Action representation: crosstalk between semantics and pragmatics.
Prinz, Wolfgang
2014-03-01
Marc Jeannerod pioneered a representational approach to movement and action. In his approach, motor representations provide both, declarative knowledge about action and procedural knowledge for action (action semantics and action pragmatics, respectively). Recent evidence from language comprehension and action simulation supports the claim that action pragmatics and action semantics draw on common representational resources, thus challenging the traditional divide between declarative and procedural action knowledge. To account for these observations, three kinds of theoretical frameworks are discussed: (i) semantics is grounded in pragmatics, (ii) pragmatics is anchored in semantics, and (iii) pragmatics is part and parcel of semantics. © 2013 Elsevier Ltd. All rights reserved.
Hoffman, Paul
2018-05-25
Semantic cognition refers to the appropriate use of acquired knowledge about the world. This requires representation of knowledge as well as control processes which ensure that currently-relevant aspects of knowledge are retrieved and selected. Although these abilities can be impaired selectively following brain damage, the relationship between them in healthy individuals is unclear. It is also commonly assumed that semantic cognition is preserved in later life, because older people have greater reserves of knowledge. However, this claim overlooks the possibility of decline in semantic control processes. Here, semantic cognition was assessed in 100 young and older adults. Despite having a broader knowledge base, older people showed specific impairments in semantic control, performing more poorly than young people when selecting among competing semantic representations. Conversely, they showed preserved controlled retrieval of less salient information from the semantic store. Breadth of semantic knowledge was positively correlated with controlled retrieval but was unrelated to semantic selection ability, which was instead correlated with non-semantic executive function. These findings indicate that three distinct elements contribute to semantic cognition: semantic representations that accumulate throughout the lifespan, processes for controlled retrieval of less salient semantic information, which appear age-invariant, and mechanisms for selecting task-relevant aspects of semantic knowledge, which decline with age and may relate more closely to domain-general executive control.
Robinson, Sally J; Temple, Christine M
2013-04-01
This paper addresses the relative independence of different types of lexical- and factually-based semantic knowledge in JM, a 9-year-old boy with Klinefelter syndrome (KS). JM was matched to typically developing (TD) controls on the basis of chronological age. Lexical-semantic knowledge was investigated for common noun (CN) and mathematical vocabulary items (MV). Factually-based semantic knowledge was investigated for general and number facts. For CN items, JM's lexical stores were of a normal size but the volume of correct 'sensory feature' semantic knowledge he generated within verbal item descriptions was significantly reduced. He was also significantly impaired at naming item descriptions and pictures, particularly for fruit and vegetables. There was also weak object decision for fruit and vegetables. In contrast, for MV items, JM's lexical stores were elevated, with no significant difference in the amount and type of correct semantic knowledge generated within verbal item descriptions and normal naming. JM's fact retrieval accuracy was normal for all types of factual knowledge. JM's performance indicated a dissociation between the representation of CN and MV vocabulary items during development. JM's preserved semantic knowledge of facts in the face of impaired semantic knowledge of vocabulary also suggests that factually-based semantic knowledge representation is not dependent on normal lexical-semantic knowledge during development. These findings are discussed in relation to the emergence of distinct semantic knowledge representations during development, due to differing degrees of dependency upon the acquisition and representation of semantic knowledge from verbal propositions and perceptual input.
Research in Knowledge Representation for Natural Language Understanding
1980-11-01
artificial intelligence, natural language understanding , parsing, syntax, semantics, speaker meaning, knowledge representation, semantic networks...TinB PAGE map M W006 1Report No. 4513 L RESEARCH IN KNOWLEDGE REPRESENTATION FOR NATURAL LANGUAGE UNDERSTANDING Annual Report 1 September 1979 to 31... understanding , knowledge representation, and knowledge based inference. The work that we have been doing falls into three classes, successively motivated by
Research in Knowledge Representation for Natural Language Understanding.
1984-09-01
TYPE OF REPORT & PERIOO COVERED RESEARCH IN KNOWLEDGE REPRESENTATION Annual Report FOR NATURAL LANGUAGE UNDERSTANDING 9/1/83 - 8/31/84 S. PERFORMING...nhaber) Artificial intelligence, natural language understanding , knowledge representation, semantics, semantic networks, KL-TWO, NIKL, belief and...attempting to understand and react to a complex, evolving situation. This report summarizes our research in knowledge representation and natural language
Grilli, Matthew D
2017-11-01
Identity representations are higher-order knowledge structures that organise autobiographical memories on the basis of personality and role-based themes of one's self-concept. In two experiments, the extent to which different types of personal semantic content are reflected in these higher-order networks of memories was investigated. Healthy, young adult participants generated identity representations that varied in remoteness of formation and verbally reflected on these themes in an open-ended narrative task. The narrative responses were scored for retrieval of episodic, experience-near personal semantic and experience-far (i.e., abstract) personal semantic contents. Results revealed that to reflect on remotely formed identity representations, experience-far personal semantic contents were retrieved more than experience-near personal semantic contents. In contrast, to reflect on recently formed identity representations, experience-near personal semantic contents were retrieved more than experience-far personal semantic contents. Although episodic memory contents were retrieved less than both personal semantic content types to reflect on remotely formed identity representations, this content type was retrieved at a similar frequency as experience-far personal semantic content to reflect on recently formed identity representations. These findings indicate that the association of personal semantic content to identity representations is robust and related to time since acquisition of these knowledge structures.
The representation of semantic knowledge in a child with Williams syndrome.
Robinson, Sally J; Temple, Christine M
2009-05-01
This study investigated whether there are distinct types of semantic knowledge with distinct representational bases during development. The representation of semantic knowledge in a teenage child (S.T.) with Williams syndrome was explored for the categories of animals, fruit, and vegetables, manipulable objects, and nonmanipulable objects. S.T.'s lexical stores were of a normal size but the volume of "sensory feature" semantic knowledge she generated in oral descriptions was reduced. In visual recognition decisions, S.T. made more false positives to nonitems than did controls. Although overall naming of pictures was unimpaired, S.T. exhibited a category-specific anomia for nonmanipulable objects and impaired naming of visual-feature descriptions of animals. S.T.'s performance was interpreted as reflecting the impaired integration of distinctive features from perceptual input, which may impact upon nonmanipulable objects to a greater extent than the other knowledge categories. Performance was used to inform adult-based models of semantic representation, with category structure proposed to emerge due to differing degrees of dependency upon underlying knowledge types, feature correlations, and the acquisition of information from modality-specific processing modules.
Cousins, Katheryn A Q; Grossman, Murray
2017-12-01
Category-specific impairments caused by brain damage can provide important insights into how semantic concepts are organized in the brain. Recent research has demonstrated that disease to sensory and motor cortices can impair perceptual feature knowledge important to the representation of semantic concepts. This evidence supports the grounded cognition theory of semantics, the view that lexical knowledge is partially grounded in perceptual experience and that sensory and motor regions support semantic representations. Less well understood, however, is how heteromodal semantic hubs work to integrate and process semantic information. Although the majority of semantic research to date has focused on how sensory cortical areas are important for the representation of semantic features, new research explores how semantic memory is affected by neurodegeneration in regions important for semantic processing. Here, we review studies that demonstrate impairments to abstract noun knowledge in behavioural variant frontotemporal degeneration (bvFTD) and to action verb knowledge in Parkinson's disease, and discuss how these deficits relate to disease of the semantic selection network. Findings demonstrate that semantic selection processes are supported by the left inferior frontal gyrus (LIFG) and basal ganglia, and that disease to these regions in bvFTD and Parkinson's disease can lead to categorical impairments for abstract nouns and action verbs, respectively.
Knowledge of the human body: a distinct semantic domain.
Coslett, H Branch; Saffran, Eleanor M; Schwoebel, John
2002-08-13
Patients with selective deficits in the naming and comprehension of animals, plants, and artifacts have been reported. These descriptions of specific semantic category deficits have contributed substantially to the understanding of the architecture of semantic representations. This study sought to further understanding of the organization of the semantic system by demonstrating that another semantic category, knowledge of the human body, may be selectively preserved. The performance of a patient with semantic dementia was compared with the performance of healthy controls on a variety of tasks assessing distinct types of body representations, including the body schema, body image, and body structural description. Despite substantial deficits on tasks involving language and knowledge of the world generally, the patient performed normally on all tests of body knowledge except body part naming; even in this naming task, however, her performance with body parts was significantly better than on artifacts. The demonstration that body knowledge may be preserved despite substantial semantic deficits involving other types of semantic information argues that body knowledge is a distinct and dissociable semantic category. These data are interpreted as support for a model of semantics that proposes that knowledge is distributed across different cortical regions reflecting the manner in which the information was acquired.
EliXR-TIME: A Temporal Knowledge Representation for Clinical Research Eligibility Criteria.
Boland, Mary Regina; Tu, Samson W; Carini, Simona; Sim, Ida; Weng, Chunhua
2012-01-01
Effective clinical text processing requires accurate extraction and representation of temporal expressions. Multiple temporal information extraction models were developed but a similar need for extracting temporal expressions in eligibility criteria (e.g., for eligibility determination) remains. We identified the temporal knowledge representation requirements of eligibility criteria by reviewing 100 temporal criteria. We developed EliXR-TIME, a frame-based representation designed to support semantic annotation for temporal expressions in eligibility criteria by reusing applicable classes from well-known clinical temporal knowledge representations. We used EliXR-TIME to analyze a training set of 50 new temporal eligibility criteria. We evaluated EliXR-TIME using an additional random sample of 20 eligibility criteria with temporal expressions that have no overlap with the training data, yielding 92.7% (76 / 82) inter-coder agreement on sentence chunking and 72% (72 / 100) agreement on semantic annotation. We conclude that this knowledge representation can facilitate semantic annotation of the temporal expressions in eligibility criteria.
Gainotti, Guido
2015-04-01
The present review aimed to check two proposals alternative to the original version of the 'semantic hub' hypothesis, based on semantic dementia (SD) data, which assumed that left and right anterior temporal lobes (ATLs) store in a unitary, amodal format all kinds of semantic representations. The first alternative proposal is that the right ATL might subsume non-verbal representations and the left ATL lexical-semantic representations and that only in the advanced stages of SD, when atrophy affects the ATLs bilaterally, the semantic impairment becomes 'multi-modal'. The second alternative suggestion is that right and left ATLs might underlie two different domains of knowledge, because general conceptual knowledge might be supported by the left ATL, and social cognition by the right ATL. Results of the review substantially support the first proposal, showing that the right ATL subsumes non-verbal representations and the left ATL lexical-semantic representations. They are less conclusive about the second suggestion, because the right ATL seems to play a more important role in behavioral and emotional functions than in higher level social cognition. Copyright © 2015 Elsevier Ltd. All rights reserved.
Auclair, Laurent; Jambaqué, Isabelle
2015-01-01
This study addresses the relation between lexico-semantic body knowledge (i.e., body semantics) and spatial body representation (i.e., structural body representation) by analyzing naming performances as a function of body structural topography. One hundred and forty-one children ranging from 5 years 2 months to 10 years 5 months old were asked to provide a lexical label for isolated body part pictures. We compared the children's naming performances according to the location of the body parts (body parts vs. head features and also upper vs. lower limbs) or to their involvement in motor skills (distal segments, joints, and broader body parts). The results showed that the children's naming performance was better for facial body parts than for other body parts. Furthermore, it was found that the naming of body parts was better for body parts related to action. These findings suggest that the development of a spatial body representation shapes the elaboration of semantic body representation processing. Moreover, this influence was not limited to younger children. In our discussion of these results, we focus on the important role of action in the development of body representations and semantic organization.
Concepts, Control, and Context: A Connectionist Account of Normal and Disordered Semantic Cognition
2018-01-01
Semantic cognition requires conceptual representations shaped by verbal and nonverbal experience and executive control processes that regulate activation of knowledge to meet current situational demands. A complete model must also account for the representation of concrete and abstract words, of taxonomic and associative relationships, and for the role of context in shaping meaning. We present the first major attempt to assimilate all of these elements within a unified, implemented computational framework. Our model combines a hub-and-spoke architecture with a buffer that allows its state to be influenced by prior context. This hybrid structure integrates the view, from cognitive neuroscience, that concepts are grounded in sensory-motor representation with the view, from computational linguistics, that knowledge is shaped by patterns of lexical co-occurrence. The model successfully codes knowledge for abstract and concrete words, associative and taxonomic relationships, and the multiple meanings of homonyms, within a single representational space. Knowledge of abstract words is acquired through (a) their patterns of co-occurrence with other words and (b) acquired embodiment, whereby they become indirectly associated with the perceptual features of co-occurring concrete words. The model accounts for executive influences on semantics by including a controlled retrieval mechanism that provides top-down input to amplify weak semantic relationships. The representational and control elements of the model can be damaged independently, and the consequences of such damage closely replicate effects seen in neuropsychological patients with loss of semantic representation versus control processes. Thus, the model provides a wide-ranging and neurally plausible account of normal and impaired semantic cognition. PMID:29733663
Semantic representation of CDC-PHIN vocabulary using Simple Knowledge Organization System.
Zhu, Min; Mirhaji, Parsa
2008-11-06
PHIN Vocabulary Access and Distribution System (VADS) promotes the use of standards based vocabulary within CDC information systems. However, the current PHIN vocabulary representation hinders its wide adoption. Simple Knowledge Organization System (SKOS) is a W3C draft specification to support the formal representation of Knowledge Organization Systems (KOS) within the framework of the Semantic Web. We present a method of adopting SKOS to represent PHIN vocabulary in order to enable automated information sharing and integration.
Structure and Deterioration of Semantic Memory: A Neuropsychological and Computational Investigation
ERIC Educational Resources Information Center
Rogers, Timothy T.; Lambon Ralph, Matthew A.; Garrard, Peter; Bozeat, Sasha; McClelland, James L.; Hodges, John R.; Patterson, Karalyn
2004-01-01
Wernicke (1900, as cited in G. H. Eggert, 1977) suggested that semantic knowledge arises from the interaction of perceptual representations of objects and words. The authors present a parallel distributed processing implementation of this theory, in which semantic representations emerge from mechanisms that acquire the mappings between visual…
Formal ontologies in biomedical knowledge representation.
Schulz, S; Jansen, L
2013-01-01
Medical decision support and other intelligent applications in the life sciences depend on increasing amounts of digital information. Knowledge bases as well as formal ontologies are being used to organize biomedical knowledge and data. However, these two kinds of artefacts are not always clearly distinguished. Whereas the popular RDF(S) standard provides an intuitive triple-based representation, it is semantically weak. Description logics based ontology languages like OWL-DL carry a clear-cut semantics, but they are computationally expensive, and they are often misinterpreted to encode all kinds of statements, including those which are not ontological. We distinguish four kinds of statements needed to comprehensively represent domain knowledge: universal statements, terminological statements, statements about particulars and contingent statements. We argue that the task of formal ontologies is solely to represent universal statements, while the non-ontological kinds of statements can nevertheless be connected with ontological representations. To illustrate these four types of representations, we use a running example from parasitology. We finally formulate recommendations for semantically adequate ontologies that can efficiently be used as a stable framework for more context-dependent biomedical knowledge representation and reasoning applications like clinical decision support systems.
Temporal Representation in Semantic Graphs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Levandoski, J J; Abdulla, G M
2007-08-07
A wide range of knowledge discovery and analysis applications, ranging from business to biological, make use of semantic graphs when modeling relationships and concepts. Most of the semantic graphs used in these applications are assumed to be static pieces of information, meaning temporal evolution of concepts and relationships are not taken into account. Guided by the need for more advanced semantic graph queries involving temporal concepts, this paper surveys the existing work involving temporal representations in semantic graphs.
Short-term Action Intentions Overrule Long-Term Semantic Knowledge
ERIC Educational Resources Information Center
van Elk, M.; van Schie, H.T.; Bekkering, H.
2009-01-01
In the present study, we investigated whether the preparation of an unusual action with an object (e.g. bringing a cup towards the eye) could selectively overrule long-term semantic representations. In the first experiment it was found that unusual action intentions activated short-term semantic goal representations, rather than long-term…
On a categorial aspect of knowledge representation
NASA Astrophysics Data System (ADS)
Tataj, Emanuel; Mulawka, Jan; Nieznański, Edward
Adequate representation of data is crucial for modeling any type of data. To faithfully present and describe the relevant section of the world it is necessary to select the method that can easily be implemented on a computer system which will help in further description allowing reasoning. The main objective of this contribution is to present methods of knowledge representation using categorial approach. Next to identify the main advantages for computer implementation. Categorical aspect of knowledge representation is considered in semantic networks realisation. Such method borrows already known metaphysics properties for data modeling process. The potential topics of further development of categorical semantic networks implementations are also underlined.
Reilly, Jamie; Peelle, Jonathan E; Garcia, Amanda; Crutch, Sebastian J
2016-01-01
Biological plausibility is an essential constraint for any viable model of semantic memory. Yet, we have only the most rudimentary understanding of how the human brain conducts abstract symbolic transformations that underlie word and object meaning. Neuroscience has evolved a sophisticated arsenal of techniques for elucidating the architecture of conceptual representation. Nevertheless, theoretical convergence remains elusive. Here we describe several contrastive approaches to the organization of semantic knowledge, and in turn we offer our own perspective on two recurring questions in semantic memory research: 1) to what extent are conceptual representations mediated by sensorimotor knowledge (i.e., to what degree is semantic memory embodied)? 2) How might an embodied semantic system represent abstract concepts such as modularity, symbol, or proposition? To address these questions, we review the merits of sensorimotor (i.e., embodied) and amodal (i.e., disembodied) semantic theories and address the neurobiological constraints underlying each. We conclude that the shortcomings of both perspectives in their extreme forms necessitate a hybrid middle ground. We accordingly propose the Dynamic Multilevel Reactivation Framework, an integrative model premised upon flexible interplay between sensorimotor and amodal symbolic representations mediated by multiple cortical hubs. We discuss applications of the Dynamic Multilevel Reactivation Framework to abstract and concrete concept representation and describe how a multidimensional conceptual topography based on emotion, sensation, and magnitude can successfully frame a semantic space containing meanings for both abstract and concrete words. The consideration of ‘abstract conceptual features’ does not diminish the role of logical and/or executive processing in activating, manipulating and using information stored in conceptual representations. Rather, it proposes that the material on which these processes operate necessarily combine pure sensorimotor information and higher-order cognitive dimensions involved in symbolic representation. PMID:27294419
Reilly, Jamie; Peelle, Jonathan E; Garcia, Amanda; Crutch, Sebastian J
2016-08-01
Biological plausibility is an essential constraint for any viable model of semantic memory. Yet, we have only the most rudimentary understanding of how the human brain conducts abstract symbolic transformations that underlie word and object meaning. Neuroscience has evolved a sophisticated arsenal of techniques for elucidating the architecture of conceptual representation. Nevertheless, theoretical convergence remains elusive. Here we describe several contrastive approaches to the organization of semantic knowledge, and in turn we offer our own perspective on two recurring questions in semantic memory research: (1) to what extent are conceptual representations mediated by sensorimotor knowledge (i.e., to what degree is semantic memory embodied)? (2) How might an embodied semantic system represent abstract concepts such as modularity, symbol, or proposition? To address these questions, we review the merits of sensorimotor (i.e., embodied) and amodal (i.e., disembodied) semantic theories and address the neurobiological constraints underlying each. We conclude that the shortcomings of both perspectives in their extreme forms necessitate a hybrid middle ground. We accordingly propose the Dynamic Multilevel Reactivation Framework-an integrative model predicated upon flexible interplay between sensorimotor and amodal symbolic representations mediated by multiple cortical hubs. We discuss applications of the dynamic multilevel reactivation framework to abstract and concrete concept representation and describe how a multidimensional conceptual topography based on emotion, sensation, and magnitude can successfully frame a semantic space containing meanings for both abstract and concrete words. The consideration of 'abstract conceptual features' does not diminish the role of logical and/or executive processing in activating, manipulating and using information stored in conceptual representations. Rather, it proposes that the materials upon which these processes operate necessarily combine pure sensorimotor information and higher-order cognitive dimensions involved in symbolic representation.
Knowledge Representation: A Brief Review.
ERIC Educational Resources Information Center
Vickery, B. C.
1986-01-01
Reviews different structures and techniques of knowledge representation: structure of database records and files, data structures in computer programming, syntatic and semantic structure of natural language, knowledge representation in artificial intelligence, and models of human memory. A prototype expert system that makes use of some of these…
ERIC Educational Resources Information Center
Mason-Baughman, Mary Beth; Wallace, Sarah E.
2014-01-01
Previous studies suggest that people with aphasia have incomplete lexical-semantic representations with decreased low-importance distinctive (LID) feature knowledge. In addition, decreased LID feature knowledge correlates with ability to discriminate among semantically related words. The current study seeks to replicate and extend previous…
Modeling and formal representation of geospatial knowledge for the Geospatial Semantic Web
NASA Astrophysics Data System (ADS)
Huang, Hong; Gong, Jianya
2008-12-01
GML can only achieve geospatial interoperation at syntactic level. However, it is necessary to resolve difference of spatial cognition in the first place in most occasions, so ontology was introduced to describe geospatial information and services. But it is obviously difficult and improper to let users to find, match and compose services, especially in some occasions there are complicated business logics. Currently, with the gradual introduction of Semantic Web technology (e.g., OWL, SWRL), the focus of the interoperation of geospatial information has shifted from syntactic level to Semantic and even automatic, intelligent level. In this way, Geospatial Semantic Web (GSM) can be put forward as an augmentation to the Semantic Web that additionally includes geospatial abstractions as well as related reasoning, representation and query mechanisms. To advance the implementation of GSM, we first attempt to construct the mechanism of modeling and formal representation of geospatial knowledge, which are also two mostly foundational phases in knowledge engineering (KE). Our attitude in this paper is quite pragmatical: we argue that geospatial context is a formal model of the discriminate environment characters of geospatial knowledge, and the derivation, understanding and using of geospatial knowledge are located in geospatial context. Therefore, first, we put forward a primitive hierarchy of geospatial knowledge referencing first order logic, formal ontologies, rules and GML. Second, a metamodel of geospatial context is proposed and we use the modeling methods and representation languages of formal ontologies to process geospatial context. Thirdly, we extend Web Process Service (WPS) to be compatible with local DLL for geoprocessing and possess inference capability based on OWL.
Practical Experiences for the Development of Educational Systems in the Semantic Web
ERIC Educational Resources Information Center
Sánchez Vera, Ma. del Mar; Tomás Fernández Breis, Jesualdo; Serrano Sánchez, José Luis; Prendes Espinosa, Ma. Paz
2013-01-01
Semantic Web technologies have been applied in educational settings for different purposes in recent years, with the type of application being mainly defined by the way in which knowledge is represented and exploited. The basic technology for knowledge representation in Semantic Web settings is the ontology, which represents a common, shareable…
Gainotti, Guido
2011-04-01
In recent years, the anatomical and functional bases of conceptual activity have attracted a growing interest. In particular, Patterson and Lambon-Ralph have proposed the existence, in the anterior parts of the temporal lobes, of a mechanism (the 'amodal semantic hub') supporting the interactive activation of semantic representations in all modalities and for all semantic categories. The aim of then present paper is to discuss this model, arguing against the notion of an 'amodal' semantic hub, because we maintain, in agreement with the Damasio's construct of 'higher-order convergence zone', that a continuum exists between perceptual information and conceptual representations, whereas the 'amodal' account views perceptual informations only as a channel through which abstract semantic knowledge can be activated. According to our model, semantic organization can be better explained by two orthogonal higher-order convergence systems, concerning, on one hand, the right vs. left hemisphere and, on the other hand, the ventral vs. dorsal processing pathways. This model posits that conceptual representations may be mainly based upon perceptual activities in the right hemisphere and upon verbal mediation in the left side of the brain. It also assumes that conceptual knowledge based on the convergence of highly processed visual information with other perceptual data (and mainly concerning living categories) may be bilaterally represented in the anterior parts of the temporal lobes, whereas knowledge based on the integration of visual data with action schemata (namely knowledge of actions, body parts and artefacts) may be more represented in the left fronto-temporo-parietal areas. Copyright © 2010 Elsevier Inc. All rights reserved.
ERIC Educational Resources Information Center
Einsiedler, Wolfgang
1996-01-01
Asks whether theories of knowledge representation provide a basis for the development of theories of knowledge structuring in instruction. Discusses codes of knowledge, surface versus deep structures, semantic networks, and multiple memory systems. Reviews research on teaching, external representation of cognitive structures, hierarchical…
Haslam, Catherine; Sabah, Mazen
2013-03-01
The double dissociation involving person-specific and general semantic knowledge is supported by numerous patient studies, though cases with preservation of the former are few. In this paper, we report longitudinal data from two cases. Their knowledge in both domains was preserved at the start of the investigation, but progressive deterioration was primarily observed on tests of general semantics. These data strengthen the evidence-base for preservation of person-specific knowledge in semantic memory disorder, and support its separate representation from object knowledge. © 2012 The British Psychological Society.
Semantics of the visual environment encoded in parahippocampal cortex
Bonner, Michael F.; Price, Amy Rose; Peelle, Jonathan E.; Grossman, Murray
2016-01-01
Semantic representations capture the statistics of experience and store this information in memory. A fundamental component of this memory system is knowledge of the visual environment, including knowledge of objects and their associations. Visual semantic information underlies a range of behaviors, from perceptual categorization to cognitive processes such as language and reasoning. Here we examine the neuroanatomic system that encodes visual semantics. Across three experiments, we found converging evidence indicating that knowledge of verbally mediated visual concepts relies on information encoded in a region of the ventral-medial temporal lobe centered on parahippocampal cortex. In an fMRI study, this region was strongly engaged by the processing of concepts relying on visual knowledge but not by concepts relying on other sensory modalities. In a study of patients with the semantic variant of primary progressive aphasia (semantic dementia), atrophy that encompassed this region was associated with a specific impairment in verbally mediated visual semantic knowledge. Finally, in a structural study of healthy adults from the fMRI experiment, gray matter density in this region related to individual variability in the processing of visual concepts. The anatomic location of these findings aligns with recent work linking the ventral-medial temporal lobe with high-level visual representation, contextual associations, and reasoning through imagination. Together this work suggests a critical role for parahippocampal cortex in linking the visual environment with knowledge systems in the human brain. PMID:26679216
Semantics of the Visual Environment Encoded in Parahippocampal Cortex.
Bonner, Michael F; Price, Amy Rose; Peelle, Jonathan E; Grossman, Murray
2016-03-01
Semantic representations capture the statistics of experience and store this information in memory. A fundamental component of this memory system is knowledge of the visual environment, including knowledge of objects and their associations. Visual semantic information underlies a range of behaviors, from perceptual categorization to cognitive processes such as language and reasoning. Here we examine the neuroanatomic system that encodes visual semantics. Across three experiments, we found converging evidence indicating that knowledge of verbally mediated visual concepts relies on information encoded in a region of the ventral-medial temporal lobe centered on parahippocampal cortex. In an fMRI study, this region was strongly engaged by the processing of concepts relying on visual knowledge but not by concepts relying on other sensory modalities. In a study of patients with the semantic variant of primary progressive aphasia (semantic dementia), atrophy that encompassed this region was associated with a specific impairment in verbally mediated visual semantic knowledge. Finally, in a structural study of healthy adults from the fMRI experiment, gray matter density in this region related to individual variability in the processing of visual concepts. The anatomic location of these findings aligns with recent work linking the ventral-medial temporal lobe with high-level visual representation, contextual associations, and reasoning through imagination. Together, this work suggests a critical role for parahippocampal cortex in linking the visual environment with knowledge systems in the human brain.
Gainotti, Guido; Ciaraffa, Francesca; Silveri, Maria Caterina; Marra, Camillo
2009-11-01
According to the "sensory-motor model of semantic knowledge," different categories of knowledge differ for the weight that different "sources of knowledge" have in their representation. Our study aimed to evaluate this model, checking if subjective evaluations given by normal subjects confirm the different weight that various sources of knowledge have in the representation of different biological and artifact categories and of unique entities, such as famous people or monuments. Results showed that the visual properties are considered as the main source of knowledge for all the living and nonliving categories (as well as for unique entities), but that the clustering of these "sources of knowledge" is different for biological and artifacts categories. Visual data are, indeed, mainly associated with other perceptual (auditory, olfactory, gustatory, and tactual) attributes in the mental representation of living beings and unique entities, whereas they are associated with action-related properties and tactile information in the case of artifacts.
Huebner, Philip A.; Willits, Jon A.
2018-01-01
Previous research has suggested that distributional learning mechanisms may contribute to the acquisition of semantic knowledge. However, distributional learning mechanisms, statistical learning, and contemporary “deep learning” approaches have been criticized for being incapable of learning the kind of abstract and structured knowledge that many think is required for acquisition of semantic knowledge. In this paper, we show that recurrent neural networks, trained on noisy naturalistic speech to children, do in fact learn what appears to be abstract and structured knowledge. We trained two types of recurrent neural networks (Simple Recurrent Network, and Long Short-Term Memory) to predict word sequences in a 5-million-word corpus of speech directed to children ages 0–3 years old, and assessed what semantic knowledge they acquired. We found that learned internal representations are encoding various abstract grammatical and semantic features that are useful for predicting word sequences. Assessing the organization of semantic knowledge in terms of the similarity structure, we found evidence of emergent categorical and hierarchical structure in both models. We found that the Long Short-term Memory (LSTM) and SRN are both learning very similar kinds of representations, but the LSTM achieved higher levels of performance on a quantitative evaluation. We also trained a non-recurrent neural network, Skip-gram, on the same input to compare our results to the state-of-the-art in machine learning. We found that Skip-gram achieves relatively similar performance to the LSTM, but is representing words more in terms of thematic compared to taxonomic relations, and we provide reasons why this might be the case. Our findings show that a learning system that derives abstract, distributed representations for the purpose of predicting sequential dependencies in naturalistic language may provide insight into emergence of many properties of the developing semantic system. PMID:29520243
Palmiero, Massimiliano; Di Matteo, Rosalia; Belardinelli, Marta Olivetti
2014-05-01
Two experiments comparing imaginative processing in different modalities and semantic processing were carried out to investigate the issue of whether conceptual knowledge can be represented in different format. Participants were asked to judge the similarity between visual images, auditory images, and olfactory images in the imaginative block, if two items belonged to the same category in the semantic block. Items were verbally cued in both experiments. The degree of similarity between the imaginative and semantic items was changed across experiments. Experiment 1 showed that the semantic processing was faster than the visual and the auditory imaginative processing, whereas no differentiation was possible between the semantic processing and the olfactory imaginative processing. Experiment 2 revealed that only the visual imaginative processing could be differentiated from the semantic processing in terms of accuracy. These results showed that the visual and auditory imaginative processing can be differentiated from the semantic processing, although both visual and auditory images strongly rely on semantic representations. On the contrary, no differentiation is possible within the olfactory domain. Results are discussed in the frame of the imagery debate.
The semantic representation of prejudice and stereotypes.
Bhatia, Sudeep
2017-07-01
We use a theory of semantic representation to study prejudice and stereotyping. Particularly, we consider large datasets of newspaper articles published in the United States, and apply latent semantic analysis (LSA), a prominent model of human semantic memory, to these datasets to learn representations for common male and female, White, African American, and Latino names. LSA performs a singular value decomposition on word distribution statistics in order to recover word vector representations, and we find that our recovered representations display the types of biases observed in human participants using tasks such as the implicit association test. Importantly, these biases are strongest for vector representations with moderate dimensionality, and weaken or disappear for representations with very high or very low dimensionality. Moderate dimensional LSA models are also the best at learning race, ethnicity, and gender-based categories, suggesting that social category knowledge, acquired through dimensionality reduction on word distribution statistics, can facilitate prejudiced and stereotyped associations. Copyright © 2017 Elsevier B.V. All rights reserved.
Hologram representation of design data in an expert system knowledge base
NASA Technical Reports Server (NTRS)
Shiva, S. G.; Klon, Peter F.
1988-01-01
A novel representational scheme for design object descriptions is presented. An abstract notion of modules and signals is developed as a conceptual foundation for the scheme. This abstraction relates the objects to the meaning of system descriptions. Anchored on this abstraction, a representational model which incorporates dynamic semantics for these objects is presented. This representational model is called a hologram scheme since it represents dual level information, namely, structural and semantic. The benefits of this scheme are presented.
2011-01-01
Background Over the past several centuries, chemistry has permeated virtually every facet of human lifestyle, enriching fields as diverse as medicine, agriculture, manufacturing, warfare, and electronics, among numerous others. Unfortunately, application-specific, incompatible chemical information formats and representation strategies have emerged as a result of such diverse adoption of chemistry. Although a number of efforts have been dedicated to unifying the computational representation of chemical information, disparities between the various chemical databases still persist and stand in the way of cross-domain, interdisciplinary investigations. Through a common syntax and formal semantics, Semantic Web technology offers the ability to accurately represent, integrate, reason about and query across diverse chemical information. Results Here we specify and implement the Chemical Entity Semantic Specification (CHESS) for the representation of polyatomic chemical entities, their substructures, bonds, atoms, and reactions using Semantic Web technologies. CHESS provides means to capture aspects of their corresponding chemical descriptors, connectivity, functional composition, and geometric structure while specifying mechanisms for data provenance. We demonstrate that using our readily extensible specification, it is possible to efficiently integrate multiple disparate chemical data sources, while retaining appropriate correspondence of chemical descriptors, with very little additional effort. We demonstrate the impact of some of our representational decisions on the performance of chemically-aware knowledgebase searching and rudimentary reaction candidate selection. Finally, we provide access to the tools necessary to carry out chemical entity encoding in CHESS, along with a sample knowledgebase. Conclusions By harnessing the power of Semantic Web technologies with CHESS, it is possible to provide a means of facile cross-domain chemical knowledge integration with full preservation of data correspondence and provenance. Our representation builds on existing cheminformatics technologies and, by the virtue of RDF specification, remains flexible and amenable to application- and domain-specific annotations without compromising chemical data integration. We conclude that the adoption of a consistent and semantically-enabled chemical specification is imperative for surviving the coming chemical data deluge and supporting systems science research. PMID:21595881
Chepelev, Leonid L; Dumontier, Michel
2011-05-19
Over the past several centuries, chemistry has permeated virtually every facet of human lifestyle, enriching fields as diverse as medicine, agriculture, manufacturing, warfare, and electronics, among numerous others. Unfortunately, application-specific, incompatible chemical information formats and representation strategies have emerged as a result of such diverse adoption of chemistry. Although a number of efforts have been dedicated to unifying the computational representation of chemical information, disparities between the various chemical databases still persist and stand in the way of cross-domain, interdisciplinary investigations. Through a common syntax and formal semantics, Semantic Web technology offers the ability to accurately represent, integrate, reason about and query across diverse chemical information. Here we specify and implement the Chemical Entity Semantic Specification (CHESS) for the representation of polyatomic chemical entities, their substructures, bonds, atoms, and reactions using Semantic Web technologies. CHESS provides means to capture aspects of their corresponding chemical descriptors, connectivity, functional composition, and geometric structure while specifying mechanisms for data provenance. We demonstrate that using our readily extensible specification, it is possible to efficiently integrate multiple disparate chemical data sources, while retaining appropriate correspondence of chemical descriptors, with very little additional effort. We demonstrate the impact of some of our representational decisions on the performance of chemically-aware knowledgebase searching and rudimentary reaction candidate selection. Finally, we provide access to the tools necessary to carry out chemical entity encoding in CHESS, along with a sample knowledgebase. By harnessing the power of Semantic Web technologies with CHESS, it is possible to provide a means of facile cross-domain chemical knowledge integration with full preservation of data correspondence and provenance. Our representation builds on existing cheminformatics technologies and, by the virtue of RDF specification, remains flexible and amenable to application- and domain-specific annotations without compromising chemical data integration. We conclude that the adoption of a consistent and semantically-enabled chemical specification is imperative for surviving the coming chemical data deluge and supporting systems science research.
Standard model of knowledge representation
NASA Astrophysics Data System (ADS)
Yin, Wensheng
2016-09-01
Knowledge representation is the core of artificial intelligence research. Knowledge representation methods include predicate logic, semantic network, computer programming language, database, mathematical model, graphics language, natural language, etc. To establish the intrinsic link between various knowledge representation methods, a unified knowledge representation model is necessary. According to ontology, system theory, and control theory, a standard model of knowledge representation that reflects the change of the objective world is proposed. The model is composed of input, processing, and output. This knowledge representation method is not a contradiction to the traditional knowledge representation method. It can express knowledge in terms of multivariate and multidimensional. It can also express process knowledge, and at the same time, it has a strong ability to solve problems. In addition, the standard model of knowledge representation provides a way to solve problems of non-precision and inconsistent knowledge.
ERIC Educational Resources Information Center
Marczinski, Cecile A.; Kertesz, Andrew
2006-01-01
This study examined the impact of various degenerative dementias on access to semantic knowledge and the status of semantic representations. Patients with semantic dementia, primary progressive aphasia, and Alzheimer's disease were compared with elderly controls on tasks of category and letter fluency, with number of words generated, mean lexical…
Rassinoux, A-M
2011-01-01
To summarize excellent current research in the field of knowledge representation and management (KRM). A synopsis of the articles selected for the IMIA Yearbook 2011 is provided and an attempt to highlight the current trends in the field is sketched. This last decade, with the extension of the text-based web towards a semantic-structured web, NLP techniques have experienced a renewed interest in knowledge extraction. This trend is corroborated through the five papers selected for the KRM section of the Yearbook 2011. They all depict outstanding studies that exploit NLP technologies whenever possible in order to accurately extract meaningful information from various biomedical textual sources. Bringing semantic structure to the meaningful content of textual web pages affords the user with cooperative sharing and intelligent finding of electronic data. As exemplified by the best paper selection, more and more advanced biomedical applications aim at exploiting the meaningful richness of free-text documents in order to generate semantic metadata and recently to learn and populate domain ontologies. These later are becoming a key piece as they allow portraying the semantics of the Semantic Web content. Maintaining their consistency with documents and semantic annotations that refer to them is a crucial challenge of the Semantic Web for the coming years.
Knowledge represented using RDF semantic network in the concept of semantic web
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lukasova, A., E-mail: alena.lukasova@osu.cz; Vajgl, M., E-mail: marek.vajgl@osu.cz; Zacek, M., E-mail: martin.zacek@osu.cz
The RDF(S) model has been declared as the basic model to capture knowledge of the semantic web. It provides a common and flexible way to decompose composed knowledge to elementary statements, which can be represented by RDF triples or by RDF graph vectors. From the logical point of view, elements of knowledge can be expressed using at most binary predicates, which can be converted to RDF-triples or graph vectors. However, it is not able to capture implicit knowledge representable by logical formulas. This contribution shows how existing approaches (semantic networks and clausal form logic) can be combined together with RDFmore » to obtain RDF-compatible system with ability to represent implicit knowledge and inference over knowledge base.« less
Yeari, Menahem; van den Broek, Paul
2016-09-01
It is a well-accepted view that the prior semantic (general) knowledge that readers possess plays a central role in reading comprehension. Nevertheless, computational models of reading comprehension have not integrated the simulation of semantic knowledge and online comprehension processes under a unified mathematical algorithm. The present article introduces a computational model that integrates the landscape model of comprehension processes with latent semantic analysis representation of semantic knowledge. In three sets of simulations of previous behavioral findings, the integrated model successfully simulated the activation and attenuation of predictive and bridging inferences during reading, as well as centrality estimations and recall of textual information after reading. Analyses of the computational results revealed new theoretical insights regarding the underlying mechanisms of the various comprehension phenomena.
NASA Astrophysics Data System (ADS)
Maksimov, N. V.; Tikhomirov, G. V.; Golitsyna, O. L.
2017-01-01
The main problems and circumstances that influence the processes of creating effective knowledge management systems were described. These problems particularly include high species diversity of instruments for knowledge representation, lack of adequate lingware, including formal representation of semantic relationships. For semantic data descriptions development a conceptual model of the subject area and a conceptual-lexical system should be designed on proposals of ISO-15926 standard. It is proposed to conduct an information integration of educational and production processes on the basis of information systems technologies. Integrated knowledge management system information environment combines both traditional information resources and specific information resources of subject domain including task context and implicit/tacit knowledge.
Gainotti, Guido
2017-06-01
This paper reviews some controversies concerning the original and revised versions of the 'hub-and-spoke' model of conceptual representations and their implication for abstraction capacity levels. The 'hub-and-spoke' model, which is based on data gathered in patients with semantic dementia (SD), is the most authoritative model of conceptual knowledge. Patterson et al.'s (Nature Reviews Neuroscience, 8(12), 976-987, 2007) classical version of this model maintained that conceptual representations are stored in a unitary 'amodal' format in the right and left anterior temporal lobes (ATLs), because in SD the semantic disorder cuts across modalities and categories. Several authors questioned the unitary nature of these representations. They showed that the semantic impairment is 'multi-modal'only in the advanced stages of SD, when atrophy affects the ATLs bilaterally, but that impariments can be modality-specific in lateralised (early) stages of the disease. In these cases, SD mainly affects lexical-semantic knowledge when atrophy predominates on the left side and pictorial representations when atrophy prevails on the right side. Some aspects of the model (i.e. the importance of spokes, the multimodal format of representations and the graded convergence of modalities within the ATLs), which had already been outlined by Rogers et al. (Psychological Review, 111(1), 205-235, 2004) in a computational model of SD, were strengthened by these results. The relevance of these theoretical problems and of empirical data concerning the neural substrate of concrete and abstract words is discussed critically. The conclusion of the review is that the highest levels of abstraction are due more to the structuring influence of language than to the format of representations.
The Role of Semantic Features in Verb Processing
ERIC Educational Resources Information Center
Bonnotte, Isabelle
2008-01-01
The present study examined the general hypothesis that, as for nouns, stable representations of semantic knowledge relative to situations expressed by verbs are available and accessible in long term memory in normal people. Regular associations between verbs and past tenses in French adults allowed to abstract two superordinate semantic features…
Translation between representation languages
NASA Technical Reports Server (NTRS)
Vanbaalen, Jeffrey
1994-01-01
A capability for translating between representation languages is critical for effective knowledge base reuse. A translation technology for knowledge representation languages based on the use of an interlingua for communicating knowledge is described. The interlingua-based translation process consists of three major steps: translation from the source language into a subset of the interlingua, translation between subsets of the interlingua, and translation from a subset of the interlingua into the target language. The first translation step into the interlingua can typically be specified in the form of a grammar that describes how each top-level form in the source language translates into the interlingua. In cases where the source language does not have a declarative semantics, such a grammar is also a specification of a declarative semantics for the language. A methodology for building translators that is currently under development is described. A 'translator shell' based on this methodology is also under development. The shell has been used to build translators for multiple representation languages and those translators have successfully translated nontrivial knowledge bases.
Incorporating linguistic knowledge for learning distributed word representations.
Wang, Yan; Liu, Zhiyuan; Sun, Maosong
2015-01-01
Combined with neural language models, distributed word representations achieve significant advantages in computational linguistics and text mining. Most existing models estimate distributed word vectors from large-scale data in an unsupervised fashion, which, however, do not take rich linguistic knowledge into consideration. Linguistic knowledge can be represented as either link-based knowledge or preference-based knowledge, and we propose knowledge regularized word representation models (KRWR) to incorporate these prior knowledge for learning distributed word representations. Experiment results demonstrate that our estimated word representation achieves better performance in task of semantic relatedness ranking. This indicates that our methods can efficiently encode both prior knowledge from knowledge bases and statistical knowledge from large-scale text corpora into a unified word representation model, which will benefit many tasks in text mining.
Incorporating Linguistic Knowledge for Learning Distributed Word Representations
Wang, Yan; Liu, Zhiyuan; Sun, Maosong
2015-01-01
Combined with neural language models, distributed word representations achieve significant advantages in computational linguistics and text mining. Most existing models estimate distributed word vectors from large-scale data in an unsupervised fashion, which, however, do not take rich linguistic knowledge into consideration. Linguistic knowledge can be represented as either link-based knowledge or preference-based knowledge, and we propose knowledge regularized word representation models (KRWR) to incorporate these prior knowledge for learning distributed word representations. Experiment results demonstrate that our estimated word representation achieves better performance in task of semantic relatedness ranking. This indicates that our methods can efficiently encode both prior knowledge from knowledge bases and statistical knowledge from large-scale text corpora into a unified word representation model, which will benefit many tasks in text mining. PMID:25874581
Semantic e-Science: From Microformats to Models
NASA Astrophysics Data System (ADS)
Lumb, L. I.; Freemantle, J. R.; Aldridge, K. D.
2009-05-01
A platform has been developed to transform semi-structured ASCII data into a representation based on the eXtensible Markup Language (XML). A subsequent transformation allows the XML-based representation to be rendered in the Resource Description Format (RDF). Editorial metadata, expressed as external annotations (via XML Pointer Language), also survives this transformation process (e.g., Lumb et al., http://dx.doi.org/10.1016/j.cageo.2008.03.009). Because the XML-to-RDF transformation uses XSLT (eXtensible Stylesheet Language Transformations), semantic microformats ultimately encode the scientific data (Lumb & Aldridge, http://dx.doi.org/10.1109/HPCS.2006.26). In building the relationship-centric representation in RDF, a Semantic Model of the scientific data is extracted. The systematic enhancement in the expressivity and richness of the scientific data results in representations of knowledge that are readily understood and manipulated by intelligent software agents. Thus scientists are able to draw upon various resources within and beyond their discipline to use in their scientific applications. Since the resulting Semantic Models are independent conceptualizations of the science itself, the representation of scientific knowledge and interaction with the same can stimulate insight from different perspectives. Using the Global Geodynamics Project (GGP) for the purpose of illustration, the introduction of GGP microformats enable a Semantic Model for the GGP that can be semantically queried (e.g., via SPARQL, http://www.w3.org/TR/rdf-sparql-query). Although the present implementation uses the Open Source Redland RDF Libraries (http://librdf.org/), the approach is generalizable to other platforms and to projects other than the GGP (e.g., Baker et al., Informatics and the 2007-2008 Electronic Geophysical Year, Eos Trans. Am. Geophys. Un., 89(48), 485-486, 2008).
Soualmia, L F; Charlet, J
2016-11-10
To summarize excellent current research in the field of Knowledge Representation and Management (KRM) within the health and medical care domain. We provide a synopsis of the 2016 IMIA selected articles as well as a related synthetic overview of the current and future field activities. A first step of the selection was performed through MEDLINE querying with a list of MeSH descriptors completed by a list of terms adapted to the KRM section. The second step of the selection was completed by the two section editors who separately evaluated the set of 1,432 articles. The third step of the selection consisted of a collective work that merged the evaluation results to retain 15 articles for peer-review. The selection and evaluation process of this Yearbook's section on Knowledge Representation and Management has yielded four excellent and interesting articles regarding semantic interoperability for health care by gathering heterogeneous sources (knowledge and data) and auditing ontologies. In the first article, the authors present a solution based on standards and Semantic Web technologies to access distributed and heterogeneous datasets in the domain of breast cancer clinical trials. The second article describes a knowledge-based recommendation system that relies on ontologies and Semantic Web rules in the context of chronic diseases dietary. The third article is related to concept-recognition and text-mining to derive common human diseases model and a phenotypic network of common diseases. In the fourth article, the authors highlight the need for auditing the SNOMED CT. They propose to use a crowdbased method for ontology engineering. The current research activities further illustrate the continuous convergence of Knowledge Representation and Medical Informatics, with a focus this year on dedicated tools and methods to advance clinical care by proposing solutions to cope with the problem of semantic interoperability. Indeed, there is a need for powerful tools able to manage and interpret complex, large-scale and distributed datasets and knowledge bases, but also a need for user-friendly tools developed for the clinicians in their daily practice.
Hypermedia-Assisted Instruction and Second Language Learning: A Semantic-Network-Based Approach.
ERIC Educational Resources Information Center
Liu, Min
This literature review examines a hypermedia learning environment from a semantic network basis and the application of such an environment to second language learning. (A semantic network is defined as a conceptual representation of knowledge in human memory). The discussion is organized under the following headings and subheadings: (1) Advantages…
Comprehensive Analysis of Semantic Web Reasoners and Tools: A Survey
ERIC Educational Resources Information Center
Khamparia, Aditya; Pandey, Babita
2017-01-01
Ontologies are emerging as best representation techniques for knowledge based context domains. The continuing need for interoperation, collaboration and effective information retrieval has lead to the creation of semantic web with the help of tools and reasoners which manages personalized information. The future of semantic web lies in an ontology…
Lexical is as lexical does: computational approaches to lexical representation
Woollams, Anna M.
2015-01-01
In much of neuroimaging and neuropsychology, regions of the brain have been associated with ‘lexical representation’, with little consideration as to what this cognitive construct actually denotes. Within current computational models of word recognition, there are a number of different approaches to the representation of lexical knowledge. Structural lexical representations, found in original theories of word recognition, have been instantiated in modern localist models. However, such a representational scheme lacks neural plausibility in terms of economy and flexibility. Connectionist models have therefore adopted distributed representations of form and meaning. Semantic representations in connectionist models necessarily encode lexical knowledge. Yet when equipped with recurrent connections, connectionist models can also develop attractors for familiar forms that function as lexical representations. Current behavioural, neuropsychological and neuroimaging evidence shows a clear role for semantic information, but also suggests some modality- and task-specific lexical representations. A variety of connectionist architectures could implement these distributed functional representations, and further experimental and simulation work is required to discriminate between these alternatives. Future conceptualisations of lexical representations will therefore emerge from a synergy between modelling and neuroscience. PMID:25893204
Understanding Deep Representations Learned in Modeling Users Likes.
Guntuku, Sharath Chandra; Zhou, Joey Tianyi; Roy, Sujoy; Lin, Weisi; Tsang, Ivor W
2016-08-01
Automatically understanding and discriminating different users' liking for an image is a challenging problem. This is because the relationship between image features (even semantic ones extracted by existing tools, viz., faces, objects, and so on) and users' likes is non-linear, influenced by several subtle factors. This paper presents a deep bi-modal knowledge representation of images based on their visual content and associated tags (text). A mapping step between the different levels of visual and textual representations allows for the transfer of semantic knowledge between the two modalities. Feature selection is applied before learning deep representation to identify the important features for a user to like an image. The proposed representation is shown to be effective in discriminating users based on images they like and also in recommending images that a given user likes, outperforming the state-of-the-art feature representations by ∼ 15 %-20%. Beyond this test-set performance, an attempt is made to qualitatively understand the representations learned by the deep architecture used to model user likes.
Rogers, Timothy T.; Patterson, Karalyn; Jefferies, Elizabeth; Lambon Ralph, Matthew A.
2015-01-01
We present a case-series comparison of patients with cross-modal semantic impairments consequent on either (a) bilateral anterior temporal lobe atrophy in semantic dementia (SD) or (b) left-hemisphere fronto-parietal and/or posterior temporal stroke in semantic aphasia (SA). Both groups were assessed on a new test battery designed to measure how performance is influenced by concept familiarity, typicality and specificity. In line with previous findings, performance in SD was strongly modulated by all of these factors, with better performance for more familiar items (regardless of typicality), for more typical items (regardless of familiarity) and for tasks that did not require very specific classification, consistent with the gradual degradation of conceptual knowledge in SD. The SA group showed significant impairments on all tasks but their sensitivity to familiarity, typicality and specificity was more variable and governed by task-specific effects of these factors on controlled semantic processing. The results are discussed with reference to theories about the complementary roles of representation and manipulation of semantic knowledge. PMID:25934635
Enhancing biomedical text summarization using semantic relation extraction.
Shang, Yue; Li, Yanpeng; Lin, Hongfei; Yang, Zhihao
2011-01-01
Automatic text summarization for a biomedical concept can help researchers to get the key points of a certain topic from large amount of biomedical literature efficiently. In this paper, we present a method for generating text summary for a given biomedical concept, e.g., H1N1 disease, from multiple documents based on semantic relation extraction. Our approach includes three stages: 1) We extract semantic relations in each sentence using the semantic knowledge representation tool SemRep. 2) We develop a relation-level retrieval method to select the relations most relevant to each query concept and visualize them in a graphic representation. 3) For relations in the relevant set, we extract informative sentences that can interpret them from the document collection to generate text summary using an information retrieval based method. Our major focus in this work is to investigate the contribution of semantic relation extraction to the task of biomedical text summarization. The experimental results on summarization for a set of diseases show that the introduction of semantic knowledge improves the performance and our results are better than the MEAD system, a well-known tool for text summarization.
Semantics vs. World Knowledge in Prefrontal Cortex
ERIC Educational Resources Information Center
Pylkkanen, Liina; Oliveri, Bridget; Smart, Andrew J.
2009-01-01
Humans have knowledge about the properties of their native language at various levels of representation; sound, structure, and meaning computation constitute the core components of any linguistic theory. Although the brain sciences have engaged with representational theories of sound and syntactic structure, the study of the neural bases of…
Systematic Representation of Knowledge of Ecology: Concepts and Relationships.
ERIC Educational Resources Information Center
Garb, Yaakov; And Others
This study describes efforts to apply principles of systematic knowledge representation (concept mapping and computer-based semantic networking techniques) to the domain of ecology. A set of 24 relationships and modifiers is presented that seem sufficient for describing all ecological relationships discussed in an introductory course. Many of…
Knowledge Representation Issues in Semantic Graphs for Relationship Detection
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barthelemy, M; Chow, E; Eliassi-Rad, T
2005-02-02
An important task for Homeland Security is the prediction of threat vulnerabilities, such as through the detection of relationships between seemingly disjoint entities. A structure used for this task is a ''semantic graph'', also known as a ''relational data graph'' or an ''attributed relational graph''. These graphs encode relationships as typed links between a pair of typed nodes. Indeed, semantic graphs are very similar to semantic networks used in AI. The node and link types are related through an ontology graph (also known as a schema). Furthermore, each node has a set of attributes associated with it (e.g., ''age'' maymore » be an attribute of a node of type ''person''). Unfortunately, the selection of types and attributes for both nodes and links depends on human expertise and is somewhat subjective and even arbitrary. This subjectiveness introduces biases into any algorithm that operates on semantic graphs. Here, we raise some knowledge representation issues for semantic graphs and provide some possible solutions using recently developed ideas in the field of complex networks. In particular, we use the concept of transitivity to evaluate the relevance of individual links in the semantic graph for detecting relationships. We also propose new statistical measures for semantic graphs and illustrate these semantic measures on graphs constructed from movies and terrorism data.« less
Malone, Patrick S; Glezer, Laurie S; Kim, Judy; Jiang, Xiong; Riesenhuber, Maximilian
2016-09-28
The neural substrates of semantic representation have been the subject of much controversy. The study of semantic representations is complicated by difficulty in disentangling perceptual and semantic influences on neural activity, as well as in identifying stimulus-driven, "bottom-up" semantic selectivity unconfounded by top-down task-related modulations. To address these challenges, we trained human subjects to associate pseudowords (TPWs) with various animal and tool categories. To decode semantic representations of these TPWs, we used multivariate pattern classification of fMRI data acquired while subjects performed a semantic oddball detection task. Crucially, the classifier was trained and tested on disjoint sets of TPWs, so that the classifier had to use the semantic information from the training set to correctly classify the test set. Animal and tool TPWs were successfully decoded based on fMRI activity in spatially distinct subregions of the left medial anterior temporal lobe (LATL). In addition, tools (but not animals) were successfully decoded from activity in the left inferior parietal lobule. The tool-selective LATL subregion showed greater functional connectivity with left inferior parietal lobule and ventral premotor cortex, indicating that each LATL subregion exhibits distinct patterns of connectivity. Our findings demonstrate category-selective organization of semantic representations in LATL into spatially distinct subregions, continuing the lateral-medial segregation of activation in posterior temporal cortex previously observed in response to images of animals and tools, respectively. Together, our results provide evidence for segregation of processing hierarchies for different classes of objects and the existence of multiple, category-specific semantic networks in the brain. The location and specificity of semantic representations in the brain are still widely debated. We trained human participants to associate specific pseudowords with various animal and tool categories, and used multivariate pattern classification of fMRI data to decode the semantic representations of the trained pseudowords. We found that: (1) animal and tool information was organized in category-selective subregions of medial left anterior temporal lobe (LATL); (2) tools, but not animals, were encoded in left inferior parietal lobe; and (3) LATL subregions exhibited distinct patterns of functional connectivity with category-related regions across cortex. Our findings suggest that semantic knowledge in LATL is organized in category-related subregions, providing evidence for the existence of multiple, category-specific semantic representations in the brain. Copyright © 2016 the authors 0270-6474/16/3610089-08$15.00/0.
A Non-Cognitive Formal Approach to Knowledge Representation in Artificial Intelligence.
1986-06-01
example, Duda and others translated production rules into a partitioned semantic network (73). Representations were also translated into production...153. Berlin: Springer-Verlag, 1982. 38. Blikle, Andrzej . "Equational Languages," Information and Control, 21: 134-147 (September 1972). 285 39. Ezawa...Conference on Artificial Intelligence, IJCAI-75. 115-121. William Kaufmann, Inc., Los Altos CA, 1975. 73. Duda , Richard 0. and others. "Semantic
A Graph-Based Recovery and Decomposition of Swanson’s Hypothesis using Semantic Predications
Cameron, Delroy; Bodenreider, Olivier; Yalamanchili, Hima; Danh, Tu; Vallabhaneni, Sreeram; Thirunarayan, Krishnaprasad; Sheth, Amit P.; Rindflesch, Thomas C.
2014-01-01
Objectives This paper presents a methodology for recovering and decomposing Swanson’s Raynaud Syndrome–Fish Oil Hypothesis semi-automatically. The methodology leverages the semantics of assertions extracted from biomedical literature (called semantic predications) along with structured background knowledge and graph-based algorithms to semi-automatically capture the informative associations originally discovered manually by Swanson. Demonstrating that Swanson’s manually intensive techniques can be undertaken semi-automatically, paves the way for fully automatic semantics-based hypothesis generation from scientific literature. Methods Semantic predications obtained from biomedical literature allow the construction of labeled directed graphs which contain various associations among concepts from the literature. By aggregating such associations into informative subgraphs, some of the relevant details originally articulated by Swanson has been uncovered. However, by leveraging background knowledge to bridge important knowledge gaps in the literature, a methodology for semi-automatically capturing the detailed associations originally explicated in natural language by Swanson has been developed. Results Our methodology not only recovered the 3 associations commonly recognized as Swanson’s Hypothesis, but also decomposed them into an additional 16 detailed associations, formulated as chains of semantic predications. Altogether, 14 out of the 19 associations that can be attributed to Swanson were retrieved using our approach. To the best of our knowledge, such an in-depth recovery and decomposition of Swanson’s Hypothesis has never been attempted. Conclusion In this work therefore, we presented a methodology for semi- automatically recovering and decomposing Swanson’s RS-DFO Hypothesis using semantic representations and graph algorithms. Our methodology provides new insights into potential prerequisites for semantics-driven Literature-Based Discovery (LBD). These suggest that three critical aspects of LBD include: 1) the need for more expressive representations beyond Swanson’s ABC model; 2) an ability to accurately extract semantic information from text; and 3) the semantic integration of scientific literature with structured background knowledge. PMID:23026233
LIS Professionals as Knowledge Engineers.
ERIC Educational Resources Information Center
Poulter, Alan; And Others
1994-01-01
Considers the role of library and information science professionals as knowledge engineers. Highlights include knowledge acquisition, including personal experience, interviews, protocol analysis, observation, multidimensional sorting, printed sources, and machine learning; knowledge representation, including production rules and semantic nets;…
2014-01-01
Background Accounts of evidence are vital to evaluate and reproduce scientific findings and integrate data on an informed basis. Currently, such accounts are often inadequate, unstandardized and inaccessible for computational knowledge engineering even though computational technologies, among them those of the semantic web, are ever more employed to represent, disseminate and integrate biomedical data and knowledge. Results We present SEE (Semantic EvidencE), an RDF/OWL based approach for detailed representation of evidence in terms of the argumentative structure of the supporting background for claims even in complex settings. We derive design principles and identify minimal components for the representation of evidence. We specify the Reasoning and Discourse Ontology (RDO), an OWL representation of the model of scientific claims, their subjects, their provenance and their argumentative relations underlying the SEE approach. We demonstrate the application of SEE and illustrate its design patterns in a case study by providing an expressive account of the evidence for certain claims regarding the isolation of the enzyme glutamine synthetase. Conclusions SEE is suited to provide coherent and computationally accessible representations of evidence-related information such as the materials, methods, assumptions, reasoning and information sources used to establish a scientific finding by adopting a consistently claim-based perspective on scientific results and their evidence. SEE allows for extensible evidence representations, in which the level of detail can be adjusted and which can be extended as needed. It supports representation of arbitrary many consecutive layers of interpretation and attribution and different evaluations of the same data. SEE and its underlying model could be a valuable component in a variety of use cases that require careful representation or examination of evidence for data presented on the semantic web or in other formats. PMID:25093070
Bölling, Christian; Weidlich, Michael; Holzhütter, Hermann-Georg
2014-01-01
Accounts of evidence are vital to evaluate and reproduce scientific findings and integrate data on an informed basis. Currently, such accounts are often inadequate, unstandardized and inaccessible for computational knowledge engineering even though computational technologies, among them those of the semantic web, are ever more employed to represent, disseminate and integrate biomedical data and knowledge. We present SEE (Semantic EvidencE), an RDF/OWL based approach for detailed representation of evidence in terms of the argumentative structure of the supporting background for claims even in complex settings. We derive design principles and identify minimal components for the representation of evidence. We specify the Reasoning and Discourse Ontology (RDO), an OWL representation of the model of scientific claims, their subjects, their provenance and their argumentative relations underlying the SEE approach. We demonstrate the application of SEE and illustrate its design patterns in a case study by providing an expressive account of the evidence for certain claims regarding the isolation of the enzyme glutamine synthetase. SEE is suited to provide coherent and computationally accessible representations of evidence-related information such as the materials, methods, assumptions, reasoning and information sources used to establish a scientific finding by adopting a consistently claim-based perspective on scientific results and their evidence. SEE allows for extensible evidence representations, in which the level of detail can be adjusted and which can be extended as needed. It supports representation of arbitrary many consecutive layers of interpretation and attribution and different evaluations of the same data. SEE and its underlying model could be a valuable component in a variety of use cases that require careful representation or examination of evidence for data presented on the semantic web or in other formats.
ERIC Educational Resources Information Center
Gainotti, Guido
2011-01-01
In recent years, the anatomical and functional bases of conceptual activity have attracted a growing interest. In particular, Patterson and Lambon-Ralph have proposed the existence, in the anterior parts of the temporal lobes, of a mechanism (the "amodal semantic hub") supporting the interactive activation of semantic representations in all…
Liberal Entity Extraction: Rapid Construction of Fine-Grained Entity Typing Systems.
Huang, Lifu; May, Jonathan; Pan, Xiaoman; Ji, Heng; Ren, Xiang; Han, Jiawei; Zhao, Lin; Hendler, James A
2017-03-01
The ability of automatically recognizing and typing entities in natural language without prior knowledge (e.g., predefined entity types) is a major challenge in processing such data. Most existing entity typing systems are limited to certain domains, genres, and languages. In this article, we propose a novel unsupervised entity-typing framework by combining symbolic and distributional semantics. We start from learning three types of representations for each entity mention: general semantic representation, specific context representation, and knowledge representation based on knowledge bases. Then we develop a novel joint hierarchical clustering and linking algorithm to type all mentions using these representations. This framework does not rely on any annotated data, predefined typing schema, or handcrafted features; therefore, it can be quickly adapted to a new domain, genre, and/or language. Experiments on genres (news and discussion forum) show comparable performance with state-of-the-art supervised typing systems trained from a large amount of labeled data. Results on various languages (English, Chinese, Japanese, Hausa, and Yoruba) and domains (general and biomedical) demonstrate the portability of our framework.
Liberal Entity Extraction: Rapid Construction of Fine-Grained Entity Typing Systems
Huang, Lifu; May, Jonathan; Pan, Xiaoman; Ji, Heng; Ren, Xiang; Han, Jiawei; Zhao, Lin; Hendler, James A.
2017-01-01
Abstract The ability of automatically recognizing and typing entities in natural language without prior knowledge (e.g., predefined entity types) is a major challenge in processing such data. Most existing entity typing systems are limited to certain domains, genres, and languages. In this article, we propose a novel unsupervised entity-typing framework by combining symbolic and distributional semantics. We start from learning three types of representations for each entity mention: general semantic representation, specific context representation, and knowledge representation based on knowledge bases. Then we develop a novel joint hierarchical clustering and linking algorithm to type all mentions using these representations. This framework does not rely on any annotated data, predefined typing schema, or handcrafted features; therefore, it can be quickly adapted to a new domain, genre, and/or language. Experiments on genres (news and discussion forum) show comparable performance with state-of-the-art supervised typing systems trained from a large amount of labeled data. Results on various languages (English, Chinese, Japanese, Hausa, and Yoruba) and domains (general and biomedical) demonstrate the portability of our framework. PMID:28328252
Integrating reasoning and clinical archetypes using OWL ontologies and SWRL rules.
Lezcano, Leonardo; Sicilia, Miguel-Angel; Rodríguez-Solano, Carlos
2011-04-01
Semantic interoperability is essential to facilitate the computerized support for alerts, workflow management and evidence-based healthcare across heterogeneous electronic health record (EHR) systems. Clinical archetypes, which are formal definitions of specific clinical concepts defined as specializations of a generic reference (information) model, provide a mechanism to express data structures in a shared and interoperable way. However, currently available archetype languages do not provide direct support for mapping to formal ontologies and then exploiting reasoning on clinical knowledge, which are key ingredients of full semantic interoperability, as stated in the SemanticHEALTH report [1]. This paper reports on an approach to translate definitions expressed in the openEHR Archetype Definition Language (ADL) to a formal representation expressed using the Ontology Web Language (OWL). The formal representations are then integrated with rules expressed with Semantic Web Rule Language (SWRL) expressions, providing an approach to apply the SWRL rules to concrete instances of clinical data. Sharing the knowledge expressed in the form of rules is consistent with the philosophy of open sharing, encouraged by archetypes. Our approach also allows the reuse of formal knowledge, expressed through ontologies, and extends reuse to propositions of declarative knowledge, such as those encoded in clinical guidelines. This paper describes the ADL-to-OWL translation approach, describes the techniques to map archetypes to formal ontologies, and demonstrates how rules can be applied to the resulting representation. We provide examples taken from a patient safety alerting system to illustrate our approach. Copyright © 2010 Elsevier Inc. All rights reserved.
Semantic representations in the temporal pole predict false memories
Chadwick, Martin J.; Anjum, Raeesa S.; Kumaran, Dharshan; Schacter, Daniel L.; Spiers, Hugo J.; Hassabis, Demis
2016-01-01
Recent advances in neuroscience have given us unprecedented insight into the neural mechanisms of false memory, showing that artificial memories can be inserted into the memory cells of the hippocampus in a way that is indistinguishable from true memories. However, this alone is not enough to explain how false memories can arise naturally in the course of our daily lives. Cognitive psychology has demonstrated that many instances of false memory, both in the laboratory and the real world, can be attributed to semantic interference. Whereas previous studies have found that a diverse set of regions show some involvement in semantic false memory, none have revealed the nature of the semantic representations underpinning the phenomenon. Here we use fMRI with representational similarity analysis to search for a neural code consistent with semantic false memory. We find clear evidence that false memories emerge from a similarity-based neural code in the temporal pole, a region that has been called the “semantic hub” of the brain. We further show that each individual has a partially unique semantic code within the temporal pole, and this unique code can predict idiosyncratic patterns of memory errors. Finally, we show that the same neural code can also predict variation in true-memory performance, consistent with an adaptive perspective on false memory. Taken together, our findings reveal the underlying structure of neural representations of semantic knowledge, and how this semantic structure can both enhance and distort our memories. PMID:27551087
Semantic representations in the temporal pole predict false memories.
Chadwick, Martin J; Anjum, Raeesa S; Kumaran, Dharshan; Schacter, Daniel L; Spiers, Hugo J; Hassabis, Demis
2016-09-06
Recent advances in neuroscience have given us unprecedented insight into the neural mechanisms of false memory, showing that artificial memories can be inserted into the memory cells of the hippocampus in a way that is indistinguishable from true memories. However, this alone is not enough to explain how false memories can arise naturally in the course of our daily lives. Cognitive psychology has demonstrated that many instances of false memory, both in the laboratory and the real world, can be attributed to semantic interference. Whereas previous studies have found that a diverse set of regions show some involvement in semantic false memory, none have revealed the nature of the semantic representations underpinning the phenomenon. Here we use fMRI with representational similarity analysis to search for a neural code consistent with semantic false memory. We find clear evidence that false memories emerge from a similarity-based neural code in the temporal pole, a region that has been called the "semantic hub" of the brain. We further show that each individual has a partially unique semantic code within the temporal pole, and this unique code can predict idiosyncratic patterns of memory errors. Finally, we show that the same neural code can also predict variation in true-memory performance, consistent with an adaptive perspective on false memory. Taken together, our findings reveal the underlying structure of neural representations of semantic knowledge, and how this semantic structure can both enhance and distort our memories.
Heurley, Loïc P; Brouillet, Thibaut; Chesnoy, Gabrielle; Brouillet, Denis
2013-03-01
Studies and models have suggested that color perception first involves access to semantic representations of color. This result leads to two questions: (1) is knowledge able to influence the perception of color when associated with a color? and (2) can the perception of color really involve only semantic representations? We developed an experiment where participants have to discriminate the color of a patch (yellow vs. green). The target patch is preceded either by a black-and-white line drawing or by a word representing a natural object associated with the same or a different color (banana vs. frog). We expected a priming effect for pictures because, with a 350-ms SOA, they only involve access to semantic representations of color, whereas words seem only elicit an access to lexical representations. As expected, we found a priming effect for pictures, but also for words. Moreover, we found a general slowdown of response times in the word-prime-condition suggesting the need of an additional processing step to produce priming. In a second experiment, we manipulated the SOA in order to preclude a semantic access in the word-prime-condition that could explain the additional step of processing. We also found a priming effect, suggesting that interaction with perception occurs at a lexical level and the additional step occurs at a color perception level. In the discussion, we develop a new model of color perception assuming that color perception involves access to semantic representations and then access to lexical representations.
Using background knowledge for picture organization and retrieval
NASA Astrophysics Data System (ADS)
Quintana, Yuri
1997-01-01
A picture knowledge base management system is described that is used to represent, organize and retrieve pictures from a frame knowledge base. Experiments with human test subjects were conducted to obtain further descriptions of pictures from news magazines. These descriptions were used to represent the semantic content of pictures in frame representations. A conceptual clustering algorithm is described which organizes pictures not only on the observable features, but also on implicit properties derived from the frame representations. The algorithm uses inheritance reasoning to take into account background knowledge in the clustering. The algorithm creates clusters of pictures using a group similarity function that is based on the gestalt theory of picture perception. For each cluster created, a frame is generated which describes the semantic content of pictures in the cluster. Clustering and retrieval experiments were conducted with and without background knowledge. The paper shows how the use of background knowledge and semantic similarity heuristics improves the speed, precision, and recall of queries processed. The paper concludes with a discussion of how natural language processing of can be used to assist in the development of knowledge bases and the processing of user queries.
Enhancing Biomedical Text Summarization Using Semantic Relation Extraction
Shang, Yue; Li, Yanpeng; Lin, Hongfei; Yang, Zhihao
2011-01-01
Automatic text summarization for a biomedical concept can help researchers to get the key points of a certain topic from large amount of biomedical literature efficiently. In this paper, we present a method for generating text summary for a given biomedical concept, e.g., H1N1 disease, from multiple documents based on semantic relation extraction. Our approach includes three stages: 1) We extract semantic relations in each sentence using the semantic knowledge representation tool SemRep. 2) We develop a relation-level retrieval method to select the relations most relevant to each query concept and visualize them in a graphic representation. 3) For relations in the relevant set, we extract informative sentences that can interpret them from the document collection to generate text summary using an information retrieval based method. Our major focus in this work is to investigate the contribution of semantic relation extraction to the task of biomedical text summarization. The experimental results on summarization for a set of diseases show that the introduction of semantic knowledge improves the performance and our results are better than the MEAD system, a well-known tool for text summarization. PMID:21887336
Agoncillo, A V; Mejino, J L; Rosse, C
1999-01-01
A principled and logical representation of the structure of the human body has led to conflicts with traditional representations of the same knowledge by anatomy textbooks. The examples which illustrate resolution of these conflicts suggest that stricter requirements must be met for semantic consistency, expressivity and specificity by knowledge sources intended to support inference than by textbooks and term lists. These next-generation resources should influence traditional concept representation, rather than be constrained by convention.
Semantic e-Learning: Next Generation of e-Learning?
NASA Astrophysics Data System (ADS)
Konstantinos, Markellos; Penelope, Markellou; Giannis, Koutsonikos; Aglaia, Liopa-Tsakalidi
Semantic e-learning aspires to be the next generation of e-learning, since the understanding of learning materials and knowledge semantics allows their advanced representation, manipulation, sharing, exchange and reuse and ultimately promote efficient online experiences for users. In this context, the paper firstly explores some fundamental Semantic Web technologies and then discusses current and potential applications of these technologies in e-learning domain, namely, Semantic portals, Semantic search, personalization, recommendation systems, social software and Web 2.0 tools. Finally, it highlights future research directions and open issues of the field.
Developing Expert Systems for the Analysis of Syntactic and Semantic Patterns.
ERIC Educational Resources Information Center
Hellwig, Harold H.
Noting that expert computer systems respond to various contexts in terms of knowledge representation, this paper explains that heuristic rules of production, procedural representation, and frame representation have been adapted to such areas as medical diagnosis, signal interpretation, design and planning of electrical circuits and computer system…
Semantic based man-machine interface for real-time communication
NASA Technical Reports Server (NTRS)
Ali, M.; Ai, C.-S.
1988-01-01
A flight expert system (FLES) was developed to assist pilots in monitoring, diagnosing and recovering from in-flight faults. To provide a communications interface between the flight crew and FLES, a natural language interface (NALI) was implemented. Input to NALI is processed by three processors: (1) the semantics parser; (2) the knowledge retriever; and (3) the response generator. First the semantic parser extracts meaningful words and phrases to generate an internal representation of the query. At this point, the semantic parser has the ability to map different input forms related to the same concept into the same internal representation. Then the knowledge retriever analyzes and stores the context of the query to aid in resolving ellipses and pronoun references. At the end of this process, a sequence of retrievel functions is created as a first step in generating the proper response. Finally, the response generator generates the natural language response to the query. The architecture of NALI was designed to process both temporal and nontemporal queries. The architecture and implementation of NALI are described.
ERIC Educational Resources Information Center
Pastor-Sanchez, Juan-Antonio; Martinez Mendez, Francisco Javier; Rodriguez-Munoz, Jose Vicente
2009-01-01
Introduction: This paper presents an analysis of the Simple Knowledge Organization System (SKOS) compared with other alternatives for thesaurus representation in the Semantic Web. Method: Based on functional and structural changes of thesauri, provides an overview of the current context in which lexical paradigm is abandoned in favour of the…
Campanella, Fabio; Fabbro, Franco; Urgesi, Cosimo
2013-01-01
Several studies have addressed the issue of how knowledge of common objects is organized in the brain, whereas the cognitive and anatomical underpinnings of familiar people knowledge have been less explored. Here we applied repetitive transcranial magnetic stimulation (rTMS) over the left and right temporal poles before asking healthy individuals to perform a speeded word-to-picture matching task using familiar people and common objects as stimuli. We manipulated two widely used semantic variables, namely the semantic distance and the familiarity of stimuli, to assess whether the semantic organization of familiar people knowledge is similar to that of common objects. For both objects and faces we reliably found semantic distance and familiarity effects, with less accurate and slower responses for stimulus pairs that were more closely related and less familiar. However, the effects of semantic variables differed across categories, with semantic distance effects larger for objects and familiarity effects larger for faces, suggesting that objects and faces might share a partially comparable organization of their semantic representations. The application of rTMS to the left temporal pole modulated, for both categories, semantic distance, but not familiarity effects, revealing that accessing object and face concepts might rely on overlapping processes within left anterior temporal regions. Crucially, rTMS of the left temporal pole affected only the recognition of pairs of stimuli that could be discriminated at specific levels of categorization (e.g., two kitchen tools or two famous persons), with no effect for discriminations at either superordinate or individual levels. Conversely, rTMS of the right temporal pole induced an overall slowing of reaction times that positively correlated with the visual similarity of the stimuli, suggesting a more perceptual rather than semantic role of the right anterior temporal regions. Results are discussed in the light of current models of face and object semantic representations in the brain. PMID:23704999
Dissociations in mathematical knowledge: case studies in Down's syndrome and Williams syndrome.
Robinson, Sally J; Temple, Christine M
2013-02-01
A study is reported of mathematical vocabulary and factual mathematical knowledge in PQ, a 22 year old with Down's syndrome (DS) who has a verbal mental age (MA) of 9 years 2 months and ST, a 15 year old with Williams syndrome (WS) who has a verbal MA of 9 years 6 months, matched to typically developing controls. The number of mathematical words contained within PQ's lexical stores was significantly reduced as reflected by performance on lexical decision. PQ was also impaired at both naming from descriptions and describing mathematical words. These results contrast with normal lexical decision and item descriptions for concrete words reported recently for PQ (Robinson and Temple, 2010). PQ's recall of mathematical facts was also impaired, whilst his recall of general knowledge facts was normal. This performance in DS indicates a deficit in both lexical representation and semantic knowledge for mathematical words and mathematical facts. In contrast, ST, the teenager with WS had good accuracy on lexical decision, naming and generating definitions for mathematical words. This contrasted with the atypical performance with concrete words recently reported for ST (Robinson and Temple, 2009). Knowledge of addition facts and general knowledge facts was also unimpaired for ST, though knowledge of multiplication facts was weak. Together the cases form a double dissociation and provide support for the distinct representation of mathematical and concrete items within the lexical-semantic system during development. The dissociations between mathematical and general factual knowledge also indicate that different types of factual knowledge may be selectively impaired during development. There is further support for a modular structure within which mathematical vocabulary and mathematical knowledge have distinct representations. This supports the case for the independent representation of factual and language-based knowledge within the semantic system during development. Copyright © 2011 Elsevier Ltd. All rights reserved.
Developmental amnesia: a new pattern of dissociation with intact episodic memory.
Temple, Christine M; Richardson, Paul
2004-01-01
A case of developmental amnesia is reported for a child, CL, of normal intelligence, who has intact episodic memory but impaired semantic memory for both semantic knowledge of facts and semantic knowledge of words, including general world knowledge, knowledge of word meanings and superordinate knowledge of words. In contrast to the deficits in semantic memory, there are no impairments in episodic memory for verbal or visual material, assessed by recall or recognition. Lexical decision was also intact, indicating impairment in semantic knowledge of vocabulary rather than absence of lexical representations. The case forms a double dissociation to the cases of Vargha-Khadem et al. [Science 277 (1997) 376; Episodic memory: new directions in research (2002) 153]; Gadian et al. [Brain 123 (2000) 499] for whom semantic memory was intact but episodic memory was impaired. This double dissociation suggests that semantic memory and episodic memory have the capacity to develop separately and supports models of modularity within memory development and a functional architecture for the developmental disorders within which there is residual normality rather than pervasive abnormality. Knowledge of arithmetical facts is also spared for CL, consistent with adult studies arguing for numeracy knowledge distinct from other semantics. Reading was characterised by difficulty with irregular words and homophones but intact reading of nonwords. CL has surface dyslexia with poor lexico-semantic reading skills but good phonological reading skills. The case was identified following screening from a population of normal schoolchildren suggesting that developmental amnesias may be more pervasive than has been recognised previously.
Savill, Nicola; Ellis, Andrew W; Jefferies, Elizabeth
2017-04-01
Verbal short-term memory (STM) is a crucial cognitive function central to language learning, comprehension and reasoning, yet the processes that underlie this capacity are not fully understood. In particular, although STM primarily draws on a phonological code, interactions between long-term phonological and semantic representations might help to stabilise the phonological trace for words ("semantic binding hypothesis"). This idea was first proposed to explain the frequent phoneme recombination errors made by patients with semantic dementia when recalling words that are no longer fully understood. However, converging evidence in support of semantic binding is scant: it is unusual for studies of healthy participants to examine serial recall at the phoneme level and also it is difficult to separate the contribution of phonological-lexical knowledge from effects of word meaning. We used a new method to disentangle these influences in healthy individuals by training new 'words' with or without associated semantic information. We examined phonological coherence in immediate serial recall (ISR), both immediately and the day after training. Trained items were more likely to be recalled than novel nonwords, confirming the importance of phonological-lexical knowledge, and items with semantic associations were also produced more accurately than those with no meaning, at both time points. For semantically-trained items, there were fewer phoneme ordering and identity errors, and consequently more complete target items were produced in both correct and incorrect list positions. These data show that lexical-semantic knowledge improves the robustness of verbal STM at the sub-item level, even when the effect of phonological familiarity is taken into account. Copyright © 2016 Elsevier Ltd. All rights reserved.
Griffon, N; Charlet, J; Darmoni, Sj
2013-01-01
To summarize the best papers in the field of Knowledge Representation and Management (KRM). A synopsis of the four selected articles for the IMIA Yearbook 2013 KRM section is provided, as well as highlights of current KRM trends, in particular, of the semantic web in daily health practice. The manual selection was performed in three stages: first a set of 3,106 articles, then a second set of 86 articles followed by a third set of 15 articles, and finally the last set of four chosen articles. Among the four selected articles (see Table 1), one focuses on knowledge engineering to prevent adverse drug events; the objective of the second is to propose mappings between clinical archetypes and SNOMED CT in the context of clinical practice; the third presents an ontology to create a question-answering system; the fourth describes a biomonitoring network based on semantic web technologies. These four articles clearly indicate that the health semantic web has become a part of daily practice of health professionals since 2012. In the review of the second set of 86 articles, the same topics included in the previous IMIA yearbook remain active research fields: Knowledge extraction, automatic indexing, information retrieval, natural language processing, management of health terminologies and ontologies.
Biomedical semantics in the Semantic Web
2011-01-01
The Semantic Web offers an ideal platform for representing and linking biomedical information, which is a prerequisite for the development and application of analytical tools to address problems in data-intensive areas such as systems biology and translational medicine. As for any new paradigm, the adoption of the Semantic Web offers opportunities and poses questions and challenges to the life sciences scientific community: which technologies in the Semantic Web stack will be more beneficial for the life sciences? Is biomedical information too complex to benefit from simple interlinked representations? What are the implications of adopting a new paradigm for knowledge representation? What are the incentives for the adoption of the Semantic Web, and who are the facilitators? Is there going to be a Semantic Web revolution in the life sciences? We report here a few reflections on these questions, following discussions at the SWAT4LS (Semantic Web Applications and Tools for Life Sciences) workshop series, of which this Journal of Biomedical Semantics special issue presents selected papers from the 2009 edition, held in Amsterdam on November 20th. PMID:21388570
Biomedical semantics in the Semantic Web.
Splendiani, Andrea; Burger, Albert; Paschke, Adrian; Romano, Paolo; Marshall, M Scott
2011-03-07
The Semantic Web offers an ideal platform for representing and linking biomedical information, which is a prerequisite for the development and application of analytical tools to address problems in data-intensive areas such as systems biology and translational medicine. As for any new paradigm, the adoption of the Semantic Web offers opportunities and poses questions and challenges to the life sciences scientific community: which technologies in the Semantic Web stack will be more beneficial for the life sciences? Is biomedical information too complex to benefit from simple interlinked representations? What are the implications of adopting a new paradigm for knowledge representation? What are the incentives for the adoption of the Semantic Web, and who are the facilitators? Is there going to be a Semantic Web revolution in the life sciences?We report here a few reflections on these questions, following discussions at the SWAT4LS (Semantic Web Applications and Tools for Life Sciences) workshop series, of which this Journal of Biomedical Semantics special issue presents selected papers from the 2009 edition, held in Amsterdam on November 20th.
The Representation of Abstract Words: Why Emotion Matters
ERIC Educational Resources Information Center
Kousta, Stavroula-Thaleia; Vigliocco, Gabriella; Vinson, David P.; Andrews, Mark; Del Campo, Elena
2011-01-01
Although much is known about the representation and processing of concrete concepts, knowledge of what abstract semantics might be is severely limited. In this article we first address the adequacy of the 2 dominant accounts (dual coding theory and the context availability model) put forward in order to explain representation and processing…
ERIC Educational Resources Information Center
Fedorenko, Evelina; Nieto-Castanon, Alfonso; Kanwisher, Nancy
2012-01-01
Work in theoretical linguistics and psycholinguistics suggests that human linguistic knowledge forms a continuum between individual lexical items and abstract syntactic representations, with most linguistic representations falling between the two extremes and taking the form of lexical items stored together with the syntactic/semantic contexts in…
NASA Astrophysics Data System (ADS)
van Elk, Michiel; van Schie, Hein; Bekkering, Harold
2014-06-01
Our capacity to use tools and objects is often considered one of the hallmarks of the human species. Many objects greatly extend our bodily capabilities to act in the physical world, such as when using a hammer or a saw. In addition, humans have the remarkable capability to use objects in a flexible fashion and to combine multiple objects in complex actions. We prepare coffee, cook dinner and drive our car. In this review we propose that humans have developed declarative and procedural knowledge, i.e. action semantics that enables us to use objects in a meaningful way. A state-of-the-art review of research on object use is provided, involving behavioral, developmental, neuropsychological and neuroimaging studies. We show that research in each of these domains is characterized by similar discussions regarding (1) the role of object affordances, (2) the relation between goals and means in object use and (3) the functional and neural organization of action semantics. We propose a novel conceptual framework of action semantics to address these issues and to integrate the previous findings. We argue that action semantics entails both multimodal object representations and modality-specific sub-systems, involving manipulation knowledge, functional knowledge and representations of the sensory and proprioceptive consequences of object use. Furthermore, we argue that action semantics are hierarchically organized and selectively activated and used depending on the action intention of the actor and the current task context. Our framework presents an integrative account of multiple findings and perspectives on object use that may guide future studies in this interdisciplinary domain.
Information integration from heterogeneous data sources: a Semantic Web approach.
Kunapareddy, Narendra; Mirhaji, Parsa; Richards, David; Casscells, S Ward
2006-01-01
Although the decentralized and autonomous implementation of health information systems has made it possible to extend the reach of surveillance systems to a variety of contextually disparate domains, public health use of data from these systems is not primarily anticipated. The Semantic Web has been proposed to address both representational and semantic heterogeneity in distributed and collaborative environments. We introduce a semantic approach for the integration of health data using the Resource Definition Framework (RDF) and the Simple Knowledge Organization System (SKOS) developed by the Semantic Web community.
Semantic framework for mapping object-oriented model to semantic web languages
Ježek, Petr; Mouček, Roman
2015-01-01
The article deals with and discusses two main approaches in building semantic structures for electrophysiological metadata. It is the use of conventional data structures, repositories, and programming languages on one hand and the use of formal representations of ontologies, known from knowledge representation, such as description logics or semantic web languages on the other hand. Although knowledge engineering offers languages supporting richer semantic means of expression and technological advanced approaches, conventional data structures and repositories are still popular among developers, administrators and users because of their simplicity, overall intelligibility, and lower demands on technical equipment. The choice of conventional data resources and repositories, however, raises the question of how and where to add semantics that cannot be naturally expressed using them. As one of the possible solutions, this semantics can be added into the structures of the programming language that accesses and processes the underlying data. To support this idea we introduced a software prototype that enables its users to add semantically richer expressions into a Java object-oriented code. This approach does not burden users with additional demands on programming environment since reflective Java annotations were used as an entry for these expressions. Moreover, additional semantics need not to be written by the programmer directly to the code, but it can be collected from non-programmers using a graphic user interface. The mapping that allows the transformation of the semantically enriched Java code into the Semantic Web language OWL was proposed and implemented in a library named the Semantic Framework. This approach was validated by the integration of the Semantic Framework in the EEG/ERP Portal and by the subsequent registration of the EEG/ERP Portal in the Neuroscience Information Framework. PMID:25762923
Semantic framework for mapping object-oriented model to semantic web languages.
Ježek, Petr; Mouček, Roman
2015-01-01
The article deals with and discusses two main approaches in building semantic structures for electrophysiological metadata. It is the use of conventional data structures, repositories, and programming languages on one hand and the use of formal representations of ontologies, known from knowledge representation, such as description logics or semantic web languages on the other hand. Although knowledge engineering offers languages supporting richer semantic means of expression and technological advanced approaches, conventional data structures and repositories are still popular among developers, administrators and users because of their simplicity, overall intelligibility, and lower demands on technical equipment. The choice of conventional data resources and repositories, however, raises the question of how and where to add semantics that cannot be naturally expressed using them. As one of the possible solutions, this semantics can be added into the structures of the programming language that accesses and processes the underlying data. To support this idea we introduced a software prototype that enables its users to add semantically richer expressions into a Java object-oriented code. This approach does not burden users with additional demands on programming environment since reflective Java annotations were used as an entry for these expressions. Moreover, additional semantics need not to be written by the programmer directly to the code, but it can be collected from non-programmers using a graphic user interface. The mapping that allows the transformation of the semantically enriched Java code into the Semantic Web language OWL was proposed and implemented in a library named the Semantic Framework. This approach was validated by the integration of the Semantic Framework in the EEG/ERP Portal and by the subsequent registration of the EEG/ERP Portal in the Neuroscience Information Framework.
In defense of abstract conceptual representations.
Binder, Jeffrey R
2016-08-01
An extensive program of research in the past 2 decades has focused on the role of modal sensory, motor, and affective brain systems in storing and retrieving concept knowledge. This focus has led in some circles to an underestimation of the need for more abstract, supramodal conceptual representations in semantic cognition. Evidence for supramodal processing comes from neuroimaging work documenting a large, well-defined cortical network that responds to meaningful stimuli regardless of modal content. The nodes in this network correspond to high-level "convergence zones" that receive broadly crossmodal input and presumably process crossmodal conjunctions. It is proposed that highly conjunctive representations are needed for several critical functions, including capturing conceptual similarity structure, enabling thematic associative relationships independent of conceptual similarity, and providing efficient "chunking" of concept representations for a range of higher order tasks that require concepts to be configured as situations. These hypothesized functions account for a wide range of neuroimaging results showing modulation of the supramodal convergence zone network by associative strength, lexicality, familiarity, imageability, frequency, and semantic compositionality. The evidence supports a hierarchical model of knowledge representation in which modal systems provide a mechanism for concept acquisition and serve to ground individual concepts in external reality, whereas broadly conjunctive, supramodal representations play an equally important role in concept association and situation knowledge.
The relation between body semantics and spatial body representations.
van Elk, Michiel; Blanke, Olaf
2011-11-01
The present study addressed the relation between body semantics (i.e. semantic knowledge about the human body) and spatial body representations, by presenting participants with word pairs, one below the other, referring to body parts. The spatial position of the word pairs could be congruent (e.g. EYE / MOUTH) or incongruent (MOUTH / EYE) with respect to the spatial position of the words' referents. In addition, the spatial distance between the words' referents was varied, resulting in word pairs referring to body parts that are close (e.g. EYE / MOUTH) or far in space (e.g. EYE / FOOT). A spatial congruency effect was observed when subjects made an iconicity judgment (Experiments 2 and 3) but not when making a semantic relatedness judgment (Experiment 1). In addition, when making a semantic relatedness judgment (Experiment 1) reaction times increased with increased distance between the body parts but when making an iconicity judgment (Experiments 2 and 3) reaction times decreased with increased distance. These findings suggest that the processing of body-semantics results in the activation of a detailed visuo-spatial body representation that is modulated by the specific task requirements. We discuss these new data with respect to theories of embodied cognition and body semantics. Copyright © 2011 Elsevier B.V. All rights reserved.
Frontotemporal neural systems supporting semantic processing in Alzheimer's disease.
Peelle, Jonathan E; Powers, John; Cook, Philip A; Smith, Edward E; Grossman, Murray
2014-03-01
We hypothesized that semantic memory for object concepts involves both representations of visual feature knowledge in modality-specific association cortex and heteromodal regions that are important for integrating and organizing this semantic knowledge so that it can be used in a flexible, contextually appropriate manner. We examined this hypothesis in an fMRI study of mild Alzheimer's disease (AD). Participants were presented with pairs of printed words and asked whether the words matched on a given visual-perceptual feature (e.g., guitar, violin: SHAPE). The stimuli probed natural kinds and manufactured objects, and the judgments involved shape or color. We found activation of bilateral ventral temporal cortex and left dorsolateral prefrontal cortex during semantic judgments, with AD patients showing less activation of these regions than healthy seniors. Moreover, AD patients showed less ventral temporal activation than did healthy seniors for manufactured objects, but not for natural kinds. We also used diffusion-weighted MRI of white matter to examine fractional anisotropy (FA). Patients with AD showed significantly reduced FA in the superior longitudinal fasciculus and inferior frontal-occipital fasciculus, which carry projections linking temporal and frontal regions of this semantic network. Our results are consistent with the hypothesis that semantic memory is supported in part by a large-scale neural network involving modality-specific association cortex, heteromodal association cortex, and projections between these regions. The semantic deficit in AD thus arises from gray matter disease that affects the representation of feature knowledge and processing its content, as well as white matter disease that interrupts the integrated functioning of this large-scale network.
Chiou, Rocco; Humphreys, Gina F; Jung, JeYoung; Lambon Ralph, Matthew A
2018-06-01
Built upon a wealth of neuroimaging, neurostimulation, and neuropsychology data, a recent proposal set forth a framework termed controlled semantic cognition (CSC) to account for how the brain underpins the ability to flexibly use semantic knowledge (Lambon Ralph et al., 2017; Nature Reviews Neuroscience). In CSC, the 'semantic control' system, underpinned predominantly by the prefrontal cortex, dynamically monitors and modulates the 'semantic representation' system that consists of a 'hub' (anterior temporal lobe, ATL) and multiple 'spokes' (modality-specific areas). CSC predicts that unfamiliar and exacting semantic tasks should intensify communication between the 'control' and 'representation' systems, relative to familiar and less taxing tasks. In the present study, we used functional magnetic resonance imaging (fMRI) to test this hypothesis. Participants paired unrelated concepts by canonical colours (a less accustomed task - e.g., pairing ketchup with fire-extinguishers due to both being red) or paired well-related concepts by semantic relationship (a typical task - e.g., ketchup is related to mustard). We found the 'control' system was more engaged by atypical than typical pairing. While both tasks activated the ATL 'hub', colour pairing additionally involved occipitotemporal 'spoke' regions abutting areas of hue perception. Furthermore, we uncovered a gradient along the ventral temporal cortex, transitioning from the caudal 'spoke' zones preferring canonical colour processing to the rostral 'hub' zones preferring semantic relationship. Functional connectivity also differed between the tasks: Compared with semantic pairing, colour pairing relied more upon the inferior frontal gyrus, a key node of the control system, driving enhanced connectivity with occipitotemporal 'spoke'. Together, our findings characterise the interaction within the neural architecture of semantic cognition - the control system dynamically heightens its connectivity with relevant components of the representation system, in response to different semantic contents and difficulty levels. Copyright © 2018 The Author(s). Published by Elsevier Ltd.. All rights reserved.
The Role of Semantic Clustering in Optimal Memory Foraging.
Montez, Priscilla; Thompson, Graham; Kello, Christopher T
2015-11-01
Recent studies of semantic memory have investigated two theories of optimal search adopted from the animal foraging literature: Lévy flights and marginal value theorem. Each theory makes different simplifying assumptions and addresses different findings in search behaviors. In this study, an experiment is conducted to test whether clustering in semantic memory may play a role in evidence for both theories. Labeled magnets and a whiteboard were used to elicit spatial representations of semantic knowledge about animals. Category recall sequences from a separate experiment were used to trace search paths over the spatial representations of animal knowledge. Results showed that spatial distances between animal names arranged on the whiteboard were correlated with inter-response intervals (IRIs) during category recall, and distributions of both dependent measures approximated inverse power laws associated with Lévy flights. In addition, IRIs were relatively shorter when paths first entered animal clusters, and longer when they exited clusters, which is consistent with marginal value theorem. In conclusion, area-restricted searches over clustered semantic spaces may account for two different patterns of results interpreted as supporting two different theories of optimal memory foraging. Copyright © 2015 Cognitive Science Society, Inc.
KaBOB: ontology-based semantic integration of biomedical databases.
Livingston, Kevin M; Bada, Michael; Baumgartner, William A; Hunter, Lawrence E
2015-04-23
The ability to query many independent biological databases using a common ontology-based semantic model would facilitate deeper integration and more effective utilization of these diverse and rapidly growing resources. Despite ongoing work moving toward shared data formats and linked identifiers, significant problems persist in semantic data integration in order to establish shared identity and shared meaning across heterogeneous biomedical data sources. We present five processes for semantic data integration that, when applied collectively, solve seven key problems. These processes include making explicit the differences between biomedical concepts and database records, aggregating sets of identifiers denoting the same biomedical concepts across data sources, and using declaratively represented forward-chaining rules to take information that is variably represented in source databases and integrating it into a consistent biomedical representation. We demonstrate these processes and solutions by presenting KaBOB (the Knowledge Base Of Biomedicine), a knowledge base of semantically integrated data from 18 prominent biomedical databases using common representations grounded in Open Biomedical Ontologies. An instance of KaBOB with data about humans and seven major model organisms can be built using on the order of 500 million RDF triples. All source code for building KaBOB is available under an open-source license. KaBOB is an integrated knowledge base of biomedical data representationally based in prominent, actively maintained Open Biomedical Ontologies, thus enabling queries of the underlying data in terms of biomedical concepts (e.g., genes and gene products, interactions and processes) rather than features of source-specific data schemas or file formats. KaBOB resolves many of the issues that routinely plague biomedical researchers intending to work with data from multiple data sources and provides a platform for ongoing data integration and development and for formal reasoning over a wealth of integrated biomedical data.
Don’t Like RDF Reification? Making Statements about Statements Using Singleton Property
Nguyen, Vinh; Bodenreider, Olivier; Sheth, Amit
2015-01-01
Statements about RDF statements, or meta triples, provide additional information about individual triples, such as the source, the occurring time or place, or the certainty. Integrating such meta triples into semantic knowledge bases would enable the querying and reasoning mechanisms to be aware of provenance, time, location, or certainty of triples. However, an efficient RDF representation for such meta knowledge of triples remains challenging. The existing standard reification approach allows such meta knowledge of RDF triples to be expressed using RDF by two steps. The first step is representing the triple by a Statement instance which has subject, predicate, and object indicated separately in three different triples. The second step is creating assertions about that instance as if it is a statement. While reification is simple and intuitive, this approach does not have formal semantics and is not commonly used in practice as described in the RDF Primer. In this paper, we propose a novel approach called Singleton Property for representing statements about statements and provide a formal semantics for it. We explain how this singleton property approach fits well with the existing syntax and formal semantics of RDF, and the syntax of SPARQL query language. We also demonstrate the use of singleton property in the representation and querying of meta knowledge in two examples of Semantic Web knowledge bases: YAGO2 and BKR. Our experiments on the BKR show that the singleton property approach gives a decent performance in terms of number of triples, query length and query execution time compared to existing approaches. This approach, which is also simple and intuitive, can be easily adopted for representing and querying statements about statements in other knowledge bases. PMID:25750938
van Elk, Michiel; van Schie, Hein; Bekkering, Harold
2014-06-01
Our capacity to use tools and objects is often considered one of the hallmarks of the human species. Many objects greatly extend our bodily capabilities to act in the physical world, such as when using a hammer or a saw. In addition, humans have the remarkable capability to use objects in a flexible fashion and to combine multiple objects in complex actions. We prepare coffee, cook dinner and drive our car. In this review we propose that humans have developed declarative and procedural knowledge, i.e. action semantics that enables us to use objects in a meaningful way. A state-of-the-art review of research on object use is provided, involving behavioral, developmental, neuropsychological and neuroimaging studies. We show that research in each of these domains is characterized by similar discussions regarding (1) the role of object affordances, (2) the relation between goals and means in object use and (3) the functional and neural organization of action semantics. We propose a novel conceptual framework of action semantics to address these issues and to integrate the previous findings. We argue that action semantics entails both multimodal object representations and modality-specific sub-systems, involving manipulation knowledge, functional knowledge and representations of the sensory and proprioceptive consequences of object use. Furthermore, we argue that action semantics are hierarchically organized and selectively activated and used depending on the action intention of the actor and the current task context. Our framework presents an integrative account of multiple findings and perspectives on object use that may guide future studies in this interdisciplinary domain. Copyright © 2013 Elsevier B.V. All rights reserved.
On Productive Knowledge and Levels of Questions.
ERIC Educational Resources Information Center
Andre, Thomas
A model is proposed for memory that stresses a distinction between episodic memory for encoded personal experience and semantic memory for abstractors and generalizations. Basically, the model holds that questions influence the nature of memory representations formed during instruction, and that memory representation controls the way in which…
NASA Astrophysics Data System (ADS)
Sauermann, Leo; Kiesel, Malte; Schumacher, Kinga; Bernardi, Ansgar
In diesem Beitrag wird gezeigt, wie der Arbeitsplatz der Zukunft aussehen könnte und wo das Semantic Web neue Möglichkeiten eröffnet. Dazu werden Ansätze aus dem Bereich Semantic Web, Knowledge Representation, Desktop-Anwendungen und Visualisierung vorgestellt, die es uns ermöglichen, die bestehenden Daten eines Benutzers neu zu interpretieren und zu verwenden. Dabei bringt die Kombination von Semantic Web und Desktop Computern besondere Vorteile - ein Paradigma, das unter dem Titel Semantic Desktop bekannt ist. Die beschriebenen Möglichkeiten der Applikationsintegration sind aber nicht auf den Desktop beschränkt, sondern können genauso in Web-Anwendungen Verwendung finden.
The Body of Evidence: What Can Neuroscience Tell Us about Embodied Semantics?
Hauk, Olaf; Tschentscher, Nadja
2013-01-01
Semantic knowledge is based on the way we perceive and interact with the world. However, the jury is still out on the question: to what degree are neuronal systems that subserve acquisition of semantic knowledge, such as sensory-motor networks, involved in its representation and processing? We will begin with a critical evaluation of the main behavioral and neuroimaging methods with respect to their capability to define the functional roles of specific brain areas. Any behavioral or neuroscientific measure is a conflation of representations and processes. Hence, a combination of behavioral and neurophysiological interactions as well as time-course information is required to define the functional roles of brain areas. This will guide our review of the empirical literature. Most research in this area has been done on semantics of concrete words, where clear theoretical frameworks for an involvement of sensory-motor systems in semantics exist. Most of this evidence still stems from correlational studies that are ambiguous with respect to the behavioral relevance of effects. Evidence for causal effects of sensory-motor systems on semantic processes is still scarce but evolving. Relatively few neuroscientific studies so far have investigated the embodiment of abstract semantics for words, numbers, and arithmetic facts. Here, some correlational evidence exists, but data on causality are mostly absent. We conclude that neuroimaging data, just as behavioral data, have so far not disentangled the fundamental link between process and representation. Future studies should therefore put more emphasis on the effects of task and context on semantic processing. Strong conclusions can only be drawn from a combination of methods that provide time-course information, determine the connectivity among poly- or amodal and sensory-motor areas, link behavioral with neuroimaging measures, and allow causal inferences. We will conclude with suggestions on how this could be accomplished in future research. PMID:23407791
Automatic event recognition and anomaly detection with attribute grammar by learning scene semantics
NASA Astrophysics Data System (ADS)
Qi, Lin; Yao, Zhenyu; Li, Li; Dong, Junyu
2007-11-01
In this paper we present a novel framework for automatic event recognition and abnormal behavior detection with attribute grammar by learning scene semantics. This framework combines learning scene semantics by trajectory analysis and constructing attribute grammar-based event representation. The scene and event information is learned automatically. Abnormal behaviors that disobey scene semantics or event grammars rules are detected. By this method, an approach to understanding video scenes is achieved. Further more, with this prior knowledge, the accuracy of abnormal event detection is increased.
Biologically Plausible, Human-Scale Knowledge Representation.
Crawford, Eric; Gingerich, Matthew; Eliasmith, Chris
2016-05-01
Several approaches to implementing symbol-like representations in neurally plausible models have been proposed. These approaches include binding through synchrony (Shastri & Ajjanagadde, ), "mesh" binding (van der Velde & de Kamps, ), and conjunctive binding (Smolensky, ). Recent theoretical work has suggested that most of these methods will not scale well, that is, that they cannot encode structured representations using any of the tens of thousands of terms in the adult lexicon without making implausible resource assumptions. Here, we empirically demonstrate that the biologically plausible structured representations employed in the Semantic Pointer Architecture (SPA) approach to modeling cognition (Eliasmith, ) do scale appropriately. Specifically, we construct a spiking neural network of about 2.5 million neurons that employs semantic pointers to successfully encode and decode the main lexical relations in WordNet, which has over 100,000 terms. In addition, we show that the same representations can be employed to construct recursively structured sentences consisting of arbitrary WordNet concepts, while preserving the original lexical structure. We argue that these results suggest that semantic pointers are uniquely well-suited to providing a biologically plausible account of the structured representations that underwrite human cognition. Copyright © 2015 Cognitive Science Society, Inc.
[Artificial intelligence meeting neuropsychology. Semantic memory in normal and pathological aging].
Aimé, Xavier; Charlet, Jean; Maillet, Didier; Belin, Catherine
2015-03-01
Artificial intelligence (IA) is the subject of much research, but also many fantasies. It aims to reproduce human intelligence in its learning capacity, knowledge storage and computation. In 2014, the Defense Advanced Research Projects Agency (DARPA) started the restoring active memory (RAM) program that attempt to develop implantable technology to bridge gaps in the injured brain and restore normal memory function to people with memory loss caused by injury or disease. In another IA's field, computational ontologies (a formal and shared conceptualization) try to model knowledge in order to represent a structured and unambiguous meaning of the concepts of a target domain. The aim of these structures is to ensure a consensual understanding of their meaning and a univariant use (the same concept is used by all to categorize the same individuals). The first representations of knowledge in the AI's domain are largely based on model tests of semantic memory. This one, as a component of long-term memory is the memory of words, ideas, concepts. It is the only declarative memory system that resists so remarkably to the effects of age. In contrast, non-specific cognitive changes may decrease the performance of elderly in various events and instead report difficulties of access to semantic representations that affect the semantics stock itself. Some dementias, like semantic dementia and Alzheimer's disease, are linked to alteration of semantic memory. We propose in this paper, using the computational ontologies model, a formal and relatively thin modeling, in the service of neuropsychology: 1) for the practitioner with decision support systems, 2) for the patient as cognitive prosthesis outsourced, and 3) for the researcher to study semantic memory.
Electrophysiological evidence for effects of color knowledge in object recognition.
Lu, Aitao; Xu, Guiping; Jin, Hua; Mo, Lei; Zhang, Jijia; Zhang, John X
2010-01-29
Knowledge about the typical colors associated with familiar everyday objects (i.e., strawberries are red) is well-known to be represented in the conceptual semantic system. Evidence that such knowledge may also play a role in early perceptual processes for object recognition is scant. In the present ERP study, participants viewed a list of object pictures and detected infrequent stimulus repetitions. Results show that shortly after stimulus onset, ERP components indexing early perceptual processes, including N1, P2, and N2, differentiated between objects in their appropriate or congruent color from these objects in an inappropriate or incongruent color. Such congruence effect also occurred in N3 associated with semantic processing of pictures but not in N4 for domain-general semantic processing. Our results demonstrate a clear effect of color knowledge in early object recognition stages and support the following proposal-color as a surface property is stored in a multiple-memory system where pre-semantic perceptual and semantic conceptual representations interact during object recognition. (c) 2009 Elsevier Ireland Ltd. All rights reserved.
Dynamic information processing states revealed through neurocognitive models of object semantics
Clarke, Alex
2015-01-01
Recognising objects relies on highly dynamic, interactive brain networks to process multiple aspects of object information. To fully understand how different forms of information about objects are represented and processed in the brain requires a neurocognitive account of visual object recognition that combines a detailed cognitive model of semantic knowledge with a neurobiological model of visual object processing. Here we ask how specific cognitive factors are instantiated in our mental processes and how they dynamically evolve over time. We suggest that coarse semantic information, based on generic shared semantic knowledge, is rapidly extracted from visual inputs and is sufficient to drive rapid category decisions. Subsequent recurrent neural activity between the anterior temporal lobe and posterior fusiform supports the formation of object-specific semantic representations – a conjunctive process primarily driven by the perirhinal cortex. These object-specific representations require the integration of shared and distinguishing object properties and support the unique recognition of objects. We conclude that a valuable way of understanding the cognitive activity of the brain is though testing the relationship between specific cognitive measures and dynamic neural activity. This kind of approach allows us to move towards uncovering the information processing states of the brain and how they evolve over time. PMID:25745632
Forced to remember: when memory is biased by salient information.
Santangelo, Valerio
2015-04-15
The last decades have seen a rapid growing in the attempt to understand the key factors involved in the internal memory representation of the external world. Visual salience have been found to provide a major contribution in predicting the probability for an item/object embedded in a complex setting (i.e., a natural scene) to be encoded and then remembered later on. Here I review the existing literature highlighting the impact of perceptual- (based on low-level sensory features) and semantics-related salience (based on high-level knowledge) on short-term memory representation, along with the neural mechanisms underpinning the interplay between these factors. The available evidence reveal that both perceptual- and semantics-related factors affect attention selection mechanisms during the encoding of natural scenes. Biasing internal memory representation, both perceptual and semantics factors increase the probability to remember high- to the detriment of low-saliency items. The available evidence also highlight an interplay between these factors, with a reduced impact of perceptual-related salience in biasing memory representation as a function of the increasing availability of semantics-related salient information. The neural mechanisms underpinning this interplay involve the activation of different portions of the frontoparietal attention control network. Ventral regions support the assignment of selection/encoding priorities based on high-level semantics, while the involvement of dorsal regions reflects priorities assignment based on low-level sensory features. Copyright © 2015 Elsevier B.V. All rights reserved.
Zhang, Yi-Fan; Tian, Yu; Zhou, Tian-Shu; Araki, Kenji; Li, Jing-Song
2016-01-01
The broad adoption of clinical decision support systems within clinical practice has been hampered mainly by the difficulty in expressing domain knowledge and patient data in a unified formalism. This paper presents a semantic-based approach to the unified representation of healthcare domain knowledge and patient data for practical clinical decision making applications. A four-phase knowledge engineering cycle is implemented to develop a semantic healthcare knowledge base based on an HL7 reference information model, including an ontology to model domain knowledge and patient data and an expression repository to encode clinical decision making rules and queries. A semantic clinical decision support system is designed to provide patient-specific healthcare recommendations based on the knowledge base and patient data. The proposed solution is evaluated in the case study of type 2 diabetes mellitus inpatient management. The knowledge base is successfully instantiated with relevant domain knowledge and testing patient data. Ontology-level evaluation confirms model validity. Application-level evaluation of diagnostic accuracy reaches a sensitivity of 97.5%, a specificity of 100%, and a precision of 98%; an acceptance rate of 97.3% is given by domain experts for the recommended care plan orders. The proposed solution has been successfully validated in the case study as providing clinical decision support at a high accuracy and acceptance rate. The evaluation results demonstrate the technical feasibility and application prospect of our approach. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Survey of Knowledge Representation and Reasoning Systems
2009-07-01
processing large volumes of unstructured information such as natural language documents, email, audio , images and video [Ferrucci et al. 2006]. Using this...information we hope to obtain improved es- timation and prediction, data-mining, social network analysis, and semantic search and visualisation . Knowledge
Charlet, J; Darmoni, S J
2015-08-13
To summarize the best papers in the field of Knowledge Representation and Management (KRM). A comprehensive review of medical informatics literature was performed to select some of the most interesting papers of KRM published in 2014. Four articles were selected, two focused on annotation and information retrieval using an ontology. The two others focused mainly on ontologies, one dealing with the usage of a temporal ontology in order to analyze the content of narrative document, one describing a methodology for building multilingual ontologies. Semantic models began to show their efficiency, coupled with annotation tools.
Reilly, Jamie; Rodriguez, Amy D; Peelle, Jonathan E; Grossman, Murray
2011-06-01
Portions of left inferior frontal cortex have been linked to semantic memory both in terms of the content of conceptual representation (e.g., motor aspects in an embodied semantics framework) and the cognitive processes used to access these representations (e.g., response selection). Progressive non-fluent aphasia (PNFA) is a neurodegenerative condition characterized by progressive atrophy of left inferior frontal cortex. PNFA can, therefore, provide a lesion model for examining the impact of frontal lobe damage on semantic processing and content. In the current study we examined picture naming in a cohort of PNFA patients across a variety of semantic categories. An embodied approach to semantic memory holds that sensorimotor features such as self-initiated action may assume differential importance for the representation of manufactured artifacts (e.g., naming hand tools). Embodiment theories might therefore predict that patients with frontal damage would be differentially impaired on manufactured artifacts relative to natural kinds, and this prediction was borne out. We also examined patterns of naming errors across a wide range of semantic categories and found that naming error distributions were heterogeneous. Although PNFA patients performed worse overall on naming manufactured artifacts, there was no reliable relationship between anomia and manipulability across semantic categories. These results add to a growing body of research arguing against a purely sensorimotor account of semantic memory, suggesting instead a more nuanced balance of process and content in how the brain represents conceptual knowledge. Copyright © 2010 Elsevier Srl. All rights reserved.
Altered brain response for semantic knowledge in Alzheimer's disease.
Wierenga, Christina E; Stricker, Nikki H; McCauley, Ashley; Simmons, Alan; Jak, Amy J; Chang, Yu-Ling; Nation, Daniel A; Bangen, Katherine J; Salmon, David P; Bondi, Mark W
2011-02-01
Word retrieval deficits are common in Alzheimer's disease (AD) and are thought to reflect a degradation of semantic memory. Yet, the nature of semantic deterioration in AD and the underlying neural correlates of these semantic memory changes remain largely unknown. We examined the semantic memory impairment in AD by investigating the neural correlates of category knowledge (e.g., living vs. nonliving) and featural processing (global vs. local visual information). During event-related fMRI, 10 adults diagnosed with mild AD and 22 cognitively normal (CN) older adults named aloud items from three categories for which processing of specific visual features has previously been dissociated from categorical features. Results showed widespread group differences in the categorical representation of semantic knowledge in several language-related brain areas. For example, the right inferior frontal gyrus showed selective brain response for nonliving items in the CN group but living items in the AD group. Additionally, the AD group showed increased brain response for word retrieval irrespective of category in Broca's homologue in the right hemisphere and rostral cingulate cortex bilaterally, which suggests greater recruitment of frontally mediated neural compensatory mechanisms in the face of semantic alteration. Copyright © 2010 Elsevier Ltd. All rights reserved.
Medical Language Processing for Knowledge Representation and Retrievals
Lyman, Margaret; Sager, Naomi; Chi, Emile C.; Tick, Leo J.; Nhan, Ngo Thanh; Su, Yun; Borst, Francois; Scherrer, Jean-Raoul
1989-01-01
The Linguistic String Project-Medical Language Processor, a system for computer analysis of narrative patient documents in English, is being adapted for French Lettres de Sortie. The system converts the free-text input to a semantic representation which is then mapped into a relational database. Retrievals of clinical data from the database are described.
Handling knowledge via Concept Maps: a space weather use case
NASA Astrophysics Data System (ADS)
Messerotti, Mauro; Fox, Peter
Concept Maps (Cmaps) are powerful means for knowledge coding in graphical form. As flexible software tools exist to manipulate the knowledge embedded in Cmaps in machine-readable form, such complex entities are suitable candidates not only for the representation of ontologies and semantics in Virtual Observatory (VO) architectures, but also for knowledge handling and knowledge discovery. In this work, we present a use case relevant to space weather applications and we elaborate on its possible implementation and adavanced use in Semantic Virtual Observatories dedicated to Sun-Earth Connections. This analysis was carried out in the framework of the Electronic Geophysical Year (eGY) and represents an achievement synergized by the eGY Virtual Observatories Working Group.
Concept Representation Reflects Multimodal Abstraction: A Framework for Embodied Semantics
Fernandino, Leonardo; Binder, Jeffrey R.; Desai, Rutvik H.; Pendl, Suzanne L.; Humphries, Colin J.; Gross, William L.; Conant, Lisa L.; Seidenberg, Mark S.
2016-01-01
Recent research indicates that sensory and motor cortical areas play a significant role in the neural representation of concepts. However, little is known about the overall architecture of this representational system, including the role played by higher level areas that integrate different types of sensory and motor information. The present study addressed this issue by investigating the simultaneous contributions of multiple sensory-motor modalities to semantic word processing. With a multivariate fMRI design, we examined activation associated with 5 sensory-motor attributes—color, shape, visual motion, sound, and manipulation—for 900 words. Regions responsive to each attribute were identified using independent ratings of the attributes' relevance to the meaning of each word. The results indicate that these aspects of conceptual knowledge are encoded in multimodal and higher level unimodal areas involved in processing the corresponding types of information during perception and action, in agreement with embodied theories of semantics. They also reveal a hierarchical system of abstracted sensory-motor representations incorporating a major division between object interaction and object perception processes. PMID:25750259
Semantically-enabled Knowledge Discovery in the Deep Carbon Observatory
NASA Astrophysics Data System (ADS)
Wang, H.; Chen, Y.; Ma, X.; Erickson, J. S.; West, P.; Fox, P. A.
2013-12-01
The Deep Carbon Observatory (DCO) is a decadal effort aimed at transforming scientific and public understanding of carbon in the complex deep earth system from the perspectives of Deep Energy, Deep Life, Extreme Physics and Chemistry, and Reservoirs and Fluxes. Over the course of the decade DCO scientific activities will generate a massive volume of data across a variety of disciplines, presenting significant challenges in terms of data integration, management, analysis and visualization, and ultimately limiting the ability of scientists across disciplines to make insights and unlock new knowledge. The DCO Data Science Team (DCO-DS) is applying Semantic Web methodologies to construct a knowledge representation focused on the DCO Earth science disciplines, and use it together with other technologies (e.g. natural language processing and data mining) to create a more expressive representation of the distributed corpus of DCO artifacts including datasets, metadata, instruments, sensors, platforms, deployments, researchers, organizations, funding agencies, grants and various awards. The embodiment of this knowledge representation is the DCO Data Science Infrastructure, in which unique entities within the DCO domain and the relations between them are recognized and explicitly identified. The DCO-DS Infrastructure will serve as a platform for more efficient and reliable searching, discovery, access, and publication of information and knowledge for the DCO scientific community and beyond.
Pobric, Gorana; Lambon Ralph, Matthew A.; Jefferies, Elizabeth
2009-01-01
Conceptual knowledge allows us to bring meaning to our world. Studies of semantic dementia (SD) patients and some functional neuroimaging studies indicate that the anterior temporal lobes, bilaterally, are a core neural substrate for the formation of conceptual representations. The majority of SD patients (who have circumscribed atrophy of the anterior temporal lobes) have better comprehension of concrete than abstract words. However, this finding remains controversial, as some individual SD patients have exhibited reverse imageability effects, i.e., relative preservation of abstract knowledge. This would imply that the anterior temporal lobes are particularly crucial for processing sensory aspects of semantic knowledge, which are an important part of concrete but not abstract concepts. To adjudicate on this debate, we used offline, low-frequency, repetitive transcranial magnetic stimulation to disrupt neural processing temporarily in the left or right temporal poles (TPs). We examined this effect using a synonym judgement task, comprising high, medium and low imageability items, which we have previously employed with a case-series of SD patients. The time required to make semantic decisions was slowed considerably, particularly for low imageability items, consistent with the pattern we observed in SD. These results confirm that both TPs make a critical contribution to semantic processing, even for abstract concepts that do not have strong sensory representations. PMID:19303592
Person- and place-selective neural substrates for entity-specific semantic access.
Fairhall, Scott L; Anzellotti, Stefano; Ubaldi, Silvia; Caramazza, Alfonso
2014-07-01
Object-category has a pronounced effect on the representation of objects in higher level visual cortex. However, the influence of category on semantic/conceptual processes is less well characterized. In the present study, we conduct 2 fMRI experiments to investigate the semantic processing of information specific to individual people and places (entities). First, during picture presentation, we determined which brain regions show category-selective increases during access to entity-specific semantic information (i.e., nationality) in comparison to general-category discrimination (person vs. place). In the second experiment, we presented either words or pictures to assess the independence of entity-specific category-selective semantic representations from the processes used to access those representations. Convergent results from these 2 experiments show that brain regions exhibiting a category-selective increase during entity-specific semantic access are the same as those that show a supramodal (word/picture) category-selective response during the same task. These responses were different from classical "perceptual" category-selective responses and were evident in the medial precuneus for people and in the retrosplenial complex as well as anterior/superior sections of the transverse occipital sulcus and parahippocampal gyrus for places. These results reveal the pervasive influence of object-category in cortical organization, which extends to aspects of semantic knowledge arbitrarily related to physical/perceptual properties. © The Author 2013. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Inborn and experience-dependent models of categorical brain organization. A position paper
Gainotti, Guido
2015-01-01
The present review aims to summarize the debate in contemporary neuroscience between inborn and experience-dependent models of conceptual representations that goes back to the description of category-specific semantic disorders for biological and artifact categories. Experience-dependent models suggest that categorical disorders are the by-product of the differential weighting of different sources of knowledge in the representation of biological and artifact categories. These models maintain that semantic disorders are not really category-specific, because they do not respect the boundaries between different categories. They also argue that the brain structures which are disrupted in a given type of category-specific semantic disorder should correspond to the areas of convergence of the sensory-motor information which play a major role in the construction of that category. Furthermore, they provide a simple interpretation of gender-related categorical effects and are supported by studies assessing the importance of prior experience in the cortical representation of objects On the other hand, inborn models maintain that category-specific semantic disorders reflect the disruption of innate brain networks, which are shaped by natural selection to allow rapid identification of objects that are very relevant for survival. From the empirical point of view, these models are mainly supported by observations of blind subjects, which suggest that visual experience is not necessary for the emergence of category-specificity in the ventral stream of visual processing. The weight of the data supporting experience-dependent and inborn models is thoroughly discussed, stressing the fact observations made in blind subjects are still the subject of intense debate. It is concluded that at the present state of knowledge it is not possible to choose between experience-dependent and inborn models of conceptual representations. PMID:25667570
Language knowledge and event knowledge in language use.
Willits, Jon A; Amato, Michael S; MacDonald, Maryellen C
2015-05-01
This paper examines how semantic knowledge is used in language comprehension and in making judgments about events in the world. We contrast knowledge gleaned from prior language experience ("language knowledge") and knowledge coming from prior experience with the world ("world knowledge"). In two corpus analyses, we show that previous research linking verb aspect and event representations have confounded language and world knowledge. Then, using carefully chosen stimuli that remove this confound, we performed four experiments that manipulated the degree to which language knowledge or world knowledge should be salient and relevant to performing a task, finding in each case that participants use the type of knowledge most appropriate to the task. These results provide evidence for a highly context-sensitive and interactionist perspective on how semantic knowledge is represented and used during language processing. Copyright © 2015. Published by Elsevier Inc.
A path-oriented knowledge representation system: Defusing the combinatorial system
NASA Technical Reports Server (NTRS)
Karamouzis, Stamos T.; Barry, John S.; Smith, Steven L.; Feyock, Stefan
1995-01-01
LIMAP is a programming system oriented toward efficient information manipulation over fixed finite domains, and quantification over paths and predicates. A generalization of Warshall's Algorithm to precompute paths in a sparse matrix representation of semantic nets is employed to allow questions involving paths between components to be posed and answered easily. LIMAP's ability to cache all paths between two components in a matrix cell proved to be a computational obstacle, however, when the semantic net grew to realistic size. The present paper describes a means of mitigating this combinatorial explosion to an extent that makes the use of the LIMAP representation feasible for problems of significant size. The technique we describe radically reduces the size of the search space in which LIMAP must operate; semantic nets of more than 500 nodes have been attacked successfully. Furthermore, it appears that the procedure described is applicable not only to LIMAP, but to a number of other combinatorially explosive search space problems found in AI as well.
What does semantic tiling of the cortex tell us about semantics?
Barsalou, Lawrence W
2017-10-01
Recent use of voxel-wise modeling in cognitive neuroscience suggests that semantic maps tile the cortex. Although this impressive research establishes distributed cortical areas active during the conceptual processing that underlies semantics, it tells us little about the nature of this processing. While mapping concepts between Marr's computational and implementation levels to support neural encoding and decoding, this approach ignores Marr's algorithmic level, central for understanding the mechanisms that implement cognition, in general, and conceptual processing, in particular. Following decades of research in cognitive science and neuroscience, what do we know so far about the representation and processing mechanisms that implement conceptual abilities? Most basically, much is known about the mechanisms associated with: (1) feature and frame representations, (2) grounded, abstract, and linguistic representations, (3) knowledge-based inference, (4) concept composition, and (5) conceptual flexibility. Rather than explaining these fundamental representation and processing mechanisms, semantic tiles simply provide a trace of their activity over a relatively short time period within a specific learning context. Establishing the mechanisms that implement conceptual processing in the brain will require more than mapping it to cortical (and sub-cortical) activity, with process models from cognitive science likely to play central roles in specifying the intervening mechanisms. More generally, neuroscience will not achieve its basic goals until it establishes algorithmic-level mechanisms that contribute essential explanations to how the brain works, going beyond simply establishing the brain areas that respond to various task conditions. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Narock, T.; Arko, R. A.; Carbotte, S. M.; Chandler, C. L.; Cheatham, M.; Finin, T.; Hitzler, P.; Krisnadhi, A.; Raymond, L. M.; Shepherd, A.; Wiebe, P. H.
2014-12-01
A wide spectrum of maturing methods and tools, collectively characterized as the Semantic Web, is helping to vastly improve the dissemination of scientific research. Creating semantic integration requires input from both domain and cyberinfrastructure scientists. OceanLink, an NSF EarthCube Building Block, is demonstrating semantic technologies through the integration of geoscience data repositories, library holdings, conference abstracts, and funded research awards. Meeting project objectives involves applying semantic technologies to support data representation, discovery, sharing and integration. Our semantic cyberinfrastructure components include ontology design patterns, Linked Data collections, semantic provenance, and associated services to enhance data and knowledge discovery, interoperation, and integration. We discuss how these components are integrated, the continued automated and semi-automated creation of semantic metadata, and techniques we have developed to integrate ontologies, link resources, and preserve provenance and attribution.
Archetype-based semantic integration and standardization of clinical data.
Moner, David; Maldonado, Jose A; Bosca, Diego; Fernandez, Jesualdo T; Angulo, Carlos; Crespo, Pere; Vivancos, Pedro J; Robles, Montserrat
2006-01-01
One of the basic needs for any healthcare professional is to be able to access to clinical information of patients in an understandable and normalized way. The lifelong clinical information of any person supported by electronic means configures his/her Electronic Health Record (EHR). This information is usually distributed among several independent and heterogeneous systems that may be syntactically or semantically incompatible. The Dual Model architecture has appeared as a new proposal for maintaining a homogeneous representation of the EHR with a clear separation between information and knowledge. Information is represented by a Reference Model which describes common data structures with minimal semantics. Knowledge is specified by archetypes, which are formal representations of clinical concepts built upon a particular Reference Model. This kind of architecture is originally thought for implantation of new clinical information systems, but archetypes can be also used for integrating data of existing and not normalized systems, adding at the same time a semantic meaning to the integrated data. In this paper we explain the possible use of a Dual Model approach for semantic integration and standardization of heterogeneous clinical data sources and present LinkEHR-Ed, a tool for developing archetypes as elements for integration purposes. LinkEHR-Ed has been designed to be easily used by the two main participants of the creation process of archetypes for clinical data integration: the Health domain expert and the Information Technologies domain expert.
Ontology-based knowledge representation for resolution of semantic heterogeneity in GIS
NASA Astrophysics Data System (ADS)
Liu, Ying; Xiao, Han; Wang, Limin; Han, Jialing
2017-07-01
Lack of semantic interoperability in geographical information systems has been identified as the main obstacle for data sharing and database integration. The new method should be found to overcome the problems of semantic heterogeneity. Ontologies are considered to be one approach to support geographic information sharing. This paper presents an ontology-driven integration approach to help in detecting and possibly resolving semantic conflicts. Its originality is that each data source participating in the integration process contains an ontology that defines the meaning of its own data. This approach ensures the automation of the integration through regulation of semantic integration algorithm. Finally, land classification in field GIS is described as the example.
A Semi-Automatic Approach to Construct Vietnamese Ontology from Online Text
ERIC Educational Resources Information Center
Nguyen, Bao-An; Yang, Don-Lin
2012-01-01
An ontology is an effective formal representation of knowledge used commonly in artificial intelligence, semantic web, software engineering, and information retrieval. In open and distance learning, ontologies are used as knowledge bases for e-learning supplements, educational recommenders, and question answering systems that support students with…
Hoffman, Paul; Binney, Richard J.; Lambon Ralph, Matthew A.
2015-01-01
Semantic cognition is underpinned by regions involved in representing conceptual knowledge and executive control areas that provide regulation of this information according to current task requirements. Using distortion-corrected fMRI, we investigated the contributions of these two systems to abstract and concrete word comprehension. We contrasted semantic decisions made either with coherent contextual support, which encouraged retrieval of a rich conceptual representation, or with irrelevant contextual information, which instead maximised demands on control processes. Inferior prefrontal cortex was activated more when decisions were made in the presence of irrelevant context, suggesting that this region is crucial for the semantic control functions required to select appropriate aspects of meaning in the face of competing information. It also exhibited greater activation for abstract words, which reflects the fact that abstract words tend to have variable, context-dependent meanings that place higher demands on control processes. In contrast, anterior temporal regions (ATL) were most active when decisions were made with the benefit of a coherent context, suggesting a representational role. There was a graded shift in concreteness effects in this region, with dorsolateral areas particularly active for abstract words and ventromedial areas preferentially activated by concrete words. This supports the idea that concrete concepts are closely associated with visual experience and abstract concepts with auditory-verbal information; and that sub-regions of the ATL display graded specialisation for these two types of knowledge. Between these two extremes, we identified significant activations for both word types in ventrolateral ATL. This area is known to be involved in representing knowledge for concrete concepts; here we established that it is also activated by abstract concepts. These results converge with data from rTMS and neuropsychological investigations in demonstrating that representational content and task demands influence recruitment of different areas in the semantic network. PMID:25303272
Hoffman, Paul; Binney, Richard J; Lambon Ralph, Matthew A
2015-02-01
Semantic cognition is underpinned by regions involved in representing conceptual knowledge and executive control areas that provide regulation of this information according to current task requirements. Using distortion-corrected fMRI, we investigated the contributions of these two systems to abstract and concrete word comprehension. We contrasted semantic decisions made either with coherent contextual support, which encouraged retrieval of a rich conceptual representation, or with irrelevant contextual information, which instead maximised demands on control processes. Inferior prefrontal cortex was activated more when decisions were made in the presence of irrelevant context, suggesting that this region is crucial for the semantic control functions required to select appropriate aspects of meaning in the face of competing information. It also exhibited greater activation for abstract words, which reflects the fact that abstract words tend to have variable, context-dependent meanings that place higher demands on control processes. In contrast, anterior temporal regions (ATL) were most active when decisions were made with the benefit of a coherent context, suggesting a representational role. There was a graded shift in concreteness effects in this region, with dorsolateral areas particularly active for abstract words and ventromedial areas preferentially activated by concrete words. This supports the idea that concrete concepts are closely associated with visual experience and abstract concepts with auditory-verbal information; and that sub-regions of the ATL display graded specialisation for these two types of knowledge. Between these two extremes, we identified significant activations for both word types in ventrolateral ATL. This area is known to be involved in representing knowledge for concrete concepts; here we established that it is also activated by abstract concepts. These results converge with data from rTMS and neuropsychological investigations in demonstrating that representational content and task demands influence recruitment of different areas in the semantic network. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.
Linked Registries: Connecting Rare Diseases Patient Registries through a Semantic Web Layer
González-Castro, Lorena; Carta, Claudio; van der Horst, Eelke; Lopes, Pedro; Kaliyaperumal, Rajaram; Thompson, Mark; Thompson, Rachel; Queralt-Rosinach, Núria; Lopez, Estrella; Wood, Libby; Robertson, Agata; Lamanna, Claudia; Gilling, Mette; Orth, Michael; Merino-Martinez, Roxana; Taruscio, Domenica; Lochmüller, Hanns
2017-01-01
Patient registries are an essential tool to increase current knowledge regarding rare diseases. Understanding these data is a vital step to improve patient treatments and to create the most adequate tools for personalized medicine. However, the growing number of disease-specific patient registries brings also new technical challenges. Usually, these systems are developed as closed data silos, with independent formats and models, lacking comprehensive mechanisms to enable data sharing. To tackle these challenges, we developed a Semantic Web based solution that allows connecting distributed and heterogeneous registries, enabling the federation of knowledge between multiple independent environments. This semantic layer creates a holistic view over a set of anonymised registries, supporting semantic data representation, integrated access, and querying. The implemented system gave us the opportunity to answer challenging questions across disperse rare disease patient registries. The interconnection between those registries using Semantic Web technologies benefits our final solution in a way that we can query single or multiple instances according to our needs. The outcome is a unique semantic layer, connecting miscellaneous registries and delivering a lightweight holistic perspective over the wealth of knowledge stemming from linked rare disease patient registries. PMID:29214177
Linked Registries: Connecting Rare Diseases Patient Registries through a Semantic Web Layer.
Sernadela, Pedro; González-Castro, Lorena; Carta, Claudio; van der Horst, Eelke; Lopes, Pedro; Kaliyaperumal, Rajaram; Thompson, Mark; Thompson, Rachel; Queralt-Rosinach, Núria; Lopez, Estrella; Wood, Libby; Robertson, Agata; Lamanna, Claudia; Gilling, Mette; Orth, Michael; Merino-Martinez, Roxana; Posada, Manuel; Taruscio, Domenica; Lochmüller, Hanns; Robinson, Peter; Roos, Marco; Oliveira, José Luís
2017-01-01
Patient registries are an essential tool to increase current knowledge regarding rare diseases. Understanding these data is a vital step to improve patient treatments and to create the most adequate tools for personalized medicine. However, the growing number of disease-specific patient registries brings also new technical challenges. Usually, these systems are developed as closed data silos, with independent formats and models, lacking comprehensive mechanisms to enable data sharing. To tackle these challenges, we developed a Semantic Web based solution that allows connecting distributed and heterogeneous registries, enabling the federation of knowledge between multiple independent environments. This semantic layer creates a holistic view over a set of anonymised registries, supporting semantic data representation, integrated access, and querying. The implemented system gave us the opportunity to answer challenging questions across disperse rare disease patient registries. The interconnection between those registries using Semantic Web technologies benefits our final solution in a way that we can query single or multiple instances according to our needs. The outcome is a unique semantic layer, connecting miscellaneous registries and delivering a lightweight holistic perspective over the wealth of knowledge stemming from linked rare disease patient registries.
Amalric, Marie; Dehaene, Stanislas
2017-02-19
Is mathematical language similar to natural language? Are language areas used by mathematicians when they do mathematics? And does the brain comprise a generic semantic system that stores mathematical knowledge alongside knowledge of history, geography or famous people? Here, we refute those views by reviewing three functional MRI studies of the representation and manipulation of high-level mathematical knowledge in professional mathematicians. The results reveal that brain activity during professional mathematical reflection spares perisylvian language-related brain regions as well as temporal lobe areas classically involved in general semantic knowledge. Instead, mathematical reflection recycles bilateral intraparietal and ventral temporal regions involved in elementary number sense. Even simple fact retrieval, such as remembering that 'the sine function is periodical' or that 'London buses are red', activates dissociated areas for math versus non-math knowledge. Together with other fMRI and recent intracranial studies, our results indicated a major separation between two brain networks for mathematical and non-mathematical semantics, which goes a long way to explain a variety of facts in neuroimaging, neuropsychology and developmental disorders.This article is part of a discussion meeting issue 'The origins of numerical abilities'. © 2017 The Author(s).
Language knowledge and event knowledge in language use
Willits, Jon A.; Amato, Michael S.; MacDonald, Maryellen C.
2018-01-01
This paper examines how semantic knowledge is used in language comprehension and in making judgments about events in the world. We contrast knowledge gleaned from prior language experience (“language knowledge”) and knowledge coming from prior experience with the world (“world knowledge”). In two corpus analyses, we show that previous research linking verb aspect and event representations have confounded language and world knowledge. Then, using carefully chosen stimuli that remove this confound, we performed four experiments that manipulated the degree to which language knowledge or world knowledge should be salient and relevant to performing a task, finding in each case that participants use the type of knowledge most appropriate to the task. These results provide evidence for a highly context-sensitive and interactionist perspective on how semantic knowledge is represented and used during language processing. PMID:25791750
Taylor, Lawrence J.; Evans, Carys; Greer, Joanna; Senior, Carl; Coventry, Kenny R.; Ietswaart, Magdalena
2017-01-01
This multiple single case study contrasted left hemisphere stroke patients (N = 6) to healthy age-matched control participants (N = 15) on their understanding of action (e.g., holding, clenching) and motion verbs (e.g., crumbling, flowing). The tasks required participants to correctly identify the matching verb or associated picture. Dissociations on action and motion verb content depending on lesion site were expected. As predicted for verbs containing an action and/or motion content, modified t-tests confirmed selective deficits in processing motion verbs in patients with lesions involving posterior parietal and lateral occipitotemporal cortex. In contrast, deficits in verbs describing motionless actions were found in patients with more anterior lesions sparing posterior parietal and lateral occipitotemporal cortex. These findings support the hypotheses that semantic representations for action and motion are behaviorally and neuro-anatomically dissociable. The findings clarify the differential and critical role of perceptual and motor regions in processing modality-specific semantic knowledge as opposed to a supportive but not necessary role. We contextualize these results within theories from both cognitive psychology and cognitive neuroscience that make claims over the role of sensory and motor information in semantic representation. PMID:28261070
Soh, Jung; Turinsky, Andrei L; Trinh, Quang M; Chang, Jasmine; Sabhaney, Ajay; Dong, Xiaoli; Gordon, Paul Mk; Janzen, Ryan Pw; Hau, David; Xia, Jianguo; Wishart, David S; Sensen, Christoph W
2009-01-01
We have developed a computational framework for spatiotemporal integration of molecular and anatomical datasets in a virtual reality environment. Using two case studies involving gene expression data and pharmacokinetic data, respectively, we demonstrate how existing knowledge bases for molecular data can be semantically mapped onto a standardized anatomical context of human body. Our data mapping methodology uses ontological representations of heterogeneous biomedical datasets and an ontology reasoner to create complex semantic descriptions of biomedical processes. This framework provides a means to systematically combine an increasing amount of biomedical imaging and numerical data into spatiotemporally coherent graphical representations. Our work enables medical researchers with different expertise to simulate complex phenomena visually and to develop insights through the use of shared data, thus paving the way for pathological inference, developmental pattern discovery and biomedical hypothesis testing.
Knowledge Representation and Management: a Linked Data Perspective.
Barros, M; Couto, F M
2016-11-10
Biomedical research is increasingly becoming a data-intensive science in several areas, where prodigious amounts of data is being generated that has to be stored, integrated, shared and analyzed. In an effort to improve the accessibility of data and knowledge, the Linked Data initiative proposed a well-defined set of recommendations for exposing, sharing and integrating data, information and knowledge, using semantic web technologies. The main goal of this paper is to identify the current status and future trends of knowledge representation and management in Life and Health Sciences, mostly with regard to linked data technologies. We selected three prominent linked data studies, namely Bio2RDF, Open PHACTS and EBI RDF platform, and selected 14 studies published after 2014 (inclusive) that cited any of the three studies. We manually analyzed these 14 papers in relation to how they use linked data techniques. The analyses show a tendency to use linked data techniques in Life and Health Sciences, and even if some studies do not follow all of the recommendations, many of them already represent and manage their knowledge using RDF and biomedical ontologies. These insights from RDF and biomedical ontologies are having a strong impact on how knowledge is generated from biomedical data, by making data elements increasingly connected and by providing a better description of their semantics. As health institutes become more data centric, we believe that the adoption of linked data techniques will continue to grow and be an effective solution to knowledge representation and management.
Auditing Associative Relations across Two Knowledge Sources
Vizenor, Lowell T.; Bodenreider, Olivier; McCray, Alexa T.
2009-01-01
Objectives This paper proposes a novel semantic method for auditing associative relations in biomedical terminologies. We tested our methodology on two Unified Medical Language System (UMLS) knowledge sources. Methods We use the UMLS semantic groups as high-level representations of the domain and range of relationships in the Metathesaurus and in the Semantic Network. A mapping created between Metathesaurus relationships and Semantic Network relationships forms the basis for comparing the signatures of a given Metathesaurus relationship to the signatures of the semantic relationship to which it is mapped. The consistency of Metathesaurus relations is studied for each relationship. Results Of the 177 associative relationships in the Metathesaurus, 84 (48%) exhibit a high degree of consistency with the corresponding Semantic Network relationships. Overall, 63% of the 1.8M associative relations in the Metathesaurus are consistent with relations in the Semantic Network. Conclusion The semantics of associative relationships in biomedical terminologies should be defined explicitly by their developers. The Semantic Network would benefit from being extended with new relationships and with new relations for some existing relationships. The UMLS editing environment could take advantage of the correspondence established between relationships in the Metathesaurus and the Semantic Network. Finally, the auditing method also yielded useful information for refining the mapping of associative relationships between the two sources. PMID:19475724
ERIC Educational Resources Information Center
Elbro, Carsten; And Others
1994-01-01
Compared to controls, adults (n=102) who reported a history of difficulties in learning to read were disabled in phonological coding, but less disabled in reading comprehension. Adults with poor phonological coding skills had basic deficits in phonological representations of spoken words, even when semantic word knowledge, phonemic awareness,…
Papagno, Costanza; Vernice, Mirta; Cecchetto, Carlo
2013-03-01
There is considerable evidence that long-term knowledge has an influence on short-term memory (STM) performance. This reflects the activation of long-term representations involved in perceiving and comprehending spoken language. Still, this type of long-term knowledge might be of two different kinds. STM performance might be facilitated by information about the meaning of the word, or, alternatively, by familiarity with its phonological form. We investigated these two alternatives by assessing word span in MC, a patient with semantic dementia. Four different lists of words were used: known words, words whose phonological form was known by the patient although she could not report its meaning, words that the patient did not recognize as words and judged as nonwords, nonwords. The patient's performance was compared to that of six matched controls. MC did not differ from controls in the first two types of lists and performed at the same level with both, while for words whose phonological form was unknown (and therefore not recognized as words) her performance was comparable to that with nonwords; also, with this type of item, she produced significantly more phonemic substitutions than controls. The results show that long-term knowledge facilitates immediate serial recall. However, this facilitation is due to familiarity with phonological representations rather than to knowledge of meaning. Copyright © 2012 Elsevier Ltd. All rights reserved.
Zhang, Yi-Fan; Gou, Ling; Tian, Yu; Li, Tian-Chang; Zhang, Mao; Li, Jing-Song
2016-05-01
Clinical decision support (CDS) systems provide clinicians and other health care stakeholders with patient-specific assessments or recommendations to aid in the clinical decision-making process. Despite their demonstrated potential for improving health care quality, the widespread availability of CDS systems has been limited mainly by the difficulty and cost of sharing CDS knowledge among heterogeneous healthcare information systems. The purpose of this study was to design and develop a sharable clinical decision support (S-CDS) system that meets this challenge. The fundamental knowledge base consists of independent and reusable knowledge modules (KMs) to meet core CDS needs, wherein each KM is semantically well defined based on the standard information model, terminologies, and representation formalisms. A semantic web service framework was developed to identify, access, and leverage these KMs across diverse CDS applications and care settings. The S-CDS system has been validated in two distinct client CDS applications. Model-level evaluation results confirmed coherent knowledge representation. Application-level evaluation results reached an overall accuracy of 98.66 % and a completeness of 96.98 %. The evaluation results demonstrated the technical feasibility and application prospect of our approach. Compared with other CDS engineering efforts, our approach facilitates system development and implementation and improves system maintainability, scalability and efficiency, which contribute to the widespread adoption of effective CDS within the healthcare domain.
Semantic technologies in a decision support system
NASA Astrophysics Data System (ADS)
Wasielewska, K.; Ganzha, M.; Paprzycki, M.; Bǎdicǎ, C.; Ivanovic, M.; Lirkov, I.
2015-10-01
The aim of our work is to design a decision support system based on ontological representation of domain(s) and semantic technologies. Specifically, we consider the case when Grid / Cloud user describes his/her requirements regarding a "resource" as a class expression from an ontology, while the instances of (the same) ontology represent available resources. The goal is to help the user to find the best option with respect to his/her requirements, while remembering that user's knowledge may be "limited." In this context, we discuss multiple approaches based on semantic data processing, which involve different "forms" of user interaction with the system. Specifically, we consider: (a) ontological matchmaking based on SPARQL queries and class expression, (b) graph-based semantic closeness of instances representing user requirements (constructed from the class expression) and available resources, and (c) multicriterial analysis based on the AHP method, which utilizes expert domain knowledge (also ontologically represented).
Model for Semantically Rich Point Cloud Data
NASA Astrophysics Data System (ADS)
Poux, F.; Neuville, R.; Hallot, P.; Billen, R.
2017-10-01
This paper proposes an interoperable model for managing high dimensional point clouds while integrating semantics. Point clouds from sensors are a direct source of information physically describing a 3D state of the recorded environment. As such, they are an exhaustive representation of the real world at every scale: 3D reality-based spatial data. Their generation is increasingly fast but processing routines and data models lack of knowledge to reason from information extraction rather than interpretation. The enhanced smart point cloud developed model allows to bring intelligence to point clouds via 3 connected meta-models while linking available knowledge and classification procedures that permits semantic injection. Interoperability drives the model adaptation to potentially many applications through specialized domain ontologies. A first prototype is implemented in Python and PostgreSQL database and allows to combine semantic and spatial concepts for basic hybrid queries on different point clouds.
A Knowledge-Based Representation Scheme for Environmental Science Models
NASA Technical Reports Server (NTRS)
Keller, Richard M.; Dungan, Jennifer L.; Lum, Henry, Jr. (Technical Monitor)
1994-01-01
One of the primary methods available for studying environmental phenomena is the construction and analysis of computational models. We have been studying how artificial intelligence techniques can be applied to assist in the development and use of environmental science models within the context of NASA-sponsored activities. We have identified several high-utility areas as potential targets for research and development: model development; data visualization, analysis, and interpretation; model publishing and reuse, training and education; and framing, posing, and answering questions. Central to progress on any of the above areas is a representation for environmental models that contains a great deal more information than is present in a traditional software implementation. In particular, a traditional software implementation is devoid of any semantic information that connects the code with the environmental context that forms the background for the modeling activity. Before we can build AI systems to assist in model development and usage, we must develop a representation for environmental models that adequately describes a model's semantics and explicitly represents the relationship between the code and the modeling task at hand. We have developed one such representation in conjunction with our work on the SIGMA (Scientists' Intelligent Graphical Modeling Assistant) environment. The key feature of the representation is that it provides a semantic grounding for the symbols in a set of modeling equations by linking those symbols to an explicit representation of the underlying environmental scenario.
Episodic representations support early semantic learning: evidence from midazolam induced amnesia.
Merritt, Paul; Hirshman, Elliot; Zamani, Shane; Hsu, John; Berrigan, Michael
2006-07-01
Current controversy exists regarding the role of episodic representations in the formation of long-term semantic memories. Using the drug midazolam to induce temporary amnesia we tested participants' memories for newly learned facts in a semantic cue condition or an episodic and semantic cue condition. Following midazolam administration, memory performance was superior in the episodic and semantic condition, suggesting early semantic learning is supported by episodic representations.
MediaNet: a multimedia information network for knowledge representation
NASA Astrophysics Data System (ADS)
Benitez, Ana B.; Smith, John R.; Chang, Shih-Fu
2000-10-01
In this paper, we present MediaNet, which is a knowledge representation framework that uses multimedia content for representing semantic and perceptual information. The main components of MediaNet include conceptual entities, which correspond to real world objects, and relationships among concepts. MediaNet allows the concepts and relationships to be defined or exemplified by multimedia content such as images, video, audio, graphics, and text. MediaNet models the traditional relationship types such as generalization and aggregation but adds additional functionality by modeling perceptual relationships based on feature similarity. For example, MediaNet allows a concept such as car to be defined as a type of a transportation vehicle, but which is further defined and illustrated through example images, videos and sounds of cars. In constructing the MediaNet framework, we have built on the basic principles of semiotics and semantic networks in addition to utilizing the audio-visual content description framework being developed as part of the MPEG-7 multimedia content description standard. By integrating both conceptual and perceptual representations of knowledge, MediaNet has potential to impact a broad range of applications that deal with multimedia content at the semantic and perceptual levels. In particular, we have found that MediaNet can improve the performance of multimedia retrieval applications by using query expansion, refinement and translation across multiple content modalities. In this paper, we report on experiments that use MediaNet in searching for images. We construct the MediaNet knowledge base using both WordNet and an image network built from multiple example images and extracted color and texture descriptors. Initial experimental results demonstrate improved retrieval effectiveness using MediaNet in a content-based retrieval system.
Knowledge-base browsing: an application of hybrid distributed/local connectionist networks
NASA Astrophysics Data System (ADS)
Samad, Tariq; Israel, Peggy
1990-08-01
We describe a knowledge base browser based on a connectionist (or neural network) architecture that employs both distributed and local representations. The distributed representations are used for input and output thereby enabling associative noise-tolerant interaction with the environment. Internally all representations are fully local. This simplifies weight assignment and facilitates network configuration for specific applications. In our browser concepts and relations in a knowledge base are represented using " microfeatures. " The microfeatures can encode semantic attributes structural features contextual information etc. Desired portions of the knowledge base can then be associatively retrieved based on a structured cue. An ordered list of partial matches is presented to the user for selection. Microfeatures can also be used as " bookmarks" they can be placed dynamically at appropriate points in the knowledge base and subsequently used as retrieval cues. A proof-of-concept system has been implemented for an internally developed Honeywell-proprietary knowledge acquisition tool. 1.
Barber, Horacio A; Kousta, Stavroula-Thaleia; Otten, Leun J; Vigliocco, Gabriella
2010-05-21
A number of recent studies have provided contradictory evidence on the question of whether grammatical class plays a role in the neural representation of lexical knowledge. Most of the previous studies comparing the processing of nouns and verbs, however, confounded word meaning and grammatical class by comparing verbs referring to actions with nouns referring to objects. Here, we recorded electrical brain activity from native Italian speakers reading single words all referring to events (e.g., corsa [the run]; correre [to run]), thus avoiding confounding nouns and verbs with objects and actions. We manipulated grammatical class (noun versus verb) as well as semantic attributes (motor versus sensory events). Activity between 300 and 450ms was more negative for nouns than verbs, and for sensory than motor words, over posterior scalp sites. These grammatical class and semantic effects were not dissociable in terms of latency, duration, or scalp distribution. In a later time window (450-110ms) and at frontal regions, grammatical class and semantic effects interacted; motor verbs were more positive than the other three word categories. We suggest that the lack of a temporal and topographical dissociation between grammatical class and semantic effects in the time range of the N400 component is compatible with an account in which both effects reflect the same underlying process related to meaning retrieval, and we link the later effect with working memory operations associated to the experimental task. Copyright 2010 Elsevier B.V. All rights reserved.
Wu, Zhenyu; Xu, Yuan; Yang, Yunong; Zhang, Chunhong; Zhu, Xinning; Ji, Yang
2017-02-20
Web of Things (WoT) facilitates the discovery and interoperability of Internet of Things (IoT) devices in a cyber-physical system (CPS). Moreover, a uniform knowledge representation of physical resources is quite necessary for further composition, collaboration, and decision-making process in CPS. Though several efforts have integrated semantics with WoT, such as knowledge engineering methods based on semantic sensor networks (SSN), it still could not represent the complex relationships between devices when dynamic composition and collaboration occur, and it totally depends on manual construction of a knowledge base with low scalability. In this paper, to addresses these limitations, we propose the semantic Web of Things (SWoT) framework for CPS (SWoT4CPS). SWoT4CPS provides a hybrid solution with both ontological engineering methods by extending SSN and machine learning methods based on an entity linking (EL) model. To testify to the feasibility and performance, we demonstrate the framework by implementing a temperature anomaly diagnosis and automatic control use case in a building automation system. Evaluation results on the EL method show that linking domain knowledge to DBpedia has a relative high accuracy and the time complexity is at a tolerant level. Advantages and disadvantages of SWoT4CPS with future work are also discussed.
Dissociation of quantifiers and object nouns in speech in focal neurodegenerative disease.
Ash, Sharon; Ternes, Kylie; Bisbing, Teagan; Min, Nam Eun; Moran, Eileen; York, Collin; McMillan, Corey T; Irwin, David J; Grossman, Murray
2016-08-01
Quantifiers such as many and some are thought to depend in part on the conceptual representation of number knowledge, while object nouns such as cookie and boy appear to depend in part on visual feature knowledge associated with object concepts. Further, number knowledge is associated with a frontal-parietal network while object knowledge is related in part to anterior and ventral portions of the temporal lobe. We examined the cognitive and anatomic basis for the spontaneous speech production of quantifiers and object nouns in non-aphasic patients with focal neurodegenerative disease associated with corticobasal syndrome (CBS, n=33), behavioral variant frontotemporal degeneration (bvFTD, n=54), and semantic variant primary progressive aphasia (svPPA, n=19). We recorded a semi-structured speech sample elicited from patients and healthy seniors (n=27) during description of the Cookie Theft scene. We observed a dissociation: CBS and bvFTD were significantly impaired in the production of quantifiers but not object nouns, while svPPA were significantly impaired in the production of object nouns but not quantifiers. MRI analysis revealed that quantifier production deficits in CBS and bvFTD were associated with disease in a frontal-parietal network important for number knowledge, while impaired production of object nouns in all patient groups was related to disease in inferior temporal regions important for representations of visual feature knowledge of objects. These findings imply that partially dissociable representations in semantic memory may underlie different segments of the lexicon. Copyright © 2016 Elsevier Ltd. All rights reserved.
Conceptual Hierarchies in a Flat Attractor Network
O’Connor, Christopher M.; Cree, George S.; McRae, Ken
2009-01-01
The structure of people’s conceptual knowledge of concrete nouns has traditionally been viewed as hierarchical (Collins & Quillian, 1969). For example, superordinate concepts (vegetable) are assumed to reside at a higher level than basic-level concepts (carrot). A feature-based attractor network with a single layer of semantic features developed representations of both basic-level and superordinate concepts. No hierarchical structure was built into the network. In Experiment and Simulation 1, the graded structure of categories (typicality ratings) is accounted for by the flat attractor-network. Experiment and Simulation 2 show that, as with basic-level concepts, such a network predicts feature verification latencies for superordinate concepts (vegetable
A Process for the Representation of openEHR ADL Archetypes in OWL Ontologies.
Porn, Alex Mateus; Peres, Leticia Mara; Didonet Del Fabro, Marcos
2015-01-01
ADL is a formal language to express archetypes, independent of standards or domain. However, its specification is not precise enough in relation to the specialization and semantic of archetypes, presenting difficulties in implementation and a few available tools. Archetypes may be implemented using other languages such as XML or OWL, increasing integration with Semantic Web tools. Exchanging and transforming data can be better implemented with semantics oriented models, for example using OWL which is a language to define and instantiate Web ontologies defined by W3C. OWL permits defining significant, detailed, precise and consistent distinctions among classes, properties and relations by the user, ensuring the consistency of knowledge than using ADL techniques. This paper presents a process of an openEHR ADL archetypes representation in OWL ontologies. This process consists of ADL archetypes conversion in OWL ontologies and validation of OWL resultant ontologies using the mutation test.
Syntactic generalization with novel intransitive verbs.
Kline, Melissa; Demuth, Katherine
2014-05-01
To understand how children develop adult argument structure, we must understand the nature of syntactic and semantic representations during development. The present studies compare the performance of children aged 2;6 on the two intransitive alternations in English: patient (Daddy is cooking the food/The food is cooking) and agent (Daddy is cooking). Children displayed abstract knowledge of both alternations, producing appropriate syntactic generalizations with novel verbs. These generalizations were adult-like in both flexibility and constraint. Rather than limiting their generalizations to lexicalized frames, children produced sentences with a variety of nouns and pronouns. They also avoided semantic overgeneralizations, producing intransitive sentences that respected the event restrictions and animacy cues. Some generated semantically appropriate agent intransitives when discourse pressure favored patient intransitives, indicating a stronger command of the first alternation. This was in line with frequency distributions in child-directed speech. These findings suggest that children have early access to representations that permit flexible argument structure generalization.
Semantic richness effects in lexical decision: The role of feedback.
Yap, Melvin J; Lim, Gail Y; Pexman, Penny M
2015-11-01
Across lexical processing tasks, it is well established that words with richer semantic representations are recognized faster. This suggests that the lexical system has access to meaning before a word is fully identified, and is consistent with a theoretical framework based on interactive and cascaded processing. Specifically, semantic richness effects are argued to be produced by feedback from semantic representations to lower-level representations. The present study explores the extent to which richness effects are mediated by feedback from lexical- to letter-level representations. In two lexical decision experiments, we examined the joint effects of stimulus quality and four semantic richness dimensions (imageability, number of features, semantic neighborhood density, semantic diversity). With the exception of semantic diversity, robust additive effects of stimulus quality and richness were observed for the targeted dimensions. Our results suggest that semantic feedback does not typically reach earlier levels of representation in lexical decision, and further reinforces the idea that task context modulates the processing dynamics of early word recognition processes.
[Associative visual agnosia. The less visible consequences of a cerebral infarction].
Diesfeldt, H F A
2011-02-01
After a cerebral infarction, some patients acutely demonstrate contralateral hemiplegia, or aphasia. Those are the obvious symptoms of a cerebral infarction. However, less visible but burdensome consequences may go unnoticed without closer investigation. The importance of a thorough clinical examination is exemplified by a single case study of a 72-year-old, right-handed male. Two years before he had suffered from an ischemic stroke in the territory of the left posterior cerebral artery, with right homonymous hemianopia and global alexia (i.e., impairment in letter recognition and profound impairment of reading) without agraphia. Naming was impaired on visual presentation (20%-39% correct), but improved significantly after tactile presentation (87% correct) or verbal definition (89%). Pre-semantic visual processing was normal (correct matching of different views of the same object), as was his access to structural knowledge from vision (he reliably distinguished real objects from non-objects). On a colour decision task he reliably indicated which of two items was coloured correctly. Though he was unable to mime how visually presented objects were used, he more reliably matched pictures of objects with pictures of a mime artist gesturing the use of the object. He obtained normal scores on word definition (WAIS-III), synonym judgment and word-picture matching tasks with perceptual and semantic distractors. He however failed when he had to match physically dissimilar specimens of the same object or when he had to decide which two of five objects were related associatively (Pyramids and Palm Trees Test). The patient thus showed a striking contrast in his intact ability to access knowledge of object shape or colour from vision and impaired functional and associative knowledge. As a result, he could not access a complete semantic representation, required for activating phonological representations to name visually presented objects. The pattern of impairments and preserved abilities is considered to be a specific difficulty to access a full semantic representation from an intact structural representation of visually presented objects, i.e., a form of visual object agnosia.
Comprehension of concrete and abstract words in semantic dementia
Jefferies, Elizabeth; Patterson, Karalyn; Jones, Roy W.; Lambon Ralph, Matthew A.
2009-01-01
The vast majority of brain-injured patients with semantic impairment have better comprehension of concrete than abstract words. In contrast, several patients with semantic dementia (SD), who show circumscribed atrophy of the anterior temporal lobes bilaterally, have been reported to show reverse imageability effects, i.e., relative preservation of abstract knowledge. Although these reports largely concern individual patients, some researchers have recently proposed that superior comprehension of abstract concepts is a characteristic feature of SD. This would imply that the anterior temporal lobes are particularly crucial for processing sensory aspects of semantic knowledge, which are associated with concrete not abstract concepts. However, functional neuroimaging studies of healthy participants do not unequivocally predict reverse imageability effects in SD because the temporal poles sometimes show greater activation for more abstract concepts. We examined a case-series of eleven SD patients on a synonym judgement test that orthogonally varied the frequency and imageability of the items. All patients had higher success rates for more imageable as well as more frequent words, suggesting that (a) the anterior temporal lobes underpin semantic knowledge for both concrete and abstract concepts, (b) more imageable items – perhaps due to their richer multimodal representations – are typically more robust in the face of global semantic degradation and (c) reverse imageability effects are not a characteristic feature of SD. PMID:19586212
Integrated Japanese Dependency Analysis Using a Dialog Context
NASA Astrophysics Data System (ADS)
Ikegaya, Yuki; Noguchi, Yasuhiro; Kogure, Satoru; Itoh, Toshihiko; Konishi, Tatsuhiro; Kondo, Makoto; Asoh, Hideki; Takagi, Akira; Itoh, Yukihiro
This paper describes how to perform syntactic parsing and semantic analysis in a dialog system. The paper especially deals with how to disambiguate potentially ambiguous sentences using the contextual information. Although syntactic parsing and semantic analysis are often studied independently of each other, correct parsing of a sentence often requires the semantic information on the input and/or the contextual information prior to the input. Accordingly, we merge syntactic parsing with semantic analysis, which enables syntactic parsing taking advantage of the semantic content of an input and its context. One of the biggest problems of semantic analysis is how to interpret dependency structures. We employ a framework for semantic representations that circumvents the problem. Within the framework, the meaning of any predicate is converted into a semantic representation which only permits a single type of predicate: an identifying predicate "aru". The semantic representations are expressed as sets of "attribute-value" pairs, and those semantic representations are stored in the context information. Our system disambiguates syntactic/semantic ambiguities of inputs referring to the attribute-value pairs in the context information. We have experimentally confirmed the effectiveness of our approach; specifically, the experiment confirmed high accuracy of parsing and correctness of generated semantic representations.
Tao, Cui; Jiang, Guoqian; Oniki, Thomas A; Freimuth, Robert R; Zhu, Qian; Sharma, Deepak; Pathak, Jyotishman; Huff, Stanley M; Chute, Christopher G
2013-05-01
The clinical element model (CEM) is an information model designed for representing clinical information in electronic health records (EHR) systems across organizations. The current representation of CEMs does not support formal semantic definitions and therefore it is not possible to perform reasoning and consistency checking on derived models. This paper introduces our efforts to represent the CEM specification using the Web Ontology Language (OWL). The CEM-OWL representation connects the CEM content with the Semantic Web environment, which provides authoring, reasoning, and querying tools. This work may also facilitate the harmonization of the CEMs with domain knowledge represented in terminology models as well as other clinical information models such as the openEHR archetype model. We have created the CEM-OWL meta ontology based on the CEM specification. A convertor has been implemented in Java to automatically translate detailed CEMs from XML to OWL. A panel evaluation has been conducted, and the results show that the OWL modeling can faithfully represent the CEM specification and represent patient data.
Tao, Cui; Jiang, Guoqian; Oniki, Thomas A; Freimuth, Robert R; Zhu, Qian; Sharma, Deepak; Pathak, Jyotishman; Huff, Stanley M; Chute, Christopher G
2013-01-01
The clinical element model (CEM) is an information model designed for representing clinical information in electronic health records (EHR) systems across organizations. The current representation of CEMs does not support formal semantic definitions and therefore it is not possible to perform reasoning and consistency checking on derived models. This paper introduces our efforts to represent the CEM specification using the Web Ontology Language (OWL). The CEM-OWL representation connects the CEM content with the Semantic Web environment, which provides authoring, reasoning, and querying tools. This work may also facilitate the harmonization of the CEMs with domain knowledge represented in terminology models as well as other clinical information models such as the openEHR archetype model. We have created the CEM-OWL meta ontology based on the CEM specification. A convertor has been implemented in Java to automatically translate detailed CEMs from XML to OWL. A panel evaluation has been conducted, and the results show that the OWL modeling can faithfully represent the CEM specification and represent patient data. PMID:23268487
Cohen, Trevor; Schvaneveldt, Roger W; Rindflesch, Thomas C
2009-11-14
Corpus-derived distributional models of semantic distance between terms have proved useful in a number of applications. For both theoretical and practical reasons, it is desirable to extend these models to encode discrete concepts and the ways in which they are related to one another. In this paper, we present a novel vector space model that encodes semantic predications derived from MEDLINE by the SemRep system into a compact spatial representation. The associations captured by this method are of a different and complementary nature to those derived by traditional vector space models, and the encoding of predication types presents new possibilities for knowledge discovery and information retrieval.
Peelle, Jonathan E.; Bonner, Michael F.; Grossman, Murray
2016-01-01
A defining aspect of human cognition is the ability to integrate conceptual information into complex semantic combinations. For example, we can comprehend “plaid” and “jacket” as individual concepts, but we can also effortlessly combine these concepts to form the semantic representation of “plaid jacket.” Many neuroanatomic models of semantic memory propose that heteromodal cortical hubs integrate distributed semantic features into coherent representations. However, little work has specifically examined these proposed integrative mechanisms and the causal role of these regions in semantic integration. Here, we test the hypothesis that the angular gyrus (AG) is critical for integrating semantic information by applying high-definition transcranial direct current stimulation (tDCS) to an fMRI-guided region-of-interest in the left AG. We found that anodal stimulation to the left AG modulated semantic integration but had no effect on a letter-string control task. Specifically, anodal stimulation to the left AG resulted in faster comprehension of semantically meaningful combinations like “tiny radish” relative to non-meaningful combinations, such as “fast blueberry,” when compared to the effects observed during sham stimulation and stimulation to a right-hemisphere control brain region. Moreover, the size of the effect from brain stimulation correlated with the degree of semantic coherence between the word pairs. These findings demonstrate that the left AG plays a causal role in the integration of lexical-semantic information, and that high-definition tDCS to an associative cortical hub can selectively modulate integrative processes in semantic memory. SIGNIFICANCE STATEMENT A major goal of neuroscience is to understand the neural basis of behaviors that are fundamental to human intelligence. One essential behavior is the ability to integrate conceptual knowledge from semantic memory, allowing us to construct an almost unlimited number of complex concepts from a limited set of basic constituents (e.g., “leaf” and “wet” can be combined into the more complex representation “wet leaf”). Here, we present a novel approach to studying integrative processes in semantic memory by applying focal brain stimulation to a heteromodal cortical hub implicated in semantic processing. Our findings demonstrate a causal role of the left angular gyrus in lexical-semantic integration and provide motivation for novel therapeutic applications in patients with lexical-semantic deficits. PMID:27030767
Price, Amy Rose; Peelle, Jonathan E; Bonner, Michael F; Grossman, Murray; Hamilton, Roy H
2016-03-30
A defining aspect of human cognition is the ability to integrate conceptual information into complex semantic combinations. For example, we can comprehend "plaid" and "jacket" as individual concepts, but we can also effortlessly combine these concepts to form the semantic representation of "plaid jacket." Many neuroanatomic models of semantic memory propose that heteromodal cortical hubs integrate distributed semantic features into coherent representations. However, little work has specifically examined these proposed integrative mechanisms and the causal role of these regions in semantic integration. Here, we test the hypothesis that the angular gyrus (AG) is critical for integrating semantic information by applying high-definition transcranial direct current stimulation (tDCS) to an fMRI-guided region-of-interest in the left AG. We found that anodal stimulation to the left AG modulated semantic integration but had no effect on a letter-string control task. Specifically, anodal stimulation to the left AG resulted in faster comprehension of semantically meaningful combinations like "tiny radish" relative to non-meaningful combinations, such as "fast blueberry," when compared to the effects observed during sham stimulation and stimulation to a right-hemisphere control brain region. Moreover, the size of the effect from brain stimulation correlated with the degree of semantic coherence between the word pairs. These findings demonstrate that the left AG plays a causal role in the integration of lexical-semantic information, and that high-definition tDCS to an associative cortical hub can selectively modulate integrative processes in semantic memory. A major goal of neuroscience is to understand the neural basis of behaviors that are fundamental to human intelligence. One essential behavior is the ability to integrate conceptual knowledge from semantic memory, allowing us to construct an almost unlimited number of complex concepts from a limited set of basic constituents (e.g., "leaf" and "wet" can be combined into the more complex representation "wet leaf"). Here, we present a novel approach to studying integrative processes in semantic memory by applying focal brain stimulation to a heteromodal cortical hub implicated in semantic processing. Our findings demonstrate a causal role of the left angular gyrus in lexical-semantic integration and provide motivation for novel therapeutic applications in patients with lexical-semantic deficits. Copyright © 2016 the authors 0270-6474/16/363829-10$15.00/0.
Goossen, William T F
2014-07-01
This paper will present an overview of the developmental effort in harmonizing clinical knowledge modeling using the Detailed Clinical Models (DCMs), and will explain how it can contribute to the preservation of Electronic Health Records (EHR) data. Clinical knowledge modeling is vital for the management and preservation of EHR and data. Such modeling provides common data elements and terminology binding with the intention of capturing and managing clinical information over time and location independent from technology. Any EHR data exchange without an agreed clinical knowledge modeling will potentially result in loss of information. Many attempts exist from the past to model clinical knowledge for the benefits of semantic interoperability using standardized data representation and common terminologies. The objective of each project is similar with respect to consistent representation of clinical data, using standardized terminologies, and an overall logical approach. However, the conceptual, logical, and the technical expressions are quite different in one clinical knowledge modeling approach versus another. There currently are synergies under the Clinical Information Modeling Initiative (CIMI) in order to create a harmonized reference model for clinical knowledge models. The goal for the CIMI is to create a reference model and formalisms based on for instance the DCM (ISO/TS 13972), among other work. A global repository of DCMs may potentially be established in the future.
Panacea, a semantic-enabled drug recommendations discovery framework.
Doulaverakis, Charalampos; Nikolaidis, George; Kleontas, Athanasios; Kompatsiaris, Ioannis
2014-03-06
Personalized drug prescription can be benefited from the use of intelligent information management and sharing. International standard classifications and terminologies have been developed in order to provide unique and unambiguous information representation. Such standards can be used as the basis of automated decision support systems for providing drug-drug and drug-disease interaction discovery. Additionally, Semantic Web technologies have been proposed in earlier works, in order to support such systems. The paper presents Panacea, a semantic framework capable of offering drug-drug and drug-diseases interaction discovery. For enabling this kind of service, medical information and terminology had to be translated to ontological terms and be appropriately coupled with medical knowledge of the field. International standard classifications and terminologies, provide the backbone of the common representation of medical data while the medical knowledge of drug interactions is represented by a rule base which makes use of the aforementioned standards. Representation is based on a lightweight ontology. A layered reasoning approach is implemented where at the first layer ontological inference is used in order to discover underlying knowledge, while at the second layer a two-step rule selection strategy is followed resulting in a computationally efficient reasoning approach. Details of the system architecture are presented while also giving an outline of the difficulties that had to be overcome. Panacea is evaluated both in terms of quality of recommendations against real clinical data and performance. The quality recommendation gave useful insights regarding requirements for real world deployment and revealed several parameters that affected the recommendation results. Performance-wise, Panacea is compared to a previous published work by the authors, a service for drug recommendations named GalenOWL, and presents their differences in modeling and approach to the problem, while also pinpointing the advantages of Panacea. Overall, the paper presents a framework for providing an efficient drug recommendations service where Semantic Web technologies are coupled with traditional business rule engines.
Neuro-symbolic representation learning on biological knowledge graphs.
Alshahrani, Mona; Khan, Mohammad Asif; Maddouri, Omar; Kinjo, Akira R; Queralt-Rosinach, Núria; Hoehndorf, Robert
2017-09-01
Biological data and knowledge bases increasingly rely on Semantic Web technologies and the use of knowledge graphs for data integration, retrieval and federated queries. In the past years, feature learning methods that are applicable to graph-structured data are becoming available, but have not yet widely been applied and evaluated on structured biological knowledge. Results: We develop a novel method for feature learning on biological knowledge graphs. Our method combines symbolic methods, in particular knowledge representation using symbolic logic and automated reasoning, with neural networks to generate embeddings of nodes that encode for related information within knowledge graphs. Through the use of symbolic logic, these embeddings contain both explicit and implicit information. We apply these embeddings to the prediction of edges in the knowledge graph representing problems of function prediction, finding candidate genes of diseases, protein-protein interactions, or drug target relations, and demonstrate performance that matches and sometimes outperforms traditional approaches based on manually crafted features. Our method can be applied to any biological knowledge graph, and will thereby open up the increasing amount of Semantic Web based knowledge bases in biology to use in machine learning and data analytics. https://github.com/bio-ontology-research-group/walking-rdf-and-owl. robert.hoehndorf@kaust.edu.sa. Supplementary data are available at Bioinformatics online. © The Author(s) 2017. Published by Oxford University Press.
1992-06-01
and may be better suited for knowledge representation. Frames Researcher Marvin Minsky developed the concept of Frames to describe how humans organize...knowledge about common concepts and situations.’ Minsky hypothesized that people do not construct new knowledge structures from scratch when they...to store new information. Minsky called these knowledge structures frames. Frames can be viewed as complex semantic nets. Frame diagrams show the
The Interaction between Semantic Representation and Episodic Memory.
Fang, Jing; Rüther, Naima; Bellebaum, Christian; Wiskott, Laurenz; Cheng, Sen
2018-02-01
The experimental evidence on the interrelation between episodic memory and semantic memory is inconclusive. Are they independent systems, different aspects of a single system, or separate but strongly interacting systems? Here, we propose a computational role for the interaction between the semantic and episodic systems that might help resolve this debate. We hypothesize that episodic memories are represented as sequences of activation patterns. These patterns are the output of a semantic representational network that compresses the high-dimensional sensory input. We show quantitatively that the accuracy of episodic memory crucially depends on the quality of the semantic representation. We compare two types of semantic representations: appropriate representations, which means that the representation is used to store input sequences that are of the same type as those that it was trained on, and inappropriate representations, which means that stored inputs differ from the training data. Retrieval accuracy is higher for appropriate representations because the encoded sequences are less divergent than those encoded with inappropriate representations. Consistent with our model prediction, we found that human subjects remember some aspects of episodes significantly more accurately if they had previously been familiarized with the objects occurring in the episode, as compared to episodes involving unfamiliar objects. We thus conclude that the interaction with the semantic system plays an important role for episodic memory.
Knowledge Representation and Management: A Linked Data Perspective
Barros, M.
2016-01-01
Summary Introduction Biomedical research is increasingly becoming a data-intensive science in several areas, where prodigious amounts of data is being generated that has to be stored, integrated, shared and analyzed. In an effort to improve the accessibility of data and knowledge, the Linked Data initiative proposed a well-defined set of recommendations for exposing, sharing and integrating data, information and knowledge, using semantic web technologies. Objective The main goal of this paper is to identify the current status and future trends of knowledge representation and management in Life and Health Sciences, mostly with regard to linked data technologies. Methods We selected three prominent linked data studies, namely Bio2RDF, Open PHACTS and EBI RDF platform, and selected 14 studies published after 2014 (inclusive) that cited any of the three studies. We manually analyzed these 14 papers in relation to how they use linked data techniques. Results The analyses show a tendency to use linked data techniques in Life and Health Sciences, and even if some studies do not follow all of the recommendations, many of them already represent and manage their knowledge using RDF and biomedical ontologies. Conclusion These insights from RDF and biomedical ontologies are having a strong impact on how knowledge is generated from biomedical data, by making data elements increasingly connected and by providing a better description of their semantics. As health institutes become more data centric, we believe that the adoption of linked data techniques will continue to grow and be an effective solution to knowledge representation and management. PMID:27830248
Interconnected growing self-organizing maps for auditory and semantic acquisition modeling.
Cao, Mengxue; Li, Aijun; Fang, Qiang; Kaufmann, Emily; Kröger, Bernd J
2014-01-01
Based on the incremental nature of knowledge acquisition, in this study we propose a growing self-organizing neural network approach for modeling the acquisition of auditory and semantic categories. We introduce an Interconnected Growing Self-Organizing Maps (I-GSOM) algorithm, which takes associations between auditory information and semantic information into consideration, in this paper. Direct phonetic-semantic association is simulated in order to model the language acquisition in early phases, such as the babbling and imitation stages, in which no phonological representations exist. Based on the I-GSOM algorithm, we conducted experiments using paired acoustic and semantic training data. We use a cyclical reinforcing and reviewing training procedure to model the teaching and learning process between children and their communication partners. A reinforcing-by-link training procedure and a link-forgetting procedure are introduced to model the acquisition of associative relations between auditory and semantic information. Experimental results indicate that (1) I-GSOM has good ability to learn auditory and semantic categories presented within the training data; (2) clear auditory and semantic boundaries can be found in the network representation; (3) cyclical reinforcing and reviewing training leads to a detailed categorization as well as to a detailed clustering, while keeping the clusters that have already been learned and the network structure that has already been developed stable; and (4) reinforcing-by-link training leads to well-perceived auditory-semantic associations. Our I-GSOM model suggests that it is important to associate auditory information with semantic information during language acquisition. Despite its high level of abstraction, our I-GSOM approach can be interpreted as a biologically-inspired neurocomputational model.
With or without Semantic Mediation: Retrieval of Lexical Representations in Sign Production
ERIC Educational Resources Information Center
Navarrete, Eduardo; Caccaro, Arianna; Pavani, Francesco; Mahon, Bradford Z.; Peressotti, Francesca
2015-01-01
How are lexical representations retrieved during sign production? Similar to spoken languages, lexical representation in sign language must be accessed through semantics when naming pictures. However, it remains an open issue whether lexical representations in sign language can be accessed via routes that bypass semantics when retrieval is…
What puts the how in where? Tool use and the divided visual streams hypothesis.
Frey, Scott H
2007-04-01
An influential theory suggests that the dorsal (occipito-parietal) visual stream computes representations of objects for purposes of guiding actions (determining 'how') independently of ventral (occipito-temporal) stream processes supporting object recognition and semantic processing (determining 'what'). Yet, the ability of the dorsal stream alone to account for one of the most common forms of human action, tool use, is limited. While experience-dependent modifications to existing dorsal stream representations may explain simple tool use behaviors (e.g., using sticks to extend reach) found among a variety of species, skillful use of manipulable artifacts (e.g., cups, hammers, pencils) requires in addition access to semantic representations of objects' functions and uses. Functional neuroimaging suggests that this latter information is represented in a left-lateralized network of temporal, frontal and parietal areas. I submit that the well-established dominance of the human left hemisphere in the representation of familiar skills stems from the ability for this acquired knowledge to influence the organization of actions within the dorsal pathway.
Premorbid expertise produces category-specific impairment in a domain-general semantic disorder.
Jefferies, Elizabeth; Rogers, Timothy T; Ralph, Matthew A Lambon
2011-10-01
For decades, category-specific semantic impairment - i.e., better comprehension of items from one semantic category than another - has been the driving force behind many claims about the organisation of conceptual knowledge in the brain. Double dissociations between patients with category-specific disorders are widely interpreted as showing that different conceptual domains are necessarily supported by functionally independent systems. We show that, to the contrary, even strong or classical dissociations can also arise from individual differences in premorbid expertise. We examined two patients with global and progressive semantic degradation who, unusually, had known areas of premorbid expertise. Patient 1, a former automotive worker, showed selective preservation of car knowledge, whereas Patient 2, a former botanist, showed selective preservation of information about plants. In non-expert domains, these patients showed the typical pattern: i.e., an inability to differentiate between highly similar concepts (e.g., rose and daisy), but retention of broader distinctions (e.g., between rose and cat). Parallel distributed processing (PDP) models of semantic cognition show that expertise in a particular domain increases the differentiation of specific-level concepts, such that the semantic distance between these items resembles non-expert basic-level distinctions. We propose that these structural changes interact with global semantic degradation, particularly when expert knowledge is acquired early and when exposure to expert concepts continues during disease progression. Therefore, category-specific semantic impairment can arise from at least two distinct mechanisms: damage to representations that are critical for a particular category (e.g., knowledge of hand shape and action for the category 'tools') and differences in premorbid experience. Copyright © 2011 Elsevier Ltd. All rights reserved.
Rodríguez-García, Miguel Ángel; Rodríguez-González, Alejandro; Valencia-García, Rafael; Gómez-Berbís, Juan Miguel
2014-01-01
Precise, reliable and real-time financial information is critical for added-value financial services after the economic turmoil from which markets are still struggling to recover. Since the Web has become the most significant data source, intelligent crawlers based on Semantic Technologies have become trailblazers in the search of knowledge combining natural language processing and ontology engineering techniques. In this paper, we present the SONAR extension approach, which will leverage the potential of knowledge representation by extracting, managing, and turning scarce and disperse financial information into well-classified, structured, and widely used XBRL format-oriented knowledge, strongly supported by a proof-of-concept implementation and a thorough evaluation of the benefits of the approach. PMID:24587726
Rodríguez-García, Miguel Ángel; Rodríguez-González, Alejandro; Colomo-Palacios, Ricardo; Valencia-García, Rafael; Gómez-Berbís, Juan Miguel; García-Sánchez, Francisco
2014-01-01
Precise, reliable and real-time financial information is critical for added-value financial services after the economic turmoil from which markets are still struggling to recover. Since the Web has become the most significant data source, intelligent crawlers based on Semantic Technologies have become trailblazers in the search of knowledge combining natural language processing and ontology engineering techniques. In this paper, we present the SONAR extension approach, which will leverage the potential of knowledge representation by extracting, managing, and turning scarce and disperse financial information into well-classified, structured, and widely used XBRL format-oriented knowledge, strongly supported by a proof-of-concept implementation and a thorough evaluation of the benefits of the approach.
Karlsson, Kristina; Sikström, Sverker; Willander, Johan
2013-01-01
The semantic content, or the meaning, is the essence of autobiographical memories. In comparison to previous research, which has mainly focused on the phenomenological experience and the age distribution of retrieved events, the present study provides a novel view on the retrieval of event information by quantifying the information as semantic representations. We investigated the semantic representation of sensory cued autobiographical events and studied the modality hierarchy within the multimodal retrieval cues. The experiment comprised a cued recall task, where the participants were presented with visual, auditory, olfactory or multimodal retrieval cues and asked to recall autobiographical events. The results indicated that the three different unimodal retrieval cues generate significantly different semantic representations. Further, the auditory and the visual modalities contributed the most to the semantic representation of the multimodally retrieved events. Finally, the semantic representation of the multimodal condition could be described as a combination of the three unimodal conditions. In conclusion, these results suggest that the meaning of the retrieved event information depends on the modality of the retrieval cues.
Karlsson, Kristina; Sikström, Sverker; Willander, Johan
2013-01-01
The semantic content, or the meaning, is the essence of autobiographical memories. In comparison to previous research, which has mainly focused on the phenomenological experience and the age distribution of retrieved events, the present study provides a novel view on the retrieval of event information by quantifying the information as semantic representations. We investigated the semantic representation of sensory cued autobiographical events and studied the modality hierarchy within the multimodal retrieval cues. The experiment comprised a cued recall task, where the participants were presented with visual, auditory, olfactory or multimodal retrieval cues and asked to recall autobiographical events. The results indicated that the three different unimodal retrieval cues generate significantly different semantic representations. Further, the auditory and the visual modalities contributed the most to the semantic representation of the multimodally retrieved events. Finally, the semantic representation of the multimodal condition could be described as a combination of the three unimodal conditions. In conclusion, these results suggest that the meaning of the retrieved event information depends on the modality of the retrieval cues. PMID:24204561
Usage of semantic representations in recognition memory.
Nishiyama, Ryoji; Hirano, Tetsuji; Ukita, Jun
2017-11-01
Meanings of words facilitate false acceptance as well as correct rejection of lures in recognition memory tests, depending on the experimental context. This suggests that semantic representations are both directly and indirectly (i.e., mediated by perceptual representations) used in remembering. Studies using memory conjunction errors (MCEs) paradigms, in which the lures consist of component parts of studied words, have reported semantic facilitation of rejection of the lures. However, attending to components of the lures could potentially cause this. Therefore, we investigated whether semantic overlap of lures facilitates MCEs using Japanese Kanji words in which a whole-word image is more concerned in reading. Experiments demonstrated semantic facilitation of MCEs in a delayed recognition test (Experiment 1), and in immediate recognition tests in which participants were prevented from using phonological or orthographic representations (Experiment 2), and the salient effect on individuals with high semantic memory capacities (Experiment 3). Additionally, analysis of the receiver operating characteristic suggested that this effect is attributed to familiarity-based memory judgement and phantom recollection. These findings indicate that semantic representations can be directly used in remembering, even when perceptual representations of studied words are available.
Semantic acquisition without memories: evidence from transient global amnesia.
Guillery, B; Desgranges, B; Katis, S; de la Sayette, V; Viader, F; Eustache, F
2001-12-04
Transient global amnesia (TGA), characterised by a profound anterograde amnesia, is a model of interest to study the acquisition of novel meanings independent of episodic functioning. Three patients were tested during a TGA attack, two in the early recovery phase and the third during the acute phase of TGA, with a semantic priming task involving a restructuring process of conceptual knowledge. During TGA, all patients demonstrated priming effects. Results obtained the day after the episode with the same task showed that these effects persisted at least one day. Episodic memory seems not to be critical for the formation of novel connections among unrelated semantic representations, in accordance with Tulving's model of memory, i.e. episodic memory is not necessary for the acquisition of semantic information.
Thompson, Hannah E; Almaghyuli, Azizah; Noonan, Krist A; Barak, Ohr; Lambon Ralph, Matthew A; Jefferies, Elizabeth
2018-01-03
Semantic cognition, as described by the controlled semantic cognition (CSC) framework (Rogers et al., , Neuropsychologia, 76, 220), involves two key components: activation of coherent, generalizable concepts within a heteromodal 'hub' in combination with modality-specific features (spokes), and a constraining mechanism that manipulates and gates this knowledge to generate time- and task-appropriate behaviour. Executive-semantic goal representations, largely supported by executive regions such as frontal and parietal cortex, are thought to allow the generation of non-dominant aspects of knowledge when these are appropriate for the task or context. Semantic aphasia (SA) patients have executive-semantic deficits, and these are correlated with general executive impairment. If the CSC proposal is correct, patients with executive impairment should not only exhibit impaired semantic cognition, but should also show characteristics that align with those observed in SA. This possibility remains largely untested, as patients selected on the basis that they show executive impairment (i.e., with 'dysexecutive syndrome') have not been extensively tested on tasks tapping semantic control and have not been previously compared with SA cases. We explored conceptual processing in 12 patients showing symptoms consistent with dysexecutive syndrome (DYS) and 24 SA patients, using a range of multimodal semantic assessments which manipulated control demands. Patients with executive impairments, despite not being selected to show semantic impairments, nevertheless showed parallel patterns to SA cases. They showed strong effects of distractor strength, cues and miscues, and probe-target distance, plus minimal effects of word frequency on comprehension (unlike semantic dementia patients with degradation of conceptual knowledge). This supports a component process account of semantic cognition in which retrieval is shaped by control processes, and confirms that deficits in SA patients reflect difficulty controlling semantic retrieval. © 2018 The Authors. Journal of Neuropsychology published by John Wiley & Sons Ltd on behalf of British Psychological Society.
Wu, Zhenyu; Xu, Yuan; Yang, Yunong; Zhang, Chunhong; Zhu, Xinning; Ji, Yang
2017-01-01
Web of Things (WoT) facilitates the discovery and interoperability of Internet of Things (IoT) devices in a cyber-physical system (CPS). Moreover, a uniform knowledge representation of physical resources is quite necessary for further composition, collaboration, and decision-making process in CPS. Though several efforts have integrated semantics with WoT, such as knowledge engineering methods based on semantic sensor networks (SSN), it still could not represent the complex relationships between devices when dynamic composition and collaboration occur, and it totally depends on manual construction of a knowledge base with low scalability. In this paper, to addresses these limitations, we propose the semantic Web of Things (SWoT) framework for CPS (SWoT4CPS). SWoT4CPS provides a hybrid solution with both ontological engineering methods by extending SSN and machine learning methods based on an entity linking (EL) model. To testify to the feasibility and performance, we demonstrate the framework by implementing a temperature anomaly diagnosis and automatic control use case in a building automation system. Evaluation results on the EL method show that linking domain knowledge to DBpedia has a relative high accuracy and the time complexity is at a tolerant level. Advantages and disadvantages of SWoT4CPS with future work are also discussed. PMID:28230725
Attention during natural vision warps semantic representation across the human brain.
Çukur, Tolga; Nishimoto, Shinji; Huth, Alexander G; Gallant, Jack L
2013-06-01
Little is known about how attention changes the cortical representation of sensory information in humans. On the basis of neurophysiological evidence, we hypothesized that attention causes tuning changes to expand the representation of attended stimuli at the cost of unattended stimuli. To investigate this issue, we used functional magnetic resonance imaging to measure how semantic representation changed during visual search for different object categories in natural movies. We found that many voxels across occipito-temporal and fronto-parietal cortex shifted their tuning toward the attended category. These tuning shifts expanded the representation of the attended category and of semantically related, but unattended, categories, and compressed the representation of categories that were semantically dissimilar to the target. Attentional warping of semantic representation occurred even when the attended category was not present in the movie; thus, the effect was not a target-detection artifact. These results suggest that attention dynamically alters visual representation to optimize processing of behaviorally relevant objects during natural vision.
Attention During Natural Vision Warps Semantic Representation Across the Human Brain
Çukur, Tolga; Nishimoto, Shinji; Huth, Alexander G.; Gallant, Jack L.
2013-01-01
Little is known about how attention changes the cortical representation of sensory information in humans. Based on neurophysiological evidence, we hypothesized that attention causes tuning changes to expand the representation of attended stimuli at the cost of unattended stimuli. To investigate this issue we used functional MRI (fMRI) to measure how semantic representation changes when searching for different object categories in natural movies. We find that many voxels across occipito-temporal and fronto-parietal cortex shift their tuning toward the attended category. These tuning shifts expand the representation of the attended category and of semantically-related but unattended categories, and compress the representation of categories semantically-dissimilar to the target. Attentional warping of semantic representation occurs even when the attended category is not present in the movie, thus the effect is not a target-detection artifact. These results suggest that attention dynamically alters visual representation to optimize processing of behaviorally relevant objects during natural vision. PMID:23603707
Reasoning about procedural knowledge
NASA Technical Reports Server (NTRS)
Georgeff, M. P.
1985-01-01
A crucial aspect of automated reasoning about space operations is that knowledge of the problem domain is often procedural in nature - that is, the knowledge is often in the form of sequences of actions or procedures for achieving given goals or reacting to certain situations. In this paper a system is described that explicitly represents and reasons about procedural knowledge. The knowledge representation used is sufficiently rich to describe the effects of arbitrary sequences of tests and actions, and the inference mechanism provides a means for directly using this knowledge to reach desired operational goals. Furthermore, the representation has a declarative semantics that provides for incremental changes to the system, rich explanatory capabilities, and verifiability. The approach also provides a mechanism for reasoning about the use of this knowledge, thus enabling the system to choose effectively between alternative courses of action.
Semantic domain-specific functional integration for action-related vs. abstract concepts.
Ghio, Marta; Tettamanti, Marco
2010-03-01
A central topic in cognitive neuroscience concerns the representation of concepts and the specific neural mechanisms that mediate conceptual knowledge. Recently proposed modal theories assert that concepts are grounded on the integration of multimodal, distributed representations. The aim of the present work is to complement the available neuropsychological and neuroimaging evidence suggesting partially segregated anatomo-functional correlates for concrete vs. abstract concepts, by directly testing the semantic domain-specific patterns of functional integration between language and modal semantic brain regions. We report evidence from a functional magnetic resonance imaging study, in which healthy participants listened to sentences with either an action-related (actions involving physical entities) or an abstract (no physical entities involved) content. We measured functional integration using dynamic causal modeling, and found that the left superior temporal gyrus was more strongly connected: (1) for action-related vs. abstract sentences, with the left-hemispheric action representation system, including sensorimotor areas; (2) for abstract vs. action-related sentences, with left infero-ventral frontal, temporal, and retrosplenial cingulate areas. A selective directionality effect was observed, with causal modulatory effects exerted by perisylvian language regions on peripheral modal areas, and not vice versa. The observed condition-specific modulatory effects are consistent with embodied and situated language processing theories, and indicate that linguistic areas promote a semantic content-specific reactivation of modal simulations by top-down mechanisms. Copyright 2008 Elsevier Inc. All rights reserved.
ERIC Educational Resources Information Center
Mirman, Daniel; Magnuson, James S.
2008-01-01
The authors investigated semantic neighborhood density effects on visual word processing to examine the dynamics of activation and competition among semantic representations. Experiment 1 validated feature-based semantic representations as a basis for computing semantic neighborhood density and suggested that near and distant neighbors have…
Knowledge bases built on web languages from the point of view of predicate logics
NASA Astrophysics Data System (ADS)
Vajgl, Marek; Lukasová, Alena; Žáček, Martin
2017-06-01
The article undergoes evaluation of formal systems created on the base of web (ontology/concept) languages by simplifying the usual approach of knowledge representation within the FOPL, but sharing its expressiveness, semantic correct-ness, completeness and decidability. Evaluation of two of them - that one based on description logic and that one built on RDF model principles - identifies some of the lacks of those formal systems and presents, if possible, corrections of them. Possibilities to build an inference system capable to obtain new further knowledge over given knowledge bases including those describing domains by giant linked domain databases has been taken into account. Moreover, the directions towards simplifying FOPL language discussed here has been evaluated from the point of view of a possibility to become a web language for fulfilling an idea of semantic web.
linkedISA: semantic representation of ISA-Tab experimental metadata.
González-Beltrán, Alejandra; Maguire, Eamonn; Sansone, Susanna-Assunta; Rocca-Serra, Philippe
2014-01-01
Reporting and sharing experimental metadata- such as the experimental design, characteristics of the samples, and procedures applied, along with the analysis results, in a standardised manner ensures that datasets are comprehensible and, in principle, reproducible, comparable and reusable. Furthermore, sharing datasets in formats designed for consumption by humans and machines will also maximize their use. The Investigation/Study/Assay (ISA) open source metadata tracking framework facilitates standards-compliant collection, curation, visualization, storage and sharing of datasets, leveraging on other platforms to enable analysis and publication. The ISA software suite includes several components used in increasingly diverse set of life science and biomedical domains; it is underpinned by a general-purpose format, ISA-Tab, and conversions exist into formats required by public repositories. While ISA-Tab works well mainly as a human readable format, we have also implemented a linked data approach to semantically define the ISA-Tab syntax. We present a semantic web representation of the ISA-Tab syntax that complements ISA-Tab's syntactic interoperability with semantic interoperability. We introduce the linkedISA conversion tool from ISA-Tab to the Resource Description Framework (RDF), supporting mappings from the ISA syntax to multiple community-defined, open ontologies and capitalising on user-provided ontology annotations in the experimental metadata. We describe insights of the implementation and how annotations can be expanded driven by the metadata. We applied the conversion tool as part of Bio-GraphIIn, a web-based application supporting integration of the semantically-rich experimental descriptions. Designed in a user-friendly manner, the Bio-GraphIIn interface hides most of the complexities to the users, exposing a familiar tabular view of the experimental description to allow seamless interaction with the RDF representation, and visualising descriptors to drive the query over the semantic representation of the experimental design. In addition, we defined queries over the linkedISA RDF representation and demonstrated its use over the linkedISA conversion of datasets from Nature' Scientific Data online publication. Our linked data approach has allowed us to: 1) make the ISA-Tab semantics explicit and machine-processable, 2) exploit the existing ontology-based annotations in the ISA-Tab experimental descriptions, 3) augment the ISA-Tab syntax with new descriptive elements, 4) visualise and query elements related to the experimental design. Reasoning over ISA-Tab metadata and associated data will facilitate data integration and knowledge discovery.
Interconnected growing self-organizing maps for auditory and semantic acquisition modeling
Cao, Mengxue; Li, Aijun; Fang, Qiang; Kaufmann, Emily; Kröger, Bernd J.
2014-01-01
Based on the incremental nature of knowledge acquisition, in this study we propose a growing self-organizing neural network approach for modeling the acquisition of auditory and semantic categories. We introduce an Interconnected Growing Self-Organizing Maps (I-GSOM) algorithm, which takes associations between auditory information and semantic information into consideration, in this paper. Direct phonetic–semantic association is simulated in order to model the language acquisition in early phases, such as the babbling and imitation stages, in which no phonological representations exist. Based on the I-GSOM algorithm, we conducted experiments using paired acoustic and semantic training data. We use a cyclical reinforcing and reviewing training procedure to model the teaching and learning process between children and their communication partners. A reinforcing-by-link training procedure and a link-forgetting procedure are introduced to model the acquisition of associative relations between auditory and semantic information. Experimental results indicate that (1) I-GSOM has good ability to learn auditory and semantic categories presented within the training data; (2) clear auditory and semantic boundaries can be found in the network representation; (3) cyclical reinforcing and reviewing training leads to a detailed categorization as well as to a detailed clustering, while keeping the clusters that have already been learned and the network structure that has already been developed stable; and (4) reinforcing-by-link training leads to well-perceived auditory–semantic associations. Our I-GSOM model suggests that it is important to associate auditory information with semantic information during language acquisition. Despite its high level of abstraction, our I-GSOM approach can be interpreted as a biologically-inspired neurocomputational model. PMID:24688478
Semantic graphs and associative memories
NASA Astrophysics Data System (ADS)
Pomi, Andrés; Mizraji, Eduardo
2004-12-01
Graphs have been increasingly utilized in the characterization of complex networks from diverse origins, including different kinds of semantic networks. Human memories are associative and are known to support complex semantic nets; these nets are represented by graphs. However, it is not known how the brain can sustain these semantic graphs. The vision of cognitive brain activities, shown by modern functional imaging techniques, assigns renewed value to classical distributed associative memory models. Here we show that these neural network models, also known as correlation matrix memories, naturally support a graph representation of the stored semantic structure. We demonstrate that the adjacency matrix of this graph of associations is just the memory coded with the standard basis of the concept vector space, and that the spectrum of the graph is a code invariant of the memory. As long as the assumptions of the model remain valid this result provides a practical method to predict and modify the evolution of the cognitive dynamics. Also, it could provide us with a way to comprehend how individual brains that map the external reality, almost surely with different particular vector representations, are nevertheless able to communicate and share a common knowledge of the world. We finish presenting adaptive association graphs, an extension of the model that makes use of the tensor product, which provides a solution to the known problem of branching in semantic nets.
Gerfo, Emanuele Lo; Oliveri, Massimiliano; Torriero, Sara; Salerno, Silvia; Koch, Giacomo; Caltagirone, Carlo
2008-01-31
We investigated the differential role of two frontal regions in the processing of grammatical and semantic knowledge. Given the documented specificity of the prefrontal cortex for the grammatical class of verbs, and of the primary motor cortex for the semantic class of action words, we sought to investigate whether the prefrontal cortex is also sensitive to semantic effects, and whether the motor cortex is also sensitive to grammatical class effects. We used repetitive transcranial magnetic stimulation (rTMS) to suppress the excitability of a portion of left prefontal cortex (first experiment) and of the motor area (second experiment). In the first experiment we found that rTMS applied to the left prefrontal cortex delays the processing of action verbs' retrieval, but is not critical for retrieval of state verbs and state nouns. In the second experiment we found that rTMS applied to the left motor cortex delays the processing of action words, both name and verbs, while it is not critical for the processing of state words. These results support the notion that left prefrontal and motor cortex are involved in the process of action word retrieval. Left prefrontal cortex subserves processing of both grammatical and semantic information, whereas motor cortex contributes to the processing of semantic representation of action words without any involvement in the representation of grammatical categories.
Altmann, Gerry T M
2017-01-05
Statistical approaches to emergent knowledge have tended to focus on the process by which experience of individual episodes accumulates into generalizable experience across episodes. However, there is a seemingly opposite, but equally critical, process that such experience affords: the process by which, from a space of types (e.g. onions-a semantic class that develops through exposure to individual episodes involving individual onions), we can perceive or create, on-the-fly, a specific token (a specific onion, perhaps one that is chopped) in the absence of any prior perceptual experience with that specific token. This article reviews a selection of statistical learning studies that lead to the speculation that this process-the generation, on the basis of semantic memory, of a novel episodic representation-is itself an instance of a statistical, in fact associative, process. The article concludes that the same processes that enable statistical abstraction across individual episodes to form semantic memories also enable the generation, from those semantic memories, of representations that correspond to individual tokens, and of novel episodic facts about those tokens. Statistical learning is a window onto these deeper processes that underpin cognition.This article is part of the themed issue 'New frontiers for statistical learning in the cognitive sciences'. © 2016 The Author(s).
Zannino, Gian Daniele; Perri, Roberta; Monaco, Marco; Caltagirone, Carlo; Luzzi, Simona; Carlesimo, Giovanni A
2014-01-01
According to the semantic hub hypothesis, a supramodal semantic hub is equally needed to deal with verbal and extraverbal "surface" representations. Damage to the supramodal hub is thought to underlie the crossmodal impairment observed in selective semantic deficits. In the present paper, we provide evidence supporting an alternative view: we hold that semantic impairment is not equal across domains but affects verbal behavior disproportionately. We investigated our hypothesis by manipulating the verbal load in an object decision task. Two pathological groups showing different levels of semantic impairment were enrolled together with their normal controls. The severe group included 10 subjects with semantic dementia and the mild group 10 subjects with Alzheimer's disease. In keeping with our hypothesis, when shifting from the low verbal load to the high verbal load condition, brain-damaged individuals, as compared to controls, showed a disproportionate impairment as a function of the severity of their semantic deficit. Copyright © 2013 Elsevier Inc. All rights reserved.
A semantic model for multimodal data mining in healthcare information systems.
Iakovidis, Dimitris; Smailis, Christos
2012-01-01
Electronic health records (EHRs) are representative examples of multimodal/multisource data collections; including measurements, images and free texts. The diversity of such information sources and the increasing amounts of medical data produced by healthcare institutes annually, pose significant challenges in data mining. In this paper we present a novel semantic model that describes knowledge extracted from the lowest-level of a data mining process, where information is represented by multiple features i.e. measurements or numerical descriptors extracted from measurements, images, texts or other medical data, forming multidimensional feature spaces. Knowledge collected by manual annotation or extracted by unsupervised data mining from one or more feature spaces is modeled through generalized qualitative spatial semantics. This model enables a unified representation of knowledge across multimodal data repositories. It contributes to bridging the semantic gap, by enabling direct links between low-level features and higher-level concepts e.g. describing body parts, anatomies and pathological findings. The proposed model has been developed in web ontology language based on description logics (OWL-DL) and can be applied to a variety of data mining tasks in medical informatics. It utility is demonstrated for automatic annotation of medical data.
Integrating Conceptual Knowledge within and across Representational Modalities
ERIC Educational Resources Information Center
McNorgan, Chris; Reid, Jackie; McRae, Ken
2011-01-01
Research suggests that concepts are distributed across brain regions specialized for processing information from different sensorimotor modalities. Multimodal semantic models fall into one of two broad classes differentiated by the assumed hierarchy of convergence zones over which information is integrated. In shallow models, communication within-…
Fine-grained semantic categorization across the abstract and concrete domains.
Ghio, Marta; Vaghi, Matilde Maria Serena; Tettamanti, Marco
2013-01-01
A consolidated approach to the study of the mental representation of word meanings has consisted in contrasting different domains of knowledge, broadly reflecting the abstract-concrete dichotomy. More fine-grained semantic distinctions have emerged in neuropsychological and cognitive neuroscience work, reflecting semantic category specificity, but almost exclusively within the concrete domain. Theoretical advances, particularly within the area of embodied cognition, have more recently put forward the idea that distributed neural representations tied to the kinds of experience maintained with the concepts' referents might distinguish conceptual meanings with a high degree of specificity, including those within the abstract domain. Here we report the results of two psycholinguistic rating studies incorporating such theoretical advances with two main objectives: first, to provide empirical evidence of fine-grained distinctions within both the abstract and the concrete semantic domains with respect to relevant psycholinguistic dimensions; second, to develop a carefully controlled linguistic stimulus set that may be used for auditory as well as visual neuroimaging studies focusing on the parametrization of the semantic space beyond the abstract-concrete dichotomy. Ninety-six participants rated a set of 210 sentences across pre-selected concrete (mouth, hand, or leg action-related) and abstract (mental state-, emotion-, mathematics-related) categories, with respect either to different semantic domain-related scales (rating study 1), or to concreteness, familiarity, and context availability (rating study 2). Inferential statistics and correspondence analyses highlighted distinguishing semantic and psycholinguistic traits for each of the pre-selected categories, indicating that a simple abstract-concrete dichotomy is not sufficient to account for the entire semantic variability within either domains.
Fine-Grained Semantic Categorization across the Abstract and Concrete Domains
Tettamanti, Marco
2013-01-01
A consolidated approach to the study of the mental representation of word meanings has consisted in contrasting different domains of knowledge, broadly reflecting the abstract-concrete dichotomy. More fine-grained semantic distinctions have emerged in neuropsychological and cognitive neuroscience work, reflecting semantic category specificity, but almost exclusively within the concrete domain. Theoretical advances, particularly within the area of embodied cognition, have more recently put forward the idea that distributed neural representations tied to the kinds of experience maintained with the concepts' referents might distinguish conceptual meanings with a high degree of specificity, including those within the abstract domain. Here we report the results of two psycholinguistic rating studies incorporating such theoretical advances with two main objectives: first, to provide empirical evidence of fine-grained distinctions within both the abstract and the concrete semantic domains with respect to relevant psycholinguistic dimensions; second, to develop a carefully controlled linguistic stimulus set that may be used for auditory as well as visual neuroimaging studies focusing on the parametrization of the semantic space beyond the abstract-concrete dichotomy. Ninety-six participants rated a set of 210 sentences across pre-selected concrete (mouth, hand, or leg action-related) and abstract (mental state-, emotion-, mathematics-related) categories, with respect either to different semantic domain-related scales (rating study 1), or to concreteness, familiarity, and context availability (rating study 2). Inferential statistics and correspondence analyses highlighted distinguishing semantic and psycholinguistic traits for each of the pre-selected categories, indicating that a simple abstract-concrete dichotomy is not sufficient to account for the entire semantic variability within either domains. PMID:23825625
Ontology Design of Influential People Identification Using Centrality
NASA Astrophysics Data System (ADS)
Maulana Awangga, Rolly; Yusril, Muhammad; Setyawan, Helmi
2018-04-01
Identifying influential people as a node in a graph theory commonly calculated by social network analysis. The social network data has the user as node and edge as relation forming a friend relation graph. This research is conducting different meaning of every nodes relation in the social network. Ontology was perfect match science to describe the social network data as conceptual and domain. Ontology gives essential relationship in a social network more than a current graph. Ontology proposed as a standard for knowledge representation for the semantic web by World Wide Web Consortium. The formal data representation use Resource Description Framework (RDF) and Web Ontology Language (OWL) which is strategic for Open Knowledge-Based website data. Ontology used in the semantic description for a relationship in the social network, it is open to developing semantic based relationship ontology by adding and modifying various and different relationship to have influential people as a conclusion. This research proposes a model using OWL and RDF for influential people identification in the social network. The study use degree centrality, between ness centrality, and closeness centrality measurement for data validation. As a conclusion, influential people identification in Facebook can use proposed Ontology model in the Group, Photos, Photo Tag, Friends, Events and Works data.
Body representation in patients after vascular brain injuries.
Razmus, Magdalena
2017-11-01
Neuropsychological literature suggests that body representation is a multidimensional concept consisting of various types of representations. Previous studies have demonstrated dissociations between three types of body representation specified by the kind of data and processes, i.e. body schema, body structural description, and body semantics. The aim of the study was to describe the state of body representation in patients after vascular brain injuries and to provide evidence for the different types of body representation. The question about correlations between body representation deficits and neuropsychological dysfunctions was also investigated. Fifty patients after strokes and 50 control individuals participated in the study. They were examined with tasks referring to dynamic representation of body parts positions, topological body map, and lexical and semantic knowledge about the body. Data analysis showed that vascular brain injuries result in deficits of body representation, which may co-occur with cognitive dysfunctions, but the latter are a possible risk factor for body representation deficits rather than sufficient or imperative requisites for them. The study suggests that types of body representation may be separated on the basis not only of their content, but also of their relation with self. Principal component analysis revealed three factors, which explained over 66% of results variance. The factors, which may be interpreted as types or dimensions of mental model of a body, represent different degrees of connection with self. The results indicate another possibility of body representation types classification, which should be verified in future research.
Semantic message oriented middleware for publish/subscribe networks
NASA Astrophysics Data System (ADS)
Li, Han; Jiang, Guofei
2004-09-01
The publish/subscribe paradigm of Message Oriented Middleware provides a loosely coupled communication model between distributed applications. Traditional publish/subscribe middleware uses keywords to match advertisements and subscriptions and does not support deep semantic matching. To this end, we designed and implemented a Semantic Message Oriented Middleware system to provide such capabilities for semantic description and matching. We adopted the DARPA Agent Markup Language and Ontology Inference Layer, a formal knowledge representation language for expressing sophisticated classifications and enabling automated inference, as the topic description language in our middleware system. A simple description logic inference system was implemented to handle the matching process between the subscriptions of subscribers and the advertisements of publishers. Moreover our middleware system also has a security architecture to support secure communication and user privilege control.
The power and limits of a rule-based morpho-semantic parser.
Baud, R. H.; Rassinoux, A. M.; Ruch, P.; Lovis, C.; Scherrer, J. R.
1999-01-01
The venue of Electronic Patient Record (EPR) implies an increasing amount of medical texts readily available for processing, as soon as convenient tools are made available. The chief application is text analysis, from which one can drive other disciplines like indexing for retrieval, knowledge representation, translation and inferencing for medical intelligent systems. Prerequisites for a convenient analyzer of medical texts are: building the lexicon, developing semantic representation of the domain, having a large corpus of texts available for statistical analysis, and finally mastering robust and powerful parsing techniques in order to satisfy the constraints of the medical domain. This article aims at presenting an easy-to-use parser ready to be adapted in different settings. It describes its power together with its practical limitations as experienced by the authors. PMID:10566313
The power and limits of a rule-based morpho-semantic parser.
Baud, R H; Rassinoux, A M; Ruch, P; Lovis, C; Scherrer, J R
1999-01-01
The venue of Electronic Patient Record (EPR) implies an increasing amount of medical texts readily available for processing, as soon as convenient tools are made available. The chief application is text analysis, from which one can drive other disciplines like indexing for retrieval, knowledge representation, translation and inferencing for medical intelligent systems. Prerequisites for a convenient analyzer of medical texts are: building the lexicon, developing semantic representation of the domain, having a large corpus of texts available for statistical analysis, and finally mastering robust and powerful parsing techniques in order to satisfy the constraints of the medical domain. This article aims at presenting an easy-to-use parser ready to be adapted in different settings. It describes its power together with its practical limitations as experienced by the authors.
Towards a semantic lexicon for biological language processing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Verspoor, K.
It is well understood that natural language processing (NLP) applications require sophisticated lexical resources to support their processing goals. In the biomedical domain, we are privileged to have access to extensive terminological resources in the form of controlled vocabularies and ontologies, which have been integrated into the framework of the National Library of Medicine's Unified Medical Language System's (UMLS) Metathesaurus. However, the existence of such terminological resources does not guarantee their utility for NLP. In particular, we have two core requirements for lexical resources for NLP in addition to the basic enumeration of important domain terms: representation of morphosyntactic informationmore » about those terms, specifically part of speech information and inflectional patterns to support parsing and lemma assignment, and representation of semantic information indicating general categorical information about terms, and significant relations between terms to support text understanding and inference (Hahn et at, 1999). Biomedical vocabularies by and large commonly leave out morphosyntactic information, and where they address semantic considerations, they often do so in an unprincipled manner, for instance by indicating a relation between two concepts without indicating the type of that relation. But all is not lost. The UMLS knowledge sources include two additional resources which are relevant - the SPECIALIST lexicon, a lexicon addressing our morphosyntactic requirements, and the Semantic Network, a representation of core conceptual categories in the biomedical domain. The coverage of these two knowledge sources with respect to the full coverage of the Metathesaurus is, however, not entirely clear. Furthermore, when our goals are specifically to process biological text - and often more specifically, text in the molecular biology domain - it is difficult to say whether the coverage of these resources is meaningful. The utility of the UMLS knowledge sources for medical language processing (MLP) has been explored (Johnson, 1999; Friedman et al 2001); the time has now come to repeat these experiments with respect to biological language processing (BLP). To that end, this paper presents an analysis of ihe UMLS resources, specifically with an eye towards constructing lexical resources suitable for BLP. We follow the paradigm presented in Johnson (1999) for medical language, exploring overlap between the UMLS Metathesaurus and SPECIALIST lexicon to construct a morphosyntactic and semantically-specified lexicon, and then further explore the overlap with a relevant domain corpus for molecular biology.« less
Rivasseau Jonveaux, T; Batt, M; Empereur, F; Braun, M; Trognon, A
2015-04-01
Episodic and semantic processes are involved in temporality used in daily life. Episodic memory permits one to place an event on the time axis, while semantic memory makes us aware of the time segmentation and its symbolic representation. Memory of the knowledge connected to the passing of time is materialized on the calendar and can be seen symbolically on the dial of a clock. In AD, semantic memory processes are preserved longer than processes related to episodic memory. We wonder whether the specific field of knowledge about time is altered during AD. We validated a specific evaluation with a control group (354 healthy subjects). Then we applied this battery to assess AD patients to appreciate the feasibility of this tool for this population. We then compared 22 AD patients with a control group matched for age, sex and educational level. Our clinical scale of temporal semantic knowledge consists of four parts: (a) hour reading with a.m. and p.m. hours; (b) using a clock: 12 clock faces with the hour numbers already placed: the patient draws hour and minute hands for various hours; (c) temporal segmentation: exploration of the knowledge on daytime scale and of the calendar; (d) time duration estimation: calculate how long the interview has lasted after indicating the time of its beginning and its end, then the time between 10.40 to 12.00. While age and educational level had an influence on all the scores, in the two groups control and patients, gender did not. Temporal segmentation, independent of the cultural level, revealed the best acquired knowledge in our control population. All the scores differentiated patients from control subjects. The temporal semantic knowledge correlated with the AD severity seemed to be correlated with the attention, verbal comprehension, and some components of executive functions, but was not related to the clock drawing test result. Depression did not have any influence on this scale in our AD group. The temporal semantic knowledge clinical scale shows differential alterations, notably in hour reading and using a clock, and less in temporal segmentation. Temporal semantic knowledge is altered in AD. The diagnosis and follow-up of these alterations allow professionals and caregivers to consider adaptations of the patient's environment according to their needs. Copyright © 2013 L’Encéphale, Paris. Published by Elsevier Masson SAS. All rights reserved.
The representation of abstract words: why emotion matters.
Kousta, Stavroula-Thaleia; Vigliocco, Gabriella; Vinson, David P; Andrews, Mark; Del Campo, Elena
2011-02-01
Although much is known about the representation and processing of concrete concepts, knowledge of what abstract semantics might be is severely limited. In this article we first address the adequacy of the 2 dominant accounts (dual coding theory and the context availability model) put forward in order to explain representation and processing differences between concrete and abstract words. We find that neither proposal can account for experimental findings and that this is, at least partly, because abstract words are considered to be unrelated to experiential information in both of these accounts. We then address a particular type of experiential information, emotional content, and demonstrate that it plays a crucial role in the processing and representation of abstract concepts: Statistically, abstract words are more emotionally valenced than are concrete words, and this accounts for a residual latency advantage for abstract words, when variables such as imageability (a construct derived from dual coding theory) and rated context availability are held constant. We conclude with a discussion of our novel hypothesis for embodied abstract semantics. (c) 2010 APA, all rights reserved.
A grounded theory of abstraction in artificial intelligence.
Zucker, Jean-Daniel
2003-07-29
In artificial intelligence, abstraction is commonly used to account for the use of various levels of details in a given representation language or the ability to change from one level to another while preserving useful properties. Abstraction has been mainly studied in problem solving, theorem proving, knowledge representation (in particular for spatial and temporal reasoning) and machine learning. In such contexts, abstraction is defined as a mapping between formalisms that reduces the computational complexity of the task at stake. By analysing the notion of abstraction from an information quantity point of view, we pinpoint the differences and the complementary role of reformulation and abstraction in any representation change. We contribute to extending the existing semantic theories of abstraction to be grounded on perception, where the notion of information quantity is easier to characterize formally. In the author's view, abstraction is best represented using abstraction operators, as they provide semantics for classifying different abstractions and support the automation of representation changes. The usefulness of a grounded theory of abstraction in the cartography domain is illustrated. Finally, the importance of explicitly representing abstraction for designing more autonomous and adaptive systems is discussed.
Chiou, Rocco; Sowman, Paul F; Etchell, Andrew C; Rich, Anina N
2014-05-01
Object recognition benefits greatly from our knowledge of typical color (e.g., a lemon is usually yellow). Most research on object color knowledge focuses on whether both knowledge and perception of object color recruit the well-established neural substrates of color vision (the V4 complex). Compared with the intensive investigation of the V4 complex, we know little about where and how neural mechanisms beyond V4 contribute to color knowledge. The anterior temporal lobe (ATL) is thought to act as a "hub" that supports semantic memory by integrating different modality-specific contents into a meaningful entity at a supramodal conceptual level, making it a good candidate zone for mediating the mappings between object attributes. Here, we explore whether the ATL is critical for integrating typical color with other object attributes (object shape and name), akin to its role in combining nonperceptual semantic representations. In separate experimental sessions, we applied TMS to disrupt neural processing in the left ATL and a control site (the occipital pole). Participants performed an object naming task that probes color knowledge and elicits a reliable color congruency effect as well as a control quantity naming task that also elicits a cognitive congruency effect but involves no conceptual integration. Critically, ATL stimulation eliminated the otherwise robust color congruency effect but had no impact on the numerical congruency effect, indicating a selective disruption of object color knowledge. Neither color nor numerical congruency effects were affected by stimulation at the control occipital site, ruling out nonspecific effects of cortical stimulation. Our findings suggest that the ATL is involved in the representation of object concepts that include their canonical colors.
Ontology Research and Development. Part 1-A Review of Ontology Generation.
ERIC Educational Resources Information Center
Ding, Ying; Foo, Schubert
2002-01-01
Discusses the role of ontology in knowledge representation, including enabling content-based access, interoperability, communications, and new levels of service on the Semantic Web; reviews current ontology generation studies and projects as well as problems facing such research; and discusses ontology mapping, information extraction, natural…
Generic Educational Knowledge Representation for Adaptive and Cognitive Systems
ERIC Educational Resources Information Center
Caravantes, Arturo; Galan, Ramon
2011-01-01
The interoperability of educational systems, encouraged by the development of specifications, standards and tools related to the Semantic Web is limited to the exchange of information in domain and student models. High system interoperability requires that a common framework be defined that represents the functional essence of educational systems.…
Knowledge Representation and Natural-Language Semantics.
1985-08-01
we ’an translate Lewis’s writings on the variet,- of imp lieation into writings on varitti,. necessity. This translation - heme is now almost... definted byv 11ha1 rullev - .! ’.A is guaranteedl to lead to a solution. Consequently, the rules may be applied in any, order witbout - backtracking and
Knowledge Representation and Natural-Language Semantics.
1986-11-07
involving things ( Wittgenstein spoke of facts or states-of-affairs) that represent. Thus, it is not the hydrangea that carries information, it is the...assuming certain conditions on a’s utterance-roughly, that it be intentional.) Let’s connect this bit of wisdom with that coming from Wittgenstein . In
Semantic Mappings and Locality of Nursing Diagnostic Concepts in UMLS
Kim, Tae Youn; Coenen, Amy; Hardiker, Nicholas
2011-01-01
One solution for enhancing the interoperability between nursing information systems, given the availability of multiple nursing terminologies, is to cross-map existing nursing concepts. The Unified Medical Language System (UMLS) developed and distributed by the National Library of Medicine (NLM) is a knowledge resource containing cross-mappings of various terminologies in a unified framework. While the knowledge resource has been available for the last two decades, little research on the representation of nursing terminologies in UMLS has been conducted. As a first step, UMLS semantic mappings and concept locality were examined for nursing diagnostic concepts or problems selected from three terminologies (i.e., CCC, ICNP, and NANDA-I) along with corresponding SNOMED CT concepts. The evaluation of UMLS semantic mappings was conducted by measuring the proportion of concordance between UMLS and human expert mappings. The semantic locality of nursing diagnostic concepts was assessed by examining the associations of select concepts and the placement of the nursing concepts on the Semantic Network and Group. The study found that the UMLS mappings of CCC and NANDA-I concepts to SNOMED CT were highly concordant to expert mappings. The level of concordance in mappings of ICNP to SNOMED CT, CCC and NANDA-I within UMLS was relatively low, indicating the need for further research and development. Likewise, the semantic locality of ICNP concepts could be further improved. Various stakeholders need to collaborate to enhance the NLM knowledge resource and the interoperability of nursing data within the discipline as well as across health-related disciplines. PMID:21951759
More than skin deep: body representation beyond primary somatosensory cortex.
Longo, Matthew R; Azañón, Elena; Haggard, Patrick
2010-02-01
The neural circuits underlying initial sensory processing of somatic information are relatively well understood. In contrast, the processes that go beyond primary somatosensation to create more abstract representations related to the body are less clear. In this review, we focus on two classes of higher-order processing beyond somatosensation. Somatoperception refers to the process of perceiving the body itself, and particularly of ensuring somatic perceptual constancy. We review three key elements of somatoperception: (a) remapping information from the body surface into an egocentric reference frame, (b) exteroceptive perception of objects in the external world through their contact with the body, and (c) interoceptive percepts about the nature and state of the body itself. Somatorepresentation, in contrast, refers to the essentially cognitive process of constructing semantic knowledge and attitudes about the body, including: (d) lexical-semantic knowledge about bodies generally and one's own body specifically, (e) configural knowledge about the structure of bodies, (f) emotions and attitudes directed towards one's own body, and (g) the link between physical body and psychological self. We review a wide range of neuropsychological, neuroimaging and neurophysiological data to explore the dissociation between these different aspects of higher somatosensory function. 2009 Elsevier Ltd. All rights reserved.
Specialized Knowledge Representation and the Parameterization of Context.
Faber, Pamela; León-Araúz, Pilar
2016-01-01
Though instrumental in numerous disciplines, context has no universally accepted definition. In specialized knowledge resources it is timely and necessary to parameterize context with a view to more effectively facilitating knowledge representation, understanding, and acquisition, the main aims of terminological knowledge bases. This entails distinguishing different types of context as well as how they interact with each other. This is not a simple objective to achieve despite the fact that specialized discourse does not have as many contextual variables as those in general language (i.e., figurative meaning, irony, etc.). Even in specialized text, context is an extremely complex concept. In fact, contextual information can be specified in terms of scope or according to the type of information conveyed. It can be a textual excerpt or a whole document; a pragmatic convention or a whole culture; a concrete situation or a prototypical scenario. Although these versions of context are useful for the users of terminological resources, such resources rarely support context modeling. In this paper, we propose a taxonomy of context primarily based on scope (local and global) and further divided into syntactic, semantic, and pragmatic facets. These facets cover the specification of different types of terminological information, such as predicate-argument structure, collocations, semantic relations, term variants, grammatical and lexical cohesion, communicative situations, subject fields, and cultures.
Specialized Knowledge Representation and the Parameterization of Context
Faber, Pamela
2016-01-01
Though instrumental in numerous disciplines, context has no universally accepted definition. In specialized knowledge resources it is timely and necessary to parameterize context with a view to more effectively facilitating knowledge representation, understanding, and acquisition, the main aims of terminological knowledge bases. This entails distinguishing different types of context as well as how they interact with each other. This is not a simple objective to achieve despite the fact that specialized discourse does not have as many contextual variables as those in general language (i.e., figurative meaning, irony, etc.). Even in specialized text, context is an extremely complex concept. In fact, contextual information can be specified in terms of scope or according to the type of information conveyed. It can be a textual excerpt or a whole document; a pragmatic convention or a whole culture; a concrete situation or a prototypical scenario. Although these versions of context are useful for the users of terminological resources, such resources rarely support context modeling. In this paper, we propose a taxonomy of context primarily based on scope (local and global) and further divided into syntactic, semantic, and pragmatic facets. These facets cover the specification of different types of terminological information, such as predicate-argument structure, collocations, semantic relations, term variants, grammatical and lexical cohesion, communicative situations, subject fields, and cultures. PMID:26941674
Zion-Golumbic, Elana; Kutas, Marta; Bentin, Shlomo
2010-02-01
Prior semantic knowledge facilitates episodic recognition memory for faces. To examine the neural manifestation of the interplay between semantic and episodic memory, we investigated neuroelectric dynamics during the creation (study) and the retrieval (test) of episodic memories for famous and nonfamous faces. Episodic memory effects were evident in several EEG frequency bands: theta (4-8 Hz), alpha (9-13 Hz), and gamma (40-100 Hz). Activity in these bands was differentially modulated by preexisting semantic knowledge and by episodic memory, implicating their different functional roles in memory. More specifically, theta activity and alpha suppression were larger for old compared to new faces at test regardless of fame, but were both larger for famous faces during study. This pattern of selective semantic effects suggests that the theta and alpha responses, which are primarily associated with episodic memory, reflect utilization of semantic information only when it is beneficial for task performance. In contrast, gamma activity decreased between the first (study) and second (test) presentation of a face, but overall was larger for famous than nonfamous faces. Hence, the gamma rhythm seems to be primarily related to activation of preexisting neural representations that may contribute to the formation of new episodic traces. Taken together, these data provide new insights into the complex interaction between semantic and episodic memory for faces and the neural dynamics associated with mnemonic processes.
Semantic Richness and Aging: The Effect of Number of Features in the Lexical Decision Task
ERIC Educational Resources Information Center
Robert, Christelle; Rico Duarte, Liliana
2016-01-01
The aim of this study was to examine whether the effect of semantic richness in visual word recognition (i.e., words with a rich semantic representation are faster to recognize than words with a poorer semantic representation), is changed with aging. Semantic richness was investigated by manipulating the number of features of words (NOF), i.e.,…
Using Ontologies to Formalize Services Specifications in Multi-Agent Systems
NASA Technical Reports Server (NTRS)
Breitman, Karin Koogan; Filho, Aluizio Haendchen; Haeusler, Edward Hermann
2004-01-01
One key issue in multi-agent systems (MAS) is their ability to interact and exchange information autonomously across applications. To secure agent interoperability, designers must rely on a communication protocol that allows software agents to exchange meaningful information. In this paper we propose using ontologies as such communication protocol. Ontologies capture the semantics of the operations and services provided by agents, allowing interoperability and information exchange in a MAS. Ontologies are a formal, machine processable, representation that allows to capture the semantics of a domain and, to derive meaningful information by way of logical inference. In our proposal we use a formal knowledge representation language (OWL) that translates into Description Logics (a subset of first order logic), thus eliminating ambiguities and providing a solid base for machine based inference. The main contribution of this approach is to make the requirements explicit, centralize the specification in a single document (the ontology itself), at the same that it provides a formal, unambiguous representation that can be processed by automated inference machines.
Episodic Representations Support Early Semantic Learning: Evidence from Midazolam Induced Amnesia
ERIC Educational Resources Information Center
Merritt, Paul; Hirshman, Elliot; Zamani, Shane; Hsu, John; Berrigan, Michael
2006-01-01
Current controversy exists regarding the role of episodic representations in the formation of long-term semantic memories. Using the drug "midazolam" to induce temporary amnesia we tested participants' memories for newly learned facts in a semantic cue condition or an episodic and semantic cue condition. Following midazolam administration, memory…
Monsen, Karen A; Finn, Robert S; Fleming, Thea E; Garner, Erin J; LaValla, Amy J; Riemer, Judith G
2016-01-01
Rigor in clinical knowledge representation is necessary foundation for meaningful interoperability, exchange and reuse of electronic health record (EHR) data. It is critical for clinicians to understand principles and implications of using clinical standards for knowledge representation within EHRs. To educate clinicians and students about knowledge representation and to evaluate their success of applying the manual lookups method for assigning Systematized Nomenclature of Medicine Clinical Terms (SNOMED CT) concept identifiers using formally mapped concepts from the Omaha System interface terminology. Clinicians who were students in a doctoral nursing program conducted 21 lookups for Omaha System terms in publicly available SNOMED CT browsers. Lookups were deemed successful if results matched exactly with the corresponding code from the January 2013 SNOMED CT-Omaha System terminology cross-map. Of the 21 manual lookups attempted, 12 (57.1%) were successful. Errors were due to semantic gaps differences in granularity and synonymy or partial term matching. Achieving rigor in clinical knowledge representation across settings, vendors and health systems is a globally recognized challenge. Cross-maps have potential to improve rigor in SNOMED CT encoding of clinical data. Further research is needed to evaluate outcomes of using of terminology cross-maps to encode clinical terms with SNOMED CT concept identifiers based on interface terminologies.
MENTOR: an enabler for interoperable intelligent systems
NASA Astrophysics Data System (ADS)
Sarraipa, João; Jardim-Goncalves, Ricardo; Steiger-Garcao, Adolfo
2010-07-01
A community with knowledge organisation based on ontologies will enable an increase in the computational intelligence of its information systems. However, due to the worldwide diversity of communities, a high number of knowledge representation elements, which are not semantically coincident, have appeared representing the same segment of reality, becoming a barrier to business communications. Even if a domain community uses the same kind of technologies in its information systems, such as ontologies, it doesn't solve its semantics differences. In order to solve this interoperability problem, a solution is to use a reference ontology as an intermediary in the communications between the community enterprises and the outside, while allowing the enterprises to keep their own ontology and semantics unchanged internally. This work proposes MENTOR, a methodology to support the development of a common reference ontology for a group of organisations sharing the same business domain. This methodology is based on the mediator ontology (MO) concept, which assists the semantic transformations among each enterprise's ontology and the referential one. The MO enables each organisation to keep its own terminology, glossary and ontological structures, while providing seamless communication and interaction with the others.
López-Gil, Juan-Miguel; Gil, Rosa; García, Roberto
2016-01-01
This work presents a Web ontology for modeling and representation of the emotional, cognitive and motivational state of online learners, interacting with university systems for distance or blended education. The ontology is understood as a way to provide the required mechanisms to model reality and associate it to emotional responses, but without committing to a particular way of organizing these emotional responses. Knowledge representation for the contributed ontology is performed by using Web Ontology Language (OWL), a semantic web language designed to represent rich and complex knowledge about things, groups of things, and relations between things. OWL is a computational logic-based language such that computer programs can exploit knowledge expressed in OWL and also facilitates sharing and reusing knowledge using the global infrastructure of the Web. The proposed ontology has been tested in the field of Massive Open Online Courses (MOOCs) to check if it is capable of representing emotions and motivation of the students in this context of use. PMID:27199796
Modulation of the semantic system by word imageability.
Sabsevitz, D S; Medler, D A; Seidenberg, M; Binder, J R
2005-08-01
A prevailing neurobiological theory of semantic memory proposes that part of our knowledge about concrete, highly imageable concepts is stored in the form of sensory-motor representations. While this theory predicts differential activation of the semantic system by concrete and abstract words, previous functional imaging studies employing this contrast have provided relatively little supporting evidence. We acquired event-related functional magnetic resonance imaging (fMRI) data while participants performed a semantic similarity judgment task on a large number of concrete and abstract noun triads. Task difficulty was manipulated by varying the degree to which the words in the triad were similar in meaning. Concrete nouns, relative to abstract nouns, produced greater activation in a bilateral network of multimodal and heteromodal association areas, including ventral and medial temporal, posterior-inferior parietal, dorsal prefrontal, and posterior cingulate cortex. In contrast, abstract nouns produced greater activation almost exclusively in the left hemisphere in superior temporal and inferior frontal cortex. Increasing task difficulty modulated activation mainly in attention, working memory, and response monitoring systems, with almost no effect on areas that were modulated by imageability. These data provide critical support for the hypothesis that concrete, imageable concepts activate perceptually based representations not available to abstract concepts. In contrast, processing abstract concepts makes greater demands on left perisylvian phonological and lexical retrieval systems. The findings are compatible with dual coding theory and less consistent with single-code models of conceptual representation. The lack of overlap between imageability and task difficulty effects suggests that once the neural representation of a concept is activated, further maintenance and manipulation of that information in working memory does not further increase neural activation in the conceptual store.
Devereux, Barry J; Clarke, Alex; Marouchos, Andreas; Tyler, Lorraine K
2013-11-27
Understanding the meanings of words and objects requires the activation of underlying conceptual representations. Semantic representations are often assumed to be coded such that meaning is evoked regardless of the input modality. However, the extent to which meaning is coded in modality-independent or amodal systems remains controversial. We address this issue in a human fMRI study investigating the neural processing of concepts, presented separately as written words and pictures. Activation maps for each individual word and picture were used as input for searchlight-based multivoxel pattern analyses. Representational similarity analysis was used to identify regions correlating with low-level visual models of the words and objects and the semantic category structure common to both. Common semantic category effects for both modalities were found in a left-lateralized network, including left posterior middle temporal gyrus (LpMTG), left angular gyrus, and left intraparietal sulcus (LIPS), in addition to object- and word-specific semantic processing in ventral temporal cortex and more anterior MTG, respectively. To explore differences in representational content across regions and modalities, we developed novel data-driven analyses, based on k-means clustering of searchlight dissimilarity matrices and seeded correlation analysis. These revealed subtle differences in the representations in semantic-sensitive regions, with representations in LIPS being relatively invariant to stimulus modality and representations in LpMTG being uncorrelated across modality. These results suggest that, although both LpMTG and LIPS are involved in semantic processing, only the functional role of LIPS is the same regardless of the visual input, whereas the functional role of LpMTG differs for words and objects.
Computable visually observed phenotype ontological framework for plants
2011-01-01
Background The ability to search for and precisely compare similar phenotypic appearances within and across species has vast potential in plant science and genetic research. The difficulty in doing so lies in the fact that many visual phenotypic data, especially visually observed phenotypes that often times cannot be directly measured quantitatively, are in the form of text annotations, and these descriptions are plagued by semantic ambiguity, heterogeneity, and low granularity. Though several bio-ontologies have been developed to standardize phenotypic (and genotypic) information and permit comparisons across species, these semantic issues persist and prevent precise analysis and retrieval of information. A framework suitable for the modeling and analysis of precise computable representations of such phenotypic appearances is needed. Results We have developed a new framework called the Computable Visually Observed Phenotype Ontological Framework for plants. This work provides a novel quantitative view of descriptions of plant phenotypes that leverages existing bio-ontologies and utilizes a computational approach to capture and represent domain knowledge in a machine-interpretable form. This is accomplished by means of a robust and accurate semantic mapping module that automatically maps high-level semantics to low-level measurements computed from phenotype imagery. The framework was applied to two different plant species with semantic rules mined and an ontology constructed. Rule quality was evaluated and showed high quality rules for most semantics. This framework also facilitates automatic annotation of phenotype images and can be adopted by different plant communities to aid in their research. Conclusions The Computable Visually Observed Phenotype Ontological Framework for plants has been developed for more efficient and accurate management of visually observed phenotypes, which play a significant role in plant genomics research. The uniqueness of this framework is its ability to bridge the knowledge of informaticians and plant science researchers by translating descriptions of visually observed phenotypes into standardized, machine-understandable representations, thus enabling the development of advanced information retrieval and phenotype annotation analysis tools for the plant science community. PMID:21702966
Papagno, Costanza; Semenza, Carlo; Girelli, Luisa
2013-11-01
This study describes a follow-up investigation of numerical abilities and visuospatial memory in a patient suffering from semantic dementia whose progressive decline of semantic memory variably affected different types of knowledge. Crucially, we investigated in detail her outstanding performance with Sudoku that has been only anecdotally reported in the previous literature. We tested spatial cognition and memory, body representation, number processing, calculation, and Sudoku tasks, and we compared the patient's performance with that of matched controls. In agreement with the neuroanatomical data, showing substantial sparing of the parietal lobes in the face of severe atrophy of the temporal (and frontal) regions, we report full preservation of skills known to be supported by intact parietal-basal ganglia networks, and impaired knowledge related to long-term stored declarative information mediated by temporal regions. Performance in tasks sensitive to parietal dysfunction (such as right-left orientation, finger gnosis, writing, and visuospatial memory) was normal; within the numerical domain, preserved quantity-based number knowledge dissociated from increasing difficulties with nonquantitative number knowledge (such as knowledge of encyclopedic and personal number facts) and arithmetic facts knowledge. This case confirms the relation between numbers and space, and, although indirectly, their anatomical correlates, underlining which abilities are preserved in the case of severe semantic loss. In addition, although Sudoku is not inherently numerical, the patient was able to solve even the most difficult pattern, provided that it required digits and not letters, showing that digits have, in any case, a specific status. PsycINFO Database Record (c) 2013 APA, all rights reserved.
Semantic Representation of Newly Learned L2 Words and Their Integration in the L2 Lexicon
ERIC Educational Resources Information Center
Bordag, Denisa; Kirschenbaum, Amit; Rogahn, Maria; Opitz, Andreas
2017-01-01
The present semantic priming study explores the integration of newly learnt L2 German words into the L2 semantic network of German advanced learners. It provides additional evidence in support of earlier findings reporting semantic inhibition effects for emergent representations. An inhibitory mechanism is proposed that temporarily decreases the…
Predicting Word Maturity from Frequency and Semantic Diversity: A Computational Study
ERIC Educational Resources Information Center
Jorge-Botana, Guillermo; Olmos, Ricardo; Sanjosé, Vicente
2017-01-01
Semantic word representation changes over different ages of childhood until it reaches its adult form. One method to formally model this change is the word maturity paradigm. This method uses a text sample for each age, including adult age, and transforms the samples into a semantic space by means of Latent Semantic Analysis. The representation of…
Review of "Conceptual Structures: Information Processing in Mind and Machine."
ERIC Educational Resources Information Center
Smoliar, Stephen W.
This review of the book, "Conceptual Structures: Information Processing in Mind and Machine," by John F. Sowa, argues that anyone who plans to get involved with issues of knowledge representation should have at least a passing acquaintance with Sowa's conceptual graphs for a database interface. (Used to model the underlying semantics of…
Rice, Grace E; Caswell, Helen; Moore, Perry; Lambon Ralph, Matthew A; Hoffman, Paul
2018-06-06
One critical feature of any well-engineered system is its resilience to perturbation and minor damage. The purpose of the current study was to investigate how resilience is achieved in higher cognitive systems, which we explored through the domain of semantic cognition. Convergent evidence implicates the bilateral anterior temporal lobes (ATLs) as a conceptual knowledge hub. While bilateral damage to this region produces profound semantic impairment, unilateral atrophy/resection or transient perturbation has a limited effect. Two neural mechanisms might underpin this resilience to unilateral ATL damage: 1) the undamaged ATL upregulates its activation in order to compensate; and/or 2) prefrontal regions involved in control of semantic retrieval upregulate to compensate for the impoverished semantic representations that follow from ATL damage. To test these possibilities, 34 postsurgical temporal lobe epilepsy patients and 20 age-matched controls were scanned whilst completing semantic tasks. Pictorial tasks, which produced bilateral frontal and temporal activation, showed few activation differences between patients and control participants. Written word tasks, however, produced a left-lateralized activation pattern and greater differences between the groups. Patients with right ATL resection increased activation in left inferior frontal gyrus (IFG). Patients with left ATL resection upregulated both the right ATL and right IFG. Consistent with recent computational models, these results indicate that 1) written word semantic processing in patients with ATL resection is supported by upregulation of semantic knowledge and control regions, principally in the undamaged hemisphere, and 2) pictorial semantic processing is less affected, presumably because it draws on a more bilateral network.
Allen, Mark D; Owens, Tyler E
2008-07-01
Allen [Allen, M. D. (2005). The preservation of verb subcategory knowledge in a spoken language comprehension deficit. Brain and Language, 95, 255-264] presents evidence from a single patient, WBN, to motivate a theory of lexical processing and representation in which syntactic information may be encoded and retrieved independently of semantic information. In his critique, Kemmerer argues that because Allen depended entirely on preposition-based verb subcategory violations to test WBN's knowledge of correct argument structure, his results, at best, address a "strawman" theory. This argument rests on the assumption that preposition subcategory options are superficial syntactic phenomena which are not represented by argument structure proper. We demonstrate that preposition subcategory is in fact treated as semantically determined argument structure in the theories that Allen evaluated, and thus far from irrelevant. In further discussion of grammatically relevant versus irrelevant semantic features, Kemmerer offers a review of his own studies. However, due to an important design shortcoming in these experiments, we remain unconvinced. Reemphasizing the fact the Allen (2005) never claimed to rule out all semantic contributions to syntax, we propose an improvement in Kemmerer's approach that might provide more satisfactory evidence on the distinction between the kinds of relevant versus irrelevant features his studies have addressed.
Hoehndorf, Robert; Dumontier, Michel; Oellrich, Anika; Rebholz-Schuhmann, Dietrich; Schofield, Paul N; Gkoutos, Georgios V
2011-01-01
Researchers design ontologies as a means to accurately annotate and integrate experimental data across heterogeneous and disparate data- and knowledge bases. Formal ontologies make the semantics of terms and relations explicit such that automated reasoning can be used to verify the consistency of knowledge. However, many biomedical ontologies do not sufficiently formalize the semantics of their relations and are therefore limited with respect to automated reasoning for large scale data integration and knowledge discovery. We describe a method to improve automated reasoning over biomedical ontologies and identify several thousand contradictory class definitions. Our approach aligns terms in biomedical ontologies with foundational classes in a top-level ontology and formalizes composite relations as class expressions. We describe the semi-automated repair of contradictions and demonstrate expressive queries over interoperable ontologies. Our work forms an important cornerstone for data integration, automatic inference and knowledge discovery based on formal representations of knowledge. Our results and analysis software are available at http://bioonto.de/pmwiki.php/Main/ReasonableOntologies.
Lexical and semantic processing in the absence of word reading: evidence from neglect dyslexia.
Làdavas, E; Umiltà, C; Mapelli, D
1997-08-01
Nine patients with left-sided neglect and nine matched control patients performed three tasks on horizontal (either normal or mirror-reversed) letter strings. The tasks were: reading aloud, making a lexical decision (word vs non-word), and making a semantic decision (living vs non-living item). Relative to controls, neglect patients performed very poorly in the reading task, whereas they performed nearly normally in the lexical and semantic tasks. This was considered to be a dissociation between direct tasks, rather than a dissociation between explicit and implicit knowledge. The explanation offered for the dissociation is in terms of both a dual-route model for reading aloud and a degraded representation of the letter string.
Yang, Ying; Wang, Jing; Bailer, Cyntia; Cherkassky, Vladimir; Just, Marcel Adam
2017-12-01
This study extended cross-language semantic decoding (based on a concept's fMRI signature) to the decoding of sentences across three different languages (English, Portuguese and Mandarin). A classifier was trained on either the mapping between words and activation patterns in one language or the mappings in two languages (using an equivalent amount of training data), and then tested on its ability to decode the semantic content of a third language. The model trained on two languages was reliably more accurate than a classifier trained on one language for all three pairs of languages. This two-language advantage was selective to abstract concept domains such as social interactions and mental activity. Representational Similarity Analyses (RSA) of the inter-sentence neural similarities resulted in similar clustering of sentences in all the three languages, indicating a shared neural concept space among languages. These findings identify semantic domains that are common across these three languages versus those that are more language or culture-specific. Copyright © 2017 Elsevier Inc. All rights reserved.
A fuzzy-ontology-oriented case-based reasoning framework for semantic diabetes diagnosis.
El-Sappagh, Shaker; Elmogy, Mohammed; Riad, A M
2015-11-01
Case-based reasoning (CBR) is a problem-solving paradigm that uses past knowledge to interpret or solve new problems. It is suitable for experience-based and theory-less problems. Building a semantically intelligent CBR that mimic the expert thinking can solve many problems especially medical ones. Knowledge-intensive CBR using formal ontologies is an evolvement of this paradigm. Ontologies can be used for case representation and storage, and it can be used as a background knowledge. Using standard medical ontologies, such as SNOMED CT, enhances the interoperability and integration with the health care systems. Moreover, utilizing vague or imprecise knowledge further improves the CBR semantic effectiveness. This paper proposes a fuzzy ontology-based CBR framework. It proposes a fuzzy case-base OWL2 ontology, and a fuzzy semantic retrieval algorithm that handles many feature types. This framework is implemented and tested on the diabetes diagnosis problem. The fuzzy ontology is populated with 60 real diabetic cases. The effectiveness of the proposed approach is illustrated with a set of experiments and case studies. The resulting system can answer complex medical queries related to semantic understanding of medical concepts and handling of vague terms. The resulting fuzzy case-base ontology has 63 concepts, 54 (fuzzy) object properties, 138 (fuzzy) datatype properties, 105 fuzzy datatypes, and 2640 instances. The system achieves an accuracy of 97.67%. We compare our framework with existing CBR systems and a set of five machine-learning classifiers; our system outperforms all of these systems. Building an integrated CBR system can improve its performance. Representing CBR knowledge using the fuzzy ontology and building a case retrieval algorithm that treats different features differently improves the accuracy of the resulting systems. Copyright © 2015 Elsevier B.V. All rights reserved.
Devereux, Barry J.; Clarke, Alex; Marouchos, Andreas; Tyler, Lorraine K.
2013-01-01
Understanding the meanings of words and objects requires the activation of underlying conceptual representations. Semantic representations are often assumed to be coded such that meaning is evoked regardless of the input modality. However, the extent to which meaning is coded in modality-independent or amodal systems remains controversial. We address this issue in a human fMRI study investigating the neural processing of concepts, presented separately as written words and pictures. Activation maps for each individual word and picture were used as input for searchlight-based multivoxel pattern analyses. Representational similarity analysis was used to identify regions correlating with low-level visual models of the words and objects and the semantic category structure common to both. Common semantic category effects for both modalities were found in a left-lateralized network, including left posterior middle temporal gyrus (LpMTG), left angular gyrus, and left intraparietal sulcus (LIPS), in addition to object- and word-specific semantic processing in ventral temporal cortex and more anterior MTG, respectively. To explore differences in representational content across regions and modalities, we developed novel data-driven analyses, based on k-means clustering of searchlight dissimilarity matrices and seeded correlation analysis. These revealed subtle differences in the representations in semantic-sensitive regions, with representations in LIPS being relatively invariant to stimulus modality and representations in LpMTG being uncorrelated across modality. These results suggest that, although both LpMTG and LIPS are involved in semantic processing, only the functional role of LIPS is the same regardless of the visual input, whereas the functional role of LpMTG differs for words and objects. PMID:24285896
Bullinaria, John A; Levy, Joseph P
2012-09-01
In a previous article, we presented a systematic computational study of the extraction of semantic representations from the word-word co-occurrence statistics of large text corpora. The conclusion was that semantic vectors of pointwise mutual information values from very small co-occurrence windows, together with a cosine distance measure, consistently resulted in the best representations across a range of psychologically relevant semantic tasks. This article extends that study by investigating the use of three further factors--namely, the application of stop-lists, word stemming, and dimensionality reduction using singular value decomposition (SVD)--that have been used to provide improved performance elsewhere. It also introduces an additional semantic task and explores the advantages of using a much larger corpus. This leads to the discovery and analysis of improved SVD-based methods for generating semantic representations (that provide new state-of-the-art performance on a standard TOEFL task) and the identification and discussion of problems and misleading results that can arise without a full systematic study.
Barrès, Victor; Lee, Jinyong
2014-01-01
How does the language system coordinate with our visual system to yield flexible integration of linguistic, perceptual, and world-knowledge information when we communicate about the world we perceive? Schema theory is a computational framework that allows the simulation of perceptuo-motor coordination programs on the basis of known brain operating principles such as cooperative computation and distributed processing. We present first its application to a model of language production, SemRep/TCG, which combines a semantic representation of visual scenes (SemRep) with Template Construction Grammar (TCG) as a means to generate verbal descriptions of a scene from its associated SemRep graph. SemRep/TCG combines the neurocomputational framework of schema theory with the representational format of construction grammar in a model linking eye-tracking data to visual scene descriptions. We then offer a conceptual extension of TCG to include language comprehension and address data on the role of both world knowledge and grammatical semantics in the comprehension performances of agrammatic aphasic patients. This extension introduces a distinction between heavy and light semantics. The TCG model of language comprehension offers a computational framework to quantitatively analyze the distributed dynamics of language processes, focusing on the interactions between grammatical, world knowledge, and visual information. In particular, it reveals interesting implications for the understanding of the various patterns of comprehension performances of agrammatic aphasics measured using sentence-picture matching tasks. This new step in the life cycle of the model serves as a basis for exploring the specific challenges that neurolinguistic computational modeling poses to the neuroinformatics community.
The Semantic eScience Framework
NASA Astrophysics Data System (ADS)
McGuinness, Deborah; Fox, Peter; Hendler, James
2010-05-01
The goal of this effort is to design and implement a configurable and extensible semantic eScience framework (SESF). Configuration requires research into accommodating different levels of semantic expressivity and user requirements from use cases. Extensibility is being achieved in a modular approach to the semantic encodings (i.e. ontologies) performed in community settings, i.e. an ontology framework into which specific applications all the way up to communities can extend the semantics for their needs.We report on how we are accommodating the rapid advances in semantic technologies and tools and the sustainable software path for the future (certain) technical advances. In addition to a generalization of the current data science interface, we will present plans for an upper-level interface suitable for use by clearinghouses, and/or educational portals, digital libraries, and other disciplines.SESF builds upon previous work in the Virtual Solar-Terrestrial Observatory. The VSTO utilizes leading edge knowledge representation, query and reasoning techniques to support knowledge-enhanced search, data access, integration, and manipulation. It encodes term meanings and their inter-relationships in ontologies anduses these ontologies and associated inference engines to semantically enable the data services. The Semantically-Enabled Science Data Integration (SESDI) project implemented data integration capabilities among three sub-disciplines; solar radiation, volcanic outgassing and atmospheric structure using extensions to existingmodular ontolgies and used the VSTO data framework, while adding smart faceted search and semantic data registrationtools. The Semantic Provenance Capture in Data Ingest Systems (SPCDIS) has added explanation provenance capabilities to an observational data ingest pipeline for images of the Sun providing a set of tools to answer diverseend user questions such as ``Why does this image look bad?. http://tw.rpi.edu/portal/SESF
The Semantic eScience Framework
NASA Astrophysics Data System (ADS)
Fox, P. A.; McGuinness, D. L.
2009-12-01
The goal of this effort is to design and implement a configurable and extensible semantic eScience framework (SESF). Configuration requires research into accommodating different levels of semantic expressivity and user requirements from use cases. Extensibility is being achieved in a modular approach to the semantic encodings (i.e. ontologies) performed in community settings, i.e. an ontology framework into which specific applications all the way up to communities can extend the semantics for their needs.We report on how we are accommodating the rapid advances in semantic technologies and tools and the sustainable software path for the future (certain) technical advances. In addition to a generalization of the current data science interface, we will present plans for an upper-level interface suitable for use by clearinghouses, and/or educational portals, digital libraries, and other disciplines.SESF builds upon previous work in the Virtual Solar-Terrestrial Observatory. The VSTO utilizes leading edge knowledge representation, query and reasoning techniques to support knowledge-enhanced search, data access, integration, and manipulation. It encodes term meanings and their inter-relationships in ontologies anduses these ontologies and associated inference engines to semantically enable the data services. The Semantically-Enabled Science Data Integration (SESDI) project implemented data integration capabilities among three sub-disciplines; solar radiation, volcanic outgassing and atmospheric structure using extensions to existingmodular ontolgies and used the VSTO data framework, while adding smart faceted search and semantic data registrationtools. The Semantic Provenance Capture in Data Ingest Systems (SPCDIS) has added explanation provenance capabilities to an observational data ingest pipeline for images of the Sun providing a set of tools to answer diverseend user questions such as ``Why does this image look bad?.
Semantic interoperability--HL7 Version 3 compared to advanced architecture standards.
Blobel, B G M E; Engel, K; Pharow, P
2006-01-01
To meet the challenge for high quality and efficient care, highly specialized and distributed healthcare establishments have to communicate and co-operate in a semantically interoperable way. Information and communication technology must be open, flexible, scalable, knowledge-based and service-oriented as well as secure and safe. For enabling semantic interoperability, a unified process for defining and implementing the architecture, i.e. structure and functions of the cooperating systems' components, as well as the approach for knowledge representation, i.e. the used information and its interpretation, algorithms, etc. have to be defined in a harmonized way. Deploying the Generic Component Model, systems and their components, underlying concepts and applied constraints must be formally modeled, strictly separating platform-independent from platform-specific models. As HL7 Version 3 claims to represent the most successful standard for semantic interoperability, HL7 has been analyzed regarding the requirements for model-driven, service-oriented design of semantic interoperable information systems, thereby moving from a communication to an architecture paradigm. The approach is compared with advanced architectural approaches for information systems such as OMG's CORBA 3 or EHR systems such as GEHR/openEHR and CEN EN 13606 Electronic Health Record Communication. HL7 Version 3 is maturing towards an architectural approach for semantic interoperability. Despite current differences, there is a close collaboration between the teams involved guaranteeing a convergence between competing approaches.
Semantics-driven modelling of user preferences for information retrieval in the biomedical domain.
Gladun, Anatoly; Rogushina, Julia; Valencia-García, Rafael; Béjar, Rodrigo Martínez
2013-03-01
A large amount of biomedical and genomic data are currently available on the Internet. However, data are distributed into heterogeneous biological information sources, with little or even no organization. Semantic technologies provide a consistent and reliable basis with which to confront the challenges involved in the organization, manipulation and visualization of data and knowledge. One of the knowledge representation techniques used in semantic processing is the ontology, which is commonly defined as a formal and explicit specification of a shared conceptualization of a domain of interest. The work presented here introduces a set of interoperable algorithms that can use domain and ontological information to improve information-retrieval processes. This work presents an ontology-based information-retrieval system for the biomedical domain. This system, with which some experiments have been carried out that are described in this paper, is based on the use of domain ontologies for the creation and normalization of lightweight ontologies that represent user preferences in a determined domain in order to improve information-retrieval processes.
A Large-Scale Analysis of Variance in Written Language.
Johns, Brendan T; Jamieson, Randall K
2018-01-22
The collection of very large text sources has revolutionized the study of natural language, leading to the development of several models of language learning and distributional semantics that extract sophisticated semantic representations of words based on the statistical redundancies contained within natural language (e.g., Griffiths, Steyvers, & Tenenbaum, ; Jones & Mewhort, ; Landauer & Dumais, ; Mikolov, Sutskever, Chen, Corrado, & Dean, ). The models treat knowledge as an interaction of processing mechanisms and the structure of language experience. But language experience is often treated agnostically. We report a distributional semantic analysis that shows written language in fiction books varies appreciably between books from the different genres, books from the same genre, and even books written by the same author. Given that current theories assume that word knowledge reflects an interaction between processing mechanisms and the language environment, the analysis shows the need for the field to engage in a more deliberate consideration and curation of the corpora used in computational studies of natural language processing. Copyright © 2018 Cognitive Science Society, Inc.
Incremental Query Rewriting with Resolution
NASA Astrophysics Data System (ADS)
Riazanov, Alexandre; Aragão, Marcelo A. T.
We address the problem of semantic querying of relational databases (RDB) modulo knowledge bases using very expressive knowledge representation formalisms, such as full first-order logic or its various fragments. We propose to use a resolution-based first-order logic (FOL) reasoner for computing schematic answers to deductive queries, with the subsequent translation of these schematic answers to SQL queries which are evaluated using a conventional relational DBMS. We call our method incremental query rewriting, because an original semantic query is rewritten into a (potentially infinite) series of SQL queries. In this chapter, we outline the main idea of our technique - using abstractions of databases and constrained clauses for deriving schematic answers, and provide completeness and soundness proofs to justify the applicability of this technique to the case of resolution for FOL without equality. The proposed method can be directly used with regular RDBs, including legacy databases. Moreover, we propose it as a potential basis for an efficient Web-scale semantic search technology.
Trombert-Paviot, B; Rodrigues, J M; Rogers, J E; Baud, R; van der Haring, E; Rassinoux, A M; Abrial, V; Clavel, L; Idir, H
2000-09-01
Generalised architecture for languages, encyclopedia and nomenclatures in medicine (GALEN) has developed a new generation of terminology tools based on a language independent model describing the semantics and allowing computer processing and multiple reuses as well as natural language understanding systems applications to facilitate the sharing and maintaining of consistent medical knowledge. During the European Union 4 Th. framework program project GALEN-IN-USE and later on within two contracts with the national health authorities we applied the modelling and the tools to the development of a new multipurpose coding system for surgical procedures named CCAM in a minority language country, France. On one hand, we contributed to a language independent knowledge repository and multilingual semantic dictionaries for multicultural Europe. On the other hand, we support the traditional process for creating a new coding system in medicine which is very much labour consuming by artificial intelligence tools using a medically oriented recursive ontology and natural language processing. We used an integrated software named CLAW (for classification workbench) to process French professional medical language rubrics produced by the national colleges of surgeons domain experts into intermediate dissections and to the Grail reference ontology model representation. From this language independent concept model representation, on one hand, we generate with the LNAT natural language generator controlled French natural language to support the finalization of the linguistic labels (first generation) in relation with the meanings of the conceptual system structure. On the other hand, the Claw classification manager proves to be very powerful to retrieve the initial domain experts rubrics list with different categories of concepts (second generation) within a semantic structured representation (third generation) bridge to the electronic patient record detailed terminology.
CHAMPION: Intelligent Hierarchical Reasoning Agents for Enhanced Decision Support
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hohimer, Ryan E.; Greitzer, Frank L.; Noonan, Christine F.
2011-11-15
We describe the design and development of an advanced reasoning framework employing semantic technologies, organized within a hierarchy of computational reasoning agents that interpret domain specific information. Designed based on an inspirational metaphor of the pattern recognition functions performed by the human neocortex, the CHAMPION reasoning framework represents a new computational modeling approach that derives invariant knowledge representations through memory-prediction belief propagation processes that are driven by formal ontological language specification and semantic technologies. The CHAMPION framework shows promise for enhancing complex decision making in diverse problem domains including cyber security, nonproliferation and energy consumption analysis.
Semantic Data Integration and Knowledge Management to Represent Biological Network Associations.
Losko, Sascha; Heumann, Klaus
2017-01-01
The vast quantities of information generated by academic and industrial research groups are reflected in a rapidly growing body of scientific literature and exponentially expanding resources of formalized data, including experimental data, originating from a multitude of "-omics" platforms, phenotype information, and clinical data. For bioinformatics, the challenge remains to structure this information so that scientists can identify relevant information, to integrate this information as specific "knowledge bases," and to formalize this knowledge across multiple scientific domains to facilitate hypothesis generation and validation. Here we report on progress made in building a generic knowledge management environment capable of representing and mining both explicit and implicit knowledge and, thus, generating new knowledge. Risk management in drug discovery and clinical research is used as a typical example to illustrate this approach. In this chapter we introduce techniques and concepts (such as ontologies, semantic objects, typed relationships, contexts, graphs, and information layers) that are used to represent complex biomedical networks. The BioXM™ Knowledge Management Environment is used as an example to demonstrate how a domain such as oncology is represented and how this representation is utilized for research.
A common type system for clinical natural language processing
2013-01-01
Background One challenge in reusing clinical data stored in electronic medical records is that these data are heterogenous. Clinical Natural Language Processing (NLP) plays an important role in transforming information in clinical text to a standard representation that is comparable and interoperable. Information may be processed and shared when a type system specifies the allowable data structures. Therefore, we aim to define a common type system for clinical NLP that enables interoperability between structured and unstructured data generated in different clinical settings. Results We describe a common type system for clinical NLP that has an end target of deep semantics based on Clinical Element Models (CEMs), thus interoperating with structured data and accommodating diverse NLP approaches. The type system has been implemented in UIMA (Unstructured Information Management Architecture) and is fully functional in a popular open-source clinical NLP system, cTAKES (clinical Text Analysis and Knowledge Extraction System) versions 2.0 and later. Conclusions We have created a type system that targets deep semantics, thereby allowing for NLP systems to encapsulate knowledge from text and share it alongside heterogenous clinical data sources. Rather than surface semantics that are typically the end product of NLP algorithms, CEM-based semantics explicitly build in deep clinical semantics as the point of interoperability with more structured data types. PMID:23286462
A common type system for clinical natural language processing.
Wu, Stephen T; Kaggal, Vinod C; Dligach, Dmitriy; Masanz, James J; Chen, Pei; Becker, Lee; Chapman, Wendy W; Savova, Guergana K; Liu, Hongfang; Chute, Christopher G
2013-01-03
One challenge in reusing clinical data stored in electronic medical records is that these data are heterogenous. Clinical Natural Language Processing (NLP) plays an important role in transforming information in clinical text to a standard representation that is comparable and interoperable. Information may be processed and shared when a type system specifies the allowable data structures. Therefore, we aim to define a common type system for clinical NLP that enables interoperability between structured and unstructured data generated in different clinical settings. We describe a common type system for clinical NLP that has an end target of deep semantics based on Clinical Element Models (CEMs), thus interoperating with structured data and accommodating diverse NLP approaches. The type system has been implemented in UIMA (Unstructured Information Management Architecture) and is fully functional in a popular open-source clinical NLP system, cTAKES (clinical Text Analysis and Knowledge Extraction System) versions 2.0 and later. We have created a type system that targets deep semantics, thereby allowing for NLP systems to encapsulate knowledge from text and share it alongside heterogenous clinical data sources. Rather than surface semantics that are typically the end product of NLP algorithms, CEM-based semantics explicitly build in deep clinical semantics as the point of interoperability with more structured data types.
Integrated Semantics Service Platform for the Internet of Things: A Case Study of a Smart Office
Ryu, Minwoo; Kim, Jaeho; Yun, Jaeseok
2015-01-01
The Internet of Things (IoT) allows machines and devices in the world to connect with each other and generate a huge amount of data, which has a great potential to provide useful knowledge across service domains. Combining the context of IoT with semantic technologies, we can build integrated semantic systems to support semantic interoperability. In this paper, we propose an integrated semantic service platform (ISSP) to support ontological models in various IoT-based service domains of a smart city. In particular, we address three main problems for providing integrated semantic services together with IoT systems: semantic discovery, dynamic semantic representation, and semantic data repository for IoT resources. To show the feasibility of the ISSP, we develop a prototype service for a smart office using the ISSP, which can provide a preset, personalized office environment by interpreting user text input via a smartphone. We also discuss a scenario to show how the ISSP-based method would help build a smart city, where services in each service domain can discover and exploit IoT resources that are wanted across domains. We expect that our method could eventually contribute to providing people in a smart city with more integrated, comprehensive services based on semantic interoperability. PMID:25608216
Integrated semantics service platform for the Internet of Things: a case study of a smart office.
Ryu, Minwoo; Kim, Jaeho; Yun, Jaeseok
2015-01-19
The Internet of Things (IoT) allows machines and devices in the world to connect with each other and generate a huge amount of data, which has a great potential to provide useful knowledge across service domains. Combining the context of IoT with semantic technologies, we can build integrated semantic systems to support semantic interoperability. In this paper, we propose an integrated semantic service platform (ISSP) to support ontological models in various IoT-based service domains of a smart city. In particular, we address three main problems for providing integrated semantic services together with IoT systems: semantic discovery, dynamic semantic representation, and semantic data repository for IoT resources. To show the feasibility of the ISSP, we develop a prototype service for a smart office using the ISSP, which can provide a preset, personalized office environment by interpreting user text input via a smartphone. We also discuss a scenario to show how the ISSP-based method would help build a smart city, where services in each service domain can discover and exploit IoT resources that are wanted across domains. We expect that our method could eventually contribute to providing people in a smart city with more integrated, comprehensive services based on semantic interoperability.
A grounded theory of abstraction in artificial intelligence.
Zucker, Jean-Daniel
2003-01-01
In artificial intelligence, abstraction is commonly used to account for the use of various levels of details in a given representation language or the ability to change from one level to another while preserving useful properties. Abstraction has been mainly studied in problem solving, theorem proving, knowledge representation (in particular for spatial and temporal reasoning) and machine learning. In such contexts, abstraction is defined as a mapping between formalisms that reduces the computational complexity of the task at stake. By analysing the notion of abstraction from an information quantity point of view, we pinpoint the differences and the complementary role of reformulation and abstraction in any representation change. We contribute to extending the existing semantic theories of abstraction to be grounded on perception, where the notion of information quantity is easier to characterize formally. In the author's view, abstraction is best represented using abstraction operators, as they provide semantics for classifying different abstractions and support the automation of representation changes. The usefulness of a grounded theory of abstraction in the cartography domain is illustrated. Finally, the importance of explicitly representing abstraction for designing more autonomous and adaptive systems is discussed. PMID:12903672
Assessing semantic similarity of texts - Methods and algorithms
NASA Astrophysics Data System (ADS)
Rozeva, Anna; Zerkova, Silvia
2017-12-01
Assessing the semantic similarity of texts is an important part of different text-related applications like educational systems, information retrieval, text summarization, etc. This task is performed by sophisticated analysis, which implements text-mining techniques. Text mining involves several pre-processing steps, which provide for obtaining structured representative model of the documents in a corpus by means of extracting and selecting the features, characterizing their content. Generally the model is vector-based and enables further analysis with knowledge discovery approaches. Algorithms and measures are used for assessing texts at syntactical and semantic level. An important text-mining method and similarity measure is latent semantic analysis (LSA). It provides for reducing the dimensionality of the document vector space and better capturing the text semantics. The mathematical background of LSA for deriving the meaning of the words in a given text by exploring their co-occurrence is examined. The algorithm for obtaining the vector representation of words and their corresponding latent concepts in a reduced multidimensional space as well as similarity calculation are presented.
Context-rich semantic framework for effective data-to-decisions in coalition networks
NASA Astrophysics Data System (ADS)
Grueneberg, Keith; de Mel, Geeth; Braines, Dave; Wang, Xiping; Calo, Seraphin; Pham, Tien
2013-05-01
In a coalition context, data fusion involves combining of soft (e.g., field reports, intelligence reports) and hard (e.g., acoustic, imagery) sensory data such that the resulting output is better than what it would have been if the data are taken individually. However, due to the lack of explicit semantics attached with such data, it is difficult to automatically disseminate and put the right contextual data in the hands of the decision makers. In order to understand the data, explicit meaning needs to be added by means of categorizing and/or classifying the data in relationship to each other from base reference sources. In this paper, we present a semantic framework that provides automated mechanisms to expose real-time raw data effectively by presenting appropriate information needed for a given situation so that an informed decision could be made effectively. The system utilizes controlled natural language capabilities provided by the ITA (International Technology Alliance) Controlled English (CE) toolkit to provide a human-friendly semantic representation of messages so that the messages can be directly processed in human/machine hybrid environments. The Real-time Semantic Enrichment (RTSE) service adds relevant contextual information to raw data streams from domain knowledge bases using declarative rules. The rules define how the added semantics and context information are derived and stored in a semantic knowledge base. The software framework exposes contextual information from a variety of hard and soft data sources in a fast, reliable manner so that an informed decision can be made using semantic queries in intelligent software systems.
Evans, Vyvyan
2016-01-01
Recent research in language and cognitive science proposes that the linguistic system evolved to provide an "executive" control system on the evolutionarily more ancient conceptual system (e.g., Barsalou et al., 2008; Evans, 2009, 2015a,b; Bergen, 2012). In short, the claim is that embodied representations in the linguistic system interface with non-linguistic representations in the conceptual system, facilitating rich meanings, or simulations, enabling linguistically mediated communication. In this paper I build on these proposals by examining the nature of what I identify as design features for this control system. In particular, I address how the ideational function of language-our ability to deploy linguistic symbols to convey meanings of great complexity-is facilitated. The central proposal of this paper is as follows. The linguistic system of any given language user, of any given linguistic system-spoken or signed-facilitates access to knowledge representation-concepts-in the conceptual system, which subserves this ideational function. In the most general terms, the human meaning-making capacity is underpinned by two distinct, although tightly coupled representational systems: the conceptual system and the linguistic system. Each system contributes to meaning construction in qualitatively distinct ways. This leads to the first design feature: given that the two systems are representational-they are populated by semantic representations-the nature and function of the representations are qualitatively different. This proposed design feature I term the bifurcation in semantic representation. After all, it stands to reason that if a linguistic system has a different function, vis-à-vis the conceptual system, which is of far greater evolutionary antiquity, then the semantic representations will be complementary, and as such, qualitatively different, reflecting the functional distinctions of the two systems, in collectively giving rise to meaning. I consider the nature of these qualitatively distinct representations. And second, language itself is adapted to the conceptual system-the semantic potential-that it marshals in the meaning construction process. Hence, a linguistic system itself exhibits a bifurcation, in terms of the symbolic resources at its disposal. This design feature I dub the birfucation in linguistic organization. As I shall argue, this relates to two distinct reference strategies available for symbolic encoding in language: what I dub words-to-world reference and words-to-words reference. In slightly different terms, this design feature of language amounts to a distinction between a lexical subsystem, and a grammatical subsystem.
Time-related patient data retrieval for the case studies from the pharmacogenomics research network
Zhu, Qian; Tao, Cui; Ding, Ying; Chute, Christopher G.
2012-01-01
There are lots of question-based data elements from the pharmacogenomics research network (PGRN) studies. Many data elements contain temporal information. To semantically represent these elements so that they can be machine processiable is a challenging problem for the following reasons: (1) the designers of these studies usually do not have the knowledge of any computer modeling and query languages, so that the original data elements usually are represented in spreadsheets in human languages; and (2) the time aspects in these data elements can be too complex to be represented faithfully in a machine-understandable way. In this paper, we introduce our efforts on representing these data elements using semantic web technologies. We have developed an ontology, CNTRO, for representing clinical events and their temporal relations in the web ontology language (OWL). Here we use CNTRO to represent the time aspects in the data elements. We have evaluated 720 time-related data elements from PGRN studies. We adapted and extended the knowledge representation requirements for EliXR-TIME to categorize our data elements. A CNTRO-based SPARQL query builder has been developed to customize users’ own SPARQL queries for each knowledge representation requirement. The SPARQL query builder has been evaluated with a simulated EHR triple store to ensure its functionalities. PMID:23076712
Time-related patient data retrieval for the case studies from the pharmacogenomics research network.
Zhu, Qian; Tao, Cui; Ding, Ying; Chute, Christopher G
2012-11-01
There are lots of question-based data elements from the pharmacogenomics research network (PGRN) studies. Many data elements contain temporal information. To semantically represent these elements so that they can be machine processiable is a challenging problem for the following reasons: (1) the designers of these studies usually do not have the knowledge of any computer modeling and query languages, so that the original data elements usually are represented in spreadsheets in human languages; and (2) the time aspects in these data elements can be too complex to be represented faithfully in a machine-understandable way. In this paper, we introduce our efforts on representing these data elements using semantic web technologies. We have developed an ontology, CNTRO, for representing clinical events and their temporal relations in the web ontology language (OWL). Here we use CNTRO to represent the time aspects in the data elements. We have evaluated 720 time-related data elements from PGRN studies. We adapted and extended the knowledge representation requirements for EliXR-TIME to categorize our data elements. A CNTRO-based SPARQL query builder has been developed to customize users' own SPARQL queries for each knowledge representation requirement. The SPARQL query builder has been evaluated with a simulated EHR triple store to ensure its functionalities.
NASA Astrophysics Data System (ADS)
Brodaric, B.; Probst, F.
2007-12-01
Ontologies are being developed bottom-up in many geoscience domains to aid semantic-enabled computing. The contents of these ontologies are typically partitioned along domain boundaries, such as geology, geophsyics, hydrology, or are developed for specific data sets or processing needs. At the same time, very general foundational ontologies are being independently developed top-down to help facilitate integration of knowledge across such domains, and to provide homogeneity to the organization of knowledge within the domains. In this work we investigate the suitability of integrating the DOLCE foundational ontology with concepts from two prominent geoscience knowledge representations, GeoSciML and SWEET, to investigate the alignment of the concepts found within the foundational and domain representations. The geoscience concepts are partially mapped to each other and to those in the foundational ontology, via the subclass and other relations, resulting in an integrated OWL-based ontology called DOLCE ROCKS. These preliminary results demonstrate variable alignment between the foundational and domain concepts, and also between the domain concepts. Further work is required to ascertain the impact of this integrated ontology approach on broader geoscience ontology design, on the unification of domain ontologies, as well as their use within semantic-enabled geoscience applications.
NASA Astrophysics Data System (ADS)
Jansen, Peter A.; Watter, Scott
2012-03-01
Connectionist language modelling typically has difficulty with syntactic systematicity, or the ability to generalise language learning to untrained sentences. This work develops an unsupervised connectionist model of infant grammar learning. Following the semantic boostrapping hypothesis, the network distils word category using a developmentally plausible infant-scale database of grounded sensorimotor conceptual representations, as well as a biologically plausible semantic co-occurrence activation function. The network then uses this knowledge to acquire an early benchmark clausal grammar using correlational learning, and further acquires separate conceptual and grammatical category representations. The network displays strongly systematic behaviour indicative of the general acquisition of the combinatorial systematicity present in the grounded infant-scale language stream, outperforms previous contemporary models that contain primarily noun and verb word categories, and successfully generalises broadly to novel untrained sensorimotor grounded sentences composed of unfamiliar nouns and verbs. Limitations as well as implications to later grammar learning are discussed.
Real-World Word Learning: Exploring Children's Developing Semantic Representations of a Science Term
ERIC Educational Resources Information Center
Best, Rachel M.; Dockrell, Julie E.; Braisby, Nick R.
2006-01-01
Assessments of lexical acquisition are often limited to preschool children on forced-choice comprehension measures. This study assessed the nature of the understandings 30 school-age children (mean age = 6;7) acquired about the science term eclipse following a naturalistic exposure to a solar eclipse. The knowledge children acquired about eclipses…
A Model Based Framework for Semantic Interpretation of Architectural Construction Drawings
ERIC Educational Resources Information Center
Babalola, Olubi Oluyomi
2011-01-01
The study addresses the automated translation of architectural drawings from 2D Computer Aided Drafting (CAD) data into a Building Information Model (BIM), with emphasis on the nature, possible role, and limitations of a drafting language Knowledge Representation (KR) on the problem and process. The central idea is that CAD to BIM translation is a…
ERIC Educational Resources Information Center
Yeung, Pui-sze; Ho, Connie Suk-han; Chan, David Wai-ock; Chung, Kevin Kien-hoa
2016-01-01
A 3-year longitudinal study among 239 Chinese students in Grades 2-4 was conducted to investigate the relationships between orthographic skills (including positional and functional knowledge of semantic radicals and phonetic radicals, and orthographic memory of radicals) and Chinese literacy skills (word reading, word spelling, reading…
Facilitation and Interference in Identification of Pictures and Words
1994-10-05
semantic activation and episodic memory encoding. Journal of Verbal Learning and Verbal Behavior, 22, 88-104. Becker, C. A. (1979). Semantic context...set of items, such as pictures of common objects or known words, which have representations in semantic memory . To test this, we compared the...activation model in particular because nonwords have no memorial representation in semantic memory and thus cannot interfere with ore another. 2. Long-term
Lo, Shih-Yu; Yeh, Su-Ling
2018-05-29
The meaning of a picture can be extracted rapidly, but the form-to-meaning relationship is less obvious for printed words. In contrast to English words that follow grapheme-to-phoneme correspondence rule, the iconic nature of Chinese words might predispose them to activate their semantic representations more directly from their orthographies. By using the paradigm of repetition blindness (RB) that taps into the early level of word processing, we examined whether Chinese words activate their semantic representations as directly as pictures do. RB refers to the failure to detect the second occurrence of an item when it is presented twice in temporal proximity. Previous studies showed RB for semantically related pictures, suggesting that pictures activate their semantic representations directly from their shapes and thus two semantically related pictures are represented as repeated. However, this does not apply to English words since no RB was found for English synonyms. In this study, we replicated the semantic RB effect for pictures, and further showed the absence of semantic RB for Chinese synonyms. Based on our findings, it is suggested that Chinese words are processed like English words, which do not activate their semantic representations as directly as pictures do.
Item-specific and generalization effects on brain activation when learning Chinese characters
Deng, Yuan; Booth, James R.; Chou, Tai-Li; Ding, Guo-Sheng; Peng, Dan-Ling
2009-01-01
Neural changes related to learning of the meaning of Chinese characters in English speakers were examined using functional magnetic resonance imaging (fMRI). We examined item specific learning effects for trained characters, but also the generalization of semantic knowledge to novel transfer characters that shared a semantic radical (part of a character that gives a clue to word meaning, e.g. water for lake) with trained characters. Behavioral results show that acquired semantic knowledge improves performance for both trained and transfer characters. Neuroimaging results show that the left fusiform gyrus plays a central role in the visual processing of orthographic information in characters. The left superior parietal cortex seems to play a crucial role in learning the visual–spatial aspects of the characters because it shows learning related decreases for trained characters, is correlated with behavioral improvement from early to late in learning for the trained characters, and is correlated with better long-term retention for the transfer characters. The inferior frontal gyrus seems to be associated with the efficiency of retrieving and manipulating semantic representations because there are learning related decreases for trained characters and this decrease is correlated with greater behavioral improvement from early to late in learning. PMID:18514678
Jointly learning word embeddings using a corpus and a knowledge base
Bollegala, Danushka; Maehara, Takanori; Kawarabayashi, Ken-ichi
2018-01-01
Methods for representing the meaning of words in vector spaces purely using the information distributed in text corpora have proved to be very valuable in various text mining and natural language processing (NLP) tasks. However, these methods still disregard the valuable semantic relational structure between words in co-occurring contexts. These beneficial semantic relational structures are contained in manually-created knowledge bases (KBs) such as ontologies and semantic lexicons, where the meanings of words are represented by defining the various relationships that exist among those words. We combine the knowledge in both a corpus and a KB to learn better word embeddings. Specifically, we propose a joint word representation learning method that uses the knowledge in the KBs, and simultaneously predicts the co-occurrences of two words in a corpus context. In particular, we use the corpus to define our objective function subject to the relational constrains derived from the KB. We further utilise the corpus co-occurrence statistics to propose two novel approaches, Nearest Neighbour Expansion (NNE) and Hedged Nearest Neighbour Expansion (HNE), that dynamically expand the KB and therefore derive more constraints that guide the optimisation process. Our experimental results over a wide-range of benchmark tasks demonstrate that the proposed method statistically significantly improves the accuracy of the word embeddings learnt. It outperforms a corpus-only baseline and reports an improvement of a number of previously proposed methods that incorporate corpora and KBs in both semantic similarity prediction and word analogy detection tasks. PMID:29529052
Chaudhri, Vinay K; Elenius, Daniel; Goldenkranz, Andrew; Gong, Allison; Martone, Maryann E; Webb, William; Yorke-Smith, Neil
2014-01-01
Using knowledge representation for biomedical projects is now commonplace. In previous work, we represented the knowledge found in a college-level biology textbook in a fashion useful for answering questions. We showed that embedding the knowledge representation and question-answering abilities in an electronic textbook helped to engage student interest and improve learning. A natural question that arises from this success, and this paper's primary focus, is whether a similar approach is applicable across a range of life science textbooks. To answer that question, we considered four different textbooks, ranging from a below-introductory college biology text to an advanced, graduate-level neuroscience textbook. For these textbooks, we investigated the following questions: (1) To what extent is knowledge shared between the different textbooks? (2) To what extent can the same upper ontology be used to represent the knowledge found in different textbooks? (3) To what extent can the questions of interest for a range of textbooks be answered by using the same reasoning mechanisms? Our existing modeling and reasoning methods apply especially well both to a textbook that is comparable in level to the text studied in our previous work (i.e., an introductory-level text) and to a textbook at a lower level, suggesting potential for a high degree of portability. Even for the overlapping knowledge found across the textbooks, the level of detail covered in each textbook was different, which requires that the representations must be customized for each textbook. We also found that for advanced textbooks, representing models and scientific reasoning processes was particularly important. With some additional work, our representation methodology would be applicable to a range of textbooks. The requirements for knowledge representation are common across textbooks, suggesting that a shared semantic infrastructure for the life sciences is feasible. Because our representation overlaps heavily with those already being used for biomedical ontologies, this work suggests a natural pathway to include such representations as part of the life sciences curriculum at different grade levels.
High-Dimensional Semantic Space Accounts of Priming
ERIC Educational Resources Information Center
Jones, Michael N.; Kintsch, Walter; Mewhort, Douglas J. K.
2006-01-01
A broad range of priming data has been used to explore the structure of semantic memory and to test between models of word representation. In this paper, we examine the computational mechanisms required to learn distributed semantic representations for words directly from unsupervised experience with language. To best account for the variety of…
ERIC Educational Resources Information Center
Lerner, Itamar; Bentin, Shlomo; Shriki, Oren
2012-01-01
Localist models of spreading activation (SA) and models assuming distributed representations offer very different takes on semantic priming, a widely investigated paradigm in word recognition and semantic memory research. In this study, we implemented SA in an attractor neural network model with distributed representations and created a unified…
A neotropical Miocene pollen database employing image-based search and semantic modeling.
Han, Jing Ginger; Cao, Hongfei; Barb, Adrian; Punyasena, Surangi W; Jaramillo, Carlos; Shyu, Chi-Ren
2014-08-01
Digital microscopic pollen images are being generated with increasing speed and volume, producing opportunities to develop new computational methods that increase the consistency and efficiency of pollen analysis and provide the palynological community a computational framework for information sharing and knowledge transfer. • Mathematical methods were used to assign trait semantics (abstract morphological representations) of the images of neotropical Miocene pollen and spores. Advanced database-indexing structures were built to compare and retrieve similar images based on their visual content. A Web-based system was developed to provide novel tools for automatic trait semantic annotation and image retrieval by trait semantics and visual content. • Mathematical models that map visual features to trait semantics can be used to annotate images with morphology semantics and to search image databases with improved reliability and productivity. Images can also be searched by visual content, providing users with customized emphases on traits such as color, shape, and texture. • Content- and semantic-based image searches provide a powerful computational platform for pollen and spore identification. The infrastructure outlined provides a framework for building a community-wide palynological resource, streamlining the process of manual identification, analysis, and species discovery.
Imageability and semantic association in the representation and processing of event verbs.
Xu, Xu; Kang, Chunyan; Guo, Taomei
2016-05-01
This study examined the relative salience of imageability (the degree to which a word evokes mental imagery) versus semantic association (the density of semantic network in which a word is embedded) in the representation and processing of four types of event verbs: sensory, cognitive, speech, and motor verbs. ERP responses were recorded, while 34 university students performed on a lexical decision task. Analysis focused primarily on amplitude differences across verb conditions within the N400 time window where activities are considered representing meaning activation. Variation in N400 amplitude across four types of verbs was found significantly associated with the level of imageability, but not the level of semantic association. The findings suggest imageability as a more salient factor relative to semantic association in the processing of these verbs. The role of semantic association and the representation of speech verbs are also discussed.
Sadeghi, Zahra; McClelland, James L; Hoffman, Paul
2015-09-01
An influential position in lexical semantics holds that semantic representations for words can be derived through analysis of patterns of lexical co-occurrence in large language corpora. Firth (1957) famously summarised this principle as "you shall know a word by the company it keeps". We explored whether the same principle could be applied to non-verbal patterns of object co-occurrence in natural scenes. We performed latent semantic analysis (LSA) on a set of photographed scenes in which all of the objects present had been manually labelled. This resulted in a representation of objects in a high-dimensional space in which similarity between two objects indicated the degree to which they appeared in similar scenes. These representations revealed similarities among objects belonging to the same taxonomic category (e.g., items of clothing) as well as cross-category associations (e.g., between fruits and kitchen utensils). We also compared representations generated from this scene dataset with two established methods for elucidating semantic representations: (a) a published database of semantic features generated verbally by participants and (b) LSA applied to a linguistic corpus in the usual fashion. Statistical comparisons of the three methods indicated significant association between the structures revealed by each method, with the scene dataset displaying greater convergence with feature-based representations than did LSA applied to linguistic data. The results indicate that information about the conceptual significance of objects can be extracted from their patterns of co-occurrence in natural environments, opening the possibility for such data to be incorporated into existing models of conceptual representation. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.
Knowledge-based understanding of aerial surveillance video
NASA Astrophysics Data System (ADS)
Cheng, Hui; Butler, Darren
2006-05-01
Aerial surveillance has long been used by the military to locate, monitor and track the enemy. Recently, its scope has expanded to include law enforcement activities, disaster management and commercial applications. With the ever-growing amount of aerial surveillance video acquired daily, there is an urgent need for extracting actionable intelligence in a timely manner. Furthermore, to support high-level video understanding, this analysis needs to go beyond current approaches and consider the relationships, motivations and intentions of the objects in the scene. In this paper we propose a system for interpreting aerial surveillance videos that automatically generates a succinct but meaningful description of the observed regions, objects and events. For a given video, the semantics of important regions and objects, and the relationships between them, are summarised into a semantic concept graph. From this, a textual description is derived that provides new search and indexing options for aerial video and enables the fusion of aerial video with other information modalities, such as human intelligence, reports and signal intelligence. Using a Mixture-of-Experts video segmentation algorithm an aerial video is first decomposed into regions and objects with predefined semantic meanings. The objects are then tracked and coerced into a semantic concept graph and the graph is summarized spatially, temporally and semantically using ontology guided sub-graph matching and re-writing. The system exploits domain specific knowledge and uses a reasoning engine to verify and correct the classes, identities and semantic relationships between the objects. This approach is advantageous because misclassifications lead to knowledge contradictions and hence they can be easily detected and intelligently corrected. In addition, the graph representation highlights events and anomalies that a low-level analysis would overlook.
RelFinder: Revealing Relationships in RDF Knowledge Bases
NASA Astrophysics Data System (ADS)
Heim, Philipp; Hellmann, Sebastian; Lehmann, Jens; Lohmann, Steffen; Stegemann, Timo
The Semantic Web has recently seen a rise of large knowledge bases (such as DBpedia) that are freely accessible via SPARQL endpoints. The structured representation of the contained information opens up new possibilities in the way it can be accessed and queried. In this paper, we present an approach that extracts a graph covering relationships between two objects of interest. We show an interactive visualization of this graph that supports the systematic analysis of the found relationships by providing highlighting, previewing, and filtering features.
tESA: a distributional measure for calculating semantic relatedness.
Rybinski, Maciej; Aldana-Montes, José Francisco
2016-12-28
Semantic relatedness is a measure that quantifies the strength of a semantic link between two concepts. Often, it can be efficiently approximated with methods that operate on words, which represent these concepts. Approximating semantic relatedness between texts and concepts represented by these texts is an important part of many text and knowledge processing tasks of crucial importance in the ever growing domain of biomedical informatics. The problem of most state-of-the-art methods for calculating semantic relatedness is their dependence on highly specialized, structured knowledge resources, which makes these methods poorly adaptable for many usage scenarios. On the other hand, the domain knowledge in the Life Sciences has become more and more accessible, but mostly in its unstructured form - as texts in large document collections, which makes its use more challenging for automated processing. In this paper we present tESA, an extension to a well known Explicit Semantic Relatedness (ESA) method. In our extension we use two separate sets of vectors, corresponding to different sections of the articles from the underlying corpus of documents, as opposed to the original method, which only uses a single vector space. We present an evaluation of Life Sciences domain-focused applicability of both tESA and domain-adapted Explicit Semantic Analysis. The methods are tested against a set of standard benchmarks established for the evaluation of biomedical semantic relatedness quality. Our experiments show that the propsed method achieves results comparable with or superior to the current state-of-the-art methods. Additionally, a comparative discussion of the results obtained with tESA and ESA is presented, together with a study of the adaptability of the methods to different corpora and their performance with different input parameters. Our findings suggest that combined use of the semantics from different sections (i.e. extending the original ESA methodology with the use of title vectors) of the documents of scientific corpora may be used to enhance the performance of a distributional semantic relatedness measures, which can be observed in the largest reference datasets. We also present the impact of the proposed extension on the size of distributional representations.
Anderson, Andrew James; Bruni, Elia; Lopopolo, Alessandro; Poesio, Massimo; Baroni, Marco
2015-10-15
Embodiment theory predicts that mental imagery of object words recruits neural circuits involved in object perception. The degree of visual imagery present in routine thought and how it is encoded in the brain is largely unknown. We test whether fMRI activity patterns elicited by participants reading objects' names include embodied visual-object representations, and whether we can decode the representations using novel computational image-based semantic models. We first apply the image models in conjunction with text-based semantic models to test predictions of visual-specificity of semantic representations in different brain regions. Representational similarity analysis confirms that fMRI structure within ventral-temporal and lateral-occipital regions correlates most strongly with the image models and conversely text models correlate better with posterior-parietal/lateral-temporal/inferior-frontal regions. We use an unsupervised decoding algorithm that exploits commonalities in representational similarity structure found within both image model and brain data sets to classify embodied visual representations with high accuracy (8/10) and then extend it to exploit model combinations to robustly decode different brain regions in parallel. By capturing latent visual-semantic structure our models provide a route into analyzing neural representations derived from past perceptual experience rather than stimulus-driven brain activity. Our results also verify the benefit of combining multimodal data to model human-like semantic representations. Copyright © 2015 Elsevier Inc. All rights reserved.
1980-03-01
structure composed of nodes representing semantic primitives. From this structure, a French translation of the input is generated. The translation serves as a...Style: range: (Burgers, Chinese, American, Seafood, French ) default: American if-added: (Update Alternatives of Restaurant) Times-of-Operation: range: a...Restaurant Frame is used to modify the list of alternative restaurants once a particular cuisine is chosen. In some systems, trigger procedures
A web-based system architecture for ontology-based data integration in the domain of IT benchmarking
NASA Astrophysics Data System (ADS)
Pfaff, Matthias; Krcmar, Helmut
2018-03-01
In the domain of IT benchmarking (ITBM), a variety of data and information are collected. Although these data serve as the basis for business analyses, no unified semantic representation of such data yet exists. Consequently, data analysis across different distributed data sets and different benchmarks is almost impossible. This paper presents a system architecture and prototypical implementation for an integrated data management of distributed databases based on a domain-specific ontology. To preserve the semantic meaning of the data, the ITBM ontology is linked to data sources and functions as the central concept for database access. Thus, additional databases can be integrated by linking them to this domain-specific ontology and are directly available for further business analyses. Moreover, the web-based system supports the process of mapping ontology concepts to external databases by introducing a semi-automatic mapping recommender and by visualizing possible mapping candidates. The system also provides a natural language interface to easily query linked databases. The expected result of this ontology-based approach of knowledge representation and data access is an increase in knowledge and data sharing in this domain, which will enhance existing business analysis methods.
Semantic processing of EHR data for clinical research.
Sun, Hong; Depraetere, Kristof; De Roo, Jos; Mels, Giovanni; De Vloed, Boris; Twagirumukiza, Marc; Colaert, Dirk
2015-12-01
There is a growing need to semantically process and integrate clinical data from different sources for clinical research. This paper presents an approach to integrate EHRs from heterogeneous resources and generate integrated data in different data formats or semantics to support various clinical research applications. The proposed approach builds semantic data virtualization layers on top of data sources, which generate data in the requested semantics or formats on demand. This approach avoids upfront dumping to and synchronizing of the data with various representations. Data from different EHR systems are first mapped to RDF data with source semantics, and then converted to representations with harmonized domain semantics where domain ontologies and terminologies are used to improve reusability. It is also possible to further convert data to application semantics and store the converted results in clinical research databases, e.g. i2b2, OMOP, to support different clinical research settings. Semantic conversions between different representations are explicitly expressed using N3 rules and executed by an N3 Reasoner (EYE), which can also generate proofs of the conversion processes. The solution presented in this paper has been applied to real-world applications that process large scale EHR data. Copyright © 2015 Elsevier Inc. All rights reserved.
A DNA-based semantic fusion model for remote sensing data.
Sun, Heng; Weng, Jian; Yu, Guangchuang; Massawe, Richard H
2013-01-01
Semantic technology plays a key role in various domains, from conversation understanding to algorithm analysis. As the most efficient semantic tool, ontology can represent, process and manage the widespread knowledge. Nowadays, many researchers use ontology to collect and organize data's semantic information in order to maximize research productivity. In this paper, we firstly describe our work on the development of a remote sensing data ontology, with a primary focus on semantic fusion-driven research for big data. Our ontology is made up of 1,264 concepts and 2,030 semantic relationships. However, the growth of big data is straining the capacities of current semantic fusion and reasoning practices. Considering the massive parallelism of DNA strands, we propose a novel DNA-based semantic fusion model. In this model, a parallel strategy is developed to encode the semantic information in DNA for a large volume of remote sensing data. The semantic information is read in a parallel and bit-wise manner and an individual bit is converted to a base. By doing so, a considerable amount of conversion time can be saved, i.e., the cluster-based multi-processes program can reduce the conversion time from 81,536 seconds to 4,937 seconds for 4.34 GB source data files. Moreover, the size of result file recording DNA sequences is 54.51 GB for parallel C program compared with 57.89 GB for sequential Perl. This shows that our parallel method can also reduce the DNA synthesis cost. In addition, data types are encoded in our model, which is a basis for building type system in our future DNA computer. Finally, we describe theoretically an algorithm for DNA-based semantic fusion. This algorithm enables the process of integration of the knowledge from disparate remote sensing data sources into a consistent, accurate, and complete representation. This process depends solely on ligation reaction and screening operations instead of the ontology.
A DNA-Based Semantic Fusion Model for Remote Sensing Data
Sun, Heng; Weng, Jian; Yu, Guangchuang; Massawe, Richard H.
2013-01-01
Semantic technology plays a key role in various domains, from conversation understanding to algorithm analysis. As the most efficient semantic tool, ontology can represent, process and manage the widespread knowledge. Nowadays, many researchers use ontology to collect and organize data's semantic information in order to maximize research productivity. In this paper, we firstly describe our work on the development of a remote sensing data ontology, with a primary focus on semantic fusion-driven research for big data. Our ontology is made up of 1,264 concepts and 2,030 semantic relationships. However, the growth of big data is straining the capacities of current semantic fusion and reasoning practices. Considering the massive parallelism of DNA strands, we propose a novel DNA-based semantic fusion model. In this model, a parallel strategy is developed to encode the semantic information in DNA for a large volume of remote sensing data. The semantic information is read in a parallel and bit-wise manner and an individual bit is converted to a base. By doing so, a considerable amount of conversion time can be saved, i.e., the cluster-based multi-processes program can reduce the conversion time from 81,536 seconds to 4,937 seconds for 4.34 GB source data files. Moreover, the size of result file recording DNA sequences is 54.51 GB for parallel C program compared with 57.89 GB for sequential Perl. This shows that our parallel method can also reduce the DNA synthesis cost. In addition, data types are encoded in our model, which is a basis for building type system in our future DNA computer. Finally, we describe theoretically an algorithm for DNA-based semantic fusion. This algorithm enables the process of integration of the knowledge from disparate remote sensing data sources into a consistent, accurate, and complete representation. This process depends solely on ligation reaction and screening operations instead of the ontology. PMID:24116207
Brunetti, Enzo; Maldonado, Pedro E; Aboitiz, Francisco
2013-01-01
During monitoring of the discourse, the detection of the relevance of incoming lexical information could be critical for its incorporation to update mental representations in memory. Because, in these situations, the relevance for lexical information is defined by abstract rules that are maintained in memory, a central aspect to elucidate is how an abstract level of knowledge maintained in mind mediates the detection of the lower-level semantic information. In the present study, we propose that neuronal oscillations participate in the detection of relevant lexical information, based on "kept in mind" rules deriving from more abstract semantic information. We tested our hypothesis using an experimental paradigm that restricted the detection of relevance to inferences based on explicit information, thus controlling for ambiguities derived from implicit aspects. We used a categorization task, in which the semantic relevance was previously defined based on the congruency between a kept in mind category (abstract knowledge), and the lexical semantic information presented. Our results show that during the detection of the relevant lexical information, phase synchronization of neuronal oscillations selectively increases in delta and theta frequency bands during the interval of semantic analysis. These increments occurred irrespective of the semantic category maintained in memory, had a temporal profile specific for each subject, and were mainly induced, as they had no effect on the evoked mean global field power. Also, recruitment of an increased number of pairs of electrodes was a robust observation during the detection of semantic contingent words. These results are consistent with the notion that the detection of relevant lexical information based on a particular semantic rule, could be mediated by increasing the global phase synchronization of neuronal oscillations, which may contribute to the recruitment of an extended number of cortical regions.
Brain activation of semantic category-based grouping in multiple identity tracking task
Wei, Liuqing; Lyu, Chuang; Hu, Siyuan; Li, Zhen
2017-01-01
Using Multiple Identity Tracking task and the functional magnetic resonance imaging (fMRI) technology, the present study aimed to isolate and visualize the functional anatomy of neural systems involved in the semantic category-based grouping process. Three experiment conditions were selected and compared: the category-based targets grouping (TG) condition, the targets-distractors grouping (TDG) condition and the homogenous condition. In the TG condition, observers could utilize the categorical distinction between targets and distractors, to construct a uniform presentation of targets, that is, to form a group of the targets to facilitate tracking. In the TDG condition, half the targets and half the distractors belonged to the same category. Observers had to inhibit the grouping of targets and distractors in one category to complete tracking. In the homogenous condition, where targets and distractors consisted of the same objects, no grouping could be formed. The “TG-Homogenous” contrast (p<0.01) revealed the activation of the left fusiform and the pars triangularis of inferior frontal gyrus (IFG). The “TG-TDG” contrast only revealed the activation of the left anterior cingulate gyrus (ACC). The fusiform and IFG pars triangularis might participate in the representation of semantic knowledge, IFG pars triangularis might relate intensely with the classification of semantic categories. The ACC might be responsible for the initiation and maintenance of grouping representation. PMID:28505166
Battaglia, Francesco P.; Pennartz, Cyriel M. A.
2011-01-01
After acquisition, memories underlie a process of consolidation, making them more resistant to interference and brain injury. Memory consolidation involves systems-level interactions, most importantly between the hippocampus and associated structures, which takes part in the initial encoding of memory, and the neocortex, which supports long-term storage. This dichotomy parallels the contrast between episodic memory (tied to the hippocampal formation), collecting an autobiographical stream of experiences, and semantic memory, a repertoire of facts and statistical regularities about the world, involving the neocortex at large. Experimental evidence points to a gradual transformation of memories, following encoding, from an episodic to a semantic character. This may require an exchange of information between different memory modules during inactive periods. We propose a theory for such interactions and for the formation of semantic memory, in which episodic memory is encoded as relational data. Semantic memory is modeled as a modified stochastic grammar, which learns to parse episodic configurations expressed as an association matrix. The grammar produces tree-like representations of episodes, describing the relationships between its main constituents at multiple levels of categorization, based on its current knowledge of world regularities. These regularities are learned by the grammar from episodic memory information, through an expectation-maximization procedure, analogous to the inside–outside algorithm for stochastic context-free grammars. We propose that a Monte-Carlo sampling version of this algorithm can be mapped on the dynamics of “sleep replay” of previously acquired information in the hippocampus and neocortex. We propose that the model can reproduce several properties of semantic memory such as decontextualization, top-down processing, and creation of schemata. PMID:21887143
''How To Do Things with Words'': Role of Motor Cortex in Semantic Representation of Action Words
ERIC Educational Resources Information Center
Kana, Rajesh K.; Blum, Elizabeth R.; Ladden, Stacy Levin; Ver Hoef, Lawrence W.
2012-01-01
Language, believed to have originated from actions, not only functions as a medium to access other minds, but it also helps us commit actions and enriches our social life. This fMRI study investigated the semantic and neural representations of actions and mental states. We focused mainly on language semantics (comprehending sentences with "action"…
A Tri-network Model of Human Semantic Processing
Xu, Yangwen; He, Yong; Bi, Yanchao
2017-01-01
Humans process the meaning of the world via both verbal and nonverbal modalities. It has been established that widely distributed cortical regions are involved in semantic processing, yet the global wiring pattern of this brain system has not been considered in the current neurocognitive semantic models. We review evidence from the brain-network perspective, which shows that the semantic system is topologically segregated into three brain modules. Revisiting previous region-based evidence in light of these new network findings, we postulate that these three modules support multimodal experiential representation, language-supported representation, and semantic control. A tri-network neurocognitive model of semantic processing is proposed, which generates new hypotheses regarding the network basis of different types of semantic processes. PMID:28955266
Garcea, Frank E.; Dombovy, Mary; Mahon, Bradford Z.
2013-01-01
A number of studies have observed that the motor system is activated when processing the semantics of manipulable objects. Such phenomena have been taken as evidence that simulation over motor representations is a necessary and intermediary step in the process of conceptual understanding. Cognitive neuropsychological evaluations of patients with impairments for action knowledge permit a direct test of the necessity of motor simulation in conceptual processing. Here, we report the performance of a 47-year-old male individual (Case AA) and six age-matched control participants on a number of tests probing action and object knowledge. Case AA had a large left-hemisphere frontal-parietal lesion and hemiplegia affecting his right arm and leg. Case AA presented with impairments for object-associated action production, and his conceptual knowledge of actions was severely impaired. In contrast, his knowledge of objects such as tools and other manipulable objects was largely preserved. The dissociation between action and object knowledge is difficult to reconcile with strong forms of the embodied cognition hypothesis. We suggest that these, and other similar findings, point to the need to develop tractable hypotheses about the dynamics of information exchange among sensory, motor and conceptual processes. PMID:23641205
Centrality-based Selection of Semantic Resources for Geosciences
NASA Astrophysics Data System (ADS)
Cerba, Otakar; Jedlicka, Karel
2017-04-01
Semantical questions intervene almost in all disciplines dealing with geographic data and information, because relevant semantics is crucial for any way of communication and interaction among humans as well as among machines. But the existence of such a large number of different semantic resources (such as various thesauri, controlled vocabularies, knowledge bases or ontologies) makes the process of semantics implementation much more difficult and complicates the use of the advantages of semantics. This is because in many cases users are not able to find the most suitable resource for their purposes. The research presented in this paper introduces a methodology consisting of an analysis of identical relations in Linked Data space, which covers a majority of semantic resources, to find a suitable resource of semantic information. Identical links interconnect representations of an object or a concept in various semantic resources. Therefore this type of relations is considered to be crucial from the view of Linked Data, because these links provide new additional information, including various views on one concept based on different cultural or regional aspects (so-called social role of Linked Data). For these reasons it is possible to declare that one reasonable criterion for feasible semantic resources for almost all domains, including geosciences, is their position in a network of interconnected semantic resources and level of linking to other knowledge bases and similar products. The presented methodology is based on searching of mutual connections between various instances of one concept using "follow your nose" approach. The extracted data on interconnections between semantic resources are arranged to directed graphs and processed by various metrics patterned on centrality computing (degree, closeness or betweenness centrality). Semantic resources recommended by the research could be used for providing semantically described keywords for metadata records or as names of items in data models. Such an approach enables much more efficient data harmonization, integration, sharing and exploitation. * * * * This publication was supported by the project LO1506 of the Czech Ministry of Education, Youth and Sports. This publication was supported by project Data-Driven Bioeconomy (DataBio) from the ICT-15-2016-2017, Big Data PPP call.
Identifying biological concepts from a protein-related corpus with a probabilistic topic model
Zheng, Bin; McLean, David C; Lu, Xinghua
2006-01-01
Background Biomedical literature, e.g., MEDLINE, contains a wealth of knowledge regarding functions of proteins. Major recurring biological concepts within such text corpora represent the domains of this body of knowledge. The goal of this research is to identify the major biological topics/concepts from a corpus of protein-related MEDLINE© titles and abstracts by applying a probabilistic topic model. Results The latent Dirichlet allocation (LDA) model was applied to the corpus. Based on the Bayesian model selection, 300 major topics were extracted from the corpus. The majority of identified topics/concepts was found to be semantically coherent and most represented biological objects or concepts. The identified topics/concepts were further mapped to the controlled vocabulary of the Gene Ontology (GO) terms based on mutual information. Conclusion The major and recurring biological concepts within a collection of MEDLINE documents can be extracted by the LDA model. The identified topics/concepts provide parsimonious and semantically-enriched representation of the texts in a semantic space with reduced dimensionality and can be used to index text. PMID:16466569
Representational constraints on children's suggestibility.
Ceci, Stephen J; Papierno, Paul B; Kulkofsky, Sarah
2007-06-01
In a multistage experiment, twelve 4- and 9-year-old children participated in a triad rating task. Their ratings were mapped with multidimensional scaling, from which euclidean distances were computed to operationalize semantic distance between items in target pairs. These children and age-mates then participated in an experiment that employed these target pairs in a story, which was followed by a misinformation manipulation. Analyses linked individual and developmental differences in suggestibility to children's representations of the target items. Semantic proximity was a strong predictor of differences in suggestibility: The closer a suggested distractor was to the original item's representation, the greater was the distractor's suggestive influence. The triad participants' semantic proximity subsequently served as the basis for correctly predicting memory performance in the larger group. Semantic proximity enabled a priori counterintuitive predictions of reverse age-related trends to be confirmed whenever the distance between representations of items in a target pair was greater for younger than for older children.
Visual discrimination predicts naming and semantic association accuracy in Alzheimer disease.
Harnish, Stacy M; Neils-Strunjas, Jean; Eliassen, James; Reilly, Jamie; Meinzer, Marcus; Clark, John Greer; Joseph, Jane
2010-12-01
Language impairment is a common symptom of Alzheimer disease (AD), and is thought to be related to semantic processing. This study examines the contribution of another process, namely visual perception, on measures of confrontation naming and semantic association abilities in persons with probable AD. Twenty individuals with probable mild-moderate Alzheimer disease and 20 age-matched controls completed a battery of neuropsychologic measures assessing visual perception, naming, and semantic association ability. Visual discrimination tasks that varied in the degree to which they likely accessed stored structural representations were used to gauge whether structural processing deficits could account for deficits in naming and in semantic association in AD. Visual discrimination abilities of nameable objects in AD strongly predicted performance on both picture naming and semantic association ability, but lacked the same predictive value for controls. Although impaired, performance on visual discrimination tests of abstract shapes and novel faces showed no significant relationship with picture naming and semantic association. These results provide additional evidence to support that structural processing deficits exist in AD, and may contribute to object recognition and naming deficits. Our findings suggest that there is a common deficit in discrimination of pictures using nameable objects, picture naming, and semantic association of pictures in AD. Disturbances in structural processing of pictured items may be associated with lexical-semantic impairment in AD, owing to degraded internal storage of structural knowledge.
Toward semantic-based retrieval of visual information: a model-based approach
NASA Astrophysics Data System (ADS)
Park, Youngchoon; Golshani, Forouzan; Panchanathan, Sethuraman
2002-07-01
This paper center around the problem of automated visual content classification. To enable classification based image or visual object retrieval, we propose a new image representation scheme called visual context descriptor (VCD) that is a multidimensional vector in which each element represents the frequency of a unique visual property of an image or a region. VCD utilizes the predetermined quality dimensions (i.e., types of features and quantization level) and semantic model templates mined in priori. Not only observed visual cues, but also contextually relevant visual features are proportionally incorporated in VCD. Contextual relevance of a visual cue to a semantic class is determined by using correlation analysis of ground truth samples. Such co-occurrence analysis of visual cues requires transformation of a real-valued visual feature vector (e.g., color histogram, Gabor texture, etc.,) into a discrete event (e.g., terms in text). Good-feature to track, rule of thirds, iterative k-means clustering and TSVQ are involved in transformation of feature vectors into unified symbolic representations called visual terms. Similarity-based visual cue frequency estimation is also proposed and used for ensuring the correctness of model learning and matching since sparseness of sample data causes the unstable results of frequency estimation of visual cues. The proposed method naturally allows integration of heterogeneous visual or temporal or spatial cues in a single classification or matching framework, and can be easily integrated into a semantic knowledge base such as thesaurus, and ontology. Robust semantic visual model template creation and object based image retrieval are demonstrated based on the proposed content description scheme.
Lee, Chia-Ju; Devine, Beth; Tarczy-Hornoch, Peter
2017-01-01
Pharmacogenomics holds promise as a critical component of precision medicine. Yet, the use of pharmacogenomics in routine clinical care is minimal, partly due to the lack of efficient and effective use of existing evidence. This paper describes the design, development, implementation and evaluation of a knowledge-based system that fulfills three critical features: a) providing clinically relevant evidence, b) applying an evidence-based approach, and c) using semantically computable formalism, to facilitate efficient evidence assessment to support timely decisions on adoption of pharmacogenomics in clinical care. To illustrate functionality, the system was piloted in the context of clopidogrel and warfarin pharmacogenomics. In contrast to existing pharmacogenomics knowledge bases, the developed system is the first to exploit the expressivity and reasoning power of logic-based representation formalism to enable unambiguous expression and automatic retrieval of pharmacogenomics evidence to support systematic review with meta-analysis.
Linking Semantic and Knowledge Representations in a Multi-Domain Dialogue System
2007-06-01
accuracy evaluation presented in the next section shows that the generic version of the grammar performs similarly well on two evaluation domains...of extra insertions; for example, discourse adverbials such as now were inserted if present in the lattice. In addition, different tense and pronoun...automatic lexicon specialization technique improves parser speed and accuracy. 1 Introduction This paper presents an architecture of a language
Digital Workflows for a 3d Semantic Representation of AN Ancient Mining Landscape
NASA Astrophysics Data System (ADS)
Hiebel, G.; Hanke, K.
2017-08-01
The ancient mining landscape of Schwaz/Brixlegg in the Tyrol, Austria witnessed mining from prehistoric times to modern times creating a first order cultural landscape when it comes to one of the most important inventions in human history: the production of metal. In 1991 a part of this landscape was lost due to an enormous landslide that reshaped part of the mountain. With our work we want to propose a digital workflow to create a 3D semantic representation of this ancient mining landscape with its mining structures to preserve it for posterity. First, we define a conceptual model to integrate the data. It is based on the CIDOC CRM ontology and CRMgeo for geometric data. To transform our information sources to a formal representation of the classes and properties of the ontology we applied semantic web technologies and created a knowledge graph in RDF (Resource Description Framework). Through the CRMgeo extension coordinate information of mining features can be integrated into the RDF graph and thus related to the detailed digital elevation model that may be visualized together with the mining structures using Geoinformation systems or 3D visualization tools. The RDF network of the triple store can be queried using the SPARQL query language. We created a snapshot of mining, settlement and burial sites in the Bronze Age. The results of the query were loaded into a Geoinformation system and a visualization of known bronze age sites related to mining, settlement and burial activities was created.
Evidence for multiple, distinct representations of the human body.
Schwoebel, John; Coslett, H Branch
2005-04-01
Previous data from single-case and small group studies have suggested distinctions among structural, conceptual, and online sensorimotor representations of the human body. We developed a battery of tasks to further examine the prevalence and anatomic substrates of these body representations. The battery was administered to 70 stroke patients. Fifty-one percent of the patients were impaired relative to controls on at least one body representation measure. Further, principal components analysis of the patient data as well as direct comparisons of patient and control performance suggested a triple dissociation between measures of the 3 putative body representations. Consistent with previous distinctions between the "what" and "how" pathways, lesions of the left temporal lobe were most consistently associated with impaired performance on tasks assessing knowledge of the shape or lexical-semantic information about the body, whereas lesions of the dorsolateral frontal and parietal regions resulted in impaired performance on tasks requiring on-line coding of body posture.
Ontology-guided data preparation for discovering genotype-phenotype relationships.
Coulet, Adrien; Smaïl-Tabbone, Malika; Benlian, Pascale; Napoli, Amedeo; Devignes, Marie-Dominique
2008-04-25
Complexity and amount of post-genomic data constitute two major factors limiting the application of Knowledge Discovery in Databases (KDD) methods in life sciences. Bio-ontologies may nowadays play key roles in knowledge discovery in life science providing semantics to data and to extracted units, by taking advantage of the progress of Semantic Web technologies concerning the understanding and availability of tools for knowledge representation, extraction, and reasoning. This paper presents a method that exploits bio-ontologies for guiding data selection within the preparation step of the KDD process. We propose three scenarios in which domain knowledge and ontology elements such as subsumption, properties, class descriptions, are taken into account for data selection, before the data mining step. Each of these scenarios is illustrated within a case-study relative to the search of genotype-phenotype relationships in a familial hypercholesterolemia dataset. The guiding of data selection based on domain knowledge is analysed and shows a direct influence on the volume and significance of the data mining results. The method proposed in this paper is an efficient alternative to numerical methods for data selection based on domain knowledge. In turn, the results of this study may be reused in ontology modelling and data integration.
When does word meaning affect immediate serial recall in semantic dementia?
Jefferies, Elizabeth; Jones, Roy; Bateman, David; Ralph, Matthew A Lambon
2004-03-01
Patients with semantic dementia can show superior immediate recall of words that they still understand relatively well, as compared with more semantically degraded words, suggesting that conceptual knowledge makes a major contribution to phonological short-term memory. However, a number of studies have failed to show such a recall difference, challenging this view. We examined the effect of several methodological factors on the recall of known and degraded words in 4 patients with semantic dementia, in order to investigate possible reasons for this discrepancy. In general, our patients did exhibit poorer recall of the degraded words and made more phonological errors on these items. In addition, set size affected the magnitude of the recall advantage for known words. This finding suggests that semantic degradation influenced the rate of learning in the immediate recall task when the same items were presented repeatedly. The methods used to select known and degraded items also impacted on the recall difference. List length, however, did not affect the advantage for known words. The coherence of items in phonological short-term memory was affected by their semantic status, but not by the length of the material to be retained. The implications of these findings for the role of semantic and phonological representations in verbal short-term memory are discussed.
A neotropical Miocene pollen database employing image-based search and semantic modeling1
Han, Jing Ginger; Cao, Hongfei; Barb, Adrian; Punyasena, Surangi W.; Jaramillo, Carlos; Shyu, Chi-Ren
2014-01-01
• Premise of the study: Digital microscopic pollen images are being generated with increasing speed and volume, producing opportunities to develop new computational methods that increase the consistency and efficiency of pollen analysis and provide the palynological community a computational framework for information sharing and knowledge transfer. • Methods: Mathematical methods were used to assign trait semantics (abstract morphological representations) of the images of neotropical Miocene pollen and spores. Advanced database-indexing structures were built to compare and retrieve similar images based on their visual content. A Web-based system was developed to provide novel tools for automatic trait semantic annotation and image retrieval by trait semantics and visual content. • Results: Mathematical models that map visual features to trait semantics can be used to annotate images with morphology semantics and to search image databases with improved reliability and productivity. Images can also be searched by visual content, providing users with customized emphases on traits such as color, shape, and texture. • Discussion: Content- and semantic-based image searches provide a powerful computational platform for pollen and spore identification. The infrastructure outlined provides a framework for building a community-wide palynological resource, streamlining the process of manual identification, analysis, and species discovery. PMID:25202648
Knowledge-based approaches to the maintenance of a large controlled medical terminology.
Cimino, J J; Clayton, P D; Hripcsak, G; Johnson, S B
1994-01-01
OBJECTIVE: Develop a knowledge-based representation for a controlled terminology of clinical information to facilitate creation, maintenance, and use of the terminology. DESIGN: The Medical Entities Dictionary (MED) is a semantic network, based on the Unified Medical Language System (UMLS), with a directed acyclic graph to represent multiple hierarchies. Terms from four hospital systems (laboratory, electrocardiography, medical records coding, and pharmacy) were added as nodes in the network. Additional knowledge about terms, added as semantic links, was used to assist in integration, harmonization, and automated classification of disparate terminologies. RESULTS: The MED contains 32,767 terms and is in active clinical use. Automated classification was successfully applied to terms for laboratory specimens, laboratory tests, and medications. One benefit of the approach has been the automated inclusion of medications into multiple pharmacologic and allergenic classes that were not present in the pharmacy system. Another benefit has been the reduction of maintenance efforts by 90%. CONCLUSION: The MED is a hybrid of terminology and knowledge. It provides domain coverage, synonymy, consistency of views, explicit relationships, and multiple classification while preventing redundancy, ambiguity (homonymy) and misclassification. PMID:7719786
Concepts and Categories: A Cognitive Neuropsychological Perspective
Mahon, Bradford Z.; Caramazza, Alfonso
2010-01-01
One of the most provocative and exciting issues in cognitive science is how neural specificity for semantic categories of common objects arises in the functional architecture of the brain. More than two decades of research on the neuropsychological phenomenon of category-specific semantic deficits has generated detailed claims about the organization and representation of conceptual knowledge. More recently, researchers have sought to test hypotheses developed on the basis of neuropsychological evidence with functional imaging. From those two fields, the empirical generalization emerges that object domain and sensory modality jointly constrain the organization of knowledge in the brain. At the same time, research within the embodied cognition framework has highlighted the need to articulate how information is communicated between the sensory and motor systems, and processes that represent and generalize abstract information. Those developments point toward a new approach for understanding category specificity in terms of the coordinated influences of diverse regions and cognitive systems. PMID:18767921
Computational methods to extract meaning from text and advance theories of human cognition.
McNamara, Danielle S
2011-01-01
Over the past two decades, researchers have made great advances in the area of computational methods for extracting meaning from text. This research has to a large extent been spurred by the development of latent semantic analysis (LSA), a method for extracting and representing the meaning of words using statistical computations applied to large corpora of text. Since the advent of LSA, researchers have developed and tested alternative statistical methods designed to detect and analyze meaning in text corpora. This research exemplifies how statistical models of semantics play an important role in our understanding of cognition and contribute to the field of cognitive science. Importantly, these models afford large-scale representations of human knowledge and allow researchers to explore various questions regarding knowledge, discourse processing, text comprehension, and language. This topic includes the latest progress by the leading researchers in the endeavor to go beyond LSA. Copyright © 2010 Cognitive Science Society, Inc.
Chi, Yukai; Yue, Zhenzhu; Liu, Yupin; Mo, Lei; Chen, Qi
2014-08-01
There are ongoing debates on whether object concepts are coded as supramodal identity-based or modality-specific representations in the human brain. In this fMRI study, we adopted a cross-modal "prime-neutral cue-target" semantic priming paradigm, in which the prime-target relationship was manipulated along both the identity and the modality dimensions. The prime and the target could refer to either the same or different semantic identities, and could be delivered via either the same or different sensory modalities. By calculating the main effects and interactions of this 2 (identity cue validity: "Identity_Cued" vs. "Identity_Uncued") × 2 (modality cue validity: "Modality_Cued" vs. "Modality_Uncued") factorial design, we aimed at dissociating three neural networks involved in creating novel identity-specific representations independent of sensory modality, in creating modality-specific representations independent of semantic identity, and in evaluating changes of an object along both the identity and the modality dimensions, respectively. Our results suggested that bilateral lateral occipital cortex was involved in creating a new supramodal semantic representation irrespective of the input modality, left dorsal premotor cortex, and left intraparietal sulcus were involved in creating a new modality-specific representation irrespective of its semantic identity, and bilateral superior temporal sulcus was involved in creating a representation when the identity and modality properties were both cued or both uncued. In addition, right inferior frontal gyrus showed enhanced neural activity only when both the identity and the modality of the target were new, indicating its functional role in novelty detection. Copyright © 2014 Wiley Periodicals, Inc.
Evans, Vyvyan
2016-01-01
Recent research in language and cognitive science proposes that the linguistic system evolved to provide an “executive” control system on the evolutionarily more ancient conceptual system (e.g., Barsalou et al., 2008; Evans, 2009, 2015a,b; Bergen, 2012). In short, the claim is that embodied representations in the linguistic system interface with non-linguistic representations in the conceptual system, facilitating rich meanings, or simulations, enabling linguistically mediated communication. In this paper I build on these proposals by examining the nature of what I identify as design features for this control system. In particular, I address how the ideational function of language—our ability to deploy linguistic symbols to convey meanings of great complexity—is facilitated. The central proposal of this paper is as follows. The linguistic system of any given language user, of any given linguistic system—spoken or signed—facilitates access to knowledge representation—concepts—in the conceptual system, which subserves this ideational function. In the most general terms, the human meaning-making capacity is underpinned by two distinct, although tightly coupled representational systems: the conceptual system and the linguistic system. Each system contributes to meaning construction in qualitatively distinct ways. This leads to the first design feature: given that the two systems are representational—they are populated by semantic representations—the nature and function of the representations are qualitatively different. This proposed design feature I term the bifurcation in semantic representation. After all, it stands to reason that if a linguistic system has a different function, vis-à-vis the conceptual system, which is of far greater evolutionary antiquity, then the semantic representations will be complementary, and as such, qualitatively different, reflecting the functional distinctions of the two systems, in collectively giving rise to meaning. I consider the nature of these qualitatively distinct representations. And second, language itself is adapted to the conceptual system—the semantic potential—that it marshals in the meaning construction process. Hence, a linguistic system itself exhibits a bifurcation, in terms of the symbolic resources at its disposal. This design feature I dub the birfucation in linguistic organization. As I shall argue, this relates to two distinct reference strategies available for symbolic encoding in language: what I dub words-to-world reference and words-to-words reference. In slightly different terms, this design feature of language amounts to a distinction between a lexical subsystem, and a grammatical subsystem. PMID:26925000
Estmacott, Robyn W; Moscovitch, Morris
2002-03-01
The consolidation theory of long-term memory (e.g., Squire, 1992) predicts that damage to the medial temporal lobes will result in temporally graded retrograde memory loss, with a disproportionate impairment of recent relative to remote knowledge; in contrast, severe atrophy of the temporal neocortex is predicted to result in the reverse temporally graded pattern, with a selective sparing of recent memory (K.S. Graham & Hodges, 1997). Previously, we reported evidence that autobiographical episodic memory does not follow this temporal pattern (Westmacott, Leach, Freedman, & Moscovitch, 2001). In the present study, we found evidence suggesting that semantic memory loss does follow the predicted temporal pattern. We used a set of tasks that tap implicit and explicit memory for famous names and English vocabulary terms from across the 20th century. KC, a person with medial temporal amnesia, consistently demonstrated across tasks a selective deficit for famous names and vocabulary terms from the 5-year period just prior to injury; this deficit was particularly profound for elaborated semantic knowledge (e.g., word definitions, occupation of famous person). However, when asked to guess on unfamiliar items, KC's performance for names and words from this 5-year time period increased substantially, suggesting that he retains some of this knowledge at an implicit or rudimentary level. Conversely, EL, a semantic dementia patient with temporal neocortical atrophy and relative sparing of the medial temporal lobe, demonstrated a selective sparing of names and words from the most recent time period. However, this selective sparing of recent semantic memory was demonstrated in the implicit tasks only; performance on explicit tasks suggested an equally severe impairment of semantics across all time periods. Unlike the data from our previous study of autobiographical episodic memory, these findings are consistent with the predictions both of consolidation theory (Hodges & Graham, 1998; Squire, 1992) and multiple trace theory (Nadel & Moscovitch, 1999) that the hippocampus plays a timelimited role in the acquisition and representation of long-term semantic memories. Moreover, our findings suggest that tasks requiring minimal verbal production and explicit recall may provide a more sensitive and comprehensive assessment of intact memory capacity in brain-damaged individuals.
An Ontology-based Architecture for Integration of Clinical Trials Management Applications
Shankar, Ravi D.; Martins, Susana B.; O’Connor, Martin; Parrish, David B.; Das, Amar K.
2007-01-01
Management of complex clinical trials involves coordinated-use of a myriad of software applications by trial personnel. The applications typically use distinct knowledge representations and generate enormous amount of information during the course of a trial. It becomes vital that the applications exchange trial semantics in order for efficient management of the trials and subsequent analysis of clinical trial data. Existing model-based frameworks do not address the requirements of semantic integration of heterogeneous applications. We have built an ontology-based architecture to support interoperation of clinical trial software applications. Central to our approach is a suite of clinical trial ontologies, which we call Epoch, that define the vocabulary and semantics necessary to represent information on clinical trials. We are continuing to demonstrate and validate our approach with different clinical trials management applications and with growing number of clinical trials. PMID:18693919
Semantic Specificity in One-Year-Olds' Word Comprehension.
Bergelson, Elika; Aslin, Richard
2017-01-01
The present study investigated infants' knowledge about familiar nouns. Infants (n = 46, 12-20-month-olds) saw two-image displays of familiar objects, or one familiar and one novel object. Infants heard either a matching word (e.g. "foot' when seeing foot and juice), a related word (e.g. "sock" when seeing foot and juice) or a nonce word (e.g. "fep" when seeing a novel object and dog). Across the whole sample, infants reliably fixated the referent on matching and nonce trials. On the critical related trials we found increasingly less looking to the incorrect (but related) image with age. These results suggest that one-year-olds look at familiar objects both when they hear them labeled and when they hear related labels, to similar degrees, but over the second year increasingly rely on semantic fit. We suggest that infants' initial semantic representations are imprecise, and continue to sharpen over the second postnatal year.
Hierarchical semantic structures for medical NLP.
Taira, Ricky K; Arnold, Corey W
2013-01-01
We present a framework for building a medical natural language processing (NLP) system capable of deep understanding of clinical text reports. The framework helps developers understand how various NLP-related efforts and knowledge sources can be integrated. The aspects considered include: 1) computational issues dealing with defining layers of intermediate semantic structures to reduce the dimensionality of the NLP problem; 2) algorithmic issues in which we survey the NLP literature and discuss state-of-the-art procedures used to map between various levels of the hierarchy; and 3) implementation issues to software developers with available resources. The objective of this poster is to educate readers to the various levels of semantic representation (e.g., word level concepts, ontological concepts, logical relations, logical frames, discourse structures, etc.). The poster presents an architecture for which diverse efforts and resources in medical NLP can be integrated in a principled way.
Corbett, Faye; Jefferies, Elizabeth; Ehsan, Sheeba
2009-01-01
Disorders of semantic cognition in different neuropsychological conditions result from diverse areas of brain damage and may have different underlying causes. This study used a comparative case-series design to examine the hypothesis that relatively circumscribed bilateral atrophy of the anterior temporal lobe in semantic dementia (SD) produces a gradual degradation of core semantic representations, whilst a deficit of cognitive control produces multi-modal semantic impairment in a subset of patients with stroke aphasia following damage involving the left prefrontal cortex or regions in and around the temporoparietal area; this condition, which transcends traditional aphasia classifications, is referred to as ‘semantic aphasia’ (SA). There have been very few direct comparisons of these patient groups to date and these previous studies have focussed on verbal comprehension. This study used a battery of object-use tasks to extend this line of enquiry into the non-verbal domain for the first time. A group of seven SA patients were identified who failed both word and picture versions of a semantic association task. These patients were compared with eight SD cases. Both groups showed significant deficits in object use but these impairments were qualitatively different. Item familiarity correlated with performance on object-use tasks for the SD group, consistent with the view that core semantic representations are degrading in this condition. In contrast, the SA participants were insensitive to the familiarity of the objects. Further, while the SD patients performed consistently across tasks that tapped different aspects of knowledge and object use for the same items, the performance of the SA participants reflected the control requirements of the tasks. Single object use was relatively preserved in SA but performance on complex mechanical puzzles was substantially impaired. Similarly, the SA patients were able to complete straightforward item matching tasks, such as word-picture matching, but performed more poorly on associative picture-matching tasks, even when the tests involved the same items. The two groups of patients also showed a different pattern of errors in object use. SA patients made substantial numbers of erroneous intrusions in their demonstrations, such as inappropriate object movements. In contrast, response omissions were more common in SD. This study provides converging evidence for qualitatively different impairments of semantic cognition in SD and SA, and uniquely demonstrates this pattern in a non-verbal expressive domain—object use. PMID:19506072
Arbitrary Symbolism in Natural Language Revisited: When Word Forms Carry Meaning
Reilly, Jamie; Westbury, Chris; Kean, Jacob; Peelle, Jonathan E.
2012-01-01
Cognitive science has a rich history of interest in the ways that languages represent abstract and concrete concepts (e.g., idea vs. dog). Until recently, this focus has centered largely on aspects of word meaning and semantic representation. However, recent corpora analyses have demonstrated that abstract and concrete words are also marked by phonological, orthographic, and morphological differences. These regularities in sound-meaning correspondence potentially allow listeners to infer certain aspects of semantics directly from word form. We investigated this relationship between form and meaning in a series of four experiments. In Experiments 1–2 we examined the role of metalinguistic knowledge in semantic decision by asking participants to make semantic judgments for aurally presented nonwords selectively varied by specific acoustic and phonetic parameters. Participants consistently associated increased word length and diminished wordlikeness with abstract concepts. In Experiment 3, participants completed a semantic decision task (i.e., abstract or concrete) for real words varied by length and concreteness. Participants were more likely to misclassify longer, inflected words (e.g., “apartment”) as abstract and shorter uninflected abstract words (e.g., “fate”) as concrete. In Experiment 4, we used a multiple regression to predict trial level naming data from a large corpus of nouns which revealed significant interaction effects between concreteness and word form. Together these results provide converging evidence for the hypothesis that listeners map sound to meaning through a non-arbitrary process using prior knowledge about statistical regularities in the surface forms of words. PMID:22879931
Arbitrary symbolism in natural language revisited: when word forms carry meaning.
Reilly, Jamie; Westbury, Chris; Kean, Jacob; Peelle, Jonathan E
2012-01-01
Cognitive science has a rich history of interest in the ways that languages represent abstract and concrete concepts (e.g., idea vs. dog). Until recently, this focus has centered largely on aspects of word meaning and semantic representation. However, recent corpora analyses have demonstrated that abstract and concrete words are also marked by phonological, orthographic, and morphological differences. These regularities in sound-meaning correspondence potentially allow listeners to infer certain aspects of semantics directly from word form. We investigated this relationship between form and meaning in a series of four experiments. In Experiments 1-2 we examined the role of metalinguistic knowledge in semantic decision by asking participants to make semantic judgments for aurally presented nonwords selectively varied by specific acoustic and phonetic parameters. Participants consistently associated increased word length and diminished wordlikeness with abstract concepts. In Experiment 3, participants completed a semantic decision task (i.e., abstract or concrete) for real words varied by length and concreteness. Participants were more likely to misclassify longer, inflected words (e.g., "apartment") as abstract and shorter uninflected abstract words (e.g., "fate") as concrete. In Experiment 4, we used a multiple regression to predict trial level naming data from a large corpus of nouns which revealed significant interaction effects between concreteness and word form. Together these results provide converging evidence for the hypothesis that listeners map sound to meaning through a non-arbitrary process using prior knowledge about statistical regularities in the surface forms of words.
Transductive multi-view zero-shot learning.
Fu, Yanwei; Hospedales, Timothy M; Xiang, Tao; Gong, Shaogang
2015-11-01
Most existing zero-shot learning approaches exploit transfer learning via an intermediate semantic representation shared between an annotated auxiliary dataset and a target dataset with different classes and no annotation. A projection from a low-level feature space to the semantic representation space is learned from the auxiliary dataset and applied without adaptation to the target dataset. In this paper we identify two inherent limitations with these approaches. First, due to having disjoint and potentially unrelated classes, the projection functions learned from the auxiliary dataset/domain are biased when applied directly to the target dataset/domain. We call this problem the projection domain shift problem and propose a novel framework, transductive multi-view embedding, to solve it. The second limitation is the prototype sparsity problem which refers to the fact that for each target class, only a single prototype is available for zero-shot learning given a semantic representation. To overcome this problem, a novel heterogeneous multi-view hypergraph label propagation method is formulated for zero-shot learning in the transductive embedding space. It effectively exploits the complementary information offered by different semantic representations and takes advantage of the manifold structures of multiple representation spaces in a coherent manner. We demonstrate through extensive experiments that the proposed approach (1) rectifies the projection shift between the auxiliary and target domains, (2) exploits the complementarity of multiple semantic representations, (3) significantly outperforms existing methods for both zero-shot and N-shot recognition on three image and video benchmark datasets, and (4) enables novel cross-view annotation tasks.
Constraint-Directed Search: A Case Study of Job-Shop Scheduling.
1983-12-13
Structures But Were Unable to Represent", Proceedings of the American Association for Aritificial Intelligence , pp. 212-214, Stanford University...under these constraints raises a number of issues of interest to the artificial intelligence community such as: - knowledge representation semantics for...Management Science 15 2.3. Artificial Intelligence 17 2.4. Relationship to Previous Research 21 3. ISIS Modeling System 23 3.1. Introduction 24 3.2. Layer
Semantic representation of reported measurements in radiology.
Oberkampf, Heiner; Zillner, Sonja; Overton, James A; Bauer, Bernhard; Cavallaro, Alexander; Uder, Michael; Hammon, Matthias
2016-01-22
In radiology, a vast amount of diverse data is generated, and unstructured reporting is standard. Hence, much useful information is trapped in free-text form, and often lost in translation and transmission. One relevant source of free-text data consists of reports covering the assessment of changes in tumor burden, which are needed for the evaluation of cancer treatment success. Any change of lesion size is a critical factor in follow-up examinations. It is difficult to retrieve specific information from unstructured reports and to compare them over time. Therefore, a prototype was implemented that demonstrates the structured representation of findings, allowing selective review in consecutive examinations and thus more efficient comparison over time. We developed a semantic Model for Clinical Information (MCI) based on existing ontologies from the Open Biological and Biomedical Ontologies (OBO) library. MCI is used for the integrated representation of measured image findings and medical knowledge about the normal size of anatomical entities. An integrated view of the radiology findings is realized by a prototype implementation of a ReportViewer. Further, RECIST (Response Evaluation Criteria In Solid Tumors) guidelines are implemented by SPARQL queries on MCI. The evaluation is based on two data sets of German radiology reports: An oncologic data set consisting of 2584 reports on 377 lymphoma patients and a mixed data set consisting of 6007 reports on diverse medical and surgical patients. All measurement findings were automatically classified as abnormal/normal using formalized medical background knowledge, i.e., knowledge that has been encoded into an ontology. A radiologist evaluated 813 classifications as correct or incorrect. All unclassified findings were evaluated as incorrect. The proposed approach allows the automatic classification of findings with an accuracy of 96.4 % for oncologic reports and 92.9 % for mixed reports. The ReportViewer permits efficient comparison of measured findings from consecutive examinations. The implementation of RECIST guidelines with SPARQL enhances the quality of the selection and comparison of target lesions as well as the corresponding treatment response evaluation. The developed MCI enables an accurate integrated representation of reported measurements and medical knowledge. Thus, measurements can be automatically classified and integrated in different decision processes. The structured representation is suitable for improved integration of clinical findings during decision-making. The proposed ReportViewer provides a longitudinal overview of the measurements.
Visualizing the semantic content of large text databases using text maps
NASA Technical Reports Server (NTRS)
Combs, Nathan
1993-01-01
A methodology for generating text map representations of the semantic content of text databases is presented. Text maps provide a graphical metaphor for conceptualizing and visualizing the contents and data interrelationships of large text databases. Described are a set of experiments conducted against the TIPSTER corpora of Wall Street Journal articles. These experiments provide an introduction to current work in the representation and visualization of documents by way of their semantic content.
Pereira, Francisco; Botvinick, Matthew; Detre, Greg
2012-01-01
In this paper we show that a corpus of a few thousand Wikipedia articles about concrete or visualizable concepts can be used to produce a low-dimensional semantic feature representation of those concepts. The purpose of such a representation is to serve as a model of the mental context of a subject during functional magnetic resonance imaging (fMRI) experiments. A recent study [19] showed that it was possible to predict fMRI data acquired while subjects thought about a concrete concept, given a representation of those concepts in terms of semantic features obtained with human supervision. We use topic models on our corpus to learn semantic features from text in an unsupervised manner, and show that those features can outperform those in [19] in demanding 12-way and 60-way classification tasks. We also show that these features can be used to uncover similarity relations in brain activation for different concepts which parallel those relations in behavioral data from human subjects. PMID:23243317
Extending Primitive Spatial Data Models to Include Semantics
NASA Astrophysics Data System (ADS)
Reitsma, F.; Batcheller, J.
2009-04-01
Our traditional geospatial data model involves associating some measurable quality, such as temperature, or observable feature, such as a tree, with a point or region in space and time. When capturing data we implicitly subscribe to some kind of conceptualisation. If we can make this explicit in an ontology and associate it with the captured data, we can leverage formal semantics to reason with the concepts represented in our spatial data sets. To do so, we extend our fundamental representation of geospatial data in a data model by including a URI in our basic data model that links it to our ontology defining our conceptualisation, We thus extend Goodchild et al's geo-atom [1] with the addition of a URI: (x, Z, z(x), URI) . This provides us with pixel or feature level knowledge and the ability to create layers of data from a set of pixels or features that might be drawn from a database based on their semantics. Using open source tools, we present a prototype that involves simple reasoning as a proof of concept. References [1] M.F. Goodchild, M. Yuan, and T.J. Cova. Towards a general theory of geographic representation in gis. International Journal of Geographical Information Science, 21(3):239-260, 2007.
Ley, Tobias; Seitlinger, Paul
2015-10-01
We study how categories form and develop over time in a sensemaking task by groups of students employing a collaborative tagging system. In line with distributed cognition theories, we look at both the tags students use and their strength of representation in memory. We hypothesize that categories get more differentiated over time as students learn, and that semantic stabilization on the group level (i.e. the convergence in the use of tags) mediates this relationship. Results of a field experiment that tested the impact of topic study duration on the specificity of tags confirms these hypotheses, although it was not study duration that produced this effect, but rather the effectiveness of the collaborative taxonomy the groups built. In the groups with higher levels of semantic stabilization, we found use of more specific tags and better representation in memory. We discuss these findings with regard to the important role of the information value of tags that would drive both the convergence on the group level as well as a shift to more specific levels of categorization. We also discuss the implication for cognitive science research by highlighting the importance of collaboratively built artefacts in the process of how knowledge is acquired, and implications for educational applications of collaborative tagging environments.
Ley, Tobias; Seitlinger, Paul
2015-01-01
We study how categories form and develop over time in a sensemaking task by groups of students employing a collaborative tagging system. In line with distributed cognition theories, we look at both the tags students use and their strength of representation in memory. We hypothesize that categories get more differentiated over time as students learn, and that semantic stabilization on the group level (i.e. the convergence in the use of tags) mediates this relationship. Results of a field experiment that tested the impact of topic study duration on the specificity of tags confirms these hypotheses, although it was not study duration that produced this effect, but rather the effectiveness of the collaborative taxonomy the groups built. In the groups with higher levels of semantic stabilization, we found use of more specific tags and better representation in memory. We discuss these findings with regard to the important role of the information value of tags that would drive both the convergence on the group level as well as a shift to more specific levels of categorization. We also discuss the implication for cognitive science research by highlighting the importance of collaboratively built artefacts in the process of how knowledge is acquired, and implications for educational applications of collaborative tagging environments. PMID:26566299
Decoding the neural representation of fine-grained conceptual categories.
Ghio, Marta; Vaghi, Matilde Maria Serena; Perani, Daniela; Tettamanti, Marco
2016-05-15
Neuroscientific research on conceptual knowledge based on the grounded cognition framework has shed light on the organization of concrete concepts into semantic categories that rely on different types of experiential information. Abstract concepts have traditionally been investigated as an undifferentiated whole, and have only recently been addressed in a grounded cognition perspective. The present fMRI study investigated the involvement of brain systems coding for experiential information in the conceptual processing of fine-grained semantic categories along the abstract-concrete continuum. These categories consisted of mental state-, emotion-, mathematics-, mouth action-, hand action-, and leg action-related meanings. Thirty-five sentences for each category were used as stimuli in a 1-back task performed by 36 healthy participants. A univariate analysis failed to reveal category-specific activations. Multivariate pattern analyses, in turn, revealed that fMRI data contained sufficient information to disentangle all six fine-grained semantic categories across participants. However, the category-specific activity patterns showed no overlap with the regions coding for experiential information. These findings demonstrate the possibility of detecting specific patterns of neural representation associated with the processing of fine-grained conceptual categories, crucially including abstract ones, though bearing no anatomical correspondence with regions coding for experiential information as predicted by the grounded cognition hypothesis. Copyright © 2016 Elsevier Inc. All rights reserved.
Representations for Semantic Learning Webs: Semantic Web Technology in Learning Support
ERIC Educational Resources Information Center
Dzbor, M.; Stutt, A.; Motta, E.; Collins, T.
2007-01-01
Recent work on applying semantic technologies to learning has concentrated on providing novel means of accessing and making use of learning objects. However, this is unnecessarily limiting: semantic technologies will make it possible to develop a range of educational Semantic Web services, such as interpretation, structure-visualization, support…
Pobric, Gorana; Jefferies, Elizabeth; Ralph, Matthew A. Lambon
2007-01-01
Studies of semantic dementia and PET neuroimaging investigations suggest that the anterior temporal lobes (ATL) are a critical substrate for semantic representation. In stark contrast, classical neurological models of comprehension do not include ATL, and likewise functional MRI studies often fail to show activations in the ATL, reinforcing the classical view. Using a novel application of low-frequency, repetitive transcranial magnetic stimulation (rTMS) over the ATL, we demonstrate that the behavioral pattern of semantic dementia can be mirrored in neurologically intact participants: Specifically, we show that temporary disruption to neural processing in the ATL produces a selective semantic impairment leading to significant slowing in both picture naming and word comprehension but not to other equally demanding, nonsemantic cognitive tasks. PMID:18056637
Varga, Nicole L.; Stewart, Rebekah A.; Bauer, Patricia J.
2016-01-01
Semantic memory, defined as our store of knowledge about the world, provides representational support for all of our higher order cognitive functions. As such, it is crucial that the contents of semantic memory remain accessible over time. Although memory for knowledge learned through direct observation has been previously investigated, we know very little about the retention of knowledge derived through integration of information acquired across separate learning episodes. The present research investigated cross-episode integration in 4-year-old children. Participants were presented with novel facts via distinct story episodes and tested for knowledge extension through cross-episode integration, as well as for retention of the information over a 1-week delay. In Experiment 1, children retained the self-derived knowledge over the delay, though performance was primarily evidenced in a forced-choice format. In Experiment 2, we sought to facilitate the accessibility and robustness of self-derived knowledge by providing a verbal reminder after the delay. The accessibility of self-derived knowledge increased, irrespective of whether participants successfully demonstrated knowledge of the integration facts during the first visit. The results suggest knowledge extended through integration remains accessible after delays, even in a population in which this learning process is less robust. The findings also demonstrate the facilitative effect of reminders on the accessibility and further extension of knowledge over extended time periods. PMID:26774259
Landscape features, standards, and semantics in U.S. national topographic mapping databases
Varanka, Dalia
2009-01-01
The objective of this paper is to examine the contrast between local, field-surveyed topographical representation and feature representation in digital, centralized databases and to clarify their ontological implications. The semantics of these two approaches are contrasted by examining the categorization of features by subject domains inherent to national topographic mapping. When comparing five USGS topographic mapping domain and feature lists, results indicate that multiple semantic meanings and ontology rules were applied to the initial digital database, but were lost as databases became more centralized at national scales, and common semantics were replaced by technological terms.
Amsel, Ben D
2011-04-01
Empirically derived semantic feature norms categorized into different types of knowledge (e.g., visual, functional, auditory) can be summed to create number-of-feature counts per knowledge type. Initial evidence suggests several such knowledge types may be recruited during language comprehension. The present study provides a more detailed understanding of the timecourse and intensity of influence of several such knowledge types on real-time neural activity. A linear mixed-effects model was applied to single trial event-related potentials for 207 visually presented concrete words measured on total number of features (semantic richness), imageability, and number of visual motion, color, visual form, smell, taste, sound, and function features. Significant influences of multiple feature types occurred before 200ms, suggesting parallel neural computation of word form and conceptual knowledge during language comprehension. Function and visual motion features most prominently influenced neural activity, underscoring the importance of action-related knowledge in computing word meaning. The dynamic time courses and topographies of these effects are most consistent with a flexible conceptual system wherein temporally dynamic recruitment of representations in modal and supramodal cortex are a crucial element of the constellation of processes constituting word meaning computation in the brain. Copyright © 2011 Elsevier Ltd. All rights reserved.
Relational, Structural, and Semantic Analysis of Graphical Representations and Concept Maps
ERIC Educational Resources Information Center
Ifenthaler, Dirk
2010-01-01
The demand for good instructional environments presupposes valid and reliable analytical instruments for educational research. This paper introduces the "SMD Technology" (Surface, Matching, Deep Structure), which measures relational, structural, and semantic levels of graphical representations and concept maps. The reliability and validity of the…
Semantic eScience for Ecosystem Understanding and Monitoring: The Jefferson Project Case Study
NASA Astrophysics Data System (ADS)
McGuinness, D. L.; Pinheiro da Silva, P.; Patton, E. W.; Chastain, K.
2014-12-01
Monitoring and understanding ecosystems such as lakes and their watersheds is becoming increasingly important. Accelerated eutrophication threatens our drinking water sources. Many believe that the use of nutrients (e.g., road salts, fertilizers, etc.) near these sources may have negative impacts on animal and plant populations and water quality although it is unclear how to best balance broad community needs. The Jefferson Project is a joint effort between RPI, IBM and the Fund for Lake George aimed at creating an instrumented water ecosystem along with an appropriate cyberinfrastructure that can serve as a global model for ecosystem monitoring, exploration, understanding, and prediction. One goal is to help communities understand the potential impacts of actions such as road salting strategies so that they can make appropriate informed recommendations that serve broad community needs. Our semantic eScience team is creating a semantic infrastructure to support data integration and analysis to help trained scientists as well as the general public to better understand the lake today, and explore potential future scenarios. We are leveraging our RPI Tetherless World Semantic Web methodology that provides an agile process for describing use cases, identification of appropriate background ontologies and technologies, implementation, and evaluation. IBM is providing a state-of-the-art sensor network infrastructure along with a collection of tools to share, maintain, analyze and visualize the network data. In the context of this sensor infrastructure, we will discuss our semantic approach's contributions in three knowledge representation and reasoning areas: (a) human interventions on the deployment and maintenance of local sensor networks including the scientific knowledge to decide how and where sensors are deployed; (b) integration, interpretation and management of data coming from external sources used to complement the project's models; and (c) knowledge about simulation results including parameters, interpretation of results, and comparison of results against external data. We will also demonstrate some example queries highlighting the benefits of our semantic approach and will also identify reusable components.
VuWiki: An Ontology-Based Semantic Wiki for Vulnerability Assessments
NASA Astrophysics Data System (ADS)
Khazai, Bijan; Kunz-Plapp, Tina; Büscher, Christian; Wegner, Antje
2014-05-01
The concept of vulnerability, as well as its implementation in vulnerability assessments, is used in various disciplines and contexts ranging from disaster management and reduction to ecology, public health or climate change and adaptation, and a corresponding multitude of ideas about how to conceptualize and measure vulnerability exists. Three decades of research in vulnerability have generated a complex and growing body of knowledge that challenges newcomers, practitioners and even experienced researchers. To provide a structured representation of the knowledge field "vulnerability assessment", we have set up an ontology-based semantic wiki for reviewing and representing vulnerability assessments: VuWiki, www.vuwiki.org. Based on a survey of 55 vulnerability assessment studies, we first developed an ontology as an explicit reference system for describing vulnerability assessments. We developed the ontology in a theoretically controlled manner based on general systems theory and guided by principles for ontology development in the field of earth and environment (Raskin and Pan 2005). Four key questions form the first level "branches" or categories of the developed ontology: (1) Vulnerability of what? (2) Vulnerability to what? (3) What reference framework was used in the vulnerability assessment?, and (4) What methodological approach was used in the vulnerability assessment? These questions correspond to the basic, abstract structure of the knowledge domain of vulnerability assessments and have been deduced from theories and concepts of various disciplines. The ontology was then implemented in a semantic wiki which allows for the classification and annotation of vulnerability assessments. As a semantic wiki, VuWiki does not aim at "synthesizing" a holistic and overarching model of vulnerability. Instead, it provides both scientists and practitioners with a uniform ontology as a reference system and offers easy and structured access to the knowledge field of vulnerability assessments with the possibility for any user to retrieve assessments using specific research criteria. Furthermore, Vuwiki can serve as a collaborative knowledge platform that allows for the active participation of those generating and using the knowledge represented in the wiki.
Harvey, Denise Y; Schnur, Tatiana T
2015-06-01
Naming pictures and matching words to pictures belonging to the same semantic category negatively affects language production and comprehension. By most accounts, semantic interference arises when accessing lexical representations in naming (e.g., Damian, Vigliocco, & Levelt, 2001) and semantic representations in comprehension (e.g., Forde & Humphreys, 1997). Further, damage to the left inferior frontal gyrus (LIFG), a region implicated in cognitive control, results in increasing semantic interference when items repeat across cycles in both language production and comprehension (Jefferies, Baker, Doran, & Lambon Ralph, 2007). This generates the prediction that the LIFG via white matter connections supports resolution of semantic interference arising from different loci (lexical vs semantic) in the temporal lobe. However, it remains unclear whether the cognitive and neural mechanisms that resolve semantic interference are the same across tasks. Thus, we examined which gray matter structures [using whole brain and region of interest (ROI) approaches] and white matter connections (using deterministic tractography) when damaged impact semantic interference and its increase across cycles when repeatedly producing and understanding words in 15 speakers with varying lexical-semantic deficits from left hemisphere stroke. We found that damage to distinct brain regions, the posterior versus anterior temporal lobe, was associated with semantic interference (collapsed across cycles) in naming and comprehension, respectively. Further, those with LIFG damage compared to those without exhibited marginally larger increases in semantic interference across cycles in naming but not comprehension. Lastly, the inferior fronto-occipital fasciculus, connecting the LIFG with posterior temporal lobe, related to semantic interference in naming, whereas the inferior longitudinal fasciculus (ILF), connecting posterior with anterior temporal regions related to semantic interference in comprehension. These neuroanatomical-behavioral findings have implications for models of the lexical-semantic language network by demonstrating that semantic interference in language production and comprehension involves different representations which differentially recruit a cognitive control mechanism for interference resolution. Copyright © 2015 Elsevier Ltd. All rights reserved.
Preexisting semantic representation improves working memory performance in the visuospatial domain.
Rudner, Mary; Orfanidou, Eleni; Cardin, Velia; Capek, Cheryl M; Woll, Bencie; Rönnberg, Jerker
2016-05-01
Working memory (WM) for spoken language improves when the to-be-remembered items correspond to preexisting representations in long-term memory. We investigated whether this effect generalizes to the visuospatial domain by administering a visual n-back WM task to deaf signers and hearing signers, as well as to hearing nonsigners. Four different kinds of stimuli were presented: British Sign Language (BSL; familiar to the signers), Swedish Sign Language (SSL; unfamiliar), nonsigns, and nonlinguistic manual actions. The hearing signers performed better with BSL than with SSL, demonstrating a facilitatory effect of preexisting semantic representation. The deaf signers also performed better with BSL than with SSL, but only when WM load was high. No effect of preexisting phonological representation was detected. The deaf signers performed better than the hearing nonsigners with all sign-based materials, but this effect did not generalize to nonlinguistic manual actions. We argue that deaf signers, who are highly reliant on visual information for communication, develop expertise in processing sign-based items, even when those items do not have preexisting semantic or phonological representations. Preexisting semantic representation, however, enhances the quality of the gesture-based representations temporarily maintained in WM by this group, thereby releasing WM resources to deal with increased load. Hearing signers, on the other hand, may make strategic use of their speech-based representations for mnemonic purposes. The overall pattern of results is in line with flexible-resource models of WM.
Mobayyen, Forouzan; de Almeida, Roberto G
2005-03-01
One hundred and forty normal undergraduate students participated in a Proactive Interference (PI) experiment with sentences containing verbs from four different semantic and morphological classes (lexical causatives, morphological causatives, and morphologically complex and simplex perception verbs). Past research has shown significant PI build-up effects for semantically and morphologically complex verbs in isolation (de Almeida & Mobayyen, 2004). The results of the present study show that, when embedded into sentence contexts, semantically and morphologically complex verbs do not produce significant PI build-up effects. Different verb classes, however, yield different recall patterns: sentences with semantically complex verbs (e.g., causatives) were recalled significantly better than sentences with semantically simplex verbs (e.g., perception verbs). The implications for the nature of both verb-conceptual representations and category-specific semantic deficits are discussed.
Quantifying Semantic Linguistic Maturity in Children.
Hansson, Kristina; Bååth, Rasmus; Löhndorf, Simone; Sahlén, Birgitta; Sikström, Sverker
2016-10-01
We propose a method to quantify semantic linguistic maturity (SELMA) based on a high dimensional semantic representation of words created from the co-occurrence of words in a large text corpus. The method was applied to oral narratives from 108 children aged 4;0-12;10. By comparing the SELMA measure with maturity ratings made by human raters we found that SELMA predicted the rating of semantic maturity made by human raters over and above the prediction made using a child's age and number of words produced. We conclude that the semantic content of narratives changes in a predictable pattern with children's age and argue that SELMA is a measure quantifying semantic linguistic maturity. The study opens up the possibility of using quantitative measures for studying the development of semantic representation in children's narratives, and emphasizes the importance of word co-occurrences for understanding the development of meaning.
DeepMeSH: deep semantic representation for improving large-scale MeSH indexing.
Peng, Shengwen; You, Ronghui; Wang, Hongning; Zhai, Chengxiang; Mamitsuka, Hiroshi; Zhu, Shanfeng
2016-06-15
Medical Subject Headings (MeSH) indexing, which is to assign a set of MeSH main headings to citations, is crucial for many important tasks in biomedical text mining and information retrieval. Large-scale MeSH indexing has two challenging aspects: the citation side and MeSH side. For the citation side, all existing methods, including Medical Text Indexer (MTI) by National Library of Medicine and the state-of-the-art method, MeSHLabeler, deal with text by bag-of-words, which cannot capture semantic and context-dependent information well. We propose DeepMeSH that incorporates deep semantic information for large-scale MeSH indexing. It addresses the two challenges in both citation and MeSH sides. The citation side challenge is solved by a new deep semantic representation, D2V-TFIDF, which concatenates both sparse and dense semantic representations. The MeSH side challenge is solved by using the 'learning to rank' framework of MeSHLabeler, which integrates various types of evidence generated from the new semantic representation. DeepMeSH achieved a Micro F-measure of 0.6323, 2% higher than 0.6218 of MeSHLabeler and 12% higher than 0.5637 of MTI, for BioASQ3 challenge data with 6000 citations. The software is available upon request. zhusf@fudan.edu.cn Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press.
Semantic Likelihood Models for Bayesian Inference in Human-Robot Interaction
NASA Astrophysics Data System (ADS)
Sweet, Nicholas
Autonomous systems, particularly unmanned aerial systems (UAS), remain limited in au- tonomous capabilities largely due to a poor understanding of their environment. Current sensors simply do not match human perceptive capabilities, impeding progress towards full autonomy. Recent work has shown the value of humans as sources of information within a human-robot team; in target applications, communicating human-generated 'soft data' to autonomous systems enables higher levels of autonomy through large, efficient information gains. This requires development of a 'human sensor model' that allows soft data fusion through Bayesian inference to update the probabilistic belief representations maintained by autonomous systems. Current human sensor models that capture linguistic inputs as semantic information are limited in their ability to generalize likelihood functions for semantic statements: they may be learned from dense data; they do not exploit the contextual information embedded within groundings; and they often limit human input to restrictive and simplistic interfaces. This work provides mechanisms to synthesize human sensor models from constraints based on easily attainable a priori knowledge, develops compression techniques to capture information-dense semantics, and investigates the problem of capturing and fusing semantic information contained within unstructured natural language. A robotic experimental testbed is also developed to validate the above contributions.
A semantic web ontology for small molecules and their biological targets.
Choi, Jooyoung; Davis, Melissa J; Newman, Andrew F; Ragan, Mark A
2010-05-24
A wide range of data on sequences, structures, pathways, and networks of genes and gene products is available for hypothesis testing and discovery in biological and biomedical research. However, data describing the physical, chemical, and biological properties of small molecules have not been well-integrated with these resources. Semantically rich representations of chemical data, combined with Semantic Web technologies, have the potential to enable the integration of small molecule and biomolecular data resources, expanding the scope and power of biomedical and pharmacological research. We employed the Semantic Web technologies Resource Description Framework (RDF) and Web Ontology Language (OWL) to generate a Small Molecule Ontology (SMO) that represents concepts and provides unique identifiers for biologically relevant properties of small molecules and their interactions with biomolecules, such as proteins. We instanced SMO using data from three public data sources, i.e., DrugBank, PubChem and UniProt, and converted to RDF triples. Evaluation of SMO by use of predetermined competency questions implemented as SPARQL queries demonstrated that data from chemical and biomolecular data sources were effectively represented and that useful knowledge can be extracted. These results illustrate the potential of Semantic Web technologies in chemical, biological, and pharmacological research and in drug discovery.
Automaticity of phonological and semantic processing during visual word recognition.
Pattamadilok, Chotiga; Chanoine, Valérie; Pallier, Christophe; Anton, Jean-Luc; Nazarian, Bruno; Belin, Pascal; Ziegler, Johannes C
2017-04-01
Reading involves activation of phonological and semantic knowledge. Yet, the automaticity of the activation of these representations remains subject to debate. The present study addressed this issue by examining how different brain areas involved in language processing responded to a manipulation of bottom-up (level of visibility) and top-down information (task demands) applied to written words. The analyses showed that the same brain areas were activated in response to written words whether the task was symbol detection, rime detection, or semantic judgment. This network included posterior, temporal and prefrontal regions, which clearly suggests the involvement of orthographic, semantic and phonological/articulatory processing in all tasks. However, we also found interactions between task and stimulus visibility, which reflected the fact that the strength of the neural responses to written words in several high-level language areas varied across tasks. Together, our findings suggest that the involvement of phonological and semantic processing in reading is supported by two complementary mechanisms. First, an automatic mechanism that results from a task-independent spread of activation throughout a network in which orthography is linked to phonology and semantics. Second, a mechanism that further fine-tunes the sensitivity of high-level language areas to the sensory input in a task-dependent manner. Copyright © 2017 Elsevier Inc. All rights reserved.
Neurocognitive insights on conceptual knowledge and its breakdown
Lambon Ralph, Matthew A.
2014-01-01
Conceptual knowledge reflects our multi-modal ‘semantic database’. As such, it brings meaning to all verbal and non-verbal stimuli, is the foundation for verbal and non-verbal expression and provides the basis for computing appropriate semantic generalizations. Multiple disciplines (e.g. philosophy, cognitive science, cognitive neuroscience and behavioural neurology) have striven to answer the questions of how concepts are formed, how they are represented in the brain and how they break down differentially in various neurological patient groups. A long-standing and prominent hypothesis is that concepts are distilled from our multi-modal verbal and non-verbal experience such that sensation in one modality (e.g. the smell of an apple) not only activates the intramodality long-term knowledge, but also reactivates the relevant intermodality information about that item (i.e. all the things you know about and can do with an apple). This multi-modal view of conceptualization fits with contemporary functional neuroimaging studies that observe systematic variation of activation across different modality-specific association regions dependent on the conceptual category or type of information. A second vein of interdisciplinary work argues, however, that even a smorgasbord of multi-modal features is insufficient to build coherent, generalizable concepts. Instead, an additional process or intermediate representation is required. Recent multidisciplinary work, which combines neuropsychology, neuroscience and computational models, offers evidence that conceptualization follows from a combination of modality-specific sources of information plus a transmodal ‘hub’ representational system that is supported primarily by regions within the anterior temporal lobe, bilaterally. PMID:24324236
Integrating Experiential and Distributional Data to Learn Semantic Representations
ERIC Educational Resources Information Center
Andrews, Mark; Vigliocco, Gabriella; Vinson, David
2009-01-01
The authors identify 2 major types of statistical data from which semantic representations can be learned. These are denoted as "experiential data" and "distributional data". Experiential data are derived by way of experience with the physical world and comprise the sensory-motor data obtained through sense receptors. Distributional data, by…
Topic segmentation via community detection in complex networks
NASA Astrophysics Data System (ADS)
de Arruda, Henrique F.; Costa, Luciano da F.; Amancio, Diego R.
2016-06-01
Many real systems have been modeled in terms of network concepts, and written texts are a particular example of information networks. In recent years, the use of network methods to analyze language has allowed the discovery of several interesting effects, including the proposition of novel models to explain the emergence of fundamental universal patterns. While syntactical networks, one of the most prevalent networked models of written texts, display both scale-free and small-world properties, such a representation fails in capturing other textual features, such as the organization in topics or subjects. We propose a novel network representation whose main purpose is to capture the semantical relationships of words in a simple way. To do so, we link all words co-occurring in the same semantic context, which is defined in a threefold way. We show that the proposed representations favor the emergence of communities of semantically related words, and this feature may be used to identify relevant topics. The proposed methodology to detect topics was applied to segment selected Wikipedia articles. We found that, in general, our methods outperform traditional bag-of-words representations, which suggests that a high-level textual representation may be useful to study the semantical features of texts.
Topic segmentation via community detection in complex networks.
de Arruda, Henrique F; Costa, Luciano da F; Amancio, Diego R
2016-06-01
Many real systems have been modeled in terms of network concepts, and written texts are a particular example of information networks. In recent years, the use of network methods to analyze language has allowed the discovery of several interesting effects, including the proposition of novel models to explain the emergence of fundamental universal patterns. While syntactical networks, one of the most prevalent networked models of written texts, display both scale-free and small-world properties, such a representation fails in capturing other textual features, such as the organization in topics or subjects. We propose a novel network representation whose main purpose is to capture the semantical relationships of words in a simple way. To do so, we link all words co-occurring in the same semantic context, which is defined in a threefold way. We show that the proposed representations favor the emergence of communities of semantically related words, and this feature may be used to identify relevant topics. The proposed methodology to detect topics was applied to segment selected Wikipedia articles. We found that, in general, our methods outperform traditional bag-of-words representations, which suggests that a high-level textual representation may be useful to study the semantical features of texts.
The evaluation of sources of knowledge underlying different conceptual categories.
Gainotti, Guido; Spinelli, Pietro; Scaricamazza, Eugenia; Marra, Camillo
2013-01-01
According to the "embodied cognition" theory and the "sensory-motor model of semantic knowledge": (a) concepts are represented in the brain in the same format in which they are constructed by the sensory-motor system and (b) various conceptual categories differ according to the weight of different kinds of information in their representation. In this study, we tried to check the second assumption by asking normal elderly subjects to subjectively evaluate the role of various perceptual, motor and language-mediated sources of knowledge in the construction of different semantic categories. Our first aim was to rate the influence of different sources of knowledge in the representation of animals, plant life and artifact categories, rather than in living and non-living beings, as many previous studies on this subject have done. We also tried to check the influence of age and stimulus modality on these evaluations of the "sources of knowledge" underlying different conceptual categories. The influence of age was checked by comparing results obtained in our group of elderly subjects with those obtained in a previous study, conducted with a similar methodology on a sample of young students. And the influence of stimulus modality was assessed by presenting the stimuli in the verbal modality to 50 subjects and in the pictorial modality to 50 other subjects. The distinction between "animals" and "plant life" in the "living" categories was confirmed by analyzing their prevalent sources of knowledge and by a cluster analysis, which allowed us to distinguish "plant life" items from animals. Furthermore, results of the study showed: (a) that our subjects considered the visual modality as the main source of knowledge for all categories taken into account; and (b) that in biological categories the next most important source of information was represented by other perceptual modalities, whereas in artifacts it was represented by the actions performed with them. Finally, age and stimulus modality did not significantly influence judgment of relevance of the sources of knowledge involved in the construction of different conceptual categories.
Li, Ping; Schloss, Benjamin; Follmer, D Jake
2017-10-01
In this article we report a computational semantic analysis of the presidential candidates' speeches in the two major political parties in the USA. In Study One, we modeled the political semantic spaces as a function of party, candidate, and time of election, and findings revealed patterns of differences in the semantic representation of key political concepts and the changing landscapes in which the presidential candidates align or misalign with their parties in terms of the representation and organization of politically central concepts. Our models further showed that the 2016 US presidential nominees had distinct conceptual representations from those of previous election years, and these patterns did not necessarily align with their respective political parties' average representation of the key political concepts. In Study Two, structural equation modeling demonstrated that reported political engagement among voters differentially predicted reported likelihoods of voting for Clinton versus Trump in the 2016 presidential election. Study Three indicated that Republicans and Democrats showed distinct, systematic word association patterns for the same concepts/terms, which could be reliably distinguished using machine learning methods. These studies suggest that given an individual's political beliefs, we can make reliable predictions about how they understand words, and given how an individual understands those same words, we can also predict an individual's political beliefs. Our study provides a bridge between semantic space models and abstract representations of political concepts on the one hand, and the representations of political concepts and citizens' voting behavior on the other.
Mirman, Daniel; Magnuson, James S.
2008-01-01
The authors investigated semantic neighborhood density effects on visual word processing to examine the dynamics of activation and competition among semantic representations. Experiment 1 validated feature-based semantic representations as a basis for computing semantic neighborhood density and suggested that near and distant neighbors have opposite effects on word processing. Experiment 2 confirmed these results: Word processing was slower for dense near neighborhoods and faster for dense distant neighborhoods. Analysis of a computational model showed that attractor dynamics can produce this pattern of neighborhood effects. The authors argue for reconsideration of traditional models of neighborhood effects in terms of attractor dynamics, which allow both inhibitory and facilitative effects to emerge. PMID:18194055
Consolidation of Complex Events via Reinstatement in Posterior Cingulate Cortex.
Bird, Chris M; Keidel, James L; Ing, Leslie P; Horner, Aidan J; Burgess, Neil
2015-10-28
It is well-established that active rehearsal increases the efficacy of memory consolidation. It is also known that complex events are interpreted with reference to prior knowledge. However, comparatively little attention has been given to the neural underpinnings of these effects. In healthy adults humans, we investigated the impact of effortful, active rehearsal on memory for events by showing people several short video clips and then asking them to recall these clips, either aloud (Experiment 1) or silently while in an MRI scanner (Experiment 2). In both experiments, actively rehearsed clips were remembered in far greater detail than unrehearsed clips when tested a week later. In Experiment 1, highly similar descriptions of events were produced across retrieval trials, suggesting a degree of semanticization of the memories had taken place. In Experiment 2, spatial patterns of BOLD signal in medial temporal and posterior midline regions were correlated when encoding and rehearsing the same video. Moreover, the strength of this correlation in the posterior cingulate predicted the amount of information subsequently recalled. This is likely to reflect a strengthening of the representation of the video's content. We argue that these representations combine both new episodic information and stored semantic knowledge (or "schemas"). We therefore suggest that posterior midline structures aid consolidation by reinstating and strengthening the associations between episodic details and more generic schematic information. This leads to the creation of coherent memory representations of lifelike, complex events that are resistant to forgetting, but somewhat inflexible and semantic-like in nature. Copyright © 2015 Bird, Keidel et al.
Semantic and Syntactic Interference in Sentence Comprehension: A Comparison of Working Memory Models
Tan, Yingying; Martin, Randi C.; Van Dyke, Julie A.
2017-01-01
This study investigated the nature of the underlying working memory system supporting sentence processing through examining individual differences in sensitivity to retrieval interference effects during sentence comprehension. Interference effects occur when readers incorrectly retrieve sentence constituents which are similar to those required during integrative processes. We examined interference arising from a partial match between distracting constituents and syntactic and semantic cues, and related these interference effects to performance on working memory, short-term memory (STM), vocabulary, and executive function tasks. For online sentence comprehension, as measured by self-paced reading, the magnitude of individuals' syntactic interference effects was predicted by general WM capacity and the relation remained significant when partialling out vocabulary, indicating that the effects were not due to verbal knowledge. For offline sentence comprehension, as measured by responses to comprehension questions, both general WM capacity and vocabulary knowledge interacted with semantic interference for comprehension accuracy, suggesting that both general WM capacity and the quality of semantic representations played a role in determining how well interference was resolved offline. For comprehension question reaction times, a measure of semantic STM capacity interacted with semantic but not syntactic interference. However, a measure of phonological capacity (digit span) and a general measure of resistance to response interference (Stroop effect) did not predict individuals' interference resolution abilities in either online or offline sentence comprehension. The results are discussed in relation to the multiple capacities account of working memory (e.g., Martin and Romani, 1994; Martin and He, 2004), and the cue-based retrieval parsing approach (e.g., Lewis et al., 2006; Van Dyke et al., 2014). While neither approach was fully supported, a possible means of reconciling the two approaches and directions for future research are proposed. PMID:28261133
Gruenenfelder, Thomas M; Recchia, Gabriel; Rubin, Tim; Jones, Michael N
2016-08-01
We compared the ability of three different contextual models of lexical semantic memory (BEAGLE, Latent Semantic Analysis, and the Topic model) and of a simple associative model (POC) to predict the properties of semantic networks derived from word association norms. None of the semantic models were able to accurately predict all of the network properties. All three contextual models over-predicted clustering in the norms, whereas the associative model under-predicted clustering. Only a hybrid model that assumed that some of the responses were based on a contextual model and others on an associative network (POC) successfully predicted all of the network properties and predicted a word's top five associates as well as or better than the better of the two constituent models. The results suggest that participants switch between a contextual representation and an associative network when generating free associations. We discuss the role that each of these representations may play in lexical semantic memory. Concordant with recent multicomponent theories of semantic memory, the associative network may encode coordinate relations between concepts (e.g., the relation between pea and bean, or between sparrow and robin), and contextual representations may be used to process information about more abstract concepts. Copyright © 2015 Cognitive Science Society, Inc.
Pillay, Sara B.; Humphries, Colin J.; Gross, William L.; Graves, William W.; Book, Diane S.
2016-01-01
Patients with surface dyslexia have disproportionate difficulty pronouncing irregularly spelled words (e.g. pint), suggesting impaired use of lexical-semantic information to mediate phonological retrieval. Patients with this deficit also make characteristic ‘regularization’ errors, in which an irregularly spelled word is mispronounced by incorrect application of regular spelling-sound correspondences (e.g. reading plaid as ‘played’), indicating over-reliance on sublexical grapheme–phoneme correspondences. We examined the neuroanatomical correlates of this specific error type in 45 patients with left hemisphere chronic stroke. Voxel-based lesion–symptom mapping showed a strong positive relationship between the rate of regularization errors and damage to the posterior half of the left middle temporal gyrus. Semantic deficits on tests of single-word comprehension were generally mild, and these deficits were not correlated with the rate of regularization errors. Furthermore, the deep occipital-temporal white matter locus associated with these mild semantic deficits was distinct from the lesion site associated with regularization errors. Thus, in contrast to patients with surface dyslexia and semantic impairment from anterior temporal lobe degeneration, surface errors in our patients were not related to a semantic deficit. We propose that these patients have an inability to link intact semantic representations with phonological representations. The data provide novel evidence for a post-semantic mechanism mediating the production of surface errors, and suggest that the posterior middle temporal gyrus may compute an intermediate representation linking semantics with phonology. PMID:26966139
Not just semantics: Strong frequency and weak cognate effects on semantic association in bilinguals
Antón-Méndez, Inés; Gollan, Tamar H.
2012-01-01
To investigate the possibility that knowledge of two languages influences the nature of semantic representations, bilinguals and monolinguals were compared in a word association task. In Experiment 1, bilinguals produced less typical responses relative to monolinguals when given cues with a very common associate (e.g., given bride, bilinguals said “dress” instead of “groom”). In Experiment 2, bilinguals produced responses as typical as those of monolinguals when given cues with high-frequency associates, but not when given cues with low-frequency associates. Bilinguals’ responses were also affected, to a certain extent, by the cognate status of the stimulus word pairs: They were more similar to monolinguals’ responses when the cue and its strongest associate were both cognates (e.g., minute–second is minuto–segundo in Spanish), as opposed to both being noncognates. Experiment 3 confirmed the presence of a robust frequency effect on bilingual but not on monolingual association responses. These findings imply a lexical locus for the bilingual effect on association responses and reveal the association task to be not quite as purely semantic as was previously assumed. PMID:20852236
Heteromodal Cortical Areas Encode Sensory-Motor Features of Word Meaning.
Fernandino, Leonardo; Humphries, Colin J; Conant, Lisa L; Seidenberg, Mark S; Binder, Jeffrey R
2016-09-21
The capacity to process information in conceptual form is a fundamental aspect of human cognition, yet little is known about how this type of information is encoded in the brain. Although the role of sensory and motor cortical areas has been a focus of recent debate, neuroimaging studies of concept representation consistently implicate a network of heteromodal areas that seem to support concept retrieval in general rather than knowledge related to any particular sensory-motor content. We used predictive machine learning on fMRI data to investigate the hypothesis that cortical areas in this "general semantic network" (GSN) encode multimodal information derived from basic sensory-motor processes, possibly functioning as convergence-divergence zones for distributed concept representation. An encoding model based on five conceptual attributes directly related to sensory-motor experience (sound, color, shape, manipulability, and visual motion) was used to predict brain activation patterns associated with individual lexical concepts in a semantic decision task. When the analysis was restricted to voxels in the GSN, the model was able to identify the activation patterns corresponding to individual concrete concepts significantly above chance. In contrast, a model based on five perceptual attributes of the word form performed at chance level. This pattern was reversed when the analysis was restricted to areas involved in the perceptual analysis of written word forms. These results indicate that heteromodal areas involved in semantic processing encode information about the relative importance of different sensory-motor attributes of concepts, possibly by storing particular combinations of sensory and motor features. The present study used a predictive encoding model of word semantics to decode conceptual information from neural activity in heteromodal cortical areas. The model is based on five sensory-motor attributes of word meaning (color, shape, sound, visual motion, and manipulability) and encodes the relative importance of each attribute to the meaning of a word. This is the first demonstration that heteromodal areas involved in semantic processing can discriminate between different concepts based on sensory-motor information alone. This finding indicates that the brain represents concepts as multimodal combinations of sensory and motor representations. Copyright © 2016 the authors 0270-6474/16/369763-07$15.00/0.
Enhancing the Dependability of Complex Missions Through Automated Analysis
2013-09-01
triangular or self - referential relationships. The Semantic Web Rule Language (SWRL)—a W3C-approved OWL extension—addresses some of these limitations by...SWRL extends OWL with Horn-like rules that can model complex relational structures and self - referential relationships; Prolog extends OWL+SWRL with the...8]. Additionally, multi-agent model checking has been used to verify OWL-S process models [9]. OWL is a powerful knowledge representation formalism
A computational model for simulating text comprehension.
Lemaire, Benoît; Denhière, Guy; Bellissens, Cédrick; Jhean-Larose, Sandra
2006-11-01
In the present article, we outline the architecture of a computer program for simulating the process by which humans comprehend texts. The program is based on psycholinguistic theories about human memory and text comprehension processes, such as the construction-integration model (Kintsch, 1998), the latent semantic analysis theory of knowledge representation (Landauer & Dumais, 1997), and the predication algorithms (Kintsch, 2001; Lemaire & Bianco, 2003), and it is intended to help psycholinguists investigate the way humans comprehend texts.
From specific examples to general knowledge in language learning.
Tamminen, Jakke; Davis, Matthew H; Rastle, Kathleen
2015-06-01
The extraction of general knowledge from individual episodes is critical if we are to learn new knowledge or abilities. Here we uncover some of the key cognitive mechanisms that characterise this process in the domain of language learning. In five experiments adult participants learned new morphological units embedded in fictitious words created by attaching new affixes (e.g., -afe) to familiar word stems (e.g., "sleepafe is a participant in a study about the effects of sleep"). Participants' ability to generalise semantic knowledge about the affixes was tested using tasks requiring the comprehension and production of novel words containing a trained affix (e.g., sailafe). We manipulated the delay between training and test (Experiment 1), the number of unique exemplars provided for each affix during training (Experiment 2), and the consistency of the form-to-meaning mapping of the affixes (Experiments 3-5). In a task where speeded online language processing is required (semantic priming), generalisation was achieved only after a memory consolidation opportunity following training, and only if the training included a sufficient number of unique exemplars. Semantic inconsistency disrupted speeded generalisation unless consolidation was allowed to operate on one of the two affix-meanings before introducing inconsistencies. In contrast, in tasks that required slow, deliberate reasoning, generalisation could be achieved largely irrespective of the above constraints. These findings point to two different mechanisms of generalisation that have different cognitive demands and rely on different types of memory representations. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.
Kumar, Anand; Ciccarese, Paolo; Quaglini, Silvana; Stefanelli, Mario; Caffi, Ezio; Boiocchi, Lorenzo
2003-01-01
Medical knowledge in clinical practice guideline (GL) texts is the source of task-based computer-interpretable clinical guideline models (CIGMs). We have used Unified Medical Language System (UMLS) semantic types (STs) to understand the percentage of GL text which belongs to a particular ST. We also use UMLS semantic network together with the CIGM-specific ontology to derive a semantic meaning behind the GL text. In order to achieve this objective, we took nine GL texts from the National Guideline Clearinghouse (NGC) and marked up the text dealing with a particular ST. The STs we took into consideration were restricted taking into account the requirements of a task-based CIGM. We used DARPA Agent Markup Language and Ontology Inference Layer (DAML + OIL) to create the UMLS and CIGM specific semantic network. For the latter, as a bench test, we used the 1999 WHO-International Society of Hypertension Guidelines for the Management of Hypertension. We took into consideration the UMLS STs closest to the clinical tasks. The percentage of the GL text dealing with the ST "Health Care Activity" and subtypes "Laboratory Procedure", "Diagnostic Procedure" and "Therapeutic or Preventive Procedure" were measured. The parts of text belonging to other STs or comments were separated. A mapping of terms belonging to other STs was done to the STs under "HCA" for representation in DAML + OIL. As a result, we found that the three STs under "HCA" were the predominant STs present in the GL text. In cases where the terms of related STs existed, they were mapped into one of the three STs. The DAML + OIL representation was able to describe the hierarchy in task-based CIGMs. To conclude, we understood that the three STs could be used to represent the semantic network of the task-bases CIGMs. We identified some mapping operators which could be used for the mapping of other STs into these.
Weng, Chunhua; Payne, Philip R O; Velez, Mark; Johnson, Stephen B; Bakken, Suzanne
2014-01-01
The successful adoption by clinicians of evidence-based clinical practice guidelines (CPGs) contained in clinical information systems requires efficient translation of free-text guidelines into computable formats. Natural language processing (NLP) has the potential to improve the efficiency of such translation. However, it is laborious to develop NLP to structure free-text CPGs using existing formal knowledge representations (KR). In response to this challenge, this vision paper discusses the value and feasibility of supporting symbiosis in text-based knowledge acquisition (KA) and KR. We compare two ontologies: (1) an ontology manually created by domain experts for CPG eligibility criteria and (2) an upper-level ontology derived from a semantic pattern-based approach for automatic KA from CPG eligibility criteria text. Then we discuss the strengths and limitations of interweaving KA and NLP for KR purposes and important considerations for achieving the symbiosis of KR and NLP for structuring CPGs to achieve evidence-based clinical practice.
Zhao, Jing; Yang, Yang; Song, Yao-Wu; Bi, Hong-Yan
2015-11-01
This study explored the underlying mechanism of the verbal short-term memory deficit in Chinese children with developmental dyslexia. Twenty-four children with dyslexia and 28 age-matched normal readers participated in the study. They were required to memorize a visually presented series of six Chinese characters and identify them from a list also including code-specific distracters and non-code-specific distracters. Error rates were recorded and were higher for code-specific distracters in all three conditions, revealing phonological, visual, and semantic similarity effects respectively. Group comparisons showed a stronger phonological similarity effect in dyslexic group, suggesting intact activation of phonological representations of target characters. Children with dyslexia also exhibited a greater semantic similarity effect, revealing stronger activation of semantic representations, while visual similarity effects were equivalent to controls. These results suggest that the verbal short-term memory deficit in Chinese dyslexics might not stem from insufficient activation of phonological information. Based the semantic activation of target characters in dyslexics is greater than in controls, it is possible that the memory deficit of dyslexia is related with deficient inhibition of target semantic representations in short-term memory. Copyright © 2015 John Wiley & Sons, Ltd.
ERIC Educational Resources Information Center
Iwasaki, Noriko; Vinson, David P.; Vigliocco, Gabriella
2010-01-01
We investigate linguistic relativity effects by examining whether the grammatical count/mass distinction in English affects English speakers' semantic representations of noun referents, as compared with those of Japanese speakers, whose language does not grammatically distinguish nouns for countability. We used two tasks which are sensitive to…
Leshinskaya, Anna; Contreras, Juan Manuel; Caramazza, Alfonso; Mitchell, Jason P.
2017-01-01
Abstract The present experiment identified neural regions that represent a class of concepts that are independent of perceptual or sensory attributes. During functional magnetic resonance imaging scanning, participants viewed names of social groups (e.g. Atheists, Evangelicals, and Economists) and performed a one-back similarity judgment according to 1 of 2 dimensions of belief attributes: political orientation (Liberal to Conservative) or spiritualism (Spiritualist to Materialist). By generalizing across a wide variety of social groups that possess these beliefs, these attribute concepts did not coincide with any specific sensory quality, allowing us to target conceptual, rather than perceptual, representations. Multi-voxel pattern searchlight analysis was used to identify regions in which activation patterns distinguished the 2 ends of both dimensions: Conservative from Liberal social groups when participants focused on the political orientation dimension, and spiritual from Materialist groups when participants focused on the spiritualism dimension. A cluster in right precuneus exhibited such a pattern, indicating that it carries information about belief-attribute concepts and forms part of semantic memory—perhaps a component particularly concerned with psychological traits. This region did not overlap with the theory of mind network, which engaged nearby, but distinct, parts of precuneus. These findings have implications for the neural organization of conceptual knowledge, especially the understanding of social groups. PMID:28108495
Mainela-Arnold, Elina; Evans, Julia L.; Coady, Jeffry
2010-01-01
Purpose This study investigated the impact of lexical processes on target word recall in sentence span tasks in children with and without specific language impairment (SLI). Method Participants were 42 children (ages 8;2–12;3), 21 with SLI and 21 typically developing peers matched on age and nonverbal IQ. Children completed a sentence span task where target words to be recalled varied in word frequency and neighborhood density. Two measures of lexical processes were examined, the number of non-target competitor words activated during a gating task (lexical cohort competition) and word definitions. Results Neighborhood density had no effect on word recall for either group. However, both groups recalled significantly more high than low frequency words. Lexical cohort competition and specificity of semantic representations accounted for unique variance in the number of target word recalled in the SLI and CA groups combined. Conclusions Performance on verbal working memory span tasks for both SLI and CA children is influenced by word frequency, lexical cohorts, and semantic representations. Future studies need to examine the extent to which verbal working memory capacity is a cognitive construct independent of extant language knowledge representations. PMID:20705747
Strategies for generating multiple instances of common and ad hoc categories.
Vallée-Tourangeau, F; Anthony, S H; Austin, N G
1998-09-01
In a free-emission procedure participants were asked to generate instances of a given category and to report, retrospectively, the strategies that they were aware of using in retrieving instances. In two studies reported here, participants generated instances for common categories (e.g. fruit) and for ad hoc categories (e.g., things people keep in their pockets) for 90 seconds and for each category described how they had proceeded in doing so. Analysis of the protocols identified three broad classes of strategy: (1) experiential, where memories of specific or generic personal experiences involving interactions with the category instances acted as cues; (2) semantic, where a consideration of abstract conceptual characteristics of a category were employed to retrieve category exemplars; (3) unmediated, where instances were effortlessly retrieved without mediating cognitions of which subjects were aware. Experiential strategies outnumbered semantic strategies (on average 4 to 1) not only for ad hoc categories but also for common categories. This pattern was noticeably reversed for ad hoc categories that subjects were unlikely to have experienced personally (e.g. things sold on the black market in Russia). Whereas more traditional accounts of semantic memory have favoured decontextualised abstract representations of category knowledge, to the extent that mode of access informs us of knowledge structures, our data suggest that category knowledge is significantly grounded in terms of everyday contexts where category instances are encountered.
Lack of semantic priming effects in famous person recognition in Mild Cognitive Impairment.
Brambati, Simona M; Peters, Frédéric; Belleville, Sylvie; Joubert, Sven
2012-04-01
Growing evidence indicates that individuals with Mild Cognitive Impairment (MCI) manifest semantic deficits that are often more severe for items that are characterized by a unique semantic and lexical association, such as famous people and famous buildings, than common concepts, such as objects. However, it is still controversial whether the semantic deficits observed in MCI are determined by a degradation of semantic information or by a deficit in intentional access to semantic knowledge. Here we used a semantic priming task in order to assess the integrity of the semantic system without requiring explicit access to this system. This paradigm may provide new insights in clarifying the nature of the semantic deficits in MCI. We assessed the semantic and repetition priming effect in 13 individuals with MCI and 13 age-matched controls who engaged in a familiarity judgment task of famous names. In the semantic priming condition, the prime was the name of a member of the same occupation category as the target (Tom Cruise-Brad Pitt), while in the repetition priming condition the prime was the same name as the target (Charlie Chaplin-Charlie Chaplin). The results showed a defective priming effect in MCI in the semantic but not in the repetition priming condition. Specifically, when compared to controls, MCI patients did not show a facilitation effect in responding to the same occupation prime-target pairs, but they showed an equivalent facilitation effect when the target was the same name as the prime. The present results provide support to the hypothesis that the semantic impairments observed in MCI cannot be uniquely ascribed to a deficit in intentional access to semantic information. Instead, these findings point to the semantic nature of these deficits and, in particular, to a degraded representation of semantic information concerning famous people. Copyright © 2011 Elsevier Srl. All rights reserved.
Pluciennicka, Ewa; Wamain, Yannick; Coello, Yann; Kalénine, Solène
2016-07-01
The aim of this study was to specify the role of action representations in thematic and functional similarity relations between manipulable artifact objects. Recent behavioral and neurophysiological evidence indicates that while they are all relevant for manipulable artifact concepts, semantic relations based on thematic (e.g., saw-wood), specific function similarity (e.g., saw-axe), and general function similarity (e.g., saw-knife) are differently processed, and may relate to different levels of action representation. Point-light displays of object-related actions previously encoded at the gesture level (e.g., "sawing") or at the higher level of action representation (e.g., "cutting") were used as primes before participants identified target objects (e.g., saw) among semantically related and unrelated distractors (e.g., wood, feather, piano). Analysis of eye movements on the different objects during target identification informed about the amplitude and the timing of implicit activation of the different semantic relations. Results showed that action prime encoding impacted the processing of thematic relations, but not that of functional similarity relations. Semantic competition with thematic distractors was greater and earlier following action primes encoded at the gesture level compared to action primes encoded at higher level. As a whole, these findings highlight the direct influence of action representations on thematic relation processing, and suggest that thematic relations involve gesture-level representations rather than intention-level representations.
Natural language acquisition in large scale neural semantic networks
NASA Astrophysics Data System (ADS)
Ealey, Douglas
This thesis puts forward the view that a purely signal- based approach to natural language processing is both plausible and desirable. By questioning the veracity of symbolic representations of meaning, it argues for a unified, non-symbolic model of knowledge representation that is both biologically plausible and, potentially, highly efficient. Processes to generate a grounded, neural form of this model-dubbed the semantic filter-are discussed. The combined effects of local neural organisation, coincident with perceptual maturation, are used to hypothesise its nature. This theoretical model is then validated in light of a number of fundamental neurological constraints and milestones. The mechanisms of semantic and episodic development that the model predicts are then used to explain linguistic properties, such as propositions and verbs, syntax and scripting. To mimic the growth of locally densely connected structures upon an unbounded neural substrate, a system is developed that can grow arbitrarily large, data- dependant structures composed of individual self- organising neural networks. The maturational nature of the data used results in a structure in which the perception of concepts is refined by the networks, but demarcated by subsequent structure. As a consequence, the overall structure shows significant memory and computational benefits, as predicted by the cognitive and neural models. Furthermore, the localised nature of the neural architecture also avoids the increasing error sensitivity and redundancy of traditional systems as the training domain grows. The semantic and episodic filters have been demonstrated to perform as well, or better, than more specialist networks, whilst using significantly larger vocabularies, more complex sentence forms and more natural corpora.
Ontological Representation of Light Wave Camera Data to Support Vision-Based AmI
Serrano, Miguel Ángel; Gómez-Romero, Juan; Patricio, Miguel Ángel; García, Jesús; Molina, José Manuel
2012-01-01
Recent advances in technologies for capturing video data have opened a vast amount of new application areas in visual sensor networks. Among them, the incorporation of light wave cameras on Ambient Intelligence (AmI) environments provides more accurate tracking capabilities for activity recognition. Although the performance of tracking algorithms has quickly improved, symbolic models used to represent the resulting knowledge have not yet been adapted to smart environments. This lack of representation does not allow to take advantage of the semantic quality of the information provided by new sensors. This paper advocates for the introduction of a part-based representational level in cognitive-based systems in order to accurately represent the novel sensors' knowledge. The paper also reviews the theoretical and practical issues in part-whole relationships proposing a specific taxonomy for computer vision approaches. General part-based patterns for human body and transitive part-based representation and inference are incorporated to an ontology-based previous framework to enhance scene interpretation in the area of video-based AmI. The advantages and new features of the model are demonstrated in a Social Signal Processing (SSP) application for the elaboration of live market researches.
DeepMeSH: deep semantic representation for improving large-scale MeSH indexing
Peng, Shengwen; You, Ronghui; Wang, Hongning; Zhai, Chengxiang; Mamitsuka, Hiroshi; Zhu, Shanfeng
2016-01-01
Motivation: Medical Subject Headings (MeSH) indexing, which is to assign a set of MeSH main headings to citations, is crucial for many important tasks in biomedical text mining and information retrieval. Large-scale MeSH indexing has two challenging aspects: the citation side and MeSH side. For the citation side, all existing methods, including Medical Text Indexer (MTI) by National Library of Medicine and the state-of-the-art method, MeSHLabeler, deal with text by bag-of-words, which cannot capture semantic and context-dependent information well. Methods: We propose DeepMeSH that incorporates deep semantic information for large-scale MeSH indexing. It addresses the two challenges in both citation and MeSH sides. The citation side challenge is solved by a new deep semantic representation, D2V-TFIDF, which concatenates both sparse and dense semantic representations. The MeSH side challenge is solved by using the ‘learning to rank’ framework of MeSHLabeler, which integrates various types of evidence generated from the new semantic representation. Results: DeepMeSH achieved a Micro F-measure of 0.6323, 2% higher than 0.6218 of MeSHLabeler and 12% higher than 0.5637 of MTI, for BioASQ3 challenge data with 6000 citations. Availability and Implementation: The software is available upon request. Contact: zhusf@fudan.edu.cn Supplementary information: Supplementary data are available at Bioinformatics online. PMID:27307646
A filter-mediated communication model for design collaboration in building construction.
Lee, Jaewook; Jeong, Yongwook; Oh, Minho; Hong, Seung Wan
2014-01-01
Multidisciplinary collaboration is an important aspect of modern engineering activities, arising from the growing complexity of artifacts whose design and construction require knowledge and skills that exceed the capacities of any one professional. However, current collaboration in the architecture, engineering, and construction industries often fails due to lack of shared understanding between different participants and limitations of their supporting tools. To achieve a high level of shared understanding, this study proposes a filter-mediated communication model. In the proposed model, participants retain their own data in the form most appropriate for their needs with domain-specific filters that transform the neutral representations into semantically rich ones, as needed by the participants. Conversely, the filters can translate semantically rich, domain-specific data into a neutral representation that can be accessed by other domain-specific filters. To validate the feasibility of the proposed model, we computationally implement the filter mechanism and apply it to a hypothetical test case. The result acknowledges that the filter mechanism can let the participants know ahead of time what will be the implications of their proposed actions, as seen from other participants' points of view.
Musolino, Julien
2013-01-01
Sentences containing plural numerical expressions (e.g., two boys) can give rise to two interpretations (collective and distributive), arising from the fact that their representation admits of a part-whole structure. We present the results of a series of experiments designed to explore children’s understanding of this distinction and its implications for the acquisition of linguistic expressions with number words. We show that preschoolers access both interpretations, indicating that they have the requisite linguistic and conceptual machinery to generate the corresponding representations. Furthermore, they can shift their interpretation in response to structural and lexical manipulations. However, they are not fully adult-like: unlike adults, they are drawn to the distributive interpretation, and are not yet aware of the lexical semantics of each and together, which should favor one or another interpretation. This research bridges a gap between a well-established body of work in cognitive psychology on the acquisition of number words and more recent work investigating children’s knowledge of the syntactic and semantic properties of sentences featuring numerical expressions. PMID:24223477
Syrett, Kristen; Musolino, Julien
2013-01-01
Sentences containing plural numerical expressions (e.g., two boys ) can give rise to two interpretations (collective and distributive), arising from the fact that their representation admits of a part-whole structure. We present the results of a series of experiments designed to explore children's understanding of this distinction and its implications for the acquisition of linguistic expressions with number words. We show that preschoolers access both interpretations, indicating that they have the requisite linguistic and conceptual machinery to generate the corresponding representations. Furthermore, they can shift their interpretation in response to structural and lexical manipulations. However, they are not fully adult-like: unlike adults, they are drawn to the distributive interpretation, and are not yet aware of the lexical semantics of each and together , which should favor one or another interpretation. This research bridges a gap between a well-established body of work in cognitive psychology on the acquisition of number words and more recent work investigating children's knowledge of the syntactic and semantic properties of sentences featuring numerical expressions.
An Enriched Unified Medical Language System Semantic Network with a Multiple Subsumption Hierarchy
Zhang, Li; Perl, Yehoshua; Halper, Michael; Geller, James; Cimino, James J.
2004-01-01
Objective: The Unified Medical Language System's (UMLS's) Semantic Network's (SN's) two-tree structure is restrictive because it does not allow a semantic type to be a specialization of several other semantic types. In this article, the SN is expanded into a multiple subsumption structure with a directed acyclic graph (DAG) IS-A hierarchy, allowing a semantic type to have multiple parents. New viable IS-A links are added as warranted. Design: Two methodologies are presented to identify and add new viable IS-A links. The first methodology is based on imposing the characteristic of connectivity on a previously presented partition of the SN. Four transformations are provided to find viable IS-A links in the process of converting the partition's disconnected groups into connected ones. The second methodology identifies new IS-A links through a string matching process involving names and definitions of various semantic types in the SN. A domain expert is needed to review all the results to determine the validity of the new IS-A links. Results: Nineteen new IS-A links are added to the SN, and four new semantic types are also created to support the multiple subsumption framework. The resulting network, called the Enriched Semantic Network (ESN), exhibits a DAG-structured hierarchy. A partition of the ESN containing 19 connected groups is also derived. Conclusion: The ESN is an expanded abstraction of the UMLS compared with the original SN. Its multiple subsumption hierarchy can accommodate semantic types with multiple parents. Its representation thus provides direct access to a broader range of subsumption knowledge. PMID:14764611
Linan, Margaret K; Sottara, Davide; Freimuth, Robert R
2015-01-01
Pharmacogenomics (PGx) guidelines contain drug-gene relationships, therapeutic and clinical recommendations from which clinical decision support (CDS) rules can be extracted, rendered and then delivered through clinical decision support systems (CDSS) to provide clinicians with just-in-time information at the point of care. Several tools exist that can be used to generate CDS rules that are based on computer interpretable guidelines (CIG), but none have been previously applied to the PGx domain. We utilized the Unified Modeling Language (UML), the Health Level 7 virtual medical record (HL7 vMR) model, and standard terminologies to represent the semantics and decision logic derived from a PGx guideline, which were then mapped to the Health eDecisions (HeD) schema. The modeling and extraction processes developed here demonstrate how structured knowledge representations can be used to support the creation of shareable CDS rules from PGx guidelines.
Bermeitinger, Christina; Wentura, Dirk; Frings, Christian
2011-06-01
"Semantic priming" refers to the phenomenon that people react faster to target words preceded by semantically related rather than semantically unrelated words. We wondered whether momentary mind sets modulate semantic priming for natural versus artifactual categories. We interspersed a category priming task with a second task that required participants to react to either the perceptual or action features of simple geometric shapes. Focusing on perceptual features enhanced semantic priming effects for natural categories, whereas focusing on action features enhanced semantic priming effects for artifactual categories. In fact, significant priming effects emerged only for those categories thought to rely on the features activated by the second task. This result suggests that (a) priming effects depend on momentary mind set and (b) features can be weighted flexibly in concept representations; it is also further evidence for sensory-functional accounts of concept and category representation.
Integrating Conceptual Knowledge Within and Across Representational Modalities
McNorgan, Chris; Reid, Jackie; McRae, Ken
2011-01-01
Research suggests that concepts are distributed across brain regions specialized for processing information from different sensorimotor modalities. Multimodal semantic models fall into one of two broad classes differentiated by the assumed hierarchy of convergence zones over which information is integrated. In shallow models, communication within- and between-modality is accomplished using either direct connectivity, or a central semantic hub. In deep models, modalities are connected via cascading integration sites with successively wider receptive fields. Four experiments provide the first direct behavioral tests of these models using speeded tasks involving feature inference and concept activation. Shallow models predict no within-modal versus cross-modal difference in either task, whereas deep models predict a within-modal advantage for feature inference, but a cross-modal advantage for concept activation. Experiments 1 and 2 used relatedness judgments to tap participants’ knowledge of relations for within- and cross-modal feature pairs. Experiments 3 and 4 used a dual feature verification task. The pattern of decision latencies across Experiments 1 to 4 is consistent with a deep integration hierarchy. PMID:21093853
Towards a Ubiquitous User Model for Profile Sharing and Reuse
de Lourdes Martinez-Villaseñor, Maria; Gonzalez-Mendoza, Miguel; Hernandez-Gress, Neil
2012-01-01
People interact with systems and applications through several devices and are willing to share information about preferences, interests and characteristics. Social networking profiles, data from advanced sensors attached to personal gadgets, and semantic web technologies such as FOAF and microformats are valuable sources of personal information that could provide a fair understanding of the user, but profile information is scattered over different user models. Some researchers in the ubiquitous user modeling community envision the need to share user model's information from heterogeneous sources. In this paper, we address the syntactic and semantic heterogeneity of user models in order to enable user modeling interoperability. We present a dynamic user profile structure based in Simple Knowledge Organization for the Web (SKOS) to provide knowledge representation for ubiquitous user model. We propose a two-tier matching strategy for concept schemas alignment to enable user modeling interoperability. Our proposal is proved in the application scenario of sharing and reusing data in order to deal with overweight and obesity. PMID:23201995
Exploiting salient semantic analysis for information retrieval
NASA Astrophysics Data System (ADS)
Luo, Jing; Meng, Bo; Quan, Changqin; Tu, Xinhui
2016-11-01
Recently, many Wikipedia-based methods have been proposed to improve the performance of different natural language processing (NLP) tasks, such as semantic relatedness computation, text classification and information retrieval. Among these methods, salient semantic analysis (SSA) has been proven to be an effective way to generate conceptual representation for words or documents. However, its feasibility and effectiveness in information retrieval is mostly unknown. In this paper, we study how to efficiently use SSA to improve the information retrieval performance, and propose a SSA-based retrieval method under the language model framework. First, SSA model is adopted to build conceptual representations for documents and queries. Then, these conceptual representations and the bag-of-words (BOW) representations can be used in combination to estimate the language models of queries and documents. The proposed method is evaluated on several standard text retrieval conference (TREC) collections. Experiment results on standard TREC collections show the proposed models consistently outperform the existing Wikipedia-based retrieval methods.
Lorenz, Antje; Zwitserlood, Pienie
2016-01-01
This study examines the lexical representation and processing of noun-noun compounds and their grammatical gender during speech production in German, a language that codes for grammatical gender (masculine, feminine, and neuter). Using a picture-word interference paradigm, participants produced determiner-compound noun phrases in response to pictures, while ignoring written distractor words. Compound targets were either semantically transparent (e.g., birdhouse) or opaque (e.g., hotdog), and their constituent nouns either had the same or a different gender (internal gender match). Effects of gender-congruent but otherwise unrelated distractor nouns, and of two morphologically related distractors corresponding to the first or second constituent were assessed relative to a completely unrelated, gender-incongruent distractor baseline. Both constituent distractors strongly facilitated compound naming, and these effects were independent of the targets' semantic transparency. This supports retrieval of constituent morphemes for semantically transparent and opaque compounds during speech production. Furthermore, gender congruency between compounds and distractors did not speed up naming in general, but interacted with gender match of the compounds' constituent nouns, and their semantic transparency. A significant gender-congruency effect was obtained with semantically transparent compounds, consisting of two constituent nouns of the same gender, only. In principle, this pattern is compatible with a multiple lemma representation account for semantically transparent, but not for opaque compounds. The data also fit with a more parsimonious, holistic representation for all compounds at the lemma level, when differences in co-activation patterns for semantically transparent and opaque compounds are considered.
Hauk, Olaf
2016-08-01
Theoretical developments about the nature of semantic representations and processes should be accompanied by a discussion of how these theories can be validated on the basis of empirical data. Here, I elaborate on the link between theory and empirical research, highlighting the need for temporal information in order to distinguish fundamental aspects of semantics. The generic point that fast cognitive processes demand fast measurement techniques has been made many times before, although arguably more often in the psychophysiological community than in the metabolic neuroimaging community. Many reviews on the neuroscience of semantics mostly or even exclusively focus on metabolic neuroimaging data. Following an analysis of semantics in terms of the representations and processes involved, I argue that fundamental theoretical debates about the neuroscience of semantics can only be concluded on the basis of data with sufficient temporal resolution. Any "semantic effect" may result from a conflation of long-term memory representations, retrieval and working memory processes, mental imagery, and episodic memory. This poses challenges for all neuroimaging modalities, but especially for those with low temporal resolution. It also throws doubt on the usefulness of contrasts between meaningful and meaningless stimuli, which may differ on a number of semantic and non-semantic dimensions. I will discuss the consequences of this analysis for research on the role of convergence zones or hubs and distributed modal brain networks, top-down modulation of task and context as well as interactivity between levels of the processing hierarchy, for example in the framework of predictive coding.
Martínez-Costa, Catalina; Cornet, Ronald; Karlsson, Daniel; Schulz, Stefan; Kalra, Dipak
2015-05-01
To improve semantic interoperability of electronic health records (EHRs) by ontology-based mediation across syntactically heterogeneous representations of the same or similar clinical information. Our approach is based on a semantic layer that consists of: (1) a set of ontologies supported by (2) a set of semantic patterns. The first aspect of the semantic layer helps standardize the clinical information modeling task and the second shields modelers from the complexity of ontology modeling. We applied this approach to heterogeneous representations of an excerpt of a heart failure summary. Using a set of finite top-level patterns to derive semantic patterns, we demonstrate that those patterns, or compositions thereof, can be used to represent information from clinical models. Homogeneous querying of the same or similar information, when represented according to heterogeneous clinical models, is feasible. Our approach focuses on the meaning embedded in EHRs, regardless of their structure. This complex task requires a clear ontological commitment (ie, agreement to consistently use the shared vocabulary within some context), together with formalization rules. These requirements are supported by semantic patterns. Other potential uses of this approach, such as clinical models validation, require further investigation. We show how an ontology-based representation of a clinical summary, guided by semantic patterns, allows homogeneous querying of heterogeneous information structures. Whether there are a finite number of top-level patterns is an open question. © The Author 2015. Published by Oxford University Press on behalf of the American Medical Informatics Association. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
ERIC Educational Resources Information Center
Jian, Yu-Cin; Wu, Chao-Jung
2015-01-01
We investigated strategies used by readers when reading a science article with a diagram and assessed whether semantic and spatial representations were constructed while reading the diagram. Seventy-one undergraduate participants read a scientific article while tracking their eye movements and then completed a reading comprehension test. Our…
ERIC Educational Resources Information Center
Schiff, Rachel; Raveh, Michal; Fighel, Avital
2012-01-01
This study investigated the effect of semantic inconsistency of roots on morphological processing to explore the development of morphological representations within the mental lexicon. We examined masked priming of Hebrew words of changing semantic transparency at two reading levels. The results revealed a disparity in the performance of fourth…
NASA Technical Reports Server (NTRS)
Lindley, Craig A.
1995-01-01
This paper presents an architecture for satellites regarded as intercommunicating agents. The architecture is based upon a postmodern paradigm of artificial intelligence in which represented knowledge is regarded as text, inference procedures are regarded as social discourse and decision making conventions and the semantics of representations are grounded in the situated behaviour and activity of agents. A particular protocol is described for agent participation in distributed search and retrieval operations conducted as joint activities.
Combinatorial semantics strengthens angular-anterior temporal coupling.
Molinaro, Nicola; Paz-Alonso, Pedro M; Duñabeitia, Jon Andoni; Carreiras, Manuel
2015-04-01
The human semantic combinatorial system allows us to create a wide number of new meanings from a finite number of existing representations. The present study investigates the neural dynamics underlying the semantic processing of different conceptual constructions based on predictions from previous neuroanatomical models of the semantic processing network. In two experiments, participants read sentences for comprehension containing noun-adjective pairs in three different conditions: prototypical (Redundant), nonsense (Anomalous) and low-typical but composable (Contrastive). In Experiment 1 we examined the processing costs associated to reading these sentences and found a processing dissociation between Anomalous and Contrastive word pairs, compared to prototypical (Redundant) stimuli. In Experiment 2, functional connectivity results showed strong co-activation across conditions between inferior frontal gyrus (IFG) and posterior middle temporal gyrus (MTG), as well as between these two regions and middle frontal gyrus (MFG), anterior temporal cortex (ATC) and fusiform gyrus (FG), consistent with previous neuroanatomical models. Importantly, processing of low-typical (but composable) meanings relative to prototypical and anomalous constructions was associated with a stronger positive coupling between ATC and angular gyrus (AG). Our results underscore the critical role of IFG-MTG co-activation during semantic processing and how other relevant nodes within the semantic processing network come into play to handle visual-orthographic information, to maintain multiple lexical-semantic representations in working memory and to combine existing representations while creatively constructing meaning. Copyright © 2015 Elsevier Ltd. All rights reserved.
Articulation Management for Intelligent Integration of Information
NASA Technical Reports Server (NTRS)
Maluf, David A.; Tran, Peter B.; Clancy, Daniel (Technical Monitor)
2001-01-01
When combining data from distinct sources, there is a need to share meta-data and other knowledge about various source domains. Due to semantic inconsistencies and heterogeneity of representations, problems arise in combining multiple domains when the domains are merged. The knowledge that is irrelevant to the task of interoperation will be included, making the result unnecessarily complex. This heterogeneity problem can be eliminated by mediating the conflicts and managing the intersections of the domains. For interoperation and intelligent access to heterogeneous information, the focus is on the intersection of the knowledge, since intersection will define the required articulation rules. An algebra over domain has been proposed to use articulation rules to support disciplined manipulation of domain knowledge resources. The objective of a domain algebra is to provide the capability for interrogating many domain knowledge resources, which are largely semantically disjoint. The algebra supports formally the tasks of selecting, combining, extending, specializing, and modifying Components from a diverse set of domains. This paper presents a domain algebra and demonstrates the use of articulation rules to link declarative interfaces for Internet and enterprise applications. In particular, it discusses the articulation implementation as part of a production system capable of operating over the domain described by the IDL (interface description language) of objects registered in multiple CORBA servers.
The Local Geometry of Multiattribute Tradeoff Preferences
McGeachie, Michael; Doyle, Jon
2011-01-01
Existing representations for multiattribute ceteris paribus preference statements have provided useful treatments and clear semantics for qualitative comparisons, but have not provided similarly clear representations or semantics for comparisons involving quantitative tradeoffs. We use directional derivatives and other concepts from elementary differential geometry to interpret conditional multiattribute ceteris paribus preference comparisons that state bounds on quantitative tradeoff ratios. This semantics extends the familiar economic notion of marginal rate of substitution to multiple continuous or discrete attributes. The same geometric concepts also provide means for interpreting statements about the relative importance of different attributes. PMID:21528018
The effect of concurrent semantic categorization on delayed serial recall.
Acheson, Daniel J; MacDonald, Maryellen C; Postle, Bradley R
2011-01-01
The influence of semantic processing on the serial ordering of items in short-term memory was explored using a novel dual-task paradigm. Participants engaged in 2 picture-judgment tasks while simultaneously performing delayed serial recall. List material varied in the presence of phonological overlap (Experiments 1 and 2) and in semantic content (concrete words in Experiment 1 and 3; nonwords in Experiments 2 and 3). Picture judgments varied in the extent to which they required accessing visual semantic information (i.e., semantic categorization and line orientation judgments). Results showed that, relative to line-orientation judgments, engaging in semantic categorization judgments increased the proportion of item-ordering errors for concrete lists but did not affect error proportions for nonword lists. Furthermore, although more ordering errors were observed for phonologically similar relative to dissimilar lists, no interactions were observed between the phonological overlap and picture-judgment task manipulations. These results demonstrate that lexical-semantic representations can affect the serial ordering of items in short-term memory. Furthermore, the dual-task paradigm provides a new method for examining when and how semantic representations affect memory performance.
The Effect of Concurrent Semantic Categorization on Delayed Serial Recall
Acheson, Daniel J.; MacDonald, Maryellen C.; Postle, Bradley R.
2010-01-01
The influence of semantic processing on the serial ordering of items in short-term memory was explored using a novel dual-task paradigm. Subjects engaged in two picture judgment tasks while simultaneously performing delayed serial recall. List material varied in the presence of phonological overlap (Experiments 1 and 2) and in semantic content (concrete words in Experiment 1 and 3; nonwords in Experiments 2 and 3). Picture judgments varied in the extent to which they required accessing visual semantic information (i.e., semantic categorization and line orientation judgments). Results showed that, relative to line orientation judgments, engaging in semantic categorization judgments increased the proportion of item ordering errors for concrete lists but did not affect error proportions for nonword lists. Furthermore, although more ordering errors were observed for phonologically similar relative to dissimilar lists, no interactions were observed between the phonological overlap and picture judgment task manipulations. These results thus demonstrate that lexical-semantic representations can affect the serial ordering of items in short-term memory. Furthermore, the dual-task paradigm provides a new method for examining when and how semantic representations affect memory performance. PMID:21058880
Cleary, Anne M; Ryals, Anthony J; Wagner, Samantha R
2016-01-01
Research suggests that a feature-matching process underlies cue familiarity-detection when cued recall with graphemic cues fails. When a test cue (e.g., potchbork) overlaps in graphemic features with multiple unrecalled studied items (e.g., patchwork, pitchfork, pocketbook, pullcork), higher cue familiarity ratings are given during recall failure of all of the targets than when the cue overlaps in graphemic features with only one studied target and that target fails to be recalled (e.g., patchwork). The present study used semantic feature production norms (McRae et al., Behavior Research Methods, Instruments, & Computers, 37, 547-559, 2005) to examine whether the same holds true when the cues are semantic in nature (e.g., jaguar is used to cue cheetah). Indeed, test cues (e.g., cedar) that overlapped in semantic features (e.g., a_tree, has_bark, etc.) with four unretrieved studied items (e.g., birch, oak, pine, willow) received higher cue familiarity ratings during recall failure than test cues that overlapped in semantic features with only two (also unretrieved) studied items (e.g., birch, oak), which in turn received higher familiarity ratings during recall failure than cues that did not overlap in semantic features with any studied items. These findings suggest that the feature-matching theory of recognition during recall failure can accommodate recognition of semantic cues during recall failure, providing a potential mechanism for conceptually-based forms of cue recognition during target retrieval failure. They also provide converging evidence for the existence of the semantic features envisaged in feature-based models of semantic knowledge representation and for those more concretely specified by the production norms of McRae et al. (Behavior Research Methods, Instruments, & Computers, 37, 547-559, 2005).
Semantic Specificity in One-Year-Olds’ Word Comprehension
Bergelson, Elika; Aslin, Richard
2017-01-01
The present study investigated infants’ knowledge about familiar nouns. Infants (n = 46, 12–20-month-olds) saw two-image displays of familiar objects, or one familiar and one novel object. Infants heard either a matching word (e.g. “foot’ when seeing foot and juice), a related word (e.g. “sock” when seeing foot and juice) or a nonce word (e.g. “fep” when seeing a novel object and dog). Across the whole sample, infants reliably fixated the referent on matching and nonce trials. On the critical related trials we found increasingly less looking to the incorrect (but related) image with age. These results suggest that one-year-olds look at familiar objects both when they hear them labeled and when they hear related labels, to similar degrees, but over the second year increasingly rely on semantic fit. We suggest that infants’ initial semantic representations are imprecise, and continue to sharpen over the second postnatal year. PMID:29200981
Representing sentence information
NASA Astrophysics Data System (ADS)
Perkins, Walton A., III
1991-03-01
This paper describes a computer-oriented representation for sentence information. Whereas many Artificial Intelligence (AI) natural language systems start with a syntactic parse of a sentence into the linguist's components: noun, verb, adjective, preposition, etc., we argue that it is better to parse the input sentence into 'meaning' components: attribute, attribute value, object class, object instance, and relation. AI systems need a representation that will allow rapid storage and retrieval of information and convenient reasoning with that information. The attribute-of-object representation has proven useful for handling information in relational databases (which are well known for their efficiency in storage and retrieval) and for reasoning in knowledge- based systems. On the other hand, the linguist's syntactic representation of the works in sentences has not been shown to be useful for information handling and reasoning. We think it is an unnecessary and misleading intermediate form. Our sentence representation is semantic based in terms of attribute, attribute value, object class, object instance, and relation. Every sentence is segmented into one or more components with the form: 'attribute' of 'object' 'relation' 'attribute value'. Using only one format for all information gives the system simplicity and good performance as a RISC architecture does for hardware. The attribute-of-object representation is not new; it is used extensively in relational databases and knowledge-based systems. However, we will show that it can be used as a meaning representation for natural language sentences with minor extensions. In this paper we describe how a computer system can parse English sentences into this representation and generate English sentences from this representation. Much of this has been tested with computer implementation.
Waagmeester, Andra; Pico, Alexander R.
2016-01-01
The diversity of online resources storing biological data in different formats provides a challenge for bioinformaticians to integrate and analyse their biological data. The semantic web provides a standard to facilitate knowledge integration using statements built as triples describing a relation between two objects. WikiPathways, an online collaborative pathway resource, is now available in the semantic web through a SPARQL endpoint at http://sparql.wikipathways.org. Having biological pathways in the semantic web allows rapid integration with data from other resources that contain information about elements present in pathways using SPARQL queries. In order to convert WikiPathways content into meaningful triples we developed two new vocabularies that capture the graphical representation and the pathway logic, respectively. Each gene, protein, and metabolite in a given pathway is defined with a standard set of identifiers to support linking to several other biological resources in the semantic web. WikiPathways triples were loaded into the Open PHACTS discovery platform and are available through its Web API (https://dev.openphacts.org/docs) to be used in various tools for drug development. We combined various semantic web resources with the newly converted WikiPathways content using a variety of SPARQL query types and third-party resources, such as the Open PHACTS API. The ability to use pathway information to form new links across diverse biological data highlights the utility of integrating WikiPathways in the semantic web. PMID:27336457
Waagmeester, Andra; Kutmon, Martina; Riutta, Anders; Miller, Ryan; Willighagen, Egon L; Evelo, Chris T; Pico, Alexander R
2016-06-01
The diversity of online resources storing biological data in different formats provides a challenge for bioinformaticians to integrate and analyse their biological data. The semantic web provides a standard to facilitate knowledge integration using statements built as triples describing a relation between two objects. WikiPathways, an online collaborative pathway resource, is now available in the semantic web through a SPARQL endpoint at http://sparql.wikipathways.org. Having biological pathways in the semantic web allows rapid integration with data from other resources that contain information about elements present in pathways using SPARQL queries. In order to convert WikiPathways content into meaningful triples we developed two new vocabularies that capture the graphical representation and the pathway logic, respectively. Each gene, protein, and metabolite in a given pathway is defined with a standard set of identifiers to support linking to several other biological resources in the semantic web. WikiPathways triples were loaded into the Open PHACTS discovery platform and are available through its Web API (https://dev.openphacts.org/docs) to be used in various tools for drug development. We combined various semantic web resources with the newly converted WikiPathways content using a variety of SPARQL query types and third-party resources, such as the Open PHACTS API. The ability to use pathway information to form new links across diverse biological data highlights the utility of integrating WikiPathways in the semantic web.
2017-01-01
Statistical approaches to emergent knowledge have tended to focus on the process by which experience of individual episodes accumulates into generalizable experience across episodes. However, there is a seemingly opposite, but equally critical, process that such experience affords: the process by which, from a space of types (e.g. onions—a semantic class that develops through exposure to individual episodes involving individual onions), we can perceive or create, on-the-fly, a specific token (a specific onion, perhaps one that is chopped) in the absence of any prior perceptual experience with that specific token. This article reviews a selection of statistical learning studies that lead to the speculation that this process—the generation, on the basis of semantic memory, of a novel episodic representation—is itself an instance of a statistical, in fact associative, process. The article concludes that the same processes that enable statistical abstraction across individual episodes to form semantic memories also enable the generation, from those semantic memories, of representations that correspond to individual tokens, and of novel episodic facts about those tokens. Statistical learning is a window onto these deeper processes that underpin cognition. This article is part of the themed issue ‘New frontiers for statistical learning in the cognitive sciences’. PMID:27872378
Mirman, Daniel; Graziano, Kristen M.
2012-01-01
Both taxonomic and thematic semantic relations have been studied extensively in behavioral studies and there is an emerging consensus that the anterior temporal lobe plays a particularly important role in the representation and processing of taxonomic relations, but the neural basis of thematic semantics is less clear. We used eye tracking to examine incidental activation of taxonomic and thematic relations during spoken word comprehension in participants with aphasia. Three groups of participants were tested: neurologically intact control participants (N=14), individuals with aphasia resulting from lesions in left hemisphere BA 39 and surrounding temporo-parietal cortex regions (N=7), and individuals with the same degree of aphasia severity and semantic impairment and anterior left hemisphere lesions (primarily inferior frontal gyrus and anterior temporal lobe) that spared BA 39 (N=6). The posterior lesion group showed reduced and delayed activation of thematic relations, but not taxonomic relations. In contrast, the anterior lesion group exhibited longer-lasting activation of taxonomic relations and did not differ from control participants in terms of activation of thematic relations. These results suggest that taxonomic and thematic semantic knowledge are functionally and neuroanatomically distinct, with the temporo-parietal cortex playing a particularly important role in thematic semantics. PMID:22571932
Woollams, Anna M.
2012-01-01
Intuitively, an apple seems a fairly good example of a fruit, whereas an avocado seems less so. The extent to which an exemplar is representative of its category, referred to here as concept typicality, has long been thought to be a key dimension determining semantic representation. Concept typicality is, however, correlated with a number of other variables, in particular age of acquisition (AoA) and name frequency. Consideration of picture naming accuracy from a large case-series of semantic dementia (SD) patients demonstrated strong effects of concept typicality that were maximal in the moderately impaired patients, over and above the impact of AoA and name frequency. Induction of a temporary virtual lesion to the left anterior temporal lobe, the region most commonly affected in SD, via repetitive Transcranial Magnetic Stimulation produced an enhanced effect of concept typicality in the picture naming of normal participants, but did not affect the magnitude of the AoA or name frequency effects. These results indicate that concept typicality exerts its influence on semantic representations themselves, as opposed to the strength of connections outside the semantic system. To date, there has been little direct exploration of the dimension of concept typicality within connectionist models of intact and impaired conceptual representation, and these findings provide a target for future computational simulation. PMID:22529789
A neural network model of semantic memory linking feature-based object representation and words.
Cuppini, C; Magosso, E; Ursino, M
2009-06-01
Recent theories in cognitive neuroscience suggest that semantic memory is a distributed process, which involves many cortical areas and is based on a multimodal representation of objects. The aim of this work is to extend a previous model of object representation to realize a semantic memory, in which sensory-motor representations of objects are linked with words. The model assumes that each object is described as a collection of features, coded in different cortical areas via a topological organization. Features in different objects are segmented via gamma-band synchronization of neural oscillators. The feature areas are further connected with a lexical area, devoted to the representation of words. Synapses among the feature areas, and among the lexical area and the feature areas are trained via a time-dependent Hebbian rule, during a period in which individual objects are presented together with the corresponding words. Simulation results demonstrate that, during the retrieval phase, the network can deal with the simultaneous presence of objects (from sensory-motor inputs) and words (from acoustic inputs), can correctly associate objects with words and segment objects even in the presence of incomplete information. Moreover, the network can realize some semantic links among words representing objects with shared features. These results support the idea that semantic memory can be described as an integrated process, whose content is retrieved by the co-activation of different multimodal regions. In perspective, extended versions of this model may be used to test conceptual theories, and to provide a quantitative assessment of existing data (for instance concerning patients with neural deficits).
From Semantics to Syntax and Back Again: Argument Structure in the Third Year of Life
ERIC Educational Resources Information Center
Fernandes, Keith J.; Marcus, Gary F.; Di Nubila, Jennifer A.; Vouloumanos, Athena
2006-01-01
An essential part of the human capacity for language is the ability to link conceptual or semantic representations with syntactic representations. On the basis of data from spontaneous production, Tomasello (2000) suggested that young children acquire such links on a verb-by-verb basis, with little in the way of a general understanding of…
ERIC Educational Resources Information Center
Pobric, Gorana; Jefferies, Elizabeth; Ralph, Matthew A. Lambon
2010-01-01
The key question of how the brain codes the meaning of words and pictures is the focus of vigorous debate. Is there a "semantic hub" in the temporal poles where these different inputs converge to form amodal conceptual representations? Alternatively, are there distinct neural circuits that underpin our comprehension of pictures and words?…
Eye Movements to Pictures Reveal Transient Semantic Activation during Spoken Word Recognition
ERIC Educational Resources Information Center
Yee, Eiling; Sedivy, Julie C.
2006-01-01
Two experiments explore the activation of semantic information during spoken word recognition. Experiment 1 shows that as the name of an object unfolds (e.g., lock), eye movements are drawn to pictorial representations of both the named object and semantically related objects (e.g., key). Experiment 2 shows that objects semantically related to an…
ERIC Educational Resources Information Center
Siakaluk, Paul D.; Pexman, Penny M.; Sears, Christopher R.; Owen, William J.
2007-01-01
The ambiguity disadvantage (slower processing of ambiguous words relative to unambiguous words) has been taken as evidence for a distributed semantic representational system like that embodied in parallel distributed processing (PDP) models. In the present study, we investigated whether semantic ambiguity slows meaning activation, as PDP models…
Bio-SimVerb and Bio-SimLex: wide-coverage evaluation sets of word similarity in biomedicine.
Chiu, Billy; Pyysalo, Sampo; Vulić, Ivan; Korhonen, Anna
2018-02-05
Word representations support a variety of Natural Language Processing (NLP) tasks. The quality of these representations is typically assessed by comparing the distances in the induced vector spaces against human similarity judgements. Whereas comprehensive evaluation resources have recently been developed for the general domain, similar resources for biomedicine currently suffer from the lack of coverage, both in terms of word types included and with respect to the semantic distinctions. Notably, verbs have been excluded, although they are essential for the interpretation of biomedical language. Further, current resources do not discern between semantic similarity and semantic relatedness, although this has been proven as an important predictor of the usefulness of word representations and their performance in downstream applications. We present two novel comprehensive resources targeting the evaluation of word representations in biomedicine. These resources, Bio-SimVerb and Bio-SimLex, address the previously mentioned problems, and can be used for evaluations of verb and noun representations respectively. In our experiments, we have computed the Pearson's correlation between performances on intrinsic and extrinsic tasks using twelve popular state-of-the-art representation models (e.g. word2vec models). The intrinsic-extrinsic correlations using our datasets are notably higher than with previous intrinsic evaluation benchmarks such as UMNSRS and MayoSRS. In addition, when evaluating representation models for their abilities to capture verb and noun semantics individually, we show a considerable variation between performances across all models. Bio-SimVerb and Bio-SimLex enable intrinsic evaluation of word representations. This evaluation can serve as a predictor of performance on various downstream tasks in the biomedical domain. The results on Bio-SimVerb and Bio-SimLex using standard word representation models highlight the importance of developing dedicated evaluation resources for NLP in biomedicine for particular word classes (e.g. verbs). These are needed to identify the most accurate methods for learning class-specific representations. Bio-SimVerb and Bio-SimLex are publicly available.
Opposing Effects of Semantic Diversity in Lexical and Semantic Relatedness Decisions
2015-01-01
Semantic ambiguity has often been divided into 2 forms: homonymy, referring to words with 2 unrelated interpretations (e.g., bark), and polysemy, referring to words associated with a number of varying but semantically linked uses (e.g., twist). Typically, polysemous words are thought of as having a fixed number of discrete definitions, or “senses,” with each use of the word corresponding to one of its senses. In this study, we investigated an alternative conception of polysemy, based on the idea that polysemous variation in meaning is a continuous, graded phenomenon that occurs as a function of contextual variation in word usage. We quantified this contextual variation using semantic diversity (SemD), a corpus-based measure of the degree to which a particular word is used in a diverse set of linguistic contexts. In line with other approaches to polysemy, we found a reaction time (RT) advantage for high SemD words in lexical decision, which occurred for words of both high and low imageability. When participants made semantic relatedness decisions to word pairs, however, responses were slower to high SemD pairs, irrespective of whether these were related or unrelated. Again, this result emerged irrespective of the imageability of the word. The latter result diverges from previous findings using homonyms, in which ambiguity effects have only been found for related word pairs. We argue that participants were slower to respond to high SemD words because their high contextual variability resulted in noisy, underspecified semantic representations that were more difficult to compare with one another. We demonstrated this principle in a connectionist computational model that was trained to activate distributed semantic representations from orthographic inputs. Greater variability in the orthography-to-semantic mappings of high SemD words resulted in a lower degree of similarity for related pairs of this type. At the same time, the representations of high SemD unrelated pairs were less distinct from one another. In addition, the model demonstrated more rapid semantic activation for high SemD words, thought to underpin the processing advantage in lexical decision. These results support the view that polysemous variation in word meaning can be conceptualized in terms of graded variation in distributed semantic representations. PMID:25751041
Enhancing clinical concept extraction with distributional semantics
Cohen, Trevor; Wu, Stephen; Gonzalez, Graciela
2011-01-01
Extracting concepts (such as drugs, symptoms, and diagnoses) from clinical narratives constitutes a basic enabling technology to unlock the knowledge within and support more advanced reasoning applications such as diagnosis explanation, disease progression modeling, and intelligent analysis of the effectiveness of treatment. The recent release of annotated training sets of de-identified clinical narratives has contributed to the development and refinement of concept extraction methods. However, as the annotation process is labor-intensive, training data are necessarily limited in the concepts and concept patterns covered, which impacts the performance of supervised machine learning applications trained with these data. This paper proposes an approach to minimize this limitation by combining supervised machine learning with empirical learning of semantic relatedness from the distribution of the relevant words in additional unannotated text. The approach uses a sequential discriminative classifier (Conditional Random Fields) to extract the mentions of medical problems, treatments and tests from clinical narratives. It takes advantage of all Medline abstracts indexed as being of the publication type “clinical trials” to estimate the relatedness between words in the i2b2/VA training and testing corpora. In addition to the traditional features such as dictionary matching, pattern matching and part-of-speech tags, we also used as a feature words that appear in similar contexts to the word in question (that is, words that have a similar vector representation measured with the commonly used cosine metric, where vector representations are derived using methods of distributional semantics). To the best of our knowledge, this is the first effort exploring the use of distributional semantics, the semantics derived empirically from unannotated text often using vector space models, for a sequence classification task such as concept extraction. Therefore, we first experimented with different sliding window models and found the model with parameters that led to best performance in a preliminary sequence labeling task. The evaluation of this approach, performed against the i2b2/VA concept extraction corpus, showed that incorporating features based on the distribution of words across a large unannotated corpus significantly aids concept extraction. Compared to a supervised-only approach as a baseline, the micro-averaged f-measure for exact match increased from 80.3% to 82.3% and the micro-averaged f-measure based on inexact match increased from 89.7% to 91.3%. These improvements are highly significant according to the bootstrap resampling method and also considering the performance of other systems. Thus, distributional semantic features significantly improve the performance of concept extraction from clinical narratives by taking advantage of word distribution information obtained from unannotated data. PMID:22085698
GalenOWL: Ontology-based drug recommendations discovery
2012-01-01
Background Identification of drug-drug and drug-diseases interactions can pose a difficult problem to cope with, as the increasingly large number of available drugs coupled with the ongoing research activities in the pharmaceutical domain, make the task of discovering relevant information difficult. Although international standards, such as the ICD-10 classification and the UNII registration, have been developed in order to enable efficient knowledge sharing, medical staff needs to be constantly updated in order to effectively discover drug interactions before prescription. The use of Semantic Web technologies has been proposed in earlier works, in order to tackle this problem. Results This work presents a semantic-enabled online service, named GalenOWL, capable of offering real time drug-drug and drug-diseases interaction discovery. For enabling this kind of service, medical information and terminology had to be translated to ontological terms and be appropriately coupled with medical knowledge of the field. International standards such as the aforementioned ICD-10 and UNII, provide the backbone of the common representation of medical data, while the medical knowledge of drug interactions is represented by a rule base which makes use of the aforementioned standards. Details of the system architecture are presented while also giving an outline of the difficulties that had to be overcome. A comparison of the developed ontology-based system with a similar system developed using a traditional business logic rule engine is performed, giving insights on the advantages and drawbacks of both implementations. Conclusions The use of Semantic Web technologies has been found to be a good match for developing drug recommendation systems. Ontologies can effectively encapsulate medical knowledge and rule-based reasoning can capture and encode the drug interactions knowledge. PMID:23256945
Eilbeck, Karen L; Lipstein, Julie; McGarvey, Sunanda; Staes, Catherine J
2014-01-01
The Reportable Condition Knowledge Management System (RCKMS) is envisioned to be a single, comprehensive, authoritative, real-time portal to author, view and access computable information about reportable conditions. The system is designed for use by hospitals, laboratories, health information exchanges, and providers to meet public health reporting requirements. The RCKMS Knowledge Representation Workgroup was tasked to explore the need for ontologies to support RCKMS functionality. The workgroup reviewed relevant projects and defined criteria to evaluate candidate knowledge domain areas for ontology development. The use of ontologies is justified for this project to unify the semantics used to describe similar reportable events and concepts between different jurisdictions and over time, to aid data integration, and to manage large, unwieldy datasets that evolve, and are sometimes externally managed.
NASA Astrophysics Data System (ADS)
Zhevnerchuk, D. V.; Surkova, A. S.; Lomakina, L. S.; Golubev, A. S.
2018-05-01
The article describes the component representation approach and semantic models of on-board electronics protection from ionizing radiation of various nature. Semantic models are constructed, the feature of which is the representation of electronic elements, protection modules, sources of impact in the form of blocks with interfaces. The rules of logical inference and algorithms for synthesizing the object properties of the semantic network, imitating the interface between the components of the protection system and the sources of radiation, are developed. The results of the algorithm are considered using the example of radiation-resistant microcircuits 1645RU5U, 1645RT2U and the calculation and experimental method for estimating the durability of on-board electronics.
Analysis of the English morphology by semantic networks
NASA Astrophysics Data System (ADS)
Žáček, Martin; Homola, Dan
2017-11-01
The article is devoted to study the morphology of natural language, in this case English language. The research is of the language is from the perspective of knowledge representation, when we look at the word as a concept in the Concept languages. The research is in the relationship of the individual words and their classification in the sentence. For the analysis there are used several methods (syntax, lexical categories, morphology). This article focuses mainly on the word, as the foundation of every natural language (English).
Information compression in the context model
NASA Technical Reports Server (NTRS)
Gebhardt, Joerg; Kruse, Rudolf; Nauck, Detlef
1992-01-01
The Context Model provides a formal framework for the representation, interpretation, and analysis of vague and uncertain data. The clear semantics of the underlying concepts make it feasible to compare well-known approaches to the modeling of imperfect knowledge like that given in Bayes Theory, Shafer's Evidence Theory, the Transferable Belief Model, and Possibility Theory. In this paper we present the basic ideas of the Context Model and show its applicability as an alternative foundation of Possibility Theory and the epistemic view of fuzzy sets.
Karylowski, Jerzy J.; Mrozinski, Blazej
2017-01-01
Previous research suggests that, with the passage of time, representations of self in episodic memory become less dependent on their initial (internal) vantage point and shift toward an external perspective that is normally characteristic of how other people are represented. The present experiment examined this phenomenon in both episodic and semantic autobiographical memory using latency of self-judgments as a measure of accessibility of the internal vs. the external perspective. Results confirmed that in the case of representations of the self retrieved from recent autobiographical memories, trait-judgments regarding unobservable self-aspects (internal perspective) were faster than trait judgments regarding observable self-aspects (external perspective). Yet, in the case of self-representations retrieved from memories of a more distant past, judgments regarding observable self-aspects were faster. Those results occurred for both self-representations retrieved from episodic memory and for representations retrieved from the semantic memory. In addition, regardless of the effect of time, greater accessibility of unobservable (vs. observable) self-aspects was associated with the episodic rather than semantic autobiographical memory. Those results were modified by neither declared trait’s self-descriptiveness (yes vs. no responses) nor by its desirability (highly desirable vs. moderately desirable traits). Implications for compatibility between how self and others are represented and for the role of self in social perception are discussed. PMID:28473793
Karylowski, Jerzy J; Mrozinski, Blazej
2017-01-01
Previous research suggests that, with the passage of time, representations of self in episodic memory become less dependent on their initial (internal) vantage point and shift toward an external perspective that is normally characteristic of how other people are represented. The present experiment examined this phenomenon in both episodic and semantic autobiographical memory using latency of self-judgments as a measure of accessibility of the internal vs. the external perspective. Results confirmed that in the case of representations of the self retrieved from recent autobiographical memories, trait-judgments regarding unobservable self-aspects (internal perspective) were faster than trait judgments regarding observable self-aspects (external perspective). Yet, in the case of self-representations retrieved from memories of a more distant past, judgments regarding observable self-aspects were faster. Those results occurred for both self-representations retrieved from episodic memory and for representations retrieved from the semantic memory. In addition, regardless of the effect of time, greater accessibility of unobservable (vs. observable) self-aspects was associated with the episodic rather than semantic autobiographical memory. Those results were modified by neither declared trait's self-descriptiveness ( yes vs. no responses) nor by its desirability (highly desirable vs. moderately desirable traits). Implications for compatibility between how self and others are represented and for the role of self in social perception are discussed.
The BiSciCol Triplifier: bringing biodiversity data to the Semantic Web.
Stucky, Brian J; Deck, John; Conlin, Tom; Ziemba, Lukasz; Cellinese, Nico; Guralnick, Robert
2014-07-29
Recent years have brought great progress in efforts to digitize the world's biodiversity data, but integrating data from many different providers, and across research domains, remains challenging. Semantic Web technologies have been widely recognized by biodiversity scientists for their potential to help solve this problem, yet these technologies have so far seen little use for biodiversity data. Such slow uptake has been due, in part, to the relative complexity of Semantic Web technologies along with a lack of domain-specific software tools to help non-experts publish their data to the Semantic Web. The BiSciCol Triplifier is new software that greatly simplifies the process of converting biodiversity data in standard, tabular formats, such as Darwin Core-Archives, into Semantic Web-ready Resource Description Framework (RDF) representations. The Triplifier uses a vocabulary based on the popular Darwin Core standard, includes both Web-based and command-line interfaces, and is fully open-source software. Unlike most other RDF conversion tools, the Triplifier does not require detailed familiarity with core Semantic Web technologies, and it is tailored to a widely popular biodiversity data format and vocabulary standard. As a result, the Triplifier can often fully automate the conversion of biodiversity data to RDF, thereby making the Semantic Web much more accessible to biodiversity scientists who might otherwise have relatively little knowledge of Semantic Web technologies. Easy availability of biodiversity data as RDF will allow researchers to combine data from disparate sources and analyze them with powerful linked data querying tools. However, before software like the Triplifier, and Semantic Web technologies in general, can reach their full potential for biodiversity science, the biodiversity informatics community must address several critical challenges, such as the widespread failure to use robust, globally unique identifiers for biodiversity data.
Marco-Ruiz, Luis; Maldonado, J Alberto; Karlsen, Randi; Bellika, Johan G
2015-01-01
Clinical Decision Support Systems (CDSS) help to improve health care and reduce costs. However, the lack of knowledge management and modelling hampers their maintenance and reuse. Current EHR standards and terminologies can allow the semantic representation of the data and knowledge of CDSS systems boosting their interoperability, reuse and maintenance. This paper presents the modelling process of respiratory conditions' symptoms and signs by a multidisciplinary team of clinicians and information architects with the help of openEHR, SNOMED and clinical information modelling tools for a CDSS. The information model of the CDSS was defined by means of an archetype and the knowledge model was implemented by means of an SNOMED-CT based ontology.
Shahar, Yuval; Young, Ohad; Shalom, Erez; Mayaffit, Alon; Moskovitch, Robert; Hessing, Alon; Galperin, Maya
2004-01-01
We propose to present a poster (and potentially also a demonstration of the implemented system) summarizing the current state of our work on a hybrid, multiple-format representation of clinical guidelines that facilitates conversion of guidelines from free text to a formal representation. We describe a distributed Web-based architecture (DeGeL) and a set of tools using the hybrid representation. The tools enable performing tasks such as guideline specification, semantic markup, search, retrieval, visualization, eligibility determination, runtime application and retrospective quality assessment. The representation includes four parallel formats: Free text (one or more original sources); semistructured text (labeled by the target guideline-ontology semantic labels); semiformal text (which includes some control specification); and a formal, machine-executable representation. The specification, indexing, search, retrieval, and browsing tools are essentially independent of the ontology chosen for guideline representation, but editing the semi-formal and formal formats requires ontology-specific tools, which we have developed in the case of the Asbru guideline-specification language. The four formats support increasingly sophisticated computational tasks. The hybrid guidelines are stored in a Web-based library. All tools, such as for runtime guideline application or retrospective quality assessment, are designed to operate on all representations. We demonstrate the hybrid framework by providing examples from the semantic markup and search tools.
Nursing Minimum Data Set Based on EHR Archetypes Approach.
Spigolon, Dandara N; Moro, Cláudia M C
2012-01-01
The establishment of a Nursing Minimum Data Set (NMDS) can facilitate the use of health information systems. The adoption of these sets and represent them based on archetypes are a way of developing and support health systems. The objective of this paper is to describe the definition of a minimum data set for nursing in endometriosis represent with archetypes. The study was divided into two steps: Defining the Nursing Minimum Data Set to endometriosis, and Development archetypes related to the NMDS. The nursing data set to endometriosis was represented in the form of archetype, using the whole perception of the evaluation item, organs and senses. This form of representation is an important tool for semantic interoperability and knowledge representation for health information systems.
Nursing Minimum Data Set Based on EHR Archetypes Approach
Spigolon, Dandara N.; Moro, Cláudia M.C.
2012-01-01
The establishment of a Nursing Minimum Data Set (NMDS) can facilitate the use of health information systems. The adoption of these sets and represent them based on archetypes are a way of developing and support health systems. The objective of this paper is to describe the definition of a minimum data set for nursing in endometriosis represent with archetypes. The study was divided into two steps: Defining the Nursing Minimum Data Set to endometriosis, and Development archetypes related to the NMDS. The nursing data set to endometriosis was represented in the form of archetype, using the whole perception of the evaluation item, organs and senses. This form of representation is an important tool for semantic interoperability and knowledge representation for health information systems. PMID:24199126
Distributed representations in memory: Insights from functional brain imaging
Rissman, Jesse; Wagner, Anthony D.
2015-01-01
Forging new memories for facts and events, holding critical details in mind on a moment-to-moment basis, and retrieving knowledge in the service of current goals all depend on a complex interplay between neural ensembles throughout the brain. Over the past decade, researchers have increasingly leveraged powerful analytical tools (e.g., multi-voxel pattern analysis) to decode the information represented within distributed fMRI activity patterns. In this review, we discuss how these methods can sensitively index neural representations of perceptual and semantic content, and how leverage on the engagement of distributed representations provides unique insights into distinct aspects of memory-guided behavior. We emphasize that, in addition to characterizing the contents of memories, analyses of distributed patterns shed light on the processes that influence how information is encoded, maintained, or retrieved, and thus inform memory theory. We conclude by highlighting open questions about memory that can be addressed through distributed pattern analyses. PMID:21943171
Byrne, Ruth M J
2016-01-01
People spontaneously create counterfactual alternatives to reality when they think "if only" or "what if" and imagine how the past could have been different. The mind computes counterfactuals for many reasons. Counterfactuals explain the past and prepare for the future, they implicate various relations including causal ones, and they affect intentions and decisions. They modulate emotions such as regret and relief, and they support moral judgments such as blame. The loss of the ability to imagine alternatives as a result of injuries to the prefrontal cortex is devastating. The basic cognitive processes that compute counterfactuals mutate aspects of the mental representation of reality to create an imagined alternative, and they compare alternative representations. The ability to create counterfactuals develops throughout childhood and contributes to reasoning about other people's beliefs, including their false beliefs. Knowledge affects the plausibility of a counterfactual through the semantic and pragmatic modulation of the mental representation of alternative possibilities.
Semantic Feature Distinctiveness and Frequency
ERIC Educational Resources Information Center
Lamb, Katherine M.
2012-01-01
Lexical access is the process in which basic components of meaning in language, the lexical entries (words) are activated. This activation is based on the organization and representational structure of the lexical entries. Semantic features of words, which are the prominent semantic characteristics of a word concept, provide important information…
How Chinese Semantics Capability Improves Interpretation in Visual Communication
ERIC Educational Resources Information Center
Cheng, Chu-Yu; Ou, Yang-Kun; Kin, Ching-Lung
2017-01-01
A visual representation involves delivering messages through visually communicated images. The study assumed that semantic recognition can affect visual interpretation ability, and the result showed that students graduating from a general high school achieve satisfactory results in semantic recognition and image interpretation tasks than students…
Action and semantic tool knowledge - Effective connectivity in the underlying neural networks.
Kleineberg, Nina N; Dovern, Anna; Binder, Ellen; Grefkes, Christian; Eickhoff, Simon B; Fink, Gereon R; Weiss, Peter H
2018-04-26
Evidence from neuropsychological and imaging studies indicate that action and semantic knowledge about tools draw upon distinct neural substrates, but little is known about the underlying interregional effective connectivity. With fMRI and dynamic causal modeling (DCM) we investigated effective connectivity in the left-hemisphere (LH) while subjects performed (i) a function knowledge and (ii) a value knowledge task, both addressing semantic tool knowledge, and (iii) a manipulation (action) knowledge task. Overall, the results indicate crosstalk between action nodes and semantic nodes. Interestingly, effective connectivity was weakened between semantic nodes and action nodes during the manipulation task. Furthermore, pronounced modulations of effective connectivity within the fronto-parietal action system of the LH (comprising lateral occipito-temporal cortex, intraparietal sulcus, supramarginal gyrus, inferior frontal gyrus) were observed in a bidirectional manner during the processing of action knowledge. In contrast, the function and value knowledge tasks resulted in a significant strengthening of the effective connectivity between visual cortex and fusiform gyrus. Importantly, this modulation was present in both semantic tasks, indicating that processing different aspects of semantic knowledge about tools evokes similar effective connectivity patterns. Data revealed that interregional effective connectivity during the processing of tool knowledge occurred in a bidirectional manner with a weakening of connectivity between areas engaged in action and semantic knowledge about tools during the processing of action knowledge. Moreover, different semantic tool knowledge tasks elicited similar effective connectivity patterns. © 2018 Wiley Periodicals, Inc.
Modelling the Effects of Semantic Ambiguity in Word Recognition
ERIC Educational Resources Information Center
Rodd, Jennifer M.; Gaskell, M. Gareth; Marslen-Wilson, William D.
2004-01-01
Most words in English are ambiguous between different interpretations; words can mean different things in different contexts. We investigate the implications of different types of semantic ambiguity for connectionist models of word recognition. We present a model in which there is competition to activate distributed semantic representations. The…
Ghio, Marta; Locatelli, Matteo; Tettamanti, Andrea; Perani, Daniela; Gatti, Roberto; Tettamanti, Marco
2018-06-01
Embodied cognition theories of semantic memory still face the need for multiple sources of converging evidence in support of the involvement of sensory-motor systems in action-related knowledge. Previous studies showed that training manual actions improves semantic processing of verbs referring to the trained actions. The present work aimed to provide complementary evidence by measuring the brain plasticity effects of a cognitive training requiring sustained lexical-semantic processing of action-related verbs. We included two groups of participants, namely the Proximal Group (PG) and the Distal Group (DG), which underwent a 3-week training with verbs referring to actions involving the proximal and the distal upper limb musculature, respectively. Before and after training, we measured gray matter voxel brain morphometry based on T1 structural magnetic resonance imaging. By means of this 2 (Group: PG, DG) × 2 (Time: pre-, post-training) factorial design, we tested whether sustained cognitive experience with specific action-related verbs induces congruent brain plasticity modifications in target regions of interest pertaining to the action representation system. We found significant post- versus pre-training gray matter volume increases, specifically for PG in the left dorsal precentral gyrus, and for DG in the right cerebellar lobule VIIa. These preliminary results suggest that a cognitive training can induce structural plasticity modifications in brain regions specifically coding for the distal and proximal motor actions the trained verbs refer to. Copyright © 2018 Elsevier Ltd. All rights reserved.
Joubert, Sven; Brambati, Simona M; Ansado, Jennyfer; Barbeau, Emmanuel J; Felician, Olivier; Didic, Mira; Lacombe, Jacinthe; Goldstein, Rachel; Chayer, Céline; Kergoat, Marie-Jeanne
2010-03-01
Semantic deficits in Alzheimer's disease have been widely documented, but little is known about the integrity of semantic memory in the prodromal stage of the illness. The aims of the present study were to: (i) investigate naming abilities and semantic memory in amnestic mild cognitive impairment (aMCI), early Alzheimer's disease (AD) compared to healthy older subjects; (ii) investigate the association between naming and semantic knowledge in aMCI and AD; (iii) examine if the semantic impairment was present in different modalities; and (iv) study the relationship between semantic performance and grey matter volume using voxel-based morphometry. Results indicate that both naming and semantic knowledge of objects and famous people were impaired in aMCI and early AD groups, when compared to healthy age- and education-matched controls. Item-by-item analyses showed that anomia in aMCI and early AD was significantly associated with underlying semantic knowledge of famous people but not with semantic knowledge of objects. Moreover, semantic knowledge of the same concepts was impaired in both the visual and the verbal modalities. Finally, voxel-based morphometry analyses revealed that semantic impairment in aMCI and AD was associated with cortical atrophy in the anterior temporal lobe (ATL) region as well as in the inferior prefrontal cortex (IPC), some of the key regions of the semantic cognition network. These findings suggest that the semantic impairment in aMCI may result from a breakdown of semantic knowledge of famous people and objects, combined with difficulties in the selection, manipulation and retrieval of this knowledge. Copyright (c) 2009 Elsevier Ltd. All rights reserved.
Object activation in semantic memory from visual multimodal feature input.
Kraut, Michael A; Kremen, Sarah; Moo, Lauren R; Segal, Jessica B; Calhoun, Vincent; Hart, John
2002-01-01
The human brain's representation of objects has been proposed to exist as a network of coactivated neural regions present in multiple cognitive systems. However, it is not known if there is a region specific to the process of activating an integrated object representation in semantic memory from multimodal feature stimuli (e.g., picture-word). A previous study using word-word feature pairs as stimulus input showed that the left thalamus is integrally involved in object activation (Kraut, Kremen, Segal, et al., this issue). In the present study, participants were presented picture-word pairs that are features of objects, with the task being to decide if together they "activated" an object not explicitly presented (e.g., picture of a candle and the word "icing" activate the internal representation of a "cake"). For picture-word pairs that combine to elicit an object, signal change was detected in the ventral temporo-occipital regions, pre-SMA, left primary somatomotor cortex, both caudate nuclei, and the dorsal thalami bilaterally. These findings suggest that the left thalamus is engaged for either picture or word stimuli, but the right thalamus appears to be involved when picture stimuli are also presented with words in semantic object activation tasks. The somatomotor signal changes are likely secondary to activation of the semantic object representations from multimodal visual stimuli.
Logical account of a terminological tool
NASA Astrophysics Data System (ADS)
Bresciani, Paolo
1991-03-01
YAK (Yet Another Krapfen) is a hybrid knowledge representation environment following the tradition of KL-ONE and KRYPTON. In its terminological box (TBOX) concepts and roles are described by means of a language called KFL that, even if inspired to FL-, captures a different set of descriptions, especially allowing the formulation of structured roles, that are aimed to be more adequate for the representational goal. KFL results to have a valid and complete calculus for the notion of subsumption, and a tractable algorithm that realize it is available. In the present paper it is shown how the semantics of a sufficiently significative subset of KFL can be described in terms of standard first order logic semantics. It is so possible to develop a notion of 'relation' between KFL and a full first order logic language formulated ad hoc and usable as formalization of an assertional box (ABOX). We then use this notion to justify the use of the terminological classification algorithm of the TBOX of YAK as part of the deduction machinery of the ABOX. In this way, the whole hybrid environment can take real and consistent advantages both from the TBOX and its tractable classification algorithm, and from the ABOX, and its wider expressive capability.
A Filter-Mediated Communication Model for Design Collaboration in Building Construction
Oh, Minho
2014-01-01
Multidisciplinary collaboration is an important aspect of modern engineering activities, arising from the growing complexity of artifacts whose design and construction require knowledge and skills that exceed the capacities of any one professional. However, current collaboration in the architecture, engineering, and construction industries often fails due to lack of shared understanding between different participants and limitations of their supporting tools. To achieve a high level of shared understanding, this study proposes a filter-mediated communication model. In the proposed model, participants retain their own data in the form most appropriate for their needs with domain-specific filters that transform the neutral representations into semantically rich ones, as needed by the participants. Conversely, the filters can translate semantically rich, domain-specific data into a neutral representation that can be accessed by other domain-specific filters. To validate the feasibility of the proposed model, we computationally implement the filter mechanism and apply it to a hypothetical test case. The result acknowledges that the filter mechanism can let the participants know ahead of time what will be the implications of their proposed actions, as seen from other participants' points of view. PMID:25309958
Knowledge-Based Object Detection in Laser Scanning Point Clouds
NASA Astrophysics Data System (ADS)
Boochs, F.; Karmacharya, A.; Marbs, A.
2012-07-01
Object identification and object processing in 3D point clouds have always posed challenges in terms of effectiveness and efficiency. In practice, this process is highly dependent on human interpretation of the scene represented by the point cloud data, as well as the set of modeling tools available for use. Such modeling algorithms are data-driven and concentrate on specific features of the objects, being accessible to numerical models. We present an approach that brings the human expert knowledge about the scene, the objects inside, and their representation by the data and the behavior of algorithms to the machine. This "understanding" enables the machine to assist human interpretation of the scene inside the point cloud. Furthermore, it allows the machine to understand possibilities and limitations of algorithms and to take this into account within the processing chain. This not only assists the researchers in defining optimal processing steps, but also provides suggestions when certain changes or new details emerge from the point cloud. Our approach benefits from the advancement in knowledge technologies within the Semantic Web framework. This advancement has provided a strong base for applications based on knowledge management. In the article we will present and describe the knowledge technologies used for our approach such as Web Ontology Language (OWL), used for formulating the knowledge base and the Semantic Web Rule Language (SWRL) with 3D processing and topologic built-ins, aiming to combine geometrical analysis of 3D point clouds, and specialists' knowledge of the scene and algorithmic processing.
Ruan, W; Bürkle, T; Dudeck, J
2000-01-01
In this paper we present a data dictionary server for the automated navigation of information sources. The underlying knowledge is represented within a medical data dictionary. The mapping between medical terms and information sources is based on a semantic network. The key aspect of implementing the dictionary server is how to represent the semantic network in a way that is easier to navigate and to operate, i.e. how to abstract the semantic network and to represent it in memory for various operations. This paper describes an object-oriented design based on Java that represents the semantic network in terms of a group of objects. A node and its relationships to its neighbors are encapsulated in one object. Based on such a representation model, several operations have been implemented. They comprise the extraction of parts of the semantic network which can be reached from a given node as well as finding all paths between a start node and a predefined destination node. This solution is independent of any given layout of the semantic structure. Therefore the module, called Giessen Data Dictionary Server can act independent of a specific clinical information system. The dictionary server will be used to present clinical information, e.g. treatment guidelines or drug information sources to the clinician in an appropriate working context. The server is invoked from clinical documentation applications which contain an infobutton. Automated navigation will guide the user to all the information relevant to her/his topic, which is currently available inside our closed clinical network.
[Analysis of health terminologies for use as ontologies in healthcare information systems].
Romá-Ferri, Maria Teresa; Palomar, Manuel
2008-01-01
Ontologies are a resource that allow the concept of meaning to be represented informatically, thus avoiding the limitations imposed by standardized terms. The objective of this study was to establish the extent to which terminologies could be used for the design of ontologies, which could be serve as an aid to resolve problems such as semantic interoperability and knowledge reusability in healthcare information systems. To determine the extent to which terminologies could be used as ontologies, six of the most important terminologies in clinical, epidemiologic, documentation and administrative-economic contexts were analyzed. The following characteristics were verified: conceptual coverage, hierarchical structure, conceptual granularity of the categories, conceptual relations, and the language used for conceptual representation. MeSH, DeCS and UMLS ontologies were considered lightweight. The main differences among these ontologies concern conceptual specification, the types of relation and the restrictions among the associated concepts. SNOMED and GALEN ontologies have declaratory formalism, based on logical descriptions. These ontologies include explicit qualities and show greater restrictions among associated concepts and rule combinations and were consequently considered as heavyweight. Analysis of the declared representation of the terminologies shows the extent to which they could be reused as ontologies. Their degree of usability depends on whether the aim is for healthcare information systems to solve problems of semantic interoperability (lightweight ontologies) or to reuse the systems' knowledge as an aid to decision making (heavyweight ontologies) and for non-structured information retrieval, extraction, and classification.
ERIC Educational Resources Information Center
Beal-Alvarez, Jennifer S.; Figueroa, Daileen M.
2017-01-01
Two key areas of language development include semantic and phonological knowledge. Semantic knowledge relates to word and concept knowledge. Phonological knowledge relates to how language parameters combine to create meaning. We investigated signing deaf adults' and children's semantic and phonological sign generation via one-minute tasks,…
Jorge-Botana, Guillermo; Olmos, Ricardo; Luzón, José M
2018-01-01
The aim of this paper is to describe and explain one useful computational methodology to model the semantic development of word representation: Word maturity. In particular, the methodology is based on the longitudinal word monitoring created by Kirylev and Landauer using latent semantic analysis for the representation of lexical units. The paper is divided into two parts. First, the steps required to model the development of the meaning of words are explained in detail. We describe the technical and theoretical aspects of each step. Second, we provide a simple example of application of this methodology with some simple tools that can be used by applied researchers. This paper can serve as a user-friendly guide for researchers interested in modeling changes in the semantic representations of words. Some current aspects of the technique and future directions are also discussed. WIREs Cogn Sci 2018, 9:e1457. doi: 10.1002/wcs.1457 This article is categorized under: Computer Science > Natural Language Processing Linguistics > Language Acquisition Psychology > Development and Aging. © 2017 Wiley Periodicals, Inc.
Neural correlates of concreteness in semantic categorization.
Pexman, Penny M; Hargreaves, Ian S; Edwards, Jodi D; Henry, Luke C; Goodyear, Bradley G
2007-08-01
In some contexts, concrete words (CARROT) are recognized and remembered more readily than abstract words (TRUTH). This concreteness effect has historically been explained by two theories of semantic representation: dual-coding [Paivio, A. Dual coding theory: Retrospect and current status. Canadian Journal of Psychology, 45, 255-287, 1991] and context-availability [Schwanenflugel, P. J. Why are abstract concepts hard to understand? In P. J. Schwanenflugel (Ed.), The psychology of word meanings (pp. 223-250). Hillsdale, NJ: Erlbaum, 1991]. Past efforts to adjudicate between these theories using functional magnetic resonance imaging have produced mixed results. Using event-related functional magnetic resonance imaging, we reexamined this issue with a semantic categorization task that allowed for uniform semantic judgments of concrete and abstract words. The participants were 20 healthy adults. Functional analyses contrasted activation associated with concrete and abstract meanings of ambiguous and unambiguous words. Results showed that for both ambiguous and unambiguous words, abstract meanings were associated with more widespread cortical activation than concrete meanings in numerous regions associated with semantic processing, including temporal, parietal, and frontal cortices. These results are inconsistent with both dual-coding and context-availability theories, as these theories propose that the representations of abstract concepts are relatively impoverished. Our results suggest, instead, that semantic retrieval of abstract concepts involves a network of association areas. We argue that this finding is compatible with a theory of semantic representation such as Barsalou's [Barsalou, L. W. Perceptual symbol systems. Behavioral & Brain Sciences, 22, 577-660, 1999] perceptual symbol systems, whereby concrete and abstract concepts are represented by similar mechanisms but with differences in focal content.
Unitary vs multiple semantics: PET studies of word and picture processing.
Bright, P; Moss, H; Tyler, L K
2004-06-01
In this paper we examine a central issue in cognitive neuroscience: are there separate conceptual representations associated with different input modalities (e.g., Paivio, 1971, 1986; Warrington & Shallice, 1984) or do inputs from different modalities converge on to the same set of representations (e.g., Caramazza, Hillis, Rapp, & Romani, 1990; Lambon Ralph, Graham, Patterson, & Hodges, 1999; Rapp, Hillis, & Caramazza, 1993)? We present an analysis of four PET studies (three semantic categorisation tasks and one lexical decision task), two of which employ words as stimuli and two of which employ pictures. Using conjunction analyses, we found robust semantic activation, common to both input modalities in anterior and medial aspects of the left fusiform gyrus, left parahippocampal and perirhinal cortices, and left inferior frontal gyrus (BA 47). There were modality-specific activations in both temporal poles (words) and occipitotemporal cortices (pictures). We propose that the temporal poles are involved in processing both words and pictures, but their engagement might be primarily determined by the level of specificity at which an object is processed. Activation in posterior temporal regions associated with picture processing most likely reflects intermediate, pre-semantic stages of visual processing. Our data are most consistent with a hierarchically structured, unitary system of semantic representations for both verbal and visual modalities, subserved by anterior regions of the inferior temporal cortex.
Eilbeck, Karen L.; Lipstein, Julie; McGarvey, Sunanda; Staes, Catherine J.
2014-01-01
The Reportable Condition Knowledge Management System (RCKMS) is envisioned to be a single, comprehensive, authoritative, real-time portal to author, view and access computable information about reportable conditions. The system is designed for use by hospitals, laboratories, health information exchanges, and providers to meet public health reporting requirements. The RCKMS Knowledge Representation Workgroup was tasked to explore the need for ontologies to support RCKMS functionality. The workgroup reviewed relevant projects and defined criteria to evaluate candidate knowledge domain areas for ontology development. The use of ontologies is justified for this project to unify the semantics used to describe similar reportable events and concepts between different jurisdictions and over time, to aid data integration, and to manage large, unwieldy datasets that evolve, and are sometimes externally managed. PMID:25954354
NASA Astrophysics Data System (ADS)
López, Víctor; Pintó, Roser
2017-07-01
Computer simulations are often considered effective educational tools, since their visual and communicative power enable students to better understand physical systems and phenomena. However, previous studies have found that when students read visual representations some reading difficulties can arise, especially when these are complex or dynamic representations. We have analyzed how secondary-school students read the visual representations displayed in two PhET simulations (one addressing the friction-heating at microscopic level, and the other addressing the electromagnetic induction), and different typologies of reading difficulties have been identified: when reading the compositional structure of the representation, when giving appropriate relevance and semantic meaning to each visual element, and also when dealing with multiple representations and dynamic information. All students experienced at least one of these difficulties, and very similar difficulties appeared in the two groups of students, despite the different scientific content of the simulations. In conclusion, visualisation does not imply a full comprehension of the content of scientific simulations per se, and an effective reading process requires a set of reading skills, previous knowledge, attention, and external supports. Science teachers should bear in mind these issues in order to help students read images to take benefit of their educational potential.
Integrating conceptual knowledge within and across representational modalities.
McNorgan, Chris; Reid, Jackie; McRae, Ken
2011-02-01
Research suggests that concepts are distributed across brain regions specialized for processing information from different sensorimotor modalities. Multimodal semantic models fall into one of two broad classes differentiated by the assumed hierarchy of convergence zones over which information is integrated. In shallow models, communication within- and between-modality is accomplished using either direct connectivity, or a central semantic hub. In deep models, modalities are connected via cascading integration sites with successively wider receptive fields. Four experiments provide the first direct behavioral tests of these models using speeded tasks involving feature inference and concept activation. Shallow models predict no within-modal versus cross-modal difference in either task, whereas deep models predict a within-modal advantage for feature inference, but a cross-modal advantage for concept activation. Experiments 1 and 2 used relatedness judgments to tap participants' knowledge of relations for within- and cross-modal feature pairs. Experiments 3 and 4 used a dual-feature verification task. The pattern of decision latencies across Experiments 1-4 is consistent with a deep integration hierarchy. Copyright © 2010 Elsevier B.V. All rights reserved.
He, Yongqun; Xiang, Zuoshuang; Zheng, Jie; Lin, Yu; Overton, James A; Ong, Edison
2018-01-12
Ontologies are critical to data/metadata and knowledge standardization, sharing, and analysis. With hundreds of biological and biomedical ontologies developed, it has become critical to ensure ontology interoperability and the usage of interoperable ontologies for standardized data representation and integration. The suite of web-based Ontoanimal tools (e.g., Ontofox, Ontorat, and Ontobee) support different aspects of extensible ontology development. By summarizing the common features of Ontoanimal and other similar tools, we identified and proposed an "eXtensible Ontology Development" (XOD) strategy and its associated four principles. These XOD principles reuse existing terms and semantic relations from reliable ontologies, develop and apply well-established ontology design patterns (ODPs), and involve community efforts to support new ontology development, promoting standardized and interoperable data and knowledge representation and integration. The adoption of the XOD strategy, together with robust XOD tool development, will greatly support ontology interoperability and robust ontology applications to support data to be Findable, Accessible, Interoperable and Reusable (i.e., FAIR).
Hippocampal Maturation Drives Memory from Generalization to Specificity.
Keresztes, Attila; Ngo, Chi T; Lindenberger, Ulman; Werkle-Bergner, Markus; Newcombe, Nora S
2018-06-14
During early ontogeny, the rapid and cumulative acquisition of world knowledge contrasts with slower improvements in the ability to lay down detailed and long-lasting episodic memories. This emphasis on generalization at the expense of specificity persists well into middle childhood and possibly into adolescence. During this period, recognizing regularities, forming stable representations of recurring episodes, predicting the structure of future events, and building up semantic knowledge may be prioritized over remembering specific episodes. We highlight recent behavioral and neuroimaging evidence suggesting that maturational differences among subfields within the hippocampus contribute to the developmental lead-lag relation between generalization and specificity, and lay out future research directions. Copyright © 2018 Elsevier Ltd. All rights reserved.
The timing of anterior temporal lobe involvement in semantic processing.
Jackson, Rebecca L; Lambon Ralph, Matthew A; Pobric, Gorana
2015-07-01
Despite indications that regions within the anterior temporal lobe (ATL) might make a crucial contribution to pan-modal semantic representation, to date there have been no investigations of when during semantic processing the ATL plays a critical role. To test the timing of the ATL involvement in semantic processing, we studied the effect of double-pulse TMS on behavioral responses in semantic and difficulty-matched control tasks. Chronometric TMS was delivered over the left ATL (10 mm from the tip of the temporal pole along the middle temporal gyrus). During each trial, two pulses of TMS (40 msec apart) were delivered either at baseline (before stimulus presentation) or at one of the experimental time points 100, 250, 400, and 800 msec poststimulus onset. A significant disruption to performance was identified from 400 msec on the semantic task but not on the control assessment. Our results not only reinforce the key role of the left ATL in semantic representation but also indicate that its contribution is especially important around 400 msec poststimulus onset. Together, these facts suggest that the ATL may be one of the neural sources of the N400 ERP component.
Quantifying Semantic Linguistic Maturity in Children
ERIC Educational Resources Information Center
Hansson, Kristina; Bååth, Rasmus; Löhndorf, Simone; Sahlén, Birgitta; Sikström, Sverker
2016-01-01
We propose a method to quantify "semantic linguistic maturity" (SELMA) based on a high dimensional semantic representation of words created from the co-occurrence of words in a large text corpus. The method was applied to oral narratives from 108 children aged 4;0-12;10. By comparing the SELMA measure with maturity ratings made by human…
Empirical Studies of Interactions of Semantic Roles: The Agent and Patient in Mandarin Chinese
ERIC Educational Resources Information Center
Yue, Kun
2010-01-01
This dissertation investigates the interaction between form and function in Mandarin Chinese by empirically examining the interactions of core semantic roles (Agent and Patient) and the syntactic representation of those interactions in semantically transitive events. First, I demonstrate that syntactic structures and functions are intertwined with…
How Different Types of Conceptual Relations Modulate Brain Activation during Semantic Priming
ERIC Educational Resources Information Center
Sachs, Olga; Weis, Susanne; Zellagui, Nadia; Sass, Katharina; Huber, Walter; Zvyagintsev, Mikhail; Mathiak, Klaus; Kircher, Tilo
2011-01-01
Semantic priming, a well-established technique to study conceptual representation, has thus far produced variable fMRI results, both regarding the type of priming effects and their correlation with brain activation. The aims of the current study were (a) to investigate two types of semantic relations--categorical versus associative--under…
Identifying bilingual semantic neural representations across languages
Buchweitz, Augusto; Shinkareva, Svetlana V.; Mason, Robert A.; Mitchell, Tom M.; Just, Marcel Adam
2015-01-01
The goal of the study was to identify the neural representation of a noun's meaning in one language based on the neural representation of that same noun in another language. Machine learning methods were used to train classifiers to identify which individual noun bilingual participants were thinking about in one language based solely on their brain activation in the other language. The study shows reliable (p < .05) pattern-based classification accuracies for the classification of brain activity for nouns across languages. It also shows that the stable voxels used to classify the brain activation were located in areas associated with encoding information about semantic dimensions of the words in the study. The identification of the semantic trace of individual nouns from the pattern of cortical activity demonstrates the existence of a multi-voxel pattern of activation across the cortex for a single noun common to both languages in bilinguals. PMID:21978845
Seek and you shall remember: Scene semantics interact with visual search to build better memories
Draschkow, Dejan; Wolfe, Jeremy M.; Võ, Melissa L.-H.
2014-01-01
Memorizing critical objects and their locations is an essential part of everyday life. In the present study, incidental encoding of objects in naturalistic scenes during search was compared to explicit memorization of those scenes. To investigate if prior knowledge of scene structure influences these two types of encoding differently, we used meaningless arrays of objects as well as objects in real-world, semantically meaningful images. Surprisingly, when participants were asked to recall scenes, their memory performance was markedly better for searched objects than for objects they had explicitly tried to memorize, even though participants in the search condition were not explicitly asked to memorize objects. This finding held true even when objects were observed for an equal amount of time in both conditions. Critically, the recall benefit for searched over memorized objects in scenes was eliminated when objects were presented on uniform, non-scene backgrounds rather than in a full scene context. Thus, scene semantics not only help us search for objects in naturalistic scenes, but appear to produce a representation that supports our memory for those objects beyond intentional memorization. PMID:25015385
Barde, Laura H.F.; Schwartz, Myrna F.; Chrysikou, Evangelia G.; Thompson-Schill, Sharon L.
2010-01-01
Semantic short-term memory (STM) deficits have been traditionally defined as an inability to maintain semantic representations over a delay (R. Martin, Shelton & Yaffee, 1994). Yet some patients with semantic STM deficits make numerous intrusions of items from previously presented lists, thus presenting an interesting paradox: Why should an inability to maintain semantic representations produce an increase in intrusions from earlier lists? In this study, we investigated the relationship between maintenance deficits and susceptibility to interference in a group of 20 aphasic patients characterized with weak semantic or weak phonological STM. Patients and matched control participants performed a modified item-recognition task designed to elicit semantic or phonological interference from list items located one, two, or three trials back (Hamilton & R. Martin, 2007). Controls demonstrated significant effects of interference in both versions of the task. Interference in patients was predicted by the type and severity of their STM deficit; that is, shorter semantic spans were associated with greater semantic interference and shorter phonological spans were associated with greater phonological interference. We interpret these results through a new perspective, the reactivation hypothesis, and we discuss their importance for accounts emphasizing the contribution of maintenance mechanisms for STM impairments in aphasia as well as susceptibility to interference. PMID:19925813
Taboada, María; Martínez, Diego; Pilo, Belén; Jiménez-Escrig, Adriano; Robinson, Peter N; Sobrido, María J
2012-07-31
Semantic Web technology can considerably catalyze translational genetics and genomics research in medicine, where the interchange of information between basic research and clinical levels becomes crucial. This exchange involves mapping abstract phenotype descriptions from research resources, such as knowledge databases and catalogs, to unstructured datasets produced through experimental methods and clinical practice. This is especially true for the construction of mutation databases. This paper presents a way of harmonizing abstract phenotype descriptions with patient data from clinical practice, and querying this dataset about relationships between phenotypes and genetic variants, at different levels of abstraction. Due to the current availability of ontological and terminological resources that have already reached some consensus in biomedicine, a reuse-based ontology engineering approach was followed. The proposed approach uses the Ontology Web Language (OWL) to represent the phenotype ontology and the patient model, the Semantic Web Rule Language (SWRL) to bridge the gap between phenotype descriptions and clinical data, and the Semantic Query Web Rule Language (SQWRL) to query relevant phenotype-genotype bidirectional relationships. The work tests the use of semantic web technology in the biomedical research domain named cerebrotendinous xanthomatosis (CTX), using a real dataset and ontologies. A framework to query relevant phenotype-genotype bidirectional relationships is provided. Phenotype descriptions and patient data were harmonized by defining 28 Horn-like rules in terms of the OWL concepts. In total, 24 patterns of SWQRL queries were designed following the initial list of competency questions. As the approach is based on OWL, the semantic of the framework adapts the standard logical model of an open world assumption. This work demonstrates how semantic web technologies can be used to support flexible representation and computational inference mechanisms required to query patient datasets at different levels of abstraction. The open world assumption is especially good for describing only partially known phenotype-genotype relationships, in a way that is easily extensible. In future, this type of approach could offer researchers a valuable resource to infer new data from patient data for statistical analysis in translational research. In conclusion, phenotype description formalization and mapping to clinical data are two key elements for interchanging knowledge between basic and clinical research.
Tanguay, Annick N; Benton, Lauren; Romio, Lorenza; Sievers, Carolin; Davidson, Patrick S R; Renoult, Louis
2018-02-01
Self-knowledge concerns one's own preferences and personality. It pertains to the self (similar to episodic memory), yet does not concern events. It is factual (like semantic memory), but also idiosyncratic. For these reasons, it is unclear where self-knowledge might fall on a continuum in relation to semantic and episodic memory. In this study, we aimed to compare the event-related potential (ERP) correlates of self-knowledge to those of semantic and episodic memory, using N400 and Late Positive Component (LPC) as proxies for semantic and episodic processing, respectively. We considered an additional factor: time perspective. Temporally distant selves have been suggested to be more semantic compared to the present self, but thinking about one's past and future selves may also engage episodic memory. Twenty-eight adults answered whether traits (e.g., persistent) were true of most people holding an occupation (e.g., soldiers; semantic memory condition), or true of themselves 5 years ago, in the present, or 5 years from now (past, present, and future self-knowledge conditions). The study ended with an episodic recognition memory task for previously seen traits. Present self-knowledge produced mean LPC amplitudes at posterior parietal sites that fell between semantic and episodic memory. Mean LPC amplitudes for past and future self-knowledge were greater than for semantic memory, and not significantly different from episodic memory. Mean N400 amplitudes for the self-knowledge conditions were smaller than for semantic memory at sagittal sites. However, this N400 effect was not separable from a preceding P200 effect at these same electrode sites. This P200 effect can be interpreted as reflecting the greater emotional salience of self as compared to general knowledge, which may have facilitated semantic processing. Overall, our findings are consistent with a distinction between knowledge of others and self-knowledge, but the closeness of self-knowledge's neural correlates to either semantic or episodic memory appears to depend to some extent on time perspective. Copyright © 2017 Elsevier Ltd. All rights reserved.
ERIC Educational Resources Information Center
Lytras, Miltiadis, Ed.; Naeve, Ambjorn, Ed.
2005-01-01
In the context of Knowledge Society, the convergence of knowledge and learning management is a critical milestone. "Intelligent Learning Infrastructure for Knowledge Intensive Organizations: A Semantic Web Perspective" provides state-of-the art knowledge through a balanced theoretical and technological discussion. The semantic web perspective…
Lerner, Itamar; Bentin, Shlomo; Shriki, Oren
2012-01-01
Localist models of spreading activation (SA) and models assuming distributed-representations offer very different takes on semantic priming, a widely investigated paradigm in word recognition and semantic memory research. In the present study we implemented SA in an attractor neural network model with distributed representations and created a unified framework for the two approaches. Our models assumes a synaptic depression mechanism leading to autonomous transitions between encoded memory patterns (latching dynamics), which account for the major characteristics of automatic semantic priming in humans. Using computer simulations we demonstrated how findings that challenged attractor-based networks in the past, such as mediated and asymmetric priming, are a natural consequence of our present model’s dynamics. Puzzling results regarding backward priming were also given a straightforward explanation. In addition, the current model addresses some of the differences between semantic and associative relatedness and explains how these differences interact with stimulus onset asynchrony in priming experiments. PMID:23094718
Implicit and explicit forgetting: when is gist remembered?
Dorfman, J; Mandler, G
1994-08-01
Recognition (YES/NO) and stem completion (cued: complete with a word from the list; and uncued: complete with the first word that comes to mind) were tested following either semantic or non-semantic processing of a categorized input list. Item/instance information was tested by contrasting target items from the input list with new items that were categorically related to them; gist/categorical information was tested by comparing target items semantically related to the input items with unrelated new items. For both recognition and stem completion, regardless of initial processing condition, item information decayed rapidly over a period of one week. Gist information was maintained over the same period when initial processing was semantic but only in the cued condition for completion. These results are discussed in terms of dual process theory, which postulates activation/integration of a representation as primarily relevant to implicit item information and elaboration of a representation as mainly relevant to semantic (i.e. categorical) information.
Neural representations of social status hierarchy in human inferior parietal cortex.
Chiao, Joan Y; Harada, Tokiko; Oby, Emily R; Li, Zhang; Parrish, Todd; Bridge, Donna J
2009-01-01
Mental representations of social status hierarchy share properties with that of numbers. Previous neuroimaging studies have shown that the neural representation of numerical magnitude lies within a network of regions within inferior parietal cortex. However the neural basis of social status hierarchy remains unknown. Using fMRI, we studied subjects while they compared social status magnitude of people, objects and symbols, as well as numerical magnitude. Both social status and number comparisons recruited bilateral intraparietal sulci. We also observed a semantic distance effect whereby neural activity within bilateral intraparietal sulci increased for semantically close relative to far numerical and social status comparisons. These results demonstrate that social status and number comparisons recruit distinct and overlapping neuronal representations within human inferior parietal cortex.
Semantic memory in object use.
Silveri, Maria Caterina; Ciccarelli, Nicoletta
2009-10-01
We studied five patients with semantic memory disorders, four with semantic dementia and one with herpes simplex virus encephalitis, to investigate the involvement of semantic conceptual knowledge in object use. Comparisons between patients who had semantic deficits of different severity, as well as the follow-up, showed that the ability to use objects was largely preserved when the deficit was mild but progressively decayed as the deficit became more severe. Naming was generally more impaired than object use. Production tasks (pantomime execution and actual object use) and comprehension tasks (pantomime recognition and action recognition) as well as functional knowledge about objects were impaired when the semantic deficit was severe. Semantic and unrelated errors were produced during object use, but actions were always fluent and patients performed normally on a novel tools task in which the semantic demand was minimal. Patients with severe semantic deficits scored borderline on ideational apraxia tasks. Our data indicate that functional semantic knowledge is crucial for using objects in a conventional way and suggest that non-semantic factors, mainly non-declarative components of memory, might compensate to some extent for semantic disorders and guarantee some residual ability to use very common objects independently of semantic knowledge.
The ARES High-level Intermediate Representation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moss, Nicholas David
The LLVM intermediate representation (IR) lacks semantic constructs for depicting common high-performance operations such as parallel and concurrent execution, communication and synchronization. Currently, representing such semantics in LLVM requires either extending the intermediate form (a signi cant undertaking) or the use of ad hoc indirect means such as encoding them as intrinsics and/or the use of metadata constructs. In this paper we discuss a work in progress to explore the design and implementation of a new compilation stage and associated high-level intermediate form that is placed between the abstract syntax tree and when it is lowered to LLVM's IR. Thismore » highlevel representation is a superset of LLVM IR and supports the direct representation of these common parallel computing constructs along with the infrastructure for supporting analysis and transformation passes on this representation.« less
A Common Mechanism in Verb and Noun Naming Deficits in Alzheimer’s Patients
Almor, Amit; Aronoff, Justin M.; MacDonald, Maryellen C.; Gonnerman, Laura M.; Kempler, Daniel; Hintiryan, Houri; Hayes, UnJa L.; Arunachalam, Sudha; Andersen, Elaine S.
2009-01-01
We tested the ability of Alzheimer’s patients and elderly controls to name living and non-living nouns, and manner and instrument verbs. Patient’s error patterns and relative performance with different categories showed evidence of graceful degradation for both nouns and verbs, with particular domain specific impairments for living nouns and instrument verbs. Our results support feature-based, semantic representations for nouns and verbs and support the role of inter-correlated features in noun impairment, and the role of noun knowledge in instrument verb impairment. PMID:19699513
NASA Astrophysics Data System (ADS)
Croft, William
2016-03-01
Arbib's computational comparative neuroprimatology [1] is a welcome model for cognitive linguists, that is, linguists who ground their models of language in human cognition and language use in social interaction. Arbib argues that language emerged via biological and cultural coevolution [1]; linguistic knowledge is represented by constructions, and semantic representations of linguistic constructions are grounded in embodied perceptual-motor schemas (the mirror system hypothesis). My comments offer some refinements from a linguistic point of view.
Knowledge synthesis with maps of neural connectivity.
Tallis, Marcelo; Thompson, Richard; Russ, Thomas A; Burns, Gully A P C
2011-01-01
This paper describes software for neuroanatomical knowledge synthesis based on neural connectivity data. This software supports a mature methodology developed since the early 1990s. Over this time, the Swanson laboratory at USC has generated an account of the neural connectivity of the sub-structures of the hypothalamus, amygdala, septum, hippocampus, and bed nucleus of the stria terminalis. This is based on neuroanatomical data maps drawn into a standard brain atlas by experts. In earlier work, we presented an application for visualizing and comparing anatomical macro connections using the Swanson third edition atlas as a framework for accurate registration. Here we describe major improvements to the NeuARt application based on the incorporation of a knowledge representation of experimental design. We also present improvements in the interface and features of the data mapping components within a unified web-application. As a step toward developing an accurate sub-regional account of neural connectivity, we provide navigational access between the data maps and a semantic representation of area-to-area connections that they support. We do so based on an approach called "Knowledge Engineering from Experimental Design" (KEfED) model that is based on experimental variables. We have extended the underlying KEfED representation of tract-tracing experiments by incorporating the definition of a neuronanatomical data map as a measurement variable in the study design. This paper describes the software design of a web-application that allows anatomical data sets to be described within a standard experimental context and thus indexed by non-spatial experimental design features.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moss, Nicholas
The Kokkos Clang compiler is a version of the Clang C++ compiler that has been modified to perform targeted code generation for Kokkos constructs in the goal of generating highly optimized code and to provide semantic (domain) awareness throughout the compilation toolchain of these constructs such as parallel for and parallel reduce. This approach is taken to explore the possibilities of exposing the developer’s intentions to the underlying compiler infrastructure (e.g. optimization and analysis passes within the middle stages of the compiler) instead of relying solely on the restricted capabilities of C++ template metaprogramming. To date our current activities havemore » focused on correct GPU code generation and thus we have not yet focused on improving overall performance. The compiler is implemented by recognizing specific (syntactic) Kokkos constructs in order to bypass normal template expansion mechanisms and instead use the semantic knowledge of Kokkos to directly generate code in the compiler’s intermediate representation (IR); which is then translated into an NVIDIA-centric GPU program and supporting runtime calls. In addition, by capturing and maintaining the higher-level semantics of Kokkos directly within the lower levels of the compiler has the potential for significantly improving the ability of the compiler to communicate with the developer in the terms of their original programming model/semantics.« less
Long-term interference at the semantic level: Evidence from blocked-cyclic picture matching.
Wei, Tao; Schnur, Tatiana T
2016-01-01
Processing semantically related stimuli creates interference across various domains of cognition, including language and memory. In this study, we identify the locus and mechanism of interference when retrieving meanings associated with words and pictures. Subjects matched a probe stimulus (e.g., cat) to its associated target picture (e.g., yarn) from an array of unrelated pictures. Across trials, probes were either semantically related or unrelated. To test the locus of interference, we presented probes as either words or pictures. If semantic interference occurs at the stage common to both tasks, that is, access to semantic representations, then interference should occur in both probe presentation modalities. Results showed clear semantic interference effects independent of presentation modality and lexical frequency, confirming a semantic locus of interference in comprehension. To test the mechanism of interference, we repeated trials across 4 presentation cycles and manipulated the number of unrelated intervening trials (zero vs. two). We found that semantic interference was additive across cycles and survived 2 intervening trials, demonstrating interference to be long-lasting as opposed to short-lived. However, interference was smaller with zero versus 2 intervening trials, which we interpret to suggest that short-lived facilitation counteracted the long-lived interference. We propose that retrieving meanings associated with words/pictures from the same semantic category yields both interference due to long-lasting changes in connection strength between semantic representations (i.e., incremental learning) and facilitation caused by short-lived residual activation. (PsycINFO Database Record (c) 2016 APA, all rights reserved).
Li, Yuanqing; Wang, Guangyi; Long, Jinyi; Yu, Zhuliang; Huang, Biao; Li, Xiaojian; Yu, Tianyou; Liang, Changhong; Li, Zheng; Sun, Pei
2011-01-01
One of the central questions in cognitive neuroscience is the precise neural representation, or brain pattern, associated with a semantic category. In this study, we explored the influence of audiovisual stimuli on the brain patterns of concepts or semantic categories through a functional magnetic resonance imaging (fMRI) experiment. We used a pattern search method to extract brain patterns corresponding to two semantic categories: "old people" and "young people." These brain patterns were elicited by semantically congruent audiovisual, semantically incongruent audiovisual, unimodal visual, and unimodal auditory stimuli belonging to the two semantic categories. We calculated the reproducibility index, which measures the similarity of the patterns within the same category. We also decoded the semantic categories from these brain patterns. The decoding accuracy reflects the discriminability of the brain patterns between two categories. The results showed that both the reproducibility index of brain patterns and the decoding accuracy were significantly higher for semantically congruent audiovisual stimuli than for unimodal visual and unimodal auditory stimuli, while the semantically incongruent stimuli did not elicit brain patterns with significantly higher reproducibility index or decoding accuracy. Thus, the semantically congruent audiovisual stimuli enhanced the within-class reproducibility of brain patterns and the between-class discriminability of brain patterns, and facilitate neural representations of semantic categories or concepts. Furthermore, we analyzed the brain activity in superior temporal sulcus and middle temporal gyrus (STS/MTG). The strength of the fMRI signal and the reproducibility index were enhanced by the semantically congruent audiovisual stimuli. Our results support the use of the reproducibility index as a potential tool to supplement the fMRI signal amplitude for evaluating multimodal integration.
Long, Jinyi; Yu, Zhuliang; Huang, Biao; Li, Xiaojian; Yu, Tianyou; Liang, Changhong; Li, Zheng; Sun, Pei
2011-01-01
One of the central questions in cognitive neuroscience is the precise neural representation, or brain pattern, associated with a semantic category. In this study, we explored the influence of audiovisual stimuli on the brain patterns of concepts or semantic categories through a functional magnetic resonance imaging (fMRI) experiment. We used a pattern search method to extract brain patterns corresponding to two semantic categories: “old people” and “young people.” These brain patterns were elicited by semantically congruent audiovisual, semantically incongruent audiovisual, unimodal visual, and unimodal auditory stimuli belonging to the two semantic categories. We calculated the reproducibility index, which measures the similarity of the patterns within the same category. We also decoded the semantic categories from these brain patterns. The decoding accuracy reflects the discriminability of the brain patterns between two categories. The results showed that both the reproducibility index of brain patterns and the decoding accuracy were significantly higher for semantically congruent audiovisual stimuli than for unimodal visual and unimodal auditory stimuli, while the semantically incongruent stimuli did not elicit brain patterns with significantly higher reproducibility index or decoding accuracy. Thus, the semantically congruent audiovisual stimuli enhanced the within-class reproducibility of brain patterns and the between-class discriminability of brain patterns, and facilitate neural representations of semantic categories or concepts. Furthermore, we analyzed the brain activity in superior temporal sulcus and middle temporal gyrus (STS/MTG). The strength of the fMRI signal and the reproducibility index were enhanced by the semantically congruent audiovisual stimuli. Our results support the use of the reproducibility index as a potential tool to supplement the fMRI signal amplitude for evaluating multimodal integration. PMID:21750692
Decoding word and category-specific spatiotemporal representations from MEG and EEG
Chan, Alexander M.; Halgren, Eric; Marinkovic, Ksenija; Cash, Sydney S.
2010-01-01
The organization and localization of lexico-semantic information in the brain has been debated for many years. Specifically, lesion and imaging studies have attempted to map the brain areas representing living versus non-living objects, however, results remain variable. This may be due, in part, to the fact that the univariate statistical mapping analyses used to detect these brain areas are typically insensitive to subtle, but widespread, effects. Decoding techniques, on the other hand, allow for a powerful multivariate analysis of multichannel neural data. In this study, we utilize machine-learning algorithms to first demonstrate that semantic category, as well as individual words, can be decoded from EEG and MEG recordings of subjects performing a language task. Mean accuracies of 76% (chance = 50%) and 83% (chance = 20%) were obtained for the decoding of living vs. non-living category or individual words respectively. Furthermore, we utilize this decoding analysis to demonstrate that the representations of words and semantic category are highly distributed both spatially and temporally. In particular, bilateral anterior temporal, bilateral inferior frontal, and left inferior temporal-occipital sensors are most important for discrimination. Successful intersubject and intermodality decoding shows that semantic representations between stimulus modalities and individuals are reasonably consistent. These results suggest that both word and category-specific information are present in extracranially recorded neural activity and that these representations may be more distributed, both spatially and temporally, than previous studies suggest. PMID:21040796
Face-Name Repetition Priming in Semantic Dementia: A Case Report
ERIC Educational Resources Information Center
Calabria, Marco; Miniussi, Carlo; Bisiacchi, Patricia S.; Zanetti, Orazio; Cotelli, Maria
2009-01-01
Repetition priming (RP) has been employed as a measure of implicit processing in patients suffering from a breakdown of semantic memory, as in the case of semantic dementia (SD), a subtype of frontotemporal lobar degeneration (FTLD). Here, we investigated face-name representation in a case of SD using a paradigm of within- and cross-domain…
ERIC Educational Resources Information Center
Bastiaansen, Marcel C. M.; Oostenveld, Robert; Jensen, Ole; Hagoort, Peter
2008-01-01
An influential hypothesis regarding the neural basis of the mental lexicon is that semantic representations are neurally implemented as distributed networks carrying sensory, motor and/or more abstract functional information. This work investigates whether the semantic properties of words partly determine the topography of such networks. Subjects…
Masked Associative/Semantic Priming Effects across Languages with Highly Proficient Bilinguals
ERIC Educational Resources Information Center
Perea, Manuel; Dunabeitia, Jon Andoni; Carreiras, Manuel
2008-01-01
One key issue for models of bilingual memory is to what degree the semantic representation from one of the languages is shared with the other language. In the present paper, we examine whether there is an early, automatic semantic priming effect across languages for noncognates with highly proficient (Basque/Spanish) bilinguals. Experiment 1 was a…
Perception of Lexical Stress by Brain-Damaged Individuals: Effects on Lexical-Semantic Activation
ERIC Educational Resources Information Center
Shah, Amee P.; Baum, Shari R.
2006-01-01
A semantic priming, lexical-decision study was conducted to examine the ability of left- and right-brain damaged individuals to perceive lexical-stress cues and map them onto lexical-semantic representations. Correctly and incorrectly stressed primes were paired with related and unrelated target words to tap implicit processing of lexical prosody.…
Ludersdorfer, Philipp; Wimmer, Heinz; Richlan, Fabio; Schurz, Matthias; Hutzler, Florian; Kronbichler, Martin
2016-01-01
The present fMRI study investigated the hypothesis that activation of the left ventral occipitotemporal cortex (vOT) in response to auditory words can be attributed to lexical orthographic rather than lexico-semantic processing. To this end, we presented auditory words in both an orthographic ("three or four letter word?") and a semantic ("living or nonliving?") task. In addition, a auditory control condition presented tones in a pitch evaluation task. The results showed that the left vOT exhibited higher activation for orthographic relative to semantic processing of auditory words with a peak in the posterior part of vOT. Comparisons to the auditory control condition revealed that orthographic processing of auditory words elicited activation in a large vOT cluster. In contrast, activation for semantic processing was only weak and restricted to the middle part vOT. We interpret our findings as speaking for orthographic processing in left vOT. In particular, we suggest that activation in left middle vOT can be attributed to accessing orthographic whole-word representations. While activation of such representations was experimentally ascertained in the orthographic task, it might have also occurred automatically in the semantic task. Activation in the more posterior vOT region, on the other hand, may reflect the generation of explicit images of word-specific letter sequences required by the orthographic but not the semantic task. In addition, based on cross-modal suppression, the finding of marked deactivations in response to the auditory tones is taken to reflect the visual nature of representations and processes in left vOT. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.
Hoffman, Paul; Cox, Simon R; Dykiert, Dominika; Muñoz Maniega, Susana; Valdés Hernández, Maria C; Bastin, Mark E; Wardlaw, Joanna M; Deary, Ian J
2017-08-01
Cerebral grey and white matter MRI parameters are related to general intelligence and some specific cognitive abilities. Less is known about how structural brain measures relate specifically to verbal processing abilities. We used multi-modal structural MRI to investigate the grey matter (GM) and white matter (WM) correlates of verbal ability in 556 healthy older adults (mean age = 72.68 years, s.d. = .72 years). Structural equation modelling was used to decompose verbal performance into two latent factors: a storage factor that indexed participants' ability to store representations of verbal knowledge and an executive factor that measured their ability to regulate their access to this information in a flexible and task-appropriate manner. GM volumes and WM fractional anisotropy (FA) for components of the language/semantic network were used as predictors of these verbal ability factors. Volume of the ventral temporal cortices predicted participants' storage scores (β = .12, FDR-adjusted p = .04), consistent with the theory that this region acts as a key substrate of semantic knowledge. This effect was mediated by childhood IQ, suggesting a lifelong association between ventral temporal volume and verbal knowledge, rather than an effect of cognitive decline in later life. Executive ability was predicted by FA fractional anisotropy of the arcuate fasciculus (β = .19, FDR-adjusted p = .001), a major language-related tract implicated in speech production. This result suggests that this tract plays a role in the controlled retrieval of word knowledge during speech. At a more general level, these data highlight a basic distinction between information representation, which relies on the accumulation of tissue in specialised GM regions, and executive control, which depends on long-range WM pathways for efficient communication across distributed cortical networks. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.
How semantics can inform the geological mapping process and support intelligent queries
NASA Astrophysics Data System (ADS)
Lombardo, Vincenzo; Piana, Fabrizio; Mimmo, Dario
2017-04-01
The geologic mapping process requires the organization of data according to the general knowledge about the objects, namely the geologic units, and to the objectives of a graphic representation of such objects in a map, following an established model of geotectonic evolution. Semantics can greatly help such a process in two concerns: the provision of a terminological base to name and classify the objects of the map; on the other, the implementation of a machine-readable encoding of the geologic knowledge base supports the application of reasoning mechanisms and the derivation of novel properties and relations about the objects of the map. The OntoGeonous initiative has built a terminological base of geological knowledge in a machine-readable format, following the Semantic Web tenets and the Linked Data paradigm. The major knowledge sources of the OntoGeonous initiative are GeoScience Markup Language schemata and vocabularies (through its last version, GeoSciML 4, 2015, published by the IUGS CGI Commission) and the INSPIRE "Data Specification on Geology" directives (an operative simplification of GeoSciML, published by INSPIRE Thematic Working Group Geology of the European Commission). The Linked Data paradigm has been exploited by linking (without replicating, to avoid inconsistencies) the already existing machine-readable encoding for some specific domains, such as the lithology domain (vocabulary Simple Lithology) and the geochronologic time scale (ontology "gts"). Finally, for the upper level knowledge, shared across several geologic domains, we have resorted to NASA SWEET ontology. The OntoGeonous initiative has also produced a wiki that explains how the geologic knowledge has been encoded from shared geoscience vocabularies (https://www.di.unito.it/wikigeo/). In particular, the sections dedicated to axiomatization will support the construction of an appropriate data base schema that can be then filled with the objects of the map. This contribution will discuss how the formal encoding of the geological knowledge opens new perspectives for the analysis and representation of the geological systems. In fact, once that the major concepts are defined, the resulting formal conceptual model of the geologic system can hold across different technical and scientific communities. Furthermore, this would allow for a semi-automatic or automatic classification of the cartographic database, where a significant number of properties (attributes) of the recorded instances could be inferred through computational reasoning. So, for example, the system can be queried for showing the instances that satisfy some property (e.g., "Retrieve all the lithostratigraphic units composed of clastic sedimentary rock") or for classifying some unit according to the properties holding for that unit (e.g., "What is the class of the geologic unit composed of siltstone material?").
Semantically Enabling Knowledge Representation of Metamorphic Petrology Data
NASA Astrophysics Data System (ADS)
West, P.; Fox, P. A.; Spear, F. S.; Adali, S.; Nguyen, C.; Hallett, B. W.; Horkley, L. K.
2012-12-01
More and more metamorphic petrology data is being collected around the world, and is now being organized together into different virtual data portals by means of virtual organizations. For example, there is the virtual data portal Petrological Database (PetDB, http://www.petdb.org) of the Ocean Floor that is organizing scientific information about geochemical data of ocean floor igneous and metamorphic rocks; and also The Metamorphic Petrology Database (MetPetDB, http://metpetdb.rpi.edu) that is being created by a global community of metamorphic petrologists in collaboration with software engineers and data managers at Rensselaer Polytechnic Institute. The current focus is to provide the ability for scientists and researchers to register their data and search the databases for information regarding sample collections. What we present here is the next step in evolution of the MetPetDB portal, utilizing semantically enabled features such as discovery, data casting, faceted search, knowledge representation, and linked data as well as organizing information about the community and collaboration within the virtual community itself. We take the information that is currently represented in a relational database and make it available through web services, SPARQL endpoints, semantic and triple-stores where inferencing is enabled. We will be leveraging research that has taken place in virtual observatories, such as the Virtual Solar Terrestrial Observatory (VSTO) and the Biological and Chemical Oceanography Data Management Office (BCO-DMO); vocabulary work done in various communities such as Observations and Measurements (ISO 19156), FOAF (Friend of a Friend), Bibo (Bibliography Ontology), and domain specific ontologies; enabling provenance traces of samples and subsamples using the different provenance ontologies; and providing the much needed linking of data from the various research organizations into a common, collaborative virtual observatory. In addition to better representing and presenting the actual data, we also look to organize and represent the knowledge information and expertise behind the data. Domain experts hold a lot of knowledge in their minds, in their presentations and publications, and elsewhere. Not only is this a technical issue, this is also a social issue in that we need to be able to encourage the domain experts to share their knowledge in a way that can be searched and queried over. With this additional focus in MetPetDB the site can be used more efficiently by other domain experts, but can also be utilized by non-specialists as well in order to educate people of the importance of the work being done as well as enable future domain experts.
Interoperability between phenotype and anatomy ontologies.
Hoehndorf, Robert; Oellrich, Anika; Rebholz-Schuhmann, Dietrich
2010-12-15
Phenotypic information is important for the analysis of the molecular mechanisms underlying disease. A formal ontological representation of phenotypic information can help to identify, interpret and infer phenotypic traits based on experimental findings. The methods that are currently used to represent data and information about phenotypes fail to make the semantics of the phenotypic trait explicit and do not interoperate with ontologies of anatomy and other domains. Therefore, valuable resources for the analysis of phenotype studies remain unconnected and inaccessible to automated analysis and reasoning. We provide a framework to formalize phenotypic descriptions and make their semantics explicit. Based on this formalization, we provide the means to integrate phenotypic descriptions with ontologies of other domains, in particular anatomy and physiology. We demonstrate how our framework leads to the capability to represent disease phenotypes, perform powerful queries that were not possible before and infer additional knowledge. http://bioonto.de/pmwiki.php/Main/PheneOntology.
Learning semantic histopathological representation for basal cell carcinoma classification
NASA Astrophysics Data System (ADS)
Gutiérrez, Ricardo; Rueda, Andrea; Romero, Eduardo
2013-03-01
Diagnosis of a histopathology glass slide is a complex process that involves accurate recognition of several structures, their function in the tissue and their relation with other structures. The way in which the pathologist represents the image content and the relations between those objects yields a better and accurate diagnoses. Therefore, an appropriate semantic representation of the image content will be useful in several analysis tasks such as cancer classification, tissue retrieval and histopahological image analysis, among others. Nevertheless, to automatically recognize those structures and extract their inner semantic meaning are still very challenging tasks. In this paper we introduce a new semantic representation that allows to describe histopathological concepts suitable for classification. The approach herein identify local concepts using a dictionary learning approach, i.e., the algorithm learns the most representative atoms from a set of random sampled patches, and then models the spatial relations among them by counting the co-occurrence between atoms, while penalizing the spatial distance. The proposed approach was compared with a bag-of-features representation in a tissue classification task. For this purpose, 240 histological microscopical fields of view, 24 per tissue class, were collected. Those images fed a Support Vector Machine classifier per class, using 120 images as train set and the remaining ones for testing, maintaining the same proportion of each concept in the train and test sets. The obtained classification results, averaged from 100 random partitions of training and test sets, shows that our approach is more sensitive in average than the bag-of-features representation in almost 6%.
Balthazar, Marcio L.F.; Yasuda, Clarissa L.; Lopes, Tátila M.; Pereira, Fabrício R.S.; Damasceno, Benito Pereira; Cendes, Fernando
2011-01-01
Neuroanatomical correlations of naming and lexical-semantic memory are not yet fully understood. The most influential approaches share the view that semantic representations reflect the manner in which information has been acquired through perception and action, and that each brain area processes different modalities of semantic representations. Despite these anatomical differences in semantic processing, generalization across different features that have similar semantic significance is one of the main characteristics of human cognition. Methods We evaluated the brain regions related to naming, and to the semantic generalization, of visually presented drawings of objects from the Boston Naming Test (BNT), which comprises different categories, such as animals, vegetables, tools, food, and furniture. In order to create a model of lesion method, a sample of 48 subjects presenting with a continuous decline both in cognitive functions, including naming skills, and in grey matter density (GMD) was compared to normal young adults with normal aging, amnestic mild cognitive impairment (aMCI) and mild Alzheimer’s disease (AD). Semantic errors on the BNT, as well as naming performance, were correlated with whole brain GMD as measured by voxel-based morphometry (VBM). Results The areas most strongly related to naming and to semantic errors were the medial temporal structures, thalami, superior and inferior temporal gyri, especially their anterior parts, as well as prefrontal cortices (inferior and superior frontal gyri). Conclusion The possible role of each of these areas in the lexical-semantic networks was discussed, along with their contribution to the models of semantic memory organization. PMID:29213726
Consolidation of Complex Events via Reinstatement in Posterior Cingulate Cortex
Keidel, James L.; Ing, Leslie P.; Horner, Aidan J.
2015-01-01
It is well-established that active rehearsal increases the efficacy of memory consolidation. It is also known that complex events are interpreted with reference to prior knowledge. However, comparatively little attention has been given to the neural underpinnings of these effects. In healthy adults humans, we investigated the impact of effortful, active rehearsal on memory for events by showing people several short video clips and then asking them to recall these clips, either aloud (Experiment 1) or silently while in an MRI scanner (Experiment 2). In both experiments, actively rehearsed clips were remembered in far greater detail than unrehearsed clips when tested a week later. In Experiment 1, highly similar descriptions of events were produced across retrieval trials, suggesting a degree of semanticization of the memories had taken place. In Experiment 2, spatial patterns of BOLD signal in medial temporal and posterior midline regions were correlated when encoding and rehearsing the same video. Moreover, the strength of this correlation in the posterior cingulate predicted the amount of information subsequently recalled. This is likely to reflect a strengthening of the representation of the video's content. We argue that these representations combine both new episodic information and stored semantic knowledge (or “schemas”). We therefore suggest that posterior midline structures aid consolidation by reinstating and strengthening the associations between episodic details and more generic schematic information. This leads to the creation of coherent memory representations of lifelike, complex events that are resistant to forgetting, but somewhat inflexible and semantic-like in nature. SIGNIFICANCE STATEMENT Memories are strengthened via consolidation. We investigated memory for lifelike events using video clips and showed that rehearsing their content dramatically boosts memory consolidation. Using MRI scanning, we measured patterns of brain activity while watching the videos and showed that, in a network of brain regions, similar patterns of brain activity are reinstated when rehearsing the same videos. Within the posterior cingulate, the strength of reinstatement predicted how well the videos were remembered a week later. The findings extend our knowledge of the brain regions important for creating long-lasting memories for complex, lifelike events. PMID:26511235
The numerical distance effect is task dependent.
Goldfarb, Liat; Henik, Avishai; Rubinsten, Orly; Bloch-David, Yafit; Gertner, Limor
2011-11-01
Number comparison tasks produce a distance effect e.g., Moyer & Landauer (Nature 215: 1519-1520, 1967). It has been suggested that this effect supports the existence of semantic mental representations of numbers. In a matching task, a distance effect also appears, which suggests that the effect has an automatic semantic component. Recently, Cohen (Psychonomic Bulletin & Review 16: 332-336, 2009) suggested that in both automatic and intentional tasks, the distance effect might reflect not a semantic number representation, but a physical similarity between digits. The present article (1) compares the distance effect in the automatic matching task with that in the intentional number comparison task and suggests that, in the latter, the distance effect does include an additional semantic component; and (2) indicates that the distance effect in the standard automatic matching task is questionable and that its appearance in previous matching tasks was based on the specific analysis and design that were applied.
Specifying the role of the left prefrontal cortex in word selection
Ries, S. K; Karzmark, C. R.; Navarrete, E.; Knight, R. T.; Dronkers, N. F.
2015-01-01
Word selection allows us to choose words during language production. This is often viewed as a competitive process wherein a lexical representation is retrieved among semantically-related alternatives. The left prefrontal cortex (LPFC) is thought to help overcome competition for word selection through top-down control. However, whether the LPFC is always necessary for word selection remains unclear. We tested 6 LPFC-injured patients and controls in two picture naming paradigms varying in terms of item repetition. Both paradigms elicited the expected semantic interference effects (SIE), reflecting interference caused by semantically-related representations in word selection. However, LPFC patients as a group showed a larger SIE than controls only in the paradigm involving item repetition. We argue that item repetition increases interference caused by semantically-related alternatives, resulting in increased LPFC-dependent cognitive control demands. The remaining network of brain regions associated with word selection appears to be sufficient when items are not repeated. PMID:26291289
NASA Astrophysics Data System (ADS)
Laird, John E.
2009-05-01
Our long-term goal is to develop autonomous robotic systems that have the cognitive abilities of humans, including communication, coordination, adapting to novel situations, and learning through experience. Our approach rests on the recent integration of the Soar cognitive architecture with both virtual and physical robotic systems. Soar has been used to develop a wide variety of knowledge-rich agents for complex virtual environments, including distributed training environments and interactive computer games. For development and testing in robotic virtual environments, Soar interfaces to a variety of robotic simulators and a simple mobile robot. We have recently made significant extensions to Soar that add new memories and new non-symbolic reasoning to Soar's original symbolic processing, which should significantly improve Soar abilities for control of robots. These extensions include episodic memory, semantic memory, reinforcement learning, and mental imagery. Episodic memory and semantic memory support the learning and recalling of prior events and situations as well as facts about the world. Reinforcement learning provides the ability of the system to tune its procedural knowledge - knowledge about how to do things. Mental imagery supports the use of diagrammatic and visual representations that are critical to support spatial reasoning. We speculate on the future of unmanned systems and the need for cognitive robotics to support dynamic instruction and taskability.
DataHub: Knowledge-based data management for data discovery
NASA Astrophysics Data System (ADS)
Handley, Thomas H.; Li, Y. Philip
1993-08-01
Currently available database technology is largely designed for business data-processing applications, and seems inadequate for scientific applications. The research described in this paper, the DataHub, will address the issues associated with this shortfall in technology utilization and development. The DataHub development is addressing the key issues in scientific data management of scientific database models and resource sharing in a geographically distributed, multi-disciplinary, science research environment. Thus, the DataHub will be a server between the data suppliers and data consumers to facilitate data exchanges, to assist science data analysis, and to provide as systematic approach for science data management. More specifically, the DataHub's objectives are to provide support for (1) exploratory data analysis (i.e., data driven analysis); (2) data transformations; (3) data semantics capture and usage; analysis-related knowledge capture and usage; and (5) data discovery, ingestion, and extraction. Applying technologies that vary from deductive databases, semantic data models, data discovery, knowledge representation and inferencing, exploratory data analysis techniques and modern man-machine interfaces, DataHub will provide a prototype, integrated environement to support research scientists' needs in multiple disciplines (i.e. oceanography, geology, and atmospheric) while addressing the more general science data management issues. Additionally, the DataHub will provide data management services to exploratory data analysis applications such as LinkWinds and NCSA's XIMAGE.
Verb Production during Action Naming in Semantic Dementia
ERIC Educational Resources Information Center
Meligne, D.; Fossard, M.; Belliard, S.; Moreaud, O.; Duvignau, K.; Demonet, J.-F.
2011-01-01
In contrast with widely documented deficits of semantic knowledge relating to object concepts and the corresponding nouns in semantic dementia (SD), little is known about action semantics and verb production in SD. The degradation of action semantic knowledge was studied in 5 patients with SD compared with 17 matched control participants in an…
Ji, Xiaonan; Ritter, Alan; Yen, Po-Yin
2017-05-01
Systematic Reviews (SRs) are utilized to summarize evidence from high quality studies and are considered the preferred source of evidence-based practice (EBP). However, conducting SRs can be time and labor intensive due to the high cost of article screening. In previous studies, we demonstrated utilizing established (lexical) article relationships to facilitate the identification of relevant articles in an efficient and effective manner. Here we propose to enhance article relationships with background semantic knowledge derived from Unified Medical Language System (UMLS) concepts and ontologies. We developed a pipelined semantic concepts representation process to represent articles from an SR into an optimized and enriched semantic space of UMLS concepts. Throughout the process, we leveraged concepts and concept relations encoded in biomedical ontologies (SNOMED-CT and MeSH) within the UMLS framework to prompt concept features of each article. Article relationships (similarities) were established and represented as a semantic article network, which was readily applied to assist with the article screening process. We incorporated the concept of active learning to simulate an interactive article recommendation process, and evaluated the performance on 15 completed SRs. We used work saved over sampling at 95% recall (WSS95) as the performance measure. We compared the WSS95 performance of our ontology-based semantic approach to existing lexical feature approaches and corpus-based semantic approaches, and found that we had better WSS95 in most SRs. We also had the highest average WSS95 of 43.81% and the highest total WSS95 of 657.18%. We demonstrated using ontology-based semantics to facilitate the identification of relevant articles for SRs. Effective concepts and concept relations derived from UMLS ontologies can be utilized to establish article semantic relationships. Our approach provided a promising performance and can easily apply to any SR topics in the biomedical domain with generalizability. Copyright © 2017 Elsevier Inc. All rights reserved.
Rassinoux, Anne-Marie; Baud, Robert H; Rodrigues, Jean-Marie; Lovis, Christian; Geissbühler, Antoine
2007-01-01
The importance of clinical communication between providers, consumers and others, as well as the requisite for computer interoperability, strengthens the need for sharing common accepted terminologies. Under the directives of the World Health Organization (WHO), an approach is currently being conducted in Australia to adopt a standardized terminology for medical procedures that is intended to become an international reference. In order to achieve such a standard, a collaborative approach is adopted, in line with the successful experiment conducted for the development of the new French coding system CCAM. Different coding centres are involved in setting up a semantic representation of each term using a formal ontological structure expressed through a logic-based representation language. From this language-independent representation, multilingual natural language generation (NLG) is performed to produce noun phrases in various languages that are further compared for consistency with the original terms. Outcomes are presented for the assessment of the International Classification of Health Interventions (ICHI) and its translation into Portuguese. The initial results clearly emphasize the feasibility and cost-effectiveness of the proposed method for handling both a different classification and an additional language. NLG tools, based on ontology driven semantic representation, facilitate the discovery of ambiguous and inconsistent terms, and, as such, should be promoted for establishing coherent international terminologies.
Anderson, Andrew James; Lalor, Edmund C; Lin, Feng; Binder, Jeffrey R; Fernandino, Leonardo; Humphries, Colin J; Conant, Lisa L; Raizada, Rajeev D S; Grimm, Scott; Wang, Xixi
2018-05-16
Deciphering how sentence meaning is represented in the brain remains a major challenge to science. Semantically related neural activity has recently been shown to arise concurrently in distributed brain regions as successive words in a sentence are read. However, what semantic content is represented by different regions, what is common across them, and how this relates to words in different grammatical positions of sentences is weakly understood. To address these questions, we apply a semantic model of word meaning to interpret brain activation patterns elicited in sentence reading. The model is based on human ratings of 65 sensory/motor/emotional and cognitive features of experience with words (and their referents). Through a process of mapping functional Magnetic Resonance Imaging activation back into model space we test: which brain regions semantically encode content words in different grammatical positions (e.g., subject/verb/object); and what semantic features are encoded by different regions. In left temporal, inferior parietal, and inferior/superior frontal regions we detect the semantic encoding of words in all grammatical positions tested and reveal multiple common components of semantic representation. This suggests that sentence comprehension involves a common core representation of multiple words' meaning being encoded in a network of regions distributed across the brain.
Separate Brain Circuits Support Integrative and Semantic Priming in the Human Language System.
Feng, Gangyi; Chen, Qi; Zhu, Zude; Wang, Suiping
2016-07-01
Semantic priming is a crucial phenomenon to study the organization of semantic memory. A novel type of priming effect, integrative priming, has been identified behaviorally, whereby a prime word facilitates recognition of a target word when the 2 concepts can be combined to form a unitary representation. We used both functional and anatomical imaging approaches to investigate the neural substrates supporting such integrative priming, and compare them with those in semantic priming. Similar behavioral priming effects for both semantic (Bread-Cake) and integrative conditions (Cherry-Cake) were observed when compared with an unrelated condition. However, a clearly dissociated brain response was observed between these 2 types of priming. The semantic-priming effect was localized to the posterior superior temporal and middle temporal gyrus. In contrast, the integrative-priming effect localized to the left anterior inferior frontal gyrus and left anterior temporal cortices. Furthermore, fiber tractography showed that the integrative-priming regions were connected via uncinate fasciculus fiber bundle forming an integrative circuit, whereas the semantic-priming regions connected to the posterior frontal cortex via separated pathways. The results point to dissociable neural pathways underlying the 2 distinct types of priming, illuminating the neural circuitry organization of semantic representation and integration. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
The evaluative imaging of mental models - Visual representations of complexity
NASA Technical Reports Server (NTRS)
Dede, Christopher
1989-01-01
The paper deals with some design issues involved in building a system that could visually represent the semantic structures of training materials and their underlying mental models. In particular, hypermedia-based semantic networks that instantiate classification problem solving strategies are thought to be a useful formalism for such representations; the complexity of these web structures can be best managed through visual depictions. It is also noted that a useful approach to implement in these hypermedia models would be some metrics of conceptual distance.
Guerra, Ernesto; Knoeferle, Pia
2018-01-01
Existing evidence has shown a processing advantage (or facilitation) when representations derived from a non-linguistic context (spatial proximity depicted by gambling cards moving together) match the semantic content of an ensuing sentence. A match, inspired by conceptual metaphors such as 'similarity is closeness' would, for instance, involve cards moving closer together and the sentence relates similarity between abstract concepts such as war and battle. However, other studies have reported a disadvantage (or interference) for congruence between the semantic content of a sentence and representations of spatial distance derived from this sort of non-linguistic context. In the present article, we investigate the cognitive mechanisms underlying the interaction between the representations of spatial distance and sentence processing. In two eye-tracking experiments, we tested the predictions of a mechanism that considers the competition, activation, and decay of visually and linguistically derived representations as key aspects in determining the qualitative pattern and time course of that interaction. Critical trials presented two playing cards, each showing a written abstract noun; the cards turned around, obscuring the nouns, and moved either farther apart or closer together. Participants then read a sentence expressing either semantic similarity or difference between these two nouns. When instructed to attend to the nouns on the cards (Experiment 1), participants' total reading times revealed interference between spatial distance (e.g., closeness) and semantic relations (similarity) as soon as the sentence explicitly conveyed similarity. But when instructed to attend to the cards (Experiment 2), cards approaching (vs. moving apart) elicited first interference (when similarity was implicit) and then facilitation (when similarity was made explicit) during sentence reading. We discuss these findings in the context of a competition mechanism of interference and facilitation effects.
Semantic representation in the white matter pathway
Fang, Yuxing; Wang, Xiaosha; Zhong, Suyu; Song, Luping; Han, Zaizhu; Gong, Gaolang
2018-01-01
Object conceptual processing has been localized to distributed cortical regions that represent specific attributes. A challenging question is how object semantic space is formed. We tested a novel framework of representing semantic space in the pattern of white matter (WM) connections by extending the representational similarity analysis (RSA) to structural lesion pattern and behavioral data in 80 brain-damaged patients. For each WM connection, a neural representational dissimilarity matrix (RDM) was computed by first building machine-learning models with the voxel-wise WM lesion patterns as features to predict naming performance of a particular item and then computing the correlation between the predicted naming score and the actual naming score of another item in the testing patients. This correlation was used to build the neural RDM based on the assumption that if the connection pattern contains certain aspects of information shared by the naming processes of these two items, models trained with one item should also predict naming accuracy of the other. Correlating the neural RDM with various cognitive RDMs revealed that neural patterns in several WM connections that connect left occipital/middle temporal regions and anterior temporal regions associated with the object semantic space. Such associations were not attributable to modality-specific attributes (shape, manipulation, color, and motion), to peripheral picture-naming processes (picture visual similarity, phonological similarity), to broad semantic categories, or to the properties of the cortical regions that they connected, which tended to represent multiple modality-specific attributes. That is, the semantic space could be represented through WM connection patterns across cortical regions representing modality-specific attributes. PMID:29624578
Effects of childhood hearing loss on organization of semantic memory: typicality and relatedness.
Jerger, Susan; Damian, Markus F; Tye-Murray, Nancy; Dougherty, Meaghan; Mehta, Jyutika; Spence, Melanie
2006-12-01
The purpose of this research was to study how early childhood hearing loss affects development of concepts and categories, aspects of semantic knowledge that allow us to group and make inferences about objects with common properties, such as dogs versus cats. We assessed category typicality and out-of-category relatedness effects. The typicality effect refers to performance advantage (faster reaction times, fewer errors) for objects with a higher number of a category's characteristic properties; the out-of-category relatedness effect refers to performance disadvantage (slower reaction times and more errors) for out-of-category objects that share some properties with category members. We applied a new children's speeded category-verification task (vote "yes" if the pictured object is clothing). Stimuli were pictures of typical and atypical category objects (e.g., pants, glove) and related and unrelated out-of-category objects (e.g., necklace, soup). Participants were 30 children with hearing impairment (HI) who were considered successful hearing aid users and who attended regular classes (mainstreamed) with some support services. Ages ranged from 5 to 15 yr (mean = 10 yr 8 mo). Results were related to normative data from . Typical objects consistently showed preferential processing (faster reaction times, fewer errors), and related out-of-category objects consistently showed the converse. Overall, results between HI and normative groups exhibited striking similarity. Variation in speed of classification was influenced primarily by age and age-related competencies, such as vocabulary skill. Audiological status, however, independently influenced performance to a lesser extent, with positive responses becoming faster as degree of hearing loss decreased and negative responses becoming faster as age of identification/amplification/education decreased. There were few errors overall. The presence of a typicality effect indicates that 1) the structure of conceptual representations for at least one category in the HI group was based on characteristic properties with an uneven distribution among members, and 2) typical objects with a higher number of characteristic properties were more easily accessed and/or retrieved. The presence of a relatedness effect indicates that the structure of representational knowledge in the HI group allowed them to appreciate semantic properties and understand that properties may be shared between categories. Speculations linked the association 1) between positive responses and degree of hearing loss to an increase in the quality, accessibility, and retrievability of conceptual representations with better hearing; and 2) between negative responses and age of identification/amplification/education to an improvement in effortful, postretrieval decision-making proficiencies with more schooling and amplified auditory experience. This research establishes the value of our new approach to assessing the organization of semantic memory in children with HI.
Semantics-informed cartography: the case of Piemonte Geological Map
NASA Astrophysics Data System (ADS)
Piana, Fabrizio; Lombardo, Vincenzo; Mimmo, Dario; Giardino, Marco; Fubelli, Giandomenico
2016-04-01
In modern digital geological maps, namely those supported by a large geo-database and devoted to dynamical, interactive representation on WMS-WebGIS services, there is the need to provide, in an explicit form, the geological assumptions used for the design and compilation of the database of the Map, and to get a definition and/or adoption of semantic representation and taxonomies, in order to achieve a formal and interoperable representation of the geologic knowledge. These approaches are fundamental for the integration and harmonisation of geological information and services across cultural (e.g. different scientific disciplines) and/or physical barriers (e.g. administrative boundaries). Initiatives such as GeoScience Markup Language (last version is GeoSciML 4.0, 2015, http://www.geosciml.org) and the INSPIRE "Data Specification on Geology" http://inspire.jrc.ec.europa.eu/documents/Data_Specifications/INSPIRE_DataSpecification_GE_v3.0rc3.pdf (an operative simplification of GeoSciML, last version is 3.0 rc3, 2013), as well as the recent terminological shepherding of the Geoscience Terminology Working Group (GTWG) have been promoting information exchange of the geologic knowledge. Grounded on these standard vocabularies, schemas and data models, we provide a shared semantic classification of geological data referring to the study case of the synthetic digital geological map of the Piemonte region (NW Italy), named "GEOPiemonteMap", developed by the CNR Institute of Geosciences and Earth Resources, Torino (CNR IGG TO) and hosted as a dynamical interactive map on the geoportal of ARPA Piemonte Environmental Agency. The Piemonte Geological Map is grounded on a regional-scale geo-database consisting of some hundreds of GeologicUnits whose thousands instances (Mapped Features, polygons geometry) widely occur in Piemonte region, and each one is bounded by GeologicStructures (Mapped Features, line geometry). GeologicUnits and GeologicStructures have been spatially correlated through the whole region and described using the GeoSciML vocabularies. A hierarchical schema is provided for the Piemonte Geological Map that gives the parental relations between several orders of GeologicUnits referring to mostly recurring geological objects and main GeologicEvents, in a logical framework compliant with GeoSciML and INSPIRE data models. The classification criteria and the Hierarchy Schema used to define the GEOPiemonteMap Legend, as well as the intended meanings of the geological concepts used to achieve the overall classification schema, are explicitly described in several WikiGeo pages (implemented by "MediaWiki" open source software, https://www.mediawiki.org/wiki/MediaWiki). Moreover, a further step toward a formal classification of the contents (both data and interpretation) of the GEOPiemonteMap was triggered, by setting up an ontological framework, named "OntoGeonous", in order to achieve a thorough semantic characterization of the Map.
ADO: a disease ontology representing the domain knowledge specific to Alzheimer's disease.
Malhotra, Ashutosh; Younesi, Erfan; Gündel, Michaela; Müller, Bernd; Heneka, Michael T; Hofmann-Apitius, Martin
2014-03-01
Biomedical ontologies offer the capability to structure and represent domain-specific knowledge semantically. Disease-specific ontologies can facilitate knowledge exchange across multiple disciplines, and ontology-driven mining approaches can generate great value for modeling disease mechanisms. However, in the case of neurodegenerative diseases such as Alzheimer's disease, there is a lack of formal representation of the relevant knowledge domain. Alzheimer's disease ontology (ADO) is constructed in accordance to the ontology building life cycle. The Protégé OWL editor was used as a tool for building ADO in Ontology Web Language format. ADO was developed with the purpose of containing information relevant to four main biological views-preclinical, clinical, etiological, and molecular/cellular mechanisms-and was enriched by adding synonyms and references. Validation of the lexicalized ontology by means of named entity recognition-based methods showed a satisfactory performance (F score = 72%). In addition to structural and functional evaluation, a clinical expert in the field performed a manual evaluation and curation of ADO. Through integration of ADO into an information retrieval environment, we show that the ontology supports semantic search in scientific text. The usefulness of ADO is authenticated by dedicated use case scenarios. Development of ADO as an open ADO is a first attempt to organize information related to Alzheimer's disease in a formalized, structured manner. We demonstrate that ADO is able to capture both established and scattered knowledge existing in scientific text. Copyright © 2014 The Alzheimer's Association. Published by Elsevier Inc. All rights reserved.
A Digital Knowledge Preservation Platform for Environmental Sciences
NASA Astrophysics Data System (ADS)
Aguilar Gómez, Fernando; de Lucas, Jesús Marco; Pertinez, Esther; Palacio, Aida; Perez, David
2017-04-01
The Digital Knowledge Preservation Platform is the evolution of a pilot project for Open Data supporting the full research data life cycle. It is currently being evolved at IFCA (Instituto de Física de Cantabria) as a combination of different open tools that have been extended: DMPTool (https://dmptool.org/) with pilot semantics features (RDF export, parameters definition), INVENIO (http://invenio-software.org/ ) customized version to integrate the entire research data life cycle and Jupyter (http://jupyter.org/) as processing tool and reproducibility environment. This complete platform aims to provide an integrated environment for research data management following the FAIR+R principles: -Findable: The Web portal based on Invenio provides a search engine and all elements including metadata to make them easily findable. -Accessible: Both data and software are available online with internal PIDs and DOIs (provided by Datacite). -Interoperable: Datasets can be combined to perform new analysis. The OAI-PMH standard is also integrated. -Re-usable: different licenses types and embargo periods can be defined. -+Reproducible: directly integrated with cloud computing resources. The deployment of the entire system over a Cloud framework helps to build a dynamic and scalable solution, not only for managing open datasets but also as a useful tool for the final user, who is able to directly process and analyse the open data. In parallel, the direct use of semantics and metadata is being explored and integrated in the framework. Ontologies, being a knowledge representation, can contribute to define the elements and relationships of the research data life cycle, including DMP, datasets, software, etc. The first advantage of developing an ontology of a knowledge domain is that they provide a common vocabulary hierarchy (i.e. a conceptual schema) that can be used and standardized by all the agents interested in the domain (either humans or machines). This way of using ontologies is one of the basis of the Semantic Web, where ontologies are set to play a key role in establishing a common terminology between agents. To develop the ontology we are using a graphical tool called Protégé. Protégé is a graphical ontology-development tool which supports a rich knowledge model and it is open-source and freely available. However in order to process and manage the ontology from the web framework, we are using Semantic MediaWiki, which is able to process queries. Semantic MediaWiki is an extension of MediaWiki where we can do semantic search and export data in RDF and CSV format. This system is used as a testbed for the potential use of semantics in a more general environment. This Digital Knowledge Preservation Platform is very closed related to INDIGO-DataCloud project (https://www.indigo-datacloud.eu) since the same data life cycle approach is taking into account (Planning, Collect, Curate, Analyze, Publish, Preserve). INDIGO-DataCloud solutions will be able to support all the different elements in the system, as we showed in the last Research Data Alliance Plenary. This presentation will show the different elements on the system and how they work, as well as the roadmap of their continuous integration.
Biran, Michal; Friedmann, Naama
2012-10-01
This study explored lexical-syntactic information - syntactic information that is stored in the lexicon - and its relation to syntactic and lexical impairments in aphasia. We focused on two types of lexical-syntactic information: predicate argument structure (PAS) of verbs (the number and types of arguments the verb selects) and grammatical gender of nouns. The participants were 17 Hebrew-speaking individuals with aphasia who had a syntactic deficit (agrammatism) or a lexical retrieval deficit (anomia) located at the semantic lexicon, the phonological output lexicon, or the phonological output buffer. After testing the participants' syntactic and lexical retrieval abilities and establishing the functional loci of their deficits, we assessed their PAS and grammatical gender knowledge. This assessment included sentence completion, sentence production, sentence repetition, and grammaticality judgment tasks. The participants' performance on these tests yielded several important dissociations. Three agrammatic participants had impaired syntax but unimpaired PAS knowledge. Three agrammatic participants had impaired syntax but unimpaired grammatical gender knowledge. This indicates that lexical-syntactic information is represented separately from syntax, and can be spared even when syntax at the sentence level, such as embedding and movement are impaired. All 5 individuals with phonological output buffer impairment and all 3 individuals with phonological output lexicon impairment had preserved lexical-syntactic knowledge. These selective impairments indicate that lexical-syntactic information is represented at a lexical stage prior to the phonological lexicon and the phonological buffer. Three participants with impaired PAS (aPASia) and impaired grammatical gender who showed intact lexical-semantic knowledge indicate that the lexical-syntactic information is represented separately from the semantic lexicon. This led us to conclude that lexical-syntactic information is stored in a separate syntactic lexicon. A double dissociation between PAS and grammatical gender impairments indicated that different types of lexical-syntactic information are represented separately in this syntactic lexicon. Copyright © 2011 Elsevier Srl. All rights reserved.
Representational Similarity of Body Parts in Human Occipitotemporal Cortex.
Bracci, Stefania; Caramazza, Alfonso; Peelen, Marius V
2015-09-23
Regions in human lateral and ventral occipitotemporal cortices (OTC) respond selectively to pictures of the human body and its parts. What are the organizational principles underlying body part responses in these regions? Here we used representational similarity analysis (RSA) of fMRI data to test multiple possible organizational principles: shape similarity, physical proximity, cortical homunculus proximity, and semantic similarity. Participants viewed pictures of whole persons, chairs, and eight body parts (hands, arms, legs, feet, chests, waists, upper faces, and lower faces). The similarity of multivoxel activity patterns for all body part pairs was established in whole person-selective OTC regions. The resulting neural similarity matrices were then compared with similarity matrices capturing the hypothesized organizational principles. Results showed that the semantic similarity model best captured the neural similarity of body parts in lateral and ventral OTC, which followed an organization in three clusters: (1) body parts used as action effectors (hands, feet, arms, and legs), (2) noneffector body parts (chests and waists), and (3) face parts (upper and lower faces). Whole-brain RSA revealed, in addition to OTC, regions in parietal and frontal cortex in which neural similarity was related to semantic similarity. In contrast, neural similarity in occipital cortex was best predicted by shape similarity models. We suggest that the semantic organization of body parts in high-level visual cortex relates to the different functions associated with the three body part clusters, reflecting the unique processing and connectivity demands associated with the different types of information (e.g., action, social) different body parts (e.g., limbs, faces) convey. Significance statement: While the organization of body part representations in motor and somatosensory cortices has been well characterized, the principles underlying body part representations in visual cortex have not yet been explored. In the present fMRI study we used multivoxel pattern analysis and representational similarity analysis to characterize the organization of body maps in human occipitotemporal cortex (OTC). Results indicate that visual and shape dimensions do not fully account for the organization of body part representations in OTC. Instead, the representational structure of body maps in OTC appears strongly related to functional-semantic properties of body parts. We suggest that this organization reflects the unique processing and connectivity demands associated with the different types of information different body parts convey. Copyright © 2015 the authors 0270-6474/15/3512977-09$15.00/0.
A standard based approach for biomedical knowledge representation.
Farkash, Ariel; Neuvirth, Hani; Goldschmidt, Yaara; Conti, Costanza; Rizzi, Federica; Bianchi, Stefano; Salvi, Erika; Cusi, Daniele; Shabo, Amnon
2011-01-01
The new generation of health information standards, where the syntax and semantics of the content is explicitly formalized, allows for interoperability in healthcare scenarios and analysis in clinical research settings. Studies involving clinical and genomic data include accumulating knowledge as relationships between genotypic and phenotypic information as well as associations within the genomic and clinical worlds. Some involve analysis results targeted at a specific disease; others are of a predictive nature specific to a patient and may be used by decision support applications. Representing knowledge is as important as representing data since data is more useful when coupled with relevant knowledge. Any further analysis and cross-research collaboration would benefit from persisting knowledge and data in a unified way. This paper describes a methodology used in Hypergenes, an EC FP7 project targeting Essential Hypertension, which captures data and knowledge using standards such as HL7 CDA and Clinical Genomics, aligned with the CEN EHR 13606 specification. We demonstrate the benefits of such an approach for clinical research as well as in healthcare oriented scenarios.
Haslam, Catherine; Jetten, Jolanda; Haslam, S Alexander; Pugliese, Cara; Tonks, James
2011-05-01
The present research explores the relationship between the two components of autobiographical memory--episodic and semantic self-knowledge--and identity strength in older adults living in the community and residential care. Participants (N= 32) completed the autobiographical memory interview and measures of personal identity strength and multiple group memberships. Contrary to previous research, autobiographical memory for all time periods (childhood, early adulthood, and recent life) in the semantic domain was associated with greater strength in personal identity. Further, we obtained support for the hypothesis that the relationship between episodic self-knowledge and identity strength would be mediated by knowledge of personal semantic facts. However, there was also support for a reverse mediation model indicating that a strong sense of identity is associated with semantic self-knowledge and through this may enhance self-relevant recollection. The discussion elaborates on these findings and we propose a self-knowledge and identity model (SKIM) whereby semantic self-knowledge mediates a bidirectional relationship between episodic self-knowledge and identity. ©2010 The British Psychological Society.
Semantic Knowledge for Famous Names in Mild Cognitive Impairment
Seidenberg, Michael; Guidotti, Leslie; Nielson, Kristy A.; Woodard, John L.; Durgerian, Sally; Zhang, Qi; Gander, Amelia; Antuono, Piero; Rao, Stephen M.
2008-01-01
Person identification represents a unique category of semantic knowledge that is commonly impaired in Alzheimer's Disease (AD), but has received relatively little investigation in patients with Mild Cognitive Impairment (MCI). The current study examined the retrieval of semantic knowledge for famous names from three time epochs (recent, remote, and enduring) in two participant groups; 23 aMCI patients and 23 healthy elderly controls. The aMCI group was less accurate and produced less semantic knowledge than controls for famous names. Names from the enduring period were recognized faster than both recent and remote names in both groups, and remote names were recognized more quickly than recent names. Episodic memory performance was correlated with greater semantic knowledge particularly for recent names. We suggest that the anterograde memory deficits in the aMCI group interferes with learning of recent famous names and as a result produces difficulties with updating and integrating new semantic information with previously stored information. The implications of these findings for characterizing semantic memory deficits in MCI are discussed. PMID:19128524
Semantic Clinical Guideline Documents
Eriksson, Henrik; Tu, Samson W.; Musen, Mark
2005-01-01
Decision-support systems based on clinical practice guidelines can support physicians and other health-care personnel in the process of following best practice consistently. A knowledge-based approach to represent guidelines makes it possible to encode computer-interpretable guidelines in a formal manner, perform consistency checks, and use the guidelines directly in decision-support systems. Decision-support authors and guideline users require guidelines in human-readable formats in addition to computer-interpretable ones (e.g., for guideline review and quality assurance). We propose a new document-oriented information architecture that combines knowledge-representation models with electronic and paper documents. The approach integrates decision-support modes with standard document formats to create a combined clinical-guideline model that supports on-line viewing, printing, and decision support. PMID:16779037
ERIC Educational Resources Information Center
Ebbels, Susan H.; Nicoll, Hilary; Clark, Becky; Eachus, Beth; Gallagher, Aoife L.; Horniman, Karen; Jennings, Mary; McEvoy, Kate; Nimmo, Liz; Turner, Gail
2012-01-01
Background: Word-finding difficulties (WFDs) in children have been hypothesized to be caused at least partly by poor semantic knowledge. Therefore, improving semantic knowledge should decrease word-finding errors. Previous studies of semantic therapy for WFDs are inconclusive. Aims: To investigate the effectiveness of semantic therapy for…
End-User Evaluations of Semantic Web Technologies
DOE Office of Scientific and Technical Information (OSTI.GOV)
McCool, Rob; Cowell, Andrew J.; Thurman, David A.
Stanford University's Knowledge Systems Laboratory (KSL) is working in partnership with Battelle Memorial Institute and IBM Watson Research Center to develop a suite of technologies for information extraction, knowledge representation & reasoning, and human-information interaction, in unison entitled 'Knowledge Associates for Novel Intelligence' (KANI). We have developed an integrated analytic environment composed of a collection of analyst associates, software components that aid the user at different stages of the information analysis process. An important part of our participatory design process has been to ensure our technologies and designs are tightly integrate with the needs and requirements of our end users,more » To this end, we perform a sequence of evaluations towards the end of the development process that ensure the technologies are both functional and usable. This paper reports on that process.« less
Using Linked Open Data and Semantic Integration to Search Across Geoscience Repositories
NASA Astrophysics Data System (ADS)
Mickle, A.; Raymond, L. M.; Shepherd, A.; Arko, R. A.; Carbotte, S. M.; Chandler, C. L.; Cheatham, M.; Fils, D.; Hitzler, P.; Janowicz, K.; Jones, M.; Krisnadhi, A.; Lehnert, K. A.; Narock, T.; Schildhauer, M.; Wiebe, P. H.
2014-12-01
The MBLWHOI Library is a partner in the OceanLink project, an NSF EarthCube Building Block, applying semantic technologies to enable knowledge discovery, sharing and integration. OceanLink is testing ontology design patterns that link together: two data repositories, Rolling Deck to Repository (R2R), Biological and Chemical Oceanography Data Management Office (BCO-DMO); the MBLWHOI Library Institutional Repository (IR) Woods Hole Open Access Server (WHOAS); National Science Foundation (NSF) funded awards; and American Geophysical Union (AGU) conference presentations. The Library is collaborating with scientific users, data managers, DSpace engineers, experts in ontology design patterns, and user interface developers to make WHOAS, a DSpace repository, linked open data enabled. The goal is to allow searching across repositories without any of the information providers having to change how they manage their collections. The tools developed for DSpace will be made available to the community of users. There are 257 registered DSpace repositories in the United Stated and over 1700 worldwide. Outcomes include: Integration of DSpace with OpenRDF Sesame triple store to provide SPARQL endpoint for the storage and query of RDF representation of DSpace resources, Mapping of DSpace resources to OceanLink ontology, and DSpace "data" add on to provide resolvable linked open data representation of DSpace resources.
Deep visual-semantic for crowded video understanding
NASA Astrophysics Data System (ADS)
Deng, Chunhua; Zhang, Junwen
2018-03-01
Visual-semantic features play a vital role for crowded video understanding. Convolutional Neural Networks (CNNs) have experienced a significant breakthrough in learning representations from images. However, the learning of visualsemantic features, and how it can be effectively extracted for video analysis, still remains a challenging task. In this study, we propose a novel visual-semantic method to capture both appearance and dynamic representations. In particular, we propose a spatial context method, based on the fractional Fisher vector (FV) encoding on CNN features, which can be regarded as our main contribution. In addition, to capture temporal context information, we also applied fractional encoding method on dynamic images. Experimental results on the WWW crowed video dataset demonstrate that the proposed method outperform the state of the art.
Boonen, Anton J. H.; de Koning, Björn B.; Jolles, Jelle; van der Schoot, Menno
2016-01-01
Successfully solving mathematical word problems requires both mental representation skills and reading comprehension skills. In Realistic Math Education (RME), however, students primarily learn to apply the first of these skills (i.e., representational skills) in the context of word problem solving. Given this, it seems legitimate to assume that students from a RME curriculum experience difficulties when asked to solve semantically complex word problems. We investigated this assumption under 80 sixth grade students who were classified as successful and less successful word problem solvers based on a standardized mathematics test. To this end, students completed word problems that ask for both mental representation skills and reading comprehension skills. The results showed that even successful word problem solvers had a low performance on semantically complex word problems, despite adequate performance on semantically less complex word problems. Based on this study, we concluded that reading comprehension skills should be given a (more) prominent role during word problem solving instruction in RME. PMID:26925012
Boonen, Anton J H; de Koning, Björn B; Jolles, Jelle; van der Schoot, Menno
2016-01-01
Successfully solving mathematical word problems requires both mental representation skills and reading comprehension skills. In Realistic Math Education (RME), however, students primarily learn to apply the first of these skills (i.e., representational skills) in the context of word problem solving. Given this, it seems legitimate to assume that students from a RME curriculum experience difficulties when asked to solve semantically complex word problems. We investigated this assumption under 80 sixth grade students who were classified as successful and less successful word problem solvers based on a standardized mathematics test. To this end, students completed word problems that ask for both mental representation skills and reading comprehension skills. The results showed that even successful word problem solvers had a low performance on semantically complex word problems, despite adequate performance on semantically less complex word problems. Based on this study, we concluded that reading comprehension skills should be given a (more) prominent role during word problem solving instruction in RME.
Towards Semantic e-Science for Traditional Chinese Medicine
Chen, Huajun; Mao, Yuxin; Zheng, Xiaoqing; Cui, Meng; Feng, Yi; Deng, Shuiguang; Yin, Aining; Zhou, Chunying; Tang, Jinming; Jiang, Xiaohong; Wu, Zhaohui
2007-01-01
Background Recent advances in Web and information technologies with the increasing decentralization of organizational structures have resulted in massive amounts of information resources and domain-specific services in Traditional Chinese Medicine. The massive volume and diversity of information and services available have made it difficult to achieve seamless and interoperable e-Science for knowledge-intensive disciplines like TCM. Therefore, information integration and service coordination are two major challenges in e-Science for TCM. We still lack sophisticated approaches to integrate scientific data and services for TCM e-Science. Results We present a comprehensive approach to build dynamic and extendable e-Science applications for knowledge-intensive disciplines like TCM based on semantic and knowledge-based techniques. The semantic e-Science infrastructure for TCM supports large-scale database integration and service coordination in a virtual organization. We use domain ontologies to integrate TCM database resources and services in a semantic cyberspace and deliver a semantically superior experience including browsing, searching, querying and knowledge discovering to users. We have developed a collection of semantic-based toolkits to facilitate TCM scientists and researchers in information sharing and collaborative research. Conclusion Semantic and knowledge-based techniques are suitable to knowledge-intensive disciplines like TCM. It's possible to build on-demand e-Science system for TCM based on existing semantic and knowledge-based techniques. The presented approach in the paper integrates heterogeneous distributed TCM databases and services, and provides scientists with semantically superior experience to support collaborative research in TCM discipline. PMID:17493289
Of Papers and Pens: Polysemes and Homophones in Lexical (mis)Selection.
Li, Leon; Slevc, L Robert
2017-05-01
Every word signifies multiple senses. Many studies using comprehension-based measures suggest that polysemes' senses (e.g., paper as in printer paper or term paper) share lexical representations, whereas homophones' meanings (e.g., pen as in ballpoint pen or pig pen) correspond to distinct lexical representations. Less is known about the lexical representations of polysemes compared to homophones in language production. In this study, speakers named pictures after reading sentence fragments that primed polysemes and homophones either as direct competitors to pictures (i.e., semantic-competitors), or as indirect-competitors to pictures (e.g., polysemous senses of semantic competitors, or homophonous meanings of semantic competitors). Polysemes (e.g., paper) elicited equal numbers of intrusions to picture names (e.g., cardboard) compared to in control conditions whether primed as direct competitors (printer paper) or as indirect-competitors (term paper). This contrasted with the finding that homophones (e.g., pen) elicited more intrusions to picture names (e.g., crayon) compared to in control conditions when primed as direct competitors (ballpoint pen) than when primed as indirect-competitors (pig pen). These results suggest that polysemes, unlike homophones, are stored and retrieved as unified lexical representations. Copyright © 2016 Cognitive Science Society, Inc.
Making Semantic Waves: A Key to Cumulative Knowledge-Building
ERIC Educational Resources Information Center
Maton, Karl
2013-01-01
The paper begins by arguing that knowledge-blindness in educational research represents a serious obstacle to understanding knowledge-building. It then offers sociological concepts from Legitimation Code Theory--"semantic gravity" and "semantic density"--that systematically conceptualize one set of organizing principles underlying knowledge…