF was used previously to describe only the area imaging detectors, or whole imaging systems. The measurement technique and calculation of the MTF for the SEM detector are presented. In addition, the measurement and calculation of the detective quantum efficiency (DQE) as a function of the spatial frequency for the SEM detector are described. In this technique, the time modulated e-beam is used in order to create well-defined input signal for the detector. The MTF and DQE measurements are demonstrated on the Everhart-Thornley scintillation detector. This detector was alternated using the YAG:Ce, YAP:Ce, and CRY18 single-crystal scintillators. The presented MTF and DQE characteristics show good imaging properties of the detectors with the YAP:Ce or CRY18 scintillator, especially for a specific type of the e-beam scan. The results demonstrate the great benefit of the description of SEM detectors using the MTF and DQE. In addition, point-by-point and continual-sweep e-beam scans in SEM were discussed and their influence on the image quality was revealed using the MTF. © 2013 Wiley Periodicals, Inc.

  20. Synthesis and microstructural studies of annealed Cu(2)O/Cu(x)S bilayer as transparent electrode material for photovoltaic and energy storage devices.

    PubMed

    Taleatu, B A; Arbab, E A A; Omotoso, E; Mola, G T

    2014-10-01

    Cu2 O thin film and a transparent bilayer have been fabricated by electrodeposition method. The growths were obtained in potentiostatic mode with gradual degradation of anodic current. X-ray diffraction (XRD) study showed that the bilayer is polycrystalline and it possesses mixture of different crystallite phases of copper oxides. Surface morphology of the films was investigated by scanning electron microscopy (SEM). The SEM images revealed that the films were uniformly distributed and the starting material (Cu2 O) had cubical structure. Grains agglomeration and crystallinity were enhanced by annealing. Optical studies indicated that all the samples have direct allowed transition. Energy band gap of the bilayer film was reduced by annealing treatment thus corroborating quantum confinement upshot. © 2014 The Authors Journal of Microscopy © 2014 Royal Microscopical Society.

  1. Comparison of different finishing/polishing systems on surface roughness and gloss of resin composites.

    PubMed

    Antonson, Sibel A; Yazici, A Rüya; Kilinc, Evren; Antonson, Donald E; Hardigan, Patrick C

    2011-07-01

    The aim of this study was to compare four finishing/polishing systems (F/P) on surface roughness and gloss of different resin composites. A total of 40 disc samples (15 mm × 3 mm) were prepared from a nanofill - Filtek Supreme Plus (FS) and a micro-hybrid resin composite - Esthet-X (EX). Following 24h storage in 37°C water, the top surfaces of each sample were roughened using 120-grit sandpaper. Baseline measurements of surface roughness (Ra, μm) and gloss were recorded. Each composite group was divided into four F/P disk groups: Astropol[AP], Enhance/PoGo[EP], Sof-Lex[SL], and an experimental disk system, EXL-695[EXL] (n=5). The same operator finished/polished all samples. One sample from each group was evaluated under SEM. Another blinded-operator conducted postoperative measurements. Results were analysed by two-way ANOVA, two interactive MANOVA and Tukey's t-test (p<0.05). In surface roughness, the baseline of two composites differed significantly from each other whereas postoperatively there was no significance. The Sof-Lex F/P system provided the smoothest surface although there were no statistical significance differences between F/P systems (p>0.01). In gloss, FS composite with the EXL-695 system provided a significantly higher gloss (p<0.01). EX treated by Soflex revealed the least gloss (p<0.05). SEM images revealed comparable results for F/P systems but EX surfaces included more air pockets. Four different finishing/polishing systems provided comparable surface smoothness for both composites, whereas EXL with FS provided significantly higher gloss. SEM evaluations revealed that the EX surface contained more air pockets but F/P systems were compatible. Copyright © 2011 Elsevier Ltd. All rights reserved.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mishra, Ashutosh; Dwivedi, Jagrati, E-mail: hemu.dwi@gmail.com; Shukla, Kritika

    Five Chromium (III) complexes have been prepared using Schiff base ligands which derived from benzoin and five different amino acids (H{sub 2}N-R). Samples were characterized by XRD, FTIR, UV-VIS and SEM method. X-Ray diffraction pattern analyzed that all chromium (III) complexes have hexagonal structure and crystalline, in nature, using Bruker D8 Advance instrument. Using VERTAX 70, FTIR spectroscopy reveals that Samples have (C=N), (C-O), (M-N) and (M-O) bonds in the range of 4000-400cm{sup −1}. UV-VIS spectroscopy give information that samples absorb the visible light which is in the range of 380-780nm. For this, Lambda 960 spectrometer used. SEM is designedmore » for studying of the solid objects, using JEOL JSM 5600 instrument.« less

  3. Antagonistic effects of Bacillus subtilis subsp. subtilis and B. amyloliquefaciens against Macrophomina phaseolina: SEM study of fungal changes and UV-MALDI-TOF MS analysis of their bioactive compounds.

    PubMed

    Torres, M J; Brandan, C Pérez; Petroselli, G; Erra-Balsells, R; Audisio, M C

    2016-01-01

    The antifungal effect of Bacillus subtilis subsp. subtilis PGPMori7 and Bacillus amyloliquefaciens PGPBacCA1 was evaluated against Macrophomina phaseolina (Tassi) Goid. Cell suspension (CS), cell-free supernatant (CFS) and the lipopeptide fraction (LF) of PGPMori7 and PGPBacCA1 were screened against three different M. phaseolina strains. CS exhibited the highest inhibitory effect (around 50%) when compared to those of CFS and LF, regardless of the fungal strain studied. The synthesis of lipopeptides was studied by UV-MALDI TOF. Chemical analysis of Bacillus metabolite synthesis revealed that surfactin and iturin were mainly produced in liquid medium. Potential fengycin was also co-produced when both Bacillus were cultivated in solid medium. In co-culture assays, the bacterial colony-fungal mycelium interface at the inhibition zone was evaluated by both scanning electron microscopy (SEM) and UV-MALDI TOF, the former to determine the structural changes on M. phaseolina cells and the latter to identify the main bioactive molecules involved in the inhibitory effect. PGPBacCA1 produced surfactin, iturin and fengycin in the inhibition zone while PGPMori7 only produced these metabolites within its colony and not in the narrow inhibition zone. Interestingly, SEM revealed that PGPBacCA1 induced damage in M. phaseolina sclerotia, generating a fungicidal effect as no growth was observed when normal growth conditions were reestablished. In turn, PGPMori7 inhibited the growth of the Macrophomina mycelium without fungal injury, resulting only in a fungistatic activity. From these results, it was determined that the two bacilli significantly inhibited the growth of an important phytopathogenic fungus by at least two different mechanisms: lipopeptide synthesis and competition among microorganisms. Copyright © 2015 Elsevier GmbH. All rights reserved.

  4. Structure of first- and second-stage mineralized elements in teeth of the sea urchin Lytechinus variegatus.

    PubMed

    Robach, J S; Stock, S R; Veis, A

    2009-12-01

    Microstructure of the teeth of the sea urchin Lytechinus variegatus was investigated using optical microscopy, SEM (scanning electron microscopy) and SIMS (secondary ion mass spectroscopy). The study focused on the internal structure of the first-stage mineral structures of high Mg calcite (primary, secondary and carinar process plates, prisms) and on morphology of the columns of second-stage mineral (very high Mg calcite) that cement the first-stage material together. Optical micrographs under polarized light revealed contrast in the centers (midlines) of carinar process plates and in prisms in polished sections; staining of primary and carinar process plates revealed significant dye uptake at the plate centers. Demineralization with and without fixation revealed that the midlines of primary and carinar process plates (but not secondary plates) and the centers of prisms differed from the rest of the plate or prism, and SIMS showed proteins concentrated in these plate centers. SEM was used to study the morphology of columns, the fracture surfaces of mature teeth and the 3D morphology of prisms. These observations of internal structures in plates and prisms offer new insight into the mineralization process and suggest an important role for protein inclusions within the first-stage mineral. Some of the 3D structures not reported previously, such as twisted prisms and stacks of carinar process plates with nested wrinkles, may represent structural strengthening strategies.

  5. Oxygen ion irradiation effect on corrosion behavior of titanium in nitric acid medium

    NASA Astrophysics Data System (ADS)

    Ningshen, S.; Kamachi Mudali, U.; Mukherjee, P.; Barat, P.; Raj, Baldev

    2011-01-01

    The corrosion assessment and surface layer properties after O 5+ ion irradiation of commercially pure titanium (CP-Ti) has been studied in 11.5 N HNO 3. CP-Ti specimen was irradiated at different fluences of 1 × 10 13, 1 × 10 14 and 1 × 10 15 ions/cm 2 below 313 K, using 116 MeV O 5+ ions source. The corrosion resistance and surface layer were evaluated by using potentiodynamic polarization, electrochemical impedance spectroscopy (EIS), scanning electron microscopy (SEM) and glancing-angle X-ray diffraction (GXRD) methods. The potentiodynamic anodic polarization results of CP-Ti revealed that increased in ion fluence (1 × 10 13-1 × 10 15 ions/cm 2) resulted in increased passive current density due to higher anodic dissolution. SEM micrographs and GXRD analysis corroborated these results showing irradiation damage after corrosion test and modified oxide layer by O 5+ ion irradiation was observed. The EIS studies revealed that the stability and passive film resistance varied depending on the fluence of ion irradiation. The GXRD patterns of O 5+ ion irradiated CP-Ti revealed the oxides formed are mostly TiO 2, Ti 2O 3 and TiO. In this paper, the effects of O 5+ ion irradiation on material integrity and corrosion behavior of CP-Ti in nitric acid are described.

  6. Structure of first- and second-stage mineralized elements in teeth of the sea urchin Lytechinus variegatus

    PubMed Central

    Robach, J. S.; Stock, S. R.; Veis, A.

    2009-01-01

    Microstructure of the teeth of the sea urchin Lytechinus variegatus was investigated using optical microscopy, SEM (scanning electron microscopy) and SIMS (secondary ion mass spectroscopy). The study focused on the internal structure of the first-stage mineral structures of high Mg calcite (primary, secondary and carinar process plates; prisms) and on morphology of the columns of second-stage mineral (very high Mg calcite) that cement the first-stage material together. Optical micrographs under polarized light revealed contrast in the centers (midlines) of carinar process plates and in prisms in polished sections; staining of primary and carinar process plates revealed significant dye uptake at the plate centers. Demineralization with and without fixation revealed that the midlines of primary and carinar process plates (but not secondary plates) and the centers of prisms differed from the rest of the plate or prism, and SIMS showed proteins concentrated in these plate centers. SEM was used to study the morphology of columns, the fracture surfaces of mature teeth and the 3D morphology of prisms. These observations of internal structures in plates and prisms offer new insight into the mineralization process and suggest an important role for protein inclusions within the first-stage mineral. Some of the 3D structures not reported previously, such as twisted prisms and stacks of carinar process plates with nested wrinkles, may represent structural strengthening strategies. PMID:19616101

  7. Sexually explicit media on the internet: a content analysis of sexual behaviors, risk, and media characteristics in gay male adult videos.

    PubMed

    Downing, Martin J; Schrimshaw, Eric W; Antebi, Nadav; Siegel, Karolynn

    2014-05-01

    Recent research suggests that viewing sexually explicit media (SEM), i.e., adult videos, may influence sexual risk taking among men who have sex with men. Despite this evidence, very little is known about the content of gay male SEM on the Internet, including the prevalence of sexual risk behaviors and their relation to video- and performer-characteristics, viewing frequency, and favorability. The current study content analyzed 302 sexually explicit videos featuring male same-sex performers that were posted to five highly trafficked adult-oriented websites. Findings revealed that gay male SEM on the Internet features a variety of conventional and nonconventional sexual behaviors. There was a substantial prevalence of unprotected anal intercourse (UAI) (34 %) and was virtually the same as the prevalence of anal sex with a condom (36 %). The presence of UAI was not associated with video length, amateur production, number of video views, favorability, or website source. However, the presence of other potentially high-risk behaviors (e.g., ejaculation in the mouth, and ejaculation on/in/rubbed into the anus) was associated with longer videos, more views, and group sex videos (three or more performers). The findings of high levels of sexual risk behavior and the fact that there was virtually no difference in the prevalence of anal sex with and without a condom in gay male SEM have important implications for HIV prevention efforts, future research on the role of SEM on sexual risk taking, and public health policy.

  8. Quantifying Golgi structure using EM: combining volume-SEM and stereology for higher throughput.

    PubMed

    Ferguson, Sophie; Steyer, Anna M; Mayhew, Terry M; Schwab, Yannick; Lucocq, John Milton

    2017-06-01

    Investigating organelles such as the Golgi complex depends increasingly on high-throughput quantitative morphological analyses from multiple experimental or genetic conditions. Light microscopy (LM) has been an effective tool for screening but fails to reveal fine details of Golgi structures such as vesicles, tubules and cisternae. Electron microscopy (EM) has sufficient resolution but traditional transmission EM (TEM) methods are slow and inefficient. Newer volume scanning EM (volume-SEM) methods now have the potential to speed up 3D analysis by automated sectioning and imaging. However, they produce large arrays of sections and/or images, which require labour-intensive 3D reconstruction for quantitation on limited cell numbers. Here, we show that the information storage, digital waste and workload involved in using volume-SEM can be reduced substantially using sampling-based stereology. Using the Golgi as an example, we describe how Golgi populations can be sensed quantitatively using single random slices and how accurate quantitative structural data on Golgi organelles of individual cells can be obtained using only 5-10 sections/images taken from a volume-SEM series (thereby sensing population parameters and cell-cell variability). The approach will be useful in techniques such as correlative LM and EM (CLEM) where small samples of cells are treated and where there may be variable responses. For Golgi study, we outline a series of stereological estimators that are suited to these analyses and suggest workflows, which have the potential to enhance the speed and relevance of data acquisition in volume-SEM.

  9. Comparison between gastrostomy feeding and self-expandable metal stent insertion for patients with esophageal cancer and dysphagia

    PubMed Central

    Jung, Ji Hey; Lee, Hyuk; Min, Byung-Hoon; Lee, Jun Haeng; Rhee, Poong-Lyul; Kim, Jae J.

    2017-01-01

    Background Self-expandable metal stent (SEMS) insertion and percutaneous gastrostomy (PG) feeding are commonly used for patients with esophageal cancer and dysphagia. This study aimed to compare outcomes between SEMS insertion and PG feeding for them. Methods We retrospectively analyzed 308 patients with esophageal cancer who underwent fully covered SEMS insertion (stent group) or PG (gastrostomy group) for dysphagia due to tumor. Patients with other causes of dysphagia, such as radiation-induced or postoperative stricture, were excluded from the study. Clinical outcomes were compared between the two groups, including overall survival and need for additional intervention and postprocedural nutritional status. Results At baseline, the stent group (n = 169) had more stage IV patients, less cervical cancers, and received radiotherapy and esophagectomy less often than the gastrostomy group (n = 64). The Kaplan-Meier curves showed higher overall survival in the gastrostomy group than in the stent group. Multivariate analysis revealed that PG was associated with better survival compared with SEMS insertion (hazard ratio 0.541, 95% confidence interval 0.346–0.848, p = 0.007). In addition, the gastrostomy group needed additional intervention less often (3.1% vs. 21.9%, p < 0.001) and experienced less decrease in serum albumin levels (-0.15 ± 0.56 g/dL vs. -0.39 ± 0.58 g/dL, p = 0.011) than the stent group after procedure. Conclusions Our data suggested that, compared with SEMS insertion, PG is associated with better overall survival in patients with esophageal cancer and dysphagia. Stabilized nutritional status by PG may play a role in improving patient survival. PMID:28632744

  10. Graphene-supporting films and low-voltage STEM in SEM toward imaging nanobio materials without staining: Observation of insulin amyloid fibrils.

    PubMed

    Ogawa, Takashi; Gang, Geun Won; Thieu, Minh Thu; Kwon, Hyuksang; Ahn, Sang Jung; Ha, Tai Hwan; Cho, Boklae

    2017-05-01

    Utilization of graphene-supporting films and low-voltage scanning transmission electron microscopy (LV-STEM) in scanning electron microscopy (SEM) is shown to be an effective means of observing unstained nanobio materials. Insulin amyloid fibrils, which are implicated as a cause of type II diabetes, are formed in vitro and observed without staining at room temperature. An in-lens cold field-emission SEM, equipped with an additional homemade STEM detector, provides dark field (DF)-STEM images in the low energy range of 5-30keV, together with secondary electron (SE) images. Analysis based on Lenz's theory is used to interpret the experimental results. Graphene films, where the fibrils are deposited, reduce the background level of the STEM images compared with instances when conventional amorphous carbon films are used. Using 30keV, which is lower than that for conventional TEM (100-300keV), together with low detection angles (15-55mrad) enhances the signals from the fibrils. These factors improve image quality, which enables observation of thin fibrils with widths of 7-8nm. STEM imaging clearly reveals a twisted-ribbon structure of a fibril, and SE imaging shows an emphasized striped pattern of the fibril. The LV-STEM in SEM enables acquisition of two types of images of an identical fibril in a single instrument, which is useful for understanding the structure. This study expands the application of SEM to other systems of interest, which is beneficial to a large number of users. The method in this study can be applied to the observation of various nanobio materials and analysis of their native structures, thus contributing to research in materials and life sciences. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Comparison of two dental implant surface modifications on implants with same macrodesign: an experimental study in the pelvic sheep model.

    PubMed

    Ernst, Sabrina; Stübinger, Stefan; Schüpbach, Peter; Sidler, Michéle; Klein, Karina; Ferguson, Stephen J; von Rechenberg, Brigitte

    2015-08-01

    The aim of this study was to compare two different surfaces of one uniform macro-implant design in order to focus exclusively on the osseointegration properties after 2, 4 and 8 weeks and to discuss the animal model chosen. In six mature sheep, n = 36 implants with a highly crystalline and phosphate-enriched anodized titanium oxide surface (TiU) and n = 36 implants with a hydrophilic, sandblasted, large grit and acid-etched surface (SLA) were placed in the pelvic bone. TiU implants were custom-made to match the SLA implant design. The implant stability and bone-to-implant contact (BIC) were assessed by resonance frequency (ISQ), backscatter scanning electron microscopy (B-SEM), light microscopy (LM), micro-CT and intravital fluorochrome staining. Biomechanical removal torque testing was performed. Overall, no statistically significant differences in BIC total (trabecular + cortical) between TiU and SLA were found via LM and B-SEM. BIC values (B-SEM; LM) in both groups revealed a steady rise in trabecular bone attachment to the implant surface after 2, 4 and 8 weeks. In the 2- to 4-week time interval in the TiU group (P = 0.005) as well as in the SLA group (P = 0.01), a statistically significant increase in BIC trabecular could be observed via LM. B-SEM values confirmed the statistically significant increase for TiU (P = 0.001). In both groups, BIC trabecular values after 8 weeks were significantly higher (P ≤ 0.05) than after 2 weeks (B-SEM; LM). Biomechanical data confirmed the histological data. The two surfaces proved comparable osseointegration in this sheep model. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  12. The effect of home bleaching agents on the surface roughness of five different composite resins: A SEM evaluation.

    PubMed

    Cengiz, Esra; Kurtulmus-Yilmaz, Sevcan; Ulusoy, Nuran; Deniz, Sule Tugba; Yuksel-Devrim, Ece

    2016-05-01

    The aim of this study was to investigate the effect of hydrogen peroxide (HP) and carbamide peroxide (CP) on the surface roughness of five different composite resins using profilometer and scanning electron microscope (SEM). Thirty-six specimens (1 mm thick, 10 mm in diameter) of five composite resins were fabricated. Each composite group was equally divided into three subgroups as control, CP and HP. In control group, specimens were stored in daily refreshed distilled water during the 14-day testing period. In other groups, 10% HP (Opalescence Treswhite) and 10% CP (Opalescence PF) were applied and surface roughness values (Ra) of each specimen were measured with a profilometer at the end of 14 days. Additionally, SEM analysis was performed to evaluate the surface deformations of composite resins. Data were analyzed with Kruskal-Wallis and Mann-Whitney U tests. Ra values of composite groups exposed to bleaching agents were statistically higher than control group (p < 0.05). There was no significant difference between Ra values after HP and CP application within each composite group while SEM micrographs showed higher surface alterations at HP group compared to CP. Among the composite resins tested, Ceram-X Mono revealed the lowest Ra values after CP and HP applications as seen at SEM images. Home bleaching agents increased the surface roughness of all composites. Except CP applied Ceram-X mono specimens, Ra values of all composite resins evaluated in this study exceeded the critical limit of 0.2 μm. Ceram-X mono was the least affected composite material after bleaching application. SCANNING 38:277-283, 2016. © 2016 Wiley Periodicals, Inc. © Wiley Periodicals, Inc.

  13. Comparative Study of Esophageal Self-expandable Metallic Stent Insertion and Gastrostomy Feeding for Dysphagia Caused by Lung Cancer.

    PubMed

    Kim, Jihye; Min, Yang Won; Lee, Hyuk; Min, Byung Hoon; Lee, Joon Haeng; Rhee, Poong Lyul; Kim, Jae J

    2018-03-25

    Dysphagia is encountered in a large proportion of patients with lung cancer and is associated with malnutrition and a poor quality of life. This study compared the clinical outcomes of self-expandable metallic stent (SEMS) insertion and percutaneous gastrostomy (PG) feeding for patients with lung cancer and dysphagia. A total of 261 patients with lung cancer, who underwent either SEMS insertion (stent group) or PG (gastrostomy group) as an initial treatment procedure for dysphagia between July 1997 and July 2015 at the Samsung Medical Center, were reviewed retrospectively, and 84 patients with esophageal obstruction were identified. The clinical outcomes, including the overall survival, additional intervention, complications, and post-procedural nutritional status in the two groups, were compared. Among the 84 patients finally analyzed, 68 patients received SEMS insertion and 16 had PG. The stent group had less cervical obstruction and more mid-esophageal obstruction than the gastrostomy group. The Kaplan-Meier curves revealed similar overall survival in the two groups. Multivariate analysis showed that the two modalities had similar survival rates (PG compared with SEMS insertion, hazard ratio 0.682, p=0.219). Fifteen patients (22.1%) in the stent group received additional intervention, whereas there was no case in the gastrostomy group (p=0.063). The decrease in the serum albumin level after the procedure was lower in the gastrostomy group than in the stent group (-0.20±0.54 g/dL vs. -0.65±0.57 g/dL, p=0.013). SEMS insertion and PG feeding for relieving dysphagia by lung cancer had a comparable survival outcome. On the other hand, PG was associated with a better nutritional status.

  14. Is Salvage of Recently Infected Breast Implant After Breast Augmentation or Reconstruction Possible? An Experimental Study.

    PubMed

    Castus, P; Heymans, O; Melin, P; Renwart, L; Henrist, C; Hayton, E; Mordon, S; Leclère, F M

    2018-04-01

    The reinsertion of an infected implant when peri-prosthetic infection occurs early after breast augmentation or breast reconstruction remains controversial. In this experimental study, the authors tried to remove bacteria, and their biofilm, from the colonized surface of breast prostheses, without damaging their integrity. A total of 112 shell samples of silicone breast prostheses, smooth (SPSS) and textured (TPSS), were colonized by S. epidermidis (SE) or S. aureus (SA) strains, all able to produce biofilms. After 15 days, all the samples were removed from the contaminated culture broth and constituted 4 groups of 20 contaminated samples: SPSS/SE (group I), SPSS/SA (group II), TPSS/SE (group III), TPSS/SE (group IV). In another group-group SEM-, 16 colonized samples were used for documentation with scanning electron microscopy (SEM). The remaining 16 samples were used to test the limits of detection of the sterility test. All samples of groups I-IV and 8 samples of group SEM were « washed » with a smooth brush in a povidone-iodine bath and rinsed with saline solution. A subset of the washed samples was sent for SEM and the others were immersed in sterile broth and were incubated at 35 °C for 3 weeks (groups I-IV). Fifteen days after contamination, all the samples in groups I-IV were colonized. In the SEM group, SEM images attested to the presence of bacteria in biofilm attached to the shells. After cleaning, SEM did not reveal any bacteria and there was no visible alteration in the outer structure of the shell. Sterility tests performed after decontamination in groups I-IV remained negative for all the samples. Breast prostheses recently contaminated with Staphylococci, frequently involved in peri-prosthetic breast implant infection and capable of producing biofilms, can be efficiently decontaminated by the procedure used in this study. Our decontamination procedure did not alter the surface structure of the prostheses. This decontamination procedure could allow reinsertion of an infected implant when peri-prosthetic infection occurs early after breast augmentation or breast reconstruction and when a salvage procedure is indicated. This journal requires that authors assign a level of evidence to each submission to which Evidence-Based Medicine rankings are applicable. This excludes Review Articles, Book Reviews, and manuscripts that concern Basic Science, Animal Studies, Cadaver Studies, and Experimental Studies. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266 .

  15. Sharing of secondary electrons by in-lens and out-lens detector in low-voltage scanning electron microscope equipped with immersion lens.

    PubMed

    Kumagai, Kazuhiro; Sekiguchi, Takashi

    2009-03-01

    To understand secondary electron (SE) image formation with in-lens and out-lens detector in low-voltage scanning electron microscopy (LV-SEM), we have evaluated SE signals of an in-lens and an out-lens detector in LV-SEM. From the energy distribution spectra of SEs with various boosting voltages of the immersion lens system, we revealed that the electrostatic field of the immersion lens mainly collects electrons with energy lower than 40eV, acting as a low-pass filter. This effect is also observed as a contrast change in LV-SEM images taken by in-lens and out-lens detectors.

  16. SEM analysis of ionizing radiation effects in linear integrated circuits. [Scanning Electron Microscope

    NASA Technical Reports Server (NTRS)

    Stanley, A. G.; Gauthier, M. K.

    1977-01-01

    A successful diagnostic technique was developed using a scanning electron microscope (SEM) as a precision tool to determine ionization effects in integrated circuits. Previous SEM methods radiated the entire semiconductor chip or major areas. The large area exposure methods do not reveal the exact components which are sensitive to radiation. To locate these sensitive components a new method was developed, which consisted in successively irradiating selected components on the device chip with equal doses of electrons /10 to the 6th rad (Si)/, while the whole device was subjected to representative bias conditions. A suitable device parameter was measured in situ after each successive irradiation with the beam off.

  17. Electrical properties of palladium-doped CaCu3Ti4O12 ceramics

    NASA Astrophysics Data System (ADS)

    Singh, Arashdeep; Md Mursalin, Sk.; Rana, P.; Sen, Shrabanee

    2015-09-01

    The effect of doping palladium (Pd) at the Cu site of CaCu3Ti4O12 powders (CCPTO) synthesized by sol-gel technique on electrical properties was studied. XRD analysis revealed the formation of CCTO and CCPTO ceramics with some minor quantities of impurities. SEM micrographs revealed that the grain size decreased with Pd doping. TEM micrographs of CCPTO powder showed the formation of irregular-shaped particles of ~40 nm. The dielectric constant and dielectric loss showed a significant enhancement with Pd doping. A significant decrease in grain-boundary resistance with Pd doping was ascertained by impedance spectroscopy study.

  18. Nanoparticles Prepared From N,N-Dimethyl-N-Octyl Chitosan as the Novel Approach for Oral Delivery of Insulin: Preparation, Statistical Optimization and In-vitro Characterization

    PubMed Central

    Shamsa, Elnaz Sadat; Mahjub, Reza; Mansoorpour, Maryam; Rafiee-Tehrani, Morteza; Abedin Dorkoosh, Farid

    2018-01-01

    In this study, N,N-Dimethyl-N-Octyl chitosan was synthesized. Nanoparticles containing insulin were prepared using PEC method and were statistically optimized using the Box-Behnken response surface methodology. The independent factors were considered to be the insulin concentration, concentration and pH of the polymer solution, while the dependent factors were characterized as the size, zeta potential, PdI and entrapment efficiency. The optimized nanoparticles were morphologically studied using SEM. The cytotoxicity of the nanoparticles on the Caco-2 cell culture was studied using the MTT cytotoxicity assay method, while the permeation of the insulin nanoparticles across the Caco-2 cell monolayer was also determined. The optimized nanoparticles posed appropriate physicochemical properties. The SEM morphological studies showed spherical to sub-spherical nanoparticles with no sign of aggregation. The in-vitro release study showed that 95.5 ± 1.40% of the loaded insulin was released in 400 min. The permeability studies revealed significant enhancement in the insulin permeability using nanoparticles prepared from octyl chitosan at 240 min (11.3 ± 0.78%). The obtained data revealed that insulin nanoparticles prepared from N,N-Dimethyl-N-Octyl chitosan can be considered as the good candidate for oral delivery of insulin compared to nanoparticles prepared from N,N,N-trimethyl chitosan.

  19. Microstructure, crystallography and diagenetic alteration in fossil ostrich eggshells from Upper Palaeolithic sites of Indian peninsular region.

    PubMed

    Jain, Sonal; Bajpai, Sunil; Kumar, Giriraj; Pruthi, Vikas

    2016-05-01

    Biominerals studies are of importance as they provide an understanding of natural evolutionary processes. In this study we have investigated the fossil ostrich eggshells using Scanning Electron Microscopy (SEM), X-ray Diffraction (XRD) and Electron Backscatter Diffraction (EBSD). SEM studies demonstrated the ultrastructure of fossil eggshells and formation of calcified cuticular layer. The presence of calcified cuticle layer in eggshell is the basis for ancient DNA studies as it contains preserved biomolecules. EBSD accentuates the crystallographic structure of the ostrich eggshells with sub-micrometer resolution. It is a non-destructive tool for evaluating the extent of diagenesis in a biomineral. EBSD analysis revealed the presence of dolomite in the eggshells. This research resulted in the complete recognition of the structure of ostrich eggshells as well as the nature and extent of diagenesis in these eggshells which is vital for genetic and paleoenvironmental studies. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Pronounced effects of the nominal concentrations of WO3 and Ag: WO3 nano-plates (obtained by a co-precipitation method) on their structural, morphological and optical properties

    NASA Astrophysics Data System (ADS)

    Rajendran, V.; Deepa, B.

    2018-03-01

    Tungsten oxide and different concentration of silver (Ag)-doped tungsten oxide nano material were synthesized by co-precipitation technique. The functional vibrations, structure, and morphology of as-prepared nano material were studied by Fourier transmission infrared spectroscopy, X-ray diffraction, scanning electron microscopy (SEM) and High-resolution transmission electron microscopy (HR-TEM) techniques. The SEM and HR-TEM analysis revealed the formation of nano-plate/nano rods with an average diameter of 40-80 nm diameter and 1-1.5 mm length. Fluorescence (PL) and UV-visible absorption techniques have been used to study the optical properties of the prepared nanoparticles. The observed red shift in the visible absorption spectra confirmed the promoted electron-phonon interaction in WO3 and Ag: WO3 nanoparticles compared to bulk structures. The photoluminescence of nanocrystalline Ag2+ doped WO3 exhibited a strong violet-blue, blue-green emission. Concentration dependence of the emission intensity of Ag2+ in WO3 was studied, and the significant concentration was found to be 0.5% of Ag: WO3. The effluent dye degradation executed for the 0.5% of Ag: WO3 sample under the visible light which reveals the highest degradation efficiency in appropriate time.

  1. Passive optical limiting studies of nanostructured Cu doped ZnO-PVA composite thin films

    NASA Astrophysics Data System (ADS)

    Tamgadge, Y. S.; Sunatkari, A. L.; Talwatkar, S. S.; Pahurkar, V. G.; Muley, G. G.

    2016-01-01

    We prepared undoped and Cu doped ZnO semiconducting nanoparticles (NPs) by chemical co-precipitation method and obtained Cu doped ZnO-polyvinyl alcohol (PVA) nanocomposite thin films by spin coating to investigate third order nonlinear optical and optical limiting properties under cw laser excitation. Powder samples of NPs were characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), energy dispersive spectroscopy, transmission electron microscopy, ultraviolet-visible (UV-vis) and Fourier transform infrared spectroscopy. XRD pattern and FE-SEM micrograph revealed the presence of hexagonal wurtzite phase ZnO NPs having uniform morphology with average particle size of 20 nm. The presence of excitons and absorption peaks in the range 343-360 nm, revealed by UV-vis study, were attributed to excitons in n = 1 quantum state. Third order NLO properties of all composite thin films were investigated by He-Ne continuous wave (cw) laser of wavelength 632.8 nm using Z-scan technique. Thermally stimulated enhanced values of nonlinear refraction and absorption coefficients were obtained which may be attributed to self-defocusing effect, reverse saturable absorption, weak free carrier absorption and surface states properties originated from thermo optic effect. Optical limiting properties have been studied using cw diode laser of wavelength 808 nm and results are presented.

  2. Synthesis and characterization of FeSe1-xTex (x=0, 0.5, 1) superconductors

    NASA Astrophysics Data System (ADS)

    Zargar, Rayees A.; Hafiz, A. K.; Awana, V. P. S.

    2015-08-01

    In this study, FeTe1-xSex (x=0,0.5,1) samples were prepared by conventional solid state reaction method and investigated by powder XRD, SEM, Raman and resistivity measurement techniques to reveal the effect of tellurium (Te) substitution in FeSe matrix. Rietveld analysis was performed on room temperature recorded, X-ray diffraction (XRD) patterns of pure FeSe, FeTe and FeSe0.5Te0.5 which shows that all the compounds are crystallized in a tetragonal structure. SEM images show the dense surface morphology. Raman spectra recorded in the range from 100 to 700 cm-1 at ambient temperature has been interpreted by P4/nmm space group of the lattice. The variation in intensity and shift in peak positions of some phonon modes has been discussed on the basis of variation in crystalline field effect by substituting Te in FeSe lattice. The resistivity versus temperature curves reveals that FeSe becomes superconductor at 7 K and FeSe0.5Te0.5 shows superconductivity below 14 K while FeTe is non-superconducting compound.

  3. Scalable synthesis of aligned carbon nanotubes bundles using green natural precursor: neem oil

    NASA Astrophysics Data System (ADS)

    Kumar, Rajesh; Tiwari, Radhey Shyam; Srivastava, Onkar Nath

    2011-12-01

    Practical application of aligned carbon nanotubes (ACNTs) would have to be determined by a matter of its economical and large-scale preparation. In this study, neem oil (also named Margoaa oil, extracted from the seeds of the neem-- Azadirachta indica) was used as carbon source to fabricate the bundles of ACNTs. ACNTs have been synthesized by spray pyrolysis of neem oil and ferrocene mixture at 825°C. The major components of neem oil are hydrocarbon with less amount of oxygen, which provided the precursor species in spray pyrolysis growth of CNTs. The bundles of ACNTs have been grown directly inside the quartz tube. The as-grown ACNTs have been characterized through Raman spectroscopy, scanning and transmission electron microscopic (SEM/TEM) techniques. SEM images reveal that the bundles of ACNTs are densely packed and are of several microns in length. High-resolution TEM analysis reveals these nanotubes to be multi-walled CNTs. These multi-walled CNTs were found to have inner diameter between 15 and 30 nm. It was found that present technique gives high yield with high density of bundles of ACNTs.

  4. Scalable synthesis of aligned carbon nanotubes bundles using green natural precursor: neem oil.

    PubMed

    Kumar, Rajesh; Tiwari, Radhey Shyam; Srivastava, Onkar Nath

    2011-01-18

    Practical application of aligned carbon nanotubes (ACNTs) would have to be determined by a matter of its economical and large-scale preparation. In this study, neem oil (also named Margoaa oil, extracted from the seeds of the neem--Azadirachta indica) was used as carbon source to fabricate the bundles of ACNTs. ACNTs have been synthesized by spray pyrolysis of neem oil and ferrocene mixture at 825°C. The major components of neem oil are hydrocarbon with less amount of oxygen, which provided the precursor species in spray pyrolysis growth of CNTs. The bundles of ACNTs have been grown directly inside the quartz tube. The as-grown ACNTs have been characterized through Raman spectroscopy, scanning and transmission electron microscopic (SEM/TEM) techniques. SEM images reveal that the bundles of ACNTs are densely packed and are of several microns in length. High-resolution TEM analysis reveals these nanotubes to be multi-walled CNTs. These multi-walled CNTs were found to have inner diameter between 15 and 30 nm. It was found that present technique gives high yield with high density of bundles of ACNTs.

  5. Superficial and Inner Examination of a Microwave-Irradiated Dental Acrylic Resin and Its Metal-Polymer Interface.

    PubMed

    Popescu, Marian C; Bita, Bogdan I; Tucureanu, Vasilica; Vasilache, Dan; Banu, Melania A; Avram, Andrei M; Giurescu-Dumitrescu, Raluca A

    2018-02-01

    The aim of this study is to conduct an extended surface and cross-section characterization of a denture base acrylic resin subjected to 500, 650, and 750 W microwave irradiation for 2, 3, and 5 min to assess its morphological modifications. A commercial heat-cured powder was polymerized according to the manufacturer's specifications and distributed into 20 circular samples. A stainless-steel wire was partially embedded in half of the discs, in order to investigate the metal-polymer interface. High-resolution scanning electron microscopy (SEM) imaging, white light interferometry, roughness measurements and Fourier transform infrared spectrometry were employed for morphological and structural evaluation of the irradiated polymer. Superficial adaptation was discovered after 5 min exposure at 500 W, 650 W, and 750 W, revealing significant roughness correction for 750 W. SEM characterization revealed the inner alteration of the resin for the 750 W protocol and a metal-polymer gap developed regardless of the irradiation conditions. The considerable temperature fluctuations that the samples were subject to during the experiments did not essentially change the poly(methyl-methacrylate) bond structure.

  6. Evaluation of environmental scanning electron microscopy for analysis of Proteus mirabilis crystalline biofilms in situ on urinary catheters

    PubMed Central

    Holling, Nina; Dedi, Cinzia; Jones, Caroline E; Hawthorne, Joseph A; Hanlon, Geoffrey W; Salvage, Jonathan P; Patel, Bhavik A; Barnes, Lara M; Jones, Brian V

    2014-01-01

    Proteus mirabilis is a common cause of catheter-associated urinary tract infections and frequently leads to blockage of catheters due to crystalline biofilm formation. Scanning electron microscopy (SEM) has proven to be a valuable tool in the study of these unusual biofilms, but entails laborious sample preparation that can introduce artefacts, undermining the investigation of biofilm development. In contrast, environmental scanning electron microscopy (ESEM) permits imaging of unprocessed, fully hydrated samples, which may provide much insight into the development of P. mirabilis biofilms. Here, we evaluate the utility of ESEM for the study of P. mirabilis crystalline biofilms in situ, on urinary catheters. In doing so, we compare this to commonly used conventional SEM approaches for sample preparation and imaging. Overall, ESEM provided excellent resolution of biofilms formed on urinary catheters and revealed structures not observed in standard SEM imaging or previously described in other studies of these biofilms. In addition, we show that energy-dispersive X-ray spectroscopy (EDS) may be employed in conjunction with ESEM to provide information regarding the elemental composition of crystalline structures and demonstrate the potential for ESEM in combination with EDS to constitute a useful tool in exploring the mechanisms underpinning crystalline biofilm formation. PMID:24786314

  7. How Hedstrom files fail during clinical use? A retrieval study based on SEM, optical microscopy and micro-XCT analysis.

    PubMed

    Zinelis, Spiros; Al Jabbari, Youssef S

    2018-05-01

    This study was conducted to evaluate the failure mechanism of clinically failed Hedstrom (H)-files. Discarded H-files (n=160) from #8 to #40 ISO sizes were collected from different dental clinics. Retrieved files were classified according to their macroscopic appearance and they were investigated under scanning electron microscopy (SEM) and X-ray micro-computed tomography (mXCT). Then the files were embedded in resin along their longitudinal axis and after metallographic grinding and polishing, studied under an incident light microscope. The macroscopic evaluation showed that small ISO sizes (#08-#15) failed by extensive plastic deformation, while larger sizes (≥#20) tended to fracture. Light microscopy and mXCT results coincided showing that unused and plastically deformed files were free of internal defects, while fractured files demonstrate the presence of intense cracking in the flute region. SEM analysis revealed the presence of striations attributed to the fatigue mechanism. Secondary cracks were also identified by optical microscopy and their distribution was correlated to fatigue under bending loading. Experimental results demonstrated that while overloading of cutting instruments is the predominating failure mechanism of small file sizes (#08-#15), fatigue should be considered the fracture mechanism for larger sizes (≥#20).

  8. Modeling of Individual and Organizational Factors Affecting Traumatic Occupational Injuries Based on the Structural Equation Modeling: A Case Study in Large Construction Industries

    PubMed Central

    Mohammadfam, Iraj; Soltanzadeh, Ahmad; Moghimbeigi, Abbas; Akbarzadeh, Mehdi

    2016-01-01

    Background Individual and organizational factors are the factors influencing traumatic occupational injuries. Objectives The aim of the present study was the short path analysis of the severity of occupational injuries based on individual and organizational factors. Materials and Methods The present cross-sectional analytical study was implemented on traumatic occupational injuries within a ten-year timeframe in 13 large Iranian construction industries. Modeling and data analysis were done using the structural equation modeling (SEM) approach and the IBM SPSS AMOS statistical software version 22.0, respectively. Results The mean age and working experience of the injured workers were 28.03 ± 5.33 and 4.53 ± 3.82 years, respectively. The portions of construction and installation activities of traumatic occupational injuries were 64.4% and 18.1%, respectively. The SEM findings showed that the individual, organizational and accident type factors significantly were considered as effective factors on occupational injuries’ severity (P < 0.05). Conclusions Path analysis of occupational injuries based on the SEM reveals that individual and organizational factors and their indicator variables are very influential on the severity of traumatic occupational injuries. So, these should be considered to reduce occupational accidents’ severity in large construction industries. PMID:27800465

  9. Molecularly imprinted nanopatterns for the recognition of biological warfare agent ricin.

    PubMed

    Pradhan, Santwana; Boopathi, M; Kumar, Om; Baghel, Anuradha; Pandey, Pratibha; Mahato, T H; Singh, Beer; Vijayaraghavan, R

    2009-11-15

    Molecularly imprinted polymer (MIP) for biological warfare agent (BWA) ricin was synthesized using silanes in order to avoid harsh environments during the synthesis of MIP. The synthesized MIP was utilized for the recognition of ricin. The complete removal of ricin from polymer was confirmed by fluorescence spectrometer and SEM-EDAX. SEM and EDAX studies confirmed the attachment of silane polymer on the surface of silica gel matrix. SEM image of Ricin-MIP exhibited nanopatterns and it was found to be entirely different from the SEM image of non-imprinted polymer (NIP). BET surface area analysis revealed more surface area (227 m(2)/g) for Ricin-MIP than that of NIP (143 m(2)/g). In addition, surface area study also showed more pore volume (0.5010 cm(3)/g) for Ricin-MIP than that of NIP (0.2828 cm(3)/g) at 12 nm pore diameter confirming the presence of imprinted sites for ricin as the reported diameter of ricin is 12 nm. The recognition and rebinding ability of the Ricin-MIP was tested in aqueous solution. Ricin-MIP rebound more ricin when compared to the NIP. Chromatogram obtained with Ricin-MIP exhibited two peaks due to imprinting, however, chromatogram of NIP exhibited only one peak for free ricin. SDS-PAGE result confirmed the second peak observed in chromatogram of Ricin-MIP as ricin peak. Ricin-MIP exhibited an imprinting efficiency of 1.76 and it also showed 10% interference from the structurally similar protein abrin.

  10. The effects of socioeconomic status and indices of physical environment on reduced birth weight and preterm births in Eastern Massachusetts

    PubMed Central

    Zeka, Ariana; Melly, Steve J; Schwartz, Joel

    2008-01-01

    Background Air pollution and social characteristics have been shown to affect indicators of health. While use of spatial methods to estimate exposure to air pollution has increased the power to detect effects, questions have been raised about potential for confounding by social factors. Methods A study of singleton births in Eastern Massachusetts was conducted between 1996 and 2002 to examine the association between indicators of traffic, land use, individual and area-based socioeconomic measures (SEM), and birth outcomes (birth weight, small for gestational age and preterm births), in a two-level hierarchical model. Results We found effects of both individual (education, race, prenatal care index) and area-based (median household income) SEM with all birth outcomes. The associations for traffic and land use variables were mainly seen with birth weight, with an exception for an effect of cumulative traffic density on small for gestational age. Race/ethnicity of mother was an important predictor of birth outcomes and a strong confounder for both area-based SEM and indices of physical environment. The effects of traffic and land use differed by level of education and median household income. Conclusion Overall, the findings of the study suggested greater likelihood of reduced birth weight and preterm births among the more socially disadvantaged, and a greater risk of reduced birth weight associated with traffic exposures. Results revealed the importance of controlling simultaneously for SEM and environmental exposures as the way to better understand determinants of health. PMID:19032747

  11. Differences in saccadic eye movements in subjects at high and low risk for panic disorder.

    PubMed

    Zwanzger, Peter; Bradwejn, Jacques; Diemer, Julia; Marshall, Roger W; Koszycki, Diana

    2012-01-01

    Panic disorder (PD) has a strong genetic component showing high heritability rates and familial aggregation. Moreover, there is evidence for associations between parental PD and patterns of psychopathology. So far, little is known about possible endophenotypes representing premorbid vulnerability markers in high-risk subjects for PD. In the present study, we investigated saccadic eye movement (SEM) as an index of CNS inhibitory function in subjects at high risk for PD. 132 healthy children at high and low familial risk for PD were included in the study. Basal SEM parameters were obtained using an electro-oculography (EOG) based system measuring peak saccadic eye velocity (pSEV), latency and accuracy. Moreover, with regard to self rating scales, state-trait-anxiety (STAI-C), childhood behavioral inhibition (CSRI), and anxiety sensitivity (CASI) were assessed. There was a significant overall difference for basal SEM parameters across groups as revealed by MANCOVA (F7,118=2.184, p=.040). A significant influence was found for the covariate age, while gender and puberty status had no influence on SEM. High-risk (HR) subjects showed significantly lower pSEV. Moreover, levels of state and trait anxiety were higher in HR children (F1=5.429, p=.021). In our sample, measurement of pSEV allowed discrimination between children at high and low risk for PD. Since these results argue for possible alterations of saccadic function in high risk subjects, differences in underlying neurobiological mechanisms might be discussed as a possible endophenotype of PD.

  12. Further study on Physaloptera clausa Rudolphi, 1819 (Spirurida: Physalopteridae) from the Amur hedgehog Erinaceus amurensis Schrenk (Eulipotyphla: Erinaceidae).

    PubMed

    Chen, Hui-Xia; Ju, Hui-Dong; Li, Yang; Li, Liang

    2017-12-20

    In the present study, light and scanning electron microscopy (SEM) were used to further study the detailed morphology of Physaloptera clausa Rudolphi, 1819, based on the material collected from the Amur hedgehog E. amurensis Schrenk in China. The results revealed a few previously unreported morphological features and some morphological and morphometric variability between our specimens and the previous studies. The present supplementary morphological characters and morphometric data could help us to recognize this species more accurately.

  13. Difficult removal of fully covered self expandable metal stents (SEMS) for benign biliary strictures: the "SEMS in SEMS" technique.

    PubMed

    Tringali, Andrea; Blero, Daniel; Boškoski, Ivo; Familiari, Pietro; Perri, Vincenzo; Devière, Jacques; Costamagna, Guido

    2014-06-01

    Removal of biliary Fully Covered Self Expandable Metal Stents can fail due to stent migration and/or hyperplastic ingrowth/overgrowth. A case series of 5 patients with benign biliary strictures (2 post-cholecystectomy, 2 following liver transplantation and 1 related to chronic pancreatitis) is reported. The biliary stricture was treated by temporary insertion of Fully Covered Self Expandable Metal Stents. Stent removal failed due to proximal stent migration and/or overgrowth. Metal stent removal was attempted a few weeks after the insertion of another Fully Covered Metal Stent into the first one. The inner Fully Covered Self Expandable Metal Stent compressed the hyperplastic tissue, leading to the extraction of both the stents in all cases. Two complications were reported as a result of the attempt to stents removal (mild pancreatitis and self-limited haemobilia). In the present series, the "SEMS in SEMS" technique revealed to be effective when difficulties are encountered during Fully Covered Self Expandable Metal Stents removal. Copyright © 2014 Editrice Gastroenterologica Italiana S.r.l. Published by Elsevier Ltd. All rights reserved.

  14. Importance-Performance Matrix Analysis (IPMA) Of Transport Disadvantage Variables on Social Exclusion in a Rural Context

    NASA Astrophysics Data System (ADS)

    Larasati, Ophilia; Puspita Dirgahayani, Eng., Dr.

    2018-05-01

    Transport services are essential to support daily life. A lack of transport supply leads to the existence of transport disadvantaged (TDA) groups who are vulnerable to social exclusion, which happens when a particular group or individual is having difficulties to access certain activities that are considered normal in society. To tackle this phenomenon, the understanding of the influence of TDA variables on social exclusion is needed. The aim of this study is to analyze the influences of TDA variables on social exclusion in a rural context, with Cibeureum Village (Bandung Barat Regency) and Bunikasih Village (Subang Regency) as the study case. Both case studies provide different characteristics of accessibility. Partial Least Squares (PLS) Structural Equation Modeling (SEM) is chosen as the method to analyze the influences of TDA variables on social exclusion. The PLS-SEM model is developed according to the social exclusion variable and four TDA variables, i.e., accessibility, individual characteristics, private vehicle existence, and travel behavior. IPMA is done after the PLS-SEM model is evaluated. The study reveals that among four of the TDA variables, accessibility has the most influence on social exclusion, hence interventions related to improving accessibility are needed to tackle social exclusion. More specifically, the provision of alternative modes is needed in both study areas, while in Bunikasih Village the cost of travel is also an important variable to consider.

  15. Performance of polymer nano composite membrane electrode assembly using Alginate as a dopant in polymer electrolyte membrane fuel cell

    NASA Astrophysics Data System (ADS)

    Mulijani, S.

    2017-01-01

    Polymer membrane and composite polymer for membrane electrode assembly (MEAs) are synthesized and studied for usage in direct methanol fuel cell (DMFC). In this study, we prepared 3 type of MEAs, polystyrene (PS), sulfonated polystyrene (SPS) and composite polymer SPS-alginat membrane via catalyst hot pressed method. The performance and properties of prepared MEAs were evaluated and analyzed by impedance spectrometry and scanning electron microscopy (SEM). The result showed that, water up take of MEA composite polymer SPS-alginate was obtained higher than that in SPS and PS. The proton conductivity of MEA-SPS-alginate was also higher than that PS and PSS. SEM characterization revealed that the intimate contact between the carbon catalyst layers (CL) and the membranes, and the uniformly porous structure correlate positively with the MEAs prepared by hot pressed method, exhibiting high performances for DMFC.

  16. Fabrication of Ti-0.48Al Alloy by Centrifugal Casting.

    PubMed

    Park, Jong Bum; Lee, Jung-Il; Ryu, Jeong Ho

    2018-09-01

    Many of the unique properties of TiAl alloys that make are attractive for use in high-temperature structural applications also make it challenging to process them into useful products. Cast TiAl is rapidly nearing commercialization, particularly in the vehicle industry, owing to its low production cost. In this study, the centrifugal casting of a TiAl (Ti-48%Al, mole fraction) turbocharger was simulated and an experimental casting was created in vacuum using an induction melting furnace coupled to a ceramic composite mold. Numerical simulation results agreed with the experiment. The crystal structure, microstructure, and chemical composition of the TiAl prepared by centrifugal casting were studied by X-ray diffractometry, optical microscopy, field emission scanning electron microscopy (FE-SEM) and energy dispersive spectroscopy (EDS). FE-SEM and EDS examinations of the TiAl casting revealed that the thickness of the oxide layer (α-case) was typically less than 35 μm.

  17. Morphology and chemical composition of dentin in permanent first molars with the diagnose MIH.

    PubMed

    Heijs, Suzanne C B; Dietz, Wolfram; Norén, Jörgen G; Blanksma, Nynke G; Jälevik, Birgitta

    2007-01-01

    The purpose of this investigation was to study the morphology and distribution of some inorganic elements in dentin in first permanent molars from children with Molar-Incisor Hypomineralization (MIH). Sixty four tooth sections from thirty two children were examined in polarized light. Fifteen representative sections were selected for SEM/XRMA analysis; 5 were used for SEM analysis and 10 for XRMA analysis. No morphological changes in the dentin were revealed in polarized light microscopy (PLM). However, in all but two sections interglobular dentin was found. The SEM analyzes confirmed the findings of the PLM with no structural changes to be found in the dentin. The XRMA results showed a difference in the concentration of elements between dentin below normal and dentin below carious or hypomineralized enamel. Elements related to organic matter appeared with higher values in dentin below hypomineralized and carious enamel. The morphological and chemical findings in dentin below hypomineralized enamel imply that the odontoblasts are not affected in cases of MIH, but may be affected by hypocalcemia, reflected by the presence of interglobular dentin.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miao, Yinbin; Mo, Kun; Yao, Tiankai

    Here coordinated experimental efforts to quantitatively correlate crystallographic orientation and surface faceting features in UO2 are reported upon. A sintered polycrystalline UO2 sample was thermally etched to induce the formation of surface faceting features. Synchrotron Laue microdiffraction was used to obtain a precise crystallographic orientation map for the UO2 surface grains. Scanning electron microscopy (SEM) was utilized to collect the detailed information on the surface morphology of the sample. The surface faceting features were found to be highly dependent on the crystallographic orientation. In most cases, Triple-plane structures containing one {100} plane and two {111} planes were found to dominatemore » the surface of UO2. The orientation-faceting relationship established in this study revealed a practical and efficient method of determining crystallographic orientation based on the surface features captured by SEM images.« less

  19. 3D imaging of cells and tissues by focused ion beam/scanning electron microscopy (FIB/SEM).

    PubMed

    Drobne, Damjana

    2013-01-01

    Integration of a scanning electron microscope (SEM) and focused ion beam (FIB) technology into a single FIB/SEM system permits use of the FIB as a nano-scalpel to reveal site-specific subsurface microstructures which can be examined in great detail by SEM. The FIB/SEM technology is widely used in the semiconductor industry and material sciences, and recently its use in the life sciences has been initiated. Samples for FIB/SEM investigation can be either embedded in a plastic matrix, the traditional means of preparation of transmission electron microscopy (TEM) specimens, or simply dried as in samples prepared for SEM imaging. Currently, FIB/SEM is used in the life sciences for (a) preparation by the lift-out technique of lamella for TEM analysis, (b) tomography of samples embedded in a matrix, and (c) in situ site-specific FIB milling and SEM imaging using a wide range of magnifications. Site-specific milling and imaging has attracted wide interest as a technique in structural research of single eukaryotic and prokaryotic cells, small animals, and different animal tissue, but it still remains to be explored more thoroughly. In the past, preparation of samples for site-specific milling and imaging by FIB/SEM has typically adopted the embedding techniques used for TEM samples, and which have been very well described in the literature. Sample preparation protocols for the use of dried samples in FIB/SEM have been less well investigated. The aim of this chapter is to encourage application of FIB/SEM on dried biological samples. A detailed description of conventional dried sample preparation and FIB/SEM investigation of dried biological samples is presented. The important steps are described and illustrated, and direct comparison between embedded and dried samples of same tissues is provided. The ability to discover links between gross morphology of the tissue or organ, surface characteristics of any selected region, and intracellular structural details on the nanometer scale is an appealing application of electron microscopy in the life sciences and merits further exploration.

  20. Snow crystal imaging using scanning electron microscopy: III. Glacier ice, snow and biota

    USGS Publications Warehouse

    Rango, A.; Wergin, W.P.; Erbe, E.F.; Josberger, E.G.

    2000-01-01

    Low-temperature scanning electron microscopy (SEM) was used to observe metamorphosed snow, glacial firn, and glacial ice obtained from South Cascade Glacier in Washington State, USA. Biotic samples consisting of algae (Chlamydomonas nivalis) and ice worms (a species of oligochaetes) were also collected and imaged. In the field, the snow and biological samples were mounted on copper plates, cooled in liquid nitrogen, and stored in dry shipping containers which maintain a temperature of -196??C. The firn and glacier ice samples were obtained by extracting horizontal ice cores, 8 mm in diameter, at different levels from larger standard glaciological (vertical) ice cores 7.5 cm in diameter. These samples were cooled in liquid nitrogen and placed in cryotubes, were stored in the same dry shipping container, and sent to the SEM facility. In the laboratory, the samples were sputter coated with platinum and imaged by a low-temperature SEM. To image the firn and glacier ice samples, the cores were fractured in liquid nitrogen, attached to a specimen holder, and then imaged. While light microscope images of snow and ice are difficult to interpret because of internal reflection and refraction, the SEM images provide a clear and unique view of the surface of the samples because they are generated from electrons emitted or reflected only from the surface of the sample. In addition, the SEM has a great depth of field with a wide range of magnifying capabilities. The resulting images clearly show the individual grains of the seasonal snowpack and the bonding between the snow grains. Images of firn show individual ice crystals, the bonding between the crystals, and connected air spaces. Images of glacier ice show a crystal structure on a scale of 1-2 mm which is considerably smaller than the expected crystal size. Microscopic air bubbles, less than 15 ??m in diameter, clearly marked the boundaries between these crystal-like features. The life forms associated with the glacier were easily imaged and studied. The low-temperature SEM sample collecting and handling methods proved to be operable in the field; the SEM analysis is applicable to glaciological studies and reveals details unattainable by conventional light microscopic methods.Low temperature scanning electron microscopy (SEM) was used to observe metamorphosed snow, glacial firn, and glacial ice obtained from South Cascade Glacier in Washington State, USA. Biotic samples consisting of algae and ice worms were also collected and imaged. The SEM images provide a clear and unique view of the surface of the samples because they are generated from electrons emitted or reflected only from the surface of the sample. The SEM has a great depth of field with a wide range of magnifying capabilities.

  1. A comparative study: Effect of plasma on V2O5 nanostructured thin films

    NASA Astrophysics Data System (ADS)

    Singh, Megha; Kumar, Prabhat; Sharma, Rabindar K.; Reddy, G. B.

    2016-05-01

    Vanadium pentoxide nanostructured thin films (NSTs) have been studied to analyze the effect of plasma on nanostructures grown and morphology of films deposited using sublimation process. Nanostructured thin films were deposited on glass substrates, one in presence of oxygen plasma and other in oxygen environment (absence of plasma). Films were characterized using XRD, Raman spectroscopy, SEM and HRTEM. XRD studies revealed α-V2O5 films (orthorhombic phase) with good crystallinity. However, film deposited in presence of plasma have higher peak intensities as compared to those deposited in absence of plasma. Raman studies also support these finding following same trends of considerable increase in intensity in case of film deposited in presence of plasma. SEM micrographs makes the difference more visible, as film deposited in plasma have well defined plate like structures whereas other film have not-clearly-defined petal-like structures. HRTEM results show orthorhombic phase with 0.39 nm interplanar spacing, as reported by XRD. Results are hereby in good agreement with each other.

  2. Spectroscopic studies on sidewall carboxylic acid functionalization of multi-walled carbon nanotubes with valine

    NASA Astrophysics Data System (ADS)

    Deborah, M.; Jawahar, A.; Mathavan, T.; Dhas, M. Kumara; Benial, A. Milton Franklin

    2015-03-01

    The valine functionalized multi-walled carbon nanotubes (MWCNTS) were prepared and characterized by using XRD, UV-Vis, FT-IR, EPR, SEM, and EDX, spectroscopic techniques. The enhanced XRD peak (0 0 2) intensity was observed for valine functionalized MWCNTs compared with oxidized MWCNTs, which is likely due to sample purification by acid washing. UV-Vis study shows the formation of valine functionalized MWCNTs. FT-IR study confirms the presence of functional groups of oxidized MWCNTs and valine functionalized MWCNTs. The ESR line shape analysis indicates that the observed EPR line shape is a Gaussian line shape. The g-values indicate that the systems are isotropic in nature. The morphology study was carried out for oxidized MWCNTs and valine functionalized MWCNTs by using SEM. The EDX spectra revealed that the high purity of oxidized MWCNTs and valine functionalized MWCNTs. The functionalization has been chosen because, functionalization of CNTs with amino acids makes them soluble and biocompatible. Thus, they have potential applications in the field of biosensors and targeted drug delivery.

  3. Use of fluorescence and scanning electron microscopy as tools in teaching biology

    NASA Astrophysics Data System (ADS)

    Ghosh, Nabarun; Silva, Jessica; Vazquez, Aracely; Das, A. B.; Smith, Don W.

    2011-06-01

    Recent nationwide surveys reveal significant decline in students' interest in Math and Sciences. The objective of this project was to inspire young minds in using various techniques involved in Sciences including Scanning Electron Microscopy. We used Scanning Electron Microscope in demonstrating various types of Biological samples. An SEM Tabletop model in the past decade has revolutionized the use of Scanning Electron Microscopes. Using SEM Tabletop model TM 1000 we studied biological specimens of fungal spores, pollen grains, diatoms, plant fibers, dust mites, insect parts and leaf surfaces. We also used fluorescence microscopy to view, to record and analyze various specimens with an Olympus BX40 microscope equipped with FITC and TRITC fluorescent filters, a mercury lamp source, DP-70 digital camera with Image Pro 6.0 software. Micrographs were captured using bright field microscopy, the fluoresceinisothiocyanate (FITC) filter, and the tetramethylrhodamine (TRITC) filter settings at 40X. A high pressure mercury lamp or UV source was used to excite the storage molecules or proteins which exhibited autofluorescence. We used fluorescent microscopy to confirm the localization of sugar beet viruses in plant organs by viewing the vascular bundles in the thin sections of the leaves and other tissues. We worked with the REU summer students on sample preparation and observation on various samples utilizing the SEM. Critical Point Drying (CPD) and metal coating with the sputter coater was followed before observing some cultured specimen and the samples that were soft in textures with high water content. SEM Top allowed investigating the detailed morphological features that can be used for classroom teaching. Undergraduate and graduate researchers studied biological samples of Arthropods, pollen grains and teeth collected from four species of snakes using SEM. This project inspired the research students to pursue their career in higher studies in science and 45% of the undergraduates participated in this project entered Graduate school.

  4. Scanning electron microscope observation of dislocations in semiconductor and metal materials.

    PubMed

    Kuwano, Noriyuki; Itakura, Masaru; Nagatomo, Yoshiyuki; Tachibana, Shigeaki

    2010-08-01

    Scanning electron microscope (SEM) image contrasts have been investigated for dislocations in semiconductor and metal materials. It is revealed that single dislocations can be observed in a high contrast in SEM images formed by backscattered electrons (BSE) under the condition of a normal configuration of SEM. The BSE images of dislocations were compared with those of the transmission electron microscope and scanning transmission electron microscope (STEM) and the dependence of BSE image contrast on the tilting of specimen was examined to discuss the origin of image contrast. From the experimental results, it is concluded that the BSE images of single dislocations are attributed to the diffraction effect and related with high-angle dark-field images of STEM.

  5. Sexually Explicit Media on the Internet: A Content Analysis of Sexual Behaviors, Risk, and Media Characteristics in Gay Male Adult Videos

    PubMed Central

    Downing, Martin J.; Schrimshaw, Eric W.; Antebi, Nadav; Siegel, Karolynn

    2013-01-01

    Recent research suggests that viewing sexually explicit media (SEM), i.e., adult videos, may influence sexual risk taking among men who have sex with men (MSM). Despite this evidence, very little is known about the content of gay male SEM on the Internet, including the prevalence of sexual risk behaviors and their relation to video- and performer-characteristics, viewing frequency, and favorability. The current study content analyzed 302 sexually explicit videos featuring male same-sex performers that were posted to five highly trafficked adult-oriented websites. Findings revealed that gay male SEM on the Internet features a variety of conventional and nonconventional sexual behaviors. There was a substantial prevalence of unprotected anal intercourse (UAI) (34%) and was virtually the same as the prevalence of anal sex with a condom (36%). The presence of UAI was not associated with video length, amateur production, number of video views, favorability, or website source. However, the presence of other potentially high-risk behaviors (e.g., ejaculation in the mouth, and ejaculation on/in/rubbed into the anus) was associated with longer videos, more views, and group sex videos (three or more performers). The findings of high levels of sexual risk behavior and the fact that there was virtually no difference in the prevalence of anal sex with and without a condom in gay male SEM have important implications for HIV prevention efforts, future research on the role of SEM on sexual risk taking, and public health policy. PMID:23733156

  6. Preparation of high-quality planar FeRh thin films for in situ TEM investigations

    NASA Astrophysics Data System (ADS)

    Almeida, Trevor P.; McGrouther, Damien; Pivak, Yevheniy; Perez Garza, Hector Hugo; Temple, Rowan; Massey, Jamie; Marrows, Christopher H.; McVitie, Stephen

    2017-10-01

    The preparation of a planar FeRh thin film using a focused ion beam (FIB) secondary electron microscope (SEM) for the purpose of in situ transmission electron microscopy (TEM) is presented. A custom SEM stub with 45° faces allows for the transfer and milling of the sample on a TEM heating chip, whilst Fresnel imaging within the TEM revealed the presence of the magnetic domain walls, confirming the quality of the FIB-prepared sample.

  7. A Neglected Population: Media Consumption, Perceived Risk, and Fear of Crime Among International Students.

    PubMed

    Shi, Luzi

    2018-03-01

    The 4.5 million international students worldwide bring in multifold benefits to the advancement of culture, economy, and national security in education host countries. Surprisingly, few prior studies have explored international students' fear of crime, which may harm their mental and physical health and undermine their educational achievements. The current study aims to fill in this research void by investigating international students' fear of crime in line with the cultivation theoretical framework, which postulates that media consumption cultivates fear of crime. The analyses draw on a sample of 398 international students attending nine different public and private universities across the United States. Using structural equation modeling (SEM), I investigate the extent and correlates of students' fear of crime. The findings reveal that international students are more fearful in the United States than in their home countries. SEM results show that controlling for students' fear in their home countries, attention paid to crime news is positively related to fear in the United States, through perceived victimization risk. The SEM results also suggest that exposure to non-U.S. social media (e.g., WeChat and Weibo) is positively related to respondents' fear of crime, whereas exposure to U.S. social media (e.g., Facebook and Twitter) is not related to fear of crime. The current study highlights the importance of studying the impact of fear of crime and social media use on international students.

  8. Bioaccumulation and distribution of selenium in Enterococcus durans.

    PubMed

    Pieniz, Simone; Andreazza, Robson; Mann, Michele Bertoni; Camargo, Flávio; Brandelli, Adriano

    2017-03-01

    Selenium is an essential nutrient for all living organisms. Under appropriate conditions lactic acid bacteria (LAB) are capable for accumulating large amounts of trace elements, such as selenium, and incorporating them into organic compounds. In this study, the capacity of selenium bioaccumulation by Enterococcus durans LAB18s was evaluated. The distribution of organic selenium in selenium-enriched E. durans LAB18s biomass was analyzed, and the highest percentage of organic selenium was found in the fraction of total protein, followed by the fractions of polysaccharides and nucleic acids. When the protein fraction was obtained by different extractions (water, NaCl, ethanol and NaOH) it was demonstrated that alkali-soluble protein showed the higher Selenium content. Analysis of protein fractions by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) revealed that selenium was present in the proteins ranging from 23 to 100kDa. The cells were analyzed by scanning electron microscopy (SEM); scanning electron microscopy/energy dispersive spectrometry (SEM/EDS) and transmission electron microscopy (TEM). SEM, TEM and SEM/EDS showed the morphology, the selenium particles bioaccumulated into and on the cells and the amounts of selenium present into the cells, respectively. Thus, the isolate E. durans LAB18s can be a promising probiotic to be used as selenium-enriched biomass in feed trials. Copyright © 2016 Elsevier GmbH. All rights reserved.

  9. Increased thyrotropin binding in hyperfunctioning thyroid nodules.

    PubMed

    Müller-Gärtner, H W; Schneider, C; Bay, V; Tadt, A; Rehpenning, W; de Heer, K; Jessel, M

    1987-08-01

    The object of this study was to investigate TSH receptors in hyperfunctioning thyroid nodules (HFN). In HFN, obtained from seven patients, 125-I-TSH binding as determined by equilibrium binding analysis on particulate membrane preparations, was found to be significantly increased as compared with normal thyroid tissues (five patients; P less than 0.001). Scatchard analysis of TSH-binding revealed two kinds of binding sites for both normal thyroid tissue and HFN, and displayed significantly increased association constants of high- and low-affinity binding sites in HFN (Ka = 11.75 +/- 6.8 10(9) M-1, P less than 0.001 and Ka = 2.1 +/- 1.0 10(7) M-1, P less than 0.025; x +/- SEM) as compared with normal thyroid tissue (Ka = 0.25 +/- 0.06 10(9) M-1, Ka = 0.14 +/- 0.03 10(7) M-1; x +/- SEM). The capacity of the high-affinity binding sites in HFN was found to be decreased (1.8 +/- 1.1 pmol/mg protein, x +/- SEM) in comparison with normal thyroid tissue (4.26 +/- 1.27 pmol/mg protein; x +/- SEM). TSH-receptor autoradiography applied to cryostatic tissue sections confirmed increased TSH binding of the follicular epithelium in HFN. These data suggest that an increased affinity of TSH-receptor sites in HFN in iodine deficient areas may be an important event in thyroid autonomy.

  10. SEM-induced shrinkage and site-selective modification of single-crystal silicon nanopores

    NASA Astrophysics Data System (ADS)

    Chen, Qi; Wang, Yifan; Deng, Tao; Liu, Zewen

    2017-07-01

    Solid-state nanopores with feature sizes around 5 nm play a critical role in bio-sensing fields, especially in single molecule detection and sequencing of DNA, RNA and proteins. In this paper we present a systematic study on shrinkage and site-selective modification of single-crystal silicon nanopores with a conventional scanning electron microscope (SEM). Square nanopores with measurable sizes as small as 8 nm × 8 nm and rectangle nanopores with feature sizes (the smaller one between length and width) down to 5 nm have been obtained, using the SEM-induced shrinkage technique. The analysis of energy dispersive x-ray spectroscopy and the recovery of the pore size and morphology reveal that the grown material along with the edge of the nanopore is the result of deposition of hydrocarbon compounds, without structural damage during the shrinking process. A simplified model for pore shrinkage has been developed based on observation of the cross-sectional morphology of the shrunk nanopore. The main factors impacting on the task of controllably shrinking the nanopores, such as the accelerating voltage, spot size, scanned area of e-beam, and the initial pore size have been discussed. It is found that single-crystal silicon nanopores shrink linearly with time under localized irradiation by SEM e-beam in all cases, and the pore shrinkage rate is inversely proportional to the initial equivalent diameter of the pore under the same e-beam conditions.

  11. Indium hexagonal island as seed-layer to boost a-axis orientation of AlN thin films

    NASA Astrophysics Data System (ADS)

    Redjdal, N.; Salah, H.; Azzaz, M.; Menari, H.; Manseri, A.; Guedouar, B.; Garcia-Sanchez, A.; Chérif, S. M.

    2018-06-01

    Highly a-axis oriented aluminum nitride films have been grown on Indium coated (100) Si substrate by DC reactive magnetron sputtering. It is shown that In incorporated layer improve the extent of preferential growth along (100) axis and form dense AlN films with uniform surface and large grains, devoid of micro-cracks. As revealed by SEM cross section images, AlN structure consists of oriented columnar grains perpendicular to the Si surface, while AlN/In structure results in uniformely tilted column. SEM images also revealed the presence of In hexagonal islands persistent throughout the entire growth. Micro -Raman spectroscopy of the surface and the cross section of the AlN/In grown films evidenced their high degree of homogeneity and cristallinity.

  12. Spectroscopic, microchemical and petrographic analyses of plasters from ancient buildings in Lamezia Terme (Calabria, Southern Italy)

    NASA Astrophysics Data System (ADS)

    De Luca, Raffaella; Gigliotti, Valentina; Panarello, Mario; Bloise, Andrea; Crisci, Gino M.; Miriello, Domenico

    2016-01-01

    This work shows the results of the spectroscopic, microchemical and petrographic study carried out on six plasters coming from three important residential buildings of the 18th century, located in Lamezia Terme (Catanzaro, Southern Italy). To study the provenance of the raw materials used to make the plasters, one sample of limestone and two samples of sand were also collected from the quarries near Lamezia Terme and compared with the historical plasters. Samples were studied by polarized optical microscopy (OM), X-ray powder diffraction (XRPD), scanning electron microscopy (SEM) with energy dispersive X-ray spectroscopy (EDS) and Raman spectroscopy. The results of these analyses allowed to determine the mineralogical, petrographical and chemical characteristics of the plasters, identify the pigments used for their coloration and provide useful information about the building techniques, the raw materials employed and the production technology of plasters during the 18th century in Lamezia Terme. SEM-EDS microanalysis also revealed the presence of gold and silver on the surface of two samples.

  13. Hydrothermal synthesis of β-Ni(OH)2 and its supercapacitor properties

    NASA Astrophysics Data System (ADS)

    Waghmare, Suraj S.; Patil, Prashant B.; Baruva, Shiva K.; Rajput, Madhuri S.; Deokate, Ramesh J.; Mujawar, Sarfraj H.

    2018-04-01

    In present manuscript, we synthesized the Nickel hydroxide as an electrode material or supercapacitor application, using hydrothermal method with nickel nitrate as nickel source and hexamethylenetetramine as a directing agent. The reaction was carried out at 160°C temperature for 18 hrs. The structural, morphological and electrochemical characterizations were studied by X-Ray Diffraction (XRD), Scanning Electron Microscopy (SEM), Cyclic Voltammetry (CV) and Galvanostatic Charge Discharge (GCD) respectively. Phase purity and crystalline nature of as prepared nickel hydroxide β-Ni(OH)2 was reveled from X-ray study. Using Debye Scherer's formula crystallite size of ˜15 nm was estimated for Nickel hydroxide. SEM reveals β-platelets like morphology of Ni(OH)2 average of platelets length of the order of 1 µm. Electrochemical studies (CV and GCD) were carried out in 2M KOH electrolyte solution. The maximum capacitance of 225 Fg-1 was observed for scan rate 5 mV within the potential window of 0.1 to 0.4 V.

  14. Automated Transmission-Mode Scanning Electron Microscopy (tSEM) for Large Volume Analysis at Nanoscale Resolution

    PubMed Central

    Kuwajima, Masaaki; Mendenhall, John M.; Lindsey, Laurence F.; Harris, Kristen M.

    2013-01-01

    Transmission-mode scanning electron microscopy (tSEM) on a field emission SEM platform was developed for efficient and cost-effective imaging of circuit-scale volumes from brain at nanoscale resolution. Image area was maximized while optimizing the resolution and dynamic range necessary for discriminating key subcellular structures, such as small axonal, dendritic and glial processes, synapses, smooth endoplasmic reticulum, vesicles, microtubules, polyribosomes, and endosomes which are critical for neuronal function. Individual image fields from the tSEM system were up to 4,295 µm2 (65.54 µm per side) at 2 nm pixel size, contrasting with image fields from a modern transmission electron microscope (TEM) system, which were only 66.59 µm2 (8.160 µm per side) at the same pixel size. The tSEM produced outstanding images and had reduced distortion and drift relative to TEM. Automated stage and scan control in tSEM easily provided unattended serial section imaging and montaging. Lens and scan properties on both TEM and SEM platforms revealed no significant nonlinear distortions within a central field of ∼100 µm2 and produced near-perfect image registration across serial sections using the computational elastic alignment tool in Fiji/TrakEM2 software, and reliable geometric measurements from RECONSTRUCT™ or Fiji/TrakEM2 software. Axial resolution limits the analysis of small structures contained within a section (∼45 nm). Since this new tSEM is non-destructive, objects within a section can be explored at finer axial resolution in TEM tomography with current methods. Future development of tSEM tomography promises thinner axial resolution producing nearly isotropic voxels and should provide within-section analyses of structures without changing platforms. Brain was the test system given our interest in synaptic connectivity and plasticity; however, the new tSEM system is readily applicable to other biological systems. PMID:23555711

  15. Metastable phase in binary and ternary 12-carat gold alloys at low temperature

    NASA Astrophysics Data System (ADS)

    Lamiri, Imene; Abdelbaky, Mohammed S. M.; Hamana, Djamel; García-Granda, Santiago

    2018-04-01

    Low temperature phase transitions in 12-carat gold alloys have been investigated for binary Au-Cu and ternary Au-Cu-Ag compositions. The thermal analyses investigations using differential scanning calorimetry (DSC) and the dilatometry were performed in the 50–300 °C temperature range in order to detect the structural transformations. The thermal analyses were carried out on annealed samples at 700 °C for two hour followed by water quenching. They reveal an important new reaction for both used compositions and both thermal techniques confirm each other. This reaction has been assessed as pre-ordering reaction. SEM and STM imaging were performed on annealed samples at 700 °C for two hours and water quenched followed by a heating from room temperature up to the temperature of the new peaks obtained in the thermal study. The imaging reveals the relationship between the pre-ordering reaction and the surface aspect presented in the fact of dendrite precipitates. A series of SEM observation have been performed in order to follow the kinetic of the observed precipitates by the way of several series of heating up, from 140 to 220 °C for the binary composition and from 100 to 180 °C for the ternary composition. Furthermore, this study shows that the silver accelerates the ordering reaction.

  16. Comparative study of nano-sized particles CoFe2O4 effects on superconducting properties of Y-123 and Y-358

    NASA Astrophysics Data System (ADS)

    Slimani, Y.; Hannachi, E.; Ben Salem, M. K.; Hamrita, A.; Varilci, A.; Dachraoui, W.; Ben Salem, M.; Ben Azzouz, F.

    2014-10-01

    The effects of nano-sized CoFe2O4 particles (10 nm) addition on the structural and the normal state resistivity of YBa2Cu3O7 (noted Y-123) and Y3Ba5Cu8O18 (noted Y-358) polycrystalline were systematically studied. Samples were synthesized in oxygen atmosphere using a standard solid state reaction technique by adding CoFe2O4 up to 2 wt%. Phases, microstructure and superconductivity have been systematically investigated using X-ray diffraction (XRD), scanning electron microscopy (SEM) and electrical measurements ρ(T). XRD results reveal that the lattice parameters change for both Y-123 and Y-358 phases. SEM observations reveal that the grain size is reduced with increasing the content of CoFe2O4. The measurements for the resistivity dependence of temperature show that the depression in superconducting temperature is more pronounced for CoFe2O4 addition in Y-358 compound than in Y-123 one. These results may be attributed to the existence of much more disorder due to a greater number of Cu sites to be substituted by Fe and Co in Y-358 compared to Y-123.

  17. Motivational climate, goal orientation, perceived sport ability, and enjoyment within Finnish junior ice hockey players.

    PubMed

    Jaakkola, T; Ntoumanis, N; Liukkonen, J

    2016-01-01

    The aim of this study was to investigate the relations among situational motivational climate, dispositional approach and avoidance achievement goals, perceived sport ability, and enjoyment in Finnish male junior ice hockey players. The sample comprised 265 junior B-level male players with a mean age of 17.03 years (SD = 0.63). Players filled questionnaires tapping their perceptions of coach motivational climate, achievement goals, perceived sport ability, and enjoyment. For the statistical analysis, players were divided into high and low perceived sport ability groups. Multigroup structural equation modeling (SEM) revealed an indirect path from task-involving motivational climate via task-approach goal to enjoyment. Additionally, SEM demonstrated four other direct associations, which existed in both perceived ability groups: from ego-involving motivational climate to ego-approach and ego-avoidance goals; from ego-approach goal to ego-avoidance goal; and from task-avoidance goal to ego-avoidance goal. Additionally, in the high perceived sport ability group, there was an association from task-involving motivational climate to enjoyment. The results of this study reveal that motivational climate emphasizing effort, personal development and improvement, and achievement goal mastering tasks are significant elements of enjoyment in junior ice hockey. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  18. The effect of CO2 and Nd:YAP lasers on CAD/CAM Ceramics: SEM, EDS and thermal studies.

    PubMed

    El Gamal, Ahmed; Fornaini, Carlo; Rocca, Jean Paul; Muhammad, Omid H; Medioni, Etienne; Cucinotta, Annamaria; Brulat-Bouchard, Nathalie

    2016-03-31

    The objective of this study was to investigate the interaction of infrared laser light on Computer Aided Design and Computer Aided Manufacturing (CAD/CAM) ceramic surfaces. Sixty CAD/CAM ceramic discs were prepared and divided into two different groups: lithiumdisilicate ceramic (IPSe.maxCADs) and Zirconia ceramic (IPSe.maxZirCADs). The laser irradiation was performed on graphite and non-graphite surfaces with a Carbon Dioxide laser at 5W and 10W power in continuous mode (CW mode) and with Neodymium Yttrium Aluminum Perovskite (Nd:YAP) laser at 10W. Surface textures and compositions were examined using Scanning Electron Microscopy (SEM), and Energy Dispersive Spectroscopy (EDS). Thermal elevation was measured by thermocouple during laser irradiation. The SEM observation showed a rough surface plus cracks and fissures on CO2 10W samples and melting areas in Nd:YAP samples; moreover, with CO2 5W smooth and shallow surfaces were observed. EDS analysis revealed that laser irradiation does not result in modifications of the chemical composition even if minor changes in the atomic mass percentage of the components were registered. Thermocouple showed several thermal changes during laser irradiation. CO2 and Nd:YAP lasers modify CAD/CAM ceramic surface without chemical composition modifications.

  19. Effects of self-esteem on state and trait components of interpersonal dependency and depression in the workplace.

    PubMed

    Takagishi, Yukihiro; Sakata, Masatsugu; Kitamura, Toshinori

    2011-09-01

    This longitudinal study was undertaken to clarify the relationships among self-esteem, interpersonal dependency, and depression, focusing on a trait and state component of interpersonal dependency and depression. In a sample of 466 working people, self-esteem, interpersonal dependency, job stressor, and depression were assessed at 2 points of time. A structural equation model (SEM) was created to differentiate the trait component of interpersonal dependency, depression and the state component of interpersonal dependency, depression. The model revealed that self-esteem influenced trait interpersonal dependency and trait depression but not state interpersonal dependency or depression. Setting a latent variable as a trait component to differentiate trait and state in interpersonal dependency and depression in SEM was found to be effective both statistically and clinically. © 2011 Wiley Periodicals, Inc.

  20. Synthesis of nanocrystalline α-Fe2O3 by using thermal oxidation of Fe Films

    NASA Astrophysics Data System (ADS)

    Fortas, G.; Saidoun, I.; Abboud, H.; Gabouze, N.; Haine, N.; Manseri, A.; Zergoug, M.; Menari, H.; Sam, S.; Cheraga, H.; Bozetine, I.

    2018-03-01

    α-Fe2O3 hematite films were prepared by thermal oxidation from Fe films electroplated on silicon. Electrodeposition of Fe thin films was carried out from a sulfate bath containing an ammonium chloride complexing agent. The electrochemical study was performed by cyclic voltammetry. The SEM analysis of the films obtained at a -1.3 V constant polarization shows dendritic grains in the form of islet. The DRX spectra exhibit characteristic iron peaks according to the face centered cubic (Fcc) structure. These samples were annealed. At a temperature of 650 ° C, a single iron oxide phase was well formed, with the hematite structure. The SEM photos show a well-assembled columnar structure with formation of nanowires at the surface of the deposit. The absorbance spectra reveal an absorption features in the ultraviolet range

  1. Atomic force microscopy imaging of fragments from the Martian meteorite ALH84001

    NASA Technical Reports Server (NTRS)

    Steele, A.; Goddard, D.; Beech, I. B.; Tapper, R. C.; Stapleton, D.; Smith, J. R.

    1998-01-01

    A combination of scanning electron microscopy (SEM) and environmental scanning electron microscopy (ESEM) techniques, as well as atomic force microscopy (AFM) methods has been used to study fragments of the Martian meteorite ALH84001. Images of the same areas on the meteorite were obtained prior to and following gold/palladium coating by mapping the surface of the fragment using ESEM coupled with energy-dispersive X-ray analysis. Viewing of the fragments demonstrated the presence of structures, previously described as nanofossils by McKay et al. (Search for past life on Mars--possible relic biogenic activity in martian meteorite ALH84001. Science, 1996, pp. 924-930) of NASA who used SEM imaging of gold-coated meteorite samples. Careful imaging of the fragments revealed that the observed structures were not an artefact introduced by the coating procedure.

  2. Deformation and failure mechanism of secondary cell wall in Spruce late wood

    NASA Astrophysics Data System (ADS)

    Adusumalli, Ramesh-Babu; Raghavan, Rejin; Ghisleni, Rudy; Zimmermann, Tanja; Michler, Johann

    2010-08-01

    The deformation and failure of the secondary cell wall of Spruce wood was studied by in-situ SEM compression of micropillars machined by the focused ion beam technique. The cell wall exhibited yield strength values of approximately 160 MPa and large scale plasticity. High resolution SEM imaging post compression revealed bulging of the pillars followed by shear failure. With additional aid of cross-sectional analysis of the micropillars post compression, a model for deformation and failure mechanism of the cell wall has been proposed. The cell wall consists of oriented cellulose microfibrils with high aspect ratio embedded in a hemicellulose-lignin matrix. The deformation of the secondary wall occurs by asymmetric out of plane bulging because of buckling of the microfibrils. Failure of the cell wall following the deformation occurs by the formation of a shear or kink band.

  3. Facile and Chemically Pure Preparation of YVO4:Eu3+ Colloid with Novel Nanostructure via Laser Ablation in Water

    PubMed Central

    Wang, Haohao; Odawara, Osamu; Wada, Hiroyuki

    2016-01-01

    A YVO4:Eu3+ colloid with an interesting nanostructure was formed by pulsed laser ablation in deionized water without any additives or surfactants. Analyses of particle morphology, composition and optical properties were accomplished by SEM, TEM, EDS PL and UV-vis. Ovoid-like particles formed by the agglomeration of numerous nanocrystals were observed by SEM and TEM, while EDS with area-mode analysis revealed that the content of dopant ion was well retained within the nanoparticles. In addition, the formation mechanism is deduced and discussed for the first time in this research. The findings of this study could provide new insights into the understanding of laser-induced oxide materials and offer an opportunity for other research groups to pursue red emitting nanophosphors with outstandingly purity. PMID:26842419

  4. Karyotype variation in cultivars and spontaneous cocoa mutants (Theobroma cacao L.).

    PubMed

    Figueiredo, G S F; Melo, C A F; Souza, M M; Araújo, I S; Zaidan, H A; Pires, J L; Ahnert, D

    2013-10-18

    Four mutant cocoa accessions with morphological changes and a cultivar sample were karyomorphologically characterized. Slides were prepared by enzymatic digestion of the root meristem and squashed in 45% acetic acid, followed by 2% Giemsa staining. The chromosome number of 2n = 20 was seen in all accessions. The karyotype formula for Cacau Comum and Cacau Rui was 2n = 20m. Submetacentric chromosomes were observed in Cacau Pucala and Cacau Jaca, both with 2n = 18m + 2sm, but the karyotype formula for Cacau Sem Vidro was 2n = 16m + 4sm. Satellites were located on the long arm of the 1st and 2nd chromosome pairs of Cacau Comum, whereas Cacau Pucala had satellites on the 6th chromosome pair. Greater karyotypic variation in Cacau Sem Vidro was found, whose 1st and 2nd chromosome pairs had satellites on the long arm and 6th and 10th pairs had satellites on the short arm. Analysis revealed a lower average chromosome length in Cacau Comum (1.53 ± 0.026 µm) and a higher length in Cacau Sem Vidro (2.26 ± 0.038 µm). ANOVA revealed significant difference (P < 0.01) for the average chromosome length and the length of chromosome pairs within and between accessions. The average chromosome lengths of mutants of Cacau Rui and Cacau Jaca were not statistically different by the Tukey test at 5% probability. The karyotypic diversity observed in this study is not necessarily associated with the changing character of the accessions analyzed, but may reflect the genetic variation observed in Theobroma cacao.

  5. Structural, optical and nonlinear optical studies of AZO thin film prepared by SILAR method for electro-optic applications

    NASA Astrophysics Data System (ADS)

    Edison, D. Joseph; Nirmala, W.; Kumar, K. Deva Arun; Valanarasu, S.; Ganesh, V.; Shkir, Mohd.; AlFaify, S.

    2017-10-01

    Aluminium doped (i.e. 3 at%) zinc oxide (AZO) thin films were prepared by simple successive ionic layer adsorption and reaction (SILAR) method with different dipping cycles. The structural and surface morphology of AZO thin films were studied by using X-ray diffraction (XRD) and scanning electron microscopy (SEM). The optical parameters such as, transmittance, band gap, refractive index, extinction coefficient, dielectric constant and nonlinear optical properties of AZO films were investigated. XRD pattern revealed the formation of hexagonal phase ZnO and the intensity of the film was found to increase with increasing dipping cycle. The crystallite size was found to be in the range of 29-37 nm. Scanning Electron Microscope (SEM) images show the presence of small sized grains, revealing that the smoothest surface was obtained at all the films. The EDAX spectrum of AZO conforms the presence of Zn, O and Al. The optical transmittance in the visible region is high 87% and the band gap value is 3.23 eV. The optical transmittance is decreased with respect to dipping cycles. The room temperature PL studies revealed that the AZO films prepared at (30 cycles) has good film quality with lesser defect density. The third order nonlinear optical parameters were also studied using Z-scan technique to know the applications of deposited films in nonlinear devices. The third order nonlinear susceptibility value is found to be 1.69 × 10-7, 3.34 × 10-8, 1.33 × 10-7and 2.52 × 10-7 for AZO films deposited after 15, 20, 25 and 30 dipping cycles.

  6. Evaluation of environmental scanning electron microscopy for analysis of Proteus mirabilis crystalline biofilms in situ on urinary catheters.

    PubMed

    Holling, Nina; Dedi, Cinzia; Jones, Caroline E; Hawthorne, Joseph A; Hanlon, Geoffrey W; Salvage, Jonathan P; Patel, Bhavik A; Barnes, Lara M; Jones, Brian V

    2014-06-01

    Proteus mirabilis is a common cause of catheter-associated urinary tract infections and frequently leads to blockage of catheters due to crystalline biofilm formation. Scanning electron microscopy (SEM) has proven to be a valuable tool in the study of these unusual biofilms, but entails laborious sample preparation that can introduce artefacts, undermining the investigation of biofilm development. In contrast, environmental scanning electron microscopy (ESEM) permits imaging of unprocessed, fully hydrated samples, which may provide much insight into the development of P. mirabilis biofilms. Here, we evaluate the utility of ESEM for the study of P. mirabilis crystalline biofilms in situ, on urinary catheters. In doing so, we compare this to commonly used conventional SEM approaches for sample preparation and imaging. Overall, ESEM provided excellent resolution of biofilms formed on urinary catheters and revealed structures not observed in standard SEM imaging or previously described in other studies of these biofilms. In addition, we show that energy-dispersive X-ray spectroscopy (EDS) may be employed in conjunction with ESEM to provide information regarding the elemental composition of crystalline structures and demonstrate the potential for ESEM in combination with EDS to constitute a useful tool in exploring the mechanisms underpinning crystalline biofilm formation. © 2014 The Authors. FEMS Microbiology Letters published by John Wiley & Sons Ltd on behalf of Federation of European Microbiological Societies.

  7. PVP capped CdS nanoparticles for UV-LED applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sivaram, H.; Selvakumar, D.; Jayavel, R., E-mail: rjvel@annauniv.edu

    Polyvinlypyrrolidone (PVP) capped cadmium sulphide (CdS) nanoparticles are synthesized by wet chemical method. The powder X-ray diffraction (XRD) result indicates that the nanoparticles are crystallized in cubic phase. The optical properties are characterized by UV-Vis absorption. The morphology of CdS nanoparticles are studied using Scanning electron microscope (SEM). The thermal behavior of the as prepared nanoparticles has been examined by Thermo gravimetric analysis (TGA). The optical absorption study of pvp capped CdS reveal a red shift confirms the UV-LED applications.

  8. SEM/EDS and optical microscopy analyses of microplastics in ocean trawl and fish guts.

    PubMed

    Wang, Zhong-Min; Wagner, Jeff; Ghosal, Sutapa; Bedi, Gagandeep; Wall, Stephen

    2017-12-15

    Microplastic particles from Atlantic and Pacific Ocean trawls, lab-fed fish guts and ocean fish guts have been characterized using optical microscopy and SEM/EDS in terms of size, morphology, and chemistry. We assessed whether these measurements could serve as a rapid screening process for subsequent identification of the likely microplastic candidates by micro-spectroscopy. Optical microscopy enabled morphological classification of the types of particles or fibers present in the sample, as well as the quantification of particle size ranges and fiber lengths. SEM/EDS analysis was used to rule out non-plastic particles and screen the prepared samples for potential microplastic, based on their element signatures and surface characteristics. Chlorinated plastics such as polyvinyl chloride (PVC) could be easily identified with SEM/EDS due to their unique elemental signatures including chlorine, as could mineral species that are falsely identified as plastics by optical microscopy. Particle morphology determined by optical microscopy and SEM suggests the fish ingested particles contained both degradation fragments from larger plastic pieces and also manufactured microplastics. SEM images of microplastic particle surfaces revealed characteristic cracks consistent with environmental exposure, as well as pigment particles consistent with manufactured materials. Most of the microplastic surfaces in the fish guts and ocean trawls were covered with biofilms, radiolarians, and crustaceans. Many of the fish stomachs contained micro-shell pieces which visually resembled microplastics. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Synthesis and characterization of an effective organic/inorganic hybrid green corrosion inhibitive complex based on zinc acetate/Urtica Dioica

    NASA Astrophysics Data System (ADS)

    Salehi, E.; Naderi, Reza; Ramezanzadeh, B.

    2017-02-01

    This study aims at synthesis and characterization of an effective corrosion inhibitive complex based on zinc acetate/Urtica Dioica (ZnA-U.D) for corrosion protection of mild steel in chloride solution. The chemical structure and morphology of the complex were characterized by Fourier transform infrared spectroscopy (FT-IR), UV-vis, thermal gravimetric analysis (TGA), X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM). The corrosion protection performance of the mild steel samples dipped in 3.5 wt.% NaCl solutions with and without ZnA-U.D extract was investigated by visual observations, open circuit potential (OCP) measurements, electrochemical impedance spectroscopy (EIS) and polarization test. Results revealed that the ZnA successfully chelated with organic inhibitive compounds (i.e Quercetin, Quinic acid, Caffeic acid, Hystamine and Serotonin) present in the U.D extract. The electrochemical measurements revealed the effective inhibition action of ZnA-U.D complex in the sodium chloride solution on the mild steel. The synergistic effect between Zn2+ and organic compounds present in the U.D extract resulted in protective film deposition on the steel surface, which was proved by SEM and XPS analyses.

  10. The polymeric nanofilm of triazinedithiolsilane fabricated by self-assembled technique on copper surface. Part 2: Characterization of composition and morphology

    NASA Astrophysics Data System (ADS)

    Wang, Yabin; Liu, Zhong; Huang, Yudong; Qi, Yutai

    2015-11-01

    In the first part, a novel design route for metal protection against corrosion was proposed, and a class of triazinedithiolsilane compounds was conceived as protector for copper. The protective capability of the polymeric nanofilm, fabricated by self-assembling one representative (abbreviated as TESPA) of triazinedithiolsilane compounds onto copper surface, has been investigated and evaluated by electrochemical tests. The results show that the polymeric nanofilm significantly inhibits copper corrosion. This study, on the one hand, concentrates on the chemical composition of the TESPA polymeric nanofilm by means of X-ray photoelectron spectroscopy (XPS). The XPS results reveal that the chemical bonds between copper and TESPA monomers, three dimensional disulfide units and siloxane networks are responsible for the satisfactory protection of TESPA polymeric nanofilm against copper corrosion. On the other hand, scanning electron microscope (SEM) and energy-dispersive spectroscopy (EDS) are utilized to reveal the morphology and the uniformity of the TESPA polymeric nanofilm. The SEM-EDS results demonstrate that the copper surfaces are uniformly covered with TESPA self-assembled monolayer and the polymeric nanofilm. The TESPA-covered copper surfaces turn out to be smoother than that of the bare copper surface.

  11. Reliability and validity of CODA motion analysis system for measuring cervical range of motion in patients with cervical spondylosis and anterior cervical fusion.

    PubMed

    Gao, Zhongyang; Song, Hui; Ren, Fenggang; Li, Yuhuan; Wang, Dong; He, Xijing

    2017-12-01

    The aim of the present study was to evaluate the reliability of the Cartesian Optoelectronic Dynamic Anthropometer (CODA) motion system in measuring the cervical range of motion (ROM) and verify the construct validity of the CODA motion system. A total of 26 patients with cervical spondylosis and 22 patients with anterior cervical fusion were enrolled and the CODA motion analysis system was used to measure the three-dimensional cervical ROM. Intra- and inter-rater reliability was assessed by interclass correlation coefficients (ICCs), standard error of measurement (SEm), Limits of Agreements (LOA) and minimal detectable change (MDC). Independent samples t-tests were performed to examine the differences of cervical ROM between cervical spondylosis and anterior cervical fusion patients. The results revealed that in the cervical spondylosis group, the reliability was almost perfect (intra-rater reliability: ICC, 0.87-0.95; LOA, -12.86-13.70; SEm, 2.97-4.58; inter-rater reliability: ICC, 0.84-0.95; LOA, -13.09-13.48; SEm, 3.13-4.32). In the anterior cervical fusion group, the reliability was high (intra-rater reliability: ICC, 0.88-0.97; LOA, -10.65-11.08; SEm, 2.10-3.77; inter-rater reliability: ICC, 0.86-0.96; LOA, -10.91-13.66; SEm, 2.20-4.45). The cervical ROM in the cervical spondylosis group was significantly higher than that in the anterior cervical fusion group in all directions except for left rotation. In conclusion, the CODA motion analysis system is highly reliable in measuring cervical ROM and the construct validity was verified, as the system was sufficiently sensitive to distinguish between the cervical spondylosis and anterior cervical fusion groups based on their ROM.

  12. The relation between family adversity and social anxiety among adolescents in Taiwan: effects of family function and self-esteem.

    PubMed

    Yen, Cheng-Fang; Yang, Pinchen; Wu, Yu-Yu; Cheng, Chung-Ping

    2013-11-01

    This study aimed to examine the relationship between three indicators of family adversity (domestic violence, family substance use, and broken parental marriage) and the severity of social anxiety among adolescents in Taiwan, as well as the mediating effects of perceived family function and self-esteem on that relationship, using structural equation modeling (SEM). A total of 5607 adolescents completed the social anxiety subscale of the Multidimensional Anxiety Scale for Children; the Family APGAR Index; the Rosenberg Self-Esteem Scale; and a questionnaire for domestic violence, family substance use, and broken parental marriage. The relation between family adversity and social anxiety, as well as the mediating effects of family function and self-esteem, was examined using SEM. SEM analysis revealed that all three indicators of family adversity reduced the level of family function, that decreased family function compromised the level of self-esteem, and that a low level of self-esteem further increased the severity of social anxiety. The results indicated that, along with intervening to change family adversity, evaluating and improving adolescents' self-esteem and family function are also important clinical issues when helping adolescents reduce their social anxiety.

  13. Microstructural characterization of Ti-6Al-4V alloy subjected to the duplex SMAT/plasma nitriding.

    PubMed

    Pi, Y; Faure, J; Agoda-Tandjawa, G; Andreazza, C; Potiron, S; Levesque, A; Demangel, C; Retraint, D; Benhayoune, H

    2013-09-01

    In this study, microstructural characterization of Ti-6Al-4V alloy, subjected to the duplex surface mechanical attrition treatment (SMAT)/nitriding treatment, leading to improve its mechanical properties, was carried out through novel and original samples preparation methods. Instead of acid etching which is limited for morphological characterization by scanning electron microscopy (SEM), an original ion polishing method was developed. Moreover, for structural characterization by transmission electron microscopy (TEM), an ion milling method based with the use of two ions guns was also carried out for cross-section preparation. To demonstrate the efficiency of the two developed methods, morphological investigations were done by traditional SEM and field emission gun SEM. This was followed by structural investigations through selected area electron diffraction (SAED) coupled with TEM and X-ray diffraction techniques. The results demonstrated that ionic polishing allowed to reveal a variation of the microstructure according to the surface treatment that could not be observed by acid etching preparation. TEM associated to SAED and X-ray diffraction provided information regarding the nanostructure compositional changes induced by the duplex SMAT/nitriding process. Copyright © 2013 Wiley Periodicals, Inc.

  14. Morphology of the epithelium of the lower rectum and the anal canal in the adult human.

    PubMed

    Tanaka, Eiichi; Noguchi, Tsuyoshi; Nagai, Kaoruko; Akashi, Yuichi; Kawahara, Katsunobu; Shimada, Tatsuo

    2012-06-01

    The anal canal is an important body part clinically. However, there is no agreement about the epithelium of the anal canal, the anal transitional zone (ATZ) epithelium in particular. The aim of this study is to clarify the structure of the epithelium of the human lower rectum and anal canal. Intact rectum and anus obtained from patients who underwent surgery for rectal carcinoma were examined by light and scanning electron microscopy (LM and SEM). By LM, three types of epithelium were observed in the anal canal: simple columnar epithelium, stratified squamous epithelium, and stratified columnar epithelium. The lower rectum was composed of simple columnar epithelium. SEM findings showed stratified squamous epithelium that consisted of squamous cells with microridges, changing to simple columnar epithelium consisting of columnar cells with short microvilli at the anorectal line. LM and SEM observations in a one-to-one ratio revealed that the area of stratified columnar epithelium based on LM corresponded to the anal crypt and sinus. In conclusion, the epithelium of the human anal canal was fundamentally composed of simple columnar epithelium and stratified squamous epithelium. We found no evidence of the ATZ.

  15. Microstructural observation of fuel cell catalyst inks by Cryo-SEM and Cryo-TEM.

    PubMed

    Shimanuki, Junichi; Takahashi, Shinichi; Tohma, Hajime; Ohma, Atsushi; Ishihara, Ayumi; Ito, Yoshiko; Nishino, Yuri; Miyazawa, Atsuo

    2017-06-01

    In order to improve the electricity generation performance of fuel cell electric vehicles, it is necessary to optimize the microstructure of the catalyst layer of a polymer electrolyte fuel cell. The catalyst layer is formed by a wet coating process using catalyst inks. Therefore, it is very important to observe the microstructure of the catalyst ink. In this study, the morphology of carbon-supported platinum (Pt/C) particles in catalyst inks with a different solvent composition was investigated by cryogenic scanning electron microscopy (cryo-SEM). In addition, the morphology of the ionomer, which presumably influences the formation of agglomerated Pt/C particles in a catalyst ink, was investigated by cryogenic transmission electron microscopy (cryo-TEM). The results of a cryo-SEM observation revealed that the agglomerated Pt/C particles tended to become coarser with a higher 1-propanol (NPA) weight fraction. The results of a cryo-TEM observation indicated that the actual ionomer dispersion in a catalyst ink formed a network structure different from that of the ionomer in the solvent. © The Author 2017. Published by Oxford University Press on behalf of The Japanese Society of Microscopy. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  16. Complications pertaining to the detection and characterization of individual and embedded single walled carbon nanotubes by scanning electron microscopy

    NASA Astrophysics Data System (ADS)

    Orbaek, Alvin W.; Barron, Andrew R.

    2013-03-01

    Comparison of AFM and SEM images of single walled carbon nanotubes (SWNTs) grown within a dielectric matrix reveal subterranean nanotubes that are present within the matrix, and as such can be charge screened by the dielectric. Under adequate imaging conditions for the SWNT/silica sample the intensity of isolated nanotubes is found to be inversely proportional to the instrument dwell time (i.e., shorter dwell times were found to make SWNT intensities brighter). The threshold dwell time required to enable isolated tubes to be visible was found to be 10 μs moreover, the degree change in intensity was found to be nanotube specific, i.e., different SWNTs respond in a different manner at different dwell times. The results indicate that care should be taken when attempting to quantify number density and length distributions of SWNTs on or within a dielectric matrix.Comparison of AFM and SEM images of single walled carbon nanotubes (SWNTs) grown within a dielectric matrix reveal subterranean nanotubes that are present within the matrix, and as such can be charge screened by the dielectric. Under adequate imaging conditions for the SWNT/silica sample the intensity of isolated nanotubes is found to be inversely proportional to the instrument dwell time (i.e., shorter dwell times were found to make SWNT intensities brighter). The threshold dwell time required to enable isolated tubes to be visible was found to be 10 μs moreover, the degree change in intensity was found to be nanotube specific, i.e., different SWNTs respond in a different manner at different dwell times. The results indicate that care should be taken when attempting to quantify number density and length distributions of SWNTs on or within a dielectric matrix. Electronic supplementary information (ESI) available: Plots of SEM for cross over points, raw SEM images used for Fig. 5, and Fig. 6, SEM image of scattering centre, and SEM images with various scan directions at 10 μs dwell time. See DOI: 10.1039/c3nr00142c

  17. Effect of TiO2 Nanofiller Concentration on the Mechanical, Thermal and Biological Properties of HDPE/TiO2 Nanocomposites

    NASA Astrophysics Data System (ADS)

    Mozumder, Mohammad Sayem; Mourad, Abdel-Hamid I.; Mairpady, Anusha; Pervez, Hifsa; Haque, Md Emdadul

    2018-03-01

    The necessity for advanced and effective biomimetic tissue engineering materials has increased massively as bone diseases such as osteoporosis and bone cancer have become a major public health problem. Therefore, the objective of this study is to develop titanium dioxide (TiO2) nanoparticles-enriched high-density polyethylene (HDPE) nanocomposites that could serve as potential biomaterials. HDPE/TiO2 nanocomposites with varying TiO2 nanoparticles content were fabricated by using injection molding technique and were subjected to mechanical, thermal and biological characterization. SEM-EDS analysis confirmed even dispersion of TiO2 nanoparticles into the HDPE matrix. It was observed from the mechanical testing that the addition of TiO2 nanoparticles to HDPE noticeably improved the stiffness (from 345 to 378 MPa) while maintaining almost similar yield strength of pure HDPE. The thermal analyses revealed that TiO2 nanoparticles inclusion to HDPE matrix enhanced the thermal stability of nanocomposites, as the overall rate of crystallization increased by almost 4%. Furthermore, biocompatibility of nanocomposites was also studied by means of various cell culture experiments; human osteoblasts (hFOB) were seeded on the HDPE/TiO2 nanocomposites and were visualized through SEM after 72 h of incubation; surface morphology revealed normal cell growth and spreading with more attachment on PNC-10 that contains 10 wt.% of TiO2. Moreover, cell viability assays (i.e., MTT and cell attachment) revealed consistent increase in cell count and metabolic activity when triplicate cultures were incubated for 1, 3 and 7 days.

  18. Effect of TiO2 Nanofiller Concentration on the Mechanical, Thermal and Biological Properties of HDPE/TiO2 Nanocomposites

    NASA Astrophysics Data System (ADS)

    Mozumder, Mohammad Sayem; Mourad, Abdel-Hamid I.; Mairpady, Anusha; Pervez, Hifsa; Haque, Md Emdadul

    2018-05-01

    The necessity for advanced and effective biomimetic tissue engineering materials has increased massively as bone diseases such as osteoporosis and bone cancer have become a major public health problem. Therefore, the objective of this study is to develop titanium dioxide (TiO2) nanoparticles-enriched high-density polyethylene (HDPE) nanocomposites that could serve as potential biomaterials. HDPE/TiO2 nanocomposites with varying TiO2 nanoparticles content were fabricated by using injection molding technique and were subjected to mechanical, thermal and biological characterization. SEM-EDS analysis confirmed even dispersion of TiO2 nanoparticles into the HDPE matrix. It was observed from the mechanical testing that the addition of TiO2 nanoparticles to HDPE noticeably improved the stiffness (from 345 to 378 MPa) while maintaining almost similar yield strength of pure HDPE. The thermal analyses revealed that TiO2 nanoparticles inclusion to HDPE matrix enhanced the thermal stability of nanocomposites, as the overall rate of crystallization increased by almost 4%. Furthermore, biocompatibility of nanocomposites was also studied by means of various cell culture experiments; human osteoblasts (hFOB) were seeded on the HDPE/TiO2 nanocomposites and were visualized through SEM after 72 h of incubation; surface morphology revealed normal cell growth and spreading with more attachment on PNC-10 that contains 10 wt.% of TiO2. Moreover, cell viability assays (i.e., MTT and cell attachment) revealed consistent increase in cell count and metabolic activity when triplicate cultures were incubated for 1, 3 and 7 days.

  19. The El Horror uranium anomaly in northeastern Sonora, Mexico: Constraints from geochemical and mineralogical approaches

    NASA Astrophysics Data System (ADS)

    Grijalva-Rodríguez, T.; Valencia-Moreno, M.; Calmus, T.; Del Rio-Salas, R.; Balcázar-García, M.

    2017-12-01

    This work reviews the characteristics of the El Horror uranium prospect in northeastern Sonora, Mexico. It was formerly detected by a radiometric anomaly after airborne gamma ray exploration carried out in the 70's by the Mexican government. As a promising site to contain important uranium resources, the El Horror was re-evaluated by CFE (Federal Electricity Commission) by in situ gamma ray surveys. The study also incorporates rock and stream sediment ICP-MS geochemistry, X-ray diffraction, X-ray fluorescence, Raman spectrometry and Scanning Electron Microscopy (SEM) to provide a better understanding of the radiometric anomaly. The results show that, instead of a single anomaly, it comprises at least five individual anomalies hosted in hydrothermally altered Laramide (80-40 Ma) andesitic volcanic rocks of the Tarahumara Formation. Concentrations for elemental uranium and uranium calculated from gamma ray surveys (i.e., equivalent uranium) are not spatially coincident within the anomaly, but, at least at some degree, they do so in specific sites. X-ray diffraction and Raman spectrometry revealed the presence of rutile/anatase, uvite, bukouvskyte and allanite as the more likely mineral phases to contain uranium. SEM studies revealed a process of iron-rich concretion formation, suggesting that uranium was initially incorporated to the system by adsorption, but was largely removed later during incorporation of Fe+3 ions. Stream sediment geochemistry reveals that the highest uranium concentrations are derived from the southern part of the Sierra La Madera batholith (∼63 Ma), and decrease toward the El Horror anomaly.

  20. Hydrogen Gas Sensing Characteristics of Nanostructured NiO Thin Films Synthesized by SILAR Method

    NASA Astrophysics Data System (ADS)

    Karaduman, Irmak; Çorlu, Tugba; Yıldırım, M. Ali; Ateş, Aytunç; Acar, Selim

    2017-07-01

    Nanostructured NiO thin films have been synthesized by a facile, low-cost successive ionic layer adsorption and reaction (SILAR) method, and the effects of the film thickness on their hydrogen gas sensing properties investigated. The samples were characterized by scanning electron microscopy (SEM), x-ray diffraction (XRD) analysis, and energy-dispersive x-ray analysis. The XRD results revealed that the crystallinity improved with increasing thickness, exhibiting polycrystalline structure. SEM studies showed that all the films covered the glass substrate well. According to optical absorption measurements, the optical bandgap decreased with increasing film thickness. The gas sensing properties of the nanostructured NiO thin films were studied as a function of operating temperature and gas concentration. The samples showed good sensing performance of H2 gas with high response. The maximum response was 75% at operating temperature of 200°C for hydrogen gas concentration of 40 ppm. These results demonstrate that nanostructured NiO thin films synthesized by the SILAR method have potential for application in hydrogen detection.

  1. Structural and magnetic characterization of Ti doped cobalt ferrite (CoFe2O4)

    NASA Astrophysics Data System (ADS)

    Pal, Jaswinder; Kumar, Sunil; Kaur, Randeep; Agrawal, P.; Singh, Mandeep; Singh, Anupinder

    2018-05-01

    Synthesis of Co1-xTixFe2O4 solid solutions for 0.1≤x≤0.4 using the solid-state-reaction rate has been done. The prepared samples were characterized by using XRD (X-ray diffraction) and SEM (Scanning Electron Microscopy). Magnetic studies have been done using Vibrating Sample Magnetometer (VSM). XRD confirmed that Cobalt Ferrite spinel cubic structure in all prepared samples. The lattice parameter `a' increases with increase in the concentration of Ti. SEM micrograph shows good grain growth in all samples. Magnetic Study reveals that the M-H curves of all the prepared samples taken at room temperature are very well saturated. The maximum value of remnant magnetization (Mr ˜13.9 emu/g) and saturation magnetization (Ms ˜74.4 emu/g) has been observed for x =0.2 sample. Coercivity does not show any regular variation with increase in the molar concentration of Ti in CoFe2O4 at A-site.

  2. Correlative scanning-transmission electron microscopy reveals that a chimeric flavivirus is released as individual particles in secretory vesicles.

    PubMed

    Burlaud-Gaillard, Julien; Sellin, Caroline; Georgeault, Sonia; Uzbekov, Rustem; Lebos, Claude; Guillaume, Jean-Marc; Roingeard, Philippe

    2014-01-01

    The intracellular morphogenesis of flaviviruses has been well described, but flavivirus release from the host cell remains poorly documented. We took advantage of the optimized production of an attenuated chimeric yellow fever/dengue virus for vaccine purposes to study this phenomenon by microscopic approaches. Scanning electron microscopy (SEM) showed the release of numerous viral particles at the cell surface through a short-lived process. For transmission electron microscopy (TEM) studies of the intracellular ultrastructure of the small number of cells releasing viral particles at a given time, we developed a new correlative microscopy method: CSEMTEM (for correlative scanning electron microscopy - transmission electron microscopy). CSEMTEM analysis suggested that chimeric flavivirus particles were released as individual particles, in small exocytosis vesicles, via a regulated secretory pathway. Our morphological findings provide new insight into interactions between flaviviruses and cells and demonstrate that CSEMTEM is a useful new method, complementary to SEM observations of biological events by intracellular TEM investigations.

  3. Magnetic force microscopy study of domain walls in Co{sub 2}Z ferrite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qin, Lang; Verweij, Henk, E-mail: verweij.1@osu.edu

    2014-03-01

    Graphical abstract: - Highlights: • Hexaferrite Co{sub 2}Z is synthesized through the modified Pechini method. • Magnetic domains are observed in anisotropic Co{sub 2}Z single grain using MFM. • Observed single grain domain thickness is in good agreement with Dotsh model. - Abstract: Hexaferrite Co{sub 2}Z was synthesized through the modified Pechini method. Partially oriented samples were obtained after consolidation with uniaxial pressing and calcination/sintering at 1300 °C/1330 °C. The sample composition and morphology was identified with X-ray diffractometry (XRD) and scanning electron microscopy (SEM) with energy-dispersive X-ray spectrometry (EDS). MFM studies of the single grains revealed a domain structuremore » with 0.7 μm wide. The Co{sub 2}Z static magnetization was measured with a vibrating sample magnetometer (VSM), and was used to calculate a single grain domain with a thickness of 4.8 μm. This result is in good agreement with SEM observations of the single grain thickness.« less

  4. Controlled synthesis of nanostructured molybdenum oxide electrodes for high performance supercapacitor devices

    NASA Astrophysics Data System (ADS)

    Maheswari, Nallappan; Muralidharan, Gopalan

    2017-09-01

    Well defined crystallographic and one dimensional morphological structure of molybdenum oxide were successfully synthesized by adjusting the duration of hydrothermal treatment. The prepared molybdenum oxide was examined through XRD, SEM, FTIR, TEM, BET and electrochemical studies. The XRD patterns illustrate that MoOx prepared by variying the hydrothermal reaction time are in different crystallographic structure of MoyOx (Mo8O23 and MoO3). SEM studies reveal the different morphological structures ranging from flake like morphology to nanorods. TEM images confirm the excellent nanorod structure. The nanorod structure ensures good cyclic behaviour with maximum capacitance of 1080 F g-1 at a current density of 2 A g-1. This large capacity of the MoO3 nanostructures enabled fabrication of symmetric and asymmertic supercapacitor devices. The asymmertic device exhibits a maximum specific capacitance of 145 F g-1 at 2 mV s-1 with highest energy density of 38.6 W h kg-1 at 374.7 W kg-1 power density.

  5. Correlation study of nanocrystalline carbon doped thin films prepared by a thermionic vacuum arc deposition technique

    NASA Astrophysics Data System (ADS)

    Dinca-Balan, Virginia; Vladoiu, Rodica; Mandes, Aurelia; Prodan, Gabriel

    2017-11-01

    The synthesis of Ag, Mg and Si nanocrystalline, embedded in a hydrogen-free amorphous carbon (a-C) matrix, deposited by a high vacuum and free buffer gas technique, were investigated. The films with compact structures and extremely smooth surfaces were prepared using the thermionic vacuum arc method in one electron gun configuration, on glass and silicon substrates. The surface morphology and wettability of the obtained multifunctional thin films were investigated using transmission electron microscopy (TEM), scanning electron microscopy (SEM) and free surface energy (FSE) by See System. The results from the TEM measurements show how the Ag, Mg and Si interacted with carbon and the influence these materials have on the thin film structure formation and the grain size distribution. SEM correlated with EDX results reveal a very precise comparative study, regarding the quantity of the elements that morphed into carbides nanostructures. Also, the FSE results prove how different materials in combination with carbon can make changes to the surface properties.

  6. Correlative Scanning-Transmission Electron Microscopy Reveals that a Chimeric Flavivirus Is Released as Individual Particles in Secretory Vesicles

    PubMed Central

    Burlaud-Gaillard, Julien; Sellin, Caroline; Georgeault, Sonia; Uzbekov, Rustem; Lebos, Claude; Guillaume, Jean-Marc; Roingeard, Philippe

    2014-01-01

    The intracellular morphogenesis of flaviviruses has been well described, but flavivirus release from the host cell remains poorly documented. We took advantage of the optimized production of an attenuated chimeric yellow fever/dengue virus for vaccine purposes to study this phenomenon by microscopic approaches. Scanning electron microscopy (SEM) showed the release of numerous viral particles at the cell surface through a short-lived process. For transmission electron microscopy (TEM) studies of the intracellular ultrastructure of the small number of cells releasing viral particles at a given time, we developed a new correlative microscopy method: CSEMTEM (for correlative scanning electron microscopy - transmission electron microscopy). CSEMTEM analysis suggested that chimeric flavivirus particles were released as individual particles, in small exocytosis vesicles, via a regulated secretory pathway. Our morphological findings provide new insight into interactions between flaviviruses and cells and demonstrate that CSEMTEM is a useful new method, complementary to SEM observations of biological events by intracellular TEM investigations. PMID:24681578

  7. Microbial population Diversity of indigenous acidophilic bacteria for recovering the valuable resources

    NASA Astrophysics Data System (ADS)

    Kim, B.; Cho, K.; Lee, D.; Choi, N.; Park, C.

    2011-12-01

    A taxon- or group-specific PCR primer serves as a valuable tool for studying the bioleaching mechanisms of a particular group of microorganisms. Especially for an uncultured (or very difficult to isolate from their environments) group of microorganisms, the group-specific PCR primer is essential for the investigation of distribution patterns and the estimation of genetic diversity of the target microorganisms. This study investigated the Biodiversity through molecular biology method using the three different indigenous acidophilic bacteria collected from acid mine drainage in Go-seong and Yeon-hwa, Korea and acidic hot spring in Hatchnobaru, Japan. We performed the optical analysis (phase-contrast microscope and SEM), base sequencing. In the phase-contrast microscope(X 4,000) and SEM analysis, the rod-shaped bacteria with 1μm in length were observed. The results of base sequencing using EzTaxon server data revealed Acidithiobacillus ferrooxidans (Go-seong - 97.79%, Yeon-hwa - 97.90% and Hatchnobaru - 97.97%)

  8. Physicochemical characterization of chitosan/nylon6/polyurethane foam chemically cross-linked ternary blends.

    PubMed

    Jayakumar, S; Sudha, P N

    2013-03-15

    Chitosan/nylon6/polyurethane foam (CS/Ny6/PUF) ternary blend was prepared and chemically cross-linked with glutaraldehyde. Structural, thermal and morphological studies were performed for the prepared ternary blends. Characterizations of the ternary blends were investigated by Fourier transform infrared spectroscopy (FTIR), thermo gravimetric analysis (TGA), differential scanning calorimetry (DSC), X-ray diffraction (XRD) and scanning electron microscope (SEM). The FTIR results showed that the strong intermolecular hydrogen bonds took place between CS, Ny6 and PUF. TGA and DSC studies reveal that the thermal stability of the blend is enhanced by glutaraldehyde as crosslinking agent. Results of XRD indicated that the relative crystalline of pure CS film was reduced when the polymeric network was reticulated by glutaraldehyde. Finally, the results of scanning electron microscopy (SEM) indicated that the morphology of the blend is rough and heterogeneous, further it confirms the interaction between the functional groups of the blend components. Copyright © 2012 Elsevier B.V. All rights reserved.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sivasakthi, P.; Sekar, R.; Bapu, G.N.K.Ramesh, E-mail: bapu2657@yahoo.com

    Highlights: • Nickel deposits from sulphamate solutions using pulse method are prepared. • Effect of duty cycle and frequency are studied. • XRD, SEM and AFM of the nickel deposits are characterized. • Corrosion characteristics of the nickel deposit are reported. - Abstract: Nickel deposits have been obtained on mild steel substrate by pulse current (PC) electrodeposition method using nickel sulphamate electrolyte. Micro hardness values increased with decreasing duty cycle and pulse frequency. X-ray diffraction studies revealed that (2 0 0) plane was predominant and the nickel deposit obtained at low duty cycle and low frequency has the smallest grainmore » size. The surface morphology of the coatings was explored by scanning electron microscopy (SEM) and atomic force microscopy. These studies showed that the microstructure of the nickel coatings changed from pyramidal structure to homogeneous structure with increasing duty cycle and pulse frequencies. The corrosion resistance of coatings was evaluated by potentiodynamic polarization and electrochemical impedance studies in 3.5 wt% sodium chloride (NaCl) solutions. An enhancement of the corrosion resistance, charge-transfer resistance and wear resistance has been obtained at low duty cycle and low frequencies.« less

  10. Students' awareness of science teachers' leadership, attitudes toward science, and positive thinking

    NASA Astrophysics Data System (ADS)

    Lu, Ying-Yan; Chen, Hsiang-Ting; Hong, Zuway-R.; Yore, Larry D.

    2016-09-01

    There appears to be a complex network of cognitive and affective factors that influence students' decisions to study science and motivate their choices to engage in science-oriented careers. This study explored 330 Taiwanese senior high school students' awareness of their science teacher's learning leadership and how it relates to the students' attitudes toward science and positive thinking. Initial results revealed that the optimism of positive thinking is highly and positively correlated with the future participation in science and learning science in school attitudes toward science and self-concept in science. Moreover, structural equation modelling (SEM) results indicated that the subscale of teachers' leadership with idealised influence was the most predictive of students' attitudes toward science (β = .37), and the leadership with laissez-faire was predictive of students' positive thinking (β = .21). In addition, the interview results were consistent with the quantitative findings. The correlation and SEM results indicate some of the associations and potential relationships amongst the motivational and affective factors studied and students' attitudes toward and intentions to study science, which will increase their likelihood of future involvement in science careers.

  11. Spectroscopic studies on sidewall carboxylic acid functionalization of multi-walled carbon nanotubes with valine.

    PubMed

    Deborah, M; Jawahar, A; Mathavan, T; Dhas, M Kumara; Benial, A Milton Franklin

    2015-03-15

    The valine functionalized multi-walled carbon nanotubes (MWCNTS) were prepared and characterized by using XRD, UV-Vis, FT-IR, EPR, SEM, and EDX, spectroscopic techniques. The enhanced XRD peak (002) intensity was observed for valine functionalized MWCNTs compared with oxidized MWCNTs, which is likely due to sample purification by acid washing. UV-Vis study shows the formation of valine functionalized MWCNTs. FT-IR study confirms the presence of functional groups of oxidized MWCNTs and valine functionalized MWCNTs. The ESR line shape analysis indicates that the observed EPR line shape is a Gaussian line shape. The g-values indicate that the systems are isotropic in nature. The morphology study was carried out for oxidized MWCNTs and valine functionalized MWCNTs by using SEM. The EDX spectra revealed that the high purity of oxidized MWCNTs and valine functionalized MWCNTs. The functionalization has been chosen because, functionalization of CNTs with amino acids makes them soluble and biocompatible. Thus, they have potential applications in the field of biosensors and targeted drug delivery. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Crystallographic and magnetic properties of nanocrystalline perovskite structure SmFeO3 orthoferrite

    NASA Astrophysics Data System (ADS)

    Kumar, Ashwini; Shen, Jingdong; Zhao, Huihui; Zhengjian, Qi; Li, Qi

    2018-05-01

    In this article, we present the structural and magnetic studies of pristine SmFeO3 nanocrystalline ceramic samples as sintered at temperature 850 °C and 1000 °C. X-ray powder diffraction data confirm the existence of single-phase nature with orthorhombic (Pbnm) structure of the samples. The SEM image reveals spherical particles with a size range of 60-130 nm for SFO-850 and SFO-1000 samples. X-ray absorption spectroscopy studies on Fe L3,2 and O K-edges of SmFeO3 sample revealed the homo-valence state of Fe in these materials. From magnetization studies it has been observed the materials exhibit ferromagnetic and antiferromagnetic (canted spin structure) sub-lattices, which results strong magnetic anisotropy in the system.

  13. Ultrastructural changes and the distribution of arabinogalactan proteins during somatic embryogenesis of banana (Musa spp. AAA cv. 'Yueyoukang 1').

    PubMed

    Pan, Xiao; Yang, Xiao; Lin, Guimei; Zou, Ru; Chen, Houbin; Samaj, Jozef; Xu, Chunxiang

    2011-08-01

    A better understanding of somatic embryogenesis in banana (Musa spp.) may provide a practical way to improve regeneration of banana plants. In this study, we applied scanning electron microscopy (SEM) and transmission electron microscopy (TEM) to visualize the ultrastructural changes during somatic embryogenesis of banana (Musa AAA cv. 'Yueyoukang 1'). We also used histological and immunohistochemical techniques with 16 monoclonal antibodies to study the spatial distribution and cellular/subcellular localization of different arabinogalactan protein (AGP) components of the cell wall during somatic embryogenesis. Histological study with periodic acid-Schiff staining documented diverse embryogenic stages from embryogenic cells (ECs) to the late embryos. SEM revealed a mesh-like structure on the surface of proembryos which represented an early structural marker of somatic embryogenesis. TEM showed that ECs were rich in juvenile mitochondria, endoplasmic reticulum and Golgi stacks. Cells in proembryos and early globular embryos resembled ECs, but they were more vacuolated, showed more regular nuclei and slightly more developed organelles. Immunocytochemical study revealed that the signal of most AGP epitopes was stronger in starch-rich cells when compared with typical ECs. The main AGP component in the extracellular matrix surface network of banana proembryos was the MAC204 epitope. Later, AGP immunolabelling patterns varied with the developmental stages of the embryos. These results about developmental regulation of AGP epitopes along with developmental changes in the ultrastructure of cells are providing new insights into the somatic embryogenesis of banana. Copyright © Physiologia Plantarum 2011.

  14. Characterization of some biological specimens using TEM and SEM

    NASA Astrophysics Data System (ADS)

    Ghosh, Nabarun; Smith, Don W.

    2009-05-01

    The advent of novel techniques using the Transmission and Scanning Electron Microscopes improved observation on various biological specimens to characterize them. We studied some biological specimens using Transmission and Scanning Electron Microscopes. We followed negative staining technique with Phosphotungstic acid using bacterial culture of Bacillus subtilis. Negative staining is very convenient technique to view the structural morphology of different samples including bacteria, phage viruses and filaments in a cell. We could observe the bacterial cell wall and flagellum very well when trapped the negative stained biofilm from bacterial culture on a TEM grid. We cut ultra thin sections from the fixed root tips of Pisum sativum (Garden pea). Root tips were pre fixed with osmium tetroxide and post fixed with uranium acetate and placed in the BEEM capsule for block making. The ultrathin sections on the grid under TEM showed the granular chromatin in the nucleus. The protein bodies and large vacuoles with the storage materials were conspicuous. We followed fixation, critical point drying and sputter coating with gold to view the tissues with SEM after placing on stubs. SEM view of the leaf surface of a dangerous weed Tragia hispida showed the surface trichomes. These trichomes when break on touching releases poisonous content causing skin irritation. The cultured tissue from in vitro culture of Albizia lebbeck, a tree revealed the regenerative structures including leaf buds and stomata on the tissue surface. SEM and TEM allow investigating the minute details characteristic morphological features that can be used for classroom teaching.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Malashkevich, Vladimir N.; Higgins, Chelsea D.; Almo, Steven C.

    The coiled-coil is one of the most ubiquitous and well studied protein structural motifs. Significant effort has been devoted to dissecting subtle variations of the typical heptad repeat sequence pattern that can designate larger topological features such as relative α-helical orientation and oligomer size. Here in this paper we report the X-ray structure of a model coiled-coil peptide, HA2-Del-L2seM, which forms an unanticipated core antiparallel dimer with potential sites for discrete higher-order multimerization (trimer or tetramer). In the X-ray structure, a third, partially-ordered α-helix is weakly associated with the antiparallel dimer and analytical ultracentrifugation experiments indicate the peptide forms amore » well-defined tetramer in solution. The HA2-Del-L2seM sequence is closely related to a parent model peptide, HA2-Del, which we previously reported adopts a parallel trimer; HA2-Del-L2seM differs by only hydrophobic leucine to selenomethione mutations and thus this subtle difference is sufficient to switch both relative α-helical topology and number of α-helices participating in the coiled-coil. Comparison of the X-ray structures of HA2-Del-L2seM (reported here) with the HA2-Del parent (reported previously) reveals novel interactions involving the selenomethionine residues that promote antiparallel coiled-coil configuration and preclude parallel trimer formation. Finally, these novel atomic insights are instructive for understanding subtle features that can affect coiled-coil topology and provide additional information for design of antiparallel coiled-coils.« less

  16. Synthesis of nanocrystalline CdS thin film by SILAR and their characterization

    NASA Astrophysics Data System (ADS)

    Mukherjee, A.; Satpati, B.; Bhattacharyya, S. R.; Ghosh, R.; Mitra, P.

    2015-01-01

    Cadmium sulphide (CdS) thin film was prepared by successive ion layer adsorption and reaction (SILAR) technique using ammonium sulphide as anionic precursor. Characterization techniques of XRD, SEM, TEM, FTIR and EDX were utilized to study the microstructure of the films. Structural characterization by x-ray diffraction reveals the polycrystalline nature of the films. Cubic structure is revealed from X-ray diffraction and selected area diffraction (SAD) patterns. The particle size estimated using X-ray line broadening method is approximately 7 nm. Instrumental broadening was taken into account while particle size estimation. TEM shows CdS nanoparticles in the range 5-15 nm. Elemental mapping using EFTEM reveals good stoichiometric composition of CdS. Characteristic stretching vibration mode of CdS was observed in the absorption band of FTIR spectrum. Optical absorption study exhibits a distinct blue shift in band gap energy value of about 2.56 eV which confirms the size quantization.

  17. Trimetallic oxide nanocomposites of transition metals titanium and vanadium by sol-gel technique: synthesis, characterization and electronic properties

    NASA Astrophysics Data System (ADS)

    Kumar, Amit; Mishra, Neeraj Kumar; Sachan, Komal; Ali, Md Asif; Soaham Gupta, Sachchidanand; Singh, Rajeev

    2018-04-01

    Novel titanium and vanadium based trimetallic oxide nanocomposites (TMONCs) have been synthesized using metal salts of titanium-vanadium along with three others metals viz. tin, aluminium and zinc as precursors by the sol-gel method. Aqueous ammonia and hydrazine hydrate were used as the reducing agents. The preparations of nanocomposites were monitored by observing the visual changes during each step of synthesis. The synthesized TMONCs were characterized using UV–vis, SEM, EDX, TEM and DLS. Band gap of the synthesized TMONCs ranges from 3–4.5 eV determined using tauc plot. FTIR study revealed the molecular stretching and bending peaks of corresponding M–O/M–O–M bonds thus confirming their formation. Molecular composition and particle size were determined using EDX and DLS respectively. Molecular shape, size and surface morphology have been examined by SEM and TEM.

  18. Petrographic and petrological studies of lunar rocks. [from the Apollo 15 mission

    NASA Technical Reports Server (NTRS)

    Winzer, S. R.

    1978-01-01

    Thin sections and polished electron probe mounts of Apollo 15 glasscoated breccias 15255, 15286, 15466, and 15505 were examined optically and analyzed by sem/microprobe. Sections from breccias 15465 and 15466 were examined in detail, and chemical and mineralogical analyses of several larger lithic clasts, green glass, and partly crystallized green glass spheres are presented. Area analyses of 33 clasts from the above breccias were also done using the SEM/EDS system. Mineralogical and bulk chemical analyses of clasts from the Apollo 15 glass-coated breccias reveal a diverse set of potential rock types, including plutonic and extrusive igneous rocks and impact melts. Examination of the chemistry of the clasts suggests that many of these clasts, like those found in 61175, are impact melts. Their variability suggests formation by several small local impacts rather than by a large basin-forming event.

  19. Advantages of indium-tin oxide-coated glass slides in correlative scanning electron microscopy applications of uncoated cultured cells.

    PubMed

    Pluk, H; Stokes, D J; Lich, B; Wieringa, B; Fransen, J

    2009-03-01

    A method of direct visualization by correlative scanning electron microscopy (SEM) and fluorescence light microscopy of cell structures of tissue cultured cells grown on conductive glass slides is described. We show that by growing cells on indium-tin oxide (ITO)-coated glass slides, secondary electron (SE) and backscatter electron (BSE) images of uncoated cells can be obtained in high-vacuum SEM without charging artefacts. Interestingly, we observed that BSE imaging is influenced by both accelerating voltage and ITO coating thickness. By combining SE and BSE imaging with fluorescence light microscopy imaging, we were able to reveal detailed features of actin cytoskeletal and mitochondrial structures in mouse embryonic fibroblasts. We propose that the application of ITO glass as a substrate for cell culture can easily be extended and offers new opportunities for correlative light and electron microscopy studies of adherently growing cells.

  20. Surface morphology of chitin highly related with the isolated body part of butterfly (Argynnis pandora).

    PubMed

    Kaya, Murat; Bitim, Betül; Mujtaba, Muhammad; Koyuncu, Turgay

    2015-11-01

    This study was conducted to understand the differences in the physicochemical properties of chitin samples isolated from the wings and the other body parts except the wings (OBP) of a butterfly species (Argynnis pandora). The same isolation method was used for obtaining chitin specimens from both types of body parts. The chitin content of the wings (22%) was recorded as being much higher than the OBP (8%). The extracted chitin samples were characterized via FT-IR, TGA, XRD, SEM, and elemental analysis techniques. Results of these characterizations revealed that the chitins from both structures (wings and OBP) were very similar, except for their surface morphologies. SEM results demonstrated one type of surface morphology for the wings and four different surface morphologies for the OBP. Therefore, it can be hypothesized that the surface morphology of the chitin is highly related with the body part. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Hydrothermal and metamorphic berthierine from the Kidd Creek volcanogenic massive sulfide deposit, Timmins, Ontario

    USGS Publications Warehouse

    Slack, J.F.; Wei-Teh, Jiang; Peacor, D.R.; Okita, P.M.

    1992-01-01

    Berthierine, a 7 A?? Fe-Al member of the serpentine group, occurs in the footwall stringer zone of the Archean Kidd Creek massive sulfide deposit, associated with quartz, muscovite, chlorite, pyrite, sphalerite, chalcopyrite, and local tourmaline, cassiterite, and halloysite. Petrographic and scanning electron microscopic (SEM) studies reveal different types of berthierine occurrences, including interlayers within the rims on deformed chlorite, intergrowths with muscovite and halloysite, and discrete coarse grains. This is the first reported occurrence of berthierine from volcanogenic massive sulfide deposits. Textural relations suggest that most of the berthierine formed as a primary hydrothermal mineral at relatively high temperatures (~350??C) in the footwall stringer zone, probably by the replacement of a pre-existing aluminous phase such as muscovite or chlorite. However, the intergrowth textures observed by SEM and TEM suggest that some of the berthierine originated by syn- or post-metamorphic replacement of chlorite. -from Authors

  2. SEM Analysis of Surface Impact on Biofilm Antibiotic Treatment.

    PubMed

    Gomes, Luciana Calheiros; Mergulhão, Filipe José

    2017-01-01

    The aim of this work was to use scanning electron microscopy (SEM) to investigate the effect of ampicillin treatment on Escherichia coli biofilms formed on two surface materials with different properties, silicone (SIL) and glass (GLA). Epifluorescence microscopy (EM) was initially used to assess biofilm formation and killing efficiency on both surfaces. This technique showed that higher bacterial colonization was obtained in the hydrophobic SIL than in the hydrophilic GLA. It has also shown that higher biofilm inactivation was attained for GLA after the antibiotic treatment (7-log reduction versus 1-log reduction for SIL). Due to its high resolution and magnification, SEM enabled a more detailed analysis of the antibiotic effect on biofilm cells, complementing the killing efficiency information obtained by EM. SEM micrographs revealed that ampicillin-treated cells have an elongated form when compared to untreated cells. Additionally, it has shown that different materials induced different levels of elongation on cells exposed to antibiotic. Biofilms formed on GLA showed a 37% higher elongation than those formed on SIL. Importantly, cell elongation was related to viability since ampicillin had a higher bactericidal effect on GLA-formed biofilms. These findings raise the possibility of using SEM for understanding the efficacy of antimicrobial treatments by observation of biofilm morphology.

  3. The ultrastructure of subgingival dental plaque, revealed by high-resolution field emission scanning electron microscopy.

    PubMed

    Holliday, Richard; Preshaw, Philip M; Bowen, Leon; Jakubovics, Nicholas S

    2015-01-01

    To explore the ultrastructure of subgingival dental plaque using high-resolution field emission scanning electron microscopy (FE-SEM) and to investigate whether extracellular DNA (eDNA) could be visualised in ex vivo samples. Ten patients were recruited who fulfilled the inclusion criteria (teeth requiring extraction with radiographic horizontal bone loss of over 50% and grade II/III mobility). In total, 12 teeth were extracted using a minimally traumatic technique. Roots were sectioned using a dental air turbine handpiece, under water cooling to produce 21 samples. Standard fixation and dehydration protocols were followed. For some samples, gold-labelled anti-DNA antibodies were applied before visualising biofilms by FE-SEM. High-resolution FE-SEMs of subgingival biofilm were obtained in 90% of the samples. The sectioning technique left dental plaque biofilms undisturbed. Copious amounts of extracellular material were observed in the plaque, which may have been eDNA as they had a similar appearance to labelled eDNA from in vitro studies. There was also evidence of membrane vesicles and open-ended tubular structures. Efforts to label eDNA with immune-gold antibodies were unsuccessful and eDNA was not clearly labelled. High-resolution FE-SEM images were obtained of undisturbed subgingival ex vivo dental plaque biofilms. Important structural features were observed including extracellular polymeric material, vesicles and unusual open tubule structures that may be remnants of lysed cells. The application of an eDNA immune-gold-labelling technique, previously used successfully in in vitro samples, did not clearly identify eDNA in ex vivo samples. Further studies are needed to characterise the molecular composition of the observed extracellular matrix material.

  4. The ultrastructure of subgingival dental plaque, revealed by high-resolution field emission scanning electron microscopy

    PubMed Central

    Holliday, Richard; Preshaw, Philip M; Bowen, Leon; Jakubovics, Nicholas S

    2015-01-01

    Objectives/Aims: To explore the ultrastructure of subgingival dental plaque using high-resolution field emission scanning electron microscopy (FE-SEM) and to investigate whether extracellular DNA (eDNA) could be visualised in ex vivo samples. Materials and Methods: Ten patients were recruited who fulfilled the inclusion criteria (teeth requiring extraction with radiographic horizontal bone loss of over 50% and grade II/III mobility). In total, 12 teeth were extracted using a minimally traumatic technique. Roots were sectioned using a dental air turbine handpiece, under water cooling to produce 21 samples. Standard fixation and dehydration protocols were followed. For some samples, gold-labelled anti-DNA antibodies were applied before visualising biofilms by FE-SEM. Results: High-resolution FE-SEMs of subgingival biofilm were obtained in 90% of the samples. The sectioning technique left dental plaque biofilms undisturbed. Copious amounts of extracellular material were observed in the plaque, which may have been eDNA as they had a similar appearance to labelled eDNA from in vitro studies. There was also evidence of membrane vesicles and open-ended tubular structures. Efforts to label eDNA with immune-gold antibodies were unsuccessful and eDNA was not clearly labelled. Conclusions: High-resolution FE-SEM images were obtained of undisturbed subgingival ex vivo dental plaque biofilms. Important structural features were observed including extracellular polymeric material, vesicles and unusual open tubule structures that may be remnants of lysed cells. The application of an eDNA immune-gold-labelling technique, previously used successfully in in vitro samples, did not clearly identify eDNA in ex vivo samples. Further studies are needed to characterise the molecular composition of the observed extracellular matrix material. PMID:29607057

  5. Effect of air polishing with glycine powder on titanium abutment surfaces.

    PubMed

    Cochis, Andrea; Fini, Milena; Carrassi, Antonio; Migliario, Mario; Visai, Livia; Rimondini, Lia

    2013-08-01

    The aim of the present study was to evaluate morphological changes induced by glycine powder air polishing on titanium surfaces and its effect on bacteria recolonization in comparison with sodium bicarbonate powder. 5 mm wide and 1 mm thick titanium grade II disks were divided into three groups of treatments: (i) no treatment; (ii) air polishing with glycine powder; (iii) air polishing with sodium bicarbonate powder. Specimens were characterized by laser profilometry, scanning electron microscopy (SEM) and then installed onto removable appliances worn for 24 h by healthy volunteers. Surface contamination was evaluated using SEM and counting the number of colony forming units (CFU). SEM observation revealed an increased roughness with the formation of craters on samples treated with sodium bicarbonate powder, while not in glycine ones. Statistical analysis failed to show significant differences of both Ra and Rmax parameters in treated groups. SEM observation of specimens surfaces, after 24 h of permanence in the oral cavity, showed a higher contamination of the disks treated with sodium bicarbonate compared with those not treated (P < 0.05). Conversely, the group treated with glycine showed the lower contamination if compared with bicarbonate-treated group (P < 0.05). Air polishing with glycine powder may be considered as a better method to remove plaque from dental implant because glycine is less aggressive than sodium bicarbonate powder. Moreover, the use of glycine powder seems to have an active role on the inhibition of bacterial recolonization of implants in a short test period (24 h). Further studies are needed to demonstrate the bacteriostatic properties of glycine, envisaged on the basis of reduced contamination of the disks polished with glycine compared with those not treated. © 2012 John Wiley & Sons A/S.

  6. Quantitative assessments of arousal by analyzing microsaccade rates and pupil fluctuations prior to slow eye movements.

    PubMed

    Honda, Shogo; Kohama, Takeshi; Tanaka, Tatsuro; Yoshida, Hisashi

    2014-01-01

    It is well known that a decline of arousal level causes of poor performance of movements or judgments. Our previous study indicates that microsaccade (MS) rates and pupil fluctuations change before slow eye movements (SEMs) (Honda et al. 2013). However, SEM detection of this study was obscure and insufficient. In this study, we propose a new SEM detection method and analyze MS rates and pupil fluctuations while subjects maintain their gaze on a target. We modified Shin et al.'s method, which is optimized for EOG (electrooculography) signals, to extract the period of sustaining SEMs using a general eye tracker. After SEM detection, we analyzed MS rates and pupil fluctuations prior to the initiation of SEMs. As a result, we were able to detect SEMs more precisely than in our previous study. Moreover, the results of eye movements and pupil fluctuations analyses show that gradual rise of MS rate and longitudinal miosis are observed prior to the initiation of SEMs, which is consistent with our previous study. These findings suggest that monitoring eye movements and pupil fluctuations may evaluate the arousal level more precisely. Further, we found that these tendencies become more significant when they are restricted to the initial SEMs.

  7. The effect of CO2 and Nd:YAP lasers on CAD/CAM Ceramics: SEM, EDS and thermal studies

    PubMed Central

    Fornaini, Carlo; Rocca, Jean Paul; Muhammad, Omid H; Medioni, Etienne; Cucinotta, Annamaria; Brulat-Bouchard, Nathalie

    2016-01-01

    Background and aims: The objective of this study was to investigate the interaction of infrared laser light on Computer Aided Design and Computer Aided Manufacturing (CAD/CAM) ceramic surfaces. Material and Methods: Sixty CAD/CAM ceramic discs were prepared and divided into two different groups: lithiumdisilicate ceramic (IPSe.maxCADs) and Zirconia ceramic (IPSe.maxZirCADs). The laser irradiation was performed on graphite and non-graphite surfaces with a Carbon Dioxide laser at 5W and 10W power in continuous mode (CW mode) and with Neodymium Yttrium Aluminum Perovskite (Nd:YAP) laser at 10W. Surface textures and compositions were examined using Scanning Electron Microscopy (SEM), and Energy Dispersive Spectroscopy (EDS). Thermal elevation was measured by thermocouple during laser irradiation. Results: The SEM observation showed a rough surface plus cracks and fissures on CO2 10W samples and melting areas in Nd:YAP samples; moreover, with CO2 5W smooth and shallow surfaces were observed. EDS analysis revealed that laser irradiation does not result in modifications of the chemical composition even if minor changes in the atomic mass percentage of the components were registered. Thermocouple showed several thermal changes during laser irradiation. Conclusion: CO2 and Nd:YAP lasers modify CAD/CAM ceramic surface without chemical composition modifications. PMID:27141152

  8. Identification of possible sources of particulate matter in the personal cloud using SEM/EDX

    NASA Astrophysics Data System (ADS)

    Conner, Teri L.; Williams, Ronald W.

    2004-10-01

    The United States Environmental Protection Agency (US EPA) conducted the Baltimore Particulate Matter (PM) Epidemiology-Exposure Study of the Elderly during the summer of 1998. The study design included PM2.5 samples obtained from elderly (65+ years of age) retirement facility residents using personal exposure sampling devices. These sampling devices were also used to obtain PM2.5 samples at fixed locations within the personal monitoring subjects' apartments. Selected personal and apartment samples were examined using scanning electron microscopy with individual-particle X-ray analysis (SEM/EDX), providing a qualitative assessment of the chemical and physical characteristics of geological and trace element particles collected within these micro-environments at the retirement facility. This information was used to identify possible indoor source particles. The manual surveys of the personal samples revealed that some particles larger than 2.5 μm reached the filter surface. Using SEM/EDX, several particle types with possible indoor origins were identified. The Al-Zr-Cl particle is likely to have originated from a personal antiperspirant product. Particles with a talc or alumino-silicate composition point to cosmetics as a possible source. Large cadmium-containing particles were also found, which may indicate the use of art pigments or ceramic glazes, or emissions from television screen phosphors. A greater variety of particles was observed in a personal sample compared with its corresponding fixed-location apartment sample.

  9. Influence of gamma irradiation on polymerization of pyrrole and glucose oxidase immobilization onto poly (pyrrole)/poly (vinyl alcohol) matrix

    NASA Astrophysics Data System (ADS)

    Idris, Sarada; A. Bakar, Ahmad Ashrif; Thevy Ratnam, Chantara; Kamaruddin, Nur Hasiba; Shaari, Sahbudin

    2017-04-01

    This paper describes the immobilization of glucose oxidase, GOx onto polymer matrix comprising of poly(pyrrole), PPy and poly(vinyl alcohol), PVA using gamma irradiation technique. Py/PVA-GOx film was prepared by spreading PVA:GOx, 1:1 solution onto dried pyrrole film and exposed to gamma irradiation from cobalt 60 source at doses ranging from 0 to 60 kGy. The films were subjected to structural and morphological analyses by using Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), Scanning electron microscope (SEM), Field emission scanning electron microscope (FESEM) and Atomic-force microscopy (AFM) techniques. Similar studies were also made on pristine pyrrole film which served as control. The SEM and FTIR spectra of Py/PVA-GOx film revealed that pyrrole has been successfully polymerized through irradiation-induced reactions. The results on the morphological properties of the samples characterize using FESEM, SEM and AFM further confirmed the occurrence of radiation-induced modification of Py/PVA-GOx film. The FTIR spectra showed the existence of intermolecular interaction between polymer matrix and GOx indicating that GOx had been successfully immobilized onto Ppy/PVA matrix by radiation-induced reactions. Results revealed that radiation induced reactions such as polymerization of pyrrole, crosslinking of PVA, grafting between the adjacent PVA and pyrrole molecules as well as immobilization of GOx onto Ppy/PVA matrix occurred simultaneously upon gamma irradiation. The optimum dose for GOx immobilization in the polymer matrix found to be 40 kGy. Therefore it is clear that this irradiation technique offered a simple single process to produce Py/PVA-GOx film without additional crosslinking and polymerization agents.

  10. Fabrication and physical-chemical characterisation of polyelectrolyte microparticles: platform for controlled release of bioactives.

    PubMed

    Sun, Yuhui; Travas-Sejdic, Jadranka; Wen, Jingyuan; Alany, Raid G

    2009-08-01

    Porous CaCO(3) microparticles were fabricated by colloidal crystallization. Two oppositely charged polyelectrolytes, poly (styrene sulfonate, PSS) and poly (allylamine hydrochloride, PAH) were adsorbed layer-by-layer on the CaCO(3) templates. Polyelectrolyte microcapsules were then obtained by removing the CaCO(3) core. Scanning electron microscopy (SEM), energy-dispersion X-ray analysis (EDX), laser diffraction particle sizing and Raman spectroscopy were employed to characterize the physico-chemical properties of the constructed microcapsules. In vitro drug release studies were conducted using the model water-soluble drug Rhodamine B. Factors such as the number of polyelectrolyte layers and pH were investigated. SEM micrographs revealed uniform CaCO(3) microparticles, nearly spherical in shape with pronounced surface roughness, and highly developed interior porous structure. The surface of polyelectrolyte coated particles became rougher than the initial CaCO(3) microparticles. The acquired SEM micrographs of the (PSS/PAH)(n) microcapsules indicated that the number of layers affected the morphology of the microcapsules. The (PSS/PAH)(3) microcapsules revealed a very porous network with many holes resembling the initial morphology of CaCO(3) microparticles. Raman spectra showed peaks at 1125 cm(-1) (S=O bond) and 1600 cm(-1) (aromatic ring stretching) which represented the PSS molecule. The thickness of each layer was about 10 to 20 nm and it can be tailored to such nanometer level by controlling the number of adsorbed layers. The in vitro release of Rhodamine B was dependent on both the number of wall bilayers as well as the pH of the release media. These systems provide an opportunity for the development of controlled release dosage forms with greater effectiveness in the treatment of chronic conditions.

  11. High Resolution CryoFESEM of Microbial Surfaces

    NASA Astrophysics Data System (ADS)

    Erlandsen, Stanley; Lei, Ming; Martin-Lacave, Ines; Dunny, Gary; Wells, Carol

    2003-08-01

    The outer surfaces of three microorganisms, Giardia lamblia, Enterococcus faecalis, and Proteus mirabilis, were investigated by cryo-immobilization followed by sublimation of extracellular ice and cryocoating with either Pt alone or Pt plus carbon. Cryocoated samples were examined at [minus sign]125°C in either an in-lens field emission SEM or a below-the-lens field emission SEM. Cryocoating with Pt alone was sufficient for low magnification observation, but attempts to do high-resolution imaging resulted in radiolysis and cracking of the specimen surface. Double coating with Pt and carbon, in combination with high resolution backscatter electron detectors, enabled high-resolution imaging of the glycocalyx of bacteria, revealing a sponge-like network over the surface. High resolution examination of bacterial flagella also revealed a periodic substructure. Common artifacts included radiolysis leading to “cracking” of the surface, and insufficient deposition of Pt resulting in the absence of detectable surface topography.

  12. Microwave-assisted synthesis and characterization of nickel ferrite nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carpenter, Gopal; Sen, Ravindra; Gupta, Nitish, E-mail: nitish.nidhi75@gmail.com

    2015-08-28

    Nickel ferrite nanoparticles (NiFe{sub 2}O{sub 4}) were successfully prepared by microwave-assisted combustion method (MWAC) using citric Electron acid as a chelating agent. NiFe{sub 2}O{sub 4} nanoparticles were characterized by X-ray diffraction (XRD) pattern, Scanning Microscopy (SEM), Fourier transform infrared (FTIR) and UV-Visible techniques. XRD analysis revealed that NiFe{sub 2}O{sub 4} nanoparticles have spinel cubic structure with the average crystalline size of 26.38 nm. SEM analysis revealed random and porous structural morphology of particles and FTIR showed absorption bands related to octahedral and tetrahedral sites, in the range 400–600cm{sup −1} which strongly favor the formation of NiFe{sub 2}O{sub 4} nanoparticles. The opticalmore » band gap is determined by UV Visible method and found to be 5.4 eV.« less

  13. Silver colloidal nanoparticles: effect on matrix composition and structure of Candida albicans and Candida glabrata biofilms.

    PubMed

    Monteiro, D R; Silva, S; Negri, M; Gorup, L F; de Camargo, E R; Oliveira, R; Barbosa, D B; Henriques, M

    2013-04-01

    The aim of this study was to assess the effect of different silver nanoparticles (SN) concentrations on the matrix composition and structure of Candida albicans and Candida glabrata biofilms. Candida biofilms were developed in 6-well microtiter plates during 48 h. After, these biofilms were exposed to 13.5 or 54 μg SN ml(-1) for 24 h. Then, extracellular matrices were extracted from biofilms and analysed chemically in terms of proteins, carbohydrates and DNA. To investigate the biofilm structure, scanning electron microscopy (SEM) and epifluorescence microscopy were used. SN interfered with the matrix composition of Candida biofilms tested in terms of protein, carbohydrate and DNA, except for the protein content of C. albicans biofilm. By SEM, Candida biofilms treated with SN revealed structural differences, when compared with the control groups. Further, SN showed a trend of agglomeration within the biofilms. Epifluorescence microscopy images suggest that SN induced damage on cell walls of the Candida isolates tested. In general, irrespective of concentration, SN affected the matrix composition and structure of Candida biofilms and these findings may be related to the mechanisms of biocide action of SN. This study reveals new insights about the behaviour of SN when in contact with Candida biofilms. SN may contribute to the development of therapies to prevent or control Candida infections. © 2012 The Society for Applied Microbiology.

  14. Efficacy of saccharides bio-template on structural, morphological, optical and antibacterial property of ZnO nanoparticles.

    PubMed

    Dhanalakshmi, A; Palanimurugan, A; Natarajan, B

    2018-09-01

    Mono, di and polysaccharides of glucose (C 6 H 12 O 6 ), sucrose (C 12 H 24 O 12 ) and starch (C 6 H 12 O 6 ) n bio-template ZnO nanoparticles (NPs) has prepared by chemical precipitation method. Saccharides bio-template ZnO (SBts-ZnO) NPs were efficiently prepared for their structural and optical properties were examined by using XRD, FE-SEM, AFM, FTIR, UV and PL techniques. All the samples are polycrystalline nature with a preferential orientation depending on the (1 0 1) plane. The reduction of crystalline size by utilizing glucose, sucrose and starch bio-template of ZnO NPs. FE-SEM images revealed that the spherical and nano-rods like morphologies for ZnO and SBts-ZnO NPs respectively. AFM recorded images shows spherical features that confirmed and also the morphological changes were noticed with the addition of polymers. Interaction of bio-templated saccharides (glucose G 1 , sucrose S 2 & starch S n ) molecules was proved by FTIR study. Optical absorbance and emission behaviours were investigated using UV-Vis and photoluminescence techniques. The antibacterial study revealed that SBts-ZnO have excellent antibacterial effect than ZnO. The S n -ZnO sample has potent antibacterial activity against the Proteus vulgaris followed by Klebsiella pneumoniae, Escherichia coli and Staphylococcus aureus. Copyright © 2018 Elsevier B.V. All rights reserved.

  15. The variation in surface morphology and hardness of human deciduous teeth samples after laser irradiation

    NASA Astrophysics Data System (ADS)

    Khalid, Arooj; Bashir, Shazia; Akram, Mahreen; Salman Ahmed, Qazi

    2017-11-01

    The variation in surface morphology and hardness of human deciduous teeth samples has been investigated after laser irradiation at different wavelengths and energies. Nd:YAG was employed as a source of irradiation for IR (1064 nm) and visible (532 nm) radiation, whereas an excimer laser was used as the source of UV (248 nm) radiation. Scanning electron microscope (SEM) analysis was carried out to reveal the surface morphological evolution of teeth samples. Vickers microhardness tester was employed to investigate the modifications in the hardness of the laser-treated samples. It is observed from SEM analysis that IR wavelength is responsible for ablation of collagen matrix and intertubular dentine. For visible radiation, the ablation of collagen along with hydroxypatite is observed. With UV radiation, the ablation of peritubular dentine is dominant and is responsible for the sealing of tubules. The decrease in hardness at lower energy for both wavelengths is due to the evaporation of carbon content. With increasing energy, evaporation of water along with carbon content, and resolidification and re-organization of inorganic content causes the increase in hardness of the treated dentine. SEM as well as microhardness analyses reveal that laser wavelengths and energy of laser radiation significantly influence the surface morphology and hardness of samples.

  16. In-plane and through-plane non-uniform carbon corrosion of polymer electrolyte fuel cell cathode catalyst layer during extended potential cycles

    NASA Astrophysics Data System (ADS)

    Ghosh, Sourov; Ohashi, Hidenori; Tabata, Hiroshi; Hashimasa, Yoshiyuki; Yamaguchi, Takeo

    2017-09-01

    The impact of electrochemical carbon corrosion via potential cycling durability tests mimicking start-stop operation events on the microstructure of the cathode catalyst layer in polymer electrolyte fuel cells (PEFCs) is investigated using focused ion beam (FIB) fabrication without/with the pore-filling technique and subsequent scanning electron microscope (SEM) observations. FIB/SEM investigations without pore-filling reveals that the durability test induces non-uniform cathode shrinking across the in-plane direction; the thickness of the catalyst layer decreases more under the gas flow channel compared to the area under the rim of the flow field. Furthermore, FIB/SEM investigations with the pore-filling technique reveal that the durability test also induces non-uniform cathode shrinking in the through-plane direction; the pores in the area close to the membrane are more shrunken compared with those close to the microporous layer. In particular, a thin area (1-1.5 μm) close to the membrane is found to be severely damaged; it includes closed pores that hinder mass transport through the catalyst layer. It is suggested that uneven carbon corrosion and catalyst layer compaction are responsible for the performance loss during potential cycling operation of PEFCs.

  17. Sarcoptic mange in free-ranging raccoon dogs (Nyctereutes procyonoides) in Japan.

    PubMed

    Ninomiya, Hiroyoshi; Ogata, Munetsugu

    2005-06-01

    Sarcoptes scabiei infestation was diagnosed in three freshly dead free-ranging raccoon dogs (Nyctereutes procyonoides) in Kanagawa Prefecture, Japan. The dogs presented with an alopecic pruritic skin disease, with signs of alopecia on the ears, muzzle, around the eyes, elbow, thigh and the neck, and hyperpigmented and crusted skin lesions, which had a severe malodour. Skin scrapings revealed the presence of the mite Sarcoptes scabiei. Histopathology of lesions demonstrated marked acanthosis, hyperkeratosis, parakeratosis and fungal elements, which were subsequently identified as Acremonium sp., Alternaria sp. and an unknown fungus. Mite segments were located mainly in the stratum corneum and also in the stratum granulosum. Tunnels could be observed in the hyperkeratotic stratum corneum. Scanning electron microscopy (SEM) revealed the tortoise-like Sarcoptes scabiei with four long bristles, suckers and blade-like claws on legs 1 and 2, cuticular spines, prominent body striations and a terminal anus. SEM also revealed an adult female mite digging a tunnel with the head wedged into the very end of the closed burrow. Tunnels filled with eggshells, corneocyte debris and faecal pellets were also observed.

  18. Genotype-dependent efficiency of endosperm development in culture of selected cereals: histological and ultrastructural studies.

    PubMed

    Popielarska-Konieczna, Marzena; Kozieradzka-Kiszkurno, Małgorzata; Tuleja, Monika; Ślesak, Halina; Kapusta, Paweł; Marcińska, Izabela; Bohdanowicz, Jerzy

    2013-02-01

    The paper reports studies, including histological and ultrastructural analyses, of in vitro cell proliferation and development of immature endosperm tissue isolated from caryopses of Triticum aestivum, Triticum durum, and Triticosecale plants. Endosperm isolated at 7-10 days post-anthesis developed well on MS medium supplemented with auxins and/or cytokinins. The efficiency of endosperm response was highly genotype-dependent and best in two winter cultivars of hexaploid species. The pathways of development and proliferation were very similar among the selected species and cultivars. Histological and scanning electron microscope (SEM) analysis revealed that only the part of the endosperm not touching the medium surface continued growth and development, resulting in swelling. The central part of swollen regions was composed mainly of cells containing many large starch grains. The peripheric parts of developed endosperm consisted of highly vacuolated cells and small cells with dense cytoplasm. SEM showed that cells from the swollen region were covered partially with a membraneous structure. Transmission electron microscope studies of cells from the outer part of the developing region showed features typical for cell activity connected with lipid metabolism.

  19. Cyanidation Study of Slag Rich in Silver

    NASA Astrophysics Data System (ADS)

    Pérez-Labra, Miguel; Romero-Serrano, J. Antonio; Ávila-Davila, E. O.; Reyes-Pérez, M.; Barrientos-Hernández, F. R.; Hernández, I. A. Lira

    Slag from smelting reduction processes were characterized by chemical analysis, XRD, SEM-EDS and XRF. The results revealed Ag concentrations of 362 g/t of slag, the slag mineralogical characterization by XRD and SEM-EDS showed mineralogical species oxidized complex containing Pb, Zn, Ca, Si, Fe, As, S in its structure, silver was found in globules associated lead in the slag and the furutobeite specie. The leaching study was conducted to evaluate process variables such as NaCN concentration: from 7.8×10-3M - 1.26×10-1M, temperature: 25-50°C, particle size: +140 mesh to -400 mesh, stirring speed of 750 rpm - 900 rpm. All studies were performed with a NaOH concentration of 0.2 M. The optimal values of silver recovery encountered in conditions of 7.8×10-3M NaCN, agitation rate of 750 rpm, temperature of 35°C and with a treatment time of 240 min. We also observed that a particle size -400 mesh will have optimum recoveries compared to +140 mesh, +200, +270 and +325.

  20. Investigation of MeV-Cu implantation and channeling effects into porous silicon formation

    NASA Astrophysics Data System (ADS)

    Ahmad, M.; Naddaf, M.

    2011-11-01

    P-type (1 1 1) silicon wafers were implanted by copper ions (2.5 MeV) in channeling and random directions using ion beam accelerator of the Atomic Energy Commission of Syria (AECS). The effect of implantation direction on formation process of porous silicon (PS) using electrochemical etching method has been investigated using scanning electron microscope (SEM) and photoluminescence (PL) techniques. SEM observations revealed that the size, shape and density of the formed pores are highly affected by the direction of beam implantation. This in turn is seen to influence the PL behavior of the PS.

  1. Mechanical behavior and failure analysis of prosthetic retaining screws after long-term use in vivo. Part 4: Failure analysis of 10 fractured retaining screws retrieved from three patients.

    PubMed

    Al Jabbari, Youssef S; Fournelle, Raymond; Ziebert, Gerald; Toth, Jeffrey; Iacopino, Anthony M

    2008-04-01

    The aim of this study was to perform a failure analysis on fractured prosthetic retaining screws after long-term use in vivo. Additionally, the study addresses the commonly asked question regarding whether complex repeated functional occlusal forces initiate fatigue-type cracks in prosthetic retaining screws. Ten fractured prosthetic retaining screws retrieved from three patients treated with fixed detachable hybrid prostheses were subjected to a failure analysis. In patients 1 and 2, the middle three retaining screws of the prostheses were found fractured at retrieval time after they had been in service for 20 and 19 months, respectively. In patient 3, the middle three and one of the posterior retaining screws were found to be fractured at retrieval after they had been in service for 18 months. Low power stereomicroscopy and high-power scanning electron microscopy (SEM) were performed to analyze the fractured surfaces of the retaining screws examining fatigue cracks in greater detail. Typical fatigue failure characterized by ratchet mark formation was revealed by light microscopy and SEM for all examined screws. Using low magnification light microscopy, ratchet marks were visible on the fracture surfaces of only two screws. SEM examination revealed all three classical stages of fatigue failure, and it was possible to see the ratchet marks on the fracture surfaces of all specimens, indicating a fatigue zone. The final catastrophic overload fracture appeared fibrous, indicating ductile fracture. The final overload ductile fracture surfaces showed equiaxed dimples, suggesting tensile overload in all examined screws except in two specimens that showed an elongated dimple pattern indicating shear/tearing overload forces. Fracture of prosthetic retaining screws in hybrid prostheses occurs mainly through a typical fatigue mode involving mostly the middle anterior three screws. Fatigue cracks can grow in more than one prosthetic retaining screw, leading to fracture before the patient or clinician determines that any problem exists.

  2. Effects of air polishing and an amino acid buffered hypochlorite solution to dentin surfaces and periodontal ligament cell survival, attachment, and spreading.

    PubMed

    Schmidlin, Patrick R; Fujioka-Kobayashi, Masako; Mueller, Heinz-Dieter; Sculean, Anton; Lussi, Adrian; Miron, Richard J

    2017-06-01

    The aim of this study is to examine morphological changes of dentin surfaces following air polishing or amino acid buffered hypochlorite solution application and to assess their influence on periodontal ligament (PDL) cell survival, attachment, and spreading to dentin discs in vitro. Bovine dentin discs were treated with either (i) Classic, (ii) Plus, or (iii) Perio powder (EMS). Furthermore, Perisolv® a hypochlorite solution buffered with various amino acids was investigated. Untreated dentin discs served as controls. Morphological changes to dentin discs were assessed using scanning electron microscopy (SEM). Human PDL cells were seeded onto the respectively treated discs, and samples were then investigated for PDL cell survival, attachment, and spreading using a live/dead assay, adhesion assay, and SEM imaging, respectively. Both control and Perisolv®-rinsed dentin discs demonstrated smooth surfaces at low and high magnifications. The Classic powders demonstrated the thickest coating followed by the Powder Plus. The Perio powder demonstrated marked alterations of dentin discs by revealing the potential to open dentinal tubules even before rinsing. Seeding of PDL cells demonstrated an almost 100 % survival rate on all samples demonstrating very high biocompatibility for all materials. Significantly higher PDL cell numbers were observed on samples treated with the Perio powder and the Perisolv® solution (approximately 40 % more cells; p < 0.05). SEM imaging revealed the potential for PDL cells to attach and spread on all surfaces. The results from the present study demonstrate that cell survival and spreading of PDL cells on root surfaces is possible following either air polishing or application with Perisolv®. Future in vitro and animal testing is necessary to further characterize the beneficial effects of either system in a clinical setting. The use of air polishing or application with Perisolv amino acid buffered hypochlorite solution was effective in treating root surfaces and allowed for near 100 % PDL cell survival, attachment, and spreading onto all root surfaces.

  3. Controlled assembly of silver nano-fluid in Heliotropium crispum extract: A potent anti-biofilm and bactericidal formulation

    NASA Astrophysics Data System (ADS)

    Khan, Faria; Hashmi, Muhammad Uzair; Khalid, Nauman; Hayat, Muhammad Qasim; Ikram, Aamer; Janjua, Hussnain A.

    2016-11-01

    The study describes the optimized method for silver nanoparticle (AgNPs) synthesis using Heliotropium crispum (HC) plant extract. Optimization of physicochemical parameters resulted in stable and rapidly assembled AgNPs. FTIR results suggest presence of plant phytochemicals that helped in the reduction, stabilization and capping of AgNPs. The assembled Ag nano-composites displayed the peak surface plasmon resonance (SPR) around 428 nm. The presence of uniquely assembled Ag-biomolecule composites, cap and stabilize nanoparticles in aqueous plant suspension. Spherical, uniform-shaped AgNPs with low poly-dispersion and average particle size of 42 nm and was determined through dynamic light scattering (DLS) and scanning election microscopy (SEM) which present robust interaction with microbes. The study also evaluates the antimicrobial and anti-biofilm properties of biologically synthesized AgNPs on clinical isolates of MRSA, Pseudomonas aeruginosa and Acinetobacter baumannii. Minimum inhibitory concentration (0.5 mg mL-1) of nanoparticles that presented bactericidal effect was made through inhibition assays on bacterial strains. The concentration which presented potent bactericidal response was then evaluated through growth inhibition in liquid medium for anti-biofilm studies at 2.0 mg mL-1. HC-Ag nanoparticles mediated anti-biofilm effects on Pseudomonas aeruginosa was revealed through SEM. Complete breakdown of biofilm's extracellular polymeric substances resulted after incubation with AgNPs. Peptidoglycan cell wall destruction was also revealed on planktonic bacterial images after 24 h of incubation.

  4. Time-Resolved Study of Nanomorphology and Nanomechanic Change of Early-Stage Mineralized Electrospun Poly(lactic acid) Fiber by Scanning Electron Microscopy, Raman Spectroscopy and Atomic Force Microscopy

    PubMed Central

    Wang, Mengmeng; Cai, Yin; Zhao, Bo; Zhu, Peizhi

    2017-01-01

    In this study, scanning electron microscopy (SEM), Raman spectroscopy and high-resolution atomic force microscopy (AFM) were used to reveal the early-stage change of nanomorphology and nanomechanical properties of poly(lactic acid) (PLA) fibers in a time-resolved manner during the mineralization process. Electrospun PLA nanofibers were soaked in simulated body fluid (SBF) for different periods of time (0, 1, 3, 5, 7 and 21 days) at 10 °C, much lower than the conventional 37 °C, to simulate the slow biomineralization process. Time-resolved Raman spectroscopy analysis can confirm that apatites were deposited on PLA nanofibers after 21 days of mineralization. However, there is no significant signal change among several Raman spectra before 21 days. SEM images can reveal the mineral deposit on PLA nanofibers during the process of mineralization. In this work, for the first time, time-resolved AFM was used to monitor early-stage nanomorphology and nanomechanical changes of PLA nanofibers. The Surface Roughness and Young’s Modulus of the PLA nanofiber quantitatively increased with the time of mineralization. The electrospun PLA nanofibers with delicate porous structure could mimic the extracellular matrix (ECM) and serve as a model to study the early-stage mineralization. Tested by the mode of PLA nanofibers, we demonstrated that AFM technique could be developed as a potential diagnostic tool to monitor the early onset of pathologic mineralization of soft tissues. PMID:28817096

  5. New morphological data on Cucullanus pinnai pinnai (Nematoda) parasitizing Pimelodus maculatus (Pimelodidae) in southeastern Brazil.

    PubMed

    Vieira, Vivian Suane de Freitas; Vieira, Fabiano Matos; Luque, José Luis

    2015-01-01

    This paper describes the morphology of Cucullanus pinnai pinnai parasitizing Pimelodus maculatus in the Guandu River, Brazil, based on differential interference contrast (DIC) microscopy and scanning electron microscopy (SEM), providing new morphological data about this species of parasite. Nematodes were collected between May and October 2012 from specimens of Pimelodus maculatus in the Guandu River (22°48'2"S, 43°37'35"W), in the state of Rio de Janeiro, Brazil. Some characteristics of specimens of Cucullanus in this study fall within the range of morphological variations of previously studied C. pinnai pinnai. Most of the specimens studied here had excretory pore and deirids located at the posterior end of the oesophagus, a feature not recorded in previous studies of this species. In addition, the size of the gubernaculum was larger than the other specimens previously studied. The SEM and DIC analyses of C. pinnai revealed several morphological details of the cephalic region and the tail papillae. With regard to the polymorphism of C. pinnai, morphological and genetic studies of this cucullanid nematode are needed, involving large numbers of host species and a wide geographical distribution.

  6. Electrochemically synthesis and optoelectronic properties of Pb- and Zn-doped nanostructured SnSe films

    NASA Astrophysics Data System (ADS)

    Jamali-Sheini, Farid; Cheraghizade, Mohsen; Yousefi, Ramin

    2018-06-01

    In this study, electrodeposition technique was applied to deposit un-, lead (Pb), and zinc (Zn)-doped SnSe films. X-ray diffraction (XRD) patterns of the films showed a polycrystalline SnSe phase with orthorhombic crystalline lattice. SEM images revealed ball-shaped, rod-shaped, and wire-shaped morphologies for SnSe films. Moreover, optical measurements indicated incorporation of dopant in the crystalline lattice of films by varying the optical energy band gap. Electrical characterization of Pb- and Zn-doped SnSe films showed their p-type nature. Finally, the solar cell device fabricated using the Zn-doped SnSe films reveal a higher efficiency because of their higher carrier concentration.

  7. A novel low-molecular-mass gelator with a redox active ferrocenyl group: tuning gel formation by oxidation.

    PubMed

    Liu, Jing; Yan, Junlin; Yuan, Xuanwei; Liu, Kaiqiang; Peng, Junxia; Fang, Yu

    2008-02-15

    A novel low-molecular-mass gelator containing a redox-active ferrocenyl group, cholesteryl glycinate ferrocenoylamide (CGF), was intentionally designed and prepared. It was demonstrated that the gelator gels 13 out of the 45 solvents tested. Scanning electron microscopy (SEM) measurements revealed that the gelator self-assembled into different supramolecular network structures in different gels. Chemical oxidation of the ferrocenyl residue resulted in phase transition of the gel from gel state to solution state. FTIR and (1)H NMR spectroscopy studies revealed that hydrogen bonding between the gelator molecules in the gel was one of the main driving forces for the formation of the gels.

  8. Application of SEM and EDX in studying biomineralization in plant tissues.

    PubMed

    He, Honghua; Kirilak, Yaowanuj

    2014-01-01

    This chapter describes protocols using formalin-acetic acid-alcohol (FAA) to fix plant tissues for studying biomineralization by means of scanning electron microscopy (SEM) and qualitative energy-dispersive X-ray microanalysis (EDX). Specimen preparation protocols for SEM and EDX mainly include fixation, dehydration, critical point drying (CPD), mounting, and coating. Gold-coated specimens are used for SEM imaging, while gold- and carbon-coated specimens are prepared for qualitative X-ray microanalyses separately to obtain complementary information on the elemental compositions of biominerals. During the specimen preparation procedure for SEM, some biominerals may be dislodged or scattered, making it difficult to determine their accurate locations, and light microscopy is used to complement SEM studies. Specimen preparation protocols for light microscopy generally include fixation, dehydration, infiltration and embedding with resin, microtome sectioning, and staining. In addition, microwave processing methods are adopted here to speed up the specimen preparation process for both SEM and light microscopy.

  9. Petrographic studies of refractory inclusions from the Murchison meteorite

    NASA Technical Reports Server (NTRS)

    Macpherson, G. J.; Grossman, L.; Hashimoto, A.; Bar-Matthews, M.; Tanaka, T.

    1984-01-01

    Textural and mineral-chemical data on freeze-thaw disaggregated refractory inclusions from the Murchison meteorite are reported. The data were obtained with neutron activation analysis, SEM, and spectroscopy, the study revealed corundum-bearing inclusions, spinel-hibonite aggregates and spherules, and spinel-pyroxene and elivine-pyroxene inclusions. One of the three spinel-, pyroxene-, forsterite-rich inclusions had an amoeba-shaped spinel-pyroxene core, implying vapor-to-solid condensation and therefore crystallization from a melt. It is concluded that the meteorite formation encompassed diverse nebular materials, and that further studies of the meteorite will enhance the data base on the planetary nebular processes.

  10. Faceting, composition and crystal phase evolution in III-V antimonide nanowire heterostructures revealed by combining microscopy techniques.

    PubMed

    Xu, Tao; Dick, Kimberly A; Plissard, Sébastien; Nguyen, Thanh Hai; Makoudi, Younes; Berthe, Maxime; Nys, Jean-Philippe; Wallart, Xavier; Grandidier, Bruno; Caroff, Philippe

    2012-03-09

    III-V antimonide nanowires are among the most interesting semiconductors for transport physics, nanoelectronics and long-wavelength optoelectronic devices due to their optimal material properties. In order to investigate their complex crystal structure evolution, faceting and composition, we report a combined scanning electron microscopy (SEM), transmission electron microscopy (TEM), and scanning tunneling microscopy (STM) study of gold-nucleated ternary InAs/InAs(1-x)Sb(x) nanowire heterostructures grown by molecular beam epitaxy. SEM showed the general morphology and faceting, TEM revealed the internal crystal structure and ternary compositions, while STM was successfully applied to characterize the oxide-free nanowire sidewalls, in terms of nanofaceting morphology, atomic structure and surface composition. The complementary use of these techniques allows for correlation of the morphological and structural properties of the nanowires with the amount of Sb incorporated during growth. The addition of even a minute amount of Sb to InAs changes the crystal structure from perfect wurtzite to perfect zinc blende, via intermediate stacking fault and pseudo-periodic twinning regimes. Moreover, the addition of Sb during the axial growth of InAs/InAs(1-x)Sb(x) heterostructure nanowires causes a significant conformal lateral overgrowth on both segments, leading to the spontaneous formation of a core-shell structure, with an Sb-rich shell.

  11. Nano characterization of gunshot residues from Brazilian ammunition.

    PubMed

    Melo, Lis G A; Martiny, Andrea; Pinto, André L

    2014-07-01

    Gunshot residues (GSR) from a total of nine different caliber ammunitions produced in Brazil were analyzed and characterized by transmission (TEM) and scanning electron microscopy (SEM). GSR particles are composed of spherical particles of several micrometers of diameter containing distinct amounts of lead, barium and antimony, along with other organic and inorganic elements arising from the primer, gunpowder, the gun and the bullet itself. This study was carried out to obtain additional information on the properties of GSR nanoparticles originated from different types of regular ammunition produced in Brazil by CBC. Besides the SEM, we have used a TEM, exploring its high magnification capability and ability to explore internal structure and chemical composition of submicron particles. We observed that CBC ammunition generated smaller particles than usually reported for other ammunitions and that the three component particles are not a majority. TEM analysis revealed that GSR are partially composed of sub-micron particles as well. The electron diffraction pattern from these particles confirmed them to be mainly composed of lead oxides crystalline nanoparticles that may be agglomerated into larger particles. Energy dispersive X-ray spectroscopy revealed that most of them were composed of two elements, especially PbSb. Ba was not a common element found in the nanoparticles. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  12. The synthesis of Ba2+ doped multiferroic BiFeO3 nanoparticles by using a hydrothermal approach in the presence of different surface activators and the investigation of structural and magnetic features

    NASA Astrophysics Data System (ADS)

    Mardani, Reza

    2017-05-01

    In this work, Bi1-x Ba x FeO3 nanoparticles were synthesized by a hydrothermal method in the presence of various surface activators, and different amounts of barium were inserted in a bismuth ferrite (x  =  0.1, 0.15, 0.2) structure instead of bismuth. The structural and magnetic properties, morphology, and size of the synthesized nanoparticles were investigated by XRD, FT-IR, FE-SEM, TEM, DLS and VSM. The XRD analysis results reveal that the synthetic nanoparticles have a single phase. A phase shift from a rhombohedral structure to a tetragonal structure occurs due to the enhanced barium amount in the bismuth ferrite structure. The SEM analysis exhibits a uniform shape of the Bi0.85Ba0.15FeO3 particles and the image observed by TEM clarifies the size of the particles as 11 nm. Furthermore, the effect of the diverse surfaces of activators in the synthesis of Bi0.85Ba0.15FeO3 nanoparticles was studied, revealing that when sugar was used as a surfactant, the particle size reduced and the magnetic properties increased notably.

  13. Citrate gel-combustion synthesis and sintering of nanocrystalline ThO2 powders

    NASA Astrophysics Data System (ADS)

    Sanjay Kumar, D.; Ananthasivan, K.; Amirthapandian, S.; Dasgupta, Arup; Jogeswara Rao, G.

    2017-12-01

    A systematic study of the influence of citric acid to nitrate mole (R) ratio (R = 0 to 0.50) on the citrate gel-combustion synthesis of nanocrystalline (nc) ThO2 in bulk quantities (30 g) by using citrate gel-combustion was carried out. The nc-ThO2 powders were characterized for their bulk density, size distribution of particles, specific surface area, carbon residue and X-ray crystallite size. All these powders were compacted at pressures varying from 60 to 353 MPa and sintered by using the "two-step sintering" method. Powders prepared from a mixture with an "R" value of 0.125 compacted at 243 MPa yielded a maximum sintered density of 98.8 ± 0.3% T.D. For nc-ThO2, this is the highest sintered density reported so far. The microstructural investigations on nc-ThO2 powders were carried out by using both scanning electron microscopy (SEM) and transmission electron microscopy (TEM). SEM images of the sintered thoria monoliths revealed faceted grains with well defined grain boundaries. Shrinkage anisotropy factor (α) revealed that the compacts prepared from the powders obtained from starting mixtures with R values of 0.125-0.50 had undergone uniform sintering (near isotropic shrinkage).

  14. The utility of the bifactor model in understanding unique components of anxiety sensitivity in a South Korean sample.

    PubMed

    Ebesutani, Chad; Kim, Mirihae; Park, Hee-Hoon

    2016-08-01

    The present study was the first to examine the applicability of the bifactor structure underlying the Anxiety Sensitivity Index-3 (ASI-3) in an East Asian (South Korean) sample and to determine which factors in the bifactor model were significantly associated with anxiety, depression, and negative affect. Using a sample of 289 South Korean university students, we compared (a) the original 3-factor AS model, (b) a 3-group bifactor AS model, and (c) a 2-group bifactor AS model (with only the physical and social concern group factors present). Results revealed that the 2-group bifactor AS model fit the ASI-3 data the best. Relatedly, although all ASI-3 items loaded on the general AS factor, the Cognitive Concern group factor was not defined in the bifactor model and may therefore need to be omitted in order to accurately model AS when conducting factor analysis and structural equation modeling (SEM) in cross cultural contexts. SEM results also revealed that the general AS factor was the only factor from the 2-group bifactor model that significantly predicted anxiety, depression, and negative affect. Implications and importance of this new bifactor structure of Anxiety Sensitivity in East Asian samples are discussed. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Biosynthesis of silver nanoparticles using Alternanthera sessilis (Linn.) extract and their antimicrobial, antioxidant activities.

    PubMed

    Niraimathi, K L; Sudha, V; Lavanya, R; Brindha, P

    2013-02-01

    The present work focuses the use of the aqueous extract of Alternanthera sessilis Linn. (Amaranthaceae) in producing silver nanoparticles (AgNPs) from silver nitrate aqueous. Phytochemical analysis of the extract revealed the presence of alkaloid, tannins, ascorbic acid, carbohydrates and proteins and they serve as effective reducing and capping agents for converting silver nitrate into nanoparticles. The synthesized silver nanoparticles (AgNPs) were also tested for proteins and ascorbic acid. Its pH was also determined (5.63). The AgNPs obtained was characterized by UV-vis spectroscopy, FT-IR spectroscopy, SEM, Zeta sizer and TG-DSC. SEM images which revealed the presence of various shapes and sizes. FT-IR spectrum showed the AgNPs having a coating of proteins indicating a dual role of bio-molecules responsible for capping and efficient stabilization of the silver nanoparticles. Presence of impurities and melting point profile were screened by TG-DSC analyzer. AgNPs were synthesized from the silver nitrate through the reducing power of ascorbic acid present in A. sessilis leaves. In this study, we also investigated antimicrobial and antioxidant activity of green synthesized AgNPs. The antimicrobial activity is investigated by Bauer et al.'s method. Antioxidant activity was done by DPPH method. Copyright © 2012 Elsevier B.V. All rights reserved.

  16. The double capsules in macro-textured breast implants.

    PubMed

    Giot, Jean-Philippe; Paek, Laurence S; Nizard, Nathanael; El-Diwany, Mostafa; Gaboury, Louis A; Nelea, Monica; Bou-Merhi, Joseph S; Harris, Patrick G; Danino, Michel A

    2015-10-01

    Breast implants are amongst the most widely used types of permanent implants in modern medicine and have both aesthetic and reconstructive applications with excellent biocompatibility. The double capsule is a complication associated with textured prostheses that leads to implant displacement; however, its etiology has yet to be elucidated. In this study, 10 double capsules were sampled from breast expander implants for in-depth analysis; histologically, the inner capsular layer demonstrated highly organized collagen in sheets with delamination of fibers. At the prosthesis interface (PI) where the implant shell contacts the inner capsular layer, scanning electron microscopy (SEM) revealed a thin layer which mirrored the three-dimensional characteristics of the implant texture; the external surface of the inner capsular layer facing the intercapsular space (ICS) was flat. SEM examination of the inner capsule layer revealed both a large bacterial presence as well as biofilm deposition at the PI; a significantly lower quantity of bacteria and biofilm were found at the ICS interface. These findings suggest that the double capsule phenomenon's etiopathogenesis is of mechanical origin. Delamination of the periprosthetic capsule leads to the creation of the ICS; the maintained separation of the 2 layers subsequently alters the biostability of the macro-textured breast implant. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Structural analysis of reactionary dentin formed in response to polymicrobial invasion

    PubMed Central

    Charadram, Nattida; Austin, Christine; Trimby, Patrick; Simonian, Mary; Swain, Michael V.; Hunter, Neil

    2013-01-01

    In response to microbial invasion of dentin odontoblasts secrete an altered calcified matrix termed reactionary dentin (Rd). 3D reconstruction of focused-ion-beam scanning electron microscopy (FIB-SEM) image slices revealed helical tubular structures in Rd that contrasted with regular cylindrical tubules characteristic of dentin from healthy teeth and affected so-called physiological dentin (Pd) lying exterior to Rd. This helical structure in Rd provided effective constriction of tubule lumen diameter that formed a barrier to bacterial advance towards the dental pulp. SEM of resin cast preparations revealed altered extension of odontoblast processes through Rd. The distribution of key mineral elements was studied by combination of 3D reconstruction of focused-ion-beam based X-ray microanalysis (FIB-EDS), laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) and diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS). There was a marked redistribution of calcium and phosphorous in Rd together with an increase of diffusely deposited magnesium compatible with the mineral deposition phase of synthesis of this altered matrix. Changes in tubule structure and mineral content characteristic of Rd are consistent with reduced hardness and lower elastic modulus reported for this matrix. Findings provide insight into the unique structure of Rd synthesised as a primary response to infection. PMID:23261402

  18. Wear Properties of ECAP-Processed AM80 Magnesium Alloy

    NASA Astrophysics Data System (ADS)

    Gopi, K. R.; Shivananda Nayaka, H.; Sahu, Sandeep

    2017-07-01

    AM80 magnesium alloy was subjected to equal-channel angular pressing (ECAP), and microstructural evolution was studied using scanning electron microscope (SEM). Grain size was found to decrease up to 3 µm after four passes. An increase in number of ECAP passes led to a corresponding increase in hardness of the processed samples. Unprocessed and ECAP-processed samples were subjected to wear test using pin-on-disk wear test machine to study the wear behavior. Effects of varying loads (30 and 40 N) with sliding distances (2500 and 5000 m) were studied. The results showed reduction in wear mass loss for the ECAP-processed samples in comparison with unprocessed condition. Coefficient of friction (COF) was studied for different loads, and improvement in COF values was observed for ECAP-processed samples compared to unprocessed condition. Worn surfaces were studied using SEM and energy-dispersive x-ray spectrometer, and they exhibited plastic deformation, delamination, plowing, wear debris and oxidation in the sliding direction. X-ray diffraction analysis was conducted on the worn surfaces to identify the phases. It revealed the presence of magnesium oxide and magnesium aluminum oxide which led to oxidation wear in the sliding direction. Wear mechanism was found to be abrasive and oxidation wear.

  19. Does the FTO gene interact with the socioeconomic status on the obesity development among young European children? Results from the IDEFICS study.

    PubMed

    Foraita, R; Günther, F; Gwozdz, W; Reisch, L A; Russo, P; Lauria, F; Siani, A; Veidebaum, T; Tornaritis, M; Iacoviello, L; Vyncke, K; Pitsiladis, Y; Mårild, S; Molnár, D; Moreno, L A; Bammann, K; Pigeot, I

    2015-01-01

    Various twin studies revealed that the influence of genetic factors on psychological diseases or behaviour is more expressed in socioeconomically advantaged environments. Other studies predominantly show an inverse association between socioeconomic status (SES) and childhood obesity in Western developed countries. The aim of this study is to investigate whether the fat mass and obesity-associated (FTO) gene interacts with the SES on childhood obesity in a subsample (N = 4406) of the IDEFICS (Identification and prevention of Dietary- and lifestyle-induced health EFfects In Children and infantS) cohort. A structural equation model (SEM) is applied with the latent constructs obesity, dietary intakes, physical activity and fitness habits, and parental SES to estimate the main effects of the latter three variables and a FTO polymorphism on childhood obesity. Further, a multiple group SEM is used to explore whether an interaction effect exists between the single nucleotide polymorphism rs9939609 within the FTO gene and SES. Significant main effects are shown for physical activity and fitness (standardised [betacrc ](s) = -0.113), SES ([betacrc ](s) = -0.057) and the FTO homozygous AA risk genotype ([betacrc ](s) = -0.177). The explained variance of obesity is ~9%. According to the multiple group approach of SEM, we see an interaction between SES and FTO with respect to their effect on childhood obesity (Δχ(2) = 7.3, df = 2, P = 0.03). Children carrying the protective FTO genotype TT seem to be more protected by a favourable social environment regarding the development of obesity than children carrying the AT or AA genotype.

  20. Effect of endodontic irrigation with 1% sodium hypochlorite and 17% EDTA on primary teeth: a scanning electron microscope analysis.

    PubMed

    Ximenes, Marcos; Triches, Thaisa C; Beltrame, Ana Paula C A; Hilgert, Leandro A; Cardoso, Mariane

    2013-01-01

    This study evaluated the efficacy of 2 final irrigation solutions for removal of the smear layer (SL) from root canals of primary teeth, using scanning electron microscope (SEM) analysis. Thirty primary molars were selected and a single operator instrumented the canals. The initial irrigation was done with a 1% sodium hypochlorite (NaOCl) solution. After the preparation, the roots were randomly divided into 3 groups for final irrigation: Group 1, 1% NaOCl (n = 10); Group 2, 17% EDTA + 1% NaOCl (n = 10); and Group 3, 17% EDTA + saline solution (n = 10). The roots were prepared for SEM analysis (magnification 1000X). The photomicrographs were independently analyzed by 2 investigators with SEM experience, attributing scores to each root third in terms of SL removal. Kruskal-Wallis and Mann-Whitney tests revealed that there was no statistical difference between the groups (P = 0.489). However, a statistical difference was found (P < 0.05) in a comparison of root thirds, with the apical third having the worst results. Comparing the thirds within the same group, all canals showed statistical differences between the cervical and apical thirds (P < 0.05). The authors determined that no substance or association of substances were able to completely remove SL.

  1. Does Depressive Affect Mediate the Relationship between Self-Care Capacity and Nutritional Status Among Rural Older Adults? : A Structural Equation Modeling Approach.

    PubMed

    Jung, Seung Eun; Bishop, Alex J; Kim, Minjung; Hermann, Janice; Kim, Giyeon; Lawrence, Jeannine

    2017-01-01

    This study examined the relationships of self-care capacity and depressive affect on nutritional status and whether depressive affect mediated the relationship of self-care capacity on nutritional status. A convenience sample of 171 rural community-dwelling older adults, 65 years and above, participated. Structural equation modeling (SEM) was conducted to test a mediation model. The hypothesized SEM model was supported with adequate fit (χ 2 (1) = 1.87, p = 0.17; CFI = 0.94; RMSEA = 0.07; SRMR = 0.03). SEM analysis revealed a significant positive direct effect of self-care capacity on nutritional status (γ = 0.14, p = 0.042). Significant negative direct effects were observed for self-care capacity on depressive affect (γ = -0.15, p = 0.027) and for depressive affect on nutritional status (β = -0.27, p < 0.01). Depressive affect was also observed to partially mediate the relationship of self-care capacity on nutrition status (γ = 0.04, p = 0.046). Findings highlight the importance of emotional well-being on rural older adults' nutritional status, particularly those with decreased ability to engage in self-care practices.

  2. Role of different chelating agent in synthesis of copper doped tin oxide (Cu-SnO2) nanoparticles

    NASA Astrophysics Data System (ADS)

    Saravanakumar, B.; Anusiya, A.; Rani, B. Jansi; Ravi, G.; Yuvakkumar, R.

    2018-05-01

    An attempt was made to synthesis the copper doped tin oxide (Cu-SnO2) nanoparticles by adopting different chelating agents (NaOH, KOH and C2H2O4) by Sol-gel process. The synthesized products were characterized by XRD, Photoluminescence (PL), Infra- Red (FTIR) and SEM analysis. The XRD confirms the formation of Cu-SnO2 shows the maximum peak at 33.8° with lattice plane (101). The PL peak at 361 and 382 nm due to the recombination of electron in conduction band to valence band infers the optical properties. The IR spectra correspond to the peak at 551 and 620 cm-1 attributed to the characteristics peak for Cu-SnO2 nanoparticles. The SEM images for all three Cu-SnO2 nanoparticles formed by three chelating agent (NaOH, KOH and C2H2O4) facilitates the formation mechanism and the chelating agent Oxalic acid results in formation of nano flowers with diverse layers orientated in random direction. Further SEM studies reveal that, the Cu-SnO2 nanoparticles formed by oxalic acid could posses high surface area with large number layered structured enables the better electrochemical properties and its applications.

  3. Characterization of wood dust from furniture by scanning electron microscopy and energy-dispersive x-ray analysis.

    PubMed

    Gómez Yepes, Milena Elizabeth; Cremades, Lázaro V

    2011-01-01

    Study characterized and analyzed form factor, elementary composition and particle size of wood dust, in order to understand its harmful health effects on carpenters in Quindío (Colombia). Once particle characteristics (size distributions, aerodynamic equivalent diameter (D(α)), elemental composition and shape factors) were analyzed, particles were then characterized via scanning electron microscopy (SEM) in conjunction with energy dispersive X-ray analysis (EDXRA). SEM analysis of particulate matter showed: 1) cone-shaped particle ranged from 2.09 to 48.79 µm D(α); 2) rectangular prism-shaped particle from 2.47 to 72.9 µm D(α); 3) cylindrically-shaped particle from 2.5 to 48.79 µm D(α); and 4) spherically-shaped particle from 2.61 to 51.93 µm D(α). EDXRA reveals presence of chemical elements from paints and varnishes such as Ca, K, Na and Cr. SEM/EDXRA contributes in a significant manner to the morphological characterization of wood dust. It is obvious that the type of particles sampled is a complex function of shapes and sizes of particles. Thus, it is important to investigate the influence of particles characteristics, morphology, shapes and D(α) that may affect the health of carpenters in Quindío.

  4. Impact-induced fracture mechanisms of immiscible PC/ABS (50/50) blends

    NASA Astrophysics Data System (ADS)

    Machmud, M. N.; Omiya, M.; Inoue, H.; Kishimoto, K.

    2018-03-01

    This paper presents a study on fracture mechanisms of polycarbonate (PC)/acrylonitrile-butadiene-styrene (ABS) (50/50) blends with different ABS types under a drop weight impact test (DWIT) using a circular sheet specimen. Formation of secondary crack indicated by a stress-whitening layer on the mid-plane of scattered specimens and secondary surface of fracture perpendicular to primary fracture surface were captured under scanning electron microscope (SEM). Although the both blends finally failed in brittle modes, SEM observation showed that their secondary fracture mechanisms were completely different. Observation through the thickness of the etched PC/ABS specimen samples using SEM also clearly showed that PC and ABS were immiscible. The immiscibility between PC and ABS was indicated by presence of their layer structures through the thickness of the blends. It was revealed that layer of ABS structure was influenced by size of rubber particle and this latter parameter then affected microstructure and fracture mechanisms of the blends. Impact-induced fracture mechanisms of the blends due to such microstructures are discussed in this paper. It was also pointed out that the secondary cracking was likely caused by interface delamination between PC and ABS layers in the core due to transverse shear stress generated during the impact test.

  5. An inexpensive approach for bright-field and dark-field imaging by scanning transmission electron microscopy in scanning electron microscopy.

    PubMed

    Patel, Binay; Watanabe, Masashi

    2014-02-01

    Scanning transmission electron microscopy in scanning electron microscopy (STEM-in-SEM) is a convenient technique for soft materials characterization. Various specimen-holder geometries and detector arrangements have been used for bright-field (BF) STEM-in-SEM imaging. In this study, to further the characterization potential of STEM-IN-SEM, a new specimen holder has been developed to facilitate direct detection of BF signals and indirect detection of dark-field (DF) signals without the need for substantial instrument modification. DF imaging is conducted with the use of a gold (Au)-coated copper (Cu) plate attached to the specimen holder which directs highly scattered transmitted electrons to an off-axis yttrium-aluminum-garnet (YAG) detector. A hole in the copper plate allows for BF imaging with a transmission electron (TE) detector. The inclusion of an Au-coated Cu plate enhanced DF signal intensity. Experiments validating the acquisition of true DF signals revealed that atomic number (Z) contrast may be achieved for materials with large lattice spacing. However, materials with small lattice spacing still exhibit diffraction contrast effects in this approach. The calculated theoretical fine probe size is 1.8 nm. At 30 kV, in this indirect approach, DF spatial resolution is limited to 3.2 nm as confirmed experimentally.

  6. Quantitative light and scanning electron microscopy of ferret sperm.

    PubMed

    Van der Horst, G; Curry, P T; Kitchin, R M; Burgess, W; Thorne, E T; Kwiatkowski, D; Parker, M; Atherton, R W

    1991-11-01

    Sperm were obtained via electroejaculation from Domestic ferret, (Mustela putorius furo), Siberian ferret (M. eversmanni), Black-footed ferret (M. nigripes), and a hybrid between Siberian and Domestic, called the Fitch ferret (M. sp.). Comparisons of sperm were made by four different microscopy techniques to determine whether differences exist among species. First, Nomarski differential interference microscopy could be used to distinguish domestic ferret sperm from the others on the basis of the structure of the posterior part of the acrosome. Second, both silver staining, which demonstrates argentophilic protein distribution, and scanning electron microscopy (SEM), revealed differences among the morphology of sperm for each species; variation in the unique appearance of the acrosome in ferret sperm was detected especially well by SEM. To quantify differences in morphology, five sperm head parameters were measured using image analysis; light microscopy produced significantly larger values than did SEM (all parameters and all species but Fitch), and there were significant differences owing to species for all parameters but one. Generally, our data demonstrate the value of complementary techniques to distinguish among sperm of closely related species and more specifically may help establish evolutionary relationships among the ferret species studied. In addition, they provide baseline data important for the captive breeding of the endangered Black-footed ferret.

  7. Multifunctional Polymers and Composites for Self-Healing Applications

    DTIC Science & Technology

    2006-09-30

    linkages (Chen et al. 2002), and a phase separated system based on polydimethylsiloxane (Cho et al. 2006). Self-healing occurs when monomer is released...WCI6 is shown in Figure 1.1a. The average particle sizes determined by analysis of SEM images for all three delivery methods are listed in Table 1.1...were then sieved and the beads smaller than 355 um were kept for further study. Elemental analysis of the wax beads revealed that the concentration of

  8. Two novel approaches to study arthropod anatomy by using dualbeam FIB/SEM.

    PubMed

    Di Giulio, Andrea; Muzzi, Maurizio

    2018-03-01

    Transmission Electron Microscopy (TEM) has always been the conventional method to study arthropod ultrastructure, while the use of Scanning Electron Microscopy (SEM) was mainly devoted to the examination of the external cuticular structures by secondary electrons. The new generation field emission SEMs are capable to generate images at sub-cellular level, comparable to TEM images employing backscattered electrons. The potential of this kind of acquisition becomes very powerful in the dual beam FIB/SEM where the SEM column is combined with a Focused Ion Beam (FIB) column. FIB uses ions as a nano-scalpel to slice samples fixed and embedded in resin, replacing traditional ultramicrotomy. We here present two novel methods, which optimize the use of FIB/SEM for studying arthropod anatomy. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Sol-gel synthesis of thorn-like ZnO nanoparticles endorsing mechanical stirring effect and their antimicrobial activities: Potential role as nano-antibiotics

    PubMed Central

    Khan, Mohd Farhan; Ansari, Akhter H.; Hameedullah, M.; Ahmad, Ejaz; Husain, Fohad Mabood; Zia, Qamar; Baig, Umair; Zaheer, Mohd Rehan; Alam, Mohammad Mezbaul; Khan, Abu Mustafa; AlOthman, Zeid A.; Ahmad, Iqbal; Ashraf, Ghulam Md; Aliev, Gjumrakch

    2016-01-01

    The effect of mechanical stirring on sol-gel synthesis of thorn-like ZnO nanoparticles (ZnO-NPs) and antimicrobial activities is successfully reported in this study. The in-house synthesized nanoparticles were characterized by XRD, SEM, TEM, FTIR, TGA, DSC and UV-visible spectroscopy. The X-Ray Diffraction analysis revealed the wurtzite crystal lattice for ZnO-NPs with no impurities present. The diametric measurements of the synthesized thorn-like ZnO-NPs (morphology assessed by SEM) were well accounted to be less than 50 nm with the help of TEM. Relative decrease in aspect ratio was observed on increasing the agitation speed. The UV-visible spectroscopy showed the absorption peaks of the ZnO-NPs existed in both UVA and UVB region. A hypsochromic shift in λmax was observed when stirring pace was increased from 500 rpm to 2000 rpm. The FTIR spectroscopy showed the absorption bands of the stretching modes of Zn-O between 500 cm−1 to 525 cm−1. The Thermal analysis studies revealed better stability for ZnO-NPs prepared at 2000 rpm (ZnO-2000 rpm). TGA revealed the weight loss between two main temperatures ranges viz. around (90 °C–120 °C) and (240 °C–280 °C). Finally, the effect of ZnO-NPs prepared at different stirring conditions on the growth of Gram-positive (Bacillus subtilis), Gram-negative (Escherichia coli) bacteria and a fungi (Candida albicans) were examined; which showed good antibacterial as well as antifungal properties. These findings introduce a simple, inexpensive process to synthesize ZnO-NPs using conventional methods without the use of sophisticated equipments and its application as a potent nano-antibiotic. PMID:27349836

  10. CdS thin films prepared by continuous wave Nd:YAG laser

    NASA Astrophysics Data System (ADS)

    Wang, H.; Tenpas, Eric W.; Vuong, Khanh D.; Williams, James A.; Schuesselbauer, E.; Bernstein, R.; Fagan, J. G.; Wang, Xing W.

    1995-08-01

    We report new results on continuous wave Nd:YAG laser deposition of cadmium sulfide thin films. Substrates were soda-lime silicate glass, silica glass, silicon, and copper coated formvar sheets. As deposited films were mixtures of cubic and hexagonal phases, with two different grain sizes. As revealed by SEM micrographs, films had smooth surface morphology. As revealed by TEM analysis, grain sizes were extremely small.

  11. Mitigating effects of L-selenomethionine on low-dose iron ion radiation-induced changes in gene expression associated with cellular stress.

    PubMed

    Nuth, Manunya; Kennedy, Ann R

    2013-07-01

    Ionizing radiation associated with highly energetic and charged heavy (HZE) particles poses a danger to astronauts during space travel. The aim of the present study was to evaluate the patterns of gene expression associated with cellular exposure to low-dose iron ion irradiation, in the presence and absence of L-selenomethionine (SeM). Human thyroid epithelial cells (HTori-3) were exposed to low-dose iron ion (1 GeV/n) irradiation at 10 or 20 cGy with or without SeM pretreatment. The cells were harvested 6 and 16 h post-irradiation and analyzed by the Affymetrix U133Av2 gene chip arrays. Genes exhibiting a 1.5-fold expression cut-off and 5% false discovery rate (FDR) were considered statistically significant and subsequently analyzed using the Database for Annotation, Visualization and Integrated Discovery (DAVID) for pathway analysis. Representative genes were further validated by real-time RT-PCR. Even at low doses of radiation from iron ions, global genome profiling of the irradiated cells revealed the upregulation of genes associated with the activation of stress-related signaling pathways (ubiquitin-mediated proteolysis, p53 signaling, cell cycle and apoptosis), which occurred in a dose-dependent manner. A 24-h pretreatment with SeM was shown to reduce the radiation effects by mitigating stress-related signaling pathways and downregulating certain genes associated with cell adhesion. The mechanism by which SeM prevents radiation-induced transformation in vitro may involve the suppression of the expression of genes associated with stress-related signaling and certain cell adhesion events.

  12. [Imprints of coronary plaque particles in the PTCA balloon surface during the dilatation processing].

    PubMed

    Werner, D; Behrend, D; Schmitz, K P; Urbaszek, W

    1995-05-01

    Seventy-six PTCA-balloons after coronary angioplasty were studied for superficial changes using scanning electron microscopy (SEM) after fixing in glutardialdehyde. Coronary plaque particles were identified on the balloon surface in 52 cases (68%). Twelve new and unused balloons were subjected to the same chemical treatment and SEM showed no imprints. The average length of the longest imprinted plaques was 128 +/- 201 microns and the average number of plaque particles per balloon was 4.9 +/- 2.7. The maximal dilatation pressure and the number of dilatations showed no influence on the impregnation of plaque particles. However, longer plaque imprints tended to occur under low dilatation pressure. Imprints of plaque particles were significantly higher in patients with low cholesterol (p = 0.0001) and low triglycerides (p = 0.0016). No correlation was seen between imprint length and lipid levels. Similarly, the different balloon materials (polyethylene, polyolefincopolymer) showed no significant differences with regard to plaque occurrence. The PTCA-balloons, plaque particles and six coronary plaques obtained after endatherectomy were subjected to energy dispersive x-ray analysis (EDX) under SEM as EDX reveals qualitative and quantitative information about the structural elements. Highly significant differences in calcium, sodium, phosphorus and silicon contents (p = 0.0000) between plaque particles and balloon surface were observed, owing to the absence of these in balloon material. Thus EDX offers additional advantages over SEM in that it clearly differentiates deformed balloon surface, plaque particle, and retained contrast medium. Plaque particles can be recovered from balloon surfaces after PTCA. Depending upon their size, they could lead to coronary spasm or microembolic phenomenon.

  13. Characterization of Pu-238 Heat Source Granule Containment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Richardson, Paul Dean II; Sanchez, Joey Leo; Wall, Angelique Dinorah

    The Milliwatt Radioisotopic Themoelectric Generator (RTG) provides power for permissive-action links. Essentially these are nuclear batteries that convert thermal energy to electrical energy using a doped silicon-germanium thermopile. The thermal energy is provided by a heat source made of 238Pu, in the form of 238PuO 2 granules. The granules are contained by 3 layers of encapsulation. A thin T-111 liner surrounds the 238PuO 2 granules and protects the second layer (strength member) from exposure to the fuel granules. An outer layer of Hastalloy-C protects the T-111 from oxygen embrittlement. The T-111 strength member is considered the critical component in thismore » 238PuO 2 containment system. Any compromise in the strength member seen during destructive testing required by the RTG surveillance program is characterized. The T-111 strength member is characterized through Scanning Electron Microscopy (SEM), and Metallography. SEM is used in the Secondary Electron mode to reveal possible grain boundary deformation and/or cracking in the region of the strength member weld. Deformation and cracking uncovered by SEM are further characterized by Metallography. Metallography sections are mounted and polished, observed using optical microscopy, then documented in the form of microphotographs. SEM mat further be used to examine polished Metallography mounts to characterize elements using the SEM mode of Energy Dispersive X-ray spectroscopy (EDS).« less

  14. Correlative SEM SERS for quantitative analysis of dimer nanoparticles.

    PubMed

    Timmermans, F J; Lenferink, A T M; van Wolferen, H A G M; Otto, C

    2016-11-14

    A Raman microscope integrated with a scanning electron microscope was used to investigate plasmonic structures by correlative SEM-SERS analysis. The integrated Raman-SEM microscope combines high-resolution electron microscopy information with SERS signal enhancement from selected nanostructures with adsorbed Raman reporter molecules. Correlative analysis is performed for dimers of two gold nanospheres. Dimers were selected on the basis of SEM images from multi aggregate samples. The effect of the orientation of the dimer with respect to the polarization state of the laser light and the effect of the particle gap size on the Raman signal intensity is observed. Additionally, calculations are performed to simulate the electric near field enhancement. These simulations are based on the morphologies observed by electron microscopy. In this way the experiments are compared with the enhancement factor calculated with near field simulations and are subsequently used to quantify the SERS enhancement factor. Large differences between experimentally observed and calculated enhancement factors are regularly detected, a phenomenon caused by nanoscale differences between the real and 'simplified' simulated structures. Quantitative SERS experiments reveal the structure induced enhancement factor, ranging from ∼200 to ∼20 000, averaged over the full nanostructure surface. The results demonstrate correlative Raman-SEM microscopy for the quantitative analysis of plasmonic particles and structures, thus enabling a new analytical method in the field of SERS and plasmonics.

  15. Optimization, characterization, and efficacy evaluation of 2% chitosan scaffold for tissue engineering and wound healing

    PubMed Central

    Chhabra, Priyanka; Tyagi, Priyanka; Bhatnagar, Aseem; Mittal, Gaurav; Kumar, Amit

    2016-01-01

    Objective: To develop a chitosan-based scaffold and carry out a complete comprehensive study encompassing optimization of exact chitosan strength, product characterization, toxicity evaluation, in vitro validation in cell culture experiments, and finally in vivo efficacy in animal excision wound model. Materials and Methods: Developed chitosan scaffolds (CSs) were optimized for tissue engineering and wound healing efficacy by means of microstructure, toxicity, and biocompatibility evaluation. Results: Scanning electron microscope (SEM) studies revealed that porosity of CS decreased with increase in chitosan concentration. Chemical stability and integrity of scaffolds were confirmed by Fourier transform infrared studies. Highest swelling percentage (SP) of 500% was observed in 2%, while lowest (200%) was observed in 1% CS. Reabsorption and noncytotoxic property of optimized scaffold were established by enzymatic degradation and MTT assay. Enzymatic degradation suggested 20–45% of weight loss (WL) within 14 days of incubation. Cytotoxicity analysis showed that scaffolds were noncytotoxic against normal human dermal fibroblast human dermal fibroblast cell lines. Significant cellular adherence over the scaffold surface with normal cellular morphology was confirmed using SEM analysis. In vivo efficacy evaluation was carried out by means of reduction in wound size on Sprague-Dawley rats. Sprague-Dawley rats treated with optimized scaffold showed ~ 100% wound healing in comparison to ~80% healing in betadine-treated animals within 14 days. Histological examination depicted advance re-epithelization with better organization of collagen bundle in wound area treated with 2% CS in comparison to conventional treatment or no treatment. Conclusion: This study, thus, reveals that 2% CSs were found to have a great potential in wound healing. PMID:28216954

  16. People--things and data--ideas: bipolar dimensions?

    PubMed

    Tay, Louis; Su, Rong; Rounds, James

    2011-07-01

    We examined a longstanding assumption in vocational psychology that people-things and data-ideas are bipolar dimensions. Two minimal criteria for bipolarity were proposed and examined across 3 studies: (a) The correlation between opposite interest types should be negative; (b) after correcting for systematic responding, the correlation should be greater than -.40. In Study 1, a meta-analysis using 26 interest inventories with a sample size of 1,008,253 participants showed that meta-analytic correlations between opposite RIASEC (realistic, investigative, artistic, social, enterprising, conventional) types ranged from -.03 to .18 (corrected meta-analytic correlations ranged from -.23 to -.06). In Study 2, structural equation models (SEMs) were fit to the Interest Finder (IF; Wall, Wise, & Baker, 1996) and the Interest Profiler (IP; Rounds, Smith, Hubert, Lewis, & Rivkin, 1999) with sample sizes of 13,939 and 1,061, respectively. The correlations of opposite RIASEC types were positive, ranging from .17 to .53. No corrected correlation met the criterion of -.40 except for investigative-enterprising (r = -.67). Nevertheless, a direct estimate of the correlation between data-ideas end poles using targeted factor rotation did not reveal bipolarity. Furthermore, bipolar SEMs fit substantially worse than a multiple-factor representation of vocational interests. In Study 3, a two-way clustering solution on IF and IP respondents and items revealed a substantial number of individuals with interests in both people and things. We discuss key theoretical, methodological, and practical implications such as the structure of vocational interests, interpretation and scoring of interest measures for career counseling, and expert RIASEC ratings of occupations.

  17. The Effects of Gay Sexually Explicit Media on the HIV Risk Behavior of Men who have Sex with Men

    PubMed Central

    Simon Rosser, B. R.; Smolenski, Derek J.; Erickson, Darin; Iantaffi, Alex; Brady, Sonya S.; Galos, Dylan L.; Grey, Jeremy A.; Hald, Gert Martin; Horvath, Keith J.; Kilian, Gunna; Træen, Bente; Wilkerson, J. Michael

    2013-01-01

    This study sought to study consumption patterns of gay-oriented sexually explicit media (SEM) by men who have sex with men (MSM); and to investigate a hypothesized relationship between gay SEM consumption and HIV risk behavior. Participants were 1391 MSM living in the US, recruited online to complete a SEM consumption and sexual risk survey. Almost all (98.5%) reported some gay SEM exposure over the last 90 days. While 41% reported a preference to watch actors perform anal sex without condoms (termed “bareback SEM”), 17% preferred to actors perform anal sex with condoms (termed “safer sex SEM”) and 42% reported no preference. Overall SEM consumption was not associated with HIV risk; however participants who watched more bareback SEM reported significantly greater odds of engaging in risk behavior. The results suggest that a preference for bareback SEM is associated with engaging in risk behavior. More research to understand how MSM develop and maintain preferences in viewing SEM, and to identify new ways to use SEM in HIV prevention, is recommended. PMID:23564010

  18. SEMS vs cSEMS in duodenal and small bowel obstruction: High risk of migration in the covered stent group

    PubMed Central

    Waidmann, Oliver; Trojan, Jörg; Friedrich-Rust, Mireen; Sarrazin, Christoph; Bechstein, Wolf Otto; Ulrich, Frank; Zeuzem, Stefan; Albert, Jörg Gerhard

    2013-01-01

    AIM: To compare clinical success and complications of uncovered self-expanding metal stents (SEMS) vs covered SEMS (cSEMS) in obstruction of the small bowel. METHODS: Technical success, complications and outcome of endoscopic SEMS or cSEMS placement in tumor related obstruction of the duodenum or jejunum were retrospectively assessed. The primary end points were rates of stent migration and overgrowth. Secondary end points were the effect of concomitant biliary drainage on migration rate and overall survival. The data was analyzed according to the Strengthening the Reporting of Observational Studies in Epidemiology guidelines. RESULTS: Thirty-two SEMS were implanted in 20 patients. In all patients, endoscopic stent implantation was successful. Stent migration was observed in 9 of 16 cSEMS (56%) in comparison to 0/16 SEMS (0%) implantations (P = 0.002). Stent overgrowth did not significantly differ between the two stent types (SEMS: 3/16, 19%; cSEMS: 2/16, 13%). One cSEMS dislodged and had to be recovered from the jejunum by way of laparotomy. Time until migration between SEMS and cSEMS in patients with and without concomitant biliary stents did not significantly differ (HR = 1.530, 95%CI 0.731-6.306; P = 0.556). The mean follow-up was 57 ± 71 d (range: 1-275 d). CONCLUSION: SEMS and cSEMS placement is safe in small bowel tumor obstruction. However, cSEMS is accompanied with a high rate of migration in comparison to uncovered SEMS. PMID:24115817

  19. High incorrect use of the standard error of the mean (SEM) in original articles in three cardiovascular journals evaluated for 2012.

    PubMed

    Wullschleger, Marcel; Aghlmandi, Soheila; Egger, Marcel; Zwahlen, Marcel

    2014-01-01

    In biomedical journals authors sometimes use the standard error of the mean (SEM) for data description, which has been called inappropriate or incorrect. To assess the frequency of incorrect use of SEM in articles in three selected cardiovascular journals. All original journal articles published in 2012 in Cardiovascular Research, Circulation: Heart Failure and Circulation Research were assessed by two assessors for inappropriate use of SEM when providing descriptive information of empirical data. We also assessed whether the authors state in the methods section that the SEM will be used for data description. Of 441 articles included in this survey, 64% (282 articles) contained at least one instance of incorrect use of the SEM, with two journals having a prevalence above 70% and "Circulation: Heart Failure" having the lowest value (27%). In 81% of articles with incorrect use of SEM, the authors had explicitly stated that they use the SEM for data description and in 89% SEM bars were also used instead of 95% confidence intervals. Basic science studies had a 7.4-fold higher level of inappropriate SEM use (74%) than clinical studies (10%). The selection of the three cardiovascular journals was based on a subjective initial impression of observing inappropriate SEM use. The observed results are not representative for all cardiovascular journals. In three selected cardiovascular journals we found a high level of inappropriate SEM use and explicit methods statements to use it for data description, especially in basic science studies. To improve on this situation, these and other journals should provide clear instructions to authors on how to report descriptive information of empirical data.

  20. Application of biocompatible magnetite nanoparticles for the removal of arsenic and copper from water

    NASA Astrophysics Data System (ADS)

    Iconaru, S. L.; Beuran, M.; Turculet, C. S.; Negoi, I.; Teleanu, G.; Prodan, A. M.; Motelica-Heino, M.; Guégan, R.; Ciobanu, C. S.; Jiga, G.; Predoi, Daniela

    2018-02-01

    The progress of nanotechnology made possible the use of nanomaterials as adsorbents and magnetic iron oxides represents one of the first generations of nanoscale materials used in environment technologies [1]. A systematic characterization of commercial magnetite (Fe3O4) is presented in this research. The commercial (Fe3O4) magnetic adsorbents were characterized by various characterizations methods such as X-ray diffraction (XRD), Scanning Electron Microscopy (SEM) and Energy Dispersive X-ray analysis (EDX). This study was also focused on the study of adsorption isotherms and the kinetics evaluation. X-ray studies indicated that As3+ and Cu2+ removed by Fe3O4 did not seem to alter the structure of Fe3O4 but they were highlighted in the EDX analysis. In addition, the SEM studies were consistent with the XRD results. The rate of adsorption of contaminants, in contaminated solutions decreases when the amount of contaminant increases in all experiments performed. The results revealed that Fe3O4 nanoparticles are promising candidates which could be used as sorbents for the removal of arsenic from the marine environment, for site remediation and groundwater treatment.

  1. A study on chloride induced depassivation of Fe-P-C-Si and Fe-P-C-Si-N steels in simulated concrete pore solution

    NASA Astrophysics Data System (ADS)

    Mehta, Yashwant; Chaudhari, Gajanan P.; Dabhade, Vikram V.

    2018-03-01

    The corrosion behaviour of high phosphorous steels containing varying amounts of silicon and nitrogen was studied by potentiodynamic polarization, linear polarization resistance (LPR) and electrochemical impedance spectroscopy (EIS) measurements. The morphology of a steel specimen tested in chloride containing concrete pore solution was studied using scanning electron microscope (SEM) and the elemental distribution at the pitting corrosion area was investigated using electron dispersive spectroscopy (EDS). The results showed that the capacitance increased and resistance declined with immersion time in Ca(OH)2 solution containing 0.1% chloride for plain carbon steel. The opposite was observed in the case of the high phosphorous steels. The potentiodynamic polarization and LPR results complement the EIS findings. Corrosion behaviour could be described with an equivalent circuit having two time constants. The creation, expansion and degradation of the passive layer were discussed with the help of the equivalent circuit elements. The SEM-EDS studies revealed that MnS inclusions at the surface could have a role in the initiation and growth of pits and that phosphorous was present at the pit free surface of the steel.

  2. FIB/SEM technology and high-throughput 3D reconstruction of dendritic spines and synapses in GFP-labeled adult-generated neurons.

    PubMed

    Bosch, Carles; Martínez, Albert; Masachs, Nuria; Teixeira, Cátia M; Fernaud, Isabel; Ulloa, Fausto; Pérez-Martínez, Esther; Lois, Carlos; Comella, Joan X; DeFelipe, Javier; Merchán-Pérez, Angel; Soriano, Eduardo

    2015-01-01

    The fine analysis of synaptic contacts is usually performed using transmission electron microscopy (TEM) and its combination with neuronal labeling techniques. However, the complex 3D architecture of neuronal samples calls for their reconstruction from serial sections. Here we show that focused ion beam/scanning electron microscopy (FIB/SEM) allows efficient, complete, and automatic 3D reconstruction of identified dendrites, including their spines and synapses, from GFP/DAB-labeled neurons, with a resolution comparable to that of TEM. We applied this technology to analyze the synaptogenesis of labeled adult-generated granule cells (GCs) in mice. 3D reconstruction of dendritic spines in GCs aged 3-4 and 8-9 weeks revealed two different stages of dendritic spine development and unexpected features of synapse formation, including vacant and branched dendritic spines and presynaptic terminals establishing synapses with up to 10 dendritic spines. Given the reliability, efficiency, and high resolution of FIB/SEM technology and the wide use of DAB in conventional EM, we consider FIB/SEM fundamental for the detailed characterization of identified synaptic contacts in neurons in a high-throughput manner.

  3. FIB/SEM technology and high-throughput 3D reconstruction of dendritic spines and synapses in GFP-labeled adult-generated neurons

    PubMed Central

    Bosch, Carles; Martínez, Albert; Masachs, Nuria; Teixeira, Cátia M.; Fernaud, Isabel; Ulloa, Fausto; Pérez-Martínez, Esther; Lois, Carlos; Comella, Joan X.; DeFelipe, Javier; Merchán-Pérez, Angel; Soriano, Eduardo

    2015-01-01

    The fine analysis of synaptic contacts is usually performed using transmission electron microscopy (TEM) and its combination with neuronal labeling techniques. However, the complex 3D architecture of neuronal samples calls for their reconstruction from serial sections. Here we show that focused ion beam/scanning electron microscopy (FIB/SEM) allows efficient, complete, and automatic 3D reconstruction of identified dendrites, including their spines and synapses, from GFP/DAB-labeled neurons, with a resolution comparable to that of TEM. We applied this technology to analyze the synaptogenesis of labeled adult-generated granule cells (GCs) in mice. 3D reconstruction of dendritic spines in GCs aged 3–4 and 8–9 weeks revealed two different stages of dendritic spine development and unexpected features of synapse formation, including vacant and branched dendritic spines and presynaptic terminals establishing synapses with up to 10 dendritic spines. Given the reliability, efficiency, and high resolution of FIB/SEM technology and the wide use of DAB in conventional EM, we consider FIB/SEM fundamental for the detailed characterization of identified synaptic contacts in neurons in a high-throughput manner. PMID:26052271

  4. The glycaemic index and insulinaemic index of commercially available breakfast and snack foods in an Asian population.

    PubMed

    Tan, Wei Shuan Kimberly; Tan, Wei Jie Kevin; Ponnalagu, Shalini D/O; Koecher, Katie; Menon, Ravi; Tan, Sze-Yen; Henry, Christiani J

    2018-05-01

    A low-glycaemic-index (GI) breakfast has been shown to lower blood glucose levels throughout the day. A wide variety of breakfast foods are consumed, but their GI values are largely unknown, hence limiting consumers' ability to select healthier options. This study investigated the GI values of ten common breakfast (five Asian and five Western) foods in this region using a randomised, cross-over study design. Participants arrived after an overnight fast, and fasting blood sample was taken before participants consumed test foods. Next, blood samples were taken at fixed intervals for 180 min. Glycaemic and insulinaemic responses to test foods were calculated as incremental AUC over 120 min, which were subsequently reported as glycaemic and insulinaemic indices. In all, nineteen healthy men (nine Chinese and ten Indians) aged 24·7 (sem 0·4) years with a BMI of 21·7 (sem 0·4) kg/m2 completed the study. Asian breakfast foods were of medium (white bun filled with red bean paste=58 (sem 4); Chinese steamed white bun=58 (sem 3)) to high GI (rice idli=85 (sem 4); rice dosa=76 (sem 5); upma=71 (sem 6)), whereas Western breakfast foods were all of low GI (whole-grain biscuit=54 (sem 5); whole-grain biscuit filled with peanut butter=44 (sem 3); whole-grain oat muesli=55 (sem 4); whole-grain oat protein granola=51 (sem 4); whole-grain protein cereal=49 (sem 3)). The GI of test foods negatively correlated with protein (r s -0·366), fat (r s -0·268) and dietary fibre (r s -0·422) (all P<0·001). GI values from this study contribute to the worldwide GI database, and may assist healthcare professionals in recommending low-GI breakfast to assist in lower daily glycaemia among Asians who are susceptible to type 2 diabetes mellitus.

  5. Effect of stoichiometry on magnetic and transport properties in polycrystalline Y2Ir2O7

    NASA Astrophysics Data System (ADS)

    Dwivedi, Vinod Kumar; Mukhopadhyay, Soumik

    2018-05-01

    In this paper we discuss synthesis of polycrystalline Y2Ir2O7 by solid state reaction route. XRD analysis shows deviation from stoichiometry which is also confirmed by SEM-EDX analysis. SEM analysis indicates average particle size ranging from 100 nm to 800 µm. EDX analysis gives clear evidence for deviation of stoichiometry of the product. Magnetic analysis is indicating effect of stoichiometry and showing ferromagnetic interaction unlike antiferromagnetic feature. Electrical resistivity is showing similar behavior as reported earlier and reveals no effect of different size of grains or grain boundaries from room temperature to 125 K.

  6. Monodispersed fabrication and dielectric studies on ethylenediamine passivated α-manganese dioxide nanorods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Joseph, A. Martin; Kumar, R. Thilak, E-mail: manojthilak@yahoo.com

    2016-09-15

    Highlights: • Monodispersed ethylenediamine (EDA) passivated α-MnO{sub 2} nanorods were fabricated by inexpensive wet chemical method. • FTIR analysis indicated that surface passivation is strongly influenced by the introduction of the organic ligand. • XRD and HR-SEM revealed the structure and morphology of the fabricated α-MnO{sub 2} nanorods with an average size of about 40 × 200 nm. • Dielectric studies pointed out that the fabricated α-MnO{sub 2} is semiconducting in nature with resistivity, ρ = 1.46 to 5.76 × 10{sup 3} Ωcm. • The optical energy gap for the fabricated α-MnO{sub 2} nanorods is found to be around 1.37more » eV. - Abstract: In this present work, pure α-MnO{sub 2} nanorods were fabricated by the reduction of 0.2 m/L of KMnO{sub 4} with 0.2 m/L of Na{sub 2}S{sub 2}O{sub 3}·5H{sub 2}O and by passivating with the organic ligand Ethylenediamine (EDA). The structural, functional, morphological and chemical composition of the nanorods were investigated by X-Ray Diffractometer (XRD), Fourier Transform Infrared Spectrometer (FTIR), High Resolution Scanning Electron Microscope (HR-SEM) and Energy Dispersive X-Ray Spectrometry (EDX). The XRD analysis indicated high crystalline nature of the product and FTIR confirmed the contribution of the organic ligand in surface passivation. HR-SEM image revealed the morphology of the α-MnO{sub 2} nanorods with an average size of about 40 × 200 nm. EDX confirmed the presence of Mn and O in the material. UV–visible spectrophotometery was used to determine the absorption behavior of the nanorods and an indirect band gap of 1.37 eV was acquired by Taucplot. Dielectric studies were carried out using Broadband Dielectric Spectrometer(BDS) and the resistivity was found to be around the semiconductor range (ρ = 1.46 to 5.76 × 10{sup 3} Ωcm).« less

  7. Surface modification of an aluminum alloy by electron beam introducing TiCN nanoparticles

    NASA Astrophysics Data System (ADS)

    Kolev, M.; Dimitrova, R.; Parshorov, St.; Valkov, St.; Lazarova, R.; Petrov, P.

    2018-03-01

    TiCN nanopowder deposited in an appropriate way on the surface of an AlSi12Cu2NiMg substrate was incorporated in the matrix using an electron beam technology. The samples were studied by means of light microscopy, SEM, and EDX; their microhardness was also determined. The formation was found of a uniform and dense coating with a thickness of 7 – 10 μgm with a good adherence to the substrate. A modified zone appeared under the coating with a thickness of 100 – 150 μgm containing dendrites of an α-solid solution and a fine eutectic between them, as well as primary silicon crystals. The microhardness of this modified zone was up to 2.4 times higher than that of the matrix. The results of SEM and EDX studies revealed unambiguously the presence of titanium in the coating and in the zones below it. Obviously, the electron beam treatment resulted in the TiCN nanoparticles penetrating into the coating and the substrate immediately below the coating.

  8. Chain length effect on the structure and stability of antimicrobial peptides of the (RW)n series.

    PubMed

    Phambu, Nsoki; Almarwani, Bashiyar; Garcia, Arlette M; Hamza, Nafisa S; Muhsen, Amira; Baidoo, Jacqueline E; Sunda-Meya, Anderson

    2017-08-01

    Three peptides containing (RW) n -NH 2 units (where n=4, 6, and 8) have been chosen to study the effect of the chain length on the structure and stability of the peptide using Fourier transform infrared (FTIR), scanning electron microscopy (SEM), thermogravimetric analysis (TGA), and differential scanning calorimetry (DSC) techniques. Their interactions with Escherichia coli (E. coli) membrane mimetic vesicles are discussed. Infrared results indicate that addition of (RW) n -NH 2 units increases intermolecular H bonds with antiparallel orientation. TGA and DSC results reveal that (RW) 6 -NH 2 shows the optimal chain length in terms of stability and all three peptides show a preferential interaction with one of the anionic lipids in E. coli membranes. SEM images of (RW) 4 -NH 2 present large aggregates while those of (RW) 6 -NH 2 and (RW) 8 -NH 2 present layers of sheet-like structure. In the presence of model membranes, (RW) n -NH 2 show fibrillar peptide superstructures. This study suggests that repeating structures of (RW) n -NH 2 promotes lateral assembly. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Measuring topographies from conventional SEM acquisitions.

    PubMed

    Shi, Qiwei; Roux, Stéphane; Latourte, Félix; Hild, François; Loisnard, Dominique; Brynaert, Nicolas

    2018-04-27

    The present study extends the stereoscopic imaging principle for estimating the surface topography to two orientations, namely, normal to the electron beam axis and inclined at 70° as suited for EBSD analyses. In spite of the large angle difference, it is shown that the topography can be accurately determined using regularized global Digital Image Correlation. The surface topography is compared to another estimate issued from a 3D FIB-SEM procedure where the sample surface is first covered by a Pt layer, and its initial topography is progressively revealed from successive FIB-milling. These two methods are successfully compared on a 6% strained steel specimen in an in situ mechanical test. This analysis is supplemented by a third approach estimating the change of topography from crystal rotations as measured from successive EBSD images. This last technique ignores plastic deformation, and thus only holds in an elastic regime. For the studied example, despite the large plastic flow, it is shown that crystal rotation already accounts for a significant part of the deformation-induced topography. Copyright © 2018 Elsevier B.V. All rights reserved.

  10. Three-dimensional cellulose sponge: Fabrication, characterization, biomimetic mineralization, and in vitro cell infiltration.

    PubMed

    Joshi, Mahesh Kumar; Pant, Hem Raj; Tiwari, Arjun Prasad; Maharjan, Bikendra; Liao, Nina; Kim, Han Joo; Park, Chan Hee; Kim, Cheol Sang

    2016-01-20

    In this study, cellulose based scaffolds were produced by electrospinning of cellulose acetate (CA) solution followed by its saponification with NaOH/ethanol system for 24h. The resulting nonwoven cellulose mat was treated with sodium borohydride (SB) solution. In situ hydrolysis of SB solution into the pores of the membrane produced hydrogen gas resulting a three-dimensional (3D) cellulose sponge. SEM images demonstrated an open porous and loosely packed fibrous mesh compared to the tightly packed single-layered structure of the conventional electrospun membrane. 3D cellulose sponge showed admirable ability to nucleate bioactive calcium phosphate (Ca-P) crystals in simulated body fluid (SBF) solution. SEM-EDX and X-ray diffraction studies revealed that the minerals deposited on the nanofibers have the nonstoichiometric composition similar to that of hydroxyapatite, the mineralized component of the bone. 3D cellulose sponge exhibited the better cell infiltration, spreading and proliferation compared to 2D cellulose mat. Therefore, a facile fabrication of 3D cellulose sponge with improved mineralization represents an innovative strategy for the bone tissue engineering applications. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Synthesis of TiO2 Nanoparticle and its phase Transition

    NASA Astrophysics Data System (ADS)

    Mangrola, M. H.; Joshi, V. G.; Parmar, B. H.

    2011-12-01

    Here we report the synthesis of titanium dioxide (TiO2) nanoparticles and study of its phase transition from anataze to rutile. Titanium dioxide (TiO2) nanoparticles have been prepared by hydrolysis of Titanium isopropoxide an aqueous solution with constant value of pH 2 and peptizing the resultant suspension gel(white-Blue) and calcinate gel at different temperature. Structures of synthetic samples of TiO2 have been examined by X-ray diffraction (XRD) and scanning electron microscope (SEM). The anatase-rutile transition has been a popular topic due to its interest to scientific and engineering fields. . Here we have seen that the 100 °C calcinate powder consist of anatase fine crystalline phase with a particle size 14 to 15 nm. The prepared TiO2 nanoparticles have uniform size and morphology, and the phase transformation kinetics of obtained material was studied by interpretation of the X-ray diffraction patterns peaks. The phase transform occurred from anatase to rutile at calcinate temperature up to 600 °C. A very fine network texture made from uniform nanoparticles was revealed by scanning electron microscopy (SEM) analyses.

  12. New approach in evaluation of ceramic-polymer composite bioactivity and biocompatibility.

    PubMed

    Borkowski, Leszek; Sroka-Bartnicka, Anna; Polkowska, Izabela; Pawlowska, Marta; Palka, Krzysztof; Zieba, Emil; Slosarczyk, Anna; Jozwiak, Krzysztof; Ginalska, Grazyna

    2017-09-01

    Regeneration of bone defects was promoted by a novel β-glucan/carbonate hydroxyapatite composite and characterized by Raman spectroscopy, microCT and electron microscopy. The elastic biomaterial with an apatite-forming ability was developed for bone tissue engineering and implanted into the critical-size defects of rabbits' tibiae. The bone repair process was analyzed on non-decalcified bone/implant sections during a 6-month regeneration period. Using spectroscopic methods, we were able to determine the presence of amides, lipids and assign the areas of newly formed bone tissue. Raman spectroscopy was also used to assess the chemical changes in the composite before and after the implantation process. SEM analyses showed the mineralization degree in the defect area and that the gap size decreased significantly. Microscopic images revealed that the implant debris were interconnected to the poorly mineralized inner side of a new bone tissue. Our study demonstrated that the composite may serve as a biocompatible background for collagen ingrowth and exhibits the advantages of applying Raman spectroscopy, SEM and microCT in studying these samples.

  13. Preparation and biocompatibility study of in situ forming polymer implants in rat brains.

    PubMed

    Nasongkla, Norased; Boongird, Atthaporn; Hongeng, Suradej; Manaspon, Chawan; Larbcharoensub, Noppadol

    2012-02-01

    We describe the development of polymer implants that were designed to solidify once injected into rat brains. These implants comprised of glycofurol and copolymers of D: ,L: -lactide (LA), ε-caprolactone and poly(ethylene glycol) (PLECs). Scanning electron microscopy (SEM) and gel permeation chromatography (GPC) showed that the extent of implant degradation was increased with LA: content in copolymers. SEM analysis revealed the formation of porosity on implant surface as the degradation proceeds. PLEC with 19.3% mole of LA: was chosen to inject in rat brains at the volume of 10, 25 and 40 μl. Body weights, hematological and histopathological data of rats treated with implants were evaluated on day 3, 6, 14, 30 and 45 after the injection. Polymer solution at the injection volume of 10 μl were tolerated relatively well compared to those of 25 and 40 μl as confirmed by higher body weight and healing action (fibrosis tissue) 30 days after treatment. The results from this study suggest a possible application as drug delivery systems that can bypass the blood brain barrier.

  14. Structure, microstructure and infrared studies of Ba{sub 0.06}(Na{sub 1/2}Bi{sub 1/2}){sub 0.94}TiO{sub 3}-NaNbO{sub 3} ceramics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roy, Sumit K., E-mail: sumit.sxc13@gmail.com; Singh, S. N., E-mail: snsphyru@gmail.com; Prasad, K., E-mail: k.prasad65@gmail.com

    2016-05-06

    Lead-free solid solutions (1-x)Ba{sub 0.06}(Na{sub 1/2}Bi{sub 1/2}){sub 0.94}TiO{sub 3}-xNaNbO{sub 3} (0 ≤ x ≤ 1.0) were prepared by conventional ceramic fabrication technique. X-ray diffraction and Rietveld refinement analyses of these ceramics were carried out using X’Pert HighScore Plus software to determine the crystal symmetry, space group and unit cell dimensions. Rietveld refinement revealed that NaNbO{sub 3} with orthorhombic structure was completely diffused into Ba{sub 0.06}(Na{sub 1/2}Bi{sub 1/2}){sub 0.94}TiO{sub 3} lattice having the rhombohedral-tetragonal symmetry. EDS and SEM studies were carried out in order to evaluate the quality and purity of the compounds. SEM images showed a change in grain shapemore » with the increase of NaNbO{sub 3} content. FTIR spectra confirmed the formation of solid solution.« less

  15. Synthesis and Characterization of Titanium Dioxide Thin Film for Sensor Applications

    NASA Astrophysics Data System (ADS)

    Latha, H. K. E.; Lalithamba, H. S.

    2018-03-01

    Titanium oxide (TiO2) nanoparticles (metal oxide semiconductor) are successfully synthesized using hydrothermal method for sensor application. Titanium dioxide and Sodium hydroxide are used as precursors. These reactants are mixed and calcinated at 400 °C to produce TiO2 nanoparticles. The crystalline structure, morphology of synthesized TiO2 nanoparticles are studied using x-ray diffraction (XRD), Fourier Transform Infrared (FTIR) analysis and scanning electron microscopy (SEM). XRD results revealed that the prepared TiO2 sample is highly crystalline, having Anatase crystal structure. FT-IR spectra peak at 475 cm‑1 indicated characteristic absorption bands of TiO2 nanoparticles. The XRD and FTIR result confirmed the formation of high purity of TiO2 nanoparticles. The SEM image shows that TiO2 nanoparticles prepared in this study are spherical in shape. Synthesized TiO2 nanoparticles are deposited on glass substrate at room temperature using E beam evaporation method to determine gauge factor and found to be 4.7. The deposited TiO2 thin films offer tremendous potential in the applications of electronic and magneto–electric devices.

  16. Plasma Electrolytic Oxidation Coatings on Pure Ti Substrate: Effects of Na3PO4 Concentration on Morphology and Corrosion Behavior of Coatings in Ringer's Physiological Solution

    NASA Astrophysics Data System (ADS)

    Roknian, Masoud; Fattah-alhosseini, Arash; Gashti, Seyed Omid

    2018-03-01

    Plasma electrolytic oxidation has been used as a relatively new method for applying ceramic coatings having different features. In the present study, commercially pure titanium is used as substrate, and effects of trisodium phosphate electrolyte concentration on the microstructure, as well as corrosion behavior of the coating in Ringer's physiological solution are investigated. The morphology and phase compositions of coatings were analyzed by using scanning electron microscopy (SEM) and x-ray diffraction patterns. The study on the corrosion behavior of samples in a Ringer's physiological solution was carried out using open-circuit potential potentiodynamic polarization and electrochemical impedance spectroscopy. The results of electrochemical analysis proved that higher concentration of phosphate electrolyte leads to increase in the corrosion resistance of applied coatings. Accordingly, obtained results revealed that the optimum electrolyte concentration for the best corrosion behavior was 20 g L-1. Furthermore, SEM images and reduction in the dielectric breakdown potential indicated that increase in the electrolyte concentration leads to morphological improvement and smoothening of the surface.

  17. Enhanced Bioavailability and Anticancer Effect of Curcumin-Loaded Electrospun Nanofiber: In Vitro and In Vivo Study

    NASA Astrophysics Data System (ADS)

    Wang, Chuan; Ma, Chao; Wu, Zhenkai; Liang, He; Yan, Peng; Song, Jia; Ma, Nan; Zhao, Qinghua

    2015-11-01

    Nanofibers have attracted increasing attention in drug delivery and other biomedical applications due to their some special properties. The present study aims to prepare a fiber-based nanosolid dispersion system to enhance the bioavailability of curcumin (CUR). CUR-loaded polyvinyl pyrrolidone (CUR@PVP) nanofibers were successfully prepared via electrospinning. Scanning electron microscopy (SEM) was employed to observe the morphology of the nanofibers, and the SEM image showed that the drug-loaded nanofibers were smooth, and no CUR clusters were found on the surface of the nanofibers. The results of X-ray diffraction (XRD) demonstrated that the CUR was evenly distributed in the nanofibers in an amorphous state. Fourier transform infrared (FTIR) spectroscopy analysis indicated that intermolecular hydrogen bonding occurred between the CUR and the polymer matrix. In vitro dissolution profiles showed that CUR@PVP nanofiber could be quickly dissolved in phosphate-buffered saline (PBS) solution, while negligible dissolution was observed in pure CUR sample. Importantly, in vitro cell viability assays and in vivo animal tests revealed that the nanosolid dispersion system dramatically enhanced the bioavailability and showed effective anticancer effect of the CUR.

  18. Combined PIXE and X-ray SEM studies on time-resolved deposits of welding shop aerosols

    NASA Astrophysics Data System (ADS)

    Barfoot, K. M.; Mitchell, I. V.; Verheyen, F.; Babeliowsky, T.

    1981-03-01

    Time-resolved deposits of welding shop air particulates have been obtained using a streak sampling system. PIXE analysis of these deposits, using 2 MeV protons, typically revealed the presence of a large number of elements, with many in the range Z = 11-30. Strong variations, up to three orders of magnitude, in the concentrations of several elements such as Al, Si and Fe as well as Zn, Na, K and Ca were found. The 2 h sampling resolution normally used was found to be insufficient to follow the short pollution episodes that regularly occur in a welding shop environment and so sampling with a 20 min resolution was used. The variation of elemental concentrations for different sampling times together with information on the physical nature of these air particulates, determined with a scanning electron microscope (SEM) and Si(Li) X-ray detector attachment, are presented. This type of information together with that obtained from the PIXE analysis is of importance in industrial hygiene studies. The need to make corrections for partial filter clogging, based on air-flow rate monitoring, is discussed.

  19. Cryo-FIB-SEM serial milling and block face imaging: Large volume structural analysis of biological tissues preserved close to their native state.

    PubMed

    Vidavsky, Netta; Akiva, Anat; Kaplan-Ashiri, Ifat; Rechav, Katya; Addadi, Lia; Weiner, Steve; Schertel, Andreas

    2016-12-01

    Many important biological questions can be addressed by studying in 3D large volumes of intact, cryo fixed hydrated tissues (⩾10,000μm 3 ) at high resolution (5-20nm). This can be achieved using serial FIB milling and block face surface imaging under cryo conditions. Here we demonstrate the unique potential of the cryo-FIB-SEM approach using two extensively studied model systems; sea urchin embryos and the tail fin of zebrafish larvae. We focus in particular on the environment of mineral deposition sites. The cellular organelles, including mitochondria, Golgi, ER, nuclei and nuclear pores are made visible by the image contrast created by differences in surface potential of different biochemical components. Auto segmentation and/or volume rendering of the image stacks and 3D reconstruction of the skeleton and the cellular environment, provides a detailed view of the relative distribution in space of the tissue/cellular components, and thus of their interactions. Simultaneous acquisition of secondary and back-scattered electron images adds additional information. For example, a serial view of the zebrafish tail reveals the presence of electron dense mineral particles inside mitochondrial networks extending more than 20μm in depth in the block. Large volume imaging using cryo FIB SEM, as demonstrated here, can contribute significantly to the understanding of the structures and functions of diverse biological tissues. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Bilateral metal stents for hilar biliary obstruction using a 6Fr delivery system: outcomes following bilateral and side-by-side stent deployment.

    PubMed

    Law, Ryan; Baron, Todd H

    2013-09-01

    Controversy exists on optimal endoscopic management for palliation of malignant hilar obstruction, with advocates for metal "side-by-side" (SBS) and "stent-in-stent" (SIS) techniques. We sought to evaluate the technical feasibility, efficacy, and outcomes of bilateral biliary self-expanding metal stents (SEMS) for treatment of malignant hilar obstruction using a stent with a 6Fr delivery system. This was a single-center, retrospective review of all patients who underwent bilateral placement of Zilver® biliary SEMS for malignant hilar obstruction from January 2010 to August 2012. Patients underwent endoscopic retrograde cholangiopancreatography with placement of stents using either the SIS or SBS stent techniques. Twenty-four patients (19 men, mean age 63 years) underwent bilateral stenting for malignant hilar obstruction during the study period. Seventeen and seven patients underwent the SBS and SIS technique, respectively. Cholangiocarcinoma (n=14) was the most common cause of hilar obstruction. Initial technical success was achieved in 24/24 (100%) of patients; however, 12 (50%) patients required re-intervention during the study period (median 98 days). Comparison of the SBS and SIS groups revealed no statistical difference with respect to need for re-intervention (P=0.31), successful re-intervention (P=0.60), or procedural length (P=0.89). Use of bilateral Zilver® SEMS in either the SBS or SIS configuration is safe, technically feasible, and effective for drainage of malignant hilar obstruction; however, duration of stent patency and procedure-free survival remain variable.

  1. Graft union formation in artichoke grafting onto wild and cultivated cardoon: an anatomical study.

    PubMed

    Trinchera, Alessandra; Pandozy, Gianmarco; Rinaldi, Simona; Crinò, Paola; Temperini, Olindo; Rea, Elvira

    2013-12-15

    In order to develop a non-chemical method such as grafting effective against well-known artichoke soil borne diseases, an anatomical study of union formation in artichoke grafted onto selected wild and cultivated cardoon rootstocks, both resistant to Verticillium wilt, was performed. The cardoon accessions Belgio (cultivated cardoon) and Sardo (wild cardoon) were selected as rootstocks for grafting combinations with the artichoke cv. Romolo. Grafting experiments were carried out in the autumn and spring. The anatomical investigation of grafting union formation was conducted by scanning electron microscopy (SEM) on the grafting portions at the 3rd, 6th, 10th, 12th day after grafting. For the autumn experiment only, SEM analysis was also performed at 30 d after grafting. A high affinity between artichoke scion and cardoon rootstocks was observed, with some genotype differences in healing time between the two bionts. SEM images of scion/rootstock longitudinal sections revealed the appearance of many interconnecting structures between the two grafting components just 3d after grafting, followed by a vascular rearrangement and a callus development during graft union formation. De novo formation of many plasmodesmata between scion and rootstock confirmed their high compatibility, particularly in the globe artichoke/wild cardoon combination. Moreover, the duration of the early-stage grafting process could be influenced not only by the scion/rootstock compatibility, but also by the seasonal conditions, being favored by lower temperatures and a reduced light/dark photoperiod. Copyright © 2013 Elsevier GmbH. All rights reserved.

  2. Electron Microscope Studies of Cadmium Mercury Telluride

    NASA Astrophysics Data System (ADS)

    Lyster, Martin

    Available from UMI in association with The British Library. Requires signed TDF. Epitaxial layers of Cd_{x }Hg_{(1-x)}Te grown on various substrates by liquid phase epitaxy and metallo-organic vapour phase epitaxy have been studied using transmission and scanning electron microscopy, in a variety of contrast modes. Wavelength-dispersive X-ray microanalysis has been used to study interfaces in epitaxial specimens, and the results are used to derive diffusion coefficients for a range of values of x in Cd_ {x}Hg_{(1-x)} Te. Extensive use has been made of back-scattered electron contrast in the SEM as a means of compositional mapping, and defect structures are imaged by this technique. The back-scattered electron contrast at interfaces has been studied in detail and is modelled using the Monte Carlo approach. The modelling is combined with calculations and practical measurements of the probe size in the SEM instrument used in the work, to arrive at a quantitative explanation of this contrast. The SEM and scintillator detector used allow a spatial resolution of better than 1000A, but it is shown that improvements in this are possible with present technology. Scanning infra-red microscopy (SIRM) and high -resolution transmission electron microscopy (HREM) have been applied to the study of CdTe. SIRM images reveal information about Te precipitation, including particle size and density. HREM images provide results concerning dislocation structures in CdTe. Selected-area diffraction contrast TEM results are presented which illustrate the microstructure of LPE and MOVPE material; and TEM foil preparation techniques are discussed, including the choice of ion species for milling cross-sectional specimens. In view of the results obtained, suggestions are made for future work in this field.

  3. The development of comparative bias index

    NASA Astrophysics Data System (ADS)

    Aimran, Ahmad Nazim; Ahmad, Sabri; Afthanorhan, Asyraf; Awang, Zainudin

    2017-08-01

    Structural Equation Modeling (SEM) is a second generation statistical analysis techniques developed for analyzing the inter-relationships among multiple variables in a model simultaneously. There are two most common used methods in SEM namely Covariance-Based Structural Equation Modeling (CB-SEM) and Partial Least Square Path Modeling (PLS-PM). There have been continuous debates among researchers in the use of PLS-PM over CB-SEM. While there is few studies were conducted to test the performance of CB-SEM and PLS-PM bias in estimating simulation data. This study intends to patch this problem by a) developing the Comparative Bias Index and b) testing the performance of CB-SEM and PLS-PM using developed index. Based on balanced experimental design, two multivariate normal simulation data with of distinct specifications of size 50, 100, 200 and 500 are generated and analyzed using CB-SEM and PLS-PM.

  4. The assessment of the performance of covariance-based structural equation modeling and partial least square path modeling

    NASA Astrophysics Data System (ADS)

    Aimran, Ahmad Nazim; Ahmad, Sabri; Afthanorhan, Asyraf; Awang, Zainudin

    2017-05-01

    Structural equation modeling (SEM) is the second generation statistical analysis technique developed for analyzing the inter-relationships among multiple variables in a model. Previous studies have shown that there seemed to be at least an implicit agreement about the factors that should drive the choice between covariance-based structural equation modeling (CB-SEM) and partial least square path modeling (PLS-PM). PLS-PM appears to be the preferred method by previous scholars because of its less stringent assumption and the need to avoid the perceived difficulties in CB-SEM. Along with this issue has been the increasing debate among researchers on the use of CB-SEM and PLS-PM in studies. The present study intends to assess the performance of CB-SEM and PLS-PM as a confirmatory study in which the findings will contribute to the body of knowledge of SEM. Maximum likelihood (ML) was chosen as the estimator for CB-SEM and was expected to be more powerful than PLS-PM. Based on the balanced experimental design, the multivariate normal data with specified population parameter and sample sizes were generated using Pro-Active Monte Carlo simulation, and the data were analyzed using AMOS for CB-SEM and SmartPLS for PLS-PM. Comparative Bias Index (CBI), construct relationship, average variance extracted (AVE), composite reliability (CR), and Fornell-Larcker criterion were used to study the consequence of each estimator. The findings conclude that CB-SEM performed notably better than PLS-PM in estimation for large sample size (100 and above), particularly in terms of estimations accuracy and consistency.

  5. A test of self-determination theory in school physical education.

    PubMed

    Standage, Martyn; Duda, Joan L; Ntoumanis, Nikos

    2005-09-01

    Contemporary research conducted in the context of school physical education (PE) has increasingly embraced various tenets of self-determination theory (Deci & Ryan, 1985, 1991). Despite this increase in research attention, some postulates of the framework remain unexplored (e.g. impact of a need-supportive climate). As such, the present study sought to provide a more comprehensive test of self-determination theory. The present work also examined Deci and Ryan's claim that the motivational sequence embraced by their framework is invariant across gender. (i) To examine a model of motivation based on the tenets of self-determination theory, and (ii) explore the invariance of the model across gender. Participants were 950 British secondary school students (443 male, 490 female, 17 gender not specified) Participants completed a questionnaire that included measures of need support, need satisfaction, motivation, positive and negative affect, task challenge, and concentration. Structural equation modelling (SEM) analysis revealed that students who perceived a need-supporting environment experienced greater levels of need satisfaction. Need satisfaction predicted intrinsic motivation, which, in turn, linked to adaptive PE-related outcomes. In contrast, need satisfaction negatively predicted amotivation, which, in turn, was positively predictive of feelings of unhappiness. Multisample SEM invariance testing revealed the model to be largely invariant for male and female students. The results of the study provide support for self-determination theory and corroborate the application of the framework to the context of school PE. Further, we largely found support for the invariance of the motivational processes embraced by self-determination theory across gender.

  6. Comparison of SEM and VPSEM imaging techniques with respect to Streptococcus mutans biofilm topography.

    PubMed

    Weber, Kathryn; Delben, Juliana; Bromage, Timothy G; Duarte, Simone

    2014-01-01

    The study compared images of mature Streptococcus mutans biofilms captured at increasing magnification to determine which microscopy method is most acceptable for imaging the biofilm topography and the extracellular polymeric substance (EPS). In vitro S. mutans biofilms were imaged using (1) scanning electron microscopy (SEM), which requires a dehydration process; (2) SEM and ruthenium red (SEM-RR), which has been shown to support the EPS of biofilms during the SEM dehydration; and (3) variable pressure scanning electron microscopy (VPSEM), which does not require the intensive dehydration process of SEM. The dehydration process and high chamber vacuum of both SEM techniques devastated the biofilm EPS, removed supporting structures, and caused cracking on the biofilm surface. The VPSEM offered the most comprehensive representation of the S. mutans biofilm morphology. VPSEM provides similar contrast and focus as the SEM, but the procedure is far less time-consuming, and the use of hazardous chemicals associated with SEM dehydration protocol is avoided with the VPSEM. The inaccurate representations of the biofilm EPS in SEM experimentation is a possible source of inaccurate data and impediments in the study of S. mutans biofilms. © 2013 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  7. Predictors of stent dysfunction after self-expandable metal stent placement for malignant gastric outlet obstruction: tumor ingrowth in uncovered stents and migration of covered stents.

    PubMed

    Hori, Yasuki; Naitoh, Itaru; Hayashi, Kazuki; Ban, Tesshin; Natsume, Makoto; Okumura, Fumihiro; Nakazawa, Takahiro; Takada, Hiroki; Hirano, Atsuyuki; Jinno, Naruomi; Togawa, Shozo; Ando, Tomoaki; Kataoka, Hiromi; Joh, Takashi

    2017-10-01

    Endoscopic metallic stenting is widely accepted as a palliation therapy for malignant gastric outlet obstruction (GOO). However, the predictors of stent dysfunction have not been clarified. We aimed to evaluate the predictors, especially tumor ingrowth in uncovered self-expandable metallic stents (U-SEMS) and migration of covered self-expandable metallic stents (C-SEMS), which are the main causes related to the stent characteristics. In this multicenter retrospective study, we compared patients with U-SEMS and C-SEMS in terms of clinical outcomes, and predictors of stent dysfunction. In total, 252 patients (126 with U-SEMS and 126 with C-SEMS) were enrolled. There were no significant differences in technical success, clinical success, GOO score, or time to stent dysfunction. Tumor ingrowth was significantly more frequent in U-SEMS (U-SEMS, 11.90% vs. C-SEMS, 0.79%; p = 0.002), and stent migration was significantly more frequent for C-SEMS (C-SEMS, 8.73% vs. U-SEMS, 0.79%; p = 0.005). Karnofsky performance status (p = 0.04), no presence of ascites (p = 0.02), and insufficient (<30%) stent expansion (p = 0.003) were significantly associated with tumor ingrowth in U-SEMS. Meanwhile, a shorter stent length (p = 0.05) and chemotherapy (p = 0.03) were predictors of C-SEMS migration. Both U-SEMS and C-SEMS are effective with comparable patencies. Tumor ingrowth and stent migration are the main causes of stent dysfunction for U-SEMS and C-SEMS, respectively. With regard to stent dysfunction, U-SEMS might be a good option for patients receiving chemotherapy, while C-SEMS with longer stents for patients in good condition. (Clinical trial registration number: UMIN000024059).

  8. The use of gamma irradiation in preparation of polybutadiene rubber nanopowder; Its effect on particle size, morphology and crosslink structure of the powder

    NASA Astrophysics Data System (ADS)

    Rezaei Abadchi, Majid; Jalali-Arani, Azam

    2014-02-01

    The aim of this work was the preparation and characterization of polybutadiene rubber (BR) powder by irradiating of rubber lattices using 60Co radiation and spray-drying of them at the appropriate condition. The influences of absorbed dose on the volume swelling ratio, molecular weight between crosslinks, gel fraction, and glass transition temperature of obtained powder were studied. Morphology, size and size distribution of rubber particles were examined by using scanning electron microscopy (SEM) and laser particle size analyzer (LPSA) technique, respectively. Results obtained by LPSA revealed that radiation has no effect on particle size of rubber latex but after drying, adherence properties of rubber particle causes increase in particle size of rubber powder, as shown in SEM photograph. Fourier transform infrared spectroscopy of rubber powders confirmed that with increasing the irradiation dose, characteristic peak corresponds to the >Cdbnd C< double bands decreased. Also Charlesby-Pinner equation was used to evaluate radiation yield.

  9. Mineralogy of mine waste at the Vermont Asbestos Group mine, Belvidere Mountain, Vermont

    USGS Publications Warehouse

    Levitan, D.M.; Hammarstrom, J.M.; Gunter, M.E.; Seal, R.R.; Chou, I.-Ming; Piatak, N.M.

    2009-01-01

    Samples from the surfaces of waste piles at the Vermont Asbestos Group mine in northern Vermont were studied to determine their mineralogy, particularly the presence and morphology of amphiboles. Analyses included powder X-ray diffraction (XRD), optical microscopy, scanning electron microscopy (SEM), electron probe microanalysis (EPMA), and Raman spectroscopy. Minerals identified by XRD were serpentine-group minerals, magnetite, chlorite, quartz, olivine, pyroxene, and brucite; locally, mica and carbonates were also present. Raman spectroscopy distinguished antigorite and chrysotile, which could not be differentiated using XRD. Long-count, short-range XRD scans of the (110) amphibole peak showed trace amounts of amphibole in most samples. Examination of amphiboles in tailings by optical microscopy, SEM, and EPMA revealed non-fibrous amphiboles compositionally classified as edenite, magnesiohornblende, magnesiokatophorite, and pargasite. No fibrous amphibole was found in the tailings, although fibrous tremolite was identified in a sample of host rock. Knowledge of the mineralogy at the site may lead to better understanding of potential implications for human health and aid in designing a remediation plan.

  10. In vitro evaluation of the flexural properties of All-on-Four provisional fixed denture base resin partially reinforced with fibers.

    PubMed

    Li, Bei Bei; Xu, Jia Bin; Cui, Hong Yan; Lin, Ye; Di, Ping

    2016-01-01

    The aim of this study was to assess the effects of partial carbon or glass fiber reinforcement on the flexural properties of All-on-Four provisional fixed denture base resin. The carbon or glass fibers were woven (3% by weight) together in three strands and twisted and tightened between the two abutments in a figure-of-"8" pattern. Four types of specimens were fabricated for the three-point loading test. The interface between the denture base resin and fibers was examined using scanning electron microscopy (SEM). Reinforcement with carbon or glass fibers between two abutments significantly increased the flexural strength and flexural modulus. SEM revealed relatively continuous contact between the fibers and acrylic resin. The addition of carbon or glass fibers between two abutments placed on All-on-Four provisional fixed denture base resin may be clinically effective in preventing All-on-Four denture fracture and can provide several advantages for clinical use.

  11. Chitin butyrate coated electrospun nylon-6 fibers for biomedical applications

    NASA Astrophysics Data System (ADS)

    Pant, Hem Raj; Kim, Han Joo; Bhatt, Lok Ranjan; Joshi, Mahesh Kumar; Kim, Eun Kyo; Kim, Jeong In; Abdal-hay, Abdalla; Hui, K. S.; Kim, Cheol Sang

    2013-11-01

    In this study, we describe the preparation and characterizations of chitin butyrate (CB) coated nylon-6 nanofibers using single-spinneret electrospinning of blends solution. The physicochemical properties of nylon-6 composite fibers with different proportions of CB to nylon-6 were determined using FE-SEM, TEM, FT-IR spectroscopy, and water contact angle measurement. FE-SEM and TEM images revealed that the nylon-6 and CB were immiscible in the as-spun nanofibers, and phase separated nanofiber morphology becomes more pronounced with increasing amounts of CB. The bone formation ability of composite fibers was evaluated by incubating in biomimetic simulated body fluid. In order to assay the cytocompatibility and cell behavior on the composite scaffolds, osteoblast cells were seeded on the matrix. Results suggest that the deposition of CB layer on the surface of nylon-6 could increase its cell compatibility and bone formation ability. Therefore, as-synthesized nanocomposite fibrous mat has great potentiality in hard tissue engineering.

  12. Structural, morphological and optical studies of ripple-structured ZnO thin films

    NASA Astrophysics Data System (ADS)

    Navin, Kumar; Kurchania, Rajnish

    2015-11-01

    Ripple-structured ZnO thin films were prepared on Si (100) substrate by sol-gel spin-coating method with different heating rates during preheating process and finally sintered at 500 °C for 2 h in ambient condition. The structural, morphological and photoluminescence (PL) properties of the nanostructured films were analyzed by X-ray diffraction (XRD), atomic force microscopy (AFM), scanning electron microscopy (SEM) and PL spectroscopy. XRD analysis revealed that films have hexagonal wurtzite structure and texture coefficient increases along (002) plane with preheating rate. The faster heating rate produced higher crystallization and larger average crystallite size. The AFM and SEM images indicate that all the films have uniformly distributed ripple structure with skeletal branches. The number of ripples increases, while the rms roughness, amplitude and correlation length of the ripple structure decrease with preheating rates. The PL spectra show the presence of different defects in the structure. The ultraviolet emission improved with the heating rate which indicates its better crystallinity.

  13. Cigarette smoke affects bonding to dentin.

    PubMed

    Almeida e Silva, Junio S; de Araujo, Edson Medeiro; Araujo, Elito

    2010-01-01

    This in vitro study evaluated the microtensile bond strength (muTBS) of composite resin bonded to dentin that had been contaminated by cigarette smoke. Ten extracted unerupted human third molars were used: Six molars were prepared for muTBS testing, while the other four molars were assigned to pre- and post-etching scanning electronic microscopy (SEM) analysis. The 20 specimens obtained from the 10 coronal portions were distributed into two experimental groups so that each tooth served as its own control. Group 1 underwent a daily toothbrushing simulation and exposure to a smoking simulation chamber, while Group 2 received only a daily simulated toothbrushing. Student's t-test demonstrated that Group 1 samples demonstrated significantly lower bond strength (49.58 MPa) than Group 2 samples (58.48 MPa). Pre and postetching SEM analysis revealed the presence of contaminants on the dentinal surfaces of the Group 1 specimens. It was concluded that contamination by cigarette smoke decreases the bond strength between dentin and composite resin.

  14. Improved flotation performance of hematite fines using citric acid as a dispersant

    NASA Astrophysics Data System (ADS)

    Luo, Xi-mei; Yin, Wan-zhong; Sun, Chuan-yao; Wang, Nai-ling; Ma, Ying-qiang; Wang, Yun-fan

    2016-10-01

    In this study, citric acid was used as a dispersant to improve the flotation performance of hematite fines. The effect and mechanism of citric acid on the reverse flotation of hematite fines were investigated by flotation tests, sedimentation experiments, scanning electron microscopy (SEM), zeta-potential measurements, and X-ray photoelectron spectroscopy (XPS). The results of SEM analysis and flotation tests reveal that a strong heterocoagulation in the form of slime coating or coagulation in hematite fine slurry affects the beneficiation of hematite ores by froth flotation. The addition of a small amount of citric acid (less than 300 g/t) favorably affects the reverse flotation of hematite fines by improving particle dispersion. The results of sedimentation experiments, zeta-potential measurements, and XPS measurements demonstrate that citric acid adsorbs onto hematite and quartz surfaces via hydrogen bonding, thereby reducing the zeta potentials of mineral surfaces, strengthening the electrical double-layer repulsion between mineral particles, and dispersing the pulp particles.

  15. Fractality and growth of He bubbles in metals

    NASA Astrophysics Data System (ADS)

    Kajita, Shin; Ito, Atsushi M.; Ohno, Noriyasu

    2017-08-01

    Pinholes are formed on surfaces of metals by the exposure to helium plasmas, and they are regarded as the initial process of the growth of fuzzy nanostructures. In this study, number density of the pinholes is investigated in detail from the scanning electron microscope (SEM) micrographs of tungsten and tantalum exposed to the helium plasmas. A power law relation was identified between the number density and the size of pinholes. From the slope and the region where the power law was satisfied, the fractal dimension D and smin, which characterize the SEM images, are deduced. Parametric dependences and material dependence of D and smin are revealed. To explain the fractality, simple Monte-Carlo simulations including random walks of He atoms and absorption on bubble was introduced. It is shown that the initial position of the random walk is one of the key factors to deduce the fractality. The results indicated that new nucleations of bubbles are necessary to reproduce the number-density distribution of bubbles.

  16. Synthesis and Characterization of Hydroxyapatite Powder by Wet Precipitation Method

    NASA Astrophysics Data System (ADS)

    Cahyaningrum, S. E.; Herdyastuty, N.; Devina, B.; Supangat, D.

    2018-01-01

    Hydroxyapatite is main inorganic component of the bone with formula Ca10(PO4)6(OH)2. Hydroxyapatite can be used as substituted bone biomaterial because biocompatible, non toxic, and osteoconductive. In this study, hydroxyapatite is synthesized using wet precipitation method from egg shell. The product was sintered at different temperatures of 800°C to 1000°C to improve its crystallinity. The hydroxyapatite was characterized by X-ray analysis, Scanning Electron Microscopy (SEM) and Fourier Transform Infrared Spectroscopy (FTIR) to reveal its phase content, morphology and types of bond present within it. The analytical results showed hydroxyapatite had range in crystallinity from 85.527 to 98.753%. The analytical functional groups showed that presence of functional groups such as OH, (PO4)3 2-, and CO3 2- that indicated as hydroxyapatite. The result of characterization SEM indicated that hydroxyapatite without sintering and HAp sintering at 800 °C were irregular shape without pore. The best hydroxyapatite with temperature sintering at 900 °C showed oval shaped with pores without agglomerated.

  17. Unusual death of a transvestite: identification of crime weapon and survival time*.

    PubMed

    Cornetta, Sandra; Addante, Annalisa; Zotti, Fiorenza; Dell'Erba, Alessandro

    2009-09-01

    The authors report a case of a transvestite found murdered near his automobile with several lacerated contused wounds to the face and cranial fractures. Autopsy revealed that the cause of death was a serious head trauma with subdural and subarachnoidal hemorrhages. In order to identify the crime weapon, a scanning electron microscopy (SEM) was used which revealed metallic residue on the skin fragments with the same molecular composition of the car paint. As for survival time, antibody anti-beta-amyloid precursor protein (APP) was applied to brain fragments and brainstem tissue, allowing for axonal varicosities (which form 2 to 3 h following death) to be observed under the optic microscope. So, by using SEM we understood that the fatal cranial-encephalic lesions were the result of the victim's head being repeatedly struck against the car door while anti-betaAPP led to the understanding that the time elapsed between injury and death was less than 2 to 3 h.

  18. The role of chronotype, gender, test anxiety, and conscientiousness in academic achievement of high school students.

    PubMed

    Rahafar, Arash; Maghsudloo, Mahdis; Farhangnia, Sajedeh; Vollmer, Christian; Randler, Christoph

    2016-01-01

    Previous findings have demonstrated that chronotype (morningness/intermediate/eveningness) is correlated with cognitive functions, that is, people show higher mental performance when they do a test at their preferred time of day. Empirical studies found a relationship between morningness and higher learning achievement at school and university. However, only a few of them controlled for other moderating and mediating variables. In this study, we included chronotype, gender, conscientiousness and test anxiety in a structural equation model (SEM) with grade point average (GPA) as academic achievement outcome. Participants were 158 high school students and results revealed that boys and girls differed in GPA and test anxiety significantly, with girls reporting better grades and higher test anxiety. Moreover, there was a positive correlation between conscientiousness and GPA (r = 0.17) and morningness (r = 0.29), respectively, and a negative correlation between conscientiousness and test anxiety (r = -0.22). The SEM demonstrated that gender was the strongest predictor of academic achievement. Lower test anxiety predicted higher GPA in girls but not in boys. Additionally, chronotype as moderator revealed a significant association between gender and GPA for evening types and intermediate types, while intermediate types showed a significant relationship between test anxiety and GPA. Our results suggest that gender is an essential predictor of academic achievement even stronger than low or absent test anxiety. Future studies are needed to explore how gender and chronotype act together in a longitudinal panel design and how chronotype is mediated by conscientiousness in the prediction of academic achievement.

  19. Fabrication and characterization of biomaterial film from gland silk of muga and eri silkworms.

    PubMed

    Dutta, Saranga; Talukdar, Bijit; Bharali, Rupjyoti; Rajkhowa, Rangam; Devi, Dipali

    2013-05-01

    This study discusses the possibilities of liquid silk (Silk gland silk) of Muga and Eri silk, the indigenous non mulberry silkworms of North Eastern region of India, as potential biomaterials. Silk protein fibroin of Bombyx mori, commonly known as mulberry silkworm, has been extensively studied as a versatile biomaterial. As properties of different silk-based biomaterials vary significantly, it is important to characterize the non mulberry silkworms also in this aspect. Fibroin was extracted from the posterior silk gland of full grown fifth instars larvae, and 2D film was fabricated using standard methods. The films were characterized using SEM, Dynamic contact angle test, FTIR, XRD, DSC, and TGA and compared with respective silk fibers. SEM images of films reveal presence of some globules and filamentous structure. Films of both the silkworms were found to be amorphous with random coil conformation, hydrophobic in nature, and resistant to organic solvents. Non mulberry silk films had higher thermal resistance than mulberry silk. Fibers were thermally more stable than the films. This study provides insight into the new arena of research in application of liquid silk of non mulberry silkworms as biomaterials. Copyright © 2012 Wiley Periodicals, Inc.

  20. A study of the physical, chemical and biological properties of TiO2 coatings produced by micro-arc oxidation in a Ca-P-based electrolyte.

    PubMed

    dos Santos, Amanda; Araujo, Joyce R; Landi, Sandra M; Kuznetsov, Alexei; Granjeiro, José M; de Sena, Lidia Ágata; Achete, Carlos Alberto

    2014-07-01

    In this work, a porous and homogeneous titanium dioxide layer was grown on commercially pure titanium substrate using a micro-arc oxidation (MAO) process and Ca-P-based electrolyte. The structure and morphology of the TiO2 coatings were characterized by X-ray diffraction, scanning electron microscopy (SEM), transmission electron microscopy, and profilometry. The chemical properties were studied using electron dispersive X-ray spectroscopy (SEM-EDS) and X-ray photoelectron spectroscopy. The wettability of the coating was evaluated using contact angle measurements. During the MAO process, Ca and P ions were incorporated into the oxide layer. The TiO2 coating was composed of a mixture of crystalline and amorphous structures. The crystalline part of the sample consisted of a major anatase phase and a minor rutile phase. A cross-sectional image of the coating-substrate interface reveals the presence of voids elongated along the interface. An osteoblast culture was performed to verify the cytocompatibility of the anodized surface. The results of the cytotoxicity tests show satisfactory cell viability of the titanium dioxide films produced in this study.

  1. Structural and electrical properties of CZTS thin films by electrodeposition

    NASA Astrophysics Data System (ADS)

    Rao, M. C.; Basha, Sk. Shahenoor

    2018-06-01

    CZTS (Cu2ZnSnS4) thin films were coated on ITO glass substrates by single bath electrodeposition technique. The prepared films were subsequently characterized by XRD, SEM, FTIR, UV-visible spectroscopy and Raman studies. The thickness of the thin films was measured by wedge method. X-ray diffraction studies revealed the formation of polycrystalline phase. The morphological surface of the prepared thin films was examined by SEM and AFM and showed the presence of microcrystals on the surface of the samples. The elemental analysis and their compositional ratios present in the samples were confirmed by the energy dispersive X-ray analysis. Functional groups and the position of band structure involved in the materials were confirmed by FTIR. Optical absorption studies were performed on the prepared thin films in the wavelength ranging from 300 to 1000 nm and the energy bandgap values were found to be in the range from 1.39 to 1.60 eV. Raman spectral peak which was observed at 360 cm-1 correspond to kesterite phase, was formed due to the vibration of the molecules. Electrical measurements confirmed the nature of the thin film depending on the charge concentration present in the samples.

  2. Immunogold scanning electron microscopy can reveal the polysaccharide architecture of xylem cell walls

    PubMed Central

    Sun, Yuliang; Juzenas, Kevin

    2017-01-01

    Abstract Immunofluorescence microscopy (IFM) and immunogold transmission electron microscopy (TEM) are the two main techniques commonly used to detect polysaccharides in plant cell walls. Both are important in localizing cell wall polysaccharides, but both have major limitations, such as low resolution in IFM and restricted sample size for immunogold TEM. In this study, we have developed a robust technique that combines immunocytochemistry with scanning electron microscopy (SEM) to study cell wall polysaccharide architecture in xylem cells at high resolution over large areas of sample. Using multiple cell wall monoclonal antibodies (mAbs), this immunogold SEM technique reliably localized groups of hemicellulosic and pectic polysaccharides in the cell walls of five different xylem structures (vessel elements, fibers, axial and ray parenchyma cells, and tyloses). This demonstrates its important advantages over the other two methods for studying cell wall polysaccharide composition and distribution in these structures. In addition, it can show the three-dimensional distribution of a polysaccharide group in the vessel lateral wall and the polysaccharide components in the cell wall of developing tyloses. This technique, therefore, should be valuable for understanding the cell wall polysaccharide composition, architecture and functions of diverse cell types. PMID:28398585

  3. Transformation of toxic and allelopathic lantana into a benign organic fertilizer through vermicomposting

    NASA Astrophysics Data System (ADS)

    Hussain, Naseer; Abbasi, Tasneem; Abbasi, S. A.

    2016-06-01

    In a first study of its kind, the composition of vermicompost derived solely from the toxic and allelopathic weed lantana has been investigated using UV-visible and Fourier transform infrared (FT-IR) spectroscopy, thermogravimetric (TG) and differential scanning calorimetry (DSC), gas chromatography-mass spectometry (GC-MS), and scanning electron microscopy (SEM). The studies reveal that a sharp reduction in humification index, substantial mineralization of organic matter and degradation of complex aromatics such as lignin and polyphenols into simpler carbohydrates and lipids occur in the course of vermicomposting. GC-MS analysis shows significant fragmentation, bio-oxidation and molecular rearrangements of chemical compounds in vermicompost in comparison to those in lantana. SEM micrographs of vermicompost reflect strong disaggregation of material compared to the much better formed lantana matrices. The phenols and sesquiterpene lactones which are specifically responsible for the toxicity and allelopathy of lantana are seen to get significantly degraded in the course of vermicomposting - turning it into a plant-friendly organic fertilizer. The study leads to the possibility that the millions of tons of phytomass that is generated annually by lantana can be gainfully utilized in producing organic fertilizer via vermicomposting.

  4. Evaluation of an Approximate Method for Synthesizing Covariance Matrices for Use in Meta-Analytic SEM

    ERIC Educational Resources Information Center

    Beretvas, S. Natasha; Furlow, Carolyn F.

    2006-01-01

    Meta-analytic structural equation modeling (MA-SEM) is increasingly being used to assess model-fit for variables' interrelations synthesized across studies. MA-SEM researchers have analyzed synthesized correlation matrices using structural equation modeling (SEM) estimation that is designed for covariance matrices. This can produce incorrect…

  5. Radiation-induced grafting of acrylic acid onto polypropylene film and its biodegradability

    NASA Astrophysics Data System (ADS)

    Mandal, Dev K.; Bhunia, Haripada; Bajpai, Pramod K.; Chaudhari, C. V.; Dubey, K. A.; Varshney, L.

    2016-06-01

    Polypropylene based commodity polyolefins are widely used in packaging, manufacturing, electrical, pharmaceutical and other applications. The aim of the present work is to study the effect of grafting of acrylic acid on the biodegradability of acrylic acid grafted polypropylene. The effect of different conditions showed that grafting percentage increased with increase in monomer concentration, radiation dose and inhibitor concentration but decreased with increase in radiation dose rate. The maximum grafting of 159.4% could be achieved at optimum conditions. The structure of grafted polypropylene films at different degree of grafting was characterized by EDS, FTIR, TGA, DSC, SEM and XRD. EDS studies showed that the increase in acrylic acid grafting percentage increased the hydrophilicity of the grafted films. FTIR studies indicated the presence of acrylic acid on the surface of polypropylene film. TGA studies revealed that thermal stability decreased with increase in grafting percentage. DSC studies showed that melting temperature and crystallinity of the grafted polypropylene films lower than polypropylene film. SEM studies indicated that increase in acrylic acid grafting percentage increased the wrinkles in the grafted films. The maximum biodegradability could be achieved to 6.85% for 90.5% grafting. This suggested that microorganisms present in the compost could biodegrade acrylic acid grafted polypropylene.

  6. Investigation of local ferroelectric and piezoelectric effects on mats of electrospun poly(vinylidene fluoride) (PVDF) fibers

    NASA Astrophysics Data System (ADS)

    Durgaprasad, P.; Hemalatha, J.

    2018-04-01

    Poly(vinylidene fluoride) (PVDF) fiber mat was synthesized by using electrospinning technique by using DMF/Acetone as mixed solvent. Structural and functional group studies were studied by using X-ray diffraction (XRD) and Fourier-transform infrared (FTIR) spectroscopy respectively. The morphology of the fiber mat was investigated by using scanning electron microscopy (SEM) which revealed the formation of uniform fibers with an average diameter of 500nm. The local ferroelectric, piezo electric properties and also the domain switching of the fiber mats were investigated by Dynamic Contact Electrostatic Force Microscopy (DC-EFM) studies. The peizoelectric/ferroelectric response was recorded and analyzed.

  7. Morphology of the adult male and pupal exuviae of Glyptotendipes (Glyptotendipes) glaucus (Meigen 1818) (Diptera, Chironomidae) using scanning electron microscope (SEM).

    PubMed

    Kownacki, Andrzej; Woznicka, Olga; Szarek-Gwiazda, Ewa; Michailova, Paraskeva; Czaplicka, Anna

    2017-02-27

    In this paper, a study of the morphology of the pupa and male imago of Glyptotendipes (G.) glaucus (Meigen 1818) was carried out, with the aid of a scanning electron microscope (SEM). The SEM provided additional valuable information on the morphology of the species. Adult male head, antenna, wing, leg, abdomen, hypopygium, pupal cephalothorax and abdomen were examined. It is emphasized that SEM was not often used in Chironomidae studies. The present results confirm SEM as a suitable approach in carrying out morphological and taxonomical descriptions of Chironomidae species.

  8. Dopant concentration dependent growth of Fe:ZnO nanostructures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sahai, Anshuman; Goswami, Navendu, E-mail: navendugoswami@gmail.com

    2016-05-23

    Systematic investigations of structural properties of 1-10% Fe doped ZnO nanostructure (Fe:ZnO NS) prepared via chemical precipitation method have been reported. Structural properties were probed thoroughly employing scanning electron microscope (SEM) and transmission electron microscope (TEM), energy dispersive X-ray (EDAX) analysis and X-ray diffraction (XRD). Morphological transformation of nanostructures (NS) with Fe incorporation is evident in SEM/TEM images. Nanoparticles (NP) obtained with 1% Fe, evolve to nanorods (NR) for 3% Fe; NR transform to nanocones (NC) (for 5% and 7% Fe) and finally NC transform to nanoflakes (NF) at 10% Fe. Morover, primary phase of Zn{sub 1-x}Fe{sub x}O along withmore » secondary phases of ZnFe{sub 2}O{sub 4} and Fe{sub 2}O{sub 3} were also revealed through XRD measurements. Based on collective XRD, SEM, TEM, and EDAX interpretations, a model for morphological evolution of NS was proposed and the pivotal role of Fe dopant was deciphered.« less

  9. Fabrication and Characterization of Dense Zirconia and Zirconia-Silica Ceramic Nanofibers

    PubMed Central

    Guo, Guangqing; Fan, Yuwei

    2011-01-01

    The objective of this study was to prepare dense zirconia-yttria (ZY), zirconia-silica (ZS) and zirconia-yttria-silica (ZYS) nanofibers as reinforcing elements for dental composites. Zirconium (IV) propoxide, yttrium nitrate hexahydrate, and tetraethyl orthosilicate (TEOS) were used as precursors for the preparation of zirconia, yttria, and silica sols. A small amount (1–1.5 wt%) of polyethylene oxide (PEO) was used as a carry polymer. The sols were preheated at 70 °C before electrospinning and their viscosity was measured with a viscometer at different heating time. The gel point was determined by viscosity–time (η–t) curve. The ZY, ZS and ZYS gel nanofibers were prepared using a special reactive electrospinning device under the conditions near the gel point. The as-prepared gel nanofibers had diameters between 200 and 400 nm. Dense (nonporous) ceramic nanofibers of zirconia-yttria (96/4), zirconia-silica (80/20) and zirconia-yttria-silica (76.8/3.2/20) with diameter of 100–300 nm were obtained by subsequent calcinations at different temperatures. The gel and ceramic nanofibers obtained were characterized by scanning electron microscope (SEM), high-resolution field-emission scanning electron microscope (FE-SEM), thermogravimetric analyzer (TGA), differential scanning calorimeter (DSC), Fourier transform infrared spectrometer (FT-IR), and X-ray diffraction (XRD). SEM micrograph revealed that ceramic ZY nanofibers had grained structure, while ceramic ZS and ZYS nanofibers had smooth surfaces, both showing no visible porosity under FE-SEM. Complete removal of the polymer PEO was confirmed by TGA/DSC and FT-IR. The formation of tetragonal phase of zirconia and amorphous silica was proved by XRD. In conclusion, dense zirconia-based ceramic nanofibers can be fabricated using the new reactive sol–gel electrospinning technology with minimum organic polymer additives. PMID:21133090

  10. A switch from parallel to antiparallel strand orientation in a coiled-coil X-ray structure via two core hydrophobic mutations

    DOE PAGES

    Malashkevich, Vladimir N.; Higgins, Chelsea D.; Almo, Steven C.; ...

    2015-05-06

    The coiled-coil is one of the most ubiquitous and well studied protein structural motifs. Significant effort has been devoted to dissecting subtle variations of the typical heptad repeat sequence pattern that can designate larger topological features such as relative α-helical orientation and oligomer size. Here in this paper we report the X-ray structure of a model coiled-coil peptide, HA2-Del-L2seM, which forms an unanticipated core antiparallel dimer with potential sites for discrete higher-order multimerization (trimer or tetramer). In the X-ray structure, a third, partially-ordered α-helix is weakly associated with the antiparallel dimer and analytical ultracentrifugation experiments indicate the peptide forms amore » well-defined tetramer in solution. The HA2-Del-L2seM sequence is closely related to a parent model peptide, HA2-Del, which we previously reported adopts a parallel trimer; HA2-Del-L2seM differs by only hydrophobic leucine to selenomethione mutations and thus this subtle difference is sufficient to switch both relative α-helical topology and number of α-helices participating in the coiled-coil. Comparison of the X-ray structures of HA2-Del-L2seM (reported here) with the HA2-Del parent (reported previously) reveals novel interactions involving the selenomethionine residues that promote antiparallel coiled-coil configuration and preclude parallel trimer formation. Finally, these novel atomic insights are instructive for understanding subtle features that can affect coiled-coil topology and provide additional information for design of antiparallel coiled-coils.« less

  11. The Structure, Function and Evolution of a Novel Form of Fluid-feeding Apparatus for Microbivory

    USDA-ARS?s Scientific Manuscript database

    Low temperature scanning electron microscopy (LT-SEM) has revealed anatomical details suggesting that Osperalycus and Gordialycus (Acariformes: Nematalycidae) have an unusual feeding apparatus that appears to be specialized for feeding on the fluid contents of small microorganisms (diameter '5 µm). ...

  12. A comparative study of green composites based on tapioca starch and celluloses

    NASA Astrophysics Data System (ADS)

    Owi, Wei Tieng; Lin, Ong Hui; Sam, Sung Ting; Mern, Chin Kwok; Villagracia, Al Rey; Santos, Gil Nonato C.; Akil, Hazizan Md

    2017-07-01

    The objective of this study was to compare the properties of green composites based on tapioca starch (TS) and celluloses isolated from empty fruit bunches (EFB) and commercial celluloses from cotton linter (supplied by Sigma). Empty fruit bunches (EFB) acted as the main source to obtain the cellulose by using a chemical approach whereas the commercial cellulose from Sigma was used as reference. The TS/cellulose composite films were prepared using cellulose in varying proportions as filler into TS matrix by a casting method. The amount of celluloses added into the tapioca starch were 5, 10, 15, 20 and 25 phr (as per dry mass of TS). The celluloses were characterized using Fourier transform infrared (FTTR) spectroscopy, X-ray diffraction (XRD) and scanning electron microscopy (SEM). While the green composite films were analyzed in terms of thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), SEM and tensile properties. FTTR analysis confirmed the removal of non-cellulosic materials such as hemicelluloses and lignin from raw EFB after the chemical treatment. XRD diffractograms revealed that the crystallinity of celluloses EFB increased from 43.1 % of raw EFB to 52.1 %. SEM images showed the fibrillar structure of cellulose isolated from EFB. The TGA and derivative thermogravimetric (DTG) curves of green composite films showed no significant effect on the thermal stability. Melting temperature of TS/cellulose EFB higher than neat TS while TS/cellulose Sigma lower than neat TS. The green composite films with 15 phr cellulose from EFB filler loading provided the best tensile properties in term of its strength and modulus. However, in term of elongation at break, the percentage elongation decreased with the increased of the amount of filler loading. SEM images of the films demonstrated a good interaction between cellulose filler and TS matrix especially with the addition of 15 phr of cellulose from EFB.

  13. Comparison of patency and cost-effectiveness of self-expandable metal and plastic stents used for malignant biliary strictures: a Polish single-center study.

    PubMed

    Budzyńska, Agnieszka; Nowakowska-Duława, Ewa; Marek, Tomasz; Hartleb, Marek

    2016-10-01

    Most patients with malignant biliary obstruction are suited only for palliation by endoscopic drainage with plastic stents (PS) or self-expandable metal stents (SEMS). To compare the clinical outcome and costs of biliary stenting with SEMS and PS in patients with malignant biliary strictures. A total of 114 patients with malignant jaundice who underwent 376 endoscopic retrograde biliary drainage (ERBD) were studied. ERBD with the placement of PS was performed in 80 patients, with one-step SEMS in 20 patients and two-step SEMS in 14 patients. Significantly fewer ERBD interventions were performed in patients with one-step SEMS than PS or the two-step SEMS technique (2.0±1.12 vs. 3.1±1.7 or 5.7±2.1, respectively, P<0.0001). The median hospitalization duration per procedure was similar for the three groups of patients. The patients' survival time was the longest in the two-step SEMS group in comparison with the one-step SEMS and PS groups (596±270 vs. 276±141 or 208±219 days, P<0.001). Overall median time to recurrent biliary obstruction was 89.3±159 days for PS and 120.6±101 days for SEMS (P=0.01). The total cost of hospitalization with ERBD was higher for two-step SEMS than for one-step SEMS or PS (1448±312, 1152±135 and 977±156&OV0556;, P<0.0001). However, the estimated annual cost of medical care for one-step SEMS was higher than that for the two-step SEMS or PS groups (4618, 4079, and 3995&OV0556;, respectively). Biliary decompression by SEMS is associated with longer patency and reduced number of auxiliary procedures; however, repeated PS insertions still remain the most cost-effective strategy.

  14. Angle-resolved reflection spectroscopy of high-quality PMMA opal crystal

    NASA Astrophysics Data System (ADS)

    Nemtsev, Ivan V.; Tambasov, Igor A.; Ivanenko, Alexander A.; Zyryanov, Victor Ya.

    2018-02-01

    PMMA opal crystal was prepared by a simple hybrid method, which includes sedimentation, meniscus formation and evaporation. We investigated three surfaces of this crystal by angle-resolved reflective light spectroscopy and SEM study. The angle-resolved reflective measurements were carried out in the 400-1100 nm range. We have determined the high-quality ordered surface of the crystal region. Narrow particle size distribution of the surface has been revealed. The average particle diameter obtained with SEM was nearly 361 nm. The most interesting result was that reflectivity of the surface turned out up to 98% at normal light incidence. Using a fit of dependences of the maximum reflectivity wavelength from an angle based on the Bragg-Snell law, the wavelength of maximum 0° reflectivity, the particle diameter and the fill factor have been determined. For the best surface maximum reflectivity wavelength of a 0° angle was estimated to be 869 nm. The particle diameter and fill factor were calculated as 372 nm and 0.8715, respectively. The diameter obtained by fitting is in excellent agreement with the particle diameter obtained with SEM. The reflectivity maximum is assumed to increase significantly when increasing the fill factor. We believe that using our simple approach to manufacture PMMA opal crystals will significantly increase the fabrication of high-quality photonic crystal templates and thin films.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marimuthu, T.; Anandhan, N., E-mail: anandhan-kn@rediffmail.com; Mummoorthi, M.

    Zinc oxide (ZnO) and zinc oxide/eosin yellow (ZnO/EY) thin films were potentiostatically deposited onto fluorine doped tin oxide (FTO) glass substrate. Effect of eosin yellow dye on structural, morphological and optical properties was studied. X-ray diffraction patterns, micro Raman spectra and photoluminescence (PL) spectra reveal hexagonal wurtzite structure with less atomic defects in 101 plane orientation of the ZnO/EY film. Scanning electron microscopy (SEM) images show flower for ZnO and porous like structure for ZnO/EY thin film, respectively. DSSC was constructed and evaluated by measuring the current density verses voltage curve.

  16. Microstructural investigations of 0.2% carbon content steel

    NASA Astrophysics Data System (ADS)

    Tollabimazraehno, Sajjad; Hingerl, Kurt

    2011-10-01

    The effect of thermal annealing to get different phases on low carbon steel was investigated. Steel sheets (0.2 wt. % C) of 900 μm thickness were heat treated to produce different structures. All the samples have the same starting point, transformation to coarse austenite at 900 degree Celsius. The nano indentation results revealed that samples have different hadness. By making conventional SEM micrographs, focus ion beam maps, and Electron backscatter diffraction (EBSD) the microstructural development and grain boundary variation of transformed phases martensite, biainte, tempered martensite and different combination of these phases were studied.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chitralekha, C. S.; Rasi, Mohammed; Nair, Swapna S., E-mail: swapna.s.nair@gmail.com

    A modified sol-gel method was introduced by employing a cost effective novel template to synthesize coaxial one dimensional (1-D) composite nanostructures based on CoFe{sub 2}O{sub 4} (CFO) - K{sub 0.5}Na{sub 0.5}NbO{sub 3} (KNN) and magnetic nanostructures based on CoFe{sub 2}O{sub 4} (CFO). The studies with scanning electron microscopy (SEM) and atomic force microscopy (AFM) revealed that the composite material is characterized by the 1-D tubular structure. The absorption edge is blue shifted for both KNN and CFO nanotubes due to the lattice strain effect.

  18. A Natural Experiment on the Condition-Dependence of Achromatic Plumage Reflectance in Black-Capped Chickadees

    PubMed Central

    D'Alba, Liliana; Van Hemert, Caroline; Handel, Colleen M.; Shawkey, Matthew D.

    2011-01-01

    Honest advertisement models posit that only individuals in good health can produce and/or maintain ornamental traits. Even though disease has profound effects on condition, few studies have experimentally tested its effects on trait expression and even fewer have identified a mechanistic basis for these effects. Recent evidence suggests that black and white, but not grey, plumage colors of black-capped chickadees (Poecile atricapillus) are sexually selected. We therefore hypothesized that birds afflicted with avian keratin disorder, a condition that affects the beak and other keratinized tissues, would show reduced expression of black and white, but not grey, color. UV-vis spectrometry of black-capped chickadees affected and unaffected by avian keratin disorder revealed spectral differences between them consistent with this hypothesis. To elucidate the mechanistic bases of these differences, we used scanning electron microscopy (SEM), electron-dispersive x-ray spectroscopy (EDX) and a feather cleaning experiment. SEM showed extreme feather soiling in affected birds, and EDX revealed that this was most likely from external sources. Experimentally cleaning the feathers increased color expression of ornamental feathers of affected, but not unaffected, birds. These data provide strong evidence that black and white color is an honest indicator in chickadees, and that variation in feather dirtiness, likely due to differences in preening behavior is a mechanism for this association. PMID:21991378

  19. A natural experiment on the condition-dependence of achromatic plumage reflectance in black-capped chickadees.

    PubMed

    D'Alba, Liliana; Van Hemert, Caroline; Handel, Colleen M; Shawkey, Matthew D

    2011-01-01

    Honest advertisement models posit that only individuals in good health can produce and/or maintain ornamental traits. Even though disease has profound effects on condition, few studies have experimentally tested its effects on trait expression and even fewer have identified a mechanistic basis for these effects. Recent evidence suggests that black and white, but not grey, plumage colors of black-capped chickadees (Poecile atricapillus) are sexually selected. We therefore hypothesized that birds afflicted with avian keratin disorder, a condition that affects the beak and other keratinized tissues, would show reduced expression of black and white, but not grey, color. UV-vis spectrometry of black-capped chickadees affected and unaffected by avian keratin disorder revealed spectral differences between them consistent with this hypothesis. To elucidate the mechanistic bases of these differences, we used scanning electron microscopy (SEM), electron-dispersive x-ray spectroscopy (EDX) and a feather cleaning experiment. SEM showed extreme feather soiling in affected birds, and EDX revealed that this was most likely from external sources. Experimentally cleaning the feathers increased color expression of ornamental feathers of affected, but not unaffected, birds. These data provide strong evidence that black and white color is an honest indicator in chickadees, and that variation in feather dirtiness, likely due to differences in preening behavior is a mechanism for this association.

  20. [Stabilization Treatment of Pb and Zn in Contaminated Soils and Mechanism Studies].

    PubMed

    Xie, Wei-qiang; Li, Xiao-mingi; Chen, Can; Chen, Xun-feng; Zhong, Yu; Zhong, Zhen-yu; Wan, Yong; Wang, Yan

    2015-12-01

    In the present work, the combined application of potassium dihydrogen phosphate, quick lime and potassium chloride was used to immobilize the Pb and Zn in contaminated soils. The efficiency of the process was evaluated through leaching tests and Tessier sequential extraction procedure. The mechanism of stabilization was analyzed by X-ray diffraction (XRD) and scanning electron microscope (SEM) to reveal the mechanism of stabilization. The results showed that the stabilizing efficiency of Pb contaminated soils was above 80% and the leaching concentrations of Pb, Zn were far below the threshold when the ratio of exogenous P and soil (mol · mol⁻¹) was 2:1-4: 1, the dosing ratio of CaO was 0.1%-0.5% ( mass fraction) and the dosage of potassium chloride was 0.02-0. 04 mol. Meanwhile, Pb and Zn in soil were transformed from the exchangeable fraction into residual fraction, which implied that the migration of Pb, Zn in soil could be confined by the stabilization treatment. XRD and SEM analysis revealed that Ca-P-Pb precipitation, lead orthophosphate [PbHP0₄, Pb₃ (PO₄)₂], pyromorphite (Pb-PO₄-Cl/OH) and mixed heavy metal deposits (Fe-PO₄- Ca-Pb-Zn-OH) could be formed after solidification/stabilization in which Pb and Zn could be wrapped up to form a solidified composition and to prevent leaching.

  1. Microsponges based novel drug delivery system for augmented arthritis therapy

    PubMed Central

    Osmani, Riyaz Ali M.; Aloorkar, Nagesh H.; Ingale, Dipti J.; Kulkarni, Parthasarathi K.; Hani, Umme; Bhosale, Rohit R.; Jayachandra Dev, Dandasi

    2015-01-01

    The motive behind present work was to formulate and evaluate gel containing microsponges of diclofenac diethylamine to provide prolonged release for proficient arthritis therapy. Quasi-emulsion solvent diffusion method was implied using Eudragit RS-100 and microsponges with varied drug–polymer ratios were prepared. For the sake of optimization, diverse factors affecting microparticles physical properties were too investigated. Microsponges were characterized by SEM, DSC, FT-IR, XRPD and particle size analysis, and evaluated for morphology, drug loading, in vitro drug release and ex vivo diffusion as well. There were no chemical interactions between drug and polymers used as revealed by compatibility studies outcomes. The drug polymer ratio reflected notable effect on drug content, encapsulation efficiency and particle size. SEM results revealed spherical microsponges with porous surface, and had 7.21 μm mean particle size. The microsponges were then incorporated in gel; which exhibited viscous modulus along with pseudoplastic behavior. In vitro drug release results depicted that microsponges with 1:2 drug–polymer ratio were more efficient to give extended drug release of 75.88% at the end of 8 h; while conventional formulation get exhausted incredibly earlier by releasing 81.11% drug at the end of 4 h only. Thus the formulated microsponge-based gel of diclofenac diethylamine would be a promising alternative to conventional therapy for safer and efficient treatment of arthritis and musculoskeletal disorders. PMID:26594124

  2. Microsponges based novel drug delivery system for augmented arthritis therapy.

    PubMed

    Osmani, Riyaz Ali M; Aloorkar, Nagesh H; Ingale, Dipti J; Kulkarni, Parthasarathi K; Hani, Umme; Bhosale, Rohit R; Jayachandra Dev, Dandasi

    2015-10-01

    The motive behind present work was to formulate and evaluate gel containing microsponges of diclofenac diethylamine to provide prolonged release for proficient arthritis therapy. Quasi-emulsion solvent diffusion method was implied using Eudragit RS-100 and microsponges with varied drug-polymer ratios were prepared. For the sake of optimization, diverse factors affecting microparticles physical properties were too investigated. Microsponges were characterized by SEM, DSC, FT-IR, XRPD and particle size analysis, and evaluated for morphology, drug loading, in vitro drug release and ex vivo diffusion as well. There were no chemical interactions between drug and polymers used as revealed by compatibility studies outcomes. The drug polymer ratio reflected notable effect on drug content, encapsulation efficiency and particle size. SEM results revealed spherical microsponges with porous surface, and had 7.21 μm mean particle size. The microsponges were then incorporated in gel; which exhibited viscous modulus along with pseudoplastic behavior. In vitro drug release results depicted that microsponges with 1:2 drug-polymer ratio were more efficient to give extended drug release of 75.88% at the end of 8 h; while conventional formulation get exhausted incredibly earlier by releasing 81.11% drug at the end of 4 h only. Thus the formulated microsponge-based gel of diclofenac diethylamine would be a promising alternative to conventional therapy for safer and efficient treatment of arthritis and musculoskeletal disorders.

  3. A natural experiment on the condition-dependence of achromatic plumage reflectance in black-capped chickadees

    USGS Publications Warehouse

    D'Alba, L.; Van Hemert, C.; Handel, Colleen M.; Shawkey, M.D.

    2011-01-01

    Honest advertisement models posit that only individuals in good health can produce and/or maintain ornamental traits. Even though disease has profound effects on condition, few studies have experimentally tested its effects on trait expression and even fewer have identified a mechanistic basis for these effects. Recent evidence suggests that black and white, but not grey, plumage colors of black-capped chickadees (Poecile atricapillus) are sexually selected. We therefore hypothesized that birds afflicted with avian keratin disorder, a condition that affects the beak and other keratinized tissues, would show reduced expression of black and white, but not grey, color. UV-vis spectrometry of black-capped chickadees affected and unaffected by avian keratin disorder revealed spectral differences between them consistent with this hypothesis. To elucidate the mechanistic bases of these differences, we used scanning electron microscopy (SEM), electron-dispersive x-ray spectroscopy (EDX) and a feather cleaning experiment. SEM showed extreme feather soiling in affected birds, and EDX revealed that this was most likely from external sources. Experimentally cleaning the feathers increased color expression of ornamental feathers of affected, but not unaffected, birds. These data provide strong evidence that black and white color is an honest indicator in chickadees, and that variation in feather dirtiness, likely due to differences in preening behavior is a mechanism for this association.

  4. Synthesis of Carbon Nanotubes and Nanospheres from Coconut Fibre and the Role of Synthesis Temperature on Their Growth

    NASA Astrophysics Data System (ADS)

    Adewumi, Gloria A.; Inambao, Freddie; Eloka-Eboka, Andrew; Revaprasadu, Neerish

    2018-07-01

    Carbon nanotubes (CNT) and carbon nanospheres were successfully synthesized from coconut fibre-activated carbon. The biomass was first carbonized then physically activated, followed by treatment using ethanol vapor at 700°C to 1100°C at 100°C intervals. The effect of synthesis temperature on the formation of the nanomaterials was studied using scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive x-ray spectrometry, x-ray diffraction (XRD), Fourier transform infrared microscopy (FTIR) and thermogravimetric analysis. SEM analysis revealed that nanospheres were formed at higher temperatures of 1000°C and 1100°C, while lower temperatures of 800°C and 900°C favored the growth of CNT. At 700°C, however, no tubes or spheres were formed. TEM and FTIR were used to observe spectral features, such as the peak positions, intensity and bandwidth, which are linked to some structural properties of the samples investigated. All these observations provided facts on the nanosphere and nanotube dimensions, vibrational modes and the degree of purity of the obtained samples. The TEM results show spheres of diameter in the range 50 nm to 250 nm while the tubes had diameters between 50 nm to 100 nm. XRD analysis reveals the materials synthesized are amorphous in nature with a hexagonal graphite structure.

  5. Synthesis and controlled release properties of 2,4-dichlorophenoxy acetate–zinc layered hydroxide nanohybrid

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bashi, Abbas M., E-mail: abbasmatrood@yahoo.com; Hussein, Mohd Zobir; Zainal, Zulkarnain

    2013-07-15

    Direct reaction of ZnO with 2,4-dichlorophenoxyacetic acid (24D) solutions of different concentrations allows obtaining new organic–inorganic nanohybrid materials formed by intercalation of 24D into interlayers of zinc layered hydroxide (ZLH). XRD patterns show a progressive evolution of the structure as 24D concentration increases. The nanohybrid obtained at higher 24D concentration (24D–ZLH(0.4)) reveals a well ordered layered structure with two different basal spacings at 25.2 Å and 24 Å. The FTIR spectrum showing the vibrations bands of the functional groups of 24D and of the ZLH confirms the intercalation. SEM images are in agreement with the structural evolution observed by XRDmore » and reveal the ribbon morphology of the nanohybrids. The release studies of 24D showed a rapid release of 94% for the first 100 min governed by the pseudo-second order kinetic model. - Graphical abstract: The phenomenon indicates that the optical energy gap is enlarged with the increase of molar concentrations in 2,4-dichlorophenoxy acetate anion content into ZnO to create a ZLH–24D nanohybrid. - Highlights: • Nanohybrid was synthesized from 2,4-dichlorophenoxy acetate with-Zinc LHD, using wet chemistry. • Characterized using SEM, TEM, EDX, FTIR, XRD and TGA. • Ribbon-shaped 24D–Zn-layered hydroxide nanoparticles with (003) diffractions of 2.5 nm phase were synthesized.« less

  6. Synthesis of Carbon Nanotubes and Nanospheres from Coconut Fibre and the Role of Synthesis Temperature on Their Growth

    NASA Astrophysics Data System (ADS)

    Adewumi, Gloria A.; Inambao, Freddie; Eloka-Eboka, Andrew; Revaprasadu, Neerish

    2018-04-01

    Carbon nanotubes (CNT) and carbon nanospheres were successfully synthesized from coconut fibre-activated carbon. The biomass was first carbonized then physically activated, followed by treatment using ethanol vapor at 700°C to 1100°C at 100°C intervals. The effect of synthesis temperature on the formation of the nanomaterials was studied using scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive x-ray spectrometry, x-ray diffraction (XRD), Fourier transform infrared microscopy (FTIR) and thermogravimetric analysis. SEM analysis revealed that nanospheres were formed at higher temperatures of 1000°C and 1100°C, while lower temperatures of 800°C and 900°C favored the growth of CNT. At 700°C, however, no tubes or spheres were formed. TEM and FTIR were used to observe spectral features, such as the peak positions, intensity and bandwidth, which are linked to some structural properties of the samples investigated. All these observations provided facts on the nanosphere and nanotube dimensions, vibrational modes and the degree of purity of the obtained samples. The TEM results show spheres of diameter in the range 50 nm to 250 nm while the tubes had diameters between 50 nm to 100 nm. XRD analysis reveals the materials synthesized are amorphous in nature with a hexagonal graphite structure.

  7. Intermittent v. continuous energy restriction: differential effects on postprandial glucose and lipid metabolism following matched weight loss in overweight/obese participants.

    PubMed

    Antoni, Rona; Johnston, Kelly L; Collins, Adam L; Robertson, M Denise

    2018-03-01

    The intermittent energy restriction (IER) approach to weight loss involves short periods of substantial (>70 %) energy restriction (ER) interspersed with normal eating. Studies to date comparing IER to continuous energy restriction (CER) have predominantly measured fasting indices of cardiometabolic risk. This study aimed to compare the effects of IER and CER on postprandial glucose and lipid metabolism following matched weight loss. In all, twenty-seven (thirteen male) overweight/obese participants (46 (sem 3) years, 30·1 (sem 1·0) kg/m2) who were randomised to either an IER intervention (2638 kJ for 2 d/week with an overall ER of 22 (sem 0·3) %, n 15) or a CER intervention (2510 kJ below requirements with overall ER of 23 (sem 0·8) %) completed the study. Postprandial responses to a test meal (over 360 min) and changes in anthropometry (fat mass, fat-free mass, circumferences) were assessed at baseline and upon attainment of 5 % weight loss, following a 7-d period of weight stabilisation. The study found no statistically significant difference in the time to attain a 5 % weight loss between groups (median 59 d (interquartile range (IQR) 41-80) and 73 d (IQR 48-128), respectively, P=0·246), or in body composition (P≥0·437). For postprandial measures, neither diet significantly altered glycaemia (P=0·266), whereas insulinaemia was reduced comparatively (P=0·903). The reduction in C-peptide tended (P=0·057) to be greater following IER (309 128 (sem23 268) to 247781 (sem20 709) pmol×360 min/l) v. CER (297 204 (sem25 112) to 301 655 (sem32 714) pmol×360 min/l). The relative reduction in TAG responses was greater (P=0·045) following IER (106 (sem30) to 68 (sem 15) mmol×360 min/l) compared with CER (117 (sem 43) to 130 (sem 31) mmol×360 min/l). In conclusion, these preliminary findings highlight underlying differences between IER and CER, including a superiority of IER in reducing postprandial lipaemia, which now warrant targeted mechanistic evaluation within larger study cohorts.

  8. Ultrastructural changes in tracheal epithelial cells exposed to oxygen

    NASA Technical Reports Server (NTRS)

    Philpott, D. E.; Harrison, G. A.; Turnbill, C.; Black, S.

    1977-01-01

    White albino rats were sacrificed after 24, 36, 48, 72, and 96 h of exposure to 100% O2 at 1 atm. Tissue was prepared for the scanning electron microscope (SEM) by Critical Point Drying and for the transmission electron microscope (TEM) by plastic embedding. Scanning microscopy showed a loss of microvilli after 48 h of exposure. Cilia appeared relatively normal with SEM, but TEM revealed changes in the outer membrane. In TEM, nonciliated cells appeared swollen and often encroached on the ciliated cells. A heavy mucous blanket remained even after processing. All the changes observed that are induced by oxygen exposure contribute to mucostasis, reducing and/or halting mucociliary clearance.

  9. Fabrication of high-k dielectric Calcium Copper Titanate (CCTO) target by solid state route

    NASA Astrophysics Data System (ADS)

    Tripathy, N.; Das, K. C.; Ghosh, S. P.; Bose, G.; Kar, J. P.

    2016-02-01

    CaCu3Ti4O12 (CCTO) ceramic pellet of 10mm diameter has been synthesized by adopting solid state route. The structural and morphological characterization of the ceramics sample was carried out by X-ray diffraction (XRD) and scanning electron microscope (SEM), respectively. XRD pattern revealed the CCTO phase formation, where as SEM micrograph shows the sample consisting of well defined grain and grain boundaries. The room temperature dielectric constant of the sample was found to be ∼ 5000 at 1kHz. After successful preparation of CCTO pellet, a 2 inch diameter CCTO sputtering target is also fabricated in order to deposit CCTO thin films for microelectronic applications.

  10. Estimation and comparison of cumulative incidences of biliary self-expandable metallic stent dysfunction accounting for competing risks.

    PubMed

    Hamada, Tsuyoshi; Nakai, Yousuke; Isayama, Hiroyuki; Togawa, Osamu; Kogure, Hirofumi; Kawakubo, Kazumichi; Tsujino, Takeshi; Sasahira, Naoki; Hirano, Kenji; Yamamoto, Natsuyo; Ito, Yukiko; Sasaki, Takashi; Mizuno, Suguru; Toda, Nobuo; Tada, Minoru; Koike, Kazuhiko

    2014-03-01

    Self-expandable metallic stent (SEMS) placement is widely carried out for distal malignant biliary obstruction, and survival analysis is used to evaluate the cumulative incidences of SEMS dysfunction (e.g. the Kaplan-Meier [KM] method and the log-rank test). However, these statistical methods might be inappropriate in the presence of 'competing risks' (here, death without SEMS dysfunction), which affects the probability of experiencing the event of interest (SEMS dysfunction); that is, SEMS dysfunction can no longer be observed after death. A competing risk analysis has rarely been done in studies on SEMS. We introduced the concept of a competing risk analysis and illustrated its impact on the evaluation of SEMS outcomes using hypothetical and actual data. Our illustrative study included 476 consecutive patients who underwent SEMS placement for unresectable distal malignant biliary obstruction. A significant difference between cumulative incidences of SEMS dysfunction in male and female patients via theKM method (P = 0.044 by the log-rank test) disappeared after applying a competing risk analysis (P = 0.115 by Gray's test). In contrast, although cumulative incidences of SEMS dysfunction via the KM method were similar with and without chemotherapy (P = 0.647 by the log-rank test), cumulative incidence of SEMS dysfunction in the non-chemotherapy group was shown to be significantly lower (P = 0.031 by Gray's test) in a competing risk analysis. Death as a competing risk event needs to be appropriately considered in estimating a cumulative incidence of SEMS dysfunction, otherwise analytical results may be biased. © 2013 The Authors. Digestive Endoscopy © 2013 Japan Gastroenterological Endoscopy Society.

  11. FIB-SEM tomography of human skin telocytes and their extracellular vesicles

    PubMed Central

    Cretoiu, Dragos; Gherghiceanu, Mihaela; Hummel, Eric; Zimmermann, Hans; Simionescu, Olga; Popescu, Laurentiu M

    2015-01-01

    We have shown in 2012 the existence of telocytes (TCs) in human dermis. TCs were described by transmission electron microscopy (TEM) as interstitial cells located in non-epithelial spaces (stroma) of many organs (see www.telocytes.com). TCs have very long prolongations (tens to hundreds micrometers) named Telopodes (Tps). These Tps have a special conformation with dilated portions named podoms (containing mitochondria, endoplasmic reticulum and caveolae) and very thin segments (below resolving power of light microscopy), called podomers. To show the real 3D architecture of TC network, we used the most advanced available electron microscope technology: focused ion beam scanning electron microscopy (FIB-SEM) tomography. Generally, 3D reconstruction of dermal TCs by FIB-SEM tomography revealed the existence of Tps with various conformations: (i) long, flattened irregular veils (ribbon-like segments) with knobs, corresponding to podoms, and (ii) tubular structures (podomers) with uneven calibre because of irregular dilations (knobs) – the podoms. FIB-SEM tomography also showed numerous extracellular vesicles (diameter 438.6 ± 149.1 nm, n = 30) released by a human dermal TC. Our data might be useful for understanding the role(s) of TCs in intercellular signalling and communication, as well as for comprehension of pathologies like scleroderma, multiple sclerosis, psoriasis, etc. PMID:25823591

  12. Use of lignocellulose materials as sorption media for phosphorus removal

    Treesearch

    K.G. Karthikeyan; Mandla A. Tshabalala; Dongmei Wang

    2002-01-01

    The suitability of modified bark or wood fiber derived from southern yellow pine to function as P sorbents was investigated. Sorbent preparation process included grinding, size fractionation] extraction for surface activation] and treatment with polyallylamine hydrochloride (PAA HCI) or 3-chloro-2-hydroxypropyltrimethlyammonium chloride. SEM images revealed surface...

  13. Diversity of seM in Streptococcus equi subsp. equi isolated from strangles outbreaks.

    PubMed

    Libardoni, Felipe; Vielmo, Andréia; Farias, Luana; Matter, Letícia Beatriz; Pötter, Luciana; Spilki, Fernando Rosado; de Vargas, Agueda Castagna

    2013-03-23

    Strangles is the main upper respiratory tract disease of horses. There are currently no studies on the changes in alleles of the M protein gene (seM) in Brazilian isolates of Streptococcus equi ssp. equi (S. equi). This study aimed to analyze and differentiate molecularly S. equi isolates from equine clinical specimens from southern Brazil, between 1994 and 2010. seM alleles were analyzed in 47 isolates of S. equi obtained from clinical cases of strangles (15 Thoroughbred horses, 29 Crioulo breed horses and three Brasileiro de Hipismo--BH). seM alleles characterization was performed by comparing variable region sequences of the seM gene. The alleles were also phylogenetically grouped by Neighbor-joining analysis, which demonstrated the geographic distribution of those in properties from southern Brazil. Fifteen alleles of the gene seM were found among the 47 S. equi isolates analyzed. Among these, only one allele (seM-61), which was identified in seven isolates (14.9%), was found in the database PubMLST-seM. Within the new alleles, allele seM-115 was the most prevalent, having been found in 13 isolates (27.7%), followed by allele seM-117 in 10 isolates (21.3%). In the Brazilian horse population studied, there is greater diversity of M protein alleles in S. equi isolates compared to worldwide data deposited in PubMLST-seM. Among the 15 seM alleles identified, only one allele sequence was previously published. The alleles identification is important to control the disease by guiding selection of strains for the manufacture of commercial and autogenous vaccines. Copyright © 2012 Elsevier B.V. All rights reserved.

  14. Free acid gel form of β-hydroxy-β-methylbutyrate (HMB) improves HMB clearance from plasma in human subjects compared with the calcium HMB salt.

    PubMed

    Fuller, John C; Sharp, Rick L; Angus, Hector F; Baier, Shawn M; Rathmacher, John A

    2011-02-01

    The leucine metabolite, β-hydroxy-β-methylbutyrate (HMB), is a nutritional supplement that increases lean muscle and strength with exercise and in disease states. HMB is presently available as the Ca salt (CaHMB). The present study was designed to examine whether HMB in free acid gel form will improve HMB availability to tissues. Two studies were conducted and in each study four males and four females were given three treatments in a randomised, cross-over design. Treatments were CaHMB (gelatin capsule, 1 g), equivalent HMB free acid gel swallowed (FASW) and free acid gel held sublingual for 15 s then swallowed (FASL). Plasma HMB was measured for 3 h following treatment in study 1 and 24 h with urine collection in study 2. In both the studies, the times to peak plasma HMB were 128 (sem 11), 38 (sem 4) and 38 (sem 1) min (P < 0·0001) for CaHMB, FASW and FASL, respectively. The peak concentrations were 131 (sem 6), 249 (sem 14) and 239 (sem 14) μmol/l (P < 0·0001) for CaHMB, FASW and FASL, respectively. The areas under the curve were almost double for FASW and FASL (P < 0·0001). Daily urinary HMB excretion was not significantly increased resulting in more HMB retained (P < 0·003) with FASW and FASL. Half-lives were 3·17 (sem 0·22), 2·50 (sem 0·13) and 2·51 (sem 0·14) h for CaHMB, FASW and FASL, respectively (P < 0·004). Free acid gel resulted in quicker and greater plasma concentrations (+185%) and improved clearance (+25%) of HMB from plasma. In conclusion, HMB free acid gel could improve HMB availability and efficacy to tissues in health and disease.

  15. High-resolution imaging by scanning electron microscopy of semithin sections in correlation with light microscopy.

    PubMed

    Koga, Daisuke; Kusumi, Satoshi; Shodo, Ryusuke; Dan, Yukari; Ushiki, Tatsuo

    2015-12-01

    In this study, we introduce scanning electron microscopy (SEM) of semithin resin sections. In this technique, semithin sections were adhered on glass slides, stained with both uranyl acetate and lead citrate, and observed with a backscattered electron detector at a low accelerating voltage. As the specimens are stained in the same manner as conventional transmission electron microscopy (TEM), the contrast of SEM images of semithin sections was similar to TEM images of ultrathin sections. Using this technique, wide areas of semithin sections were also observed by SEM, without the obstruction of grids, which was inevitable for traditional TEM. This study also applied semithin section SEM to correlative light and electron microscopy. Correlative immunofluorescence microscopy and immune-SEM were performed in semithin sections of LR white resin-embedded specimens using a FluoroNanogold-labeled secondary antibody. Because LR white resin is hydrophilic and electron stable, this resin is suitable for immunostaining and SEM observation. Using correlative microscopy, the precise localization of the primary antibody was demonstrated by fluorescence microscopy and SEM. This method has great potential for studies examining the precise localization of molecules, including Golgi- and ER-associated proteins, in correlation with LM and SEM. © The Author 2015. Published by Oxford University Press on behalf of The Japanese Society of Microscopy. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  16. Management of occluded metal stents in malignant biliary obstruction: similar outcomes with second metal stents compared to plastic stents

    PubMed Central

    Shah, Tilak; Desai, Svetang; Haque, Mahfuzul; Dakik, Hassan; Fisher, Deborah

    2013-01-01

    Background Covered or uncovered self expandable metallic stents (SEMS) placed in patients with malignant biliary obstruction can occlude in 19–40%, but optimal management is unclear. Aim We sought to summarize current evidence regarding management of occluded SEMS in patients with malignant biliary obstruction. Methods Two investigators independently searched Pubmed, Embase, and Web of Science using pre-defined search criteria, and reviewed bibliographies of included studies. Data were independently abstracted by two investigators, and analyzed using RevMan. We compared strategies of second SEMS versus plastic stents with respect to the following outcomes: rate of second stent re-occlusion, duration of second stent patency, and survival. Results Ten retrospective studies met inclusion criteria for the systematic review. Management options described were placement of an uncovered SEMS (n=125), covered SEMS (n=106), plastic stent (n=135), percutaneous biliary drain (n=7), mechanical cleaning (n=18), or microwave coagulation (n=7). Relative risk of re-occlusion was not significantly different in patients with second SEMS compared to plastic stents (RR 1.24, 95% CI 0.92, 1.67, I2= 0, p 0.16). Duration of second stent patency was not significantly different between patients who received second SEMS versus plastic stents (weighted mean difference 0.46, 95% CI −0.30, 1.23, I2=83%). Survival was not significantly different among patients who received plastic stents versus SEMS (weighted mean difference −1.13, 95% CI −2.33, 0.07, I2 86%, p 0.07). Conclusions Among patients with malignant biliary obstruction and occluded SEMS, available evidence suggests a strategy of placing a plastic stent may be as effective as second SEMS. Limitations of these findings were that all studies were retrospective and heterogeneity between studies was detected for two of the outcomes. PMID:22732833

  17. Structural equation modeling in pediatric psychology: overview and review of applications.

    PubMed

    Nelson, Timothy D; Aylward, Brandon S; Steele, Ric G

    2008-08-01

    To describe the use of structural equation modeling (SEM) in the Journal of Pediatric Psychology (JPP) and to discuss the usefulness of SEM applications in pediatric psychology research. The use of SEM in JPP between 1997 and 2006 was examined and compared to leading journals in clinical psychology, clinical child psychology, and child development. SEM techniques were used in <4% of the empirical articles appearing in JPP between 1997 and 2006. SEM was used less frequently in JPP than in other clinically relevant journals over the past 10 years. However, results indicated a recent increase in JPP studies employing SEM techniques. SEM is an under-utilized class of techniques within pediatric psychology research, although investigations employing these methods are becoming more prevalent. Despite its infrequent use to date, SEM is a potentially useful tool for advancing pediatric psychology research with a number of advantages over traditional statistical methods.

  18. Retardation of surface corrosion of biodegradable magnesium-based materials by aluminum ion implantation

    NASA Astrophysics Data System (ADS)

    Wu, Guosong; Xu, Ruizhen; Feng, Kai; Wu, Shuilin; Wu, Zhengwei; Sun, Guangyong; Zheng, Gang; Li, Guangyao; Chu, Paul K.

    2012-07-01

    Aluminum ion implantation is employed to modify pure Mg as well as AZ31 and AZ91 magnesium alloys and their surface degradation behavior in simulated body fluids is studied. Polarization tests performed in conjunction with scanning electron microscopy (SEM) reveal that the surface corrosion resistance after Al ion implantation is improved appreciably. This enhancement can be attributed to the formation of a gradient surface structure with a gradual transition from an Al-rich oxide layer to Al-rich metal layer. Compared to the high Al-content magnesium alloy (AZ91), a larger reduction in the degradation rate is achieved from pure magnesium and AZ31. Our results reveal that the surface corrosion resistance of Mg alloys with no or low Al content can be improved by Al ion implantation.

  19. Demographics and sexual characteristics of sex-enhancing medication users: Study of a web-based cross-sectional sample of sexually active men.

    PubMed

    Ahmed, Abul-Fotouh; Alshahrani, Saad; Morgan, Anthony; Gabr, Ahmed H; Abdel-Razik, Mohamed; Daoud, Abdallah

    2017-12-01

    To evaluate the frequency of sex-enhancing medications (S-EM) use and to investigate the demographics and sexual characteristics of the S-EM users amongst a Saudi Arabian male population. A cross-sectional sample of 1176 Saudi Arabian men was recruited using a web-based survey between 1 January and 1 April 2015. The survey included multiple open and closed questions to assess the frequency of S-EM use; and demographics, clinical, and sexual characteristics of S-EM users, as well as their perceptions of S-EM. Amongst the participants, 1008 were sexually active and included in the data analysis. Of the sexually active participants, 402 (39.9%) reported S-EM use in the form of herbal or phosphodiesterase type 5 inhibitors at some time in their lives. Comparing S-EM users with S-EM non-users, the S-EM users had a number of demographic and sexual characteristics including: higher education level, higher income, smoking, more than one sexual partner, longer sexual activity duration, higher frequency of sexual intercourse, and lower sexual satisfaction level. Most of the S-EM users (82.1%) bought S-EM without a medical prescription and 62.5% had used them recreationally. In all, 52% of respondents used S-EM to treat ED and 69% of those who used it recreationally reported enhancement of erection with S-EM usage. Demographic and sexual characteristics of S-EM users and the attitude of the users towards the S-EM were identified amongst a Saudi Arabian male population.

  20. Polyaniline-carboxymethyl cellulose nanocomposite for cholesterol detection.

    PubMed

    Barik, Abdul; Solanki, Pratima R; Kaushik, Ajeet; Ali, Azahar; Pandey, M K; Kim, C G; Malhotra, B D

    2010-10-01

    Cholesterol oxidase (ChOx) has been covalently immobilized onto polyaniline-carboxymethyl cellulose (PANI-CMC) nanocomposite film deposited onto indium-tin-oxide (ITO) coated glass plate using glutaraldehyde as a cross-linker. Fourier transform infrared (FTIR) spectroscopic and electrochemical studies have been used to characterize the PANI-CMC/ITO nanocomposite electrode and ChOx/PANI-CMC/ITO bioelectrode. Scanning electron microscopy (SEM) studies reveal the formation of PANI-CMC nanocomposite fibers of size approximately 150 nm in diameter. The ChOx/PANI-CMC/ITO bioelectrode exhibits linearity as 0.5-22 mM, detection limit as 1.31 mM, sensitivity as 0.14 mA/mM cm2, response time as 10 s and shelf-life of about 10 weeks when bioelectrode is stored at 4 degrees C. The low value of Michaelis-Menten constant (K(m)) obtained as 2.71 mM reveals high affinity of immobilized ChOx for PANI-CMC/ITO nanocomposite electrode.

  1. Characterization of Chlorhexidine-Loaded Calcium-Hydroxide Microparticles as a Potential Dental Pulp-Capping Material.

    PubMed

    Priyadarshini, Balasankar M; Selvan, Subramanian T; Narayanan, Karthikeyan; Fawzy, Amr S

    2017-06-22

    This study explores the delivery of novel calcium hydroxide [Ca(OH)₂] microparticles loaded with chlorhexidine (CHX) for potential dental therapeutic and preventive applications. Herein, we introduce a new approach for drug-delivery to deep dentin-surfaces in the form of drug-loaded microparticles. Unloaded Ca(OH)₂ [Ca(OH)₂/Blank] and CHX-loaded/Ca(OH)₂ microparticles were fabricated by aqueous chemical-precipitation technique. The synthesized-microparticles were characterized in vitro for determination of surface-morphology, crystalline-features and thermal-properties examined by energy-dispersive X-ray scanning and transmission electron-microscopy (EDX-SEM/TEM), Fourier-transform infrared-spectroscopy (FTIR), X-ray diffraction (XRD), thermogravimetric analysis (TGA) and differential scanning-calorimetry (DSC). Time-related pH changes, initial antibacterial/biofilm-abilities and cytotoxicity of CHX-loaded/Ca(OH)₂ microparticles were evaluated. Microparticles were delivered to dentin-surfaces with subsequent SEM examination of treated dentin-substrates. The in vitro and ex vivo CHX-release profiles were characterized. Ca(OH)₂/Blank were hexagonal-shaped with highest z -average diameter whereas CHX-inclusion evidenced micro-metric spheres with distinguishable surface "rounded deposits" and a negative-shift in diameter. CHX:Ca(OH)₂/50 mg exhibited maximum encapsulation-efficiency with good antibacterial and cytocompatible properties. SEM examination revealed an intact layer of microparticles on exposed dentin-surfaces with retention of spherical shape and smooth texture. Microparticles loaded on dentin-surfaces showed prolonged release of CHX indicating substantial retention on dentin-substrates. This study validated the inherent-applicability of this novel drug-delivery approach to dentin-surfaces using micro-metric CHX-loaded/Ca(OH)₂ microparticles.

  2. What "CAM" we learn about the level of evidence from 60 years of research into manipulative and body-based therapies in sports and exercise medicine?

    PubMed

    Mącznik, Aleksandra K; Schneiders, Anthony G; Sullivan, S John; Athens, Josie

    2014-04-01

    Complementary and alternative medicine (CAM) is becoming increasingly accepted in modern western society, including amongst amateur and professional athletes, however, it has not yet been determined how CAM is reflected in scientific publications in sports and exercise medicine (SEM). The aim of this study was to identify trends in the levels of evidence for manipulative and body-based therapies within the SEM literature. The literature was systematically searched with no language restrictions in seven databases and retrieved articles were screened and classified according to their study design using the Oxford Centre for Evidence-Based Medicine system. From 6088 retrieved articles, 395 were retained for evaluation and these included 180 on massage, 96 on acupuncture and 95 on manipulation. The majority of the articles were published in English, with 88 in non-English languages. Level-1 evidence was available for acupuncture, manipulation, massage, and Pilates. From the nineteen-seventies onwards, a decreasing trend was observed for low evidence articles with a corresponding increasing trend for clinical trials. After the year 2000, over 50% of the published articles were clinical trials, RCTs or systematic reviews. This review revealed an increase in the quantity and quality of published manipulative and body-based therapy articles in SEM over the last 60 years with the evidence level varying considerably between therapies. The timeframe associated with the development of evidence in CAM may reflect the move to provide scientific support for therapies previously justified primarily by anecdotal evidence, or traditional and cultural use. Copyright © 2014. Published by Elsevier Ltd.

  3. A Mössbauer spectral study of degradation in La 0.58Sr 0.4Fe 0.5Co 0.5O 3–x after long-term operation in solid oxide electrolysis cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mahmoud, Abdelfattah; Daroukh, Mahmoud Al; Lipinska-Chwalek, Marta

    Here, degradation processes of oxygen electrodes in solid oxide electrolysis cells (SOECs) were studied by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and Mössbauer spectroscopy. La 0.58Sr 0.4Fe 0.5Co 0.5O 3–x (LSCF) anodes (oxygen electrode) were analyzed after different long-term operations durations of 1774, 6100 and 9000 h. The results were compared with a cell in the initial state. Besides the LSCF anode, the SOECs were composed of a Ce 0.8Gd 0.2O 1.9 barrier layer between the anode and electrolyte, yttria-stabilized zirconia (YSZ) as electrolyte and Ni-YSZ as cathode (hydrogen electrode). Mössbauer spectra of the iron-containingmore » anode were acquired in order to determine the alteration of the iron oxidation state and its local environment during operation. Mössbauer spectroscopy yields indirect information about the degradation mechanism, especially in combination with SEM, TEM, and XRD. XRD and TEM revealed the appearance of Co 3O 4 during the SOEC operation and SEM analyses confirmed the formation of SrZrO 3 at the electrode/electrolyte interface. The spectral analysis confirmed the reduction of iron from Fe(IV) to Fe(III) in LSCF after long-term operation. The fraction of Fe(IV) in the electrode decreased with time and 18, 15, 13 and 11% were obtained for 0, 1774, 6100, and 9000 h of operation, respectively.« less

  4. A Mössbauer spectral study of degradation in La 0.58Sr 0.4Fe 0.5Co 0.5O 3–x after long-term operation in solid oxide electrolysis cells

    DOE PAGES

    Mahmoud, Abdelfattah; Daroukh, Mahmoud Al; Lipinska-Chwalek, Marta; ...

    2017-10-21

    Here, degradation processes of oxygen electrodes in solid oxide electrolysis cells (SOECs) were studied by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and Mössbauer spectroscopy. La 0.58Sr 0.4Fe 0.5Co 0.5O 3–x (LSCF) anodes (oxygen electrode) were analyzed after different long-term operations durations of 1774, 6100 and 9000 h. The results were compared with a cell in the initial state. Besides the LSCF anode, the SOECs were composed of a Ce 0.8Gd 0.2O 1.9 barrier layer between the anode and electrolyte, yttria-stabilized zirconia (YSZ) as electrolyte and Ni-YSZ as cathode (hydrogen electrode). Mössbauer spectra of the iron-containingmore » anode were acquired in order to determine the alteration of the iron oxidation state and its local environment during operation. Mössbauer spectroscopy yields indirect information about the degradation mechanism, especially in combination with SEM, TEM, and XRD. XRD and TEM revealed the appearance of Co 3O 4 during the SOEC operation and SEM analyses confirmed the formation of SrZrO 3 at the electrode/electrolyte interface. The spectral analysis confirmed the reduction of iron from Fe(IV) to Fe(III) in LSCF after long-term operation. The fraction of Fe(IV) in the electrode decreased with time and 18, 15, 13 and 11% were obtained for 0, 1774, 6100, and 9000 h of operation, respectively.« less

  5. SemEHR: A general-purpose semantic search system to surface semantic data from clinical notes for tailored care, trial recruitment, and clinical research.

    PubMed

    Wu, Honghan; Toti, Giulia; Morley, Katherine I; Ibrahim, Zina M; Folarin, Amos; Jackson, Richard; Kartoglu, Ismail; Agrawal, Asha; Stringer, Clive; Gale, Darren; Gorrell, Genevieve; Roberts, Angus; Broadbent, Matthew; Stewart, Robert; Dobson, Richard J B

    2018-05-01

    Unlocking the data contained within both structured and unstructured components of electronic health records (EHRs) has the potential to provide a step change in data available for secondary research use, generation of actionable medical insights, hospital management, and trial recruitment. To achieve this, we implemented SemEHR, an open source semantic search and analytics tool for EHRs. SemEHR implements a generic information extraction (IE) and retrieval infrastructure by identifying contextualized mentions of a wide range of biomedical concepts within EHRs. Natural language processing annotations are further assembled at the patient level and extended with EHR-specific knowledge to generate a timeline for each patient. The semantic data are serviced via ontology-based search and analytics interfaces. SemEHR has been deployed at a number of UK hospitals, including the Clinical Record Interactive Search, an anonymized replica of the EHR of the UK South London and Maudsley National Health Service Foundation Trust, one of Europe's largest providers of mental health services. In 2 Clinical Record Interactive Search-based studies, SemEHR achieved 93% (hepatitis C) and 99% (HIV) F-measure results in identifying true positive patients. At King's College Hospital in London, as part of the CogStack program (github.com/cogstack), SemEHR is being used to recruit patients into the UK Department of Health 100 000 Genomes Project (genomicsengland.co.uk). The validation study suggests that the tool can validate previously recruited cases and is very fast at searching phenotypes; time for recruitment criteria checking was reduced from days to minutes. Validated on open intensive care EHR data, Medical Information Mart for Intensive Care III, the vital signs extracted by SemEHR can achieve around 97% accuracy. Results from the multiple case studies demonstrate SemEHR's efficiency: weeks or months of work can be done within hours or minutes in some cases. SemEHR provides a more comprehensive view of patients, bringing in more and unexpected insight compared to study-oriented bespoke IE systems. SemEHR is open source, available at https://github.com/CogStack/SemEHR.

  6. Structural, morphological and gas sensing study of zinc doped tin oxide nanoparticles synthesized via hydrothermal technique

    NASA Astrophysics Data System (ADS)

    Singh, Davender; Kundu, Virender Singh; Maan, A. S.

    2016-07-01

    The pure and Zn-doped SnO2 nanoparticles were prepared successfully by hydrothermal route on large scale having different doping concentration of zinc from 0 to 0.20%. The calcined nanoparticles were characterized by X-ray diffraction (XRD) and scanning electron microscope (SEM) for structural and morphological studies. XRD analyses reveal that the nanoparticles of these doping concentrations are polycrystalline in nature and existed as tetragonal rutile structure, SEM study of images confirms the existence of very small, homogeneously distributed, and spherical nanoparticles. The particles size of the nanoparticles was calculated by Scherrer formula and was found in the range of 9-21 nm. The presence of dopant (i.e. zinc) and formation of Sn-O phase and hydrous nature of Zn-doped SnO2 nanoparticles are confirmed by EDX and FTIR study. The gas sensing properties of pure and Zn-doped SnO2 nanoparticles were investigated for various concentrations of methanol, ethanol and acetone at different operating temperatures and it has been found that with doping concentration of zinc (x = 0.20%) shows the maximum response 78% to methanol, 65% to ethanol and 62% to acetone respectively at different operating temperature within the measurement limit for a concentration of 100 ppm of each gases.

  7. Spectroscopic studies of gel grown zinc doped calcium hydrogen phosphate dihydrate crystals

    NASA Astrophysics Data System (ADS)

    Suryawanshi, V. B.; Chaudhari, R. T.

    2018-05-01

    The influence of zinc doping on the gel grown calcium hydrogen phosphate dihydrate crystals was studied using the spectroscopic techniques, which included SEM, FTIR and EDAX. It was found that, zinc ions transform the morphology of brushite crystals from rectangular plate shaped crystals to branching microcrystal patterns. However in FT-IR spectroscopy, as compared to undoped brushite crystals few vibrations were shifted to higher value. The observed changes in the vibrations were due to the impact of zinc ions. EDAX techniques is use to determine the percentage composition of elements present in the doped crystals. It revealed that the sample was of a mixed composition.

  8. Iron sand - ZnO based materials of natural origin for dye decolorization under sunlight irradiation

    NASA Astrophysics Data System (ADS)

    Salprima Yudha, S.; Angasa, Eka; Fitriani, Dyah; Falahudin, Aswin

    2017-03-01

    A mixed iron sand - ZnO materials was prepared by heating a mixture of natural iron sand and ZnO at 900 °C for 5 hours. XRD study of the sample revealed that, in the mixed iron sand - ZnO present some minor peaks that similar with XRD pattern of γ-Fe2O3 and/or Fe3O4. Observation of the sample using SEM, showed a compact morpholgy and almost homogenenous in particles size. In purpose to evaluate the ability of this materials for textile dying wastewater treatment, a study on rhodamine B decolorization was carried out as a reperesentative.

  9. Identification of Fragile Microscopic Structures during Mineral Transformations in Wet Supercritical CO2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arey, Bruce W.; Kovarik, Libor; Qafoku, Odeta

    2013-04-01

    In this study we examine the nature of highly fragile reaction products that form in low water content super critical carbon dioxide (scCO2) using a combination of scanning electron microscopy/focus ion beam (SEM/FIB), confocal Raman spectroscopy, helium ion microscopy (HeIM), and transmission electron microscopy (TEM). HeIM images show these precipitates to be fragile rosettes that can readily decompose even under slight heating from an electron beam. Using the TEM revealed details on the interfacial structure between the newly formed surface precipitates and the underlying initial solid phases. The detailed microscopic analysis revealed that the growth of the precipitates either followedmore » a tip growth mechanism with precipitates forming directly on the forsterite surface if the initial solid was non-porous (natural forsterite) or growth from the surface of the precipitates where fluid was conducted through the porous (nanoforsterite) agglomerates to the growth center. The mechanism of formation of the hydrated/hydroxylated magnesium carbonate compound (HHMC) phases offers insight into the possible mechanisms of carbonate mineral formation from scCO2 solutions which has recently received a great deal of attention as the result of the potential for CO2 to act as an atmospheric greenhouse gas and impact overall global warming. The techniques used here to examine these fragile structures an also be used to examine a wide range of fragile material surfaces. SEM and FIB technologies have now been brought together in a single instrument, which represents a powerful combination for the studies in biological, geological and materials science.« less

  10. Developing 3D SEM in a broad biological context

    PubMed Central

    Kremer, A; Lippens, S; Bartunkova, S; Asselbergh, B; Blanpain, C; Fendrych, M; Goossens, A; Holt, M; Janssens, S; Krols, M; Larsimont, J-C; Mc Guire, C; Nowack, MK; Saelens, X; Schertel, A; Schepens, B; Slezak, M; Timmerman, V; Theunis, C; Van Brempt, R; Visser, Y; GuÉRin, CJ

    2015-01-01

    When electron microscopy (EM) was introduced in the 1930s it gave scientists their first look into the nanoworld of cells. Over the last 80 years EM has vastly increased our understanding of the complex cellular structures that underlie the diverse functions that cells need to maintain life. One drawback that has been difficult to overcome was the inherent lack of volume information, mainly due to the limit on the thickness of sections that could be viewed in a transmission electron microscope (TEM). For many years scientists struggled to achieve three-dimensional (3D) EM using serial section reconstructions, TEM tomography, and scanning EM (SEM) techniques such as freeze-fracture. Although each technique yielded some special information, they required a significant amount of time and specialist expertise to obtain even a very small 3D EM dataset. Almost 20 years ago scientists began to exploit SEMs to image blocks of embedded tissues and perform serial sectioning of these tissues inside the SEM chamber. Using first focused ion beams (FIB) and subsequently robotic ultramicrotomes (serial block-face, SBF-SEM) microscopists were able to collect large volumes of 3D EM information at resolutions that could address many important biological questions, and do so in an efficient manner. We present here some examples of 3D EM taken from the many diverse specimens that have been imaged in our core facility. We propose that the next major step forward will be to efficiently correlate functional information obtained using light microscopy (LM) with 3D EM datasets to more completely investigate the important links between cell structures and their functions. Lay Description Life happens in three dimensions. For many years, first light, and then EM struggled to image the smallest parts of cells in 3D. With recent advances in technology and corresponding improvements in computing, scientists can now see the 3D world of the cell at the nanoscale. In this paper we present the results of high resolution 3D imaging in a number of diverse cells and tissues from multiple species. 3D reconstructions of cell structures often revealed them to be significantly more complex when compared to extrapolations made from 2D studies. Correlating functional 3D LM studies with 3D EM results opens up the possibility of making new strides in our understanding of how cell structure is connected to cell function. PMID:25623622

  11. Stent migration following endoscopic suture fixation of esophageal self-expandable metal stents: a systematic review and meta-analysis.

    PubMed

    Law, Ryan; Prabhu, Anoop; Fujii-Lau, Larissa; Shannon, Carol; Singh, Siddharth

    2018-02-01

    Covered self-expandable metal stents (SEMS) are utilized for the management of benign and malignant esophageal conditions; however, covered SEMS are prone to migration. Endoscopic suture fixation may mitigate the migration risk of covered esophageal SEMS. Hence, we conducted a systematic review and meta-analysis to evaluate the effectiveness and safety of endoscopic suture fixation for covered esophageal SEMS. Following PRISMA guidelines, we performed a systematic review from 2011 to 2016 to identify studies (case control/case series) reporting the technical success and migration rate of covered esophageal SEMS following endoscopic suture fixation. We searched multiple electronic databases and conference proceedings. We calculated pooled rates (and 95% confidence intervals [CI]) of technical success and stent migration using a random effects model. We identified 14 studies (212 patients) describing covered esophageal SEMS placement with endoscopic suture fixation. When reported, SEMS indications included leak/fistula (n = 75), stricture (n = 65), perforation (n = 10), and achalasia (n = 4). The pooled technical success rate was 96.7% (95% CI 92.3-98.6), without heterogeneity (I 2  = 0%). We identified 29 SEMS migrations at rate of 15.9% (95% CI 11.4-21.6), without heterogeneity (I 2  = 0%). Publication bias was observed, and using the trim-and-fill method, a more conservative estimate for stent migration was 17.0%. Suture-related adverse events were estimated to occur in 3.7% (95% CI 1.6-8.2) of cases. Endoscopic suture fixation of covered esophageal SEMS appears to reduce stent migration when compared to published rates of non-anchored SEMS. However, SEMS migration still occurs in approximately 1 out of 6 cases despite excellent immediate technical success and low risk of suture-related adverse events.

  12. Three cases of congenital dysfibrinogenemia in unrelated Chinese families: heterozygous missense mutation in fibrinogen alpha chain Argl6His

    PubMed Central

    Luo, Meiling; Deng, Donghong; Xiang, Liqun; Cheng, Peng; Liao, Lin; Deng, Xuelian; Yan, Jie; Lin, Faquan

    2016-01-01

    Abstract Congenital dysfibrinogenemia (CD) is a qualitative fibrinogen disorder caused by an abnormal fibrinogen molecule structure, leading to dysfunctional blood coagulation. This study describes 3 cases of dysfibrinogenemia identified in the unrelated Chinese pedigrees. Routine coagulation screening tests were performed on the probands and their families. The antigens and functionality of fibrinogen was measured using an immunoturbidimetry assay and the Clauss method, respectively. To identify the genetic mutation responsible for these dysfibrinogens, genomic DNA extracted from the blood was analyzed using PCR amplification and direct sequencing. The presence of the mutant chains was determined using matrix-assisted laser desorption/ionization time of flight (MALDI-TOF) mass spectroscopy. Purified plasma fibrinogen of 3 probands was analyzed using SDS–PAGE, fibrinogen clottability, fibrin polymerization, fibrinopeptide release, and scanning electron microscopy (SEM). The 3 probands had a long thrombin time. Levels of functional fibrinogen were found to be very low, while the fibrinogen antigen was within the normal range. DNA sequencing revealed a heterozygous Arg16His substitution in the fibrinogen Aα chain (FGA). The mutant chains were found to be expressed using MALDI-TOF mass spectroscopy. SDS–PAGE did not reveal any difference in the molecular weights of 3 polypeptide chains between normal and abnormal fibrinogens. Fibrinogen clottability showed a slower fibrin clot formation than the healthy control. Fibrin polymerization, after addition of thrombin, showed a prolonged lag phase and decreased final turbidity. The kinetics of fibrinopeptides release revealed a decreased amount of the released fibrinopeptide A. SEM of the patient's fibrin clot was found to be abnormal. Results indicate that the 3 probands with dysfibrinogenemia were caused by mutations of Aα chain Arg16His. Mutation of this fibrinogen induced dysfunction of plasma fibrinogen. PMID:27684817

  13. Control of the shape and size of iron oxide (α-Fe2O3) nanoparticles synthesized through the chemical precipitation method

    NASA Astrophysics Data System (ADS)

    Lassoued, Abdelmajid; Dkhil, Brahim; Gadri, Abdellatif; Ammar, Salah

    Hematite (α-Fe2O3) nanoparticles were synthesized via a simple chemical precipitation method. The impact of varying the concentration of precursor on the crystalline phase, size and morphology of α-Fe2O3 products was explored. The characteristic of the synthesized hematite nanoparticles were evaluated by X-ray diffraction (XRD), Transmission Electron Microscopy (TEM), Scanning Electron Microscopy (SEM), Fourier Transform Infra-Red (FT-IR) spectroscopy, Raman spectroscopy, Differential Thermal Analysis (DTA), Thermo Gravimetric Analysis (TGA), Ultraviolet-Visible (UV-Vis) analysis and Photoluminescence (PL). XRD data revealed a rhombohedral (hexagonal) structure with the space group R-3c in all samples. Uniform spherical like morphology was confirmed by TEM and SEM. The result revealed that the particle sizes were varied between 21 and 82 nm and that the increase in precursor concentration (FeCl3, 6H2O) is accompanied by an increase in the particle size of 21 nm for pure α-Fe2O3 synthesized with [Fe3+] = 0.05 M at 82 nm for pure α-Fe2O3 synthesized with [Fe3+] = 0.4 M. FT-IR confirms the phase purity of the nanoparticles synthesized. The Raman spectroscopy was used not only to prove that we have synthesized pure hematite but also to identify their phonon modes. The thermal behavior of compound was studied by using TGA/DTA results: The TGA showed three mass losses, whereas DTA resulted in three endothermic peaks. Besides, the optical investigation revealed that samples have an optical gap of about 2.1 eV and that this value varies as a function of the precursor concentration.

  14. Structural, optical and magnetic investigation of Gd implanted CeO2 nanocrystals

    NASA Astrophysics Data System (ADS)

    Kaviyarasu, K.; Murmu, P. P.; Kennedy, J.; Thema, F. T.; Letsholathebe, Douglas; Kotsedi, L.; Maaza, M.

    2017-10-01

    Gadolinium implanted cerium oxide (Gd-CeO2) nanocomposites is an important candidate which have unique hexagonal structure and high K- dielectric constant. Gd-CeO2 nanoparticles were synthesized using hydrothermal method. X-ray diffraction (XRD) results showed that the peaks are consistent with pure phase cubic structure the XRD pattern also confirmed crystallinity and phase purity of the sample. Nanocrystals sizes were found to be up to 25 nm as revealed by XRD and SEM. It is suggested that Gd gives an affirmative effect on the ion influence behavior of Gd-CeO2. XRD patterns showed formation of new phases and SEM micrographs revealed hexagonal structure. Photoluminescence measurement (PL) reveals the systematic shift of the emission band towards lower wavelength thereby ascertaining the quantum confinement effect (QCE). The PL spectrum has wider broad peak ranging from 390 nm to 770 nm and a sharp one centered on at 451.30 nm which is in tune with Gd ions. In the Raman spectra showed intense band observed between 460 cm-1 and 470 cm-1 which is attributed to oxygen ions into CeO2. Room temperature ferromagnetism was observed in un-doped and Gd implanted and annealed CeO2 nanocrystals. In the recent studies, ceria based materials have been considered as one of the most promising electrolytes for reduced temperature SOFC (solid oxide fuel cell) system due to their high ionic conductivities allowing its use in stainless steel supported fuel cells. CeO2 having an optical bandgap 3.3 eV and n-type carrier density which make it a promising candidate for various technological application such as buffer layer on silicon on insulator devices.

  15. Structural and optical properties of ZnO nanorods synthesized via template free approach

    NASA Astrophysics Data System (ADS)

    Kajal, Priyanka; D, Pooja; Jaggi, Neena

    2016-06-01

    In this paper, we report a novel method for synthesis of semiconducting ZnO nanorods using Zinc acetate dehydrate precursor in a methanol—de-ionized (1:5) mixture via template free approach. Scanning electron microscope (SEM) and transmission electron microscope (TEM) images of as synthesized nanorods revealed hexagonal symmetry of rods, whereas x-ray diffraction (XRD) analysis for structure and phase has shown high crystallinity with wurtzite crystal structure. The structural characterization by FT-IR analysis revealed presence of various groups on as synthesized ZnO nanorods, whereas the UV-Vis analysis has shown a blue shift in the absorption spectra as compared to bulk ZnO due to quantum confinement of charge carriers. Photoluminescence (PL) spectroscopy study has also been performed revealing a good degree of phosphorescence in the ZnO nanorods. Further, thermo gravimetric analysis (TGA) revealed that as synthesized nanorods by present method are highly stable at high temperature (1000 °C). This study provides an alternative, less expensive and a very simple method for the fabrication of ZnO nanorods in abundance, which can be further used for various sensing applications, in particular, gas sensing.

  16. Characterization of Pu-238 heat source granule containment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Richardson Ii, P D; Thronas, D L; Romero, J P

    2008-01-01

    The Milliwatt Radioisotopic Thermoelectric Generator (RTG) provides power for permissive-action links. These nuclear batteries convert thermal energy to electrical energy using a doped silicon-germanium thermopile. The thermal energy is provided by a heat source made of {sup 238}Pu, in the form of {sup 238}PuO{sub 2} granules. The granules are contained in 3 layers of encapsulation. A thin T-111 liner surrounds the {sup 238}PuO{sub 2} granules and protects the second layer (strength member) from exposure to the fuel granules. The T-111 strength member contains the fuel under impact condition. An outer clad of Hastelloy-C protects the T-111 from oxygen embrittlement. Themore » T-111 strength member is considered the critical component in this {sup 238}PuO{sub 2} containment system. Any compromise in the strength member is something that needs to be characterized. Consequently, the T-111 strength member is characterized upon it's decommissioning through Scanning Electron Microscopy (SEM), and Metallography. SEM is used in Secondary Electron mode to reveal possible grain boundary deformation and/or cracking in the region of the strength member weld. Deformation and cracking uncovered by SEM are further characterized by Metallography. Metallography sections are mounted and polished, observed using optical microscopy, then documented in the form of photomicrographs. SEM may further be used to examine polished Metallography mounts to characterize elements using the SEM mode of Energy Dispersive X-ray Spectroscopy (EDS). This paper describes the characterization of the metallurgical condition of decommissioned RTG heat sources.« less

  17. Effects of freshwater leaching on potential bioavailability of heavy metals in tidal flat soils.

    PubMed

    Li, Hui; Lu, Jun; Li, Qu-Sheng; He, Bao-Yan; Mei, Xiu-Qin; Yu, Dan-Ping; Xu, Zhi-Min; Guo, Shi-Hong; Chen, Hui-Jun

    2016-02-01

    Leaching experiments were conducted to investigate the effects of desalination levels and sediment depths on potential bioavailability of heavy metal (Cd, Cr, Cu, Fe, Mn, Ni, Pb, and Zn) in tidal flat soils. The data showed that both the desalination levels (p < 0.001) and soil depths (p < 0.001) had significant effects on the concentrations of acid-volatile sulfide (AVS). AVS concentrations generally exhibited increasing trends with an increase in depth and decreasing trends with enhanced desalination levels. The desalination levels had significant (p < 0.05) effects on the concentrations of simultaneously extracted metal (SEM; Cd, Cr, Cu, Fe, Mn, Pb, and Zn). Moreover, the concentrations of SEM (Cd, Cr, Cu, Fe, Mn, Pb, and Zn) generally tended to decrease with an increase in the desalination level. The desalination treatment significantly reduced the ratios of SEM/AVS compared with control. However, the ratios of SEM/AVS increased with enhanced desalination levels in treatments. Results reveal that low desalination treatment is better for reducing toxicity to benthic organisms than high desalination treatment. Since these reclaimed tidal flats with low desalinisation are suitable for saline water aquaculture, transforming the present land use of reclaimed tidal flats from fresh water aquaculture into saline water aquaculture may reduce health risk of heavy metals remained in sediments. These results will also contribute to our understanding of the dynamic behavior of heavy metals in the reclamation of tidal flats during leaching and the role of the ratio of SEM/AVS predictions on assessing the ecological risks of reclaimed tidal flats.

  18. Measuring motivation and volition of nursing students in nontraditional learning environments.

    PubMed

    Nagelsmith, Laurie; Bryer, Jason; Yan, Zheng

    2012-01-01

    The purpose of this study was to identify the best fitting model to represent interrelationships between motivation, volition, and academic success for adult nursing students learning in nontraditional environments. Participants (N=297) completed a survey that incorporated two measures: the Motivated Strategies for Learning Questionnaire (MSLQ) and the academic volitional strategies inventory (AVSI) as well as demographic information. Exploratory factor analysis (EFA), confirmatory factor analysis (CFA), and structural equation modeling (SEM) were used for data analysis. In phase 1, EFA resulted in factors that generally aligned with previous theoretical factors as defined by the psychometrics used. In Phase 2 of the analysis, CFA validated the use of predefined factor structures. In Phase 3, SEM analysis revealed that motivation has a larger effect on grade point average (GPA; beta = .28, p < .01) than volition (beta = .15, p < .05). The covariance between motivation and volition (r = .42, p < .01) was also found to be significant. These results suggest that there is a significant relationship among motivation, volition, and academic success for adult learners studying in nontraditional learning environments. These findings are consistent with and elaborate the relationship between motivation and volition with a population and setting underrepresented in the research.

  19. Performance and Durability of Thin Film Thermocouple Array on a Porous Electrode.

    PubMed

    Guk, Erdogan; Ranaweera, Manoj; Venkatesan, Vijay; Kim, Jung-Sik

    2016-08-23

    Management of solid oxide fuel cell (SOFC) thermal gradients is vital to limit thermal expansion mismatch and thermal stress. However, owing to harsh operation conditions of SOFCs and limited available space in stack configuration, the number of techniques available to obtain temperature distribution from the cell surface is limited. The authors previously developed and studied a thermocouple array pattern to detect surface temperature distribution on an SOFC in open circuit conditions. In this study, the performance in terms of mechanical durability and oxidation state of the thin film thermoelements of the thermocouple array on the porous SOFC cathode is investigated. A thin-film multi-junction thermocouple array was sputter deposited using a magnetron sputter coater. Scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS) characterisation techniques were carried out to understand characteristics of the thin film before and after temperature (20 °C-800 °C) measurement. Temperature readings from the sensor agreed well with the closely placed commercial thermocouple during heating segments. However, a sensor failure occurred at around 350 °C during the cooling segment. The SEM and XPS tests revealed cracks on the thin film thermoelements and oxidation to the film thickness direction.

  20. Comparing the Effectiveness of Polymer Debriding Devices Using a Porcine Wound Biofilm Model.

    PubMed

    Wilkinson, Holly N; McBain, Andrew J; Stephenson, Christian; Hardman, Matthew J

    2016-11-01

    Objective: Debridement to remove necrotic and/or infected tissue and promote active healing remains a cornerstone of contemporary chronic wound management. While there has been a recent shift toward less invasive polymer-based debriding devices, their efficacy requires rigorous evaluation. Approach: This study was designed to directly compare monofilament debriding devices to traditional gauze using a wounded porcine skin biofilm model with standardized application parameters. Biofilm removal was determined using a surface viability assay, bacterial counts, histological assessment, and scanning electron microscopy (SEM). Results: Quantitative analysis revealed that monofilament debriding devices outperformed the standard gauze, resulting in up to 100-fold greater reduction in bacterial counts. Interestingly, histological and morphological analyses suggested that debridement not only removed bacteria, but also differentially disrupted the bacterially-derived extracellular polymeric substance. Finally, SEM of post-debridement monofilaments showed structural changes in attached bacteria, implying a negative impact on viability. Innovation: This is the first study to combine controlled and defined debridement application with a biologically relevant ex vivo biofilm model to directly compare monofilament debriding devices. Conclusion: These data support the use of monofilament debriding devices for the removal of established wound biofilms and suggest variable efficacy towards biofilms composed of different species of bacteria.

  1. Performance and Durability of Thin Film Thermocouple Array on a Porous Electrode

    PubMed Central

    Guk, Erdogan; Ranaweera, Manoj; Venkatesan, Vijay; Kim, Jung-Sik

    2016-01-01

    Management of solid oxide fuel cell (SOFC) thermal gradients is vital to limit thermal expansion mismatch and thermal stress. However, owing to harsh operation conditions of SOFCs and limited available space in stack configuration, the number of techniques available to obtain temperature distribution from the cell surface is limited. The authors previously developed and studied a thermocouple array pattern to detect surface temperature distribution on an SOFC in open circuit conditions. In this study, the performance in terms of mechanical durability and oxidation state of the thin film thermoelements of the thermocouple array on the porous SOFC cathode is investigated. A thin-film multi-junction thermocouple array was sputter deposited using a magnetron sputter coater. Scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS) characterisation techniques were carried out to understand characteristics of the thin film before and after temperature (20 °C–800 °C) measurement. Temperature readings from the sensor agreed well with the closely placed commercial thermocouple during heating segments. However, a sensor failure occurred at around 350 °C during the cooling segment. The SEM and XPS tests revealed cracks on the thin film thermoelements and oxidation to the film thickness direction. PMID:27563893

  2. When does spiritual intelligence particularly predict job engagement? The mediating role of psychological empowerment.

    PubMed

    Torabi, Mohsen; Nadali, Iman Zohoorian

    2016-01-01

    Regarding the importance of health care providers such as nurses who are always in stressful environments, it is imperative to better understand how they become more engaged in their work. The purpose of this paper is to focus on health care providers (nurses), and examine how the interaction between spiritual intelligence and psychological empowerment affect job engagement. This descriptive and quantitative study was conducted among nurses at the Faghihi Hospital in Shiraz, Iran in 2010. A sample of nurses ( n = 179) completed standard survey questionnaire including spiritual intelligence, psychological empowerment, and job engagement which included 5 questions for each dimensions. For testing the hypotheses of the study, results were analyzed through structural equation modeling (SEM) using LISREL 8.8. SEM revealed that psychological empowerment could fully mediate the relationship between spiritual intelligence and job engagement. However, the correlation between spiritual intelligence and job engagement was significant but weak using Pearson coefficient method. This can imply that psychological empowerment plays a crucial role in the relationship between spiritual intelligence and job engagement. This paper indicates that spiritual intelligence might affect different organizational parameters, directly or indirectly. Therefore, it is recommended that the researchers evaluate probable relationships between spiritual intelligence and other variables.

  3. Exploiting Process-Related Advantages of Selective Laser Melting for the Production of High-Manganese Steel.

    PubMed

    Haase, Christian; Bültmann, Jan; Hof, Jan; Ziegler, Stephan; Bremen, Sebastian; Hinke, Christian; Schwedt, Alexander; Prahl, Ulrich; Bleck, Wolfgang

    2017-01-11

    Metal additive manufacturing has strongly gained scientific and industrial importance during the last decades due to the geometrical flexibility and increased reliability of parts, as well as reduced equipment costs. Within the field of metal additive manufacturing methods, selective laser melting (SLM) is an eligible technique for the production of fully dense bulk material with complex geometry. In the current study, we addressed the application of SLM for processing a high-manganese TRansformation-/TWinning-Induced Plasticity (TRIP/TWIP) steel. The solidification behavior was analyzed by careful characterization of the as-built microstructure and element distribution using optical and scanning electron microscopy (SEM). In addition, the deformation behavior was studied using uniaxial tensile testing and SEM. Comparison with conventionally produced TRIP/TWIP steel revealed that elemental segregation, which is normally very pronounced in high-manganese steels and requires energy-intensive post processing, is reduced due to the high cooling rates during SLM. Also, the very fast cooling promoted ε- and α'-martensite formation prior to deformation. The superior strength and pronounced anisotropy of the SLM-produced material was correlated with the microstructure based on the process-specific characteristics.

  4. Effect of isovalent dopants on photodegradation ability of ZnS nanoparticles

    NASA Astrophysics Data System (ADS)

    Khaparde, Rohini; Acharya, Smita

    2016-06-01

    Isovalent (Mn, Cd, Cu, Co)-doped-ZnS nanoparticles having size vary in between 2 to 5 nm are synthesized by co-precipitation route. Their photocatalytic activity for decoloration of Cango Red and Malachite Green dyes is tested in visible radiation under natural conditions. Structural and morphological features of the samples are investigated by X-ray diffraction, Raman spectroscopy, Scanning Electron Microscope (SEM), Transmission Electron Microscope (TEM) and UVsbnd Vis spectrometer. Single phase zinc blende structure of as-synthesized undoped and doped-ZnS is confirmed by XRD and revealed by Rietveld fitting. SEM and TEM images show ultrafine nanoparticles having size in the range of 2 to 5 nm. UV-Vis absorption spectra exhibit blue shift in absorption edge of undoped and doped ZnS as compared to bulk counterpart. The photocatalytic activity as a function of dopant concentration and irradiation time is systematically studied. The rate of de-coloration of dyes is detected by UVsbnd Vis absorption spectroscopy and organic dye mineralization is confirmed by table of carbon (TOC) study. The photocatalytic activity of Mn-doped ZnS is highest amongst all dopants; however Co as a dopant is found to reduce photocatalytic activity than pure ZnS.

  5. Zebrafish skeleton development: High resolution micro-CT and FIB-SEM block surface serial imaging for phenotype identification

    PubMed Central

    Silvent, Jeremie; Akiva, Anat; Brumfeld, Vlad; Reznikov, Natalie; Rechav, Katya; Yaniv, Karina; Addadi, Lia; Weiner, Steve

    2017-01-01

    Although bone is one of the most studied living materials, many questions about the manner in which bones form remain unresolved, including fine details of the skeletal structure during development. In this study, we monitored skeleton development of zebrafish larvae, using calcein fluorescence, high-resolution micro-CT 3D images and FIB-SEM in the block surface serial imaging mode. We compared calcein staining of the skeletons of the wild type and nacre mutants, which are transparent zebrafish, with micro-CT for the first 30 days post fertilization embryos, and identified significant differences. We quantified the bone volumes and mineral contents of bones, including otoliths, during development, and showed that such developmental differences, including otolith development, could be helpful in identifying phenotypes. In addition, high-resolution imaging revealed the presence of mineralized aggregates in the notochord, before the formation of the first bone in the axial skeleton. These structures might play a role in the storage of the mineral. Our results highlight the potential of these high-resolution 3D approaches to characterize the zebrafish skeleton, which in turn could prove invaluable information for better understanding the development and the characterization of skeletal phenotypes. PMID:29220379

  6. Microstructures and Hardness of the High Chromium Oxide Dispersion Strengthened Alloy Fe-25Cr-Y2O3Sintered by the Arc Plasma Sintering (APS)

    NASA Astrophysics Data System (ADS)

    Bandriyana; Dimyati, Arbi; Sujatno, Agus; Salam, Rohmad; Sumaryo; Untoro, Pudji; Suharno, Bambang

    2018-03-01

    High chromium ODS alloy has been developed for application as structural material in high temperature nuclear reactor. In the present study, Fe-25Cr-Y2O3 with dispersed 0.5 wt.% Ytria (Y2O3) were synthesized and characterized by means of various techniques as a function of milling time 1, 2 and 3 hours. The alloy synthesis was carried out by the Mechanical Alloying (MA) process and subsequent sintering by means the new plasma technique using the APS apparatus. Scaning Electron Microscopy (SEM) and X-ray diffraction (XRD) were conducted for morphology and phase analysis. Evaluation of the mechanical properties was studied based on the Vickers hardness measurement. SEM examination revealed that the sample after sintering by APS method at different milling duration exhibited some particle aglomeration and homogenized oxide dispersion that obviously strengthened the alloy. The XRD test, however, proved the formation of the main phase Fe-Cr. The alloy showed exceptionally high hardness of 193 VHR which is mainly due to the grain refining that increase by the increasing of the milling time.

  7. Exploiting Process-Related Advantages of Selective Laser Melting for the Production of High-Manganese Steel

    PubMed Central

    Haase, Christian; Bültmann, Jan; Hof, Jan; Ziegler, Stephan; Bremen, Sebastian; Hinke, Christian; Schwedt, Alexander; Prahl, Ulrich; Bleck, Wolfgang

    2017-01-01

    Metal additive manufacturing has strongly gained scientific and industrial importance during the last decades due to the geometrical flexibility and increased reliability of parts, as well as reduced equipment costs. Within the field of metal additive manufacturing methods, selective laser melting (SLM) is an eligible technique for the production of fully dense bulk material with complex geometry. In the current study, we addressed the application of SLM for processing a high-manganese TRansformation-/TWinning-Induced Plasticity (TRIP/TWIP) steel. The solidification behavior was analyzed by careful characterization of the as-built microstructure and element distribution using optical and scanning electron microscopy (SEM). In addition, the deformation behavior was studied using uniaxial tensile testing and SEM. Comparison with conventionally produced TRIP/TWIP steel revealed that elemental segregation, which is normally very pronounced in high-manganese steels and requires energy-intensive post processing, is reduced due to the high cooling rates during SLM. Also, the very fast cooling promoted ε- and α’-martensite formation prior to deformation. The superior strength and pronounced anisotropy of the SLM-produced material was correlated with the microstructure based on the process-specific characteristics. PMID:28772416

  8. A combined optical, SEM and STM study of growth spirals on the polytypic cadmium iodide crystals

    NASA Astrophysics Data System (ADS)

    Singh, Rajendra; Samanta, S. B.; Narlikar, A. V.; Trigunayat, G. C.

    2000-05-01

    Some novel results of a combined sequential study of growth spirals on the basal surface of the richly polytypic CdI 2 crystals by optical microscopy, scanning electron microscopy (SEM) and scanning tunneling microscopy (STM) are presented and discussed. Under the high resolution and magnification achieved in the scanning electron microscope, the growth steps of large heights seen in the optical micrographs are found to have a large number of additional steps of smaller heights existing between any two adjacent large height growth steps. When further seen by a scanning tunneling microscope, which provides still higher resolution, sequences of unit substeps, each of height equal to the unit cell height of the underlying polytype, are revealed to exist on the surface. Several large steps also lie between the unit steps, with heights equal to an integral multiple of either the unit cell height of the underlying polytype or the thickness of a molecular sheet I-Cd-I. It is suggested that initially a giant screw dislocation may form by brittle fracture of the crystal platelet, which may gradually decompose into numerous unit dislocations during subsequent crystal growth.

  9. Inorganic particle analysis of dental impression elastomers.

    PubMed

    Carlo, Hugo Lemes; Fonseca, Rodrigo Borges; Soares, Carlos José; Correr, Américo Bortolazzo; Correr-Sobrinho, Lourenço; Sinhoreti, Mário Alexandre Coelho

    2010-01-01

    The aim of this study was to determine quantitatively and qualitatively the inorganic particle fraction of commercially available dental elastomers. The inorganic volumetric fraction of two addition silicones (Reprosil Putty/Fluid and Flexitime Easy Putty/Fluid), three condensation silicones (Clonage Putty/Fluid, Optosil Confort/Xantopren VL and Silon APS Putty/Fluid), one polyether (Impregum Soft Light Body) and one polysulfide (Permlastic Light Body) was accessed by weighing a previously determined mass of each material in water before and after burning samples at 600 ºC, during 3 h. Unsettled material samples were soaked in acetone and chloroform for removal of the organic portion. The remaining filler particles were sputter-coated with gold evaluation of their morphology and size, under scanning electron microscopy (SEM). Flexitime Easy Putty was the material with the highest results for volumetric particle fraction, while Impregum Soft had the lowest values. Silon 2 APS Fluid presented the lowest mean filler size values, while Clonage Putty had the highest values. SEM micrographs of the inorganic particles showed several morphologies - lathe-cut, spherical, spherical-like, sticks, and sticks mixed to lathe-cut powder. The results of this study revealed differences in particle characteristics among the elastometic materials that could lead to different results when testing mechanical properties.

  10. Study of curcumin on microvasculature characteristic in diabetic rat's liver as revealed by vascular corrosion cast/scanning electron microscope (SEM) technique.

    PubMed

    Khimmaktong, Wipapan; Petpiboolthai, Hattaya; Panyarachun, Busaba; Anupunpisit, Vipavee

    2012-05-01

    To investigate the effect of curcumin on the structural change ofmicrovasculature in STZ-induced diabetic rat' liver. Diabetic rats were induced by streptozotocin (60 mg/kg BW). Male rats were divided into thre groups, control (C), diabetic (DM) and diabetic rats treated with curcumin (DMC) (200 mg/kg BW). After 8 weeks o experiments, blood vessels of rat's liver were studied under conventional light microscope (LM) and vascular corrosion cas technique with scanning electron microscope (SEM). LM observation demonstrated that there were pathology and destruction of liver tissues and microvasculature in diabetic animals. The sinusoids around central veins were dilated and filled with red blood cells. There was an accumulation of lipid droplets in the cytoplasm of hepatocytes and hepatocyte nuclei showed pathological sign of pyknosis. Moreover, the inflammation change of liver tissues revealed the infiltration of lymphocytes and increasing of collagen deposition in the area of portal triad. In curcumin-treated rats, the distinguished recovery of liver tissues showed regained normal pattern of central veins, sinusoids, hepatocytes and portal triad, when compared with liver tissues of control group. By using vascular corrosion casting with SEM, the liver blood vessels of DM group revealed higher and expanded sizes, compared with control group; proximal parts of portal veins (C = 577.75 +/- 126.23, DM = 892 +/- 35.79, DMC = 469.5 +/- 8553 microm), distal parts of portal veins (C = 76.72 +/- 1.48, DM = 200 +/- 31.05, DMC = 76.38 +/- 2.98 microm) and venules (C = 27.03 +/- 0.55, DM = 45.15 +/- 5.03, DMC = 28.38 +/- 3.67 microm) and corresponding to increased blood volumes compared with control group; proximal parts of portal veins (C = 20.8 +/- 1.28, DM = 62.2 +/- 3.39, DMC = 14.9 +/- 0.67 microm3), distal parts of portal veins (C = 0.46 +/- 0.03, DM = 3.81 +/- 0.18, DMC = 0.41 +/- 0.05 microm3) and venules (C = 0.05 +/- 0.05, DM = 0.24 +/- 0.013, DMC = 0.05 +/- 0.05 microm3) respectively. Fascinatingly, liver microvasculature in curcumin treated group developed into regenerate and repair into healthy and normal characteristics. Efficiency of curcumin treatment beneficially repaired and regenerated liver tissues of diabetic groups and also redeveloped the liver's microvascular complications. These results optimistically demonstrated the potential use of curcumin as a novel therapeutic agent in liver pathology of diabetic rats.

  11. The internalization of posterior subcapsular cataracts (PSCs) in Royal College of Surgeons (RCS) rats. II. The inter-relationship of optical quality and structure as a function of age.

    PubMed

    Kuszak, J R; Al-Ghoul, K J; Novak, L A; Peterson, K L; Herbert, K L; Sivak, J G

    1999-05-06

    The Royal College of Surgeons (RCS) rat is an animal model for human retinal degenerative disease and posterior subcapsular cataracts (PSCs). The purpose of this study was to correlate the structure and optical quality of RCS lenses with PSCs as a function of their internalization, with normal, non-cataractous, age-matched control lenses. Correlative light (LM), scanning electron microscopic (SEM), three-dimensional computer assisted drawings (3D-CADs) and low power helium-neon laser scan analysis were used to examine the structure and function of lenses. The optical properties (average focal length variability; sharpness of focus) of RCS rat lenses are quantitatively compromised by PSCs. Correlative LM and SEM analysis of RCS lenses at various stages of PSC internalization (1.5, 3, 6, 9, 12 and 15 months of age), revealed that the sutures formed by additional fiber growth were progressively more abnormal. During PSC internalization, two to nine small suture branches were formed and arranged in modified line to multiple y configurations rather than the normal three branch y sutures. These temporal changes were also chronicled in animated 3D-CAD videos derived from lens reconstructions based on LM and SEM micrographs from the selected time points stated above. However, laser scan analysis also revealed that as the PSCs of RCS rat lenses were progressively internalized, there was a steady improvement in total sharpness of focus that reached normal levels by 12 months of age. The correlation of laser scan and structural data from specific regions of lenses revealed the following: 1. The abnormal posterior sutures of RCS rats with internalized PSCs effect a greater reduction in optical quality than normal posterior sutures of age-matched controls; 2. However, the resulting abnormal suture plane area was cumulatively similar to that of age-matched controls; 3. Thus, total optical quality was similar between RCS lenses with internalized PSCs and age-matched controls by 12 months of age. The results of this study show that RCS lenses with internalized PSCs can appear grossly, and indeed optically perform, at levels comparable to aged lenses. These findings are consistent with clinical observations of spontaneous recovery from PSC. The results suggest that human PSCs that occur as a consequence of retinal degenerative disease could also be the result of abnormal posterior suture growth. If this is proven to be the case, such PSCs may have some capacity for repair or recovery thereby obviating their surgical removal.

  12. MALDI-TOF mass spectrometry imaging reveals molecular level changes in ultrahigh molecular weight polyethylene joint implants in correlation with lipid adsorption.

    PubMed

    Fröhlich, Sophie M; Archodoulaki, Vasiliki-Maria; Allmaier, Günter; Marchetti-Deschmann, Martina

    2014-10-07

    Ultrahigh molecular weight polyethylene (PE-UHMW), a material with high biocompatibility and excellent mechanical properties, is among the most commonly used materials for acetabular cup replacement in artificial joint systems. It is assumed that the interaction with synovial fluid in the biocompartment leads to significant changes relevant to material failure. In addition to hyaluronic acid, lipids are particularly relevant for lubrication in an articulating process. This study investigates synovial lipid adsorption on two different PE-UHMW materials (GUR-1050 and vitamin E-doped) in an in vitro model system by matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry imaging (MSI). Lipids were identified by high performance thin layer chromatography (HP-TLC) and tandem mass spectrometry (MS/MS) analysis, with an analytical focus on phospholipids and cholesterol, both being species of high importance for lubrication. Scanning electron microscopy (SEM) analysis was applied in the study to correlate molecular information with PE-UHMW material qualities. It is demonstrated that lipid adsorption preferentially occurs in rough or oxidized polymer regions. Polymer modifications were colocalized with adsorbed lipids and found with high density in regions identified by SEM. Explanted, the in vivo polymer material showed comparable and even more obvious polymer damage and lipid adsorption when compared with the static in vitro model. A three-dimensional reconstruction of MSI data from consecutive PE-UHMW slices reveals detailed information about the diffusion process of lipids in the acetabular cup and provides, for the first time, a promising starting point for future studies correlating molecular information with commonly used techniques for material analysis (e.g., Fourier-transform infrared spectroscopy, nanoindentation).

  13. Hybrid Aorta Constructs via In Situ Crosslinking of Poly(glycerol-sebacate) Elastomer Within a Decellularized Matrix.

    PubMed

    Guler, Selcan; Hosseinian, Pezhman; Aydin, Halil Murat

    2017-01-01

    Decellularization of tissues and organs has high potential to obtain unique conformation and composition as native tissue structure but may result in weakened tissue mechanical strength. In this study, poly(glycerol-sebacate) (PGS) elastomers were combined with decellularized aorta fragments to investigate the changes in mechanical properties. PGS prepolymer was synthesized via microwave irradiation and then in situ crosslinked within the decellularized aorta extracellular matrix (ECM). Tensile strength (σ) values were found comparable as 0.44 ± 0.10 MPa and 0.57 ± 0.18 MPa for native and hybrid aorta samples, respectively, while elongation at break (ɛ) values were 261% ± 17%, 7.5% ± 0.57%, and 22.18% ± 2.48% for wet control (native), decellularized dried aortae, and hybrid matrices, showing elastic contribution. Young's modulus data indicate that there was a threefold decrease in stiffness compared to decellularized samples once PGS is introduced into the ECM structure. Scanning electron microscopy (SEM) analysis of hybrid grafts revealed that the construct preserves porosity in medial layer of the vessel. Biocompatibility analyses showed no cytotoxic effects on human abdominal aorta smooth muscle cells. Cell studies showed 98% activity in hybrid graft extracts. As a control, collagen coating of the hybrid grafts was performed in the recellularization stage. SEM analysis of recellularized hybrid grafts revealed that cells were attached to the surface of the hybrid graft and proliferated during the 14 days of culture in both groups. This study shows that introducing an elastomer into the native ECM structure following decellularization process can be a useful approach for the preparation of mechanically enhanced composites for soft tissues.

  14. Biomimetic composite coating on rapid prototyped scaffolds for bone tissue engineering.

    PubMed

    Arafat, M Tarik; Lam, Christopher X F; Ekaputra, Andrew K; Wong, Siew Yee; Li, Xu; Gibson, Ian

    2011-02-01

    The objective of this present study was to improve the functional performance of rapid prototyped scaffolds for bone tissue engineering through biomimetic composite coating. Rapid prototyped poly(ε-caprolactone)/tri-calcium phosphate (PCL/TCP) scaffolds were fabricated using the screw extrusion system (SES). The fabricated PCL/TCP scaffolds were coated with a carbonated hydroxyapatite (CHA)-gelatin composite via biomimetic co-precipitation. The structure of the prepared CHA-gelatin composite coating was studied by scanning electron microscopy (SEM), X-ray photoelectron spectroscopy and Fourier transform infrared spectroscopy. Compressive mechanical testing revealed that the coating process did not have any detrimental effect on the mechanical properties of the scaffolds. The cell-scaffold interaction was studied by culturing porcine bone marrow stromal cells (BMSCs) on the scaffolds and assessing the proliferation and bone-related gene and protein expression capabilities of the cells. Confocal laser microscopy and SEM images of the cell-scaffold constructs showed a uniformly distributed cell sheet and accumulation of extracellular matrix in the interior of CHA-gelatin composite-coated PCL/TCP scaffolds. The proliferation rate of BMSCs on CHA-gelatin composite-coated PCL/TCP scaffolds was about 2.3 and 1.7 times higher than that on PCL/TCP scaffolds and CHA-coated PCL/TCP scaffolds, respectively, by day 10. Furthermore, reverse transcription polymerase chain reaction and Western blot analysis revealed that CHA-gelatin composite-coated PCL/TCP scaffolds stimulate osteogenic differentiation of BMSCs the most, compared with PCL/TCP scaffolds and CHA-coated PCL/TCP scaffolds. These results demonstrate that CHA-gelatin composite-coated rapid prototyped PCL/TCP scaffolds are promising for bone tissue engineering. Copyright © 2010 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  15. [AVS concentrations in Xinan Creek and the influencing factors].

    PubMed

    Liu, Xiao-Bing; Wen, Yan-Mao; Li, Feng; Wu, Chang-Hua; Duan, Zhi-Peng

    2012-07-01

    Sediment and overlying water samples were collected at 10 sampling stations at Xinan Creek, a tidal river in Pearl River Delta, and analyzed for physical and chemical characteristics as well as microbial incicators, in order to reveal the main factors dominating the spatial distribution of acid volatile sulfide (AVS). The effects of Eh, SRB OC and TS on the spatial distribution of AVS were investigated and the impact of AVS on the toxicity of heavy metals in the studied area was evaluated. The results showed that the range of AVS was 0.207-41.453 micromol x g(-1), with an average of 6.684 micromol x g(-1), which is relatively high compared to the results in other studies. The AVS value of the surface layer was higher than the bottom layer in 5 stations. The AVS values in both the surface layer and the bottom layer were highly variable, the coefficients of variation being 93.61% and 153.09% , respectively. The analytical results revealed that TS was the factor with the greatest impact on the spatial distribution of AVS, and the order was TS > OC > Eh > SRB. Potential ecological risk of heavy metals existed in 60% of the smpling stations based on the value of Sigma (SEM5-AVS), however, with the criterion of [Sigma(SEM5-AVS)]/foc, none of them had inacceptable ecological risk. Furthermore, in terms of single species of heavy metals, there was certain risk of toxic effect for all the five heavy metals (Cd, Ni, Cu, Zn and Pb). The above mentioned results will provide valuable data for the in-depth study of the formation mechanism of AVS and helpful reference for environmental impact assessment and scientific rehabilitation of heavy metals in polluted rivers.

  16. Difference in metallic wear distribution released from commercially pure titanium compared with stainless steel plates.

    PubMed

    Krischak, G D; Gebhard, F; Mohr, W; Krivan, V; Ignatius, A; Beck, A; Wachter, N J; Reuter, P; Arand, M; Kinzl, L; Claes, L E

    2004-03-01

    Stainless steel and commercially pure titanium are widely used materials in orthopedic implants. However, it is still being controversially discussed whether there are significant differences in tissue reaction and metallic release, which should result in a recommendation for preferred use in clinical practice. A comparative study was performed using 14 stainless steel and 8 commercially pure titanium plates retrieved after a 12-month implantation period. To avoid contamination of the tissue with the elements under investigation, surgical instruments made of zirconium dioxide were used. The tissue samples were analyzed histologically and by inductively coupled plasma atomic emission spectrometry (ICP-AES) for accumulation of the metals Fe, Cr, Mo, Ni, and Ti in the local tissues. Implant corrosion was determined by the use of scanning electron microscopy (SEM). With grades 2 or higher in 9 implants, steel plates revealed a higher extent of corrosion in the SEM compared with titanium, where only one implant showed corrosion grade 2. Metal uptake of all measured ions (Fe, Cr, Mo, Ni) was significantly increased after stainless steel implantation, whereas titanium revealed only high concentrations for Ti. For the two implant materials, a different distribution of the accumulated metals was found by histological examination. Whereas specimens after steel implantation revealed a diffuse siderosis of connective tissue cells, those after titanium exhibited occasionally a focal siderosis due to implantation-associated bleeding. Neither titanium- nor stainless steel-loaded tissues revealed any signs of foreign-body reaction. We conclude from the increased release of toxic, allergic, and potentially carcinogenic ions adjacent to stainless steel that commercially pure Ti should be treated as the preferred material for osteosyntheses if a removal of the implant is not intended. However, neither material provoked a foreign-body reaction in the local tissues, thus cpTi cannot be recommend as the 'golden standard' for osteosynthesis material in general.

  17. Copper phthalocyanine films deposited by liquid-liquid interface recrystallization technique (LLIRCT).

    PubMed

    Patil, K R; Sathaye, S D; Hawaldar, R; Sathe, B R; Mandale, A B; Mitra, A

    2007-11-15

    The simple recrystallization process is innovatively used to obtain the nanoparticles of copper phthalocyanine by a simple method. Liquid-liquid interface recrystallization technique (LLIRCT) has been employed successfully to produce small sized copper phthalocyanine nanoparticles with diameter between 3-5 nm. The TEM-SAED studies revealed the formation of 3-5 nm sized with beta-phase dominated mixture of alpha and beta copper phthalocyanine nanoparticles. The XRD, SEM, and the UV-vis studies were further carried out to confirm the formation of copper phthalocyanine thin films. The cyclic voltametry (CV) studies conclude that redox reaction is totally reversible one electron transfer process. The process is attributed to Cu(II)/Cu(I) redox reaction.

  18. Three-dimensional intracellular structure of a whole rice mesophyll cell observed with FIB-SEM.

    PubMed

    Oi, Takao; Enomoto, Sakiko; Nakao, Tomoyo; Arai, Shigeo; Yamane, Koji; Taniguchi, Mitsutaka

    2017-07-01

    Ultrathin sections of rice leaf blades observed two-dimensionally using a transmission electron microscope (TEM) show that the chlorenchyma is composed of lobed mesophyll cells, with intricate cell boundaries, and lined with chloroplasts. The lobed cell shape and chloroplast positioning are believed to enhance the area available for the gas exchange surface for photosynthesis in rice leaves. However, a cell image revealing the three-dimensional (3-D) ultrastructure of rice mesophyll cells has not been visualized. In this study, a whole rice mesophyll cell was observed using a focused ion beam scanning electron microscope (FIB-SEM), which provides many serial sections automatically, rapidly and correctly, thereby enabling 3-D cell structure reconstruction. Rice leaf blades were fixed chemically using the method for conventional TEM observation, embedded in resin and subsequently set in the FIB-SEM chamber. Specimen blocks were sectioned transversely using the FIB, and block-face images were captured using the SEM. The sectioning and imaging were repeated overnight for 200-500 slices (each 50 nm thick). The resultant large-volume image stacks ( x = 25 μm, y = 25 μm, z = 10-25 μm) contained one or two whole mesophyll cells. The 3-D models of whole mesophyll cells were reconstructed using image processing software. The reconstructed cell models were discoid shaped with several lobes around the cell periphery. The cell shape increased the surface area, and the ratio of surface area to volume was twice that of a cylinder having the same volume. The chloroplasts occupied half the cell volume and spread as sheets along the cell lobes, covering most of the inner cell surface, with adjacent chloroplasts in close contact with each other. Cellular and sub-cellular ultrastructures of a whole mesophyll cell in a rice leaf blade are demonstrated three-dimensionally using a FIB-SEM. The 3-D models and numerical information support the hypothesis that rice mesophyll cells enhance their CO 2 absorption with increased cell surface and sheet-shaped chloroplasts. © The Author 2017. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com

  19. Characterizing China's energy consumption with selective economic factors and energy-resource endowment: a spatial econometric approach

    NASA Astrophysics Data System (ADS)

    Jiang, Lei; Ji, Minhe; Bai, Ling

    2015-06-01

    Coupled with intricate regional interactions, the provincial disparity of energy-resource endowment and other economic conditions in China have created spatially complex energy consumption patterns that require analyses beyond the traditional ones. To distill the spatial effect out of the resource and economic factors on China's energy consumption, this study recast the traditional econometric model in a spatial context. Several analytic steps were taken to reveal different aspects of the issue. Per capita energy consumption (AVEC) at the provincial level was first mapped to reveal spatial clusters of high energy consumption being located in either well developed or energy resourceful regions. This visual spatial autocorrelation pattern of AVEC was quantitatively tested to confirm its existence among Chinese provinces. A Moran scatterplot was employed to further display a relatively centralized trend occurring in those provinces that had parallel AVEC, revealing a spatial structure with attraction among high-high or low-low regions and repellency among high-low or low-high regions. By a comparison between the ordinary least square (OLS) model and its spatial econometric counterparts, a spatial error model (SEM) was selected to analyze the impact of major economic determinants on AVEC. While the analytic results revealed a significant positive correlation between AVEC and economic development, other determinants showed some intricate influential patterns. The provinces endowed with rich energy reserves were inclined to consume much more energy than those otherwise, whereas changing the economic structure by increasing the proportion of secondary and tertiary industries also tended to consume more energy. Both situations seem to underpin the fact that these provinces were largely trapped in the economies that were supported by technologies of low energy efficiency during the period, while other parts of the country were rapidly modernized by adopting advanced technologies and more efficient industries. On the other hand, institutional change (i.e., marketization) and innovation (i.e., technological progress) exerted positive impacts on AVEC improvement, as always expected in this and other studies. Finally, the model comparison indicated that SEM was capable of separating spatial effect from the error term of OLS, so as to improve goodness-of-fit and the significance level of individual determinants.

  20. Inter-operator and inter-device agreement and reliability of the SEM Scanner.

    PubMed

    Clendenin, Marta; Jaradeh, Kindah; Shamirian, Anasheh; Rhodes, Shannon L

    2015-02-01

    The SEM Scanner is a medical device designed for use by healthcare providers as part of pressure ulcer prevention programs. The objective of this study was to evaluate the inter-rater and inter-device agreement and reliability of the SEM Scanner. Thirty-one (31) volunteers free of pressure ulcers or broken skin at the sternum, sacrum, and heels were assessed with the SEM Scanner. Each of three operators utilized each of three devices to collect readings from four anatomical sites (sternum, sacrum, left and right heels) on each subject for a total of 108 readings per subject collected over approximately 30 min. For each combination of operator-device-anatomical site, three SEM readings were collected. Inter-operator and inter-device agreement and reliability were estimated. Over the course of this study, more than 3000 SEM Scanner readings were collected. Agreement between operators was good with mean differences ranging from -0.01 to 0.11. Inter-operator and inter-device reliability exceeded 0.80 at all anatomical sites assessed. The results of this study demonstrate the high reliability and good agreement of the SEM Scanner across different operators and different devices. Given the limitations of current methods to prevent and detect pressure ulcers, the SEM Scanner shows promise as an objective, reliable tool for assessing the presence or absence of pressure-induced tissue damage such as pressure ulcers. Copyright © 2015 Bruin Biometrics, LLC. Published by Elsevier Ltd.. All rights reserved.

  1. Micro-mechanics of ionic electroactive polymer actuators

    NASA Astrophysics Data System (ADS)

    Punning, Andres; Põldsalu, Inga; Kaasik, Friedrich; Vunder, Veiko; Aabloo, Alvo

    2015-04-01

    Commonly, modeling of the bending behavior of the ionic electroactive polymer (IEAP) actuators is based on the classical mechanics of cantilever beam. It is acknowledged, that the actuation of the ionic electroactive polymer (IEAP) actuators is symmetric about the centroid - the convex side of the actuator is expanding and the concave side is contracting for exactly the same amount, while the thickness of the actuator remains invariant. Actuating the IEAP actuators and sensors under scanning electron microscope (SEM), in situ, reveals that for some types of them this approach is incorrect. Comparison of the SEM micrographs using the Digital Image Correction (DIC) method results with the precise strain distribution of the IEAP actuators in two directions: in the axial direction, and in the direction of thickness. This information, in turn, points to the physical processes taking place within the electrodes as well as membrane of the trilayer laminate of sub-millimeter thickness. Comparison of the EAP materials, engaged as an actuator as well as a sensor, reveals considerable differences between the micro-mechanics of the two modes.

  2. Femtosecond laser ablation of cemented carbides: properties and tribological applications

    NASA Astrophysics Data System (ADS)

    Dumitru, G.; Romano, V.; Weber, H. P.; Gerbig, Y.; Haefke, H.; Bruneau, S.; Hermann, J.; Sentis, M.

    Laser ablation with fs laser pulses was performed in air on cobalt cemented tungsten carbide by means of a Ti : sapphire laser (800 nm, 100 fs). Small and moderate fluences (2, 5, 10 J/cm2) and up to 5×104 pulses per irradiated spot were used to drill holes with aspect ratios up to 10. Cross-section cuts from laser-irradiated samples were produced and they were analysed with optical microscopy and SEM. EDX analyses were carried out on selected zones. Quasi-cylindrical holes were found for 2 J/cm2, whereas for 5 and 10 J/cm2 irregular shapes (lobes, bottoms wider than hole entrances) were found to occur after a given number of incident pulses. Layers with modified structure were evidenced at pore walls. SEM revealed a denser structure, while EDX analyses showed uniform and almost similar contents of W, C, and Co in these layers. As a direct application, patterning of coated WC-Co was carried out with 2 J/cm2 and 100 pulses per pore. The resulted surfaces were tribologically tested and these tests revealed an improved friction and wear behaviour.

  3. Synthesis and characterization of a new high entropy composite matrix

    NASA Astrophysics Data System (ADS)

    Popescu, G.; Matara, M. A.; Csaki, I.; Popescu, C. A.; Truşcă, R.

    2016-06-01

    Even if high entropy alloys were not reported in a scientific journal till 2003, these new alloys have been investigated since 1995 due to their high temperature properties. In the last years the synthesis of these alloys has been widely investigated. Thus, the present work has been carried out to produce a high entropy composite using an equiatomic AlCrFeMnNi high entropy alloy (HEA) matrix and graphite particles (Gr) as reinforcing material. The high entropy composite was obtained by powder metallurgy route using a planetary ball mill. The mechanically alloyed mixture was investigated by scanning electron microscopy (SEM). Microstructural investigation realized by SEM revealed the homogenous structure of the composite, with multiple phases and decreasing particles size, mostly reaching nanometric scale.

  4. Morphology-controllable of Sn doped ZnO nanorods prepared by spray pyrolysis for transparent electrode application

    NASA Astrophysics Data System (ADS)

    Hameed, M. Shahul; Princice, J. Joseph; Babu, N. Ramesh; Zahirullah, S. Syed; Deshmukh, Sampat G.; Arunachalam, A.

    2018-05-01

    Transparent conductive Sn doped ZnO nanorods have been deposited at various doping level by spray pyrolysis technique on glass substrate. The structural, surface morphological and optical properties of these films have been investigated with the help of X-ray diffraction (XRD), scanning electron microscope (SEM), atomic force microscope (AFM) and UV-Vis spectrophotometer respectively. XRD patterns revealed a successful high quality growth of single crystal ZnO nanorods with hexagonal wurtzite structure having (002) preferred orientation. The scanning electron microscope (SEM) image of the prepared films exposed the uniform distribution of Sn doped ZnO nanorod shaped grains. All these films were highly transparent in the visible region with average transmittance of 90%.

  5. Nanoplate-like tungsten trioxide (hydrate) films prepared by crystal-seed-assisted hydrothermal reaction

    NASA Astrophysics Data System (ADS)

    Wang, P.; Yang, L.; Dai, B.; Yang, Z.; Guo, S.; Zhu, J.

    2017-07-01

    Vertically-aligned WO3 nanoplates on transparent conducting fluorine-doped tin oxide (FTO) glass were prepared by a facile template-free crystal-seed-assisted hydrothermal method. The effects of the hydrothermal temperature and reaction time on the crystal structure and morphology of the products were investigated by XRD and SEM. The XRD results showed that the as-prepared thin films obtained below 150∘C comprised orthorhombic WO3 ṡ H2O and completely converted to monoclinic WO3 at 180∘C. It was also noted that there was a phase transformation from orthorhombic to monoclinic by increasing the reaction time from 1 to 12 h. SEM analysis revealed that WO3 thin films are composed of plate-like nanostructures.

  6. Preparation of poly (arylene ether nitrile)/NzdFeB composite film with excellent thermal properties and tensile strength

    NASA Astrophysics Data System (ADS)

    Pan, Hai; Xu, Mingzhen; Liu, Xiaobo

    2017-12-01

    PEN/NdFeB composite films were prepared by the solution casting method. The thermal properties, fracture morphology and tensile strength of the composite films were tested by DSC, TGA, SEM and electromechanical universal testing machine, respectively. The results reveal that the composite film has good thermal properties and tensile strength. Glass-transition temperature and decomposition temperatures at weight loss of 5% ot the composite films retain at 166±1 C and 462±4 C, respectively. The composite film with 5 wt.% NdFeB has the best tensile strength value for 100.5 MPa. In addition, it was found that the NdFeB filler was well dispersed in PEN matrix by SEM analysis.

  7. Synthesis of TiN/a-Si3N4 thin film by using a Mather type dense plasma focus system

    NASA Astrophysics Data System (ADS)

    Hussain, T.; R., Ahmad; Khalid, N.; A. Umar, Z.; Hussnain, A.

    2013-05-01

    A 2.3 kJ Mather type pulsed plasma focus device was used for the synthesis of a TiN/a-Si3N4 thin film at room temperature. The film was characterized using X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), and atomic force microscopy (AFM). The XRD pattern confirms the growth of polycrystalline TiN thin film. The XPS results indicate that the synthesized film is non-stoichiometric and contains titanium nitride, silicon nitride, and a phase of silicon oxy-nitride. The SEM and AFM results reveal that the surface of the synthesized film is quite smooth with 0.59 nm roughness (root-mean-square).

  8. Transmission Electron Microscopy of Bombyx Mori Silk Fibers

    NASA Astrophysics Data System (ADS)

    Shen, Y.; Martin, D. C.

    1997-03-01

    The microstructure of B. Mori silk fibers before and after degumming was examined by TEM, selected area electron diffraction (SAED), WAXS and low voltage SEM. SEM micrographs of the neat cocoon revealed a network of pairs of twisting filaments. After degumming, there were only individual filaments showing a surface texture consistent with an oriented fibrillar structure in the fiber interior. WAXS patterns confirmed the oriented beta-sheet crystal structure common to silkworm and spider silks. Low dose SAED results were fully consistent with the WAXS data, and revealed that the crystallographic texture did not vary significantly across the fiber diameter. TEM observations of microtomed fiber cross sections indicated a somewhat irregular shape, and also revealed a 0.5-2 micron sericin coating which was removed by the degumming process. TEM observations of the degummed silk fiber showed banded features with a characteristic spacing of nominally 600 nm along the fiber axis. These bands were oriented in a roughly parabolic or V-shape pointing along one axis within a given fiber. We hypothesize that this orientation is induced by the extrusion during the spinning process. Equatorial DF images revealed that axial and lateral sizes of the β-sheet crystallites in silk fibroin ranged from 20 to 170 nm and from 1 to 24 nm, respectively. Crazes developed in the degummed silk fiber parallel to the fiber direction. The formation of these crazes suggests that there are significant lateral interactions between fibrils in silk fibers.

  9. Corrosion inhibition of aminated hydroxyl ethyl cellulose on mild steel in acidic condition.

    PubMed

    Sangeetha, Y; Meenakshi, S; Sairam Sundaram, C

    2016-10-05

    Aminated hydroxyethyl cellulose (AHEC) was synthesized, characterized using Fourier Transform Infrared spectroscopy (FTIR) and the corrosion inhibition of AHEC on mild steel in 1M HCl was studied using chemical and electrochemical studies. Results obtained in weight loss method showed that inhibition efficiency increased with increase in concentration of AHEC. The adsorption of the inhibitor on metal surface followed Frumkin isotherm. Polarization studies revealed that the AHEC inhibits through mixed mode. Thermodynamic parameters and activation energy were calculated and discussed. FTIR and X-ray diffraction studies (XRD) confirmed the adsorption of the inhibitor. The surface morphology was studied using Scanning Electron Microscope (SEM) and Atomic Force Microscopy (AFM). Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Standard deviation and standard error of the mean.

    PubMed

    Lee, Dong Kyu; In, Junyong; Lee, Sangseok

    2015-06-01

    In most clinical and experimental studies, the standard deviation (SD) and the estimated standard error of the mean (SEM) are used to present the characteristics of sample data and to explain statistical analysis results. However, some authors occasionally muddle the distinctive usage between the SD and SEM in medical literature. Because the process of calculating the SD and SEM includes different statistical inferences, each of them has its own meaning. SD is the dispersion of data in a normal distribution. In other words, SD indicates how accurately the mean represents sample data. However the meaning of SEM includes statistical inference based on the sampling distribution. SEM is the SD of the theoretical distribution of the sample means (the sampling distribution). While either SD or SEM can be applied to describe data and statistical results, one should be aware of reasonable methods with which to use SD and SEM. We aim to elucidate the distinctions between SD and SEM and to provide proper usage guidelines for both, which summarize data and describe statistical results.

  11. Standard deviation and standard error of the mean

    PubMed Central

    In, Junyong; Lee, Sangseok

    2015-01-01

    In most clinical and experimental studies, the standard deviation (SD) and the estimated standard error of the mean (SEM) are used to present the characteristics of sample data and to explain statistical analysis results. However, some authors occasionally muddle the distinctive usage between the SD and SEM in medical literature. Because the process of calculating the SD and SEM includes different statistical inferences, each of them has its own meaning. SD is the dispersion of data in a normal distribution. In other words, SD indicates how accurately the mean represents sample data. However the meaning of SEM includes statistical inference based on the sampling distribution. SEM is the SD of the theoretical distribution of the sample means (the sampling distribution). While either SD or SEM can be applied to describe data and statistical results, one should be aware of reasonable methods with which to use SD and SEM. We aim to elucidate the distinctions between SD and SEM and to provide proper usage guidelines for both, which summarize data and describe statistical results. PMID:26045923

  12. Viewing Sexually-Explicit Materials Alone or Together: Associations with Relationship Quality

    PubMed Central

    Maddox, Amanda M.; Rhoades, Galena K.; Markman, Howard J.

    2010-01-01

    This study investigated associations between viewing sexually-explicit material (SEM) and relationship functioning in a random sample of 1291 unmarried individuals in romantic relationships. More men (76.8%) than women (31.6%) reported that they viewed SEM on their own, but nearly half of both men and women reported sometimes viewing SEM with their partner (44.8%). Measures of communication, relationship adjustment, commitment, sexual satisfaction, and infidelity were examined. Individuals who never viewed SEM reported higher relationship quality on all indices than those who viewed SEM alone. Those who viewed SEM only with their partners reported more dedication and higher sexual satisfaction than those who viewed SEM alone. The only difference between those who never viewed SEM and those who viewed it only with their partners was that those who never viewed it had lower rates of infidelity. Implications for future research in this area as well as for sex therapy and couple therapy are discussed. PMID:20039112

  13. Soft tissue digestion of Paradiplozoon vaalense for SEM of sclerites and simultaneous molecular analysis.

    PubMed

    Dos Santos, Q M; Avenant-Oldewage, A

    2015-02-01

    Classification of most monogeneans is primarily based on size, shape, and arrangement of haptoral sclerites. These structures are often obscured or misinterpreted when studied using light microscopy, leading to confusion regarding defining characters. Scanning electron microscopy (SEM) has predominantly been used to study haptoral sclerites in smaller monogeneans, focusing on hooks and anchors. In the Diplozoidae, SEM has not been used to study haptoral sclerites. Using new and modified techniques, the sclerites of diplozoids collected in South Africa were successfully studied using SEM. The digestion buffer from a DNA extraction kit was used to digest the surrounding tissue, and Poly-L-lysine-coated and concavity slides were employed to limit the movement and loss of sclerites, with the latter being more user-friendly. In addition to the success of visualizing the sclerites using SEM, the digested tissue from as little as half of the haptor provided viable genetic material for molecular characterization. From the results presented here, the study of the sclerites of larger monogeneans using SEM, including those bearing clamps, is a viable possibility for future research. Also, this method may be beneficial for the study of other, non-haptoral sclerites, such as cirri in other families of monogeneans. During this study, Labeo capensis was noted as a valid host of Paradiplozoon vaalense in a region of the Vaal River where the type host, Labeo umbratus, appears to be absent.

  14. Effect of hydrodynamics and surface roughness on the electrochemical behaviour of carbon steel in CSG produced water

    NASA Astrophysics Data System (ADS)

    Eyu, Gaius Debi; Will, Geoffrey; Dekkers, Willem; MacLeod, Jennifer

    2015-12-01

    The influence of fluid flow, surface roughness and immersion time on the electrochemical behaviour of carbon steel in coal seam gas produced water under static and hydrodynamic conditions has been studied. The disc electrode surface morphology before and after the corrosion test was characterized using scanning electron microscopy (SEM). The corrosion product was examined using X-ray photoelectron spectroscopy (XPS) and X-ray diffractometry (XRD).The results show that the anodic current density increased with increasing surface roughness and consequently a decrease in corrosion surface resistance. Under dynamic flow conditions, the corrosion rate increased with increasing rotating speed due to the high mass transfer coefficient and formation of non-protective akaganeite β-FeO(OH) and goethite α-FeO(OH) corrosion scale at the electrode surface. The corrosion rate was lowest at 0 rpm. The corrosion rate decreased in both static and dynamic conditions with increasing immersion time. The decrease in corrosion rate is attributed to the deposition of corrosion products on the electrode surface. SEM results revealed that the rougher surface exhibited a great tendency toward pitting corrosion.

  15. Tribological and corrosion behaviour of electroless Ni-B coating possessing a blackberry like structure

    NASA Astrophysics Data System (ADS)

    Bülbül, Ferhat; Altun, Hikmet; Küçük, Özkan; Ezirmik, Vefa

    2012-08-01

    This study aims to evaluate the tribological and corrosion properties of the electroless Ni-B coating deposited on AISI 304 stainless steels. The microstructure of the coating was characterized using x-ray diffraction (XRD) and scanning electron microscopy-energy dispersive spectrometry (SEM-EDS). XRD analysis revealed that the prepared coating possessed an amorphous character. SEM-EDS investigation also indicated that a non-stoichiometric Ni-B coating was deposited with a columnar growth mechanism on the stainless steel substrate and the morphology of the growth surface was blackberry-like. The hardness and tribological properties were characterized by microhardness and a pin-on-disc wear test. The electroless Ni-B coated sample had a higher degree of hardness, a lower friction coefficient and a lower wear rate than the uncoated substrate. The electrochemical potentiodynamic polarization method was used to evaluate the corrosion resistance of the coating. The electroless Ni-B coating offered cathodic protection on the substrate by acting as a sacrificial anode although it was electrochemically more reactive than the stainless steel substrate.

  16. Effect of ingested tungsten oxide (WOx) nanofibers on digestive gland tissue of Porcellio scaber (Isopoda, Crustacea): fourier transform infrared (FTIR) imaging.

    PubMed

    Novak, Sara; Drobne, Damjana; Vaccari, Lisa; Kiskinova, Maya; Ferraris, Paolo; Birarda, Giovanni; Remškar, Maja; Hočevar, Matej

    2013-10-01

    Tungsten nanofibers are recognized as biologically potent. We study deviations in molecular composition between normal and digestive gland tissue of WOx nanofibers (nano-WOx) fed invertebrate Porcellio scaber (Iosopda, Crustacea) and revealed mechanisms of nano-WOx effect in vivo. Fourier Transform Infrared (FTIR) imaging performed on digestive gland epithelium was supplemented by toxicity and cytotoxicity analyses as well as scanning electron microscopy (SEM) of the surface of the epithelium. The difference in the spectra of the Nano-WOx treated and control cells showed up in the central region of the cells and were related to lipid peroxidation, and structural changes of nucleic acids. The conventional toxicity parameters failed to show toxic effects of nano-WOx, whereas the cytotoxicity biomarkers and SEM investigation of digestive gland epithelium indicated sporadic effects of nanofibers. Since toxicological and cytological measurements did not highlight severe effects, the biochemical alterations evidenced by FTIR imaging have been explained as the result of cell protection (acclimation) mechanisms to unfavorable conditions and indication of a nonhomeostatic state, which can lead to toxic effects.

  17. Preparation and characterization of microporous poly(d,l-lactic acid) film for tissue engineering scaffold

    PubMed Central

    Shi, Shuai; Wang, Xiu Hong; Guo, Gang; Fan, Min; Huang, Mei Juan; Qian, Zhi Yong

    2010-01-01

    We prepared a series of microporous films based on poly(d,l-lactic acid) (PLA) via phase separation. According to scanning electron microscopy (SEM), a 3-dimensional foamy structure with multimicrometer scale pores on the air surface of film could be observed. As the morphology of PLA film could not be stabilized using solvent–nonsolvent phase separation, we investigated the effect of temperature, air movement, and concentration on the properties of microporous PLA films. The results show that when the temperature was 25°C in a vacuum, it was easy to prepare PLA film with micropores, and it was stable. As the relationship between the morphology and formation factors was clear and the morphology of the PLA film was controllable, we studied the PLA film’s potential use for cell culture. SEM results showed that NIH3T3 cell could be adhered on the surface of film well after incubation for 2 days. Meanwhile, in vitro culture experiments revealed the great biocompatibility of the scaffold for adsorption and proliferation of fibroblasts. PMID:21179227

  18. Anticorrosion Coating using Olea sp. Leaves Extract

    NASA Astrophysics Data System (ADS)

    Ikhmal, W. M. K. W. M.; Yasmin, M. Y. N.; Fazira, M. F. M.; Rafizah, W. A. W.; Nik, W. B. Wan; Sabri, M. G. M.

    2018-04-01

    Olive leaves extract (OLE) was evaluated as green corrosion inhibitor for stainless steel grade 316L (SS316L) in several media using scanning electron microscope (SEM), electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization techniques. The Fourier Transform Infrared (FTIR) spectroscopy results reveals several active compound indicated by O-H stretch, C=O stretch, C-OH stretch and C-N stretch which can be attributed to oleuropein and hydroxtyrosol acting as the main inhibiting sources for corrosion. The results obtained also show the inhibition efficiency of OLE increase with the increase of OLE concentration. Through its inhibitive action elucidate from the electrochemical analysis, the extract was found to act as a mixed type inhibitor. Micrographs by SEM showed that the surface of steel which has been coated with 0% and 20% of OLE coating extract possess a lot of pin holes or pores while the steel with 10% of OLE coating extract shows the surface has multiple cracks. This study clearly shows the efficiency of OLE as anticorrosion coating for control of stainless steel in marine application.

  19. Optical, Magnetic and Photocatalytic Activity Studies of Li, Mg and Sr Doped and Undoped Zinc Oxide Nanoparticles.

    PubMed

    Shanthi, S I; Poovaragan, S; Arularasu, M V; Nithya, S; Sundaram, R; Magdalane, C Maria; Kaviyarasu, K; Maaza, M

    2018-08-01

    Nanoparticles of Li, Mg and Sr doped and undoped zinc oxide was prepared by simple precipitation method. The structural, optical, and magnetic properties of the samples were investigated by the Powder X-ray Diffraction (XRD), Scanning Electron Microscope (SEM), Transmission Electron Microscope (TEM), Fourier Transform Infrared (FTIR) spectroscopy, Ultra-violet Visible spectroscopy (UV-vis) spectra, Photoluminescence (PL) and Vibrational Sample Magnetometer (VSM). The Powder X-ray diffraction data confirm the formation of hexagonal wurtzite structure of all doped and undoped ZnO. The SEM photograph reveals that the pores availability and particles size in the range of 10 nm-50 nm. FTIR and UV-Visible spectra results confirm the incorporation of the dopant into the ZnO lattice nanostructure. The UV-Visible spectra indicate that the shift of blue region (lower wavelength) due to bandgap widening. Photoluminescence intensity varies with doping due to the increase of oxygen vacancies in prepared ZnO. The pure ZnO exist paramagnetic while doped (Li, Mg and Sr) ZnO exist ferromagnetic property. The photocatalytic activity of the prepared sample also carried out in detail.

  20. Characterization of Antibiotic-Loaded Alginate-Osa Starch Microbeads Produced by Ionotropic Pregelation

    PubMed Central

    Fontes, Gizele Cardoso; Calado, Verônica Maria Araújo; Rossi, Alexandre Malta; da Rocha-Leão, Maria Helena Miguez

    2013-01-01

    The aim of this study was to characterize the penicillin-loaded microbeads composed of alginate and octenyl succinic anhydride (OSA) starch prepared by ionotropic pregelation with calcium chloride and to evaluate their in vitro drug delivery profile. The beads were characterized by size, scanning electron microscopy (SEM), zeta potential, swelling behavior, and degree of erosion. Also, the possible interaction between penicillin and biopolymers was investigated by differential scanning calorimetry (DSC), powder X-ray diffraction (XRD), and Fourier transform infrared (FTIR) analysis. The SEM micrograph results indicated a homogeneous drug distribution in the matrix. Also, based on thermal analyses (TGA/DSC), interactions were detected between microbead components. Although FTIR spectra of penicillin-loaded microbeads did not reveal the formation of new chemical entities, they confirmed the chemical drug stability. XRD patterns showed that the incorporated crystalline structure of penicillin did not significantly alter the primarily amorphous polymeric network. In addition, the results confirmed a prolonged penicillin delivery system profile. These results imply that alginate and OSA starch beads can be used as a suitable controlled-release carrier for penicillin. PMID:23862146

  1. Electrodeposition of Nanocrystalline Ni–Fe Alloy Coatings Based on 1-Butyl-3-Methylimidazolium-Hydrogen Sulfate Ionic Liquid.

    PubMed

    He, Xinkuai; Zhang, Chuang; Zhu, Qingyun; Lu, Haozi; Cai, Youxing; Wu, Luye

    2017-02-01

    The electrodeposition of nanocrystalline Ni–Fe alloy coatings and associated nucleation/growth processes are investigated on the glassy carbon (GC) electrode in 1-butyl-3-methylimidazolium-hydrogen sulfate ([BMIM]HSO4) ionic liquid (IL). Cyclic voltammetric data suggest that the co-electrodeposition of Ni–Fe alloys is quasi-reversible. Moreover, chronoamperometry results indicate that the electrodeposition proceeds via a simultaneous nucleation and three-dimensional growth mechanism. In addition, the effects of electrodeposition potential and electrolyte temperature on the coating thickness and Fe content are also studied. The microstructure and composition of the Ni–Fe alloy coatings on Cu substrate are investigated using scanning electron microscopy (SEM), X-ray diffraction (XRD) and energy-dispersive spectroscopy (EDS). SEM observations show that these electrodeposits present a dense and compact structure, EDS analysis indicates that the coatings are composed of Ni and Fe, XRD pattern shows the coatings are crystalline with a face-centred cubic (fcc) structure. Tafel plots reveal that the Ni–Fe alloy prepared from [BMIM]HSO4 IL presents better corrosion resistance than that of pure Ni.

  2. Bioleaching of two different genetic types of chalcopyrite and their comparative mineralogical assessment.

    PubMed

    Deng, Sha; Gu, Guohua; Ji, Jing; Xu, Baoke

    2018-02-01

    The bioleaching of two different genetic types of chalcopyrite by the moderate thermophile Sulfobacillus thermosulfidooxidans was investigated by leaching behaviors elucidation and their comparative mineralogical assessment. The leaching experiment showed that the skarn-type chalcopyrite (STC) revealed a much faster leaching rate with 33.34% copper extracted finally, while only 23.53% copper was bioleached for the porphyry-type chalcopyrite (PTC). The mineralogical properties were analyzed by XRD, SEM, XPS, and Fermi energy calculation. XRD indicated that the unit cell volume of STC was a little larger than that of PTC. SEM indicated that the surface of STC had more steps and ridges. XPS spectra showed that Cu(I) was the dominant species of copper on the surfaces of the two chalcopyrite samples, and STC had much more copper with lower Cu 2p 3/2 binding energy. Additionally, the Fermi energy of STC was much higher than that of PTC. These mineralogical differences were in good agreement with the bioleaching behaviors of chalcopyrite. This study will provide some new information for evaluating the oxidation kinetics of chalcopyrite.

  3. Effect of frequency on fretting wear behavior of Ti/TiN multilayer film on depleted uranium

    PubMed Central

    Zhu, Sheng-Fa; Lu, Lei; Cai, Zhen-Bing

    2017-01-01

    The Ti/TiN multi-layer film was prepared on the depleted uranium (DU) substrate by cathodic arc ion plating equipment. The character of multi-layer film was studied by SEM, XRD and AES, revealed that the surface was composed of small compact particle and the cross-section had a multi-layer structure. The fretting wear performance under different frequencies was performed by a MFT-6000 machine with a ball-on-plate configuration. The wear morphology was analyzed by white light interferometer, OM and SEM with an EDX. The result shows the Ti/TiN multi-layer film could greatly improve the fretting wear performance compared to the DU substrate. The fretting wear running and damaged behavior are strongly dependent on the film and test frequency. The fretting region of DU substrate and Ti/TiN multi-layer under low test frequency is gross slip. With the increase of test frequency, the fretting region of Ti/TiN multi-layer change from gross slip to mixed fretting, then to partial slip. PMID:28384200

  4. Effect of frequency on fretting wear behavior of Ti/TiN multilayer film on depleted uranium.

    PubMed

    Wu, Yan-Ping; Li, Zheng-Yang; Zhu, Sheng-Fa; Lu, Lei; Cai, Zhen-Bing

    2017-01-01

    The Ti/TiN multi-layer film was prepared on the depleted uranium (DU) substrate by cathodic arc ion plating equipment. The character of multi-layer film was studied by SEM, XRD and AES, revealed that the surface was composed of small compact particle and the cross-section had a multi-layer structure. The fretting wear performance under different frequencies was performed by a MFT-6000 machine with a ball-on-plate configuration. The wear morphology was analyzed by white light interferometer, OM and SEM with an EDX. The result shows the Ti/TiN multi-layer film could greatly improve the fretting wear performance compared to the DU substrate. The fretting wear running and damaged behavior are strongly dependent on the film and test frequency. The fretting region of DU substrate and Ti/TiN multi-layer under low test frequency is gross slip. With the increase of test frequency, the fretting region of Ti/TiN multi-layer change from gross slip to mixed fretting, then to partial slip.

  5. On the use of SEM correlative tools for in situ mechanical tests.

    PubMed

    Shi, Qiwei; Roux, Stéphane; Latourte, Félix; Hild, François; Loisnard, Dominique; Brynaert, Nicolas

    2018-01-01

    In situ SEM mechanical tests are key to study crystal plasticity. In particular, imaging and diffraction (EBSD) allow microstructure and surface kinematics to be monitored all along the test. However, to get a full benefit from different modalities, it is necessary to register all images and crystallographic orientation maps from EBSD into the same frame. Different correlative approaches tracking either Pt surface markings, crystal orientations or grain boundaries, allow such registrations to be performed and displacement as well as rotation fields to be measured, a primary information for crystal plasticity identification. However, the different contrasts that are captured in different modalities and unavoidable stage motions also give rise to artifacts that are to be corrected to register the different information onto the same material points. The same image correlation tools reveal very powerful to correct such artifacts. Illustrated by an in situ uniaxial tensile test performed on a bainitic-ferritic steel sample, recent advances in image correlation techniques are reviewed and shown to provide a comprehensive picture of local strain and rotation maps. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Assessment of heavy metal impact on sediment quality of the Xiaoqinghe estuary in the coastal Laizhou Bay, Bohai Sea: inconsistency between two commonly used criteria.

    PubMed

    Zhuang, Wen; Gao, Xuelu

    2014-06-15

    Surface sediments in the Xiaoqinghe estuary, southwestern coastal Laizhou Bay, were examined to assess the bio-toxic risk of heavy metals (Cd, Cu, Ni, Pb and Zn) with the effects range-low and effects range-median guidelines (ERL-ERMs) and the concentration ratio of simultaneously extractable metals to acid volatile sulfides ([SEM]/[AVS]). Based on the ERL-ERM guidelines, bio-toxic effect caused by Cu, Ni, Pb and Zn could be expected in the riverine surface sediments of the Xiaoqinghe estuary; and the surface sediments in the marine area were in good quality and only Ni might cause bio-toxic effect occasionally. The AVS-SEM guidelines revealed that no bio-toxic effect could be caused by any of the studied metals in both the riverine and marine sediments, since there were excess sulfides in surface sediments which could form water-insoluble substances with free metal ions and reduce the bioavailability of heavy metals. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Preparation and characterization of PVP-PVA–ZnO blend polymer nano composite films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Divya, S., E-mail: divi.fysics@gmail.com; Saipriya, G.; Hemalatha, J., E-mail: hemalatha@nitt.edu

    Flexible self-standing films of PVP-PVA blend composites are prepared by using ZnO as a nano filler at different concentrations. The structural, compositional, morphological and optical studies made with the help of X-ray diffraction (XRD), Fourier Transform Infra-Red spectroscopy (FTIR), Scanning electron microscope (SEM), Atomic Force Microscopy (AFM), Ultraviolet-visible spectroscopy (UV-vis) and Photoluminescence (PL) spectra are presented in this paper. The results of XRD indicate that ZnO nanoparticles are formed with hexagonal phase in the polymeric matrix. SEM images show the dispersion of ZnO nano filler in the polymer matrix. UV–vis spectra reveal that the absorption peak is centered around 235more » nm and 370 nm for the nano composite films. The blue shift is observed with decrease in the concentration of the nano filler. PL spectra shows the excitation wavelength is given at 320 nm.The emission peaks were observed at 383 nm ascribing to the electronic transitions between valence band and conduction band and the peak at 430 nm.« less

  8. Spray deposition of highly transparent fluorine doped cadmium oxide thin films

    NASA Astrophysics Data System (ADS)

    Deokate, R. J.; Pawar, S. M.; Moholkar, A. V.; Sawant, V. S.; Pawar, C. A.; Bhosale, C. H.; Rajpure, K. Y.

    2008-01-01

    The cadmium oxide (CdO) and F:CdO films have been deposited by spray pyrolysis method using cadmium acetate and ammonium fluoride as precursors for Cd and F ions, respectively. The effect of temperature and F doping on the structural, morphological, optical and Hall effect properties of sprayed CdO thin films was investigated using X-ray diffraction (XRD), scanning electron microscopy (SEM), atomic force microscopy (AFM), optical absorption and electrical measurement techniques. TGA and DTA studies, indicates the formation of CdO by decomposition of cadmium acetate after 250 °C. XRD patterns reveal that samples are polycrystalline with cubic structure and exhibits (2 0 0) preferential orientation. Considerable broading of (2 0 0) peak, simultaneous shifting of corresponding Bragg's angle have been observed with respect to F doping level. SEM and AFM show the heterogeneous distribution of cubical grains all over the substrate, which are randomly distributed. F doping shifts the optical gap along with the increase in the transparency of CdO films. The Hall effect measurement indicates that the resistivity and mobility decrease up to 4% F doping.

  9. Retentive force and microleakage of stainless steel crowns cemented with three different luting agents.

    PubMed

    Yilmaz, Yucel; Dalmis, Anya; Gurbuz, Taskin; Simsek, Sera

    2004-12-01

    The aim of this investigation was to compare the tensile strength, microleakage, and Scanning Electron Microscope (SEM) evaluations of SSCs cemented using different adhesive cements on primary molars. Sixty-three extracted primary first molars were used. Tooth preparations were done. Crowns were altered and adapted for investigation purpose, and then cemented using glass ionomer cement (Aqua Meron), resin modified cement (RelyX Luting), and resin cement (Panavia F) on the prepared teeth. Samples were divided into two groups of 30 samples each for tensile strength and microleakage tests. The remaining three samples were used for SEM evaluation. Data were analyzed with one-way ANOVA and Tukey test. The statistical analysis of ANOVA revealed significant differences among the groups for both tensile strength and microleakage tests (p < 0.05). Tukey test showed statistically significant difference between Panavia F and RelyX Luting (p < 0.05), but none between the others (p > 0.05). This study showed that the higher the retentive force a crown possessed, the lower would be the possibility of microleakage.

  10. Polyurethane/fluor-hydroxyapatite nanocomposite scaffolds for bone tissue engineering. Part I: morphological, physical, and mechanical characterization

    PubMed Central

    Asefnejad, Azadeh; Behnamghader, Aliasghar; Khorasani, Mohammad Taghi; Farsadzadeh, Babak

    2011-01-01

    In this study, new nano-fluor-hydroxyapatite (nFHA)/polyurethane composite scaffolds were fabricated for potential use in bone tissue engineering. Polyester urethane samples were synthesized from polycaprolactone, hexamethylene diisocyanate, and 1,4-butanediol as chain extender. Nano fluor-hydroxyapatite (nFHA) was successfully synthesized by sol-gel method. The solid–liquid phase separation and solvent sublimation methods were used for preparation of the porous composites. Mechanical properties, chemical structure, and morphological characteristics of the samples were investigated by compressive test, Fourier transform infrared, and scanning electron microscopy (SEM) techniques, respectively. The effect of nFHA powder content on porosity and pore morphology was investigated. SEM images demonstrated that the scaffolds were constituted of interconnected and homogeneously distributed pores. The pore size of the scaffolds was in the range 50–250 μm. The result obtained in this research revealed that the porosity and pore average size decreased and compressive modulus increased with nFHA percentage. Considering morphological, physical, and mechanical properties, the scaffold with a higher ratio of nFHA has suitable potential use in tissue regeneration. PMID:21289986

  11. In situ micro-compression testing of He2+ ion irradiated titanium aluminide

    NASA Astrophysics Data System (ADS)

    Wei, Tao; Xu, Alan; Zhu, Hanliang; Ionescu, Mihail; Bhattacharyya, Dhriti

    2017-10-01

    A titanium aluminide (TiAl) alloy 45XD has been irradiated by a He ion beam with an energy of 5 MeV on a tandem accelerator at the Australian Nuclear Science and Technology Organization (ANSTO). The total fluence of He ions was 5 × 1017 ion cm-2. A 17 μm uniform damage region from the material surface with a helium concentration of about 5000 appm was achieved by using an energy degrading wheel in front of the TiAl target. The micro-size test specimens from the damage layer were fabricated using a focused ion beam & scanning electron microscope (FIB-SEM) system. The in situ SEM micromechanical compressive testing was carried out inside an SEM and the results indicated irradiation embrittlement in the helium affected region. Electron back scatter diffraction (EBSD) analysis has been applied to reveal the orientation of the lamellae in the TiAl specimens, and used to understand the deformation processes in the sample. The irradiation damage of gallium ion beam from FIB on the surface of TiAl sample was also investigated.

  12. The functional interrelationship between gap junctions and fenestrae in endothelial cells of the liver organoid.

    PubMed

    Saito, Masaya; Matsuura, Tomokazu; Nagatsuma, Keisuke; Tanaka, Ken; Maehashi, Haruka; Shimizu, Keiko; Hataba, Yoshiaki; Kato, Fumitaka; Kashimori, Isao; Tajiri, Hisao; Braet, Filip

    2007-06-01

    Functional intact liver organoid can be reconstructed in a radial-flow bioreactor when human hepatocellular carcinoma (FLC-5), mouse immortalized sinusoidal endothelial M1 (SEC) and A7 (HSC) hepatic stellate cell lines are cocultured. The structural and functional characteristics of the reconstructed organoid closely resemble the in vivo liver situation. Previous liver organoid studies indicated that cell-to-cell communications might be an important factor for the functional and structural integrity of the reconstructed organoid, including the expression of fenestrae. Therefore, we examined the possible relationship between functional intact gap junctional intercellular communication (GJIC) and fenestrae dynamics in M1-SEC cells. The fine morphology of liver organoid was studied in the presence of (1) irsogladine maleate (IM), (2) oleamide and (3) oleamide followed by IM treatment. Fine ultrastructural changes were studied by transmission electron microscopy (TEM) and scanning electron microscopy (SEM) and compared with control liver organoid data. TEM revealed that oleamide affected the integrity of cell-to-cell contacts predominantly in FLC-5 hepatocytes. SEM observation showed the presence of fenestrae on M1-SEC cells; however, oleamide inhibited fenestrae expression on the surface of endothelial cells. Interestingly, fenestrae reappeared when IM was added after initial oleamide exposure. GJIC mediates the number of fenestrae in endothelial cells of the liver organoid.

  13. Comparative of fibroblast and osteoblast cells adhesion on surface modified nanofibrous substrates based on polycaprolactone.

    PubMed

    Sharifi, Fereshteh; Irani, Shiva; Zandi, Mojgan; Soleimani, Masoud; Atyabi, Seyed Mohammad

    2016-12-01

    One of the determinant factors for successful bioengineering is to achieve appropriate nano-topography and three-dimensional substrate. In this research, polycaprolactone (PCL) nano-fibrous mat with different roughness modified with O 2 plasma was fabricated via electrospinning. The purpose of this study was to evaluate the effect of plasma modification along with surface nano-topography of mats on the quality of human fibroblast (HDFs) and osteoblast cells (OSTs)-substrate interaction. Surface properties were studied using scanning electron microscopy (SEM), atomic force microscopy (AFM), contact angle, Fourier-transformation infrared spectroscopy. We evaluated mechanical properties of fabricated mats by tensile test. The viability and proliferation of HDFs and OSTs on the substrates were followed by 3-[4, 5-dimethylthiazol-2-yl]-2, 5-diphenyltetrazolium bromide (MTT). Mineralization of the substrate was determined by alizarin red staining method and calcium content of OSTs was determined by calcium content kit. Cells morphology was studied by SEM analysis. The results revealed that the plasma-treated electrospun nano-fibrous substrate with higher roughness was an excellent designed substrate. A bioactive topography for stimulating proliferation of HDFs and OSTs is to accelerate the latter's differentiation time. Therefore, the PCL substrate with high density and major nano-topography were considered as a bio-functional and elegant bio-substrate for tissue regeneration applications.

  14. Green synthesis of gold nanoparticles using Stevia rebaudiana leaf extracts: Characterization and their stability.

    PubMed

    Sadeghi, Babak; Mohammadzadeh, M; Babakhani, B

    2015-07-01

    Various methods invented and developed for the synthesis of gold nanoparticles that increases daily consumed. According to this method, including potential environmental pollution problems and the complexity of the synthesis, in this study, the feasibility of using the leaves extract of Stevia rebaudiana (SR) for the reduction of gold ions to nanoparticles form have been studied. Stevia leaves were used to prepare the aqueous extract for this study. Gold nanoparticles were characterized with different techniques such as UV-vis spectroscopy, FT-IR spectroscopy, X-ray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). Transmission electron microscopy experiments showed that these nanoparticles are spherical and uniformly distributed and its size is from 5 to 20 nm. FT-IR spectroscopy revealed that gold nanoparticles were functionalized with biomolecules that have primary amine group (NH2), carbonyl group, OH groups and other stabilizing functional groups. X-ray diffraction pattern showed high purity and face centered cubic structure of gold nanoparticles with size of 17 nm. The scanning electron microscopy (SEM) implies the right of forming gold nanoparticles. The results, confirm that gold nanoparticles have synthesized by the leaves extract of S. rebaudiana (SR). Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Novel pH responsive polymethacrylic acid-chitosan-polyethylene glycol nanoparticles for oral peptide delivery.

    PubMed

    Sajeesh, S; Sharma, Chandra P

    2006-02-01

    In present study, novel pH sensitive polymethacrylic acid-chitosan-polyethylene glycol (PCP) nanoparticles were prepared under mild aqueous conditions via polyelectrolyte complexation. Free radical polymerization of methacrylic acid (MAA) was carried out in presence of chitosan (CS) and polyethylene glycol (PEG) using a water-soluble initiator and particles were obtained spontaneously during polymerization without using organic solvents or surfactants/steric stabilizers. Dried particles were analyzed by scanning electron microscopy (SEM) and particles dispersed in phosphate buffer (pH 7.0) were visualized under transmission electron microscope (TEM). SEM studies indicated that PCP particles have an aggregated and irregular morphology, however, TEM revealed that these aggregated particles were composed of smaller fragments with size less than 1 micron. Insulin and bovine serum albumin (BSA) as model proteins were incorporated into the nanoparticles by diffusion filling method and their in vitro release characteristics were evaluated at pH 1.2 and 7.4. PCP nanoparticles exhibited good protein encapsulation efficiency and pH responsive release profile was observed under in vitro conditions. Trypsin inhibitory effect of these PCP nanoparticles was studied using casein substrate and these particles displayed lesser inhibitory effect than reference polymer carbopol. Preliminary investigation suggests that these particles can serve as good candidate for oral peptide delivery. Copyright 2005 Wiley Periodicals, Inc.

  16. Quantifying grain shape with MorpheoLV: A case study using Holocene glacial marine sediments

    NASA Astrophysics Data System (ADS)

    Charpentier, Isabelle; Staszyc, Alicia B.; Wellner, Julia S.; Alejandro, Vanessa

    2017-06-01

    As demonstrated in earlier works, quantitative grain shape analysis has revealed to be a strong proxy for determining sediment transport history and depositional environments. MorpheoLV, devoted to the calculation of roughness coefficients from pictures of unique clastic sediment grains using Fourier analysis, drives computations for a collection of samples of grain images. This process may be applied to sedimentary deposits assuming core/interval/image archives for the storage of samples collected along depth. This study uses a 25.8 m jumbo piston core, NBP1203 JPC36, taken from a 100 m thick sedimentary drift deposit from Perseverance Drift on the northern Antarctic Peninsula continental shelf. Changes in ocean and ice conditions throughout the Holocene recorded in this sedimentary archive can be assessed by studying grain shape, grain texture, and other proxies. Ninety six intervals were sampled and a total of 2319 individual particle images were used. Microtextures of individual grains observed by SEM show a very high abundance of authigenically precipitated silica that obscures the original grain shape. Grain roughness, computed along depth with MorpheoLV, only shows small variation confirming the qualitative observation deduced from the SEM. Despite this, trends can be seen confirming the reliability of MorpheoLV as a tool for quantitative grain shape analysis.

  17. Some Issues of Shrinkage-Reducing Admixtures Application in Alkali-Activated Slag Systems

    PubMed Central

    Bílek, Vlastimil; Kalina, Lukáš; Novotný, Radoslav; Tkacz, Jakub; Pařízek, Ladislav

    2016-01-01

    Significant drying shrinkage is one of the main limitations for the wider utilization of alkali-activated slag (AAS). Few previous works revealed that it is possible to reduce AAS drying shrinkage by the use of shrinkage-reducing admixtures (SRAs). However, these studies were mainly focused on SRA based on polypropylene glycol, while as it is shown in this paper, the behavior of SRA based on 2-methyl-2,4-pentanediol can be significantly different. While 0.25% and 0.50% had only a minor effect on the AAS properties, 1.0% of this SRA reduced the drying shrinkage of waterglass-activated slag mortar by more than 80%, but it greatly reduced early strengths simultaneously. This feature was further studied by isothermal calorimetry, mercury intrusion porosimetry (MIP) and scanning electron microscopy (SEM). Calorimetric experiments showed that 1% of SRA modified the second peak of the pre-induction period and delayed the maximum of the main hydration peak by several days, which corresponds well with observed strength development as well as with the MIP and SEM results. These observations proved the certain incompatibility of SRA with the studied AAS system, because the drying shrinkage reduction was induced by the strong retardation of hydration, resulting in a coarsening of the pore structure rather than the proper function of the SRA. PMID:28773584

  18. Endoscopic removal of malfunctioning biliary self-expandable metallic stents.

    PubMed

    Familiari, Pietro; Bulajic, Milutin; Mutignani, Massimiliano; Lee, Linda S; Spera, Gianluca; Spada, Cristiano; Tringali, Andrea; Costamagna, Guido

    2005-12-01

    Endoscopic removal of malfunctioning self-expandable metallic biliary stents (SEMS) is difficult and not well described. The aim of this study is to review the indications, the techniques, and the results of SEMS removal in a cohort of patients with malfunctioning stents. All patients who underwent an attempt at endoscopic removal of biliary SEMS over a 5-year period were retrospectively identified. The main indications for SEMS removal were the following: distal migration of the stent or impaction to the duodenum, impaction into the bile-duct wall, tissue ingrowth, and inappropriate length of the stent causing occlusion of intrahepatic ducts. SEMS were removed by using foreign-body forceps or polypectomy snares. Endoscopic removal of 39 SEMS (13 uncovered and 26 covered) was attempted in 29 patients (17 men; mean age, 66 years). SEMS extraction was attempted after a mean of 7.5 months (8.75 months standard deviation) post-SEMS insertion. Removal was successful in 20 patients (68.9%) and in 29 SEMS (74.3%). Covered SEMS were effectively removed more frequently than uncovered ones: 24 of 26 (92.3%) and 5 of 13 (38.4%), respectively (p < 0.05). No major complications were recorded. Multivariate analysis showed that the time interval between insertion and removal, SEMS length, stent-mesh design (zigzag vs. interlaced), and indication for removal were not predictive of success at stent removal. Endoscopic removal of biliary SEMS is feasible and safe in more than 70% of cases. Because only 38% of uncovered SEMS were removable, the presence of a stent covering is the only factor predictive of successful stent extraction. The presence of diffuse and severe ingrowth was the main feature limiting SEMS removal.

  19. The internal microstructure and fibrous mineralogy of fly ash from coal-burning power stations.

    PubMed

    Brown, Patrick; Jones, Tim; BéruBé, Kelly

    2011-12-01

    Coal fly ash (CFA) is a significant environmental pollutant that presents a respiratory hazard when airborne. Although previous studies have identified the mineral components of CFA, there is a paucity of information on the structural habits of these minerals. Samples from UK, Polish and Chinese power stations were studied to further our understanding of the factors that affect CFA geochemistry and mineralogy. ICP-MS, FE-SEM/EDX, XRD, and laser diffraction were used to study physicochemical characteristics. Analysis revealed important differences in the elemental compositions and particle size distributions of samples between sites. Microscopy of HF acid-etched CFA revealed the mullite present possesses a fibrous habit; fibres ranged in length between 1 and 10 μm. Respirable particles (<10 μm) were frequently observed to contain fibrous mullite. We propose that the biopersistence of these refractory fibres in the lung environment could be contributing towards chronic lung diseases seen in communities and individuals continually exposed to high levels of CFA. Copyright © 2011 Elsevier Ltd. All rights reserved.

  20. Adsorption characteristics of green 5-arylaminomethylene pyrimidine-2,4,6-triones on mild steel surface in acidic medium: Experimental and computational approach

    NASA Astrophysics Data System (ADS)

    Verma, Chandrabhan; Olasunkanmi, Lukman O.; Ebenso, Eno E.; Quraishi, M. A.

    2018-03-01

    The effect of electron withdrawing nitro (-NO2) and electron releasing hydroxyl (-OH) groups on corrosion inhibition potentials of 5-arylaminomethylenepyrimidine-2,4,6-trione (AMP) had been studied. Four AMPs tagged AMP-1, AMP-2, AMP-3 and AMP-4 were studied for their ability to inhibit mild steel corrosion in 1 M HCl using experimental and theoretical methods. Gravimetric results showed that inhibition efficiency of the studied inhibitors increases with increasing concentration. The results further revealed that that electron withdrawing nitro (-NO2) group decreases the inhibition efficiency of AMP, while electron donating hydroxyl (-OH) group increases the inhibition efficiency of AMP. SEM and AFM studies showed that the studied compounds inhibit mild steel corrosion by adsorbing at the metal/electrolyte interface and their adsorption obeyed the Temkin adsorption isotherm. Potentiodynamic polarization study revealed that studied inhibitors act as mixed type inhibitors with predominant effect on cathodic reaction. The inhibitive strength of the compounds might have direct relationship electron donating ability of the molecules as revealed by quantum chemical parameters. The order of interaction energies derived from Monte Carlo simulations is AMP-4 > AMP-3 > AMP-2 > AMP-1, which is in agreement with the order of inhibition efficiencies obtained from experimental measurements.

  1. Elemental composition study of heavy metal (Ni, Cu, Zn) in riverbank soil by electrokinetic-assisted phytoremediation using XRF and SEM/EDX

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jamari, Suhailly; Embong, Zaidi; Bakar, Ismail

    Electrokinetic (EK)-assisted phytoremediation is one of the methods that have a big potential in enhancing the ability of plant uptake in soils remediation process. This research was conducted to investigate the difference in elemental composition concentration of riverbank soil and the change of pH between pre- and post-phytoremediation under the following condition: 1) control or as-receive sample; 2) Dieffenbachia spp plant with EK system (a pair of EK electrodes connected to a direct current (DC) power supply). After the electrodes were connected to a magnitude of 6V/cm{sup −1} electric field for 4 hours/day, the soil and plant samples were analyzedmore » using and X-ray Fluorescence Spectrometer (XRF) and Scanning Electron Microscope / Energy Dispersive X-ray Spectroscopy (SEM/EDX). The SEM/EDX analysis showed that concentration of elemental composition (Ni, Cu and Zn) in post-phytoremediation plant powder samples had increase while elemental concentrations in the post-phytoremediation soil samples were decreased. XRF analysis presented a variation in soil elemental composition concentration from anode to cathode where the concentration near anode region increased while decreased near the cathode region. A significant changes in soil pH were obtained where the soil pH increase in cathode region while decrease in anode region. The results reveal that the assistance of EK in phytoremediation process has increase the efficiency of plant uptake.« less

  2. Preferred aspects of sexually explicit media among men who have sex with men: where do condoms fit in?

    PubMed Central

    Galos, Dylan L.; Smolenski, Derek J.; Grey, Jeremy A.; Iantaffi, Alex; Rosser, B.R. Simon

    2014-01-01

    Sexually explicit media (SEM) is viewed by many men who have sex with men (MSM) and is widely available via the Internet. Though research has investigated the link between SEM and sexual risk behaviour, little has been published about preferences for characteristics of SEM. In an Internet-based cross-sectional study, 1390 adult MSM completed an online survey about their preferences for nine characteristics of SEM and ranked them in order of importance. Respondents preferred free, Internet-based, anonymous SEM portraying behaviours they would do. Cost and looks were the most important characteristics of SEM to participants, while condom use and sexual behaviours themselves were least important. Results suggest that while participants may have preferences for specific behaviours and condom use, these are not the most salient characteristics of SEM to consumers when choosing. PMID:26085898

  3. Development and Evaluation of Cefadroxil Drug Loaded Biopolymeric Films Based on Chitosan-Furfural Schiff Base

    PubMed Central

    Dixit, Ritu B.; Uplana, Rahul A.; Patel, Vishnu A.; Dixit, Bharat C.; Patel, Tarosh S.

    2010-01-01

    Cefadroxil drug loaded biopolymeric films of chitosan-furfural schiff base were prepared by reacting chitosan with furfural in presence of acetic acid and perchloric acid respectively for the external use. Prepared films were evaluated for their strength, swelling index, thickness, drug content, uniformity, tensile strength, percent elongation, FTIR spectral analysis and SEM. The results of in vitro diffusion studies revealed that the films exhibited enhanced drug diffusion as compared to the films prepared using untreated chitosan. The films also demonstrated good to moderate antibacterial activities against selective gram positive and gram negative bacteria. PMID:21179325

  4. Investigations on the in vitro bioactivity of swift heavy oxygen ion irradiated hydroxyapatite.

    PubMed

    Suganthi, R V; Prakash Parthiban, S; Elayaraja, K; Girija, E K; Kulariya, P; Katharria, Y S; Singh, F; Asokan, K; Kanjilal, D; Narayana Kalkura, S

    2009-12-01

    The effect of swift heavy oxygen ion irradiation of hydroxyapatite on its in vitro bioactivity was studied. The irradiation experiment was performed using oxygen ions at energy of 100 MeV with 1 x 10(12) and 1 x 10(13) ions/cm2 fluence range. The irradiated samples were characterized by glancing angle X-ray diffraction (GXRD), photoluminescence spectroscopy (PL) and scanning electron microscopy (SEM). GXRD showed that irradiated samples exhibited better crystallinity. The irradiated samples revealed an increase in PL intensity. In addition, the irradiated hydroxyapatite was found to have enhanced bioactivity.

  5. Erratum: Evolution of precipitate morphology during heat treatment and its implications for the superconductivity in K x F e 1.6 + y S e 2 single crystals [Phys. Rev. B 86 , 144507 (2012)

    DOE PAGES

    Liu, Y.; Xing, Q.; Dennis, K. W.; ...

    2015-08-14

    In this article, we study the relationship between precipitate morphology and superconductivity in K xFe 1.6+ySe 2 single crystals grown by self-flux method. Scanning electron microscopy (SEM) measurements revealed that the superconducting phase forms a network in the samples quenched above iron vacancy order-disorder transition temperature T s, whereas it aggregates into micrometer-sized rectangular bars and aligns as disconnected chains in the furnace-cooled samples.

  6. Synthesis of n-type Bi4-xLaxTi3O12 (x=0 to 0.45) by alternative mechanochemical method

    NASA Astrophysics Data System (ADS)

    Sharanappa, Nagbasavanna

    2017-05-01

    Lanthanum doped bismuth titanate ceramic samples have been successfully synthesized by mechanochemical method showed good properties and have investigated the structure, microstructure, dielectric, Curie-Weiss behavior, thermoelectric properties, which resulted from substitution of La-ions in bismuth titanate. Plate-like shape with enhanced density is observed in the SEM micrographs. Ceramic samples exhibiting relaxor ferroelectric behavior by satisfying Curie-Weiss law. Thermoelectric studies reveal n-type semiconducting behavior of these samples. Synthesized compounds explored these desirable properties for innovative semiconductor based device applications.

  7. A selective biomarker for confirming nitrofurazone residues in crab and shrimp using ultra-performance liquid chromatography-tandem mass spectrometry.

    PubMed

    Zhang, Shuai; Guo, Yuanming; Yan, Zhongyong; Sun, Xiumei; Zhang, Xiaojun

    2015-12-01

    Reliably detecting nitrofurazone (NFZ) residues in farmed crab and shrimp was previously hindered by lack of appropriately specific analytical methodology. Parent NFZ rapidly breaks down in meat, and the commonly used side-chain metabolite, semicarbazide (SEM), is non-specific as it occurs naturally in crustacean shell often leading to 'false positive' detections in meat. Using 5-nitro-2-furaldehyde (NF) as marker metabolite, following pre-column derivatization with 2,4-dinitrophenylhydrazine (DNPH), ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) analysis in negative electrospray ionization mode enabled confirmation of NFZ residues in deliberately treated whole crab, crab meat and shrimp meat, with a limit of detection (LOD) and limit of quantification (LOQ) below 1 ng g(-1). Meanwhile, the derivatives of DNPH-NF were synthesized for the first time, purified by preparative liquid chromatography and structure characterized with nuclear magnetic resonance spectroscopy ((1)H-NMR). The purity of derivative was checked by ultra-performance liquid chromatography-tunable ultraviolet (UPLC-TUV), and the contents were beyond 99.9%. For comparison purposes, crustacean samples were analysed using both NF and SEM marker metabolites. NFZ treatment was revealed by both NF and SEM marker metabolites, but untreated crab also showed measurable levels of SEM which could potentially be misinterpreted as evidence of illegal NFZ use.

  8. FIB-SEM tomography of human skin telocytes and their extracellular vesicles.

    PubMed

    Cretoiu, Dragos; Gherghiceanu, Mihaela; Hummel, Eric; Zimmermann, Hans; Simionescu, Olga; Popescu, Laurentiu M

    2015-04-01

    We have shown in 2012 the existence of telocytes (TCs) in human dermis. TCs were described by transmission electron microscopy (TEM) as interstitial cells located in non-epithelial spaces (stroma) of many organs (see www.telocytes.com). TCs have very long prolongations (tens to hundreds micrometers) named Telopodes (Tps). These Tps have a special conformation with dilated portions named podoms (containing mitochondria, endoplasmic reticulum and caveolae) and very thin segments (below resolving power of light microscopy), called podomers. To show the real 3D architecture of TC network, we used the most advanced available electron microscope technology: focused ion beam scanning electron microscopy (FIB-SEM) tomography. Generally, 3D reconstruction of dermal TCs by FIB-SEM tomography revealed the existence of Tps with various conformations: (i) long, flattened irregular veils (ribbon-like segments) with knobs, corresponding to podoms, and (ii) tubular structures (podomers) with uneven calibre because of irregular dilations (knobs) - the podoms. FIB-SEM tomography also showed numerous extracellular vesicles (diameter 438.6 ± 149.1 nm, n = 30) released by a human dermal TC. Our data might be useful for understanding the role(s) of TCs in intercellular signalling and communication, as well as for comprehension of pathologies like scleroderma, multiple sclerosis, psoriasis, etc. © 2015 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.

  9. The molecular identification of Streptococcus equi subsp. equi strains isolated within New Zealand.

    PubMed

    Patty, O A; Cursons, R T M

    2014-03-01

    To identify Streptococcus equi subsp. equi (S. equi) by PCR analysis and obtain isolates by culture, in order to investigate the strains of S. equi infecting horses within New Zealand. A diagnostic PCR, based on the amplification of the seeI gene for S. equi, was used on 168 samples submitted from horses with and without clinical signs of strangles. Samples were also processed and cultured on selective media for the isolation of β-haemolytic colonies. In addition, the hypervariable region of the seM gene of S. equi was amplified and then sequenced for strain typing purposes. Of the 168 samples, 35 tested positive for S. equi using PCR. Thirty-two confirmed samples were from horses with a clinical diagnosis of strangles and three were from horses where clinical information was unavailable. Only 22/35 (63%) confirmed S. equi samples were successfully isolated following culture. Strain typing demonstrated that two novel seM alleles of S. equi were found in New Zealand with SeM-99 strains being restricted to the North Island while SeM-100 strains were found in both North and South Islands. The application of PCR for the laboratory confirmation of strangles allowed for a rapid and sensitive identification of S. equi. Moreover, seM typing revealed that within the samples examined two strains of S. equi co-circulated within the North Island of New Zealand but only one strain in the South Island. PCR reduces the time required to obtain laboratory confirmation of strangles compared with culture methods. It also has greater sensitivity in detecting S. equi infections, which is of particular importance in the detection of carrier animals which normally shed low numbers of bacteria. Additionally, seM molecular typing can differentiate between bacterial strains, assisting in the monitoring of local strains of S. equi subsp. equi causing disease.

  10. Effect of Sn Content in a CuSnZn Metal Precursor on Formation of MoSe2 Film during Selenization in Se+SnSe Vapor

    PubMed Central

    Yao, Liyong; Ao, Jianping; Jeng, Ming-Jer; Bi, Jinlian; Gao, Shoushuai; Sun, Guozhong; He, Qing; Zhou, Zhiqiang; Sun, Yun; Chang, Liann-Be

    2016-01-01

    The preparation of Cu2ZnSnSe4 (CZTSe) thin films by the selenization of an electrodeposited copper–tin–zinc (CuSnZn) precursor with various Sn contents in low-pressure Se+SnSex vapor was studied. Scanning electron microscope (SEM) and energy dispersive spectroscopy (EDS) measurements revealed that the Sn content of the precursor that is used in selenization in a low-pressure Se+SnSex vapor atmosphere only slightly affects the elemental composition of the formed CZTSe films. However, the Sn content of the precursor significantly affects the grain size and surface morphology of CZTSe films. A metal precursor with a very Sn-poor composition produces CZTSe films with large grains and a rough surface, while a metal precursor with a very Sn-rich composition procures CZTSe films with small grains and a compact surface. X-ray diffraction (XRD) and SEM revealed that the metal precursor with a Sn-rich composition can grow a thicker MoSe2 thin film at CZTSe/Mo interface than one with a Sn-poor composition, possibly because excess Sn in the precursor may catalyze the formation of MoSe2 thin film. A CZTSe solar cell with an efficiency of 7.94%was realized by using an electrodeposited metal precursor with a Sn/Cu ratio of 0.5 in selenization in a low-pressure Se+SnSex vapor. PMID:28773366

  11. Staying on Task: Age-Related Changes in the Relationship Between Executive Functioning and Response Time Consistency.

    PubMed

    Vasquez, Brandon P; Binns, Malcolm A; Anderson, Nicole D

    2016-03-01

    Little is known about the relationship of executive functioning with age-related increases in response time (RT) distribution indices (intraindividual standard deviation [ISD], and ex-Gaussian parameters mu, sigma, tau). The goals of this study were to (a) replicate findings of age-related changes in response time distribution indices during an engaging touch-screen RT task and (b) investigate age-related changes in the relationship between executive functioning and RT distribution indices. Healthy adults (24 young [aged 18-30], 24 young-old [aged 65-74], and 24 old-old [aged 75-85]) completed a touch-screen attention task and a battery of neuropsychological tests. The relationships between RT performance and executive functions were examined with structural equation modeling (SEM). ISD, mu, and tau, but not sigma, increased with age. SEM revealed tau as the most salient RT index associated with neuropsychological measures of executive functioning. Further analysis demonstrated that correlations between tau and a weighted executive function composite were significant only in the old-old group. Our results replicate findings of greater RT inconsistency in older adults and reveal that executive functioning is related to tau in adults aged 75-85. These results support literature identifying tau as a marker of cognitive control, which deteriorates in old age. © The Author 2014. Published by Oxford University Press on behalf of The Gerontological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  12. Effect of nitrogen ion implantation on the structural and optical properties of indium oxide thin films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sethi, Riti; Aziz, Anver; Siddiqui, Azher M., E-mail: amsiddiqui@jmi.ac.in

    2016-06-10

    : We report here synthesis and subsequent nitrogen ion implantation of indium oxide (In{sub 2}O{sub 3}) thin films. The films were implanted with 25 keV N{sup +} beam for different ion doses between 3E15 to 1E16 ions/cm{sup 2}. The resulting changes in structural and optical properties were investigated using XRD, SEM-EDAX and UV-Vis Spectrometry. XRD studies reveal decrease in crystallite size from 20.06 to 12.42 nm with increase in ion dose. SEM micrographs show an increase in the grain size from 0.8 to 1.35 µm with increase in ion dose because of the agglomeration of the grains. Also, from EDAXmore » data on pristine and N-implanted thin films the presence of indium and oxygen without any traces of impurity elements could be seen. However, at lower ion doses such as 3E15 and 5E15 ions/cm{sup 2}, no evidence of the presence of nitrogen ion was seen. However, for the ion dose of 1E16 ions/cm{sup 2}, evidence of presence of nitrogen can be seen in the EDAX data. Band gap calculations reveal a decrease in band gap from 3.54 to 3.38 eV with increasing ion dose. However, the band gap was found to again show an increase to 3.58 eV at the highest ion dose owing to quantum confinement effect.« less

  13. Co-doping of (Bi(0.5)Na(0.5))TiO(3): secondary phase formation and lattice site preference of Co.

    PubMed

    Schmitt, V; Staab, T E M

    2012-11-14

    Bismuth sodium titanate (Bi(0.5)Na(0.5))TiO(3) (BNT) is considered to be one of the most promising lead-free alternatives to piezoelectric lead zirconate titanate (PZT). However, the effect of dopants on the material has so far received little attention from an atomic point of view. In this study we investigated the effects of cobalt-doping on the formation of additional phases and determined the preferred lattice site of cobalt in BNT. The latter was achieved by comparing the measured x-ray absorption near-edge structure (XANES) spectra to numerically calculated spectra of cobalt on various lattice sites in BNT. (Bi(0.5)Na(0.5))TiO(3) + x mol% Co (x = 0.0, 0.5, 1.0, 2.6) was synthesized via solid state reaction. As revealed by SEM backscattering images, a secondary phase formed in all doped specimens. Using both XRD and SEM-EDX, it was identified as Co(2)TiO(4) for dopant levels >0.5 mol%. In addition, a certain amount of cobalt was incorporated into BNT, as shown by electron probe microanalysis. This amount increased with increasing dopant levels, suggesting that an equilibrium forms together with the secondary phase. The XANES experiments revealed that cobalt occupies the octahedral B-site in the BNT perovskite lattice, substituting Ti and promoting the formation of oxygen vacancies in the material.

  14. Evaluation of poly (vinyl alcohol) based cryogel-zinc oxide nanocomposites for possible applications as wound dressing materials.

    PubMed

    Chaturvedi, Archana; Bajpai, Anil K; Bajpai, Jaya; K Singh, Sunil

    2016-08-01

    In this investigation cryogels composed of poly (vinyl alcohol) (PVA) were prepared by repeated freeze thaw method followed by in situ precipitation of zinc oxide nanoparticles within the cryogel networks. Fourier transformed infrared spectroscopy (FTIR), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and X-ray diffraction (XRD), Energy dispersive X-ray spectroscopy (EDX) were used to characterize the nanocomposites. The morphologies of native PVA cryogels and PVA cryogel-ZnO nanocomposites were observed by scanning electron microscopy (SEM), transmission electron microscopy (TEM) techniques. The SEM analysis suggested that cryogels show a well-defined porous morphology whereas TEM micrographs revealed the presence of nearly spherical and well separated zinc oxide nanoparticles with diameter<100nm. XRD results showed all relevant Bragg's reflections for crystal structure of zinc oxide nanoparticles. Thermo gravimetric-differential thermal analysis (TG-DTA) was conducted to evaluate thermal stability of the nanocomposites. Mechanical properties of nanocomposites were determined in terms of tensile strength and percent elongation. Biocompatible nature was ascertained by anti-haemolytic activity, bovine serum albumin (blood protein) adsorption and in vitro cytotoxicity tests. The prepared nanocomposites were also investigated for swelling and deswelling behaviours. The results revealed that both the swelling and deswelling process depend on the chemical composition of the nanocomposites, number of freeze-thaw cycles, pH and temperature of the swelling medium. The developed biocompatible PVA cryogel-ZnO nanocomposites were also tested for antibacterial activities against both Gram-negative and Gram-positive bacteria. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. On the Nature of SEM Estimates of ARMA Parameters.

    ERIC Educational Resources Information Center

    Hamaker, Ellen L.; Dolan, Conor V.; Molenaar, Peter C. M.

    2002-01-01

    Reexamined the nature of structural equation modeling (SEM) estimates of autoregressive moving average (ARMA) models, replicated the simulation experiments of P. Molenaar, and examined the behavior of the log-likelihood ratio test. Simulation studies indicate that estimates of ARMA parameters observed with SEM software are identical to those…

  16. New insights into micro/nanoscale combined probes (nanoAuger, μXPS) to characterize Ag/Au@SiO2 core-shell assemblies

    NASA Astrophysics Data System (ADS)

    Ledeuil, J. B.; Uhart, A.; Soulé, S.; Allouche, J.; Dupin, J. C.; Martinez, H.

    2014-09-01

    This work has examined the elemental distribution and local morphology at the nanoscale of core@shell Ag/Au@SiO2 particles. The characterization of such complex metal/insulator materials becomes more efficient when using an initial cross-section method of preparation of the core@shell nanoparticles (ion milling cross polisher). The originality of this route of preparation allows one to obtain undamaged, well-defined and planar layers of cross-cut nano-objects. Once combined with high-resolution techniques of characterization (XPS, Auger and SEM), the process appears as a powerful way to minimize charging effects and enhance the outcoming electron signal (potentially affected by the topography of the material) during analysis. SEM experiments have unambiguously revealed the hollow-morphology of the metal core, while Auger spectroscopy observations showed chemical heterogeneity within the particles (as silver and gold are randomly found in the core ring). To our knowledge, this is the first time that Auger nano probe spectroscopy has been used and successfully optimized for the study of some complex metal/inorganic interfaces at such a high degree of resolution (~12 nm). Complementarily, XPS Au 4f and Ag 3d peaks were finally detected attesting the possibility of access to the whole chemistry of such nanostructured assemblies.This work has examined the elemental distribution and local morphology at the nanoscale of core@shell Ag/Au@SiO2 particles. The characterization of such complex metal/insulator materials becomes more efficient when using an initial cross-section method of preparation of the core@shell nanoparticles (ion milling cross polisher). The originality of this route of preparation allows one to obtain undamaged, well-defined and planar layers of cross-cut nano-objects. Once combined with high-resolution techniques of characterization (XPS, Auger and SEM), the process appears as a powerful way to minimize charging effects and enhance the outcoming electron signal (potentially affected by the topography of the material) during analysis. SEM experiments have unambiguously revealed the hollow-morphology of the metal core, while Auger spectroscopy observations showed chemical heterogeneity within the particles (as silver and gold are randomly found in the core ring). To our knowledge, this is the first time that Auger nano probe spectroscopy has been used and successfully optimized for the study of some complex metal/inorganic interfaces at such a high degree of resolution (~12 nm). Complementarily, XPS Au 4f and Ag 3d peaks were finally detected attesting the possibility of access to the whole chemistry of such nanostructured assemblies. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr03211j

  17. Standard error of measurement of 5 health utility indexes across the range of health for use in estimating reliability and responsiveness.

    PubMed

    Palta, Mari; Chen, Han-Yang; Kaplan, Robert M; Feeny, David; Cherepanov, Dasha; Fryback, Dennis G

    2011-01-01

    Standard errors of measurement (SEMs) of health-related quality of life (HRQoL) indexes are not well characterized. SEM is needed to estimate responsiveness statistics, and is a component of reliability. To estimate the SEM of 5 HRQoL indexes. The National Health Measurement Study (NHMS) was a population-based survey. The Clinical Outcomes and Measurement of Health Study (COMHS) provided repeated measures. A total of 3844 randomly selected adults from the noninstitutionalized population aged 35 to 89 y in the contiguous United States and 265 cataract patients. The SF6-36v2™, QWB-SA, EQ-5D, HUI2, and HUI3 were included. An item-response theory approach captured joint variation in indexes into a composite construct of health (theta). The authors estimated 1) the test-retest standard deviation (SEM-TR) from COMHS, 2) the structural standard deviation (SEM-S) around theta from NHMS, and 3) reliability coefficients. SEM-TR was 0.068 (SF-6D), 0.087 (QWB-SA), 0.093 (EQ-5D), 0.100 (HUI2), and 0.134 (HUI3), whereas SEM-S was 0.071, 0.094, 0.084, 0.074, and 0.117, respectively. These yield reliability coefficients 0.66 (COMHS) and 0.71 (NHMS) for SF-6D, 0.59 and 0.64 for QWB-SA, 0.61 and 0.70 for EQ-5D, 0.64 and 0.80 for HUI2, and 0.75 and 0.77 for HUI3, respectively. The SEM varied across levels of health, especially for HUI2, HUI3, and EQ-5D, and was influenced by ceiling effects. Limitations. Repeated measures were 5 mo apart, and estimated theta contained measurement error. The 2 types of SEM are similar and substantial for all the indexes and vary across health.

  18. The advancement of the built environment research through employment of structural equation modeling (SEM)

    NASA Astrophysics Data System (ADS)

    Wasilah, S.; Fahmyddin, T.

    2018-03-01

    The employment of structural equation modeling (SEM) in research has taken an increasing attention in among researchers in built environment. There is a gap to understand the attributes, application, and importance of this approach in data analysis in built environment study. This paper intends to provide fundamental comprehension of SEM method in data analysis, unveiling attributes, employment and significance and bestow cases to assess associations amongst variables and constructs. The study uses some main literature to grasp the essence of SEM regarding with built environment research. The better acknowledgment of this analytical tool may assist the researcher in the built environment to analyze data under complex research questions and to test multivariate models in a single study.

  19. Using digital colour to increase the realistic appearance of SEM micrographs of bloodstains.

    PubMed

    Hortolà, Policarp

    2010-10-01

    Although in the scientific-research literature the micrographs from scanning electron microscopes (SEMs) are usually displayed in greyscale, the potential of colour resources provided by the SEM-coupled image-acquiring systems and, subsidiarily, by image-manipulation free softwares deserves be explored as a tool for colouring SEM micrographs of bloodstains. After acquiring greyscale SEM micrographs of a (dark red to the naked eye) human blood smear on grey chert, they were manually obtained in red tone using both the SEM-coupled image-acquiring system and an image-manipulation free software, as well as they were automatically generated in thermal tone using the SEM-coupled system. Red images obtained by the SEM-coupled system demonstrated lower visual-discrimination capability than the other coloured images, whereas those in red generated by the free software rendered better magnitude of scopic information than the red images generated by the SEM-coupled system. Thermal-tone images, although were further from the real sample colour than the red ones, not only increased their realistic appearance over the greyscale images, but also yielded the best visual-discrimination capability among all the coloured SEM micrographs, and fairly enhanced the relief effect of the SEM micrographs over both the greyscale and the red images. The application of digital colour by means of the facilities provided by an SEM-coupled image-acquiring system or, when required, by an image-manipulation free software provides a user-friendly, quick and inexpensive way of obtaining coloured SEM micrographs of bloodstains, avoiding to do sophisticated, time-consuming colouring procedures. Although this work was focused on bloodstains, well probably other monochromatic or quasi-monochromatic samples are also susceptible of increasing their realistic appearance by colouring them using the simple methods utilized in this study.

  20. Rapid degradation of phenol by ultrasound-dispersed nano-metallic particles (NMPs) in the presence of hydrogen peroxide: A possible mechanism for phenol degradation in water.

    PubMed

    Singh, Jiwan; Yang, Jae-Kyu; Chang, Yoon-Young

    2016-06-15

    The present study was carried out to investigate the degradation of phenol by ultrasonically dispersed nano-metallic particles (NMPs) in an aqueous solution of phenol. Leaching liquor from automobile shredder residue (ASR) was used to obtain the NMPs. The prepared NMPs were analyzed by scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectroscopy (FTIR), and by X-ray diffraction (XRD). The SEM images show that the diameters of the NMPs were less than 50 nm. An SEM-EDX elemental analysis reveals that Fe was the most commonly found element (weight %) in the NMPs. The FTIR and XRD peaks indicate the presence of metals oxides on the surfaces of the NMPs. The results of the XPS analysis indicate that various elements (e.g., C, O, Zn, Cu, Mn, Fe) are present on the surfaces of the NMPs. The effects of the NMP dose, the initial solution pH, and of different concentrations of phenol and H2O2 on the phenol degradation characteristics were evaluated. The results of this study demonstrate that phenol degradation can be improved by increasing the amount of NMPs, whereas it is reduced with an increase in the phenol concentration. The degradation of phenol by ultrasonically dispersed NMPs followed the pseudo-first-order kinetics. The probable mechanism of phenol degradation by ultrasonically dispersed NMPs was the oxidation of phenol caused by the hydroxyl radicals produced during the reaction between H2O2 and the NMPs during the ultrasonication process. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Characterization of Chlorhexidine-Loaded Calcium-Hydroxide Microparticles as a Potential Dental Pulp-Capping Material

    PubMed Central

    Priyadarshini, Balasankar M.; Selvan, Subramanian T.; Narayanan, Karthikeyan; Fawzy, Amr S.

    2017-01-01

    This study explores the delivery of novel calcium hydroxide [Ca(OH)2] microparticles loaded with chlorhexidine (CHX) for potential dental therapeutic and preventive applications. Herein, we introduce a new approach for drug-delivery to deep dentin-surfaces in the form of drug-loaded microparticles. Unloaded Ca(OH)2 [Ca(OH)2/Blank] and CHX-loaded/Ca(OH)2 microparticles were fabricated by aqueous chemical-precipitation technique. The synthesized-microparticles were characterized in vitro for determination of surface-morphology, crystalline-features and thermal-properties examined by energy-dispersive X-ray scanning and transmission electron-microscopy (EDX-SEM/TEM), Fourier-transform infrared-spectroscopy (FTIR), X-ray diffraction (XRD), thermogravimetric analysis (TGA) and differential scanning-calorimetry (DSC). Time-related pH changes, initial antibacterial/biofilm-abilities and cytotoxicity of CHX-loaded/Ca(OH)2 microparticles were evaluated. Microparticles were delivered to dentin-surfaces with subsequent SEM examination of treated dentin-substrates. The in vitro and ex vivo CHX-release profiles were characterized. Ca(OH)2/Blank were hexagonal-shaped with highest z-average diameter whereas CHX-inclusion evidenced micro-metric spheres with distinguishable surface “rounded deposits” and a negative-shift in diameter. CHX:Ca(OH)2/50 mg exhibited maximum encapsulation-efficiency with good antibacterial and cytocompatible properties. SEM examination revealed an intact layer of microparticles on exposed dentin-surfaces with retention of spherical shape and smooth texture. Microparticles loaded on dentin-surfaces showed prolonged release of CHX indicating substantial retention on dentin-substrates. This study validated the inherent-applicability of this novel drug-delivery approach to dentin-surfaces using micro-metric CHX-loaded/Ca(OH)2 microparticles. PMID:28952538

  2. Comparative studies of mononuclear Ni(II) and UO2(II) complexes having bifunctional coordinated groups: Synthesis, thermal analysis, X-ray diffraction, surface morphology studies and biological evaluation

    NASA Astrophysics Data System (ADS)

    Fahem, Abeer A.

    2012-03-01

    Two Schiff base ligands derived from condensation of phthalaldehyde and o-phenylenediamine in 1:2 (L1) and 2:1 (L2) having bifunctional coordinated groups (NH2 and CHO groups, respectively) and their metal complexes with Ni(II) and UO2(II) have been synthesized and characterized by elemental analysis, molar conductance, magnetic susceptibilities and spectral data (IR, 1H NMR, mass and solid reflectance) as well as thermal, XRPD and SEM analysis. The formula [Ni(L1)Cl2]·2.5H2O, [UO2(L1)(NO3)2]·2H2O, [Ni(L2)Cl2]·1.5H2O and [UO2(L2)(NO3)2] have been suggested for the complexes. The vibrational spectral data show that the ligands behave as neutral ligands and coordinated to the metal ions in a tetradentate manner. The Ni(II) complexes are six coordinate with octahedral geometry and the ligand field parameters: Dq, B, β and LFSE were calculated while, UO2(II) complexes are eight coordinate with dodecahedral geometry and the force constant, FUsbnd O and bond length, RUsbnd O were calculated. The thermal decomposition of complexes ended with metal chloride/nitrate as a final product and the highest thermal stability is displayed by [UO2(L2)(NO3)2] complex. The X-ray powder diffraction data revealed the formation of nano sized crystalline complexes. The SEM analysis provides the morphology of the synthesized compounds and SEM image of [UO2(L2)(NO3)2] complex exhibits nano rod structure. The growth-inhibiting potential of the ligands and their complexes has been assessed against a variety of bacterial and fungal strains.

  3. The role of surface implant treatments on the biological behavior of SaOS-2 osteoblast-like cells. An in vitro comparative study.

    PubMed

    Conserva, Enrico; Menini, Maria; Ravera, Giambattista; Pera, Paolo

    2013-08-01

    The aim of this study was an in vitro comparison of osteoblast adhesion, proliferation and differentiation related to six dental implants with different surface characteristics, and to determine if the interaction between cells and implant is influenced by surface structure and chemical composition. Six types of implants were tested, presenting four different surface treatments: turned, sandblasted, acid-etched, anodized. The implant macro- and microstructure were analyzed using SEM, and the surface chemical composition was investigated using energy-dispersive X-ray analysis. SaOS-2 osteoblasts were used for the evaluation of cell adhesion and proliferation by SEM, and cell viability in contact with the various surfaces was determined using cytotoxicity MTT assays. Alkaline phosphatase (ALP) enzymatic activity in contact with the six surfaces was evaluated. Data relative to MTT assay and ALP activity were statistically analyzed using Kruskal-Wallis not parametric test and Nemenyi-Damico-Wolfe-Dunn post hoc test. All the implants tested supported cell adhesion, proliferation and differentiation, revealing neither organic contaminants nor cytotoxicity effects. The industrial treatments investigated changed the implant surface microscopic aspect and SaOS-2 cell morphology appeared to be influenced by the type of surface treatment at 6, 24, and 72 h of growth. SaOS-2 cells spread more rapidly on sandblasted surfaces. Turned surfaces showed the lowest cell proliferation at SEM observation. Sandblasted surfaces showed the greatest ALP activity values per cell, followed by turned surfaces (P < 0.05). On the base of this in vitro investigation, differently surfaced implants affected osteoblast morphology, adhesion, proliferation, and differentiation. Sandblasted surfaces promoted the most suitable osteoblast behavior. © 2012 John Wiley & Sons A/S.

  4. Tracking calcification in tissue-engineered bone using synchrotron micro-FTIR and SEM.

    PubMed

    Deegan, Anthony J; Cinque, Gianfelice; Wehbe, Katia; Konduru, Sandeep; Yang, Ying

    2015-02-01

    One novel tissue engineering approach to mimic in vivo bone formation is the use of aggregate or micromass cultures. Various qualitative and quantitative techniques, such as histochemical staining, protein assay kits and RT-PCR, have been used previously on cellular aggregate studies to investigate how these intricate arrangements lead to mature bone tissue. However, these techniques struggle to reveal spatial and temporal distribution of proliferation and mineralization simultaneously. Synchrotron-based Fourier transform infrared microspectroscopy (micro-FTIR) offers a unique insight at the molecular scale by coupling high IR sensitivity to organic matter with the high spatial resolution allowed by diffraction limited SR microbeam. This study is set to investigate the effects of culture duration and aggregate size on the dynamics and spatial distribution of calcification in engineered bone aggregates by a combination of micro-FTIR and scanning electron microscopy (SEM)/energy-dispersive X-ray spectroscopy (EDX). A murine bone cell line has been used, and small/large bone aggregates have been induced using different chemically treated culture substrates. Our findings suggest that bone cell aggregate culturing can greatly increase levels of mineralization over short culture periods. The size of the aggregates influences mineralisation rates with larger aggregates mineralizing at a faster rate than their smaller counterparts. The micro-FTIR mapping has demonstrated that mineralization in the larger aggregates initiated from the periphery and spread to the centre, whilst the smaller aggregates have more minerals in the centre at the early stage and deposited more in the periphery after further culturing, implying that aggregate size influences calcification distribution and development over time. SEM/EDX data correlates well with the micro-FTIR results for the total mineral content. Thus, synchrotron-based micro-FTIR can accurately track mineralization process/mechanism in the engineered bone.

  5. Protective effect of fluoride varnish and fluoride gel on enamel erosion: roughness, SEM-EDS, and µ-EDXRF studies.

    PubMed

    Soares, Luís Eduardo Silva; De Carvalho Filho, Antonio Carlos Belfort

    2015-03-01

    The effects of fluoride treatment on bovine enamel subjected to acid erosion were studied by roughness (Ra) measurements, scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), and microenergy-dispersive X-ray fluorescence spectrometry (μ-EDXRF). Enamel samples (63) were divided into nine groups (n = 7): artificial saliva (AS), Pepsi Twist(®) (PT), orange juice (OJ), Duraphat(®)  + Pepsi Twist(®) (DPH/PT), Duraphat(®)  + orange juice (DPH/OJ), Duofluorid(®)  + Pepsi Twist(®) (DUO/PT), Duofluorid(®)  + orange juice (DUO/OJ), fluoride gel + Pepsi Twist(®) (FG/PT), and fluoride gel + orange juice (FG/OJ). Fluoride was applied and the samples were submitted to six cycles (demineralization: Pepsi Twist(®) or orange juice, 10 min; remineralization: saliva, 1 h). The enamel surface in depth was exposed and 63 line-scan maps were performed. The elemental analysis by EDS revealed that only fluoride treated groups had any detectable fluorine after erosion cycles (DPH/PT: 3.50 wt%; DPH/OJ: 3.37 wt%; DUO/PT: 2.69 wt%; DUO/OJ: 3.54 wt%; FG/PT: 2.17 wt%; FG/OJ: 2.77 wt%). PT treatment resulted in significantly higher Ra values than the artificial saliva (P < 0.001). Scanning electron microscopy (SEM) analysis of fluoride protected enamel showed areas with some globular structures or a residual layer of varnish. The enamel thickness was significantly lower in PT (0.63 ± 0.087 mm) than in DPH/PT (0.87 ± 0.16 mm) and DUO/PT (0.92 ± 0.14 mm) groups (P < 0.01). Fluoride treatments protected enamel without Ra increase and loss of enamel tissue. © 2015 Wiley Periodicals, Inc.

  6. Characterization of microorganisms isolated from the black dirt of toilet bowls and componential analysis of the black dirt.

    PubMed

    Mori, Miho; Nagata, Yusuke; Niizeki, Kazuma; Gomi, Mitsuhiro; Sakagami, Yoshikazu

    2014-01-01

    We have previously conducted a microflora analysis and examined the biofilm-forming activity of bacteria isolated from toilet bowl biofilms. In the present investigation, to reveal the strain involved in the formation of black dirt in toilet bowls, we performed a microflora analysis of the bacteria and fungi isolated from the black dirt of toilet bowls at ten homes. Among samples from different isolation sites and sampling seasons, although a similar tendency was not seen in bacterial microflora, Exophiala sp. was detected in the fungal microflora from all samples of black dirt except for one, and constituted the major presence. By scanning electron microscope (SEM) analysis of the formed black dirt, SEM image at × 1,000 and × 5,000 magnification showed objects like hyphae and many bacteria adhering to them, respectively. Micro fourier transform infrared spectroscopy (micro FT-IR) and SEM with X-ray microanalysis (SEM-XMA) were used to investigate the components of black dirt. IR spectra of micro-FT-IR showed typical absorptions associated with amide compounds and protein, and the elements such as C, N, O, Na, Mg, Al, Si, P, S, K, and Ba were detected with SEM-XMA. These results showed that black dirt had living body ingredients. Furthermore, Exophiala sp. and Cladosporium sp. strains, which were observed at a high frequency, accumulated 2-hydroxyjuglone (2-HJ) and flaviolin as one of the intermediates in the melanin biosynthetic pathway by the addition of a melanin synthesis inhibitor (tricyclazole) at the time of cultivation. These results suggested strongly that the pigment of black dirt in toilet bowls was melanin produced by Exophiala sp. and Cladosporium sp. strains.

  7. Teaching Search Engine Marketing through the Google Ad Grants Program

    ERIC Educational Resources Information Center

    Clarke, Theresa B.; Murphy, Jamie; Wetsch, Lyle R.; Boeck, Harold

    2018-01-01

    Instructors may find it difficult to stay abreast of the rapidly changing nature of search engine marketing (SEM) and to incorporate hands-on, practical classroom experiences. One solution is Google Ad Grants, a nonprofit edition of Google AdWords that provides up to $10,000 monthly in free advertising. A quasi-experiment revealed no differences…

  8. Three-Dimensional (3D) Nanometrology Based on Scanning Electron Microscope (SEM) Stereophotogrammetry.

    PubMed

    Tondare, Vipin N; Villarrubia, John S; Vlada R, András E

    2017-10-01

    Three-dimensional (3D) reconstruction of a sample surface from scanning electron microscope (SEM) images taken at two perspectives has been known for decades. Nowadays, there exist several commercially available stereophotogrammetry software packages. For testing these software packages, in this study we used Monte Carlo simulated SEM images of virtual samples. A virtual sample is a model in a computer, and its true dimensions are known exactly, which is impossible for real SEM samples due to measurement uncertainty. The simulated SEM images can be used for algorithm testing, development, and validation. We tested two stereophotogrammetry software packages and compared their reconstructed 3D models with the known geometry of the virtual samples used to create the simulated SEM images. Both packages performed relatively well with simulated SEM images of a sample with a rough surface. However, in a sample containing nearly uniform and therefore low-contrast zones, the height reconstruction error was ≈46%. The present stereophotogrammetry software packages need further improvement before they can be used reliably with SEM images with uniform zones.

  9. Phytofabrication of silver nanoparticles using aqueous leaf extract of Xanthium strumerium L. and their bactericidal efficacy

    NASA Astrophysics Data System (ADS)

    Mittal, Jitendra; Jain, Rohit; Mohan Sharma, Madan

    2017-06-01

    An efficient protocol for synthesis of silver nanoparticles (AgNPs) using Xanthium strumerium L. leaves was developed. This study revealed that bioactive compounds present in the extract, function as stabilizing and capping agent for AgNPs. SEM, EDX, TEM and XRD studies confirm the structure, crystalline nature and surface morphology of the AgNPs. Size of synthesized AgNPs was in the range of 20-50 nm having spherical morphology. The AgNPs were found to be toxic against pathogenic bacteria such as Escherichia coli, Pseudomonas aeruginosa and Staphylococcus aureus. The use of AgNPs as antibacterial agent is advantageous over other methods for control of pathogenic microorganisms.

  10. Classroom Quality and Student Engagement: Contributions to Third-Grade Reading Skills

    PubMed Central

    Guo, Ying; Connor, Carol McDonald; Tompkins, Virginia; Morrison, Frederick J.

    2011-01-01

    This study, using NICHD Study of Early Child Care and Youth Development longitudinal data, investigated the effects of classroom quality and students’ third-grade behavioral engagement on students’ third-grade reading achievement (n = 1,364) and also examined the extent to which students’ third-grade behavioral engagement mediated the association between classroom quality and children's reading skills. SEM results revealed that controlling for family socio economic risk and students’ first-grade reading achievement, classroom quality significantly, and positively predicted children's behavioral engagement, which in turn predicted greater reading achievement. Higher levels of children's behavioral engagement were associated with higher reading achievement. Implications for policy and practice are discussed. PMID:21779272

  11. Synthesis and characterization of pyrite (FeS{sub 2}) using microwave irradiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Eun Jung, E-mail: ekim229@uwo.ca; Batchelor, Bill

    2009-07-01

    A procedure using microwave irradiation was studied to develop a fast and reliable method for synthesizing pyrite. Pyrite was successfully synthesized within a few minutes via reaction of ferric iron and hydrogen sulfide under the influence of irradiation by a conventional microwave oven. The SEM-EDX study revealed that the nucleation and growth of pyrite occurred on the surface of elemental sulfur, where polysulfides are available. Compared to conventional heating, using microwave energy results in rapid (<1 min) formation of smaller particulates of pyrite. Higher levels of microwave power can form pyrite even faster, but faster reaction can lead to themore » formation of pyrite with defects.« less

  12. The luminescence properties of nanocrystalline phosphors Mg2SiO4:Eu3+

    NASA Astrophysics Data System (ADS)

    Kolomytsev, A. Y.; Mamonova, D. V.; Manshina, A. A.; Kolesnikov, I. E.

    2017-11-01

    Nanocrystalline Eu3+-doped Mg2SiO4 powders were prepared with combined Pechini-solid phase synthesis. The structural properties were investigated with XRD, SEM and Raman spectroscopy. XRD pattern indicated that Mg2SiO4:Eu3+ were obtained with formation of other phase: MgO. Raman spectrum revealed good homogeneity and crystallinity of synthesized nanopowders. The luminescence properties were studied with measurement of excitation and emission spectra and decay curves. The effect of Eu3+ concentration on 5D0 level lifetime was studied. Most probably, the observed shortening of 5D0 level lifetime with Eu3+ concentration is caused by increase of nonradiative process probability.

  13. Synthesis and characterization of polyurethane/CdS-SiO 2 nanocomposites via ultrasonic process

    NASA Astrophysics Data System (ADS)

    Chen, Jing; Zhou, Yu-Ming; Nan, Qiu-Li; Ye, Xiao-Yun; Sun, Yan-Qing; Wang, Zhi-Qiang; Zhang, Shi-Ming

    2008-12-01

    In this study, the high-intensity ultrasound was applied in the preparation of chiral polyurethane/CdS-SiO 2 nanocomposites. The polyurethane/CdS-SiO 2 nanocomposites were analyzed by powder X-ray diffraction, thermogravimetric analysis (TGA), TEM and SEM. The results indicated that the heat stability of the nanocomposites was improved in the presence of CdS-SiO 2 core-shell nanoparticles. The infrared emissivity (8-14 μm) study revealed that the nanocomposites possessed much lower infrared values compared with those of the neat polymers and nanoparticles, respectively. A possible mechanism of ultrasonic induced composite reaction was proposed based on the experimental results.

  14. Standard error of measurement of five health utility indexes across the range of health for use in estimating reliability and responsiveness

    PubMed Central

    Palta, Mari; Chen, Han-Yang; Kaplan, Robert M.; Feeny, David; Cherepanov, Dasha; Fryback, Dennis

    2011-01-01

    Background Standard errors of measurement (SEMs) of health related quality of life (HRQoL) indexes are not well characterized. SEM is needed to estimate responsiveness statistics and provides guidance on using indexes on the individual and group level. SEM is also a component of reliability. Purpose To estimate SEM of five HRQoL indexes. Design The National Health Measurement Study (NHMS) was a population based telephone survey. The Clinical Outcomes and Measurement of Health Study (COMHS) provided repeated measures 1 and 6 months post cataract surgery. Subjects 3844 randomly selected adults from the non-institutionalized population 35 to 89 years old in the contiguous United States and 265 cataract patients. Measurements The SF6-36v2™, QWB-SA, EQ-5D, HUI2 and HUI3 were included. An item-response theory (IRT) approach captured joint variation in indexes into a composite construct of health (theta). We estimated: (1) the test-retest standard deviation (SEM-TR) from COMHS, (2) the structural standard deviation (SEM-S) around the composite construct from NHMS and (3) corresponding reliability coefficients. Results SEM-TR was 0.068 (SF-6D), 0.087 (QWB-SA), 0.093 (EQ-5D), 0.100 (HUI2) and 0.134 (HUI3), while SEM-S was 0.071, 0.094, 0.084, 0.074 and 0.117, respectively. These translate into reliability coefficients for SF-6D: 0.66 (COMHS) and 0.71 (NHMS), for QWB: 0.59 and 0.64, for EQ-5D: 0.61 and 0.70 for HUI2: 0.64 and 0.80, and for HUI3: 0.75 and 0.77, respectively. The SEM varied considerably across levels of health, especially for HUI2, HUI3 and EQ-5D, and was strongly influenced by ceiling effects. Limitations Repeated measures were five months apart and estimated theta contain measurement error. Conclusions The two types of SEM are similar and substantial for all the indexes, and vary across the range of health. PMID:20935280

  15. Actinobacterial Diversity in Volcanic Caves and Associated Geomicrobiological Interactions

    PubMed Central

    Riquelme, Cristina; Marshall Hathaway, Jennifer J.; Enes Dapkevicius, Maria de L. N.; Miller, Ana Z.; Kooser, Ara; Northup, Diana E.; Jurado, Valme; Fernandez, Octavio; Saiz-Jimenez, Cesareo; Cheeptham, Naowarat

    2015-01-01

    Volcanic caves are filled with colorful microbial mats on the walls and ceilings. These volcanic caves are found worldwide, and studies are finding vast bacteria diversity within these caves. One group of bacteria that can be abundant in volcanic caves, as well as other caves, is Actinobacteria. As Actinobacteria are valued for their ability to produce a variety of secondary metabolites, rare and novel Actinobacteria are being sought in underexplored environments. The abundance of novel Actinobacteria in volcanic caves makes this environment an excellent location to study these bacteria. Scanning electron microscopy (SEM) from several volcanic caves worldwide revealed diversity in the morphologies present. Spores, coccoid, and filamentous cells, many with hair-like or knobby extensions, were some of the microbial structures observed within the microbial mat samples. In addition, the SEM study pointed out that these features figure prominently in both constructive and destructive mineral processes. To further investigate this diversity, we conducted both Sanger sequencing and 454 pyrosequencing of the Actinobacteria in volcanic caves from four locations, two islands in the Azores, Portugal, and Hawai'i and New Mexico, USA. This comparison represents one of the largest sequencing efforts of Actinobacteria in volcanic caves to date. The diversity was shown to be dominated by Actinomycetales, but also included several newly described orders, such as Euzebyales, and Gaiellales. Sixty-two percent of the clones from the four locations shared less than 97% similarity to known sequences, and nearly 71% of the clones were singletons, supporting the commonly held belief that volcanic caves are an untapped resource for novel and rare Actinobacteria. The amplicon libraries depicted a wider view of the microbial diversity in Azorean volcanic caves revealing three additional orders, Rubrobacterales, Solirubrobacterales, and Coriobacteriales. Studies of microbial ecology in volcanic caves are still very limited. To rectify this deficiency, the results from our study help fill in the gaps in our knowledge of actinobacterial diversity and their potential roles in the volcanic cave ecosystems. PMID:26696966

  16. Structural and magnetic properties of Ga-substituted Co 2 ‑W hexaferrites

    NASA Astrophysics Data System (ADS)

    Mahmood, Sami H.; Al Sheyab, Qusai; Bsoul, Ibrahim; Mohsen, Osama; Awadallah, Ahmad

    2018-05-01

    Precursor powders of BaMg2-xCoxFe16O27 with (x = 0.0, 1.0, and 2.0) were prepared using high-energy ball milling, and the effects of chemical composition and sintering temperature on the structural and magnetic properties were investigated using x-ray diffractometer (XRD), scanning electron microscopy (SEM), and vibrating sample magnetometry (VSM). XRD patterns of the prepared samples indicated that crystallization of pure BaW hexaferrite phase was achieved at sintering temperature of 1300{\\deg} C, while BaM and cubic spinel phase intermediate phases were obtained at lower sintering temperatures of 1100{\\deg} C and 1200{\\deg} C. SEM images revealed improvement of the crystallization of the structural phases, and growth of the particle size with increasing the sintering temperature. The magnetic data of the samples sintered at 1300{\\deg} C revealed an increase of the saturation magnetization from 59.44 emu/g to 72.56 emu/g with increasing Co concentration (x) from 0.0 to 2.0. The coercive field Hc decreased from 0.07 kOe at x = 0.0, to 0.03 kOe at x = 1.0, and then increases to 0.09 kOe at x = 2.0. The thermomagnetic curves of the samples sintered at 1300{\\deg} C confirmed the existence of the W-type phase, and revealed spin reorientation transitions above room temperature.

  17. Bioavailability assessment of toxic metals using the technique "acid-volatile sulfide (AVS)-simultaneously extracted metals (SEM)" in marine sediments collected in Todos os Santos Bay, Brazil.

    PubMed

    Silva, Jucelino B; Nascimento, Rodrigo A; de Oliva, Sergio T; de Oliveira, Olívia M C; Ferreira, Sergio L C

    2015-10-01

    This paper reports the bioavailability of the metals (cadmium, copper, zinc, lead, and nickel) in sediment samples collected in seven stations from the São Paulo Estuary, Todos os Santos Bay, Brazil. The bioavailability was determined by employing the technique "acid-volatile sulfide (AVS) and simultaneously extracted metal (SEM)". The elements cadmium, copper, lead, and zinc were determined using differential pulse anodic stripping voltammetry (DPASV), while nickel was quantified utilizing electrothermal atomic absorption spectrometry (ET AAS). The accuracy of these methods was confirmed using a certified reference material of estuarine sediment (NIST 1646). The sulfide was quantified using potentiometry with selective electrode and the organic matter determination employing an indirect volumetric method using potassium dichromate and iron(II) sulfate solutions. The bioavailability of the metals was estimated by relationship between the concentration of AVS and the sum of the concentrations of the simultaneously extracted metals (ΣSEM), considering a significant toxicity when (ΣSEM)/(AVS) is higher than 1. The bioavailability values in the seven stations studied varied from 0.93 to 1.31 (June, 2014) and from 0.34 to 0.58 (September, 2014). These results demonstrated a critical condition of toxicity (bioavailability >1) in six of the seven sediment samples collected during the rainy season (June, 2014). In the other period (September, 2014), the bioavailability was always lower than 1 for all sediment samples collected in the seven stations. The individual values of the concentrations of the five metals were compared with the parameters PEL (probable effects level) and TEL (threshold effects level), which are commonly employed for characterization of ecological risk in environmental systems. This comparison revealed that all metals have concentrations lower than the PEL and only zinc and lead in some stations have contents higher than the TEL. The bioavailability evaluation and the concentrations achieved for the five elements in the sediments samples analyzed demonstrated that the ecosystem studied does not present an environmental risk.

  18. Development and characterization of Mn2+-doped MgO nanoparticles by solution combustion synthesis

    NASA Astrophysics Data System (ADS)

    Basha, Md. Hussain; Gopal, N. O.; Rao, J. L.; Nagabhushana, H.; Nagabhushana, B. M.; Chakradhar, R. P. S.

    2015-06-01

    Mn doped MgO Nanoparticles have been prepared by Solution Combustion Synthesis. The synthesized sample is characterized by X-ray diffraction (XRD), Scanning Electron Microscopy (SEM) and Electron Paramagnetic Resonance (EPR). The prepared MgO:Mn (1 mol%) nano crystals appear to be of simple cubic crystalline phase with lattice parameters a = 4.218(2) Å and cell volume = 74.98 (7) Å3. SEM micrograph of powders show highly porous, many agglomerates with irregular morphology, large voids, cracks and pores. EPR spectrum of the sample at room temperature exhibit an isotropic sextet hyperfine pattern, centered at g=1.99, characteristic if Mn2+ ions with S=I=5/2.The observed g value and the hyperfine value reveal the ionic bonding between Mn2+ and its surroundings.

  19. Structural analysis of zeolite NaA synthesized by a cost-effective hydrothermal method using kaolin and its use as water softener.

    PubMed

    Loiola, A R; Andrade, J C R A; Sasaki, J M; da Silva, L R D

    2012-02-01

    Zeolite 4A (LTA) has been successfully synthesized by a hydrothermal method, where kaolin was used as silica and alumina source. The synthesized zeolite was characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), laser granulometry, and FTIR spectroscopy. XRD data from the Rietveld refinement method confirmed only one crystallographic phase. Zeolite A morphology was observed by SEM analysis, and it showed well-defined crystals with slightly different sizes but with the same cubic shape. Particle size distribution of the crystals was confirmed by laser granulometry, whereas FTIR spectroscopy revealed significant structural differences between the starting material and the final zeolite product used as water softener. Copyright © 2010 Elsevier Inc. All rights reserved.

  20. Synthesis and characterization of high-quality cobalt vanadate crystals and their applications in lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Bhuiyan, Md. Tofajjol Hossen; Rahman, Md. Afjalur; Rahman, Md. Atikur; Sultana, Rajia; Mostafa, Md. Rakib; Tania, Asmaul Husna; Sarker, Md. Abdur Razzaque

    2016-12-01

    High-quality cobalt vanadate crystals have been synthesized by solid-state reaction route. Structure and morphology of the synthesized powders were investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM), and Fourier transform infrared (FT-IR) spectroscopy. The XRD patterns revealed that the as prepared materials are of high crystallinity and high quality. The SEM images showed that the crystalline CoV2O6 material is very uniform and well separated, with particle (of) area 252 μm. The electronic and optical properties were investigated by impedance analyzer and UV-visible spectrophotometer. Temperature-dependent electrical resistivity was measured using four-probe technique. The crystalline CoV2O6 material is a semiconductor and its activation energy is 0.05 eV.

  1. Synthesis and characterization of spin-coated ZnS thin films

    NASA Astrophysics Data System (ADS)

    Zaman, M. Burhanuz; Chandel, Tarun; Dehury, Kshetramohan; Rajaram, P.

    2018-05-01

    In this paper, we report synthesis of ZnS thin films using a sol-gel method. A unique aprotic solvent, dimethlysulphoxide (DMSO) has been used to obtain a homogeneous ZnS gel. Zinc acetate and thiourea were used as the precursor sources for Zn and S, respectively, to deposit nanocrystalline ZnS thin films. Optical, structural and morphological properties of the films were studied. Optical studies reveal high transmittance of the samples over the entire visible region. The energy band gap (Eg) for the ZnS thin films is found to be about 3.6 eV which matches with that of bulk ZnS. The interference fringes in transmissions spectrum show the high quality of synthesized samples. Strong photoluminescence peak in the UV region makes the films suitable for optoelectronic applications. X-ray diffraction studies reveal that sol-gel derived ZnS thin films are polycrystalline in nature with hexagonal structure. SEM studies confirmed that the ZnS films show smooth and uniform grains morphology having size in 20-25 nm range. The EDAX studies confirmed that the films are nearly stoichiometric.

  2. Bootstrap Estimation of Sample Statistic Bias in Structural Equation Modeling.

    ERIC Educational Resources Information Center

    Thompson, Bruce; Fan, Xitao

    This study empirically investigated bootstrap bias estimation in the area of structural equation modeling (SEM). Three correctly specified SEM models were used under four different sample size conditions. Monte Carlo experiments were carried out to generate the criteria against which bootstrap bias estimation should be judged. For SEM fit indices,…

  3. Morphology and Molecular Phylogeny of Raillietina spp. (Cestoda: Cyclophyllidea: Davaineidae) from Domestic Chickens in Thailand.

    PubMed

    Butboonchoo, Preeyaporn; Wongsawad, Chalobol; Rojanapaibul, Amnat; Chai, Jong-Yil

    2016-12-01

    Raillietina species are prevalent in domestic chickens ( Gallus gallus domesticus ) in Phayao province, northern Thailand. Their infection may cause disease and death, which affects the public health and economic situation in chicken farms. The identification of Raillietina has been based on morphology and molecular analysis. In this study, morphological observations using light (LM) and scanning electron microscopies (SEM) coupled with molecular analysis of the internal transcribed spacer 2 (ITS2) region and the nicotinamide adenine dinucleotide dehydrogenase subunit 1 (ND1) gene were employed for precise identification and phylogenetic relationship studies of Raillietina spp. Four Raillietina species, including R. echinobothrida, R. tetragona, R. cesticillus , and Raillietina sp., were recovered in domestic chickens from 4 districts in Phayao province, Thailand. LM and SEM observations revealed differences in the morphology of the scolex, position of the genital pore, number of eggs per egg capsule, and rostellar opening surface structures in all 4 species. Phylogenetic relationships were found among the phylogenetic trees obtained by the maximum likelihood and distance-based neighbor-joining methods. ITS2 and ND1 sequence data recorded from Raillietina sp. appeared to be monophyletic. The query sequences of R. echinobothrida, R. tetragona, R. cesticillus , and Raillietina sp. were separated according to the different morphological characters. This study confirmed that morphological studies combined with molecular analyses can differentiate related species within the genus Raillietina in Thailand.

  4. Morphology and Molecular Phylogeny of Raillietina spp. (Cestoda: Cyclophyllidea: Davaineidae) from Domestic Chickens in Thailand

    PubMed Central

    Butboonchoo, Preeyaporn; Wongsawad, Chalobol; Rojanapaibul, Amnat; Chai, Jong-Yil

    2016-01-01

    Raillietina species are prevalent in domestic chickens (Gallus gallus domesticus) in Phayao province, northern Thailand. Their infection may cause disease and death, which affects the public health and economic situation in chicken farms. The identification of Raillietina has been based on morphology and molecular analysis. In this study, morphological observations using light (LM) and scanning electron microscopies (SEM) coupled with molecular analysis of the internal transcribed spacer 2 (ITS2) region and the nicotinamide adenine dinucleotide dehydrogenase subunit 1 (ND1) gene were employed for precise identification and phylogenetic relationship studies of Raillietina spp. Four Raillietina species, including R. echinobothrida, R. tetragona, R. cesticillus, and Raillietina sp., were recovered in domestic chickens from 4 districts in Phayao province, Thailand. LM and SEM observations revealed differences in the morphology of the scolex, position of the genital pore, number of eggs per egg capsule, and rostellar opening surface structures in all 4 species. Phylogenetic relationships were found among the phylogenetic trees obtained by the maximum likelihood and distance-based neighbor-joining methods. ITS2 and ND1 sequence data recorded from Raillietina sp. appeared to be monophyletic. The query sequences of R. echinobothrida, R. tetragona, R. cesticillus, and Raillietina sp. were separated according to the different morphological characters. This study confirmed that morphological studies combined with molecular analyses can differentiate related species within the genus Raillietina in Thailand. PMID:28095663

  5. Synthesis of 0.1% & 0.2% neodymium doped barium zirconium titanate (BaZr{sub 0.2}Ti{sub 0.8}O{sub 3}) and study of their dielectric behaviour

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumar, Anil, E-mail: anilkantikumar@rediffmail.com; Kumar, Vipin; Gupta, Merry

    2015-08-28

    Efforts have been made to ease process of producing widely used multilayered ceramics of Barium Zirconium Titanium Oxides and study their dielectric behaviour and structural properties. For this purpose, adequate proportions of Barium Carbonate, Zirconium Oxide and Titanium Oxide were taken and hand milled for 2 hours. Neodymium composition of the order of 0.1% and 0.2% was used for doping to weight percentage of BaZr0.2Ti0.8O3. The samples were authenticated using raw data obtained from Bruker AXS D8 advance Copper KL alpha source XRD equipment. Further, the samples were studied for their phase transition, composition, single phase perovskite structure using XRDmore » technique. The technique has also been applied to know formation of stable homogeneous solid solution from XRD parameters. The other physical parameters like the morphology, micro structural information, crystal arrangements and topography have also been observed through SEM. The SEM has revealed information related to grain size development and composition of sample with fine agglomerates. For complete study of the compounds the atomic and weight composition has also been examined by Electron Dispersive Spectroscopy patterns. The comparison has been made with other works on ceramics at various frequencies and has yielded very interesting results.« less

  6. Pharmacologically significant complexes of Mn(II), Co(II), Ni(II), Cu(II) and Zn(II) of novel Schiff base ligand, (E)-N-(furan-2-yl methylene) quinolin-8-amine: Synthesis, spectral, XRD, SEM, antimicrobial, antioxidant and in vitro cytotoxic studies

    NASA Astrophysics Data System (ADS)

    Shakir, M.; Hanif, Summaiya; Sherwani, Mohd. Asif; Mohammad, Owais; Al-Resayes, Saud I.

    2015-07-01

    A novel series of metal complexes of the types, [ML2(H2O)2]Cl2 and [ML2]Cl2 [M = Mn(II), 1; Co(II), 2; Ni(II), 3; Cu(II), 4; and Zn(II), 5] were synthesized by the interaction of ligand, L (E)-N-(furan-2-yl methylene) quinolin-8-amine, derived from the condensation of 2-furaldehyde and 8-aminoquinoline. The synthesized ligand and its metal complexes were characterized on the basis of results obtained from elemental analysis, ESI-MS, XRD, SEM, TGA/DTA, FT-IR, UV-Vis, magnetic moment and 1H and 13C NMR spectroscopic studies. EPR parameters were recorded in case of complex 4. The comparative in-vitro antimicrobial activities against various pathogens with reference to known antibiotics and antioxidant activity against standard control at variable concentrations revealed that the metal complexes show enhanced antimicrobial and free radical scavenging activities in general as compared to free ligand. However, the complexes 1 and 5 have shown best antioxidant activity among all the metal complexes. Furthermore, comparative in-vitro antiproliferative activity on ligand and its metal chelates performed on MDA-MB-231 (breast carcinoma), KCL22 (blood lymphoid carcinoma), HeLa (cervical carcinoma) cell lines and normal cells (PBMC) revealed that metal chelates show moderate to good activity as compared to ligand where as complex 1 seems to be the most promising one possessing a broad spectrum of activity against all the selected cancer cell lines with IC50 < 2.10 μM.

  7. [The influences of crystallized compositions in the porcelain on bonding strength of titanium to porcelain].

    PubMed

    Mo, A; Wang, J; Liao, Y; Cen, Y; Shi, X

    2001-12-01

    Sufficient porcelain-titanium bond is a vital factor determining the clinical performance of titanium-porcelain restorations. The purpose of this study was to investigate the effects of self-preparation La-porcelain composition on the porcelain-titanium bonding strength and to compare with the Vita Titankeramik. The present study examines 5 different recipes of porcelain by weight%: SiO2, 12%-17%; LaO2, 7%-10%; Al2O3, 9%-14%; B2O3, 23%-31%; CaO, 6%-8%; K2O, 2%-3%; SrO, 2%-4%; Na2O, 1%-3%; SnO2, 8%-10%; ZrO2, 3%-5%; TiO2, 6%-8%. Specimens were tested in push type shear with a universal testing machine. Scanning electron microscopy (SEM) and electron probe microanalyzer (EPMA) were employed to reveal the microstructures and diffusion of elements in the interfacial regions between the porcelain coating and titanium to the bond strength when fired at 800 degrees C. The ratios of crystallized compositions had significant influences on the porcelain-titanium bond strength (P < 0.05). La-porcelain had the highest shear bond strength (37.76 MPa). The shear bond strength of the Vita Titankeramik to titanium was 20.18 MPa. The results of SEM revealed integrity of porcelain-titanium joints in La-porcelain and a greater amount of porosity in the interface of Vita Titankeramik to titanium. EPMA analysis demonstrated the aggregation of Si and Sn in the interfacial regions and their diffusion into the titanium. Chemical compositions of porcelain and ratios of crystallized compositions play the important role in the titanium porcelain bond. La-porcelain had the highest shear bond strength and good porcelain-titanium joints. La-porcelain is a new-style low fusing porcelain/titanium system.

  8. Bioadsorption and bioaccumulation of chromium trivalent in Cr(III)-tolerant microalgae: a mechanisms for chromium resistance.

    PubMed

    Pereira, M; Bartolomé, M C; Sánchez-Fortún, S

    2013-10-01

    Anthropogenic activity constantly releases heavy metals into the environment. The heavy metal chromium has a wide industrial use and exists in two stable oxidation states: trivalent and hexavalent. While hexavalent chromium uptake in plant cells has been reported that an active process by carrying essential anions, the cation Cr(III) appears to be taken up inactively. Dictyosphaerium chlorelloides (Dc1M), an unicellular green alga is a well-studied cell biological model organism. The present study was carried out to investigate the toxic effect of chromium exposures on wild-type Cr(III)-sensitive (Dc1M(wt)) and Cr(III)-tolerant (Dc1M(Cr(III)R30)) strains of these green algae, and to determine the potential mechanism of chromium resistance. Using cell growth as endpoint to determine Cr(III)-sensitivity, the IC₅₀(₇₂) values obtained show significant differences of sensitivity between wild type and Cr(III)-tolerant cells. Scanning electron microscopy (SEM) showed significant morphological differences between both strains, such as decrease in cell size or reducing the coefficient of form; and transmission electron microscopy (TEM) revealed ultrastructural changes such as increased vacuolization and cell wall thickening in the Cr(III)-tolerant strain with respect to the wild-type strain. Energy dispersive X-ray analysis (SEM/XEDS) revealed that Cr(III)-tolerant D. chlorelloides cells are able to accumulate considerable amounts of chromium distributed in cell wall (bioadsorption) as well as in cytoplasm, vacuoles, and chloroplast (bio-accumulation). Morphological changes of Cr(III)-tolerant D. chlorelloides cells and the presence of these electron-dense bodies in their cell structures can be understood as a Cr(III) detoxification mechanism. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. A fractographic study of clinically retrieved zirconia-ceramic and metal-ceramic fixed dental prostheses.

    PubMed

    Pang, Zhen; Chughtai, Asima; Sailer, Irena; Zhang, Yu

    2015-10-01

    A recent 3-year randomized controlled trial (RCT) of tooth supported three- to five-unit zirconia-ceramic and metal-ceramic posterior fixed dental prostheses (FDPs) revealed that veneer chipping and fracture in zirconia-ceramic systems occurred more frequently than those in metal-ceramic systems [1]. This study seeks to elucidate the underlying mechanisms responsible for the fracture phenomena observed in this RCT using a descriptive fractographic analysis. Vinyl-polysiloxane impressions of 12 zirconia-ceramic and 6 metal-ceramic FDPs with veneer fractures were taken from the patients at the end of a mean observation of 40.3±2.8 months. Epoxy replicas were produced from these impressions [1]. All replicas were gold coated, and inspected under the optical microscope and scanning electron microscope (SEM) for descriptive fractography. Among the 12 zirconia-ceramic FDPs, 2 had small chippings, 9 had large chippings, and 1 exhibited delamination. Out of 6 metal-ceramic FDPs, 5 had small chippings and 1 had large chipping. Descriptive fractographic analysis based on SEM observations revealed that fracture initiated from the wear facet at the occlusal surface in all cases, irrespective of the type of restoration. Zirconia-ceramic and metal-ceramic FDPs all fractured from microcracks that emanated from occlusal wear facets. The relatively low fracture toughness and high residual tensile stress in porcelain veneer of zirconia restorations may contribute to the higher chipping rate and larger chip size in zirconia-ceramic FDPs relative to their metal-ceramic counterparts. The low veneer/core interfacial fracture energy of porcelain-veneered zirconia may result in the occurrence of delamination in zirconia-ceramic FDPs. Copyright © 2015 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  10. A fractographic study of clinically retrieved zirconia–ceramic and metal–ceramic fixed dental prostheses

    PubMed Central

    Pang, Zhen; Chughtai, Asima; Sailer, Irena; Zhang, Yu

    2015-01-01

    Objectives A recent 3-year randomized controlled trial (RCT) of tooth supported three- to five-unit zirconia–ceramic and metal–ceramic posterior fixed dental prostheses (FDPs) revealed that veneer chipping and fracture in zirconia–ceramic systems occurred more frequently than those in metal–ceramic systems [1]. This study seeks to elucidate the underlying mechanisms responsible for the fracture phenomena observed in this RCT using a descriptive fractographic analysis. Methods Vinyl-polysiloxane impressions of 12 zirconia–ceramic and 6 metal–ceramic FDPs with veneer fractures were taken from the patients at the end of a mean observation of 40.3 ± 2.8 months. Epoxy replicas were produced from these impressions [1]. All replicas were gold coated, and inspected under the optical microscope and scanning electron microscope (SEM) for descriptive fractography. Results Among the 12 zirconia–ceramic FDPs, 2 had small chippings, 9 had large chippings, and 1 exhibited delamination. Out of 6 metal–ceramic FDPs, 5 had small chippings and 1 had large chipping. Descriptive fractographic analysis based on SEM observations revealed that fracture initiated from the wear facet at the occlusal surface in all cases, irrespective of the type of restoration. Significance Zirconia–ceramic and metal–ceramic FDPs all fractured from microcracks that emanated from occlusal wear facets. The relatively low fracture toughness and high residual tensile stress in porcelain veneer of zirconia restorations may contribute to the higher chipping rate and larger chip size in zirconia–ceramic FDPs relative to their metal–ceramic counterparts. The low veneer/core interfacial fracture energy of porcelain-veneered zirconia may result in the occurrence of delamination in zirconia–ceramic FDPs. PMID:26233469

  11. Magnetic Properties of PMx Collected at Sites with Different Level of Air Pollution

    NASA Astrophysics Data System (ADS)

    Petrovsky, E.; Kotlik, B.; Kapicka, A.; Zboril, R.

    2012-12-01

    Magnetic properties of environmental samples can serve as fast and relatively cheap proxy method to investigate occurrence of iron oxides. These methods are very sensitive in detecting strongly magnetic compounds such as magnetite and maghemite and can reveal concentration and assess grain-size distribution of these minerals. This information can be significant in estimating e.g. the source of pollutants, monitoring pollution load, or investigating seasonal and climatic effects. We studied magnetic properties of PM1, PM2.5 and PM10 and total suspended matter (TSP), collected over 12-48 hours at sites with different level of air pollution: a small clean settlement in south Bohemia, industrial site close to steel works, industrial site close to open mine pit, urban and traffic site. In our contribution we will show typical differences in PMx properties. SEM observations will be complemented by magnetic measurements and Mossbauer spectroscopy. In all the ssampled sites, the SEM images clearly reveal spherules rich in iron oxides. Thermomagentic measurements (temperature dependence of magnetic susceptibility) prove that magnetite is the dominant magnetic phase in atmospheric dust in samples from all sites. Hysteresis loops and IRM acquisition curve could be reliably measured. Surprisingly, finer dust particles show smaller coercive force than the coarser ones. Mossbauer spectroscopy could be interpreted in terms of multi-domain magnetite only in the samples with PMx dominated by the steel works, where the content of magnetite was the highest. The results demonstrate that magnetic measurements are extremely sensitive to trace amount of ferrimagnetic iron oxides, which were in many cases below the sensitivity limit of Mossbauer spectroscopy. This study is supported by the Czech Science Foundation through grant #P210/10/0554.

  12. The Effect of Two Soft Drinks on Bracket Bond Strength and on Intact and Sealed Enamel: An In Vitro Study.

    PubMed

    Pasha, Azam; Sindhu, D; Nayak, Rabindra S; Mamatha, J; Chaitra, K R; Vishwakarma, Swati

    2015-01-01

    This study was conducted to evaluate the effect of two soft drinks, Coca-Cola and Mirinda orange on bracket bond strength, on adhesive remnant on teeth after debonding the bracket, and to observe by means of scanning electron microscope (SEM) the effect of these drinks on intact and sealed enamel. 120 non-carious maxillary premolar teeth already extracted for Orthodontic purposes were taken and divided into three groups, i.e., Coca-Cola drink, Mirinda orange, and control (artificial saliva) group. Brackets were bonded using conventional methods. Teeth were kept in soft drinks for 15 days, for 15 min, 3 times a day, separated by intervals of 2 h. At other times, they were kept in artificial saliva. The samples, thus obtained were evaluated for shear bond strength using the universal testing machine and subsequently subjected for adhesive remnant index (ARI) scores. SEM study on all the three groups was done for evaluating enamel surface of the intact and sealed enamel. The lowest mean resistance to shearing forces was shown by Mirinda orange group (5.30 ± 2.74 Mpa) followed by Coca-Cola group (6.24 ± 1.59 Mpa) and highest resistance to shearing forces by control group (7.33 ± 1.72 Mpa). The ARI scores revealed a cohesive failure in control samples and an adhesive failure in Mirinda and cola samples. SEM results showed areas of defect due to erosion caused by acidic soft drinks on intact and sealed enamel surface. Mirinda group showed the lowest resistance to shearing forces, followed by Coca-Cola group and with the highest resistance to shearing forces by the control group. There were significant differences between the control group and the study groups. Areas of defects, which were caused by erosion related to acidic soft drinks on the enamel surface around the adhesive, were seen. Areas of defects caused by Coca-Cola were more extensive when compared to Mirinda orange drink.

  13. Electron microscopy methods in studies of cultural heritage sites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vasiliev, A. L., E-mail: a.vasiliev56@gmail.com; Kovalchuk, M. V.; Yatsishina, E. B.

    The history of the development and application of scanning electron microscopy (SEM), transmission electron microscopy (TEM), and energy-dispersive X-ray microanalysis (EDXMA) in studies of cultural heritage sites is considered. In fact, investigations based on these methods began when electron microscopes became a commercial product. Currently, these methods, being developed and improved, help solve many historical enigmas. To date, electron microscopy combined with microanalysis makes it possible to investigate any object, from parchment and wooden articles to pigments, tools, and objects of art. Studies by these methods have revealed that some articles were made by ancient masters using ancient “nanotechnologies”; hence,more » their comprehensive analysis calls for the latest achievements in the corresponding instrumental methods and sample preparation techniques.« less

  14. Structural and photoluminescence properties of Ni doped CdS nanoparticles synthesis by sol gel method

    NASA Astrophysics Data System (ADS)

    Mahdi, Hadeel Salih; Parveen, Azra; Azam, Ameer

    2018-05-01

    Ni doped CdS nanoparticles have been successfully synthesized by sol-gel method. Nickel nitrate, cadmium nitrate, sodium sulfide has been used as precursors for the preparation of these Ni-doped CdS nanoparticles. The structural properties were studied by X-ray diffraction analysis. Surface morphology and the composition of the samples were studied by scanning electron microscope (SEM). The X-ray diffraction results revealed that the Ni-doped CdS nanoparticles were in hexagonal structure. The crystallite size was determined from Debye-Scherer equation and showed that the particle size increases with the doping of Ni. Optical absorption spectra of Ni doped CdS also was studied by Photoluminescence spectroscopy in the range of 200-600 nm.

  15. Cooperative Factors, Cooperative Innovation Effect and Innovation Performance for Chinese Firms: an Empirical Study

    NASA Astrophysics Data System (ADS)

    Xie, Xuemei

    Based on a survey to 1206 Chinese firms, this paper empirically explores the factors impacting cooperative innovation effect of firms, and seeks to explore the relationship between cooperative innovation effect (CIE) and innovation performance using the technique of Structural Equation Modeling (SEM). The study finds there are significant positive relationships between basic sustaining factors, factors of government and policy, factors of cooperation mechanism and social network, and cooperative innovation effect. However, the result reveals that factors of government and policy demonstrate little impact on the CIE of firms compared with other factors. It is hoped that the findings can pave the way for future studies in improving cooperative innovation capacity for firms in emerging countries.

  16. Electron microscopy methods in studies of cultural heritage sites

    NASA Astrophysics Data System (ADS)

    Vasiliev, A. L.; Kovalchuk, M. V.; Yatsishina, E. B.

    2016-11-01

    The history of the development and application of scanning electron microscopy (SEM), transmission electron microscopy (TEM), and energy-dispersive X-ray microanalysis (EDXMA) in studies of cultural heritage sites is considered. In fact, investigations based on these methods began when electron microscopes became a commercial product. Currently, these methods, being developed and improved, help solve many historical enigmas. To date, electron microscopy combined with microanalysis makes it possible to investigate any object, from parchment and wooden articles to pigments, tools, and objects of art. Studies by these methods have revealed that some articles were made by ancient masters using ancient "nanotechnologies"; hence, their comprehensive analysis calls for the latest achievements in the corresponding instrumental methods and sample preparation techniques.

  17. Effect of Y2O3 on polyindole for high frequency capacitor application

    NASA Astrophysics Data System (ADS)

    Maji, P.; Choudhary, R. B.; Majhi, M.

    2017-05-01

    Polyindole-Yittrium Oxide (PIn-Y2O3) composite was synthesized in the laboratory through chemical polymerization process. The structural and morphological studies of PIn-Y2O3 composite were investigated using X-ray diffraction (XRD) and scanning electron microscopic (SEM) techniques. These studies showed that PIn-Y2O3 composite was amorphous in nature and formed with spherical granule shape. The dielectric response was measured through LCR meter in the frequency range from 100 Hz to 1 MHz. The dielectric studies revealed that incorporation of Y2O3 into polymeric matrix improved the dielectric behavior of PIn polymer and markedly suitable for its application in high frequency capacitor and many other electronic devices.

  18. The SEM Risk Behavior (SRB) Model: A New Conceptual Model of how Pornography Influences the Sexual Intentions and HIV Risk Behavior of MSM.

    PubMed

    Wilkerson, J Michael; Iantaffi, Alex; Smolenski, Derek J; Brady, Sonya S; Horvath, Keith J; Grey, Jeremy A; Rosser, B R Simon

    2012-01-01

    While the effects of sexually explicit media (SEM) on heterosexuals' sexual intentions and behaviors have been studied, little is known about the consumption and possible influence of SEM among men who have sex with men (MSM). Importantly, conceptual models of how Internet-based SEM influences behavior are lacking. Seventy-nine MSM participated in online focus groups about their SEM viewing preferences and sexual behavior. Twenty-three participants reported recent exposure to a new behavior via SEM. Whether participants modified their sexual intentions and/or engaged in the new behavior depended on three factors: arousal when imagining the behavior, pleasure when attempting the behavior, and trust between sex partners. Based on MSM's experience, we advance a model of how viewing a new sexual behavior in SEM influences sexual intentions and behaviors. The model includes five paths. Three paths result in the maintenance of sexual intentions and behaviors. One path results in a modification of sexual intentions while maintaining previous sexual behaviors, and one path results in a modification of both sexual intentions and behaviors. With this model, researchers have a framework to test associations between SEM consumption and sexual intentions and behavior, and public health programs have a framework to conceptualize SEM-based HIV/STI prevention programs.

  19. Selenomethionine incorporation into amyloid sequences regulates fibrillogenesis and toxicity.

    PubMed

    Martínez, Javier; Lisa, Silvia; Sánchez, Rosa; Kowalczyk, Wioleta; Zurita, Esther; Teixidó, Meritxell; Giralt, Ernest; Andreu, David; Avila, Jesús; Gasset, María

    2011-01-01

    The capacity of a polypeptide chain to engage in an amyloid formation process and cause a conformational disease is contained in its sequence. Some of the sequences undergoing fibrillation contain critical methionine (Met) residues which in vivo can be synthetically substituted by selenomethionine (SeM) and alter their properties. Using peptide synthesis, biophysical techniques and cell viability determinations we have studied the effect of the substitution of methionine (Met) by selenomethionine (SeM) on the fibrillogenesis and toxic properties of Aβ40 and HuPrP(106-140). We have found that the effects display site-specificity and vary from inhibition of fibrillation and decreased toxicity ([SeM(35)]Aβ40, [SeM(129)]HuPrP(106-140) and [SeM(134)]HuPrP(106-140)), retarded assembly, modulation of polymer shape and retention of toxicity ([SeM(112)]HuPrP(106-140) to absence of effects ([SeM(109)]HuPrP(106-140)). This work provides direct evidence that the substitution of Met by SeM in proamyloid sequences has a major impact on their self-assembly and toxic properties, suggesting that the SeM pool can play a major role in dictating the allowance and efficiency of a polypeptide chain to undergo toxic polymerization.

  20. Long-term outcome of self expandable metal stents for biliary obstruction in chronic pancreatitis.

    PubMed

    Waldthaler, Alexander; Schütte, Kerstin; Weigt, Jochen; Kropf, Siegfried; Malfertheiner, Peter; Kahl, Stefan

    2013-01-10

    Insertion of a self-expandable metal stent is still controversial for treatment of benign common bile duct stenosis but can be a valuable alternative to surgical treatment. Aim of our study was to analyze the efficacy of covered and uncovered self-expandable metal stent in patients with chronic pancreatitis and common bile duct stenosis. Twenty patients with common bile duct stenosis due to alcoholic chronic pancreatitis were retrospective analyzed. All patients had advanced chronic pancreatitis, presenting with calcifications in pancreatic head. Uncovered self-expandable metal stent (uSEMS) were used in 11 patients (3 females, 8 males) while in 9 patients (3 females, 6 males) partially covered self-expandable metal stent (cSEMS) were inserted. All patients treated with self-expandable metal stent had contraindications for surgery. Overall mean follow up time was 155 weeks: 206 (52-412) weeks in uSEMS, and 93 (25-233) weeks in cSEMS, respectively. Stent patency was in mean 118 weeks: 159 (44-412) weeks in uSEMS and 67 (25-150) weeks in cSEMS (P=0.019). In the uSEMS group, reintervention was necessary in 5 patients (45%) due to stent obstruction, whereas in the cSEMS group 4 patients (44%) needed reintervention (2 obstructions, 2 migration). Stent migration is an early complication, compared to obstruction (P<0.05), and in cSEMS obstruction occurred significantly earlier compared to uSEMS (P<0.05). Patency of uSEMS was significantly longer compared to partially cSEMS. Available self-expandable metal stent, unfortunately, do not meet the demands on successful treatment of benign common bile duct stenosis.

  1. Plastic vs. Self-Expandable Metal Stents for Palliation in Malignant Biliary Obstruction: A Series of Meta-Analyses.

    PubMed

    Almadi, Majid A; Barkun, Alan; Martel, Myriam

    2017-02-01

    Self-expandable metal stents (SEMS) are thought to have an advantage over plastic stents in achieving biliary drainage. We performed a systematic search of MEDLINE, EMBASE, Scopus, CENTRAL, and ISI Web of knowledge databases, from January 1980 to September 2015, for randomized-controlled trials (RCTs) comparing SEMS vs. plastic stents in the palliation of malignant biliary obstruction. Primary outcomes were durations of stent patency, patient survival, and 30-day mortality. Numerous secondary outcomes were assessed, and extensive sensitivity and subgroup analyses were performed. In all, 20 RCTs totaling 1,713 patients yielded a weighted mean difference (WMD) in time to stent patency (4 studies) of 4.45 months (95% confidence interval (CI), 0.31, 8.59; GRADE=moderate) favoring SEMS. There were no differences in overall patient survival (5 studies) WMD=0.67 months (95% CI, -0.66, 1.99; GRADE=moderate), or 30-day mortality (8 studies) odds ratio (OR)=0.80 (95% CI, 0.52, 1.24; GRADE=moderate) but there was a higher symptom-free survival at 6 months (4 studies) OR=5.96 (95% CI, 1.71, 20.81; GRADE=moderate). SEMS use resulted in lower rates of late complications (11 studies) OR=0.43 (95% CI, 0.26, 0.71; GRADE=moderate), sepsis or cholangitis (14 studies) OR=0.53 (95% CI, 0.37, 0.77; GRADE=high), blocking from sludge (8 studies) OR=0.11(95% CI, 0.07, 0.17; GRADE=moderate), and mean number of re-interventions (8 studies) WMD=-0.83 interventions (95% CI, -1.64, -0.02; GRADE=moderate). There was a longer patency of SEMS for those without a prior drainage attempt (2 studies) WMD 7.70 months (95% CI, 7.14, 8.25; GRADE=high). Although a survival advantage was found when an uncovered SEMS was used (3 studies) WMD 1.31 months (95% CI, 0.30, 2.32; GRADE=high), but not partially or fully covered SEMS (2 studies) WMD -0.66 months (95% CI, -1.02, -0.30; GRADE=high) vs. plastic stents, and for SEMS in the setting of pre- or post-procedural antibiotic administration (2 studies) WMD 1.49 months (95% CI, 0.27, 2.70; GRADE=high), and performance of a sphincterotomy (2 studies) WMD 1.63 months (95% CI, 0.42, 2.84; GRADE=high). Keeping in mind the noted risk of bias in source data, the use of SEMS compared with plastic stents, in the palliation of patients with malignant biliary obstruction results in longer stent patency, lower complications rates, and fewer re-interventions, whereas exhibiting survival benefits in selected subgroups of patients.

  2. Preoperative biliary decompression preceding pancreaticoduodenectomy with plastic or self-expandable metallic stent.

    PubMed

    Haapamäki, C; Seppänen, H; Udd, M; Juuti, A; Halttunen, J; Kiviluoto, T; Sirén, J; Mustonen, H; Kylänpää, L

    2015-06-01

    The rainage (PBD) prior to pancreaticoduodenectomy (PD) is controversial. If PBD is required, large bore self-expandable metallic stents (SEMS) are thought to maintain better drainage and have fewer postoperative complications than plastic stents. The confirming evidence is scarce. The aim of the study was to compare outcomes of surgery in patients who underwent PBD with SEMS or plastic stents deployed at endoscopic retrograde cholangiopancreatography (ERCP). This is a retrospective study of 366 patients having had PD during 2000-2009. Preceding endoscopic PBD was performed in 191 patients and nine had had percutaneous transhepatic drainage (PTD). At the time of operation, 163 patients had a plastic stent and 28 had SEMS. Due to stent exchanges, 176 plastic stents and 29 SEMS were placed in all. The stent failure rate was 7.4% for plastic stents and 3.4% for SEMS (p = 0.697). A bilirubin level under 50 µmol/L was reached by 80% of the patients with plastic stents and by 61% of the patients with SEMS (p = 0.058). A postoperative infection complication and/or a pancreatic fistula was found in 26% while using plastic stents and in 25% using SEMS (p = 1.000). In unstented patients with biliary obstruction, the bile juice was sterile significantly more often than in endoscopically stented patients (100% vs 1%, p < 0.001). When the stented and unstented patients were compared regarding postoperative infection complications, there was no significant difference between the groups (p = 0.365). Plastic stents did not differ from SEMS regarding the stent failure rate, bilirubin level decrease, amount of bacteria in the bile juice, or postoperative complications when used for PBD. The significantly higher price of SEMS suggests their use in selected cases only. © The Finnish Surgical Society 2014.

  3. Effect of catalyst on deposition of vanadium oxide in plasma ambient

    NASA Astrophysics Data System (ADS)

    Singh, Megha; Kumar, Prabhat; Saini, Sujit K.; Reddy, G. B.

    2018-05-01

    In this paper, we have studied effect of catalyst (buffer layer) on structure, morphology, crystallinity, uniformity of nanostructured thin films deposited in nitrogen plasma ambient keeping all other process parameters constant. The process used for deposition is novel known as Plasma Assisted Sublimation Process (PASP). Samples were then studied using SEM, TEM, HRTEM, Raman spectroscopy. By structural analysis it was found out that samples deposited on Ni layer composed chiefly of α-V2O5 but minor amount of other phases were present in the sample. Samples deposited on Al catalyst layer revealed different phase of V2O5, where sample deposited on Ag was composed chiefly of VO2±x phase. Further analysis revealed that morphology of samples is also affected by catalyst. While samples deposited in Al and Ag layer tend to have reasonably defined geometry, sample deposited on Ni layer were irregular in shape and size. All the results well corroborate with each other.

  4. Anti-cancerous efficacy and pharmacokinetics of 6-mercaptopurine loaded chitosan nanoparticles.

    PubMed

    Kumar, G Prem; Sanganal, Jagadeesh S; Phani, A R; Manohara, C; Tripathi, Syamantak M; Raghavendra, H L; Janardhana, P B; Amaresha, S; Swamy, K B; Prasad, R G S V

    2015-10-01

    6-Mercaptopurine is a cytotoxic and immunosuppressant drug. The use of this drug is limited due to its poor bioavailability and short plasma half-life. In order to nullify these drawbacks, 6-mercaptopurine-chitosan nanoparticles (6-MP-CNPs) were prepared and evaluated to study the influence of preparation conditions on the physicochemical properties by using DLS, SEM, XRD and FTIR. The in vitro drug release profile at pH 4.8 and 7.4 revealed sustained release patterns for a period of 2 days. The nanoformulations showed enhanced in vitro anti-cancer activities (MTT assay, apoptosis assay, cell cycle arrest and ROS indices) on HT-1080 and MCF-7 cells. In vivo pharmacokinetics profiles of 6-MP-CNPs showed improved bioavailability. Thus, the results of the present study revealed that, the prepared 6-MP-CNPs have a significant role in increasing anti-cancer efficacy, bioavailability and in vivo pharmacokinetics profiles. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Functional properties of poly(tetrafluoroethylene) (PTFE) gasket working in nuclear reactor conditions

    NASA Astrophysics Data System (ADS)

    Wyszkowska, Edyta; Leśniak, Magdalena; Kurpaska, Lukasz; Prokopowicz, Rafal; Jozwik, Iwona; Sitarz, Maciej; Jagielski, Jacek

    2018-04-01

    In this study structural and nanomechanical properties of polytetrafluoroethylene (PTFE) used as a gasket in the nuclear reactor have been deeply investigated. In order to reveal structural changes caused by long-term pressure, temperature and irradiation (possibly neutron and gamma), methods such as SEM, X-ray diffraction and Raman Spectroscopy have been used. Nanomechanical properties such as Young Modulus and hardness were investigated by means of the nanoindentation technique. Presented study confirmed the influence of working (radiative) environment on the functional properties of PTFE. The results of Raman spectroscopy and X-ray diffraction techniques revealed shift of the major band positions and band intensities increase. Moreover, changes of hardness and Young Modulus values of the irradiated material with respect to the virgin specimen have been recorded. This phenomenon can be attributed to the modifications in crystallinity of the material. Presented work suggest that morphology of the irradiated material altered from well-ordered parallel fibers to more dense and thicker ones.

  6. Investigation of the Microstructural, Mechanical and Corrosion Properties of Grade A Ship Steel-Duplex Stainless Steel Composites Produced via Explosive Welding

    NASA Astrophysics Data System (ADS)

    Kaya, Yakup; Kahraman, Nizamettin; Durgutlu, Ahmet; Gülenç, Behçet

    2017-08-01

    Grade A ship-building steel-AISI 2304 duplex stainless steel composite plates were manufactured via explosive welding. The AISI 2304 plates were used to clad the Grade A plates. Optical microscopy studies were conducted on the joining interface for characterization of the manufactured composite plates. Notch impact, tensile-shear, microhardness, bending and twisting tests were carried out to determine the mechanical properties of the composites. In addition, the surfaces of fractured samples were examined by scanning electron microscopy (SEM), and neutral salt spray (NSS) and potentiodynamic polarization tests were performed to examine corrosion behavior. Near the explosion zone, the interface was completely flat, but became wavy as the distance from the explosion zone increased. The notch impact tests indicated that the impact strength of the composites decreased with increasing distance from the explosion zone. The SEM studies detected brittle behavior below the impact transition temperature and ductile behavior above this temperature. Microhardness tests revealed that the hardness values increased with increasing distance from the explosion zone and mechanical tests showed that no visible cracking or separation had occurred on the joining interface. The NSS and potentiodynamic polarization tests determined that the AISI 2304 exhibited higher corrosion resistance than the Grade A steel.

  7. Behavioral and neuronal determinants of negative reciprocity in the ultimatum game

    PubMed Central

    Hildebrandt, Andrea; Wilhelm, Oliver; Sommer, Werner

    2016-01-01

    The rejection of unfair offers in the ultimatum game (UG) indicates negative reciprocity. The model of strong reciprocity claims that negative reciprocity reflects prosociality because the rejecting individual is sacrificing resources in order to punish unfair behavior. However, a recent study found that the rejection rate of unfair offers is linked to assertiveness (status defense model). To pursue the question what drives negative reciprocity, the present study investigated individual differences in the rejection of unfair offers along with their behavioral and neuronal determinants. We measured fairness preferences and event-related potentials (ERP) in 200 healthy participants playing a computerized version of the UG with pictures of unfair and fair proposers. Structural equation modeling (SEM) on the behavioral data corroborated both the strong reciprocity and the status defense models of human cooperation: Not only more prosocial but also more assertive individuals were more likely to show negative reciprocity by rejecting unfair offers. Experimental ERP results confirmed the feedback negativity (FN) as a neural signature of fairness processing. Multilevel SEM of brain–behavior relationships revealed that negative reciprocity was significantly associated with individual differences in FN amplitudes in response to proposers. Our results confirm stable individual differences in fairness processing at the behavioral and neuronal level. PMID:27261490

  8. Pb(II) adsorption by biomass from chemically modified aquatic macrophytes, Salvinia sp. and Pistia stratiotes.

    PubMed

    de Moraes Ferreira, Rachel; de Souza, Michael Douglas Peçanha; Takase, Iracema; de Araujo Stapelfeldt, Danielle Marques

    2016-01-01

    This study used two biosorbents obtained from the aquatic plants Salvinia sp. and Pistia stratiotes to establish a sustainable and alternative treatment for industrial wastewater and other water bodies that contain Pb(II). The biosorbent named Salvinia with NaOH (SOH) was obtained from Salvinia sp., and Salvinia and Pistia mixture with NaOH (SPOH) was obtained from a mixture of the two plants in a 1:1 ratio. The biosorbents were characterized by zeta potential, infrared (IR) spectroscopy, scanning electron microscopy (SEM), energy-dispersive spectroscopy and Boehm titration. The results of Boehm titration and IR analysis indicated the presence of basic functional groups, whereas those of SEM analysis indicated that the biosorbents have a structure conducive to adsorption. Batch adsorption experiments were performed to observe the effects of pH, contact time, initial lead concentration and temperature on the metal removal process. The results revealed that the biosorbents efficiently removed Pb(II) from aqueous solutions, with a maximum observed adsorption capacity (saturation limits, qmax) of 202 mg g(-1) and 210.1 mg g(-1) for SPOH and SOH, respectively. The Freundlich, Langmuir and Dubinin-Radushkevich models were applied to the data; these biosorbent studies did not satisfactorily adjust to either of the models, but the information obtained helped us understand the adsorption mechanism.

  9. Comparing the Effectiveness of Polymer Debriding Devices Using a Porcine Wound Biofilm Model

    PubMed Central

    Wilkinson, Holly N.; McBain, Andrew J.; Stephenson, Christian; Hardman, Matthew J.

    2016-01-01

    Objective: Debridement to remove necrotic and/or infected tissue and promote active healing remains a cornerstone of contemporary chronic wound management. While there has been a recent shift toward less invasive polymer-based debriding devices, their efficacy requires rigorous evaluation. Approach: This study was designed to directly compare monofilament debriding devices to traditional gauze using a wounded porcine skin biofilm model with standardized application parameters. Biofilm removal was determined using a surface viability assay, bacterial counts, histological assessment, and scanning electron microscopy (SEM). Results: Quantitative analysis revealed that monofilament debriding devices outperformed the standard gauze, resulting in up to 100-fold greater reduction in bacterial counts. Interestingly, histological and morphological analyses suggested that debridement not only removed bacteria, but also differentially disrupted the bacterially-derived extracellular polymeric substance. Finally, SEM of post-debridement monofilaments showed structural changes in attached bacteria, implying a negative impact on viability. Innovation: This is the first study to combine controlled and defined debridement application with a biologically relevant ex vivo biofilm model to directly compare monofilament debriding devices. Conclusion: These data support the use of monofilament debriding devices for the removal of established wound biofilms and suggest variable efficacy towards biofilms composed of different species of bacteria. PMID:27867752

  10. Inhibition of early biofilm formation by glass-ionomer incorporated with chlorhexidine in vivo: a pilot study.

    PubMed

    Du, X; Huang, X; Huang, C; Frencken, J E; Yang, T

    2012-03-01

    This pilot study investigated the antibiofilm effects of glass-ionomer cements (GICs) and resin-modified glass-ionomer cements (RMGICs) incorporated with chlorhexidine (CHX) in vivo. Experimental GICs and RMGICs containing 2% CHX were obtained by mixing CHX with the powder of GICs (CHXGIC) and RMGICs (CHXRMGIC). Four groups of specimens were prepared in a standardized size. After polishing and sterilization, they were bonded to the buccal surface of the molars in the first and second quadrant of volunteers and left untouched for 4 hours and 24 hours, respectively. The bacterial vitality of plaque was then analysed by confocal laser scanning microscopy (CLSM). The bacterial morphology and biofilm accumulation were determined by scanning electron microscopy (SEM). The pH value of biofilm was assessed by Plaque Indicator Kits. CLSM analysis revealed that bacterial vitality of the biofilm on CHXGIC and CHXRMGIC was significantly lower than that on GIC and RMGIC. SEM analysis indicated that the morphology of bacteria on CHXGIC and CHXRMGIC was irregular. The pH value of biofilm on the experimental materials presented no statistically significant difference. Twenty-four hour bacterial vitality on GICs and RMGICs with CHX are lower in micro-organisms than on conventional GICs and RMGICs. © 2012 Australian Dental Association.

  11. [Prostatic calculi: silent stones].

    PubMed

    Köseoğlu, H; Aslan, G; Sen, B H; Tuna, B; Yörükoğlu, K

    2010-06-01

    Prostate stones are frequently encountered during transurethral resection of the prostate in urology practice. We aimed to demonstrate the physical and chemical properties of prostate stones. We also aimed to determine possible relationship between inflammation of prostate gland and prostate stones. The consecutive patients (excluding subjects with PSA>or=4ng/ml and urolithiasis), who underwent TURP operation and who were observed to have prostatic calculi during TURP, were included in the study. The prostatic stones obtained from each patient during TURP were analysed for chemical composition and observed under electron microscopy (SEM) for structure and surface morphology. The pathological specimens were assessed by the uropathologist for the final diagnosis and existence and degree of inflammation. Five patients were included in the study. From each patient at least three (range 3-8) samples of stones (diameter varying from 1mm up to 5mm) were obtained. The stones were made of mixed composition of calcium phosphate and calcium carbonate. The stones were found to have lobular surface made up of small spheres under SEM. Histopathological examination of the TURP specimens revealed being prostatic hyperplasia accompanied with inflammation of mild to severe degree. Prostatic stones are concentrically precipitated calcium stones within the prostatic ductuli with granular grape like morphology. Histopathological inflammation seems to be associated with these prostatic calculi.

  12. Method to deterministically study photonic nanostructures in different experimental instruments.

    PubMed

    Husken, B H; Woldering, L A; Blum, C; Vos, W L

    2009-01-01

    We describe an experimental method to recover a single, deterministically fabricated nanostructure in various experimental instruments without the use of artificially fabricated markers, with the aim to study photonic structures. Therefore, a detailed map of the spatial surroundings of the nanostructure is made during the fabrication of the structure. These maps are made using a series of micrographs with successively decreasing magnifications. The graphs reveal intrinsic and characteristic geometric features that can subsequently be used in different setups to act as markers. As an illustration, we probe surface cavities with radii of 65 nm on a silica opal photonic crystal with various setups: a focused ion beam workstation; a scanning electron microscope (SEM); a wide field optical microscope and a confocal microscope. We use cross-correlation techniques to recover a small area imaged with the SEM in a large area photographed with the optical microscope, which provides a possible avenue to automatic searching. We show how both structural and optical reflectivity data can be obtained from one and the same nanostructure. Since our approach does not use artificial grids or markers, it is of particular interest for samples whose structure is not known a priori, like samples created solely by self-assembly. In addition, our method is not restricted to conducting samples.

  13. The Evaluation of Hydroxyapatite (HA) Coated and Uncoated Porous Tantalum for Biomedical Material Applications

    NASA Astrophysics Data System (ADS)

    Safuan, Nadia; Sukmana, Irza; Kadir, Mohammed Rafiq Abdul; Noviana, Deni

    2014-04-01

    Porous tantalum has been used as an orthopedic implant for bone defects as it has a good corrosion resistance and fatigue behaviour properties. However, there are some reports on the rejection of porous Ta after the implantation. Those clinical cases refer to the less bioactivity of metallic-based materials. This study aims to evaluate hydroxyapatite coated and uncoated porous Tantalum in order to improve the biocompatibility of porous tantalum implant and osseointegration. Porous tantalum was used as metallic-base substrate and hydroxyapatite coating has been done using plasma-spraying technique. Scanning Electron Microscopy (SEM) and Field Emission Scanning Electron Microscopy (FESEM) techniques were utilizes to investigate the coating characteristics while Confocal Raman Microscopy to investigate the interface and image. The effect of coating to the corrosion behaviour was assessed by employing potentiodynamic polarization tests in simulated body fluid at 37±1 °C. Based on SEM and FESEM results, the morphologies as well the weight element consists in the uncoated and hydroxyapatite coated porous tantalum were revealed. The results indicated that the decrease in corrosion current density for HA coated porous Ta compared to the uncoated porous Ta. This study concluded that by coating porous tantalum with HA supports to decrease the corrosion rate of pure porous.

  14. Potential Biosorbent Derived from Calligonum polygonoides for Removal of Methylene Blue Dye from Aqueous Solution

    PubMed Central

    Nasrullah, Asma; Khan, Hizbullah; Khan, Amir Sada; Man, Zakaria; Muhammad, Nawshad; Khan, Muhammad Irfan; Abd El-Salam, Naser M.

    2015-01-01

    The ash of C. polygonoides (locally called balanza) was collected from Lakki Marwat, Khyber Pakhtunkhwa, Pakistan, and was utilized as biosorbent for methylene blue (MB) removal from aqueous solution. The ash was used as biosorbent without any physical or chemical treatment. The biosorbent was characterized by using various techniques such as Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), and scanning electron microscopy (SEM). The particle size and surface area were measured using particle size analyzer and Brunauer-Emmett-Teller equation (BET), respectively. The SEM and BET results expressed that the adsorbent has porous nature. Effects of various conditions such as initial concentration of methylene blue (MB), initial pH, contact time, dosage of biosorbent, and stirring rate were also investigated for the adsorption process. The rate of the adsorption of MB on biomass sample was fast, and equilibrium has been achieved within 1 hour. The kinetics of MB adsorption on biosorbent was studied by pseudo-first- and pseudo-second-order kinetic models and the pseudo-second-order has better mathematical fit with correlation coefficient value (R 2) of 0.999. The study revealed that C. polygonoides ash proved to be an effective, alternative, inexpensive, and environmentally benign biosorbent for MB removal from aqueous solution. PMID:25705714

  15. Epicuticular Wax Crystals of Wollemia nobilis: Morphology and Chemical Composition

    PubMed Central

    Dragota, Simona; Riederer, Markus

    2007-01-01

    Background and Aims The morphology of the epicuticular leaf waxes of Wollemia nobilis (Araucariaceae) was studied with special emphasis on the relationship between the microstructure of epicuticular wax crystals and their chemical composition. Wollemia nobilis is a unique coniferous tree of the family Araucariaceae and is of very high scientific value as it is the sole living representative of an ancient genus, which until 1994 was known only from fossils. Methods Scanning electron microscopy (SEM), gas chromatography (GC) combined with mass spectrometry (GC–MS) and nuclear magnetic resonance spectroscopy (NMR) were used for characterizing the morphology and the chemical structure of the epicuticular wax layer of W. nobilis needles. Key Results The main component of the leaf epicuticular wax of W. nobilis is nonacosan-10-ol. This secondary alcohol together with nonacosane diols is responsible for the tubular habit of the epicuticular wax crystals. Scanning electron micrographs revealed differences in the fine structure of adaxial and abaxial leaf surfaces that could be explained by gas chromatographic studies after selective mechanical removal of the waxes. Conclusions SEM investigations established the tubular crystalline microstructure of the epicuticular wax of W. nobilis leaves. GC–MS and NMR experiments showed that nonacosan-10-ol is the major constituent of the epicuticular wax of W. nobilis leaves. PMID:17611192

  16. Silicifying Biofilm Exopolymers on a Hot-Spring Microstromatolite: Templating Nanometer-Thick Laminae

    NASA Astrophysics Data System (ADS)

    Handley, Kim M.; Turner, Sue J.; Campbell, Kathleen A.; Mountain, Bruce W.

    2008-08-01

    Exopolymeric substances (EPS) are an integral component of microbial biofilms; however, few studies have addressed their silicification and preservation in hot-spring deposits. Through comparative analyses with the use of a range of microscopy techniques, we identified abundant EPS significant to the textural development of spicular, microstromatolitic, siliceous sinter at Champagne Pool, Waiotapu, New Zealand. Examination of biofilms coating sinter surfaces by confocal laser scanning microscopy (CLSM), environmental scanning electron microscopy (ESEM), cryo-scanning electron microscopy (cryo-SEM), and transmission electron microscopy (TEM) revealed contraction of the gelatinous EPS matrix into films (approximately 10 nm thick) or fibrillar structures, which is common in conventional SEM analyses and analogous to products of naturally occurring desiccation. Silicification of fibrillar EPS contributed to the formation of filamentous sinter. Matrix surfaces or dehydrated films templated sinter laminae (nanometers to microns thick) that, in places, preserved fenestral voids beneath. Laminae of similar thickness are, in general, common to spicular geyserites. This is the first report to demonstrate EPS templation of siliceous stromatolite laminae. Considering the ubiquity of biofilms on surfaces in hot-spring environments, EPS silicification studies are likely to be important to a better understanding of the origins of laminae in other modern and ancient stromatolitic sinters, and EPS potentially may serve as biosignatures in extraterrestrial rocks.

  17. Plackett-Burman experimental design for bacterial cellulose-silica composites synthesis.

    PubMed

    Guzun, Anicuta Stoica; Stroescu, Marta; Jinga, Sorin Ion; Voicu, Georgeta; Grumezescu, Alexandru Mihai; Holban, Alina Maria

    2014-09-01

    Bacterial cellulose-silica hybrid composites were prepared starting from wet bacterial cellulose (BC) membranes using Stöber reaction. The structure and surface morphology of hybrid composites were examined by FTIR and SEM. The SEM pictures revealed that the silica particles are attached to BC fibrils and are well dispersed in the BC matrix. The influence of silica particles upon BC crystallinity was studied using XRD analysis. Thermogravimetric (TG) analysis showed that the composites are stable up to 300°C. A Plackett-Burman design was applied in order to investigate the influence of process parameters upon silica particle sizes and silica content of BC-silica composites. The statistical model predicted that it is possible for silica particles size to vary the synthesis parameters in order to obtain silica particles deposed on BC membranes in the range from 34.5 to 500 nm, the significant parameters being ammonia concentration, reaction time and temperature. The silica content also varies depending on process parameters, the statistical model predicting that the most influential parameters are water-tetraethoxysilane (TEOS) ratio and reaction temperature. The antimicrobial behavior on Staphylococcus aureus of BC-silica composites functionalized with usnic acid (UA) was also studied, in order to create improved surfaces with antiadherence and anti-biofilm properties. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. A novel hot-melt extrusion formulation of albendazole for increasing dissolution properties.

    PubMed

    Martinez-Marcos, Laura; Lamprou, Dimitrios A; McBurney, Roy T; Halbert, Gavin W

    2016-02-29

    The main aim of the research focused on the production of hot-melt extrusion (HME) formulations with increased dissolution properties of albendazole (ABZ). Therefore, HME was applied as a continuous manufacturing technique to produce amorphous solid dispersions of the poorly water soluble drug ABZ combined with the polymer matrix polyvinylpyrrolidone PVP K12. HME formulations of ABZ-PVP K12 comprised a drug content of 1%, 5% and 10% w/w. The main analytical characterisation techniques used were scanning electron microscopy (SEM), micro-computed tomography (μ-CT), X-ray powder diffraction (XRPD), differential scanning calorimetry (DSC) and dissolution profile studies. The application of SEM, XRPD and DSC evidenced drug physical transformation from crystalline to amorphous state and therefore, the achievement of an amorphous solid dispersion. The introduction of a novel technique, μ-CT, to characterise the internal structure of these materials revealed key information regarding materials distribution and void content. Dissolution profile studies evidenced a high increase in drug release profile compared to pure ABZ. These promising results can lead to a great enhancement of the oral bioavailability of ABZ dosage forms. Therefore, HME is a potential continuous manufacturing technique to overcome ABZ poor solubility properties and lead to a significant increase in the therapeutic effect. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. A multiple deficit model of reading disability and attention-deficit/hyperactivity disorder: searching for shared cognitive deficits.

    PubMed

    McGrath, Lauren M; Pennington, Bruce F; Shanahan, Michelle A; Santerre-Lemmon, Laura E; Barnard, Holly D; Willcutt, Erik G; Defries, John C; Olson, Richard K

    2011-05-01

    This study tests a multiple cognitive deficit model of reading disability (RD), attention-deficit/hyperactivity disorder (ADHD), and their comorbidity. A structural equation model (SEM) of multiple cognitive risk factors and symptom outcome variables was constructed. The model included phonological awareness as a unique predictor of RD and response inhibition as a unique predictor of ADHD. Processing speed, naming speed, and verbal working memory were modeled as potential shared cognitive deficits. Model fit indices from the SEM indicated satisfactory fit. Closer inspection of the path weights revealed that processing speed was the only cognitive variable with significant unique relationships to RD and ADHD dimensions, particularly inattention. Moreover, the significant correlation between reading and inattention was reduced to non-significance when processing speed was included in the model, suggesting that processing speed primarily accounted for the phenotypic correlation (or comorbidity) between reading and inattention. This study illustrates the power of a multiple deficit approach to complex developmental disorders and psychopathologies, particularly for exploring comorbidities. The theoretical role of processing speed in the developmental pathways of RD and ADHD and directions for future research are discussed. © 2010 The Authors. Journal of Child Psychology and Psychiatry © 2010 Association for Child and Adolescent Mental Health.

  20. Electronic structure and chemical bonding in La1-x Sr x MnO3 perovskite ceramics

    NASA Astrophysics Data System (ADS)

    Thenmozhi, N.; Sasikumar, S.; Sonai, S.; Saravanan, R.

    2017-04-01

    This study reports on the synthesis of La1-x Sr x MnO3 (x  =  0.3, 0.4 and 0.5) manganites by high temperature solid state reaction method using lanthanum oxide, strontium carbonate and manganese oxide as starting materials. The synthesized samples were characterized by XRD, UV-vis, SEM/EDS and VSM. Structural characterization shows that all the prepared samples have the perovskite rhombohedral structure. Influence of Sr doping on electron density distributions in the lattice structure of LaMnO3 were analyzed through maximum entropy method (MEM). Cell parameters are found to be decreasing with the addition of Sr content. The qualitative and quantitative analysis by MEM reveals that, incorporation of Sr into LaMnO3 lattice enhances the ionic nature between La and O ions and decreases the covalent nature between Mn and O ions. Optical band gap values are determined from the UV-visible absorption spectra. Particles with polygonal form are observed from the SEM micrographs. The elemental compositions of the synthesized samples are confirmed by EDS. The magnetic properties studied from the M-H plot taken at room temperature indicated that, the prepared samples are exhibited ferromagnetic behavior.

Top