Sample records for semantic concept learning

  1. The Semantic Learning Organization

    ERIC Educational Resources Information Center

    Sicilia, Miguel-Angel; Lytras, Miltiadis D.

    2005-01-01

    Purpose: The aim of this paper is introducing the concept of a "semantic learning organization" (SLO) as an extension of the concept of "learning organization" in the technological domain. Design/methodology/approach: The paper takes existing definitions and conceptualizations of both learning organizations and Semantic Web technology to develop…

  2. Semantic-gap-oriented active learning for multilabel image annotation.

    PubMed

    Tang, Jinhui; Zha, Zheng-Jun; Tao, Dacheng; Chua, Tat-Seng

    2012-04-01

    User interaction is an effective way to handle the semantic gap problem in image annotation. To minimize user effort in the interactions, many active learning methods were proposed. These methods treat the semantic concepts individually or correlatively. However, they still neglect the key motivation of user feedback: to tackle the semantic gap. The size of the semantic gap of each concept is an important factor that affects the performance of user feedback. User should pay more efforts to the concepts with large semantic gaps, and vice versa. In this paper, we propose a semantic-gap-oriented active learning method, which incorporates the semantic gap measure into the information-minimization-based sample selection strategy. The basic learning model used in the active learning framework is an extended multilabel version of the sparse-graph-based semisupervised learning method that incorporates the semantic correlation. Extensive experiments conducted on two benchmark image data sets demonstrated the importance of bringing the semantic gap measure into the active learning process.

  3. Using Wikipedia to learn semantic feature representations of concrete concepts in neuroimaging experiments

    PubMed Central

    Pereira, Francisco; Botvinick, Matthew; Detre, Greg

    2012-01-01

    In this paper we show that a corpus of a few thousand Wikipedia articles about concrete or visualizable concepts can be used to produce a low-dimensional semantic feature representation of those concepts. The purpose of such a representation is to serve as a model of the mental context of a subject during functional magnetic resonance imaging (fMRI) experiments. A recent study [19] showed that it was possible to predict fMRI data acquired while subjects thought about a concrete concept, given a representation of those concepts in terms of semantic features obtained with human supervision. We use topic models on our corpus to learn semantic features from text in an unsupervised manner, and show that those features can outperform those in [19] in demanding 12-way and 60-way classification tasks. We also show that these features can be used to uncover similarity relations in brain activation for different concepts which parallel those relations in behavioral data from human subjects. PMID:23243317

  4. Semantic Categories and Context in L2 Vocabulary Learning

    ERIC Educational Resources Information Center

    Bolger, Patrick; Zapata, Gabriela

    2011-01-01

    This article extends recent findings that presenting semantically related vocabulary simultaneously inhibits learning. It does so by adding story contexts. Participants learned 32 new labels for known concepts from four different semantic categories in stories that were either semantically related (one category per story) or semantically unrelated…

  5. Enhancing clinical concept extraction with distributional semantics

    PubMed Central

    Cohen, Trevor; Wu, Stephen; Gonzalez, Graciela

    2011-01-01

    Extracting concepts (such as drugs, symptoms, and diagnoses) from clinical narratives constitutes a basic enabling technology to unlock the knowledge within and support more advanced reasoning applications such as diagnosis explanation, disease progression modeling, and intelligent analysis of the effectiveness of treatment. The recent release of annotated training sets of de-identified clinical narratives has contributed to the development and refinement of concept extraction methods. However, as the annotation process is labor-intensive, training data are necessarily limited in the concepts and concept patterns covered, which impacts the performance of supervised machine learning applications trained with these data. This paper proposes an approach to minimize this limitation by combining supervised machine learning with empirical learning of semantic relatedness from the distribution of the relevant words in additional unannotated text. The approach uses a sequential discriminative classifier (Conditional Random Fields) to extract the mentions of medical problems, treatments and tests from clinical narratives. It takes advantage of all Medline abstracts indexed as being of the publication type “clinical trials” to estimate the relatedness between words in the i2b2/VA training and testing corpora. In addition to the traditional features such as dictionary matching, pattern matching and part-of-speech tags, we also used as a feature words that appear in similar contexts to the word in question (that is, words that have a similar vector representation measured with the commonly used cosine metric, where vector representations are derived using methods of distributional semantics). To the best of our knowledge, this is the first effort exploring the use of distributional semantics, the semantics derived empirically from unannotated text often using vector space models, for a sequence classification task such as concept extraction. Therefore, we first

  6. E-Learning for Depth in the Semantic Web

    ERIC Educational Resources Information Center

    Shafrir, Uri; Etkind, Masha

    2006-01-01

    In this paper, we describe concept parsing algorithms, a novel semantic analysis methodology at the core of a new pedagogy that focuses learners attention on deep comprehension of the conceptual content of learned material. Two new e-learning tools are described in some detail: interactive concept discovery learning and meaning equivalence…

  7. The Influence of Concreteness of Concepts on the Integration of Novel Words into the Semantic Network

    PubMed Central

    Ding, Jinfeng; Liu, Wenjuan; Yang, Yufang

    2017-01-01

    On the basis of previous studies revealing a processing advantage of concrete words over abstract words, the current study aimed to further explore the influence of concreteness on the integration of novel words into semantic memory with the event related potential (ERP) technique. In the experiment during the learning phase participants read two-sentence contexts and inferred the meaning of novel words. The novel words were two-character non-words in Chinese language. Their meaning was either a concrete or abstract known concept which could be inferred from the contexts. During the testing phase participants performed a lexical decision task in which the learned novel words served as primes for either their corresponding concepts, semantically related or unrelated targets. For the concrete novel words, the semantically related words belonged to the same semantic categories with their corresponding concepts. For the abstract novel words, the semantically related words were synonyms of their corresponding concepts. The unrelated targets were real words which were concrete or abstract for the concrete or abstract novel words respectively. The ERP results showed that the corresponding concepts and the semantically related words elicited smaller N400s than the unrelated words. The N400 effect was not modulated by the concreteness of the concepts. In addition, the concrete corresponding concepts elicited a smaller late positive component (LPC) than the concrete unrelated words. This LPC effect was absent for the abstract words. The results indicate that although both concrete and abstract novel words can be acquired and linked to their related words in the semantic network after a short learning phase, the concrete novel words are learned better. Our findings support the (extended) dual coding theory and broaden our understanding of adult word learning and changes in concept organization. PMID:29255440

  8. The Influence of Concreteness of Concepts on the Integration of Novel Words into the Semantic Network.

    PubMed

    Ding, Jinfeng; Liu, Wenjuan; Yang, Yufang

    2017-01-01

    On the basis of previous studies revealing a processing advantage of concrete words over abstract words, the current study aimed to further explore the influence of concreteness on the integration of novel words into semantic memory with the event related potential (ERP) technique. In the experiment during the learning phase participants read two-sentence contexts and inferred the meaning of novel words. The novel words were two-character non-words in Chinese language. Their meaning was either a concrete or abstract known concept which could be inferred from the contexts. During the testing phase participants performed a lexical decision task in which the learned novel words served as primes for either their corresponding concepts, semantically related or unrelated targets. For the concrete novel words, the semantically related words belonged to the same semantic categories with their corresponding concepts. For the abstract novel words, the semantically related words were synonyms of their corresponding concepts. The unrelated targets were real words which were concrete or abstract for the concrete or abstract novel words respectively. The ERP results showed that the corresponding concepts and the semantically related words elicited smaller N400s than the unrelated words. The N400 effect was not modulated by the concreteness of the concepts. In addition, the concrete corresponding concepts elicited a smaller late positive component (LPC) than the concrete unrelated words. This LPC effect was absent for the abstract words. The results indicate that although both concrete and abstract novel words can be acquired and linked to their related words in the semantic network after a short learning phase, the concrete novel words are learned better. Our findings support the (extended) dual coding theory and broaden our understanding of adult word learning and changes in concept organization.

  9. Semantic Features, Perceptual Expectations, and Frequency as Factors in the Learning of Polar Spatial Adjective Concepts.

    ERIC Educational Resources Information Center

    Dunckley, Candida J. Lutes; Radtke, Robert C.

    Two semantic theories of word learning, a perceptual complexity hypothesis (H. Clark, 1970) and a quantitative complexity hypothesis (E. Clark, 1972) were tested by teaching 24 preschoolers and 16 college students CVC labels for five polar spatial adjective concepts having single word representations in English, and for three having no direct…

  10. Representations for Semantic Learning Webs: Semantic Web Technology in Learning Support

    ERIC Educational Resources Information Center

    Dzbor, M.; Stutt, A.; Motta, E.; Collins, T.

    2007-01-01

    Recent work on applying semantic technologies to learning has concentrated on providing novel means of accessing and making use of learning objects. However, this is unnecessarily limiting: semantic technologies will make it possible to develop a range of educational Semantic Web services, such as interpretation, structure-visualization, support…

  11. A Bayesian generative model for learning semantic hierarchies

    PubMed Central

    Mittelman, Roni; Sun, Min; Kuipers, Benjamin; Savarese, Silvio

    2014-01-01

    Building fine-grained visual recognition systems that are capable of recognizing tens of thousands of categories, has received much attention in recent years. The well known semantic hierarchical structure of categories and concepts, has been shown to provide a key prior which allows for optimal predictions. The hierarchical organization of various domains and concepts has been subject to extensive research, and led to the development of the WordNet domains hierarchy (Fellbaum, 1998), which was also used to organize the images in the ImageNet (Deng et al., 2009) dataset, in which the category count approaches the human capacity. Still, for the human visual system, the form of the hierarchy must be discovered with minimal use of supervision or innate knowledge. In this work, we propose a new Bayesian generative model for learning such domain hierarchies, based on semantic input. Our model is motivated by the super-subordinate organization of domain labels and concepts that characterizes WordNet, and accounts for several important challenges: maintaining context information when progressing deeper into the hierarchy, learning a coherent semantic concept for each node, and modeling uncertainty in the perception process. PMID:24904452

  12. Learning semantic and visual similarity for endomicroscopy video retrieval.

    PubMed

    Andre, Barbara; Vercauteren, Tom; Buchner, Anna M; Wallace, Michael B; Ayache, Nicholas

    2012-06-01

    Content-based image retrieval (CBIR) is a valuable computer vision technique which is increasingly being applied in the medical community for diagnosis support. However, traditional CBIR systems only deliver visual outputs, i.e., images having a similar appearance to the query, which is not directly interpretable by the physicians. Our objective is to provide a system for endomicroscopy video retrieval which delivers both visual and semantic outputs that are consistent with each other. In a previous study, we developed an adapted bag-of-visual-words method for endomicroscopy retrieval, called "Dense-Sift," that computes a visual signature for each video. In this paper, we present a novel approach to complement visual similarity learning with semantic knowledge extraction, in the field of in vivo endomicroscopy. We first leverage a semantic ground truth based on eight binary concepts, in order to transform these visual signatures into semantic signatures that reflect how much the presence of each semantic concept is expressed by the visual words describing the videos. Using cross-validation, we demonstrate that, in terms of semantic detection, our intuitive Fisher-based method transforming visual-word histograms into semantic estimations outperforms support vector machine (SVM) methods with statistical significance. In a second step, we propose to improve retrieval relevance by learning an adjusted similarity distance from a perceived similarity ground truth. As a result, our distance learning method allows to statistically improve the correlation with the perceived similarity. We also demonstrate that, in terms of perceived similarity, the recall performance of the semantic signatures is close to that of visual signatures and significantly better than those of several state-of-the-art CBIR methods. The semantic signatures are thus able to communicate high-level medical knowledge while being consistent with the low-level visual signatures and much shorter than them

  13. Semantic e-Learning: Next Generation of e-Learning?

    NASA Astrophysics Data System (ADS)

    Konstantinos, Markellos; Penelope, Markellou; Giannis, Koutsonikos; Aglaia, Liopa-Tsakalidi

    Semantic e-learning aspires to be the next generation of e-learning, since the understanding of learning materials and knowledge semantics allows their advanced representation, manipulation, sharing, exchange and reuse and ultimately promote efficient online experiences for users. In this context, the paper firstly explores some fundamental Semantic Web technologies and then discusses current and potential applications of these technologies in e-learning domain, namely, Semantic portals, Semantic search, personalization, recommendation systems, social software and Web 2.0 tools. Finally, it highlights future research directions and open issues of the field.

  14. The semantic richness of abstract concepts

    PubMed Central

    Recchia, Gabriel; Jones, Michael N.

    2012-01-01

    We contrasted the predictive power of three measures of semantic richness—number of features (NFs), contextual dispersion (CD), and a novel measure of number of semantic neighbors (NSN)—for a large set of concrete and abstract concepts on lexical decision and naming tasks. NSN (but not NF) facilitated processing for abstract concepts, while NF (but not NSN) facilitated processing for the most concrete concepts, consistent with claims that linguistic information is more relevant for abstract concepts in early processing. Additionally, converging evidence from two datasets suggests that when NSN and CD are controlled for, the features that most facilitate processing are those associated with a concept's physical characteristics and real-world contexts. These results suggest that rich linguistic contexts (many semantic neighbors) facilitate early activation of abstract concepts, whereas concrete concepts benefit more from rich physical contexts (many associated objects and locations). PMID:23205008

  15. Shared Features Dominate Semantic Richness Effects for Concrete Concepts

    ERIC Educational Resources Information Center

    Grondin, Ray; Lupker, Stephen J.; McRae, Ken

    2009-01-01

    When asked to list semantic features for concrete concepts, participants list many features for some concepts and few for others. Concepts with many semantic features are processed faster in lexical and semantic decision tasks [Pexman, P. M., Lupker, S. J., & Hino, Y. (2002). "The impact of feedback semantics in visual word recognition:…

  16. Auditing the Assignments of Top-Level Semantic Types in the UMLS Semantic Network to UMLS Concepts

    PubMed Central

    He, Zhe; Perl, Yehoshua; Elhanan, Gai; Chen, Yan; Geller, James; Bian, Jiang

    2018-01-01

    The Unified Medical Language System (UMLS) is an important terminological system. By the policy of its curators, each concept of the UMLS should be assigned the most specific Semantic Types (STs) in the UMLS Semantic Network (SN). Hence, the Semantic Types of most UMLS concepts are assigned at or near the bottom (leaves) of the UMLS Semantic Network. While most ST assignments are correct, some errors do occur. Therefore, Quality Assurance efforts of UMLS curators for ST assignments should concentrate on automatically detected sets of UMLS concepts with higher error rates than random sets. In this paper, we investigate the assignments of top-level semantic types in the UMLS semantic network to concepts, identify potential erroneous assignments, define four categories of errors, and thus provide assistance to curators of the UMLS to avoid these assignments errors. Human experts analyzed samples of concepts assigned 10 of the top-level semantic types and categorized the erroneous ST assignments into these four logical categories. Two thirds of the concepts assigned these 10 top-level semantic types are erroneous. Our results demonstrate that reviewing top-level semantic type assignments to concepts provides an effective way for UMLS quality assurance, comparing to reviewing a random selection of semantic type assignments. PMID:29375930

  17. Auditing the Assignments of Top-Level Semantic Types in the UMLS Semantic Network to UMLS Concepts.

    PubMed

    He, Zhe; Perl, Yehoshua; Elhanan, Gai; Chen, Yan; Geller, James; Bian, Jiang

    2017-11-01

    The Unified Medical Language System (UMLS) is an important terminological system. By the policy of its curators, each concept of the UMLS should be assigned the most specific Semantic Types (STs) in the UMLS Semantic Network (SN). Hence, the Semantic Types of most UMLS concepts are assigned at or near the bottom (leaves) of the UMLS Semantic Network. While most ST assignments are correct, some errors do occur. Therefore, Quality Assurance efforts of UMLS curators for ST assignments should concentrate on automatically detected sets of UMLS concepts with higher error rates than random sets. In this paper, we investigate the assignments of top-level semantic types in the UMLS semantic network to concepts, identify potential erroneous assignments, define four categories of errors, and thus provide assistance to curators of the UMLS to avoid these assignments errors. Human experts analyzed samples of concepts assigned 10 of the top-level semantic types and categorized the erroneous ST assignments into these four logical categories. Two thirds of the concepts assigned these 10 top-level semantic types are erroneous. Our results demonstrate that reviewing top-level semantic type assignments to concepts provides an effective way for UMLS quality assurance, comparing to reviewing a random selection of semantic type assignments.

  18. Modeling Spatial Dependencies and Semantic Concepts in Data Mining

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vatsavai, Raju

    Data mining is the process of discovering new patterns and relationships in large datasets. However, several studies have shown that general data mining techniques often fail to extract meaningful patterns and relationships from the spatial data owing to the violation of fundamental geospatial principles. In this tutorial, we introduce basic principles behind explicit modeling of spatial and semantic concepts in data mining. In particular, we focus on modeling these concepts in the widely used classification, clustering, and prediction algorithms. Classification is the process of learning a structure or model (from user given inputs) and applying the known model to themore » new data. Clustering is the process of discovering groups and structures in the data that are ``similar,'' without applying any known structures in the data. Prediction is the process of finding a function that models (explains) the data with least error. One common assumption among all these methods is that the data is independent and identically distributed. Such assumptions do not hold well in spatial data, where spatial dependency and spatial heterogeneity are a norm. In addition, spatial semantics are often ignored by the data mining algorithms. In this tutorial we cover recent advances in explicitly modeling of spatial dependencies and semantic concepts in data mining.« less

  19. Semantic Coherence Facilitates Distributional Learning.

    PubMed

    Ouyang, Long; Boroditsky, Lera; Frank, Michael C

    2017-04-01

    Computational models have shown that purely statistical knowledge about words' linguistic contexts is sufficient to learn many properties of words, including syntactic and semantic category. For example, models can infer that "postman" and "mailman" are semantically similar because they have quantitatively similar patterns of association with other words (e.g., they both tend to occur with words like "deliver," "truck," "package"). In contrast to these computational results, artificial language learning experiments suggest that distributional statistics alone do not facilitate learning of linguistic categories. However, experiments in this paradigm expose participants to entirely novel words, whereas real language learners encounter input that contains some known words that are semantically organized. In three experiments, we show that (a) the presence of familiar semantic reference points facilitates distributional learning and (b) this effect crucially depends both on the presence of known words and the adherence of these known words to some semantic organization. Copyright © 2016 Cognitive Science Society, Inc.

  20. Semantic concept-enriched dependence model for medical information retrieval.

    PubMed

    Choi, Sungbin; Choi, Jinwook; Yoo, Sooyoung; Kim, Heechun; Lee, Youngho

    2014-02-01

    In medical information retrieval research, semantic resources have been mostly used by expanding the original query terms or estimating the concept importance weight. However, implicit term-dependency information contained in semantic concept terms has been overlooked or at least underused in most previous studies. In this study, we incorporate a semantic concept-based term-dependence feature into a formal retrieval model to improve its ranking performance. Standardized medical concept terms used by medical professionals were assumed to have implicit dependency within the same concept. We hypothesized that, by elaborately revising the ranking algorithms to favor documents that preserve those implicit dependencies, the ranking performance could be improved. The implicit dependence features are harvested from the original query using MetaMap. These semantic concept-based dependence features were incorporated into a semantic concept-enriched dependence model (SCDM). We designed four different variants of the model, with each variant having distinct characteristics in the feature formulation method. We performed leave-one-out cross validations on both a clinical document corpus (TREC Medical records track) and a medical literature corpus (OHSUMED), which are representative test collections in medical information retrieval research. Our semantic concept-enriched dependence model consistently outperformed other state-of-the-art retrieval methods. Analysis shows that the performance gain has occurred independently of the concept's explicit importance in the query. By capturing implicit knowledge with regard to the query term relationships and incorporating them into a ranking model, we could build a more robust and effective retrieval model, independent of the concept importance. Copyright © 2013 Elsevier Inc. All rights reserved.

  1. Collaborative E-Learning Using Semantic Course Blog

    ERIC Educational Resources Information Center

    Lu, Lai-Chen; Yeh, Ching-Long

    2008-01-01

    Collaborative e-learning delivers many enhancements to e-learning technology; it enables students to collaborate with each other and improves their learning efficiency. Semantic blog combines semantic Web and blog technology that users can import, export, view, navigate, and query the blog. We developed a semantic course blog for collaborative…

  2. An Intelligent Semantic E-Learning Framework Using Context-Aware Semantic Web Technologies

    ERIC Educational Resources Information Center

    Huang, Weihong; Webster, David; Wood, Dawn; Ishaya, Tanko

    2006-01-01

    Recent developments of e-learning specifications such as Learning Object Metadata (LOM), Sharable Content Object Reference Model (SCORM), Learning Design and other pedagogy research in semantic e-learning have shown a trend of applying innovative computational techniques, especially Semantic Web technologies, to promote existing content-focused…

  3. Acquiring concepts and features of novel words by two types of learning: direct mapping and inference.

    PubMed

    Chen, Shuang; Wang, Lin; Yang, Yufang

    2014-04-01

    This study examined the semantic representation of novel words learnt in two conditions: directly mapping a novel word to a concept (Direct mapping: DM) and inferring the concept from provided features (Inferred learning: IF). A condition where no definite concept could be inferred (No basic-level meaning: NM) served as a baseline. The semantic representation of the novel word was assessed via a semantic-relatedness judgment task. In this task, the learned novel word served as a prime, while the corresponding concept, an unlearned feature of the concept, and an unrelated word served as targets. ERP responses to the targets, primed by the novel words in the three learning conditions, were compared. For the corresponding concept, smaller N400s were elicited in the DM and IF conditions than in the NM condition, indicating that the concept could be obtained in both learning conditions. However, for the unlearned feature, the targets in the IF condition produced an N400 effect while in the DM condition elicited an LPC effect relative to the NM learning condition. No ERP difference was observed among the three learning conditions for the unrelated words. The results indicate that conditions of learning affect the semantic representation of novel word, and that the unlearned feature was only activated by the novel word in the IF learning condition. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Behavioral semantics of learning and crossmodal processing in auditory cortex: the semantic processor concept.

    PubMed

    Scheich, Henning; Brechmann, André; Brosch, Michael; Budinger, Eike; Ohl, Frank W; Selezneva, Elena; Stark, Holger; Tischmeyer, Wolfgang; Wetzel, Wolfram

    2011-01-01

    Two phenomena of auditory cortex activity have recently attracted attention, namely that the primary field can show different types of learning-related changes of sound representation and that during learning even this early auditory cortex is under strong multimodal influence. Based on neuronal recordings in animal auditory cortex during instrumental tasks, in this review we put forward the hypothesis that these two phenomena serve to derive the task-specific meaning of sounds by associative learning. To understand the implications of this tenet, it is helpful to realize how a behavioral meaning is usually derived for novel environmental sounds. For this purpose, associations with other sensory, e.g. visual, information are mandatory to develop a connection between a sound and its behaviorally relevant cause and/or the context of sound occurrence. This makes it plausible that in instrumental tasks various non-auditory sensory and procedural contingencies of sound generation become co-represented by neuronal firing in auditory cortex. Information related to reward or to avoidance of discomfort during task learning, that is essentially non-auditory, is also co-represented. The reinforcement influence points to the dopaminergic internal reward system, the local role of which for memory consolidation in auditory cortex is well-established. Thus, during a trial of task performance, the neuronal responses to the sounds are embedded in a sequence of representations of such non-auditory information. The embedded auditory responses show task-related modulations of auditory responses falling into types that correspond to three basic logical classifications that may be performed with a perceptual item, i.e. from simple detection to discrimination, and categorization. This hierarchy of classifications determine the semantic "same-different" relationships among sounds. Different cognitive classifications appear to be a consequence of learning task and lead to a recruitment of

  5. Concept-oriented indexing of video databases: toward semantic sensitive retrieval and browsing.

    PubMed

    Fan, Jianping; Luo, Hangzai; Elmagarmid, Ahmed K

    2004-07-01

    Digital video now plays an important role in medical education, health care, telemedicine and other medical applications. Several content-based video retrieval (CBVR) systems have been proposed in the past, but they still suffer from the following challenging problems: semantic gap, semantic video concept modeling, semantic video classification, and concept-oriented video database indexing and access. In this paper, we propose a novel framework to make some advances toward the final goal to solve these problems. Specifically, the framework includes: 1) a semantic-sensitive video content representation framework by using principal video shots to enhance the quality of features; 2) semantic video concept interpretation by using flexible mixture model to bridge the semantic gap; 3) a novel semantic video-classifier training framework by integrating feature selection, parameter estimation, and model selection seamlessly in a single algorithm; and 4) a concept-oriented video database organization technique through a certain domain-dependent concept hierarchy to enable semantic-sensitive video retrieval and browsing.

  6. Effect of episodic and working memory impairments on semantic and cognitive procedural learning at alcohol treatment entry.

    PubMed

    Pitel, Anne Lise; Witkowski, Thomas; Vabret, François; Guillery-Girard, Bérengère; Desgranges, Béatrice; Eustache, Francis; Beaunieux, Hélène

    2007-02-01

    Chronic alcoholism is known to impair the functioning of episodic and working memory, which may consequently reduce the ability to learn complex novel information. Nevertheless, semantic and cognitive procedural learning have not been properly explored at alcohol treatment entry, despite its potential clinical relevance. The goal of the present study was therefore to determine whether alcoholic patients, immediately after the weaning phase, are cognitively able to acquire complex new knowledge, given their episodic and working memory deficits. Twenty alcoholic inpatients with episodic memory and working memory deficits at alcohol treatment entry and a control group of 20 healthy subjects underwent a protocol of semantic acquisition and cognitive procedural learning. The semantic learning task consisted of the acquisition of 10 novel concepts, while subjects were administered the Tower of Toronto task to measure cognitive procedural learning. Analyses showed that although alcoholic subjects were able to acquire the category and features of the semantic concepts, albeit slowly, they presented impaired label learning. In the control group, executive functions and episodic memory predicted semantic learning in the first and second halves of the protocol, respectively. In addition to the cognitive processes involved in the learning strategies invoked by controls, alcoholic subjects seem to attempt to compensate for their impaired cognitive functions, invoking capacities of short-term passive storage. Regarding cognitive procedural learning, although the patients eventually achieved the same results as the controls, they failed to automate the procedure. Contrary to the control group, the alcoholic groups' learning performance was predicted by controlled cognitive functions throughout the protocol. At alcohol treatment entry, alcoholic patients with neuropsychological deficits have difficulty acquiring novel semantic and cognitive procedural knowledge. Compared with

  7. Competencies in Organizational E-Learning: Concepts and Tools

    ERIC Educational Resources Information Center

    Sicilia, Miguel-Angel, Ed.

    2007-01-01

    "Competencies in Organizational E-Learning: Concepts and Tools" provides a comprehensive view of the way competencies can be used to drive organizational e-learning, including the main conceptual elements, competency gap analysis, advanced related computing topics, the application of semantic Web technologies, and the integration of competencies…

  8. Learning semantic histopathological representation for basal cell carcinoma classification

    NASA Astrophysics Data System (ADS)

    Gutiérrez, Ricardo; Rueda, Andrea; Romero, Eduardo

    2013-03-01

    Diagnosis of a histopathology glass slide is a complex process that involves accurate recognition of several structures, their function in the tissue and their relation with other structures. The way in which the pathologist represents the image content and the relations between those objects yields a better and accurate diagnoses. Therefore, an appropriate semantic representation of the image content will be useful in several analysis tasks such as cancer classification, tissue retrieval and histopahological image analysis, among others. Nevertheless, to automatically recognize those structures and extract their inner semantic meaning are still very challenging tasks. In this paper we introduce a new semantic representation that allows to describe histopathological concepts suitable for classification. The approach herein identify local concepts using a dictionary learning approach, i.e., the algorithm learns the most representative atoms from a set of random sampled patches, and then models the spatial relations among them by counting the co-occurrence between atoms, while penalizing the spatial distance. The proposed approach was compared with a bag-of-features representation in a tissue classification task. For this purpose, 240 histological microscopical fields of view, 24 per tissue class, were collected. Those images fed a Support Vector Machine classifier per class, using 120 images as train set and the remaining ones for testing, maintaining the same proportion of each concept in the train and test sets. The obtained classification results, averaged from 100 random partitions of training and test sets, shows that our approach is more sensitive in average than the bag-of-features representation in almost 6%.

  9. How Do Korsakoff Patients Learn New Concepts?

    ERIC Educational Resources Information Center

    Pitel, Anne Lise; Beaunieux, Helene; Guillery-Girard, Berengere; Witkowski, Thomas; de la Sayette, Vincent; Viader, Fausto; Desgranges, Beatrice; Eustache, Francis

    2009-01-01

    The goal of the present investigation was to assess semantic learning in Korsakoff patients (KS), compared with uncomplicated alcoholics (AL) and control subjects (CS), taking the nature of the information to-be-learned and the episodic memory profiles of the three groups into account. Ten new complex concepts, each illustrated by a photo and…

  10. RuleML-Based Learning Object Interoperability on the Semantic Web

    ERIC Educational Resources Information Center

    Biletskiy, Yevgen; Boley, Harold; Ranganathan, Girish R.

    2008-01-01

    Purpose: The present paper aims to describe an approach for building the Semantic Web rules for interoperation between heterogeneous learning objects, namely course outlines from different universities, and one of the rule uses: identifying (in)compatibilities between course descriptions. Design/methodology/approach: As proof of concept, a rule…

  11. Phonological learning in semantic dementia.

    PubMed

    Jefferies, Elizabeth; Bott, Samantha; Ehsan, Sheeba; Lambon Ralph, Matthew A

    2011-04-01

    Patients with semantic dementia (SD) have anterior temporal lobe (ATL) atrophy that gives rise to a highly selective deterioration of semantic knowledge. Despite pronounced anomia and poor comprehension of words and pictures, SD patients have well-formed, fluent speech and normal digit span. Given the intimate connection between phonological STM and word learning revealed by both neuropsychological and developmental studies, SD patients might be expected to show good acquisition of new phonological forms, even though their ability to map these onto meanings is impaired. In contradiction of these predictions, a limited amount of previous research has found poor learning of new phonological forms in SD. In a series of experiments, we examined whether SD patient, GE, could learn novel phonological sequences and, if so, under which circumstances. GE showed normal benefits of phonological knowledge in STM (i.e., normal phonotactic frequency and phonological similarity effects) but reduced support from semantic memory (i.e., poor immediate serial recall for semantically degraded words, characterised by frequent item errors). Next, we demonstrated normal learning of serial order information for repeated lists of single-digit number words using the Hebb paradigm: these items were well-understood allowing them to be repeated without frequent item errors. In contrast, patient GE showed little learning of nonsense syllable sequences using the same Hebb paradigm. Detailed analysis revealed that both GE and the controls showed a tendency to learn their own errors as opposed to the target items. Finally, we showed normal learning of phonological sequences for GE when he was prevented from repeating his errors. These findings confirm that the ATL atrophy in SD disrupts phonological processing for semantically degraded words but leaves the phonological architecture intact. Consequently, when item errors are minimised, phonological STM can support the acquisition of new phoneme

  12. Semantic Mappings and Locality of Nursing Diagnostic Concepts in UMLS

    PubMed Central

    Kim, Tae Youn; Coenen, Amy; Hardiker, Nicholas

    2011-01-01

    One solution for enhancing the interoperability between nursing information systems, given the availability of multiple nursing terminologies, is to cross-map existing nursing concepts. The Unified Medical Language System (UMLS) developed and distributed by the National Library of Medicine (NLM) is a knowledge resource containing cross-mappings of various terminologies in a unified framework. While the knowledge resource has been available for the last two decades, little research on the representation of nursing terminologies in UMLS has been conducted. As a first step, UMLS semantic mappings and concept locality were examined for nursing diagnostic concepts or problems selected from three terminologies (i.e., CCC, ICNP, and NANDA-I) along with corresponding SNOMED CT concepts. The evaluation of UMLS semantic mappings was conducted by measuring the proportion of concordance between UMLS and human expert mappings. The semantic locality of nursing diagnostic concepts was assessed by examining the associations of select concepts and the placement of the nursing concepts on the Semantic Network and Group. The study found that the UMLS mappings of CCC and NANDA-I concepts to SNOMED CT were highly concordant to expert mappings. The level of concordance in mappings of ICNP to SNOMED CT, CCC and NANDA-I within UMLS was relatively low, indicating the need for further research and development. Likewise, the semantic locality of ICNP concepts could be further improved. Various stakeholders need to collaborate to enhance the NLM knowledge resource and the interoperability of nursing data within the discipline as well as across health-related disciplines. PMID:21951759

  13. Implicit Learning of Semantic Preferences of Verbs

    ERIC Educational Resources Information Center

    Paciorek, Albertyna; Williams, John N.

    2015-01-01

    Previous studies of semantic implicit learning in language have only examined learning grammatical form-meaning connections in which learning could have been supported by prior linguistic knowledge. In this study we target the domain of verb meaning, specifically semantic preferences regarding novel verbs (e.g., the preference for a novel verb to…

  14. Spanish semantic feature production norms for 400 concrete concepts.

    PubMed

    Vivas, Jorge; Vivas, Leticia; Comesaña, Ana; Coni, Ana García; Vorano, Agostina

    2017-06-01

    Semantic feature production norms provide many quantitative measures of different feature and concept variables that are necessary to solve some debates surrounding the nature of the organization, both normal and pathological, of semantic memory. Despite the current existence of norms for different languages, there are still no published norms in Spanish. This article presents a new set of norms collected from 810 participants for 400 living and nonliving concepts among Spanish speakers. These norms consist of empirical collections of features that participants used to describe the concepts. Four files were elaborated: a concept-feature file, a concept-concept matrix, a feature-feature matrix, and a significantly correlated features file. We expect that these norms will be useful for researchers in the fields of experimental psychology, neuropsychology, and psycholinguistics.

  15. Contextual Processing of Abstract Concepts Reveals Neural Representations of Non-Linguistic Semantic Content

    PubMed Central

    Wilson-Mendenhall, Christine D.; Simmons, W. Kyle; Martin, Alex; Barsalou, Lawrence W.

    2014-01-01

    Concepts develop for many aspects of experience, including abstract internal states and abstract social activities that do not refer to concrete entities in the world. The current study assessed the hypothesis that, like concrete concepts, distributed neural patterns of relevant, non-linguistic semantic content represent the meanings of abstract concepts. In a novel neuroimaging paradigm, participants processed two abstract concepts (convince, arithmetic) and two concrete concepts (rolling, red) deeply and repeatedly during a concept-scene matching task that grounded each concept in typical contexts. Using a catch trial design, neural activity associated with each concept word was separated from neural activity associated with subsequent visual scenes to assess activations underlying the detailed semantics of each concept. We predicted that brain regions underlying mentalizing and social cognition (e.g., medial prefrontal cortex, superior temporal sulcus) would become active to represent semantic content central to convince, whereas brain regions underlying numerical cognition (e.g., bilateral intraparietal sulcus) would become active to represent semantic content central to arithmetic. The results supported these predictions, suggesting that the meanings of abstract concepts arise from distributed neural systems that represent concept-specific content. PMID:23363408

  16. Episodic representations support early semantic learning: evidence from midazolam induced amnesia.

    PubMed

    Merritt, Paul; Hirshman, Elliot; Zamani, Shane; Hsu, John; Berrigan, Michael

    2006-07-01

    Current controversy exists regarding the role of episodic representations in the formation of long-term semantic memories. Using the drug midazolam to induce temporary amnesia we tested participants' memories for newly learned facts in a semantic cue condition or an episodic and semantic cue condition. Following midazolam administration, memory performance was superior in the episodic and semantic condition, suggesting early semantic learning is supported by episodic representations.

  17. Semantic Learning Modifies Perceptual Face Processing

    ERIC Educational Resources Information Center

    Heisz, Jennifer J.; Shedden, Judith M.

    2009-01-01

    Face processing changes when a face is learned with personally relevant information. In a five-day learning paradigm, faces were presented with rich semantic stories that conveyed personal information about the faces. Event-related potentials were recorded before and after learning during a passive viewing task. When faces were novel, we observed…

  18. Learning the Semantics of Structured Data Sources

    ERIC Educational Resources Information Center

    Taheriyan, Mohsen

    2015-01-01

    Information sources such as relational databases, spreadsheets, XML, JSON, and Web APIs contain a tremendous amount of structured data, however, they rarely provide a semantic model to describe their contents. Semantic models of data sources capture the intended meaning of data sources by mapping them to the concepts and relationships defined by a…

  19. Designing learning management system interoperability in semantic web

    NASA Astrophysics Data System (ADS)

    Anistyasari, Y.; Sarno, R.; Rochmawati, N.

    2018-01-01

    The extensive adoption of learning management system (LMS) has set the focus on the interoperability requirement. Interoperability is the ability of different computer systems, applications or services to communicate, share and exchange data, information, and knowledge in a precise, effective and consistent way. Semantic web technology and the use of ontologies are able to provide the required computational semantics and interoperability for the automation of tasks in LMS. The purpose of this study is to design learning management system interoperability in the semantic web which currently has not been investigated deeply. Moodle is utilized to design the interoperability. Several database tables of Moodle are enhanced and some features are added. The semantic web interoperability is provided by exploited ontology in content materials. The ontology is further utilized as a searching tool to match user’s queries and available courses. It is concluded that LMS interoperability in Semantic Web is possible to be performed.

  20. Semantic Richness and Word Learning in Children with Autism Spectrum Disorder

    ERIC Educational Resources Information Center

    Gladfelter, Allison; Goffman, Lisa

    2018-01-01

    Semantically rich learning contexts facilitate semantic, phonological, and articulatory aspects of word learning in children with typical development (TD). However, because children with autism spectrum disorder (ASD) show differences at each of these processing levels, it is unclear whether they will benefit from semantic cues in the same manner…

  1. The Role of Simple Semantics in the Process of Artificial Grammar Learning.

    PubMed

    Öttl, Birgit; Jäger, Gerhard; Kaup, Barbara

    2017-10-01

    This study investigated the effect of semantic information on artificial grammar learning (AGL). Recursive grammars of different complexity levels (regular language, mirror language, copy language) were investigated in a series of AGL experiments. In the with-semantics condition, participants acquired semantic information prior to the AGL experiment; in the without-semantics control condition, participants did not receive semantic information. It was hypothesized that semantics would generally facilitate grammar acquisition and that the learning benefit in the with-semantics conditions would increase with increasing grammar complexity. Experiment 1 showed learning effects for all grammars but no performance difference between conditions. Experiment 2 replicated the absence of a semantic benefit for all grammars even though semantic information was more prominent during grammar acquisition as compared to Experiment 1. Thus, we did not find evidence for the idea that semantics facilitates grammar acquisition, which seems to support the view of an independent syntactic processing component.

  2. Semantic Web, Reusable Learning Objects, Personal Learning Networks in Health: Key Pieces for Digital Health Literacy.

    PubMed

    Konstantinidis, Stathis Th; Wharrad, Heather; Windle, Richard; Bamidis, Panagiotis D

    2017-01-01

    The knowledge existing in the World Wide Web is exponentially expanding, while continuous advancements in health sciences contribute to the creation of new knowledge. There are a lot of efforts trying to identify how the social connectivity can endorse patients' empowerment, while other studies look at the identification and the quality of online materials. However, emphasis has not been put on the big picture of connecting the existing resources with the patients "new habits" of learning through their own Personal Learning Networks. In this paper we propose a framework for empowering patients' digital health literacy adjusted to patients' currents needs by utilizing the contemporary way of learning through Personal Learning Networks, existing high quality learning resources and semantics technologies for interconnecting knowledge pieces. The framework based on the concept of knowledge maps for health as defined in this paper. Health Digital Literacy needs definitely further enhancement and the use of the proposed concept might lead to useful tools which enable use of understandable health trusted resources tailored to each person needs.

  3. Getting connected: Both associative and semantic links structure semantic memory for newly learned persons.

    PubMed

    Wiese, Holger; Schweinberger, Stefan R

    2015-01-01

    The present study examined whether semantic memory for newly learned people is structured by visual co-occurrence, shared semantics, or both. Participants were trained with pairs of simultaneously presented (i.e., co-occurring) preexperimentally unfamiliar faces, which either did or did not share additionally provided semantic information (occupation, place of living, etc.). Semantic information could also be shared between faces that did not co-occur. A subsequent priming experiment revealed faster responses for both co-occurrence/no shared semantics and no co-occurrence/shared semantics conditions, than for an unrelated condition. Strikingly, priming was strongest in the co-occurrence/shared semantics condition, suggesting additive effects of these factors. Additional analysis of event-related brain potentials yielded priming in the N400 component only for combined effects of visual co-occurrence and shared semantics, with more positive amplitudes in this than in the unrelated condition. Overall, these findings suggest that both semantic relatedness and visual co-occurrence are important when novel information is integrated into person-related semantic memory.

  4. Long-lasting perceptual priming and semantic learning in amnesia: a case experiment.

    PubMed

    Tulving, E; Hayman, C A; Macdonald, C A

    1991-07-01

    An investigation of perceptual priming and semantic learning in the severely amnesic subject K.C. is reported. He was taught 64 three-word sentences and tested for his ability to produce the final word of each sentence. Despite a total lack of episodic memory, he exhibited (a) strong perceptual priming effects in word-fragment completion, which were retained essentially in full strength for 12 months, and (b) independent of perceptual priming, learning of new semantic facts, many of which were also retained for 12 months. K.C.'s semantic learning may be at least partly attributable to repeated study trials and minimal interference during learning. The findings suggest that perceptual priming and semantic learning are subserved by two memory systems different from episodic memory and that both systems (perceptual representation and semantic memory) are at least partially preserved in some amnesic subjects.

  5. Speaking two "Languages" in America: A semantic space analysis of how presidential candidates and their supporters represent abstract political concepts differently.

    PubMed

    Li, Ping; Schloss, Benjamin; Follmer, D Jake

    2017-10-01

    In this article we report a computational semantic analysis of the presidential candidates' speeches in the two major political parties in the USA. In Study One, we modeled the political semantic spaces as a function of party, candidate, and time of election, and findings revealed patterns of differences in the semantic representation of key political concepts and the changing landscapes in which the presidential candidates align or misalign with their parties in terms of the representation and organization of politically central concepts. Our models further showed that the 2016 US presidential nominees had distinct conceptual representations from those of previous election years, and these patterns did not necessarily align with their respective political parties' average representation of the key political concepts. In Study Two, structural equation modeling demonstrated that reported political engagement among voters differentially predicted reported likelihoods of voting for Clinton versus Trump in the 2016 presidential election. Study Three indicated that Republicans and Democrats showed distinct, systematic word association patterns for the same concepts/terms, which could be reliably distinguished using machine learning methods. These studies suggest that given an individual's political beliefs, we can make reliable predictions about how they understand words, and given how an individual understands those same words, we can also predict an individual's political beliefs. Our study provides a bridge between semantic space models and abstract representations of political concepts on the one hand, and the representations of political concepts and citizens' voting behavior on the other.

  6. Lesion Detection in CT Images Using Deep Learning Semantic Segmentation Technique

    NASA Astrophysics Data System (ADS)

    Kalinovsky, A.; Liauchuk, V.; Tarasau, A.

    2017-05-01

    In this paper, the problem of automatic detection of tuberculosis lesion on 3D lung CT images is considered as a benchmark for testing out algorithms based on a modern concept of Deep Learning. For training and testing of the algorithms a domestic dataset of 338 3D CT scans of tuberculosis patients with manually labelled lesions was used. The algorithms which are based on using Deep Convolutional Networks were implemented and applied in three different ways including slice-wise lesion detection in 2D images using semantic segmentation, slice-wise lesion detection in 2D images using sliding window technique as well as straightforward detection of lesions via semantic segmentation in whole 3D CT scans. The algorithms demonstrate superior performance compared to algorithms based on conventional image analysis methods.

  7. Semantic Processing of Living and Nonliving Concepts across the Cerebral Hemispheres

    ERIC Educational Resources Information Center

    Pilgrim, L.K.; Moss, H.E.; Tyler, L.K.

    2005-01-01

    Studies of patients with category-specific semantic deficits suggest that the right and left cerebral hemispheres may be differently involved in the processing of living and nonliving domains concepts. In this study, we investigate whether there are hemisphere differences in the semantic processing of these domains in healthy volunteers. Based on…

  8. Intelligent Learning Infrastructure for Knowledge Intensive Organizations: A Semantic Web Perspective

    ERIC Educational Resources Information Center

    Lytras, Miltiadis, Ed.; Naeve, Ambjorn, Ed.

    2005-01-01

    In the context of Knowledge Society, the convergence of knowledge and learning management is a critical milestone. "Intelligent Learning Infrastructure for Knowledge Intensive Organizations: A Semantic Web Perspective" provides state-of-the art knowledge through a balanced theoretical and technological discussion. The semantic web perspective…

  9. Minimizing the semantic gap in biomedical content-based image retrieval

    NASA Astrophysics Data System (ADS)

    Guan, Haiying; Antani, Sameer; Long, L. Rodney; Thoma, George R.

    2010-03-01

    A major challenge in biomedical Content-Based Image Retrieval (CBIR) is to achieve meaningful mappings that minimize the semantic gap between the high-level biomedical semantic concepts and the low-level visual features in images. This paper presents a comprehensive learning-based scheme toward meeting this challenge and improving retrieval quality. The article presents two algorithms: a learning-based feature selection and fusion algorithm and the Ranking Support Vector Machine (Ranking SVM) algorithm. The feature selection algorithm aims to select 'good' features and fuse them using different similarity measurements to provide a better representation of the high-level concepts with the low-level image features. Ranking SVM is applied to learn the retrieval rank function and associate the selected low-level features with query concepts, given the ground-truth ranking of the training samples. The proposed scheme addresses four major issues in CBIR to improve the retrieval accuracy: image feature extraction, selection and fusion, similarity measurements, the association of the low-level features with high-level concepts, and the generation of the rank function to support high-level semantic image retrieval. It models the relationship between semantic concepts and image features, and enables retrieval at the semantic level. We apply it to the problem of vertebra shape retrieval from a digitized spine x-ray image set collected by the second National Health and Nutrition Examination Survey (NHANES II). The experimental results show an improvement of up to 41.92% in the mean average precision (MAP) over conventional image similarity computation methods.

  10. E-Learning System Overview Based on Semantic Web

    ERIC Educational Resources Information Center

    Alsultanny, Yas A.

    2006-01-01

    The challenge of the semantic web is the provision of distributed information with well-defined meaning, understandable for different parties. e-Learning is efficient task relevant and just-in-time learning grown from the learning requirements of the new dynamically changing, distributed business world. In this paper we design an e-Learning system…

  11. ELE: An Ontology-Based System Integrating Semantic Search and E-Learning Technologies

    ERIC Educational Resources Information Center

    Barbagallo, A.; Formica, A.

    2017-01-01

    ELSE (E-Learning for the Semantic ECM) is an ontology-based system which integrates semantic search methodologies and e-learning technologies. It has been developed within a project of the CME (Continuing Medical Education) program--ECM (Educazione Continua nella Medicina) for Italian participants. ELSE allows the creation of e-learning courses…

  12. LEARNING SEMANTICS-ENHANCED LANGUAGE MODELS APPLIED TO UNSUEPRVISED WSD

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    VERSPOOR, KARIN; LIN, SHOU-DE

    An N-gram language model aims at capturing statistical syntactic word order information from corpora. Although the concept of language models has been applied extensively to handle a variety of NLP problems with reasonable success, the standard model does not incorporate semantic information, and consequently limits its applicability to semantic problems such as word sense disambiguation. We propose a framework that integrates semantic information into the language model schema, allowing a system to exploit both syntactic and semantic information to address NLP problems. Furthermore, acknowledging the limited availability of semantically annotated data, we discuss how the proposed model can be learnedmore » without annotated training examples. Finally, we report on a case study showing how the semantics-enhanced language model can be applied to unsupervised word sense disambiguation with promising results.« less

  13. Autobiographically significant concepts: more episodic than semantic in nature? An electrophysiological investigation of overlapping types of memory.

    PubMed

    Renoult, Louis; Davidson, Patrick S R; Schmitz, Erika; Park, Lillian; Campbell, Kenneth; Moscovitch, Morris; Levine, Brian

    2015-01-01

    A common assertion is that semantic memory emerges from episodic memory, shedding the distinctive contexts associated with episodes over time and/or repeated instances. Some semantic concepts, however, may retain their episodic origins or acquire episodic information during life experiences. The current study examined this hypothesis by investigating the ERP correlates of autobiographically significant (AS) concepts, that is, semantic concepts that are associated with vivid episodic memories. We inferred the contribution of semantic and episodic memory to AS concepts using the amplitudes of the N400 and late positive component, respectively. We compared famous names that easily brought to mind episodic memories (high AS names) against equally famous names that did not bring such recollections to mind (low AS names) on a semantic task (fame judgment) and an episodic task (recognition memory). Compared with low AS names, high AS names were associated with increased amplitude of the late positive component in both tasks. Moreover, in the recognition task, this effect of AS was highly correlated with recognition confidence. In contrast, the N400 component did not differentiate the high versus low AS names but, instead, was related to the amount of general knowledge participants had regarding each name. These results suggest that semantic concepts high in AS, such as famous names, have an episodic component and are associated with similar brain processes to those that are engaged by episodic memory. Studying AS concepts may provide unique insights into how episodic and semantic memory interact.

  14. Implicit Word Learning Benefits from Semantic Richness: Electrophysiological and Behavioral Evidence

    ERIC Educational Resources Information Center

    Rabovsky, Milena; Sommer, Werner; Abdel Rahman, Rasha

    2012-01-01

    Words differ considerably in the amount of associated semantic information. Despite the crucial role of meaning in language, it is still unclear whether and how this variability modulates language learning. Here, we provide initial evidence demonstrating that implicit learning in repetition priming is influenced by the amount of semantic features…

  15. The semantic pathfinder: using an authoring metaphor for generic multimedia indexing.

    PubMed

    Snoek, Cees G M; Worring, Marcel; Geusebroek, Jan-Mark; Koelma, Dennis C; Seinstra, Frank J; Smeulders, Arnold W M

    2006-10-01

    This paper presents the semantic pathfinder architecture for generic indexing of multimedia archives. The semantic pathfinder extracts semantic concepts from video by exploring different paths through three consecutive analysis steps, which we derive from the observation that produced video is the result of an authoring-driven process. We exploit this authoring metaphor for machine-driven understanding. The pathfinder starts with the content analysis step. In this analysis step, we follow a data-driven approach of indexing semantics. The style analysis step is the second analysis step. Here, we tackle the indexing problem by viewing a video from the perspective of production. Finally, in the context analysis step, we view semantics in context. The virtue of the semantic pathfinder is its ability to learn the best path of analysis steps on a per-concept basis. To show the generality of this novel indexing approach, we develop detectors for a lexicon of 32 concepts and we evaluate the semantic pathfinder against the 2004 NIST TRECVID video retrieval benchmark, using a news archive of 64 hours. Top ranking performance in the semantic concept detection task indicates the merit of the semantic pathfinder for generic indexing of multimedia archives.

  16. Semantic size of abstract concepts: it gets emotional when you can't see it.

    PubMed

    Yao, Bo; Vasiljevic, Milica; Weick, Mario; Sereno, Margaret E; O'Donnell, Patrick J; Sereno, Sara C

    2013-01-01

    Size is an important visuo-spatial characteristic of the physical world. In language processing, previous research has demonstrated a processing advantage for words denoting semantically "big" (e.g., jungle) versus "small" (e.g., needle) concrete objects. We investigated whether semantic size plays a role in the recognition of words expressing abstract concepts (e.g., truth). Semantically "big" and "small" concrete and abstract words were presented in a lexical decision task. Responses to "big" words, regardless of their concreteness, were faster than those to "small" words. Critically, we explored the relationship between semantic size and affective characteristics of words as well as their influence on lexical access. Although a word's semantic size was correlated with its emotional arousal, the temporal locus of arousal effects may depend on the level of concreteness. That is, arousal seemed to have an earlier (lexical) effect on abstract words, but a later (post-lexical) effect on concrete words. Our findings provide novel insights into the semantic representations of size in abstract concepts and highlight that affective attributes of words may not always index lexical access.

  17. Meaningful Memory in Acute Anorexia Nervosa Patients-Comparing Recall, Learning, and Recognition of Semantically Related and Semantically Unrelated Word Stimuli.

    PubMed

    Terhoeven, Valentin; Kallen, Ursula; Ingenerf, Katrin; Aschenbrenner, Steffen; Weisbrod, Matthias; Herzog, Wolfgang; Brockmeyer, Timo; Friederich, Hans-Christoph; Nikendei, Christoph

    2017-03-01

    It is unclear whether observed memory impairment in anorexia nervosa (AN) depends on the semantic structure (categorized words) of material to be encoded. We aimed to investigate the processing of semantically related information in AN. Memory performance was assessed in a recall, learning, and recognition test in 27 adult women with AN (19 restricting, 8 binge-eating/purging subtype; average disease duration: 9.32 years) and 30 healthy controls using an extended version of the Rey Auditory Verbal Learning Test, applying semantically related and unrelated word stimuli. Short-term memory (immediate recall, learning), regardless of semantics of the words, was significantly worse in AN patients, whereas long-term memory (delayed recall, recognition) did not differ between AN patients and controls. Semantics of stimuli do not have a better effect on memory recall in AN compared to CO. Impaired short-term versus long-term memory is discussed in relation to dysfunctional working memory in AN. Copyright © 2016 John Wiley & Sons, Ltd and Eating Disorders Association. Copyright © 2016 John Wiley & Sons, Ltd and Eating Disorders Association.

  18. Episodic Representations Support Early Semantic Learning: Evidence from Midazolam Induced Amnesia

    ERIC Educational Resources Information Center

    Merritt, Paul; Hirshman, Elliot; Zamani, Shane; Hsu, John; Berrigan, Michael

    2006-01-01

    Current controversy exists regarding the role of episodic representations in the formation of long-term semantic memories. Using the drug "midazolam" to induce temporary amnesia we tested participants' memories for newly learned facts in a semantic cue condition or an episodic and semantic cue condition. Following midazolam administration, memory…

  19. A Research on E - learning Resources Construction Based on Semantic Web

    NASA Astrophysics Data System (ADS)

    Rui, Liu; Maode, Deng

    Traditional e-learning platforms have the flaws that it's usually difficult to query or positioning, and realize the cross platform sharing and interoperability. In the paper, the semantic web and metadata standard is discussed, and a kind of e - learning system framework based on semantic web is put forward to try to solve the flaws of traditional elearning platforms.

  20. Semi-Supervised Learning to Identify UMLS Semantic Relations.

    PubMed

    Luo, Yuan; Uzuner, Ozlem

    2014-01-01

    The UMLS Semantic Network is constructed by experts and requires periodic expert review to update. We propose and implement a semi-supervised approach for automatically identifying UMLS semantic relations from narrative text in PubMed. Our method analyzes biomedical narrative text to collect semantic entity pairs, and extracts multiple semantic, syntactic and orthographic features for the collected pairs. We experiment with seeded k-means clustering with various distance metrics. We create and annotate a ground truth corpus according to the top two levels of the UMLS semantic relation hierarchy. We evaluate our system on this corpus and characterize the learning curves of different clustering configuration. Using KL divergence consistently performs the best on the held-out test data. With full seeding, we obtain macro-averaged F-measures above 70% for clustering the top level UMLS relations (2-way), and above 50% for clustering the second level relations (7-way).

  1. CONCEPT LEARNING AND CONCEPT TEACHING.

    ERIC Educational Resources Information Center

    GLASER, ROBERT

    REVIEWED ARE THE PSYCHOLOGICAL STUDIES OF CONCEPT LEARNING AS THEY RELATE TO CONCEPT TEACHING. AN ANALYSIS IS MADE OF THE NATURE OF CONCEPT LEARNING AS IT IS STUDIED IN THE PSYCHOLOGIST'S LABORATORY, INCLUDING THE NATURE OF CONCEPT TASKS AS THEY APPEAR IN SUBJECT MATTER LEARNING. THE PRIMARY KINDS OF CONCEPT LEARNING SITUATIONS, INCLUDING THE…

  2. Automatic event recognition and anomaly detection with attribute grammar by learning scene semantics

    NASA Astrophysics Data System (ADS)

    Qi, Lin; Yao, Zhenyu; Li, Li; Dong, Junyu

    2007-11-01

    In this paper we present a novel framework for automatic event recognition and abnormal behavior detection with attribute grammar by learning scene semantics. This framework combines learning scene semantics by trajectory analysis and constructing attribute grammar-based event representation. The scene and event information is learned automatically. Abnormal behaviors that disobey scene semantics or event grammars rules are detected. By this method, an approach to understanding video scenes is achieved. Further more, with this prior knowledge, the accuracy of abnormal event detection is increased.

  3. Semantic Size of Abstract Concepts: It Gets Emotional When You Can’t See It

    PubMed Central

    Yao, Bo; Vasiljevic, Milica; Weick, Mario; Sereno, Margaret E.; O’Donnell, Patrick J.; Sereno, Sara C.

    2013-01-01

    Size is an important visuo-spatial characteristic of the physical world. In language processing, previous research has demonstrated a processing advantage for words denoting semantically “big” (e.g., jungle) versus “small” (e.g., needle) concrete objects. We investigated whether semantic size plays a role in the recognition of words expressing abstract concepts (e.g., truth). Semantically “big” and “small” concrete and abstract words were presented in a lexical decision task. Responses to “big” words, regardless of their concreteness, were faster than those to “small” words. Critically, we explored the relationship between semantic size and affective characteristics of words as well as their influence on lexical access. Although a word’s semantic size was correlated with its emotional arousal, the temporal locus of arousal effects may depend on the level of concreteness. That is, arousal seemed to have an earlier (lexical) effect on abstract words, but a later (post-lexical) effect on concrete words. Our findings provide novel insights into the semantic representations of size in abstract concepts and highlight that affective attributes of words may not always index lexical access. PMID:24086421

  4. Real Time Filtering of Tweets Using Wikipedia Concepts and Google Tri-gram Semantic Relatedness

    DTIC Science & Technology

    2015-11-20

    Real Time Filtering of Tweets Using Wikipedia Concepts and Google Tri-gram Semantic Relatedness Anh Dang1, Raheleh Makki1, Abidalrahman Moh’d1...of a topic that the user is interested in receiving relevant posts in real-time. Our proposed approach extracts Wikipedia concepts for profiles and...group name “DALTREC”. Our proposed approach for this year’s filtering task is based on using Wikipedia and Google Trigram for calculating the semantic

  5. Biologically Inspired Model for Visual Cognition Achieving Unsupervised Episodic and Semantic Feature Learning.

    PubMed

    Qiao, Hong; Li, Yinlin; Li, Fengfu; Xi, Xuanyang; Wu, Wei

    2016-10-01

    Recently, many biologically inspired visual computational models have been proposed. The design of these models follows the related biological mechanisms and structures, and these models provide new solutions for visual recognition tasks. In this paper, based on the recent biological evidence, we propose a framework to mimic the active and dynamic learning and recognition process of the primate visual cortex. From principle point of view, the main contributions are that the framework can achieve unsupervised learning of episodic features (including key components and their spatial relations) and semantic features (semantic descriptions of the key components), which support higher level cognition of an object. From performance point of view, the advantages of the framework are as follows: 1) learning episodic features without supervision-for a class of objects without a prior knowledge, the key components, their spatial relations and cover regions can be learned automatically through a deep neural network (DNN); 2) learning semantic features based on episodic features-within the cover regions of the key components, the semantic geometrical values of these components can be computed based on contour detection; 3) forming the general knowledge of a class of objects-the general knowledge of a class of objects can be formed, mainly including the key components, their spatial relations and average semantic values, which is a concise description of the class; and 4) achieving higher level cognition and dynamic updating-for a test image, the model can achieve classification and subclass semantic descriptions. And the test samples with high confidence are selected to dynamically update the whole model. Experiments are conducted on face images, and a good performance is achieved in each layer of the DNN and the semantic description learning process. Furthermore, the model can be generalized to recognition tasks of other objects with learning ability.

  6. Hypermedia-Assisted Instruction and Second Language Learning: A Semantic-Network-Based Approach.

    ERIC Educational Resources Information Center

    Liu, Min

    This literature review examines a hypermedia learning environment from a semantic network basis and the application of such an environment to second language learning. (A semantic network is defined as a conceptual representation of knowledge in human memory). The discussion is organized under the following headings and subheadings: (1) Advantages…

  7. Linked Forests: Semantic similarity of geographical concepts "forest"

    NASA Astrophysics Data System (ADS)

    Čerba, Otakar; Jedlička, Karel

    2016-01-01

    Linked Data represents the new trend in geoinformatics and geomatics. It produces a structure of objects (in a form of concepts or terms) interconnected by object relations expressing a type of semantic relationships of various concepts. The research published in this article studies, if objects connected by above mentioned relations are more similar than objects representing the same phenomenon, but standing alone. The phenomenon "forest" and relevant geographical concepts were chosen as the domain of the research. The concepts similarity (Tanimoto coefficient as a specification of Tversky index) was computed on the basis of explicit information provided by thesauri containing particular concepts. Overall in the seven thesauri (AGROVOC, EuroVoc, GEMET, LusTRE/EARTh, NAL, OECD and STW) there was tested if the "forest" concept interconnected by the relation skos:exactMatch are more similar than other, not interlinked concepts. The results of the research are important for the sharing and combining of geographical data, information and knowledge. The proposed methodology can be reused to a comparison of other geographical concepts.

  8. The Role of Simple Semantics in the Process of Artificial Grammar Learning

    ERIC Educational Resources Information Center

    Öttl, Birgit; Jäger, Gerhard; Kaup, Barbara

    2017-01-01

    This study investigated the effect of semantic information on artificial grammar learning (AGL). Recursive grammars of different complexity levels (regular language, mirror language, copy language) were investigated in a series of AGL experiments. In the with-semantics condition, participants acquired semantic information prior to the AGL…

  9. A Learning Content Authoring Approach Based on Semantic Technologies and Social Networking: An Empirical Study

    ERIC Educational Resources Information Center

    Nesic, Sasa; Gasevic, Dragan; Jazayeri, Mehdi; Landoni, Monica

    2011-01-01

    Semantic web technologies have been applied to many aspects of learning content authoring including semantic annotation, semantic search, dynamic assembly, and personalization of learning content. At the same time, social networking services have started to play an important role in the authoring process by supporting authors' collaborative…

  10. Semantic domain-specific functional integration for action-related vs. abstract concepts.

    PubMed

    Ghio, Marta; Tettamanti, Marco

    2010-03-01

    A central topic in cognitive neuroscience concerns the representation of concepts and the specific neural mechanisms that mediate conceptual knowledge. Recently proposed modal theories assert that concepts are grounded on the integration of multimodal, distributed representations. The aim of the present work is to complement the available neuropsychological and neuroimaging evidence suggesting partially segregated anatomo-functional correlates for concrete vs. abstract concepts, by directly testing the semantic domain-specific patterns of functional integration between language and modal semantic brain regions. We report evidence from a functional magnetic resonance imaging study, in which healthy participants listened to sentences with either an action-related (actions involving physical entities) or an abstract (no physical entities involved) content. We measured functional integration using dynamic causal modeling, and found that the left superior temporal gyrus was more strongly connected: (1) for action-related vs. abstract sentences, with the left-hemispheric action representation system, including sensorimotor areas; (2) for abstract vs. action-related sentences, with left infero-ventral frontal, temporal, and retrosplenial cingulate areas. A selective directionality effect was observed, with causal modulatory effects exerted by perisylvian language regions on peripheral modal areas, and not vice versa. The observed condition-specific modulatory effects are consistent with embodied and situated language processing theories, and indicate that linguistic areas promote a semantic content-specific reactivation of modal simulations by top-down mechanisms. Copyright 2008 Elsevier Inc. All rights reserved.

  11. SOLE: Applying Semantics and Social Web to Support Technology Enhanced Learning in Software Engineering

    NASA Astrophysics Data System (ADS)

    Colomo-Palacios, Ricardo; Jiménez-López, Diego; García-Crespo, Ángel; Blanco-Iglesias, Borja

    eLearning educative processes are a challenge for educative institutions and education professionals. In an environment in which learning resources are being produced, catalogued and stored using innovative ways, SOLE provides a platform in which exam questions can be produced supported by Web 2.0 tools, catalogued and labeled via semantic web and stored and distributed using eLearning standards. This paper presents, SOLE, a social network of exam questions sharing particularized for Software Engineering domain, based on semantics and built using semantic web and eLearning standards, such as IMS Question and Test Interoperability specification 2.1.

  12. Actively learning human gaze shifting paths for semantics-aware photo cropping.

    PubMed

    Zhang, Luming; Gao, Yue; Ji, Rongrong; Xia, Yingjie; Dai, Qionghai; Li, Xuelong

    2014-05-01

    Photo cropping is a widely used tool in printing industry, photography, and cinematography. Conventional cropping models suffer from the following three challenges. First, the deemphasized role of semantic contents that are many times more important than low-level features in photo aesthetics. Second, the absence of a sequential ordering in the existing models. In contrast, humans look at semantically important regions sequentially when viewing a photo. Third, the difficulty of leveraging inputs from multiple users. Experience from multiple users is particularly critical in cropping as photo assessment is quite a subjective task. To address these challenges, this paper proposes semantics-aware photo cropping, which crops a photo by simulating the process of humans sequentially perceiving semantically important regions of a photo. We first project the local features (graphlets in this paper) onto the semantic space, which is constructed based on the category information of the training photos. An efficient learning algorithm is then derived to sequentially select semantically representative graphlets of a photo, and the selecting process can be interpreted by a path, which simulates humans actively perceiving semantics in a photo. Furthermore, we learn a prior distribution of such active graphlet paths from training photos that are marked as aesthetically pleasing by multiple users. The learned priors enforce the corresponding active graphlet path of a test photo to be maximally similar to those from the training photos. Experimental results show that: 1) the active graphlet path accurately predicts human gaze shifting, and thus is more indicative for photo aesthetics than conventional saliency maps and 2) the cropped photos produced by our approach outperform its competitors in both qualitative and quantitative comparisons.

  13. Grounded understanding of abstract concepts: The case of STEM learning.

    PubMed

    Hayes, Justin C; Kraemer, David J M

    2017-01-01

    Characterizing the neural implementation of abstract conceptual representations has long been a contentious topic in cognitive science. At the heart of the debate is whether the "sensorimotor" machinery of the brain plays a central role in representing concepts, or whether the involvement of these perceptual and motor regions is merely peripheral or epiphenomenal. The domain of science, technology, engineering, and mathematics (STEM) learning provides an important proving ground for sensorimotor (or grounded) theories of cognition, as concepts in science and engineering courses are often taught through laboratory-based and other hands-on methodologies. In this review of the literature, we examine evidence suggesting that sensorimotor processes strengthen learning associated with the abstract concepts central to STEM pedagogy. After considering how contemporary theories have defined abstraction in the context of semantic knowledge, we propose our own explanation for how body-centered information, as computed in sensorimotor brain regions and visuomotor association cortex, can form a useful foundation upon which to build an understanding of abstract scientific concepts, such as mechanical force. Drawing from theories in cognitive neuroscience, we then explore models elucidating the neural mechanisms involved in grounding intangible concepts, including Hebbian learning, predictive coding, and neuronal recycling. Empirical data on STEM learning through hands-on instruction are considered in light of these neural models. We conclude the review by proposing three distinct ways in which the field of cognitive neuroscience can contribute to STEM learning by bolstering our understanding of how the brain instantiates abstract concepts in an embodied fashion.

  14. Functional imaging of the semantic system: retrieval of sensory-experienced and verbally learned knowledge.

    PubMed

    Noppeney, Uta; Price, Cathy J

    2003-01-01

    This paper considers how functional neuro-imaging can be used to investigate the organization of the semantic system and the limitations associated with this technique. The majority of the functional imaging studies of the semantic system have looked for divisions by varying stimulus category. These studies have led to divergent results and no clear anatomical hypotheses have emerged to account for the dissociations seen in behavioral studies. Only a few functional imaging studies have used task as a variable to differentiate the neural correlates of semantic features more directly. We extend these findings by presenting a new study that contrasts tasks that differentially weight sensory (color and taste) and verbally learned (origin) semantic features. Irrespective of the type of semantic feature retrieved, a common semantic system was activated as demonstrated in many previous studies. In addition, the retrieval of verbally learned, but not sensory-experienced, features enhanced activation in medial and lateral posterior parietal areas. We attribute these "verbally learned" effects to differences in retrieval strategy and conclude that evidence for segregation of semantic features at an anatomical level remains weak. We believe that functional imaging has the potential to increase our understanding of the neuronal infrastructure that sustains semantic processing but progress may require multiple experiments until a consistent explanatory framework emerges.

  15. Priming semantic concepts affects the dynamics of aesthetic appreciation.

    PubMed

    Faerber, Stella J; Leder, Helmut; Gerger, Gernot; Carbon, Claus-Christian

    2010-10-01

    Aesthetic appreciation (AA) plays an important role for purchase decisions, for the appreciation of art and even for the selection of potential mates. It is known that AA is highly reliable in single assessments, but over longer periods of time dynamic changes of AA may occur. We measured AA as a construct derived from the literature through attractiveness, arousal, interestingness, valence, boredom and innovativeness. By means of the semantic network theory we investigated how the priming of AA-relevant semantic concepts impacts the dynamics of AA of unfamiliar product designs (car interiors) that are known to be susceptible to triggering such effects. When participants were primed for innovativeness, strong dynamics were observed, especially when the priming involved additional AA-relevant dimensions. This underlines the relevance of priming of specific semantic networks not only for the cognitive processing of visual material in terms of selective perception or specific representation, but also for the affective-cognitive processing in terms of the dynamics of aesthetic processing. Copyright © 2010 Elsevier B.V. All rights reserved.

  16. Social Concepts and Judgments: A Semantic Differential Analysis of the Concepts Feminist, Man, and Woman

    ERIC Educational Resources Information Center

    Pierce, W. David; Sydie, R. A.; Stratkotter, Rainer

    2003-01-01

    Male and female participants (N = 274) made judgments about the social concepts of "feminist," "man," and "woman" on 63 semantic differential items. Factor analysis identified three basic dimensions termed evaluative, potency, and activity as well as two secondary factors called expressiveness and sexuality. Results for the evaluative dimension…

  17. New Semantic Learning in Patients With Large Medial Temporal Lobe Lesions

    PubMed Central

    Bayley, P.J.; O'Reilly, R.C.; Curran, T.; Squire, L.R.

    2008-01-01

    Two patients with large lesions of the medial temporal lobe were given four tests of semantic knowledge that could only have been acquired after the onset of their amnesia. In contrast to previous studies of postmorbid semantic learning, correct answers could be based on a simple, nonspecific sense of familiarity about single words, faces, or objects. According to recent computational models (for example, Norman and O'Reilly (2003) Psychol Rev 110:611–646), this characteristic should be optimal for detecting the kind of semantic learning that might be supported directly by the neocortex. Both patients exhibited some capacity for new learning, albeit at a level substantially below control performances. Notably, the correct answers appeared to reflect declarative memory. It was not the case that the correct answers simply popped out in some automatic way in the absence of any additional knowledge about the items. Rather, the few correct choices made by the patients tended to be accompanied by additional information about the chosen items, and the available knowledge appeared to be similar qualitatively to the kind of factual knowledge that healthy individuals gradually acquire over the years. The results are consistent with the idea that neocortical structures outside the medial temporal lobe are able to support some semantic learning, albeit to a very limited extent. Alternatively, the small amount of learning detected in the present study could depend on tissue within the posterior medial temporal lobe that remains intact in both patients. PMID:18306299

  18. Concept Map Engineering: Methods and Tools Based on the Semantic Relation Approach

    ERIC Educational Resources Information Center

    Kim, Minkyu

    2013-01-01

    The purpose of this study is to develop a better understanding of technologies that use natural language as the basis for concept map construction. In particular, this study focuses on the semantic relation (SR) approach to drawing rich and authentic concept maps that reflect students' internal representations of a problem situation. The…

  19. Do semantic contextual cues facilitate transfer learning from video in toddlers?

    PubMed

    Zimmermann, Laura; Moser, Alecia; Grenell, Amanda; Dickerson, Kelly; Yao, Qianwen; Gerhardstein, Peter; Barr, Rachel

    2015-01-01

    Young children typically demonstrate a transfer deficit, learning less from video than live presentations. Semantically meaningful context has been demonstrated to enhance learning in young children. We examined the effect of a semantically meaningful context on toddlers' imitation performance. Two- and 2.5-year-olds participated in a puzzle imitation task to examine learning from either a live or televised model. The model demonstrated how to assemble a three-piece puzzle to make a fish or a boat, with the puzzle demonstration occurring against a semantically meaningful background context (ocean) or a yellow background (no context). Participants in the video condition performed significantly worse than participants in the live condition, demonstrating the typical transfer deficit effect. While the context helped improve overall levels of imitation, especially for the boat puzzle, only individual differences in the ability to self-generate a stimulus label were associated with a reduction in the transfer deficit.

  20. Phonological and Semantic Cues to Learning from Word-Types

    PubMed Central

    Richtsmeier, Peter

    2017-01-01

    Word-types represent the primary form of data for many models of phonological learning, and they often predict performance in psycholinguistic tasks. Word-types are often tacitly defined as phonologically unique words. Yet, an explicit test of this definition is lacking, and natural language patterning suggests that word meaning could also act as a cue to word-type status. This possibility was tested in a statistical phonotactic learning experiment in which phonological and semantic properties of word-types varied. During familiarization, the learning targets—word-medial consonant sequences—were instantiated either by four related word-types or by just one word-type (the experimental frequency factor). The expectation was that more word-types would lead participants to generalize the target sequences. Regarding semantic cues, related word-types were either associated with different referents or all with a single referent. Regarding phonological cues, related word-types differed from each other by one, two, or more phonemes. At test, participants rated novel wordforms for their similarity to the familiarization words. When participants heard four related word-types, they gave higher ratings to test words with the same consonant sequences, irrespective of the phonological and semantic manipulations. The results support the existing phonological definition of word-types. PMID:29187914

  1. Do semantic contextual cues facilitate transfer learning from video in toddlers?

    PubMed Central

    Zimmermann, Laura; Moser, Alecia; Grenell, Amanda; Dickerson, Kelly; Yao, Qianwen; Gerhardstein, Peter; Barr, Rachel

    2015-01-01

    Young children typically demonstrate a transfer deficit, learning less from video than live presentations. Semantically meaningful context has been demonstrated to enhance learning in young children. We examined the effect of a semantically meaningful context on toddlers’ imitation performance. Two- and 2.5-year-olds participated in a puzzle imitation task to examine learning from either a live or televised model. The model demonstrated how to assemble a three-piece puzzle to make a fish or a boat, with the puzzle demonstration occurring against a semantically meaningful background context (ocean) or a yellow background (no context). Participants in the video condition performed significantly worse than participants in the live condition, demonstrating the typical transfer deficit effect. While the context helped improve overall levels of imitation, especially for the boat puzzle, only individual differences in the ability to self-generate a stimulus label were associated with a reduction in the transfer deficit. PMID:26029131

  2. Designing Collaborative E-Learning Environments Based upon Semantic Wiki: From Design Models to Application Scenarios

    ERIC Educational Resources Information Center

    Li, Yanyan; Dong, Mingkai; Huang, Ronghuai

    2011-01-01

    The knowledge society requires life-long learning and flexible learning environment that enables fast, just-in-time and relevant learning, aiding the development of communities of knowledge, linking learners and practitioners with experts. Based upon semantic wiki, a combination of wiki and Semantic Web technology, this paper designs and develops…

  3. Relational, Structural, and Semantic Analysis of Graphical Representations and Concept Maps

    ERIC Educational Resources Information Center

    Ifenthaler, Dirk

    2010-01-01

    The demand for good instructional environments presupposes valid and reliable analytical instruments for educational research. This paper introduces the "SMD Technology" (Surface, Matching, Deep Structure), which measures relational, structural, and semantic levels of graphical representations and concept maps. The reliability and validity of the…

  4. Case-Based Learning, Pedagogical Innovation, and Semantic Web Technologies

    ERIC Educational Resources Information Center

    Martinez-Garcia, A.; Morris, S.; Tscholl, M.; Tracy, F.; Carmichael, P.

    2012-01-01

    This paper explores the potential of Semantic Web technologies to support teaching and learning in a variety of higher education settings in which some form of case-based learning is the pedagogy of choice. It draws on the empirical work of a major three year research and development project in the United Kingdom: "Ensemble: Semantic…

  5. Weaknesses in Lexical-Semantic Knowledge Among College Students With Specific Learning Disabilities: Evidence From a Semantic Fluency Task.

    PubMed

    Hall, Jessica; McGregor, Karla K; Oleson, Jacob

    2017-03-01

    The purpose of this study is to determine whether deficits in executive function and lexical-semantic memory compromise the linguistic performance of young adults with specific learning disabilities (LD) enrolled in postsecondary studies. One hundred eighty-five students with LD (n = 53) or normal language development (ND, n = 132) named items in the categories animals and food for 1 minute for each category and completed tests of lexical-semantic knowledge and executive control of memory. Groups were compared on total names, mean cluster size, frequency of embedded clusters, frequency of cluster switches, and change in fluency over time. Secondary analyses of variability within the LD group were also conducted. The LD group was less fluent than the ND group. Within the LD group, lexical-semantic knowledge predicted semantic fluency and cluster size; executive control of memory predicted semantic fluency and cluster switches. The LD group produced smaller clusters and fewer embedded clusters than the ND group. Groups did not differ in switching or change over time. Deficits in the lexical-semantic system associated with LD may persist into young adulthood, even among those who have managed their disability well enough to attend college. Lexical-semantic deficits are associated with compromised semantic fluency, and the two problems are more likely among students with more severe disabilities.

  6. Weaknesses in Lexical-Semantic Knowledge Among College Students With Specific Learning Disabilities: Evidence From a Semantic Fluency Task

    PubMed Central

    McGregor, Karla K.; Oleson, Jacob

    2017-01-01

    Purpose The purpose of this study is to determine whether deficits in executive function and lexical-semantic memory compromise the linguistic performance of young adults with specific learning disabilities (LD) enrolled in postsecondary studies. Method One hundred eighty-five students with LD (n = 53) or normal language development (ND, n = 132) named items in the categories animals and food for 1 minute for each category and completed tests of lexical-semantic knowledge and executive control of memory. Groups were compared on total names, mean cluster size, frequency of embedded clusters, frequency of cluster switches, and change in fluency over time. Secondary analyses of variability within the LD group were also conducted. Results The LD group was less fluent than the ND group. Within the LD group, lexical-semantic knowledge predicted semantic fluency and cluster size; executive control of memory predicted semantic fluency and cluster switches. The LD group produced smaller clusters and fewer embedded clusters than the ND group. Groups did not differ in switching or change over time. Conclusions Deficits in the lexical-semantic system associated with LD may persist into young adulthood, even among those who have managed their disability well enough to attend college. Lexical-semantic deficits are associated with compromised semantic fluency, and the two problems are more likely among students with more severe disabilities. PMID:28267833

  7. Linking descriptive geology and quantitative machine learning through an ontology of lithological concepts

    NASA Astrophysics Data System (ADS)

    Klump, J. F.; Huber, R.; Robertson, J.; Cox, S. J. D.; Woodcock, R.

    2014-12-01

    Despite the recent explosion of quantitative geological data, geology remains a fundamentally qualitative science. Numerical data only constitute a certain part of data collection in the geosciences. In many cases, geological observations are compiled as text into reports and annotations on drill cores, thin sections or drawings of outcrops. The observations are classified into concepts such as lithology, stratigraphy, geological structure, etc. These descriptions are semantically rich and are generally supported by more quantitative observations using geochemical analyses, XRD, hyperspectral scanning, etc, but the goal is geological semantics. In practice it has been difficult to bring the different observations together due to differing perception or granularity of classification in human observation, or the partial observation of only some characteristics using quantitative sensors. In the past years many geological classification schemas have been transferred into ontologies and vocabularies, formalized using RDF and OWL, and published through SPARQL endpoints. Several lithological ontologies were compiled by stratigraphy.net and published through a SPARQL endpoint. This work is complemented by the development of a Python API to integrate this vocabulary into Python-based text mining applications. The applications for the lithological vocabulary and Python API are automated semantic tagging of geochemical data and descriptions of drill cores, machine learning of geochemical compositions that are diagnostic for lithological classifications, and text mining for lithological concepts in reports and geological literature. This combination of applications can be used to identify anomalies in databases, where composition and lithological classification do not match. It can also be used to identify lithological concepts in the literature and infer quantitative values. The resulting semantic tagging opens new possibilities for linking these diverse sources of data.

  8. Adaptive Semantic and Social Web-based learning and assessment environment for the STEM

    NASA Astrophysics Data System (ADS)

    Babaie, Hassan; Atchison, Chris; Sunderraman, Rajshekhar

    2014-05-01

    We are building a cloud- and Semantic Web-based personalized, adaptive learning environment for the STEM fields that integrates and leverages Social Web technologies to allow instructors and authors of learning material to collaborate in semi-automatic development and update of their common domain and task ontologies and building their learning resources. The semi-automatic ontology learning and development minimize issues related to the design and maintenance of domain ontologies by knowledge engineers who do not have any knowledge of the domain. The social web component of the personal adaptive system will allow individual and group learners to interact with each other and discuss their own learning experience and understanding of course material, and resolve issues related to their class assignments. The adaptive system will be capable of representing key knowledge concepts in different ways and difficulty levels based on learners' differences, and lead to different understanding of the same STEM content by different learners. It will adapt specific pedagogical strategies to individual learners based on their characteristics, cognition, and preferences, allow authors to assemble remotely accessed learning material into courses, and provide facilities for instructors to assess (in real time) the perception of students of course material, monitor their progress in the learning process, and generate timely feedback based on their understanding or misconceptions. The system applies a set of ontologies that structure the learning process, with multiple user friendly Web interfaces. These include the learning ontology (models learning objects, educational resources, and learning goal); context ontology (supports adaptive strategy by detecting student situation), domain ontology (structures concepts and context), learner ontology (models student profile, preferences, and behavior), task ontologies, technological ontology (defines devices and places that surround the

  9. Temporal Representation in Semantic Graphs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Levandoski, J J; Abdulla, G M

    2007-08-07

    A wide range of knowledge discovery and analysis applications, ranging from business to biological, make use of semantic graphs when modeling relationships and concepts. Most of the semantic graphs used in these applications are assumed to be static pieces of information, meaning temporal evolution of concepts and relationships are not taken into account. Guided by the need for more advanced semantic graph queries involving temporal concepts, this paper surveys the existing work involving temporal representations in semantic graphs.

  10. Using ontology-based semantic similarity to facilitate the article screening process for systematic reviews.

    PubMed

    Ji, Xiaonan; Ritter, Alan; Yen, Po-Yin

    2017-05-01

    Systematic Reviews (SRs) are utilized to summarize evidence from high quality studies and are considered the preferred source of evidence-based practice (EBP). However, conducting SRs can be time and labor intensive due to the high cost of article screening. In previous studies, we demonstrated utilizing established (lexical) article relationships to facilitate the identification of relevant articles in an efficient and effective manner. Here we propose to enhance article relationships with background semantic knowledge derived from Unified Medical Language System (UMLS) concepts and ontologies. We developed a pipelined semantic concepts representation process to represent articles from an SR into an optimized and enriched semantic space of UMLS concepts. Throughout the process, we leveraged concepts and concept relations encoded in biomedical ontologies (SNOMED-CT and MeSH) within the UMLS framework to prompt concept features of each article. Article relationships (similarities) were established and represented as a semantic article network, which was readily applied to assist with the article screening process. We incorporated the concept of active learning to simulate an interactive article recommendation process, and evaluated the performance on 15 completed SRs. We used work saved over sampling at 95% recall (WSS95) as the performance measure. We compared the WSS95 performance of our ontology-based semantic approach to existing lexical feature approaches and corpus-based semantic approaches, and found that we had better WSS95 in most SRs. We also had the highest average WSS95 of 43.81% and the highest total WSS95 of 657.18%. We demonstrated using ontology-based semantics to facilitate the identification of relevant articles for SRs. Effective concepts and concept relations derived from UMLS ontologies can be utilized to establish article semantic relationships. Our approach provided a promising performance and can easily apply to any SR topics in the

  11. Remote semantic memory is impoverished in hippocampal amnesia

    PubMed Central

    Klooster, Nathaniel B.; Duff, Melissa C.

    2015-01-01

    The necessity of the hippocampus for acquiring new semantic concepts is a topic of considerable debate. However, it is generally accepted that any role the hippocampus plays in semantic memory is time limited and that previously acquired information becomes independent of the hippocampus over time. This view, along with intact naming and word-definition matching performance in amnesia, has led to the notion that remote semantic memory is intact in patients with hippocampal amnesia. Motivated by perspectives of word learning as a protracted process where additional features and senses of a word are added over time, and by recent discoveries about the time course of hippocampal contributions to on-line relational processing, reconsolidation, and the flexible integration of information, we revisit the notion that remote semantic memory is intact in amnesia. Using measures of semantic richness and vocabulary depth from psycholinguistics and first and second language-learning studies, we examined how much information is associated with previously acquired, highly familiar words in a group of patients with bilateral hippocampal damage and amnesia. Relative to healthy demographically matched comparison participants and a group of brain-damaged comparison participants, the patients with hippocampal amnesia performed significantly worse on both productive and receptive measures of vocabulary depth and semantic richness. These findings suggest that remote semantic memory is impoverished in patients with hippocampal amnesia and that the hippocampus may play a role in the maintenance and updating of semantic memory beyond its initial acquisition. PMID:26474741

  12. Verbal Memory and Semantic Organization of Children with Learning Disabilities

    ERIC Educational Resources Information Center

    Polychroni, Fotini; Economou, Alexandra; Printezi, Anna; Koutlidi, Ifigeneia

    2011-01-01

    The present study examined the verbal learning performance and the semantic organization used by Greek reading-disabled readers as compared to a control group using a list-learning task. The sample consisted of 45 elementary school children with reading difficulties and 45 comparison children matched for age and gender. Tests of reading ability,…

  13. Nonword Repetition and Vocabulary Knowledge as Predictors of Children's Phonological and Semantic Word Learning.

    PubMed

    Adlof, Suzanne M; Patten, Hannah

    2017-03-01

    This study examined the unique and shared variance that nonword repetition and vocabulary knowledge contribute to children's ability to learn new words. Multiple measures of word learning were used to assess recall and recognition of phonological and semantic information. Fifty children, with a mean age of 8 years (range 5-12 years), completed experimental assessments of word learning and norm-referenced assessments of receptive and expressive vocabulary knowledge and nonword repetition skills. Hierarchical multiple regression analyses examined the variance in word learning that was explained by vocabulary knowledge and nonword repetition after controlling for chronological age. Together with chronological age, nonword repetition and vocabulary knowledge explained up to 44% of the variance in children's word learning. Nonword repetition was the stronger predictor of phonological recall, phonological recognition, and semantic recognition, whereas vocabulary knowledge was the stronger predictor of verbal semantic recall. These findings extend the results of past studies indicating that both nonword repetition skill and existing vocabulary knowledge are important for new word learning, but the relative influence of each predictor depends on the way word learning is measured. Suggestions for further research involving typically developing children and children with language or reading impairments are discussed.

  14. Motor knowledge is one dimension for concept organization: further evidence from a Chinese semantic dementia case.

    PubMed

    Lin, Nan; Guo, Qihao; Han, Zaizhu; Bi, Yanchao

    2011-11-01

    Neuropsychological and neuroimaging studies have indicated that motor knowledge is one potential dimension along which concepts are organized. Here we present further direct evidence for the effects of motor knowledge in accounting for categorical patterns across object domains (living vs. nonliving) and grammatical domains (nouns vs. verbs), as well as the integrity of other modality-specific knowledge (e.g., visual). We present a Chinese case, XRK, who suffered from semantic dementia with left temporal lobe atrophy. In naming and comprehension tasks, he performed better at nonliving items than at living items, and better at verbs than at nouns. Critically, multiple regression method revealed that these two categorical effects could be both accounted for by the charade rating, a continuous measurement of the significance of motor knowledge for a concept or a semantic feature. Furthermore, charade rating also predicted his performances on the generation frequency of semantic features of various modalities. These findings consolidate the significance of motor knowledge in conceptual organization and further highlights the interactions between different types of semantic knowledge. Copyright © 2010 Elsevier Inc. All rights reserved.

  15. Apples are not the only fruit: the effects of concept typicality on semantic representation in the anterior temporal lobe

    PubMed Central

    Woollams, Anna M.

    2012-01-01

    Intuitively, an apple seems a fairly good example of a fruit, whereas an avocado seems less so. The extent to which an exemplar is representative of its category, referred to here as concept typicality, has long been thought to be a key dimension determining semantic representation. Concept typicality is, however, correlated with a number of other variables, in particular age of acquisition (AoA) and name frequency. Consideration of picture naming accuracy from a large case-series of semantic dementia (SD) patients demonstrated strong effects of concept typicality that were maximal in the moderately impaired patients, over and above the impact of AoA and name frequency. Induction of a temporary virtual lesion to the left anterior temporal lobe, the region most commonly affected in SD, via repetitive Transcranial Magnetic Stimulation produced an enhanced effect of concept typicality in the picture naming of normal participants, but did not affect the magnitude of the AoA or name frequency effects. These results indicate that concept typicality exerts its influence on semantic representations themselves, as opposed to the strength of connections outside the semantic system. To date, there has been little direct exploration of the dimension of concept typicality within connectionist models of intact and impaired conceptual representation, and these findings provide a target for future computational simulation. PMID:22529789

  16. Development of Category-based Induction and Semantic Knowledge

    ERIC Educational Resources Information Center

    Fisher, Anna V.; Godwin, Karrie E.; Matlen, Bryan J.; Unger, Layla

    2015-01-01

    Category-based induction is a hallmark of mature cognition; however, little is known about its origins. This study evaluated the hypothesis that category-based induction is related to semantic development. Computational studies suggest that early on there is little differentiation among concepts, but learning and development lead to increased…

  17. Semantic Maps Capturing Organization Knowledge in e-Learning

    NASA Astrophysics Data System (ADS)

    Mavridis, Androklis; Koumpis, Adamantios; Demetriadis, Stavros N.

    e-learning, shows much promise in accessibility and opportunity to learn, due to its asynchronous nature and its ability to transmit knowledge fast and effectively. However without a universal standard for online learning and teaching, many systems are proclaimed as “e-learning-compliant”, offering nothing more than automated services for delivering courses online, providing no additional enhancement to reusability and learner personalization. Hence, the focus is not on providing reusable and learner-centered content, but on developing the technology aspects of e-learning. This current trend has made it crucial to find a more refined definition of what constitutes knowledge in the e-learning context. We propose an e-learning system architecture that makes use of a knowledge model to facilitate continuous dialogue and inquiry-based knowledge learning, by exploiting the full benefits of the semantic web as a medium capable for supplying the web with formalized knowledge.

  18. A Method for Overcoming the Problem of Concept-Scale Interaction in Semantic Differential Research

    ERIC Educational Resources Information Center

    Bynner, John; Romney, David

    1972-01-01

    Data collected in a study of hospital staff attitudes to drug addicts and other types of patients are used to illustrate the problem of concept-scale interaction in semantic differential research. (Authors)

  19. Does Learning to Count Involve a Semantic Induction?

    ERIC Educational Resources Information Center

    Davidson, Kathryn; Eng, Kortney; Barner, David

    2012-01-01

    We tested the hypothesis that, when children learn to correctly count sets, they make a semantic induction about the meanings of their number words. We tested the logical understanding of number words in 84 children that were classified as "cardinal-principle knowers" by the criteria set forth by Wynn (1992). Results show that these children often…

  20. Nonword Repetition and Vocabulary Knowledge as Predictors of Children's Phonological and Semantic Word Learning

    PubMed Central

    Patten, Hannah

    2017-01-01

    Purpose This study examined the unique and shared variance that nonword repetition and vocabulary knowledge contribute to children's ability to learn new words. Multiple measures of word learning were used to assess recall and recognition of phonological and semantic information. Method Fifty children, with a mean age of 8 years (range 5–12 years), completed experimental assessments of word learning and norm-referenced assessments of receptive and expressive vocabulary knowledge and nonword repetition skills. Hierarchical multiple regression analyses examined the variance in word learning that was explained by vocabulary knowledge and nonword repetition after controlling for chronological age. Results Together with chronological age, nonword repetition and vocabulary knowledge explained up to 44% of the variance in children's word learning. Nonword repetition was the stronger predictor of phonological recall, phonological recognition, and semantic recognition, whereas vocabulary knowledge was the stronger predictor of verbal semantic recall. Conclusions These findings extend the results of past studies indicating that both nonword repetition skill and existing vocabulary knowledge are important for new word learning, but the relative influence of each predictor depends on the way word learning is measured. Suggestions for further research involving typically developing children and children with language or reading impairments are discussed. PMID:28241284

  1. Remote semantic memory is impoverished in hippocampal amnesia.

    PubMed

    Klooster, Nathaniel B; Duff, Melissa C

    2015-12-01

    The necessity of the hippocampus for acquiring new semantic concepts is a topic of considerable debate. However, it is generally accepted that any role the hippocampus plays in semantic memory is time limited and that previously acquired information becomes independent of the hippocampus over time. This view, along with intact naming and word-definition matching performance in amnesia, has led to the notion that remote semantic memory is intact in patients with hippocampal amnesia. Motivated by perspectives of word learning as a protracted process where additional features and senses of a word are added over time, and by recent discoveries about the time course of hippocampal contributions to on-line relational processing, reconsolidation, and the flexible integration of information, we revisit the notion that remote semantic memory is intact in amnesia. Using measures of semantic richness and vocabulary depth from psycholinguistics and first and second language-learning studies, we examined how much information is associated with previously acquired, highly familiar words in a group of patients with bilateral hippocampal damage and amnesia. Relative to healthy demographically matched comparison participants and a group of brain-damaged comparison participants, the patients with hippocampal amnesia performed significantly worse on both productive and receptive measures of vocabulary depth and semantic richness. These findings suggest that remote semantic memory is impoverished in patients with hippocampal amnesia and that the hippocampus may play a role in the maintenance and updating of semantic memory beyond its initial acquisition. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Semantic Services in e-Learning: An Argumentation Case Study

    ERIC Educational Resources Information Center

    Moreale, Emanuela; Vargas-Vera, Maria

    2004-01-01

    This paper outlines an e-Learning services architecture offering semantic-based services to students and tutors, in particular ways to browse and obtain information through web services. Services could include registration, authentication, tutoring systems, smart question answering for students' queries, automated marking systems and a student…

  3. Integration of nursing assessment concepts into the medical entities dictionary using the LOINC semantic structure as a terminology model.

    PubMed

    Cieslowski, B J; Wajngurt, D; Cimino, J J; Bakken, S

    2001-01-01

    Recent investigations have tested the applicability of various terminology models for the representing nursing concepts including those related to nursing diagnoses, nursing interventions, and standardized nursing assessments as a prerequisite for building a reference terminology that supports the nursing domain. We used the semantic structure of Clinical LOINC (Logical Observations, Identifiers, Names, and Codes) as a reference terminology model to support the integration of standardized assessment terms from two nursing terminologies into the Medical Entities Dictionary (MED), the concept-oriented, metadata dictionary at New York Presbyterian Hospital. Although the LOINC semantic structure was used previously to represent laboratory terms in the MED, selected hierarchies and semantic slots required revisions in order to incorporate the nursing assessment concepts. This project was an initial step in integrating nursing assessment concepts into the MED in a manner consistent with evolving standards for reference terminology models. Moreover, the revisions provide the foundation for adding other types of standardized assessments to the MED.

  4. Integration of nursing assessment concepts into the medical entities dictionary using the LOINC semantic structure as a terminology model.

    PubMed Central

    Cieslowski, B. J.; Wajngurt, D.; Cimino, J. J.; Bakken, S.

    2001-01-01

    Recent investigations have tested the applicability of various terminology models for the representing nursing concepts including those related to nursing diagnoses, nursing interventions, and standardized nursing assessments as a prerequisite for building a reference terminology that supports the nursing domain. We used the semantic structure of Clinical LOINC (Logical Observations, Identifiers, Names, and Codes) as a reference terminology model to support the integration of standardized assessment terms from two nursing terminologies into the Medical Entities Dictionary (MED), the concept-oriented, metadata dictionary at New York Presbyterian Hospital. Although the LOINC semantic structure was used previously to represent laboratory terms in the MED, selected hierarchies and semantic slots required revisions in order to incorporate the nursing assessment concepts. This project was an initial step in integrating nursing assessment concepts into the MED in a manner consistent with evolving standards for reference terminology models. Moreover, the revisions provide the foundation for adding other types of standardized assessments to the MED. PMID:11825165

  5. An Approach to Formalizing Ontology Driven Semantic Integration: Concepts, Dimensions and Framework

    ERIC Educational Resources Information Center

    Gao, Wenlong

    2012-01-01

    The ontology approach has been accepted as a very promising approach to semantic integration today. However, because of the diversity of focuses and its various connections to other research domains, the core concepts, theoretical and technical approaches, and research areas of this domain still remain unclear. Such ambiguity makes it difficult to…

  6. Towards a Semantic E-Learning Theory by Using a Modelling Approach

    ERIC Educational Resources Information Center

    Yli-Luoma, Pertti V. J.; Naeve, Ambjorn

    2006-01-01

    In the present study, a semantic perspective on e-learning theory is advanced and a modelling approach is used. This modelling approach towards the new learning theory is based on the four SECI phases of knowledge conversion: Socialisation, Externalisation, Combination and Internalisation, introduced by Nonaka in 1994, and involving two levels of…

  7. Learning for Semantic Parsing Using Statistical Syntactic Parsing Techniques

    DTIC Science & Technology

    2010-05-01

    Workshop on Supervisory Con- trol of Learning and Adaptive Systems. San Jose, CA. Roland Kuhn and Renato De Mori (1995). The application of semantic...Processing (EMNLP-09), pp. 1–10. Suntec,Singapore. Ana-Maria Popescu, Alex Armanasu, Oren Etzioni, David Ko and Alexander Yates (2004). Modern natural

  8. Recommendation of standardized health learning contents using archetypes and semantic web technologies.

    PubMed

    Legaz-García, María del Carmen; Martínez-Costa, Catalina; Menárguez-Tortosa, Marcos; Fernández-Breis, Jesualdo Tomás

    2012-01-01

    Linking Electronic Healthcare Records (EHR) content to educational materials has been considered a key international recommendation to enable clinical engagement and to promote patient safety. This would suggest citizens to access reliable information available on the web and to guide them properly. In this paper, we describe an approach in that direction, based on the use of dual model EHR standards and standardized educational contents. The recommendation method will be based on the semantic coverage of the learning content repository for a particular archetype, which will be calculated by applying semantic web technologies like ontologies and semantic annotations.

  9. Concept typicality responses in the semantic memory network.

    PubMed

    Santi, Andrea; Raposo, Ana; Frade, Sofia; Marques, J Frederico

    2016-12-01

    For decades concept typicality has been recognized as critical to structuring conceptual knowledge, but only recently has typicality been applied in better understanding the processes engaged by the neurological network underlying semantic memory. This previous work has focused on one region within the network - the Anterior Temporal Lobe (ATL). The ATL responds negatively to concept typicality (i.e., the more atypical the item, the greater the activation in the ATL). To better understand the role of typicality in the entire network, we ran an fMRI study using a category verification task in which concept typicality was manipulated parametrically. We argue that typicality is relevant to both amodal feature integration centers as well as category-specific regions. Both the Inferior Frontal Gyrus (IFG) and ATL demonstrated a negative correlation with typicality, whereas inferior parietal regions showed positive effects. We interpret this in light of functional theories of these regions. Interactions between category and typicality were not observed in regions classically recognized as category-specific, thus, providing an argument against category specific regions, at least with fMRI. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. On the learning difficulty of visual and auditory modal concepts: Evidence for a single processing system.

    PubMed

    Vigo, Ronaldo; Doan, Karina-Mikayla C; Doan, Charles A; Pinegar, Shannon

    2018-02-01

    The logic operators (e.g., "and," "or," "if, then") play a fundamental role in concept formation, syntactic construction, semantic expression, and deductive reasoning. In spite of this very general and basic role, there are relatively few studies in the literature that focus on their conceptual nature. In the current investigation, we examine, for the first time, the learning difficulty experienced by observers in classifying members belonging to these primitive "modal concepts" instantiated with sets of acoustic and visual stimuli. We report results from two categorization experiments that suggest the acquisition of acoustic and visual modal concepts is achieved by the same general cognitive mechanism. Additionally, we attempt to account for these results with two models of concept learning difficulty: the generalized invariance structure theory model (Vigo in Cognition 129(1):138-162, 2013, Mathematical principles of human conceptual behavior, Routledge, New York, 2014) and the generalized context model (Nosofsky in J Exp Psychol Learn Mem Cogn 10(1):104-114, 1984, J Exp Psychol 115(1):39-57, 1986).

  11. What does semantic tiling of the cortex tell us about semantics?

    PubMed

    Barsalou, Lawrence W

    2017-10-01

    Recent use of voxel-wise modeling in cognitive neuroscience suggests that semantic maps tile the cortex. Although this impressive research establishes distributed cortical areas active during the conceptual processing that underlies semantics, it tells us little about the nature of this processing. While mapping concepts between Marr's computational and implementation levels to support neural encoding and decoding, this approach ignores Marr's algorithmic level, central for understanding the mechanisms that implement cognition, in general, and conceptual processing, in particular. Following decades of research in cognitive science and neuroscience, what do we know so far about the representation and processing mechanisms that implement conceptual abilities? Most basically, much is known about the mechanisms associated with: (1) feature and frame representations, (2) grounded, abstract, and linguistic representations, (3) knowledge-based inference, (4) concept composition, and (5) conceptual flexibility. Rather than explaining these fundamental representation and processing mechanisms, semantic tiles simply provide a trace of their activity over a relatively short time period within a specific learning context. Establishing the mechanisms that implement conceptual processing in the brain will require more than mapping it to cortical (and sub-cortical) activity, with process models from cognitive science likely to play central roles in specifying the intervening mechanisms. More generally, neuroscience will not achieve its basic goals until it establishes algorithmic-level mechanisms that contribute essential explanations to how the brain works, going beyond simply establishing the brain areas that respond to various task conditions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Navigation as a New Form of Search for Agricultural Learning Resources in Semantic Repositories

    NASA Astrophysics Data System (ADS)

    Cano, Ramiro; Abián, Alberto; Mena, Elena

    Education is essential when it comes to raise public awareness on the environmental and economic benefits of organic agriculture and agroecology (OA & AE). Organic.Edunet, an EU funded project, aims at providing a freely-available portal where learning contents on OA & AE can be published and accessed through specialized technologies. This paper describes a novel mechanism for providing semantic capabilities (such as semantic navigational queries) to an arbitrary set of agricultural learning resources, in the context of the Organic.Edunet initiative.

  13. Integrating Experiential and Distributional Data to Learn Semantic Representations

    ERIC Educational Resources Information Center

    Andrews, Mark; Vigliocco, Gabriella; Vinson, David

    2009-01-01

    The authors identify 2 major types of statistical data from which semantic representations can be learned. These are denoted as "experiential data" and "distributional data". Experiential data are derived by way of experience with the physical world and comprise the sensory-motor data obtained through sense receptors. Distributional data, by…

  14. Semantic Indexing of Medical Learning Objects: Medical Students' Usage of a Semantic Network.

    PubMed

    Tix, Nadine; Gießler, Paul; Ohnesorge-Radtke, Ursula; Spreckelsen, Cord

    2015-11-11

    The Semantically Annotated Media (SAM) project aims to provide a flexible platform for searching, browsing, and indexing medical learning objects (MLOs) based on a semantic network derived from established classification systems. Primarily, SAM supports the Aachen emedia skills lab, but SAM is ready for indexing distributed content and the Simple Knowledge Organizing System standard provides a means for easily upgrading or even exchanging SAM's semantic network. There is a lack of research addressing the usability of MLO indexes or search portals like SAM and the user behavior with such platforms. The purpose of this study was to assess the usability of SAM by investigating characteristic user behavior of medical students accessing MLOs via SAM. In this study, we chose a mixed-methods approach. Lean usability testing was combined with usability inspection by having the participants complete four typical usage scenarios before filling out a questionnaire. The questionnaire was based on the IsoMetrics usability inventory. Direct user interaction with SAM (mouse clicks and pages accessed) was logged. The study analyzed the typical usage patterns and habits of students using a semantic network for accessing MLOs. Four scenarios capturing characteristics of typical tasks to be solved by using SAM yielded high ratings of usability items and showed good results concerning the consistency of indexing by different users. Long-tail phenomena emerge as they are typical for a collaborative Web 2.0 platform. Suitable but nonetheless rarely used keywords were assigned to MLOs by some users. It is possible to develop a Web-based tool with high usability and acceptance for indexing and retrieval of MLOs. SAM can be applied to indexing multicentered repositories of MLOs collaboratively.

  15. A Metadata Model for E-Learning Coordination through Semantic Web Languages

    ERIC Educational Resources Information Center

    Elci, Atilla

    2005-01-01

    This paper reports on a study aiming to develop a metadata model for e-learning coordination based on semantic web languages. A survey of e-learning modes are done initially in order to identify content such as phases, activities, data schema, rules and relations, etc. relevant for a coordination model. In this respect, the study looks into the…

  16. Musical and verbal semantic memory: two distinct neural networks?

    PubMed

    Groussard, M; Viader, F; Hubert, V; Landeau, B; Abbas, A; Desgranges, B; Eustache, F; Platel, H

    2010-02-01

    Semantic memory has been investigated in numerous neuroimaging and clinical studies, most of which have used verbal or visual, but only very seldom, musical material. Clinical studies have suggested that there is a relative neural independence between verbal and musical semantic memory. In the present study, "musical semantic memory" is defined as memory for "well-known" melodies without any knowledge of the spatial or temporal circumstances of learning, while "verbal semantic memory" corresponds to general knowledge about concepts, again without any knowledge of the spatial or temporal circumstances of learning. Our aim was to compare the neural substrates of musical and verbal semantic memory by administering the same type of task in each modality. We used high-resolution PET H(2)O(15) to observe 11 young subjects performing two main tasks: (1) a musical semantic memory task, where the subjects heard the first part of familiar melodies and had to decide whether the second part they heard matched the first, and (2) a verbal semantic memory task with the same design, but where the material consisted of well-known expressions or proverbs. The musical semantic memory condition activated the superior temporal area and inferior and middle frontal areas in the left hemisphere and the inferior frontal area in the right hemisphere. The verbal semantic memory condition activated the middle temporal region in the left hemisphere and the cerebellum in the right hemisphere. We found that the verbal and musical semantic processes activated a common network extending throughout the left temporal neocortex. In addition, there was a material-dependent topographical preference within this network, with predominantly anterior activation during musical tasks and predominantly posterior activation during semantic verbal tasks. Copyright (c) 2009 Elsevier Inc. All rights reserved.

  17. Toward Semantic Interoperability in Home Health Care: Formally Representing OASIS Items for Integration into a Concept-oriented Terminology

    PubMed Central

    Choi, Jeungok; Jenkins, Melinda L.; Cimino, James J.; White, Thomas M.; Bakken, Suzanne

    2005-01-01

    Objective: The authors aimed to (1) formally represent OASIS-B1 concepts using the Logical Observation Identifiers, Names, and Codes (LOINC) semantic structure; (2) demonstrate integration of OASIS-B1 concepts into a concept-oriented terminology, the Medical Entities Dictionary (MED); (3) examine potential hierarchical structures within LOINC among OASIS-B1 and other nursing terms; and (4) illustrate a Web-based implementation for OASIS-B1 data entry using Dialogix, a software tool with a set of functions that supports complex data entry. Design and Measurements: Two hundred nine OASIS-B1 items were dissected into the six elements of the LOINC semantic structure and then integrated into the MED hierarchy. Each OASIS-B1 term was matched to LOINC-coded nursing terms, Home Health Care Classification, the Omaha System, and the Sign and Symptom Check-List for Persons with HIV, and the extent of the match was judged based on a scale of 0 (no match) to 4 (exact match). OASIS-B1 terms were implemented as a Web-based survey using Dialogix. Results: Of 209 terms, 204 were successfully dissected into the elements of the LOINC semantics structure and integrated into the MED with minor revisions of MED semantics. One hundred fifty-one OASIS-B1 terms were mapped to one or more of the LOINC-coded nursing terms. Conclusion: The LOINC semantic structure offers a standard way to add home health care data to a comprehensive patient record to facilitate data sharing for monitoring outcomes across sites and to further terminology management, decision support, and accurate information retrieval for evidence-based practice. The cross-mapping results support the possibility of a hierarchical structure of the OASIS-B1 concepts within nursing terminologies in the LOINC database. PMID:15802480

  18. Toward semantic interoperability in home health care: formally representing OASIS items for integration into a concept-oriented terminology.

    PubMed

    Choi, Jeungok; Jenkins, Melinda L; Cimino, James J; White, Thomas M; Bakken, Suzanne

    2005-01-01

    The authors aimed to (1) formally represent OASIS-B1 concepts using the Logical Observation Identifiers, Names, and Codes (LOINC) semantic structure; (2) demonstrate integration of OASIS-B1 concepts into a concept-oriented terminology, the Medical Entities Dictionary (MED); (3) examine potential hierarchical structures within LOINC among OASIS-B1 and other nursing terms; and (4) illustrate a Web-based implementation for OASIS-B1 data entry using Dialogix, a software tool with a set of functions that supports complex data entry. Two hundred nine OASIS-B1 items were dissected into the six elements of the LOINC semantic structure and then integrated into the MED hierarchy. Each OASIS-B1 term was matched to LOINC-coded nursing terms, Home Health Care Classification, the Omaha System, and the Sign and Symptom Check-List for Persons with HIV, and the extent of the match was judged based on a scale of 0 (no match) to 4 (exact match). OASIS-B1 terms were implemented as a Web-based survey using Dialogix. Of 209 terms, 204 were successfully dissected into the elements of the LOINC semantics structure and integrated into the MED with minor revisions of MED semantics. One hundred fifty-one OASIS-B1 terms were mapped to one or more of the LOINC-coded nursing terms. The LOINC semantic structure offers a standard way to add home health care data to a comprehensive patient record to facilitate data sharing for monitoring outcomes across sites and to further terminology management, decision support, and accurate information retrieval for evidence-based practice. The cross-mapping results support the possibility of a hierarchical structure of the OASIS-B1 concepts within nursing terminologies in the LOINC database.

  19. Influencing Memory Performance in Learning Disabled Students through Semantic Processing.

    ERIC Educational Resources Information Center

    Walker, Stephen C.; Poteet, James A.

    1989-01-01

    Thirty learning-disabled and 30 nonhandicapped intermediate grade children were assessed on memory performance for stimulus words, which were presented with congruent and noncongruent rhyming words and semantically congruent and noncongruent sentence frames. Both groups performed significantly better on words encoded using deep level congruent…

  20. Semantics of User Interface for Image Retrieval: Possibility Theory and Learning Techniques.

    ERIC Educational Resources Information Center

    Crehange, M.; And Others

    1989-01-01

    Discusses the need for a rich semantics for the user interface in interactive image retrieval and presents two methods for building such interfaces: possibility theory applied to fuzzy data retrieval, and a machine learning technique applied to learning the user's deep need. Prototypes developed using videodisks and knowledge-based software are…

  1. Semantic Indexing of Medical Learning Objects: Medical Students' Usage of a Semantic Network

    PubMed Central

    Gießler, Paul; Ohnesorge-Radtke, Ursula; Spreckelsen, Cord

    2015-01-01

    Background The Semantically Annotated Media (SAM) project aims to provide a flexible platform for searching, browsing, and indexing medical learning objects (MLOs) based on a semantic network derived from established classification systems. Primarily, SAM supports the Aachen emedia skills lab, but SAM is ready for indexing distributed content and the Simple Knowledge Organizing System standard provides a means for easily upgrading or even exchanging SAM’s semantic network. There is a lack of research addressing the usability of MLO indexes or search portals like SAM and the user behavior with such platforms. Objective The purpose of this study was to assess the usability of SAM by investigating characteristic user behavior of medical students accessing MLOs via SAM. Methods In this study, we chose a mixed-methods approach. Lean usability testing was combined with usability inspection by having the participants complete four typical usage scenarios before filling out a questionnaire. The questionnaire was based on the IsoMetrics usability inventory. Direct user interaction with SAM (mouse clicks and pages accessed) was logged. Results The study analyzed the typical usage patterns and habits of students using a semantic network for accessing MLOs. Four scenarios capturing characteristics of typical tasks to be solved by using SAM yielded high ratings of usability items and showed good results concerning the consistency of indexing by different users. Long-tail phenomena emerge as they are typical for a collaborative Web 2.0 platform. Suitable but nonetheless rarely used keywords were assigned to MLOs by some users. Conclusions It is possible to develop a Web-based tool with high usability and acceptance for indexing and retrieval of MLOs. SAM can be applied to indexing multicentered repositories of MLOs collaboratively. PMID:27731860

  2. Aging and Semantic Activation.

    ERIC Educational Resources Information Center

    Howard, Darlene V.

    Three studies tested the theory that long term memory consists of a semantically organized network of concept nodes interconnected by leveled associations or relations, and that when a stimulus is processed, the corresponding concept node is assumed to be temporarily activated and this activation spreads to nearby semantically related nodes. In…

  3. Semantic mechanisms may be responsible for developing synesthesia

    PubMed Central

    Mroczko-Wąsowicz, Aleksandra; Nikolić, Danko

    2014-01-01

    Currently, little is known about how synesthesia develops and which aspects of synesthesia can be acquired through a learning process. We review the increasing evidence for the role of semantic representations in the induction of synesthesia, and argue for the thesis that synesthetic abilities are developed and modified by semantic mechanisms. That is, in certain people semantic mechanisms associate concepts with perception-like experiences—and this association occurs in an extraordinary way. This phenomenon can be referred to as “higher” synesthesia or ideasthesia. The present analysis suggests that synesthesia develops during childhood and is being enriched further throughout the synesthetes’ lifetime; for example, the already existing concurrents may be adopted by novel inducers or new concurrents may be formed. For a deeper understanding of the origin and nature of synesthesia we propose to focus future research on two aspects: (i) the similarities between synesthesia and ordinary phenomenal experiences based on concepts; and (ii) the tight entanglement of perception, cognition and the conceptualization of the world. Importantly, an explanation of how biological systems get to generate experiences, synesthetic or not, may have to involve an explanation of how semantic networks are formed in general and what their role is in the ability to be aware of the surrounding world. PMID:25191239

  4. Epsiodic and Semantic Memory Components of Verbal Paired-Associate Learning.

    ERIC Educational Resources Information Center

    Elwood, Richard W.

    1997-01-01

    This study examined correlations between hard (low-associate) and easy (high-associate) verbal paired associates and episodic and semantic memory in a mixed clinical sample of 91 male veterans. The study concludes that hard paired-associate learning should not be presumed to measure episodic memory selectively. (SLD)

  5. A Semantic-Oriented Approach for Organizing and Developing Annotation for E-Learning

    ERIC Educational Resources Information Center

    Brut, Mihaela M.; Sedes, Florence; Dumitrescu, Stefan D.

    2011-01-01

    This paper presents a solution to extend the IEEE LOM standard with ontology-based semantic annotations for efficient use of learning objects outside Learning Management Systems. The data model corresponding to this approach is first presented. The proposed indexing technique for this model development in order to acquire a better annotation of…

  6. Contribution of prior semantic knowledge to new episodic learning in amnesia.

    PubMed

    Kan, Irene P; Alexander, Michael P; Verfaellie, Mieke

    2009-05-01

    We evaluated whether prior semantic knowledge would enhance episodic learning in amnesia. Subjects studied prices that are either congruent or incongruent with prior price knowledge for grocery and household items and then performed a forced-choice recognition test for the studied prices. Consistent with a previous report, healthy controls' performance was enhanced by price knowledge congruency; however, only a subset of amnesic patients experienced the same benefit. Whereas patients with relatively intact semantic systems, as measured by an anatomical measure (i.e., lesion involvement of anterior and lateral temporal lobes), experienced a significant congruency benefit, patients with compromised semantic systems did not experience a congruency benefit. Our findings suggest that when prior knowledge structures are intact, they can support acquisition of new episodic information by providing frameworks into which such information can be incorporated.

  7. Abnormal semantic knowledge in a case of developmental amnesia.

    PubMed

    Blumenthal, Anna; Duke, Devin; Bowles, Ben; Gilboa, Asaf; Rosenbaum, R Shayna; Köhler, Stefan; McRae, Ken

    2017-07-28

    An important theory holds that semantic knowledge can develop independently of episodic memory. One strong source of evidence supporting this independence comes from the observation that individuals with early hippocampal damage leading to developmental amnesia generally perform normally on standard tests of semantic memory, despite their profound impairment in episodic memory. However, one aspect of semantic memory that has not been explored is conceptual structure. We built on the theoretically important distinction between intrinsic features of object concepts (e.g., shape, colour, parts) and extrinsic features (e.g., how something is used, where it is typically located). The accrual of extrinsic feature knowledge that is important for concepts such as chair or spoon may depend on binding mechanisms in the hippocampus. We tested HC, an individual with developmental amnesia due to a well-characterized lesion of the hippocampus, on her ability to generate semantic features for object concepts. HC generated fewer extrinsic features than controls, but a similar number of intrinsic features than controls. We also tested her on typicality ratings. Her typicality ratings were abnormal for nonliving things (which more strongly depend on extrinsic features), but normal for living things (which more strongly depend on intrinsic features). In contrast, NB, who has MTL but not hippocampal damage due to surgery, showed no impairments in either task. These results suggest that episodic and semantic memory are not entirely independent, and that the hippocampus is important for learning some aspects of conceptual knowledge. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. The Role of Self-Teaching in Learning Orthographic and Semantic Aspects of New Words

    ERIC Educational Resources Information Center

    Ricketts, Jessie; Bishop, Dorothy V. M.; Pimperton, Hannah; Nation, Kate

    2011-01-01

    This study explores how children learn the meaning (semantics) and spelling patterns (orthography) of novel words encountered in story context. English-speaking children (N = 88) aged 7 to 8 years read 8 stories and each story contained 1 novel word repeated 4 times. Semantic cues were provided by the story context such that children could infer…

  9. How Visual and Semantic Information Influence Learning in Familiar Contexts

    ERIC Educational Resources Information Center

    Goujon, Annabelle; Brockmole, James R.; Ehinger, Krista A.

    2012-01-01

    Previous research using the contextual cuing paradigm has revealed both quantitative and qualitative differences in learning depending on whether repeated contexts are defined by letter arrays or real-world scenes. To clarify the relative contributions of visual features and semantic information likely to account for such differences, the typical…

  10. Concept Representation Reflects Multimodal Abstraction: A Framework for Embodied Semantics

    PubMed Central

    Fernandino, Leonardo; Binder, Jeffrey R.; Desai, Rutvik H.; Pendl, Suzanne L.; Humphries, Colin J.; Gross, William L.; Conant, Lisa L.; Seidenberg, Mark S.

    2016-01-01

    Recent research indicates that sensory and motor cortical areas play a significant role in the neural representation of concepts. However, little is known about the overall architecture of this representational system, including the role played by higher level areas that integrate different types of sensory and motor information. The present study addressed this issue by investigating the simultaneous contributions of multiple sensory-motor modalities to semantic word processing. With a multivariate fMRI design, we examined activation associated with 5 sensory-motor attributes—color, shape, visual motion, sound, and manipulation—for 900 words. Regions responsive to each attribute were identified using independent ratings of the attributes' relevance to the meaning of each word. The results indicate that these aspects of conceptual knowledge are encoded in multimodal and higher level unimodal areas involved in processing the corresponding types of information during perception and action, in agreement with embodied theories of semantics. They also reveal a hierarchical system of abstracted sensory-motor representations incorporating a major division between object interaction and object perception processes. PMID:25750259

  11. Virtual Field Sites: Losses and Gains in Authenticity with Semantic Technologies

    ERIC Educational Resources Information Center

    Litherland, Kate; Stott, Tim A.

    2012-01-01

    The authors investigate the potential of semantic web technologies to enhance "Virtual Fieldwork" resources and learning activities in the Geosciences. They consider the difficulties inherent in the concept of Virtual Fieldwork and how these might be reconciled with the desire to provide students with "authentic" tools for…

  12. The role of sleep spindles and slow-wave activity in integrating new information in semantic memory.

    PubMed

    Tamminen, Jakke; Lambon Ralph, Matthew A; Lewis, Penelope A

    2013-09-25

    Assimilating new information into existing knowledge is a fundamental part of consolidating new memories and allowing them to guide behavior optimally and is vital for conceptual knowledge (semantic memory), which is accrued over many years. Sleep is important for memory consolidation, but its impact upon assimilation of new information into existing semantic knowledge has received minimal examination. Here, we examined the integration process by training human participants on novel words with meanings that fell into densely or sparsely populated areas of semantic memory in two separate sessions. Overnight sleep was polysomnographically monitored after each training session and recall was tested immediately after training, after a night of sleep, and 1 week later. Results showed that participants learned equal numbers of both word types, thus equating amount and difficulty of learning across the conditions. Measures of word recognition speed showed a disadvantage for novel words in dense semantic neighborhoods, presumably due to interference from many semantically related concepts, suggesting that the novel words had been successfully integrated into semantic memory. Most critically, semantic neighborhood density influenced sleep architecture, with participants exhibiting more sleep spindles and slow-wave activity after learning the sparse compared with the dense neighborhood words. These findings provide the first evidence that spindles and slow-wave activity mediate integration of new information into existing semantic networks.

  13. Weaknesses in Lexical-Semantic Knowledge among College Students with Specific Learning Disabilities: Evidence from a Semantic Fluency Task

    ERIC Educational Resources Information Center

    Hall, Jessica; McGregor, Karla K.; Oleson, Jacob

    2017-01-01

    Purpose: The purpose of this study is to determine whether deficits in executive function and lexical-semantic memory compromise the linguistic performance of young adults with specific learning disabilities (LD) enrolled in postsecondary studies. Method: One hundred eighty-five students with LD (n = 53) or normal language development (ND, n =…

  14. Decoding the Formation of New Semantics: MVPA Investigation of Rapid Neocortical Plasticity during Associative Encoding through Fast Mapping.

    PubMed

    Atir-Sharon, Tali; Gilboa, Asaf; Hazan, Hananel; Koilis, Ester; Manevitz, Larry M

    2015-01-01

    Neocortical structures typically only support slow acquisition of declarative memory; however, learning through fast mapping may facilitate rapid learning-induced cortical plasticity and hippocampal-independent integration of novel associations into existing semantic networks. During fast mapping the meaning of new words and concepts is inferred, and durable novel associations are incidentally formed, a process thought to support early childhood's exuberant learning. The anterior temporal lobe, a cortical semantic memory hub, may critically support such learning. We investigated encoding of semantic associations through fast mapping using fMRI and multivoxel pattern analysis. Subsequent memory performance following fast mapping was more efficiently predicted using anterior temporal lobe than hippocampal voxels, while standard explicit encoding was best predicted by hippocampal activity. Searchlight algorithms revealed additional activity patterns that predicted successful fast mapping semantic learning located in lateral occipitotemporal and parietotemporal neocortex and ventrolateral prefrontal cortex. By contrast, successful explicit encoding could be classified by activity in medial and dorsolateral prefrontal and parahippocampal cortices. We propose that fast mapping promotes incidental rapid integration of new associations into existing neocortical semantic networks by activating related, nonoverlapping conceptual knowledge. In healthy adults, this is better captured by unique anterior and lateral temporal lobe activity patterns, while hippocampal involvement is less predictive of this kind of learning.

  15. A Case Study on Sepsis Using PubMed and Deep Learning for Ontology Learning.

    PubMed

    Arguello Casteleiro, Mercedes; Maseda Fernandez, Diego; Demetriou, George; Read, Warren; Fernandez Prieto, Maria Jesus; Des Diz, Julio; Nenadic, Goran; Keane, John; Stevens, Robert

    2017-01-01

    We investigate the application of distributional semantics models for facilitating unsupervised extraction of biomedical terms from unannotated corpora. Term extraction is used as the first step of an ontology learning process that aims to (semi-)automatic annotation of biomedical concepts and relations from more than 300K PubMed titles and abstracts. We experimented with both traditional distributional semantics methods such as Latent Semantic Analysis (LSA) and Latent Dirichlet Allocation (LDA) as well as the neural language models CBOW and Skip-gram from Deep Learning. The evaluation conducted concentrates on sepsis, a major life-threatening condition, and shows that Deep Learning models outperform LSA and LDA with much higher precision.

  16. Concepts, Control, and Context: A Connectionist Account of Normal and Disordered Semantic Cognition

    PubMed Central

    2018-01-01

    Semantic cognition requires conceptual representations shaped by verbal and nonverbal experience and executive control processes that regulate activation of knowledge to meet current situational demands. A complete model must also account for the representation of concrete and abstract words, of taxonomic and associative relationships, and for the role of context in shaping meaning. We present the first major attempt to assimilate all of these elements within a unified, implemented computational framework. Our model combines a hub-and-spoke architecture with a buffer that allows its state to be influenced by prior context. This hybrid structure integrates the view, from cognitive neuroscience, that concepts are grounded in sensory-motor representation with the view, from computational linguistics, that knowledge is shaped by patterns of lexical co-occurrence. The model successfully codes knowledge for abstract and concrete words, associative and taxonomic relationships, and the multiple meanings of homonyms, within a single representational space. Knowledge of abstract words is acquired through (a) their patterns of co-occurrence with other words and (b) acquired embodiment, whereby they become indirectly associated with the perceptual features of co-occurring concrete words. The model accounts for executive influences on semantics by including a controlled retrieval mechanism that provides top-down input to amplify weak semantic relationships. The representational and control elements of the model can be damaged independently, and the consequences of such damage closely replicate effects seen in neuropsychological patients with loss of semantic representation versus control processes. Thus, the model provides a wide-ranging and neurally plausible account of normal and impaired semantic cognition. PMID:29733663

  17. Does Testing Increase Spontaneous Mediation in Learning Semantically Related Paired Associates?

    ERIC Educational Resources Information Center

    Cho, Kit W.; Neely, James H.; Brennan, Michael K.; Vitrano, Deana; Crocco, Stephanie

    2017-01-01

    Carpenter (2011) argued that the testing effect she observed for semantically related but associatively unrelated paired associates supports the mediator effectiveness hypothesis. This hypothesis asserts that after the cue-target pair "mother-child" is learned, relative to restudying mother-child, a review test in which…

  18. Challenges Facing the Semantic Web and Social Software as Communication Technology Agents in E-Learning Environments

    ERIC Educational Resources Information Center

    Olaniran, Bolanle A.

    2010-01-01

    The semantic web describes the process whereby information content is made available for machine consumption. With increased reliance on information communication technologies, the semantic web promises effective and efficient information acquisition and dissemination of products and services in the global economy, in particular, e-learning.…

  19. Language-Mediated Concept Learning.

    ERIC Educational Resources Information Center

    Follettie, Joseph F.

    The conditions whereby a concept might be learned on the basis of a language mediation process prior to the inductive learning of subordinate concepts are sketched. The view is expressed that grammar treatments which are apt to primary education should be defined on the basis of a pedagogy's needs for linguistic characterizations of concepts to be…

  20. Learning and Processing Abstract Words and Concepts: Insights From Typical and Atypical Development.

    PubMed

    Vigliocco, Gabriella; Ponari, Marta; Norbury, Courtenay

    2018-05-21

    The paper describes two plausible hypotheses concerning the learning of abstract words and concepts. According to a first hypothesis, children would learn abstract words by extracting co-occurrences among words in linguistic input, using, for example, mechanisms as described by models of Distributional Semantics. According to a second hypothesis, children would exploit the fact that abstract words tend to have more emotional associations than concrete words to infer that they refer to internal/mental states. Each hypothesis makes specific predictions with regards to when and which abstract words are more likely to be learned; also they make different predictions concerning the impact of developmental disorders. We start by providing a review of work characterizing how abstract words and concepts are learned in development, especially between the ages of 6 and 12. Second, we review some work from our group that tests the two hypotheses above. This work investigates typically developing (TD) children and children with atypical development (developmental language disorders [DLD] and autism spectrum disorder [ASD] with and without language deficits). We conclude that the use of strategies based on emotional information, or on co-occurrences in language, may play a role at different developmental stages. © 2018 Cognitive Science Society Inc.

  1. [Artificial intelligence meeting neuropsychology. Semantic memory in normal and pathological aging].

    PubMed

    Aimé, Xavier; Charlet, Jean; Maillet, Didier; Belin, Catherine

    2015-03-01

    Artificial intelligence (IA) is the subject of much research, but also many fantasies. It aims to reproduce human intelligence in its learning capacity, knowledge storage and computation. In 2014, the Defense Advanced Research Projects Agency (DARPA) started the restoring active memory (RAM) program that attempt to develop implantable technology to bridge gaps in the injured brain and restore normal memory function to people with memory loss caused by injury or disease. In another IA's field, computational ontologies (a formal and shared conceptualization) try to model knowledge in order to represent a structured and unambiguous meaning of the concepts of a target domain. The aim of these structures is to ensure a consensual understanding of their meaning and a univariant use (the same concept is used by all to categorize the same individuals). The first representations of knowledge in the AI's domain are largely based on model tests of semantic memory. This one, as a component of long-term memory is the memory of words, ideas, concepts. It is the only declarative memory system that resists so remarkably to the effects of age. In contrast, non-specific cognitive changes may decrease the performance of elderly in various events and instead report difficulties of access to semantic representations that affect the semantics stock itself. Some dementias, like semantic dementia and Alzheimer's disease, are linked to alteration of semantic memory. We propose in this paper, using the computational ontologies model, a formal and relatively thin modeling, in the service of neuropsychology: 1) for the practitioner with decision support systems, 2) for the patient as cognitive prosthesis outsourced, and 3) for the researcher to study semantic memory.

  2. Learning Semantic Tags from Big Data for Clinical Text Representation.

    PubMed

    Li, Yanpeng; Liu, Hongfang

    2015-01-01

    In clinical text mining, it is one of the biggest challenges to represent medical terminologies and n-gram terms in sparse medical reports using either supervised or unsupervised methods. Addressing this issue, we propose a novel method for word and n-gram representation at semantic level. We first represent each word by its distance with a set of reference features calculated by reference distance estimator (RDE) learned from labeled and unlabeled data, and then generate new features using simple techniques of discretization, random sampling and merging. The new features are a set of binary rules that can be interpreted as semantic tags derived from word and n-grams. We show that the new features significantly outperform classical bag-of-words and n-grams in the task of heart disease risk factor extraction in i2b2 2014 challenge. It is promising to see that semantics tags can be used to replace the original text entirely with even better prediction performance as well as derive new rules beyond lexical level.

  3. Semantic Priming for Coordinate Distant Concepts in Alzheimer's Disease Patients

    ERIC Educational Resources Information Center

    Perri, R.; Zannino, G. D.; Caltagirone, C.; Carlesimo, G. A.

    2011-01-01

    Semantic priming paradigms have been used to investigate semantic knowledge in patients with Alzheimer's disease (AD). While priming effects produced by prime-target pairs with associative relatedness reflect processes at both lexical and semantic levels, priming effects produced by words that are semantically related but not associated should…

  4. An Experiment in Scientific Code Semantic Analysis

    NASA Technical Reports Server (NTRS)

    Stewart, Mark E. M.

    1998-01-01

    This paper concerns a procedure that analyzes aspects of the meaning or semantics of scientific and engineering code. This procedure involves taking a user's existing code, adding semantic declarations for some primitive variables, and parsing this annotated code using multiple, distributed expert parsers. These semantic parser are designed to recognize formulae in different disciplines including physical and mathematical formulae and geometrical position in a numerical scheme. The parsers will automatically recognize and document some static, semantic concepts and locate some program semantic errors. Results are shown for a subroutine test case and a collection of combustion code routines. This ability to locate some semantic errors and document semantic concepts in scientific and engineering code should reduce the time, risk, and effort of developing and using these codes.

  5. Abstraction and generalization in statistical learning: implications for the relationship between semantic types and episodic tokens

    PubMed Central

    2017-01-01

    Statistical approaches to emergent knowledge have tended to focus on the process by which experience of individual episodes accumulates into generalizable experience across episodes. However, there is a seemingly opposite, but equally critical, process that such experience affords: the process by which, from a space of types (e.g. onions—a semantic class that develops through exposure to individual episodes involving individual onions), we can perceive or create, on-the-fly, a specific token (a specific onion, perhaps one that is chopped) in the absence of any prior perceptual experience with that specific token. This article reviews a selection of statistical learning studies that lead to the speculation that this process—the generation, on the basis of semantic memory, of a novel episodic representation—is itself an instance of a statistical, in fact associative, process. The article concludes that the same processes that enable statistical abstraction across individual episodes to form semantic memories also enable the generation, from those semantic memories, of representations that correspond to individual tokens, and of novel episodic facts about those tokens. Statistical learning is a window onto these deeper processes that underpin cognition. This article is part of the themed issue ‘New frontiers for statistical learning in the cognitive sciences’. PMID:27872378

  6. Abstraction and generalization in statistical learning: implications for the relationship between semantic types and episodic tokens.

    PubMed

    Altmann, Gerry T M

    2017-01-05

    Statistical approaches to emergent knowledge have tended to focus on the process by which experience of individual episodes accumulates into generalizable experience across episodes. However, there is a seemingly opposite, but equally critical, process that such experience affords: the process by which, from a space of types (e.g. onions-a semantic class that develops through exposure to individual episodes involving individual onions), we can perceive or create, on-the-fly, a specific token (a specific onion, perhaps one that is chopped) in the absence of any prior perceptual experience with that specific token. This article reviews a selection of statistical learning studies that lead to the speculation that this process-the generation, on the basis of semantic memory, of a novel episodic representation-is itself an instance of a statistical, in fact associative, process. The article concludes that the same processes that enable statistical abstraction across individual episodes to form semantic memories also enable the generation, from those semantic memories, of representations that correspond to individual tokens, and of novel episodic facts about those tokens. Statistical learning is a window onto these deeper processes that underpin cognition.This article is part of the themed issue 'New frontiers for statistical learning in the cognitive sciences'. © 2016 The Author(s).

  7. Overcoming an Obstacle in Expanding a UMLS Semantic Type Extent

    PubMed Central

    Chen, Yan; Gu, Huanying; Perl, Yehoshua; Geller, James

    2011-01-01

    This paper strives to overcome a major problem encountered by a previous expansion methodology for discovering concepts highly likely to be missing a specific semantic type assignment in the UMLS. This methodology is the basis for an algorithm that presents the discovered concepts to a human auditor for review and possible correction. We analyzed the problem of the previous expansion methodology and discovered that it was due to an obstacle constituted by one or more concepts assigned the UMLS Semantic Network semantic type Classification. A new methodology was designed that bypasses such an obstacle without a combinatorial explosion in the number of concepts presented to the human auditor for review. The new expansion methodology with obstacle avoidance was tested with the semantic type Experimental Model of Disease and found over 500 concepts missed by the previous methodology that are in need of this semantic type assignment. Furthermore, other semantic types suffering from the same major problem were discovered, indicating that the methodology is of more general applicability. The algorithmic discovery of concepts that are likely missing a semantic type assignment is possible even in the face of obstacles, without an explosion in the number of processed concepts. PMID:21925287

  8. Semantic Similarity between Web Documents Using Ontology

    NASA Astrophysics Data System (ADS)

    Chahal, Poonam; Singh Tomer, Manjeet; Kumar, Suresh

    2018-06-01

    The World Wide Web is the source of information available in the structure of interlinked web pages. However, the procedure of extracting significant information with the assistance of search engine is incredibly critical. This is for the reason that web information is written mainly by using natural language, and further available to individual human. Several efforts have been made in semantic similarity computation between documents using words, concepts and concepts relationship but still the outcome available are not as per the user requirements. This paper proposes a novel technique for computation of semantic similarity between documents that not only takes concepts available in documents but also relationships that are available between the concepts. In our approach documents are being processed by making ontology of the documents using base ontology and a dictionary containing concepts records. Each such record is made up of the probable words which represents a given concept. Finally, document ontology's are compared to find their semantic similarity by taking the relationships among concepts. Relevant concepts and relations between the concepts have been explored by capturing author and user intention. The proposed semantic analysis technique provides improved results as compared to the existing techniques.

  9. Semantic Similarity between Web Documents Using Ontology

    NASA Astrophysics Data System (ADS)

    Chahal, Poonam; Singh Tomer, Manjeet; Kumar, Suresh

    2018-03-01

    The World Wide Web is the source of information available in the structure of interlinked web pages. However, the procedure of extracting significant information with the assistance of search engine is incredibly critical. This is for the reason that web information is written mainly by using natural language, and further available to individual human. Several efforts have been made in semantic similarity computation between documents using words, concepts and concepts relationship but still the outcome available are not as per the user requirements. This paper proposes a novel technique for computation of semantic similarity between documents that not only takes concepts available in documents but also relationships that are available between the concepts. In our approach documents are being processed by making ontology of the documents using base ontology and a dictionary containing concepts records. Each such record is made up of the probable words which represents a given concept. Finally, document ontology's are compared to find their semantic similarity by taking the relationships among concepts. Relevant concepts and relations between the concepts have been explored by capturing author and user intention. The proposed semantic analysis technique provides improved results as compared to the existing techniques.

  10. The Construction of Semantic Memory: Grammar-Based Representations Learned from Relational Episodic Information

    PubMed Central

    Battaglia, Francesco P.; Pennartz, Cyriel M. A.

    2011-01-01

    After acquisition, memories underlie a process of consolidation, making them more resistant to interference and brain injury. Memory consolidation involves systems-level interactions, most importantly between the hippocampus and associated structures, which takes part in the initial encoding of memory, and the neocortex, which supports long-term storage. This dichotomy parallels the contrast between episodic memory (tied to the hippocampal formation), collecting an autobiographical stream of experiences, and semantic memory, a repertoire of facts and statistical regularities about the world, involving the neocortex at large. Experimental evidence points to a gradual transformation of memories, following encoding, from an episodic to a semantic character. This may require an exchange of information between different memory modules during inactive periods. We propose a theory for such interactions and for the formation of semantic memory, in which episodic memory is encoded as relational data. Semantic memory is modeled as a modified stochastic grammar, which learns to parse episodic configurations expressed as an association matrix. The grammar produces tree-like representations of episodes, describing the relationships between its main constituents at multiple levels of categorization, based on its current knowledge of world regularities. These regularities are learned by the grammar from episodic memory information, through an expectation-maximization procedure, analogous to the inside–outside algorithm for stochastic context-free grammars. We propose that a Monte-Carlo sampling version of this algorithm can be mapped on the dynamics of “sleep replay” of previously acquired information in the hippocampus and neocortex. We propose that the model can reproduce several properties of semantic memory such as decontextualization, top-down processing, and creation of schemata. PMID:21887143

  11. Effects of Semantic Web Based Learning on Pre-Service Teachers' ICT Learning Achievement and Satisfaction

    ERIC Educational Resources Information Center

    Karalar, Halit; Korucu, Agah Tugrul

    2016-01-01

    Although the Semantic Web offers many opportunities for learners, effects of it in the classroom is not well known. Therefore, in this study explanations have been stated as how the learning objects defined by means of using the terminology in a developed ontology and kept in objects repository should be presented to learners with the aim of…

  12. Concept Model on Topological Learning

    NASA Astrophysics Data System (ADS)

    Ae, Tadashi; Kioi, Kazumasa

    2010-11-01

    We discuss a new model for concept based on topological learning, where the learning process on the neural network is represented by mathematical topology. The topological learning of neural networks is summarized by a quotient of input space and the hierarchical step induces a tree where each node corresponds to a quotient. In general, the concept acquisition is a difficult problem, but the emotion for a subject is represented by providing the questions to a person. Therefore, a kind of concept is captured by such data and the answer sheet can be mapped into a topology consisting of trees. In this paper, we will discuss a way of mapping the emotional concept to a topological learning model.

  13. The New Challenges for E-learning: The Educational Semantic Web

    ERIC Educational Resources Information Center

    Aroyo, Lora; Dicheva, Darina

    2004-01-01

    The big question for many researchers in the area of educational systems now is what is the next step in the evolution of e-learning? Are we finally moving from a scattered intelligence to a coherent space of collaborative intelligence? How close we are to the vision of the Educational Semantic Web and what do we need to do in order to realize it?…

  14. Investigating Orthographic and Semantic Aspects of Word Learning in Poor Comprehenders

    ERIC Educational Resources Information Center

    Ricketts, Jessie; Bishop, Dorothy V. M.; Nation, Kate

    2008-01-01

    This study compared orthographic and semantic aspects of word learning in children who differed in reading comprehension skill. Poor comprehenders and controls matched for age (9-10 years), nonverbal ability and decoding skill were trained to pronounce 20 visually presented nonwords, 10 in a consistent way and 10 in an inconsistent way. They then…

  15. Overcoming an obstacle in expanding a UMLS semantic type extent.

    PubMed

    Chen, Yan; Gu, Huanying; Perl, Yehoshua; Geller, James

    2012-02-01

    This paper strives to overcome a major problem encountered by a previous expansion methodology for discovering concepts highly likely to be missing a specific semantic type assignment in the UMLS. This methodology is the basis for an algorithm that presents the discovered concepts to a human auditor for review and possible correction. We analyzed the problem of the previous expansion methodology and discovered that it was due to an obstacle constituted by one or more concepts assigned the UMLS Semantic Network semantic type Classification. A new methodology was designed that bypasses such an obstacle without a combinatorial explosion in the number of concepts presented to the human auditor for review. The new expansion methodology with obstacle avoidance was tested with the semantic type Experimental Model of Disease and found over 500 concepts missed by the previous methodology that are in need of this semantic type assignment. Furthermore, other semantic types suffering from the same major problem were discovered, indicating that the methodology is of more general applicability. The algorithmic discovery of concepts that are likely missing a semantic type assignment is possible even in the face of obstacles, without an explosion in the number of processed concepts. Copyright © 2011 Elsevier Inc. All rights reserved.

  16. A Hybrid Knowledge-Based and Data-Driven Approach to Identifying Semantically Similar Concepts

    PubMed Central

    Pivovarov, Rimma; Elhadad, Noémie

    2012-01-01

    An open research question when leveraging ontological knowledge is when to treat different concepts separately from each other and when to aggregate them. For instance, concepts for the terms "paroxysmal cough" and "nocturnal cough" might be aggregated in a kidney disease study, but should be left separate in a pneumonia study. Determining whether two concepts are similar enough to be aggregated can help build better datasets for data mining purposes and avoid signal dilution. Quantifying the similarity among concepts is a difficult task, however, in part because such similarity is context-dependent. We propose a comprehensive method, which computes a similarity score for a concept pair by combining data-driven and ontology-driven knowledge. We demonstrate our method on concepts from SNOMED-CT and on a corpus of clinical notes of patients with chronic kidney disease. By combining information from usage patterns in clinical notes and from ontological structure, the method can prune out concepts that are simply related from those which are semantically similar. When evaluated against a list of concept pairs annotated for similarity, our method reaches an AUC (area under the curve) of 92%. PMID:22289420

  17. Concept Learning through Image Processing.

    ERIC Educational Resources Information Center

    Cifuentes, Lauren; Yi-Chuan, Jane Hsieh

    This study explored computer-based image processing as a study strategy for middle school students' science concept learning. Specifically, the research examined the effects of computer graphics generation on science concept learning and the impact of using computer graphics to show interrelationships among concepts during study time. The 87…

  18. Nonword Repetition and Vocabulary Knowledge as Predictors of Children's Phonological and Semantic Word Learning

    ERIC Educational Resources Information Center

    Adlof, Suzanne M.; Patten, Hannah

    2017-01-01

    Purpose: This study examined the unique and shared variance that nonword repetition and vocabulary knowledge contribute to children's ability to learn new words. Multiple measures of word learning were used to assess recall and recognition of phonological and semantic information. Method: Fifty children, with a mean age of 8 years (range 5-12…

  19. The Influence of Consistency, Frequency, and Semantics on Learning to Read: An Artificial Orthography Paradigm

    ERIC Educational Resources Information Center

    Taylor, J. S. H.; Plunkett, Kim; Nation, Kate

    2011-01-01

    Two experiments explored learning, generalization, and the influence of semantics on orthographic processing in an artificial language. In Experiment 1, 16 adults learned to read 36 novel words written in novel characters. Posttraining, participants discriminated trained from untrained items and generalized to novel items, demonstrating extraction…

  20. The semantic measures library and toolkit: fast computation of semantic similarity and relatedness using biomedical ontologies.

    PubMed

    Harispe, Sébastien; Ranwez, Sylvie; Janaqi, Stefan; Montmain, Jacky

    2014-03-01

    The semantic measures library and toolkit are robust open-source and easy to use software solutions dedicated to semantic measures. They can be used for large-scale computations and analyses of semantic similarities between terms/concepts defined in terminologies and ontologies. The comparison of entities (e.g. genes) annotated by concepts is also supported. A large collection of measures is available. Not limited to a specific application context, the library and the toolkit can be used with various controlled vocabularies and ontology specifications (e.g. Open Biomedical Ontology, Resource Description Framework). The project targets both designers and practitioners of semantic measures providing a JAVA library, as well as a command-line tool that can be used on personal computers or computer clusters. Downloads, documentation, tutorials, evaluation and support are available at http://www.semantic-measures-library.org.

  1. Semantic and visual memory codes in learning disabled readers.

    PubMed

    Swanson, H L

    1984-02-01

    Two experiments investigated whether learning disabled readers' impaired recall is due to multiple coding deficiencies. In Experiment 1, learning disabled and skilled readers viewed nonsense pictures without names or with either relevant or irrelevant names with respect to the distinctive characteristics of the picture. Both types of names improved recall of nondisabled readers, while learning disabled readers exhibited better recall for unnamed pictures. No significant difference in recall was found between name training (relevant, irrelevant) conditions within reading groups. In Experiment 2, both reading groups participated in recall training for complex visual forms labeled with unrelated words, hierarchically related words, or without labels. A subsequent reproduction transfer task showed a facilitation in performance in skilled readers due to labeling, with learning disabled readers exhibiting better reproduction for unnamed pictures. Measures of output organization (clustering) indicated that recall is related to the development of superordinate categories. The results suggest that learning disabled children's reading difficulties are due to an inability to activate a semantic representation that interconnects visual and verbal codes.

  2. A brain-based account of “basic-level” concepts

    PubMed Central

    Bauer, Andrew James; Just, Marcel Adam

    2017-01-01

    This study provides a brain-based account of how object concepts at an intermediate (basic) level of specificity are represented, offering an enriched view of what it means for a concept to be a basic-level concept, a research topic pioneered by Rosch and others (Rosch et al., 1976). Applying machine learning techniques to fMRI data, it was possible to determine the semantic content encoded in the neural representations of object concepts at basic and subordinate levels of abstraction. The representation of basic-level concepts (e.g. bird) was spatially broad, encompassing sensorimotor brain areas that encode concrete object properties, and also language and heteromodal integrative areas that encode abstract semantic content. The representation of subordinate-level concepts (robin) was less widely distributed, concentrated in perceptual areas that underlie concrete content. Furthermore, basic-level concepts were representative of their subordinates in that they were neurally similar to their typical but not atypical subordinates (bird was neurally similar to robin but not woodpecker). The findings provide a brain-based account of the advantages that basic-level concepts enjoy in everyday life over subordinate-level concepts: the basic level is a broad topographical representation that encompasses both concrete and abstract semantic content, reflecting the multifaceted yet intuitive meaning of basic-level concepts. PMID:28826947

  3. The neural correlates of semantic richness: evidence from an fMRI study of word learning.

    PubMed

    Ferreira, Roberto A; Göbel, Silke M; Hymers, Mark; Ellis, Andrew W

    2015-04-01

    We investigated the neural correlates of concrete nouns with either many or few semantic features. A group of 21 participants underwent two days of training and were then asked to categorize 40 newly learned words and a set of matched familiar words as living or nonliving in an MRI scanner. Our results showed that the most reliable effects of semantic richness were located in the left angular gyrus (AG) and middle temporal gyrus (MTG), where activation was higher for semantically rich than poor words. Other areas showing the same pattern included bilateral precuneus and posterior cingulate gyrus. Our findings support the view that AG and anterior MTG, as part of the multimodal network, play a significant role in representing and integrating semantic features from different input modalities. We propose that activation in bilateral precuneus and posterior cingulate gyrus reflects interplay between AG and episodic memory systems during semantic retrieval. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. Controlled semantic cognition relies upon dynamic and flexible interactions between the executive 'semantic control' and hub-and-spoke 'semantic representation' systems.

    PubMed

    Chiou, Rocco; Humphreys, Gina F; Jung, JeYoung; Lambon Ralph, Matthew A

    2018-06-01

    Built upon a wealth of neuroimaging, neurostimulation, and neuropsychology data, a recent proposal set forth a framework termed controlled semantic cognition (CSC) to account for how the brain underpins the ability to flexibly use semantic knowledge (Lambon Ralph et al., 2017; Nature Reviews Neuroscience). In CSC, the 'semantic control' system, underpinned predominantly by the prefrontal cortex, dynamically monitors and modulates the 'semantic representation' system that consists of a 'hub' (anterior temporal lobe, ATL) and multiple 'spokes' (modality-specific areas). CSC predicts that unfamiliar and exacting semantic tasks should intensify communication between the 'control' and 'representation' systems, relative to familiar and less taxing tasks. In the present study, we used functional magnetic resonance imaging (fMRI) to test this hypothesis. Participants paired unrelated concepts by canonical colours (a less accustomed task - e.g., pairing ketchup with fire-extinguishers due to both being red) or paired well-related concepts by semantic relationship (a typical task - e.g., ketchup is related to mustard). We found the 'control' system was more engaged by atypical than typical pairing. While both tasks activated the ATL 'hub', colour pairing additionally involved occipitotemporal 'spoke' regions abutting areas of hue perception. Furthermore, we uncovered a gradient along the ventral temporal cortex, transitioning from the caudal 'spoke' zones preferring canonical colour processing to the rostral 'hub' zones preferring semantic relationship. Functional connectivity also differed between the tasks: Compared with semantic pairing, colour pairing relied more upon the inferior frontal gyrus, a key node of the control system, driving enhanced connectivity with occipitotemporal 'spoke'. Together, our findings characterise the interaction within the neural architecture of semantic cognition - the control system dynamically heightens its connectivity with relevant

  5. Semantically Interoperable XML Data

    PubMed Central

    Vergara-Niedermayr, Cristobal; Wang, Fusheng; Pan, Tony; Kurc, Tahsin; Saltz, Joel

    2013-01-01

    XML is ubiquitously used as an information exchange platform for web-based applications in healthcare, life sciences, and many other domains. Proliferating XML data are now managed through latest native XML database technologies. XML data sources conforming to common XML schemas could be shared and integrated with syntactic interoperability. Semantic interoperability can be achieved through semantic annotations of data models using common data elements linked to concepts from ontologies. In this paper, we present a framework and software system to support the development of semantic interoperable XML based data sources that can be shared through a Grid infrastructure. We also present our work on supporting semantic validated XML data through semantic annotations for XML Schema, semantic validation and semantic authoring of XML data. We demonstrate the use of the system for a biomedical database of medical image annotations and markups. PMID:25298789

  6. A brain-based account of "basic-level" concepts.

    PubMed

    Bauer, Andrew James; Just, Marcel Adam

    2017-11-01

    This study provides a brain-based account of how object concepts at an intermediate (basic) level of specificity are represented, offering an enriched view of what it means for a concept to be a basic-level concept, a research topic pioneered by Rosch and others (Rosch et al., 1976). Applying machine learning techniques to fMRI data, it was possible to determine the semantic content encoded in the neural representations of object concepts at basic and subordinate levels of abstraction. The representation of basic-level concepts (e.g. bird) was spatially broad, encompassing sensorimotor brain areas that encode concrete object properties, and also language and heteromodal integrative areas that encode abstract semantic content. The representation of subordinate-level concepts (robin) was less widely distributed, concentrated in perceptual areas that underlie concrete content. Furthermore, basic-level concepts were representative of their subordinates in that they were neurally similar to their typical but not atypical subordinates (bird was neurally similar to robin but not woodpecker). The findings provide a brain-based account of the advantages that basic-level concepts enjoy in everyday life over subordinate-level concepts: the basic level is a broad topographical representation that encompasses both concrete and abstract semantic content, reflecting the multifaceted yet intuitive meaning of basic-level concepts. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Quality Assurance of UMLS Semantic Type Assignments Using SNOMED CT Hierarchies.

    PubMed

    Gu, H; Chen, Y; He, Z; Halper, M; Chen, L

    2016-01-01

    The Unified Medical Language System (UMLS) is one of the largest biomedical terminological systems, with over 2.5 million concepts in its Metathesaurus repository. The UMLS's Semantic Network (SN) with its collection of 133 high-level semantic types serves as an abstraction layer on top of the Metathesaurus. In particular, the SN elaborates an aspect of the Metathesaurus's concepts via the assignment of one or more types to each concept. Due to the scope and complexity of the Metathesaurus, errors are all but inevitable in this semantic-type assignment process. To develop a semi-automated methodology to help assure the quality of semantic-type assignments within the UMLS. The methodology uses a cross-validation strategy involving SNOMED CT's hierarchies in combination with UMLS semantic types. Semantically uniform, disjoint concept groups are generated programmatically by partitioning the collection of all concepts in the same SNOMED CT hierarchy according to their respective semantic-type assignments in the UMLS. Domain experts are then called upon to review the concepts in any group having a small number of concepts. It is our hypothesis that a semantic-type assignment combination applicable only to a very small number of concepts in a SNOMED CT hierarchy is an indicator of potential problems. The methodology was applied to the UMLS 2013AA release along with the SNOMED CT from January 2013. An overall error rate of 33% was found for concepts proposed by the quality-assurance methodology. Supporting our hypothesis, that number was four times higher than the error rate found in control samples. The results show that the quality-assurance methodology can aid in effective and efficient identification of UMLS semantic-type assignment errors.

  8. The dark side of incremental learning: a model of cumulative semantic interference during lexical access in speech production.

    PubMed

    Oppenheim, Gary M; Dell, Gary S; Schwartz, Myrna F

    2010-02-01

    Naming a picture of a dog primes the subsequent naming of a picture of a dog (repetition priming) and interferes with the subsequent naming of a picture of a cat (semantic interference). Behavioral studies suggest that these effects derive from persistent changes in the way that words are activated and selected for production, and some have claimed that the findings are only understandable by positing a competitive mechanism for lexical selection. We present a simple model of lexical retrieval in speech production that applies error-driven learning to its lexical activation network. This model naturally produces repetition priming and semantic interference effects. It predicts the major findings from several published experiments, demonstrating that these effects may arise from incremental learning. Furthermore, analysis of the model suggests that competition during lexical selection is not necessary for semantic interference if the learning process is itself competitive. Copyright 2009 Elsevier B.V. All rights reserved.

  9. Animated and Static Concept Maps Enhance Learning from Spoken Narration

    ERIC Educational Resources Information Center

    Adesope, Olusola O.; Nesbit, John C.

    2013-01-01

    An animated concept map represents verbal information in a node-link diagram that changes over time. The goals of the experiment were to evaluate the instructional effects of presenting an animated concept map concurrently with semantically equivalent spoken narration. The study used a 2 x 2 factorial design in which an animation factor (animated…

  10. Semantic Information Processing of Physical Simulation Based on Scientific Concept Vocabulary Model

    NASA Astrophysics Data System (ADS)

    Kino, Chiaki; Suzuki, Yoshio; Takemiya, Hiroshi

    Scientific Concept Vocabulary (SCV) has been developed to actualize Cognitive methodology based Data Analysis System: CDAS which supports researchers to analyze large scale data efficiently and comprehensively. SCV is an information model for processing semantic information for physics and engineering. In the model of SCV, all semantic information is related to substantial data and algorisms. Consequently, SCV enables a data analysis system to recognize the meaning of execution results output from a numerical simulation. This method has allowed a data analysis system to extract important information from a scientific view point. Previous research has shown that SCV is able to describe simple scientific indices and scientific perceptions. However, it is difficult to describe complex scientific perceptions by currently-proposed SCV. In this paper, a new data structure for SCV has been proposed in order to describe scientific perceptions in more detail. Additionally, the prototype of the new model has been constructed and applied to actual data of numerical simulation. The result means that the new SCV is able to describe more complex scientific perceptions.

  11. Effects of Semantic Ambiguity Detection Training on Reading Comprehension Achievement of English Learners with Learning Difficulties

    ERIC Educational Resources Information Center

    Jozwik, Sara L.; Douglas, Karen H.

    2016-01-01

    This study examined how explicit instruction in semantic ambiguity detection affected the reading comprehension and metalinguistic awareness of five English learners (ELs) with learning difficulties (e.g., attention deficit/hyperactivity disorder, specific learning disability). A multiple probe across participants design (Gast & Ledford, 2010)…

  12. Structure at every scale: A semantic network account of the similarities between unrelated concepts.

    PubMed

    De Deyne, Simon; Navarro, Daniel J; Perfors, Amy; Storms, Gert

    2016-09-01

    Similarity plays an important role in organizing the semantic system. However, given that similarity cannot be defined on purely logical grounds, it is important to understand how people perceive similarities between different entities. Despite this, the vast majority of studies focus on measuring similarity between very closely related items. When considering concepts that are very weakly related, little is known. In this article, we present 4 experiments showing that there are reliable and systematic patterns in how people evaluate the similarities between very dissimilar entities. We present a semantic network account of these similarities showing that a spreading activation mechanism defined over a word association network naturally makes correct predictions about weak similarities, whereas, though simpler, models based on direct neighbors between word pairs derived using the same network cannot. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  13. Semantic facilitation in bilingual first language acquisition.

    PubMed

    Bilson, Samuel; Yoshida, Hanako; Tran, Crystal D; Woods, Elizabeth A; Hills, Thomas T

    2015-07-01

    Bilingual first language learners face unique challenges that may influence the rate and order of early word learning relative to monolinguals. A comparison of the productive vocabularies of 435 children between the ages of 6 months and 7 years-181 of which were bilingual English learners-found that monolinguals learned both English words and all-language concepts faster than bilinguals. However, bilinguals showed an enhancement of an effect previously found in monolinguals-the preference for learning words with more associative cues. Though both monolinguals and bilinguals were best fit by a similar model of word learning, semantic network structure and growth indicated that the two groups were learning English words in a different order. Further, in comparison with a model of two-monolinguals-in-one-mind, bilinguals overproduced translational equivalents. Our results support an emergent account of bilingual first language acquisition, where learning a word in one language facilitates its acquisition in a second language. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. VastMM-Tag: Semantic Indexing and Browsing of Videos for E-Learning

    ERIC Educational Resources Information Center

    Morris, Mitchell J.

    2012-01-01

    Quickly accessing the contents of a video is challenging for users, particularly for unstructured video, which contains no intentional shot boundaries, no chapters, and no apparent edited format. We approach this problem in the domain of lecture videos though the use of machine learning, to gather semantic information about the videos; and through…

  15. SemanticOrganizer: A Customizable Semantic Repository for Distributed NASA Project Teams

    NASA Technical Reports Server (NTRS)

    Keller, Richard M.; Berrios, Daniel C.; Carvalho, Robert E.; Hall, David R.; Rich, Stephen J.; Sturken, Ian B.; Swanson, Keith J.; Wolfe, Shawn R.

    2004-01-01

    SemanticOrganizer is a collaborative knowledge management system designed to support distributed NASA projects, including diverse teams of scientists, engineers, and accident investigators. The system provides a customizable, semantically structured information repository that stores work products relevant to multiple projects of differing types. SemanticOrganizer is one of the earliest and largest semantic web applications deployed at NASA to date, and has been used in diverse contexts ranging from the investigation of Space Shuttle Columbia's accident to the search for life on other planets. Although the underlying repository employs a single unified ontology, access control and ontology customization mechanisms make the repository contents appear different for each project team. This paper describes SemanticOrganizer, its customization facilities, and a sampling of its applications. The paper also summarizes some key lessons learned from building and fielding a successful semantic web application across a wide-ranging set of domains with diverse users.

  16. Semantic-Aware Components and Services of ActiveMath

    ERIC Educational Resources Information Center

    Melis, Erica; Goguadze, Giorgi; Homik, Martin; Libbrecht, Paul; Ullrich, Carsten; Winterstein, Stefan

    2006-01-01

    ActiveMath is a complex web-based adaptive learning environment with a number of components and interactive learning tools. The basis for handling semantics of learning content is provided by its semantic (mathematics) content markup, which is additionally annotated with educational metadata. Several components, tools and external services can…

  17. Semantically-Sensitive Macroprocessing

    DTIC Science & Technology

    1989-12-15

    constr uct for protecting critical regions. Given the synchronization primitives P and V, we might implement the following transformation, where...By this we mean that the semantic model for the base language provides a primitive set of concepts, represented by data types and operations...the gener- ation of a (dynamic-) semantically equivalent program fragment ultimately expressible in terms of built-in primitives . Note that static

  18. Simulating Expert Clinical Comprehension: Adapting Latent Semantic Analysis to Accurately Extract Clinical Concepts from Psychiatric Narrative

    PubMed Central

    Cohen, Trevor; Blatter, Brett; Patel, Vimla

    2008-01-01

    Cognitive studies reveal that less-than-expert clinicians are less able to recognize meaningful patterns of data in clinical narratives. Accordingly, psychiatric residents early in training fail to attend to information that is relevant to diagnosis and the assessment of dangerousness. This manuscript presents cognitively motivated methodology for the simulation of expert ability to organize relevant findings supporting intermediate diagnostic hypotheses. Latent Semantic Analysis is used to generate a semantic space from which meaningful associations between psychiatric terms are derived. Diagnostically meaningful clusters are modeled as geometric structures within this space and compared to elements of psychiatric narrative text using semantic distance measures. A learning algorithm is defined that alters components of these geometric structures in response to labeled training data. Extraction and classification of relevant text segments is evaluated against expert annotation, with system-rater agreement approximating rater-rater agreement. A range of biomedical informatics applications for these methods are suggested. PMID:18455483

  19. A Semantic Analysis Method for Scientific and Engineering Code

    NASA Technical Reports Server (NTRS)

    Stewart, Mark E. M.

    1998-01-01

    This paper develops a procedure to statically analyze aspects of the meaning or semantics of scientific and engineering code. The analysis involves adding semantic declarations to a user's code and parsing this semantic knowledge with the original code using multiple expert parsers. These semantic parsers are designed to recognize formulae in different disciplines including physical and mathematical formulae and geometrical position in a numerical scheme. In practice, a user would submit code with semantic declarations of primitive variables to the analysis procedure, and its semantic parsers would automatically recognize and document some static, semantic concepts and locate some program semantic errors. A prototype implementation of this analysis procedure is demonstrated. Further, the relationship between the fundamental algebraic manipulations of equations and the parsing of expressions is explained. This ability to locate some semantic errors and document semantic concepts in scientific and engineering code should reduce the time, risk, and effort of developing and using these codes.

  20. Evaluative priming in a semantic flanker task: ERP evidence for a mutual facilitation explanation.

    PubMed

    Schmitz, Melanie; Wentura, Dirk; Brinkmann, Thorsten A

    2014-03-01

    In semantic flanker tasks, target categorization response times are affected by the semantic compatibility of the flanker and target. With positive and negative category exemplars, we investigated the influence of evaluative congruency (whether flanker and target share evaluative valence) on the flanker effect, using behavioral and electrophysiological measures. We hypothesized a moderation of the flanker effect by evaluative congruency on the basis of the assumption that evaluatively congruent concepts mutually facilitate each other's activation (see Schmitz & Wentura in Journal of Experimental Psychology: Learning, Memory, and Cognition 38:984-1000, 2012). Applying an onset delay of 50 ms for the flanker, we aimed to decrease the facilitative effect of an evaluatively congruent flanker on target encoding and, at the same time, increase the facilitative effect of an evaluatively congruent target on flanker encoding. As a consequence of increased flanker activation in the case of evaluative congruency, we expected a semantically incompatible flanker to interfere with the target categorization to a larger extent (as compared with an evaluatively incongruent pairing). Confirming our hypotheses, the flanker effect significantly depended on evaluative congruency, in both mean response times and N2 mean amplitudes. Thus, the present study provided behavioral and electrophysiological evidence for the mutual facilitation of evaluatively congruent concepts. Implications for the representation of evaluative connotations of semantic concepts are discussed.

  1. Memory enhancement by a semantically unrelated emotional arousal source induced after learning.

    PubMed

    Nielson, Kristy A; Yee, Douglas; Erickson, Kirk I

    2005-07-01

    It has been well established that moderate physiological or emotional arousal modulates memory. However, there is some controversy about whether the source of arousal must be semantically related to the information to be remembered. To test this idea, 35 healthy young adult participants learned a list of common nouns and afterward viewed a semantically unrelated, neutral or emotionally arousing videotape. The tape was shown after learning to prevent arousal effects on encoding or attention, instead influencing memory consolidation. Heart rate increase was significantly greater in the arousal group, and negative affect was significantly less reported in the non-arousal group after the video. The arousal group remembered significantly more words than the non-arousal group at both 30 min and 24 h delays, despite comparable group memory performance prior to the arousal manipulation. These results demonstrate that emotional arousal, even from an unrelated source, is capable of modulating memory consolidation. Potential reasons for contradictory findings in some previous studies, such as the timing of "delayed" memory tests, are discussed.

  2. Exploiting semantic linkages among multiple sources for semantic information retrieval

    NASA Astrophysics Data System (ADS)

    Li, JianQiang; Yang, Ji-Jiang; Liu, Chunchen; Zhao, Yu; Liu, Bo; Shi, Yuliang

    2014-07-01

    The vision of the Semantic Web is to build a global Web of machine-readable data to be consumed by intelligent applications. As the first step to make this vision come true, the initiative of linked open data has fostered many novel applications aimed at improving data accessibility in the public Web. Comparably, the enterprise environment is so different from the public Web that most potentially usable business information originates in an unstructured form (typically in free text), which poses a challenge for the adoption of semantic technologies in the enterprise environment. Considering that the business information in a company is highly specific and centred around a set of commonly used concepts, this paper describes a pilot study to migrate the concept of linked data into the development of a domain-specific application, i.e. the vehicle repair support system. The set of commonly used concepts, including the part name of a car and the phenomenon term on the car repairing, are employed to build the linkage between data and documents distributed among different sources, leading to the fusion of documents and data across source boundaries. Then, we describe the approaches of semantic information retrieval to consume these linkages for value creation for companies. The experiments on two real-world data sets show that the proposed approaches outperform the best baseline 6.3-10.8% and 6.4-11.1% in terms of top five and top 10 precisions, respectively. We believe that our pilot study can serve as an important reference for the development of similar semantic applications in an enterprise environment.

  3. Rule-based support system for multiple UMLS semantic type assignments

    PubMed Central

    Geller, James; He, Zhe; Perl, Yehoshua; Morrey, C. Paul; Xu, Julia

    2012-01-01

    Background When new concepts are inserted into the UMLS, they are assigned one or several semantic types from the UMLS Semantic Network by the UMLS editors. However, not every combination of semantic types is permissible. It was observed that many concepts with rare combinations of semantic types have erroneous semantic type assignments or prohibited combinations of semantic types. The correction of such errors is resource-intensive. Objective We design a computational system to inform UMLS editors as to whether a specific combination of two, three, four, or five semantic types is permissible or prohibited or questionable. Methods We identify a set of inclusion and exclusion instructions in the UMLS Semantic Network documentation and derive corresponding rule-categories as well as rule-categories from the UMLS concept content. We then design an algorithm adviseEditor based on these rule-categories. The algorithm specifies rules for an editor how to proceed when considering a tuple (pair, triple, quadruple, quintuple) of semantic types to be assigned to a concept. Results Eight rule-categories were identified. A Web-based system was developed to implement the adviseEditor algorithm, which returns for an input combination of semantic types whether it is permitted, prohibited or (in a few cases) requires more research. The numbers of semantic type pairs assigned to each rule-category are reported. Interesting examples for each rule-category are illustrated. Cases of semantic type assignments that contradict rules are listed, including recently introduced ones. Conclusion The adviseEditor system implements explicit and implicit knowledge available in the UMLS in a system that informs UMLS editors about the permissibility of a desired combination of semantic types. Using adviseEditor might help accelerate the work of the UMLS editors and prevent erroneous semantic type assignments. PMID:23041716

  4. Semantic similarity between old and new items produces false alarms in recognition memory.

    PubMed

    Montefinese, Maria; Zannino, Gian Daniele; Ambrosini, Ettore

    2015-09-01

    In everyday life, human beings can report memories of past events that did not occur or that occurred differently from the way they remember them because memory is an imperfect process of reconstruction and is prone to distortion and errors. In this recognition study using word stimuli, we investigated whether a specific operationalization of semantic similarity among concepts can modulate false memories while controlling for the possible effect of associative strength and word co-occurrence in an old-new recognition task. The semantic similarity value of each new concept was calculated as the mean cosine similarity between pairs of vectors representing that new concept and each old concept belonging to the same semantic category. Results showed that, compared with (new) low-similarity concepts, (new) high-similarity concepts had significantly higher probability of being falsely recognized as old, even after partialling out the effect of confounding variables, including associative relatedness and lexical co-occurrence. This finding supports the feature-based view of semantic memory, suggesting that meaning overlap and sharing of semantic features (which are greater when more similar semantic concepts are being processed) have an influence on recognition performance, resulting in more false alarms for new high-similarity concepts. We propose that the associative strength and word co-occurrence among concepts are not sufficient to explain illusory memories but is important to take into account also the effects of feature-based semantic relations, and, in particular, the semantic similarity among concepts.

  5. Knowledge represented using RDF semantic network in the concept of semantic web

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lukasova, A., E-mail: alena.lukasova@osu.cz; Vajgl, M., E-mail: marek.vajgl@osu.cz; Zacek, M., E-mail: martin.zacek@osu.cz

    The RDF(S) model has been declared as the basic model to capture knowledge of the semantic web. It provides a common and flexible way to decompose composed knowledge to elementary statements, which can be represented by RDF triples or by RDF graph vectors. From the logical point of view, elements of knowledge can be expressed using at most binary predicates, which can be converted to RDF-triples or graph vectors. However, it is not able to capture implicit knowledge representable by logical formulas. This contribution shows how existing approaches (semantic networks and clausal form logic) can be combined together with RDFmore » to obtain RDF-compatible system with ability to represent implicit knowledge and inference over knowledge base.« less

  6. Intentional learning: A concept analysis.

    PubMed

    Mollman, Sarah; Candela, Lori

    2018-01-01

    To use a concept analysis to determine a clear definition of the term "intentional learning" for use in nursing. The term intentional learning has been used for years in educational, business, and even nursing literature. It has been used to denote processes leading to higher order thinking and the ability to use knowledge in new situations; both of which are important skills to develop in nursing students. But the lack of a common, accepted definition of the term makes it difficult for nurse educators to base instruction and learning experiences on or to evaluate its overall effectiveness in educating students for diverse, fast-paced clinical practices. A concept analysis following the eight-step method developed by Walker and Avant (2011). Empirical and descriptive literature.  Five defining attributes were identified: (1) self-efficacy for learning, (2) active, effortful, and engaged learning, (3) mastery of goals where learning is the goal, (4) self-directed learning, and (5) self-regulation of learning. Through this concept analysis, nursing will have a clear definition of intentional learning. This will enable nurse educators to generate, evaluate, and test learning experiences that promote further development of intentional learning in nursing students. Nurses in practice will also be able to evaluate if the stated benefits are demonstrated and how this impacts patient care and outcomes. © 2017 Wiley Periodicals, Inc.

  7. Intelligent Discovery for Learning Objects Using Semantic Web Technologies

    ERIC Educational Resources Information Center

    Hsu, I-Ching

    2012-01-01

    The concept of learning objects has been applied in the e-learning field to promote the accessibility, reusability, and interoperability of learning content. Learning Object Metadata (LOM) was developed to achieve these goals by describing learning objects in order to provide meaningful metadata. Unfortunately, the conventional LOM lacks the…

  8. Verb Production during Action Naming in Semantic Dementia

    ERIC Educational Resources Information Center

    Meligne, D.; Fossard, M.; Belliard, S.; Moreaud, O.; Duvignau, K.; Demonet, J.-F.

    2011-01-01

    In contrast with widely documented deficits of semantic knowledge relating to object concepts and the corresponding nouns in semantic dementia (SD), little is known about action semantics and verb production in SD. The degradation of action semantic knowledge was studied in 5 patients with SD compared with 17 matched control participants in an…

  9. Extracting semantics from audio-visual content: the final frontier in multimedia retrieval.

    PubMed

    Naphade, M R; Huang, T S

    2002-01-01

    Multimedia understanding is a fast emerging interdisciplinary research area. There is tremendous potential for effective use of multimedia content through intelligent analysis. Diverse application areas are increasingly relying on multimedia understanding systems. Advances in multimedia understanding are related directly to advances in signal processing, computer vision, pattern recognition, multimedia databases, and smart sensors. We review the state-of-the-art techniques in multimedia retrieval. In particular, we discuss how multimedia retrieval can be viewed as a pattern recognition problem. We discuss how reliance on powerful pattern recognition and machine learning techniques is increasing in the field of multimedia retrieval. We review the state-of-the-art multimedia understanding systems with particular emphasis on a system for semantic video indexing centered around multijects and multinets. We discuss how semantic retrieval is centered around concepts and context and the various mechanisms for modeling concepts and context.

  10. Semantic Web-Driven LMS Architecture towards a Holistic Learning Process Model Focused on Personalization

    ERIC Educational Resources Information Center

    Kerkiri, Tania

    2010-01-01

    A comprehensive presentation is here made on the modular architecture of an e-learning platform with a distinctive emphasis on content personalization, combining advantages from semantic web technology, collaborative filtering and recommendation systems. Modules of this architecture handle information about both the domain-specific didactic…

  11. Semantic Feature Distinctiveness and Frequency

    ERIC Educational Resources Information Center

    Lamb, Katherine M.

    2012-01-01

    Lexical access is the process in which basic components of meaning in language, the lexical entries (words) are activated. This activation is based on the organization and representational structure of the lexical entries. Semantic features of words, which are the prominent semantic characteristics of a word concept, provide important information…

  12. Semantic associative relations and conceptual processing.

    PubMed

    Di Giacomo, Dina; De Federicis, Lucia Serenella; Pistelli, Manuela; Fiorenzi, Daniela; Passafiume, Domenico

    2012-02-01

    We analysed the organisation of semantic network using associative mechanisms between different types of information and studied the progression of the use of these associative relations during development. We aimed to verify the linkage of concepts with the use of semantic associative relations. The goal of this study was to analyse the cognitive ability to use associative relations between various items when describing old and/or new concepts. We examined the performance of 100 subjects between the ages of 4 and 7 years on an experimental task using five associative relations based on verbal encoding. The results showed that children are able to use the five semantic associative relations at age 4, but performance with each of the different associative relations improves at different times during development. Functional and part/whole relations develop at an early age, whereas the superordinate relations develop later. Our study clarified the characteristics of the progression of semantic associations during development as well as the roles that associative relations play in the structure and improvement of the semantic store.

  13. Kindling Fires: Examining the Potential for Cumulative Learning in a Journalism Curriculum

    ERIC Educational Resources Information Center

    Kilpert, Leigh; Shay, Suellen

    2013-01-01

    This study investigated context-dependency of learning as an indicator for students' potential to continue learning after graduation. We used Maton's theoretical concepts of "cumulative" and "segmented" learning, and "semantic gravity", to look for context-independent learning in students' assessments in a Journalism…

  14. Dissociating the semantic function of two neighbouring subregions in the left lateral anterior temporal lobe

    PubMed Central

    Sanjuán, Ana; Hope, Thomas M.H.; Parker Jones, 'Ōiwi; Prejawa, Susan; Oberhuber, Marion; Guerin, Julie; Seghier, Mohamed L.; Green, David W.; Price, Cathy J.

    2015-01-01

    We used fMRI in 35 healthy participants to investigate how two neighbouring subregions in the lateral anterior temporal lobe (LATL) contribute to semantic matching and object naming. Four different levels of processing were considered: (A) recognition of the object concepts; (B) search for semantic associations related to object stimuli; (C) retrieval of semantic concepts of interest; and (D) retrieval of stimulus specific concepts as required for naming. During semantic association matching on picture stimuli or heard object names, we found that activation in both subregions was higher when the objects were semantically related (mug–kettle) than unrelated (car–teapot). This is consistent with both LATL subregions playing a role in (C), the successful retrieval of amodal semantic concepts. In addition, one subregion was more activated for object naming than matching semantically related objects, consistent with (D), the retrieval of a specific concept for naming. We discuss the implications of these novel findings for cognitive models of semantic processing and left anterior temporal lobe function. PMID:25496810

  15. Acquisition of new concepts by two amnesic patients.

    PubMed

    Van der Linden, M; Meulemans, T; Lorrain, D

    1994-06-01

    Two Korsakoff amnesics (A.G. and G.S.) and two control subjects were taught six new concepts. Each concept was composed of three parts: the name of the concept, the context in which the concept originated and its definition. The learning procedure consisted of two phases: (1) learning the concept names and definitions by means of the vanishing-cues method; (2) practice on examples of the concepts through a classification task: examples were either set in the same context as that given in the original definition or in mixed contexts (same and new contexts). Subjects were then tested after 24 hours, a week and a month on their ability to identify new examples as belonging to one of the conceptual rules studied (transfer tests). Both patients showed substantial learning. Patient A.G. was slow and dependent of the first letter cues in the vanishing-cues learning phase but nevertheless, she acquired a large and flexible conceptual knowledge and this was especially true for concepts that were practised by means of mixed-context examples. Patient G.S. easily learned to associate the definitions with the concept names but her conceptual knowledge remained more limited. These results confirm the existence of a semantic learning ability in amnesic patients. They also suggest that under appropriate learning conditions, amnesics may eventually acquire a new flexible conceptual knowledge.

  16. A New Semantic List Learning Task to Probe Functioning of the Papez Circuit

    PubMed Central

    Schallmo, Michael-Paul; Kassel, Michelle T.; Weisenbach, Sara L.; Walker, Sara J.; Guidotti-Breting, Leslie M.; Rao, Julia A.; Hazlett, Kathleen E.; Considine, Ciaran M.; Sethi, Gurpriya; Vats, Naalti; Pecina, Marta; Welsh, Robert C.; Starkman, Monica N.; Giordani, Bruno; Langenecker, Scott A.

    2016-01-01

    Introduction List learning tasks are powerful clinical tools for studying memory, yet have been relatively underutilized within the functional imaging literature. This limits understanding of regions such as the Papez circuit which support memory performance in healthy, non-demented adults. Method The current study characterized list learning performance in 40 adults who completed a Semantic List Learning Task (SLLT) with a Brown-Peterson manipulation during functional MRI (fMRI). Cued recall with semantic cues, and recognition memory were assessed after imaging. Internal reliability and convergent and discriminant validity were evaluated. Results Subjects averaged 38% accuracy in recall (62% for recognition), with primacy but no recency effects observed. Validity and reliability were demonstrated by showing that the SLLT was correlated with the California Verbal Learning test (CVLT), but not with executive functioning tests, and high intraclass correlation coefficient across lists for recall (.91). fMRI measurements during Encoding (vs. Silent Rehearsal) revealed significant activation in bilateral hippocampus, parahippocampus, and bilateral anterior and posterior cingulate cortex. Post-hoc analyses showed increased activation in anterior and middle hippocampus, subgenual cingulate, and mammillary bodies specific to Encoding. In addition, increasing age was positively associated with increased activation in a diffuse network, particularly frontal cortex and specific Papez regions for correctly recalled words. Gender differences were specific to left inferior and superior frontal cortex. Conclusions This is a clinically relevant list learning task that can be used in studies of groups for which the Papez circuit is damaged or disrupted, in mixed or crossover studies at imaging and clinical sites. PMID:26313512

  17. Does the Sound of a Barking Dog Activate its Corresponding Visual Form? An fMRI Investigation of Modality-Specific Semantic Access

    PubMed Central

    Reilly, Jamie; Garcia, Amanda; Binney, Richard J.

    2016-01-01

    Much remains to be learned about the neural architecture underlying word meaning. Fully distributed models of semantic memory predict that the sound of a barking dog will conjointly engage a network of distributed sensorimotor spokes. An alternative framework holds that modality-specific features additionally converge within transmodal hubs. Participants underwent functional MRI while covertly naming familiar objects versus newly learned novel objects from only one of their constituent semantic features (visual form, characteristic sound, or point-light motion representation). Relative to the novel object baseline, familiar concepts elicited greater activation within association regions specific to that presentation modality. Furthermore, visual form elicited activation within high-level auditory association cortex. Conversely, environmental sounds elicited activation in regions proximal to visual association cortex. Both conditions commonly engaged a putative hub region within lateral anterior temporal cortex. These results support hybrid semantic models in which local hubs and distributed spokes are dually engaged in service of semantic memory. PMID:27289210

  18. Virtual reality training improves students' knowledge structures of medical concepts.

    PubMed

    Stevens, Susan M; Goldsmith, Timothy E; Summers, Kenneth L; Sherstyuk, Andrei; Kihmm, Kathleen; Holten, James R; Davis, Christopher; Speitel, Daniel; Maris, Christina; Stewart, Randall; Wilks, David; Saland, Linda; Wax, Diane; Panaiotis; Saiki, Stanley; Alverson, Dale; Caudell, Thomas P

    2005-01-01

    Virtual environments can provide training that is difficult to achieve under normal circumstances. Medical students can work on high-risk cases in a realistic, time-critical environment, where students practice skills in a cognitively demanding and emotionally compelling situation. Research from cognitive science has shown that as students acquire domain expertise, their semantic organization of core domain concepts become more similar to those of an expert's. In the current study, we hypothesized that students' knowledge structures would become more expert-like as a result of their diagnosing and treating a patient experiencing a hematoma within a virtual environment. Forty-eight medical students diagnosed and treated a hematoma case within a fully immersed virtual environment. Student's semantic organization of 25 case-related concepts was assessed prior to and after training. Students' knowledge structures became more integrated and similar to an expert knowledge structure of the concepts as a result of the learning experience. The methods used here for eliciting, representing, and evaluating knowledge structures offer a sensitive and objective means for evaluating student learning in virtual environments and medical simulations.

  19. A Semantic-Relational-Concepts Based Theory of Language Acquisition as Applied to Down's Syndrome Children: Implication for a Language Enhancement Program. Research Report No. 62.

    ERIC Educational Resources Information Center

    Buium, Nissan; And Others

    Speech samples were collected from three 48-month-old children with Down's Syndrome over an 11-month period after Ss had reached the one word utterance stage. Each S's linguistic utterances were semantically evaluated in terms of M. Bowerman's, R. Brown's, and I. Schlesinger's semantic relational concepts. Generally, findings suggested that Ss…

  20. Taxonomic and Thematic Semantic Systems

    PubMed Central

    Mirman, Daniel; Landrigan, Jon-Frederick; Britt, Allison E.

    2017-01-01

    Object concepts are critical for nearly all aspects of human cognition, from perception tasks like object recognition, to understanding and producing language, to making meaningful actions. Concepts can have two very different kinds of relations: similarity relations based on shared features (e.g., dog – bear), which are called “taxonomic” relations, and contiguity relations based on co-occurrence in events or scenarios (e.g., dog – leash), which are called “thematic” relations. Here we report a systematic review of experimental psychology and cognitive neuroscience evidence of this distinction in the structure of semantic memory. We propose two principles that may drive the development of distinct taxonomic and thematic semantic systems: (1) differences between which features determine taxonomic vs. thematic relations and (2) differences in the processing required to extract taxonomic vs. thematic relations. This review brings together distinct threads of behavioral, computational, and neuroscience research on semantic memory in support of a functional and neural dissociation, and defines a framework for future studies of semantic memory. PMID:28333494

  1. Semantic Indexing of Multimedia Content Using Visual, Audio, and Text Cues

    NASA Astrophysics Data System (ADS)

    Adams, W. H.; Iyengar, Giridharan; Lin, Ching-Yung; Naphade, Milind Ramesh; Neti, Chalapathy; Nock, Harriet J.; Smith, John R.

    2003-12-01

    We present a learning-based approach to the semantic indexing of multimedia content using cues derived from audio, visual, and text features. We approach the problem by developing a set of statistical models for a predefined lexicon. Novel concepts are then mapped in terms of the concepts in the lexicon. To achieve robust detection of concepts, we exploit features from multiple modalities, namely, audio, video, and text. Concept representations are modeled using Gaussian mixture models (GMM), hidden Markov models (HMM), and support vector machines (SVM). Models such as Bayesian networks and SVMs are used in a late-fusion approach to model concepts that are not explicitly modeled in terms of features. Our experiments indicate promise in the proposed classification and fusion methodologies: our proposed fusion scheme achieves more than 10% relative improvement over the best unimodal concept detector.

  2. Semantic and phonological schema influence spoken word learning and overnight consolidation.

    PubMed

    Havas, Viktória; Taylor, Jsh; Vaquero, Lucía; de Diego-Balaguer, Ruth; Rodríguez-Fornells, Antoni; Davis, Matthew H

    2018-06-01

    We studied the initial acquisition and overnight consolidation of new spoken words that resemble words in the native language (L1) or in an unfamiliar, non-native language (L2). Spanish-speaking participants learned the spoken forms of novel words in their native language (Spanish) or in a different language (Hungarian), which were paired with pictures of familiar or unfamiliar objects, or no picture. We thereby assessed, in a factorial way, the impact of existing knowledge (schema) on word learning by manipulating both semantic (familiar vs unfamiliar objects) and phonological (L1- vs L2-like novel words) familiarity. Participants were trained and tested with a 12-hr intervening period that included overnight sleep or daytime awake. Our results showed (1) benefits of sleep to recognition memory that were greater for words with L2-like phonology and (2) that learned associations with familiar but not unfamiliar pictures enhanced recognition memory for novel words. Implications for complementary systems accounts of word learning are discussed.

  3. Neural correlates of concreteness in semantic categorization.

    PubMed

    Pexman, Penny M; Hargreaves, Ian S; Edwards, Jodi D; Henry, Luke C; Goodyear, Bradley G

    2007-08-01

    In some contexts, concrete words (CARROT) are recognized and remembered more readily than abstract words (TRUTH). This concreteness effect has historically been explained by two theories of semantic representation: dual-coding [Paivio, A. Dual coding theory: Retrospect and current status. Canadian Journal of Psychology, 45, 255-287, 1991] and context-availability [Schwanenflugel, P. J. Why are abstract concepts hard to understand? In P. J. Schwanenflugel (Ed.), The psychology of word meanings (pp. 223-250). Hillsdale, NJ: Erlbaum, 1991]. Past efforts to adjudicate between these theories using functional magnetic resonance imaging have produced mixed results. Using event-related functional magnetic resonance imaging, we reexamined this issue with a semantic categorization task that allowed for uniform semantic judgments of concrete and abstract words. The participants were 20 healthy adults. Functional analyses contrasted activation associated with concrete and abstract meanings of ambiguous and unambiguous words. Results showed that for both ambiguous and unambiguous words, abstract meanings were associated with more widespread cortical activation than concrete meanings in numerous regions associated with semantic processing, including temporal, parietal, and frontal cortices. These results are inconsistent with both dual-coding and context-availability theories, as these theories propose that the representations of abstract concepts are relatively impoverished. Our results suggest, instead, that semantic retrieval of abstract concepts involves a network of association areas. We argue that this finding is compatible with a theory of semantic representation such as Barsalou's [Barsalou, L. W. Perceptual symbol systems. Behavioral & Brain Sciences, 22, 577-660, 1999] perceptual symbol systems, whereby concrete and abstract concepts are represented by similar mechanisms but with differences in focal content.

  4. Bow Your Head in Shame, or, Hold Your Head Up with Pride: Semantic Processing of Self-Esteem Concepts Orients Attention Vertically.

    PubMed

    Taylor, J Eric T; Lam, Timothy K; Chasteen, Alison L; Pratt, Jay

    2015-01-01

    Embodied cognition holds that abstract concepts are grounded in perceptual-motor simulations. If a given embodied metaphor maps onto a spatial representation, then thinking of that concept should bias the allocation of attention. In this study, we used positive and negative self-esteem words to examine two properties of conceptual cueing. First, we tested the orientation-specificity hypothesis, which predicts that conceptual cues should selectively activate certain spatial axes (in this case, valenced self-esteem concepts should activate vertical space), instead of any spatial continuum. Second, we tested whether conceptual cueing requires semantic processing, or if it can be achieved with shallow visual processing of the cue words. Participants viewed centrally presented words consisting of high or low self-esteem traits (e.g., brave, timid) before detecting a target above or below the cue in the vertical condition, or on the left or right of the word in the horizontal condition. Participants were faster to detect targets when their location was compatible with the valence of the word cues, but only in the vertical condition. Moreover, this effect was observed when participants processed the semantics of the word, but not when processing its orthography. The results show that conceptual cueing by spatial metaphors is orientation-specific, and that an explicit consideration of the word cues' semantics is required for conceptual cueing to occur.

  5. Using the Typewriter for Learning: Concepts

    ERIC Educational Resources Information Center

    Clayton, Dean

    1977-01-01

    Research studies conducted with typewriting students have consistently shown that concepts can be learned in typewriting classes with no appreciable loss of typewriting skill by students. This article discusses three stages of typewriting instruction and how concept learning can be incorporated into each stage. (HD)

  6. Sculpting the UMLS Refined Semantic Network.

    PubMed

    He, Zhe; Morrey, C Paul; Perl, Yehoshua; Elhanan, Gai; Chen, Ling; Chen, Yan; Geller, James

    2014-01-01

    The Refined Semantic Network (RSN) for the UMLS was previously introduced to complement the UMLS Semantic Network (SN). The RSN partitions the UMLS Metathesaurus (META) into disjoint groups of concepts. Each such group is semantically uniform. However, the RSN was initially an order of magnitude larger than the SN, which is undesirable since to be useful, a semantic network should be compact. Most semantic types in the RSN represent combinations of semantic types in the UMLS SN. Such a "combination semantic type" is called Intersection Semantic Type (IST). Many ISTs are assigned to very few concepts. Moreover, when reviewing those concepts, many semantic type assignment inconsistencies were found. After correcting those inconsistencies many ISTs, among them some that contradicted UMLS rules, disappeared, which made the RSN smaller. The authors performed a longitudinal study with the goal of reducing the size of the RSN to become compact. This goal was achieved by correcting inconsistencies and errors in the IST assignments in the UMLS, which additionally helped identify and correct ambiguities, inconsistencies, and errors in source terminologies widely used in the realm of public health. In this paper, we discuss the process and steps employed in this longitudinal study and the intermediate results for different stages. The sculpting process includes removing redundant semantic type assignments, expanding semantic type assignments, and removing illegitimate ISTs by auditing ISTs of small extents. However, the emphasis of this paper is not on the auditing methodologies employed during the process, since they were introduced in earlier publications, but on the strategy of employing them in order to transform the RSN into a compact network. For this paper we also performed a comprehensive audit of 168 "small ISTs" in the 2013AA version of the UMLS to finalize the longitudinal study. Over the years it was found that the editors of the UMLS introduced some new

  7. Sculpting the UMLS Refined Semantic Network

    PubMed Central

    Morrey, C. Paul; Perl, Yehoshua; Elhanan, Gai; Chen, Ling; Chen, Yan; Geller, James

    2014-01-01

    Background The Refined Semantic Network (RSN) for the UMLS was previously introduced to complement the UMLS Semantic Network (SN). The RSN partitions the UMLS Metathesaurus (META) into disjoint groups of concepts. Each such group is semantically uniform. However, the RSN was initially an order of magnitude larger than the SN, which is undesirable since to be useful, a semantic network should be compact. Most semantic types in the RSN represent combinations of semantic types in the UMLS SN. Such a “combination semantic type” is called Intersection Semantic Type (IST). Many ISTs are assigned to very few concepts. Moreover, when reviewing those concepts, many semantic type assignment inconsistencies were found. After correcting those inconsistencies many ISTs, among them some that contradicted UMLS rules, disappeared, which made the RSN smaller. Objective The authors performed a longitudinal study with the goal of reducing the size of the RSN to become compact. This goal was achieved by correcting inconsistencies and errors in the IST assignments in the UMLS, which additionally helped identify and correct ambiguities, inconsistencies, and errors in source terminologies widely used in the realm of public health. Methods In this paper, we discuss the process and steps employed in this longitudinal study and the intermediate results for different stages. The sculpting process includes removing redundant semantic type assignments, expanding semantic type assignments, and removing illegitimate ISTs by auditing ISTs of small extents. However, the emphasis of this paper is not on the auditing methodologies employed during the process, since they were introduced in earlier publications, but on the strategy of employing them in order to transform the RSN into a compact network. For this paper we also performed a comprehensive audit of 168 “small ISTs” in the 2013AA version of the UMLS to finalize the longitudinal study. Results Over the years it was found that the

  8. Trois Conceptions de l'apprentissage (Three Conceptions of Learning).

    ERIC Educational Resources Information Center

    Janitza, Jean

    1990-01-01

    Three broad conceptions of second-language learning and teaching (behaviorist, cognitive, and a third labeled "voluntarist") are described and compared, and issues in the choice between these different conceptions for classroom use are examined. (MSE)

  9. Model-based semantic dictionaries for medical language understanding.

    PubMed Central

    Rassinoux, A. M.; Baud, R. H.; Ruch, P.; Trombert-Paviot, B.; Rodrigues, J. M.

    1999-01-01

    Semantic dictionaries are emerging as a major cornerstone towards achieving sound natural language understanding. Indeed, they constitute the main bridge between words and conceptual entities that reflect their meanings. Nowadays, more and more wide-coverage lexical dictionaries are electronically available in the public domain. However, associating a semantic content with lexical entries is not a straightforward task as it is subordinate to the existence of a fine-grained concept model of the treated domain. This paper presents the benefits and pitfalls in building and maintaining multilingual dictionaries, the semantics of which is directly established on an existing concept model. Concrete cases, handled through the GALEN-IN-USE project, illustrate the use of such semantic dictionaries for the analysis and generation of multilingual surgical procedures. PMID:10566333

  10. Enhancing biomedical text summarization using semantic relation extraction.

    PubMed

    Shang, Yue; Li, Yanpeng; Lin, Hongfei; Yang, Zhihao

    2011-01-01

    Automatic text summarization for a biomedical concept can help researchers to get the key points of a certain topic from large amount of biomedical literature efficiently. In this paper, we present a method for generating text summary for a given biomedical concept, e.g., H1N1 disease, from multiple documents based on semantic relation extraction. Our approach includes three stages: 1) We extract semantic relations in each sentence using the semantic knowledge representation tool SemRep. 2) We develop a relation-level retrieval method to select the relations most relevant to each query concept and visualize them in a graphic representation. 3) For relations in the relevant set, we extract informative sentences that can interpret them from the document collection to generate text summary using an information retrieval based method. Our major focus in this work is to investigate the contribution of semantic relation extraction to the task of biomedical text summarization. The experimental results on summarization for a set of diseases show that the introduction of semantic knowledge improves the performance and our results are better than the MEAD system, a well-known tool for text summarization.

  11. Enhancing Biomedical Text Summarization Using Semantic Relation Extraction

    PubMed Central

    Shang, Yue; Li, Yanpeng; Lin, Hongfei; Yang, Zhihao

    2011-01-01

    Automatic text summarization for a biomedical concept can help researchers to get the key points of a certain topic from large amount of biomedical literature efficiently. In this paper, we present a method for generating text summary for a given biomedical concept, e.g., H1N1 disease, from multiple documents based on semantic relation extraction. Our approach includes three stages: 1) We extract semantic relations in each sentence using the semantic knowledge representation tool SemRep. 2) We develop a relation-level retrieval method to select the relations most relevant to each query concept and visualize them in a graphic representation. 3) For relations in the relevant set, we extract informative sentences that can interpret them from the document collection to generate text summary using an information retrieval based method. Our major focus in this work is to investigate the contribution of semantic relation extraction to the task of biomedical text summarization. The experimental results on summarization for a set of diseases show that the introduction of semantic knowledge improves the performance and our results are better than the MEAD system, a well-known tool for text summarization. PMID:21887336

  12. Learning style preference and student aptitude for concept maps.

    PubMed

    Kostovich, Carol T; Poradzisz, Michele; Wood, Karen; O'Brien, Karen L

    2007-05-01

    Acknowledging that individuals' preferences for learning vary, faculty in an undergraduate nursing program questioned whether a student's learning style is an indicator of aptitude in developing concept maps. The purpose of this research was to describe the relationship between nursing students' learning style preference and aptitude for concept maps. The sample included 120 undergraduate students enrolled in the adult health nursing course. Students created one concept map and completed two instruments: the Learning Style Survey and the Concept Map Survey. Data included Learning Style Survey scores, grade for the concept map, and grade for the adult health course. No significant difference was found between learning style preference and concept map grades. Thematic analysis of the qualitative survey data yielded further insight into students' preferences for creating concept maps.

  13. How Semantic Radicals in Chinese characters Facilitate Hierarchical Category-Based Induction.

    PubMed

    Wang, Xiaoxi; Ma, Xie; Tao, Yun; Tao, Yachen; Li, Hong

    2018-04-03

    Prior studies indicate that the semantic radical in Chinese characters contains category information that can support the independent retrieval of category information through the lexical network to the conceptual network. Inductive reasoning relies on category information; thus, semantic radicals may influence inductive reasoning. As most natural concepts are hierarchically structured in the human brain, this study examined how semantic radicals impact inductive reasoning for hierarchical concepts. The study used animal and plant nouns, organized in basic, superordinate, and subordinate levels; half had a semantic radical and half did not. Eighteen participants completed an inductive reasoning task. Behavioural and event-related potential (ERP) data were collected. The behavioural results showed that participants reacted faster and more accurately in the with-semantic-radical condition than in the without-semantic-radical condition. For the ERPs, differences between the conditions were found, and these differences lasted from the very early cognitive processing stage (i.e., the N1 time window) to the relatively late processing stages (i.e., the N400 and LPC time windows). Semantic radicals can help to distinguish the hierarchies earlier (in the N400 period) than characters without a semantic radical (in the LPC period). These results provide electrophysiological evidence that semantic radicals may improve sensitivity to distinguish between hierarchical concepts.

  14. Relearning in Semantic Dementia Reflects Contributions from Both Medial Temporal Lobe Episodic and Degraded Neocortical Semantic Systems: Evidence in Support of the Complementary Learning Systems Theory

    ERIC Educational Resources Information Center

    Mayberry, Emily J.; Sage, Karen; Ehsan, Sheeba; Ralph, Matthew A. Lambon

    2011-01-01

    When relearning words, patients with semantic dementia (SD) exhibit a characteristic rigidity, including a failure to generalise names to untrained exemplars of trained concepts. This has been attributed to an over-reliance on the medial temporal region which captures information in sparse, non-overlapping and therefore rigid representations. The…

  15. Semantic contextual cuing and visual attention.

    PubMed

    Goujon, Annabelle; Didierjean, André; Marmèche, Evelyne

    2009-02-01

    Since M. M. Chun and Y. Jiang's (1998) original study, a large body of research based on the contextual cuing paradigm has shown that the visuocognitive system is capable of capturing certain regularities in the environment in an implicit way. The present study investigated whether regularities based on the semantic category membership of the context can be learned implicitly and whether that learning depends on attention. The contextual cuing paradigm was used with lexical displays in which the semantic category of the contextual words either did or did not predict the target location. Experiments 1 and 2 revealed that implicit contextual cuing effects can be extended to semantic category regularities. Experiments 3 and 4 indicated an implicit contextual cuing effect when the predictive context appeared in an attended color but not when the predictive context appeared in an ignored color. However, when the previously ignored context suddenly became attended, it immediately facilitated performance. In contrast, when the previously attended context suddenly became ignored, no benefit was observed. Results suggest that the expression of implicit semantic knowledge depends on attention but that latent learning can nevertheless take place outside the attentional field. Copyright 2009 APA, all rights reserved.

  16. Concept indexing and expansion for social multimedia websites based on semantic processing and graph analysis

    NASA Astrophysics Data System (ADS)

    Lin, Po-Chuan; Chen, Bo-Wei; Chang, Hangbae

    2016-07-01

    This study presents a human-centric technique for social video expansion based on semantic processing and graph analysis. The objective is to increase metadata of an online video and to explore related information, thereby facilitating user browsing activities. To analyze the semantic meaning of a video, shots and scenes are firstly extracted from the video on the server side. Subsequently, this study uses annotations along with ConceptNet to establish the underlying framework. Detailed metadata, including visual objects and audio events among the predefined categories, are indexed by using the proposed method. Furthermore, relevant online media associated with each category are also analyzed to enrich the existing content. With the above-mentioned information, users can easily browse and search the content according to the link analysis and its complementary knowledge. Experiments on a video dataset are conducted for evaluation. The results show that our system can achieve satisfactory performance, thereby demonstrating the feasibility of the proposed idea.

  17. Centrality-based Selection of Semantic Resources for Geosciences

    NASA Astrophysics Data System (ADS)

    Cerba, Otakar; Jedlicka, Karel

    2017-04-01

    Semantical questions intervene almost in all disciplines dealing with geographic data and information, because relevant semantics is crucial for any way of communication and interaction among humans as well as among machines. But the existence of such a large number of different semantic resources (such as various thesauri, controlled vocabularies, knowledge bases or ontologies) makes the process of semantics implementation much more difficult and complicates the use of the advantages of semantics. This is because in many cases users are not able to find the most suitable resource for their purposes. The research presented in this paper introduces a methodology consisting of an analysis of identical relations in Linked Data space, which covers a majority of semantic resources, to find a suitable resource of semantic information. Identical links interconnect representations of an object or a concept in various semantic resources. Therefore this type of relations is considered to be crucial from the view of Linked Data, because these links provide new additional information, including various views on one concept based on different cultural or regional aspects (so-called social role of Linked Data). For these reasons it is possible to declare that one reasonable criterion for feasible semantic resources for almost all domains, including geosciences, is their position in a network of interconnected semantic resources and level of linking to other knowledge bases and similar products. The presented methodology is based on searching of mutual connections between various instances of one concept using "follow your nose" approach. The extracted data on interconnections between semantic resources are arranged to directed graphs and processed by various metrics patterned on centrality computing (degree, closeness or betweenness centrality). Semantic resources recommended by the research could be used for providing semantically described keywords for metadata records or as

  18. COTARD SYNDROME IN SEMANTIC DEMENTIA

    PubMed Central

    Mendez, Mario F.; Ramírez-Bermúdez, Jesús

    2011-01-01

    Background Semantic dementia is a neurodegenerative disorder characterized by the loss of meaning of words or concepts. semantic dementia can offer potential insights into the mechanisms of content-specific delusions. Objective The authors present a rare case of semantic dementia with Cotard syndrome, a delusion characterized by nihilism or self-negation. Method The semantic deficits and other features of semantic dementia were evaluated in relation to the patient's Cotard syndrome. Results Mrs. A developed the delusional belief that she was wasting and dying. This occurred after she lost knowledge for her somatic discomforts and sensations and for the organs that were the source of these sensations. Her nihilistic beliefs appeared to emerge from her misunderstanding of her somatic sensations. Conclusion This unique patient suggests that a mechanism for Cotard syndrome is difficulty interpreting the nature and source of internal pains and sensations. We propose that loss of semantic knowledge about one's own body may lead to the delusion of nihilism or death. PMID:22054629

  19. With Some Help from Others' Hands: Iconic Gesture Helps Semantic Learning in Children with Specific Language Impairment

    ERIC Educational Resources Information Center

    Vogt, Susanne S.; Kauschke, Christina

    2017-01-01

    Purpose: Semantic learning under 2 co-speech gesture conditions was investigated in children with specific language impairment (SLI) and typically developing (TD) children. Learning was analyzed between conditions. Method: Twenty children with SLI (aged 4 years), 20 TD children matched for age, and 20 TD children matched for language scores were…

  20. Semantic control and modality: an input processing deficit in aphasia leading to deregulated semantic cognition in a single modality.

    PubMed

    Thompson, Hannah E; Jefferies, Elizabeth

    2013-08-01

    Research suggests that semantic memory deficits can occur in at least three ways. Patients can (1) show amodal degradation of concepts within the semantic store itself, such as in semantic dementia (SD), (2) have difficulty in controlling activation within the semantic system and accessing appropriate knowledge in line with current goals or context, as in semantic aphasia (SA) and (3) experience a semantic deficit in only one modality following degraded input from sensory cortex. Patients with SA show deficits of semantic control and access across word and picture tasks, consistent with the view that their problems arise from impaired modality-general control processes. However, there are a few reports in the literature of patients with semantic access problems restricted to auditory-verbal materials, who show decreasing ability to retrieve concepts from words when they are presented repeatedly with closely related distractors. These patients challenge the notion that semantic control processes are modality-general and suggest instead a separation of 'access' to auditory-verbal and non-verbal semantic systems. We had the rare opportunity to study such a case in detail. Our aims were to examine the effect of manipulations of control demands in auditory-verbal semantic, non-verbal semantic and non-semantic tasks, allowing us to assess whether such cases always show semantic control/access impairments that follow a modality-specific pattern, or whether there are alternative explanations. Our findings revealed: (1) deficits on executive tasks, unrelated to semantic demands, which were more evident in the auditory modality than the visual modality; (2) deficits in executively-demanding semantic tasks which were accentuated in the auditory-verbal domain compared with the visual modality, but still present on non-verbal tasks, and (3) a coupling between comprehension and executive control requirements, in that mild impairment on single word comprehension was greatly

  1. Semantics of the visual environment encoded in parahippocampal cortex

    PubMed Central

    Bonner, Michael F.; Price, Amy Rose; Peelle, Jonathan E.; Grossman, Murray

    2016-01-01

    Semantic representations capture the statistics of experience and store this information in memory. A fundamental component of this memory system is knowledge of the visual environment, including knowledge of objects and their associations. Visual semantic information underlies a range of behaviors, from perceptual categorization to cognitive processes such as language and reasoning. Here we examine the neuroanatomic system that encodes visual semantics. Across three experiments, we found converging evidence indicating that knowledge of verbally mediated visual concepts relies on information encoded in a region of the ventral-medial temporal lobe centered on parahippocampal cortex. In an fMRI study, this region was strongly engaged by the processing of concepts relying on visual knowledge but not by concepts relying on other sensory modalities. In a study of patients with the semantic variant of primary progressive aphasia (semantic dementia), atrophy that encompassed this region was associated with a specific impairment in verbally mediated visual semantic knowledge. Finally, in a structural study of healthy adults from the fMRI experiment, gray matter density in this region related to individual variability in the processing of visual concepts. The anatomic location of these findings aligns with recent work linking the ventral-medial temporal lobe with high-level visual representation, contextual associations, and reasoning through imagination. Together this work suggests a critical role for parahippocampal cortex in linking the visual environment with knowledge systems in the human brain. PMID:26679216

  2. Semantics of the Visual Environment Encoded in Parahippocampal Cortex.

    PubMed

    Bonner, Michael F; Price, Amy Rose; Peelle, Jonathan E; Grossman, Murray

    2016-03-01

    Semantic representations capture the statistics of experience and store this information in memory. A fundamental component of this memory system is knowledge of the visual environment, including knowledge of objects and their associations. Visual semantic information underlies a range of behaviors, from perceptual categorization to cognitive processes such as language and reasoning. Here we examine the neuroanatomic system that encodes visual semantics. Across three experiments, we found converging evidence indicating that knowledge of verbally mediated visual concepts relies on information encoded in a region of the ventral-medial temporal lobe centered on parahippocampal cortex. In an fMRI study, this region was strongly engaged by the processing of concepts relying on visual knowledge but not by concepts relying on other sensory modalities. In a study of patients with the semantic variant of primary progressive aphasia (semantic dementia), atrophy that encompassed this region was associated with a specific impairment in verbally mediated visual semantic knowledge. Finally, in a structural study of healthy adults from the fMRI experiment, gray matter density in this region related to individual variability in the processing of visual concepts. The anatomic location of these findings aligns with recent work linking the ventral-medial temporal lobe with high-level visual representation, contextual associations, and reasoning through imagination. Together, this work suggests a critical role for parahippocampal cortex in linking the visual environment with knowledge systems in the human brain.

  3. Context-Aware Adaptive Hybrid Semantic Relatedness in Biomedical Science

    NASA Astrophysics Data System (ADS)

    Emadzadeh, Ehsan

    Text mining of biomedical literature and clinical notes is a very active field of research in biomedical science. Semantic analysis is one of the core modules for different Natural Language Processing (NLP) solutions. Methods for calculating semantic relatedness of two concepts can be very useful in solutions solving different problems such as relationship extraction, ontology creation and question / answering [1--6]. Several techniques exist in calculating semantic relatedness of two concepts. These techniques utilize different knowledge sources and corpora. So far, researchers attempted to find the best hybrid method for each domain by combining semantic relatedness techniques and data sources manually. In this work, attempts were made to eliminate the needs for manually combining semantic relatedness methods targeting any new contexts or resources through proposing an automated method, which attempted to find the best combination of semantic relatedness techniques and resources to achieve the best semantic relatedness score in every context. This may help the research community find the best hybrid method for each context considering the available algorithms and resources.

  4. Concept-Based Learning in Clinical Experiences: Bringing Theory to Clinical Education for Deep Learning.

    PubMed

    Nielsen, Ann

    2016-07-01

    Concept-based learning is used increasingly in nursing education to support the organization, transfer, and retention of knowledge. Concept-based learning activities (CBLAs) have been used in clinical education to explore key aspects of the patient situation and principles of nursing care, without responsibility for total patient care. The nature of best practices in teaching and the resultant learning are not well understood. The purpose of this multiple-case study research was to explore and describe concept-based learning in the context of clinical education in inpatient settings. Four clinical groups (each a case) were observed while they used CBLAs in the clinical setting. Major findings include that concept-based learning fosters deep learning, connection of theory with practice, and clinical judgment. Strategies used to support learning, major teaching-learning foci, and preconditions for concept-based teaching and learning will be described. Concept-based learning is promising to support integration of theory with practice and clinical judgment through application experiences with patients. [J Nurs Educ. 2016;55(7):365-371.]. Copyright 2016, SLACK Incorporated.

  5. Analyzing structural changes in SNOMED CT's Bacterial infectious diseases using a visual semantic delta.

    PubMed

    Ochs, Christopher; Case, James T; Perl, Yehoshua

    2017-03-01

    Thousands of changes are applied to SNOMED CT's concepts during each release cycle. These changes are the result of efforts to improve or expand the coverage of health domains in the terminology. Understanding which concepts changed, how they changed, and the overall impact of a set of changes is important for editors and end users. Each SNOMED CT release comes with delta files, which identify all of the individual additions and removals of concepts and relationships. These files typically contain tens of thousands of individual entries, overwhelming users. They also do not identify the editorial processes that were applied to individual concepts and they do not capture the overall impact of a set of changes on a subhierarchy of concepts. In this paper we introduce a methodology and accompanying software tool called a SNOMED CT Visual Semantic Delta ("semantic delta" for short) to enable a comprehensive review of changes in SNOMED CT. The semantic delta displays a graphical list of editing operations that provides semantics and context to the additions and removals in the delta files. However, there may still be thousands of editing operations applied to a set of concepts. To address this issue, a semantic delta includes a visual summary of changes that affected sets of structurally and semantically similar concepts. The software tool for creating semantic deltas offers views of various granularities, allowing a user to control how much change information they view. In this tool a user can select a set of structurally and semantically similar concepts and review the editing operations that affected their modeling. The semantic delta methodology is demonstrated on SNOMED CT's Bacterial infectious disease subhierarchy, which has undergone a significant remodeling effort over the last two years. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. The effects of shared information on semantic calculations in the gene ontology.

    PubMed

    Bible, Paul W; Sun, Hong-Wei; Morasso, Maria I; Loganantharaj, Rasiah; Wei, Lai

    2017-01-01

    The structured vocabulary that describes gene function, the gene ontology (GO), serves as a powerful tool in biological research. One application of GO in computational biology calculates semantic similarity between two concepts to make inferences about the functional similarity of genes. A class of term similarity algorithms explicitly calculates the shared information (SI) between concepts then substitutes this calculation into traditional term similarity measures such as Resnik, Lin, and Jiang-Conrath. Alternative SI approaches, when combined with ontology choice and term similarity type, lead to many gene-to-gene similarity measures. No thorough investigation has been made into the behavior, complexity, and performance of semantic methods derived from distinct SI approaches. We apply bootstrapping to compare the generalized performance of 57 gene-to-gene semantic measures across six benchmarks. Considering the number of measures, we additionally evaluate whether these methods can be leveraged through ensemble machine learning to improve prediction performance. Results showed that the choice of ontology type most strongly influenced performance across all evaluations. Combining measures into an ensemble classifier reduces cross-validation error beyond any individual measure for protein interaction prediction. This improvement resulted from information gained through the combination of ontology types as ensemble methods within each GO type offered no improvement. These results demonstrate that multiple SI measures can be leveraged for machine learning tasks such as automated gene function prediction by incorporating methods from across the ontologies. To facilitate future research in this area, we developed the GO Graph Tool Kit (GGTK), an open source C++ library with Python interface (github.com/paulbible/ggtk).

  7. Neural Representations of Belief Concepts: A Representational Similarity Approach to Social Semantics

    PubMed Central

    Leshinskaya, Anna; Contreras, Juan Manuel; Caramazza, Alfonso; Mitchell, Jason P.

    2017-01-01

    Abstract The present experiment identified neural regions that represent a class of concepts that are independent of perceptual or sensory attributes. During functional magnetic resonance imaging scanning, participants viewed names of social groups (e.g. Atheists, Evangelicals, and Economists) and performed a one-back similarity judgment according to 1 of 2 dimensions of belief attributes: political orientation (Liberal to Conservative) or spiritualism (Spiritualist to Materialist). By generalizing across a wide variety of social groups that possess these beliefs, these attribute concepts did not coincide with any specific sensory quality, allowing us to target conceptual, rather than perceptual, representations. Multi-voxel pattern searchlight analysis was used to identify regions in which activation patterns distinguished the 2 ends of both dimensions: Conservative from Liberal social groups when participants focused on the political orientation dimension, and spiritual from Materialist groups when participants focused on the spiritualism dimension. A cluster in right precuneus exhibited such a pattern, indicating that it carries information about belief-attribute concepts and forms part of semantic memory—perhaps a component particularly concerned with psychological traits. This region did not overlap with the theory of mind network, which engaged nearby, but distinct, parts of precuneus. These findings have implications for the neural organization of conceptual knowledge, especially the understanding of social groups. PMID:28108495

  8. Analyticity and Features of Semantic Interaction.

    ERIC Educational Resources Information Center

    Steinberg, Danny D.

    The findings reported in this paper are the result of an experiment to determine the empirical validity of such semantic concepts as analytic, synthetic, and contradictory. Twenty-eight university students were presented with 156 sentences to assign to one of four semantic categories: (1) synthetic ("The dog is a poodle"), (2) analytic…

  9. Varieties of semantic 'access' deficit in Wernicke's aphasia and semantic aphasia.

    PubMed

    Thompson, Hannah E; Robson, Holly; Lambon Ralph, Matthew A; Jefferies, Elizabeth

    2015-12-01

    Comprehension deficits are common in stroke aphasia, including in cases with (i) semantic aphasia, characterized by poor executive control of semantic processing across verbal and non-verbal modalities; and (ii) Wernicke's aphasia, associated with poor auditory-verbal comprehension and repetition, plus fluent speech with jargon. However, the varieties of these comprehension problems, and their underlying causes, are not well understood. Both patient groups exhibit some type of semantic 'access' deficit, as opposed to the 'storage' deficits observed in semantic dementia. Nevertheless, existing descriptions suggest that these patients might have different varieties of 'access' impairment-related to difficulty resolving competition (in semantic aphasia) versus initial activation of concepts from sensory inputs (in Wernicke's aphasia). We used a case series design to compare patients with Wernicke's aphasia and those with semantic aphasia on Warrington's paradigmatic assessment of semantic 'access' deficits. In these verbal and non-verbal matching tasks, a small set of semantically-related items are repeatedly presented over several cycles so that the target on one trial becomes a distractor on another (building up interference and eliciting semantic 'blocking' effects). Patients with Wernicke's aphasia and semantic aphasia were distinguished according to lesion location in the temporal cortex, but in each group, some individuals had additional prefrontal damage. Both of these aspects of lesion variability-one that mapped onto classical 'syndromes' and one that did not-predicted aspects of the semantic 'access' deficit. Both semantic aphasia and Wernicke's aphasia cases showed multimodal semantic impairment, although as expected, the Wernicke's aphasia group showed greater deficits on auditory-verbal than picture judgements. Distribution of damage in the temporal lobe was crucial for predicting the initially 'beneficial' effects of stimulus repetition: cases with

  10. Event-Related EEG Oscillations to Semantically Unrelated Words in Normal and Learning Disabled Children

    ERIC Educational Resources Information Center

    Fernandez, Thalia; Harmony, Thalia; Mendoza, Omar; Lopez-Alanis, Paula; Marroquin, Jose Luis; Otero, Gloria; Ricardo-Garcell, Josefina

    2012-01-01

    Learning disabilities (LD) are one of the most frequent problems for elementary school-aged children. In this paper, event-related EEG oscillations to semantically related and unrelated pairs of words were studied in a group of 18 children with LD not otherwise specified (LD-NOS) and in 16 children with normal academic achievement. We propose that…

  11. NASA and The Semantic Web

    NASA Technical Reports Server (NTRS)

    Ashish, Naveen

    2005-01-01

    We provide an overview of several ongoing NASA endeavors based on concepts, systems, and technology from the Semantic Web arena. Indeed NASA has been one of the early adopters of Semantic Web Technology and we describe ongoing and completed R&D efforts for several applications ranging from collaborative systems to airspace information management to enterprise search to scientific information gathering and discovery systems at NASA.

  12. On the universal structure of human lexical semantics

    PubMed Central

    Sutton, Logan; Smith, Eric; Moore, Cristopher; Wilkins, Jon F.; Maddieson, Ian; Croft, William

    2016-01-01

    How universal is human conceptual structure? The way concepts are organized in the human brain may reflect distinct features of cultural, historical, and environmental background in addition to properties universal to human cognition. Semantics, or meaning expressed through language, provides indirect access to the underlying conceptual structure, but meaning is notoriously difficult to measure, let alone parameterize. Here, we provide an empirical measure of semantic proximity between concepts using cross-linguistic dictionaries to translate words to and from languages carefully selected to be representative of worldwide diversity. These translations reveal cases where a particular language uses a single “polysemous” word to express multiple concepts that another language represents using distinct words. We use the frequency of such polysemies linking two concepts as a measure of their semantic proximity and represent the pattern of these linkages by a weighted network. This network is highly structured: Certain concepts are far more prone to polysemy than others, and naturally interpretable clusters of closely related concepts emerge. Statistical analysis of the polysemies observed in a subset of the basic vocabulary shows that these structural properties are consistent across different language groups, and largely independent of geography, environment, and the presence or absence of a literary tradition. The methods developed here can be applied to any semantic domain to reveal the extent to which its conceptual structure is, similarly, a universal attribute of human cognition and language use. PMID:26831113

  13. On the universal structure of human lexical semantics

    DOE PAGES

    Youn, Hyejin; Sutton, Logan; Smith, Eric; ...

    2016-02-01

    How universal is human conceptual structure? The way concepts are organized in the human brain may reflect distinct features of cultural, historical, and environmental background in addition to properties universal to human cognition. Semantics, or meaning expressed through language, provides indirect access to the underlying conceptual structure, but meaning is notoriously difficult to measure, let alone parameterize. Here, we provide an empirical measure of semantic proximity between concepts using cross-linguistic dictionaries to translate words to and from languages carefully selected to be representative of worldwide diversity. These translations reveal cases where a particular language uses a single “polysemous” word tomore » express multiple concepts that another language represents using distinct words. We use the frequency of such polysemies linking two concepts as a measure of their semantic proximity and represent the pattern of these linkages by a weighted network. This network is highly structured: Certain concepts are far more prone to polysemy than others, and naturally interpretable clusters of closely related concepts emerge. Statistical analysis of the polysemies observed in a subset of the basic vocabulary shows that these structural properties are consistent across different language groups, and largely independent of geography, environment, and the presence or absence of a literary tradition. As a result, the methods developed here can be applied to any semantic domain to reveal the extent to which its conceptual structure is, similarly, a universal attribute of human cognition and language use.« less

  14. On the universal structure of human lexical semantics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Youn, Hyejin; Sutton, Logan; Smith, Eric

    How universal is human conceptual structure? The way concepts are organized in the human brain may reflect distinct features of cultural, historical, and environmental background in addition to properties universal to human cognition. Semantics, or meaning expressed through language, provides indirect access to the underlying conceptual structure, but meaning is notoriously difficult to measure, let alone parameterize. Here, we provide an empirical measure of semantic proximity between concepts using cross-linguistic dictionaries to translate words to and from languages carefully selected to be representative of worldwide diversity. These translations reveal cases where a particular language uses a single “polysemous” word tomore » express multiple concepts that another language represents using distinct words. We use the frequency of such polysemies linking two concepts as a measure of their semantic proximity and represent the pattern of these linkages by a weighted network. This network is highly structured: Certain concepts are far more prone to polysemy than others, and naturally interpretable clusters of closely related concepts emerge. Statistical analysis of the polysemies observed in a subset of the basic vocabulary shows that these structural properties are consistent across different language groups, and largely independent of geography, environment, and the presence or absence of a literary tradition. As a result, the methods developed here can be applied to any semantic domain to reveal the extent to which its conceptual structure is, similarly, a universal attribute of human cognition and language use.« less

  15. Tracking neural coding of perceptual and semantic features of concrete nouns

    PubMed Central

    Sudre, Gustavo; Pomerleau, Dean; Palatucci, Mark; Wehbe, Leila; Fyshe, Alona; Salmelin, Riitta; Mitchell, Tom

    2015-01-01

    We present a methodological approach employing magnetoencephalography (MEG) and machine learning techniques to investigate the flow of perceptual and semantic information decodable from neural activity in the half second during which the brain comprehends the meaning of a concrete noun. Important information about the cortical location of neural activity related to the representation of nouns in the human brain has been revealed by past studies using fMRI. However, the temporal sequence of processing from sensory input to concept comprehension remains unclear, in part because of the poor time resolution provided by fMRI. In this study, subjects answered 20 questions (e.g. is it alive?) about the properties of 60 different nouns prompted by simultaneous presentation of a pictured item and its written name. Our results show that the neural activity observed with MEG encodes a variety of perceptual and semantic features of stimuli at different times relative to stimulus onset, and in different cortical locations. By decoding these features, our MEG-based classifier was able to reliably distinguish between two different concrete nouns that it had never seen before. The results demonstrate that there are clear differences between the time course of the magnitude of MEG activity and that of decodable semantic information. Perceptual features were decoded from MEG activity earlier in time than semantic features, and features related to animacy, size, and manipulability were decoded consistently across subjects. We also observed that regions commonly associated with semantic processing in the fMRI literature may not show high decoding results in MEG. We believe that this type of approach and the accompanying machine learning methods can form the basis for further modeling of the flow of neural information during language processing and a variety of other cognitive processes. PMID:22565201

  16. Semantic memory: a feature-based analysis and new norms for Italian.

    PubMed

    Montefinese, Maria; Ambrosini, Ettore; Fairfield, Beth; Mammarella, Nicola

    2013-06-01

    Semantic norms for properties produced by native speakers are valuable tools for researchers interested in the structure of semantic memory and in category-specific semantic deficits in individuals following brain damage. The aims of this study were threefold. First, we sought to extend existing semantic norms by adopting an empirical approach to category (Exp. 1) and concept (Exp. 2) selection, in order to obtain a more representative set of semantic memory features. Second, we extensively outlined a new set of semantic production norms collected from Italian native speakers for 120 artifactual and natural basic-level concepts, using numerous measures and statistics following a feature-listing task (Exp. 3b). Finally, we aimed to create a new publicly accessible database, since only a few existing databases are publicly available online.

  17. Ontology Alignment Architecture for Semantic Sensor Web Integration

    PubMed Central

    Fernandez, Susel; Marsa-Maestre, Ivan; Velasco, Juan R.; Alarcos, Bernardo

    2013-01-01

    Sensor networks are a concept that has become very popular in data acquisition and processing for multiple applications in different fields such as industrial, medicine, home automation, environmental detection, etc. Today, with the proliferation of small communication devices with sensors that collect environmental data, semantic Web technologies are becoming closely related with sensor networks. The linking of elements from Semantic Web technologies with sensor networks has been called Semantic Sensor Web and has among its main features the use of ontologies. One of the key challenges of using ontologies in sensor networks is to provide mechanisms to integrate and exchange knowledge from heterogeneous sources (that is, dealing with semantic heterogeneity). Ontology alignment is the process of bringing ontologies into mutual agreement by the automatic discovery of mappings between related concepts. This paper presents a system for ontology alignment in the Semantic Sensor Web which uses fuzzy logic techniques to combine similarity measures between entities of different ontologies. The proposed approach focuses on two key elements: the terminological similarity, which takes into account the linguistic and semantic information of the context of the entity's names, and the structural similarity, based on both the internal and relational structure of the concepts. This work has been validated using sensor network ontologies and the Ontology Alignment Evaluation Initiative (OAEI) tests. The results show that the proposed techniques outperform previous approaches in terms of precision and recall. PMID:24051523

  18. Ontology alignment architecture for semantic sensor Web integration.

    PubMed

    Fernandez, Susel; Marsa-Maestre, Ivan; Velasco, Juan R; Alarcos, Bernardo

    2013-09-18

    Sensor networks are a concept that has become very popular in data acquisition and processing for multiple applications in different fields such as industrial, medicine, home automation, environmental detection, etc. Today, with the proliferation of small communication devices with sensors that collect environmental data, semantic Web technologies are becoming closely related with sensor networks. The linking of elements from Semantic Web technologies with sensor networks has been called Semantic Sensor Web and has among its main features the use of ontologies. One of the key challenges of using ontologies in sensor networks is to provide mechanisms to integrate and exchange knowledge from heterogeneous sources (that is, dealing with semantic heterogeneity). Ontology alignment is the process of bringing ontologies into mutual agreement by the automatic discovery of mappings between related concepts. This paper presents a system for ontology alignment in the Semantic Sensor Web which uses fuzzy logic techniques to combine similarity measures between entities of different ontologies. The proposed approach focuses on two key elements: the terminological similarity, which takes into account the linguistic and semantic information of the context of the entity's names, and the structural similarity, based on both the internal and relational structure of the concepts. This work has been validated using sensor network ontologies and the Ontology Alignment Evaluation Initiative (OAEI) tests. The results show that the proposed techniques outperform previous approaches in terms of precision and recall.

  19. Comprehension of concrete and abstract words in semantic dementia

    PubMed Central

    Jefferies, Elizabeth; Patterson, Karalyn; Jones, Roy W.; Lambon Ralph, Matthew A.

    2009-01-01

    The vast majority of brain-injured patients with semantic impairment have better comprehension of concrete than abstract words. In contrast, several patients with semantic dementia (SD), who show circumscribed atrophy of the anterior temporal lobes bilaterally, have been reported to show reverse imageability effects, i.e., relative preservation of abstract knowledge. Although these reports largely concern individual patients, some researchers have recently proposed that superior comprehension of abstract concepts is a characteristic feature of SD. This would imply that the anterior temporal lobes are particularly crucial for processing sensory aspects of semantic knowledge, which are associated with concrete not abstract concepts. However, functional neuroimaging studies of healthy participants do not unequivocally predict reverse imageability effects in SD because the temporal poles sometimes show greater activation for more abstract concepts. We examined a case-series of eleven SD patients on a synonym judgement test that orthogonally varied the frequency and imageability of the items. All patients had higher success rates for more imageable as well as more frequent words, suggesting that (a) the anterior temporal lobes underpin semantic knowledge for both concrete and abstract concepts, (b) more imageable items – perhaps due to their richer multimodal representations – are typically more robust in the face of global semantic degradation and (c) reverse imageability effects are not a characteristic feature of SD. PMID:19586212

  20. Concept Maps for Evaluating Learning of Sustainable Development

    ERIC Educational Resources Information Center

    Shallcross, David C.

    2016-01-01

    Concept maps are used to assess student and cohort learning of sustainable development. The concept maps of 732 first-year engineering students were individually analyzed to detect patterns of learning and areas that were not well understood. Students were given 20 minutes each to prepare a concept map of at least 20 concepts using paper and pen.…

  1. Analyzing Structural Changes in SNOMED CT’s Bacterial Infectious Diseases Using a Visual Semantic Delta

    PubMed Central

    Ochs, Christopher; Case, James T.; Perl, Yehoshua

    2017-01-01

    Thousands of changes are applied to SNOMED CT’s concepts during each release cycle. These changes are the result of efforts to improve or expand the coverage of health domains in the terminology. Understanding which concepts changed, how they changed, and the overall impact of a set of changes is important for editors and end users. Each SNOMED CT release comes with delta files, which identify all of the individual additions and removals of concepts and relationships. These files typically contain tens of thousands of individual entries, overwhelming users. They also do not identify the editorial processes that were applied to individual concepts and they do not capture the overall impact of a set of changes on a subhierarchy of concepts. In this paper we introduce a methodology and accompanying software tool called a SNOMED CT Visual Semantic Delta (“semantic delta” for short) to enable a comprehensive review of changes in SNOMED CT. The semantic delta displays a graphical list of editing operations that provides semantics and context to the additions and removals in the delta files. However, there may still be thousands of editing operations applied to a set of concepts. To address this issue, a semantic delta includes a visual summary of changes that affected sets of structurally and semantically similar concepts. The software tool for creating semantic deltas offers views of various granularities, allowing a user to control how much change information they view. In this tool a user can select a set of structurally and semantically similar concepts and review the editing operations that affected their modeling. The semantic delta methodology is demonstrated on SNOMED CT’s Bacterial infectious disease subhierarchy, which has undergone a significant remodeling effort over the last two years. PMID:28215561

  2. Investigating alternative conceptions in learning disabled students

    NASA Astrophysics Data System (ADS)

    Cole, Terry Stokes

    Science teachers have long noticed the fact that their students come to school with their own concepts, produced from daily experiences and interactions with the world around them. Sometimes these ideas are in agreement with accepted scientific theories, but often they are not. These "incorrect" ideas, or "misconceptions" have been the focus of many studies, which can be helpful to teachers when planning their lessons. However, there is a dearth of information that is geared specifically to students with learning disabilities. These students generally have deficits in areas of perception and learning that could conceivably influence the way they formulate concepts. The purpose of this study was to examine the concepts held by students with learning disabilities on the causes of the day/night cycle, the phases of the moon, and the seasons. An interview format was judged to be the best method of ensuring that the students' ideas were clearly documented. The subjects were five, sixth-grade students in a city school, who had been determined to have a learning disability. In examining the results, there did not seem to be any direct link between the type of misconception formed and the learning deficit of the child. It seemed more likely that students formed their concepts the way students usually do, but the various disabilities they exhibited interfered with their learning of more appropriate conceptions. The results of this study will be helpful to science teachers, curriculum planners, or anyone who works with students who have learning disabilities. It is hoped that this will begin to fill a void in the area of learning disabilities research.

  3. Concept Mapping Using Cmap Tools to Enhance Meaningful Learning

    NASA Astrophysics Data System (ADS)

    Cañas, Alberto J.; Novak, Joseph D.

    Concept maps are graphical tools that have been used in all facets of education and training for organizing and representing knowledge. When learners build concept maps, meaningful learning is facilitated. Computer-based concept mapping software such as CmapTools have further extended the use of concept mapping and greatly enhanced the potential of the tool, facilitating the implementation of a concept map-centered learning environment. In this chapter, we briefly present concept mapping and its theoretical foundation, and illustrate how it can lead to an improved learning environment when it is combined with CmapTools and the Internet. We present the nationwide “Proyecto Conéctate al Conocimiento” in Panama as an example of how concept mapping, together with technology, can be adopted by hundreds of schools as a means to enhance meaningful learning.

  4. Establishing semantic interoperability of biomedical metadata registries using extended semantic relationships.

    PubMed

    Park, Yu Rang; Yoon, Young Jo; Kim, Hye Hyeon; Kim, Ju Han

    2013-01-01

    Achieving semantic interoperability is critical for biomedical data sharing between individuals, organizations and systems. The ISO/IEC 11179 MetaData Registry (MDR) standard has been recognized as one of the solutions for this purpose. The standard model, however, is limited. Representing concepts consist of two or more values, for instance, are not allowed including blood pressure with systolic and diastolic values. We addressed the structural limitations of ISO/IEC 11179 by an integrated metadata object model in our previous research. In the present study, we introduce semantic extensions for the model by defining three new types of semantic relationships; dependency, composite and variable relationships. To evaluate our extensions in a real world setting, we measured the efficiency of metadata reduction by means of mapping to existing others. We extracted metadata from the College of American Pathologist Cancer Protocols and then evaluated our extensions. With no semantic loss, one third of the extracted metadata could be successfully eliminated, suggesting better strategy for implementing clinical MDRs with improved efficiency and utility.

  5. SSWAP: A Simple Semantic Web Architecture and Protocol for semantic web services.

    PubMed

    Gessler, Damian D G; Schiltz, Gary S; May, Greg D; Avraham, Shulamit; Town, Christopher D; Grant, David; Nelson, Rex T

    2009-09-23

    confounding of content, structure, and presentation. SSWAP is novel by establishing the concept of a canonical yet mutable OWL DL graph that allows data and service providers to describe their resources, to allow discovery servers to offer semantically rich search engines, to allow clients to discover and invoke those resources, and to allow providers to respond with semantically tagged data. SSWAP allows for a mix-and-match of terms from both new and legacy third-party ontologies in these graphs.

  6. SSWAP: A Simple Semantic Web Architecture and Protocol for semantic web services

    PubMed Central

    Gessler, Damian DG; Schiltz, Gary S; May, Greg D; Avraham, Shulamit; Town, Christopher D; Grant, David; Nelson, Rex T

    2009-01-01

    the concept of a canonical yet mutable OWL DL graph that allows data and service providers to describe their resources, to allow discovery servers to offer semantically rich search engines, to allow clients to discover and invoke those resources, and to allow providers to respond with semantically tagged data. SSWAP allows for a mix-and-match of terms from both new and legacy third-party ontologies in these graphs. PMID:19775460

  7. Learning Situations in Nursing Education: A Concept Analysis.

    PubMed

    Shahsavari, Hooman; Zare, Zahra; Parsa-Yekta, Zohreh; Griffiths, Pauline; Vaismoradi, Mojtaba

    2018-02-01

    The nursing student requires opportunities to learn within authentic contexts so as to enable safe and competent practice. One strategy to facilitate such learning is the creation of learning situations. A lack of studies on the learning situation in nursing and other health care fields has resulted in insufficient knowledge of the characteristics of the learning situation, its antecedents, and consequences. Nurse educators need to have comprehensive and practical knowledge of the definition and characteristics of the learning situation so as to enable their students to achieve enhanced learning outcomes. The aim of this study was to clarify the concept of the learning situation as it relates to the education of nurses and improve understanding of its characteristics, antecedents, and consequences. The Bonis method of concept analysis, as derived from the Rodgers' evolutionary method, provided the framework for analysis. Data collection and analysis were undertaken in two phases: "interdisciplinary" and "intra-disciplinary." The data source was a search of the literature, encompassing nursing and allied health care professions, published from 1975 to 2016. No agreement on the conceptual phenomenon was discovered in the international literature. The concept of a learning situation was used generally in two ways and thus classified into the themes of: "formal/informal learning situation" and "biologic/nonbiologic learning situation." Antecedents to the creation of a learning situation included personal and environmental factors. The characteristics of a learning situation were described in terms of being complex, dynamic, and offering potential and effective learning opportunities. Consequences of the learning situation included enhancement of the students' learning, professionalization, and socialization into the professional role. The nurse educator, when considering the application of the concept of a learning situation in their educational planning, must

  8. A biopsychosocial investigation of changes in self-concept on the Head Injury Semantic Differential Scale.

    PubMed

    Reddy, Avneel; Ownsworth, Tamara; King, Joshua; Shields, Cassandra

    2017-12-01

    This study aimed to investigate the influence of the "good-old-days" bias, neuropsychological functioning and cued recall of life events on self-concept change. Forty seven adults with TBI (70% male, 1-5 years post-injury) and 47 matched controls rated their past and present self-concept on the Head Injury Semantic Differential Scale (HISD) III. TBI participants also completed a battery of neuropsychological tests. The matched control group of 47 were from a sample of 78 uninjured participants who were randomised to complete either the Social Readjustment Rating Scale-Revised (cued recall) or HISD (non-cued recall) first. Consistent with the good-old-days bias, participants with TBI rated their pre-injury self-concept as more positive than their present self-concept and the present self-concept of controls (p < .05). More positive pre-injury self-concept ratings were related to lower estimated premorbid IQ and poorer verbal fluency and delayed memory (p < .05). For uninjured participants, cued recall, life events and event appraisals each accounted for unique variance in self-concept change (p < .01) after controlling for negative affect. The cued recall group rated their past self-concept as significantly more negative than the non-cued group (p < .01). Overall, the good-old-days bias, neuropsychological functioning and cued recall influenced reports of self-concept change by affecting retrospective ratings of past self-concept. Further research is needed to investigate the impact of contextual cues on self-concept change after TBI.

  9. Corvids Outperform Pigeons and Primates in Learning a Basic Concept.

    PubMed

    Wright, Anthony A; Magnotti, John F; Katz, Jeffrey S; Leonard, Kevin; Vernouillet, Alizée; Kelly, Debbie M

    2017-04-01

    Corvids (birds of the family Corvidae) display intelligent behavior previously ascribed only to primates, but such feats are not directly comparable across species. To make direct species comparisons, we used a same/different task in the laboratory to assess abstract-concept learning in black-billed magpies ( Pica hudsonia). Concept learning was tested with novel pictures after training. Concept learning improved with training-set size, and test accuracy eventually matched training accuracy-full concept learning-with a 128-picture set; this magpie performance was equivalent to that of Clark's nutcrackers (a species of corvid) and monkeys (rhesus, capuchin) and better than that of pigeons. Even with an initial 8-item picture set, both corvid species showed partial concept learning, outperforming both monkeys and pigeons. Similar corvid performance refutes the hypothesis that nutcrackers' prolific cache-location memory accounts for their superior concept learning, because magpies rely less on caching. That corvids with "primitive" neural architectures evolved to equal primates in full concept learning and even to outperform them on the initial 8-item picture test is a testament to the shared (convergent) survival importance of abstract-concept learning.

  10. Improving EFL Writing through Study of Semantic Concepts in Formulaic Language

    ERIC Educational Resources Information Center

    Schenck, Andrew D.; Choi, Wonkyung

    2015-01-01

    Within Asian EFL contexts such as South Korea, large class sizes, poor sources of input and an overreliance on the Grammar-Translation Method may negatively impact semantic and pragmatic development of writing content. Since formulaic language is imbued with syntactic, semantic and pragmatic linguistic features, it represents an ideal means to…

  11. Modeling semantic aspects for cross-media image indexing.

    PubMed

    Monay, Florent; Gatica-Perez, Daniel

    2007-10-01

    To go beyond the query-by-example paradigm in image retrieval, there is a need for semantic indexing of large image collections for intuitive text-based image search. Different models have been proposed to learn the dependencies between the visual content of an image set and the associated text captions, then allowing for the automatic creation of semantic indices for unannotated images. The task, however, remains unsolved. In this paper, we present three alternatives to learn a Probabilistic Latent Semantic Analysis model (PLSA) for annotated images, and evaluate their respective performance for automatic image indexing. Under the PLSA assumptions, an image is modeled as a mixture of latent aspects that generates both image features and text captions, and we investigate three ways to learn the mixture of aspects. We also propose a more discriminative image representation than the traditional Blob histogram, concatenating quantized local color information and quantized local texture descriptors. The first learning procedure of a PLSA model for annotated images is a standard EM algorithm, which implicitly assumes that the visual and the textual modalities can be treated equivalently. The other two models are based on an asymmetric PLSA learning, allowing to constrain the definition of the latent space on the visual or on the textual modality. We demonstrate that the textual modality is more appropriate to learn a semantically meaningful latent space, which translates into improved annotation performance. A comparison of our learning algorithms with respect to recent methods on a standard dataset is presented, and a detailed evaluation of the performance shows the validity of our framework.

  12. A Rational Analysis of Rule-Based Concept Learning

    ERIC Educational Resources Information Center

    Goodman, Noah D.; Tenenbaum, Joshua B.; Feldman, Jacob; Griffiths, Thomas L.

    2008-01-01

    This article proposes a new model of human concept learning that provides a rational analysis of learning feature-based concepts. This model is built upon Bayesian inference for a grammatically structured hypothesis space--a concept language of logical rules. This article compares the model predictions to human generalization judgments in several…

  13. On the Role of Concepts in Learning and Instructional Design

    ERIC Educational Resources Information Center

    Jonassen, David H.

    2006-01-01

    The field of instructional design has traditionally treated concepts as discrete learning outcomes. Theoretically, learning concepts requires correctly isolating and applying attributes of specific objects into their correct categories. Similarity views of concept learning are unable to account for all of the rules governing concept formation,…

  14. The role of the left anterior temporal lobe in semantic composition vs. semantic memory.

    PubMed

    Westerlund, Masha; Pylkkänen, Liina

    2014-05-01

    The left anterior temporal lobe (LATL) is robustly implicated in semantic processing by a growing body of literature. However, these results have emerged from two distinct bodies of work, addressing two different processing levels. On the one hand, the LATL has been characterized as a 'semantic hub׳ that binds features of concepts across a distributed network, based on results from semantic dementia and hemodynamic findings on the categorization of specific compared to basic exemplars. On the other, the LATL has been implicated in combinatorial operations in language, as shown by increased activity in this region associated with the processing of sentences and of basic phrases. The present work aimed to reconcile these two literatures by independently manipulating combination and concept specificity within a minimal MEG paradigm. Participants viewed simple nouns that denoted either low specificity (fish) or high specificity categories (trout) presented in either combinatorial (spotted fish/trout) or non-combinatorial contexts (xhsl fish/trout). By combining these paradigms from the two literatures, we directly compared the engagement of the LATL in semantic memory vs. semantic composition. Our results indicate that although noun specificity subtly modulates the LATL activity elicited by single nouns, it most robustly affects the size of the composition effect when these nouns are adjectivally modified, with low specificity nouns eliciting a much larger effect. We conclude that these findings are compatible with an account in which the specificity and composition effects arise from a shared mechanism of meaning specification. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Semantic Categorization: A Comparison between Deaf and Hearing Children

    ERIC Educational Resources Information Center

    Ormel, Ellen A.; Gijsel, Martine A. R.; Hermans, Daan; Bosman, Anna M. T.; Knoors, Harry; Verhoeven, Ludo

    2010-01-01

    Learning to read is a major obstacle for children who are deaf. The otherwise significant role of phonology is often limited as a result of hearing loss. However, semantic knowledge may facilitate reading comprehension. One important aspect of semantic knowledge concerns semantic categorization. In the present study, the quality of the semantic…

  16. A semantic-based method for extracting concept definitions from scientific publications: evaluation in the autism phenotype domain.

    PubMed

    Hassanpour, Saeed; O'Connor, Martin J; Das, Amar K

    2013-08-12

    A variety of informatics approaches have been developed that use information retrieval, NLP and text-mining techniques to identify biomedical concepts and relations within scientific publications or their sentences. These approaches have not typically addressed the challenge of extracting more complex knowledge such as biomedical definitions. In our efforts to facilitate knowledge acquisition of rule-based definitions of autism phenotypes, we have developed a novel semantic-based text-mining approach that can automatically identify such definitions within text. Using an existing knowledge base of 156 autism phenotype definitions and an annotated corpus of 26 source articles containing such definitions, we evaluated and compared the average rank of correctly identified rule definition or corresponding rule template using both our semantic-based approach and a standard term-based approach. We examined three separate scenarios: (1) the snippet of text contained a definition already in the knowledge base; (2) the snippet contained an alternative definition for a concept in the knowledge base; and (3) the snippet contained a definition not in the knowledge base. Our semantic-based approach had a higher average rank than the term-based approach for each of the three scenarios (scenario 1: 3.8 vs. 5.0; scenario 2: 2.8 vs. 4.9; and scenario 3: 4.5 vs. 6.2), with each comparison significant at the p-value of 0.05 using the Wilcoxon signed-rank test. Our work shows that leveraging existing domain knowledge in the information extraction of biomedical definitions significantly improves the correct identification of such knowledge within sentences. Our method can thus help researchers rapidly acquire knowledge about biomedical definitions that are specified and evolving within an ever-growing corpus of scientific publications.

  17. Progress in The Semantic Analysis of Scientific Code

    NASA Technical Reports Server (NTRS)

    Stewart, Mark

    2000-01-01

    This paper concerns a procedure that analyzes aspects of the meaning or semantics of scientific and engineering code. This procedure involves taking a user's existing code, adding semantic declarations for some primitive variables, and parsing this annotated code using multiple, independent expert parsers. These semantic parsers encode domain knowledge and recognize formulae in different disciplines including physics, numerical methods, mathematics, and geometry. The parsers will automatically recognize and document some static, semantic concepts and help locate some program semantic errors. These techniques may apply to a wider range of scientific codes. If so, the techniques could reduce the time, risk, and effort required to develop and modify scientific codes.

  18. Can Students' Concept of Learning Influence Their Learning Outcomes?

    ERIC Educational Resources Information Center

    Marouchou, Despina Varnava

    2012-01-01

    This paper aims to readdress the lack of empirical data concerning university learning and in particular the dynamics students' conceptions of learning may have on students' learning outcomes. This paper is written at a time when the EU commission for Higher Education (HE) through the Bologna Process declaration has put into action, since 1999, a…

  19. Professional Music Training and Novel Word Learning: From Faster Semantic Encoding to Longer-lasting Word Representations.

    PubMed

    Dittinger, Eva; Barbaroux, Mylène; D'Imperio, Mariapaola; Jäncke, Lutz; Elmer, Stefan; Besson, Mireille

    2016-10-01

    On the basis of previous results showing that music training positively influences different aspects of speech perception and cognition, the aim of this series of experiments was to test the hypothesis that adult professional musicians would learn the meaning of novel words through picture-word associations more efficiently than controls without music training (i.e., fewer errors and faster RTs). We also expected musicians to show faster changes in brain electrical activity than controls, in particular regarding the N400 component that develops with word learning. In line with these hypotheses, musicians outperformed controls in the most difficult semantic task. Moreover, although a frontally distributed N400 component developed in both groups of participants after only a few minutes of novel word learning, in musicians this frontal distribution rapidly shifted to parietal scalp sites, as typically found for the N400 elicited by known words. Finally, musicians showed evidence for better long-term memory for novel words 5 months after the main experimental session. Results are discussed in terms of cascading effects from enhanced perception to memory as well as in terms of multifaceted improvements of cognitive processing due to music training. To our knowledge, this is the first report showing that music training influences semantic aspects of language processing in adults. These results open new perspectives for education in showing that early music training can facilitate later foreign language learning. Moreover, the design used in the present experiment can help to specify the stages of word learning that are impaired in children and adults with word learning difficulties.

  20. Learning, Realizability and Games in Classical Arithmetic

    NASA Astrophysics Data System (ADS)

    Aschieri, Federico

    2010-12-01

    In this dissertation we provide mathematical evidence that the concept of learning can be used to give a new and intuitive computational semantics of classical proofs in various fragments of Predicative Arithmetic. First, we extend Kreisel modified realizability to a classical fragment of first order Arithmetic, Heyting Arithmetic plus EM1 (Excluded middle axiom restricted to Sigma^0_1 formulas). We introduce a new realizability semantics we call "Interactive Learning-Based Realizability". Our realizers are self-correcting programs, which learn from their errors and evolve through time. Secondly, we extend the class of learning based realizers to a classical version PCFclass of PCF and, then, compare the resulting notion of realizability with Coquand game semantics and prove a full soundness and completeness result. In particular, we show there is a one-to-one correspondence between realizers and recursive winning strategies in the 1-Backtracking version of Tarski games. Third, we provide a complete and fully detailed constructive analysis of learning as it arises in learning based realizability for HA+EM1, Avigad's update procedures and epsilon substitution method for Peano Arithmetic PA. We present new constructive techniques to bound the length of learning processes and we apply them to reprove - by means of our theory - the classic result of Godel that provably total functions of PA can be represented in Godel's system T. Last, we give an axiomatization of the kind of learning that is needed to computationally interpret Predicative classical second order Arithmetic. Our work is an extension of Avigad's and generalizes the concept of update procedure to the transfinite case. Transfinite update procedures have to learn values of transfinite sequences of non computable functions in order to extract witnesses from classical proofs.

  1. GenieTutor: A Computer Assisted Second-Language Learning System Based on Semantic and Grammar Correctness Evaluations

    ERIC Educational Resources Information Center

    Kwon, Oh-Woog; Lee, Kiyoung; Kim, Young-Kil; Lee, Yunkeun

    2015-01-01

    This paper introduces a Dialog-Based Computer-Assisted second-Language Learning (DB-CALL) system using semantic and grammar correctness evaluations and the results of its experiment. While the system dialogues with English learners about a given topic, it automatically evaluates the grammar and content properness of their English utterances, then…

  2. Varieties of semantic ‘access’ deficit in Wernicke’s aphasia and semantic aphasia

    PubMed Central

    Robson, Holly; Lambon Ralph, Matthew A.; Jefferies, Elizabeth

    2015-01-01

    Comprehension deficits are common in stroke aphasia, including in cases with (i) semantic aphasia, characterized by poor executive control of semantic processing across verbal and non-verbal modalities; and (ii) Wernicke’s aphasia, associated with poor auditory–verbal comprehension and repetition, plus fluent speech with jargon. However, the varieties of these comprehension problems, and their underlying causes, are not well understood. Both patient groups exhibit some type of semantic ‘access’ deficit, as opposed to the ‘storage’ deficits observed in semantic dementia. Nevertheless, existing descriptions suggest that these patients might have different varieties of ‘access’ impairment—related to difficulty resolving competition (in semantic aphasia) versus initial activation of concepts from sensory inputs (in Wernicke’s aphasia). We used a case series design to compare patients with Wernicke’s aphasia and those with semantic aphasia on Warrington’s paradigmatic assessment of semantic ‘access’ deficits. In these verbal and non-verbal matching tasks, a small set of semantically-related items are repeatedly presented over several cycles so that the target on one trial becomes a distractor on another (building up interference and eliciting semantic ‘blocking’ effects). Patients with Wernicke’s aphasia and semantic aphasia were distinguished according to lesion location in the temporal cortex, but in each group, some individuals had additional prefrontal damage. Both of these aspects of lesion variability—one that mapped onto classical ‘syndromes’ and one that did not—predicted aspects of the semantic ‘access’ deficit. Both semantic aphasia and Wernicke’s aphasia cases showed multimodal semantic impairment, although as expected, the Wernicke’s aphasia group showed greater deficits on auditory-verbal than picture judgements. Distribution of damage in the temporal lobe was crucial for predicting the initially

  3. Elaborative Retrieval: Do Semantic Mediators Improve Memory?

    ERIC Educational Resources Information Center

    Lehman, Melissa; Karpicke, Jeffrey D.

    2016-01-01

    The elaborative retrieval account of retrieval-based learning proposes that retrieval enhances retention because the retrieval process produces the generation of semantic mediators that link cues to target information. We tested 2 assumptions that form the basis of this account: that semantic mediators are more likely to be generated during…

  4. Treatment for Anomia in Semantic Dementia

    PubMed Central

    Henry, Maya L.; Beeson, Pélagie M.; Rapcsak, Steven Z.

    2009-01-01

    Anomia is a striking and consistent clinical feature of semantic dementia (SD), a progressive aphasia syndrome associated with focal cortical atrophy of the anterior temporal lobes. Word retrieval deficits in patients with SD have been attributed to the loss of conceptual knowledge, resulting in an impairment referred to as semantic anomia. Whereas an abundance of research has been dedicated to treatment for anomia in individuals with focal brain damage due to stroke, considerably less work has been done regarding treatment for patients with progressive language decline. The purpose of this article is to review the available literature concerning the nature and treatment of anomia in individuals with SD. Several studies have shown that new lexical learning remains possible in these patients. However, newly learned information is likely to be constrained by the learning context, and increased reliance on perceptual and autobiographical contextual information may be necessary to provide critical support for new vocabulary acquisition. There is also evidence suggesting that treatment may slow the progression of anomia over time, even affording some protective benefit to lexical items that are not yet lost. However, treatment efforts are likely to be most beneficial at early stages of the disease, when residual semantic knowledge as. well as relatively spared episodic memory may support new learning. PMID:18348092

  5. Joint Concept Correlation and Feature-Concept Relevance Learning for Multilabel Classification.

    PubMed

    Zhao, Xiaowei; Ma, Zhigang; Li, Zhi; Li, Zhihui

    2018-02-01

    In recent years, multilabel classification has attracted significant attention in multimedia annotation. However, most of the multilabel classification methods focus only on the inherent correlations existing among multiple labels and concepts and ignore the relevance between features and the target concepts. To obtain more robust multilabel classification results, we propose a new multilabel classification method aiming to capture the correlations among multiple concepts by leveraging hypergraph that is proved to be beneficial for relational learning. Moreover, we consider mining feature-concept relevance, which is often overlooked by many multilabel learning algorithms. To better show the feature-concept relevance, we impose a sparsity constraint on the proposed method. We compare the proposed method with several other multilabel classification methods and evaluate the classification performance by mean average precision on several data sets. The experimental results show that the proposed method outperforms the state-of-the-art methods.

  6. Lexical and semantic representations in the acquisition of L2 cognate and non-cognate words: evidence from two learning methods in children.

    PubMed

    Comesaña, Montserrat; Soares, Ana Paula; Sánchez-Casas, Rosa; Lima, Cátia

    2012-08-01

    How bilinguals represent words in two languages and which mechanisms are responsible for second language acquisition are important questions in the bilingual and vocabulary acquisition literature. This study aims to analyse the effect of two learning methods (picture- vs. word-based method) and two types of words (cognates and non-cognates) in early stages of children's L2 acquisition. Forty-eight native speakers of European Portuguese, all sixth graders (mean age = 10.87 years; SD= 0.85), participated in the study. None of them had prior knowledge of Basque (the L2 in this study). After a learning phase in which L2 words were learned either by a picture- or a word-based method, children were tested in a backward-word translation recognition task at two times (immediately vs. one week later). Results showed that the participants made more errors when rejecting semantically related than semantically unrelated words as correct translations (semantic interference effect). The magnitude of this effect was higher in the delayed test condition regardless of the learning method. Moreover, the overall performance of participants from the word-based method was better than the performance of participants from the picture-word method. Results were discussed concerning the most significant bilingual lexical processing models. ©2011 The British Psychological Society.

  7. Leveraging Large-Scale Semantic Networks for Adaptive Robot Task Learning and Execution.

    PubMed

    Boteanu, Adrian; St Clair, Aaron; Mohseni-Kabir, Anahita; Saldanha, Carl; Chernova, Sonia

    2016-12-01

    This work seeks to leverage semantic networks containing millions of entries encoding assertions of commonsense knowledge to enable improvements in robot task execution and learning. The specific application we explore in this project is object substitution in the context of task adaptation. Humans easily adapt their plans to compensate for missing items in day-to-day tasks, substituting a wrap for bread when making a sandwich, or stirring pasta with a fork when out of spoons. Robot plan execution, however, is far less robust, with missing objects typically leading to failure if the robot is not aware of alternatives. In this article, we contribute a context-aware algorithm that leverages the linguistic information embedded in the task description to identify candidate substitution objects without reliance on explicit object affordance information. Specifically, we show that the task context provided by the task labels within the action structure of a task plan can be leveraged to disambiguate information within a noisy large-scale semantic network containing hundreds of potential object candidates to identify successful object substitutions with high accuracy. We present two extensive evaluations of our work on both abstract and real-world robot tasks, showing that the substitutions made by our system are valid, accepted by users, and lead to a statistically significant reduction in robot learning time. In addition, we report the outcomes of testing our approach with a large number of crowd workers interacting with a robot in real time.

  8. Sleep Benefits Memory for Semantic Category Structure While Preserving Exemplar-Specific Information.

    PubMed

    Schapiro, Anna C; McDevitt, Elizabeth A; Chen, Lang; Norman, Kenneth A; Mednick, Sara C; Rogers, Timothy T

    2017-11-01

    Semantic memory encompasses knowledge about both the properties that typify concepts (e.g. robins, like all birds, have wings) as well as the properties that individuate conceptually related items (e.g. robins, in particular, have red breasts). We investigate the impact of sleep on new semantic learning using a property inference task in which both kinds of information are initially acquired equally well. Participants learned about three categories of novel objects possessing some properties that were shared among category exemplars and others that were unique to an exemplar, with exposure frequency varying across categories. In Experiment 1, memory for shared properties improved and memory for unique properties was preserved across a night of sleep, while memory for both feature types declined over a day awake. In Experiment 2, memory for shared properties improved across a nap, but only for the lower-frequency category, suggesting a prioritization of weakly learned information early in a sleep period. The increase was significantly correlated with amount of REM, but was also observed in participants who did not enter REM, suggesting involvement of both REM and NREM sleep. The results provide the first evidence that sleep improves memory for the shared structure of object categories, while simultaneously preserving object-unique information.

  9. Concept mapping enhances learning of biochemistry.

    PubMed

    Surapaneni, Krishna M; Tekian, Ara

    2013-03-05

    Teaching basic science courses is challenging in undergraduate medical education because of the ubiquitous use of didactic lectures and reward for recall of factual information during examinations. The purpose of this study is to introduce concept maps with clinical cases (the innovative program) to improve learning of biochemistry course content. Participants were first year medical students (n=150) from Saveetha Medical College and Hospital (India); they were randomly divided into two groups of 75, one group attending the traditional program, the other the innovative program. Student performance was measured using three written knowledge tests (each with a maximum score of 20). The students also evaluated the relevance of the learning process using a 12-item questionnaire. Students in the innovative program using concept mapping outperformed those in the traditional didactic program (means of 7.13-8.28 vs. 12.33-13.93, p<0.001). The students gave high positive ratings for the innovative course (93-100% agreement). The new concept-mapping program resulted in higher academic performance compared to the traditional course and was perceived favorably by the students. They especially valued the use of concept mapping as learning tools to foster the relevance of biochemistry to clinical practice, and to enhance their reasoning and learning skills, as well as their deeper understanding for biochemistry.

  10. Concept mapping enhances learning of biochemistry

    PubMed Central

    Surapaneni, Krishna M.; Tekian, Ara

    2013-01-01

    Background Teaching basic science courses is challenging in undergraduate medical education because of the ubiquitous use of didactic lectures and reward for recall of factual information during examinations. The purpose of this study is to introduce concept maps with clinical cases (the innovative program) to improve learning of biochemistry course content. Methods Participants were first year medical students (n=150) from Saveetha Medical College and Hospital (India); they were randomly divided into two groups of 75, one group attending the traditional program, the other the innovative program. Student performance was measured using three written knowledge tests (each with a maximum score of 20). The students also evaluated the relevance of the learning process using a 12-item questionnaire. Results Students in the innovative program using concept mapping outperformed those in the traditional didactic program (means of 7.13–8.28 vs. 12.33–13.93, p<0.001). The students gave high positive ratings for the innovative course (93–100% agreement). Conclusion The new concept-mapping program resulted in higher academic performance compared to the traditional course and was perceived favorably by the students. They especially valued the use of concept mapping as learning tools to foster the relevance of biochemistry to clinical practice, and to enhance their reasoning and learning skills, as well as their deeper understanding for biochemistry. PMID:23464600

  11. Concept mapping enhances learning of biochemistry.

    PubMed

    Surapaneni, KrishnaM; Tekian, Ara

    2013-01-01

    Teaching basic science courses is challenging in undergraduate medical education because of the ubiquitous use of didactic lectures and reward for recall of factual information during examinations. The purpose of this study is to introduce concept maps with clinical cases (the innovative program) to improve learning of biochemistry course content. Participants were first year medical students (n=150) from Saveetha Medical College and Hospital (India); they were randomly divided into two groups of 75, one group attending the traditional program, the other the innovative program. Student performance was measured using three written knowledge tests (each with a maximum score of 20). The students also evaluated the relevance of the learning process using a 12-item questionnaire. Students in the innovative program using concept mapping outperformed those in the traditional didactic program (means of 7.13-8.28 vs. 12.33-13.93, p<0.001). The students gave high positive ratings for the innovative course (93-100% agreement). The new concept-mapping program resulted in higher academic performance compared to the traditional course and was perceived favorably by the students. They especially valued the use of concept mapping as learning tools to foster the relevance of biochemistry to clinical practice, and to enhance their reasoning and learning skills, as well as their deeper understanding for biochemistry.

  12. Language Networks Associated with Computerized Semantic Indices

    PubMed Central

    Pakhomov, Serguei V. S.; Jones, David T.; Knopman, David S.

    2014-01-01

    Tests of generative semantic verbal fluency are widely used to study organization and representation of concepts in the human brain. Previous studies demonstrated that clustering and switching behavior during verbal fluency tasks is supported by multiple brain mechanisms associated with semantic memory and executive control. Previous work relied on manual assessments of semantic relatedness between words and grouping of words into semantic clusters. We investigated a computational linguistic approach to measuring the strength of semantic relatedness between words based on latent semantic analysis of word co-occurrences in a subset of a large online encyclopedia. We computed semantic clustering indices and compared them to brain network connectivity measures obtained with task-free fMRI in a sample consisting of healthy participants and those differentially affected by cognitive impairment. We found that semantic clustering indices were associated with brain network connectivity in distinct areas including fronto-temporal, fronto-parietal and fusiform gyrus regions. This study shows that computerized semantic indices complement traditional assessments of verbal fluency to provide a more complete account of the relationship between brain and verbal behavior involved organization and retrieval of lexical information from memory. PMID:25315785

  13. Language networks associated with computerized semantic indices.

    PubMed

    Pakhomov, Serguei V S; Jones, David T; Knopman, David S

    2015-01-01

    Tests of generative semantic verbal fluency are widely used to study organization and representation of concepts in the human brain. Previous studies demonstrated that clustering and switching behavior during verbal fluency tasks is supported by multiple brain mechanisms associated with semantic memory and executive control. Previous work relied on manual assessments of semantic relatedness between words and grouping of words into semantic clusters. We investigated a computational linguistic approach to measuring the strength of semantic relatedness between words based on latent semantic analysis of word co-occurrences in a subset of a large online encyclopedia. We computed semantic clustering indices and compared them to brain network connectivity measures obtained with task-free fMRI in a sample consisting of healthy participants and those differentially affected by cognitive impairment. We found that semantic clustering indices were associated with brain network connectivity in distinct areas including fronto-temporal, fronto-parietal and fusiform gyrus regions. This study shows that computerized semantic indices complement traditional assessments of verbal fluency to provide a more complete account of the relationship between brain and verbal behavior involved organization and retrieval of lexical information from memory. Copyright © 2014 Elsevier Inc. All rights reserved.

  14. Brazilian and Nigerian International Students' Conceptions of Learning in Higher Education

    ERIC Educational Resources Information Center

    Ashong, Carol; Commander, Nannette

    2017-01-01

    The growth of international students compels examination of introspective aspects of learning experiences such as conceptions of learning. Additionally, learning conceptions profoundly impact learning outcomes (Tsai, 2009). To address the lack of research on learning conceptions of students from Africa and South America, this study examines…

  15. Integrating Concept Mapping and the Learning Cycle To Teach Diffusion and Osmosis Concepts to High School Biology Students.

    ERIC Educational Resources Information Center

    Odom, Arthur L.; Kelly, Paul V.

    2001-01-01

    Explores the effectiveness of concept mapping, the learning cycle, expository instruction, and a combination of concept mapping/learning cycle in promoting conceptual understanding of diffusion and osmosis. Concludes that the concept mapping/learning cycle and concept mapping treatment groups significantly outperformed the expository treatment…

  16. High-Dimensional Semantic Space Accounts of Priming

    ERIC Educational Resources Information Center

    Jones, Michael N.; Kintsch, Walter; Mewhort, Douglas J. K.

    2006-01-01

    A broad range of priming data has been used to explore the structure of semantic memory and to test between models of word representation. In this paper, we examine the computational mechanisms required to learn distributed semantic representations for words directly from unsupervised experience with language. To best account for the variety of…

  17. ASSOCIATIVE CONCEPT LEARNING IN ANIMALS

    PubMed Central

    Zentall, Thomas R.; Wasserman, Edward A.; Urcuioli, Peter J.

    2014-01-01

    Nonhuman animals show evidence for three types of concept learning: perceptual or similarity-based in which objects/stimuli are categorized based on physical similarity; relational in which one object/stimulus is categorized relative to another (e.g., same/different); and associative in which arbitrary stimuli become interchangeable with one another by virtue of a common association with another stimulus, outcome, or response. In this article, we focus on various methods for establishing associative concepts in nonhuman animals and evaluate data documenting the development of associative classes of stimuli. We also examine the nature of the common within-class representation of samples that have been associated with the same reinforced comparison response (i.e., many-to-one matching) by describing manipulations for distinguishing possible representations. Associative concepts provide one foundation for human language such that spoken and written words and the objects they represent become members of a class of interchangeable stimuli. The mechanisms of associative concept learning and the behavioral flexibility it allows, however, are also evident in the adaptive behaviors of animals lacking language. PMID:24170540

  18. Concept-Based Learning

    ERIC Educational Resources Information Center

    Schill, Bethany; Howell, Linda

    2011-01-01

    A major part of developing concept-based instruction is the use of an overarching idea to provide a conceptual lens through which students view the content of a particular subject. By using a conceptual lens to focus learning, students think at a much deeper level about the content and its facts (Erickson 2007). Therefore, the authors collaborated…

  19. Practical solutions to implementing "Born Semantic" data systems

    NASA Astrophysics Data System (ADS)

    Leadbetter, A.; Buck, J. J. H.; Stacey, P.

    2015-12-01

    The concept of data being "Born Semantic" has been proposed in recent years as a Semantic Web analogue to the idea of data being "born digital"[1], [2]. Within the "Born Semantic" concept, data are captured digitally and at a point close to the time of creation are annotated with markup terms from semantic web resources (controlled vocabularies, thesauri or ontologies). This allows heterogeneous data to be more easily ingested and amalgamated in near real-time due to the standards compliant annotation of the data. In taking the "Born Semantic" proposal from concept to operation, a number of difficulties have been encountered. For example, although there are recognised methods such as Header, Dictionary, Triples [3] for the compression, publication and dissemination of large volumes of triples these systems are not practical to deploy in the field on low-powered (both electrically and computationally) devices. Similarly, it is not practical for instruments to output fully formed semantically annotated data files if they are designed to be plugged into a modular system and the data to be centrally logged in the field as is the case on Argo floats and oceanographic gliders where internal bandwidth becomes an issue [2]. In light of these issues, this presentation will concentrate on pragmatic solutions being developed to the problem of generating Linked Data in near real-time systems. Specific examples from the European Commission SenseOCEAN project where Linked Data systems are being developed for autonomous underwater platforms, and from work being undertaken in the streaming of data from the Irish Galway Bay Cable Observatory initiative will be highlighted. Further, developments of a set of tools for the LogStash-ElasticSearch software ecosystem to allow the storing and retrieval of Linked Data will be introduced. References[1] A. Leadbetter & J. Fredericks, We have "born digital" - now what about "born semantic"?, European Geophysical Union General Assembly, 2014

  20. From bird to sparrow: Learning-induced modulations in fine-grained semantic discrimination.

    PubMed

    De Meo, Rosanna; Bourquin, Nathalie M-P; Knebel, Jean-François; Murray, Micah M; Clarke, Stephanie

    2015-09-01

    Recognition of environmental sounds is believed to proceed through discrimination steps from broad to more narrow categories. Very little is known about the neural processes that underlie fine-grained discrimination within narrow categories or about their plasticity in relation to newly acquired expertise. We investigated how the cortical representation of birdsongs is modulated by brief training to recognize individual species. During a 60-minute session, participants learned to recognize a set of birdsongs; they improved significantly their performance for trained (T) but not control species (C), which were counterbalanced across participants. Auditory evoked potentials (AEPs) were recorded during pre- and post-training sessions. Pre vs. post changes in AEPs were significantly different between T and C i) at 206-232ms post stimulus onset within a cluster on the anterior part of the left superior temporal gyrus; ii) at 246-291ms in the left middle frontal gyrus; and iii) 512-545ms in the left middle temporal gyrus as well as bilaterally in the cingulate cortex. All effects were driven by weaker activity for T than C species. Thus, expertise in discriminating T species modulated early stages of semantic processing, during and immediately after the time window that sustains the discrimination between human vs. animal vocalizations. Moreover, the training-induced plasticity is reflected by the sharpening of a left lateralized semantic network, including the anterior part of the temporal convexity and the frontal cortex. Training to identify birdsongs influenced, however, also the processing of C species, but at a much later stage. Correct discrimination of untrained sounds seems to require an additional step which results from lower-level features analysis such as apperception. We therefore suggest that the access to objects within an auditory semantic category is different and depends on subject's level of expertise. More specifically, correct intra

  1. The trajectory of scientific discovery: concept co-occurrence and converging semantic distance.

    PubMed

    Cohen, Trevor; Schvaneveldt, Roger W

    2010-01-01

    The paradigm of literature-based knowledge discovery originated by Swanson involves finding meaningful associations between terms or concepts that have not occurred together in any previously published document. While several automated approaches have been applied to this problem, these generally evaluate the literature at a point in time, and do not evaluate the role of change over time in distributional statistics as an indicator of meaningful implicit associations. To address this issue, we develop and evaluate Symmetric Random Indexing (SRI), a novel variant of the Random Indexing (RI) approach that is able to measure implicit association over time. SRI is found to compare favorably to existing RI variants in the prediction of future direct co-occurrence. Summary statistics over several experiments suggest a trend of converging semantic distance prior to the co-occurrence of key terms for two seminal historical literature-based discoveries.

  2. A Machine Learning Concept for DTN Routing

    NASA Technical Reports Server (NTRS)

    Dudukovich, Rachel; Hylton, Alan; Papachristou, Christos

    2017-01-01

    This paper discusses the concept and architecture of a machine learning based router for delay tolerant space networks. The techniques of reinforcement learning and Bayesian learning are used to supplement the routing decisions of the popular Contact Graph Routing algorithm. An introduction to the concepts of Contact Graph Routing, Q-routing and Naive Bayes classification are given. The development of an architecture for a cross-layer feedback framework for DTN (Delay-Tolerant Networking) protocols is discussed. Finally, initial simulation setup and results are given.

  3. Experiencing Economic Concepts: Formal and Informal Concept Learning.

    ERIC Educational Resources Information Center

    Armento, Beverly Jeanne

    1980-01-01

    This article discusses the feasibility of and the skills needed for teaching basic economic concepts such as supply and demand in an informal learning situation, in this case the simulation of an economic system based on barter. (CJ)

  4. Differential pattern of semantic memory organization between bipolar I and II disorders.

    PubMed

    Chang, Jae Seung; Choi, Sungwon; Ha, Kyooseob; Ha, Tae Hyon; Cho, Hyun Sang; Choi, Jung Eun; Cha, Boseok; Moon, Eunsoo

    2011-06-01

    Semantic cognition is one of the key factors in psychosocial functioning. The aim of this study was to explore the differences in pattern of semantic memory organization between euthymic patients with bipolar I and II disorders using the category fluency task. Study participants included 23 euthymic subjects with bipolar I disorder, 23 matched euthymic subjects with bipolar II disorder and 23 matched control subjects. All participants were assessed for verbal learning, recall, learning strategies, and fluency. The combined methods of hierarchical clustering and multidimensional scaling were used to compare the pattern of semantic memory organization among the three groups. Quantitative measures of verbal learning, recall, learning strategies, and fluency did not differ between the three groups. A two-cluster structure of semantic memory organization was identified for the three groups. Semantic structure was more disorganized in the bipolar I disorder group compared to the bipolar II disorder. In addition, patients with bipolar II disorder used less elaborate strategies of semantic memory organization than those of controls. Compared to healthy controls, strategies for categorization in semantic memory appear to be less knowledge-based in patients with bipolar disorders. A differential pattern of semantic memory organization between bipolar I and II disorders indicates a higher risk of cognitive abnormalities in patients with bipolar I disorder compared to patients with bipolar II disorder. Exploring qualitative nature of neuropsychological domains may provide an explanatory insight into the characteristic behaviors of patients with bipolar disorders. Copyright © 2011 Elsevier Inc. All rights reserved.

  5. What is in a contour map? A region-based logical formalization of contour semantics

    USGS Publications Warehouse

    Usery, E. Lynn; Hahmann, Torsten

    2015-01-01

    This paper analyses and formalizes contour semantics in a first-order logic ontology that forms the basis for enabling computational common sense reasoning about contour information. The elicited contour semantics comprises four key concepts – contour regions, contour lines, contour values, and contour sets – and their subclasses and associated relations, which are grounded in an existing qualitative spatial ontology. All concepts and relations are illustrated and motivated by physical-geographic features identifiable on topographic contour maps. The encoding of the semantics of contour concepts in first-order logic and a derived conceptual model as basis for an OWL ontology lay the foundation for fully automated, semantically-aware qualitative and quantitative reasoning about contours.

  6. Making Semantic Waves: A Key to Cumulative Knowledge-Building

    ERIC Educational Resources Information Center

    Maton, Karl

    2013-01-01

    The paper begins by arguing that knowledge-blindness in educational research represents a serious obstacle to understanding knowledge-building. It then offers sociological concepts from Legitimation Code Theory--"semantic gravity" and "semantic density"--that systematically conceptualize one set of organizing principles underlying knowledge…

  7. How Effective Is Example Generation for Learning Declarative Concepts?

    ERIC Educational Resources Information Center

    Rawson, Katherine A.; Dunlosky, John

    2016-01-01

    Declarative concepts (i.e., key terms and corresponding definitions for abstract concepts) represent foundational knowledge that students learn in many content domains. Thus, investigating techniques to enhance concept learning is of critical importance. Various theoretical accounts support the expectation that example generation will serve this…

  8. Econo-ESA in semantic text similarity.

    PubMed

    Rahutomo, Faisal; Aritsugi, Masayoshi

    2014-01-01

    Explicit semantic analysis (ESA) utilizes an immense Wikipedia index matrix in its interpreter part. This part of the analysis multiplies a large matrix by a term vector to produce a high-dimensional concept vector. A similarity measurement between two texts is performed between two concept vectors with numerous dimensions. The cost is expensive in both interpretation and similarity measurement steps. This paper proposes an economic scheme of ESA, named econo-ESA. We investigate two aspects of this proposal: dimensional reduction and experiments with various data. We use eight recycling test collections in semantic text similarity. The experimental results show that both the dimensional reduction and test collection characteristics can influence the results. They also show that an appropriate concept reduction of econo-ESA can decrease the cost with minor differences in the results from the original ESA.

  9. Student Conceptions of Peer-Assisted Learning

    ERIC Educational Resources Information Center

    Hodgson, Yvonne; Benson, Robyn; Brack, Charlotte

    2015-01-01

    This article reports on a programme in which peer-assisted learning (PAL) was combined with case-based learning (CBL) in a second-year radiologic biology unit of study. Our aim is to explore evidence of whether PAL supported the development of qualitative conceptions of learning. The programme involved students in small PAL groups preparing and…

  10. What Is Learned when Concept Learning Fails?--A Theory of Restricted-Domain Relational Learning

    ERIC Educational Resources Information Center

    Wright, Anthony A.; Lickteig, Mark T.

    2010-01-01

    Two matching-to-sample (MTS) and four same/different (S/D) experiments employed tests to distinguish between item-specific learning and relational learning. One MTS experiment showed item-specific learning when concept learning failed (i.e., no novel-stimulus transfer). Another MTS experiment showed item-specific learning when pigeons'…

  11. A Semantic Prosody Analysis of Three Adjective Synonymous Pairs in COCA

    ERIC Educational Resources Information Center

    Hu, H. C. Marcella

    2015-01-01

    Over the past two decades the concept of semantic prosody has attracted considerable research interest since Sinclair (1991) observed that "many uses of words and phrases show a tendency to occur in a certain semantic environment" (p. 112). Sinclair (2003) also noted that semantic prosody conveys its pragmatic meaning and attitudinal…

  12. The Effects of Learning Disabilities on a Child's Self-Concept.

    ERIC Educational Resources Information Center

    Avazian, Karyn Lorraine Wood

    The review of the literature focuses on research assessing the effects of learning disabilities on a child's self-concept. After an introduction, definitions of "learning disabilities" and "self-concept" are offered. The literature on effects of learning disabilities on self-concept in elementary, middle, and high school age children is then…

  13. Fast Distributed Dynamics of Semantic Networks via Social Media.

    PubMed

    Carrillo, Facundo; Cecchi, Guillermo A; Sigman, Mariano; Slezak, Diego Fernández

    2015-01-01

    We investigate the dynamics of semantic organization using social media, a collective expression of human thought. We propose a novel, time-dependent semantic similarity measure (TSS), based on the social network Twitter. We show that TSS is consistent with static measures of similarity but provides high temporal resolution for the identification of real-world events and induced changes in the distributed structure of semantic relationships across the entire lexicon. Using TSS, we measured the evolution of a concept and its movement along the semantic neighborhood, driven by specific news/events. Finally, we showed that particular events may trigger a temporary reorganization of elements in the semantic network.

  14. Fast Distributed Dynamics of Semantic Networks via Social Media

    PubMed Central

    Carrillo, Facundo; Cecchi, Guillermo A.; Sigman, Mariano; Fernández Slezak, Diego

    2015-01-01

    We investigate the dynamics of semantic organization using social media, a collective expression of human thought. We propose a novel, time-dependent semantic similarity measure (TSS), based on the social network Twitter. We show that TSS is consistent with static measures of similarity but provides high temporal resolution for the identification of real-world events and induced changes in the distributed structure of semantic relationships across the entire lexicon. Using TSS, we measured the evolution of a concept and its movement along the semantic neighborhood, driven by specific news/events. Finally, we showed that particular events may trigger a temporary reorganization of elements in the semantic network. PMID:26074953

  15. Semantic and phonological coding in poor and normal readers.

    PubMed

    Vellutino, F R; Scanlon, D M; Spearing, D

    1995-02-01

    Three studies were conducted evaluating semantic and phonological coding deficits as alternative explanations of reading disability. In the first study, poor and normal readers in second and sixth grade were compared on various tests evaluating semantic development as well as on tests evaluating rapid naming and pseudoword decoding as independent measures of phonological coding ability. In a second study, the same subjects were given verbal memory and visual-verbal learning tasks using high and low meaning words as verbal stimuli and Chinese ideographs as visual stimuli. On the semantic tasks, poor readers performed below the level of the normal readers only at the sixth grade level, but, on the rapid naming and pseudoword learning tasks, they performed below the normal readers at the second as well as at the sixth grade level. On both the verbal memory and visual-verbal learning tasks, performance in poor readers approximated that of normal readers when the word stimuli were high in meaning but not when they were low in meaning. These patterns were essentially replicated in a third study that used some of the same semantic and phonological measures used in the first experiment, and verbal memory and visual-verbal learning tasks that employed word lists and visual stimuli (novel alphabetic characters) that more closely approximated those used in learning to read. It was concluded that semantic coding deficits are an unlikely cause of reading difficulties in most poor readers at the beginning stages of reading skills acquisition, but accrue as a consequence of prolonged reading difficulties in older readers. It was also concluded that phonological coding deficits are a probable cause of reading difficulties in most poor readers.

  16. Semantic memory in developmental amnesia.

    PubMed

    Elward, Rachael L; Vargha-Khadem, Faraneh

    2018-04-30

    Patients with developmental amnesia resulting from bilateral hippocampal atrophy associated with neonatal hypoxia-ischaemia typically show relatively preserved semantic memory and factual knowledge about the natural world despite severe impairments in episodic memory. Understanding the neural and mnemonic processes that enable this context-free semantic knowledge to be acquired throughout development without the support of the contextualised episodic memory system is a serious challenge. This review describes the clinical presentation of patients with developmental amnesia, contrasts its features with those reported for adult-onset hippocampal amnesia, and analyses the effects of variables that influence the learning of new semantic information. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.

  17. Evidence of semantic processing impairments in behavioural variant frontotemporal dementia and Parkinson's disease.

    PubMed

    Cousins, Katheryn A Q; Grossman, Murray

    2017-12-01

    Category-specific impairments caused by brain damage can provide important insights into how semantic concepts are organized in the brain. Recent research has demonstrated that disease to sensory and motor cortices can impair perceptual feature knowledge important to the representation of semantic concepts. This evidence supports the grounded cognition theory of semantics, the view that lexical knowledge is partially grounded in perceptual experience and that sensory and motor regions support semantic representations. Less well understood, however, is how heteromodal semantic hubs work to integrate and process semantic information. Although the majority of semantic research to date has focused on how sensory cortical areas are important for the representation of semantic features, new research explores how semantic memory is affected by neurodegeneration in regions important for semantic processing. Here, we review studies that demonstrate impairments to abstract noun knowledge in behavioural variant frontotemporal degeneration (bvFTD) and to action verb knowledge in Parkinson's disease, and discuss how these deficits relate to disease of the semantic selection network. Findings demonstrate that semantic selection processes are supported by the left inferior frontal gyrus (LIFG) and basal ganglia, and that disease to these regions in bvFTD and Parkinson's disease can lead to categorical impairments for abstract nouns and action verbs, respectively.

  18. Semantic-Web Technology: Applications at NASA

    NASA Technical Reports Server (NTRS)

    Ashish, Naveen

    2004-01-01

    We provide a description of work at the National Aeronautics and Space Administration (NASA) on building system based on semantic-web concepts and technologies. NASA has been one of the early adopters of semantic-web technologies for practical applications. Indeed there are several ongoing 0 endeavors on building semantics based systems for use in diverse NASA domains ranging from collaborative scientific activity to accident and mishap investigation to enterprise search to scientific information gathering and integration to aviation safety decision support We provide a brief overview of many applications and ongoing work with the goal of informing the external community of these NASA endeavors.

  19. A learning perspective on individual differences in skilled reading: Exploring and exploiting orthographic and semantic discrimination cues.

    PubMed

    Milin, Petar; Divjak, Dagmar; Baayen, R Harald

    2017-11-01

    The goal of the present study is to understand the role orthographic and semantic information play in the behavior of skilled readers. Reading latencies from a self-paced sentence reading experiment in which Russian near-synonymous verbs were manipulated appear well-predicted by a combination of bottom-up sublexical letter triplets (trigraphs) and top-down semantic generalizations, modeled using the Naive Discrimination Learner. The results reveal a complex interplay of bottom-up and top-down support from orthography and semantics to the target verbs, whereby activations from orthography only are modulated by individual differences. Using performance on a serial reaction time (SRT) task for a novel operationalization of the mental speed hypothesis, we explain the observed individual differences in reading behavior in terms of the exploration/exploitation hypothesis from reinforcement learning, where initially slower and more variable behavior leads to better performance overall. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  20. Integrating Statistical Machine Learning in a Semantic Sensor Web for Proactive Monitoring and Control.

    PubMed

    Adeleke, Jude Adekunle; Moodley, Deshendran; Rens, Gavin; Adewumi, Aderemi Oluyinka

    2017-04-09

    Proactive monitoring and control of our natural and built environments is important in various application scenarios. Semantic Sensor Web technologies have been well researched and used for environmental monitoring applications to expose sensor data for analysis in order to provide responsive actions in situations of interest. While these applications provide quick response to situations, to minimize their unwanted effects, research efforts are still necessary to provide techniques that can anticipate the future to support proactive control, such that unwanted situations can be averted altogether. This study integrates a statistical machine learning based predictive model in a Semantic Sensor Web using stream reasoning. The approach is evaluated in an indoor air quality monitoring case study. A sliding window approach that employs the Multilayer Perceptron model to predict short term PM 2 . 5 pollution situations is integrated into the proactive monitoring and control framework. Results show that the proposed approach can effectively predict short term PM 2 . 5 pollution situations: precision of up to 0.86 and sensitivity of up to 0.85 is achieved over half hour prediction horizons, making it possible for the system to warn occupants or even to autonomously avert the predicted pollution situations within the context of Semantic Sensor Web.

  1. Integrating Statistical Machine Learning in a Semantic Sensor Web for Proactive Monitoring and Control

    PubMed Central

    Adeleke, Jude Adekunle; Moodley, Deshendran; Rens, Gavin; Adewumi, Aderemi Oluyinka

    2017-01-01

    Proactive monitoring and control of our natural and built environments is important in various application scenarios. Semantic Sensor Web technologies have been well researched and used for environmental monitoring applications to expose sensor data for analysis in order to provide responsive actions in situations of interest. While these applications provide quick response to situations, to minimize their unwanted effects, research efforts are still necessary to provide techniques that can anticipate the future to support proactive control, such that unwanted situations can be averted altogether. This study integrates a statistical machine learning based predictive model in a Semantic Sensor Web using stream reasoning. The approach is evaluated in an indoor air quality monitoring case study. A sliding window approach that employs the Multilayer Perceptron model to predict short term PM2.5 pollution situations is integrated into the proactive monitoring and control framework. Results show that the proposed approach can effectively predict short term PM2.5 pollution situations: precision of up to 0.86 and sensitivity of up to 0.85 is achieved over half hour prediction horizons, making it possible for the system to warn occupants or even to autonomously avert the predicted pollution situations within the context of Semantic Sensor Web. PMID:28397776

  2. Developing Visualization Techniques for Semantics-based Information Networks

    NASA Technical Reports Server (NTRS)

    Keller, Richard M.; Hall, David R.

    2003-01-01

    Information systems incorporating complex network structured information spaces with a semantic underpinning - such as hypermedia networks, semantic networks, topic maps, and concept maps - are being deployed to solve some of NASA s critical information management problems. This paper describes some of the human interaction and navigation problems associated with complex semantic information spaces and describes a set of new visual interface approaches to address these problems. A key strategy is to leverage semantic knowledge represented within these information spaces to construct abstractions and views that will be meaningful to the human user. Human-computer interaction methodologies will guide the development and evaluation of these approaches, which will benefit deployed NASA systems and also apply to information systems based on the emerging Semantic Web.

  3. Episodic memory, semantic memory, and amnesia.

    PubMed

    Squire, L R; Zola, S M

    1998-01-01

    Episodic memory and semantic memory are two types of declarative memory. There have been two principal views about how this distinction might be reflected in the organization of memory functions in the brain. One view, that episodic memory and semantic memory are both dependent on the integrity of medial temporal lobe and midline diencephalic structures, predicts that amnesic patients with medial temporal lobe/diencephalic damage should be proportionately impaired in both episodic and semantic memory. An alternative view is that the capacity for semantic memory is spared, or partially spared, in amnesia relative to episodic memory ability. This article reviews two kinds of relevant data: 1) case studies where amnesia has occurred early in childhood, before much of an individual's semantic knowledge has been acquired, and 2) experimental studies with amnesic patients of fact and event learning, remembering and knowing, and remote memory. The data provide no compelling support for the view that episodic and semantic memory are affected differently in medial temporal lobe/diencephalic amnesia. However, episodic and semantic memory may be dissociable in those amnesic patients who additionally have severe frontal lobe damage.

  4. Towards a semantic PACS: Using Semantic Web technology to represent imaging data.

    PubMed

    Van Soest, Johan; Lustberg, Tim; Grittner, Detlef; Marshall, M Scott; Persoon, Lucas; Nijsten, Bas; Feltens, Peter; Dekker, Andre

    2014-01-01

    The DICOM standard is ubiquitous within medicine. However, improved DICOM semantics would significantly enhance search operations. Furthermore, databases of current PACS systems are not flexible enough for the demands within image analysis research. In this paper, we investigated if we can use Semantic Web technology, to store and represent metadata of DICOM image files, as well as linking additional computational results to image metadata. Therefore, we developed a proof of concept containing two applications: one to store commonly used DICOM metadata in an RDF repository, and one to calculate imaging biomarkers based on DICOM images, and store the biomarker values in an RDF repository. This enabled us to search for all patients with a gross tumor volume calculated to be larger than 50 cc. We have shown that we can successfully store the DICOM metadata in an RDF repository and are refining our proof of concept with regards to volume naming, value representation, and the applications themselves.

  5. Analyzing polysemous concepts from a clinical perspective: Application to auditing concept categorization in the UMLS

    PubMed Central

    Mougin, Fleur; Bodenreider, Olivier; Burgun, Anita

    2015-01-01

    Objectives Polysemy is a frequent issue in biomedical terminologies. In the Unified Medical Language System (UMLS), polysemous terms are either represented as several independent concepts, or clustered into a single, multiply-categorized concept. The objective of this study is to analyze polysemous concepts in the UMLS through their categorization and hierarchical relations for auditing purposes. Methods We used the association of a concept with multiple Semantic Groups (SGs) as a surrogate for polysemy. We first extracted multi-SG (MSG) concepts from the UMLS Metathesaurus and characterized them in terms of the combinations of SGs with which they are associated. We then clustered MSG concepts in order to identify major types of polysemy. We also analyzed the inheritance of SGs in MSG concepts. Finally, we manually reviewed the categorization of the MSG concepts for auditing purposes. Results The 1208 MSG concepts in the Metathesaurus are associated with 30 distinct pairs of SGs. We created 75 semantically homogeneous clusters of MSG concepts, and 276 MSG concepts could not be clustered for lack of hierarchical relations. The clusters were characterized by the most frequent pairs of semantic types of their constituent MSG concepts. MSG concepts exhibit limited semantic compatibility with their parent and child concepts. A large majority of MSG concepts (92%) are adequately categorized. Examples of miscategorized concepts are presented. Conclusion This work is a systematic analysis and manual review of all concepts categorized by multiple SGs in the UMLS. The correctly-categorized MSG concepts do reflect polysemy in the UMLS Metathesaurus. The analysis of inheritance of SGs proved useful for auditing concept categorization in the UMLS. PMID:19303057

  6. Concept mapping learning strategy to enhance students' mathematical connection ability

    NASA Astrophysics Data System (ADS)

    Hafiz, M.; Kadir, Fatra, Maifalinda

    2017-05-01

    The concept mapping learning strategy in teaching and learning mathematics has been investigated by numerous researchers. However, there are still less researchers who have scrutinized about the roles of map concept which is connected to the mathematical connection ability. Being well understood on map concept, it may help students to have ability to correlate one concept to other concept in order that the student can solve mathematical problems faced. The objective of this research was to describe the student's mathematical connection ability and to analyze the effect of using concept mapping learning strategy to the students' mathematical connection ability. This research was conducted at senior high school in Jakarta. The method used a quasi-experimental with randomized control group design with the total number was 72 students as the sample. Data obtained through using test in the post-test after giving the treatment. The results of the research are: 1) Students' mathematical connection ability has reached the good enough level category; 2) Students' mathematical connection ability who had taught with concept mapping learning strategy is higher than who had taught with conventional learning strategy. Based on the results above, it can be concluded that concept mapping learning strategycould enhance the students' mathematical connection ability, especially in trigonometry.

  7. Strength of Temporal White Matter Pathways Predicts Semantic Learning.

    PubMed

    Ripollés, Pablo; Biel, Davina; Peñaloza, Claudia; Kaufmann, Jörn; Marco-Pallarés, Josep; Noesselt, Toemme; Rodríguez-Fornells, Antoni

    2017-11-15

    Learning the associations between words and meanings is a fundamental human ability. Although the language network is cortically well defined, the role of the white matter pathways supporting novel word-to-meaning mappings remains unclear. Here, by using contextual and cross-situational word learning, we tested whether learning the meaning of a new word is related to the integrity of the language-related white matter pathways in 40 adults (18 women). The arcuate, uncinate, inferior-fronto-occipital and inferior-longitudinal fasciculi were virtually dissected using manual and automatic deterministic fiber tracking. Critically, the automatic method allowed assessing the white matter microstructure along the tract. Results demonstrate that the microstructural properties of the left inferior-longitudinal fasciculus predict contextual learning, whereas the left uncinate was associated with cross-situational learning. In addition, we identified regions of special importance within these pathways: the posterior middle temporal gyrus, thought to serve as a lexical interface and specifically related to contextual learning; the anterior temporal lobe, known to be an amodal hub for semantic processing and related to cross-situational learning; and the white matter near the hippocampus, a structure fundamental for the initial stages of new-word learning and, remarkably, related to both types of word learning. No significant associations were found for the inferior-fronto-occipital fasciculus or the arcuate. While previous results suggest that learning new phonological word forms is mediated by the arcuate fasciculus, these findings show that the temporal pathways are the crucial neural substrate supporting one of the most striking human abilities: our capacity to identify correct associations between words and meanings under referential indeterminacy. SIGNIFICANCE STATEMENT The language-processing network is cortically (i.e., gray matter) well defined. However, the role of the

  8. The contribution of executive control to semantic cognition: Convergent evidence from semantic aphasia and executive dysfunction.

    PubMed

    Thompson, Hannah E; Almaghyuli, Azizah; Noonan, Krist A; Barak, Ohr; Lambon Ralph, Matthew A; Jefferies, Elizabeth

    2018-01-03

    Semantic cognition, as described by the controlled semantic cognition (CSC) framework (Rogers et al., , Neuropsychologia, 76, 220), involves two key components: activation of coherent, generalizable concepts within a heteromodal 'hub' in combination with modality-specific features (spokes), and a constraining mechanism that manipulates and gates this knowledge to generate time- and task-appropriate behaviour. Executive-semantic goal representations, largely supported by executive regions such as frontal and parietal cortex, are thought to allow the generation of non-dominant aspects of knowledge when these are appropriate for the task or context. Semantic aphasia (SA) patients have executive-semantic deficits, and these are correlated with general executive impairment. If the CSC proposal is correct, patients with executive impairment should not only exhibit impaired semantic cognition, but should also show characteristics that align with those observed in SA. This possibility remains largely untested, as patients selected on the basis that they show executive impairment (i.e., with 'dysexecutive syndrome') have not been extensively tested on tasks tapping semantic control and have not been previously compared with SA cases. We explored conceptual processing in 12 patients showing symptoms consistent with dysexecutive syndrome (DYS) and 24 SA patients, using a range of multimodal semantic assessments which manipulated control demands. Patients with executive impairments, despite not being selected to show semantic impairments, nevertheless showed parallel patterns to SA cases. They showed strong effects of distractor strength, cues and miscues, and probe-target distance, plus minimal effects of word frequency on comprehension (unlike semantic dementia patients with degradation of conceptual knowledge). This supports a component process account of semantic cognition in which retrieval is shaped by control processes, and confirms that deficits in SA patients reflect

  9. Environmental Attitudes Semantic Differential.

    ERIC Educational Resources Information Center

    Mehne, Paul R.; Goulard, Cary J.

    This booklet is an evaluation instrument which utilizes semantic differential data to assess environmental attitudes. Twelve concepts are included: regulated access to beaches, urban planning, dune vegetation, wetlands, future cities, reclaiming wetlands for building development, city parks, commercial development of beaches, existing cities,…

  10. Semantic Knowledge Use in Discourse: Influence of Age

    ERIC Educational Resources Information Center

    Kintz, Stephen; Wright, Heather Harris

    2017-01-01

    Semantic memory is relatively stable across the lifespan (LaBarge, Edwards, & Knesevich, 1986). However, most research has been conducted at the single concept level (LaBarge et al., 1986, Spaniol et al., 2006). Few researchers have examined how semantic knowledge is used in discourse. The purpose of the study, then, was to determine the…

  11. Semantic and Thematic List Learning of Second Language Vocabulary

    ERIC Educational Resources Information Center

    Gholami, Javad; Khezrlou, Sima

    2014-01-01

    This article overviews research on second language vocabulary instruction with a specific focus on semantic and thematic vocabulary-clustering types. The theoretical benefits associated with both the semantic and thematic approaches, as well as the potential problems associated with them, are discussed. The conclusion drawn is that reinforcing the…

  12. Tracking lexical consolidation with ERPs: Lexical and semantic-priming effects on N400 and LPC responses to newly-learned words.

    PubMed

    Bakker, Iske; Takashima, Atsuko; van Hell, Janet G; Janzen, Gabriele; McQueen, James M

    2015-12-01

    Novel words can be recalled immediately and after little exposure, but require a post-learning consolidation period to show word-like behaviour such as lexical competition. This pattern is thought to reflect a qualitative shift from episodic to lexical representations. However, several studies have reported immediate effects of meaningful novel words on semantic processing, suggesting that integration of novel word meanings may not require consolidation. The current study synthesises and extends these findings by showing a dissociation between lexical and semantic effects on the electrophysiological (N400, LPC) response to novel words. The difference in N400 amplitude between novel and existing words (a lexical effect) decreased significantly after a 24-h consolidation period, providing novel support for the hypothesis that offline consolidation aids lexicalisation. In contrast, novel words preceded by semantically related primes elicited a more positive LPC response (a semantic-priming effect) both before and after consolidation, indicating that certain semantic effects can be observed even when words have not been fully lexicalised. We propose that novel meanings immediately start to contribute to semantic processing, but that the underlying neural processes may shift from strategic to more automatic with consolidation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Learning to Fail in Aphasia: An Investigation of Error Learning in Naming

    PubMed Central

    Middleton, Erica L.; Schwartz, Myrna F.

    2013-01-01

    Purpose To determine if the naming impairment in aphasia is influenced by error learning and if error learning is related to type of retrieval strategy. Method Nine participants with aphasia and ten neurologically-intact controls named familiar proper noun concepts. When experiencing tip-of-the-tongue naming failure (TOT) in an initial TOT-elicitation phase, participants were instructed to adopt phonological or semantic self-cued retrieval strategies. In the error learning manipulation, items evoking TOT states during TOT-elicitation were randomly assigned to a short or long time condition where participants were encouraged to continue to try to retrieve the name for either 20 seconds (short interval) or 60 seconds (long). The incidence of TOT on the same items was measured on a post test after 48-hours. Error learning was defined as a higher rate of recurrent TOTs (TOT at both TOT-elicitation and post test) for items assigned to the long (versus short) time condition. Results In the phonological condition, participants with aphasia showed error learning whereas controls showed a pattern opposite to error learning. There was no evidence for error learning in the semantic condition for either group. Conclusion Error learning is operative in aphasia, but dependent on the type of strategy employed during naming failure. PMID:23816662

  14. Cases, Simulacra, and Semantic Web Technologies

    ERIC Educational Resources Information Center

    Carmichael, P.; Tscholl, M.

    2013-01-01

    "Ensemble" is an interdisciplinary research and development project exploring the potential role of emerging Semantic Web technologies in case-based learning across learning environments in higher education. Empirical findings have challenged the claim that cases "bring reality into the classroom" and that this, in turn, might…

  15. Interconnected growing self-organizing maps for auditory and semantic acquisition modeling

    PubMed Central

    Cao, Mengxue; Li, Aijun; Fang, Qiang; Kaufmann, Emily; Kröger, Bernd J.

    2014-01-01

    Based on the incremental nature of knowledge acquisition, in this study we propose a growing self-organizing neural network approach for modeling the acquisition of auditory and semantic categories. We introduce an Interconnected Growing Self-Organizing Maps (I-GSOM) algorithm, which takes associations between auditory information and semantic information into consideration, in this paper. Direct phonetic–semantic association is simulated in order to model the language acquisition in early phases, such as the babbling and imitation stages, in which no phonological representations exist. Based on the I-GSOM algorithm, we conducted experiments using paired acoustic and semantic training data. We use a cyclical reinforcing and reviewing training procedure to model the teaching and learning process between children and their communication partners. A reinforcing-by-link training procedure and a link-forgetting procedure are introduced to model the acquisition of associative relations between auditory and semantic information. Experimental results indicate that (1) I-GSOM has good ability to learn auditory and semantic categories presented within the training data; (2) clear auditory and semantic boundaries can be found in the network representation; (3) cyclical reinforcing and reviewing training leads to a detailed categorization as well as to a detailed clustering, while keeping the clusters that have already been learned and the network structure that has already been developed stable; and (4) reinforcing-by-link training leads to well-perceived auditory–semantic associations. Our I-GSOM model suggests that it is important to associate auditory information with semantic information during language acquisition. Despite its high level of abstraction, our I-GSOM approach can be interpreted as a biologically-inspired neurocomputational model. PMID:24688478

  16. Interconnected growing self-organizing maps for auditory and semantic acquisition modeling.

    PubMed

    Cao, Mengxue; Li, Aijun; Fang, Qiang; Kaufmann, Emily; Kröger, Bernd J

    2014-01-01

    Based on the incremental nature of knowledge acquisition, in this study we propose a growing self-organizing neural network approach for modeling the acquisition of auditory and semantic categories. We introduce an Interconnected Growing Self-Organizing Maps (I-GSOM) algorithm, which takes associations between auditory information and semantic information into consideration, in this paper. Direct phonetic-semantic association is simulated in order to model the language acquisition in early phases, such as the babbling and imitation stages, in which no phonological representations exist. Based on the I-GSOM algorithm, we conducted experiments using paired acoustic and semantic training data. We use a cyclical reinforcing and reviewing training procedure to model the teaching and learning process between children and their communication partners. A reinforcing-by-link training procedure and a link-forgetting procedure are introduced to model the acquisition of associative relations between auditory and semantic information. Experimental results indicate that (1) I-GSOM has good ability to learn auditory and semantic categories presented within the training data; (2) clear auditory and semantic boundaries can be found in the network representation; (3) cyclical reinforcing and reviewing training leads to a detailed categorization as well as to a detailed clustering, while keeping the clusters that have already been learned and the network structure that has already been developed stable; and (4) reinforcing-by-link training leads to well-perceived auditory-semantic associations. Our I-GSOM model suggests that it is important to associate auditory information with semantic information during language acquisition. Despite its high level of abstraction, our I-GSOM approach can be interpreted as a biologically-inspired neurocomputational model.

  17. Episodic and semantic memory in children with mesial temporal sclerosis.

    PubMed

    Rzezak, Patricia; Guimarães, Catarina; Fuentes, Daniel; Guerreiro, Marilisa M; Valente, Kette Dualibi Ramos

    2011-07-01

    The aim of this study was to analyze semantic and episodic memory deficits in children with mesial temporal sclerosis (MTS) and their correlation with clinical epilepsy variables. For this purpose, 19 consecutive children and adolescents with MTS (8 to 16 years old) were evaluated and their performance on five episodic memory tests (short- and long-term memory and learning) and four semantic memory tests was compared with that of 28 healthy volunteers. Patients performed worse on tests of immediate and delayed verbal episodic memory, visual episodic memory, verbal and visual learning, mental scanning for semantic clues, object naming, word definition, and repetition of sentences. Clinical variables such as early age at seizure onset, severity of epilepsy, and polytherapy impaired distinct types of memory. These data confirm that children with MTS have episodic memory deficits and add new information on semantic memory. The data also demonstrate that clinical variables contribute differently to episodic and semantic memory performance. Copyright © 2011 Elsevier Inc. All rights reserved.

  18. Mining e-Learning Domain Concept Map from Academic Articles

    ERIC Educational Resources Information Center

    Chen, Nian-Shing; Kinshuk; Wei, Chun-Wang; Chen, Hong-Jhe

    2008-01-01

    Recent researches have demonstrated the importance of concept map and its versatile applications especially in e-Learning. For example, while designing adaptive learning materials, designers need to refer to the concept map of a subject domain. Moreover, concept maps can show the whole picture and core knowledge about a subject domain. Research…

  19. Learning language from within: Children use semantic generalizations to infer word meanings.

    PubMed

    Srinivasan, Mahesh; Al-Mughairy, Sara; Foushee, Ruthe; Barner, David

    2017-02-01

    One reason that word learning presents a challenge for children is because pairings between word forms and meanings are arbitrary conventions that children must learn via observation - e.g., the fact that "shovel" labels shovels. The present studies explore cases in which children might bypass observational learning and spontaneously infer new word meanings: By exploiting the fact that many words are flexible and systematically encode multiple, related meanings. For example, words like shovel and hammer are nouns for instruments, and verbs for activities involving those instruments. The present studies explored whether 3- to 5-year-old children possess semantic generalizations about lexical flexibility, and can use these generalizations to infer new word meanings: Upon learning that dax labels an activity involving an instrument, do children spontaneously infer that dax can also label the instrument itself? Across four studies, we show that at least by age four, children spontaneously generalize instrument-activity flexibility to new words. Together, our findings point to a powerful way in which children may build their vocabulary, by leveraging the fact that words are linked to multiple meanings in systematic ways. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. A Proof-of-Concept for Semantically Interoperable Federation of IoT Experimentation Facilities.

    PubMed

    Lanza, Jorge; Sanchez, Luis; Gomez, David; Elsaleh, Tarek; Steinke, Ronald; Cirillo, Flavio

    2016-06-29

    The Internet-of-Things (IoT) is unanimously identified as one of the main pillars of future smart scenarios. The potential of IoT technologies and deployments has been already demonstrated in a number of different application areas, including transport, energy, safety and healthcare. However, despite the growing number of IoT deployments, the majority of IoT applications tend to be self-contained, thereby forming application silos. A lightweight data centric integration and combination of these silos presents several challenges that still need to be addressed. Indeed, the ability to combine and synthesize data streams and services from diverse IoT platforms and testbeds, holds the promise to increase the potentiality of smart applications in terms of size, scope and targeted business context. In this article, a proof-of-concept implementation that federates two different IoT experimentation facilities by means of semantic-based technologies will be described. The specification and design of the implemented system and information models will be described together with the practical details of the developments carried out and its integration with the existing IoT platforms supporting the aforementioned testbeds. Overall, the system described in this paper demonstrates that it is possible to open new horizons in the development of IoT applications and experiments at a global scale, that transcend the (silo) boundaries of individual deployments, based on the semantic interconnection and interoperability of diverse IoT platforms and testbeds.

  1. A Proof-of-Concept for Semantically Interoperable Federation of IoT Experimentation Facilities

    PubMed Central

    Lanza, Jorge; Sanchez, Luis; Gomez, David; Elsaleh, Tarek; Steinke, Ronald; Cirillo, Flavio

    2016-01-01

    The Internet-of-Things (IoT) is unanimously identified as one of the main pillars of future smart scenarios. The potential of IoT technologies and deployments has been already demonstrated in a number of different application areas, including transport, energy, safety and healthcare. However, despite the growing number of IoT deployments, the majority of IoT applications tend to be self-contained, thereby forming application silos. A lightweight data centric integration and combination of these silos presents several challenges that still need to be addressed. Indeed, the ability to combine and synthesize data streams and services from diverse IoT platforms and testbeds, holds the promise to increase the potentiality of smart applications in terms of size, scope and targeted business context. In this article, a proof-of-concept implementation that federates two different IoT experimentation facilities by means of semantic-based technologies will be described. The specification and design of the implemented system and information models will be described together with the practical details of the developments carried out and its integration with the existing IoT platforms supporting the aforementioned testbeds. Overall, the system described in this paper demonstrates that it is possible to open new horizons in the development of IoT applications and experiments at a global scale, that transcend the (silo) boundaries of individual deployments, based on the semantic interconnection and interoperability of diverse IoT platforms and testbeds. PMID:27367695

  2. Ideal versus School Learning: Analyzing Israeli Secondary School Students' Conceptions of Learning

    ERIC Educational Resources Information Center

    Hadar, Linor

    2009-01-01

    This study explored 130 secondary school students' conceptions of learning using an open-ended task, analyzed both qualitatively and quantitatively. Students' reality of learning comprised two separate spheres, ideal learning and school learning, which rarely interacted. Generally, students commented more about school than ideal learning. Factor…

  3. Neurocognitive Mechanisms of Learning to Read: Print Tuning in Beginning Readers Related to Word-Reading Fluency and Semantics but Not Phonology

    ERIC Educational Resources Information Center

    Eberhard-Moscicka, Aleksandra K.; Jost, Lea B.; Raith, Margit; Maurer, Urs

    2015-01-01

    During reading acquisition children learn to recognize orthographic stimuli and link them to phonology and semantics. The present study investigated neurocognitive processes of learning to read after one year of schooling. We aimed to elucidate the cognitive processes underlying neural tuning for print that has been shown to play an important role…

  4. Learning concepts of cinenurducation: an integrative review.

    PubMed

    Oh, Jina; Kang, Jeongae; De Gagne, Jennie C

    2012-11-01

    Cinenurducation is the use of films in both didactic and clinical nursing education. Although films are already used as instructional aids in nursing education, few studies have been made that demonstrate the learning concepts that can be attributed to this particular teaching strategy. The purpose of this paper is to describe the learning concepts of cinenurducation and its conceptual metaphor based on a review of literature. The databases CINAHL, MEDLINE, PsychINFO, ERIC, EBSCO, ProQuest Library Journal, and Scopus databases were searched for articles. Fifteen peer-reviewed articles were selected through title and abstract screening from "films in nursing" related articles found in internationally published articles in English from the past 20 years. Four common concepts emerged that relate to cinenurducation: (a) student-centered, (b) experiential, (c) reflective, and (d) problem-solving learning. Current literature corroborates cinenurducation as an effective teaching strategy with its learning activities in nursing education. Future studies may include instructional guides of sample films that could be practically used in various domains to teach nursing competencies, as well as in the development of evaluation criteria and standards to assess students' learning outcomes. Copyright © 2012 Elsevier Ltd. All rights reserved.

  5. The Analysis of High School Students' Conceptions of Learning in Different Domains

    ERIC Educational Resources Information Center

    Sadi, Özlem

    2015-01-01

    The purpose of this study is to investigate whether or not conceptions of learning diverge in different science domains by identifying high school students' conceptions of learning in physics, chemistry and biology. The Conceptions of Learning Science (COLS) questionnaire was adapted for physics (Conceptions of Learning Physics, COLP), chemistry…

  6. Semantics-Based Interoperability Framework for the Geosciences

    NASA Astrophysics Data System (ADS)

    Sinha, A.; Malik, Z.; Raskin, R.; Barnes, C.; Fox, P.; McGuinness, D.; Lin, K.

    2008-12-01

    Interoperability between heterogeneous data, tools and services is required to transform data to knowledge. To meet geoscience-oriented societal challenges such as forcing of climate change induced by volcanic eruptions, we suggest the need to develop semantic interoperability for data, services, and processes. Because such scientific endeavors require integration of multiple data bases associated with global enterprises, implicit semantic-based integration is impossible. Instead, explicit semantics are needed to facilitate interoperability and integration. Although different types of integration models are available (syntactic or semantic) we suggest that semantic interoperability is likely to be the most successful pathway. Clearly, the geoscience community would benefit from utilization of existing XML-based data models, such as GeoSciML, WaterML, etc to rapidly advance semantic interoperability and integration. We recognize that such integration will require a "meanings-based search, reasoning and information brokering", which will be facilitated through inter-ontology relationships (ontologies defined for each discipline). We suggest that Markup languages (MLs) and ontologies can be seen as "data integration facilitators", working at different abstraction levels. Therefore, we propose to use an ontology-based data registration and discovery approach to compliment mark-up languages through semantic data enrichment. Ontologies allow the use of formal and descriptive logic statements which permits expressive query capabilities for data integration through reasoning. We have developed domain ontologies (EPONT) to capture the concept behind data. EPONT ontologies are associated with existing ontologies such as SUMO, DOLCE and SWEET. Although significant efforts have gone into developing data (object) ontologies, we advance the idea of developing semantic frameworks for additional ontologies that deal with processes and services. This evolutionary step will

  7. The comparative effect of individually-generated vs. collaboratively-generated computer-based concept mapping on science concept learning

    NASA Astrophysics Data System (ADS)

    Kwon, So Young

    Using a quasi-experimental design, the researcher investigated the comparative effects of individually-generated and collaboratively-generated computer-based concept mapping on middle school science concept learning. Qualitative data were analyzed to explain quantitative findings. One hundred sixty-one students (74 boys and 87 girls) in eight, seventh grade science classes at a middle school in Southeast Texas completed the entire study. Using prior science performance scores to assure equivalence of student achievement across groups, the researcher assigned the teacher's classes to one of the three experimental groups. The independent variable, group, consisted of three levels: 40 students in a control group, 59 students trained to individually generate concept maps on computers, and 62 students trained to collaboratively generate concept maps on computers. The dependent variables were science concept learning as demonstrated by comprehension test scores, and quality of concept maps created by students in experimental groups as demonstrated by rubric scores. Students in the experimental groups received concept mapping training and used their newly acquired concept mapping skills to individually or collaboratively construct computer-based concept maps during study time. The control group, the individually-generated concept mapping group, and the collaboratively-generated concept mapping group had equivalent learning experiences for 50 minutes during five days, excepting that students in a control group worked independently without concept mapping activities, students in the individual group worked individually to construct concept maps, and students in the collaborative group worked collaboratively to construct concept maps during their study time. Both collaboratively and individually generated computer-based concept mapping had a positive effect on seventh grade middle school science concept learning but neither strategy was more effective than the other. However

  8. Opposing Effects of Semantic Diversity in Lexical and Semantic Relatedness Decisions

    PubMed Central

    2015-01-01

    Semantic ambiguity has often been divided into 2 forms: homonymy, referring to words with 2 unrelated interpretations (e.g., bark), and polysemy, referring to words associated with a number of varying but semantically linked uses (e.g., twist). Typically, polysemous words are thought of as having a fixed number of discrete definitions, or “senses,” with each use of the word corresponding to one of its senses. In this study, we investigated an alternative conception of polysemy, based on the idea that polysemous variation in meaning is a continuous, graded phenomenon that occurs as a function of contextual variation in word usage. We quantified this contextual variation using semantic diversity (SemD), a corpus-based measure of the degree to which a particular word is used in a diverse set of linguistic contexts. In line with other approaches to polysemy, we found a reaction time (RT) advantage for high SemD words in lexical decision, which occurred for words of both high and low imageability. When participants made semantic relatedness decisions to word pairs, however, responses were slower to high SemD pairs, irrespective of whether these were related or unrelated. Again, this result emerged irrespective of the imageability of the word. The latter result diverges from previous findings using homonyms, in which ambiguity effects have only been found for related word pairs. We argue that participants were slower to respond to high SemD words because their high contextual variability resulted in noisy, underspecified semantic representations that were more difficult to compare with one another. We demonstrated this principle in a connectionist computational model that was trained to activate distributed semantic representations from orthographic inputs. Greater variability in the orthography-to-semantic mappings of high SemD words resulted in a lower degree of similarity for related pairs of this type. At the same time, the representations of high SemD unrelated

  9. Undergraduate students' earth science learning: relationships among conceptions, approaches, and learning self-efficacy in Taiwan

    NASA Astrophysics Data System (ADS)

    Shen, Kuan-Ming; Lee, Min-Hsien; Tsai, Chin-Chung; Chang, Chun-Yen

    2016-06-01

    In the area of science education research, studies have attempted to investigate conceptions of learning, approaches to learning, and self-efficacy, mainly focusing on science in general or on specific subjects such as biology, physics, and chemistry. However, few empirical studies have probed students' earth science learning. This study aimed to explore the relationships among undergraduates' conceptions of, approaches to, and self-efficacy for learning earth science by adopting the structural equation modeling technique. A total of 268 Taiwanese undergraduates (144 females) participated in this study. Three instruments were modified to assess the students' conceptions of, approaches to, and self-efficacy for learning earth science. The results indicated that students' conceptions of learning made a significant contribution to their approaches to learning, which were consequently correlated with their learning self-efficacy. More specifically, students with stronger agreement that learning earth science involves applying the knowledge and skills learned to unknown problems were prone to possess higher confidence in learning earth science. Moreover, students viewing earth science learning as understanding earth science knowledge were more likely to adopt meaningful strategies to learn earth science, and hence expressed a higher sense of self-efficacy. Based on the results, practical implications and suggestions for future research are discussed.

  10. Semantic-based surveillance video retrieval.

    PubMed

    Hu, Weiming; Xie, Dan; Fu, Zhouyu; Zeng, Wenrong; Maybank, Steve

    2007-04-01

    Visual surveillance produces large amounts of video data. Effective indexing and retrieval from surveillance video databases are very important. Although there are many ways to represent the content of video clips in current video retrieval algorithms, there still exists a semantic gap between users and retrieval systems. Visual surveillance systems supply a platform for investigating semantic-based video retrieval. In this paper, a semantic-based video retrieval framework for visual surveillance is proposed. A cluster-based tracking algorithm is developed to acquire motion trajectories. The trajectories are then clustered hierarchically using the spatial and temporal information, to learn activity models. A hierarchical structure of semantic indexing and retrieval of object activities, where each individual activity automatically inherits all the semantic descriptions of the activity model to which it belongs, is proposed for accessing video clips and individual objects at the semantic level. The proposed retrieval framework supports various queries including queries by keywords, multiple object queries, and queries by sketch. For multiple object queries, succession and simultaneity restrictions, together with depth and breadth first orders, are considered. For sketch-based queries, a method for matching trajectories drawn by users to spatial trajectories is proposed. The effectiveness and efficiency of our framework are tested in a crowded traffic scene.

  11. Semantic Context Detection Using Audio Event Fusion

    NASA Astrophysics Data System (ADS)

    Chu, Wei-Ta; Cheng, Wen-Huang; Wu, Ja-Ling

    2006-12-01

    Semantic-level content analysis is a crucial issue in achieving efficient content retrieval and management. We propose a hierarchical approach that models audio events over a time series in order to accomplish semantic context detection. Two levels of modeling, audio event and semantic context modeling, are devised to bridge the gap between physical audio features and semantic concepts. In this work, hidden Markov models (HMMs) are used to model four representative audio events, that is, gunshot, explosion, engine, and car braking, in action movies. At the semantic context level, generative (ergodic hidden Markov model) and discriminative (support vector machine (SVM)) approaches are investigated to fuse the characteristics and correlations among audio events, which provide cues for detecting gunplay and car-chasing scenes. The experimental results demonstrate the effectiveness of the proposed approaches and provide a preliminary framework for information mining by using audio characteristics.

  12. Relational Analysis of High School Students' Cognitive Self-Regulated Learning Strategies and Conceptions of Learning Biology

    ERIC Educational Resources Information Center

    Sadi, Özlem

    2017-01-01

    The purpose of this study was to analyze the relation between students' cognitive learning strategies and conceptions of learning biology. The two scales, "Cognitive Learning Strategies" and "Conceptions of Learning Biology", were revised and adapted to biology in order to measure the students' learning strategies and…

  13. Spatial Relation Predicates in Topographic Feature Semantics

    USGS Publications Warehouse

    Varanka, Dalia E.; Caro, Holly K.

    2013-01-01

    Topographic data are designed and widely used for base maps of diverse applications, yet the power of these information sources largely relies on the interpretive skills of map readers and relational database expert users once the data are in map or geographic information system (GIS) form. Advances in geospatial semantic technology offer data model alternatives for explicating concepts and articulating complex data queries and statements. To understand and enrich the vocabulary of topographic feature properties for semantic technology, English language spatial relation predicates were analyzed in three standard topographic feature glossaries. The analytical approach drew from disciplinary concepts in geography, linguistics, and information science. Five major classes of spatial relation predicates were identified from the analysis; representations for most of these are not widely available. The classes are: part-whole (which are commonly modeled throughout semantic and linked-data networks), geometric, processes, human intention, and spatial prepositions. These are commonly found in the ‘real world’ and support the environmental science basis for digital topographical mapping. The spatial relation concepts are based on sets of relation terms presented in this chapter, though these lists are not prescriptive or exhaustive. The results of this study make explicit the concepts forming a broad set of spatial relation expressions, which in turn form the basis for expanding the range of possible queries for topographical data analysis and mapping.

  14. tESA: a distributional measure for calculating semantic relatedness.

    PubMed

    Rybinski, Maciej; Aldana-Montes, José Francisco

    2016-12-28

    Semantic relatedness is a measure that quantifies the strength of a semantic link between two concepts. Often, it can be efficiently approximated with methods that operate on words, which represent these concepts. Approximating semantic relatedness between texts and concepts represented by these texts is an important part of many text and knowledge processing tasks of crucial importance in the ever growing domain of biomedical informatics. The problem of most state-of-the-art methods for calculating semantic relatedness is their dependence on highly specialized, structured knowledge resources, which makes these methods poorly adaptable for many usage scenarios. On the other hand, the domain knowledge in the Life Sciences has become more and more accessible, but mostly in its unstructured form - as texts in large document collections, which makes its use more challenging for automated processing. In this paper we present tESA, an extension to a well known Explicit Semantic Relatedness (ESA) method. In our extension we use two separate sets of vectors, corresponding to different sections of the articles from the underlying corpus of documents, as opposed to the original method, which only uses a single vector space. We present an evaluation of Life Sciences domain-focused applicability of both tESA and domain-adapted Explicit Semantic Analysis. The methods are tested against a set of standard benchmarks established for the evaluation of biomedical semantic relatedness quality. Our experiments show that the propsed method achieves results comparable with or superior to the current state-of-the-art methods. Additionally, a comparative discussion of the results obtained with tESA and ESA is presented, together with a study of the adaptability of the methods to different corpora and their performance with different input parameters. Our findings suggest that combined use of the semantics from different sections (i.e. extending the original ESA methodology with the use of

  15. Deep learning and texture-based semantic label fusion for brain tumor segmentation

    NASA Astrophysics Data System (ADS)

    Vidyaratne, L.; Alam, M.; Shboul, Z.; Iftekharuddin, K. M.

    2018-02-01

    Brain tumor segmentation is a fundamental step in surgical treatment and therapy. Many hand-crafted and learning based methods have been proposed for automatic brain tumor segmentation from MRI. Studies have shown that these approaches have their inherent advantages and limitations. This work proposes a semantic label fusion algorithm by combining two representative state-of-the-art segmentation algorithms: texture based hand-crafted, and deep learning based methods to obtain robust tumor segmentation. We evaluate the proposed method using publicly available BRATS 2017 brain tumor segmentation challenge dataset. The results show that the proposed method offers improved segmentation by alleviating inherent weaknesses: extensive false positives in texture based method, and the false tumor tissue classification problem in deep learning method, respectively. Furthermore, we investigate the effect of patient's gender on the segmentation performance using a subset of validation dataset. Note the substantial improvement in brain tumor segmentation performance proposed in this work has recently enabled us to secure the first place by our group in overall patient survival prediction task at the BRATS 2017 challenge.

  16. Deep Learning and Texture-Based Semantic Label Fusion for Brain Tumor Segmentation.

    PubMed

    Vidyaratne, L; Alam, M; Shboul, Z; Iftekharuddin, K M

    2018-01-01

    Brain tumor segmentation is a fundamental step in surgical treatment and therapy. Many hand-crafted and learning based methods have been proposed for automatic brain tumor segmentation from MRI. Studies have shown that these approaches have their inherent advantages and limitations. This work proposes a semantic label fusion algorithm by combining two representative state-of-the-art segmentation algorithms: texture based hand-crafted, and deep learning based methods to obtain robust tumor segmentation. We evaluate the proposed method using publicly available BRATS 2017 brain tumor segmentation challenge dataset. The results show that the proposed method offers improved segmentation by alleviating inherent weaknesses: extensive false positives in texture based method, and the false tumor tissue classification problem in deep learning method, respectively. Furthermore, we investigate the effect of patient's gender on the segmentation performance using a subset of validation dataset. Note the substantial improvement in brain tumor segmentation performance proposed in this work has recently enabled us to secure the first place by our group in overall patient survival prediction task at the BRATS 2017 challenge.

  17. Phonological Concept Learning.

    PubMed

    Moreton, Elliott; Pater, Joe; Pertsova, Katya

    2017-01-01

    Linguistic and non-linguistic pattern learning have been studied separately, but we argue for a comparative approach. Analogous inductive problems arise in phonological and visual pattern learning. Evidence from three experiments shows that human learners can solve them in analogous ways, and that human performance in both cases can be captured by the same models. We test GMECCS (Gradual Maximum Entropy with a Conjunctive Constraint Schema), an implementation of the Configural Cue Model (Gluck & Bower, ) in a Maximum Entropy phonotactic-learning framework (Goldwater & Johnson, ; Hayes & Wilson, ) with a single free parameter, against the alternative hypothesis that learners seek featurally simple algebraic rules ("rule-seeking"). We study the full typology of patterns introduced by Shepard, Hovland, and Jenkins () ("SHJ"), instantiated as both phonotactic patterns and visual analogs, using unsupervised training. Unlike SHJ, Experiments 1 and 2 found that both phonotactic and visual patterns that depended on fewer features could be more difficult than those that depended on more features, as predicted by GMECCS but not by rule-seeking. GMECCS also correctly predicted performance differences between stimulus subclasses within each pattern. A third experiment tried supervised training (which can facilitate rule-seeking in visual learning) to elicit simple rule-seeking phonotactic learning, but cue-based behavior persisted. We conclude that similar cue-based cognitive processes are available for phonological and visual concept learning, and hence that studying either kind of learning can lead to significant insights about the other. Copyright © 2015 Cognitive Science Society, Inc.

  18. A fuzzy-ontology-oriented case-based reasoning framework for semantic diabetes diagnosis.

    PubMed

    El-Sappagh, Shaker; Elmogy, Mohammed; Riad, A M

    2015-11-01

    Case-based reasoning (CBR) is a problem-solving paradigm that uses past knowledge to interpret or solve new problems. It is suitable for experience-based and theory-less problems. Building a semantically intelligent CBR that mimic the expert thinking can solve many problems especially medical ones. Knowledge-intensive CBR using formal ontologies is an evolvement of this paradigm. Ontologies can be used for case representation and storage, and it can be used as a background knowledge. Using standard medical ontologies, such as SNOMED CT, enhances the interoperability and integration with the health care systems. Moreover, utilizing vague or imprecise knowledge further improves the CBR semantic effectiveness. This paper proposes a fuzzy ontology-based CBR framework. It proposes a fuzzy case-base OWL2 ontology, and a fuzzy semantic retrieval algorithm that handles many feature types. This framework is implemented and tested on the diabetes diagnosis problem. The fuzzy ontology is populated with 60 real diabetic cases. The effectiveness of the proposed approach is illustrated with a set of experiments and case studies. The resulting system can answer complex medical queries related to semantic understanding of medical concepts and handling of vague terms. The resulting fuzzy case-base ontology has 63 concepts, 54 (fuzzy) object properties, 138 (fuzzy) datatype properties, 105 fuzzy datatypes, and 2640 instances. The system achieves an accuracy of 97.67%. We compare our framework with existing CBR systems and a set of five machine-learning classifiers; our system outperforms all of these systems. Building an integrated CBR system can improve its performance. Representing CBR knowledge using the fuzzy ontology and building a case retrieval algorithm that treats different features differently improves the accuracy of the resulting systems. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Shared Semantics and the Use of Organizational Memories for E-Mail Communications.

    ERIC Educational Resources Information Center

    Schwartz, David G.

    1998-01-01

    Examines the use of shared semantics information to link concepts in an organizational memory to e-mail communications. Presents a framework for determining shared semantics based on organizational and personal user profiles. Illustrates how shared semantics are used by the HyperMail system to help link organizational memories (OM) content to…

  20. The Semantic Distance Task: Quantifying Semantic Distance with Semantic Network Path Length

    ERIC Educational Resources Information Center

    Kenett, Yoed N.; Levi, Effi; Anaki, David; Faust, Miriam

    2017-01-01

    Semantic distance is a determining factor in cognitive processes, such as semantic priming, operating upon semantic memory. The main computational approach to compute semantic distance is through latent semantic analysis (LSA). However, objections have been raised against this approach, mainly in its failure at predicting semantic priming. We…

  1. The Career Success of an Adult with a Learning Disability: A Psychosocial Study of Amnesic-Semantic Aphasia.

    ERIC Educational Resources Information Center

    Kershner, John; And Others

    1995-01-01

    This case study describes a 39-year-old intellectually gifted man with learning disabilities who demonstrated symptoms of amnesic-semantic aphasia at age 13, leading to placement in a class for students with mental retardation and to dropping out of school. The man's remarkable behavioral and cognitive adjustments led to a fulfilling life and…

  2. A "Semantic" View of Scientific Models for Science Education

    ERIC Educational Resources Information Center

    Adúriz-Bravo, Agustín

    2013-01-01

    In this paper I inspect a "semantic" view of scientific models taken from contemporary philosophy of science-I draw upon the so-called "semanticist family", which frontally challenges the received, syntactic conception of scientific theories. I argue that a semantic view may be of use both for science education in the…

  3. Structured Semantic Knowledge Can Emerge Automatically from Predicting Word Sequences in Child-Directed Speech

    PubMed Central

    Huebner, Philip A.; Willits, Jon A.

    2018-01-01

    Previous research has suggested that distributional learning mechanisms may contribute to the acquisition of semantic knowledge. However, distributional learning mechanisms, statistical learning, and contemporary “deep learning” approaches have been criticized for being incapable of learning the kind of abstract and structured knowledge that many think is required for acquisition of semantic knowledge. In this paper, we show that recurrent neural networks, trained on noisy naturalistic speech to children, do in fact learn what appears to be abstract and structured knowledge. We trained two types of recurrent neural networks (Simple Recurrent Network, and Long Short-Term Memory) to predict word sequences in a 5-million-word corpus of speech directed to children ages 0–3 years old, and assessed what semantic knowledge they acquired. We found that learned internal representations are encoding various abstract grammatical and semantic features that are useful for predicting word sequences. Assessing the organization of semantic knowledge in terms of the similarity structure, we found evidence of emergent categorical and hierarchical structure in both models. We found that the Long Short-term Memory (LSTM) and SRN are both learning very similar kinds of representations, but the LSTM achieved higher levels of performance on a quantitative evaluation. We also trained a non-recurrent neural network, Skip-gram, on the same input to compare our results to the state-of-the-art in machine learning. We found that Skip-gram achieves relatively similar performance to the LSTM, but is representing words more in terms of thematic compared to taxonomic relations, and we provide reasons why this might be the case. Our findings show that a learning system that derives abstract, distributed representations for the purpose of predicting sequential dependencies in naturalistic language may provide insight into emergence of many properties of the developing semantic system. PMID

  4. Personal semantic memory: insights from neuropsychological research on amnesia.

    PubMed

    Grilli, Matthew D; Verfaellie, Mieke

    2014-08-01

    This paper provides insight into the cognitive and neural mechanisms of personal semantic memory, knowledge that is specific and unique to individuals, by reviewing neuropsychological research on stable amnesia secondary to medial temporal lobe damage. The results reveal that personal semantic memory does not depend on a unitary set of cognitive and neural mechanisms. Findings show that autobiographical fact knowledge reflects an experience-near type of personal semantic memory that relies on the medial temporal lobe for retrieval, albeit less so than personal episodic memory. Additional evidence demonstrates that new autobiographical fact learning likely relies on the medial temporal lobe, but the extent to which remains unclear. Other findings show that retrieval of personal traits/roles and new learning of personal traits/roles and thoughts/beliefs are independent of the medial temporal lobe and thus may represent highly conceptual types of personal semantic memory that are stored in the neocortex. Published by Elsevier Ltd.

  5. Using the LOINC Semantic Structure to Integrate Community-based Survey Items into a Concept-based Enterprise Data Dictionary to Support Comparative Effectiveness Research.

    PubMed

    Co, Manuel C; Boden-Albala, Bernadette; Quarles, Leigh; Wilcox, Adam; Bakken, Suzanne

    2012-01-01

    In designing informatics infrastructure to support comparative effectiveness research (CER), it is necessary to implement approaches for integrating heterogeneous data sources such as clinical data typically stored in clinical data warehouses and those that are normally stored in separate research databases. One strategy to support this integration is the use of a concept-oriented data dictionary with a set of semantic terminology models. The aim of this paper is to illustrate the use of the semantic structure of Clinical LOINC (Logical Observation Identifiers, Names, and Codes) in integrating community-based survey items into the Medical Entities Dictionary (MED) to support the integration of survey data with clinical data for CER studies.

  6. Enactive Metaphors: Learning through Full-Body Engagement

    ERIC Educational Resources Information Center

    Gallagher, Shaun; Lindgren, Robb

    2015-01-01

    Building on both cognitive semantics and enactivist approaches to cognition, we explore the concept of enactive metaphor and its implications for learning. Enactive approaches to cognition involve the idea that online sensory-motor and affective processes shape the way the perceiver-thinker experiences the world and interacts with others.…

  7. Expanding the Extent of a UMLS Semantic Type via Group Neighborhood Auditing

    PubMed Central

    Chen, Yan; Gu, Huanying; Perl, Yehoshua; Halper, Michael; Xu, Junchuan

    2009-01-01

    Objective Each Unified Medical Language System (UMLS) concept is assigned one or more semantic types (ST). A dynamic methodology for aiding an auditor in finding concepts that are missing the assignment of a given ST, S is presented. Design The first part of the methodology exploits the previously introduced Refined Semantic Network and accompanying refined semantic types (RST) to help narrow the search space for offending concepts. The auditing is focused in a neighborhood surrounding the extent of an RST, T (of S) called an envelope, consisting of parents and children of concepts in the extent. The audit moves outward as long as missing assignments are discovered. In the second part, concepts not reached previously are processed and reassigned T as needed during the processing of S's other RSTs. The set of such concepts is expanded in a similar way to that in the first part. Measurements The number of errors discovered is reported. To measure the methodology's efficiency, “error hit rates” (i.e., errors found in concepts examined) are computed. Results The methodology was applied to three STs: Experimental Model of Disease (EMD), Environmental Effect of Humans, and Governmental or Regulatory Activity. The EMD experienced the most drastic change. For its RST “EMD ∩ Neoplastic Process” (RST “EMD”) with only 33 (31) original concepts, 915 (134) concepts were found by the first (second) part to be missing the EMD assignment. Changes to the other two STs were smaller. Conclusion The results show that the proposed auditing methodology can help to effectively and efficiently identify concepts lacking the assignment of a particular semantic type. PMID:19567802

  8. Connecting long distance: semantic distance in analogical reasoning modulates frontopolar cortex activity.

    PubMed

    Green, Adam E; Kraemer, David J M; Fugelsang, Jonathan A; Gray, Jeremy R; Dunbar, Kevin N

    2010-01-01

    Solving problems often requires seeing new connections between concepts or events that seemed unrelated at first. Innovative solutions of this kind depend on analogical reasoning, a relational reasoning process that involves mapping similarities between concepts. Brain-based evidence has implicated the frontal pole of the brain as important for analogical mapping. Separately, cognitive research has identified semantic distance as a key characteristic of the kind of analogical mapping that can support innovation (i.e., identifying similarities across greater semantic distance reveals connections that support more innovative solutions and models). However, the neural substrates of semantically distant analogical mapping are not well understood. Here, we used functional magnetic resonance imaging (fMRI) to measure brain activity during an analogical reasoning task, in which we parametrically varied the semantic distance between the items in the analogies. Semantic distance was derived quantitatively from latent semantic analysis. Across 23 participants, activity in an a priori region of interest (ROI) in left frontopolar cortex covaried parametrically with increasing semantic distance, even after removing effects of task difficulty. This ROI was centered on a functional peak that we previously associated with analogical mapping. To our knowledge, these data represent a first empirical characterization of how the brain mediates semantically distant analogical mapping.

  9. Representation of Semantic Similarity in the Left Intraparietal Sulcus: Functional Magnetic Resonance Imaging Evidence

    PubMed Central

    Neyens, Veerle; Bruffaerts, Rose; Liuzzi, Antonietta G.; Kalfas, Ioannis; Peeters, Ronald; Keuleers, Emmanuel; Vogels, Rufin; De Deyne, Simon; Storms, Gert; Dupont, Patrick; Vandenberghe, Rik

    2017-01-01

    According to a recent study, semantic similarity between concrete entities correlates with the similarity of activity patterns in left middle IPS during category naming. We examined the replicability of this effect under passive viewing conditions, the potential role of visuoperceptual similarity, where the effect is situated compared to regions that have been previously implicated in visuospatial attention, and how it compares to effects of object identity and location. Forty-six subjects participated. Subjects passively viewed pictures from two categories, musical instruments and vehicles. Semantic similarity between entities was estimated based on a concept-feature matrix obtained in more than 1,000 subjects. Visuoperceptual similarity was modeled based on the HMAX model, the AlexNet deep convolutional learning model, and thirdly, based on subjective visuoperceptual similarity ratings. Among the IPS regions examined, only left middle IPS showed a semantic similarity effect. The effect was significant in hIP1, hIP2, and hIP3. Visuoperceptual similarity did not correlate with similarity of activity patterns in left middle IPS. The semantic similarity effect in left middle IPS was significantly stronger than in the right middle IPS and also stronger than in the left or right posterior IPS. The semantic similarity effect was similar to that seen in the angular gyrus. Object identity effects were much more widespread across nearly all parietal areas examined. Location effects were relatively specific for posterior IPS and area 7 bilaterally. To conclude, the current findings replicate the semantic similarity effect in left middle IPS under passive viewing conditions, and demonstrate its anatomical specificity within a cytoarchitectonic reference frame. We propose that the semantic similarity effect in left middle IPS reflects the transient uploading of semantic representations in working memory. PMID:28824405

  10. Effects of Variation and Prior Knowledge on Abstract Concept Learning

    ERIC Educational Resources Information Center

    Braithwaite, David W.; Goldstone, Robert L.

    2015-01-01

    Learning abstract concepts through concrete examples may promote learning at the cost of inhibiting transfer. The present study investigated one approach to solving this problem: systematically varying superficial features of the examples. Participants learned to solve problems involving a mathematical concept by studying either superficially…

  11. Explicit semantic tasks are necessary to study semantic priming effects with high rates of repetition.

    PubMed

    Renoult, Louis; Wang, Xiaoxiao; Mortimer, Jennifer; Debruille, J Bruno

    2012-04-01

    The purpose of the present study was to clarify in which experimental conditions the semantic processing of repeated words is preserved. We contrasted a short (250 ms) and a long (1000 ms) stimulus onset asynchrony (SOA) in two different experiments, using a relatively low proportion of related words (30%). One group of participants performed a lexical decision task (LDT) and a second group performed an explicit semantic matching task with the same words (except for pseudowords) and the same task parameters. In both tasks, word stimuli consisted solely of two prime and two target words repeated throughout the experiment. The effects of semantic priming on reaction time (RT) and the amplitude of the N400 ERP were absent for both the short and the long SOA in the LDT. In contrast, in the explicit semantic task, these effects were significant. In this task, the activity of N400 generators in the left superior temporal gyrus and the inferior parietal cortex significantly differentiated primed and unprimed trials but this effect did not interact with SOA. Our results indicate that task instruction is critical to preserve semantic processing with repeated presentations. Using explicit semantic designs, it may be possible to study associative or categorical relations between individual concepts. Copyright © 2011 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  12. Learning the Language of Healthcare Enabling Semantic Web Technology in CHCS

    DTIC Science & Technology

    2013-09-01

    tuples”, (subject, predicate, object), to relate data and achieve semantic interoperability . Other similar technologies exist, but their... Semantic Healthcare repository [5]. Ultimately, both of our data approaches were successful. However, our current test system is based on the CPRS demo...to extract system dependencies and workflows; to extract semantically related patient data ; and to browse patient- centric views into the system . We

  13. The semantic representation of prejudice and stereotypes.

    PubMed

    Bhatia, Sudeep

    2017-07-01

    We use a theory of semantic representation to study prejudice and stereotyping. Particularly, we consider large datasets of newspaper articles published in the United States, and apply latent semantic analysis (LSA), a prominent model of human semantic memory, to these datasets to learn representations for common male and female, White, African American, and Latino names. LSA performs a singular value decomposition on word distribution statistics in order to recover word vector representations, and we find that our recovered representations display the types of biases observed in human participants using tasks such as the implicit association test. Importantly, these biases are strongest for vector representations with moderate dimensionality, and weaken or disappear for representations with very high or very low dimensionality. Moderate dimensional LSA models are also the best at learning race, ethnicity, and gender-based categories, suggesting that social category knowledge, acquired through dimensionality reduction on word distribution statistics, can facilitate prejudiced and stereotyped associations. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Future Engineering Professors' Conceptions of Learning and Teaching Engineering

    ERIC Educational Resources Information Center

    Torres Ayala, Ana T.

    2012-01-01

    Conceptions of learning and teaching shape teaching practices and are, therefore, important to understanding how engineering professors learn to teach. There is abundant research about professors' conceptions of teaching; however, research on the conceptions of teaching of doctoral students, the future professors, is scarce. Furthermore,…

  15. SoyBase Simple Semantic Web Architecture and Protocol (SSWAP) Services

    USDA-ARS?s Scientific Manuscript database

    Semantic web technologies offer the potential to link internet resources and data by shared concepts without having to rely on absolute lexical matches. Thus two web sites or web resources which are concerned with similar data types could be identified based on similar semantics. In the biological...

  16. Mapping Concepts for Learning and Assessment

    ERIC Educational Resources Information Center

    Daugherty, Jenny L.; Custer, Rodney L.; Dixon, Raymond A.

    2012-01-01

    Although it is helpful to identify a list of concepts to categorize and communicate the big ideas of engineering, it is important to determine how best to incorporate them into instruction. Concept mapping is a well-established learning and assessment tool that can be used by technology and engineering teachers. Maps can trace levels of…

  17. Evaluation of a UMLS Auditing Process of Semantic Type Assignments

    PubMed Central

    Gu, Huanying; Hripcsak, George; Chen, Yan; Morrey, C. Paul; Elhanan, Gai; Cimino, James J.; Geller, James; Perl, Yehoshua

    2007-01-01

    The UMLS is a terminological system that integrates many source terminologies. Each concept in the UMLS is assigned one or more semantic types from the Semantic Network, an upper level ontology for biomedicine. Due to the complexity of the UMLS, errors exist in the semantic type assignments. Finding assignment errors may unearth modeling errors. Even with sophisticated tools, discovering assignment errors requires manual review. In this paper we describe the evaluation of an auditing project of UMLS semantic type assignments. We studied the performance of the auditors who reviewed potential errors. We found that four auditors, interacting according to a multi-step protocol, identified a high rate of errors (one or more errors in 81% of concepts studied) and that results were sufficiently reliable (0.67 to 0.70) for the two most common types of errors. However, reliability was low for each individual auditor, suggesting that review of potential errors is resource-intensive. PMID:18693845

  18. Lateralized semantic priming: modulation by levodopa, semantic distance, and participants’ magical beliefs

    PubMed Central

    Mohr, Christine; Landis, Theodor; Brugger, Peter

    2006-01-01

    We tested levodopa effects on lateralized direct and indirect semantic priming in 40 healthy right-handed men in a placebo-controlled, double-blind procedure. Crucially, priming was also analyzed as a function of participants’ positive schizotypal features (magical ideation, MI), previously found to be associated with an enhanced semantic spreading activation (SSA) within the right hemisphere. Across both priming conditions, we observed increased semantic priming in the levodopa group 1) specifically after right visual field stimulations and 2) in high MI scorers. In both instances, increased semantic priming emerged from exceedingly long reaction times to unrelated targets reflecting 1) the left hemisphere’s specialization for closely related concepts and 2) an opposite association between MI and SSA in the levodopa as compared with the placebo group. As a final finding, low MI scorers under levodopa performed like high MI scorers under placebo. Our findings speak against a general dopaminergic focusing of SSA, but one that respects each hemisphere’s specialization. They also suggest that individuals’ schizotypal features are important determinants of dopamine-induced changes in hemispheric functioning. We note that, in psychiatric patients, dopamine antagonists reportedly restore unusual lateralization. We discuss this dissociation between schizotypy and schizophrenia as supporting previous notions of protective brain mechanisms operating in the healthy “psychosis-prone” brain. PMID:19412448

  19. A Concept Transformation Learning Model for Architectural Design Learning Process

    ERIC Educational Resources Information Center

    Wu, Yun-Wu; Weng, Kuo-Hua; Young, Li-Ming

    2016-01-01

    Generally, in the foundation course of architectural design, much emphasis is placed on teaching of the basic design skills without focusing on teaching students to apply the basic design concepts in their architectural designs or promoting students' own creativity. Therefore, this study aims to propose a concept transformation learning model to…

  20. Semantic Mistakes and Didactic Difficulties in Teaching the "Amount of Substance" Concept: A Useful Model

    ERIC Educational Resources Information Center

    Pekdag, Bulent; Azizoglu, Nursen

    2013-01-01

    Textbooks still have the distinction of being the most dominant teaching tool in science teaching. The manner in which a scientific concept is expressed in a textbook is of importance in the in-depth learning process of that concept. With this in mind, problems with expressing the "amount of substance" concept were reviewed in 15…

  1. Semantic Shot Classification in Sports Video

    NASA Astrophysics Data System (ADS)

    Duan, Ling-Yu; Xu, Min; Tian, Qi

    2003-01-01

    In this paper, we present a unified framework for semantic shot classification in sports videos. Unlike previous approaches, which focus on clustering by aggregating shots with similar low-level features, the proposed scheme makes use of domain knowledge of a specific sport to perform a top-down video shot classification, including identification of video shot classes for each sport, and supervised learning and classification of the given sports video with low-level and middle-level features extracted from the sports video. It is observed that for each sport we can predefine a small number of semantic shot classes, about 5~10, which covers 90~95% of sports broadcasting video. With the supervised learning method, we can map the low-level features to middle-level semantic video shot attributes such as dominant object motion (a player), camera motion patterns, and court shape, etc. On the basis of the appropriate fusion of those middle-level shot classes, we classify video shots into the predefined video shot classes, each of which has a clear semantic meaning. The proposed method has been tested over 4 types of sports videos: tennis, basketball, volleyball and soccer. Good classification accuracy of 85~95% has been achieved. With correctly classified sports video shots, further structural and temporal analysis, such as event detection, video skimming, table of content, etc, will be greatly facilitated.

  2. Width, Length, and Height Conceptions of Students with Learning Disabilities

    ERIC Educational Resources Information Center

    Güven, N. Dilsad; Argün, Ziya

    2018-01-01

    Teaching responsive to the needs of students with learning disabilities (LD) can be provided through understanding students' conceptions and their ways of learning. The current research, as a case study based on qualitative design, aimed to investigate the conceptions of students with learning disabilities with regard to the different…

  3. The semantic distance task: Quantifying semantic distance with semantic network path length.

    PubMed

    Kenett, Yoed N; Levi, Effi; Anaki, David; Faust, Miriam

    2017-09-01

    Semantic distance is a determining factor in cognitive processes, such as semantic priming, operating upon semantic memory. The main computational approach to compute semantic distance is through latent semantic analysis (LSA). However, objections have been raised against this approach, mainly in its failure at predicting semantic priming. We propose a novel approach to computing semantic distance, based on network science methodology. Path length in a semantic network represents the amount of steps needed to traverse from 1 word in the network to the other. We examine whether path length can be used as a measure of semantic distance, by investigating how path length affect performance in a semantic relatedness judgment task and recall from memory. Our results show a differential effect on performance: Up to 4 steps separating between word-pairs, participants exhibit an increase in reaction time (RT) and decrease in the percentage of word-pairs judged as related. From 4 steps onward, participants exhibit a significant decrease in RT and the word-pairs are dominantly judged as unrelated. Furthermore, we show that as path length between word-pairs increases, success in free- and cued-recall decreases. Finally, we demonstrate how our measure outperforms computational methods measuring semantic distance (LSA and positive pointwise mutual information) in predicting participants RT and subjective judgments of semantic strength. Thus, we provide a computational alternative to computing semantic distance. Furthermore, this approach addresses key issues in cognitive theory, namely the breadth of the spreading activation process and the effect of semantic distance on memory retrieval. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  4. SemVisM: semantic visualizer for medical image

    NASA Astrophysics Data System (ADS)

    Landaeta, Luis; La Cruz, Alexandra; Baranya, Alexander; Vidal, María.-Esther

    2015-01-01

    SemVisM is a toolbox that combines medical informatics and computer graphics tools for reducing the semantic gap between low-level features and high-level semantic concepts/terms in the images. This paper presents a novel strategy for visualizing medical data annotated semantically, combining rendering techniques, and segmentation algorithms. SemVisM comprises two main components: i) AMORE (A Modest vOlume REgister) to handle input data (RAW, DAT or DICOM) and to initially annotate the images using terms defined on medical ontologies (e.g., MesH, FMA or RadLex), and ii) VOLPROB (VOlume PRObability Builder) for generating the annotated volumetric data containing the classified voxels that belong to a particular tissue. SemVisM is built on top of the semantic visualizer ANISE.1

  5. Validity Semantics in Educational and Psychological Assessment

    ERIC Educational Resources Information Center

    Hathcoat, John D.

    2013-01-01

    The semantics, or meaning, of validity is a fluid concept in educational and psychological testing. Contemporary controversies surrounding this concept appear to stem from the proper location of validity. Under one view, validity is a property of score-based inferences and entailed uses of test scores. This view is challenged by the…

  6. Semantic annotation in biomedicine: the current landscape.

    PubMed

    Jovanović, Jelena; Bagheri, Ebrahim

    2017-09-22

    The abundance and unstructured nature of biomedical texts, be it clinical or research content, impose significant challenges for the effective and efficient use of information and knowledge stored in such texts. Annotation of biomedical documents with machine intelligible semantics facilitates advanced, semantics-based text management, curation, indexing, and search. This paper focuses on annotation of biomedical entity mentions with concepts from relevant biomedical knowledge bases such as UMLS. As a result, the meaning of those mentions is unambiguously and explicitly defined, and thus made readily available for automated processing. This process is widely known as semantic annotation, and the tools that perform it are known as semantic annotators.Over the last dozen years, the biomedical research community has invested significant efforts in the development of biomedical semantic annotation technology. Aiming to establish grounds for further developments in this area, we review a selected set of state of the art biomedical semantic annotators, focusing particularly on general purpose annotators, that is, semantic annotation tools that can be customized to work with texts from any area of biomedicine. We also examine potential directions for further improvements of today's annotators which could make them even more capable of meeting the needs of real-world applications. To motivate and encourage further developments in this area, along the suggested and/or related directions, we review existing and potential practical applications and benefits of semantic annotators.

  7. Priming in Episodic and Semantic Memory.

    ERIC Educational Resources Information Center

    McKoon, Gail; Ratcliff, Roger

    1979-01-01

    Four experiments examined priming between newly learned paired associates through two procedures, lexical decision and item recognition. Results argue against a functional separation of the semantic and episodic memory systems. (Author/AM)

  8. RysannMD: A biomedical semantic annotator balancing speed and accuracy.

    PubMed

    Cuzzola, John; Jovanović, Jelena; Bagheri, Ebrahim

    2017-07-01

    Recently, both researchers and practitioners have explored the possibility of semantically annotating large and continuously evolving collections of biomedical texts such as research papers, medical reports, and physician notes in order to enable their efficient and effective management and use in clinical practice or research laboratories. Such annotations can be automatically generated by biomedical semantic annotators - tools that are specifically designed for detecting and disambiguating biomedical concepts mentioned in text. The biomedical community has already presented several solid automated semantic annotators. However, the existing tools are either strong in their disambiguation capacity, i.e., the ability to identify the correct biomedical concept for a given piece of text among several candidate concepts, or they excel in their processing time, i.e., work very efficiently, but none of the semantic annotation tools reported in the literature has both of these qualities. In this paper, we present RysannMD (Ryerson Semantic Annotator for Medical Domain), a biomedical semantic annotation tool that strikes a balance between processing time and performance while disambiguating biomedical terms. In other words, RysannMD provides reasonable disambiguation performance when choosing the right sense for a biomedical term in a given context, and does that in a reasonable time. To examine how RysannMD stands with respect to the state of the art biomedical semantic annotators, we have conducted a series of experiments using standard benchmarking corpora, including both gold and silver standards, and four modern biomedical semantic annotators, namely cTAKES, MetaMap, NOBLE Coder, and Neji. The annotators were compared with respect to the quality of the produced annotations measured against gold and silver standards using precision, recall, and F 1 measure and speed, i.e., processing time. In the experiments, RysannMD achieved the best median F 1 measure across the

  9. Predication-based semantic indexing: permutations as a means to encode predications in semantic space.

    PubMed

    Cohen, Trevor; Schvaneveldt, Roger W; Rindflesch, Thomas C

    2009-11-14

    Corpus-derived distributional models of semantic distance between terms have proved useful in a number of applications. For both theoretical and practical reasons, it is desirable to extend these models to encode discrete concepts and the ways in which they are related to one another. In this paper, we present a novel vector space model that encodes semantic predications derived from MEDLINE by the SemRep system into a compact spatial representation. The associations captured by this method are of a different and complementary nature to those derived by traditional vector space models, and the encoding of predication types presents new possibilities for knowledge discovery and information retrieval.

  10. Using the LOINC Semantic Structure to Integrate Community-based Survey Items into a Concept-based Enterprise Data Dictionary to Support Comparative Effectiveness Research

    PubMed Central

    Co, Manuel C.; Boden-Albala, Bernadette; Quarles, Leigh; Wilcox, Adam; Bakken, Suzanne

    2012-01-01

    In designing informatics infrastructure to support comparative effectiveness research (CER), it is necessary to implement approaches for integrating heterogeneous data sources such as clinical data typically stored in clinical data warehouses and those that are normally stored in separate research databases. One strategy to support this integration is the use of a concept-oriented data dictionary with a set of semantic terminology models. The aim of this paper is to illustrate the use of the semantic structure of Clinical LOINC (Logical Observation Identifiers, Names, and Codes) in integrating community-based survey items into the Medical Entities Dictionary (MED) to support the integration of survey data with clinical data for CER studies. PMID:24199059

  11. Prior Knowledge Activation: How Different Concept Mapping Tasks Lead to Substantial Differences in Cognitive Processes, Learning Outcomes, and Perceived Self-Efficacy

    ERIC Educational Resources Information Center

    Gurlitt, Johannes; Renkl, Alexander

    2010-01-01

    Two experiments investigated the effects of characteristic features of concept mapping used for prior knowledge activation. Characteristic demands of concept mapping include connecting lines representing the relationships between concepts and labeling these lines, specifying the type of the semantic relationships. In the first experiment,…

  12. The clinical learning environment in nursing education: a concept analysis.

    PubMed

    Flott, Elizabeth A; Linden, Lois

    2016-03-01

    The aim of this study was to report an analysis of the clinical learning environment concept. Nursing students are evaluated in clinical learning environments where skills and knowledge are applied to patient care. These environments affect achievement of learning outcomes, and have an impact on preparation for practice and student satisfaction with the nursing profession. Providing clarity of this concept for nursing education will assist in identifying antecedents, attributes and consequences affecting student transition to practice. The clinical learning environment was investigated using Walker and Avant's concept analysis method. A literature search was conducted using WorldCat, MEDLINE and CINAHL databases using the keywords clinical learning environment, clinical environment and clinical education. Articles reviewed were written in English and published in peer-reviewed journals between 1995-2014. All data were analysed for recurring themes and terms to determine possible antecedents, attributes and consequences of this concept. The clinical learning environment contains four attribute characteristics affecting student learning experiences. These include: (1) the physical space; (2) psychosocial and interaction factors; (3) the organizational culture and (4) teaching and learning components. These attributes often determine achievement of learning outcomes and student self-confidence. With better understanding of attributes comprising the clinical learning environment, nursing education programmes and healthcare agencies can collaborate to create meaningful clinical experiences and enhance student preparation for the professional nurse role. © 2015 John Wiley & Sons Ltd.

  13. Active learning reduces annotation time for clinical concept extraction.

    PubMed

    Kholghi, Mahnoosh; Sitbon, Laurianne; Zuccon, Guido; Nguyen, Anthony

    2017-10-01

    To investigate: (1) the annotation time savings by various active learning query strategies compared to supervised learning and a random sampling baseline, and (2) the benefits of active learning-assisted pre-annotations in accelerating the manual annotation process compared to de novo annotation. There are 73 and 120 discharge summary reports provided by Beth Israel institute in the train and test sets of the concept extraction task in the i2b2/VA 2010 challenge, respectively. The 73 reports were used in user study experiments for manual annotation. First, all sequences within the 73 reports were manually annotated from scratch. Next, active learning models were built to generate pre-annotations for the sequences selected by a query strategy. The annotation/reviewing time per sequence was recorded. The 120 test reports were used to measure the effectiveness of the active learning models. When annotating from scratch, active learning reduced the annotation time up to 35% and 28% compared to a fully supervised approach and a random sampling baseline, respectively. Reviewing active learning-assisted pre-annotations resulted in 20% further reduction of the annotation time when compared to de novo annotation. The number of concepts that require manual annotation is a good indicator of the annotation time for various active learning approaches as demonstrated by high correlation between time rate and concept annotation rate. Active learning has a key role in reducing the time required to manually annotate domain concepts from clinical free text, either when annotating from scratch or reviewing active learning-assisted pre-annotations. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Incremental learning of concept drift in nonstationary environments.

    PubMed

    Elwell, Ryan; Polikar, Robi

    2011-10-01

    We introduce an ensemble of classifiers-based approach for incremental learning of concept drift, characterized by nonstationary environments (NSEs), where the underlying data distributions change over time. The proposed algorithm, named Learn(++). NSE, learns from consecutive batches of data without making any assumptions on the nature or rate of drift; it can learn from such environments that experience constant or variable rate of drift, addition or deletion of concept classes, as well as cyclical drift. The algorithm learns incrementally, as other members of the Learn(++) family of algorithms, that is, without requiring access to previously seen data. Learn(++). NSE trains one new classifier for each batch of data it receives, and combines these classifiers using a dynamically weighted majority voting. The novelty of the approach is in determining the voting weights, based on each classifier's time-adjusted accuracy on current and past environments. This approach allows the algorithm to recognize, and act accordingly, to the changes in underlying data distributions, as well as to a possible reoccurrence of an earlier distribution. We evaluate the algorithm on several synthetic datasets designed to simulate a variety of nonstationary environments, as well as a real-world weather prediction dataset. Comparisons with several other approaches are also included. Results indicate that Learn(++). NSE can track the changing environments very closely, regardless of the type of concept drift. To allow future use, comparison and benchmarking by interested researchers, we also release our data used in this paper. © 2011 IEEE

  15. When the Wedding March becomes sad: Semantic memory impairment for music in the semantic variant of primary progressive aphasia.

    PubMed

    Macoir, Joël; Berubé-Lalancette, Sarah; Wilson, Maximiliano A; Laforce, Robert; Hudon, Carol; Gravel, Pierre; Potvin, Olivier; Duchesne, Simon; Monetta, Laura

    2016-12-01

    Music can induce particular emotions and activate semantic knowledge. In the semantic variant of primary progressive aphasia (svPPA), semantic memory is impaired as a result of anterior temporal lobe (ATL) atrophy. Semantics is responsible for the encoding and retrieval of factual knowledge about music, including associative and emotional attributes. In the present study, we report the performance of two individuals with svPPA in three experiments. NG with bilateral ATL atrophy and ND with atrophy largely restricted to the left ATL. Experiment 1 assessed the recognition of musical excerpts and both patients were unimpaired. Experiment 2 studied the emotions conveyed by music and only NG showed impaired performance. Experiment 3 tested the association of semantic concepts to musical excerpts and both patients were impaired. These results suggest that the right ATL seems essential for the recognition of emotions conveyed by music and that the left ATL is involved in binding music to semantics. They are in line with the notion that the ATLs are devoted to the binding of different modality-specific properties and suggest that they are also differentially involved in the processing of factual and emotional knowledge associated with music.

  16. Differences in Processing of Taxonomic and Sequential Relations in Semantic Memory: An fMRI Investigation

    ERIC Educational Resources Information Center

    Kuchinke, Lars; van der Meer, Elke; Krueger, Frank

    2009-01-01

    Conceptual knowledge of our world is represented in semantic memory in terms of concepts and semantic relations between concepts. We used functional magnetic resonance imaging (fMRI) to examine the cortical regions underlying the processing of sequential and taxonomic relations. Participants were presented verbal cues and performed three tasks:…

  17. Cross-language parafoveal semantic processing: Evidence from Korean-Chinese bilinguals.

    PubMed

    Wang, Aiping; Yeon, Junmo; Zhou, Wei; Shu, Hua; Yan, Ming

    2016-02-01

    In the present study, we aimed at testing cross-language cognate and semantic preview effects. We tested how native Korean readers who learned Chinese as a second language make use of the parafoveal information during the reading of Chinese sentences. There were 3 types of Korean preview words: cognate translations of the Chinese target words, semantically related noncognate words, and unrelated words. Together with a highly significant cognate preview effect, more critically, we also observed reliable facilitation in processing of the target word from the semantically related previews in all fixation measures. Results from the present study provide first evidence for semantic processing from parafoveally presented Korean words and for cross-language parafoveal semantic processing.

  18. Knowledge of Natural Kinds in Semantic Dementia and Alzheimer's Disease

    ERIC Educational Resources Information Center

    Cross, Katy; Smith, Edward E.; Grossman, Murray

    2008-01-01

    We examined the semantic impairment for natural kinds in patients with probable Alzheimer's disease (AD) and semantic dementia (SD) using an inductive reasoning paradigm. To learn about the relationships between natural kind exemplars and how these are distinguished from manufactured artifacts, subjects judged the strength of arguments such as…

  19. Cosmic Concepts: A Video Series for Scaffolded Learning

    NASA Astrophysics Data System (ADS)

    Eisenhamer, Bonnie; Summers, Frank; Maple, John

    2016-01-01

    Scaffolding is widely considered to be an essential element of effective teaching and is used to help bridge knowledge gaps for learners. Scaffolding is especially important for distance-learning programs and computer-based learning environments. Preliminary studies are showing that when students learn about complex topics within computer-based learning environments without scaffolding, they fail to gain a conceptual understanding of the topic. As a result, researchers have begun to emphasize the importance of scaffolding for web-based as well as in-person instruction.To support scaffolded teaching practices and techniques, while addressing the needs of life-long learners, we have created the Cosmic Concepts video series. The series consists of short, one-topic videos that address scientific concepts with a special emphasis on those that traditionally cause confusion or are layered with misconceptions. Each video focuses on one idea at a time and provides a clear explanation of phenomena that is succinct enough for on-demand reference usage by all types of learners. Likewise, the videos can be used by educators to scaffold the scientific concepts behind astronomical images, or can be sequenced together to create well-structured pathways for presenting deeper and more layered ideas. This approach is critical for communicating information about astronomical discoveries that are often dense with unfamiliar concepts, complex ideas, and highly technical details. Additionally, learning tools in video formats support multi-sensory presentation approaches that can make astronomy more accessible to a variety of learners.

  20. A Collection of Features for Semantic Graphs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eliassi-Rad, T; Fodor, I K; Gallagher, B

    2007-05-02

    Semantic graphs are commonly used to represent data from one or more data sources. Such graphs extend traditional graphs by imposing types on both nodes and links. This type information defines permissible links among specified nodes and can be represented as a graph commonly referred to as an ontology or schema graph. Figure 1 depicts an ontology graph for data from National Association of Securities Dealers. Each node type and link type may also have a list of attributes. To capture the increased complexity of semantic graphs, concepts derived for standard graphs have to be extended. This document explains brieflymore » features commonly used to characterize graphs, and their extensions to semantic graphs. This document is divided into two sections. Section 2 contains the feature descriptions for static graphs. Section 3 extends the features for semantic graphs that vary over time.« less

  1. Premorbid expertise produces category-specific impairment in a domain-general semantic disorder.

    PubMed

    Jefferies, Elizabeth; Rogers, Timothy T; Ralph, Matthew A Lambon

    2011-10-01

    For decades, category-specific semantic impairment - i.e., better comprehension of items from one semantic category than another - has been the driving force behind many claims about the organisation of conceptual knowledge in the brain. Double dissociations between patients with category-specific disorders are widely interpreted as showing that different conceptual domains are necessarily supported by functionally independent systems. We show that, to the contrary, even strong or classical dissociations can also arise from individual differences in premorbid expertise. We examined two patients with global and progressive semantic degradation who, unusually, had known areas of premorbid expertise. Patient 1, a former automotive worker, showed selective preservation of car knowledge, whereas Patient 2, a former botanist, showed selective preservation of information about plants. In non-expert domains, these patients showed the typical pattern: i.e., an inability to differentiate between highly similar concepts (e.g., rose and daisy), but retention of broader distinctions (e.g., between rose and cat). Parallel distributed processing (PDP) models of semantic cognition show that expertise in a particular domain increases the differentiation of specific-level concepts, such that the semantic distance between these items resembles non-expert basic-level distinctions. We propose that these structural changes interact with global semantic degradation, particularly when expert knowledge is acquired early and when exposure to expert concepts continues during disease progression. Therefore, category-specific semantic impairment can arise from at least two distinct mechanisms: damage to representations that are critical for a particular category (e.g., knowledge of hand shape and action for the category 'tools') and differences in premorbid experience. Copyright © 2011 Elsevier Ltd. All rights reserved.

  2. Cooking "shrimp à la créole": a pilot study of an ecological rehabilitation in semantic dementia.

    PubMed

    Bier, Nathalie; Macoir, Joël; Joubert, Sven; Bottari, Carolina; Chayer, Céline; Pigot, Hélène; Giroux, Sylvain

    2011-08-01

    New learning in semantic dementia (SD) seems to be tied to a specific temporal and spatial context. Thus, cognitive rehabilitation could capitalise upon preserved episodic memory and focus on everyday activities which, once learned, will have an impact in everyday life. This pilot study thus explores the effectiveness of an ecological approach in one patient suffering from SD. EC, a 68-year-old woman with SD, stopped cooking complex meals due to a substantial loss of knowledge related to all food types. The therapy consisted of preparing a target recipe. She was asked to generate semantic attributes of ingredients found in one target, one control and two no-therapy recipes. The number of recipes cooked by EC between therapy sessions was computed. She was also asked to prepare a generalisation recipe combining ingredients from the target and control recipes. EC's generated semantic attributes (GSA) of ingredients pertaining to the target and control recipes increased significantly (p < .001), compared to the no-therapy recipes (ps > .79). The proportion of meals cooked also increased significantly (p = .021). For the generalisation recipe, she could not succeed without assistance. Frequent food preparation may have provided EC with new memories about the context, usage and appearance of some concepts. These memories seem very context-bound, but EC nonetheless re-introduced some recipes into her day-to-day life. The impact of these results on the relationship between semantic, episodic and procedural memory is discussed, as well as the relevance of an ecological approach in SD.

  3. Individual differences in white matter microstructure predict semantic control.

    PubMed

    Nugiel, Tehila; Alm, Kylie H; Olson, Ingrid R

    2016-12-01

    In everyday conversation, we make many rapid choices between competing concepts and words in order to convey our intent. This process is termed semantic control, and it is thought to rely on information transmission between a distributed semantic store in the temporal lobes and a more discrete region, optimized for retrieval and selection, in the left inferior frontal gyrus. Here, we used diffusion tensor imaging in a group of neurologically normal young adults to investigate the relationship between semantic control and white matter tracts that have been implicated in semantic memory retrieval. Participants completed a verb generation task that taps semantic control (Snyder & Munakata, 2008; Snyder et al., 2010) and underwent a diffusion imaging scan. Deterministic tractography was performed to compute indices representing the microstructural properties of the inferior fronto-occipital fasciculus (IFOF), the uncinate fasciculus (UF), and the inferior longitudinal fasciculus (ILF). Microstructural measures of the UF failed to predict semantic control performance. However, there was a significant relationship between microstructure of the left IFOF and ILF and individual differences in semantic control. Our findings support the view put forth by Duffau (2013) that the IFOF is a key structural pathway in semantic retrieval.

  4. Lifelong learning: Established concepts and evolving values.

    PubMed

    Talati, Jamsheer Jehangir

    2014-03-01

    To summarise the concepts critical for understanding the content and value of lifelong learning (LL). Ideas generated by personal experience were combined with those of philosophers, social scientists, educational institutions, governments and UNESCO, to facilitate an understanding of the importance of the basic concepts of LL. Autopoietic, continuous, self-determined, informal, vicarious, biographical, lifelong reflexive learning, from and for society, when supported by self-chosen formal courses, can build capacities and portable skills that allow useful responses to challenges and society's new structures of governance. The need for LL is driven by challenges. LL flows continuously in pursuit of one agenda, which could either be citizenship, as is conventional, or as this article proposes, health. LL cannot be wholly centred on vocation. Continuous medical education and continuous professional development, important in their own right, cannot supply all that is needed. LL aids society with its learning, and it requires an awareness of the environment and structures of society. It is heavily vicarious, draws on formal learning and relies for effectiveness on reflection, self-assessment and personal shaping of views of the world from different perspectives. Health is critical to rational thought and peace, and determines society's capacity to govern itself, and improve its health. LL should be reshaped to focus on health not citizenship. Therefore, embedding learning in society and environment is critical. Each urologist must develop an understanding of the numerous concepts in LL, of which 'biographicisation' is the seed that will promote innovative strategies.

  5. The effect of multiple intelligence-based learning towards students’ concept mastery and interest in learning matter

    NASA Astrophysics Data System (ADS)

    Pratiwi, W. N.; Rochintaniawati, D.; Agustin, R. R.

    2018-05-01

    This research was focused on investigating the effect of multiple intelligence -based learning as a learning approach towards students’ concept mastery and interest in learning matter. The one-group pre-test - post-test design was used in this research towards a sample which was according to the suitable situation of the research sample, n = 13 students of the 7th grade in a private school in Bandar Seri Begawan. The students’ concept mastery was measured using achievement test and given at the pre-test and post-test, meanwhile the students’ interest level was measured using a Likert Scale for interest. Based on the analysis of the data, the result shows that the normalized gain was .61, which was considered as a medium improvement. in other words, students’ concept mastery in matter increased after being taught using multiple intelligence-based learning. The Likert scale of interest shows that most students have a high interest in learning matter after being taught by multiple intelligence-based learning. Therefore, it is concluded that multiple intelligence – based learning helped in improving students’ concept mastery and gain students’ interest in learning matter.

  6. Semantic graphs and associative memories

    NASA Astrophysics Data System (ADS)

    Pomi, Andrés; Mizraji, Eduardo

    2004-12-01

    Graphs have been increasingly utilized in the characterization of complex networks from diverse origins, including different kinds of semantic networks. Human memories are associative and are known to support complex semantic nets; these nets are represented by graphs. However, it is not known how the brain can sustain these semantic graphs. The vision of cognitive brain activities, shown by modern functional imaging techniques, assigns renewed value to classical distributed associative memory models. Here we show that these neural network models, also known as correlation matrix memories, naturally support a graph representation of the stored semantic structure. We demonstrate that the adjacency matrix of this graph of associations is just the memory coded with the standard basis of the concept vector space, and that the spectrum of the graph is a code invariant of the memory. As long as the assumptions of the model remain valid this result provides a practical method to predict and modify the evolution of the cognitive dynamics. Also, it could provide us with a way to comprehend how individual brains that map the external reality, almost surely with different particular vector representations, are nevertheless able to communicate and share a common knowledge of the world. We finish presenting adaptive association graphs, an extension of the model that makes use of the tensor product, which provides a solution to the known problem of branching in semantic nets.

  7. F-OWL: An Inference Engine for Semantic Web

    NASA Technical Reports Server (NTRS)

    Zou, Youyong; Finin, Tim; Chen, Harry

    2004-01-01

    Understanding and using the data and knowledge encoded in semantic web documents requires an inference engine. F-OWL is an inference engine for the semantic web language OWL language based on F-logic, an approach to defining frame-based systems in logic. F-OWL is implemented using XSB and Flora-2 and takes full advantage of their features. We describe how F-OWL computes ontology entailment and compare it with other description logic based approaches. We also describe TAGA, a trading agent environment that we have used as a test bed for F-OWL and to explore how multiagent systems can use semantic web concepts and technology.

  8. Leveraging the Semantic Web for Adaptive Education

    ERIC Educational Resources Information Center

    Kravcik, Milos; Gasevic, Dragan

    2007-01-01

    In the area of technology-enhanced learning reusability and interoperability issues essentially influence the productivity and efficiency of learning and authoring solutions. There are two basic approaches how to overcome these problems--one attempts to do it via standards and the other by means of the Semantic Web. In practice, these approaches…

  9. How to Constrain and Maintain a Lexicon for the Treatment of Progressive Semantic Naming Deficits: Principles of Item Selection for Formal Semantic Therapy

    PubMed Central

    Reilly, Jamie

    2015-01-01

    The progressive degradation of semantic memory is a common feature of many forms of dementia, including Alzheimer’s Disease and the semantic variant of Primary Progressive Aphasia (svPPA). One of the most functionally debilitating effects of this semantic impairment is the inability to name common people and objects (i.e., anomia). Clinical management of a progressive, semantically-based anomia presents extraordinary challenge for neurorehabilitation. Techniques such as errorless learning and spaced-retrieval training show promise for retraining forgotten words. However, we lack complementary detail about what to train (i.e., item selection) and how to flexibly adapt the training to a declining cognitive system. In this position paper, I weigh the relative merits of several treatment rationales (e.g., restore vs. compensate) and advocate for maintenance of known words over reacquisition of forgotten knowledge in the context of semantic treatment paradigms. I propose a system for generating an item pool and outline a set of core principles for training and sustaining a micro-lexicon consisting of approximately 100 words. These principles are informed by lessons learned over the course of a Phase I treatment study targeting language maintenance over a 5-year span in Alzheimer’s Disease and Frontotemporal Degeneration. Finally, I propose a semantic training approach that capitalizes on lexical frequency and repeated training on conceptual structure to offset the loss of key vocabulary as disease severity worsens. PMID:25609229

  10. Natural speech reveals the semantic maps that tile human cerebral cortex

    PubMed Central

    Huth, Alexander G.; de Heer, Wendy A.; Griffiths, Thomas L.; Theunissen, Frédéric E.; Gallant, Jack L.

    2016-01-01

    The meaning of language is represented in regions of the cerebral cortex collectively known as the “semantic system”. However, little of the semantic system has been mapped comprehensively, and the semantic selectivity of most regions is unknown. Here we systematically map semantic selectivity across the cortex using voxel-wise modeling of fMRI data collected while subjects listened to hours of narrative stories. We show that the semantic system is organized into intricate patterns that appear consistent across individuals. We then use a novel generative model to create a detailed semantic atlas. Our results suggest that most areas within the semantic system represent information about specific semantic domains, or groups of related concepts, and our atlas shows which domains are represented in each area. This study demonstrates that data-driven methods—commonplace in studies of human neuroanatomy and functional connectivity—provide a powerful and efficient means for mapping functional representations in the brain. PMID:27121839

  11. Virtual learning object and environment: a concept analysis.

    PubMed

    Salvador, Pétala Tuani Candido de Oliveira; Bezerril, Manacés Dos Santos; Mariz, Camila Maria Santos; Fernandes, Maria Isabel Domingues; Martins, José Carlos Amado; Santos, Viviane Euzébia Pereira

    2017-01-01

    To analyze the concept of virtual learning object and environment according to Rodgers' evolutionary perspective. Descriptive study with a mixed approach, based on the stages proposed by Rodgers in his concept analysis method. Data collection occurred in August 2015 with the search of dissertations and theses in the Bank of Theses of the Coordination for the Improvement of Higher Education Personnel. Quantitative data were analyzed based on simple descriptive statistics and the concepts through lexicographic analysis with support of the IRAMUTEQ software. The sample was made up of 161 studies. The concept of "virtual learning environment" was presented in 99 (61.5%) studies, whereas the concept of "virtual learning object" was presented in only 15 (9.3%) studies. A virtual learning environment includes several and different types of virtual learning objects in a common pedagogical context. Analisar o conceito de objeto e de ambiente virtual de aprendizagem na perspectiva evolucionária de Rodgers. Estudo descritivo, de abordagem mista, realizado a partir das etapas propostas por Rodgers em seu modelo de análise conceitual. A coleta de dados ocorreu em agosto de 2015 com a busca de dissertações e teses no Banco de Teses e Dissertações da Coordenação de Aperfeiçoamento de Pessoal de Nível Superior. Os dados quantitativos foram analisados a partir de estatística descritiva simples e os conceitos pela análise lexicográfica com suporte do IRAMUTEQ. A amostra é constituída de 161 estudos. O conceito de "ambiente virtual de aprendizagem" foi apresentado em 99 (61,5%) estudos, enquanto o de "objeto virtual de aprendizagem" em apenas 15 (9,3%). Concluiu-se que um ambiente virtual de aprendizagem reúne vários e diferentes tipos de objetos virtuais de aprendizagem em um contexto pedagógico comum.

  12. Analyzing the Effects of Various Concept Mapping Techniques on Learning Achievement under Different Learning Styles

    ERIC Educational Resources Information Center

    Chiou, Chei-Chang; Lee, Li-Tze; Tien, Li-Chu; Wang, Yu-Min

    2017-01-01

    This study explored the effectiveness of different concept mapping techniques on the learning achievement of senior accounting students and whether achievements attained using various techniques are affected by different learning styles. The techniques are computer-assisted construct-by-self-concept mapping (CACSB), computer-assisted…

  13. Deep visual-semantic for crowded video understanding

    NASA Astrophysics Data System (ADS)

    Deng, Chunhua; Zhang, Junwen

    2018-03-01

    Visual-semantic features play a vital role for crowded video understanding. Convolutional Neural Networks (CNNs) have experienced a significant breakthrough in learning representations from images. However, the learning of visualsemantic features, and how it can be effectively extracted for video analysis, still remains a challenging task. In this study, we propose a novel visual-semantic method to capture both appearance and dynamic representations. In particular, we propose a spatial context method, based on the fractional Fisher vector (FV) encoding on CNN features, which can be regarded as our main contribution. In addition, to capture temporal context information, we also applied fractional encoding method on dynamic images. Experimental results on the WWW crowed video dataset demonstrate that the proposed method outperform the state of the art.

  14. Analysis of Learning Conceptions Based on Three Modules.

    ERIC Educational Resources Information Center

    Haygood, E. Langston; Iran-Nejad, Asghar

    Three learning modules are described and investigated as they reflect different students' conceptions of and approaches to learning. The Schoolwork Module (SWM) focuses on task performance and involves a passive, incremental, piecemeal, and rote memory method of learning, parallel to what might be implied by the Information Processing model of…

  15. Semantics by analogy for illustrative volume visualization☆

    PubMed Central

    Gerl, Moritz; Rautek, Peter; Isenberg, Tobias; Gröller, Eduard

    2012-01-01

    We present an interactive graphical approach for the explicit specification of semantics for volume visualization. This explicit and graphical specification of semantics for volumetric features allows us to visually assign meaning to both input and output parameters of the visualization mapping. This is in contrast to the implicit way of specifying semantics using transfer functions. In particular, we demonstrate how to realize a dynamic specification of semantics which allows to flexibly explore a wide range of mappings. Our approach is based on three concepts. First, we use semantic shader augmentation to automatically add rule-based rendering functionality to static visualization mappings in a shader program, while preserving the visual abstraction that the initial shader encodes. With this technique we extend recent developments that define a mapping between data attributes and visual attributes with rules, which are evaluated using fuzzy logic. Second, we let users define the semantics by analogy through brushing on renderings of the data attributes of interest. Third, the rules are specified graphically in an interface that provides visual clues for potential modifications. Together, the presented methods offer a high degree of freedom in the specification and exploration of rule-based mappings and avoid the limitations of a linguistic rule formulation. PMID:23576827

  16. Serial and semantic encoding of lists of words in schizophrenia patients with visual hallucinations.

    PubMed

    Brébion, Gildas; Ohlsen, Ruth I; Pilowsky, Lyn S; David, Anthony S

    2011-03-30

    Previous research has suggested that visual hallucinations in schizophrenia are associated with abnormal salience of visual mental images. Since visual imagery is used as a mnemonic strategy to learn lists of words, increased visual imagery might impede the other commonly used strategies of serial and semantic encoding. We had previously published data on the serial and semantic strategies implemented by patients when learning lists of concrete words with different levels of semantic organisation (Brébion et al., 2004). In this paper we present a re-analysis of these data, aiming at investigating the associations between learning strategies and visual hallucinations. Results show that the patients with visual hallucinations presented less serial clustering in the non-organisable list than the other patients. In the semantically organisable list with typical instances, they presented both less serial and less semantic clustering than the other patients. Thus, patients with visual hallucinations demonstrate reduced use of serial and semantic encoding in the lists made up of fairly familiar concrete words, which enable the formation of mental images. Although these results are preliminary, we propose that this different processing of the lists stems from the abnormal salience of the mental images such patients experience from the word stimuli. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  17. Hierarchical semantic structures for medical NLP.

    PubMed

    Taira, Ricky K; Arnold, Corey W

    2013-01-01

    We present a framework for building a medical natural language processing (NLP) system capable of deep understanding of clinical text reports. The framework helps developers understand how various NLP-related efforts and knowledge sources can be integrated. The aspects considered include: 1) computational issues dealing with defining layers of intermediate semantic structures to reduce the dimensionality of the NLP problem; 2) algorithmic issues in which we survey the NLP literature and discuss state-of-the-art procedures used to map between various levels of the hierarchy; and 3) implementation issues to software developers with available resources. The objective of this poster is to educate readers to the various levels of semantic representation (e.g., word level concepts, ontological concepts, logical relations, logical frames, discourse structures, etc.). The poster presents an architecture for which diverse efforts and resources in medical NLP can be integrated in a principled way.

  18. Semantic Interoperability of Health Risk Assessments

    PubMed Central

    Rajda, Jay; Vreeman, Daniel J.; Wei, Henry G.

    2011-01-01

    The health insurance and benefits industry has administered Health Risk Assessments (HRAs) at an increasing rate. These are used to collect data on modifiable health risk factors for wellness and disease management programs. However, there is significant variability in the semantics of these assessments, making it difficult to compare data sets from the output of 2 different HRAs. There is also an increasing need to exchange this data with Health Information Exchanges and Electronic Medical Records. To standardize the data and concepts from these tools, we outline a process to determine presence of certain common elements of modifiable health risk extracted from these surveys. This information is coded using concept identifiers, which allows cross-survey comparison and analysis. We propose that using LOINC codes or other universal coding schema may allow semantic interoperability of a variety of HRA tools across the industry, research, and clinical settings. PMID:22195174

  19. Semantic categorization: a comparison between deaf and hearing children.

    PubMed

    Ormel, Ellen A; Gijsel, Martine A R; Hermans, Daan; Bosman, Anna M T; Knoors, Harry; Verhoeven, Ludo

    2010-01-01

    Learning to read is a major obstacle for children who are deaf. The otherwise significant role of phonology is often limited as a result of hearing loss. However, semantic knowledge may facilitate reading comprehension. One important aspect of semantic knowledge concerns semantic categorization. In the present study, the quality of the semantic categorization of both deaf and hearing children was examined for written words and pictures at two categorization levels. The deaf children performed better at the picture condition compared to the written word condition, while the hearing children performed similarly at pictures and written words. The hearing children outperformed the deaf children, in particular for written words. In addition, the results of the deaf children for the written words correlated to their sign vocabulary and sign language comprehension. The increase in semantic categorization was limited across elementary school grade levels. Readers will be able to: (1) understand several semantic categorization differences between groups of deaf and hearing children; (2) describe factors that may affect the development of semantic categorization, in particular the relationship between sign language skills and semantic categorization for deaf children. Copyright 2010 Elsevier Inc. All rights reserved.

  20. Semantic word impressions expressed by hue.

    PubMed

    Shinomori, Keizo; Komatsu, Honami

    2018-04-01

    We investigated the possibility of whether impressions of semantic words showing complex concepts could be stably expressed by hues. Using a paired comparison method, we asked ten subjects to select from a pair of hues the one that more suitably matched a word impression. We employed nine Japanese semantic words and used twelve hues from vivid tones in the practical color coordinate system. As examples of the results, for the word "vigorous" the most frequently selected color was yellow and the least selected was blue to purple; for "tranquil" the most selected was yellow to green and the least selected was red. Principal component analysis of the selection data indicated that the cumulative contribution rate of the first two components was 94.6%, and in the two-dimensional space of the components, all hues were distributed as a hue-circle shape. In addition, comparison with additional data of color impressions measured by a semantic differential method suggested that most semantic word impressions can be stably expressed by hue, but the impression of some words, such as "magnificent" cannot. These results suggest that semantic word impression can be expressed reasonably well by color, and that hues are treated as impressions from the hue circle, not from color categories.

  1. Towards comprehensive syntactic and semantic annotations of the clinical narrative

    PubMed Central

    Albright, Daniel; Lanfranchi, Arrick; Fredriksen, Anwen; Styler, William F; Warner, Colin; Hwang, Jena D; Choi, Jinho D; Dligach, Dmitriy; Nielsen, Rodney D; Martin, James; Ward, Wayne; Palmer, Martha; Savova, Guergana K

    2013-01-01

    Objective To create annotated clinical narratives with layers of syntactic and semantic labels to facilitate advances in clinical natural language processing (NLP). To develop NLP algorithms and open source components. Methods Manual annotation of a clinical narrative corpus of 127 606 tokens following the Treebank schema for syntactic information, PropBank schema for predicate-argument structures, and the Unified Medical Language System (UMLS) schema for semantic information. NLP components were developed. Results The final corpus consists of 13 091 sentences containing 1772 distinct predicate lemmas. Of the 766 newly created PropBank frames, 74 are verbs. There are 28 539 named entity (NE) annotations spread over 15 UMLS semantic groups, one UMLS semantic type, and the Person semantic category. The most frequent annotations belong to the UMLS semantic groups of Procedures (15.71%), Disorders (14.74%), Concepts and Ideas (15.10%), Anatomy (12.80%), Chemicals and Drugs (7.49%), and the UMLS semantic type of Sign or Symptom (12.46%). Inter-annotator agreement results: Treebank (0.926), PropBank (0.891–0.931), NE (0.697–0.750). The part-of-speech tagger, constituency parser, dependency parser, and semantic role labeler are built from the corpus and released open source. A significant limitation uncovered by this project is the need for the NLP community to develop a widely agreed-upon schema for the annotation of clinical concepts and their relations. Conclusions This project takes a foundational step towards bringing the field of clinical NLP up to par with NLP in the general domain. The corpus creation and NLP components provide a resource for research and application development that would have been previously impossible. PMID:23355458

  2. Lifelong learning: Established concepts and evolving values

    PubMed Central

    Talati, Jamsheer Jehangir

    2014-01-01

    Objective To summarise the concepts critical for understanding the content and value of lifelong learning (LL). Methods Ideas generated by personal experience were combined with those of philosophers, social scientists, educational institutions, governments and UNESCO, to facilitate an understanding of the importance of the basic concepts of LL. Results Autopoietic, continuous, self-determined, informal, vicarious, biographical, lifelong reflexive learning, from and for society, when supported by self-chosen formal courses, can build capacities and portable skills that allow useful responses to challenges and society’s new structures of governance. The need for LL is driven by challenges. LL flows continuously in pursuit of one agenda, which could either be citizenship, as is conventional, or as this article proposes, health. LL cannot be wholly centred on vocation. Continuous medical education and continuous professional development, important in their own right, cannot supply all that is needed. LL aids society with its learning, and it requires an awareness of the environment and structures of society. It is heavily vicarious, draws on formal learning and relies for effectiveness on reflection, self-assessment and personal shaping of views of the world from different perspectives. Conclusion Health is critical to rational thought and peace, and determines society’s capacity to govern itself, and improve its health. LL should be reshaped to focus on health not citizenship. Therefore, embedding learning in society and environment is critical. Each urologist must develop an understanding of the numerous concepts in LL, of which ‘biographicisation’ is the seed that will promote innovative strategies. PMID:26019932

  3. Adults' Perceptions of Concept Learning Outcomes: An Initial Study and Discussion.

    ERIC Educational Resources Information Center

    Wilson, Brent G.; Tessmer, Martin

    This paper reports on an empirical study of educators' perceptions of learning concepts, reviews the cognitive learning literature, and argues for an expanded view of conceptual knowledge and its role in education and training. The report begins with discussions of changing views of concept learning and declarative and procedural components of…

  4. Design of Learning Objects for Concept Learning: Effects of Multimedia Learning Principles and an Instructional Approach

    ERIC Educational Resources Information Center

    Chiu, Thomas K. F.; Churchill, Daniel

    2016-01-01

    Literature suggests using multimedia learning principles in the design of instructional material. However, these principles may not be sufficient for the design of learning objects for concept learning in mathematics. This paper reports on an experimental study that investigated the effects of an instructional approach, which includes two teaching…

  5. Child Care Students' Practical Conceptions of Learning

    ERIC Educational Resources Information Center

    Boulton-Lewis, G. M.; Brownlee, J.; Berthelsen, D.; Dunbar, S.

    2008-01-01

    This paper describes an analysis of interview transcripts for 77 first- and second-year students enrolled in a vocational education course for child-care work. The purpose was to identify their conceptions of learning. All six categories of conceptions, as identified originally by Martin et al. (1993), were found. However, more than 50% of the…

  6. Teaching and Learning the Concept of Chemical Bonding

    ERIC Educational Resources Information Center

    Levy Nahum, Tami; Mamlok-Naaman, Rachel; Hofstein, Avi; Taber, Keith S.

    2010-01-01

    Chemical bonding is one of the key and basic concepts in chemistry. The learning of many of the concepts taught in chemistry, in both secondary schools as well as in the colleges, is dependent upon understanding fundamental ideas related to chemical bonding. Nevertheless, the concept is perceived by teachers, as well as by learners, as difficult,…

  7. Learning of Alignment Rules between Concept Hierarchies

    NASA Astrophysics Data System (ADS)

    Ichise, Ryutaro; Takeda, Hideaki; Honiden, Shinichi

    With the rapid advances of information technology, we are acquiring much information than ever before. As a result, we need tools for organizing this data. Concept hierarchies such as ontologies and information categorizations are powerful and convenient methods for accomplishing this goal, which have gained wide spread acceptance. Although each concept hierarchy is useful, it is difficult to employ multiple concept hierarchies at the same time because it is hard to align their conceptual structures. This paper proposes a rule learning method that inputs information from a source concept hierarchy and finds suitable location for them in a target hierarchy. The key idea is to find the most similar categories in each hierarchy, where similarity is measured by the κ(kappa) statistic that counts instances belonging to both categories. In order to evaluate our method, we conducted experiments using two internet directories: Yahoo! and LYCOS. We map information instances from the source directory into the target directory, and show that our learned rules agree with a human-generated assignment 76% of the time.

  8. Medical Concept Normalization in Social Media Posts with Recurrent Neural Networks.

    PubMed

    Tutubalina, Elena; Miftahutdinov, Zulfat; Nikolenko, Sergey; Malykh, Valentin

    2018-06-12

    Text mining of scientific libraries and social media has already proven itself as a reliable tool for drug repurposing and hypothesis generation. The task of mapping a disease mention to a concept in a controlled vocabulary, typically to the standard thesaurus in the Unified Medical Language System (UMLS), is known as medical concept normalization. This task is challenging due to the differences in the use of medical terminology between health care professionals and social media texts coming from the lay public. To bridge this gap, we use sequence learning with recurrent neural networks and semantic representation of one- or multi-word expressions: we develop end-to-end architectures directly tailored to the task, including bidirectional Long Short-Term Memory, Gated Recurrent Units with an attention mechanism, and additional semantic similarity features based on UMLS. Our evaluation against a standard benchmark shows that recurrent neural networks improve results over an effective baseline for classification based on convolutional neural networks. A qualitative examination of mentions discovered in a dataset of user reviews collected from popular online health information platforms as well as a quantitative evaluation both show improvements in the semantic representation of health-related expressions in social media. Copyright © 2018. Published by Elsevier Inc.

  9. The Role of Context in Remembering Familiar Persons: Insights from Semantic Dementia

    ERIC Educational Resources Information Center

    Joubert, Sven; Mauries, Sandrine; Barbeau, Emmanuel; Ceccaldi, Mathieu; Poncet, Michel

    2004-01-01

    Semantic dementia (SD) is a progressive condition characterized by an insidious and gradual breakdown in semantic knowledge. Patients suffering from this condition gradually lose their knowledge of objects and their attributes, concepts, famous persons, and public events. In contrast, these patients maintain a striking preservation of…

  10. Biomedical semantics in the Semantic Web

    PubMed Central

    2011-01-01

    The Semantic Web offers an ideal platform for representing and linking biomedical information, which is a prerequisite for the development and application of analytical tools to address problems in data-intensive areas such as systems biology and translational medicine. As for any new paradigm, the adoption of the Semantic Web offers opportunities and poses questions and challenges to the life sciences scientific community: which technologies in the Semantic Web stack will be more beneficial for the life sciences? Is biomedical information too complex to benefit from simple interlinked representations? What are the implications of adopting a new paradigm for knowledge representation? What are the incentives for the adoption of the Semantic Web, and who are the facilitators? Is there going to be a Semantic Web revolution in the life sciences? We report here a few reflections on these questions, following discussions at the SWAT4LS (Semantic Web Applications and Tools for Life Sciences) workshop series, of which this Journal of Biomedical Semantics special issue presents selected papers from the 2009 edition, held in Amsterdam on November 20th. PMID:21388570

  11. Biomedical semantics in the Semantic Web.

    PubMed

    Splendiani, Andrea; Burger, Albert; Paschke, Adrian; Romano, Paolo; Marshall, M Scott

    2011-03-07

    The Semantic Web offers an ideal platform for representing and linking biomedical information, which is a prerequisite for the development and application of analytical tools to address problems in data-intensive areas such as systems biology and translational medicine. As for any new paradigm, the adoption of the Semantic Web offers opportunities and poses questions and challenges to the life sciences scientific community: which technologies in the Semantic Web stack will be more beneficial for the life sciences? Is biomedical information too complex to benefit from simple interlinked representations? What are the implications of adopting a new paradigm for knowledge representation? What are the incentives for the adoption of the Semantic Web, and who are the facilitators? Is there going to be a Semantic Web revolution in the life sciences?We report here a few reflections on these questions, following discussions at the SWAT4LS (Semantic Web Applications and Tools for Life Sciences) workshop series, of which this Journal of Biomedical Semantics special issue presents selected papers from the 2009 edition, held in Amsterdam on November 20th.

  12. Adults' acquisition of novel dimension words: creating a semantic congruity effect.

    PubMed

    Ryalls, B O; Smith, L B

    2000-07-01

    The semantic congruity effect is exhibited when adults are asked to compare pairs of items from a series, and their response is faster when the direction of the comparison coincides with the location of the stimuli in the series. For example, people are faster at picking the bigger of 2 big items than the littler of 2 big items. In the 4 experiments presented, adults were taught new dimensional adjectives (mal/ler and borg/er). Characteristics of the learning situation, such as the nature of the stimulus series and the relative frequency of labeling, were varied. Results revealed that the participants who learned the relative meaning of the artificial dimensional adjectives also formed categories and developed a semantic congruity effect regardless of the characteristics of training. These findings have important implications for our understanding of adult acquisition of novel relational words, the relationship between learning such words and categorization, and the explanations of the semantic congruity effect.

  13. Active learning: a step towards automating medical concept extraction.

    PubMed

    Kholghi, Mahnoosh; Sitbon, Laurianne; Zuccon, Guido; Nguyen, Anthony

    2016-03-01

    This paper presents an automatic, active learning-based system for the extraction of medical concepts from clinical free-text reports. Specifically, (1) the contribution of active learning in reducing the annotation effort and (2) the robustness of incremental active learning framework across different selection criteria and data sets are determined. The comparative performance of an active learning framework and a fully supervised approach were investigated to study how active learning reduces the annotation effort while achieving the same effectiveness as a supervised approach. Conditional random fields as the supervised method, and least confidence and information density as 2 selection criteria for active learning framework were used. The effect of incremental learning vs standard learning on the robustness of the models within the active learning framework with different selection criteria was also investigated. The following 2 clinical data sets were used for evaluation: the Informatics for Integrating Biology and the Bedside/Veteran Affairs (i2b2/VA) 2010 natural language processing challenge and the Shared Annotated Resources/Conference and Labs of the Evaluation Forum (ShARe/CLEF) 2013 eHealth Evaluation Lab. The annotation effort saved by active learning to achieve the same effectiveness as supervised learning is up to 77%, 57%, and 46% of the total number of sequences, tokens, and concepts, respectively. Compared with the random sampling baseline, the saving is at least doubled. Incremental active learning is a promising approach for building effective and robust medical concept extraction models while significantly reducing the burden of manual annotation. © The Author 2015. Published by Oxford University Press on behalf of the American Medical Informatics Association. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  14. Auditing the NCI Thesaurus with Semantic Web Technologies

    PubMed Central

    Mougin, Fleur; Bodenreider, Olivier

    2008-01-01

    Auditing biomedical terminologies often results in the identification of inconsistencies and thus helps to improve their quality. In this paper, we present a method based on Semantic Web technologies for auditing biomedical terminologies and apply it to the NCI thesaurus. We stored the NCI thesaurus concepts and their properties in an RDF triple store. By querying this store, we assessed the consistency of both hierarchical and associative relations from the NCI thesaurus among themselves and with corresponding relations in the UMLS Semantic Network. We show that the consistency is better for associative relations than for hierarchical relations. Causes for inconsistency and benefits from using Semantic Web technologies for auditing purposes are discussed. PMID:18999265

  15. Auditing the NCI thesaurus with semantic web technologies.

    PubMed

    Mougin, Fleur; Bodenreider, Olivier

    2008-11-06

    Auditing biomedical terminologies often results in the identification of inconsistencies and thus helps to improve their quality. In this paper, we present a method based on Semantic Web technologies for auditing biomedical terminologies and apply it to the NCI thesaurus. We stored the NCI thesaurus concepts and their properties in an RDF triple store. By querying this store, we assessed the consistency of both hierarchical and associative relations from the NCI thesaurus among themselves and with corresponding relations in the UMLS Semantic Network. We show that the consistency is better for associative relations than for hierarchical relations. Causes for inconsistency and benefits from using Semantic Web technologies for auditing purposes are discussed.

  16. Can social semantic web techniques foster collaborative curriculum mapping in medicine?

    PubMed

    Spreckelsen, Cord; Finsterer, Sonja; Cremer, Jan; Schenkat, Hennig

    2013-08-15

    Curriculum mapping, which is aimed at the systematic realignment of the planned, taught, and learned curriculum, is considered a challenging and ongoing effort in medical education. Second-generation curriculum managing systems foster knowledge management processes including curriculum mapping in order to give comprehensive support to learners, teachers, and administrators. The large quantity of custom-built software in this field indicates a shortcoming of available IT tools and standards. The project reported here aims at the systematic adoption of techniques and standards of the Social Semantic Web to implement collaborative curriculum mapping for a complete medical model curriculum. A semantic MediaWiki (SMW)-based Web application has been introduced as a platform for the elicitation and revision process of the Aachen Catalogue of Learning Objectives (ACLO). The semantic wiki uses a domain model of the curricular context and offers structured (form-based) data entry, multiple views, structured querying, semantic indexing, and commenting for learning objectives ("LOs"). Semantic indexing of learning objectives relies on both a controlled vocabulary of international medical classifications (ICD, MeSH) and a folksonomy maintained by the users. An additional module supporting the global checking of consistency complements the semantic wiki. Statements of the Object Constraint Language define the consistency criteria. We evaluated the application by a scenario-based formative usability study, where the participants solved tasks in the (fictional) context of 7 typical situations and answered a questionnaire containing Likert-scaled items and free-text questions. At present, ACLO contains roughly 5350 operational (ie, specific and measurable) objectives acquired during the last 25 months. The wiki-based user interface uses 13 online forms for data entry and 4 online forms for flexible searches of LOs, and all the forms are accessible by standard Web browsers. The

  17. Can Social Semantic Web Techniques Foster Collaborative Curriculum Mapping In Medicine?

    PubMed Central

    Finsterer, Sonja; Cremer, Jan; Schenkat, Hennig

    2013-01-01

    Background Curriculum mapping, which is aimed at the systematic realignment of the planned, taught, and learned curriculum, is considered a challenging and ongoing effort in medical education. Second-generation curriculum managing systems foster knowledge management processes including curriculum mapping in order to give comprehensive support to learners, teachers, and administrators. The large quantity of custom-built software in this field indicates a shortcoming of available IT tools and standards. Objective The project reported here aims at the systematic adoption of techniques and standards of the Social Semantic Web to implement collaborative curriculum mapping for a complete medical model curriculum. Methods A semantic MediaWiki (SMW)-based Web application has been introduced as a platform for the elicitation and revision process of the Aachen Catalogue of Learning Objectives (ACLO). The semantic wiki uses a domain model of the curricular context and offers structured (form-based) data entry, multiple views, structured querying, semantic indexing, and commenting for learning objectives (“LOs”). Semantic indexing of learning objectives relies on both a controlled vocabulary of international medical classifications (ICD, MeSH) and a folksonomy maintained by the users. An additional module supporting the global checking of consistency complements the semantic wiki. Statements of the Object Constraint Language define the consistency criteria. We evaluated the application by a scenario-based formative usability study, where the participants solved tasks in the (fictional) context of 7 typical situations and answered a questionnaire containing Likert-scaled items and free-text questions. Results At present, ACLO contains roughly 5350 operational (ie, specific and measurable) objectives acquired during the last 25 months. The wiki-based user interface uses 13 online forms for data entry and 4 online forms for flexible searches of LOs, and all the forms are

  18. Modulation of the semantic system by word imageability.

    PubMed

    Sabsevitz, D S; Medler, D A; Seidenberg, M; Binder, J R

    2005-08-01

    A prevailing neurobiological theory of semantic memory proposes that part of our knowledge about concrete, highly imageable concepts is stored in the form of sensory-motor representations. While this theory predicts differential activation of the semantic system by concrete and abstract words, previous functional imaging studies employing this contrast have provided relatively little supporting evidence. We acquired event-related functional magnetic resonance imaging (fMRI) data while participants performed a semantic similarity judgment task on a large number of concrete and abstract noun triads. Task difficulty was manipulated by varying the degree to which the words in the triad were similar in meaning. Concrete nouns, relative to abstract nouns, produced greater activation in a bilateral network of multimodal and heteromodal association areas, including ventral and medial temporal, posterior-inferior parietal, dorsal prefrontal, and posterior cingulate cortex. In contrast, abstract nouns produced greater activation almost exclusively in the left hemisphere in superior temporal and inferior frontal cortex. Increasing task difficulty modulated activation mainly in attention, working memory, and response monitoring systems, with almost no effect on areas that were modulated by imageability. These data provide critical support for the hypothesis that concrete, imageable concepts activate perceptually based representations not available to abstract concepts. In contrast, processing abstract concepts makes greater demands on left perisylvian phonological and lexical retrieval systems. The findings are compatible with dual coding theory and less consistent with single-code models of conceptual representation. The lack of overlap between imageability and task difficulty effects suggests that once the neural representation of a concept is activated, further maintenance and manipulation of that information in working memory does not further increase neural activation in

  19. Self-referential processing is distinct from semantic elaboration: evidence from long-term memory effects in a patient with amnesia and semantic impairments.

    PubMed

    Sui, Jie; Humphreys, Glyn W

    2013-11-01

    We report data demonstrating that self-referential encoding facilitates memory performance in the absence of effects of semantic elaboration in a severely amnesic patient also suffering semantic problems. In Part 1, the patient, GA, was trained to associate items with the self or a familiar other during the encoding phase of a memory task (self-ownership decisions in Experiment 1 and self-evaluation decisions in Experiment 2). Tests of memory showed a consistent self-reference advantage, relative to a condition where the reference was another person in both experiments. The pattern of the self-reference advantage was similar to that in healthy controls. In Part 2 we demonstrate that GA showed minimal effects of semantic elaboration on memory for items he semantically classified, compared with items subject to physical size decisions; in contrast, healthy controls demonstrated enhanced memory performance after semantic relative to physical encoding. The results indicate that self-referential encoding, not semantic elaboration, improves memory in amnesia. Self-referential processing may provide a unique scaffold to help improve learning in amnesic cases. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. Academic self-handicapping: the role of self-concept clarity and students' learning strategies.

    PubMed

    Thomas, Cathy R; Gadbois, Shannon A

    2007-03-01

    Self-handicapping is linked to students' personal motivations, classroom goal structure, academic outcomes, global self-esteem and certainty of self-esteem. Academic self-handicapping has yet to be studied with respect to students' consistency in self-description and their description of themselves as learners. This study examined students' self-esteem and self-concept clarity as well as their tendencies to employ deep- or surface-learning approaches and self-regulate while learning in relation to their self-handicapping tendencies and exam performance. Participants were 161 male and female Canadian, first-year university students. Participants completed a series of questionnaires that measured their self-esteem, self-concept clarity, approaches to learning, self-regulation and reflections on performance prior to and following their exam. Self-handicapping was negatively correlated with self-concept clarity, deep learning, self-regulated learning and exam grades, and positively correlated with surface learning and test anxiety. Regression analyses showed that self-concept clarity, self-regulation, surface-learning and test anxiety scores predicted self-handicapping scores. Self-concept clarity, test anxiety scores, academic self-efficacy and self-regulation were predictors of mid-term exam grades. This study showed that students' self-concept clarity and learning strategies are related to their tendencies to self-handicap and their exam performance. The role of students' ways of learning and their self-concept clarity in self-handicapping and academic performance was explored.

  1. Reproducibility and discriminability of brain patterns of semantic categories enhanced by congruent audiovisual stimuli.

    PubMed

    Li, Yuanqing; Wang, Guangyi; Long, Jinyi; Yu, Zhuliang; Huang, Biao; Li, Xiaojian; Yu, Tianyou; Liang, Changhong; Li, Zheng; Sun, Pei

    2011-01-01

    One of the central questions in cognitive neuroscience is the precise neural representation, or brain pattern, associated with a semantic category. In this study, we explored the influence of audiovisual stimuli on the brain patterns of concepts or semantic categories through a functional magnetic resonance imaging (fMRI) experiment. We used a pattern search method to extract brain patterns corresponding to two semantic categories: "old people" and "young people." These brain patterns were elicited by semantically congruent audiovisual, semantically incongruent audiovisual, unimodal visual, and unimodal auditory stimuli belonging to the two semantic categories. We calculated the reproducibility index, which measures the similarity of the patterns within the same category. We also decoded the semantic categories from these brain patterns. The decoding accuracy reflects the discriminability of the brain patterns between two categories. The results showed that both the reproducibility index of brain patterns and the decoding accuracy were significantly higher for semantically congruent audiovisual stimuli than for unimodal visual and unimodal auditory stimuli, while the semantically incongruent stimuli did not elicit brain patterns with significantly higher reproducibility index or decoding accuracy. Thus, the semantically congruent audiovisual stimuli enhanced the within-class reproducibility of brain patterns and the between-class discriminability of brain patterns, and facilitate neural representations of semantic categories or concepts. Furthermore, we analyzed the brain activity in superior temporal sulcus and middle temporal gyrus (STS/MTG). The strength of the fMRI signal and the reproducibility index were enhanced by the semantically congruent audiovisual stimuli. Our results support the use of the reproducibility index as a potential tool to supplement the fMRI signal amplitude for evaluating multimodal integration.

  2. Reproducibility and Discriminability of Brain Patterns of Semantic Categories Enhanced by Congruent Audiovisual Stimuli

    PubMed Central

    Long, Jinyi; Yu, Zhuliang; Huang, Biao; Li, Xiaojian; Yu, Tianyou; Liang, Changhong; Li, Zheng; Sun, Pei

    2011-01-01

    One of the central questions in cognitive neuroscience is the precise neural representation, or brain pattern, associated with a semantic category. In this study, we explored the influence of audiovisual stimuli on the brain patterns of concepts or semantic categories through a functional magnetic resonance imaging (fMRI) experiment. We used a pattern search method to extract brain patterns corresponding to two semantic categories: “old people” and “young people.” These brain patterns were elicited by semantically congruent audiovisual, semantically incongruent audiovisual, unimodal visual, and unimodal auditory stimuli belonging to the two semantic categories. We calculated the reproducibility index, which measures the similarity of the patterns within the same category. We also decoded the semantic categories from these brain patterns. The decoding accuracy reflects the discriminability of the brain patterns between two categories. The results showed that both the reproducibility index of brain patterns and the decoding accuracy were significantly higher for semantically congruent audiovisual stimuli than for unimodal visual and unimodal auditory stimuli, while the semantically incongruent stimuli did not elicit brain patterns with significantly higher reproducibility index or decoding accuracy. Thus, the semantically congruent audiovisual stimuli enhanced the within-class reproducibility of brain patterns and the between-class discriminability of brain patterns, and facilitate neural representations of semantic categories or concepts. Furthermore, we analyzed the brain activity in superior temporal sulcus and middle temporal gyrus (STS/MTG). The strength of the fMRI signal and the reproducibility index were enhanced by the semantically congruent audiovisual stimuli. Our results support the use of the reproducibility index as a potential tool to supplement the fMRI signal amplitude for evaluating multimodal integration. PMID:21750692

  3. Integrating semantic dimension into openEHR archetypes for the management of cerebral palsy electronic medical records.

    PubMed

    Ellouze, Afef Samet; Bouaziz, Rafik; Ghorbel, Hanen

    2016-10-01

    Integrating semantic dimension into clinical archetypes is necessary once modeling medical records. First, it enables semantic interoperability and, it offers applying semantic activities on clinical data and provides a higher design quality of Electronic Medical Record (EMR) systems. However, to obtain these advantages, designers need to use archetypes that cover semantic features of clinical concepts involved in their specific applications. In fact, most of archetypes filed within open repositories are expressed in the Archetype Definition Language (ALD) which allows defining only the syntactic structure of clinical concepts weakening semantic activities on the EMR content in the semantic web environment. This paper focuses on the modeling of an EMR prototype for infants affected by Cerebral Palsy (CP), using the dual model approach and integrating semantic web technologies. Such a modeling provides a better delivery of quality of care and ensures semantic interoperability between all involved therapies' information systems. First, data to be documented are identified and collected from the involved therapies. Subsequently, data are analyzed and arranged into archetypes expressed in accordance of ADL. During this step, open archetype repositories are explored, in order to find the suitable archetypes. Then, ADL archetypes are transformed into archetypes expressed in OWL-DL (Ontology Web Language - Description Language). Finally, we construct an ontological source related to these archetypes enabling hence their annotation to facilitate data extraction and providing possibility to exercise semantic activities on such archetypes. Semantic dimension integration into EMR modeled in accordance to the archetype approach. The feasibility of our solution is shown through the development of a prototype, baptized "CP-SMS", which ensures semantic exploitation of CP EMR. This prototype provides the following features: (i) creation of CP EMR instances and their checking by

  4. Developing data aggregation applications from a community standard semantic resource (Invited)

    NASA Astrophysics Data System (ADS)

    Leadbetter, A.; Lowry, R. K.

    2013-12-01

    The semantic content of the NERC Vocabulary Server (NVS) has been developed over thirty years. It has been used to mark up metadata and data in a wide range of international projects, including the European Commission (EC) Framework Programme 7 projects SeaDataNet and The Open Service Network for Marine Environmental Data (NETMAR). Within the United States, the National Science Foundation projects Rolling Deck to Repository and Biological & Chemical Data Management Office (BCO-DMO) use concepts from NVS for markup. Further, typed relationships between NVS concepts and terms served by the Marine Metadata Interoperability Ontology Registry and Repository. The vast majority of the concepts publicly served from NVS (35% of ~82,000) form the British Oceanographic Data Centre (BODC) Parameter Usage Vocabulary (PUV). The PUV is instantiated on the NVS as a SKOS concept collection. These terms are used to describe the individual channels in data and metadata served by, for example, BODC, SeaDataNet and BCO-DMO. The PUV terms are designed to be very precise and may contain a high level of detail. Some users have reported that the PUV is difficult to navigate due to its size and complexity (a problem CSIRO have begun to address by deploying a SISSVoc interface to the NVS), and it has been difficult to aggregate data as multiple PUV terms can - with full validity - be used to describe the same data channels. Better approaches to data aggregation are required as a use case for the PUV from the EC European Marine Observation and Data Network (EMODnet) Chemistry project. One solution, proposed and demonstrated during the course of the NETMAR project, is to build new SKOS concept collections which formalise the desired aggregations for given applications, and uses typed relationships to state which PUV concepts contribute to a specific aggregation. Development of these new collections requires input from a group of experts in the application domain who can decide which PUV

  5. A qualitative study on using concept maps in problem-based learning.

    PubMed

    Chan, Zenobia C Y

    2017-05-01

    The visual arts, including concept maps, have been shown to be effective tools for facilitating student learning. However, the use of concept maps in nursing education has been under-explored. The aim of this study was to explore how students develop concept maps and what these concept maps consist of, and their views on the use of concept maps as a learning activity in a PBL class. A qualitative approach consisting of an analysis of the contents of the concept maps and interviews with students. The study was conducted in a school of nursing in a university in Hong Kong. A total of 38 students who attended the morning session (20 students) and afternoon session (18 students) respectively of a nursing problem-based learning class. The students in both the morning and afternoon classes were allocated into four groups (4-5 students per group). Each group was asked to draw two concept maps based on a given scenario, and then to participate in a follow-up interview. Two raters individually assessed the concept maps, and then discussed their views with each other. Among the concept maps that were drawn, four were selected. Their four core features of those maps were: a) the integration of informative and artistic elements; b) the delivery of sensational messages; c) the use of images rather than words; and d) three-dimensional and movable. Both raters were concerned about how informative the presentation was, the composition of the elements, and the ease of comprehension, and appreciated the three-dimensional presentation and effective use of images. From the results of the interview, the pros and cons of using concept maps were discerned. This study demonstrated how concept maps could be implemented in a PBL class to boost the students' creativity and to motivate them to learn. This study suggests the use of concept maps as an initiative to motivate student to learn, participate actively, and nurture their creativity. To conclude, this study explored an alternative way

  6. Audiovisual semantic congruency during encoding enhances memory performance.

    PubMed

    Heikkilä, Jenni; Alho, Kimmo; Hyvönen, Heidi; Tiippana, Kaisa

    2015-01-01

    Studies of memory and learning have usually focused on a single sensory modality, although human perception is multisensory in nature. In the present study, we investigated the effects of audiovisual encoding on later unisensory recognition memory performance. The participants were to memorize auditory or visual stimuli (sounds, pictures, spoken words, or written words), each of which co-occurred with either a semantically congruent stimulus, incongruent stimulus, or a neutral (non-semantic noise) stimulus in the other modality during encoding. Subsequent memory performance was overall better when the stimulus to be memorized was initially accompanied by a semantically congruent stimulus in the other modality than when it was accompanied by a neutral stimulus. These results suggest that semantically congruent multisensory experiences enhance encoding of both nonverbal and verbal materials, resulting in an improvement in their later recognition memory.

  7. Populating the Semantic Web by Macro-reading Internet Text

    NASA Astrophysics Data System (ADS)

    Mitchell, Tom M.; Betteridge, Justin; Carlson, Andrew; Hruschka, Estevam; Wang, Richard

    A key question regarding the future of the semantic web is "how will we acquire structured information to populate the semantic web on a vast scale?" One approach is to enter this information manually. A second approach is to take advantage of pre-existing databases, and to develop common ontologies, publishing standards, and reward systems to make this data widely accessible. We consider here a third approach: developing software that automatically extracts structured information from unstructured text present on the web. We also describe preliminary results demonstrating that machine learning algorithms can learn to extract tens of thousands of facts to populate a diverse ontology, with imperfect but reasonably good accuracy.

  8. Teaching Semantic Radicals Facilitates Inferring New Character Meaning in Sentence Reading for Nonnative Chinese Speakers

    PubMed Central

    Nguyen, Thi Phuong; Zhang, Jie; Li, Hong; Wu, Xinchun; Cheng, Yahua

    2017-01-01

    This study investigates the effects of teaching semantic radicals in inferring the meanings of unfamiliar characters among nonnative Chinese speakers. A total of 54 undergraduates majoring in Chinese Language from a university in Hanoi, Vietnam, who had 1 year of learning experience in Chinese were assigned to two experimental groups that received instructional intervention, called “old-for-new” semantic radical teaching, through two counterbalanced sets of semantic radicals, with one control group. All of the students completed pre- and post-tests of a sentence cloze task where they were required to choose an appropriate character that fit the sentence context among four options. The four options shared the same phonetic radicals but had different semantic radicals. The results showed that the pre-test and post-test score increases were significant for the experimental groups, but not for the control group. Most importantly, the experimental groups successfully transferred the semantic radical strategy to figure out the meanings of unfamiliar characters containing semantic radicals that had not been taught. The results demonstrate the effectiveness of teaching semantic radicals for lexical inference in sentence reading for nonnative speakers, and highlight the ability of transfer learning to acquire semantic categories of sub-lexical units (semantic radicals) in Chinese characters among foreign language learners. PMID:29109694

  9. Interoperable cross-domain semantic and geospatial framework for automatic change detection

    NASA Astrophysics Data System (ADS)

    Kuo, Chiao-Ling; Hong, Jung-Hong

    2016-01-01

    With the increasingly diverse types of geospatial data established over the last few decades, semantic interoperability in integrated applications has attracted much interest in the field of Geographic Information System (GIS). This paper proposes a new strategy and framework to process cross-domain geodata at the semantic level. This framework leverages the semantic equivalence of concepts between domains through bridge ontology and facilitates the integrated use of different domain data, which has been long considered as an essential superiority of GIS, but is impeded by the lack of understanding about the semantics implicitly hidden in the data. We choose the task of change detection to demonstrate how the introduction of ontology concept can effectively make the integration possible. We analyze the common properties of geodata and change detection factors, then construct rules and summarize possible change scenario for making final decisions. The use of topographic map data to detect changes in land use shows promising success, as far as the improvement of efficiency and level of automation is concerned. We believe the ontology-oriented approach will enable a new way for data integration across different domains from the perspective of semantic interoperability, and even open a new dimensionality for the future GIS.

  10. Integrating Concept Mapping into Information Systems Education for Meaningful Learning and Assessment

    ERIC Educational Resources Information Center

    Wei, Wei; Yue, Kwok-Bun

    2017-01-01

    Concept map (CM) is a theoretically sound yet easy to learn tool and can be effectively used to represent knowledge. Even though many disciplines have adopted CM as a teaching and learning tool to improve learning effectiveness, its application in IS curriculum is sparse. Meaningful learning happens when one iteratively integrates new concepts and…

  11. Non-Formal Learning: Clarification of the Concept and Its Application in Music Learning

    ERIC Educational Resources Information Center

    Mok, On Nei Annie

    2011-01-01

    The concept of non-formal learning, which falls outside the categories of informal and formal learning, has not been as widely discussed, especially in the music education literature. In order to bridge this gap and to provide supplementary framework to the discussion of informal and formal learning, therefore, this paper will first summarize…

  12. Promoting Students' Learning of Air Pressure Concepts: The Interrelationship of Teaching Approaches and Student Learning Characteristics

    ERIC Educational Resources Information Center

    She, Hsiao-Ching

    2005-01-01

    The author explored the potential to promote students' understanding of difficult science concepts through an examination of the inter-relationships among the teachers' instructional approach, students' learning preference styles, and their levels of learning process. The concept "air pressure," which requires an understanding of…

  13. eFSM--a novel online neural-fuzzy semantic memory model.

    PubMed

    Tung, Whye Loon; Quek, Chai

    2010-01-01

    Fuzzy rule-based systems (FRBSs) have been successfully applied to many areas. However, traditional fuzzy systems are often manually crafted, and their rule bases that represent the acquired knowledge are static and cannot be trained to improve the modeling performance. This subsequently leads to intensive research on the autonomous construction and tuning of a fuzzy system directly from the observed training data to address the knowledge acquisition bottleneck, resulting in well-established hybrids such as neural-fuzzy systems (NFSs) and genetic fuzzy systems (GFSs). However, the complex and dynamic nature of real-world problems demands that fuzzy rule-based systems and models be able to adapt their parameters and ultimately evolve their rule bases to address the nonstationary (time-varying) characteristics of their operating environments. Recently, considerable research efforts have been directed to the study of evolving Tagaki-Sugeno (T-S)-type NFSs based on the concept of incremental learning. In contrast, there are very few incremental learning Mamdani-type NFSs reported in the literature. Hence, this paper presents the evolving neural-fuzzy semantic memory (eFSM) model, a neural-fuzzy Mamdani architecture with a data-driven progressively adaptive structure (i.e., rule base) based on incremental learning. Issues related to the incremental learning of the eFSM rule base are carefully investigated, and a novel parameter learning approach is proposed for the tuning of the fuzzy set parameters in eFSM. The proposed eFSM model elicits highly interpretable semantic knowledge in the form of Mamdani-type if-then fuzzy rules from low-level numeric training data. These Mamdani fuzzy rules define the computing structure of eFSM and are incrementally learned with the arrival of each training data sample. New rules are constructed from the emergence of novel training data and obsolete fuzzy rules that no longer describe the recently observed data trends are pruned. This

  14. Wordform Similarity Increases With Semantic Similarity: An Analysis of 100 Languages.

    PubMed

    Dautriche, Isabelle; Mahowald, Kyle; Gibson, Edward; Piantadosi, Steven T

    2017-11-01

    Although the mapping between form and meaning is often regarded as arbitrary, there are in fact well-known constraints on words which are the result of functional pressures associated with language use and its acquisition. In particular, languages have been shown to encode meaning distinctions in their sound properties, which may be important for language learning. Here, we investigate the relationship between semantic distance and phonological distance in the large-scale structure of the lexicon. We show evidence in 100 languages from a diverse array of language families that more semantically similar word pairs are also more phonologically similar. This suggests that there is an important statistical trend for lexicons to have semantically similar words be phonologically similar as well, possibly for functional reasons associated with language learning. Copyright © 2016 Cognitive Science Society, Inc.

  15. Semantic Knowledge for Famous Names in Mild Cognitive Impairment

    PubMed Central

    Seidenberg, Michael; Guidotti, Leslie; Nielson, Kristy A.; Woodard, John L.; Durgerian, Sally; Zhang, Qi; Gander, Amelia; Antuono, Piero; Rao, Stephen M.

    2008-01-01

    Person identification represents a unique category of semantic knowledge that is commonly impaired in Alzheimer's Disease (AD), but has received relatively little investigation in patients with Mild Cognitive Impairment (MCI). The current study examined the retrieval of semantic knowledge for famous names from three time epochs (recent, remote, and enduring) in two participant groups; 23 aMCI patients and 23 healthy elderly controls. The aMCI group was less accurate and produced less semantic knowledge than controls for famous names. Names from the enduring period were recognized faster than both recent and remote names in both groups, and remote names were recognized more quickly than recent names. Episodic memory performance was correlated with greater semantic knowledge particularly for recent names. We suggest that the anterograde memory deficits in the aMCI group interferes with learning of recent famous names and as a result produces difficulties with updating and integrating new semantic information with previously stored information. The implications of these findings for characterizing semantic memory deficits in MCI are discussed. PMID:19128524

  16. The Semantic Web in Education

    ERIC Educational Resources Information Center

    Ohler, Jason

    2008-01-01

    The semantic web or Web 3.0 makes information more meaningful to people by making it more understandable to machines. In this article, the author examines the implications of Web 3.0 for education. The author considers three areas of impact: knowledge construction, personal learning network maintenance, and personal educational administration.…

  17. An Analysis of Perceptions and Attitudes Toward the Concepts "Disabled" and "Handicapped" and the Effects of Pre-Structured Definition Upon the Concepts.

    ERIC Educational Resources Information Center

    Ianacone, Robert N.; Stodden, Robert A.

    The semantic differential technique was used in a study involving 40 undergraduate trainees in the area of special education to analyze the concepts "disabled" and "handicapped" and the effects of structured knowledge or definition on the participants' perceptions of and attitudes toward the concepts. The Semantic differential consisted of bipolar…

  18. Grounding Collaborative Learning in Semantics-Based Critiquing

    ERIC Educational Resources Information Center

    Cheung, William K.; Mørch, Anders I.; Wong, Kelvin C.; Lee, Cynthia; Liu, Jiming; Lam, Mason H.

    2007-01-01

    In this article we investigate the use of latent semantic analysis (LSA), critiquing systems, and knowledge building to support computer-based teaching of English composition. We have built and tested an English composition critiquing system that makes use of LSA to analyze student essays and compute feedback by comparing their essays with…

  19. Adapting Semantic Natural Language Processing Technology to Address Information Overload in Influenza Epidemic Management

    PubMed Central

    Keselman, Alla; Rosemblat, Graciela; Kilicoglu, Halil; Fiszman, Marcelo; Jin, Honglan; Shin, Dongwook; Rindflesch, Thomas C.

    2013-01-01

    Explosion of disaster health information results in information overload among response professionals. The objective of this project was to determine the feasibility of applying semantic natural language processing (NLP) technology to addressing this overload. The project characterizes concepts and relationships commonly used in disaster health-related documents on influenza pandemics, as the basis for adapting an existing semantic summarizer to the domain. Methods include human review and semantic NLP analysis of a set of relevant documents. This is followed by a pilot-test in which two information specialists use the adapted application for a realistic information seeking task. According to the results, the ontology of influenza epidemics management can be described via a manageable number of semantic relationships that involve concepts from a limited number of semantic types. Test users demonstrate several ways to engage with the application to obtain useful information. This suggests that existing semantic NLP algorithms can be adapted to support information summarization and visualization in influenza epidemics and other disaster health areas. However, additional research is needed in the areas of terminology development (as many relevant relationships and terms are not part of existing standardized vocabularies), NLP, and user interface design. PMID:24311971

  20. Integrating semantic information into multiple kernels for protein-protein interaction extraction from biomedical literatures.

    PubMed

    Li, Lishuang; Zhang, Panpan; Zheng, Tianfu; Zhang, Hongying; Jiang, Zhenchao; Huang, Degen

    2014-01-01

    Protein-Protein Interaction (PPI) extraction is an important task in the biomedical information extraction. Presently, many machine learning methods for PPI extraction have achieved promising results. However, the performance is still not satisfactory. One reason is that the semantic resources were basically ignored. In this paper, we propose a multiple-kernel learning-based approach to extract PPIs, combining the feature-based kernel, tree kernel and semantic kernel. Particularly, we extend the shortest path-enclosed tree kernel (SPT) by a dynamic extended strategy to retrieve the richer syntactic information. Our semantic kernel calculates the protein-protein pair similarity and the context similarity based on two semantic resources: WordNet and Medical Subject Heading (MeSH). We evaluate our method with Support Vector Machine (SVM) and achieve an F-score of 69.40% and an AUC of 92.00%, which show that our method outperforms most of the state-of-the-art systems by integrating semantic information.

  1. Astrobiology Learning Progressions: Linking Astrobiology Concepts with the 3D Learning Paradigm of NGSS

    NASA Astrophysics Data System (ADS)

    Scalice, D.; Davis, H. B.; Leach, D.; Chambers, N.

    2016-12-01

    The Next Generation Science Standards (NGSS) introduce a Framework for teaching and learning with three interconnected "dimensions:" Disciplinary Core Ideas (DCI's), Cross-cutting Concepts (CCC's), and Science and Engineering Practices (SEP's). This "3D" Framework outlines progressions of learning from K-12 based on the DCI's, detailing which parts of a concept should be taught at each grade band. We used these discipline-based progressions to synthesize interdisciplinary progressions for core concepts in astrobiology, such as the origins of life, what makes a world habitable, biosignatures, and searching for life on other worlds. The final product is an organizing tool for lesson plans, learning media, and other educational materials in astrobiology, as well as a fundamental resource in astrobiology education that serves both educators and scientists as they plan and carry out their programs for learners.

  2. A Study about Placement Support Using Semantic Similarity

    ERIC Educational Resources Information Center

    Katz, Marco; van Bruggen, Jan; Giesbers, Bas; Waterink, Wim; Eshuis, Jannes; Koper, Rob

    2014-01-01

    This paper discusses Latent Semantic Analysis (LSA) as a method for the assessment of prior learning. The Accreditation of Prior Learning (APL) is a procedure to offer learners an individualized curriculum based on their prior experiences and knowledge. The placement decisions in this process are based on the analysis of student material by domain…

  3. Knowledge Representation Issues in Semantic Graphs for Relationship Detection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barthelemy, M; Chow, E; Eliassi-Rad, T

    2005-02-02

    An important task for Homeland Security is the prediction of threat vulnerabilities, such as through the detection of relationships between seemingly disjoint entities. A structure used for this task is a ''semantic graph'', also known as a ''relational data graph'' or an ''attributed relational graph''. These graphs encode relationships as typed links between a pair of typed nodes. Indeed, semantic graphs are very similar to semantic networks used in AI. The node and link types are related through an ontology graph (also known as a schema). Furthermore, each node has a set of attributes associated with it (e.g., ''age'' maymore » be an attribute of a node of type ''person''). Unfortunately, the selection of types and attributes for both nodes and links depends on human expertise and is somewhat subjective and even arbitrary. This subjectiveness introduces biases into any algorithm that operates on semantic graphs. Here, we raise some knowledge representation issues for semantic graphs and provide some possible solutions using recently developed ideas in the field of complex networks. In particular, we use the concept of transitivity to evaluate the relevance of individual links in the semantic graph for detecting relationships. We also propose new statistical measures for semantic graphs and illustrate these semantic measures on graphs constructed from movies and terrorism data.« less

  4. Conceptions, Self-Regulation, and Strategies of Learning Science among Chinese High School Students

    ERIC Educational Resources Information Center

    Li, Mang; Zheng, Chunping; Liang, Jyh-Chong; Zhang, Yun; Tsai, Chin-Chung

    2018-01-01

    This study explored the structural relationships among secondary school students' conceptions, self-regulation, and strategies of learning science in mainland China. Three questionnaires, namely conceptions of learning science (COLS), self-regulation of learning science (SROLS), and strategies of learning science (SLS) were developed for…

  5. Self-esteem, academic self-concept, and achievement: how the learning environment moderates the dynamics of self-concept.

    PubMed

    Trautwein, Ulrich; Lüdtke, Oliver; Köller, Olaf; Baumert, Jürgen

    2006-02-01

    The authors examine the directionality of effects between global self-esteem, domain-specific academic self-concepts, and academic achievement. Special emphasis is placed on learning environments as potential moderators of the direction of these effects. According to the meritocracy principle presented here, so-called bottom-up effects (i.e., self-esteem is influenced by academic self-concept) are more pronounced in meritocratic learning environments than in ego-protective learning environments. This hypothesis was examined using a three-wave cross-lagged panel design with a large sample of 7th graders from East and West Germany, a total of 5,648 students who were tested shortly after German reunification. Reciprocal effects were found between self-esteem, academic self-concept, and academic achievement. In conformance with the meritocracy principle, support for bottom-up effects was stronger in the meritocratic learning environment. Copyright 2006 APA, all rights reserved.

  6. Semantics, Pragmatics, and the Nature of Semantic Theories

    ERIC Educational Resources Information Center

    Spewak, David Charles, Jr.

    2013-01-01

    The primary concern of this dissertation is determining the distinction between semantics and pragmatics and how context sensitivity should be accommodated within a semantic theory. I approach the question over how to distinguish semantics from pragmatics from a new angle by investigating what the objects of a semantic theory are, namely…

  7. Concept Mapping Assessment of Media Assisted Learning in Interdisciplinary Science Education

    NASA Astrophysics Data System (ADS)

    Schaal, Steffen; Bogner, Franz X.; Girwidz, Raimund

    2010-05-01

    Acquisition of conceptual knowledge is a central aim in science education. In this study we monitored an interdisciplinary hypermedia assisted learning unit on hibernation and thermodynamics based on cooperative learning. We used concept mapping for the assessment, applying a pre-test/post-test design. In our study, 106 9th graders cooperated by working in pairs ( n = 53) for six lessons. As an interdisciplinary learning activity in such complex knowledge domains has to combine many different aspects, we focused on long-term knowledge. Learners working cooperatively in dyads constructed computer-supported concept maps which were analysed by specific software. The data analysis encompassed structural aspects of the knowledge corresponding to a target reference map. After the learning unit, the results showed the acquisition of higher-order domain-specific knowledge structures which indicates successful interdisciplinary learning through the hypermedia learning environment. The benefit of using a computer-assisted concept mapping assessment for research in science education, and in science classrooms is considered.

  8. Using concept maps in a modified team-based learning exercise.

    PubMed

    Knollmann-Ritschel, Barbara E C; Durning, Steven J

    2015-04-01

    Medical school education has traditionally been driven by single discipline teaching and assessment. Newer medical school curricula often implement an organ-based approach that fosters integration of basic science and clinical disciplines. Concept maps are widely used in education. Through diagrammatic depiction of a variety of concepts and their specific connections with other ideas, concept maps provide a unique perspective into learning and performance that can complement other assessment methods commonly used in medical schools. In this innovation, we describe using concepts maps as a vehicle for a modified a classic Team-Based Learning (TBL) exercise. Modifications to traditional TBL in our innovation included replacing an individual assessment using multiple-choice questions with concept maps as well as combining the group assessment and application exercise whereby teams created concept maps. These modifications were made to further assess understanding of content across the Fundamentals module (the introductory module of the preclerkship curriculum). While preliminary, student performance and feedback from faculty and students support the use of concept maps in TBL. Our findings suggest concept maps can provide a unique means of determining assessment of learning and generating feedback to students. Concept maps can also demonstrate knowledge acquisition, organization of prior and new knowledge, and synthesis of that knowledge across disciplines in a unique way providing an additional means of assessment in addition to traditional multiple-choice questions. Reprint & Copyright © 2015 Association of Military Surgeons of the U.S.

  9. The Power of Examples: Illustrative Examples Enhance Conceptual Learning of Declarative Concepts

    ERIC Educational Resources Information Center

    Rawson, Katherine A.; Thomas, Ruthann C.; Jacoby, Larry L.

    2015-01-01

    Declarative concepts (i.e., key terms with short definitions of the abstract concepts denoted by those terms) are a common kind of information that students are expected to learn in many domains. A common pedagogical approach for supporting learning of declarative concepts involves presenting students with concrete examples that illustrate how the…

  10. Coherent concepts are computed in the anterior temporal lobes.

    PubMed

    Lambon Ralph, Matthew A; Sage, Karen; Jones, Roy W; Mayberry, Emily J

    2010-02-09

    In his Philosophical Investigations, Wittgenstein famously noted that the formation of semantic representations requires more than a simple combination of verbal and nonverbal features to generate conceptually based similarities and differences. Classical and contemporary neuroscience has tended to focus upon how different neocortical regions contribute to conceptualization through the summation of modality-specific information. The additional yet critical step of computing coherent concepts has received little attention. Some computational models of semantic memory are able to generate such concepts by the addition of modality-invariant information coded in a multidimensional semantic space. By studying patients with semantic dementia, we demonstrate that this aspect of semantic memory becomes compromised following atrophy of the anterior temporal lobes and, as a result, the patients become increasingly influenced by superficial rather than conceptual similarities.

  11. Structure Discovery in Large Semantic Graphs Using Extant Ontological Scaling and Descriptive Statistics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    al-Saffar, Sinan; Joslyn, Cliff A.; Chappell, Alan R.

    As semantic datasets grow to be very large and divergent, there is a need to identify and exploit their inherent semantic structure for discovery and optimization. Towards that end, we present here a novel methodology to identify the semantic structures inherent in an arbitrary semantic graph dataset. We first present the concept of an extant ontology as a statistical description of the semantic relations present amongst the typed entities modeled in the graph. This serves as a model of the underlying semantic structure to aid in discovery and visualization. We then describe a method of ontological scaling in which themore » ontology is employed as a hierarchical scaling filter to infer different resolution levels at which the graph structures are to be viewed or analyzed. We illustrate these methods on three large and publicly available semantic datasets containing more than one billion edges each. Keywords-Semantic Web; Visualization; Ontology; Multi-resolution Data Mining;« less

  12. The impact of second language learning on semantic and nonsemantic first language reading.

    PubMed

    Nosarti, Chiara; Mechelli, Andrea; Green, David W; Price, Cathy J

    2010-02-01

    The relationship between orthography (spelling) and phonology (speech sounds) varies across alphabetic languages. Consequently, learning to read a second alphabetic language, that uses the same letters as the first, increases the phonological associations that can be linked to the same orthographic units. In subjects with English as their first language, previous functional imaging studies have reported increased left ventral prefrontal activation for reading words with spellings that are inconsistent with their orthographic neighbors (e.g., PINT) compared with words that are consistent with their orthographic neighbors (e.g., SHIP). Here, using functional magnetic resonance imaging (fMRI) in 17 Italian-English and 13 English-Italian bilinguals, we demonstrate that left ventral prefrontal activation for first language reading increases with second language vocabulary knowledge. This suggests that learning a second alphabetic language changes the way that words are read in the first alphabetic language. Specifically, first language reading is more reliant on both lexical/semantic and nonlexical processing when new orthographic to phonological mappings are introduced by second language learning. Our observations were in a context that required participants to switch between languages. They motivate future fMRI studies to test whether first language reading is also altered in contexts when the second language is not in use.

  13. Investigating the interrelationships among conceptions of, approaches to, and self-efficacy in learning science

    NASA Astrophysics Data System (ADS)

    Zheng, Lanqin; Dong, Yan; Huang, Ronghuai; Chang, Chun-Yen; Bhagat, Kaushal Kumar

    2018-01-01

    The purpose of this study was to examine the relations between primary school students' conceptions of, approaches to, and self-efficacy in learning science in Mainland China. A total of 1049 primary school students from Mainland China participated in this study. Three instruments were adapted to measure students' conceptions of learning science, approaches to learning science, and self-efficacy. The exploratory factor analysis and confirmatory factor analysis were adopted to validate three instruments. The path analysis was employed to understand the relationships between conceptions of learning science, approaches to learning science, and self-efficacy. The findings indicated that students' lower level conceptions of learning science positively influenced their surface approaches in learning science. Higher level conceptions of learning science had a positive influence on deep approaches and a negative influence on surface approaches to learning science. Furthermore, self-efficacy was also a hierarchical construct and can be divided into the lower level and higher level. Only students' deep approaches to learning science had a positive influence on their lower and higher level of self-efficacy in learning science. The results were discussed in the context of the implications for teachers and future studies.

  14. Neural correlates of combinatorial semantic processing of literal and figurative noun noun compound words.

    PubMed

    Forgács, Bálint; Bohrn, Isabel; Baudewig, Jürgen; Hofmann, Markus J; Pléh, Csaba; Jacobs, Arthur M

    2012-11-15

    The right hemisphere's role in language comprehension is supported by results from several neuropsychology and neuroimaging studies. Special interest surrounds right temporoparietal structures, which are thought to be involved in processing novel metaphorical expressions, primarily due to the coarse semantic coding of concepts. In this event related fMRI experiment we aimed at assessing the extent of semantic distance processing in the comprehension of figurative meaning to clarify the role of the right hemisphere. Four categories of German noun noun compound words were presented in a semantic decision task: a) conventional metaphors; b) novel metaphors; c) conventional literal, and; d) novel literal expressions, controlled for length, frequency, imageability, arousal, and emotional valence. Conventional literal and metaphorical compounds increased BOLD signal change in right temporoparietal regions, suggesting combinatorial semantic processing, in line with the coarse semantic coding theory, but at odds with the graded salience hypothesis. Both novel literal and novel metaphorical expressions increased activity in left inferior frontal areas, presumably as a result of phonetic, morphosyntactic, and semantic unification processes, challenging predictions regarding right hemispheric involvement in processing unusual meanings. Meanwhile, both conventional and novel metaphorical expressions induced BOLD signal change in left hemispherical regions, suggesting that even novel metaphor processing involves more than linking semantically distant concepts. Copyright © 2012 Elsevier Inc. All rights reserved.

  15. Learning Outcomes as a Key Concept in Policy Documents throughout Policy Changes

    ERIC Educational Resources Information Center

    Prøitz, Tine Sophie

    2015-01-01

    Learning outcomes can be considered to be a key concept in a changing education policy landscape, enhancing aspects such as benchmarking and competition. Issues relating to concepts of performance have a long history of debate within the field of education. Today, the concept of learning outcomes has become central in education policy development,…

  16. The general/specific breakdown of semantic memory and the nature of superordinate knowledge: insights from superordinate and basic-level feature norms.

    PubMed

    Marques, J Frederico

    2007-12-01

    The deterioration of semantic memory usually proceeds from more specific to more general superordinate categories, although rarer cases of superordinate knowledge impairment have also been reported. The nature of superordinate knowledge and the explanation of these two semantic impairments were evaluated from the analysis of superordinate and basic-level feature norms. The results show that, in comparison to basic-level concepts, superordinate concepts are not generally less informative and have similar feature distinctiveness and proportion of individual sensory features, but their features are less shared by their members. Results are in accord with explanations based on feature connection weights and/or concept confusability for the superordinate advantage cases. Results especially support an explanation for superordinate impairments in terms of higher semantic control requirements as related to features being less shared between concept members. Implications for patients with semantic impairments are also discussed.

  17. Identification and Assessment of Taiwanese Children's Conceptions of Learning Mathematics

    ERIC Educational Resources Information Center

    Chiu, Mei-Shiu

    2012-01-01

    The aim of the present study was to identify children's conceptions of learning mathematics and to assess the identified conceptions. Children's conceptions are identified by interviewing 73 grade 5 students in Taiwan. The interviews are analyzed using qualitative data analysis methods, which results in a structure of 5 major conceptions, each…

  18. Study Sequence Matters for the Inductive Learning of Cognitive Concepts

    ERIC Educational Resources Information Center

    Sana, Faria; Yan, Veronica X.; Kim, Joseph A.

    2017-01-01

    The sequence in which problems of different concepts are studied during instruction impacts concept learning. For example, several problems of a given concept can be studied together (blocking) or several problems of different concepts can be studied together (interleaving). In the current study, we demonstrate that the 2 sequences impact concept…

  19. Learning Relative Motion Concepts in Immersive and Non-Immersive Virtual Environments

    ERIC Educational Resources Information Center

    Kozhevnikov, Michael; Gurlitt, Johannes; Kozhevnikov, Maria

    2013-01-01

    The focus of the current study is to understand which unique features of an immersive virtual reality environment have the potential to improve learning relative motion concepts. Thirty-seven undergraduate students learned relative motion concepts using computer simulation either in immersive virtual environment (IVE) or non-immersive desktop…

  20. Factors Related to Students' Learning of Biomechanics Concepts

    ERIC Educational Resources Information Center

    Hsieh, ChengTu; Smith, Jeremy D.; Bohne, Michael; Knudson, Duane

    2012-01-01

    The purpose of this study was to replicate and expand a previous study to identify the factors that affect students' learning of biomechanical concepts. Students were recruited from three universities (N = 149) located in the central and western regions of the United States. Data from 142 students completing the Biomechanics Concept Inventory…

  1. New methods for analyzing semantic graph based assessments in science education

    NASA Astrophysics Data System (ADS)

    Vikaros, Lance Steven

    This research investigated how the scoring of semantic graphs (known by many as concept maps) could be improved and automated in order to address issues of inter-rater reliability and scalability. As part of the NSF funded SENSE-IT project to introduce secondary school science students to sensor networks (NSF Grant No. 0833440), semantic graphs illustrating how temperature change affects water ecology were collected from 221 students across 16 schools. The graphing task did not constrain students' use of terms, as is often done with semantic graph based assessment due to coding and scoring concerns. The graphing software used provided real-time feedback to help students learn how to construct graphs, stay on topic and effectively communicate ideas. The collected graphs were scored by human raters using assessment methods expected to boost reliability, which included adaptations of traditional holistic and propositional scoring methods, use of expert raters, topical rubrics, and criterion graphs. High levels of inter-rater reliability were achieved, demonstrating that vocabulary constraints may not be necessary after all. To investigate a new approach to automating the scoring of graphs, thirty-two different graph features characterizing graphs' structure, semantics, configuration and process of construction were then used to predict human raters' scoring of graphs in order to identify feature patterns correlated to raters' evaluations of graphs' topical accuracy and complexity. Results led to the development of a regression model able to predict raters' scoring with 77% accuracy, with 46% accuracy expected when used to score new sets of graphs, as estimated via cross-validation tests. Although such performance is comparable to other graph and essay based scoring systems, cross-context testing of the model and methods used to develop it would be needed before it could be recommended for widespread use. Still, the findings suggest techniques for improving the

  2. Enhancing Collaborative and Meaningful Language Learning Through Concept Mapping

    NASA Astrophysics Data System (ADS)

    Marriott, Rita De Cássia Veiga; Torres, Patrícia Lupion

    This chapter aims to investigate new ways of foreign-language teaching/learning via a study of how concept mapping can help develop a student's reading, writing and oral skills as part of a blended methodology for language teaching known as LAPLI (Laboratorio de Aprendizagem de LInguas: The Language Learning Lab). LAPLI is a student-centred and collaborative methodology which encourages students to challenge their limitations and expand their current knowledge whilst developing their linguistic and interpersonal skills. We explore the theories that underpin LAPLI and detail the 12 activities comprising its programme with specify reference to the use of "concept mapping". An innovative table enabling a formative and summative assessment of the concept maps is formulated. Also presented are some of the qualitative and quantitative results achieved when this methodology was first implemented with a group of pre-service students studying for a degree in English and Portuguese languages at the Catholic University of Parana (PUCPR) in Brazil. The contribution of concept mapping and LAPLI to an under standing of language learning along with a consideration of the difficulties encountered in its implementation with student groups is discussed and suggestions made for future research.

  3. Enhancing Collaborative and Meaningful Language Learning through Concept Mapping

    NASA Astrophysics Data System (ADS)

    de Cássia Veiga Marriott, Rita; Torres, Patrícia Lupion

    This chapter aims to investigate new ways of foreign-language teaching/learning via a study of how concept mapping can help develop a student's reading, writing and oral skills as part of a blended methodology for language teaching known as LAPLI (Laboratorio de Aprendizagem de LInguas: The Language Learning Lab). LAPLI is a student-centred and collaborative methodology which encourages students to challenge their limitations and expand their current knowledge whilst developing their linguistic and interpersonal skills. We explore the theories that underpin LAPLI and detail the 12 activities comprising its programme with specify reference to the use of “concept mapping”. An innovative table enabling a formative and summative assessment of the concept maps is formulated. Also presented are some of the qualitative and quantitative results achieved when this methodology was first implemented with a group of pre-service students studying for a degree in English and Portuguese languages at the Catholic University of Parana (PUCPR) in Brazil. The contribution of concept mapping and LAPLI to an understanding of language learning along with a consideration of the difficulties encountered in its implementation with student groups is discussed and suggestions made for future research.

  4. Enhancing acronym/abbreviation knowledge bases with semantic information.

    PubMed

    Torii, Manabu; Liu, Hongfang

    2007-10-11

    In the biomedical domain, a terminology knowledge base that associates acronyms/abbreviations (denoted as SFs) with the definitions (denoted as LFs) is highly needed. For the construction such terminology knowledge base, we investigate the feasibility to build a system automatically assigning semantic categories to LFs extracted from text. Given a collection of pairs (SF,LF) derived from text, we i) assess the coverage of LFs and pairs (SF,LF) in the UMLS and justify the need of a semantic category assignment system; and ii) automatically derive name phrases annotated with semantic category and construct a system using machine learning. Utilizing ADAM, an existing collection of (SF,LF) pairs extracted from MEDLINE, our system achieved an f-measure of 87% when assigning eight UMLS-based semantic groups to LFs. The system has been incorporated into a web interface which integrates SF knowledge from multiple SF knowledge bases. Web site: http://gauss.dbb.georgetown.edu/liblab/SFThesurus.

  5. College Students' Conceptions of Learning Management: The Difference between Traditional (Face-to-Face) Instruction and Web-Based Learning Environments

    ERIC Educational Resources Information Center

    Lin, Hung-Ming; Tsai, Chin-Chung

    2011-01-01

    This study investigates the differences between students' conceptions of learning management via traditional instruction and Web-based learning environments. The Conceptions of Learning Management Inventory (COLM) was administered to 259 Taiwanese college students majoring in Business Administration. The COLM has six factors (categories), namely,…

  6. Teaching Vocabulary to Turkish Young Learners in Semantically Related and Semantically Unrelated Sets by Using Digital Storytelling

    ERIC Educational Resources Information Center

    Aitkuzhinova-Arslan, Ainur; Gün, Süleyman; Üstünel, Eda

    2016-01-01

    Teaching vocabulary is a comprehensive process in foreign language learning requiring specific techniques of appropriate instruction and accurate strategy. The present study was conducted to examine the effects of teaching vocabulary to Turkish young learners in a semantic clustering way through digital storytelling. To investigate this aim, six…

  7. Categorizing with gender: does implicit grammatical gender affect semantic processing in 24-month-old toddlers?

    PubMed

    Bobb, Susan C; Mani, Nivedita

    2013-06-01

    The current study investigated the interaction of implicit grammatical gender and semantic category knowledge during object identification. German-learning toddlers (24-month-olds) were presented with picture pairs and heard a noun (without a preceding article) labeling one of the pictures. Labels for target and distracter images either matched or mismatched in grammatical gender and either matched or mismatched in semantic category. When target and distracter overlapped in both semantic and gender information, target recognition was impaired compared with when target and distracter overlapped on only one dimension. Results suggest that by 24 months of age, German-learning toddlers are already forming not only semantic but also grammatical gender categories and that these sources of information are activated, and interact, during object identification. Copyright © 2013 Elsevier Inc. All rights reserved.

  8. Reliability in content analysis: The case of semantic feature norms classification.

    PubMed

    Bolognesi, Marianna; Pilgram, Roosmaryn; van den Heerik, Romy

    2017-12-01

    Semantic feature norms (e.g., STIMULUS: car → RESPONSE: ) are commonly used in cognitive psychology to look into salient aspects of given concepts. Semantic features are typically collected in experimental settings and then manually annotated by the researchers into feature types (e.g., perceptual features, taxonomic features, etc.) by means of content analyses-that is, by using taxonomies of feature types and having independent coders perform the annotation task. However, the ways in which such content analyses are typically performed and reported are not consistent across the literature. This constitutes a serious methodological problem that might undermine the theoretical claims based on such annotations. In this study, we first offer a review of some of the released datasets of annotated semantic feature norms and the related taxonomies used for content analysis. We then provide theoretical and methodological insights in relation to the content analysis methodology. Finally, we apply content analysis to a new dataset of semantic features and show how the method should be applied in order to deliver reliable annotations and replicable coding schemes. We tackle the following issues: (1) taxonomy structure, (2) the description of categories, (3) coder training, and (4) sustainability of the coding scheme-that is, comparison of the annotations provided by trained versus novice coders. The outcomes of the project are threefold: We provide methodological guidelines for semantic feature classification; we provide a revised and adapted taxonomy that can (arguably) be applied to both concrete and abstract concepts; and we provide a dataset of annotated semantic feature norms.

  9. Constructing Concept Maps to Encourage Meaningful Learning in Science Classroom

    ERIC Educational Resources Information Center

    Akcay, Hakan

    2017-01-01

    The purpose of this activity is to demonstrate science teaching and assessing what is learned via using concept maps. Concept mapping is a technique for visually representing the structure of information. Concept mapping allows students to understand the relationships between concepts of science by creating a visual map of the connections. Concept…

  10. Remembering episodic memories is not necessary for forgetting of negative words: Semantic retrieval can cause forgetting of negative words.

    PubMed

    Kobayashi, Masanori; Tanno, Yoshihiko

    2015-06-01

    Retrieval of a memory can induce forgetting of other related memories, which is known as retrieval-induced forgetting. Although most studies have investigated retrieval-induced forgetting by remembering episodic memories, this also can occur by remembering semantic memories. The present study shows that retrieval of semantic memories can lead to forgetting of negative words. In two experiments, participants learned words and then engaged in retrieval practice where they were asked to recall words related to the learned words from semantic memory. Finally, participants completed a stem-cued recall test for the learned words. The results showed forgetting of neutral and negative words, which was characteristic of semantic retrieval-induced forgetting. A certain degree of overlapping features, except same learning episode, is sufficient to cause retrieval-induced forgetting of negative words. Given the present results, we conclude that retrieval-induced forgetting of negative words does not require recollection of episodic memories.

  11. Argument Based Science Inquiry (ABSI) Learning Model in Voltaic Cell Concept

    NASA Astrophysics Data System (ADS)

    Subarkah, C. Z.; Fadilah, A.; Aisyah, R.

    2017-09-01

    Voltaic Cell is a sub-concept of electrochemistry that is considered difficult to be comprehended by learners Voltaic Cell is a sub concept of electrochemistry that is considered difficult to be understood by learners so that impacts on student activity in learning process. Therefore the learning model Argument Based Science Inquiry (ABSI) will be applied to the concept of Voltaic cell. This research aims to describe students’ activities during learning process using ABSI model and to analyze students’ competency to solve ABSI-based worksheets (LK) of Voltaic Cell concept. The method used in this research was the “mix-method-quantitative-embedded” method with subjects of the study: 39 second-semester students of Chemistry Education study program. The student activity is quite good during ABSI learning. The students’ ability to complete worksheet (LK) for every average phase is good. In the phase of exploration of post instruction understanding, it is categorized very good, and in the phase of negotiation shape III: comparing science ideas to textbooks or other printed resources merely reach enough category. Thus, the ABSI learning has improved the student levels of activity and students’ competency to solve the ABSI-based worksheet (LK).

  12. Transformative Learning and Concepts of the Self: Insights from Immigrant and Intercultural Journeys

    ERIC Educational Resources Information Center

    Lange, Elizabeth

    2015-01-01

    This article examines Canadian immigrant and intercultural learning as an insightful context for examining transformative learning. Theories of intercultural communication are explored, particularly the concept of transculturality and Bhabha's concept of "Third Space". Various concepts of the self are also compared, particularly two…

  13. Adaptation of Conceptions of Learning Science Questionnaire into Turkish and Science Teacher Candidates' Conceptions of Learning Science

    ERIC Educational Resources Information Center

    Bahçivan, Eralp; Kapucu, Serkan

    2014-01-01

    The purposes of this study were to (1) adapt an instrument "The Conceptions of Learning Science (COLS) questionnaire" into Turkish, and (2) to determine Turkish science teacher candidates' COLS. Adapting the instrument four steps were followed. Firstly, COLS questionnaire was translated into Turkish. Secondly, COLS questionnaire was…

  14. Relational Analysis of College Chemistry-Major Students' Conceptions of and Approaches to Learning Chemistry

    ERIC Educational Resources Information Center

    Li, Wei-Ting; Liang, Jyh-Chong; Tsai, Chin-Chung

    2013-01-01

    The purpose of this research was to examine the relationships between conceptions of learning and approaches to learning in chemistry. Two questionnaires, conceptions of learning chemistry (COLC) and approaches to learning chemistry (ALC), were developed to identify 369 college chemistry-major students' (220 males and 149 females) conceptions of…

  15. Brain Event-Related Potential Correlates of Concept Learning.

    ERIC Educational Resources Information Center

    Federico, Pat-Anthony

    An irrelevant auditory probe procedure was used to evoke brain event-related potentials (ERPs) in 56 Navy recruits while they learned pulsed radar concepts presented to them in study booklets. A mastery test was administered to assess concept acquisition. The research issue was whether brain ERPs recorded while students are in the process of…

  16. "Glossing Over" Feminism?: A General Semantics Critique.

    ERIC Educational Resources Information Center

    Liepe-Levinson, Katherine; Levinson, Martin H.

    1996-01-01

    Discusses some concepts of contemporary feminism as exemplified in Christina Hoff Sommers's controversial book "Who Stole Feminism: How Women Have Betrayed Women." Also discusses (and takes issue with) Robert Pula's definition of feminism in "A General Semantics Glossary." Encourages readers to follow the debates of feminist…

  17. Naming unique entities in the semantic variant of primary progressive aphasia and Alzheimer's disease: Towards a better understanding of the semantic impairment.

    PubMed

    Montembeault, M; Brambati, S M; Joubert, S; Boukadi, M; Chapleau, M; Laforce, R Jr; Wilson, M A; Macoir, J; Rouleau, I

    2017-01-27

    While the semantic variant of primary progressive aphasia (svPPA) is characterized by a predominant semantic memory impairment, episodic memory impairments are the clinical hallmark of Alzheimer's disease (AD). However, AD patients also present with semantic deficits, which are more severe for semantically unique entities (e.g. a famous person) than for common concepts (e.g. a beaver). Previous studies in these patient populations have largely focused on famous-person naming. Therefore, we aimed to evaluate if these impairments also extend to other semantically unique entities such as famous places and famous logos. In this study, 13 AD patients, 9 svPPA patients, and 12 cognitively unimpaired elderly subjects (CTRL) were tested with a picture-naming test of non-unique entities (Boston Naming Test) and three experimental tests of semantically unique entities assessing naming of famous persons, places, and logos. Both clinical groups were overall more impaired at naming semantically unique entities than non-unique entities. Naming impairments in AD and svPPA extended to the other types of semantically unique entities, since a CTRL>AD>svPPA pattern was found on the performance of all naming tests. Naming famous places and famous persons appeared to be most impaired in svPPA, and both specific and general semantic knowledge for these entities were affected in these patients. Although AD patients were most significantly impaired on famous-person naming, only their specific semantic knowledge was impaired, while general knowledge was preserved. Post-hoc neuroimaging analyses also showed that famous-person naming impairments in AD correlated with atrophy in the temporo-parietal junction, a region functionally associated with lexical access. In line with previous studies, svPPA patients' impairment in both naming and semantic knowledge suggest a more profound semantic impairment, while naming impairments in AD may arise to a greater extent from impaired lexical access

  18. Semantic transference for enriching multilingual biomedical knowledge resources.

    PubMed

    Pérez, María; Berlanga, Rafael

    2015-12-01

    Biomedical knowledge resources (KRs) are mainly expressed in English, and many applications using them suffer from the scarcity of knowledge in non-English languages. The goal of the present work is to take maximum profit from existing multilingual biomedical KRs lexicons to enrich their non-English counterparts. We propose to combine different automatic methods to generate pair-wise language alignments. More specifically, we use two well-known translation methods (GIZA++ and Moses), and we propose a new ad hoc method specially devised for multilingual KRs. Then, resulting alignments are used to transfer semantics between KRs across their languages. Transference quality is ensured by checking the semantic coherence of the generated alignments. Experiments have been carried out over the Spanish, French and German UMLS Metathesaurus counterparts. As a result, the enriched Spanish KR can grow up to 1,514,217 concepts (originally 286,659), the French KR up to 1,104,968 concepts (originally 83,119), and the German KR up to 1,136,020 concepts (originally 86,842). Copyright © 2015 Elsevier Inc. All rights reserved.

  19. An Intelligent Web-Based System for Diagnosing Student Learning Problems Using Concept Maps

    ERIC Educational Resources Information Center

    Acharya, Anal; Sinha, Devadatta

    2017-01-01

    The aim of this article is to propose a method for development of concept map in web-based environment for identifying concepts a student is deficient in after learning using traditional methods. Direct Hashing and Pruning algorithm was used to construct concept map. Redundancies within the concept map were removed to generate a learning sequence.…

  20. Model for Semantically Rich Point Cloud Data

    NASA Astrophysics Data System (ADS)

    Poux, F.; Neuville, R.; Hallot, P.; Billen, R.

    2017-10-01

    This paper proposes an interoperable model for managing high dimensional point clouds while integrating semantics. Point clouds from sensors are a direct source of information physically describing a 3D state of the recorded environment. As such, they are an exhaustive representation of the real world at every scale: 3D reality-based spatial data. Their generation is increasingly fast but processing routines and data models lack of knowledge to reason from information extraction rather than interpretation. The enhanced smart point cloud developed model allows to bring intelligence to point clouds via 3 connected meta-models while linking available knowledge and classification procedures that permits semantic injection. Interoperability drives the model adaptation to potentially many applications through specialized domain ontologies. A first prototype is implemented in Python and PostgreSQL database and allows to combine semantic and spatial concepts for basic hybrid queries on different point clouds.

  1. Do statistical segmentation abilities predict lexical-phonological and lexical-semantic abilities in children with and without SLI?

    PubMed Central

    Mainela-Arnold, Elina; Evans, Julia L.

    2014-01-01

    This study tested the predictions of the procedural deficit hypothesis by investigating the relationship between sequential statistical learning and two aspects of lexical ability, lexical-phonological and lexical-semantic, in children with and without specific language impairment (SLI). Participants included 40 children (ages 8;5–12;3), 20 children with SLI and 20 with typical development. Children completed Saffran’s statistical word segmentation task, a lexical-phonological access task (gating task), and a word definition task. Poor statistical learners were also poor at managing lexical-phonological competition during the gating task. However, statistical learning was not a significant predictor of semantic richness in word definitions. The ability to track statistical sequential regularities may be important for learning the inherently sequential structure of lexical-phonology, but not as important for learning lexical-semantic knowledge. Consistent with the procedural/declarative memory distinction, the brain networks associated with the two types of lexical learning are likely to have different learning properties. PMID:23425593

  2. Does semantic preactivation reduce inattentional blindness?

    PubMed

    Kreitz, Carina; Schnuerch, Robert; Furley, Philip A; Gibbons, Henning; Memmert, Daniel

    2015-04-01

    We are susceptible to failures of awareness if a stimulus occurs unexpectedly and our attention is focused elsewhere. Such inattentional blindness is modulated by various parameters, including stimulus attributes, the observer's cognitive resources, and the observer's attentional set regarding the primary task. In three behavioral experiments with a total of 360 participants, we investigated whether mere semantic preactivation of the color of an unexpected object can reduce inattentional blindness. Neither explicitly mentioning the color several times before the occurrence of the unexpected stimulus nor priming the color more implicitly via color-related concepts could significantly reduce the susceptibility to inattentional blindness. Even putting the specific color concept in the main focus of the primary task did not lead to reduced inattentional blindness. Thus, we have shown that the failure to consciously perceive unexpected objects was not moderated by semantic preactivation of the objects' most prominent feature: its color. We suggest that this finding reflects the rather general principle that preactivations that are not motivationally relevant for one's current selection goals do not suffice to make an unexpected object overcome the threshold of awareness.

  3. OntoPop: An Ontology Population System for the Semantic Web

    NASA Astrophysics Data System (ADS)

    Thongkrau, Theerayut; Lalitrojwong, Pattarachai

    The development of ontology at the instance level requires the extraction of the terms defining the instances from various data sources. These instances then are linked to the concepts of the ontology, and relationships are created between these instances for the next step. However, before establishing links among data, ontology engineers must classify terms or instances from a web document into an ontology concept. The tool for help ontology engineer in this task is called ontology population. The present research is not suitable for ontology development applications, such as long time processing or analyzing large or noisy data sets. OntoPop system introduces a methodology to solve these problems, which comprises two parts. First, we select meaningful features from syntactic relations, which can produce more significant features than any other method. Second, we differentiate feature meaning and reduce noise based on latent semantic analysis. Experimental evaluation demonstrates that the OntoPop works well, significantly out-performing the accuracy of 49.64%, a learning accuracy of 76.93%, and executes time of 5.46 second/instance.

  4. Aural mapping of STEM concepts using literature mining

    NASA Astrophysics Data System (ADS)

    Bharadwaj, Venkatesh

    Recent technological applications have made the life of people too much dependent on Science, Technology, Engineering, and Mathematics (STEM) and its applications. Understanding basic level science is a must in order to use and contribute to this technological revolution. Science education in middle and high school levels however depends heavily on visual representations such as models, diagrams, figures, animations and presentations etc. This leaves visually impaired students with very few options to learn science and secure a career in STEM related areas. Recent experiments have shown that small aural clues called Audemes are helpful in understanding and memorization of science concepts among visually impaired students. Audemes are non-verbal sound translations of a science concept. In order to facilitate science concepts as Audemes, for visually impaired students, this thesis presents an automatic system for audeme generation from STEM textbooks. This thesis describes the systematic application of multiple Natural Language Processing tools and techniques, such as dependency parser, POS tagger, Information Retrieval algorithm, Semantic mapping of aural words, machine learning etc., to transform the science concept into a combination of atomic-sounds, thus forming an audeme. We present a rule based classification method for all STEM related concepts. This work also presents a novel way of mapping and extracting most related sounds for the words being used in textbook. Additionally, machine learning methods are used in the system to guarantee the customization of output according to a user's perception. The system being presented is robust, scalable, fully automatic and dynamically adaptable for audeme generation.

  5. Semantic embodiment, disembodiment or misembodiment? In search of meaning in modules and neuron circuits.

    PubMed

    Pulvermüller, Friedemann

    2013-10-01

    "Embodied" proposals claim that the meaning of at least some words, concepts and constructions is grounded in knowledge about actions and objects. An alternative "disembodied" position locates semantics in a symbolic system functionally detached from sensorimotor modules. This latter view is not tenable theoretically and has been empirically falsified by neuroscience research. A minimally-embodied approach now claims that action-perception systems may "color", but not represent, meaning; however, such minimal embodiment (misembodiment?) still fails to explain why action and perception systems exert causal effects on the processing of symbols from specific semantic classes. Action perception theory (APT) offers neurobiological mechanisms for "embodied" referential, affective and action semantics along with "disembodied" mechanisms of semantic abstraction, generalization and symbol combination, which draw upon multimodal brain systems. In this sense, APT suggests integrative-neuromechanistic explanations of why both sensorimotor and multimodal areas of the human brain differentially contribute to specific facets of meaning and concepts. Copyright © 2013 The Authors. Published by Elsevier Inc. All rights reserved.

  6. Using deep learning for content-based medical image retrieval

    NASA Astrophysics Data System (ADS)

    Sun, Qinpei; Yang, Yuanyuan; Sun, Jianyong; Yang, Zhiming; Zhang, Jianguo

    2017-03-01

    Content-Based medical image retrieval (CBMIR) is been highly active research area from past few years. The retrieval performance of a CBMIR system crucially depends on the feature representation, which have been extensively studied by researchers for decades. Although a variety of techniques have been proposed, it remains one of the most challenging problems in current CBMIR research, which is mainly due to the well-known "semantic gap" issue that exists between low-level image pixels captured by machines and high-level semantic concepts perceived by human[1]. Recent years have witnessed some important advances of new techniques in machine learning. One important breakthrough technique is known as "deep learning". Unlike conventional machine learning methods that are often using "shallow" architectures, deep learning mimics the human brain that is organized in a deep architecture and processes information through multiple stages of transformation and representation. This means that we do not need to spend enormous energy to extract features manually. In this presentation, we propose a novel framework which uses deep learning to retrieval the medical image to improve the accuracy and speed of a CBIR in integrated RIS/PACS.

  7. Preliminary Development of a Multidimensional Semantic Patient Experience Measurement Questionnaire.

    PubMed

    Kleiss, James A

    2016-10-01

    The purpose of this research was to assess the utility and reliability of a multidimensional patient experience measurement questionnaire in a clinical setting. Patient experience has emerged as an important metric for quality of healthcare. A number of separate concepts have been used to measure patient experience, but psychological research suggests that subjective experience is actually a composite of several independent concepts including: (a) evaluation/valence, (b) potency/control, (c) activity/arousal, and (d) novelty. The present research evaluates the reliability of a multidimensional patient experience measurement questionnaire in a clinical setting. A multidimensional semantic differential questionnaire was developed to measure the four underlying semantic dimensions of patient experience mentioned above. A group of 60 patients used the questionnaire to assess prescan expectations and postscan experience of a magnetic resonance scan. Data for one patient were deleted because their scan was interrupted. Results revealed more positive evaluation/valence, higher potency/control, and lower activity/arousal for postscan ratings compared to prescan expectations. Ratings of novelty were neutral in both the prescan and the postscan conditions. Subsequent analysis suggested that internal consistency for some concepts could be improved by replacing several specific rating scales. Present results provide evidence of the utility and reliability of a multidimensional semantic questionnaire for measuring patient experience in an actual clinical setting. Recommendations to improve internal consistency for the concepts potency/control, activity/arousal, and novelty were also provided. © The Author(s) 2016.

  8. Conceptualizing and Describing Teachers' Learning of Pedagogical Concepts

    ERIC Educational Resources Information Center

    González, María José; Gómez, Pedro

    2014-01-01

    In this paper, we propose a model to explore how teachers learn pedagogical concepts in teacher education programs that expect them to become competent in lesson planning. In this context, we view pedagogical concepts as conceptual and methodological tools that help teachers to design a lesson plan on a topic, implement this lesson plan and assess…

  9. Conceptions of Memorizing and Understanding in Learning, and Self-Efficacy Held by University Biology Majors

    NASA Astrophysics Data System (ADS)

    Lin, Tzu-Chiang; Liang, Jyh-Chong; Tsai, Chin-Chung

    2015-02-01

    This study aims to explore Taiwanese university students' conceptions of learning biology as memorizing or as understanding, and their self-efficacy. To this end, two questionnaires were utilized to survey 293 Taiwanese university students with biology-related majors. A questionnaire for measuring students' conceptions of memorizing and understanding was validated through an exploratory factor analysis of participants' responses. As for the questionnaire regarding the students' biology learning self-efficacy (BLSE), an exploratory factor analysis revealed a total of four factors including higher-order cognitive skills (BLSE-HC), everyday application (BLSE-EA), science communication (BLSE-SC), and practical works (BLSE-PW). The results of the cluster analysis according to the participants' conceptions of learning biology indicated that students in the two major clusters either viewed learning biology as understanding or possessed mixed-conceptions of memorizing and understanding. The students in the third cluster mainly focused on memorizing in their learning while the students in the fourth cluster showed less agreement with both conceptions of memorizing and understanding. This study further revealed that the conception of learning as understanding was positively associated with the BLSE of university students with biology-related majors. However, the conception of learning as memorizing may foster students' BLSE only when such a notion co-exists with the conception of learning with understanding.

  10. Learning for Semantic Parsing with Kernels under Various Forms of Supervision

    DTIC Science & Technology

    2007-08-01

    natural language sentences to their formal executable meaning representations. This is a challenging problem and is critical for developing computing...sentences are semantically tractable. This indi- cates that Geoquery is more challenging domain for semantic parsing than ATIS. In the past, there have been a...Combining parsers. In Proceedings of the Conference on Em- pirical Methods in Natural Language Processing and Very Large Corpora (EMNLP/ VLC -99), pp. 187–194

  11. Using concept mapping to evaluate knowledge structure in problem-based learning.

    PubMed

    Hung, Chia-Hui; Lin, Chen-Yung

    2015-11-27

    Many educational programs incorporate problem-based learning (PBL) to promote students' learning; however, the knowledge structure developed in PBL remains unclear. The aim of this study was to use concept mapping to generate an understanding of the use of PBL in the development of knowledge structures. Using a quasi-experimental study design, we employed concept mapping to illustrate the effects of PBL by examining the patterns of concepts and differences in the knowledge structures of students taught with and without a PBL approach. Fifty-two occupational therapy undergraduates were involved in the study and were randomly divided into PBL and control groups. The PBL group was given two case scenarios for small group discussion, while the control group continued with ordinary teaching and learning. Students were asked to make concept maps after being taught about knowledge structure. A descriptive analysis of the morphology of concept maps was conducted in order to compare the integration of the students' knowledge structures, and statistical analyses were done to understand the differences between groups. Three categories of concept maps were identified as follows: isolated, departmental, and integrated. The students in the control group constructed more isolated maps, while the students in the PBL group tended toward integrated mapping. Concept Relationships, Hierarchy Levels, and Cross Linkages in the concept maps were significantly greater in the PBL group; however, examples of concept maps did not differ significantly between the two groups. The data indicated that PBL had a strong effect on the acquisition and integration of knowledge. The important properties of PBL, including situational learning, problem spaces, and small group interactions, can help students to acquire more concepts, achieve an integrated knowledge structure, and enhance clinical reasoning.

  12. SEMANTIC3D.NET: a New Large-Scale Point Cloud Classification Benchmark

    NASA Astrophysics Data System (ADS)

    Hackel, T.; Savinov, N.; Ladicky, L.; Wegner, J. D.; Schindler, K.; Pollefeys, M.

    2017-05-01

    This paper presents a new 3D point cloud classification benchmark data set with over four billion manually labelled points, meant as input for data-hungry (deep) learning methods. We also discuss first submissions to the benchmark that use deep convolutional neural networks (CNNs) as a work horse, which already show remarkable performance improvements over state-of-the-art. CNNs have become the de-facto standard for many tasks in computer vision and machine learning like semantic segmentation or object detection in images, but have no yet led to a true breakthrough for 3D point cloud labelling tasks due to lack of training data. With the massive data set presented in this paper, we aim at closing this data gap to help unleash the full potential of deep learning methods for 3D labelling tasks. Our semantic3D.net data set consists of dense point clouds acquired with static terrestrial laser scanners. It contains 8 semantic classes and covers a wide range of urban outdoor scenes: churches, streets, railroad tracks, squares, villages, soccer fields and castles. We describe our labelling interface and show that our data set provides more dense and complete point clouds with much higher overall number of labelled points compared to those already available to the research community. We further provide baseline method descriptions and comparison between methods submitted to our online system. We hope semantic3D.net will pave the way for deep learning methods in 3D point cloud labelling to learn richer, more general 3D representations, and first submissions after only a few months indicate that this might indeed be the case.

  13. Semantic Web-based digital, field and virtual geological

    NASA Astrophysics Data System (ADS)

    Babaie, H. A.

    2012-12-01

    Digital, field and virtual Semantic Web-based education (SWBE) of geological mapping requires the construction of a set of searchable, reusable, and interoperable digital learning objects (LO) for learners, teachers, and authors. These self-contained units of learning may be text, image, or audio, describing, for example, how to calculate the true dip of a layer from two structural contours or find the apparent dip along a line of section. A collection of multi-media LOs can be integrated, through domain and task ontologies, with mapping-related learning activities and Web services, for example, to search for the description of lithostratigraphic units in an area, or plotting orientation data on stereonet. Domain ontologies (e.g., GeologicStructure, Lithostratigraphy, Rock) represent knowledge in formal languages (RDF, OWL) by explicitly specifying concepts, relations, and theories involved in geological mapping. These ontologies are used by task ontologies that formalize the semantics of computational tasks (e.g., measuring the true thickness of a formation) and activities (e.g., construction of cross section) for all actors to solve specific problems (making map, instruction, learning support, authoring). A SWBE system for geological mapping should also involve ontologies to formalize teaching strategy (pedagogical styles), learner model (e.g., for student performance, personalization of learning), interface (entry points for activities of all actors), communication (exchange of messages among different components and actors), and educational Web services (for interoperability). In this ontology-based environment, actors interact with the LOs through educational servers, that manage (reuse, edit, delete, store) ontologies, and through tools which communicate with Web services to collect resources and links to other tools. Digital geological mapping involves a location-based, spatial organization of geological elements in a set of GIS thematic layers. Each layer

  14. Decoding semantic information from human electrocorticographic (ECoG) signals.

    PubMed

    Wang, Wei; Degenhart, Alan D; Sudre, Gustavo P; Pomerleau, Dean A; Tyler-Kabara, Elizabeth C

    2011-01-01

    This study examined the feasibility of decoding semantic information from human cortical activity. Four human subjects undergoing presurgical brain mapping and seizure foci localization participated in this study. Electrocorticographic (ECoG) signals were recorded while the subjects performed simple language tasks involving semantic information processing, such as a picture naming task where subjects named pictures of objects belonging to different semantic categories. Robust high-gamma band (60-120 Hz) activation was observed at the left inferior frontal gyrus (LIFG) and the posterior portion of the superior temporal gyrus (pSTG) with a temporal sequence corresponding to speech production and perception. Furthermore, Gaussian Naïve Bayes and Support Vector Machine classifiers, two commonly used machine learning algorithms for pattern recognition, were able to predict the semantic category of an object using cortical activity captured by ECoG electrodes covering the frontal, temporal and parietal cortices. These findings have implications for both basic neuroscience research and development of semantic-based brain-computer interface systems (BCI) that can help individuals with severe motor or communication disorders to express their intention and thoughts.

  15. Collaborative and Multilingual Approach to Learn Database Topics Using Concept Maps

    PubMed Central

    Calvo, Iñaki

    2014-01-01

    Authors report on a study using the concept mapping technique in computer engineering education for learning theoretical introductory database topics. In addition, the learning of multilingual technical terminology by means of the collaborative drawing of a concept map is also pursued in this experiment. The main characteristics of a study carried out in the database subject at the University of the Basque Country during the 2011/2012 course are described. This study contributes to the field of concept mapping as these kinds of cognitive tools have proved to be valid to support learning in computer engineering education. It contributes to the field of computer engineering education, providing a technique that can be incorporated with several educational purposes within the discipline. Results reveal the potential that a collaborative concept map editor offers to fulfil the above mentioned objectives. PMID:25538957

  16. Relationships between Students' Conceptions of Constructivist Learning and Their Regulation and Processing Strategies

    ERIC Educational Resources Information Center

    Loyens, Sofie M. M.; Rikers, Remy M. J. P.; Schmidt, Henk G.

    2008-01-01

    The present study investigated relationships between students' conceptions of constructivist learning on the one hand, and their regulation and processing strategies on the other hand. Students in a constructivist, problem-based learning curriculum were questioned about their conceptions of knowledge construction and self-regulated learning, as…

  17. An introduction to the Semantic Web for health sciences librarians.

    PubMed

    Robu, Ioana; Robu, Valentin; Thirion, Benoit

    2006-04-01

    The paper (1) introduces health sciences librarians to the main concepts and principles of the Semantic Web (SW) and (2) briefly reviews a number of projects on the handling of biomedical information that uses SW technology. The paper is structured into two main parts. "Semantic Web Technology" provides a high-level description, with examples, of the main standards and concepts: extensible markup language (XML), Resource Description Framework (RDF), RDF Schema (RDFS), ontologies, and their utility in information retrieval, concluding with mention of more advanced SW languages and their characteristics. "Semantic Web Applications and Research Projects in the Biomedical Field" is a brief review of the Unified Medical Language System (UMLS), Generalised Architecture for Languages, Encyclopedias and Nomenclatures in Medicine (GALEN), HealthCyberMap, LinkBase, and the thesaurus of the National Cancer Institute (NCI). The paper also mentions other benefits and by-products of the SW, citing projects related to them. Some of the problems facing the SW vision are presented, especially the ways in which the librarians' expertise in organizing knowledge and in structuring information may contribute to SW projects.

  18. KaBOB: ontology-based semantic integration of biomedical databases.

    PubMed

    Livingston, Kevin M; Bada, Michael; Baumgartner, William A; Hunter, Lawrence E

    2015-04-23

    The ability to query many independent biological databases using a common ontology-based semantic model would facilitate deeper integration and more effective utilization of these diverse and rapidly growing resources. Despite ongoing work moving toward shared data formats and linked identifiers, significant problems persist in semantic data integration in order to establish shared identity and shared meaning across heterogeneous biomedical data sources. We present five processes for semantic data integration that, when applied collectively, solve seven key problems. These processes include making explicit the differences between biomedical concepts and database records, aggregating sets of identifiers denoting the same biomedical concepts across data sources, and using declaratively represented forward-chaining rules to take information that is variably represented in source databases and integrating it into a consistent biomedical representation. We demonstrate these processes and solutions by presenting KaBOB (the Knowledge Base Of Biomedicine), a knowledge base of semantically integrated data from 18 prominent biomedical databases using common representations grounded in Open Biomedical Ontologies. An instance of KaBOB with data about humans and seven major model organisms can be built using on the order of 500 million RDF triples. All source code for building KaBOB is available under an open-source license. KaBOB is an integrated knowledge base of biomedical data representationally based in prominent, actively maintained Open Biomedical Ontologies, thus enabling queries of the underlying data in terms of biomedical concepts (e.g., genes and gene products, interactions and processes) rather than features of source-specific data schemas or file formats. KaBOB resolves many of the issues that routinely plague biomedical researchers intending to work with data from multiple data sources and provides a platform for ongoing data integration and development and for

  19. Assessing semantic similarity of texts - Methods and algorithms

    NASA Astrophysics Data System (ADS)

    Rozeva, Anna; Zerkova, Silvia

    2017-12-01

    Assessing the semantic similarity of texts is an important part of different text-related applications like educational systems, information retrieval, text summarization, etc. This task is performed by sophisticated analysis, which implements text-mining techniques. Text mining involves several pre-processing steps, which provide for obtaining structured representative model of the documents in a corpus by means of extracting and selecting the features, characterizing their content. Generally the model is vector-based and enables further analysis with knowledge discovery approaches. Algorithms and measures are used for assessing texts at syntactical and semantic level. An important text-mining method and similarity measure is latent semantic analysis (LSA). It provides for reducing the dimensionality of the document vector space and better capturing the text semantics. The mathematical background of LSA for deriving the meaning of the words in a given text by exploring their co-occurrence is examined. The algorithm for obtaining the vector representation of words and their corresponding latent concepts in a reduced multidimensional space as well as similarity calculation are presented.

  20. Fast mapping semantic features: performance of adults with normal language, history of disorders of spoken and written language, and attention deficit hyperactivity disorder on a word-learning task.

    PubMed

    Alt, Mary; Gutmann, Michelle L

    2009-01-01

    This study was designed to test the word learning abilities of adults with typical language abilities, those with a history of disorders of spoken or written language (hDSWL), and hDSWL plus attention deficit hyperactivity disorder (+ADHD). Sixty-eight adults were required to associate a novel object with a novel label, and then recognize semantic features of the object and phonological features of the label. Participants were tested for overt ability (accuracy) and covert processing (reaction time). The +ADHD group was less accurate at mapping semantic features and slower to respond to lexical labels than both other groups. Different factors correlated with word learning performance for each group. Adults with language and attention deficits are more impaired at word learning than adults with language deficits only. Despite behavioral profiles like typical peers, adults with hDSWL may use different processing strategies than their peers. Readers will be able to: (1) recognize the influence of a dual disability (hDSWL and ADHD) on word learning outcomes; (2) identify factors that may contribute to word learning in adults in terms of (a) the nature of the words to be learned and (b) the language processing of the learner.