Sample records for semantic network structure

  1. Exploiting Recurring Structure in a Semantic Network

    NASA Technical Reports Server (NTRS)

    Wolfe, Shawn R.; Keller, Richard M.

    2004-01-01

    With the growing popularity of the Semantic Web, an increasing amount of information is becoming available in machine interpretable, semantically structured networks. Within these semantic networks are recurring structures that could be mined by existing or novel knowledge discovery methods. The mining of these semantic structures represents an interesting area that focuses on mining both for and from the Semantic Web, with surprising applicability to problems confronting the developers of Semantic Web applications. In this paper, we present representative examples of recurring structures and show how these structures could be used to increase the utility of a semantic repository deployed at NASA.

  2. Mapping the Structure of Semantic Memory

    ERIC Educational Resources Information Center

    Morais, Ana Sofia; Olsson, Henrik; Schooler, Lael J.

    2013-01-01

    Aggregating snippets from the semantic memories of many individuals may not yield a good map of an individual's semantic memory. The authors analyze the structure of semantic networks that they sampled from individuals through a new snowball sampling paradigm during approximately 6 weeks of 1-hr daily sessions. The semantic networks of individuals…

  3. The semantic anatomical network: Evidence from healthy and brain-damaged patient populations.

    PubMed

    Fang, Yuxing; Han, Zaizhu; Zhong, Suyu; Gong, Gaolang; Song, Luping; Liu, Fangsong; Huang, Ruiwang; Du, Xiaoxia; Sun, Rong; Wang, Qiang; He, Yong; Bi, Yanchao

    2015-09-01

    Semantic processing is central to cognition and is supported by widely distributed gray matter (GM) regions and white matter (WM) tracts. The exact manner in which GM regions are anatomically connected to process semantics remains unknown. We mapped the semantic anatomical network (connectome) by conducting diffusion imaging tractography in 48 healthy participants across 90 GM "nodes," and correlating the integrity of each obtained WM edge and semantic performance across 80 brain-damaged patients. Fifty-three WM edges were obtained whose lower integrity associated with semantic deficits and together with their linked GM nodes constitute a semantic WM network. Graph analyses of this network revealed three structurally segregated modules that point to distinct semantic processing components and identified network hubs and connectors that are central in the communication across the subnetworks. Together, our results provide an anatomical framework of human semantic network, advancing the understanding of the structural substrates supporting semantic processing. © 2015 Wiley Periodicals, Inc.

  4. The Large-Scale Structure of Semantic Networks: Statistical Analyses and a Model of Semantic Growth

    ERIC Educational Resources Information Center

    Steyvers, Mark; Tenenbaum, Joshua B.

    2005-01-01

    We present statistical analyses of the large-scale structure of 3 types of semantic networks: word associations, WordNet, and Roget's Thesaurus. We show that they have a small-world structure, characterized by sparse connectivity, short average path lengths between words, and strong local clustering. In addition, the distributions of the number of…

  5. Topological Alterations and Symptom-Relevant Modules in the Whole-Brain Structural Network in Semantic Dementia.

    PubMed

    Ding, Junhua; Chen, Keliang; Zhang, Weibin; Li, Ming; Chen, Yan; Yang, Qing; Lv, Yingru; Guo, Qihao; Han, Zaizhu

    2017-01-01

    Semantic dementia (SD) is characterized by a selective decline in semantic processing. Although the neuropsychological pattern of this disease has been identified, its topological global alterations and symptom-relevant modules in the whole-brain anatomical network have not been fully elucidated. This study aims to explore the topological alteration of anatomical network in SD and reveal the modules associated with semantic deficits in this disease. We first constructed the whole-brain white-matter networks of 20 healthy controls and 19 patients with SD. Then, the network metrics of graph theory were compared between these two groups. Finally, we separated the network of SD patients into different modules and correlated the structural integrity of each module with the severity of the semantic deficits across patients. The network of the SD patients presented a significantly reduced global efficiency, indicating that the long-distance connections were damaged. The network was divided into the following four distinctive modules: the left temporal/occipital/parietal, frontal, right temporal/occipital, and frontal/parietal modules. The first two modules were associated with the semantic deficits of SD. These findings illustrate the skeleton of the neuroanatomical network of SD patients and highlight the key role of the left temporal/occipital/parietal module and the left frontal module in semantic processing.

  6. Some Semantic Structures for Representing English Meanings.

    ERIC Educational Resources Information Center

    Simmons, R. F.

    This paper defines the structure of a semantic network for use in representing discourse and lexical meanings. The structure is designed to represent underlying semantic meanings that, with a lexicon and a grammar, can generate natural-language sentences in a linguistically justifiable manner. The semantics of natural English can be defined as a…

  7. Developing Visualization Techniques for Semantics-based Information Networks

    NASA Technical Reports Server (NTRS)

    Keller, Richard M.; Hall, David R.

    2003-01-01

    Information systems incorporating complex network structured information spaces with a semantic underpinning - such as hypermedia networks, semantic networks, topic maps, and concept maps - are being deployed to solve some of NASA s critical information management problems. This paper describes some of the human interaction and navigation problems associated with complex semantic information spaces and describes a set of new visual interface approaches to address these problems. A key strategy is to leverage semantic knowledge represented within these information spaces to construct abstractions and views that will be meaningful to the human user. Human-computer interaction methodologies will guide the development and evaluation of these approaches, which will benefit deployed NASA systems and also apply to information systems based on the emerging Semantic Web.

  8. Fast Distributed Dynamics of Semantic Networks via Social Media.

    PubMed

    Carrillo, Facundo; Cecchi, Guillermo A; Sigman, Mariano; Slezak, Diego Fernández

    2015-01-01

    We investigate the dynamics of semantic organization using social media, a collective expression of human thought. We propose a novel, time-dependent semantic similarity measure (TSS), based on the social network Twitter. We show that TSS is consistent with static measures of similarity but provides high temporal resolution for the identification of real-world events and induced changes in the distributed structure of semantic relationships across the entire lexicon. Using TSS, we measured the evolution of a concept and its movement along the semantic neighborhood, driven by specific news/events. Finally, we showed that particular events may trigger a temporary reorganization of elements in the semantic network.

  9. Fast Distributed Dynamics of Semantic Networks via Social Media

    PubMed Central

    Carrillo, Facundo; Cecchi, Guillermo A.; Sigman, Mariano; Fernández Slezak, Diego

    2015-01-01

    We investigate the dynamics of semantic organization using social media, a collective expression of human thought. We propose a novel, time-dependent semantic similarity measure (TSS), based on the social network Twitter. We show that TSS is consistent with static measures of similarity but provides high temporal resolution for the identification of real-world events and induced changes in the distributed structure of semantic relationships across the entire lexicon. Using TSS, we measured the evolution of a concept and its movement along the semantic neighborhood, driven by specific news/events. Finally, we showed that particular events may trigger a temporary reorganization of elements in the semantic network. PMID:26074953

  10. Categorizing words through semantic memory navigation

    NASA Astrophysics Data System (ADS)

    Borge-Holthoefer, J.; Arenas, A.

    2010-03-01

    Semantic memory is the cognitive system devoted to storage and retrieval of conceptual knowledge. Empirical data indicate that semantic memory is organized in a network structure. Everyday experience shows that word search and retrieval processes provide fluent and coherent speech, i.e. are efficient. This implies either that semantic memory encodes, besides thousands of words, different kind of links for different relationships (introducing greater complexity and storage costs), or that the structure evolves facilitating the differentiation between long-lasting semantic relations from incidental, phenomenological ones. Assuming the latter possibility, we explore a mechanism to disentangle the underlying semantic backbone which comprises conceptual structure (extraction of categorical relations between pairs of words), from the rest of information present in the structure. To this end, we first present and characterize an empirical data set modeled as a network, then we simulate a stochastic cognitive navigation on this topology. We schematize this latter process as uncorrelated random walks from node to node, which converge to a feature vectors network. By doing so we both introduce a novel mechanism for information retrieval, and point at the problem of category formation in close connection to linguistic and non-linguistic experience.

  11. An Enriched Unified Medical Language System Semantic Network with a Multiple Subsumption Hierarchy

    PubMed Central

    Zhang, Li; Perl, Yehoshua; Halper, Michael; Geller, James; Cimino, James J.

    2004-01-01

    Objective: The Unified Medical Language System's (UMLS's) Semantic Network's (SN's) two-tree structure is restrictive because it does not allow a semantic type to be a specialization of several other semantic types. In this article, the SN is expanded into a multiple subsumption structure with a directed acyclic graph (DAG) IS-A hierarchy, allowing a semantic type to have multiple parents. New viable IS-A links are added as warranted. Design: Two methodologies are presented to identify and add new viable IS-A links. The first methodology is based on imposing the characteristic of connectivity on a previously presented partition of the SN. Four transformations are provided to find viable IS-A links in the process of converting the partition's disconnected groups into connected ones. The second methodology identifies new IS-A links through a string matching process involving names and definitions of various semantic types in the SN. A domain expert is needed to review all the results to determine the validity of the new IS-A links. Results: Nineteen new IS-A links are added to the SN, and four new semantic types are also created to support the multiple subsumption framework. The resulting network, called the Enriched Semantic Network (ESN), exhibits a DAG-structured hierarchy. A partition of the ESN containing 19 connected groups is also derived. Conclusion: The ESN is an expanded abstraction of the UMLS compared with the original SN. Its multiple subsumption hierarchy can accommodate semantic types with multiple parents. Its representation thus provides direct access to a broader range of subsumption knowledge. PMID:14764611

  12. Semantic networks based on titles of scientific papers

    NASA Astrophysics Data System (ADS)

    Pereira, H. B. B.; Fadigas, I. S.; Senna, V.; Moret, M. A.

    2011-03-01

    In this paper we study the topological structure of semantic networks based on titles of papers published in scientific journals. It discusses its properties and presents some reflections on how the use of social and complex network models can contribute to the diffusion of knowledge. The proposed method presented here is applied to scientific journals where the titles of papers are in English or in Portuguese. We show that the topology of studied semantic networks are small-world and scale-free.

  13. Using RDF to Model the Structure and Process of Systems

    NASA Astrophysics Data System (ADS)

    Rodriguez, Marko A.; Watkins, Jennifer H.; Bollen, Johan; Gershenson, Carlos

    Many systems can be described in terms of networks of discrete elements and their various relationships to one another. A semantic network, or multi-relational network, is a directed labeled graph consisting of a heterogeneous set of entities connected by a heterogeneous set of relationships. Semantic networks serve as a promising general-purpose modeling substrate for complex systems. Various standardized formats and tools are now available to support practical, large-scale semantic network models. First, the Resource Description Framework (RDF) offers a standardized semantic network data model that can be further formalized by ontology modeling languages such as RDF Schema (RDFS) and the Web Ontology Language (OWL). Second, the recent introduction of highly performant triple-stores (i.e. semantic network databases) allows semantic network models on the order of 109 edges to be efficiently stored and manipulated. RDF and its related technologies are currently used extensively in the domains of computer science, digital library science, and the biological sciences. This article will provide an introduction to RDF/RDFS/OWL and an examination of its suitability to model discrete element complex systems.

  14. An fMRI examination of the effects of acoustic-phonetic and lexical competition on access to the lexical-semantic network.

    PubMed

    Minicucci, Domenic; Guediche, Sara; Blumstein, Sheila E

    2013-08-01

    The current study explored how factors of acoustic-phonetic and lexical competition affect access to the lexical-semantic network during spoken word recognition. An auditory semantic priming lexical decision task was presented to subjects while in the MR scanner. Prime-target pairs consisted of prime words with the initial voiceless stop consonants /p/, /t/, and /k/ followed by word and nonword targets. To examine the neural consequences of lexical and sound structure competition, primes either had voiced minimal pair competitors or they did not, and they were either acoustically modified to be poorer exemplars of the voiceless phonetic category or not. Neural activation associated with semantic priming (Unrelated-Related conditions) revealed a bilateral fronto-temporo-parietal network. Within this network, clusters in the left insula/inferior frontal gyrus (IFG), left superior temporal gyrus (STG), and left posterior middle temporal gyrus (pMTG) showed sensitivity to lexical competition. The pMTG also demonstrated sensitivity to acoustic modification, and the insula/IFG showed an interaction between lexical competition and acoustic modification. These findings suggest the posterior lexical-semantic network is modulated by both acoustic-phonetic and lexical structure, and that the resolution of these two sources of competition recruits frontal structures. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. Conceptual Hierarchies in a Flat Attractor Network

    PubMed Central

    O’Connor, Christopher M.; Cree, George S.; McRae, Ken

    2009-01-01

    The structure of people’s conceptual knowledge of concrete nouns has traditionally been viewed as hierarchical (Collins & Quillian, 1969). For example, superordinate concepts (vegetable) are assumed to reside at a higher level than basic-level concepts (carrot). A feature-based attractor network with a single layer of semantic features developed representations of both basic-level and superordinate concepts. No hierarchical structure was built into the network. In Experiment and Simulation 1, the graded structure of categories (typicality ratings) is accounted for by the flat attractor-network. Experiment and Simulation 2 show that, as with basic-level concepts, such a network predicts feature verification latencies for superordinate concepts (vegetable ). In Experiment and Simulation 3, counterintuitive results regarding the temporal dynamics of similarity in semantic priming are explained by the model. By treating both types of concepts the same in terms of representation, learning, and computations, the model provides new insights into semantic memory. PMID:19543434

  16. Ontology Alignment Architecture for Semantic Sensor Web Integration

    PubMed Central

    Fernandez, Susel; Marsa-Maestre, Ivan; Velasco, Juan R.; Alarcos, Bernardo

    2013-01-01

    Sensor networks are a concept that has become very popular in data acquisition and processing for multiple applications in different fields such as industrial, medicine, home automation, environmental detection, etc. Today, with the proliferation of small communication devices with sensors that collect environmental data, semantic Web technologies are becoming closely related with sensor networks. The linking of elements from Semantic Web technologies with sensor networks has been called Semantic Sensor Web and has among its main features the use of ontologies. One of the key challenges of using ontologies in sensor networks is to provide mechanisms to integrate and exchange knowledge from heterogeneous sources (that is, dealing with semantic heterogeneity). Ontology alignment is the process of bringing ontologies into mutual agreement by the automatic discovery of mappings between related concepts. This paper presents a system for ontology alignment in the Semantic Sensor Web which uses fuzzy logic techniques to combine similarity measures between entities of different ontologies. The proposed approach focuses on two key elements: the terminological similarity, which takes into account the linguistic and semantic information of the context of the entity's names, and the structural similarity, based on both the internal and relational structure of the concepts. This work has been validated using sensor network ontologies and the Ontology Alignment Evaluation Initiative (OAEI) tests. The results show that the proposed techniques outperform previous approaches in terms of precision and recall. PMID:24051523

  17. Ontology alignment architecture for semantic sensor Web integration.

    PubMed

    Fernandez, Susel; Marsa-Maestre, Ivan; Velasco, Juan R; Alarcos, Bernardo

    2013-09-18

    Sensor networks are a concept that has become very popular in data acquisition and processing for multiple applications in different fields such as industrial, medicine, home automation, environmental detection, etc. Today, with the proliferation of small communication devices with sensors that collect environmental data, semantic Web technologies are becoming closely related with sensor networks. The linking of elements from Semantic Web technologies with sensor networks has been called Semantic Sensor Web and has among its main features the use of ontologies. One of the key challenges of using ontologies in sensor networks is to provide mechanisms to integrate and exchange knowledge from heterogeneous sources (that is, dealing with semantic heterogeneity). Ontology alignment is the process of bringing ontologies into mutual agreement by the automatic discovery of mappings between related concepts. This paper presents a system for ontology alignment in the Semantic Sensor Web which uses fuzzy logic techniques to combine similarity measures between entities of different ontologies. The proposed approach focuses on two key elements: the terminological similarity, which takes into account the linguistic and semantic information of the context of the entity's names, and the structural similarity, based on both the internal and relational structure of the concepts. This work has been validated using sensor network ontologies and the Ontology Alignment Evaluation Initiative (OAEI) tests. The results show that the proposed techniques outperform previous approaches in terms of precision and recall.

  18. Filtering Gene Ontology semantic similarity for identifying protein complexes in large protein interaction networks.

    PubMed

    Wang, Jian; Xie, Dong; Lin, Hongfei; Yang, Zhihao; Zhang, Yijia

    2012-06-21

    Many biological processes recognize in particular the importance of protein complexes, and various computational approaches have been developed to identify complexes from protein-protein interaction (PPI) networks. However, high false-positive rate of PPIs leads to challenging identification. A protein semantic similarity measure is proposed in this study, based on the ontology structure of Gene Ontology (GO) terms and GO annotations to estimate the reliability of interactions in PPI networks. Interaction pairs with low GO semantic similarity are removed from the network as unreliable interactions. Then, a cluster-expanding algorithm is used to detect complexes with core-attachment structure on filtered network. Our method is applied to three different yeast PPI networks. The effectiveness of our method is examined on two benchmark complex datasets. Experimental results show that our method performed better than other state-of-the-art approaches in most evaluation metrics. The method detects protein complexes from large scale PPI networks by filtering GO semantic similarity. Removing interactions with low GO similarity significantly improves the performance of complex identification. The expanding strategy is also effective to identify attachment proteins of complexes.

  19. Network Alterations Supporting Word Retrieval in Patients with Medial Temporal Lobe Epilepsy

    ERIC Educational Resources Information Center

    Protzner, Andrea B.; McAndrews, Mary Pat

    2011-01-01

    Although the hippocampus is not considered a key structure in semantic memory, patients with medial-temporal lobe epilepsy (mTLE) have deficits in semantic access on some word retrieval tasks. We hypothesized that these deficits reflect the negative impact of focal epilepsy on remote cerebral structures. Thus, we expected that the networks that…

  20. Visual analysis of large heterogeneous social networks by semantic and structural abstraction.

    PubMed

    Shen, Zeqian; Ma, Kwan-Liu; Eliassi-Rad, Tina

    2006-01-01

    Social network analysis is an active area of study beyond sociology. It uncovers the invisible relationships between actors in a network and provides understanding of social processes and behaviors. It has become an important technique in a variety of application areas such as the Web, organizational studies, and homeland security. This paper presents a visual analytics tool, OntoVis, for understanding large, heterogeneous social networks, in which nodes and links could represent different concepts and relations, respectively. These concepts and relations are related through an ontology (also known as a schema). OntoVis is named such because it uses information in the ontology associated with a social network to semantically prune a large, heterogeneous network. In addition to semantic abstraction, OntoVis also allows users to do structural abstraction and importance filtering to make large networks manageable and to facilitate analytic reasoning. All these unique capabilities of OntoVis are illustrated with several case studies.

  1. Architecture for WSN Nodes Integration in Context Aware Systems Using Semantic Messages

    NASA Astrophysics Data System (ADS)

    Larizgoitia, Iker; Muguira, Leire; Vazquez, Juan Ignacio

    Wireless sensor networks (WSN) are becoming extremely popular in the development of context aware systems. Traditionally WSN have been focused on capturing data, which was later analyzed and interpreted in a server with more computational power. In this kind of scenario the problem of representing the sensor information needs to be addressed. Every node in the network might have different sensors attached; therefore their correspondent packet structures will be different. The server has to be aware of the meaning of every single structure and data in order to be able to interpret them. Multiple sensors, multiple nodes, multiple packet structures (and not following a standard format) is neither scalable nor interoperable. Context aware systems have solved this problem with the use of semantic technologies. They provide a common framework to achieve a standard definition of any domain. Nevertheless, these representations are computationally expensive, so a WSN cannot afford them. The work presented in this paper tries to bridge the gap between the sensor information and its semantic representation, by defining a simple architecture that enables the definition of this information natively in a semantic way, achieving the integration of the semantic information in the network packets. This will have several benefits, the most important being the possibility of promoting every WSN node to a real semantic information source.

  2. Structured Semantic Knowledge Can Emerge Automatically from Predicting Word Sequences in Child-Directed Speech

    PubMed Central

    Huebner, Philip A.; Willits, Jon A.

    2018-01-01

    Previous research has suggested that distributional learning mechanisms may contribute to the acquisition of semantic knowledge. However, distributional learning mechanisms, statistical learning, and contemporary “deep learning” approaches have been criticized for being incapable of learning the kind of abstract and structured knowledge that many think is required for acquisition of semantic knowledge. In this paper, we show that recurrent neural networks, trained on noisy naturalistic speech to children, do in fact learn what appears to be abstract and structured knowledge. We trained two types of recurrent neural networks (Simple Recurrent Network, and Long Short-Term Memory) to predict word sequences in a 5-million-word corpus of speech directed to children ages 0–3 years old, and assessed what semantic knowledge they acquired. We found that learned internal representations are encoding various abstract grammatical and semantic features that are useful for predicting word sequences. Assessing the organization of semantic knowledge in terms of the similarity structure, we found evidence of emergent categorical and hierarchical structure in both models. We found that the Long Short-term Memory (LSTM) and SRN are both learning very similar kinds of representations, but the LSTM achieved higher levels of performance on a quantitative evaluation. We also trained a non-recurrent neural network, Skip-gram, on the same input to compare our results to the state-of-the-art in machine learning. We found that Skip-gram achieves relatively similar performance to the LSTM, but is representing words more in terms of thematic compared to taxonomic relations, and we provide reasons why this might be the case. Our findings show that a learning system that derives abstract, distributed representations for the purpose of predicting sequential dependencies in naturalistic language may provide insight into emergence of many properties of the developing semantic system. PMID:29520243

  3. Visual and semantic processing of living things and artifacts: an FMRI study.

    PubMed

    Zannino, Gian Daniele; Buccione, Ivana; Perri, Roberta; Macaluso, Emiliano; Lo Gerfo, Emanuele; Caltagirone, Carlo; Carlesimo, Giovanni A

    2010-03-01

    We carried out an fMRI study with a twofold purpose: to investigate the relationship between networks dedicated to semantic and visual processing and to address the issue of whether semantic memory is subserved by a unique network or by different subsystems, according to semantic category or feature type. To achieve our goals, we administered a word-picture matching task, with within-category foils, to 15 healthy subjects during scanning. Semantic distance between the target and the foil and semantic domain of the target-foil pairs were varied orthogonally. Our results suggest that an amodal, undifferentiated network for the semantic processing of living things and artifacts is located in the anterolateral aspects of the temporal lobes; in fact, activity in this substrate was driven by semantic distance, not by semantic category. By contrast, activity in ventral occipito-temporal cortex was driven by category, not by semantic distance. We interpret the latter finding as the effect exerted by systematic differences between living things and artifacts at the level of their structural representations and possibly of their lower-level visual features. Finally, we attempt to reconcile contrasting data in the neuropsychological and functional imaging literature on semantic substrate and category specificity.

  4. Semantic Web and Contextual Information: Semantic Network Analysis of Online Journalistic Texts

    NASA Astrophysics Data System (ADS)

    Lim, Yon Soo

    This study examines why contextual information is important to actualize the idea of semantic web, based on a case study of a socio-political issue in South Korea. For this study, semantic network analyses were conducted regarding English-language based 62 blog posts and 101 news stories on the web. The results indicated the differences of the meaning structures between blog posts and professional journalism as well as between conservative journalism and progressive journalism. From the results, this study ascertains empirical validity of current concerns about the practical application of the new web technology, and discusses how the semantic web should be developed.

  5. Improving the measurement of semantic similarity by combining gene ontology and co-functional network: a random walk based approach.

    PubMed

    Peng, Jiajie; Zhang, Xuanshuo; Hui, Weiwei; Lu, Junya; Li, Qianqian; Liu, Shuhui; Shang, Xuequn

    2018-03-19

    Gene Ontology (GO) is one of the most popular bioinformatics resources. In the past decade, Gene Ontology-based gene semantic similarity has been effectively used to model gene-to-gene interactions in multiple research areas. However, most existing semantic similarity approaches rely only on GO annotations and structure, or incorporate only local interactions in the co-functional network. This may lead to inaccurate GO-based similarity resulting from the incomplete GO topology structure and gene annotations. We present NETSIM2, a new network-based method that allows researchers to measure GO-based gene functional similarities by considering the global structure of the co-functional network with a random walk with restart (RWR)-based method, and by selecting the significant term pairs to decrease the noise information. Based on the EC number (Enzyme Commission)-based groups of yeast and Arabidopsis, evaluation test shows that NETSIM2 can enhance the accuracy of Gene Ontology-based gene functional similarity. Using NETSIM2 as an example, we found that the accuracy of semantic similarities can be significantly improved after effectively incorporating the global gene-to-gene interactions in the co-functional network, especially on the species that gene annotations in GO are far from complete.

  6. The Topology of a Discussion: The #Occupy Case.

    PubMed

    Gargiulo, Floriana; Bindi, Jacopo; Apolloni, Andrea

    2015-01-01

    We analyse a large sample of the Twitter activity that developed around the social movement 'Occupy Wall Street', to study the complex interactions between the human communication activity and the semantic content of a debate. We use a network approach based on the analysis of the bipartite graph @Users-#Hashtags and of its projections: the 'semantic network', whose nodes are hashtags, and the 'users interest network', whose nodes are users. In the first instance, we find out that discussion topics (#hashtags) present a high structural heterogeneity, with a relevant role played by the semantic hubs that are responsible to guarantee the continuity of the debate. In the users' case, the self-organisation process of users' activity, leads to the emergence of two classes of communicators: the 'professionals' and the 'amateurs'. Both the networks present a strong community structure, based on the differentiation of the semantic topics, and a high level of structural robustness when certain sets of topics are censored and/or accounts are removed. By analysing the characteristics of the dynamical networks we can distinguish three phases of the discussion about the movement. Each phase corresponds to a specific moment of the movement: from declaration of intent, organisation and development and the final phase of political reactions. Each phase is characterised by the presence of prototypical #hashtags in the discussion.

  7. The association of personal semantic memory to identity representations: insight into higher-order networks of autobiographical contents.

    PubMed

    Grilli, Matthew D

    2017-11-01

    Identity representations are higher-order knowledge structures that organise autobiographical memories on the basis of personality and role-based themes of one's self-concept. In two experiments, the extent to which different types of personal semantic content are reflected in these higher-order networks of memories was investigated. Healthy, young adult participants generated identity representations that varied in remoteness of formation and verbally reflected on these themes in an open-ended narrative task. The narrative responses were scored for retrieval of episodic, experience-near personal semantic and experience-far (i.e., abstract) personal semantic contents. Results revealed that to reflect on remotely formed identity representations, experience-far personal semantic contents were retrieved more than experience-near personal semantic contents. In contrast, to reflect on recently formed identity representations, experience-near personal semantic contents were retrieved more than experience-far personal semantic contents. Although episodic memory contents were retrieved less than both personal semantic content types to reflect on remotely formed identity representations, this content type was retrieved at a similar frequency as experience-far personal semantic content to reflect on recently formed identity representations. These findings indicate that the association of personal semantic content to identity representations is robust and related to time since acquisition of these knowledge structures.

  8. Semantic Analysis of Email Using Domain Ontologies and WordNet

    NASA Technical Reports Server (NTRS)

    Berrios, Daniel C.; Keller, Richard M.

    2005-01-01

    The problem of capturing and accessing knowledge in paper form has been supplanted by a problem of providing structure to vast amounts of electronic information. Systems that can construct semantic links for natural language documents like email messages automatically will be a crucial element of semantic email tools. We have designed an information extraction process that can leverage the knowledge already contained in an existing semantic web, recognizing references in email to existing nodes in a network of ontology instances by using linguistic knowledge and knowledge of the structure of the semantic web. We developed a heuristic score that uses several forms of evidence to detect references in email to existing nodes in the Semanticorganizer repository's network. While these scores cannot directly support automated probabilistic inference, they can be used to rank nodes by relevance and link those deemed most relevant to email messages.

  9. Understanding Nomophobia: Structural Equation Modeling and Semantic Network Analysis of Smartphone Separation Anxiety.

    PubMed

    Han, Seunghee; Kim, Ki Joon; Kim, Jang Hyun

    2017-07-01

    This study explicates nomophobia by developing a research model that identifies several determinants of smartphone separation anxiety and by conducting semantic network analyses on smartphone users' verbal descriptions of the meaning of their smartphones. Structural equation modeling of the proposed model indicates that personal memories evoked by smartphones encourage users to extend their identity onto their devices. When users perceive smartphones as their extended selves, they are more likely to get attached to the devices, which, in turn, leads to nomophobia by heightening the phone proximity-seeking tendency. This finding is also supplemented by the results of the semantic network analyses revealing that the words related to memory, self, and proximity-seeking are indeed more frequently used in the high, compared with low, nomophobia group.

  10. A multilayer network analysis of hashtags in twitter via co-occurrence and semantic links

    NASA Astrophysics Data System (ADS)

    Türker, Ilker; Sulak, Eyüb Ekmel

    2018-02-01

    Complex network studies, as an interdisciplinary framework, span a large variety of subjects including social media. In social networks, several mechanisms generate miscellaneous structures like friendship networks, mention networks, tag networks, etc. Focusing on tag networks (namely, hashtags in twitter), we made a two-layer analysis of tag networks from a massive dataset of Twitter entries. The first layer is constructed by converting the co-occurrences of these tags in a single entry (tweet) into links, while the second layer is constructed converting the semantic relations of the tags into links. We observed that the universal properties of the real networks like small-world property, clustering and power-law distributions in various network parameters are also evident in the multilayer network of hashtags. Moreover, we outlined that co-occurrences of hashtags in tweets are mostly coupled with semantic relations, whereas a small number of semantically unrelated, therefore random links reduce node separation and network diameter in the co-occurrence network layer. Together with the degree distributions, the power-law consistencies of degree difference, edge weight and cosine similarity distributions in both layers are also appealing forms of Zipf’s law evident in nature.

  11. Functional changes in the cortical semantic network in amnestic mild cognitive impairment.

    PubMed

    Pineault, Jessica; Jolicoeur, Pierre; Grimault, Stephan; Bermudez, Patrick; Brambati, Simona Maria; Lacombe, Jacinthe; Villalpando, Juan Manuel; Kergoat, Marie-Jeanne; Joubert, Sven

    2018-05-01

    Semantic memory impairment has been documented in individuals with amnestic Mild cognitive impairment (aMCI), who are at risk of developing Alzheimer's disease (AD), yet little is known about the neural basis of this breakdown. The aim of this study was to investigate the brain mechanisms associated with semantic performance in aMCI patients. A group of aMCI patients and a group of healthy controls carried out a semantic categorization task while their brain activity was recorded using magnetoencephalography (MEG). During the task, participants were shown famous faces and had to determine whether each famous person matched a given occupation. The main hypotheses were that (a) semantic processing should be compromised for aMCI patients, and (b) these deficits should be associated with cortical dysfunctions within specific areas of the semantic network. Behavioral results showed that aMCI participants were significantly slower and less accurate than controls at the semantic task. Additionally, relative to controls, a significant pattern of hyperactivation was found in the aMCI group within specific regions of the extended semantic network, including the right anterior temporal lobe (ATL) and fusiform gyrus. Abnormal functional activation within key areas of the semantic network suggests that it is compromised early in the disease process. Moreover, this pattern of right ATL and fusiform gyrus hyperactivation was positively associated with gray matter integrity in specific areas, but was not associated with any pattern of atrophy, suggesting that this pattern of hyperactivation may precede structural alteration of the semantic network in aMCI. (PsycINFO Database Record (c) 2018 APA, all rights reserved).

  12. Structural and functional correlates for language efficiency in auditory word processing.

    PubMed

    Jung, JeYoung; Kim, Sunmi; Cho, Hyesuk; Nam, Kichun

    2017-01-01

    This study aims to provide convergent understanding of the neural basis of auditory word processing efficiency using a multimodal imaging. We investigated the structural and functional correlates of word processing efficiency in healthy individuals. We acquired two structural imaging (T1-weighted imaging and diffusion tensor imaging) and functional magnetic resonance imaging (fMRI) during auditory word processing (phonological and semantic tasks). Our results showed that better phonological performance was predicted by the greater thalamus activity. In contrary, better semantic performance was associated with the less activation in the left posterior middle temporal gyrus (pMTG), supporting the neural efficiency hypothesis that better task performance requires less brain activation. Furthermore, our network analysis revealed the semantic network including the left anterior temporal lobe (ATL), dorsolateral prefrontal cortex (DLPFC) and pMTG was correlated with the semantic efficiency. Especially, this network acted as a neural efficient manner during auditory word processing. Structurally, DLPFC and cingulum contributed to the word processing efficiency. Also, the parietal cortex showed a significate association with the word processing efficiency. Our results demonstrated that two features of word processing efficiency, phonology and semantics, can be supported in different brain regions and, importantly, the way serving it in each region was different according to the feature of word processing. Our findings suggest that word processing efficiency can be achieved by in collaboration of multiple brain regions involved in language and general cognitive function structurally and functionally.

  13. Structural and functional correlates for language efficiency in auditory word processing

    PubMed Central

    Kim, Sunmi; Cho, Hyesuk; Nam, Kichun

    2017-01-01

    This study aims to provide convergent understanding of the neural basis of auditory word processing efficiency using a multimodal imaging. We investigated the structural and functional correlates of word processing efficiency in healthy individuals. We acquired two structural imaging (T1-weighted imaging and diffusion tensor imaging) and functional magnetic resonance imaging (fMRI) during auditory word processing (phonological and semantic tasks). Our results showed that better phonological performance was predicted by the greater thalamus activity. In contrary, better semantic performance was associated with the less activation in the left posterior middle temporal gyrus (pMTG), supporting the neural efficiency hypothesis that better task performance requires less brain activation. Furthermore, our network analysis revealed the semantic network including the left anterior temporal lobe (ATL), dorsolateral prefrontal cortex (DLPFC) and pMTG was correlated with the semantic efficiency. Especially, this network acted as a neural efficient manner during auditory word processing. Structurally, DLPFC and cingulum contributed to the word processing efficiency. Also, the parietal cortex showed a significate association with the word processing efficiency. Our results demonstrated that two features of word processing efficiency, phonology and semantics, can be supported in different brain regions and, importantly, the way serving it in each region was different according to the feature of word processing. Our findings suggest that word processing efficiency can be achieved by in collaboration of multiple brain regions involved in language and general cognitive function structurally and functionally. PMID:28892503

  14. Multimedia Information Networks in Social Media

    NASA Astrophysics Data System (ADS)

    Cao, Liangliang; Qi, Guojun; Tsai, Shen-Fu; Tsai, Min-Hsuan; Pozo, Andrey Del; Huang, Thomas S.; Zhang, Xuemei; Lim, Suk Hwan

    The popularity of personal digital cameras and online photo/video sharing community has lead to an explosion of multimedia information. Unlike traditional multimedia data, many new multimedia datasets are organized in a structural way, incorporating rich information such as semantic ontology, social interaction, community media, geographical maps, in addition to the multimedia contents by themselves. Studies of such structured multimedia data have resulted in a new research area, which is referred to as Multimedia Information Networks. Multimedia information networks are closely related to social networks, but especially focus on understanding the topics and semantics of the multimedia files in the context of network structure. This chapter reviews different categories of recent systems related to multimedia information networks, summarizes the popular inference methods used in recent works, and discusses the applications related to multimedia information networks. We also discuss a wide range of topics including public datasets, related industrial systems, and potential future research directions in this field.

  15. Utilizing semantic networks to database and retrieve generalized stochastic colored Petri nets

    NASA Technical Reports Server (NTRS)

    Farah, Jeffrey J.; Kelley, Robert B.

    1992-01-01

    Previous work has introduced the Planning Coordinator (PCOORD), a coordinator functioning within the hierarchy of the Intelligent Machine Mode. Within the structure of the Planning Coordinator resides the Primitive Structure Database (PSDB) functioning to provide the primitive structures utilized by the Planning Coordinator in the establishing of error recovery or on-line path plans. This report further explores the Primitive Structure Database and establishes the potential of utilizing semantic networks as a means of efficiently storing and retrieving the Generalized Stochastic Colored Petri Nets from which the error recovery plans are derived.

  16. Semantic Networks and Social Networks

    ERIC Educational Resources Information Center

    Downes, Stephen

    2005-01-01

    Purpose: To illustrate the need for social network metadata within semantic metadata. Design/methodology/approach: Surveys properties of social networks and the semantic web, suggests that social network analysis applies to semantic content, argues that semantic content is more searchable if social network metadata is merged with semantic web…

  17. An object-oriented design for automated navigation of semantic networks inside a medical data dictionary.

    PubMed

    Ruan, W; Bürkle, T; Dudeck, J

    2000-01-01

    In this paper we present a data dictionary server for the automated navigation of information sources. The underlying knowledge is represented within a medical data dictionary. The mapping between medical terms and information sources is based on a semantic network. The key aspect of implementing the dictionary server is how to represent the semantic network in a way that is easier to navigate and to operate, i.e. how to abstract the semantic network and to represent it in memory for various operations. This paper describes an object-oriented design based on Java that represents the semantic network in terms of a group of objects. A node and its relationships to its neighbors are encapsulated in one object. Based on such a representation model, several operations have been implemented. They comprise the extraction of parts of the semantic network which can be reached from a given node as well as finding all paths between a start node and a predefined destination node. This solution is independent of any given layout of the semantic structure. Therefore the module, called Giessen Data Dictionary Server can act independent of a specific clinical information system. The dictionary server will be used to present clinical information, e.g. treatment guidelines or drug information sources to the clinician in an appropriate working context. The server is invoked from clinical documentation applications which contain an infobutton. Automated navigation will guide the user to all the information relevant to her/his topic, which is currently available inside our closed clinical network.

  18. Impact of Machine-Translated Text on Entity and Relationship Extraction

    DTIC Science & Technology

    2014-12-01

    20 1 1. Introduction Using social network analysis tools is an important asset in...semantic modeling software to automatically build detailed network models from unstructured text. Contour imports unstructured text and then maps the text...onto an existing ontology of frames at the sentence level, using FrameNet, a structured language model, and through Semantic Role Labeling ( SRL

  19. Convergence of semantics and emotional expression within the IFG pars orbitalis.

    PubMed

    Belyk, Michel; Brown, Steven; Lim, Jessica; Kotz, Sonja A

    2017-08-01

    Humans communicate through a combination of linguistic and emotional channels, including propositional speech, writing, sign language, music, but also prosodic, facial, and gestural expression. These channels can be interpreted separately or they can be integrated to multimodally convey complex meanings. Neural models of the perception of semantics and emotion include nodes for both functions in the inferior frontal gyrus pars orbitalis (IFGorb). However, it is not known whether this convergence involves a common functional zone or instead specialized subregions that process semantics and emotion separately. To address this, we performed Kernel Density Estimation meta-analyses of published neuroimaging studies of the perception of semantics or emotion that reported activation in the IFGorb. The results demonstrated that the IFGorb contains two zones with distinct functional profiles. A lateral zone, situated immediately ventral to Broca's area, was implicated in both semantics and emotion. Another zone, deep within the ventral frontal operculum, was engaged almost exclusively by studies of emotion. Follow-up analysis using Meta-Analytic Connectivity Modeling demonstrated that both zones were frequently co-activated with a common network of sensory, motor, and limbic structures, although the lateral zone had a greater association with prefrontal cortical areas involved in executive function. The status of the lateral IFGorb as a point of convergence between the networks for processing semantic and emotional content across modalities of communication is intriguing since this structure is preserved across primates with limited semantic abilities. Hence, the IFGorb may have initially evolved to support the comprehension of emotional signals, being later co-opted to support semantic communication in humans by forming new connections with brain regions that formed the human semantic network. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Social networking sites use and the morphology of a social-semantic brain network.

    PubMed

    Turel, Ofir; He, Qinghua; Brevers, Damien; Bechara, Antoine

    2017-09-30

    Social lives have shifted, at least in part, for large portions of the population to social networking sites. How such lifestyle changes may be associated with brain structures is still largely unknown. In this manuscript, we describe two preliminary studies aimed at exploring this issue. The first study (n = 276) showed that Facebook users reported on increased social-semantic and mentalizing demands, and that such increases were positively associated with people's level of Facebook use. The second study (n = 33) theorized on and examined likely anatomical correlates of such changes in demands on the brain. Findings indicated that the grey matter volumes of the posterior parts of the bilateral middle and superior temporal, and left fusiform gyri were positively associated with the level of Facebook use. These results provided preliminary evidence that grey matter volumes of brain structures involved in social-semantic and mentalizing tasks may be linked to the extent of social networking sites use.

  1. On the universal structure of human lexical semantics

    PubMed Central

    Sutton, Logan; Smith, Eric; Moore, Cristopher; Wilkins, Jon F.; Maddieson, Ian; Croft, William

    2016-01-01

    How universal is human conceptual structure? The way concepts are organized in the human brain may reflect distinct features of cultural, historical, and environmental background in addition to properties universal to human cognition. Semantics, or meaning expressed through language, provides indirect access to the underlying conceptual structure, but meaning is notoriously difficult to measure, let alone parameterize. Here, we provide an empirical measure of semantic proximity between concepts using cross-linguistic dictionaries to translate words to and from languages carefully selected to be representative of worldwide diversity. These translations reveal cases where a particular language uses a single “polysemous” word to express multiple concepts that another language represents using distinct words. We use the frequency of such polysemies linking two concepts as a measure of their semantic proximity and represent the pattern of these linkages by a weighted network. This network is highly structured: Certain concepts are far more prone to polysemy than others, and naturally interpretable clusters of closely related concepts emerge. Statistical analysis of the polysemies observed in a subset of the basic vocabulary shows that these structural properties are consistent across different language groups, and largely independent of geography, environment, and the presence or absence of a literary tradition. The methods developed here can be applied to any semantic domain to reveal the extent to which its conceptual structure is, similarly, a universal attribute of human cognition and language use. PMID:26831113

  2. Determinants of Multiple Semantic Priming: A Meta-Analysis and Spike Frequency Adaptive Model of a Cortical Network

    ERIC Educational Resources Information Center

    Lavigne, Frederic; Dumercy, Laurent; Darmon, Nelly

    2011-01-01

    Recall and language comprehension while processing sequences of words involves multiple semantic priming between several related and/or unrelated words. Accounting for multiple and interacting priming effects in terms of underlying neuronal structure and dynamics is a challenge for current models of semantic priming. Further elaboration of current…

  3. Socio-contextual Network Mining for User Assistance in Web-based Knowledge Gathering Tasks

    NASA Astrophysics Data System (ADS)

    Rajendran, Balaji; Kombiah, Iyakutti

    Web-based Knowledge Gathering (WKG) is a specialized and complex information seeking task carried out by many users on the web, for their various learning, and decision-making requirements. We construct a contextual semantic structure by observing the actions of the users involved in WKG task, in order to gain an understanding of their task and requirement. We also build a knowledge warehouse in the form of a master Semantic Link Network (SLX) that accommodates and assimilates all the contextual semantic structures. This master SLX, which is a socio-contextual network, is then mined to provide contextual inputs to the current users through their agents. We validated our approach through experiments and analyzed the benefits to the users in terms of resource explorations and the time saved. The results are positive enough to motivate us to implement in a larger scale.

  4. Investigating the structure of semantic networks in low and high creative persons

    PubMed Central

    Kenett, Yoed N.; Anaki, David; Faust, Miriam

    2014-01-01

    According to Mednick's (1962) theory of individual differences in creativity, creative individuals appear to have a richer and more flexible associative network than less creative individuals. Thus, creative individuals are characterized by “flat” (broader associations) instead of “steep” (few, common associations) associational hierarchies. To study these differences, we implement a novel computational approach to the study of semantic networks, through the analysis of free associations. The core notion of our method is that concepts in the network are related to each other by their association correlations—overlap of similar associative responses (“association clouds”). We began by collecting a large sample of participants who underwent several creativity measurements and used a decision tree approach to divide the sample into low and high creative groups. Next, each group underwent a free association generation paradigm which allowed us to construct and analyze the semantic networks of both groups. Comparison of the semantic memory networks of persons with low creative ability and persons with high creative ability revealed differences between the two networks. The semantic memory network of persons with low creative ability seems to be more rigid, compared to the network of persons with high creative ability, in the sense that it is more spread out and breaks apart into more sub-parts. We discuss how our findings are in accord and extend Mednick's (1962) theory and the feasibility of using network science paradigms to investigate high level cognition. PMID:24959129

  5. Natural language acquisition in large scale neural semantic networks

    NASA Astrophysics Data System (ADS)

    Ealey, Douglas

    This thesis puts forward the view that a purely signal- based approach to natural language processing is both plausible and desirable. By questioning the veracity of symbolic representations of meaning, it argues for a unified, non-symbolic model of knowledge representation that is both biologically plausible and, potentially, highly efficient. Processes to generate a grounded, neural form of this model-dubbed the semantic filter-are discussed. The combined effects of local neural organisation, coincident with perceptual maturation, are used to hypothesise its nature. This theoretical model is then validated in light of a number of fundamental neurological constraints and milestones. The mechanisms of semantic and episodic development that the model predicts are then used to explain linguistic properties, such as propositions and verbs, syntax and scripting. To mimic the growth of locally densely connected structures upon an unbounded neural substrate, a system is developed that can grow arbitrarily large, data- dependant structures composed of individual self- organising neural networks. The maturational nature of the data used results in a structure in which the perception of concepts is refined by the networks, but demarcated by subsequent structure. As a consequence, the overall structure shows significant memory and computational benefits, as predicted by the cognitive and neural models. Furthermore, the localised nature of the neural architecture also avoids the increasing error sensitivity and redundancy of traditional systems as the training domain grows. The semantic and episodic filters have been demonstrated to perform as well, or better, than more specialist networks, whilst using significantly larger vocabularies, more complex sentence forms and more natural corpora.

  6. Mapping the semantic structure of cognitive neuroscience.

    PubMed

    Beam, Elizabeth; Appelbaum, L Gregory; Jack, Jordynn; Moody, James; Huettel, Scott A

    2014-09-01

    Cognitive neuroscience, as a discipline, links the biological systems studied by neuroscience to the processing constructs studied by psychology. By mapping these relations throughout the literature of cognitive neuroscience, we visualize the semantic structure of the discipline and point to directions for future research that will advance its integrative goal. For this purpose, network text analyses were applied to an exhaustive corpus of abstracts collected from five major journals over a 30-month period, including every study that used fMRI to investigate psychological processes. From this, we generate network maps that illustrate the relationships among psychological and anatomical terms, along with centrality statistics that guide inferences about network structure. Three terms--prefrontal cortex, amygdala, and anterior cingulate cortex--dominate the network structure with their high frequency in the literature and the density of their connections with other neuroanatomical terms. From network statistics, we identify terms that are understudied compared with their importance in the network (e.g., insula and thalamus), are underspecified in the language of the discipline (e.g., terms associated with executive function), or are imperfectly integrated with other concepts (e.g., subdisciplines like decision neuroscience that are disconnected from the main network). Taking these results as the basis for prescriptive recommendations, we conclude that semantic analyses provide useful guidance for cognitive neuroscience as a discipline, both by illustrating systematic biases in the conduct and presentation of research and by identifying directions that may be most productive for future research.

  7. On the universal structure of human lexical semantics

    DOE PAGES

    Youn, Hyejin; Sutton, Logan; Smith, Eric; ...

    2016-02-01

    How universal is human conceptual structure? The way concepts are organized in the human brain may reflect distinct features of cultural, historical, and environmental background in addition to properties universal to human cognition. Semantics, or meaning expressed through language, provides indirect access to the underlying conceptual structure, but meaning is notoriously difficult to measure, let alone parameterize. Here, we provide an empirical measure of semantic proximity between concepts using cross-linguistic dictionaries to translate words to and from languages carefully selected to be representative of worldwide diversity. These translations reveal cases where a particular language uses a single “polysemous” word tomore » express multiple concepts that another language represents using distinct words. We use the frequency of such polysemies linking two concepts as a measure of their semantic proximity and represent the pattern of these linkages by a weighted network. This network is highly structured: Certain concepts are far more prone to polysemy than others, and naturally interpretable clusters of closely related concepts emerge. Statistical analysis of the polysemies observed in a subset of the basic vocabulary shows that these structural properties are consistent across different language groups, and largely independent of geography, environment, and the presence or absence of a literary tradition. As a result, the methods developed here can be applied to any semantic domain to reveal the extent to which its conceptual structure is, similarly, a universal attribute of human cognition and language use.« less

  8. On the universal structure of human lexical semantics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Youn, Hyejin; Sutton, Logan; Smith, Eric

    How universal is human conceptual structure? The way concepts are organized in the human brain may reflect distinct features of cultural, historical, and environmental background in addition to properties universal to human cognition. Semantics, or meaning expressed through language, provides indirect access to the underlying conceptual structure, but meaning is notoriously difficult to measure, let alone parameterize. Here, we provide an empirical measure of semantic proximity between concepts using cross-linguistic dictionaries to translate words to and from languages carefully selected to be representative of worldwide diversity. These translations reveal cases where a particular language uses a single “polysemous” word tomore » express multiple concepts that another language represents using distinct words. We use the frequency of such polysemies linking two concepts as a measure of their semantic proximity and represent the pattern of these linkages by a weighted network. This network is highly structured: Certain concepts are far more prone to polysemy than others, and naturally interpretable clusters of closely related concepts emerge. Statistical analysis of the polysemies observed in a subset of the basic vocabulary shows that these structural properties are consistent across different language groups, and largely independent of geography, environment, and the presence or absence of a literary tradition. As a result, the methods developed here can be applied to any semantic domain to reveal the extent to which its conceptual structure is, similarly, a universal attribute of human cognition and language use.« less

  9. Interests diffusion on a semantic multiplex. Comparing Computer Science and American Physical Society communities

    NASA Astrophysics Data System (ADS)

    D'Agostino, Gregorio; De Nicola, Antonio

    2016-10-01

    Exploiting the information about members of a Social Network (SN) represents one of the most attractive and dwelling subjects for both academic and applied scientists. The community of Complexity Science and especially those researchers working on multiplex social systems are devoting increasing efforts to outline general laws, models, and theories, to the purpose of predicting emergent phenomena in SN's (e.g. success of a product). On the other side the semantic web community aims at engineering a new generation of advanced services tailored to specific people needs. This implies defining constructs, models and methods for handling the semantic layer of SNs. We combined models and techniques from both the former fields to provide a hybrid approach to understand a basic (yet complex) phenomenon: the propagation of individual interests along the social networks. Since information may move along different social networks, one should take into account a multiplex structure. Therefore we introduced the notion of "Semantic Multiplex". In this paper we analyse two different semantic social networks represented by authors publishing in the Computer Science and those in the American Physical Society Journals. The comparison allows to outline common and specific features.

  10. Anatomy is strategy: Skilled reading differences associated with structural connectivity differences in the reading network

    PubMed Central

    Graves, William W.; Binder, Jeffrey R.; Desai, Rutvik H.; Humphries, Colin; Stengel, Benjamin C.; Seidenberg, Mark S.

    2014-01-01

    Are there multiple ways to be a skilled reader? To address this longstanding, unresolved question, we hypothesized that individual variability in using semantic information in reading aloud would be associated with neuroanatomical variation in pathways linking semantics and phonology. Left-hemisphere regions of interest for diffusion tensor imaging analysis were defined based on fMRI results, including two regions linked with semantic processing – angular gyrus (AG) and inferior temporal sulcus (ITS) – and two linked with phonological processing – posterior superior temporal gyrus (pSTG) and posterior middle temporal gyrus (pMTG). Effects of imageability (a semantic measure) on response times varied widely among individuals and covaried with the volume of pathways through the ITS and pMTG, and through AG and pSTG, partially overlapping the inferior longitudinal fasciculus and the posterior branch of the arcuate fasciculus. These results suggest strategy differences among skilled readers associated with structural variation in the neural reading network. PMID:24735993

  11. Interconnected growing self-organizing maps for auditory and semantic acquisition modeling.

    PubMed

    Cao, Mengxue; Li, Aijun; Fang, Qiang; Kaufmann, Emily; Kröger, Bernd J

    2014-01-01

    Based on the incremental nature of knowledge acquisition, in this study we propose a growing self-organizing neural network approach for modeling the acquisition of auditory and semantic categories. We introduce an Interconnected Growing Self-Organizing Maps (I-GSOM) algorithm, which takes associations between auditory information and semantic information into consideration, in this paper. Direct phonetic-semantic association is simulated in order to model the language acquisition in early phases, such as the babbling and imitation stages, in which no phonological representations exist. Based on the I-GSOM algorithm, we conducted experiments using paired acoustic and semantic training data. We use a cyclical reinforcing and reviewing training procedure to model the teaching and learning process between children and their communication partners. A reinforcing-by-link training procedure and a link-forgetting procedure are introduced to model the acquisition of associative relations between auditory and semantic information. Experimental results indicate that (1) I-GSOM has good ability to learn auditory and semantic categories presented within the training data; (2) clear auditory and semantic boundaries can be found in the network representation; (3) cyclical reinforcing and reviewing training leads to a detailed categorization as well as to a detailed clustering, while keeping the clusters that have already been learned and the network structure that has already been developed stable; and (4) reinforcing-by-link training leads to well-perceived auditory-semantic associations. Our I-GSOM model suggests that it is important to associate auditory information with semantic information during language acquisition. Despite its high level of abstraction, our I-GSOM approach can be interpreted as a biologically-inspired neurocomputational model.

  12. How Semantic Radicals in Chinese characters Facilitate Hierarchical Category-Based Induction.

    PubMed

    Wang, Xiaoxi; Ma, Xie; Tao, Yun; Tao, Yachen; Li, Hong

    2018-04-03

    Prior studies indicate that the semantic radical in Chinese characters contains category information that can support the independent retrieval of category information through the lexical network to the conceptual network. Inductive reasoning relies on category information; thus, semantic radicals may influence inductive reasoning. As most natural concepts are hierarchically structured in the human brain, this study examined how semantic radicals impact inductive reasoning for hierarchical concepts. The study used animal and plant nouns, organized in basic, superordinate, and subordinate levels; half had a semantic radical and half did not. Eighteen participants completed an inductive reasoning task. Behavioural and event-related potential (ERP) data were collected. The behavioural results showed that participants reacted faster and more accurately in the with-semantic-radical condition than in the without-semantic-radical condition. For the ERPs, differences between the conditions were found, and these differences lasted from the very early cognitive processing stage (i.e., the N1 time window) to the relatively late processing stages (i.e., the N400 and LPC time windows). Semantic radicals can help to distinguish the hierarchies earlier (in the N400 period) than characters without a semantic radical (in the LPC period). These results provide electrophysiological evidence that semantic radicals may improve sensitivity to distinguish between hierarchical concepts.

  13. Brain network of semantic integration in sentence reading: insights from independent component analysis and graph theoretical analysis.

    PubMed

    Ye, Zheng; Doñamayor, Nuria; Münte, Thomas F

    2014-02-01

    A set of cortical and sub-cortical brain structures has been linked with sentence-level semantic processes. However, it remains unclear how these brain regions are organized to support the semantic integration of a word into sentential context. To look into this issue, we conducted a functional magnetic resonance imaging (fMRI) study that required participants to silently read sentences with semantically congruent or incongruent endings and analyzed the network properties of the brain with two approaches, independent component analysis (ICA) and graph theoretical analysis (GTA). The GTA suggested that the whole-brain network is topologically stable across conditions. The ICA revealed a network comprising the supplementary motor area (SMA), left inferior frontal gyrus, left middle temporal gyrus, left caudate nucleus, and left angular gyrus, which was modulated by the incongruity of sentence ending. Furthermore, the GTA specified that the connections between the left SMA and left caudate nucleus as well as that between the left caudate nucleus and right thalamus were stronger in response to incongruent vs. congruent endings. Copyright © 2012 Wiley Periodicals, Inc.

  14. Structure at every scale: A semantic network account of the similarities between unrelated concepts.

    PubMed

    De Deyne, Simon; Navarro, Daniel J; Perfors, Amy; Storms, Gert

    2016-09-01

    Similarity plays an important role in organizing the semantic system. However, given that similarity cannot be defined on purely logical grounds, it is important to understand how people perceive similarities between different entities. Despite this, the vast majority of studies focus on measuring similarity between very closely related items. When considering concepts that are very weakly related, little is known. In this article, we present 4 experiments showing that there are reliable and systematic patterns in how people evaluate the similarities between very dissimilar entities. We present a semantic network account of these similarities showing that a spreading activation mechanism defined over a word association network naturally makes correct predictions about weak similarities, whereas, though simpler, models based on direct neighbors between word pairs derived using the same network cannot. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  15. A Complex Network Approach to Distributional Semantic Models

    PubMed Central

    Utsumi, Akira

    2015-01-01

    A number of studies on network analysis have focused on language networks based on free word association, which reflects human lexical knowledge, and have demonstrated the small-world and scale-free properties in the word association network. Nevertheless, there have been very few attempts at applying network analysis to distributional semantic models, despite the fact that these models have been studied extensively as computational or cognitive models of human lexical knowledge. In this paper, we analyze three network properties, namely, small-world, scale-free, and hierarchical properties, of semantic networks created by distributional semantic models. We demonstrate that the created networks generally exhibit the same properties as word association networks. In particular, we show that the distribution of the number of connections in these networks follows the truncated power law, which is also observed in an association network. This indicates that distributional semantic models can provide a plausible model of lexical knowledge. Additionally, the observed differences in the network properties of various implementations of distributional semantic models are consistently explained or predicted by considering the intrinsic semantic features of a word-context matrix and the functions of matrix weighting and smoothing. Furthermore, to simulate a semantic network with the observed network properties, we propose a new growing network model based on the model of Steyvers and Tenenbaum. The idea underlying the proposed model is that both preferential and random attachments are required to reflect different types of semantic relations in network growth process. We demonstrate that this model provides a better explanation of network behaviors generated by distributional semantic models. PMID:26295940

  16. Modal and Temporal Argumentation Networks

    NASA Astrophysics Data System (ADS)

    Barringer, Howard; Gabbay, Dov M.

    The traditional Dung networks depict arguments as atomic and studies the relationships of attack between them. This can be generalised in two ways. One is to consider, for example, various forms of attack, support and feedback. Another is to add content to nodes and put there not just atomic arguments but more structure, for example, proofs in some logic or simply just formulas from a richer language. This paper offers to use temporal and modal language formulas to represent arguments in the nodes of a network. The suitable semantics for such networks is Kripke semantics. We also introduce a new key concept of usability of an argument.

  17. Semantic Segmentation of Convolutional Neural Network for Supervised Classification of Multispectral Remote Sensing

    NASA Astrophysics Data System (ADS)

    Xue, L.; Liu, C.; Wu, Y.; Li, H.

    2018-04-01

    Semantic segmentation is a fundamental research in remote sensing image processing. Because of the complex maritime environment, the classification of roads, vegetation, buildings and water from remote Sensing Imagery is a challenging task. Although the neural network has achieved excellent performance in semantic segmentation in the last years, there are a few of works using CNN for ground object segmentation and the results could be further improved. This paper used convolution neural network named U-Net, its structure has a contracting path and an expansive path to get high resolution output. In the network , We added BN layers, which is more conducive to the reverse pass. Moreover, after upsampling convolution , we add dropout layers to prevent overfitting. They are promoted to get more precise segmentation results. To verify this network architecture, we used a Kaggle dataset. Experimental results show that U-Net achieved good performance compared with other architectures, especially in high-resolution remote sensing imagery.

  18. A method for exploring implicit concept relatedness in biomedical knowledge network.

    PubMed

    Bai, Tian; Gong, Leiguang; Wang, Ye; Wang, Yan; Kulikowski, Casimir A; Huang, Lan

    2016-07-19

    Biomedical information and knowledge, structural and non-structural, stored in different repositories can be semantically connected to form a hybrid knowledge network. How to compute relatedness between concepts and discover valuable but implicit information or knowledge from it effectively and efficiently is of paramount importance for precision medicine, and a major challenge facing the biomedical research community. In this study, a hybrid biomedical knowledge network is constructed by linking concepts across multiple biomedical ontologies as well as non-structural biomedical knowledge sources. To discover implicit relatedness between concepts in ontologies for which potentially valuable relationships (implicit knowledge) may exist, we developed a Multi-Ontology Relatedness Model (MORM) within the knowledge network, for which a relatedness network (RN) is defined and computed across multiple ontologies using a formal inference mechanism of set-theoretic operations. Semantic constraints are designed and implemented to prune the search space of the relatedness network. Experiments to test examples of several biomedical applications have been carried out, and the evaluation of the results showed an encouraging potential of the proposed approach to biomedical knowledge discovery.

  19. Knowledge Representation Issues in Semantic Graphs for Relationship Detection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barthelemy, M; Chow, E; Eliassi-Rad, T

    2005-02-02

    An important task for Homeland Security is the prediction of threat vulnerabilities, such as through the detection of relationships between seemingly disjoint entities. A structure used for this task is a ''semantic graph'', also known as a ''relational data graph'' or an ''attributed relational graph''. These graphs encode relationships as typed links between a pair of typed nodes. Indeed, semantic graphs are very similar to semantic networks used in AI. The node and link types are related through an ontology graph (also known as a schema). Furthermore, each node has a set of attributes associated with it (e.g., ''age'' maymore » be an attribute of a node of type ''person''). Unfortunately, the selection of types and attributes for both nodes and links depends on human expertise and is somewhat subjective and even arbitrary. This subjectiveness introduces biases into any algorithm that operates on semantic graphs. Here, we raise some knowledge representation issues for semantic graphs and provide some possible solutions using recently developed ideas in the field of complex networks. In particular, we use the concept of transitivity to evaluate the relevance of individual links in the semantic graph for detecting relationships. We also propose new statistical measures for semantic graphs and illustrate these semantic measures on graphs constructed from movies and terrorism data.« less

  20. Neural-like growing networks

    NASA Astrophysics Data System (ADS)

    Yashchenko, Vitaliy A.

    2000-03-01

    On the basis of the analysis of scientific ideas reflecting the law in the structure and functioning the biological structures of a brain, and analysis and synthesis of knowledge, developed by various directions in Computer Science, also there were developed the bases of the theory of a new class neural-like growing networks, not having the analogue in world practice. In a base of neural-like growing networks the synthesis of knowledge developed by classical theories - semantic and neural of networks is. The first of them enable to form sense, as objects and connections between them in accordance with construction of the network. With thus each sense gets a separate a component of a network as top, connected to other tops. In common it quite corresponds to structure reflected in a brain, where each obvious concept is presented by certain structure and has designating symbol. Secondly, this network gets increased semantic clearness at the expense owing to formation not only connections between neural by elements, but also themselves of elements as such, i.e. here has a place not simply construction of a network by accommodation sense structures in environment neural of elements, and purely creation of most this environment, as of an equivalent of environment of memory. Thus neural-like growing networks are represented by the convenient apparatus for modeling of mechanisms of teleological thinking, as a fulfillment of certain psychophysiological of functions.

  1. Semantic Structure in Vocabulary Knowledge Interacts With Lexical and Sentence Processing in Infancy.

    PubMed

    Borovsky, Arielle; Ellis, Erica M; Evans, Julia L; Elman, Jeffrey L

    2016-11-01

    Although the size of a child's vocabulary associates with language-processing skills, little is understood regarding how this relation emerges. This investigation asks whether and how the structure of vocabulary knowledge affects language processing in English-learning 24-month-old children (N = 32; 18 F, 14 M). Parental vocabulary report was used to calculate semantic density in several early-acquired semantic categories. Performance on two language-processing tasks (lexical recognition and sentence processing) was compared as a function of semantic density. In both tasks, real-time comprehension was facilitated for higher density items, whereas lower density items experienced more interference. The findings indicate that language-processing skills develop heterogeneously and are influenced by the semantic network surrounding a known word. © 2016 The Authors. Child Development © 2016 Society for Research in Child Development, Inc.

  2. Interconnected growing self-organizing maps for auditory and semantic acquisition modeling

    PubMed Central

    Cao, Mengxue; Li, Aijun; Fang, Qiang; Kaufmann, Emily; Kröger, Bernd J.

    2014-01-01

    Based on the incremental nature of knowledge acquisition, in this study we propose a growing self-organizing neural network approach for modeling the acquisition of auditory and semantic categories. We introduce an Interconnected Growing Self-Organizing Maps (I-GSOM) algorithm, which takes associations between auditory information and semantic information into consideration, in this paper. Direct phonetic–semantic association is simulated in order to model the language acquisition in early phases, such as the babbling and imitation stages, in which no phonological representations exist. Based on the I-GSOM algorithm, we conducted experiments using paired acoustic and semantic training data. We use a cyclical reinforcing and reviewing training procedure to model the teaching and learning process between children and their communication partners. A reinforcing-by-link training procedure and a link-forgetting procedure are introduced to model the acquisition of associative relations between auditory and semantic information. Experimental results indicate that (1) I-GSOM has good ability to learn auditory and semantic categories presented within the training data; (2) clear auditory and semantic boundaries can be found in the network representation; (3) cyclical reinforcing and reviewing training leads to a detailed categorization as well as to a detailed clustering, while keeping the clusters that have already been learned and the network structure that has already been developed stable; and (4) reinforcing-by-link training leads to well-perceived auditory–semantic associations. Our I-GSOM model suggests that it is important to associate auditory information with semantic information during language acquisition. Despite its high level of abstraction, our I-GSOM approach can be interpreted as a biologically-inspired neurocomputational model. PMID:24688478

  3. A dictionary server for supplying context sensitive medical knowledge.

    PubMed

    Ruan, W; Bürkle, T; Dudeck, J

    2000-01-01

    The Giessen Data Dictionary Server (GDDS), developed at Giessen University Hospital, integrates clinical systems with on-line, context sensitive medical knowledge to help with making medical decisions. By "context" we mean the clinical information that is being presented at the moment the information need is occurring. The dictionary server makes use of a semantic network supported by a medical data dictionary to link terms from clinical applications to their proper information sources. It has been designed to analyze the network structure itself instead of knowing the layout of the semantic net in advance. This enables us to map appropriate information sources to various clinical applications, such as nursing documentation, drug prescription and cancer follow up systems. This paper describes the function of the dictionary server and shows how the knowledge stored in the semantic network is used in the dictionary service.

  4. A Tri-network Model of Human Semantic Processing

    PubMed Central

    Xu, Yangwen; He, Yong; Bi, Yanchao

    2017-01-01

    Humans process the meaning of the world via both verbal and nonverbal modalities. It has been established that widely distributed cortical regions are involved in semantic processing, yet the global wiring pattern of this brain system has not been considered in the current neurocognitive semantic models. We review evidence from the brain-network perspective, which shows that the semantic system is topologically segregated into three brain modules. Revisiting previous region-based evidence in light of these new network findings, we postulate that these three modules support multimodal experiential representation, language-supported representation, and semantic control. A tri-network neurocognitive model of semantic processing is proposed, which generates new hypotheses regarding the network basis of different types of semantic processes. PMID:28955266

  5. The structure of semantic person memory: evidence from semantic priming in person recognition.

    PubMed

    Wiese, Holger

    2011-11-01

    This paper reviews research on the structure of semantic person memory as examined with semantic priming. In this experimental paradigm, a familiarity decision on a target face or written name is usually faster when it is preceded by a related as compared to an unrelated prime. This effect has been shown to be relatively short lived and susceptible to interfering items. Moreover, semantic priming can cross stimulus domains, such that a written name can prime a target face and vice versa. However, it remains controversial whether representations of people are stored in associative networks based on co-occurrence, or in more abstract semantic categories. In line with prominent cognitive models of face recognition, which explain semantic priming by shared semantic information between prime and target, recent research demonstrated that priming could be obtained from purely categorically related, non-associated prime/target pairs. Although strategic processes, such as expectancy and retrospective matching likely contribute, there is also evidence for a non-strategic contribution to priming, presumably related to spreading activation. Finally, a semantic priming effect has been demonstrated in the N400 event-related potential (ERP) component, which may reflect facilitated access to semantic information. It is concluded that categorical relatedness is one organizing principle of semantic person memory. ©2011 The British Psychological Society.

  6. Information Resources Usage in Project Management Digital Learning System

    ERIC Educational Resources Information Center

    Davidovitch, Nitza; Belichenko, Margarita; Kravchenko, Yurii

    2017-01-01

    The article combines a theoretical approach to structuring knowledge that is based on the integrated use of fuzzy semantic network theory predicates, Boolean functions, theory of complexity of network structures and some practical aspects to be considered in the distance learning at the university. The paper proposes a methodological approach that…

  7. Qualitative dynamics semantics for SBGN process description.

    PubMed

    Rougny, Adrien; Froidevaux, Christine; Calzone, Laurence; Paulevé, Loïc

    2016-06-16

    Qualitative dynamics semantics provide a coarse-grain modeling of networks dynamics by abstracting away kinetic parameters. They allow to capture general features of systems dynamics, such as attractors or reachability properties, for which scalable analyses exist. The Systems Biology Graphical Notation Process Description language (SBGN-PD) has become a standard to represent reaction networks. However, no qualitative dynamics semantics taking into account all the main features available in SBGN-PD had been proposed so far. We propose two qualitative dynamics semantics for SBGN-PD reaction networks, namely the general semantics and the stories semantics, that we formalize using asynchronous automata networks. While the general semantics extends standard Boolean semantics of reaction networks by taking into account all the main features of SBGN-PD, the stories semantics allows to model several molecules of a network by a unique variable. The obtained qualitative models can be checked against dynamical properties and therefore validated with respect to biological knowledge. We apply our framework to reason on the qualitative dynamics of a large network (more than 200 nodes) modeling the regulation of the cell cycle by RB/E2F. The proposed semantics provide a direct formalization of SBGN-PD networks in dynamical qualitative models that can be further analyzed using standard tools for discrete models. The dynamics in stories semantics have a lower dimension than the general one and prune multiple behaviors (which can be considered as spurious) by enforcing the mutual exclusiveness between the activity of different nodes of a same story. Overall, the qualitative semantics for SBGN-PD allow to capture efficiently important dynamical features of reaction network models and can be exploited to further refine them.

  8. Scientific Knowledge Discovery in Complex Semantic Networks of Geophysical Systems

    NASA Astrophysics Data System (ADS)

    Fox, P.

    2012-04-01

    The vast majority of explorations of the Earth's systems are limited in their ability to effectively explore the most important (often most difficult) problems because they are forced to interconnect at the data-element, or syntactic, level rather than at a higher scientific, or semantic, level. Recent successes in the application of complex network theory and algorithms to climate data, raise expectations that more general graph-based approaches offer the opportunity for new discoveries. In the past ~ 5 years in the natural sciences there has substantial progress in providing both specialists and non-specialists the ability to describe in machine readable form, geophysical quantities and relations among them in meaningful and natural ways, effectively breaking the prior syntax barrier. The corresponding open-world semantics and reasoning provide higher-level interconnections. That is, semantics provided around the data structures, using semantically-equipped tools, and semantically aware interfaces between science application components allowing for discovery at the knowledge level. More recently, formal semantic approaches to continuous and aggregate physical processes are beginning to show promise and are soon likely to be ready to apply to geoscientific systems. To illustrate these opportunities, this presentation presents two application examples featuring domain vocabulary (ontology) and property relations (named and typed edges in the graphs). First, a climate knowledge discovery pilot encoding and exploration of CMIP5 catalog information with the eventual goal to encode and explore CMIP5 data. Second, a multi-stakeholder knowledge network for integrated assessments in marine ecosystems, where the data is highly inter-disciplinary.

  9. Modeling of cell signaling pathways in macrophages by semantic networks

    PubMed Central

    Hsing, Michael; Bellenson, Joel L; Shankey, Conor; Cherkasov, Artem

    2004-01-01

    Background Substantial amounts of data on cell signaling, metabolic, gene regulatory and other biological pathways have been accumulated in literature and electronic databases. Conventionally, this information is stored in the form of pathway diagrams and can be characterized as highly "compartmental" (i.e. individual pathways are not connected into more general networks). Current approaches for representing pathways are limited in their capacity to model molecular interactions in their spatial and temporal context. Moreover, the critical knowledge of cause-effect relationships among signaling events is not reflected by most conventional approaches for manipulating pathways. Results We have applied a semantic network (SN) approach to develop and implement a model for cell signaling pathways. The semantic model has mapped biological concepts to a set of semantic agents and relationships, and characterized cell signaling events and their participants in the hierarchical and spatial context. In particular, the available information on the behaviors and interactions of the PI3K enzyme family has been integrated into the SN environment and a cell signaling network in human macrophages has been constructed. A SN-application has been developed to manipulate the locations and the states of molecules and to observe their actions under different biological scenarios. The approach allowed qualitative simulation of cell signaling events involving PI3Ks and identified pathways of molecular interactions that led to known cellular responses as well as other potential responses during bacterial invasions in macrophages. Conclusions We concluded from our results that the semantic network is an effective method to model cell signaling pathways. The semantic model allows proper representation and integration of information on biological structures and their interactions at different levels. The reconstruction of the cell signaling network in the macrophage allowed detailed investigation of connections among various essential molecules and reflected the cause-effect relationships among signaling events. The simulation demonstrated the dynamics of the semantic network, where a change of states on a molecule can alter its function and potentially cause a chain-reaction effect in the system. PMID:15494071

  10. Mathematical Logic in the Human Brain: Semantics

    PubMed Central

    Friedrich, Roland M.; Friederici, Angela D.

    2013-01-01

    As a higher cognitive function in humans, mathematics is supported by parietal and prefrontal brain regions. Here, we give an integrative account of the role of the different brain systems in processing the semantics of mathematical logic from the perspective of macroscopic polysynaptic networks. By comparing algebraic and arithmetic expressions of identical underlying structure, we show how the different subparts of a fronto-parietal network are modulated by the semantic domain, over which the mathematical formulae are interpreted. Within this network, the prefrontal cortex represents a system that hosts three major components, namely, control, arithmetic-logic, and short-term memory. This prefrontal system operates on data fed to it by two other systems: a premotor-parietal top-down system that updates and transforms (external) data into an internal format, and a hippocampal bottom-up system that either detects novel information or serves as an access device to memory for previously acquired knowledge. PMID:23301101

  11. A dictionary server for supplying context sensitive medical knowledge.

    PubMed Central

    Ruan, W.; Bürkle, T.; Dudeck, J.

    2000-01-01

    The Giessen Data Dictionary Server (GDDS), developed at Giessen University Hospital, integrates clinical systems with on-line, context sensitive medical knowledge to help with making medical decisions. By "context" we mean the clinical information that is being presented at the moment the information need is occurring. The dictionary server makes use of a semantic network supported by a medical data dictionary to link terms from clinical applications to their proper information sources. It has been designed to analyze the network structure itself instead of knowing the layout of the semantic net in advance. This enables us to map appropriate information sources to various clinical applications, such as nursing documentation, drug prescription and cancer follow up systems. This paper describes the function of the dictionary server and shows how the knowledge stored in the semantic network is used in the dictionary service. PMID:11079978

  12. Mathematical logic in the human brain: semantics.

    PubMed

    Friedrich, Roland M; Friederici, Angela D

    2013-01-01

    As a higher cognitive function in humans, mathematics is supported by parietal and prefrontal brain regions. Here, we give an integrative account of the role of the different brain systems in processing the semantics of mathematical logic from the perspective of macroscopic polysynaptic networks. By comparing algebraic and arithmetic expressions of identical underlying structure, we show how the different subparts of a fronto-parietal network are modulated by the semantic domain, over which the mathematical formulae are interpreted. Within this network, the prefrontal cortex represents a system that hosts three major components, namely, control, arithmetic-logic, and short-term memory. This prefrontal system operates on data fed to it by two other systems: a premotor-parietal top-down system that updates and transforms (external) data into an internal format, and a hippocampal bottom-up system that either detects novel information or serves as an access device to memory for previously acquired knowledge.

  13. Semantic graphs and associative memories

    NASA Astrophysics Data System (ADS)

    Pomi, Andrés; Mizraji, Eduardo

    2004-12-01

    Graphs have been increasingly utilized in the characterization of complex networks from diverse origins, including different kinds of semantic networks. Human memories are associative and are known to support complex semantic nets; these nets are represented by graphs. However, it is not known how the brain can sustain these semantic graphs. The vision of cognitive brain activities, shown by modern functional imaging techniques, assigns renewed value to classical distributed associative memory models. Here we show that these neural network models, also known as correlation matrix memories, naturally support a graph representation of the stored semantic structure. We demonstrate that the adjacency matrix of this graph of associations is just the memory coded with the standard basis of the concept vector space, and that the spectrum of the graph is a code invariant of the memory. As long as the assumptions of the model remain valid this result provides a practical method to predict and modify the evolution of the cognitive dynamics. Also, it could provide us with a way to comprehend how individual brains that map the external reality, almost surely with different particular vector representations, are nevertheless able to communicate and share a common knowledge of the world. We finish presenting adaptive association graphs, an extension of the model that makes use of the tensor product, which provides a solution to the known problem of branching in semantic nets.

  14. Brain connections of words, perceptions and actions: A neurobiological model of spatio-temporal semantic activation in the human cortex.

    PubMed

    Tomasello, Rosario; Garagnani, Max; Wennekers, Thomas; Pulvermüller, Friedemann

    2017-04-01

    Neuroimaging and patient studies show that different areas of cortex respectively specialize for general and selective, or category-specific, semantic processing. Why are there both semantic hubs and category-specificity, and how come that they emerge in different cortical regions? Can the activation time-course of these areas be predicted and explained by brain-like network models? In this present work, we extend a neurocomputational model of human cortical function to simulate the time-course of cortical processes of understanding meaningful concrete words. The model implements frontal and temporal cortical areas for language, perception, and action along with their connectivity. It uses Hebbian learning to semantically ground words in aspects of their referential object- and action-related meaning. Compared with earlier proposals, the present model incorporates additional neuroanatomical links supported by connectivity studies and downscaled synaptic weights in order to control for functional between-area differences purely due to the number of in- or output links of an area. We show that learning of semantic relationships between words and the objects and actions these symbols are used to speak about, leads to the formation of distributed circuits, which all include neuronal material in connector hub areas bridging between sensory and motor cortical systems. Therefore, these connector hub areas acquire a role as semantic hubs. By differentially reaching into motor or visual areas, the cortical distributions of the emergent 'semantic circuits' reflect aspects of the represented symbols' meaning, thus explaining category-specificity. The improved connectivity structure of our model entails a degree of category-specificity even in the 'semantic hubs' of the model. The relative time-course of activation of these areas is typically fast and near-simultaneous, with semantic hubs central to the network structure activating before modality-preferential areas carrying semantic information. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  15. Auditing Associative Relations across Two Knowledge Sources

    PubMed Central

    Vizenor, Lowell T.; Bodenreider, Olivier; McCray, Alexa T.

    2009-01-01

    Objectives This paper proposes a novel semantic method for auditing associative relations in biomedical terminologies. We tested our methodology on two Unified Medical Language System (UMLS) knowledge sources. Methods We use the UMLS semantic groups as high-level representations of the domain and range of relationships in the Metathesaurus and in the Semantic Network. A mapping created between Metathesaurus relationships and Semantic Network relationships forms the basis for comparing the signatures of a given Metathesaurus relationship to the signatures of the semantic relationship to which it is mapped. The consistency of Metathesaurus relations is studied for each relationship. Results Of the 177 associative relationships in the Metathesaurus, 84 (48%) exhibit a high degree of consistency with the corresponding Semantic Network relationships. Overall, 63% of the 1.8M associative relations in the Metathesaurus are consistent with relations in the Semantic Network. Conclusion The semantics of associative relationships in biomedical terminologies should be defined explicitly by their developers. The Semantic Network would benefit from being extended with new relationships and with new relations for some existing relationships. The UMLS editing environment could take advantage of the correspondence established between relationships in the Metathesaurus and the Semantic Network. Finally, the auditing method also yielded useful information for refining the mapping of associative relationships between the two sources. PMID:19475724

  16. The evaluative imaging of mental models - Visual representations of complexity

    NASA Technical Reports Server (NTRS)

    Dede, Christopher

    1989-01-01

    The paper deals with some design issues involved in building a system that could visually represent the semantic structures of training materials and their underlying mental models. In particular, hypermedia-based semantic networks that instantiate classification problem solving strategies are thought to be a useful formalism for such representations; the complexity of these web structures can be best managed through visual depictions. It is also noted that a useful approach to implement in these hypermedia models would be some metrics of conceptual distance.

  17. Face (and Nose) Priming for Book: The Malleability of Semantic Memory

    PubMed Central

    Coane, Jennifer H.; Balota, David A.

    2010-01-01

    There are two general classes of models of semantic structure that support semantic priming effects. Feature-overlap models of semantic priming assume that shared features between primes and targets are critical (e.g., cat-DOG). Associative accounts assume that contextual co-occurrence is critical and that the system is organized along associations independent of featural overlap (e.g., leash-DOG). If unrelated concepts can become related as a result of contextual co-occurrence, this would be more supportive of associative accounts and provide insight into the nature of the network underlying “semantic” priming effects. Naturally co-occurring recent associations (e.g., face-BOOK) were tested under conditions that minimize strategic influences (i.e., short stimulus onset asynchrony, low relatedness proportion) in a semantic priming paradigm. Priming for new associations did not differ from the priming found for pre-existing relations (e.g., library-BOOK). Mediated priming (e.g., nose-BOOK) was also found. These results suggest that contextual associations can result in the reorganization of the network that subserves “semantic” priming effects. PMID:20494866

  18. The Yin and the Yang of Prediction: An fMRI Study of Semantic Predictive Processing

    PubMed Central

    Weber, Kirsten; Lau, Ellen F.; Stillerman, Benjamin; Kuperberg, Gina R.

    2016-01-01

    Probabilistic prediction plays a crucial role in language comprehension. When predictions are fulfilled, the resulting facilitation allows for fast, efficient processing of ambiguous, rapidly-unfolding input; when predictions are not fulfilled, the resulting error signal allows us to adapt to broader statistical changes in this input. We used functional Magnetic Resonance Imaging to examine the neuroanatomical networks engaged in semantic predictive processing and adaptation. We used a relatedness proportion semantic priming paradigm, in which we manipulated the probability of predictions while holding local semantic context constant. Under conditions of higher (versus lower) predictive validity, we replicate previous observations of reduced activity to semantically predictable words in the left anterior superior/middle temporal cortex, reflecting facilitated processing of targets that are consistent with prior semantic predictions. In addition, under conditions of higher (versus lower) predictive validity we observed significant differences in the effects of semantic relatedness within the left inferior frontal gyrus and the posterior portion of the left superior/middle temporal gyrus. We suggest that together these two regions mediated the suppression of unfulfilled semantic predictions and lexico-semantic processing of unrelated targets that were inconsistent with these predictions. Moreover, under conditions of higher (versus lower) predictive validity, a functional connectivity analysis showed that the left inferior frontal and left posterior superior/middle temporal gyrus were more tightly interconnected with one another, as well as with the left anterior cingulate cortex. The left anterior cingulate cortex was, in turn, more tightly connected to superior lateral frontal cortices and subcortical regions—a network that mediates rapid learning and adaptation and that may have played a role in switching to a more predictive mode of processing in response to the statistical structure of the wider environmental context. Together, these findings highlight close links between the networks mediating semantic prediction, executive function and learning, giving new insights into how our brains are able to flexibly adapt to our environment. PMID:27010386

  19. The Yin and the Yang of Prediction: An fMRI Study of Semantic Predictive Processing.

    PubMed

    Weber, Kirsten; Lau, Ellen F; Stillerman, Benjamin; Kuperberg, Gina R

    2016-01-01

    Probabilistic prediction plays a crucial role in language comprehension. When predictions are fulfilled, the resulting facilitation allows for fast, efficient processing of ambiguous, rapidly-unfolding input; when predictions are not fulfilled, the resulting error signal allows us to adapt to broader statistical changes in this input. We used functional Magnetic Resonance Imaging to examine the neuroanatomical networks engaged in semantic predictive processing and adaptation. We used a relatedness proportion semantic priming paradigm, in which we manipulated the probability of predictions while holding local semantic context constant. Under conditions of higher (versus lower) predictive validity, we replicate previous observations of reduced activity to semantically predictable words in the left anterior superior/middle temporal cortex, reflecting facilitated processing of targets that are consistent with prior semantic predictions. In addition, under conditions of higher (versus lower) predictive validity we observed significant differences in the effects of semantic relatedness within the left inferior frontal gyrus and the posterior portion of the left superior/middle temporal gyrus. We suggest that together these two regions mediated the suppression of unfulfilled semantic predictions and lexico-semantic processing of unrelated targets that were inconsistent with these predictions. Moreover, under conditions of higher (versus lower) predictive validity, a functional connectivity analysis showed that the left inferior frontal and left posterior superior/middle temporal gyrus were more tightly interconnected with one another, as well as with the left anterior cingulate cortex. The left anterior cingulate cortex was, in turn, more tightly connected to superior lateral frontal cortices and subcortical regions-a network that mediates rapid learning and adaptation and that may have played a role in switching to a more predictive mode of processing in response to the statistical structure of the wider environmental context. Together, these findings highlight close links between the networks mediating semantic prediction, executive function and learning, giving new insights into how our brains are able to flexibly adapt to our environment.

  20. A lexical semantic hub for heteromodal naming in middle fusiform gyrus.

    PubMed

    Forseth, Kiefer James; Kadipasaoglu, Cihan Mehmet; Conner, Christopher Richard; Hickok, Gregory; Knight, Robert Thomas; Tandon, Nitin

    2018-07-01

    Semantic memory underpins our understanding of objects, people, places, and ideas. Anomia, a disruption of semantic memory access, is the most common residual language disturbance and is seen in dementia and following injury to temporal cortex. While such anomia has been well characterized by lesion symptom mapping studies, its pathophysiology is not well understood. We hypothesize that inputs to the semantic memory system engage a specific heteromodal network hub that integrates lexical retrieval with the appropriate semantic content. Such a network hub has been proposed by others, but has thus far eluded precise spatiotemporal delineation. This limitation in our understanding of semantic memory has impeded progress in the treatment of anomia. We evaluated the cortical structure and dynamics of the lexical semantic network in driving speech production in a large cohort of patients with epilepsy using electrocorticography (n = 64), functional MRI (n = 36), and direct cortical stimulation (n = 30) during two generative language processes that rely on semantic knowledge: visual picture naming and auditory naming to definition. Each task also featured a non-semantic control condition: scrambled pictures and reversed speech, respectively. These large-scale data of the left, language-dominant hemisphere uniquely enable convergent, high-resolution analyses of neural mechanisms characterized by rapid, transient dynamics with strong interactions between distributed cortical substrates. We observed three stages of activity during both visual picture naming and auditory naming to definition that were serially organized: sensory processing, lexical semantic processing, and articulation. Critically, the second stage was absent in both the visual and auditory control conditions. Group activity maps from both electrocorticography and functional MRI identified heteromodal responses in middle fusiform gyrus, intraparietal sulcus, and inferior frontal gyrus; furthermore, the spectrotemporal profiles of these three regions revealed coincident activity preceding articulation. Only in the middle fusiform gyrus did direct cortical stimulation disrupt both naming tasks while still preserving the ability to repeat sentences. These convergent data strongly support a model in which a distinct neuroanatomical substrate in middle fusiform gyrus provides access to object semantic information. This under-appreciated locus of semantic processing is at risk in resections for temporal lobe epilepsy as well as in trauma and strokes that affect the inferior temporal cortex-it may explain the range of anomic states seen in these conditions. Further characterization of brain network behaviour engaging this region in both healthy and diseased states will expand our understanding of semantic memory and further development of therapies directed at anomia.

  1. Distributed semantic networks and CLIPS

    NASA Technical Reports Server (NTRS)

    Snyder, James; Rodriguez, Tony

    1991-01-01

    Semantic networks of frames are commonly used as a method of reasoning in many problems. In most of these applications the semantic network exists as a single entity in a single process environment. Advances in workstation hardware provide support for more sophisticated applications involving multiple processes, interacting in a distributed environment. In these applications the semantic network may well be distributed over several concurrently executing tasks. This paper describes the design and implementation of a frame based, distributed semantic network in which frames are accessed both through C Language Integrated Production System (CLIPS) expert systems and procedural C++ language programs. The application area is a knowledge based, cooperative decision making model utilizing both rule based and procedural experts.

  2. Auditing the Assignments of Top-Level Semantic Types in the UMLS Semantic Network to UMLS Concepts

    PubMed Central

    He, Zhe; Perl, Yehoshua; Elhanan, Gai; Chen, Yan; Geller, James; Bian, Jiang

    2018-01-01

    The Unified Medical Language System (UMLS) is an important terminological system. By the policy of its curators, each concept of the UMLS should be assigned the most specific Semantic Types (STs) in the UMLS Semantic Network (SN). Hence, the Semantic Types of most UMLS concepts are assigned at or near the bottom (leaves) of the UMLS Semantic Network. While most ST assignments are correct, some errors do occur. Therefore, Quality Assurance efforts of UMLS curators for ST assignments should concentrate on automatically detected sets of UMLS concepts with higher error rates than random sets. In this paper, we investigate the assignments of top-level semantic types in the UMLS semantic network to concepts, identify potential erroneous assignments, define four categories of errors, and thus provide assistance to curators of the UMLS to avoid these assignments errors. Human experts analyzed samples of concepts assigned 10 of the top-level semantic types and categorized the erroneous ST assignments into these four logical categories. Two thirds of the concepts assigned these 10 top-level semantic types are erroneous. Our results demonstrate that reviewing top-level semantic type assignments to concepts provides an effective way for UMLS quality assurance, comparing to reviewing a random selection of semantic type assignments. PMID:29375930

  3. Auditing the Assignments of Top-Level Semantic Types in the UMLS Semantic Network to UMLS Concepts.

    PubMed

    He, Zhe; Perl, Yehoshua; Elhanan, Gai; Chen, Yan; Geller, James; Bian, Jiang

    2017-11-01

    The Unified Medical Language System (UMLS) is an important terminological system. By the policy of its curators, each concept of the UMLS should be assigned the most specific Semantic Types (STs) in the UMLS Semantic Network (SN). Hence, the Semantic Types of most UMLS concepts are assigned at or near the bottom (leaves) of the UMLS Semantic Network. While most ST assignments are correct, some errors do occur. Therefore, Quality Assurance efforts of UMLS curators for ST assignments should concentrate on automatically detected sets of UMLS concepts with higher error rates than random sets. In this paper, we investigate the assignments of top-level semantic types in the UMLS semantic network to concepts, identify potential erroneous assignments, define four categories of errors, and thus provide assistance to curators of the UMLS to avoid these assignments errors. Human experts analyzed samples of concepts assigned 10 of the top-level semantic types and categorized the erroneous ST assignments into these four logical categories. Two thirds of the concepts assigned these 10 top-level semantic types are erroneous. Our results demonstrate that reviewing top-level semantic type assignments to concepts provides an effective way for UMLS quality assurance, comparing to reviewing a random selection of semantic type assignments.

  4. Measuring semantic similarities by combining gene ontology annotations and gene co-function networks

    DOE PAGES

    Peng, Jiajie; Uygun, Sahra; Kim, Taehyong; ...

    2015-02-14

    Background: Gene Ontology (GO) has been used widely to study functional relationships between genes. The current semantic similarity measures rely only on GO annotations and GO structure. This limits the power of GO-based similarity because of the limited proportion of genes that are annotated to GO in most organisms. Results: We introduce a novel approach called NETSIM (network-based similarity measure) that incorporates information from gene co-function networks in addition to using the GO structure and annotations. Using metabolic reaction maps of yeast, Arabidopsis, and human, we demonstrate that NETSIM can improve the accuracy of GO term similarities. We also demonstratemore » that NETSIM works well even for genomes with sparser gene annotation data. We applied NETSIM on large Arabidopsis gene families such as cytochrome P450 monooxygenases to group the members functionally and show that this grouping could facilitate functional characterization of genes in these families. Conclusions: Using NETSIM as an example, we demonstrated that the performance of a semantic similarity measure could be significantly improved after incorporating genome-specific information. NETSIM incorporates both GO annotations and gene co-function network data as a priori knowledge in the model. Therefore, functional similarities of GO terms that are not explicitly encoded in GO but are relevant in a taxon-specific manner become measurable when GO annotations are limited.« less

  5. The semantic distance task: Quantifying semantic distance with semantic network path length.

    PubMed

    Kenett, Yoed N; Levi, Effi; Anaki, David; Faust, Miriam

    2017-09-01

    Semantic distance is a determining factor in cognitive processes, such as semantic priming, operating upon semantic memory. The main computational approach to compute semantic distance is through latent semantic analysis (LSA). However, objections have been raised against this approach, mainly in its failure at predicting semantic priming. We propose a novel approach to computing semantic distance, based on network science methodology. Path length in a semantic network represents the amount of steps needed to traverse from 1 word in the network to the other. We examine whether path length can be used as a measure of semantic distance, by investigating how path length affect performance in a semantic relatedness judgment task and recall from memory. Our results show a differential effect on performance: Up to 4 steps separating between word-pairs, participants exhibit an increase in reaction time (RT) and decrease in the percentage of word-pairs judged as related. From 4 steps onward, participants exhibit a significant decrease in RT and the word-pairs are dominantly judged as unrelated. Furthermore, we show that as path length between word-pairs increases, success in free- and cued-recall decreases. Finally, we demonstrate how our measure outperforms computational methods measuring semantic distance (LSA and positive pointwise mutual information) in predicting participants RT and subjective judgments of semantic strength. Thus, we provide a computational alternative to computing semantic distance. Furthermore, this approach addresses key issues in cognitive theory, namely the breadth of the spreading activation process and the effect of semantic distance on memory retrieval. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  6. Decoding the Formation of New Semantics: MVPA Investigation of Rapid Neocortical Plasticity during Associative Encoding through Fast Mapping.

    PubMed

    Atir-Sharon, Tali; Gilboa, Asaf; Hazan, Hananel; Koilis, Ester; Manevitz, Larry M

    2015-01-01

    Neocortical structures typically only support slow acquisition of declarative memory; however, learning through fast mapping may facilitate rapid learning-induced cortical plasticity and hippocampal-independent integration of novel associations into existing semantic networks. During fast mapping the meaning of new words and concepts is inferred, and durable novel associations are incidentally formed, a process thought to support early childhood's exuberant learning. The anterior temporal lobe, a cortical semantic memory hub, may critically support such learning. We investigated encoding of semantic associations through fast mapping using fMRI and multivoxel pattern analysis. Subsequent memory performance following fast mapping was more efficiently predicted using anterior temporal lobe than hippocampal voxels, while standard explicit encoding was best predicted by hippocampal activity. Searchlight algorithms revealed additional activity patterns that predicted successful fast mapping semantic learning located in lateral occipitotemporal and parietotemporal neocortex and ventrolateral prefrontal cortex. By contrast, successful explicit encoding could be classified by activity in medial and dorsolateral prefrontal and parahippocampal cortices. We propose that fast mapping promotes incidental rapid integration of new associations into existing neocortical semantic networks by activating related, nonoverlapping conceptual knowledge. In healthy adults, this is better captured by unique anterior and lateral temporal lobe activity patterns, while hippocampal involvement is less predictive of this kind of learning.

  7. Disruption of Semantic Network in Mild Alzheimer’s Disease Revealed by Resting-State fMRI

    PubMed Central

    Mascali, Daniele; DiNuzzo, Mauro; Serra, Laura; Mangia, Silvia; Maraviglia, Bruno; Bozzali, Marco; Giove, Federico

    2018-01-01

    Subtle semantic deficits can be observed in Alzheimer’s disease (AD) patients even in the early stages of the illness. In this work, we tested the hypothesis that the semantic control network is deregulated in mild AD patients. We assessed the integrity of the semantic control system using resting-state functional magnetic resonance imaging in a cohort of patients with mild AD (n = 38; mean mini-mental state examination = 20.5) and in a group of age-matched healthy controls (n = 19). Voxel-wise analysis spatially constrained in the left fronto-temporal semantic control network identified two regions with altered functional connectivity (FC) in AD patients, specifically in the pars opercularis (POp, BA44) and in the posterior middle temporal gyrus (pMTG, BA21). Using whole-brain seed-based analysis, we demonstrated that these two regions have altered FC even beyond the semantic control network. In particular, the pMTG displayed a wide-distributed pattern of lower connectivity to several brain regions involved in language-semantic processing, along with a possibly compensatory higher connectivity to the Wernicke’s area. We conclude that in mild AD brain regions belonging to the semantic control network are abnormally connected not only within the network, but also to other areas known to be critical for language processing. PMID:29197559

  8. Semantic web for integrated network analysis in biomedicine.

    PubMed

    Chen, Huajun; Ding, Li; Wu, Zhaohui; Yu, Tong; Dhanapalan, Lavanya; Chen, Jake Y

    2009-03-01

    The Semantic Web technology enables integration of heterogeneous data on the World Wide Web by making the semantics of data explicit through formal ontologies. In this article, we survey the feasibility and state of the art of utilizing the Semantic Web technology to represent, integrate and analyze the knowledge in various biomedical networks. We introduce a new conceptual framework, semantic graph mining, to enable researchers to integrate graph mining with ontology reasoning in network data analysis. Through four case studies, we demonstrate how semantic graph mining can be applied to the analysis of disease-causal genes, Gene Ontology category cross-talks, drug efficacy analysis and herb-drug interactions analysis.

  9. Intrinsic functional network architecture of human semantic processing: Modules and hubs.

    PubMed

    Xu, Yangwen; Lin, Qixiang; Han, Zaizhu; He, Yong; Bi, Yanchao

    2016-05-15

    Semantic processing entails the activation of widely distributed brain areas across the temporal, parietal, and frontal lobes. To understand the functional structure of this semantic system, we examined its intrinsic functional connectivity pattern using a database of 146 participants. Focusing on areas consistently activated during semantic processing generated from a meta-analysis of 120 neuroimaging studies (Binder et al., 2009), we found that these regions were organized into three stable modules corresponding to the default mode network (Module DMN), the left perisylvian network (Module PSN), and the left frontoparietal network (Module FPN). These three dissociable modules were integrated by multiple connector hubs-the left angular gyrus (AG) and the left superior/middle frontal gyrus linking all three modules, the left anterior temporal lobe linking Modules DMN and PSN, the left posterior portion of dorsal intraparietal sulcus (IPS) linking Modules DMN and FPN, and the left posterior middle temporal gyrus (MTG) linking Modules PSN and FPN. Provincial hubs, which converge local information within each system, were also identified: the bilateral posterior cingulate cortices/precuneus, the bilateral border area of the posterior AG and the superior lateral occipital gyrus for Module DMN; the left supramarginal gyrus, the middle part of the left MTG and the left orbital inferior frontal gyrus (IFG) for Module FPN; and the left triangular IFG and the left IPS for Module FPN. A neuro-functional model for semantic processing was derived based on these findings, incorporating the interactions of memory, language, and control. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Graph-Theoretic Properties of Networks Based on Word Association Norms: Implications for Models of Lexical Semantic Memory

    ERIC Educational Resources Information Center

    Gruenenfelder, Thomas M.; Recchia, Gabriel; Rubin, Tim; Jones, Michael N.

    2016-01-01

    We compared the ability of three different contextual models of lexical semantic memory (BEAGLE, Latent Semantic Analysis, and the Topic model) and of a simple associative model (POC) to predict the properties of semantic networks derived from word association norms. None of the semantic models were able to accurately predict all of the network…

  11. Overlap in the functional neural systems involved in semantic and episodic memory retrieval.

    PubMed

    Rajah, M N; McIntosh, A R

    2005-03-01

    Neuroimaging and neuropsychological data suggest that episodic and semantic memory may be mediated by distinct neural systems. However, an alternative perspective is that episodic and semantic memory represent different modes of processing within a single declarative memory system. To examine whether the multiple or the unitary system view better represents the data we conducted a network analysis using multivariate partial least squares (PLS ) activation analysis followed by covariance structural equation modeling (SEM) of positron emission tomography data obtained while healthy adults performed episodic and semantic verbal retrieval tasks. It is argued that if performance of episodic and semantic retrieval tasks are mediated by different memory systems, then there should differences in both regional activations and interregional correlations related to each type of retrieval task, respectively. The PLS results identified brain regions that were differentially active during episodic retrieval versus semantic retrieval. Regions that showed maximal differences in regional activity between episodic retrieval tasks were used to construct separate functional models for episodic and semantic retrieval. Omnibus tests of these functional models failed to find a significant difference across tasks for both functional models. The pattern of path coefficients for the episodic retrieval model were not different across tasks, nor were the path coefficients for the semantic retrieval model. The SEM results suggest that the same memory network/system was engaged across tasks, given the similarities in path coefficients. Therefore, activation differences between episodic and semantic retrieval may ref lect variation along a continuum of processing during task performance within the context of a single memory system.

  12. Social Networking on the Semantic Web

    ERIC Educational Resources Information Center

    Finin, Tim; Ding, Li; Zhou, Lina; Joshi, Anupam

    2005-01-01

    Purpose: Aims to investigate the way that the semantic web is being used to represent and process social network information. Design/methodology/approach: The Swoogle semantic web search engine was used to construct several large data sets of Resource Description Framework (RDF) documents with social network information that were encoded using the…

  13. Graph-Theoretic Properties of Networks Based on Word Association Norms: Implications for Models of Lexical Semantic Memory.

    PubMed

    Gruenenfelder, Thomas M; Recchia, Gabriel; Rubin, Tim; Jones, Michael N

    2016-08-01

    We compared the ability of three different contextual models of lexical semantic memory (BEAGLE, Latent Semantic Analysis, and the Topic model) and of a simple associative model (POC) to predict the properties of semantic networks derived from word association norms. None of the semantic models were able to accurately predict all of the network properties. All three contextual models over-predicted clustering in the norms, whereas the associative model under-predicted clustering. Only a hybrid model that assumed that some of the responses were based on a contextual model and others on an associative network (POC) successfully predicted all of the network properties and predicted a word's top five associates as well as or better than the better of the two constituent models. The results suggest that participants switch between a contextual representation and an associative network when generating free associations. We discuss the role that each of these representations may play in lexical semantic memory. Concordant with recent multicomponent theories of semantic memory, the associative network may encode coordinate relations between concepts (e.g., the relation between pea and bean, or between sparrow and robin), and contextual representations may be used to process information about more abstract concepts. Copyright © 2015 Cognitive Science Society, Inc.

  14. Distinctive Structural and Effective Connectivity Changes of Semantic Cognition Network across Left and Right Mesial Temporal Lobe Epilepsy Patients.

    PubMed

    Fan, Xiaotong; Yan, Hao; Shan, Yi; Shang, Kun; Wang, Xiaocui; Wang, Peipei; Shan, Yongzhi; Lu, Jie; Zhao, Guoguang

    2016-01-01

    Occurrence of language impairment in mesial temporal lobe epilepsy (mTLE) patients is common and left mTLE patients always exhibit a primary problem with access to names. To explore different neuropsychological profiles between left and right mTLE patients, the study investigated both structural and effective functional connectivity changes within the semantic cognition network between these two groups and those from normal controls. We found that gray matter atrophy of left mTLE patients was more severe than that of right mTLE patients in the whole brain and especially within the semantic cognition network in their contralateral hemisphere. It suggested that seizure attacks were rather targeted than random for patients with hippocampal sclerosis (HS) in the dominant hemisphere. Functional connectivity analysis during resting state fMRI revealed that subregions of the anterior temporal lobe (ATL) in the left HS patients were no longer effectively connected. Further, we found that, unlike in right HS patients, increased causal linking between ipsilateral regions in the left HS epilepsy patients cannot make up for their decreased contralateral interaction. It suggested that weakened contralateral connection and disrupted effective interaction between subregions of the unitary, transmodal hub of the ATL may be the primary cause of anomia in the left HS patients.

  15. Distinctive Structural and Effective Connectivity Changes of Semantic Cognition Network across Left and Right Mesial Temporal Lobe Epilepsy Patients

    PubMed Central

    Fan, Xiaotong; Shang, Kun; Wang, Xiaocui; Wang, Peipei; Shan, Yongzhi; Lu, Jie

    2016-01-01

    Occurrence of language impairment in mesial temporal lobe epilepsy (mTLE) patients is common and left mTLE patients always exhibit a primary problem with access to names. To explore different neuropsychological profiles between left and right mTLE patients, the study investigated both structural and effective functional connectivity changes within the semantic cognition network between these two groups and those from normal controls. We found that gray matter atrophy of left mTLE patients was more severe than that of right mTLE patients in the whole brain and especially within the semantic cognition network in their contralateral hemisphere. It suggested that seizure attacks were rather targeted than random for patients with hippocampal sclerosis (HS) in the dominant hemisphere. Functional connectivity analysis during resting state fMRI revealed that subregions of the anterior temporal lobe (ATL) in the left HS patients were no longer effectively connected. Further, we found that, unlike in right HS patients, increased causal linking between ipsilateral regions in the left HS epilepsy patients cannot make up for their decreased contralateral interaction. It suggested that weakened contralateral connection and disrupted effective interaction between subregions of the unitary, transmodal hub of the ATL may be the primary cause of anomia in the left HS patients. PMID:28018680

  16. Announcement/Subscription/Publication: Message Based Communication for Heterogeneous Mobile Environments

    NASA Astrophysics Data System (ADS)

    Ristau, Henry

    Many tasks in smart environments can be implemented using message based communication paradigms that decouple applications in time, space, synchronization and semantics. Current solutions for decoupled message based communication either do not support message processing and thus semantic decoupling or rely on clearly defined network structures. In this paper we present ASP, a novel concept for such communication that can directly operate on neighbor relations between brokers and does not rely on a homogeneous addressing scheme or anymore than simple link layer communication. We show by simulation that ASP performs well in a heterogeneous scenario with mobile nodes and decreases network or processor load significantly compared to message flooding.

  17. Semantic modeling and structural synthesis of onboard electronics protection means as open information system

    NASA Astrophysics Data System (ADS)

    Zhevnerchuk, D. V.; Surkova, A. S.; Lomakina, L. S.; Golubev, A. S.

    2018-05-01

    The article describes the component representation approach and semantic models of on-board electronics protection from ionizing radiation of various nature. Semantic models are constructed, the feature of which is the representation of electronic elements, protection modules, sources of impact in the form of blocks with interfaces. The rules of logical inference and algorithms for synthesizing the object properties of the semantic network, imitating the interface between the components of the protection system and the sources of radiation, are developed. The results of the algorithm are considered using the example of radiation-resistant microcircuits 1645RU5U, 1645RT2U and the calculation and experimental method for estimating the durability of on-board electronics.

  18. Hypermedia-Assisted Instruction and Second Language Learning: A Semantic-Network-Based Approach.

    ERIC Educational Resources Information Center

    Liu, Min

    This literature review examines a hypermedia learning environment from a semantic network basis and the application of such an environment to second language learning. (A semantic network is defined as a conceptual representation of knowledge in human memory). The discussion is organized under the following headings and subheadings: (1) Advantages…

  19. Disruption of Semantic Network in Mild Alzheimer's Disease Revealed by Resting-State fMRI.

    PubMed

    Mascali, Daniele; DiNuzzo, Mauro; Serra, Laura; Mangia, Silvia; Maraviglia, Bruno; Bozzali, Marco; Giove, Federico

    2018-02-10

    Subtle semantic deficits can be observed in Alzheimer's disease (AD) patients even in the early stages of the illness. In this work, we tested the hypothesis that the semantic control network is deregulated in mild AD patients. We assessed the integrity of the semantic control system using resting-state functional magnetic resonance imaging in a cohort of patients with mild AD (n = 38; mean mini-mental state examination = 20.5) and in a group of age-matched healthy controls (n = 19). Voxel-wise analysis spatially constrained in the left fronto-temporal semantic control network identified two regions with altered functional connectivity (FC) in AD patients, specifically in the pars opercularis (POp, BA44) and in the posterior middle temporal gyrus (pMTG, BA21). Using whole-brain seed-based analysis, we demonstrated that these two regions have altered FC even beyond the semantic control network. In particular, the pMTG displayed a wide-distributed pattern of lower connectivity to several brain regions involved in language-semantic processing, along with a possibly compensatory higher connectivity to the Wernicke's area. We conclude that in mild AD brain regions belonging to the semantic control network are abnormally connected not only within the network, but also to other areas known to be critical for language processing. Copyright © 2017 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  20. A Learning Content Authoring Approach Based on Semantic Technologies and Social Networking: An Empirical Study

    ERIC Educational Resources Information Center

    Nesic, Sasa; Gasevic, Dragan; Jazayeri, Mehdi; Landoni, Monica

    2011-01-01

    Semantic web technologies have been applied to many aspects of learning content authoring including semantic annotation, semantic search, dynamic assembly, and personalization of learning content. At the same time, social networking services have started to play an important role in the authoring process by supporting authors' collaborative…

  1. Finding Correlation between Protein Protein Interaction Modules Using Semantic Web Techniques

    NASA Astrophysics Data System (ADS)

    Kargar, Mehdi; Moaven, Shahrouz; Abolhassani, Hassan

    Many complex networks such as social networks and computer show modular structures, where edges between nodes are much denser within modules than between modules. It is strongly believed that cellular networks are also modular, reflecting the relative independence and coherence of different functional units in a cell. In this paper we used a human curated dataset. In this paper we consider each module in the PPI network as ontology. Using techniques in ontology alignment, we compare each pair of modules in the network. We want to see that is there a correlation between the structure of each module or they have totally different structures. Our results show that there is no correlation between proteins in a protein protein interaction network.

  2. Semantic networks for odors and colors in Alzheimer's disease.

    PubMed

    Razani, Jill; Chan, Agnes; Nordin, Steven; Murphy, Claire

    2010-05-01

    Impairment in odor-naming ability and in verbal and visual semantic networks raised the hypothesis of a breakdown in the semantic network for odors in Alzheimer's disease (AD). The current study addressed this hypothesis. Twenty-four individuals, half patients with probable AD and half control participants, performed triadic-similarity judgments for odors and colors, separately, which, utilizing the multidimensional scaling (MDS) technique of individual difference scaling analysis (INDSCAL), generated two-dimensional configurations of similarity. The abilities to match odors and colors with written name labels were assessed to investigate disease-related differences in ability to identify and conceptualize the stimuli. In addition, responses on attribute-sorting tasks, requiring the odor and color perceptions to be categorized as one polarity of a certain dimension, were obtained to allow for objective interpretation of the MDS spatial maps. Whereas comparison subjects generated spatial maps based predominantly on relatively abstract characteristics, patients with AD classified odors on perceptual characteristics. The maps for patients with AD also showed disorganized groupings and loose associations between odors. Their normal configurations for colors imply that the patients were able to comprehend the task per se. The data for label matching and for attribute sorting provide further evidence for a disturbance in semantic odor memory in AD. The patients performed poorer than controls on both these odor tasks, implying that the ability to identify and/or conceptualize odors is impaired in AD. The results provide clear evidence for deterioration of the structure of semantic knowledge for odors in AD.

  3. Direct evidence for the contributive role of the right inferior fronto-occipital fasciculus in non-verbal semantic cognition.

    PubMed

    Herbet, Guillaume; Moritz-Gasser, Sylvie; Duffau, Hugues

    2017-05-01

    The neural foundations underlying semantic processing have been extensively investigated, highlighting a pivotal role of the ventral stream. However, although studies concerning the involvement of the left ventral route in verbal semantics are proficient, the potential implication of the right ventral pathway in non-verbal semantics has been to date unexplored. To gain insights on this matter, we used an intraoperative direct electrostimulation to map the structures mediating the non-verbal semantic system in the right hemisphere. Thirteen patients presenting with a right low-grade glioma located within or close to the ventral stream were included. During the 'awake' procedure, patients performed both a visual non-verbal semantic task and a verbal (control) task. At the cortical level, in the right hemisphere, we found non-verbal semantic-related sites (n = 7 in 6 patients) in structures commonly associated with verbal semantic processes in the left hemisphere, including the superior temporal gyrus, the pars triangularis, and the dorsolateral prefrontal cortex. At the subcortical level, we found non-verbal semantic-related sites in all but one patient (n = 15 sites in 12 patients). Importantly, all these responsive stimulation points were located on the spatial course of the right inferior fronto-occipital fasciculus (IFOF). These findings provide direct support for a critical role of the right IFOF in non-verbal semantic processing. Based upon these original data, and in connection with previous findings showing the involvement of the left IFOF in non-verbal semantic processing, we hypothesize the existence of a bilateral network underpinning the non-verbal semantic system, with a homotopic connectional architecture.

  4. Temporal Sequence of Hemispheric Network Activation during Semantic Processing: A Functional Network Connectivity Analysis

    ERIC Educational Resources Information Center

    Assaf, Michal; Jagannathan, Kanchana; Calhoun, Vince; Kraut, Michael; Hart, John, Jr.; Pearlson, Godfrey

    2009-01-01

    To explore the temporal sequence of, and the relationship between, the left and right hemispheres (LH and RH) during semantic memory (SM) processing we identified the neural networks involved in the performance of functional MRI semantic object retrieval task (SORT) using group independent component analysis (ICA) in 47 healthy individuals. SORT…

  5. Lexical Processing in School-Age Children with Autism Spectrum Disorder and Children with Specific Language Impairment: The Role of Semantics.

    PubMed

    Haebig, Eileen; Kaushanskaya, Margarita; Ellis Weismer, Susan

    2015-12-01

    Children with autism spectrum disorder (ASD) and specific language impairment (SLI) often have immature lexical-semantic knowledge; however, the organization of lexical-semantic knowledge is poorly understood. This study examined lexical processing in school-age children with ASD, SLI, and typical development, who were matched on receptive vocabulary. Children completed a lexical decision task, involving words with high and low semantic network sizes and nonwords. Children also completed nonverbal updating and shifting tasks. Children responded more accurately to words from high than from low semantic networks; however, follow-up analyses identified weaker semantic network effects in the SLI group. Additionally, updating and shifting abilities predicted lexical processing, demonstrating similarity in the mechanisms which underlie semantic processing in children with ASD, SLI, and typical development.

  6. Lexical Processing in School-Age Children with Autism Spectrum Disorder and Children with Specific Language Impairment: The Role of Semantics

    PubMed Central

    Haebig, Eileen; Kaushanskaya, Margarita; Weismer, Susan Ellis

    2016-01-01

    Children with autism spectrum disorder (ASD) and specific language impairment (SLI) often have immature lexical-semantic knowledge; however, the organization of lexical-semantic knowledge is poorly understood. This study examined lexical processing in school-age children with ASD, SLI, and typical development, who were matched on receptive vocabulary. Children completed a lexical decision task, involving words with high and low semantic network sizes and nonwords. Children also completed nonverbal updating and shifting tasks. Children responded more accurately to words from high than from low semantic networks; however, follow-up analyses identified weaker semantic network effects in the SLI group. Additionally, updating and shifting abilities predicted lexical processing, demonstrating similarity in the mechanisms which underlie semantic processing in children with ASD, SLI, and typical development. PMID:26210517

  7. Language Networks Associated with Computerized Semantic Indices

    PubMed Central

    Pakhomov, Serguei V. S.; Jones, David T.; Knopman, David S.

    2014-01-01

    Tests of generative semantic verbal fluency are widely used to study organization and representation of concepts in the human brain. Previous studies demonstrated that clustering and switching behavior during verbal fluency tasks is supported by multiple brain mechanisms associated with semantic memory and executive control. Previous work relied on manual assessments of semantic relatedness between words and grouping of words into semantic clusters. We investigated a computational linguistic approach to measuring the strength of semantic relatedness between words based on latent semantic analysis of word co-occurrences in a subset of a large online encyclopedia. We computed semantic clustering indices and compared them to brain network connectivity measures obtained with task-free fMRI in a sample consisting of healthy participants and those differentially affected by cognitive impairment. We found that semantic clustering indices were associated with brain network connectivity in distinct areas including fronto-temporal, fronto-parietal and fusiform gyrus regions. This study shows that computerized semantic indices complement traditional assessments of verbal fluency to provide a more complete account of the relationship between brain and verbal behavior involved organization and retrieval of lexical information from memory. PMID:25315785

  8. Cortico-subcortical organization of language networks in the right hemisphere: an electrostimulation study in left-handers.

    PubMed

    Duffau, Hugues; Leroy, Marianne; Gatignol, Peggy

    2008-12-01

    We have studied the configuration of the cortico-subcortical language networks within the right hemisphere (RH) in nine left-handers, being operated on while awake for a cerebral glioma. Intraoperatively, language was mapped using cortico-subcortical electrostimulation, to avoid permanent deficit. In frontal regions, cortical stimulation elicited articulatory disorders (ventral premotor cortex), anomia (dorsal premotor cortex), speech arrest (pars opercularis), and semantic paraphasia (dorsolateral prefrontal cortex). Insular stimulation generated dysarthria, parietal stimulation phonemic paraphasias, and temporal stimulation semantic paraphasias. Subcortically, the superior longitudinal fasciculus (inducing phonological disturbances when stimulated), inferior occipito-frontal fasciculus (eliciting semantic disturbances during stimulation), subcallosal fasciculus (generating control disturbances when stimulated), and common final pathway (inducing articulatory disorders during stimulation) were identified. These cortical and subcortical structures were preserved, avoiding permanent aphasia, despite a transient immediate postoperative language worsening. Both intraoperative results and postsurgical transitory dysphasia support the major role of the RH in language in left-handers, and provide new insights into the anatomo-functional cortico-subcortical organization of the language networks in the RH-suggesting a "mirror" configuration in comparison to the left hemisphere.

  9. Structural Similarities between Brain and Linguistic Data Provide Evidence of Semantic Relations in the Brain

    PubMed Central

    Crangle, Colleen E.; Perreau-Guimaraes, Marcos; Suppes, Patrick

    2013-01-01

    This paper presents a new method of analysis by which structural similarities between brain data and linguistic data can be assessed at the semantic level. It shows how to measure the strength of these structural similarities and so determine the relatively better fit of the brain data with one semantic model over another. The first model is derived from WordNet, a lexical database of English compiled by language experts. The second is given by the corpus-based statistical technique of latent semantic analysis (LSA), which detects relations between words that are latent or hidden in text. The brain data are drawn from experiments in which statements about the geography of Europe were presented auditorily to participants who were asked to determine their truth or falsity while electroencephalographic (EEG) recordings were made. The theoretical framework for the analysis of the brain and semantic data derives from axiomatizations of theories such as the theory of differences in utility preference. Using brain-data samples from individual trials time-locked to the presentation of each word, ordinal relations of similarity differences are computed for the brain data and for the linguistic data. In each case those relations that are invariant with respect to the brain and linguistic data, and are correlated with sufficient statistical strength, amount to structural similarities between the brain and linguistic data. Results show that many more statistically significant structural similarities can be found between the brain data and the WordNet-derived data than the LSA-derived data. The work reported here is placed within the context of other recent studies of semantics and the brain. The main contribution of this paper is the new method it presents for the study of semantics and the brain and the focus it permits on networks of relations detected in brain data and represented by a semantic model. PMID:23799009

  10. The Semantic Network at Work and Rest: Differential Connectivity of Anterior Temporal Lobe Subregions.

    PubMed

    Jackson, Rebecca L; Hoffman, Paul; Pobric, Gorana; Lambon Ralph, Matthew A

    2016-02-03

    The anterior temporal lobe (ATL) makes a critical contribution to semantic cognition. However, the functional connectivity of the ATL and the functional network underlying semantic cognition has not been elucidated. In addition, subregions of the ATL have distinct functional properties and thus the potential differential connectivity between these subregions requires investigation. We explored these aims using both resting-state and active semantic task data in humans in combination with a dual-echo gradient echo planar imaging (EPI) paradigm designed to ensure signal throughout the ATL. In the resting-state analysis, the ventral ATL (vATL) and anterior middle temporal gyrus (MTG) were shown to connect to areas responsible for multimodal semantic cognition, including bilateral ATL, inferior frontal gyrus, medial prefrontal cortex, angular gyrus, posterior MTG, and medial temporal lobes. In contrast, the anterior superior temporal gyrus (STG)/superior temporal sulcus was connected to a distinct set of auditory and language-related areas, including bilateral STG, precentral and postcentral gyri, supplementary motor area, supramarginal gyrus, posterior temporal cortex, and inferior and middle frontal gyri. Complementary analyses of functional connectivity during an active semantic task were performed using a psychophysiological interaction (PPI) analysis. The PPI analysis highlighted the same semantic regions suggesting a core semantic network active during rest and task states. This supports the necessity for semantic cognition in internal processes occurring during rest. The PPI analysis showed additional connectivity of the vATL to regions of occipital and frontal cortex. These areas strongly overlap with regions found to be sensitive to executively demanding, controlled semantic processing. Previous studies have shown that semantic cognition depends on subregions of the anterior temporal lobe (ATL). However, the network of regions functionally connected to these subregions has not been demarcated. Here, we show that these ventrolateral anterior temporal subregions form part of a network responsible for semantic processing during both rest and an explicit semantic task. This demonstrates the existence of a core functional network responsible for multimodal semantic cognition regardless of state. Distinct connectivity is identified in the superior ATL, which is connected to auditory and language areas. Understanding the functional connectivity of semantic cognition allows greater understanding of how this complex process may be performed and the role of distinct subregions of the anterior temporal cortex. Copyright © 2016 Jackson et al.

  11. The Semantic Network at Work and Rest: Differential Connectivity of Anterior Temporal Lobe Subregions

    PubMed Central

    Jackson, Rebecca L.; Hoffman, Paul; Pobric, Gorana

    2016-01-01

    The anterior temporal lobe (ATL) makes a critical contribution to semantic cognition. However, the functional connectivity of the ATL and the functional network underlying semantic cognition has not been elucidated. In addition, subregions of the ATL have distinct functional properties and thus the potential differential connectivity between these subregions requires investigation. We explored these aims using both resting-state and active semantic task data in humans in combination with a dual-echo gradient echo planar imaging (EPI) paradigm designed to ensure signal throughout the ATL. In the resting-state analysis, the ventral ATL (vATL) and anterior middle temporal gyrus (MTG) were shown to connect to areas responsible for multimodal semantic cognition, including bilateral ATL, inferior frontal gyrus, medial prefrontal cortex, angular gyrus, posterior MTG, and medial temporal lobes. In contrast, the anterior superior temporal gyrus (STG)/superior temporal sulcus was connected to a distinct set of auditory and language-related areas, including bilateral STG, precentral and postcentral gyri, supplementary motor area, supramarginal gyrus, posterior temporal cortex, and inferior and middle frontal gyri. Complementary analyses of functional connectivity during an active semantic task were performed using a psychophysiological interaction (PPI) analysis. The PPI analysis highlighted the same semantic regions suggesting a core semantic network active during rest and task states. This supports the necessity for semantic cognition in internal processes occurring during rest. The PPI analysis showed additional connectivity of the vATL to regions of occipital and frontal cortex. These areas strongly overlap with regions found to be sensitive to executively demanding, controlled semantic processing. SIGNIFICANCE STATEMENT Previous studies have shown that semantic cognition depends on subregions of the anterior temporal lobe (ATL). However, the network of regions functionally connected to these subregions has not been demarcated. Here, we show that these ventrolateral anterior temporal subregions form part of a network responsible for semantic processing during both rest and an explicit semantic task. This demonstrates the existence of a core functional network responsible for multimodal semantic cognition regardless of state. Distinct connectivity is identified in the superior ATL, which is connected to auditory and language areas. Understanding the functional connectivity of semantic cognition allows greater understanding of how this complex process may be performed and the role of distinct subregions of the anterior temporal cortex. PMID:26843633

  12. [Knowing without remembering: the contribution of developmental amnesia].

    PubMed

    Lebrun-Givois, C; Guillery-Girard, B; Thomas-Anterion, C; Laurent, B

    2008-05-01

    The organization of episodic and semantic memory is currently debated, and especially the rule of the hippocampus in the functioning of these two systems. Since theories derived from the observation of the famous patient HM, that highlighted the involvement of this structure in these two systems, numerous studies questioned the implication of the hippocampus in learning a new semantic knowledge. Among these studies, we found Vargha-Kadem's cases of developmental amnesia. In spite of their clear hippocampal atrophy and a massive impairment of episodic memory, these children were able to acquire de novo new semantic knowledge. In the present paper, we describe a new case of developmental amnesia characteristic of this syndrome. In conclusion, the whole published data question the implication of the hippocampus in every semantic learning and suggest the existence of a neocortical network, slower and that needs more exposures to semantic stimuli than the hippocampal one, which can supply a massive hippocampal impairment.

  13. Semantic associative relations and conceptual processing.

    PubMed

    Di Giacomo, Dina; De Federicis, Lucia Serenella; Pistelli, Manuela; Fiorenzi, Daniela; Passafiume, Domenico

    2012-02-01

    We analysed the organisation of semantic network using associative mechanisms between different types of information and studied the progression of the use of these associative relations during development. We aimed to verify the linkage of concepts with the use of semantic associative relations. The goal of this study was to analyse the cognitive ability to use associative relations between various items when describing old and/or new concepts. We examined the performance of 100 subjects between the ages of 4 and 7 years on an experimental task using five associative relations based on verbal encoding. The results showed that children are able to use the five semantic associative relations at age 4, but performance with each of the different associative relations improves at different times during development. Functional and part/whole relations develop at an early age, whereas the superordinate relations develop later. Our study clarified the characteristics of the progression of semantic associations during development as well as the roles that associative relations play in the structure and improvement of the semantic store.

  14. Application of artifical intelligence principles to the analysis of "crazy" speech.

    PubMed

    Garfield, D A; Rapp, C

    1994-04-01

    Artificial intelligence computer simulation methods can be used to investigate psychotic or "crazy" speech. Here, symbolic reasoning algorithms establish semantic networks that schematize speech. These semantic networks consist of two main structures: case frames and object taxonomies. Node-based reasoning rules apply to object taxonomies and pathway-based reasoning rules apply to case frames. Normal listeners may recognize speech as "crazy talk" based on violations of node- and pathway-based reasoning rules. In this article, three separate segments of schizophrenic speech illustrate violations of these rules. This artificial intelligence approach is compared and contrasted with other neurolinguistic approaches and is discussed as a conceptual link between neurobiological and psychodynamic understandings of psychopathology.

  15. The Semantic Distance Task: Quantifying Semantic Distance with Semantic Network Path Length

    ERIC Educational Resources Information Center

    Kenett, Yoed N.; Levi, Effi; Anaki, David; Faust, Miriam

    2017-01-01

    Semantic distance is a determining factor in cognitive processes, such as semantic priming, operating upon semantic memory. The main computational approach to compute semantic distance is through latent semantic analysis (LSA). However, objections have been raised against this approach, mainly in its failure at predicting semantic priming. We…

  16. Neural Substrates of Processing Anger in Language: Contributions of Prosody and Semantics.

    PubMed

    Castelluccio, Brian C; Myers, Emily B; Schuh, Jillian M; Eigsti, Inge-Marie

    2016-12-01

    Emotions are conveyed primarily through two channels in language: semantics and prosody. While many studies confirm the role of a left hemisphere network in processing semantic emotion, there has been debate over the role of the right hemisphere in processing prosodic emotion. Some evidence suggests a preferential role for the right hemisphere, and other evidence supports a bilateral model. The relative contributions of semantics and prosody to the overall processing of affect in language are largely unexplored. The present work used functional magnetic resonance imaging to elucidate the neural bases of processing anger conveyed by prosody or semantic content. Results showed a robust, distributed, bilateral network for processing angry prosody and a more modest left hemisphere network for processing angry semantics when compared to emotionally neutral stimuli. Findings suggest the nervous system may be more responsive to prosodic cues in speech than to the semantic content of speech.

  17. Wissensstrukturierung im Unterricht: Neuere Forschung zur Wissensreprasentation und ihre Anwendung in der Didaktik (Knowledge Structuring in Instruction: Recent Research on Knowledge Representation and Its Application in the Classroom).

    ERIC Educational Resources Information Center

    Einsiedler, Wolfgang

    1996-01-01

    Asks whether theories of knowledge representation provide a basis for the development of theories of knowledge structuring in instruction. Discusses codes of knowledge, surface versus deep structures, semantic networks, and multiple memory systems. Reviews research on teaching, external representation of cognitive structures, hierarchical…

  18. Trust estimation of the semantic web using semantic web clustering

    NASA Astrophysics Data System (ADS)

    Shirgahi, Hossein; Mohsenzadeh, Mehran; Haj Seyyed Javadi, Hamid

    2017-05-01

    Development of semantic web and social network is undeniable in the Internet world these days. Widespread nature of semantic web has been very challenging to assess the trust in this field. In recent years, extensive researches have been done to estimate the trust of semantic web. Since trust of semantic web is a multidimensional problem, in this paper, we used parameters of social network authority, the value of pages links authority and semantic authority to assess the trust. Due to the large space of semantic network, we considered the problem scope to the clusters of semantic subnetworks and obtained the trust of each cluster elements as local and calculated the trust of outside resources according to their local trusts and trust of clusters to each other. According to the experimental result, the proposed method shows more than 79% Fscore that is about 11.9% in average more than Eigen, Tidal and centralised trust methods. Mean of error in this proposed method is 12.936, that is 9.75% in average less than Eigen and Tidal trust methods.

  19. Fuzzy Versions of Epistemic and Deontic Logic

    NASA Technical Reports Server (NTRS)

    Gounder, Ramasamy S.; Esterline, Albert C.

    1998-01-01

    Epistemic and deontic logics are modal logics, respectively, of knowledge and of the normative concepts of obligation, permission, and prohibition. Epistemic logic is useful in formalizing systems of communicating processes and knowledge and belief in AI (Artificial Intelligence). Deontic logic is useful in computer science wherever we must distinguish between actual and ideal behavior, as in fault tolerance and database integrity constraints. We here discuss fuzzy versions of these logics. In the crisp versions, various axioms correspond to various properties of the structures used in defining the semantics of the logics. Thus, any axiomatic theory will be characterized not only by its axioms but also by the set of properties holding of the corresponding semantic structures. Fuzzy logic does not proceed with axiomatic systems, but fuzzy versions of the semantic properties exist and can be shown to correspond to some of the axioms for the crisp systems in special ways that support dependency networks among assertions in a modal domain. This in turn allows one to implement truth maintenance systems. For the technical development of epistemic logic, and for that of deontic logic. To our knowledge, we are the first to address fuzzy epistemic and fuzzy deontic logic explicitly and to consider the different systems and semantic properties available. We give the syntax and semantics of epistemic logic and discuss the correspondence between axioms of epistemic logic and properties of semantic structures. The same topics are covered for deontic logic. Fuzzy epistemic and fuzzy deontic logic discusses the relationship between axioms and semantic properties for these logics. Our results can be exploited in truth maintenance systems.

  20. Annotating Atomic Components of Papers in Digital Libraries: The Semantic and Social Web Heading towards a Living Document Supporting eSciences

    NASA Astrophysics Data System (ADS)

    García Castro, Alexander; García-Castro, Leyla Jael; Labarga, Alberto; Giraldo, Olga; Montaña, César; O'Neil, Kieran; Bateman, John A.

    Rather than a document that is being constantly re-written as in the wiki approach, the Living Document (LD) is one that acts as a document router, operating by means of structured and organized social tagging and existing ontologies. It offers an environment where users can manage papers and related information, share their knowledge with their peers and discover hidden associations among the shared knowledge. The LD builds upon both the Semantic Web, which values the integration of well-structured data, and the Social Web, which aims to facilitate interaction amongst people by means of user-generated content. In this vein, the LD is similar to a social networking system, with users as central nodes in the network, with the difference that interaction is focused on papers rather than people. Papers, with their ability to represent research interests, expertise, affiliations, and links to web based tools and databanks, represent a central axis for interaction amongst users. To begin to show the potential of this vision, we have implemented a novel web prototype that enables researchers to accomplish three activities central to the Semantic Web vision: organizing, sharing and discovering. Availability: http://www.scientifik.info/

  1. Knowledge Retrieval Solutions.

    ERIC Educational Resources Information Center

    Khan, Kamran

    1998-01-01

    Excalibur RetrievalWare offers true knowledge retrieval solutions. Its fundamental technologies, Adaptive Pattern Recognition Processing and Semantic Networks, have capabilities for knowledge discovery and knowledge management of full-text, structured and visual information. The software delivers a combination of accuracy, extensibility,…

  2. Language networks associated with computerized semantic indices.

    PubMed

    Pakhomov, Serguei V S; Jones, David T; Knopman, David S

    2015-01-01

    Tests of generative semantic verbal fluency are widely used to study organization and representation of concepts in the human brain. Previous studies demonstrated that clustering and switching behavior during verbal fluency tasks is supported by multiple brain mechanisms associated with semantic memory and executive control. Previous work relied on manual assessments of semantic relatedness between words and grouping of words into semantic clusters. We investigated a computational linguistic approach to measuring the strength of semantic relatedness between words based on latent semantic analysis of word co-occurrences in a subset of a large online encyclopedia. We computed semantic clustering indices and compared them to brain network connectivity measures obtained with task-free fMRI in a sample consisting of healthy participants and those differentially affected by cognitive impairment. We found that semantic clustering indices were associated with brain network connectivity in distinct areas including fronto-temporal, fronto-parietal and fusiform gyrus regions. This study shows that computerized semantic indices complement traditional assessments of verbal fluency to provide a more complete account of the relationship between brain and verbal behavior involved organization and retrieval of lexical information from memory. Copyright © 2014 Elsevier Inc. All rights reserved.

  3. Semantic policy and adversarial modeling for cyber threat identification and avoidance

    NASA Astrophysics Data System (ADS)

    DeFrancesco, Anton; McQueary, Bruce

    2009-05-01

    Today's enterprise networks undergo a relentless barrage of attacks from foreign and domestic adversaries. These attacks may be perpetrated with little to no funding, but may wreck incalculable damage upon the enterprises security, network infrastructure, and services. As more services come online, systems that were once in isolation now provide information that may be combined dynamically with information from other systems to create new meaning on the fly. Security issues are compounded by the potential to aggregate individual pieces of information and infer knowledge at a higher classification than any of its constituent parts. To help alleviate these challenges, in this paper we introduce the notion of semantic policy and discuss how it's use is evolving from a robust approach to access control to preempting and combating attacks in the cyber domain, The introduction of semantic policy and adversarial modeling to network security aims to ask 'where is the network most vulnerable', 'how is the network being attacked', and 'why is the network being attacked'. The first aspect of our approach is integration of semantic policy into enterprise security to augment traditional network security with an overall awareness of policy access and violations. This awareness allows the semantic policy to look at the big picture - analyzing trends and identifying critical relations in system wide data access. The second aspect of our approach is to couple adversarial modeling with semantic policy to move beyond reactive security measures and into a proactive identification of system weaknesses and areas of vulnerability. By utilizing Bayesian-based methodologies, the enterprise wide meaning of data and semantic policy is applied to probability and high-level risk identification. This risk identification will help mitigate potential harm to enterprise networks by enabling resources to proactively isolate, lock-down, and secure systems that are most vulnerable.

  4. Discovering Central Practitioners in a Medical Discussion Forum Using Semantic Web Analytics.

    PubMed

    Rajabi, Enayat; Abidi, Syed Sibte Raza

    2017-01-01

    The aim of this paper is to investigate semantic web based methods to enrich and transform a medical discussion forum in order to perform semantics-driven social network analysis. We use the centrality measures as well as semantic similarity metrics to identify the most influential practitioners within a discussion forum. The centrality results of our approach are in line with centrality measures produced by traditional SNA methods, thus validating the applicability of semantic web based methods for SNA, particularly for analyzing social networks for specialized discussion forums.

  5. A Hybrid P2P Overlay Network for Non-strictly Hierarchically Categorized Content

    NASA Astrophysics Data System (ADS)

    Wan, Yi; Asaka, Takuya; Takahashi, Tatsuro

    In P2P content distribution systems, there are many cases in which the content can be classified into hierarchically organized categories. In this paper, we propose a hybrid overlay network design suitable for such content called Pastry/NSHCC (Pastry for Non-Strictly Hierarchically Categorized Content). The semantic information of classification hierarchies of the content can be utilized regardless of whether they are in a strict tree structure or not. By doing so, the search scope can be restrained to any granularity, and the number of query messages also decreases while maintaining keyword searching availability. Through simulation, we showed that the proposed method provides better performance and lower overhead than unstructured overlays exploiting the same semantic information.

  6. Intelligent Agents as a Basis for Natural Language Interfaces

    DTIC Science & Technology

    1988-01-01

    language analysis component of UC, which produces a semantic representa tion of the input. This representation is in the form of a KODIAK network (see...Appendix A). Next, UC’s Concretion Mechanism performs concretion inferences ([Wilensky, 1983] and [Norvig, 1983]) based on the semantic network...The first step in UC’s processing is done by UC’s parser/understander component which produces a KODIAK semantic network representa tion of

  7. Heterogeniety and Heterarchy: How far can network analyses in Earth and space sciences?

    NASA Astrophysics Data System (ADS)

    Prabhu, A.; Fox, P. A.; Eleish, A.; Li, C.; Pan, F.; Zhong, H.

    2017-12-01

    The vast majority of explorations of Earth systems are limited in their ability to effectively explore the most important (often most difficult) problems because they are forced to interconnect at the data-element, or syntactic, level rather than at a higher scientific, or conceptual/ semantic, level. Recent successes in the application of complex network theory and algorithms to minerology, fossils and proteins over billions of years of Earth's history, raise expectations that more general graph-based approaches offer the opportunity for new discoveries = needles instead of haystacks. In the past 10 years in the natural sciences there has substantial progress in providing both specialists and non-specialists the ability to describe in machine readable form, geophysical quantities and relations among them in meaningful and natural ways, effectively breaking the prior syntax barrier. The corresponding open-world semantics and reasoning provide higher-level interconnections. That is, semantics provided around the data structures, using open-source tools, allow for discovery at the knowledge level. This presentation will cover the fundamentals of data-rich network analyses for geosciences, provide illustrative examples in mineral evolution and offer future paths for consideration.

  8. Spreading Activation in an Attractor Network with Latching Dynamics: Automatic Semantic Priming Revisited

    ERIC Educational Resources Information Center

    Lerner, Itamar; Bentin, Shlomo; Shriki, Oren

    2012-01-01

    Localist models of spreading activation (SA) and models assuming distributed representations offer very different takes on semantic priming, a widely investigated paradigm in word recognition and semantic memory research. In this study, we implemented SA in an attractor neural network model with distributed representations and created a unified…

  9. Semantic network analysis of vaccine sentiment in online social media.

    PubMed

    Kang, Gloria J; Ewing-Nelson, Sinclair R; Mackey, Lauren; Schlitt, James T; Marathe, Achla; Abbas, Kaja M; Swarup, Samarth

    2017-06-22

    To examine current vaccine sentiment on social media by constructing and analyzing semantic networks of vaccine information from highly shared websites of Twitter users in the United States; and to assist public health communication of vaccines. Vaccine hesitancy continues to contribute to suboptimal vaccination coverage in the United States, posing significant risk of disease outbreaks, yet remains poorly understood. We constructed semantic networks of vaccine information from internet articles shared by Twitter users in the United States. We analyzed resulting network topology, compared semantic differences, and identified the most salient concepts within networks expressing positive, negative, and neutral vaccine sentiment. The semantic network of positive vaccine sentiment demonstrated greater cohesiveness in discourse compared to the larger, less-connected network of negative vaccine sentiment. The positive sentiment network centered around parents and focused on communicating health risks and benefits, highlighting medical concepts such as measles, autism, HPV vaccine, vaccine-autism link, meningococcal disease, and MMR vaccine. In contrast, the negative network centered around children and focused on organizational bodies such as CDC, vaccine industry, doctors, mainstream media, pharmaceutical companies, and United States. The prevalence of negative vaccine sentiment was demonstrated through diverse messaging, framed around skepticism and distrust of government organizations that communicate scientific evidence supporting positive vaccine benefits. Semantic network analysis of vaccine sentiment in online social media can enhance understanding of the scope and variability of current attitudes and beliefs toward vaccines. Our study synthesizes quantitative and qualitative evidence from an interdisciplinary approach to better understand complex drivers of vaccine hesitancy for public health communication, to improve vaccine confidence and vaccination coverage in the United States. Copyright © 2017. Published by Elsevier Ltd.

  10. Integrating semantic web technologies and geospatial catalog services for geospatial information discovery and processing in cyberinfrastructure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yue, Peng; Gong, Jianya; Di, Liping

    Abstract A geospatial catalogue service provides a network-based meta-information repository and interface for advertising and discovering shared geospatial data and services. Descriptive information (i.e., metadata) for geospatial data and services is structured and organized in catalogue services. The approaches currently available for searching and using that information are often inadequate. Semantic Web technologies show promise for better discovery methods by exploiting the underlying semantics. Such development needs special attention from the Cyberinfrastructure perspective, so that the traditional focus on discovery of and access to geospatial data can be expanded to support the increased demand for processing of geospatial information andmore » discovery of knowledge. Semantic descriptions for geospatial data, services, and geoprocessing service chains are structured, organized, and registered through extending elements in the ebXML Registry Information Model (ebRIM) of a geospatial catalogue service, which follows the interface specifications of the Open Geospatial Consortium (OGC) Catalogue Services for the Web (CSW). The process models for geoprocessing service chains, as a type of geospatial knowledge, are captured, registered, and discoverable. Semantics-enhanced discovery for geospatial data, services/service chains, and process models is described. Semantic search middleware that can support virtual data product materialization is developed for the geospatial catalogue service. The creation of such a semantics-enhanced geospatial catalogue service is important in meeting the demands for geospatial information discovery and analysis in Cyberinfrastructure.« less

  11. Semantic Segmentation of Building Elements Using Point Cloud Hashing

    NASA Astrophysics Data System (ADS)

    Chizhova, M.; Gurianov, A.; Hess, M.; Luhmann, T.; Brunn, A.; Stilla, U.

    2018-05-01

    For the interpretation of point clouds, the semantic definition of extracted segments from point clouds or images is a common problem. Usually, the semantic of geometrical pre-segmented point cloud elements are determined using probabilistic networks and scene databases. The proposed semantic segmentation method is based on the psychological human interpretation of geometric objects, especially on fundamental rules of primary comprehension. Starting from these rules the buildings could be quite well and simply classified by a human operator (e.g. architect) into different building types and structural elements (dome, nave, transept etc.), including particular building parts which are visually detected. The key part of the procedure is a novel method based on hashing where point cloud projections are transformed into binary pixel representations. A segmentation approach released on the example of classical Orthodox churches is suitable for other buildings and objects characterized through a particular typology in its construction (e.g. industrial objects in standardized enviroments with strict component design allowing clear semantic modelling).

  12. Semantic encoding of relational databases in wireless networks

    NASA Astrophysics Data System (ADS)

    Benjamin, David P.; Walker, Adrian

    2005-03-01

    Semantic Encoding is a new, patented technology that greatly increases the speed of transmission of distributed databases over networks, especially over ad hoc wireless networks, while providing a novel method of data security. It reduces bandwidth consumption and storage requirements, while speeding up query processing, encryption and computation of digital signatures. We describe the application of Semantic Encoding in a wireless setting and provide an example of its operation in which a compression of 290:1 would be achieved.

  13. A suffix arrays based approach to semantic search in P2P systems

    NASA Astrophysics Data System (ADS)

    Shi, Qingwei; Zhao, Zheng; Bao, Hu

    2007-09-01

    Building a semantic search system on top of peer-to-peer (P2P) networks is becoming an attractive and promising alternative scheme for the reason of scalability, Data freshness and search cost. In this paper, we present a Suffix Arrays based algorithm for Semantic Search (SASS) in P2P systems, which generates a distributed Semantic Overlay Network (SONs) construction for full-text search in P2P networks. For each node through the P2P network, SASS distributes document indices based on a set of suffix arrays, by which clusters are created depending on words or phrases shared between documents, therefore, the search cost for a given query is decreased by only scanning semantically related documents. In contrast to recently announced SONs scheme designed by using metadata or predefined-class, SASS is an unsupervised approach for decentralized generation of SONs. SASS is also an incremental, linear time algorithm, which efficiently handle the problem of nodes update in P2P networks. Our simulation results demonstrate that SASS yields high search efficiency in dynamic environments.

  14. A fusion network for semantic segmentation using RGB-D data

    NASA Astrophysics Data System (ADS)

    Yuan, Jiahui; Zhang, Kun; Xia, Yifan; Qi, Lin; Dong, Junyu

    2018-04-01

    Semantic scene parsing is considerable in many intelligent field, including perceptual robotics. For the past few years, pixel-wise prediction tasks like semantic segmentation with RGB images has been extensively studied and has reached very remarkable parsing levels, thanks to convolutional neural networks (CNNs) and large scene datasets. With the development of stereo cameras and RGBD sensors, it is expected that additional depth information will help improving accuracy. In this paper, we propose a semantic segmentation framework incorporating RGB and complementary depth information. Motivated by the success of fully convolutional networks (FCN) in semantic segmentation field, we design a fully convolutional networks consists of two branches which extract features from both RGB and depth data simultaneously and fuse them as the network goes deeper. Instead of aggregating multiple model, our goal is to utilize RGB data and depth data more effectively in a single model. We evaluate our approach on the NYU-Depth V2 dataset, which consists of 1449 cluttered indoor scenes, and achieve competitive results with the state-of-the-art methods.

  15. Network-Based Visual Analysis of Tabular Data

    ERIC Educational Resources Information Center

    Liu, Zhicheng

    2012-01-01

    Tabular data is pervasive in the form of spreadsheets and relational databases. Although tables often describe multivariate data without explicit network semantics, it may be advantageous to explore the data modeled as a graph or network for analysis. Even when a given table design conveys some static network semantics, analysts may want to look…

  16. I See What You Mean: Theta Power Increases Are Involved in the Retrieval of Lexical Semantic Information

    ERIC Educational Resources Information Center

    Bastiaansen, Marcel C. M.; Oostenveld, Robert; Jensen, Ole; Hagoort, Peter

    2008-01-01

    An influential hypothesis regarding the neural basis of the mental lexicon is that semantic representations are neurally implemented as distributed networks carrying sensory, motor and/or more abstract functional information. This work investigates whether the semantic properties of words partly determine the topography of such networks. Subjects…

  17. A Computer-Aided Abstracting Tool Kit.

    ERIC Educational Resources Information Center

    Craven, Timothy C.

    1993-01-01

    Reports on the development of a prototype computerized abstractor's assistant called TEXNET, a text network management system. Features of the system discussed include semantic dependency links; displays of text structure; basic text editing; extracting; weighting methods; and listings of frequent words. (Contains 25 references.) (LRW)

  18. Integrating the automatic and the controlled: Strategies in Semantic Priming in an Attractor Network with Latching Dynamics

    PubMed Central

    Lerner, Itamar; Bentin, Shlomo; Shriki, Oren

    2014-01-01

    Semantic priming has long been recognized to reflect, along with automatic semantic mechanisms, the contribution of controlled strategies. However, previous theories of controlled priming were mostly qualitative, lacking common grounds with modern mathematical models of automatic priming based on neural networks. Recently, we have introduced a novel attractor network model of automatic semantic priming with latching dynamics. Here, we extend this work to show how the same model can also account for important findings regarding controlled processes. Assuming the rate of semantic transitions in the network can be adapted using simple reinforcement learning, we show how basic findings attributed to controlled processes in priming can be achieved, including their dependency on stimulus onset asynchrony and relatedness proportion and their unique effect on associative, category-exemplar, mediated and backward prime-target relations. We discuss how our mechanism relates to the classic expectancy theory and how it can be further extended in future developments of the model. PMID:24890261

  19. SSWAP: A Simple Semantic Web Architecture and Protocol for Semantic Web Services

    USDA-ARS?s Scientific Manuscript database

    SSWAP (Simple Semantic Web Architecture and Protocol) is an architecture, protocol, and platform for using reasoning to semantically integrate heterogeneous disparate data and services on the web. SSWAP is the driving technology behind the Virtual Plant Information Network, an NSF-funded semantic w...

  20. Biologically Plausible, Human-Scale Knowledge Representation.

    PubMed

    Crawford, Eric; Gingerich, Matthew; Eliasmith, Chris

    2016-05-01

    Several approaches to implementing symbol-like representations in neurally plausible models have been proposed. These approaches include binding through synchrony (Shastri & Ajjanagadde, ), "mesh" binding (van der Velde & de Kamps, ), and conjunctive binding (Smolensky, ). Recent theoretical work has suggested that most of these methods will not scale well, that is, that they cannot encode structured representations using any of the tens of thousands of terms in the adult lexicon without making implausible resource assumptions. Here, we empirically demonstrate that the biologically plausible structured representations employed in the Semantic Pointer Architecture (SPA) approach to modeling cognition (Eliasmith, ) do scale appropriately. Specifically, we construct a spiking neural network of about 2.5 million neurons that employs semantic pointers to successfully encode and decode the main lexical relations in WordNet, which has over 100,000 terms. In addition, we show that the same representations can be employed to construct recursively structured sentences consisting of arbitrary WordNet concepts, while preserving the original lexical structure. We argue that these results suggest that semantic pointers are uniquely well-suited to providing a biologically plausible account of the structured representations that underwrite human cognition. Copyright © 2015 Cognitive Science Society, Inc.

  1. Collective dynamics of social annotation

    PubMed Central

    Cattuto, Ciro; Barrat, Alain; Baldassarri, Andrea; Schehr, Gregory; Loreto, Vittorio

    2009-01-01

    The enormous increase of popularity and use of the worldwide web has led in the recent years to important changes in the ways people communicate. An interesting example of this fact is provided by the now very popular social annotation systems, through which users annotate resources (such as web pages or digital photographs) with keywords known as “tags.” Understanding the rich emergent structures resulting from the uncoordinated actions of users calls for an interdisciplinary effort. In particular concepts borrowed from statistical physics, such as random walks (RWs), and complex networks theory, can effectively contribute to the mathematical modeling of social annotation systems. Here, we show that the process of social annotation can be seen as a collective but uncoordinated exploration of an underlying semantic space, pictured as a graph, through a series of RWs. This modeling framework reproduces several aspects, thus far unexplained, of social annotation, among which are the peculiar growth of the size of the vocabulary used by the community and its complex network structure that represents an externalization of semantic structures grounded in cognition and that are typically hard to access. PMID:19506244

  2. The Functional Organisation of the Fronto-Temporal Language System: Evidence from Syntactic and Semantic Ambiguity

    ERIC Educational Resources Information Center

    Rodd, Jennifer M.; Longe, Olivia A.; Randall, Billi; Tyler, Lorraine K.

    2010-01-01

    Spoken language comprehension is known to involve a large left-dominant network of fronto-temporal brain regions, but there is still little consensus about how the syntactic and semantic aspects of language are processed within this network. In an fMRI study, volunteers heard spoken sentences that contained either syntactic or semantic ambiguities…

  3. High Quality Facade Segmentation Based on Structured Random Forest, Region Proposal Network and Rectangular Fitting

    NASA Astrophysics Data System (ADS)

    Rahmani, K.; Mayer, H.

    2018-05-01

    In this paper we present a pipeline for high quality semantic segmentation of building facades using Structured Random Forest (SRF), Region Proposal Network (RPN) based on a Convolutional Neural Network (CNN) as well as rectangular fitting optimization. Our main contribution is that we employ features created by the RPN as channels in the SRF.We empirically show that this is very effective especially for doors and windows. Our pipeline is evaluated on two datasets where we outperform current state-of-the-art methods. Additionally, we quantify the contribution of the RPN and the rectangular fitting optimization on the accuracy of the result.

  4. Sculpting the UMLS Refined Semantic Network.

    PubMed

    He, Zhe; Morrey, C Paul; Perl, Yehoshua; Elhanan, Gai; Chen, Ling; Chen, Yan; Geller, James

    2014-01-01

    The Refined Semantic Network (RSN) for the UMLS was previously introduced to complement the UMLS Semantic Network (SN). The RSN partitions the UMLS Metathesaurus (META) into disjoint groups of concepts. Each such group is semantically uniform. However, the RSN was initially an order of magnitude larger than the SN, which is undesirable since to be useful, a semantic network should be compact. Most semantic types in the RSN represent combinations of semantic types in the UMLS SN. Such a "combination semantic type" is called Intersection Semantic Type (IST). Many ISTs are assigned to very few concepts. Moreover, when reviewing those concepts, many semantic type assignment inconsistencies were found. After correcting those inconsistencies many ISTs, among them some that contradicted UMLS rules, disappeared, which made the RSN smaller. The authors performed a longitudinal study with the goal of reducing the size of the RSN to become compact. This goal was achieved by correcting inconsistencies and errors in the IST assignments in the UMLS, which additionally helped identify and correct ambiguities, inconsistencies, and errors in source terminologies widely used in the realm of public health. In this paper, we discuss the process and steps employed in this longitudinal study and the intermediate results for different stages. The sculpting process includes removing redundant semantic type assignments, expanding semantic type assignments, and removing illegitimate ISTs by auditing ISTs of small extents. However, the emphasis of this paper is not on the auditing methodologies employed during the process, since they were introduced in earlier publications, but on the strategy of employing them in order to transform the RSN into a compact network. For this paper we also performed a comprehensive audit of 168 "small ISTs" in the 2013AA version of the UMLS to finalize the longitudinal study. Over the years it was found that the editors of the UMLS introduced some new inconsistencies that resulted in the reintroduction of unwarranted ISTs that had already been eliminated as a result of their previous corrections. Because of that, the transformation of the RSN into a compact network covering all necessary categories for the UMLS was slowed down. The corrections suggested by an audit of the 2013AA version of the UMLS achieve a compact RSN of equal magnitude as the UMLS SN. The number of ISTs has been reduced to 336. We also demonstrate how auditing the semantic type assignments of UMLS concepts can expose other modeling errors in the UMLS source terminologies, e.g., SNOMED CT, LOINC, and RxNORM that are important for health informatics. Such errors would otherwise stay hidden. It is hoped that the UMLS curators will implement all required corrections and use the RSN along with the SN when maintaining and extending the UMLS. When used correctly, the RSN will support the prevention of the accidental introduction of inconsistent semantic type assignments into the UMLS. Furthermore, this way the RSN will support the exposure of other hidden errors and inconsistencies in health informatics terminologies, which are sources of the UMLS. Notably, the development of the RSN materializes the deeper, more refined Semantic Network for the UMLS that its designers envisioned originally but had not implemented.

  5. Semiotics and agents for integrating and navigating through multimedia representations of concepts

    NASA Astrophysics Data System (ADS)

    Joyce, Dan W.; Lewis, Paul H.; Tansley, Robert H.; Dobie, Mark R.; Hall, Wendy

    1999-12-01

    The purpose of this paper is two-fold. We begin by exploring the emerging trend to view multimedia information in terms of low-level and high-level components; the former being feature-based and the latter the 'semantics' intrinsic to what is portrayed by the media object. Traditionally, this has been viewed by employing analogies with generative linguistics. Recently, a new perceptive based on the semiotic tradition has been alluded to in several papers. We believe this to be a more appropriate approach. From this, we propose an approach for tackling this problem which uses an associative data structure expressing authored information together with intelligent agents acting autonomously over this structure. We then show how neural networks can be used to implement such agents. The agents act as 'vehicles' for bridging the gap between multimedia semantics and concrete expressions of high-level knowledge, but we suggest that traditional neural network techniques for classification are not architecturally adequate.

  6. A Drone Remote Sensing for Virtual Reality Simulation System for Forest Fires: Semantic Neural Network Approach

    NASA Astrophysics Data System (ADS)

    Narasimha Rao, Gudikandhula; Jagadeeswara Rao, Peddada; Duvvuru, Rajesh

    2016-09-01

    Wild fires have significant impact on atmosphere and lives. The demand of predicting exact fire area in forest may help fire management team by using drone as a robot. These are flexible, inexpensive and elevated-motion remote sensing systems that use drones as platforms are important for substantial data gaps and supplementing the capabilities of manned aircraft and satellite remote sensing systems. In addition, powerful computational tools are essential for predicting certain burned area in the duration of a forest fire. The reason of this study is to built up a smart system based on semantic neural networking for the forecast of burned areas. The usage of virtual reality simulator is used to support the instruction process of fire fighters and all users for saving of surrounded wild lives by using a naive method Semantic Neural Network System (SNNS). Semantics are valuable initially to have a enhanced representation of the burned area prediction and better alteration of simulation situation to the users. In meticulous, consequences obtained with geometric semantic neural networking is extensively superior to other methods. This learning suggests that deeper investigation of neural networking in the field of forest fires prediction could be productive.

  7. Vigi4Med Scraper: A Framework for Web Forum Structured Data Extraction and Semantic Representation

    PubMed Central

    Audeh, Bissan; Beigbeder, Michel; Zimmermann, Antoine; Jaillon, Philippe; Bousquet, Cédric

    2017-01-01

    The extraction of information from social media is an essential yet complicated step for data analysis in multiple domains. In this paper, we present Vigi4Med Scraper, a generic open source framework for extracting structured data from web forums. Our framework is highly configurable; using a configuration file, the user can freely choose the data to extract from any web forum. The extracted data are anonymized and represented in a semantic structure using Resource Description Framework (RDF) graphs. This representation enables efficient manipulation by data analysis algorithms and allows the collected data to be directly linked to any existing semantic resource. To avoid server overload, an integrated proxy with caching functionality imposes a minimal delay between sequential requests. Vigi4Med Scraper represents the first step of Vigi4Med, a project to detect adverse drug reactions (ADRs) from social networks founded by the French drug safety agency Agence Nationale de Sécurité du Médicament (ANSM). Vigi4Med Scraper has successfully extracted greater than 200 gigabytes of data from the web forums of over 20 different websites. PMID:28122056

  8. The Masked Semantic Priming Effect Is Task Dependent: Reconsidering the Automatic Spreading Activation Process

    ERIC Educational Resources Information Center

    de Wit, Bianca; Kinoshita, Sachiko

    2015-01-01

    Semantic priming effects are popularly explained in terms of an automatic spreading activation process, according to which the activation of a node in a semantic network spreads automatically to interconnected nodes, preactivating a semantically related word. It is expected from this account that semantic priming effects should be routinely…

  9. Generating Researcher Networks with Identified Persons on a Semantic Service Platform

    NASA Astrophysics Data System (ADS)

    Jung, Hanmin; Lee, Mikyoung; Kim, Pyung; Lee, Seungwoo

    This paper describes a Semantic Web-based method to acquire researcher networks by means of identification scheme, ontology, and reasoning. Three steps are required to realize it; resolving co-references, finding experts, and generating researcher networks. We adopt OntoFrame as an underlying semantic service platform and apply reasoning to make direct relations between far-off classes in ontology schema. 453,124 Elsevier journal articles with metadata and full-text documents in information technology and biomedical domains have been loaded and served on the platform as a test set.

  10. Identification of hybrid node and link communities in complex networks

    PubMed Central

    He, Dongxiao; Jin, Di; Chen, Zheng; Zhang, Weixiong

    2015-01-01

    Identifying communities in complex networks is an effective means for analyzing complex systems, with applications in diverse areas such as social science, engineering, biology and medicine. Finding communities of nodes and finding communities of links are two popular schemes for network analysis. These schemes, however, have inherent drawbacks and are inadequate to capture complex organizational structures in real networks. We introduce a new scheme and an effective approach for identifying complex mixture structures of node and link communities, called hybrid node-link communities. A central piece of our approach is a probabilistic model that accommodates node, link and hybrid node-link communities. Our extensive experiments on various real-world networks, including a large protein-protein interaction network and a large network of semantically associated words, illustrated that the scheme for hybrid communities is superior in revealing network characteristics. Moreover, the new approach outperformed the existing methods for finding node or link communities separately. PMID:25728010

  11. Identification of hybrid node and link communities in complex networks.

    PubMed

    He, Dongxiao; Jin, Di; Chen, Zheng; Zhang, Weixiong

    2015-03-02

    Identifying communities in complex networks is an effective means for analyzing complex systems, with applications in diverse areas such as social science, engineering, biology and medicine. Finding communities of nodes and finding communities of links are two popular schemes for network analysis. These schemes, however, have inherent drawbacks and are inadequate to capture complex organizational structures in real networks. We introduce a new scheme and an effective approach for identifying complex mixture structures of node and link communities, called hybrid node-link communities. A central piece of our approach is a probabilistic model that accommodates node, link and hybrid node-link communities. Our extensive experiments on various real-world networks, including a large protein-protein interaction network and a large network of semantically associated words, illustrated that the scheme for hybrid communities is superior in revealing network characteristics. Moreover, the new approach outperformed the existing methods for finding node or link communities separately.

  12. Identification of hybrid node and link communities in complex networks

    NASA Astrophysics Data System (ADS)

    He, Dongxiao; Jin, Di; Chen, Zheng; Zhang, Weixiong

    2015-03-01

    Identifying communities in complex networks is an effective means for analyzing complex systems, with applications in diverse areas such as social science, engineering, biology and medicine. Finding communities of nodes and finding communities of links are two popular schemes for network analysis. These schemes, however, have inherent drawbacks and are inadequate to capture complex organizational structures in real networks. We introduce a new scheme and an effective approach for identifying complex mixture structures of node and link communities, called hybrid node-link communities. A central piece of our approach is a probabilistic model that accommodates node, link and hybrid node-link communities. Our extensive experiments on various real-world networks, including a large protein-protein interaction network and a large network of semantically associated words, illustrated that the scheme for hybrid communities is superior in revealing network characteristics. Moreover, the new approach outperformed the existing methods for finding node or link communities separately.

  13. Semantic Social Network Portal for Collaborative Online Communities

    ERIC Educational Resources Information Center

    Neumann, Marco; O'Murchu, Ina; Breslin, John; Decker, Stefan; Hogan, Deirdre; MacDonaill, Ciaran

    2005-01-01

    Purpose: The motivation for this investigation is to apply social networking features to a semantic network portal, which supports the efforts in enterprise training units to up-skill the employee in the company, and facilitates the creation and reuse of knowledge in online communities. Design/methodology/approach: The paper provides an overview…

  14. Computer-Based Semantic Network in Molecular Biology: A Demonstration.

    ERIC Educational Resources Information Center

    Callman, Joshua L.; And Others

    This paper analyzes the hardware and software features that would be desirable in a computer-based semantic network system for representing biology knowledge. It then describes in detail a prototype network of molecular biology knowledge that has been developed using Filevision software and a Macintosh computer. The prototype contains about 100…

  15. Musical and verbal semantic memory: two distinct neural networks?

    PubMed

    Groussard, M; Viader, F; Hubert, V; Landeau, B; Abbas, A; Desgranges, B; Eustache, F; Platel, H

    2010-02-01

    Semantic memory has been investigated in numerous neuroimaging and clinical studies, most of which have used verbal or visual, but only very seldom, musical material. Clinical studies have suggested that there is a relative neural independence between verbal and musical semantic memory. In the present study, "musical semantic memory" is defined as memory for "well-known" melodies without any knowledge of the spatial or temporal circumstances of learning, while "verbal semantic memory" corresponds to general knowledge about concepts, again without any knowledge of the spatial or temporal circumstances of learning. Our aim was to compare the neural substrates of musical and verbal semantic memory by administering the same type of task in each modality. We used high-resolution PET H(2)O(15) to observe 11 young subjects performing two main tasks: (1) a musical semantic memory task, where the subjects heard the first part of familiar melodies and had to decide whether the second part they heard matched the first, and (2) a verbal semantic memory task with the same design, but where the material consisted of well-known expressions or proverbs. The musical semantic memory condition activated the superior temporal area and inferior and middle frontal areas in the left hemisphere and the inferior frontal area in the right hemisphere. The verbal semantic memory condition activated the middle temporal region in the left hemisphere and the cerebellum in the right hemisphere. We found that the verbal and musical semantic processes activated a common network extending throughout the left temporal neocortex. In addition, there was a material-dependent topographical preference within this network, with predominantly anterior activation during musical tasks and predominantly posterior activation during semantic verbal tasks. Copyright (c) 2009 Elsevier Inc. All rights reserved.

  16. Neural correlates of remembering/knowing famous people: an event-related fMRI study.

    PubMed

    Denkova, Ekaterina; Botzung, Anne; Manning, Lilianne

    2006-01-01

    It has been suggested that knowledge about some famous people depends on both a generic semantic component and an autobiographical component [Westmacott, R., & Moscovitch, M. (2003). The contribution of autobiographical significance to semantic memory. Memory and Cognition, 31, 761-774]. The neuropsychological studies of semantic dementia (SD) and Alzheimer disease (AD) demonstrated that the two aspects are very likely to be mediated by different brain structures, with the episodic component being highly dependent upon the integrity of the medial temporal lobe (MTL) [Westmacott, R., Black, S. E., Freedman, M., & Moscovitch, M. (2004). The contribution of autobiographical significance to semantic memory: Evidence from Alzheimer's disease, semantic dementia, and amnesia. Neuropsychologia, 42, 25-48]. Using an fMRI design in healthy participants, we aimed: (i) to investigate the pattern of brain activations sustaining the autobiographical and the semantic aspects of knowledge about famous persons. Moreover, (ii) we examined if the stimulus material (face/name) influences the lateralisation of the cerebral networks. Our findings suggested that different patterns of activation corresponded to the presence or absence of personal significance linked to semantic knowledge; MTL was engaged only in the former case. Although choice of stimulus material did not influence the hemispheric lateralisation in "classical" terms, it did play a role in engaging different cerebral regions.

  17. Neural correlates of lexical-semantic memory: A voxel-based morphometry study in mild AD, aMCI and normal aging

    PubMed Central

    Balthazar, Marcio L.F.; Yasuda, Clarissa L.; Lopes, Tátila M.; Pereira, Fabrício R.S.; Damasceno, Benito Pereira; Cendes, Fernando

    2011-01-01

    Neuroanatomical correlations of naming and lexical-semantic memory are not yet fully understood. The most influential approaches share the view that semantic representations reflect the manner in which information has been acquired through perception and action, and that each brain area processes different modalities of semantic representations. Despite these anatomical differences in semantic processing, generalization across different features that have similar semantic significance is one of the main characteristics of human cognition. Methods We evaluated the brain regions related to naming, and to the semantic generalization, of visually presented drawings of objects from the Boston Naming Test (BNT), which comprises different categories, such as animals, vegetables, tools, food, and furniture. In order to create a model of lesion method, a sample of 48 subjects presenting with a continuous decline both in cognitive functions, including naming skills, and in grey matter density (GMD) was compared to normal young adults with normal aging, amnestic mild cognitive impairment (aMCI) and mild Alzheimer’s disease (AD). Semantic errors on the BNT, as well as naming performance, were correlated with whole brain GMD as measured by voxel-based morphometry (VBM). Results The areas most strongly related to naming and to semantic errors were the medial temporal structures, thalami, superior and inferior temporal gyri, especially their anterior parts, as well as prefrontal cortices (inferior and superior frontal gyri). Conclusion The possible role of each of these areas in the lexical-semantic networks was discussed, along with their contribution to the models of semantic memory organization. PMID:29213726

  18. Processing of visual semantic information to concrete words: temporal dynamics and neural mechanisms indicated by event-related brain potentials( ).

    PubMed

    van Schie, Hein T; Wijers, Albertus A; Mars, Rogier B; Benjamins, Jeroen S; Stowe, Laurie A

    2005-05-01

    Event-related brain potentials were used to study the retrieval of visual semantic information to concrete words, and to investigate possible structural overlap between visual object working memory and concreteness effects in word processing. Subjects performed an object working memory task that involved 5 s retention of simple 4-angled polygons (load 1), complex 10-angled polygons (load 2), and a no-load baseline condition. During the polygon retention interval subjects were presented with a lexical decision task to auditory presented concrete (imageable) and abstract (nonimageable) words, and pseudowords. ERP results are consistent with the use of object working memory for the visualisation of concrete words. Our data indicate a two-step processing model of visual semantics in which visual descriptive information of concrete words is first encoded in semantic memory (indicated by an anterior N400 and posterior occipital positivity), and is subsequently visualised via the network for object working memory (reflected by a left frontal positive slow wave and a bilateral occipital slow wave negativity). Results are discussed in the light of contemporary models of semantic memory.

  19. Hierarchical Recurrent Neural Hashing for Image Retrieval With Hierarchical Convolutional Features.

    PubMed

    Lu, Xiaoqiang; Chen, Yaxiong; Li, Xuelong

    Hashing has been an important and effective technology in image retrieval due to its computational efficiency and fast search speed. The traditional hashing methods usually learn hash functions to obtain binary codes by exploiting hand-crafted features, which cannot optimally represent the information of the sample. Recently, deep learning methods can achieve better performance, since deep learning architectures can learn more effective image representation features. However, these methods only use semantic features to generate hash codes by shallow projection but ignore texture details. In this paper, we proposed a novel hashing method, namely hierarchical recurrent neural hashing (HRNH), to exploit hierarchical recurrent neural network to generate effective hash codes. There are three contributions of this paper. First, a deep hashing method is proposed to extensively exploit both spatial details and semantic information, in which, we leverage hierarchical convolutional features to construct image pyramid representation. Second, our proposed deep network can exploit directly convolutional feature maps as input to preserve the spatial structure of convolutional feature maps. Finally, we propose a new loss function that considers the quantization error of binarizing the continuous embeddings into the discrete binary codes, and simultaneously maintains the semantic similarity and balanceable property of hash codes. Experimental results on four widely used data sets demonstrate that the proposed HRNH can achieve superior performance over other state-of-the-art hashing methods.Hashing has been an important and effective technology in image retrieval due to its computational efficiency and fast search speed. The traditional hashing methods usually learn hash functions to obtain binary codes by exploiting hand-crafted features, which cannot optimally represent the information of the sample. Recently, deep learning methods can achieve better performance, since deep learning architectures can learn more effective image representation features. However, these methods only use semantic features to generate hash codes by shallow projection but ignore texture details. In this paper, we proposed a novel hashing method, namely hierarchical recurrent neural hashing (HRNH), to exploit hierarchical recurrent neural network to generate effective hash codes. There are three contributions of this paper. First, a deep hashing method is proposed to extensively exploit both spatial details and semantic information, in which, we leverage hierarchical convolutional features to construct image pyramid representation. Second, our proposed deep network can exploit directly convolutional feature maps as input to preserve the spatial structure of convolutional feature maps. Finally, we propose a new loss function that considers the quantization error of binarizing the continuous embeddings into the discrete binary codes, and simultaneously maintains the semantic similarity and balanceable property of hash codes. Experimental results on four widely used data sets demonstrate that the proposed HRNH can achieve superior performance over other state-of-the-art hashing methods.

  20. Concept typicality responses in the semantic memory network.

    PubMed

    Santi, Andrea; Raposo, Ana; Frade, Sofia; Marques, J Frederico

    2016-12-01

    For decades concept typicality has been recognized as critical to structuring conceptual knowledge, but only recently has typicality been applied in better understanding the processes engaged by the neurological network underlying semantic memory. This previous work has focused on one region within the network - the Anterior Temporal Lobe (ATL). The ATL responds negatively to concept typicality (i.e., the more atypical the item, the greater the activation in the ATL). To better understand the role of typicality in the entire network, we ran an fMRI study using a category verification task in which concept typicality was manipulated parametrically. We argue that typicality is relevant to both amodal feature integration centers as well as category-specific regions. Both the Inferior Frontal Gyrus (IFG) and ATL demonstrated a negative correlation with typicality, whereas inferior parietal regions showed positive effects. We interpret this in light of functional theories of these regions. Interactions between category and typicality were not observed in regions classically recognized as category-specific, thus, providing an argument against category specific regions, at least with fMRI. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Mimoza: web-based semantic zooming and navigation in metabolic networks.

    PubMed

    Zhukova, Anna; Sherman, David J

    2015-02-26

    The complexity of genome-scale metabolic models makes them quite difficult for human users to read, since they contain thousands of reactions that must be included for accurate computer simulation. Interestingly, hidden similarities between groups of reactions can be discovered, and generalized to reveal higher-level patterns. The web-based navigation system Mimoza allows a human expert to explore metabolic network models in a semantically zoomable manner: The most general view represents the compartments of the model; the next view shows the generalized versions of reactions and metabolites in each compartment; and the most detailed view represents the initial network with the generalization-based layout (where similar metabolites and reactions are placed next to each other). It allows a human expert to grasp the general structure of the network and analyze it in a top-down manner Mimoza can be installed standalone, or used on-line at http://mimoza.bordeaux.inria.fr/ , or installed in a Galaxy server for use in workflows. Mimoza views can be embedded in web pages, or downloaded as COMBINE archives.

  2. Sculpting the UMLS Refined Semantic Network

    PubMed Central

    Morrey, C. Paul; Perl, Yehoshua; Elhanan, Gai; Chen, Ling; Chen, Yan; Geller, James

    2014-01-01

    Background The Refined Semantic Network (RSN) for the UMLS was previously introduced to complement the UMLS Semantic Network (SN). The RSN partitions the UMLS Metathesaurus (META) into disjoint groups of concepts. Each such group is semantically uniform. However, the RSN was initially an order of magnitude larger than the SN, which is undesirable since to be useful, a semantic network should be compact. Most semantic types in the RSN represent combinations of semantic types in the UMLS SN. Such a “combination semantic type” is called Intersection Semantic Type (IST). Many ISTs are assigned to very few concepts. Moreover, when reviewing those concepts, many semantic type assignment inconsistencies were found. After correcting those inconsistencies many ISTs, among them some that contradicted UMLS rules, disappeared, which made the RSN smaller. Objective The authors performed a longitudinal study with the goal of reducing the size of the RSN to become compact. This goal was achieved by correcting inconsistencies and errors in the IST assignments in the UMLS, which additionally helped identify and correct ambiguities, inconsistencies, and errors in source terminologies widely used in the realm of public health. Methods In this paper, we discuss the process and steps employed in this longitudinal study and the intermediate results for different stages. The sculpting process includes removing redundant semantic type assignments, expanding semantic type assignments, and removing illegitimate ISTs by auditing ISTs of small extents. However, the emphasis of this paper is not on the auditing methodologies employed during the process, since they were introduced in earlier publications, but on the strategy of employing them in order to transform the RSN into a compact network. For this paper we also performed a comprehensive audit of 168 “small ISTs” in the 2013AA version of the UMLS to finalize the longitudinal study. Results Over the years it was found that the editors of the UMLS introduced some new inconsistencies that resulted in the reintroduction of unwarranted ISTs that had already been eliminated as a result of their previous corrections. Because of that, the transformation of the RSN into a compact network covering all necessary categories for the UMLS was slowed down. The corrections suggested by an audit of the 2013AA version of the UMLS achieve a compact RSN of equal magnitude as the UMLS SN. The number of ISTs has been reduced to 336. We also demonstrate how auditing the semantic type assignments of UMLS concepts can expose other modeling errors in the UMLS source terminologies, e.g., SNOMED CT, LOINC, and RxNORM that are important for health informatics. Such errors would otherwise stay hidden. Conclusions It is hoped that the UMLS curators will implement all required corrections and use the RSN along with the SN when maintaining and extending the UMLS. When used correctly, the RSN will support the prevention of the accidental introduction of inconsistent semantic type assignments into the UMLS. Furthermore, this way the RSN will support the exposure of other hidden errors and inconsistencies in health informatics terminologies, which are sources of the UMLS. Notably, the development of the RSN materializes the deeper, more refined Semantic Network for the UMLS that its designers envisioned originally but had not implemented. PMID:25422719

  3. A trade-off between local and distributed information processing associated with remote episodic versus semantic memory.

    PubMed

    Heisz, Jennifer J; Vakorin, Vasily; Ross, Bernhard; Levine, Brian; McIntosh, Anthony R

    2014-01-01

    Episodic memory and semantic memory produce very different subjective experiences yet rely on overlapping networks of brain regions for processing. Traditional approaches for characterizing functional brain networks emphasize static states of function and thus are blind to the dynamic information processing within and across brain regions. This study used information theoretic measures of entropy to quantify changes in the complexity of the brain's response as measured by magnetoencephalography while participants listened to audio recordings describing past personal episodic and general semantic events. Personal episodic recordings evoked richer subjective mnemonic experiences and more complex brain responses than general semantic recordings. Critically, we observed a trade-off between the relative contribution of local versus distributed entropy, such that personal episodic recordings produced relatively more local entropy whereas general semantic recordings produced relatively more distributed entropy. Changes in the relative contributions of local and distributed entropy to the total complexity of the system provides a potential mechanism that allows the same network of brain regions to represent cognitive information as either specific episodes or more general semantic knowledge.

  4. Topic segmentation via community detection in complex networks

    NASA Astrophysics Data System (ADS)

    de Arruda, Henrique F.; Costa, Luciano da F.; Amancio, Diego R.

    2016-06-01

    Many real systems have been modeled in terms of network concepts, and written texts are a particular example of information networks. In recent years, the use of network methods to analyze language has allowed the discovery of several interesting effects, including the proposition of novel models to explain the emergence of fundamental universal patterns. While syntactical networks, one of the most prevalent networked models of written texts, display both scale-free and small-world properties, such a representation fails in capturing other textual features, such as the organization in topics or subjects. We propose a novel network representation whose main purpose is to capture the semantical relationships of words in a simple way. To do so, we link all words co-occurring in the same semantic context, which is defined in a threefold way. We show that the proposed representations favor the emergence of communities of semantically related words, and this feature may be used to identify relevant topics. The proposed methodology to detect topics was applied to segment selected Wikipedia articles. We found that, in general, our methods outperform traditional bag-of-words representations, which suggests that a high-level textual representation may be useful to study the semantical features of texts.

  5. Topic segmentation via community detection in complex networks.

    PubMed

    de Arruda, Henrique F; Costa, Luciano da F; Amancio, Diego R

    2016-06-01

    Many real systems have been modeled in terms of network concepts, and written texts are a particular example of information networks. In recent years, the use of network methods to analyze language has allowed the discovery of several interesting effects, including the proposition of novel models to explain the emergence of fundamental universal patterns. While syntactical networks, one of the most prevalent networked models of written texts, display both scale-free and small-world properties, such a representation fails in capturing other textual features, such as the organization in topics or subjects. We propose a novel network representation whose main purpose is to capture the semantical relationships of words in a simple way. To do so, we link all words co-occurring in the same semantic context, which is defined in a threefold way. We show that the proposed representations favor the emergence of communities of semantically related words, and this feature may be used to identify relevant topics. The proposed methodology to detect topics was applied to segment selected Wikipedia articles. We found that, in general, our methods outperform traditional bag-of-words representations, which suggests that a high-level textual representation may be useful to study the semantical features of texts.

  6. Using Neural Networks to Generate Inferential Roles for Natural Language

    PubMed Central

    Blouw, Peter; Eliasmith, Chris

    2018-01-01

    Neural networks have long been used to study linguistic phenomena spanning the domains of phonology, morphology, syntax, and semantics. Of these domains, semantics is somewhat unique in that there is little clarity concerning what a model needs to be able to do in order to provide an account of how the meanings of complex linguistic expressions, such as sentences, are understood. We argue that one thing such models need to be able to do is generate predictions about which further sentences are likely to follow from a given sentence; these define the sentence's “inferential role.” We then show that it is possible to train a tree-structured neural network model to generate very simple examples of such inferential roles using the recently released Stanford Natural Language Inference (SNLI) dataset. On an empirical front, we evaluate the performance of this model by reporting entailment prediction accuracies on a set of test sentences not present in the training data. We also report the results of a simple study that compares human plausibility ratings for both human-generated and model-generated entailments for a random selection of sentences in this test set. On a more theoretical front, we argue in favor of a revision to some common assumptions about semantics: understanding a linguistic expression is not only a matter of mapping it onto a representation that somehow constitutes its meaning; rather, understanding a linguistic expression is mainly a matter of being able to draw certain inferences. Inference should accordingly be at the core of any model of semantic cognition. PMID:29387031

  7. Grounding statistical learning in context: The effects of learning and retrieval contexts on cross-situational word learning.

    PubMed

    Chen, Chi-Hsin; Yu, Chen

    2017-06-01

    Natural language environments usually provide structured contexts for learning. This study examined the effects of semantically themed contexts-in both learning and retrieval phases-on statistical word learning. Results from 2 experiments consistently showed that participants had higher performance in semantically themed learning contexts. In contrast, themed retrieval contexts did not affect performance. Our work suggests that word learners are sensitive to statistical regularities not just at the level of individual word-object co-occurrences but also at another level containing a whole network of associations among objects and their properties.

  8. The storage capacity of Potts models for semantic memory retrieval

    NASA Astrophysics Data System (ADS)

    Kropff, Emilio; Treves, Alessandro

    2005-08-01

    We introduce and analyse a minimal network model of semantic memory in the human brain. The model is a global associative memory structured as a collection of N local modules, each coding a feature, which can take S possible values, with a global sparseness a (the average fraction of features describing a concept). We show that, under optimal conditions, the number cM of modules connected on average to a module can range widely between very sparse connectivity (high dilution, c_{M}/N\\to 0 ) and full connectivity (c_{M}\\to N ), maintaining a global network storage capacity (the maximum number pc of stored and retrievable concepts) that scales like pc~cMS2/a, with logarithmic corrections consistent with the constraint that each synapse may store up to a fraction of a bit.

  9. Semantic integration to identify overlapping functional modules in protein interaction networks

    PubMed Central

    Cho, Young-Rae; Hwang, Woochang; Ramanathan, Murali; Zhang, Aidong

    2007-01-01

    Background The systematic analysis of protein-protein interactions can enable a better understanding of cellular organization, processes and functions. Functional modules can be identified from the protein interaction networks derived from experimental data sets. However, these analyses are challenging because of the presence of unreliable interactions and the complex connectivity of the network. The integration of protein-protein interactions with the data from other sources can be leveraged for improving the effectiveness of functional module detection algorithms. Results We have developed novel metrics, called semantic similarity and semantic interactivity, which use Gene Ontology (GO) annotations to measure the reliability of protein-protein interactions. The protein interaction networks can be converted into a weighted graph representation by assigning the reliability values to each interaction as a weight. We presented a flow-based modularization algorithm to efficiently identify overlapping modules in the weighted interaction networks. The experimental results show that the semantic similarity and semantic interactivity of interacting pairs were positively correlated with functional co-occurrence. The effectiveness of the algorithm for identifying modules was evaluated using functional categories from the MIPS database. We demonstrated that our algorithm had higher accuracy compared to other competing approaches. Conclusion The integration of protein interaction networks with GO annotation data and the capability of detecting overlapping modules substantially improve the accuracy of module identification. PMID:17650343

  10. Ontology- and graph-based similarity assessment in biological networks.

    PubMed

    Wang, Haiying; Zheng, Huiru; Azuaje, Francisco

    2010-10-15

    A standard systems-based approach to biomarker and drug target discovery consists of placing putative biomarkers in the context of a network of biological interactions, followed by different 'guilt-by-association' analyses. The latter is typically done based on network structural features. Here, an alternative analysis approach in which the networks are analyzed on a 'semantic similarity' space is reported. Such information is extracted from ontology-based functional annotations. We present SimTrek, a Cytoscape plugin for ontology-based similarity assessment in biological networks. http://rosalind.infj.ulst.ac.uk/SimTrek.html francisco.azuaje@crp-sante.lu Supplementary data are available at Bioinformatics online.

  11. The Semantic Network Model of Creativity: Analysis of Online Social Media Data

    ERIC Educational Resources Information Center

    Yu, Feng; Peng, Theodore; Peng, Kaiping; Zheng, Sam Xianjun; Liu, Zhiyuan

    2016-01-01

    The central hypothesis of Semantic Network Model of Creativity is that creative people, who are exposed to more information that are both novel and useful, will have more interconnections between event schemas in their associations. The networks of event schemas in creative people's minds were expected to be wider and denser than those in less…

  12. Beyond the word and image: characteristics of a common meaning system for language and vision revealed by functional and structural imaging.

    PubMed

    Jouen, A L; Ellmore, T M; Madden, C J; Pallier, C; Dominey, P F; Ventre-Dominey, J

    2015-02-01

    This research tests the hypothesis that comprehension of human events will engage an extended semantic representation system, independent of the input modality (sentence vs. picture). To investigate this, we examined brain activation and connectivity in 19 subjects who read sentences and viewed pictures depicting everyday events, in a combined fMRI and DTI study. Conjunction of activity in understanding sentences and pictures revealed a common fronto-temporo-parietal network that included the middle and inferior frontal gyri, the parahippocampal-retrosplenial complex, the anterior and middle temporal gyri, the inferior parietal lobe in particular the temporo-parietal cortex. DTI tractography seeded from this temporo-parietal cortex hub revealed a multi-component network reaching into the temporal pole, the ventral frontal pole and premotor cortex. A significant correlation was found between the relative pathway density issued from the temporo-parietal cortex and the imageability of sentences for individual subjects, suggesting a potential functional link between comprehension and the temporo-parietal connectivity strength. These data help to define a "meaning" network that includes components of recently characterized systems for semantic memory, embodied simulation, and visuo-spatial scene representation. The network substantially overlaps with the "default mode" network implicated as part of a core network of semantic representation, along with brain systems related to the formation of mental models, and reasoning. These data are consistent with a model of real-world situational understanding that is highly embodied. Crucially, the neural basis of this embodied understanding is not limited to sensorimotor systems, but extends to the highest levels of cognition, including autobiographical memory, scene analysis, mental model formation, reasoning and theory of mind. Copyright © 2014 Elsevier Inc. All rights reserved.

  13. Distinct loci of lexical and semantic access deficits in aphasia: Evidence from voxel-based lesion-symptom mapping and diffusion tensor imaging.

    PubMed

    Harvey, Denise Y; Schnur, Tatiana T

    2015-06-01

    Naming pictures and matching words to pictures belonging to the same semantic category negatively affects language production and comprehension. By most accounts, semantic interference arises when accessing lexical representations in naming (e.g., Damian, Vigliocco, & Levelt, 2001) and semantic representations in comprehension (e.g., Forde & Humphreys, 1997). Further, damage to the left inferior frontal gyrus (LIFG), a region implicated in cognitive control, results in increasing semantic interference when items repeat across cycles in both language production and comprehension (Jefferies, Baker, Doran, & Lambon Ralph, 2007). This generates the prediction that the LIFG via white matter connections supports resolution of semantic interference arising from different loci (lexical vs semantic) in the temporal lobe. However, it remains unclear whether the cognitive and neural mechanisms that resolve semantic interference are the same across tasks. Thus, we examined which gray matter structures [using whole brain and region of interest (ROI) approaches] and white matter connections (using deterministic tractography) when damaged impact semantic interference and its increase across cycles when repeatedly producing and understanding words in 15 speakers with varying lexical-semantic deficits from left hemisphere stroke. We found that damage to distinct brain regions, the posterior versus anterior temporal lobe, was associated with semantic interference (collapsed across cycles) in naming and comprehension, respectively. Further, those with LIFG damage compared to those without exhibited marginally larger increases in semantic interference across cycles in naming but not comprehension. Lastly, the inferior fronto-occipital fasciculus, connecting the LIFG with posterior temporal lobe, related to semantic interference in naming, whereas the inferior longitudinal fasciculus (ILF), connecting posterior with anterior temporal regions related to semantic interference in comprehension. These neuroanatomical-behavioral findings have implications for models of the lexical-semantic language network by demonstrating that semantic interference in language production and comprehension involves different representations which differentially recruit a cognitive control mechanism for interference resolution. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Semantic Interpretation of An Artificial Neural Network

    DTIC Science & Technology

    1995-12-01

    ARTIFICIAL NEURAL NETWORK .7,’ THESIS Stanley Dale Kinderknecht Captain, USAF 770 DEAT7ET77,’H IR O C 7... ARTIFICIAL NEURAL NETWORK THESIS Stanley Dale Kinderknecht Captain, USAF AFIT/GCS/ENG/95D-07 Approved for public release; distribution unlimited The views...Government. AFIT/GCS/ENG/95D-07 SEMANTIC INTERPRETATION OF AN ARTIFICIAL NEURAL NETWORK THESIS Presented to the Faculty of the School of Engineering of

  15. Do statistical segmentation abilities predict lexical-phonological and lexical-semantic abilities in children with and without SLI?

    PubMed Central

    Mainela-Arnold, Elina; Evans, Julia L.

    2014-01-01

    This study tested the predictions of the procedural deficit hypothesis by investigating the relationship between sequential statistical learning and two aspects of lexical ability, lexical-phonological and lexical-semantic, in children with and without specific language impairment (SLI). Participants included 40 children (ages 8;5–12;3), 20 children with SLI and 20 with typical development. Children completed Saffran’s statistical word segmentation task, a lexical-phonological access task (gating task), and a word definition task. Poor statistical learners were also poor at managing lexical-phonological competition during the gating task. However, statistical learning was not a significant predictor of semantic richness in word definitions. The ability to track statistical sequential regularities may be important for learning the inherently sequential structure of lexical-phonology, but not as important for learning lexical-semantic knowledge. Consistent with the procedural/declarative memory distinction, the brain networks associated with the two types of lexical learning are likely to have different learning properties. PMID:23425593

  16. Mining integrated semantic networks for drug repositioning opportunities

    PubMed Central

    Mullen, Joseph; Tipney, Hannah

    2016-01-01

    Current research and development approaches to drug discovery have become less fruitful and more costly. One alternative paradigm is that of drug repositioning. Many marketed examples of repositioned drugs have been identified through serendipitous or rational observations, highlighting the need for more systematic methodologies to tackle the problem. Systems level approaches have the potential to enable the development of novel methods to understand the action of therapeutic compounds, but requires an integrative approach to biological data. Integrated networks can facilitate systems level analyses by combining multiple sources of evidence to provide a rich description of drugs, their targets and their interactions. Classically, such networks can be mined manually where a skilled person is able to identify portions of the graph (semantic subgraphs) that are indicative of relationships between drugs and highlight possible repositioning opportunities. However, this approach is not scalable. Automated approaches are required to systematically mine integrated networks for these subgraphs and bring them to the attention of the user. We introduce a formal framework for the definition of integrated networks and their associated semantic subgraphs for drug interaction analysis and describe DReSMin, an algorithm for mining semantically-rich networks for occurrences of a given semantic subgraph. This algorithm allows instances of complex semantic subgraphs that contain data about putative drug repositioning opportunities to be identified in a computationally tractable fashion, scaling close to linearly with network data. We demonstrate the utility of our approach by mining an integrated drug interaction network built from 11 sources. This work identified and ranked 9,643,061 putative drug-target interactions, showing a strong correlation between highly scored associations and those supported by literature. We discuss the 20 top ranked associations in more detail, of which 14 are novel and 6 are supported by the literature. We also show that our approach better prioritizes known drug-target interactions, than other state-of-the art approaches for predicting such interactions. PMID:26844016

  17. Spreading Activation in an Attractor Network with Latching Dynamics: Automatic Semantic Priming Revisited

    PubMed Central

    Lerner, Itamar; Bentin, Shlomo; Shriki, Oren

    2012-01-01

    Localist models of spreading activation (SA) and models assuming distributed-representations offer very different takes on semantic priming, a widely investigated paradigm in word recognition and semantic memory research. In the present study we implemented SA in an attractor neural network model with distributed representations and created a unified framework for the two approaches. Our models assumes a synaptic depression mechanism leading to autonomous transitions between encoded memory patterns (latching dynamics), which account for the major characteristics of automatic semantic priming in humans. Using computer simulations we demonstrated how findings that challenged attractor-based networks in the past, such as mediated and asymmetric priming, are a natural consequence of our present model’s dynamics. Puzzling results regarding backward priming were also given a straightforward explanation. In addition, the current model addresses some of the differences between semantic and associative relatedness and explains how these differences interact with stimulus onset asynchrony in priming experiments. PMID:23094718

  18. A Supramodal Neural Network for Speech and Gesture Semantics: An fMRI Study

    PubMed Central

    Weis, Susanne; Kircher, Tilo

    2012-01-01

    In a natural setting, speech is often accompanied by gestures. As language, speech-accompanying iconic gestures to some extent convey semantic information. However, if comprehension of the information contained in both the auditory and visual modality depends on same or different brain-networks is quite unknown. In this fMRI study, we aimed at identifying the cortical areas engaged in supramodal processing of semantic information. BOLD changes were recorded in 18 healthy right-handed male subjects watching video clips showing an actor who either performed speech (S, acoustic) or gestures (G, visual) in more (+) or less (−) meaningful varieties. In the experimental conditions familiar speech or isolated iconic gestures were presented; during the visual control condition the volunteers watched meaningless gestures (G−), while during the acoustic control condition a foreign language was presented (S−). The conjunction of the visual and acoustic semantic processing revealed activations extending from the left inferior frontal gyrus to the precentral gyrus, and included bilateral posterior temporal regions. We conclude that proclaiming this frontotemporal network the brain's core language system is to take too narrow a view. Our results rather indicate that these regions constitute a supramodal semantic processing network. PMID:23226488

  19. Complex Networks in Psychological Models

    NASA Astrophysics Data System (ADS)

    Wedemann, R. S.; Carvalho, L. S. A. V. D.; Donangelo, R.

    We develop schematic, self-organizing, neural-network models to describe mechanisms associated with mental processes, by a neurocomputational substrate. These models are examples of real world complex networks with interesting general topological structures. Considering dopaminergic signal-to-noise neuronal modulation in the central nervous system, we propose neural network models to explain development of cortical map structure and dynamics of memory access, and unify different mental processes into a single neurocomputational substrate. Based on our neural network models, neurotic behavior may be understood as an associative memory process in the brain, and the linguistic, symbolic associative process involved in psychoanalytic working-through can be mapped onto a corresponding process of reconfiguration of the neural network. The models are illustrated through computer simulations, where we varied dopaminergic modulation and observed the self-organizing emergent patterns at the resulting semantic map, interpreting them as different manifestations of mental functioning, from psychotic through to normal and neurotic behavior, and creativity.

  20. Lateralized direct and indirect semantic priming effects in subjects with paranormal experiences and beliefs.

    PubMed

    Pizzagalli, D; Lehmann, D; Brugger, P

    2001-01-01

    The present investigation tested the hypothesis that, as an aspect of schizotypal thinking, the formation of paranormal beliefs was related to spreading activation characteristics within semantic networks. From a larger student population (n = 117) prescreened for paranormal belief, 12 strong believers and 12 strong disbelievers (all women) were invited for a lateralized semantic priming task with directly and indirectly related prime-target pairs. Believers showed stronger indirect (but not direct) semantic priming effects than disbelievers after left (but not right) visual field stimulation, indicating faster appreciation of distant semantic relations specifically by the right hemisphere, reportedly specialized in coarse rather than focused semantic processing. These results are discussed in the light of recent findings in schizophrenic patients with thought disorders. They suggest that a disinhibition with semantic networks may underlie the formation of paranormal belief. The potential usefulness of work with healthy subjects for neuropsychiatric research is stressed. Copyright 2001 S. Karger AG, Basel

  1. Neural changes associated with semantic processing in healthy aging despite intact behavioral performance.

    PubMed

    Lacombe, Jacinthe; Jolicoeur, Pierre; Grimault, Stephan; Pineault, Jessica; Joubert, Sven

    2015-10-01

    Semantic memory recruits an extensive neural network including the left inferior prefrontal cortex (IPC) and the left temporoparietal region, which are involved in semantic control processes, as well as the anterior temporal lobe region (ATL) which is considered to be involved in processing semantic information at a central level. However, little is known about the underlying neuronal integrity of the semantic network in normal aging. Young and older healthy adults carried out a semantic judgment task while their cortical activity was recorded using magnetoencephalography (MEG). Despite equivalent behavioral performance, young adults activated the left IPC to a greater extent than older adults, while the latter group recruited the temporoparietal region bilaterally and the left ATL to a greater extent than younger adults. Results indicate that significant neuronal changes occur in normal aging, mainly in regions underlying semantic control processes, despite an apparent stability in performance at the behavioral level. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. [Schizophrenia and semantic priming effects].

    PubMed

    Lecardeur, L; Giffard, B; Eustache, F; Dollfus, S

    2006-01-01

    This article is a review of studies using the semantic priming paradigm to assess the functioning of semantic memory in schizophrenic patients. Semantic priming describes the phenomenon of increasing the speed with which a string of letters (the target) is recognized as a word (lexical decision task) by presenting to the subject a semantically related word (the prime) prior to the appearance of the target word. This semantic priming is linked to both automatic and controlled processes depending on experimental conditions (stimulus onset asynchrony (SOA), percentage of related words and explicit memory instructions). Automatic process observed with short SOA, low related word percentage and instructions asking only to process the target, could be linked to the "automatic spreading activation" through the semantic network. Controlled processes involve "semantic matching" (the number of related and unrelated pairs influences the subjects decision) and "expectancy" (the prime leads the subject to generate an expectancy set of potential target to the prime). These processes can be observed whatever the SOA for the former and with long SOA for the later, but both with only high related word percentage and explicit memory instructions. Studies evaluating semantic priming effects in schizophrenia show conflicting results: schizophrenic patients can present hyperpriming (semantic priming effect is larger in patients than in controls), hypopriming (semantic priming effect is lower in patients than in controls) or equal semantic priming effects compared to control subjects. These results could be associated to a global impairment of controlled processes in schizophrenia, essentially to a dysfunction of semantic matching process. On the other hand, efficiency of semantic automatic spreading activation process is controversial. These discrepancies could be linked to the different experimental conditions used (duration of SOA, proportion of related pairs and instructions), which influence on the degree of involvement of controlled processes and therefore prevent to really assess its functioning. In addition, manipulations of the relation between prime and target (semantic distance, type of semantic relation and strength of semantic relation) seem to influence reaction times. However, the relation between prime and target (mediated priming) frequently used could not be the most relevant relation to understand the way of spreading of activation in semantic network in patients with schizophrenia. Finally, patients with formal thought disorders present particularly high priming effects relative to controls. These abnormal semantic priming effects could reflect a dysfunction of automatic spreading activation process and consequently an exaggerated diffusion of activation in the semantic network. In the future, the inclusion of different groups schizophrenic subjects could allow us to determine whether semantic memory disorders are pathognomonic or specific of a particular group of patients with schizophrenia.

  3. Towards Semantic Modelling of Business Processes for Networked Enterprises

    NASA Astrophysics Data System (ADS)

    Furdík, Karol; Mach, Marián; Sabol, Tomáš

    The paper presents an approach to the semantic modelling and annotation of business processes and information resources, as it was designed within the FP7 ICT EU project SPIKE to support creation and maintenance of short-term business alliances and networked enterprises. A methodology for the development of the resource ontology, as a shareable knowledge model for semantic description of business processes, is proposed. Systematically collected user requirements, conceptual models implied by the selected implementation platform as well as available ontology resources and standards are employed in the ontology creation. The process of semantic annotation is described and illustrated using an example taken from a real application case.

  4. A meta-analysis of fMRI studies on Chinese orthographic, phonological, and semantic processing.

    PubMed

    Wu, Chiao-Yi; Ho, Moon-Ho Ringo; Chen, Shen-Hsing Annabel

    2012-10-15

    A growing body of neuroimaging evidence has shown that Chinese character processing recruits differential activation from alphabetic languages due to its unique linguistic features. As more investigations on Chinese character processing have recently become available, we applied a meta-analytic approach to summarize previous findings and examined the neural networks for orthographic, phonological, and semantic processing of Chinese characters independently. The activation likelihood estimation (ALE) method was used to analyze eight studies in the orthographic task category, eleven in the phonological and fifteen in the semantic task categories. Converging activation among three language-processing components was found in the left middle frontal gyrus, the left superior parietal lobule and the left mid-fusiform gyrus, suggesting a common sub-network underlying the character recognition process regardless of the task nature. With increasing task demands, the left inferior parietal lobule and the right superior temporal gyrus were specialized for phonological processing, while the left middle temporal gyrus was involved in semantic processing. Functional dissociation was identified in the left inferior frontal gyrus, with the posterior dorsal part for phonological processing and the anterior ventral part for semantic processing. Moreover, bilateral involvement of the ventral occipito-temporal regions was found for both phonological and semantic processing. The results provide better understanding of the neural networks underlying Chinese orthographic, phonological, and semantic processing, and consolidate the findings of additional recruitment of the left middle frontal gyrus and the right fusiform gyrus for Chinese character processing as compared with the universal language network that has been based on alphabetic languages. Copyright © 2012 Elsevier Inc. All rights reserved.

  5. Organizing Diverse, Distributed Project Information

    NASA Technical Reports Server (NTRS)

    Keller, Richard M.

    2003-01-01

    SemanticOrganizer is a software application designed to organize and integrate information generated within a distributed organization or as part of a project that involves multiple, geographically dispersed collaborators. SemanticOrganizer incorporates the capabilities of database storage, document sharing, hypermedia navigation, and semantic-interlinking into a system that can be customized to satisfy the specific information-management needs of different user communities. The program provides a centralized repository of information that is both secure and accessible to project collaborators via the World Wide Web. SemanticOrganizer's repository can be used to collect diverse information (including forms, documents, notes, data, spreadsheets, images, and sounds) from computers at collaborators work sites. The program organizes the information using a unique network-structured conceptual framework, wherein each node represents a data record that contains not only the original information but also metadata (in effect, standardized data that characterize the information). Links among nodes express semantic relationships among the data records. The program features a Web interface through which users enter, interlink, and/or search for information in the repository. By use of this repository, the collaborators have immediate access to the most recent project information, as well as to archived information. A key advantage to SemanticOrganizer is its ability to interlink information together in a natural fashion using customized terminology and concepts that are familiar to a user community.

  6. Computational approaches for predicting biomedical research collaborations.

    PubMed

    Zhang, Qing; Yu, Hong

    2014-01-01

    Biomedical research is increasingly collaborative, and successful collaborations often produce high impact work. Computational approaches can be developed for automatically predicting biomedical research collaborations. Previous works of collaboration prediction mainly explored the topological structures of research collaboration networks, leaving out rich semantic information from the publications themselves. In this paper, we propose supervised machine learning approaches to predict research collaborations in the biomedical field. We explored both the semantic features extracted from author research interest profile and the author network topological features. We found that the most informative semantic features for author collaborations are related to research interest, including similarity of out-citing citations, similarity of abstracts. Of the four supervised machine learning models (naïve Bayes, naïve Bayes multinomial, SVMs, and logistic regression), the best performing model is logistic regression with an ROC ranging from 0.766 to 0.980 on different datasets. To our knowledge we are the first to study in depth how research interest and productivities can be used for collaboration prediction. Our approach is computationally efficient, scalable and yet simple to implement. The datasets of this study are available at https://github.com/qingzhanggithub/medline-collaboration-datasets.

  7. Path Network Recovery Using Remote Sensing Data and Geospatial-Temporal Semantic Graphs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    William C. McLendon III; Brost, Randy C.

    Remote sensing systems produce large volumes of high-resolution images that are difficult to search. The GeoGraphy (pronounced Geo-Graph-y) framework [2, 20] encodes remote sensing imagery into a geospatial-temporal semantic graph representation to enable high level semantic searches to be performed. Typically scene objects such as buildings and trees tend to be shaped like blocks with few holes, but other shapes generated from path networks tend to have a large number of holes and can span a large geographic region due to their connectedness. For example, we have a dataset covering the city of Philadelphia in which there is a singlemore » road network node spanning a 6 mile x 8 mile region. Even a simple question such as "find two houses near the same street" might give unexpected results. More generally, nodes arising from networks of paths (roads, sidewalks, trails, etc.) require additional processing to make them useful for searches in GeoGraphy. We have assigned the term Path Network Recovery to this process. Path Network Recovery is a three-step process involving (1) partitioning the network node into segments, (2) repairing broken path segments interrupted by occlusions or sensor noise, and (3) adding path-aware search semantics into GeoQuestions. This report covers the path network recovery process, how it is used, and some example use cases of the current capabilities.« less

  8. A Bloom Filter-Powered Technique Supporting Scalable Semantic Discovery in Data Service Networks

    NASA Astrophysics Data System (ADS)

    Zhang, J.; Shi, R.; Bao, Q.; Lee, T. J.; Ramachandran, R.

    2016-12-01

    More and more Earth data analytics software products are published onto the Internet as a service, in the format of either heavyweight WSDL service or lightweight RESTful API. Such reusable data analytics services form a data service network, which allows Earth scientists to compose (mashup) services into value-added ones. Therefore, it is important to have a technique that is capable of helping Earth scientists quickly identify appropriate candidate datasets and services in the global data service network. Most existing services discovery techniques, however, mainly rely on syntax or semantics-based service matchmaking between service requests and available services. Since the scale of the data service network is increasing rapidly, the run-time computational cost will soon become a bottleneck. To address this issue, this project presents a way of applying network routing mechanism to facilitate data service discovery in a service network, featuring scalability and performance. Earth data services are automatically annotated in Web Ontology Language for Services (OWL-S) based on their metadata, semantic information, and usage history. Deterministic Annealing (DA) technique is applied to dynamically organize annotated data services into a hierarchical network, where virtual routers are created to represent semantic local network featuring leading terms. Afterwards Bloom Filters are generated over virtual routers. A data service search request is transformed into a network routing problem in order to quickly locate candidate services through network hierarchy. A neural network-powered technique is applied to assure network address encoding and routing performance. A series of empirical study has been conducted to evaluate the applicability and effectiveness of the proposed approach.

  9. Occipital cortical thickness in very low birth weight born adolescents predicts altered neural specialization of visual semantic category related neural networks.

    PubMed

    Klaver, Peter; Latal, Beatrice; Martin, Ernst

    2015-01-01

    Very low birth weight (VLBW) premature born infants have a high risk to develop visual perceptual and learning deficits as well as widespread functional and structural brain abnormalities during infancy and childhood. Whether and how prematurity alters neural specialization within visual neural networks is still unknown. We used functional and structural brain imaging to examine the visual semantic system of VLBW born (<1250 g, gestational age 25-32 weeks) adolescents (13-15 years, n = 11, 3 males) and matched term born control participants (13-15 years, n = 11, 3 males). Neurocognitive assessment revealed no group differences except for lower scores on an adaptive visuomotor integration test. All adolescents were scanned while viewing pictures of animals and tools and scrambled versions of these pictures. Both groups demonstrated animal and tool category related neural networks. Term born adolescents showed tool category related neural activity, i.e. tool pictures elicited more activity than animal pictures, in temporal and parietal brain areas. Animal category related activity was found in the occipital, temporal and frontal cortex. VLBW born adolescents showed reduced tool category related activity in the dorsal visual stream compared with controls, specifically the left anterior intraparietal sulcus, and enhanced animal category related activity in the left middle occipital gyrus and right lingual gyrus. Lower birth weight of VLBW adolescents correlated with larger thickness of the pericalcarine gyrus in the occipital cortex and smaller surface area of the superior temporal gyrus in the lateral temporal cortex. Moreover, larger thickness of the pericalcarine gyrus and smaller surface area of the superior temporal gyrus correlated with reduced tool category related activity in the parietal cortex. Together, our data suggest that very low birth weight predicts alterations of higher order visual semantic networks, particularly in the dorsal stream. The differences in neural specialization may be associated with aberrant cortical development of areas in the visual system that develop early in childhood. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Semantic Representation of Newly Learned L2 Words and Their Integration in the L2 Lexicon

    ERIC Educational Resources Information Center

    Bordag, Denisa; Kirschenbaum, Amit; Rogahn, Maria; Opitz, Andreas

    2017-01-01

    The present semantic priming study explores the integration of newly learnt L2 German words into the L2 semantic network of German advanced learners. It provides additional evidence in support of earlier findings reporting semantic inhibition effects for emergent representations. An inhibitory mechanism is proposed that temporarily decreases the…

  11. A semantic web ontology for small molecules and their biological targets.

    PubMed

    Choi, Jooyoung; Davis, Melissa J; Newman, Andrew F; Ragan, Mark A

    2010-05-24

    A wide range of data on sequences, structures, pathways, and networks of genes and gene products is available for hypothesis testing and discovery in biological and biomedical research. However, data describing the physical, chemical, and biological properties of small molecules have not been well-integrated with these resources. Semantically rich representations of chemical data, combined with Semantic Web technologies, have the potential to enable the integration of small molecule and biomolecular data resources, expanding the scope and power of biomedical and pharmacological research. We employed the Semantic Web technologies Resource Description Framework (RDF) and Web Ontology Language (OWL) to generate a Small Molecule Ontology (SMO) that represents concepts and provides unique identifiers for biologically relevant properties of small molecules and their interactions with biomolecules, such as proteins. We instanced SMO using data from three public data sources, i.e., DrugBank, PubChem and UniProt, and converted to RDF triples. Evaluation of SMO by use of predetermined competency questions implemented as SPARQL queries demonstrated that data from chemical and biomolecular data sources were effectively represented and that useful knowledge can be extracted. These results illustrate the potential of Semantic Web technologies in chemical, biological, and pharmacological research and in drug discovery.

  12. Episodic Memory, Semantic Memory, and Fluency.

    ERIC Educational Resources Information Center

    Schaefer, Carl F.

    1980-01-01

    Suggests that creating a second-language semantic network can be conceived as developing a plan for retrieving second-language word forms. Characteristics of linguistic performance which will promote fluency are discussed in light of the distinction between episodic and semantic memory. (AMH)

  13. Reliable Adaptive Video Streaming Driven by Perceptual Semantics for Situational Awareness

    PubMed Central

    Pimentel-Niño, M. A.; Saxena, Paresh; Vazquez-Castro, M. A.

    2015-01-01

    A novel cross-layer optimized video adaptation driven by perceptual semantics is presented. The design target is streamed live video to enhance situational awareness in challenging communications conditions. Conventional solutions for recreational applications are inadequate and novel quality of experience (QoE) framework is proposed which allows fully controlled adaptation and enables perceptual semantic feedback. The framework relies on temporal/spatial abstraction for video applications serving beyond recreational purposes. An underlying cross-layer optimization technique takes into account feedback on network congestion (time) and erasures (space) to best distribute available (scarce) bandwidth. Systematic random linear network coding (SRNC) adds reliability while preserving perceptual semantics. Objective metrics of the perceptual features in QoE show homogeneous high performance when using the proposed scheme. Finally, the proposed scheme is in line with content-aware trends, by complying with information-centric-networking philosophy and architecture. PMID:26247057

  14. SITRUS: Semantic Infrastructure for Wireless Sensor Networks

    PubMed Central

    Bispo, Kalil A.; Rosa, Nelson S.; Cunha, Paulo R. F.

    2015-01-01

    Wireless sensor networks (WSNs) are made up of nodes with limited resources, such as processing, bandwidth, memory and, most importantly, energy. For this reason, it is essential that WSNs always work to reduce the power consumption as much as possible in order to maximize its lifetime. In this context, this paper presents SITRUS (semantic infrastructure for wireless sensor networks), which aims to reduce the power consumption of WSN nodes using ontologies. SITRUS consists of two major parts: a message-oriented middleware responsible for both an oriented message communication service and a reconfiguration service; and a semantic information processing module whose purpose is to generate a semantic database that provides the basis to decide whether a WSN node needs to be reconfigurated or not. In order to evaluate the proposed solution, we carried out an experimental evaluation to assess the power consumption and memory usage of WSN applications built atop SITRUS. PMID:26528974

  15. The functional neuroanatomy of autobiographical memory: A meta-analysis

    PubMed Central

    Svoboda, Eva; McKinnon, Margaret C.; Levine, Brian

    2007-01-01

    Autobiographical memory (AM) entails a complex set of operations, including episodic memory, self-reflection, emotion, visual imagery, attention, executive functions, and semantic processes. The heterogeneous nature of AM poses significant challenges in capturing its behavioral and neuroanatomical correlates. Investigators have recently turned their attention to the functional neuroanatomy of AM. We used the effect-location method of meta-analysis to analyze data from 24 functional imaging studies of AM. The results indicated a core neural network of left-lateralized regions, including the medial and ventrolateral prefrontal, medial and lateral temporal and retrosplenial/posterior cingulate cortices, the temporoparietal junction and the cerebellum. Secondary and tertiary regions, less frequently reported in imaging studies of AM, are also identified. We examined the neural correlates of putative component processes in AM, including, executive functions, self-reflection, episodic remembering and visuospatial processing. We also separately analyzed the effect of select variables on the AM network across individual studies, including memory age, qualitative factors (personal significance, level of detail and vividness), semantic and emotional content, and the effect of reference conditions. We found that memory age effects on medial temporal lobe structures may be modulated by qualitative aspects of memory. Studies using rest as a control task masked process-specific components of the AM neural network. Our findings support a neural distinction between episodic and semantic memory in AM. Finally, emotional events produced a shift in lateralization of the AM network with activation observed in emotion-centered regions and deactivation (or lack of activation) observed in regions associated with cognitive processes. PMID:16806314

  16. A Sieving ANN for Emotion-Based Movie Clip Classification

    NASA Astrophysics Data System (ADS)

    Watanapa, Saowaluk C.; Thipakorn, Bundit; Charoenkitkarn, Nipon

    Effective classification and analysis of semantic contents are very important for the content-based indexing and retrieval of video database. Our research attempts to classify movie clips into three groups of commonly elicited emotions, namely excitement, joy and sadness, based on a set of abstract-level semantic features extracted from the film sequence. In particular, these features consist of six visual and audio measures grounded on the artistic film theories. A unique sieving-structured neural network is proposed to be the classifying model due to its robustness. The performance of the proposed model is tested with 101 movie clips excerpted from 24 award-winning and well-known Hollywood feature films. The experimental result of 97.8% correct classification rate, measured against the collected human-judges, indicates the great potential of using abstract-level semantic features as an engineered tool for the application of video-content retrieval/indexing.

  17. Cross-modal integration of lexical-semantic features during word processing: evidence from oscillatory dynamics during EEG.

    PubMed

    van Ackeren, Markus J; Rueschemeyer, Shirley-Ann

    2014-01-01

    In recent years, numerous studies have provided converging evidence that word meaning is partially stored in modality-specific cortical networks. However, little is known about the mechanisms supporting the integration of this distributed semantic content into coherent conceptual representations. In the current study we aimed to address this issue by using EEG to look at the spatial and temporal dynamics of feature integration during word comprehension. Specifically, participants were presented with two modality-specific features (i.e., visual or auditory features such as silver and loud) and asked to verify whether these two features were compatible with a subsequently presented target word (e.g., WHISTLE). Each pair of features described properties from either the same modality (e.g., silver, tiny  =  visual features) or different modalities (e.g., silver, loud  =  visual, auditory). Behavioral and EEG data were collected. The results show that verifying features that are putatively represented in the same modality-specific network is faster than verifying features across modalities. At the neural level, integrating features across modalities induces sustained oscillatory activity around the theta range (4-6 Hz) in left anterior temporal lobe (ATL), a putative hub for integrating distributed semantic content. In addition, enhanced long-range network interactions in the theta range were seen between left ATL and a widespread cortical network. These results suggest that oscillatory dynamics in the theta range could be involved in integrating multimodal semantic content by creating transient functional networks linking distributed modality-specific networks and multimodal semantic hubs such as left ATL.

  18. Rule-based support system for multiple UMLS semantic type assignments

    PubMed Central

    Geller, James; He, Zhe; Perl, Yehoshua; Morrey, C. Paul; Xu, Julia

    2012-01-01

    Background When new concepts are inserted into the UMLS, they are assigned one or several semantic types from the UMLS Semantic Network by the UMLS editors. However, not every combination of semantic types is permissible. It was observed that many concepts with rare combinations of semantic types have erroneous semantic type assignments or prohibited combinations of semantic types. The correction of such errors is resource-intensive. Objective We design a computational system to inform UMLS editors as to whether a specific combination of two, three, four, or five semantic types is permissible or prohibited or questionable. Methods We identify a set of inclusion and exclusion instructions in the UMLS Semantic Network documentation and derive corresponding rule-categories as well as rule-categories from the UMLS concept content. We then design an algorithm adviseEditor based on these rule-categories. The algorithm specifies rules for an editor how to proceed when considering a tuple (pair, triple, quadruple, quintuple) of semantic types to be assigned to a concept. Results Eight rule-categories were identified. A Web-based system was developed to implement the adviseEditor algorithm, which returns for an input combination of semantic types whether it is permitted, prohibited or (in a few cases) requires more research. The numbers of semantic type pairs assigned to each rule-category are reported. Interesting examples for each rule-category are illustrated. Cases of semantic type assignments that contradict rules are listed, including recently introduced ones. Conclusion The adviseEditor system implements explicit and implicit knowledge available in the UMLS in a system that informs UMLS editors about the permissibility of a desired combination of semantic types. Using adviseEditor might help accelerate the work of the UMLS editors and prevent erroneous semantic type assignments. PMID:23041716

  19. Classification with an edge: Improving semantic image segmentation with boundary detection

    NASA Astrophysics Data System (ADS)

    Marmanis, D.; Schindler, K.; Wegner, J. D.; Galliani, S.; Datcu, M.; Stilla, U.

    2018-01-01

    We present an end-to-end trainable deep convolutional neural network (DCNN) for semantic segmentation with built-in awareness of semantically meaningful boundaries. Semantic segmentation is a fundamental remote sensing task, and most state-of-the-art methods rely on DCNNs as their workhorse. A major reason for their success is that deep networks learn to accumulate contextual information over very large receptive fields. However, this success comes at a cost, since the associated loss of effective spatial resolution washes out high-frequency details and leads to blurry object boundaries. Here, we propose to counter this effect by combining semantic segmentation with semantically informed edge detection, thus making class boundaries explicit in the model. First, we construct a comparatively simple, memory-efficient model by adding boundary detection to the SEGNET encoder-decoder architecture. Second, we also include boundary detection in FCN-type models and set up a high-end classifier ensemble. We show that boundary detection significantly improves semantic segmentation with CNNs in an end-to-end training scheme. Our best model achieves >90% overall accuracy on the ISPRS Vaihingen benchmark.

  20. A Method for Predicting Protein Complexes from Dynamic Weighted Protein-Protein Interaction Networks.

    PubMed

    Liu, Lizhen; Sun, Xiaowu; Song, Wei; Du, Chao

    2018-06-01

    Predicting protein complexes from protein-protein interaction (PPI) network is of great significance to recognize the structure and function of cells. A protein may interact with different proteins under different time or conditions. Existing approaches only utilize static PPI network data that may lose much temporal biological information. First, this article proposed a novel method that combines gene expression data at different time points with traditional static PPI network to construct different dynamic subnetworks. Second, to further filter out the data noise, the semantic similarity based on gene ontology is regarded as the network weight together with the principal component analysis, which is introduced to deal with the weight computing by three traditional methods. Third, after building a dynamic PPI network, a predicting protein complexes algorithm based on "core-attachment" structural feature is applied to detect complexes from each dynamic subnetworks. Finally, it is revealed from the experimental results that our method proposed in this article performs well on detecting protein complexes from dynamic weighted PPI networks.

  1. Semantic deficits in Spanish-English bilingual children with language impairment.

    PubMed

    Sheng, Li; Peña, Elizabeth D; Bedore, Lisa M; Fiestas, Christine E

    2012-02-01

    To examine the nature and extent of semantic deficits in bilingual children with language impairment (LI). Thirty-seven Spanish-English bilingual children with LI (ranging from age 7;0 [years;months] to 9;10) and 37 typically developing (TD) age-matched peers generated 3 associations to 12 pairs of translation equivalents in English and Spanish. Responses were coded as paradigmatic (e.g., dinner-lunch, cena-desayuno [dinner-breakfast]), syntagmatic (e.g., delicious-pizza, delicioso-frijoles [delicious-beans]), and errors (e.g., wearing-where, vestirse-mal [to get dressed-bad]). A semantic depth score was derived in each language and conceptually by combining children's performance in both languages. The LI group achieved significantly lower semantic depth scores than the TD group after controlling for group differences in vocabulary size. Children showed higher conceptual scores than single-language scores. Both groups showed decreases in semantic depth scores across multiple elicitations. Analyses of individual performances indicated that semantic deficits (1 SD below the TD mean semantic depth score) were manifested in 65% of the children with LI and in 14% of the TD children. School-age bilingual children with and without LI demonstrated spreading activation of semantic networks. Consistent with the literature on monolingual children with LI, sparsely linked semantic networks characterize a considerable proportion of bilingual children with LI.

  2. Beyond the word and image: II- Structural and functional connectivity of a common semantic system.

    PubMed

    Jouen, A L; Ellmore, T M; Madden-Lombardi, C J; Pallier, C; Dominey, P F; Ventre-Dominey, J

    2018-02-01

    Understanding events requires interplaying cognitive processes arising in neural networks whose organisation and connectivity remain subjects of controversy in humans. In the present study, by combining diffusion tensor imaging and functional interaction analysis, we aim to provide new insights on the organisation of the structural and functional pathways connecting the multiple nodes of the identified semantic system -shared by vision and language (Jouen et al., 2015). We investigated a group of 19 healthy human subjects during experimental tasks of reading sentences or seeing pictures. The structural connectivity was realised by deterministic tractography using an algorithm to extract white matter fibers terminating in the selected regions of interest (ROIs) and the functional connectivity by independent component analysis to measure correlated activities among these ROIs. The major connections link ventral neural stuctures including the parietal and temporal cortices through inferior and middle longitudinal fasciculi, the retrosplenial and parahippocampal cortices through the cingulate bundle, and the temporal and prefrontal structures through the uncinate fasciculus. The imageability score provided when the subject was reading a sentence was significantly correlated with the factor of anisotropy of the left parieto-temporal connections of the middle longitudinal fasciculus. A large part of this ventrally localised structural connectivity corresponds to functional interactions between the main parietal, temporal and frontal nodes. More precisely, the strong coactivation both in the anterior temporal pole and in the region of the temporo-parietal cortex suggests dual and cooperating roles for these areas within the semantic system. These findings are discussed in terms of two semantics-related sub-systems responsible for conceptual representation. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Distinct neural substrates for semantic knowledge and naming in the temporoparietal network.

    PubMed

    Gesierich, Benno; Jovicich, Jorge; Riello, Marianna; Adriani, Michela; Monti, Alessia; Brentari, Valentina; Robinson, Simon D; Wilson, Stephen M; Fairhall, Scott L; Gorno-Tempini, Maria Luisa

    2012-10-01

    Patients with anterior temporal lobe (ATL) lesions show semantic and lexical retrieval deficits, and the differential role of this area in the 2 processes is debated. Functional neuroimaging in healthy individuals has not clarified the matter because semantic and lexical processes usually occur simultaneously and automatically. Furthermore, the ATL is a region challenging for functional magnetic resonance imaging (fMRI) due to susceptibility artifacts, especially at high fields. In this study, we established an optimized ATL-sensitive fMRI acquisition protocol at 4 T and applied an event-related paradigm to study the identification (i.e., association of semantic biographical information) of celebrities, with and without the ability to retrieve their proper names. While semantic processing reliably activated the ATL, only more posterior areas in the left temporal and temporal-parietal junction were significantly modulated by covert lexical retrieval. These results suggest that within a temporoparietal network, the ATL is relatively more important for semantic processing, and posterior language regions are relatively more important for lexical retrieval.

  4. Using a high-dimensional graph of semantic space to model relationships among words

    PubMed Central

    Jackson, Alice F.; Bolger, Donald J.

    2014-01-01

    The GOLD model (Graph Of Language Distribution) is a network model constructed based on co-occurrence in a large corpus of natural language that may be used to explore what information may be present in a graph-structured model of language, and what information may be extracted through theoretically-driven algorithms as well as standard graph analysis methods. The present study will employ GOLD to examine two types of relationship between words: semantic similarity and associative relatedness. Semantic similarity refers to the degree of overlap in meaning between words, while associative relatedness refers to the degree to which two words occur in the same schematic context. It is expected that a graph structured model of language constructed based on co-occurrence should easily capture associative relatedness, because this type of relationship is thought to be present directly in lexical co-occurrence. However, it is hypothesized that semantic similarity may be extracted from the intersection of the set of first-order connections, because two words that are semantically similar may occupy similar thematic or syntactic roles across contexts and thus would co-occur lexically with the same set of nodes. Two versions the GOLD model that differed in terms of the co-occurence window, bigGOLD at the paragraph level and smallGOLD at the adjacent word level, were directly compared to the performance of a well-established distributional model, Latent Semantic Analysis (LSA). The superior performance of the GOLD models (big and small) suggest that a single acquisition and storage mechanism, namely co-occurrence, can account for associative and conceptual relationships between words and is more psychologically plausible than models using singular value decomposition (SVD). PMID:24860525

  5. Using a high-dimensional graph of semantic space to model relationships among words.

    PubMed

    Jackson, Alice F; Bolger, Donald J

    2014-01-01

    The GOLD model (Graph Of Language Distribution) is a network model constructed based on co-occurrence in a large corpus of natural language that may be used to explore what information may be present in a graph-structured model of language, and what information may be extracted through theoretically-driven algorithms as well as standard graph analysis methods. The present study will employ GOLD to examine two types of relationship between words: semantic similarity and associative relatedness. Semantic similarity refers to the degree of overlap in meaning between words, while associative relatedness refers to the degree to which two words occur in the same schematic context. It is expected that a graph structured model of language constructed based on co-occurrence should easily capture associative relatedness, because this type of relationship is thought to be present directly in lexical co-occurrence. However, it is hypothesized that semantic similarity may be extracted from the intersection of the set of first-order connections, because two words that are semantically similar may occupy similar thematic or syntactic roles across contexts and thus would co-occur lexically with the same set of nodes. Two versions the GOLD model that differed in terms of the co-occurence window, bigGOLD at the paragraph level and smallGOLD at the adjacent word level, were directly compared to the performance of a well-established distributional model, Latent Semantic Analysis (LSA). The superior performance of the GOLD models (big and small) suggest that a single acquisition and storage mechanism, namely co-occurrence, can account for associative and conceptual relationships between words and is more psychologically plausible than models using singular value decomposition (SVD).

  6. The canonical semantic network supports residual language function in chronic post-stroke aphasia

    PubMed Central

    Griffis, Joseph C.; Nenert, Rodolphe; Allendorfer, Jane B.; Vannest, Jennifer; Holland, Scott; Dietz, Aimee; Szaflarski, Jerzy P.

    2016-01-01

    Current theories of language recovery after stroke are limited by a reliance on small studies. Here, we aimed to test predictions of current theory and resolve inconsistencies regarding right hemispheric contributions to long-term recovery. We first defined the canonical semantic network in 43 healthy controls. Then, in a group of 43 patients with chronic post-stroke aphasia, we tested whether activity in this network predicted performance on measures of semantic comprehension, naming, and fluency while controlling for lesion volume effects. Canonical network activation accounted for 22–33% of the variance in language test scores. Whole-brain analyses corroborated these findings, and revealed a core set of regions showing positive relationships to all language measures. We next evaluated the relationship between activation magnitudes in left and right hemispheric portions of the network, and characterized how right hemispheric activation related to the extent of left hemispheric damage. Activation magnitudes in each hemispheric network were strongly correlated, but four right frontal regions showed heightened activity in patients with large lesions. Activity in two of these regions (inferior frontal gyrus pars opercularis and supplementary motor area) was associated with better language abilities in patients with larger lesions, but poorer language abilities in patients with smaller lesions. Our results indicate that bilateral language networks support language processing after stroke, and that right hemispheric activations related to extensive left hemisphere damage occur outside of the canonical semantic network and differentially relate to behavior depending on the extent of left hemispheric damage. PMID:27981674

  7. Aging and Semantic Activation.

    ERIC Educational Resources Information Center

    Howard, Darlene V.

    Three studies tested the theory that long term memory consists of a semantically organized network of concept nodes interconnected by leveled associations or relations, and that when a stimulus is processed, the corresponding concept node is assumed to be temporarily activated and this activation spreads to nearby semantically related nodes. In…

  8. Focal temporal pole atrophy and network degeneration in semantic variant primary progressive aphasia

    PubMed Central

    Collins, Jessica A; Montal, Victor; Hochberg, Daisy; Quimby, Megan; Mandelli, Maria Luisa; Makris, Nikos; Seeley, William W; Gorno-Tempini, Maria Luisa; Dickerson, Bradford C

    2017-01-01

    Abstract A wealth of neuroimaging research has associated semantic variant primary progressive aphasia with distributed cortical atrophy that is most prominent in the left anterior temporal cortex; however, there is little consensus regarding which region within the anterior temporal cortex is most prominently damaged, which may indicate the putative origin of neurodegeneration. In this study, we localized the most prominent and consistent region of atrophy in semantic variant primary progressive aphasia using cortical thickness analysis in two independent patient samples (n = 16 and 28, respectively) relative to age-matched controls (n = 30). Across both samples the point of maximal atrophy was located in the same region of the left temporal pole. This same region was the point of maximal atrophy in 100% of individual patients in both semantic variant primary progressive aphasia samples. Using resting state functional connectivity in healthy young adults (n = 89), we showed that the seed region derived from the semantic variant primary progressive aphasia analysis was strongly connected with a large-scale network that closely resembled the distributed atrophy pattern in semantic variant primary progressive aphasia. In both patient samples, the magnitude of atrophy within a brain region was predicted by that region’s strength of functional connectivity to the temporopolar seed region in healthy adults. These findings suggest that cortical atrophy in semantic variant primary progressive aphasia may follow connectional pathways within a large-scale network that converges on the temporal pole. PMID:28040670

  9. GFD-Net: A novel semantic similarity methodology for the analysis of gene networks.

    PubMed

    Díaz-Montaña, Juan J; Díaz-Díaz, Norberto; Gómez-Vela, Francisco

    2017-04-01

    Since the popularization of biological network inference methods, it has become crucial to create methods to validate the resulting models. Here we present GFD-Net, the first methodology that applies the concept of semantic similarity to gene network analysis. GFD-Net combines the concept of semantic similarity with the use of gene network topology to analyze the functional dissimilarity of gene networks based on Gene Ontology (GO). The main innovation of GFD-Net lies in the way that semantic similarity is used to analyze gene networks taking into account the network topology. GFD-Net selects a functionality for each gene (specified by a GO term), weights each edge according to the dissimilarity between the nodes at its ends and calculates a quantitative measure of the network functional dissimilarity, i.e. a quantitative value of the degree of dissimilarity between the connected genes. The robustness of GFD-Net as a gene network validation tool was demonstrated by performing a ROC analysis on several network repositories. Furthermore, a well-known network was analyzed showing that GFD-Net can also be used to infer knowledge. The relevance of GFD-Net becomes more evident in Section "GFD-Net applied to the study of human diseases" where an example of how GFD-Net can be applied to the study of human diseases is presented. GFD-Net is available as an open-source Cytoscape app which offers a user-friendly interface to configure and execute the algorithm as well as the ability to visualize and interact with the results(http://apps.cytoscape.org/apps/gfdnet). Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Knowledge represented using RDF semantic network in the concept of semantic web

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lukasova, A., E-mail: alena.lukasova@osu.cz; Vajgl, M., E-mail: marek.vajgl@osu.cz; Zacek, M., E-mail: martin.zacek@osu.cz

    The RDF(S) model has been declared as the basic model to capture knowledge of the semantic web. It provides a common and flexible way to decompose composed knowledge to elementary statements, which can be represented by RDF triples or by RDF graph vectors. From the logical point of view, elements of knowledge can be expressed using at most binary predicates, which can be converted to RDF-triples or graph vectors. However, it is not able to capture implicit knowledge representable by logical formulas. This contribution shows how existing approaches (semantic networks and clausal form logic) can be combined together with RDFmore » to obtain RDF-compatible system with ability to represent implicit knowledge and inference over knowledge base.« less

  11. Clinical Diagnostics in Human Genetics with Semantic Similarity Searches in Ontologies

    PubMed Central

    Köhler, Sebastian; Schulz, Marcel H.; Krawitz, Peter; Bauer, Sebastian; Dölken, Sandra; Ott, Claus E.; Mundlos, Christine; Horn, Denise; Mundlos, Stefan; Robinson, Peter N.

    2009-01-01

    The differential diagnostic process attempts to identify candidate diseases that best explain a set of clinical features. This process can be complicated by the fact that the features can have varying degrees of specificity, as well as by the presence of features unrelated to the disease itself. Depending on the experience of the physician and the availability of laboratory tests, clinical abnormalities may be described in greater or lesser detail. We have adapted semantic similarity metrics to measure phenotypic similarity between queries and hereditary diseases annotated with the use of the Human Phenotype Ontology (HPO) and have developed a statistical model to assign p values to the resulting similarity scores, which can be used to rank the candidate diseases. We show that our approach outperforms simpler term-matching approaches that do not take the semantic interrelationships between terms into account. The advantage of our approach was greater for queries containing phenotypic noise or imprecise clinical descriptions. The semantic network defined by the HPO can be used to refine the differential diagnosis by suggesting clinical features that, if present, best differentiate among the candidate diagnoses. Thus, semantic similarity searches in ontologies represent a useful way of harnessing the semantic structure of human phenotypic abnormalities to help with the differential diagnosis. We have implemented our methods in a freely available web application for the field of human Mendelian disorders. PMID:19800049

  12. Leveraging Large-Scale Semantic Networks for Adaptive Robot Task Learning and Execution.

    PubMed

    Boteanu, Adrian; St Clair, Aaron; Mohseni-Kabir, Anahita; Saldanha, Carl; Chernova, Sonia

    2016-12-01

    This work seeks to leverage semantic networks containing millions of entries encoding assertions of commonsense knowledge to enable improvements in robot task execution and learning. The specific application we explore in this project is object substitution in the context of task adaptation. Humans easily adapt their plans to compensate for missing items in day-to-day tasks, substituting a wrap for bread when making a sandwich, or stirring pasta with a fork when out of spoons. Robot plan execution, however, is far less robust, with missing objects typically leading to failure if the robot is not aware of alternatives. In this article, we contribute a context-aware algorithm that leverages the linguistic information embedded in the task description to identify candidate substitution objects without reliance on explicit object affordance information. Specifically, we show that the task context provided by the task labels within the action structure of a task plan can be leveraged to disambiguate information within a noisy large-scale semantic network containing hundreds of potential object candidates to identify successful object substitutions with high accuracy. We present two extensive evaluations of our work on both abstract and real-world robot tasks, showing that the substitutions made by our system are valid, accepted by users, and lead to a statistically significant reduction in robot learning time. In addition, we report the outcomes of testing our approach with a large number of crowd workers interacting with a robot in real time.

  13. Applying Semantic Web Services and Wireless Sensor Networks for System Integration

    NASA Astrophysics Data System (ADS)

    Berkenbrock, Gian Ricardo; Hirata, Celso Massaki; de Oliveira Júnior, Frederico Guilherme Álvares; de Oliveira, José Maria Parente

    In environments like factories, buildings, and homes automation services tend to often change during their lifetime. Changes are concerned to business rules, process optimization, cost reduction, and so on. It is important to provide a smooth and straightforward way to deal with these changes so that could be handled in a faster and low cost manner. Some prominent solutions use the flexibility of Wireless Sensor Networks and the meaningful description of Semantic Web Services to provide service integration. In this work, we give an overview of current solutions for machinery integration that combine both technologies as well as a discussion about some perspectives and open issues when applying Wireless Sensor Networks and Semantic Web Services for automation services integration.

  14. Fully convolutional network with cluster for semantic segmentation

    NASA Astrophysics Data System (ADS)

    Ma, Xiao; Chen, Zhongbi; Zhang, Jianlin

    2018-04-01

    At present, image semantic segmentation technology has been an active research topic for scientists in the field of computer vision and artificial intelligence. Especially, the extensive research of deep neural network in image recognition greatly promotes the development of semantic segmentation. This paper puts forward a method based on fully convolutional network, by cluster algorithm k-means. The cluster algorithm using the image's low-level features and initializing the cluster centers by the super-pixel segmentation is proposed to correct the set of points with low reliability, which are mistakenly classified in great probability, by the set of points with high reliability in each clustering regions. This method refines the segmentation of the target contour and improves the accuracy of the image segmentation.

  15. ASP-based method for the enumeration of attractors in non-deterministic synchronous and asynchronous multi-valued networks.

    PubMed

    Ben Abdallah, Emna; Folschette, Maxime; Roux, Olivier; Magnin, Morgan

    2017-01-01

    This paper addresses the problem of finding attractors in biological regulatory networks. We focus here on non-deterministic synchronous and asynchronous multi-valued networks, modeled using automata networks (AN). AN is a general and well-suited formalism to study complex interactions between different components (genes, proteins,...). An attractor is a minimal trap domain, that is, a part of the state-transition graph that cannot be escaped. Such structures are terminal components of the dynamics and take the form of steady states (singleton) or complex compositions of cycles (non-singleton). Studying the effect of a disease or a mutation on an organism requires finding the attractors in the model to understand the long-term behaviors. We present a computational logical method based on answer set programming (ASP) to identify all attractors. Performed without any network reduction, the method can be applied on any dynamical semantics. In this paper, we present the two most widespread non-deterministic semantics: the asynchronous and the synchronous updating modes. The logical approach goes through a complete enumeration of the states of the network in order to find the attractors without the necessity to construct the whole state-transition graph. We realize extensive computational experiments which show good performance and fit the expected theoretical results in the literature. The originality of our approach lies on the exhaustive enumeration of all possible (sets of) states verifying the properties of an attractor thanks to the use of ASP. Our method is applied to non-deterministic semantics in two different schemes (asynchronous and synchronous). The merits of our methods are illustrated by applying them to biological examples of various sizes and comparing the results with some existing approaches. It turns out that our approach succeeds to exhaustively enumerate on a desktop computer, in a large model (100 components), all existing attractors up to a given size (20 states). This size is only limited by memory and computation time.

  16. Residual Shuffling Convolutional Neural Networks for Deep Semantic Image Segmentation Using Multi-Modal Data

    NASA Astrophysics Data System (ADS)

    Chen, K.; Weinmann, M.; Gao, X.; Yan, M.; Hinz, S.; Jutzi, B.; Weinmann, M.

    2018-05-01

    In this paper, we address the deep semantic segmentation of aerial imagery based on multi-modal data. Given multi-modal data composed of true orthophotos and the corresponding Digital Surface Models (DSMs), we extract a variety of hand-crafted radiometric and geometric features which are provided separately and in different combinations as input to a modern deep learning framework. The latter is represented by a Residual Shuffling Convolutional Neural Network (RSCNN) combining the characteristics of a Residual Network with the advantages of atrous convolution and a shuffling operator to achieve a dense semantic labeling. Via performance evaluation on a benchmark dataset, we analyze the value of different feature sets for the semantic segmentation task. The derived results reveal that the use of radiometric features yields better classification results than the use of geometric features for the considered dataset. Furthermore, the consideration of data on both modalities leads to an improvement of the classification results. However, the derived results also indicate that the use of all defined features is less favorable than the use of selected features. Consequently, data representations derived via feature extraction and feature selection techniques still provide a gain if used as the basis for deep semantic segmentation.

  17. Scene Semantic Segmentation from Indoor Rgb-D Images Using Encode-Decoder Fully Convolutional Networks

    NASA Astrophysics Data System (ADS)

    Wang, Z.; Li, T.; Pan, L.; Kang, Z.

    2017-09-01

    With increasing attention for the indoor environment and the development of low-cost RGB-D sensors, indoor RGB-D images are easily acquired. However, scene semantic segmentation is still an open area, which restricts indoor applications. The depth information can help to distinguish the regions which are difficult to be segmented out from the RGB images with similar color or texture in the indoor scenes. How to utilize the depth information is the key problem of semantic segmentation for RGB-D images. In this paper, we propose an Encode-Decoder Fully Convolutional Networks for RGB-D image classification. We use Multiple Kernel Maximum Mean Discrepancy (MK-MMD) as a distance measure to find common and special features of RGB and D images in the network to enhance performance of classification automatically. To explore better methods of applying MMD, we designed two strategies; the first calculates MMD for each feature map, and the other calculates MMD for whole batch features. Based on the result of classification, we use the full connect CRFs for the semantic segmentation. The experimental results show that our method can achieve a good performance on indoor RGB-D image semantic segmentation.

  18. Order recall in verbal short-term memory: The role of semantic networks.

    PubMed

    Poirier, Marie; Saint-Aubin, Jean; Mair, Ali; Tehan, Gerry; Tolan, Anne

    2015-04-01

    In their recent article, Acheson, MacDonald, and Postle (Journal of Experimental Psychology: Learning, Memory, and Cognition 37:44-59, 2011) made an important but controversial suggestion: They hypothesized that (a) semantic information has an effect on order information in short-term memory (STM) and (b) order recall in STM is based on the level of activation of items within the relevant lexico-semantic long-term memory (LTM) network. However, verbal STM research has typically led to the conclusion that factors such as semantic category have a large effect on the number of correctly recalled items, but little or no impact on order recall (Poirier & Saint-Aubin, Quarterly Journal of Experimental Psychology 48A:384-404, 1995; Saint-Aubin, Ouellette, & Poirier, Psychonomic Bulletin & Review 12:171-177, 2005; Tse, Memory 17:874-891, 2009). Moreover, most formal models of short-term order memory currently suggest a separate mechanism for order coding-that is, one that is separate from item representation and not associated with LTM lexico-semantic networks. Both of the experiments reported here tested the predictions that we derived from Acheson et al. The findings show that, as predicted, manipulations aiming to affect the activation of item representations significantly impacted order memory.

  19. CaseLog: semantic network interface to a student computer-based patient record system.

    PubMed Central

    Cimino, C.; Goldman, E. K.; Curtis, J. A.; Reichgott, M. J.

    1993-01-01

    We have developed a computer program called CaseLog, which serves as an exemplary, computer-based patient record (CPR) system. The program allows for the introduction of the students to issues unique to patient record systems. These include record security, unique patient identifiers, and the use of controlled vocabularies. A particularly challenging aspect of the development of this program was allowing for student entry of controlled vocabulary terms. There were four goals we wished to achieve: students should be able to find the terms they are looking for; once a term has been found, it should be easy to find contextually related terms; it should be easy to determine that a sought-for term is not in the vocabulary; and the structure of the vocabulary should be dynamically altered by contextual information to allow its use for a variety of purposes. We chose a semantic network for our vocabulary structure. Within the processing power of the equipment we were working with, we achieved our goals. This paper will describe the development of the vocabulary, the design of the CaseLog program, and the feedback from student users of the program. PMID:8130581

  20. Structure Discovery in Large Semantic Graphs Using Extant Ontological Scaling and Descriptive Statistics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    al-Saffar, Sinan; Joslyn, Cliff A.; Chappell, Alan R.

    As semantic datasets grow to be very large and divergent, there is a need to identify and exploit their inherent semantic structure for discovery and optimization. Towards that end, we present here a novel methodology to identify the semantic structures inherent in an arbitrary semantic graph dataset. We first present the concept of an extant ontology as a statistical description of the semantic relations present amongst the typed entities modeled in the graph. This serves as a model of the underlying semantic structure to aid in discovery and visualization. We then describe a method of ontological scaling in which themore » ontology is employed as a hierarchical scaling filter to infer different resolution levels at which the graph structures are to be viewed or analyzed. We illustrate these methods on three large and publicly available semantic datasets containing more than one billion edges each. Keywords-Semantic Web; Visualization; Ontology; Multi-resolution Data Mining;« less

  1. Depth Reconstruction from Single Images Using a Convolutional Neural Network and a Condition Random Field Model.

    PubMed

    Liu, Dan; Liu, Xuejun; Wu, Yiguang

    2018-04-24

    This paper presents an effective approach for depth reconstruction from a single image through the incorporation of semantic information and local details from the image. A unified framework for depth acquisition is constructed by joining a deep Convolutional Neural Network (CNN) and a continuous pairwise Conditional Random Field (CRF) model. Semantic information and relative depth trends of local regions inside the image are integrated into the framework. A deep CNN network is firstly used to automatically learn a hierarchical feature representation of the image. To get more local details in the image, the relative depth trends of local regions are incorporated into the network. Combined with semantic information of the image, a continuous pairwise CRF is then established and is used as the loss function of the unified model. Experiments on real scenes demonstrate that the proposed approach is effective and that the approach obtains satisfactory results.

  2. The cognitive structural approach for image restoration

    NASA Astrophysics Data System (ADS)

    Mardare, Igor; Perju, Veacheslav; Casasent, David

    2008-03-01

    It is analyzed the important and actual problem of the defective images of scenes restoration. The proposed approach provides restoration of scenes by a system on the basis of human intelligence phenomena reproduction used for restoration-recognition of images. The cognitive models of the restoration process are elaborated. The models are realized by the intellectual processors constructed on the base of neural networks and associative memory using neural network simulator NNToolbox from MATLAB 7.0. The models provides restoration and semantic designing of images of scenes under defective images of the separate objects.

  3. Fronto-temporal interactions are functionally relevant for semantic control in language processing.

    PubMed

    Wawrzyniak, Max; Hoffstaedter, Felix; Klingbeil, Julian; Stockert, Anika; Wrede, Katrin; Hartwigsen, Gesa; Eickhoff, Simon B; Classen, Joseph; Saur, Dorothee

    2017-01-01

    Semantic cognition, i.e. processing of meaning is based on semantic representations and their controlled retrieval. Semantic control has been shown to be implemented in a network that consists of left inferior frontal (IFG), and anterior and posterior middle temporal gyri (a/pMTG). We aimed to disrupt semantic control processes with continuous theta burst stimulation (cTBS) over left IFG and pMTG and to study whether behavioral effects are moderated by induced alterations in resting-state functional connectivity. To this end, we applied real cTBS over left IFG and left pMTG as well as sham stimulation on 20 healthy participants in a within-subject design. Stimulation was followed by resting-state functional magnetic resonance imaging and a semantic priming paradigm. Resting-state functional connectivity of regions of interest in left IFG, pMTG and aMTG revealed highly interconnected left-lateralized fronto-temporal networks representing the semantic system. We did not find any significant direct modulation of either task performance or resting-state functional connectivity by effective cTBS. However, after sham cTBS, functional connectivity between IFG and pMTG correlated with task performance under high semantic control demands in the semantic priming paradigm. These findings provide evidence for the functional relevance of interactions between IFG and pMTG for semantic control processes. This interaction was functionally less relevant after cTBS over aIFG which might be interpretable in terms of an indirect disruptive effect of cTBS.

  4. Using triggered operations to offload collective communication operations.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barrett, Brian W.; Hemmert, K. Scott; Underwood, Keith Douglas

    2010-04-01

    Efficient collective operations are a major component of application scalability. Offload of collective operations onto the network interface reduces many of the latencies that are inherent in network communications and, consequently, reduces the time to perform the collective operation. To support offload, it is desirable to expose semantic building blocks that are simple to offload and yet powerful enough to implement a variety of collective algorithms. This paper presents the implementation of barrier and broadcast leveraging triggered operations - a semantic building block for collective offload. Triggered operations are shown to be both semantically powerful and capable of improving performance.

  5. [Semantic Network Analysis of Online News and Social Media Text Related to Comprehensive Nursing Care Service].

    PubMed

    Kim, Minji; Choi, Mona; Youm, Yoosik

    2017-12-01

    As comprehensive nursing care service has gradually expanded, it has become necessary to explore the various opinions about it. The purpose of this study is to explore the large amount of text data regarding comprehensive nursing care service extracted from online news and social media by applying a semantic network analysis. The web pages of the Korean Nurses Association (KNA) News, major daily newspapers, and Twitter were crawled by searching the keyword 'comprehensive nursing care service' using Python. A morphological analysis was performed using KoNLPy. Nodes on a 'comprehensive nursing care service' cluster were selected, and frequency, edge weight, and degree centrality were calculated and visualized with Gephi for the semantic network. A total of 536 news pages and 464 tweets were analyzed. In the KNA News and major daily newspapers, 'nursing workforce' and 'nursing service' were highly rated in frequency, edge weight, and degree centrality. On Twitter, the most frequent nodes were 'National Health Insurance Service' and 'comprehensive nursing care service hospital.' The nodes with the highest edge weight were 'national health insurance,' 'wards without caregiver presence,' and 'caregiving costs.' 'National Health Insurance Service' was highest in degree centrality. This study provides an example of how to use atypical big data for a nursing issue through semantic network analysis to explore diverse perspectives surrounding the nursing community through various media sources. Applying semantic network analysis to online big data to gather information regarding various nursing issues would help to explore opinions for formulating and implementing nursing policies. © 2017 Korean Society of Nursing Science

  6. ERP Evidence for the Activation of Syntactic Structure During Comprehension of Lexical Idiom.

    PubMed

    Zhang, Meichao; Lu, Aitao; Song, Pingfang

    2017-10-01

    The present study used event-related potentials to investigate whether the syntactic structure was activated in the comprehension of lexical idioms, and if so, whether it varied as a function of familiarity and semantic transparency. Participants were asked to passively read the "1+2" structural Chinese lexical idioms with each being presented following 3-5 contextual "1+2" (congruent-structure condition) or "2+1" structural Chinese phrases (incongruent-structure condition). The N400 ERP responses showed more positivity in congruent-structure condition relative to incongruent-structure condition in idioms with high familiarity and high semantic transparency, but less positivity in congruent-structure condition in idioms with high familiarity but low semantic transparency, idioms with low familiarity but high semantic transparency, and idioms with low familiarity and low semantic transparency. Our results suggest that syntactic structure, as the unnecessarity of lexical idiomatic words, was nevertheless activated, independent of familiarity and semantic transparency.

  7. Issues in Semantic Memory: A Response to Glass and Holyoak. Technical Report No. 101.

    ERIC Educational Resources Information Center

    Shoben, Edward J.; And Others

    Glass and Holyoak (1975) have raised two issues related to the distinction between set-theoretic and network theories of semantic memory, contending that: (a) their version of a network theory, the Marker Search model, is conceptually and empirically superior to the Feature Comparison model version of a set-theoretic theory; and (b) the contrast…

  8. A Multilevel Gamma-Clustering Layout Algorithm for Visualization of Biological Networks

    PubMed Central

    Hruz, Tomas; Lucas, Christoph; Laule, Oliver; Zimmermann, Philip

    2013-01-01

    Visualization of large complex networks has become an indispensable part of systems biology, where organisms need to be considered as one complex system. The visualization of the corresponding network is challenging due to the size and density of edges. In many cases, the use of standard visualization algorithms can lead to high running times and poorly readable visualizations due to many edge crossings. We suggest an approach that analyzes the structure of the graph first and then generates a new graph which contains specific semantic symbols for regular substructures like dense clusters. We propose a multilevel gamma-clustering layout visualization algorithm (MLGA) which proceeds in three subsequent steps: (i) a multilevel γ-clustering is used to identify the structure of the underlying network, (ii) the network is transformed to a tree, and (iii) finally, the resulting tree which shows the network structure is drawn using a variation of a force-directed algorithm. The algorithm has a potential to visualize very large networks because it uses modern clustering heuristics which are optimized for large graphs. Moreover, most of the edges are removed from the visual representation which allows keeping the overview over complex graphs with dense subgraphs. PMID:23864855

  9. Translation-aware semantic segmentation via conditional least-square generative adversarial networks

    NASA Astrophysics Data System (ADS)

    Zhang, Mi; Hu, Xiangyun; Zhao, Like; Pang, Shiyan; Gong, Jinqi; Luo, Min

    2017-10-01

    Semantic segmentation has recently made rapid progress in the field of remote sensing and computer vision. However, many leading approaches cannot simultaneously translate label maps to possible source images with a limited number of training images. The core issue is insufficient adversarial information to interpret the inverse process and proper objective loss function to overcome the vanishing gradient problem. We propose the use of conditional least squares generative adversarial networks (CLS-GAN) to delineate visual objects and solve these problems. We trained the CLS-GAN network for semantic segmentation to discriminate dense prediction information either from training images or generative networks. We show that the optimal objective function of CLS-GAN is a special class of f-divergence and yields a generator that lies on the decision boundary of discriminator that reduces possible vanished gradient. We also demonstrate the effectiveness of the proposed architecture at translating images from label maps in the learning process. Experiments on a limited number of high resolution images, including close-range and remote sensing datasets, indicate that the proposed method leads to the improved semantic segmentation accuracy and can simultaneously generate high quality images from label maps.

  10. Lexical-semantic processing in the semantic priming paradigm in aphasic patients.

    PubMed

    Salles, Jerusa Fumagalli de; Holderbaum, Candice Steffen; Parente, Maria Alice Mattos Pimenta; Mansur, Letícia Lessa; Ansaldo, Ana Inès

    2012-09-01

    There is evidence that the explicit lexical-semantic processing deficits which characterize aphasia may be observed in the absence of implicit semantic impairment. The aim of this article was to critically review the international literature on lexical-semantic processing in aphasia, as tested through the semantic priming paradigm. Specifically, this review focused on aphasia and lexical-semantic processing, the methodological strengths and weaknesses of the semantic paradigms used, and recent evidence from neuroimaging studies on lexical-semantic processing. Furthermore, evidence on dissociations between implicit and explicit lexical-semantic processing reported in the literature will be discussed and interpreted by referring to functional neuroimaging evidence from healthy populations. There is evidence that semantic priming effects can be found both in fluent and in non-fluent aphasias, and that these effects are related to an extensive network which includes the temporal lobe, the pre-frontal cortex, the left frontal gyrus, the left temporal gyrus and the cingulated cortex.

  11. A deep semantic mobile application for thyroid cytopathology

    NASA Astrophysics Data System (ADS)

    Kim, Edward; Corte-Real, Miguel; Baloch, Zubair

    2016-03-01

    Cytopathology is the study of disease at the cellular level and often used as a screening tool for cancer. Thyroid cytopathology is a branch of pathology that studies the diagnosis of thyroid lesions and diseases. A pathologist views cell images that may have high visual variance due to different anatomical structures and pathological characteristics. To assist the physician with identifying and searching through images, we propose a deep semantic mobile application. Our work augments recent advances in the digitization of pathology and machine learning techniques, where there are transformative opportunities for computers to assist pathologists. Our system uses a custom thyroid ontology that can be augmented with multimedia metadata extracted from images using deep machine learning techniques. We describe the utilization of a particular methodology, deep convolutional neural networks, to the application of cytopathology classification. Our method is able to leverage networks that have been trained on millions of generic images, to medical scenarios where only hundreds or thousands of images exist. We demonstrate the benefits of our framework through both quantitative and qualitative results.

  12. Creative thinking as orchestrated by semantic processing vs. cognitive control brain networks.

    PubMed

    Abraham, Anna

    2014-01-01

    Creativity is primarily investigated within the neuroscientific perspective as a unitary construct. While such an approach is beneficial when trying to infer the general picture regarding creativity and brain function, it is insufficient if the objective is to uncover the information processing brain mechanisms by which creativity occurs. As creative thinking emerges through the dynamic interplay between several cognitive processes, assessing the neural correlates of these operations would enable the development and characterization of an information processing framework from which to better understand this complex ability. This article focuses on two aspects of creative cognition that are central to generating original ideas. "Conceptual expansion" refers to the ability to widen one's conceptual structures to include unusual or novel associations, while "overcoming knowledge constraints" refers to our ability to override the constraining influence imposed by salient or pertinent knowledge when trying to be creative. Neuroimaging and neuropsychological evidence is presented to illustrate how semantic processing and cognitive control networks in the brain differentially modulate these critical facets of creative cognition.

  13. Altered structure-function relations of semantic processing in youths with high-functioning autism: a combined diffusion and functional MRI study.

    PubMed

    Lo, Yu-Chun; Chou, Tai-Li; Fan, Li-Ying; Gau, Susan Shur-Fen; Chiu, Yen-Nan; Tseng, Wen-Yih Isaac

    2013-12-01

    Deficits in language and communication are among the core symptoms of autism, a common neurodevelopmental disorder with long-term impairment. Despite the striking nature of the autistic language impairment, knowledge about its corresponding alterations in the brain is still evolving. We hypothesized that the dual stream language network is altered in autism, and that this alteration could be revealed by changes in the relationships between microstructural integrity and functional activation. The study recruited 20 right-handed male youths with autism and 20 carefully matched individually, typically developing (TD) youths. Microstructural integrity of the left dorsal and left ventral pathways responsible for language processing and the functional activation of the connected brain regions were investigated by using diffusion spectrum imaging and functional magnetic resonance imaging of a semantic task, respectively. Youths with autism had significantly poorer language function, and lower functional activation in left dorsal and left ventral regions of the language network, compared with TD youths. The TD group showed a significant correlation of the functional activation of the left dorsal region with microstructural integrity of the left ventral pathway, whereas the autism group showed a significant correlation of the functional activation of the left ventral region with microstructural integrity of the left dorsal pathway, and moreover verbal comprehension index was correlated with microstructural integrity of the left ventral pathway. These altered structure-function relationships in autism suggest possible involvement of the dual pathways in supporting deficient semantic processing. © 2013 International Society for Autism Research, Wiley Periodicals, Inc.

  14. Frontotemporal neural systems supporting semantic processing in Alzheimer's disease.

    PubMed

    Peelle, Jonathan E; Powers, John; Cook, Philip A; Smith, Edward E; Grossman, Murray

    2014-03-01

    We hypothesized that semantic memory for object concepts involves both representations of visual feature knowledge in modality-specific association cortex and heteromodal regions that are important for integrating and organizing this semantic knowledge so that it can be used in a flexible, contextually appropriate manner. We examined this hypothesis in an fMRI study of mild Alzheimer's disease (AD). Participants were presented with pairs of printed words and asked whether the words matched on a given visual-perceptual feature (e.g., guitar, violin: SHAPE). The stimuli probed natural kinds and manufactured objects, and the judgments involved shape or color. We found activation of bilateral ventral temporal cortex and left dorsolateral prefrontal cortex during semantic judgments, with AD patients showing less activation of these regions than healthy seniors. Moreover, AD patients showed less ventral temporal activation than did healthy seniors for manufactured objects, but not for natural kinds. We also used diffusion-weighted MRI of white matter to examine fractional anisotropy (FA). Patients with AD showed significantly reduced FA in the superior longitudinal fasciculus and inferior frontal-occipital fasciculus, which carry projections linking temporal and frontal regions of this semantic network. Our results are consistent with the hypothesis that semantic memory is supported in part by a large-scale neural network involving modality-specific association cortex, heteromodal association cortex, and projections between these regions. The semantic deficit in AD thus arises from gray matter disease that affects the representation of feature knowledge and processing its content, as well as white matter disease that interrupts the integrated functioning of this large-scale network.

  15. A Comparison of Five FMRI Protocols for Mapping Speech Comprehension Systems

    PubMed Central

    Binder, Jeffrey R.; Swanson, Sara J.; Hammeke, Thomas A.; Sabsevitz, David S.

    2008-01-01

    Aims Many fMRI protocols for localizing speech comprehension have been described, but there has been little quantitative comparison of these methods. We compared five such protocols in terms of areas activated, extent of activation, and lateralization. Methods FMRI BOLD signals were measured in 26 healthy adults during passive listening and active tasks using words and tones. Contrasts were designed to identify speech perception and semantic processing systems. Activation extent and lateralization were quantified by counting activated voxels in each hemisphere for each participant. Results Passive listening to words produced bilateral superior temporal activation. After controlling for pre-linguistic auditory processing, only a small area in the left superior temporal sulcus responded selectively to speech. Active tasks engaged an extensive, bilateral attention and executive processing network. Optimal results (consistent activation and strongly lateralized pattern) were obtained by contrasting an active semantic decision task with a tone decision task. There was striking similarity between the network of brain regions activated by the semantic task and the network of brain regions that showed task-induced deactivation, suggesting that semantic processing occurs during the resting state. Conclusions FMRI protocols for mapping speech comprehension systems differ dramatically in pattern, extent, and lateralization of activation. Brain regions involved in semantic processing were identified only when an active, non-linguistic task was used as a baseline, supporting the notion that semantic processing occurs whenever attentional resources are not controlled. Identification of these lexical-semantic regions is particularly important for predicting language outcome in patients undergoing temporal lobe surgery. PMID:18513352

  16. (Pea)nuts and bolts of visual narrative: Structure and meaning in sequential image comprehension

    PubMed Central

    Cohn, Neil; Paczynski, Martin; Jackendoff, Ray; Holcomb, Phillip J.; Kuperberg, Gina R.

    2012-01-01

    Just as syntax differentiates coherent sentences from scrambled word strings, the comprehension of sequential images must also use a cognitive system to distinguish coherent narrative sequences from random strings of images. We conducted experiments analogous to two classic studies of language processing to examine the contributions of narrative structure and semantic relatedness to processing sequential images. We compared four types of comic strips: 1) Normal sequences with both structure and meaning, 2) Semantic Only sequences (in which the panels were related to a common semantic theme, but had no narrative structure), 3) Structural Only sequences (narrative structure but no semantic relatedness), and 4) Scrambled sequences of randomly-ordered panels. In Experiment 1, participants monitored for target panels in sequences presented panel-by-panel. Reaction times were slowest to panels in Scrambled sequences, intermediate in both Structural Only and Semantic Only sequences, and fastest in Normal sequences. This suggests that both semantic relatedness and narrative structure offer advantages to processing. Experiment 2 measured ERPs to all panels across the whole sequence. The N300/N400 was largest to panels in both the Scrambled and Structural Only sequences, intermediate in Semantic Only sequences and smallest in the Normal sequences. This implies that a combination of narrative structure and semantic relatedness can facilitate semantic processing of upcoming panels (as reflected by the N300/N400). Also, panels in the Scrambled sequences evoked a larger left-lateralized anterior negativity than panels in the Structural Only sequences. This localized effect was distinct from the N300/N400, and appeared despite the fact that these two sequence types were matched on local semantic relatedness between individual panels. These findings suggest that sequential image comprehension uses a narrative structure that may be independent of semantic relatedness. Altogether, we argue that the comprehension of visual narrative is guided by an interaction between structure and meaning. PMID:22387723

  17. Biologically Inspired Model for Visual Cognition Achieving Unsupervised Episodic and Semantic Feature Learning.

    PubMed

    Qiao, Hong; Li, Yinlin; Li, Fengfu; Xi, Xuanyang; Wu, Wei

    2016-10-01

    Recently, many biologically inspired visual computational models have been proposed. The design of these models follows the related biological mechanisms and structures, and these models provide new solutions for visual recognition tasks. In this paper, based on the recent biological evidence, we propose a framework to mimic the active and dynamic learning and recognition process of the primate visual cortex. From principle point of view, the main contributions are that the framework can achieve unsupervised learning of episodic features (including key components and their spatial relations) and semantic features (semantic descriptions of the key components), which support higher level cognition of an object. From performance point of view, the advantages of the framework are as follows: 1) learning episodic features without supervision-for a class of objects without a prior knowledge, the key components, their spatial relations and cover regions can be learned automatically through a deep neural network (DNN); 2) learning semantic features based on episodic features-within the cover regions of the key components, the semantic geometrical values of these components can be computed based on contour detection; 3) forming the general knowledge of a class of objects-the general knowledge of a class of objects can be formed, mainly including the key components, their spatial relations and average semantic values, which is a concise description of the class; and 4) achieving higher level cognition and dynamic updating-for a test image, the model can achieve classification and subclass semantic descriptions. And the test samples with high confidence are selected to dynamically update the whole model. Experiments are conducted on face images, and a good performance is achieved in each layer of the DNN and the semantic description learning process. Furthermore, the model can be generalized to recognition tasks of other objects with learning ability.

  18. The time course of auditory-visual processing of speech and body actions: evidence for the simultaneous activation of an extended neural network for semantic processing.

    PubMed

    Meyer, Georg F; Harrison, Neil R; Wuerger, Sophie M

    2013-08-01

    An extensive network of cortical areas is involved in multisensory object and action recognition. This network draws on inferior frontal, posterior temporal, and parietal areas; activity is modulated by familiarity and the semantic congruency of auditory and visual component signals even if semantic incongruences are created by combining visual and auditory signals representing very different signal categories, such as speech and whole body actions. Here we present results from a high-density ERP study designed to examine the time-course and source location of responses to semantically congruent and incongruent audiovisual speech and body actions to explore whether the network involved in action recognition consists of a hierarchy of sequentially activated processing modules or a network of simultaneously active processing sites. We report two main results:1) There are no significant early differences in the processing of congruent and incongruent audiovisual action sequences. The earliest difference between congruent and incongruent audiovisual stimuli occurs between 240 and 280 ms after stimulus onset in the left temporal region. Between 340 and 420 ms, semantic congruence modulates responses in central and right frontal areas. Late differences (after 460 ms) occur bilaterally in frontal areas.2) Source localisation (dipole modelling and LORETA) reveals that an extended network encompassing inferior frontal, temporal, parasaggital, and superior parietal sites are simultaneously active between 180 and 420 ms to process auditory–visual action sequences. Early activation (before 120 ms) can be explained by activity in mainly sensory cortices. . The simultaneous activation of an extended network between 180 and 420 ms is consistent with models that posit parallel processing of complex action sequences in frontal, temporal and parietal areas rather than models that postulate hierarchical processing in a sequence of brain regions. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. Semantic Indexing of Medical Learning Objects: Medical Students' Usage of a Semantic Network

    PubMed Central

    Gießler, Paul; Ohnesorge-Radtke, Ursula; Spreckelsen, Cord

    2015-01-01

    Background The Semantically Annotated Media (SAM) project aims to provide a flexible platform for searching, browsing, and indexing medical learning objects (MLOs) based on a semantic network derived from established classification systems. Primarily, SAM supports the Aachen emedia skills lab, but SAM is ready for indexing distributed content and the Simple Knowledge Organizing System standard provides a means for easily upgrading or even exchanging SAM’s semantic network. There is a lack of research addressing the usability of MLO indexes or search portals like SAM and the user behavior with such platforms. Objective The purpose of this study was to assess the usability of SAM by investigating characteristic user behavior of medical students accessing MLOs via SAM. Methods In this study, we chose a mixed-methods approach. Lean usability testing was combined with usability inspection by having the participants complete four typical usage scenarios before filling out a questionnaire. The questionnaire was based on the IsoMetrics usability inventory. Direct user interaction with SAM (mouse clicks and pages accessed) was logged. Results The study analyzed the typical usage patterns and habits of students using a semantic network for accessing MLOs. Four scenarios capturing characteristics of typical tasks to be solved by using SAM yielded high ratings of usability items and showed good results concerning the consistency of indexing by different users. Long-tail phenomena emerge as they are typical for a collaborative Web 2.0 platform. Suitable but nonetheless rarely used keywords were assigned to MLOs by some users. Conclusions It is possible to develop a Web-based tool with high usability and acceptance for indexing and retrieval of MLOs. SAM can be applied to indexing multicentered repositories of MLOs collaboratively. PMID:27731860

  20. Semantic Indexing of Medical Learning Objects: Medical Students' Usage of a Semantic Network.

    PubMed

    Tix, Nadine; Gießler, Paul; Ohnesorge-Radtke, Ursula; Spreckelsen, Cord

    2015-11-11

    The Semantically Annotated Media (SAM) project aims to provide a flexible platform for searching, browsing, and indexing medical learning objects (MLOs) based on a semantic network derived from established classification systems. Primarily, SAM supports the Aachen emedia skills lab, but SAM is ready for indexing distributed content and the Simple Knowledge Organizing System standard provides a means for easily upgrading or even exchanging SAM's semantic network. There is a lack of research addressing the usability of MLO indexes or search portals like SAM and the user behavior with such platforms. The purpose of this study was to assess the usability of SAM by investigating characteristic user behavior of medical students accessing MLOs via SAM. In this study, we chose a mixed-methods approach. Lean usability testing was combined with usability inspection by having the participants complete four typical usage scenarios before filling out a questionnaire. The questionnaire was based on the IsoMetrics usability inventory. Direct user interaction with SAM (mouse clicks and pages accessed) was logged. The study analyzed the typical usage patterns and habits of students using a semantic network for accessing MLOs. Four scenarios capturing characteristics of typical tasks to be solved by using SAM yielded high ratings of usability items and showed good results concerning the consistency of indexing by different users. Long-tail phenomena emerge as they are typical for a collaborative Web 2.0 platform. Suitable but nonetheless rarely used keywords were assigned to MLOs by some users. It is possible to develop a Web-based tool with high usability and acceptance for indexing and retrieval of MLOs. SAM can be applied to indexing multicentered repositories of MLOs collaboratively.

  1. The processing of lexical ambiguity in healthy ageing and Parkinson׳s disease: role of cortico-subcortical networks.

    PubMed

    Ketteler, Simon; Ketteler, Daniel; Vohn, René; Kastrau, Frank; Schulz, Jörg B; Reetz, Kathrin; Huber, Walter

    2014-09-18

    Previous neuroimaging studies showed that correct resolution of lexical ambiguity relies on the integrity of prefrontal and inferior parietal cortices. Whereas prefrontal brain areas were associated with executive control over semantic selection, inferior parietal areas were linked with access to modality-independent representations of semantic memory. Yet insufficiently understood is the contribution of subcortical structures in ambiguity processing. Patients with disturbed basal ganglia function such as Parkinson׳s disease (PD) showed development of discourse comprehension deficits evoked by lexical ambiguity. To further investigate the engagement of cortico-subcortical networks functional Magnetic Resonance Imaging (fMRI) was monitored during ambiguity resolution in eight early PD patients without dementia and 14 age- and education-matched controls. Participants were required to relate meanings to a lexically ambiguous target (homonym). Each stimulus consisted of two words arranged on top of a screen, which had to be attributed to a homonym at the bottom. Brain activity was found in bilateral inferior parietal (BA 39), right middle temporal (BA 21/22), left middle frontal (BA 10) and bilateral inferior frontal areas (BA 45/46). Extent and amplitude of activity in the angular gyrus changed depending on semantic association strength that varied between conditions. Less activity in the left caudate was associated with semantic integration deficits in PD. The results of the present study suggest a relationship between subtle language deficits and early stages of basal ganglia dysfunction. Uncovering impairments in ambiguity resolution may be of future use in the neuropsychological assessment of non-motor deficits in PD. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Representational similarity analysis reveals commonalities and differences in the semantic processing of words and objects.

    PubMed

    Devereux, Barry J; Clarke, Alex; Marouchos, Andreas; Tyler, Lorraine K

    2013-11-27

    Understanding the meanings of words and objects requires the activation of underlying conceptual representations. Semantic representations are often assumed to be coded such that meaning is evoked regardless of the input modality. However, the extent to which meaning is coded in modality-independent or amodal systems remains controversial. We address this issue in a human fMRI study investigating the neural processing of concepts, presented separately as written words and pictures. Activation maps for each individual word and picture were used as input for searchlight-based multivoxel pattern analyses. Representational similarity analysis was used to identify regions correlating with low-level visual models of the words and objects and the semantic category structure common to both. Common semantic category effects for both modalities were found in a left-lateralized network, including left posterior middle temporal gyrus (LpMTG), left angular gyrus, and left intraparietal sulcus (LIPS), in addition to object- and word-specific semantic processing in ventral temporal cortex and more anterior MTG, respectively. To explore differences in representational content across regions and modalities, we developed novel data-driven analyses, based on k-means clustering of searchlight dissimilarity matrices and seeded correlation analysis. These revealed subtle differences in the representations in semantic-sensitive regions, with representations in LIPS being relatively invariant to stimulus modality and representations in LpMTG being uncorrelated across modality. These results suggest that, although both LpMTG and LIPS are involved in semantic processing, only the functional role of LIPS is the same regardless of the visual input, whereas the functional role of LpMTG differs for words and objects.

  3. A unified software framework for deriving, visualizing, and exploring abstraction networks for ontologies

    PubMed Central

    Ochs, Christopher; Geller, James; Perl, Yehoshua; Musen, Mark A.

    2016-01-01

    Software tools play a critical role in the development and maintenance of biomedical ontologies. One important task that is difficult without software tools is ontology quality assurance. In previous work, we have introduced different kinds of abstraction networks to provide a theoretical foundation for ontology quality assurance tools. Abstraction networks summarize the structure and content of ontologies. One kind of abstraction network that we have used repeatedly to support ontology quality assurance is the partial-area taxonomy. It summarizes structurally and semantically similar concepts within an ontology. However, the use of partial-area taxonomies was ad hoc and not generalizable. In this paper, we describe the Ontology Abstraction Framework (OAF), a unified framework and software system for deriving, visualizing, and exploring partial-area taxonomy abstraction networks. The OAF includes support for various ontology representations (e.g., OWL and SNOMED CT's relational format). A Protégé plugin for deriving “live partial-area taxonomies” is demonstrated. PMID:27345947

  4. A unified software framework for deriving, visualizing, and exploring abstraction networks for ontologies.

    PubMed

    Ochs, Christopher; Geller, James; Perl, Yehoshua; Musen, Mark A

    2016-08-01

    Software tools play a critical role in the development and maintenance of biomedical ontologies. One important task that is difficult without software tools is ontology quality assurance. In previous work, we have introduced different kinds of abstraction networks to provide a theoretical foundation for ontology quality assurance tools. Abstraction networks summarize the structure and content of ontologies. One kind of abstraction network that we have used repeatedly to support ontology quality assurance is the partial-area taxonomy. It summarizes structurally and semantically similar concepts within an ontology. However, the use of partial-area taxonomies was ad hoc and not generalizable. In this paper, we describe the Ontology Abstraction Framework (OAF), a unified framework and software system for deriving, visualizing, and exploring partial-area taxonomy abstraction networks. The OAF includes support for various ontology representations (e.g., OWL and SNOMED CT's relational format). A Protégé plugin for deriving "live partial-area taxonomies" is demonstrated. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Dynamic-ETL: a hybrid approach for health data extraction, transformation and loading.

    PubMed

    Ong, Toan C; Kahn, Michael G; Kwan, Bethany M; Yamashita, Traci; Brandt, Elias; Hosokawa, Patrick; Uhrich, Chris; Schilling, Lisa M

    2017-09-13

    Electronic health records (EHRs) contain detailed clinical data stored in proprietary formats with non-standard codes and structures. Participating in multi-site clinical research networks requires EHR data to be restructured and transformed into a common format and standard terminologies, and optimally linked to other data sources. The expertise and scalable solutions needed to transform data to conform to network requirements are beyond the scope of many health care organizations and there is a need for practical tools that lower the barriers of data contribution to clinical research networks. We designed and implemented a health data transformation and loading approach, which we refer to as Dynamic ETL (Extraction, Transformation and Loading) (D-ETL), that automates part of the process through use of scalable, reusable and customizable code, while retaining manual aspects of the process that requires knowledge of complex coding syntax. This approach provides the flexibility required for the ETL of heterogeneous data, variations in semantic expertise, and transparency of transformation logic that are essential to implement ETL conventions across clinical research sharing networks. Processing workflows are directed by the ETL specifications guideline, developed by ETL designers with extensive knowledge of the structure and semantics of health data (i.e., "health data domain experts") and target common data model. D-ETL was implemented to perform ETL operations that load data from various sources with different database schema structures into the Observational Medical Outcome Partnership (OMOP) common data model. The results showed that ETL rule composition methods and the D-ETL engine offer a scalable solution for health data transformation via automatic query generation to harmonize source datasets. D-ETL supports a flexible and transparent process to transform and load health data into a target data model. This approach offers a solution that lowers technical barriers that prevent data partners from participating in research data networks, and therefore, promotes the advancement of comparative effectiveness research using secondary electronic health data.

  6. Lexical learning in mild aphasia: gesture benefit depends on patholinguistic profile and lesion pattern.

    PubMed

    Kroenke, Klaus-Martin; Kraft, Indra; Regenbrecht, Frank; Obrig, Hellmuth

    2013-01-01

    Gestures accompany speech and enrich human communication. When aphasia interferes with verbal abilities, gestures become even more relevant, compensating for and/or facilitating verbal communication. However, small-scale clinical studies yielded diverging results with regard to a therapeutic gesture benefit for lexical retrieval. Based on recent functional neuroimaging results, delineating a speech-gesture integration network for lexical learning in healthy adults, we hypothesized that the commonly observed variability may stem from differential patholinguistic profiles in turn depending on lesion pattern. Therefore we used a controlled novel word learning paradigm to probe the impact of gestures on lexical learning, in the lesioned language network. Fourteen patients with chronic left hemispheric lesions and mild residual aphasia learned 30 novel words for manipulable objects over four days. Half of the words were trained with gestures while the other half were trained purely verbally. For the gesture condition, rootwords were visually presented (e.g., Klavier, [piano]), followed by videos of the corresponding gestures and the auditory presentation of the novel words (e.g., /krulo/). Participants had to repeat pseudowords and simultaneously reproduce gestures. In the verbal condition no gesture-video was shown and participants only repeated pseudowords orally. Correlational analyses confirmed that gesture benefit depends on the patholinguistic profile: lesser lexico-semantic impairment correlated with better gesture-enhanced learning. Conversely largely preserved segmental-phonological capabilities correlated with better purely verbal learning. Moreover, structural MRI-analysis disclosed differential lesion patterns, most interestingly suggesting that integrity of the left anterior temporal pole predicted gesture benefit. Thus largely preserved semantic capabilities and relative integrity of a semantic integration network are prerequisites for successful use of the multimodal learning strategy, in which gestures may cause a deeper semantic rooting of the novel word-form. The results tap into theoretical accounts of gestures in lexical learning and suggest an explanation for the diverging effect in therapeutical studies advocating gestures in aphasia rehabilitation. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Lexico-Semantic Processing in Children with Specific Language Impairment: The Overactivation Hypothesis

    ERIC Educational Resources Information Center

    Pizzioli, Fabrizio; Schelstraete, Marie-Anne

    2011-01-01

    The hypothesis indicating an overactivation of the lexico-semantic network in children with specific language impairment (SLI) was tested using an auditory pair-primed paradigm (PPP), where participants made a lexical-decision on the second word of a noun pair that could be semantically related, or not, to the first one. Though children with SLI…

  8. Functional Connectivity in an fMRI Study of Semantic and Phonological Processes and the Effect of L-Dopa

    ERIC Educational Resources Information Center

    Tivarus, Madalina E.; Hillier, Ashleigh; Schmalbrock, Petra; Beversdorf, David Q.

    2008-01-01

    We describe an fMRI experiment examining the functional connectivity (FC) between regions of the brain associated with semantic and phonological processing. We wished to explore whether L-Dopa administration affects the interaction between language network components in semantic and phonological categorization tasks, as revealed by FC. We…

  9. L-GRAAL: Lagrangian graphlet-based network aligner.

    PubMed

    Malod-Dognin, Noël; Pržulj, Nataša

    2015-07-01

    Discovering and understanding patterns in networks of protein-protein interactions (PPIs) is a central problem in systems biology. Alignments between these networks aid functional understanding as they uncover important information, such as evolutionary conserved pathways, protein complexes and functional orthologs. A few methods have been proposed for global PPI network alignments, but because of NP-completeness of underlying sub-graph isomorphism problem, producing topologically and biologically accurate alignments remains a challenge. We introduce a novel global network alignment tool, Lagrangian GRAphlet-based ALigner (L-GRAAL), which directly optimizes both the protein and the interaction functional conservations, using a novel alignment search heuristic based on integer programming and Lagrangian relaxation. We compare L-GRAAL with the state-of-the-art network aligners on the largest available PPI networks from BioGRID and observe that L-GRAAL uncovers the largest common sub-graphs between the networks, as measured by edge-correctness and symmetric sub-structures scores, which allow transferring more functional information across networks. We assess the biological quality of the protein mappings using the semantic similarity of their Gene Ontology annotations and observe that L-GRAAL best uncovers functionally conserved proteins. Furthermore, we introduce for the first time a measure of the semantic similarity of the mapped interactions and show that L-GRAAL also uncovers best functionally conserved interactions. In addition, we illustrate on the PPI networks of baker's yeast and human the ability of L-GRAAL to predict new PPIs. Finally, L-GRAAL's results are the first to show that topological information is more important than sequence information for uncovering functionally conserved interactions. L-GRAAL is coded in C++. Software is available at: http://bio-nets.doc.ic.ac.uk/L-GRAAL/. n.malod-dognin@imperial.ac.uk Supplementary data are available at Bioinformatics online. © The Author 2015. Published by Oxford University Press.

  10. Causal premise semantics.

    PubMed

    Kaufmann, Stefan

    2013-08-01

    The rise of causality and the attendant graph-theoretic modeling tools in the study of counterfactual reasoning has had resounding effects in many areas of cognitive science, but it has thus far not permeated the mainstream in linguistic theory to a comparable degree. In this study I show that a version of the predominant framework for the formal semantic analysis of conditionals, Kratzer-style premise semantics, allows for a straightforward implementation of the crucial ideas and insights of Pearl-style causal networks. I spell out the details of such an implementation, focusing especially on the notions of intervention on a network and backtracking interpretations of counterfactuals. Copyright © 2013 Cognitive Science Society, Inc.

  11. Real-time object detection and semantic segmentation for autonomous driving

    NASA Astrophysics Data System (ADS)

    Li, Baojun; Liu, Shun; Xu, Weichao; Qiu, Wei

    2018-02-01

    In this paper, we proposed a Highly Coupled Network (HCNet) for joint objection detection and semantic segmentation. It follows that our method is faster and performs better than the previous approaches whose decoder networks of different tasks are independent. Besides, we present multi-scale loss architecture to learn better representation for different scale objects, but without extra time in the inference phase. Experiment results show that our method achieves state-of-the-art results on the KITTI datasets. Moreover, it can run at 35 FPS on a GPU and thus is a practical solution to object detection and semantic segmentation for autonomous driving.

  12. Deep learning of the sectional appearances of 3D CT images for anatomical structure segmentation based on an FCN voting method.

    PubMed

    Zhou, Xiangrong; Takayama, Ryosuke; Wang, Song; Hara, Takeshi; Fujita, Hiroshi

    2017-10-01

    We propose a single network trained by pixel-to-label deep learning to address the general issue of automatic multiple organ segmentation in three-dimensional (3D) computed tomography (CT) images. Our method can be described as a voxel-wise multiple-class classification scheme for automatically assigning labels to each pixel/voxel in a 2D/3D CT image. We simplify the segmentation algorithms of anatomical structures (including multiple organs) in a CT image (generally in 3D) to a majority voting scheme over the semantic segmentation of multiple 2D slices drawn from different viewpoints with redundancy. The proposed method inherits the spirit of fully convolutional networks (FCNs) that consist of "convolution" and "deconvolution" layers for 2D semantic image segmentation, and expands the core structure with 3D-2D-3D transformations to adapt to 3D CT image segmentation. All parameters in the proposed network are trained pixel-to-label from a small number of CT cases with human annotations as the ground truth. The proposed network naturally fulfills the requirements of multiple organ segmentations in CT cases of different sizes that cover arbitrary scan regions without any adjustment. The proposed network was trained and validated using the simultaneous segmentation of 19 anatomical structures in the human torso, including 17 major organs and two special regions (lumen and content inside of stomach). Some of these structures have never been reported in previous research on CT segmentation. A database consisting of 240 (95% for training and 5% for testing) 3D CT scans, together with their manually annotated ground-truth segmentations, was used in our experiments. The results show that the 19 structures of interest were segmented with acceptable accuracy (88.1% and 87.9% voxels in the training and testing datasets, respectively, were labeled correctly) against the ground truth. We propose a single network based on pixel-to-label deep learning to address the challenging issue of anatomical structure segmentation in 3D CT cases. The novelty of this work is the policy of deep learning of the different 2D sectional appearances of 3D anatomical structures for CT cases and the majority voting of the 3D segmentation results from multiple crossed 2D sections to achieve availability and reliability with better efficiency, generality, and flexibility than conventional segmentation methods, which must be guided by human expertise. © 2017 The Authors. Medical Physics published by Wiley Periodicals, Inc. on behalf of American Association of Physicists in Medicine.

  13. If You Don't Have Valence, Ask Your Neighbor: Evaluation of Neutral Words as a Function of Affective Semantic Associates

    PubMed Central

    Kuhlmann, Michael; Hofmann, Markus J.; Jacobs, Arthur M.

    2017-01-01

    How do humans perform difficult forced-choice evaluations, e.g., of words that have been previously rated as being neutral? Here we tested the hypothesis that in this case, the valence of semantic associates is of significant influence. From corpus based co-occurrence statistics as a measure of association strength we computed individual neighborhoods for single neutral words comprised of the 10 words with the largest association strength. We then selected neutral words according to the valence of the associated words included in the neighborhoods, which were either mostly positive, mostly negative, mostly neutral or mixed positive and negative, and tested them using a valence decision task (VDT). The data showed that the valence of semantic neighbors can predict valence judgments to neutral words. However, all but the positive neighborhood items revealed a high tendency to elicit negative responses. For the positive and negative neighborhood categories responses congruent with the neighborhood's valence were faster than incongruent responses. We interpret this effect as a semantic network process that supports the evaluation of neutral words by assessing the valence of the associative semantic neighborhood. In this perspective, valence is considered a semantic super-feature, at least partially represented in associative activation patterns of semantic networks. PMID:28348538

  14. Multiple Regions of a Cortical Network Commonly Encode the Meaning of Words in Multiple Grammatical Positions of Read Sentences.

    PubMed

    Anderson, Andrew James; Lalor, Edmund C; Lin, Feng; Binder, Jeffrey R; Fernandino, Leonardo; Humphries, Colin J; Conant, Lisa L; Raizada, Rajeev D S; Grimm, Scott; Wang, Xixi

    2018-05-16

    Deciphering how sentence meaning is represented in the brain remains a major challenge to science. Semantically related neural activity has recently been shown to arise concurrently in distributed brain regions as successive words in a sentence are read. However, what semantic content is represented by different regions, what is common across them, and how this relates to words in different grammatical positions of sentences is weakly understood. To address these questions, we apply a semantic model of word meaning to interpret brain activation patterns elicited in sentence reading. The model is based on human ratings of 65 sensory/motor/emotional and cognitive features of experience with words (and their referents). Through a process of mapping functional Magnetic Resonance Imaging activation back into model space we test: which brain regions semantically encode content words in different grammatical positions (e.g., subject/verb/object); and what semantic features are encoded by different regions. In left temporal, inferior parietal, and inferior/superior frontal regions we detect the semantic encoding of words in all grammatical positions tested and reveal multiple common components of semantic representation. This suggests that sentence comprehension involves a common core representation of multiple words' meaning being encoded in a network of regions distributed across the brain.

  15. If You Don't Have Valence, Ask Your Neighbor: Evaluation of Neutral Words as a Function of Affective Semantic Associates.

    PubMed

    Kuhlmann, Michael; Hofmann, Markus J; Jacobs, Arthur M

    2017-01-01

    How do humans perform difficult forced-choice evaluations, e.g., of words that have been previously rated as being neutral? Here we tested the hypothesis that in this case, the valence of semantic associates is of significant influence. From corpus based co-occurrence statistics as a measure of association strength we computed individual neighborhoods for single neutral words comprised of the 10 words with the largest association strength. We then selected neutral words according to the valence of the associated words included in the neighborhoods, which were either mostly positive, mostly negative, mostly neutral or mixed positive and negative, and tested them using a valence decision task (VDT). The data showed that the valence of semantic neighbors can predict valence judgments to neutral words. However, all but the positive neighborhood items revealed a high tendency to elicit negative responses. For the positive and negative neighborhood categories responses congruent with the neighborhood's valence were faster than incongruent responses. We interpret this effect as a semantic network process that supports the evaluation of neutral words by assessing the valence of the associative semantic neighborhood. In this perspective, valence is considered a semantic super-feature, at least partially represented in associative activation patterns of semantic networks.

  16. Selective Attention to Semantic and Syntactic Features Modulates Sentence Processing Networks in Anterior Temporal Cortex

    PubMed Central

    Rogalsky, Corianne

    2009-01-01

    Numerous studies have identified an anterior temporal lobe (ATL) region that responds preferentially to sentence-level stimuli. It is unclear, however, whether this activity reflects a response to syntactic computations or some form of semantic integration. This distinction is difficult to investigate with the stimulus manipulations and anomaly detection paradigms traditionally implemented. The present functional magnetic resonance imaging study addresses this question via a selective attention paradigm. Subjects monitored for occasional semantic anomalies or occasional syntactic errors, thus directing their attention to semantic integration, or syntactic properties of the sentences. The hemodynamic response in the sentence-selective ATL region (defined with a localizer scan) was examined during anomaly/error-free sentences only, to avoid confounds due to error detection. The majority of the sentence-specific region of interest was equally modulated by attention to syntactic or compositional semantic features, whereas a smaller subregion was only modulated by the semantic task. We suggest that the sentence-specific ATL region is sensitive to both syntactic and integrative semantic functions during sentence processing, with a smaller portion of this area preferentially involved in the later. This study also suggests that selective attention paradigms may be effective tools to investigate the functional diversity of networks involved in sentence processing. PMID:18669589

  17. Improving life sciences information retrieval using semantic web technology.

    PubMed

    Quan, Dennis

    2007-05-01

    The ability to retrieve relevant information is at the heart of every aspect of research and development in the life sciences industry. Information is often distributed across multiple systems and recorded in a way that makes it difficult to piece together the complete picture. Differences in data formats, naming schemes and network protocols amongst information sources, both public and private, must be overcome, and user interfaces not only need to be able to tap into these diverse information sources but must also assist users in filtering out extraneous information and highlighting the key relationships hidden within an aggregated set of information. The Semantic Web community has made great strides in proposing solutions to these problems, and many efforts are underway to apply Semantic Web techniques to the problem of information retrieval in the life sciences space. This article gives an overview of the principles underlying a Semantic Web-enabled information retrieval system: creating a unified abstraction for knowledge using the RDF semantic network model; designing semantic lenses that extract contextually relevant subsets of information; and assembling semantic lenses into powerful information displays. Furthermore, concrete examples of how these principles can be applied to life science problems including a scenario involving a drug discovery dashboard prototype called BioDash are provided.

  18. Semantic Segmentation of Indoor Point Clouds Using Convolutional Neural Network

    NASA Astrophysics Data System (ADS)

    Babacan, K.; Chen, L.; Sohn, G.

    2017-11-01

    As Building Information Modelling (BIM) thrives, geometry becomes no longer sufficient; an ever increasing variety of semantic information is needed to express an indoor model adequately. On the other hand, for the existing buildings, automatically generating semantically enriched BIM from point cloud data is in its infancy. The previous research to enhance the semantic content rely on frameworks in which some specific rules and/or features that are hand coded by specialists. These methods immanently lack generalization and easily break in different circumstances. On this account, a generalized framework is urgently needed to automatically and accurately generate semantic information. Therefore we propose to employ deep learning techniques for the semantic segmentation of point clouds into meaningful parts. More specifically, we build a volumetric data representation in order to efficiently generate the high number of training samples needed to initiate a convolutional neural network architecture. The feedforward propagation is used in such a way to perform the classification in voxel level for achieving semantic segmentation. The method is tested both for a mobile laser scanner point cloud, and a larger scale synthetically generated data. We also demonstrate a case study, in which our method can be effectively used to leverage the extraction of planar surfaces in challenging cluttered indoor environments.

  19. A Ubiquitous Sensor Network Platform for Integrating Smart Devices into the Semantic Sensor Web

    PubMed Central

    de Vera, David Díaz Pardo; Izquierdo, Álvaro Sigüenza; Vercher, Jesús Bernat; Gómez, Luis Alfonso Hernández

    2014-01-01

    Ongoing Sensor Web developments make a growing amount of heterogeneous sensor data available to smart devices. This is generating an increasing demand for homogeneous mechanisms to access, publish and share real-world information. This paper discusses, first, an architectural solution based on Next Generation Networks: a pilot Telco Ubiquitous Sensor Network (USN) Platform that embeds several OGC® Sensor Web services. This platform has already been deployed in large scale projects. Second, the USN-Platform is extended to explore a first approach to Semantic Sensor Web principles and technologies, so that smart devices can access Sensor Web data, allowing them also to share richer (semantically interpreted) information. An experimental scenario is presented: a smart car that consumes and produces real-world information which is integrated into the Semantic Sensor Web through a Telco USN-Platform. Performance tests revealed that observation publishing times with our experimental system were well within limits compatible with the adequate operation of smart safety assistance systems in vehicles. On the other hand, response times for complex queries on large repositories may be inappropriate for rapid reaction needs. PMID:24945678

  20. A ubiquitous sensor network platform for integrating smart devices into the semantic sensor web.

    PubMed

    de Vera, David Díaz Pardo; Izquierdo, Alvaro Sigüenza; Vercher, Jesús Bernat; Hernández Gómez, Luis Alfonso

    2014-06-18

    Ongoing Sensor Web developments make a growing amount of heterogeneous sensor data available to smart devices. This is generating an increasing demand for homogeneous mechanisms to access, publish and share real-world information. This paper discusses, first, an architectural solution based on Next Generation Networks: a pilot Telco Ubiquitous Sensor Network (USN) Platform that embeds several OGC® Sensor Web services. This platform has already been deployed in large scale projects. Second, the USN-Platform is extended to explore a first approach to Semantic Sensor Web principles and technologies, so that smart devices can access Sensor Web data, allowing them also to share richer (semantically interpreted) information. An experimental scenario is presented: a smart car that consumes and produces real-world information which is integrated into the Semantic Sensor Web through a Telco USN-Platform. Performance tests revealed that observation publishing times with our experimental system were well within limits compatible with the adequate operation of smart safety assistance systems in vehicles. On the other hand, response times for complex queries on large repositories may be inappropriate for rapid reaction needs.

  1. TOPSAN: a dynamic web database for structural genomics.

    PubMed

    Ellrott, Kyle; Zmasek, Christian M; Weekes, Dana; Sri Krishna, S; Bakolitsa, Constantina; Godzik, Adam; Wooley, John

    2011-01-01

    The Open Protein Structure Annotation Network (TOPSAN) is a web-based collaboration platform for exploring and annotating structures determined by structural genomics efforts. Characterization of those structures presents a challenge since the majority of the proteins themselves have not yet been characterized. Responding to this challenge, the TOPSAN platform facilitates collaborative annotation and investigation via a user-friendly web-based interface pre-populated with automatically generated information. Semantic web technologies expand and enrich TOPSAN's content through links to larger sets of related databases, and thus, enable data integration from disparate sources and data mining via conventional query languages. TOPSAN can be found at http://www.topsan.org.

  2. An open repositories network development for medical teaching resources.

    PubMed

    Soula, Gérard; Darmoni, Stefan; Le Beux, Pierre; Renard, Jean-Marie; Dahamna, Badisse; Fieschi, Marius

    2010-01-01

    The lack of interoperability between repositories of heterogeneous and geographically widespread data is an obstacle to the diffusion, sharing and reutilization of those data. We present the development of an open repositories network taking into account both the syntactic and semantic interoperability of the different repositories and based on international standards in this field. The network is used by the medical community in France for the diffusion and sharing of digital teaching resources. The syntactic interoperability of the repositories is managed using the OAI-PMH protocol for the exchange of metadata describing the resources. Semantic interoperability is based, on one hand, on the LOM standard for the description of resources and on MESH for the indexing of the latter and, on the other hand, on semantic interoperability management designed to optimize compliance with standards and the quality of the metadata.

  3. Varieties of semantic cognition revealed through simultaneous decomposition of intrinsic brain connectivity and behaviour.

    PubMed

    Vatansever, Deniz; Bzdok, Danilo; Wang, Hao-Ting; Mollo, Giovanna; Sormaz, Mladen; Murphy, Charlotte; Karapanagiotidis, Theodoros; Smallwood, Jonathan; Jefferies, Elizabeth

    2017-09-01

    Contemporary theories assume that semantic cognition emerges from a neural architecture in which different component processes are combined to produce aspects of conceptual thought and behaviour. In addition to the state-level, momentary variation in brain connectivity, individuals may also differ in their propensity to generate particular configurations of such components, and these trait-level differences may relate to individual differences in semantic cognition. We tested this view by exploring how variation in intrinsic brain functional connectivity between semantic nodes in fMRI was related to performance on a battery of semantic tasks in 154 healthy participants. Through simultaneous decomposition of brain functional connectivity and semantic task performance, we identified distinct components of semantic cognition at rest. In a subsequent validation step, these data-driven components demonstrated explanatory power for neural responses in an fMRI-based semantic localiser task and variation in self-generated thoughts during the resting-state scan. Our findings showed that good performance on harder semantic tasks was associated with relative segregation at rest between frontal brain regions implicated in controlled semantic retrieval and the default mode network. Poor performance on easier tasks was linked to greater coupling between the same frontal regions and the anterior temporal lobe; a pattern associated with deliberate, verbal thematic thoughts at rest. We also identified components that related to qualities of semantic cognition: relatively good performance on pictorial semantic tasks was associated with greater separation of angular gyrus from frontal control sites and greater integration with posterior cingulate and anterior temporal cortex. In contrast, good speech production was linked to the separation of angular gyrus, posterior cingulate and temporal lobe regions. Together these data show that quantitative and qualitative variation in semantic cognition across individuals emerges from variations in the interaction of nodes within distinct functional brain networks. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Single Sided Messaging v. 0.6.6

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Curry, Matthew Leon; Farmer, Matthew Shane; Hassani, Amin

    Single-Sided Messaging (SSM) is a portable, multitransport networking library that enables applications to leverage potential one-sided capabilities of underlying network transports. It also provides desirable semantics that services for highperformance, massively parallel computers can leverage, such as an explicit cancel operation for pending transmissions, as well as enhanced matching semantics favoring large numbers of buffers attached to a single match entry. This release supports TCP/IP, shared memory, and Infiniband.

  5. Effects of semantic relatedness on recall of stimuli preceding emotional oddballs.

    PubMed

    Smith, Ryan M; Beversdorf, David Q

    2008-07-01

    Semantic and episodic memory networks function as highly interconnected systems, both relying on the hippocampal/medial temporal lobe complex (HC/MTL). Episodic memory encoding triggers the retrieval of semantic information, serving to incorporate contextual relationships between the newly acquired memory and existing semantic representations. While emotional material augments episodic memory encoding at the time of stimulus presentation, interactions between emotion and semantic memory that contribute to subsequent episodic recall are not well understood. Using a modified oddball task, we examined the modulatory effects of negative emotion on semantic interactions with episodic memory by measuring the free-recall of serially presented neutral or negative words varying in semantic relatedness. We found increased free-recall for words related to and preceding emotionally negative oddballs, suggesting that negative emotion can indirectly facilitate episodic free-recall by enhancing semantic contributions during encoding. Our findings demonstrate the ability of emotion and semantic memory to interact to mutually enhance free-recall.

  6. When cancer is associated with illness but no longer with animal or zodiac sign: investigation of biased semantic networks in obsessive-compulsive disorder (OCD).

    PubMed

    Jelinek, Lena; Hottenrott, Birgit; Moritz, Steffen

    2009-12-01

    Building upon semantic network models, it is proposed that individuals with obsessive-compulsive disorder (OCD) process ambiguous words (e.g., homographs such as cancer) preferably in the context of the OC meaning (i.e., illness) and connect them to a lesser degree to other (neutral) cognitions (e.g., animal). To investigate this assumption, a new task was designed requiring participants to generate up to five associations for different cue words. Cue words were either emotionally neutral, negative or OC-relevant. Two thirds of the items were homographs, while the rest was unambiguous. Twenty-five OCD and 21 healthy participants were recruited via internet. Analyses reveal that OCD participants produced significantly more negative and OC-relevant associations than controls, supporting the assumption of biased associative networks in OCD. The findings support the use of psychological interventions such as Association Splitting that aim at restructuring associative networks in OCD by broadening the semantic scope of OC cognitions.

  7. Semantic disturbance in schizophrenia and its relationship to the cognitive neuroscience of attention

    PubMed Central

    Nestor, P.G.; Han, S.D.; Niznikiewicz, M.; Salisbury, D.; Spencer, K.; Shenton, M.E.; McCarley, R.W.

    2010-01-01

    We view schizophrenia as producing a failure of attentional modulation that leads to a breakdown in the selective enhancement or inhibition of semantic/lexical representations whose biological substrata are widely distributed across left (dominant) temporal and frontal lobes. Supporting behavioral evidence includes word recall studies that have pointed to a disturbance in connectivity (associative strength) but not network size (number of associates) in patients with schizophrenia. Paralleling these findings are recent neural network simulation studies of the abnormal connectivity effect in schizophrenia through ‘lesioning’ network connection weights while holding constant network size. Supporting evidence at the level of biology are in vitro studies examining N-methyl-d-aspartate (NMDA) receptor antagonists on recurrent inhibition; simulations in neural populations with realistically modeled biophysical properties show NMDA antagonists produce a schizophrenia-like disturbance in pattern association. We propose a similar failure of NMDA-mediated recurrent inhibition as a candidate biological substrate for attention and semantic anomalies of schizophrenia. PMID:11454433

  8. Semantic segmentation of mFISH images using convolutional networks.

    PubMed

    Pardo, Esteban; Morgado, José Mário T; Malpica, Norberto

    2018-04-30

    Multicolor in situ hybridization (mFISH) is a karyotyping technique used to detect major chromosomal alterations using fluorescent probes and imaging techniques. Manual interpretation of mFISH images is a time consuming step that can be automated using machine learning; in previous works, pixel or patch wise classification was employed, overlooking spatial information which can help identify chromosomes. In this work, we propose a fully convolutional semantic segmentation network for the interpretation of mFISH images, which uses both spatial and spectral information to classify each pixel in an end-to-end fashion. The semantic segmentation network developed was tested on samples extracted from a public dataset using cross validation. Despite having no labeling information of the image it was tested on, our algorithm yielded an average correct classification ratio (CCR) of 87.41%. Previously, this level of accuracy was only achieved with state of the art algorithms when classifying pixels from the same image in which the classifier has been trained. These results provide evidence that fully convolutional semantic segmentation networks may be employed in the computer aided diagnosis of genetic diseases with improved performance over the current image analysis methods. © 2018 International Society for Advancement of Cytometry. © 2018 International Society for Advancement of Cytometry.

  9. HyQue: evaluating hypotheses using Semantic Web technologies.

    PubMed

    Callahan, Alison; Dumontier, Michel; Shah, Nigam H

    2011-05-17

    Key to the success of e-Science is the ability to computationally evaluate expert-composed hypotheses for validity against experimental data. Researchers face the challenge of collecting, evaluating and integrating large amounts of diverse information to compose and evaluate a hypothesis. Confronted with rapidly accumulating data, researchers currently do not have the software tools to undertake the required information integration tasks. We present HyQue, a Semantic Web tool for querying scientific knowledge bases with the purpose of evaluating user submitted hypotheses. HyQue features a knowledge model to accommodate diverse hypotheses structured as events and represented using Semantic Web languages (RDF/OWL). Hypothesis validity is evaluated against experimental and literature-sourced evidence through a combination of SPARQL queries and evaluation rules. Inference over OWL ontologies (for type specifications, subclass assertions and parthood relations) and retrieval of facts stored as Bio2RDF linked data provide support for a given hypothesis. We evaluate hypotheses of varying levels of detail about the genetic network controlling galactose metabolism in Saccharomyces cerevisiae to demonstrate the feasibility of deploying such semantic computing tools over a growing body of structured knowledge in Bio2RDF. HyQue is a query-based hypothesis evaluation system that can currently evaluate hypotheses about the galactose metabolism in S. cerevisiae. Hypotheses as well as the supporting or refuting data are represented in RDF and directly linked to one another allowing scientists to browse from data to hypothesis and vice versa. HyQue hypotheses and data are available at http://semanticscience.org/projects/hyque.

  10. Modeling the N400 ERP component as transient semantic over-activation within a neural network model of word comprehension

    PubMed Central

    Cheyette, Samuel J.; Plaut, David C.

    2016-01-01

    The study of the N400 event-related brain potential has provided fundamental insights into the nature of real-time comprehension processes, and its amplitude is modulated by a wide variety of stimulus and context factors. It is generally thought to reflect the difficulty of semantic access, but formulating a precise characterization of this process has proved difficult. Laszlo and colleagues (Laszlo & Plaut, 2012, Brain and Language, 120, 271-281; Laszlo & Armstrong, 2014, Brain and Language, 132, 22-27) used physiologically constrained neural networks to model the N400 as transient over-activation within semantic representations, arising as a consequence of the distribution of excitation and inhibition within and between cortical areas. The current work extends this approach to successfully model effects on both N400 amplitudes and behavior of word frequency, semantic richness, repetition, semantic and associative priming, and orthographic neighborhood size. The account is argued to be preferable to one based on “implicit semantic prediction error” (Rabovsky & McRae, 2014, Cognition, 132, 68-98) for a number of reasons, the most fundamental of which is that the current model actually produces N400-like waveforms in its real-time activation dynamics. PMID:27871623

  11. Modeling the N400 ERP component as transient semantic over-activation within a neural network model of word comprehension.

    PubMed

    Cheyette, Samuel J; Plaut, David C

    2017-05-01

    The study of the N400 event-related brain potential has provided fundamental insights into the nature of real-time comprehension processes, and its amplitude is modulated by a wide variety of stimulus and context factors. It is generally thought to reflect the difficulty of semantic access, but formulating a precise characterization of this process has proved difficult. Laszlo and colleagues (Laszlo & Plaut, 2012; Laszlo & Armstrong, 2014) used physiologically constrained neural networks to model the N400 as transient over-activation within semantic representations, arising as a consequence of the distribution of excitation and inhibition within and between cortical areas. The current work extends this approach to successfully model effects on both N400 amplitudes and behavior of word frequency, semantic richness, repetition, semantic and associative priming, and orthographic neighborhood size. The account is argued to be preferable to one based on "implicit semantic prediction error" (Rabovsky & McRae, 2014) for a number of reasons, the most fundamental of which is that the current model actually produces N400-like waveforms in its real-time activation dynamics. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Autobiographical memory and patterns of brain atrophy in frontotemporal lobar degeneration.

    PubMed

    McKinnon, Margaret C; Nica, Elena I; Sengdy, Pheth; Kovacevic, Natasa; Moscovitch, Morris; Freedman, Morris; Miller, Bruce L; Black, Sandra E; Levine, Brian

    2008-10-01

    Autobiographical memory paradigms have been increasingly used to study the behavioral and neuroanatomical correlates of human remote memory. Although there are numerous functional neuroimaging studies on this topic, relatively few studies of patient samples exist, with heterogeneity of results owing to methodological variability. In this study, fronto-temporal lobar degeneration (FTLD), a form of dementia affecting regions crucial to autobiographical memory, was used as a model of autobiographical memory loss. We emphasized the separation of episodic (recollection of specific event, perceptual, and mental state information) from semantic (factual information unspecific in time and place) autobiographical memory, derived from a reliable method for scoring transcribed autobiographical protocols, the Autobiographical Interview [Levine, B., Svoboda, E., Hay, J., Winocur, G., & Moscovitch, M. Aging and autobiographical memory: Dissociating episodic from semantic retrieval. Psychology and Aging, 17, 677-689, 2002]. Patients with the fronto-temporal dementia (FTD) and mixed fronto-temporal and semantic dementia (FTD/SD) variants of FTLD were impaired at reconstructing episodically rich autobiographical memories across the lifespan, with FTD/SD patients generating an excess of generic semantic autobiographical information. Patients with progressive nonfluent aphasia were mildly impaired for episodic autobiographical memory, but this impairment was eliminated with the provision of structured cueing, likely reflecting relatively intact medial-temporal lobe function, whereas the same cueing failed to bolster the FTD and FTD/SD patients' performance relative to that of matched comparison subjects. The pattern of episodic, but not semantic, autobiographical impairment was enhanced with disease progression on 1- to 2-year follow-up testing in a subset of patients, supplementing the cross-sectional evidence for specificity of episodic autobiographical impairment with longitudinal data. This behavioral pattern covaried with volume loss in a distributed left-lateralized posterior network centered on the temporal lobe, consistent with evidence from other patient and functional neuroimaging studies of autobiographical memory. Frontal lobe volumes, however, did not significantly contribute to this network, suggesting that frontal contributions to autobiographical episodic memory may be more complex than previously appreciated.

  13. Using Graph Components Derived from an Associative Concept Dictionary to Predict fMRI Neural Activation Patterns that Represent the Meaning of Nouns.

    PubMed

    Akama, Hiroyuki; Miyake, Maki; Jung, Jaeyoung; Murphy, Brian

    2015-01-01

    In this study, we introduce an original distance definition for graphs, called the Markov-inverse-F measure (MiF). This measure enables the integration of classical graph theory indices with new knowledge pertaining to structural feature extraction from semantic networks. MiF improves the conventional Jaccard and/or Simpson indices, and reconciles both the geodesic information (random walk) and co-occurrence adjustment (degree balance and distribution). We measure the effectiveness of graph-based coefficients through the application of linguistic graph information for a neural activity recorded during conceptual processing in the human brain. Specifically, the MiF distance is computed between each of the nouns used in a previous neural experiment and each of the in-between words in a subgraph derived from the Edinburgh Word Association Thesaurus of English. From the MiF-based information matrix, a machine learning model can accurately obtain a scalar parameter that specifies the degree to which each voxel in (the MRI image of) the brain is activated by each word or each principal component of the intermediate semantic features. Furthermore, correlating the voxel information with the MiF-based principal components, a new computational neurolinguistics model with a network connectivity paradigm is created. This allows two dimensions of context space to be incorporated with both semantic and neural distributional representations.

  14. A Framework of Knowledge Integration and Discovery for Supporting Pharmacogenomics Target Predication of Adverse Drug Events: A Case Study of Drug-Induced Long QT Syndrome.

    PubMed

    Jiang, Guoqian; Wang, Chen; Zhu, Qian; Chute, Christopher G

    2013-01-01

    Knowledge-driven text mining is becoming an important research area for identifying pharmacogenomics target genes. However, few of such studies have been focused on the pharmacogenomics targets of adverse drug events (ADEs). The objective of the present study is to build a framework of knowledge integration and discovery that aims to support pharmacogenomics target predication of ADEs. We integrate a semantically annotated literature corpus Semantic MEDLINE with a semantically coded ADE knowledgebase known as ADEpedia using a semantic web based framework. We developed a knowledge discovery approach combining a network analysis of a protein-protein interaction (PPI) network and a gene functional classification approach. We performed a case study of drug-induced long QT syndrome for demonstrating the usefulness of the framework in predicting potential pharmacogenomics targets of ADEs.

  15. Revealing the Dynamic Modulations That Underpin a Resilient Neural Network for Semantic Cognition: An fMRI Investigation in Patients With Anterior Temporal Lobe Resection.

    PubMed

    Rice, Grace E; Caswell, Helen; Moore, Perry; Lambon Ralph, Matthew A; Hoffman, Paul

    2018-06-06

    One critical feature of any well-engineered system is its resilience to perturbation and minor damage. The purpose of the current study was to investigate how resilience is achieved in higher cognitive systems, which we explored through the domain of semantic cognition. Convergent evidence implicates the bilateral anterior temporal lobes (ATLs) as a conceptual knowledge hub. While bilateral damage to this region produces profound semantic impairment, unilateral atrophy/resection or transient perturbation has a limited effect. Two neural mechanisms might underpin this resilience to unilateral ATL damage: 1) the undamaged ATL upregulates its activation in order to compensate; and/or 2) prefrontal regions involved in control of semantic retrieval upregulate to compensate for the impoverished semantic representations that follow from ATL damage. To test these possibilities, 34 postsurgical temporal lobe epilepsy patients and 20 age-matched controls were scanned whilst completing semantic tasks. Pictorial tasks, which produced bilateral frontal and temporal activation, showed few activation differences between patients and control participants. Written word tasks, however, produced a left-lateralized activation pattern and greater differences between the groups. Patients with right ATL resection increased activation in left inferior frontal gyrus (IFG). Patients with left ATL resection upregulated both the right ATL and right IFG. Consistent with recent computational models, these results indicate that 1) written word semantic processing in patients with ATL resection is supported by upregulation of semantic knowledge and control regions, principally in the undamaged hemisphere, and 2) pictorial semantic processing is less affected, presumably because it draws on a more bilateral network.

  16. Quality evaluation of value sets from cancer study common data elements using the UMLS semantic groups

    PubMed Central

    Solbrig, Harold R; Chute, Christopher G

    2012-01-01

    Objective The objective of this study is to develop an approach to evaluate the quality of terminological annotations on the value set (ie, enumerated value domain) components of the common data elements (CDEs) in the context of clinical research using both unified medical language system (UMLS) semantic types and groups. Materials and methods The CDEs of the National Cancer Institute (NCI) Cancer Data Standards Repository, the NCI Thesaurus (NCIt) concepts and the UMLS semantic network were integrated using a semantic web-based framework for a SPARQL-enabled evaluation. First, the set of CDE-permissible values with corresponding meanings in external controlled terminologies were isolated. The corresponding value meanings were then evaluated against their NCI- or UMLS-generated semantic network mapping to determine whether all of the meanings fell within the same semantic group. Results Of the enumerated CDEs in the Cancer Data Standards Repository, 3093 (26.2%) had elements drawn from more than one UMLS semantic group. A random sample (n=100) of this set of elements indicated that 17% of them were likely to have been misclassified. Discussion The use of existing semantic web tools can support a high-throughput mechanism for evaluating the quality of large CDE collections. This study demonstrates that the involvement of multiple semantic groups in an enumerated value domain of a CDE is an effective anchor to trigger an auditing point for quality evaluation activities. Conclusion This approach produces a useful quality assurance mechanism for a clinical study CDE repository. PMID:22511016

  17. Neural correlates of semantic associations in patients with schizophrenia.

    PubMed

    Sass, Katharina; Heim, Stefan; Sachs, Olga; Straube, Benjamin; Schneider, Frank; Habel, Ute; Kircher, Tilo

    2014-03-01

    Patients with schizophrenia have semantic processing disturbances leading to expressive language deficits (formal thought disorder). The underlying pathology has been related to alterations in the semantic network and its neural correlates. Moreover, crossmodal processing, an important aspect of communication, is impaired in schizophrenia. Here we investigated specific processing abnormalities in patients with schizophrenia with regard to modality and semantic distance in a semantic priming paradigm. Fourteen patients with schizophrenia and fourteen demographically matched controls made visual lexical decisions on successively presented word-pairs (SOA = 350 ms) with direct or indirect relations, unrelated word-pairs, and pseudoword-target stimuli during fMRI measurement. Stimuli were presented in a unimodal (visual) or crossmodal (auditory-visual) fashion. On the neural level, the effect of semantic relation indicated differences (patients > controls) within the right angular gyrus and precuneus. The effect of modality revealed differences (controls > patients) within the left superior frontal, middle temporal, inferior occipital, right angular gyri, and anterior cingulate cortex. Semantic distance (direct vs. indirect) induced distinct activations within the left middle temporal, fusiform gyrus, right precuneus, and thalamus with patients showing fewer differences between direct and indirect word-pairs. The results highlight aberrant priming-related brain responses in patients with schizophrenia. Enhanced activation for patients possibly reflects deficits in semantic processes that might be caused by a delayed and enhanced spread of activation within the semantic network. Modality-specific decreases of activation in patients might be related to impaired perceptual integration. Those deficits could induce and increase the prominent symptoms of schizophrenia like impaired speech processing.

  18. Exploring context and content links in social media: a latent space method.

    PubMed

    Qi, Guo-Jun; Aggarwal, Charu; Tian, Qi; Ji, Heng; Huang, Thomas S

    2012-05-01

    Social media networks contain both content and context-specific information. Most existing methods work with either of the two for the purpose of multimedia mining and retrieval. In reality, both content and context information are rich sources of information for mining, and the full power of mining and processing algorithms can be realized only with the use of a combination of the two. This paper proposes a new algorithm which mines both context and content links in social media networks to discover the underlying latent semantic space. This mapping of the multimedia objects into latent feature vectors enables the use of any off-the-shelf multimedia retrieval algorithms. Compared to the state-of-the-art latent methods in multimedia analysis, this algorithm effectively solves the problem of sparse context links by mining the geometric structure underlying the content links between multimedia objects. Specifically for multimedia annotation, we show that an effective algorithm can be developed to directly construct annotation models by simultaneously leveraging both context and content information based on latent structure between correlated semantic concepts. We conduct experiments on the Flickr data set, which contains user tags linked with images. We illustrate the advantages of our approach over the state-of-the-art multimedia retrieval techniques.

  19. How activation, entanglement, and searching a semantic network contribute to event memory.

    PubMed

    Nelson, Douglas L; Kitto, Kirsty; Galea, David; McEvoy, Cathy L; Bruza, Peter D

    2013-08-01

    Free-association norms indicate that words are organized into semantic/associative neighborhoods within a larger network of words and links that bind the net together. We present evidence indicating that memory for a recent word event can depend on implicitly and simultaneously activating related words in its neighborhood. Processing a word during encoding primes its network representation as a function of the density of the links in its neighborhood. Such priming increases recall and recognition and can have long-lasting effects when the word is processed in working memory. Evidence for this phenomenon is reviewed in extralist-cuing, primed free-association, intralist-cuing, and single-item recognition tasks. The findings also show that when a related word is presented in order to cue the recall of a studied word, the cue activates the target in an array of related words that distract and reduce the probability of the target's selection. The activation of the semantic network produces priming benefits during encoding, and search costs during retrieval. In extralist cuing, recall is a negative function of cue-to-distractor strength, and a positive function of neighborhood density, cue-to-target strength, and target-to-cue strength. We show how these four measures derived from the network can be combined and used to predict memory performance. These measures play different roles in different tasks, indicating that the contribution of the semantic network varies with the context provided by the task. Finally, we evaluate spreading-activation and quantum-like entanglement explanations for the priming effects produced by neighborhood density.

  20. Ontology Design of Influential People Identification Using Centrality

    NASA Astrophysics Data System (ADS)

    Maulana Awangga, Rolly; Yusril, Muhammad; Setyawan, Helmi

    2018-04-01

    Identifying influential people as a node in a graph theory commonly calculated by social network analysis. The social network data has the user as node and edge as relation forming a friend relation graph. This research is conducting different meaning of every nodes relation in the social network. Ontology was perfect match science to describe the social network data as conceptual and domain. Ontology gives essential relationship in a social network more than a current graph. Ontology proposed as a standard for knowledge representation for the semantic web by World Wide Web Consortium. The formal data representation use Resource Description Framework (RDF) and Web Ontology Language (OWL) which is strategic for Open Knowledge-Based website data. Ontology used in the semantic description for a relationship in the social network, it is open to developing semantic based relationship ontology by adding and modifying various and different relationship to have influential people as a conclusion. This research proposes a model using OWL and RDF for influential people identification in the social network. The study use degree centrality, between ness centrality, and closeness centrality measurement for data validation. As a conclusion, influential people identification in Facebook can use proposed Ontology model in the Group, Photos, Photo Tag, Friends, Events and Works data.

  1. Representational Similarity Analysis Reveals Commonalities and Differences in the Semantic Processing of Words and Objects

    PubMed Central

    Devereux, Barry J.; Clarke, Alex; Marouchos, Andreas; Tyler, Lorraine K.

    2013-01-01

    Understanding the meanings of words and objects requires the activation of underlying conceptual representations. Semantic representations are often assumed to be coded such that meaning is evoked regardless of the input modality. However, the extent to which meaning is coded in modality-independent or amodal systems remains controversial. We address this issue in a human fMRI study investigating the neural processing of concepts, presented separately as written words and pictures. Activation maps for each individual word and picture were used as input for searchlight-based multivoxel pattern analyses. Representational similarity analysis was used to identify regions correlating with low-level visual models of the words and objects and the semantic category structure common to both. Common semantic category effects for both modalities were found in a left-lateralized network, including left posterior middle temporal gyrus (LpMTG), left angular gyrus, and left intraparietal sulcus (LIPS), in addition to object- and word-specific semantic processing in ventral temporal cortex and more anterior MTG, respectively. To explore differences in representational content across regions and modalities, we developed novel data-driven analyses, based on k-means clustering of searchlight dissimilarity matrices and seeded correlation analysis. These revealed subtle differences in the representations in semantic-sensitive regions, with representations in LIPS being relatively invariant to stimulus modality and representations in LpMTG being uncorrelated across modality. These results suggest that, although both LpMTG and LIPS are involved in semantic processing, only the functional role of LIPS is the same regardless of the visual input, whereas the functional role of LpMTG differs for words and objects. PMID:24285896

  2. Developing A Web-based User Interface for Semantic Information Retrieval

    NASA Technical Reports Server (NTRS)

    Berrios, Daniel C.; Keller, Richard M.

    2003-01-01

    While there are now a number of languages and frameworks that enable computer-based systems to search stored data semantically, the optimal design for effective user interfaces for such systems is still uncle ar. Such interfaces should mask unnecessary query detail from users, yet still allow them to build queries of arbitrary complexity without significant restrictions. We developed a user interface supporting s emantic query generation for Semanticorganizer, a tool used by scient ists and engineers at NASA to construct networks of knowledge and dat a. Through this interface users can select node types, node attribute s and node links to build ad-hoc semantic queries for searching the S emanticOrganizer network.

  3. Diagnosis of Cognitive Impairment Compatible with Early Diagnosis of Alzheimer's Disease. A Bayesian Network Model based on the Analysis of Oral Definitions of Semantic Categories.

    PubMed

    Guerrero, J M; Martínez-Tomás, R; Rincón, M; Peraita, H

    2016-01-01

    Early detection of Alzheimer's disease (AD) has become one of the principal focuses of research in medicine, particularly when the disease is incipient or even prodromic, because treatments are more effective in these stages. Lexical-semantic-conceptual deficit (LSCD) in the oral definitions of semantic categories for basic objects is an important early indicator in the evaluation of the cognitive state of patients. The objective of this research is to define an economic procedure for cognitive impairment (CI) diagnosis, which may be associated with early stages of AD, by analysing cognitive alterations affecting declarative semantic memory. Because of its low cost, it could be used for routine clinical evaluations or screenings, leading to more expensive and selective tests that confirm or rule out the disease accurately. It should necessarily be an explanatory procedure, which would allow us to study the evolution of the disease in relation to CI, the irregularities in different semantic categories, and other neurodegenerative diseases. On the basis of these requirements, we hypothesise that Bayesian networks (BNs) are the most appropriate tool for this purpose. We have developed a BN for CI diagnosis in mild and moderate AD patients by analysing the oral production of semantic features. The BN causal model represents LSCD in certain semantic categories, both of living things (dog, pine, and apple) and non-living things (chair, car, and trousers), as symptoms of CI. The model structure, the qualitative part of the model, uses domain knowledge obtained from psychology experts and epidemiological studies. Further, the model parameters, the quantitative part of the model, are learnt automatically from epidemiological studies and Peraita and Grasso's linguistic corpus of oral definitions. This corpus was prepared with an incidental sampling and included the analysis of the oral linguistic production of 81 participants (42 cognitively healthy elderly people and 39 mild and moderate AD patients) from Madrid region's hospitals. Experienced neurologists diagnosed these cases following the National Institute of Neurological and Communicative Disorders and Stroke/Alzheimer's Disease and Related Disorders Association (NINCDS-ADRDA)'s Alzheimer's criteria, performing, among other explorations and tests, a minimum neuropsychological exploration that included the Mini-Mental State Examination test. BN's classification performance is remarkable compared with other machine learning methods, achieving 91% accuracy and 94% precision in mild and moderate AD patients. Apart from this, the BN model facilitates the explanation of the reasoning process and the validation of the conclusions and allows the study of uncommon declarative semantic memory impairments. Our method is able to analyse LSCD in a wide set of semantic categories throughout the progression of CI, being a valuable first screening method in AD diagnosis in its early stages. Because of its low cost, it can be used for routine clinical evaluations or screenings to detect AD in its early stages. Besides, due to its knowledge-based structure, it can be easily extended to provide an explanation of the diagnosis and to the study of other neurodegenerative diseases. Further, this is a key advantage of BNs over other machine learning methods with similar performance: it is a recognisable and explanatory model that allows one to study irregularities in different semantic categories.

  4. Knowledge-base browsing: an application of hybrid distributed/local connectionist networks

    NASA Astrophysics Data System (ADS)

    Samad, Tariq; Israel, Peggy

    1990-08-01

    We describe a knowledge base browser based on a connectionist (or neural network) architecture that employs both distributed and local representations. The distributed representations are used for input and output thereby enabling associative noise-tolerant interaction with the environment. Internally all representations are fully local. This simplifies weight assignment and facilitates network configuration for specific applications. In our browser concepts and relations in a knowledge base are represented using " microfeatures. " The microfeatures can encode semantic attributes structural features contextual information etc. Desired portions of the knowledge base can then be associatively retrieved based on a structured cue. An ordered list of partial matches is presented to the user for selection. Microfeatures can also be used as " bookmarks" they can be placed dynamically at appropriate points in the knowledge base and subsequently used as retrieval cues. A proof-of-concept system has been implemented for an internally developed Honeywell-proprietary knowledge acquisition tool. 1.

  5. Information Warfare: Evaluation of Operator Information Processing Models

    DTIC Science & Technology

    1997-10-01

    that people can describe or report, including both episodic and semantic information. Declarative memory contains a network of knowledge represented...second dimension corresponds roughly to the distinction between episodic and semantic memory that is commonly made in cognitive psychology. Episodic ...3 is long-term memory for the discourse, a subset of episodic memory . Partition 4 is long-term semantic memory , or the knowledge-base. According to

  6. Combinatorial semantics strengthens angular-anterior temporal coupling.

    PubMed

    Molinaro, Nicola; Paz-Alonso, Pedro M; Duñabeitia, Jon Andoni; Carreiras, Manuel

    2015-04-01

    The human semantic combinatorial system allows us to create a wide number of new meanings from a finite number of existing representations. The present study investigates the neural dynamics underlying the semantic processing of different conceptual constructions based on predictions from previous neuroanatomical models of the semantic processing network. In two experiments, participants read sentences for comprehension containing noun-adjective pairs in three different conditions: prototypical (Redundant), nonsense (Anomalous) and low-typical but composable (Contrastive). In Experiment 1 we examined the processing costs associated to reading these sentences and found a processing dissociation between Anomalous and Contrastive word pairs, compared to prototypical (Redundant) stimuli. In Experiment 2, functional connectivity results showed strong co-activation across conditions between inferior frontal gyrus (IFG) and posterior middle temporal gyrus (MTG), as well as between these two regions and middle frontal gyrus (MFG), anterior temporal cortex (ATC) and fusiform gyrus (FG), consistent with previous neuroanatomical models. Importantly, processing of low-typical (but composable) meanings relative to prototypical and anomalous constructions was associated with a stronger positive coupling between ATC and angular gyrus (AG). Our results underscore the critical role of IFG-MTG co-activation during semantic processing and how other relevant nodes within the semantic processing network come into play to handle visual-orthographic information, to maintain multiple lexical-semantic representations in working memory and to combine existing representations while creatively constructing meaning. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. NELasso: Group-Sparse Modeling for Characterizing Relations Among Named Entities in News Articles.

    PubMed

    Tariq, Amara; Karim, Asim; Foroosh, Hassan

    2017-10-01

    Named entities such as people, locations, and organizations play a vital role in characterizing online content. They often reflect information of interest and are frequently used in search queries. Although named entities can be detected reliably from textual content, extracting relations among them is more challenging, yet useful in various applications (e.g., news recommending systems). In this paper, we present a novel model and system for learning semantic relations among named entities from collections of news articles. We model each named entity occurrence with sparse structured logistic regression, and consider the words (predictors) to be grouped based on background semantics. This sparse group LASSO approach forces the weights of word groups that do not influence the prediction towards zero. The resulting sparse structure is utilized for defining the type and strength of relations. Our unsupervised system yields a named entities' network where each relation is typed, quantified, and characterized in context. These relations are the key to understanding news material over time and customizing newsfeeds for readers. Extensive evaluation of our system on articles from TIME magazine and BBC News shows that the learned relations correlate with static semantic relatedness measures like WLM, and capture the evolving relationships among named entities over time.

  8. Recovering time-varying networks of dependencies in social and biological studies.

    PubMed

    Ahmed, Amr; Xing, Eric P

    2009-07-21

    A plausible representation of the relational information among entities in dynamic systems such as a living cell or a social community is a stochastic network that is topologically rewiring and semantically evolving over time. Although there is a rich literature in modeling static or temporally invariant networks, little has been done toward recovering the network structure when the networks are not observable in a dynamic context. In this article, we present a machine learning method called TESLA, which builds on a temporally smoothed l(1)-regularized logistic regression formalism that can be cast as a standard convex-optimization problem and solved efficiently by using generic solvers scalable to large networks. We report promising results on recovering simulated time-varying networks and on reverse engineering the latent sequence of temporally rewiring political and academic social networks from longitudinal data, and the evolving gene networks over >4,000 genes during the life cycle of Drosophila melanogaster from a microarray time course at a resolution limited only by sample frequency.

  9. Semantic Data Integration and Knowledge Management to Represent Biological Network Associations.

    PubMed

    Losko, Sascha; Heumann, Klaus

    2017-01-01

    The vast quantities of information generated by academic and industrial research groups are reflected in a rapidly growing body of scientific literature and exponentially expanding resources of formalized data, including experimental data, originating from a multitude of "-omics" platforms, phenotype information, and clinical data. For bioinformatics, the challenge remains to structure this information so that scientists can identify relevant information, to integrate this information as specific "knowledge bases," and to formalize this knowledge across multiple scientific domains to facilitate hypothesis generation and validation. Here we report on progress made in building a generic knowledge management environment capable of representing and mining both explicit and implicit knowledge and, thus, generating new knowledge. Risk management in drug discovery and clinical research is used as a typical example to illustrate this approach. In this chapter we introduce techniques and concepts (such as ontologies, semantic objects, typed relationships, contexts, graphs, and information layers) that are used to represent complex biomedical networks. The BioXM™ Knowledge Management Environment is used as an example to demonstrate how a domain such as oncology is represented and how this representation is utilized for research.

  10. Creative thinking as orchestrated by semantic processing vs. cognitive control brain networks

    PubMed Central

    Abraham, Anna

    2014-01-01

    Creativity is primarily investigated within the neuroscientific perspective as a unitary construct. While such an approach is beneficial when trying to infer the general picture regarding creativity and brain function, it is insufficient if the objective is to uncover the information processing brain mechanisms by which creativity occurs. As creative thinking emerges through the dynamic interplay between several cognitive processes, assessing the neural correlates of these operations would enable the development and characterization of an information processing framework from which to better understand this complex ability. This article focuses on two aspects of creative cognition that are central to generating original ideas. “Conceptual expansion” refers to the ability to widen one’s conceptual structures to include unusual or novel associations, while “overcoming knowledge constraints” refers to our ability to override the constraining influence imposed by salient or pertinent knowledge when trying to be creative. Neuroimaging and neuropsychological evidence is presented to illustrate how semantic processing and cognitive control networks in the brain differentially modulate these critical facets of creative cognition. PMID:24605098

  11. Static, Dynamic and Semantic Dimensions: Towards a Multidisciplinary Approach of Social Networks Analysis

    NASA Astrophysics Data System (ADS)

    Thovex, Christophe; Trichet, Francky

    The objective of our work is to extend static and dynamic models of Social Networks Analysis (SNA), by taking conceptual aspects of enterprises and institutions social graph into account. The originality of our multidisciplinary work is to introduce abstract notions of electro-physic to define new measures in SNA, for new decision-making functions dedicated to Human Resource Management (HRM). This paper introduces a multidimensional system and new measures: (1) a tension measure for social network analysis, (2) an electrodynamic, predictive and semantic system for recommendations on social graphs evolutions and (3) a reactance measure used to evaluate the individual stress at work of the members of a social network.

  12. Squeeze-SegNet: a new fast deep convolutional neural network for semantic segmentation

    NASA Astrophysics Data System (ADS)

    Nanfack, Geraldin; Elhassouny, Azeddine; Oulad Haj Thami, Rachid

    2018-04-01

    The recent researches in Deep Convolutional Neural Network have focused their attention on improving accuracy that provide significant advances. However, if they were limited to classification tasks, nowadays with contributions from Scientific Communities who are embarking in this field, they have become very useful in higher level tasks such as object detection and pixel-wise semantic segmentation. Thus, brilliant ideas in the field of semantic segmentation with deep learning have completed the state of the art of accuracy, however this architectures become very difficult to apply in embedded systems as is the case for autonomous driving. We present a new Deep fully Convolutional Neural Network for pixel-wise semantic segmentation which we call Squeeze-SegNet. The architecture is based on Encoder-Decoder style. We use a SqueezeNet-like encoder and a decoder formed by our proposed squeeze-decoder module and upsample layer using downsample indices like in SegNet and we add a deconvolution layer to provide final multi-channel feature map. On datasets like Camvid or City-states, our net gets SegNet-level accuracy with less than 10 times fewer parameters than SegNet.

  13. Semantic Space as a Metapopulation System: Modelling the Wikipedia Information Flow Network

    NASA Astrophysics Data System (ADS)

    Masucci, A. Paolo; Kalampokis, Alkiviadis; Eguíluz, Víctor M.; Hernández-García, Emilio

    The meaning of a word can be defined as an indefinite set of interpretants, which are other words that circumscribe the semantic content of the word they represent (Derrida 1982). In the same way each interpretant has a set of interpretants representing it and so on. Hence the indefinite chain of meaning assumes a rhizomatic shape that can be represented and analysed via the modern techniques of network theory (Dorogovtsev and Mendes 2013).

  14. Exemplar-Based Image and Video Stylization Using Fully Convolutional Semantic Features.

    PubMed

    Zhu, Feida; Yan, Zhicheng; Bu, Jiajun; Yu, Yizhou

    2017-05-10

    Color and tone stylization in images and videos strives to enhance unique themes with artistic color and tone adjustments. It has a broad range of applications from professional image postprocessing to photo sharing over social networks. Mainstream photo enhancement softwares, such as Adobe Lightroom and Instagram, provide users with predefined styles, which are often hand-crafted through a trial-and-error process. Such photo adjustment tools lack a semantic understanding of image contents and the resulting global color transform limits the range of artistic styles it can represent. On the other hand, stylistic enhancement needs to apply distinct adjustments to various semantic regions. Such an ability enables a broader range of visual styles. In this paper, we first propose a novel deep learning architecture for exemplar-based image stylization, which learns local enhancement styles from image pairs. Our deep learning architecture consists of fully convolutional networks (FCNs) for automatic semantics-aware feature extraction and fully connected neural layers for adjustment prediction. Image stylization can be efficiently accomplished with a single forward pass through our deep network. To extend our deep network from image stylization to video stylization, we exploit temporal superpixels (TSPs) to facilitate the transfer of artistic styles from image exemplars to videos. Experiments on a number of datasets for image stylization as well as a diverse set of video clips demonstrate the effectiveness of our deep learning architecture.

  15. Co-occurrence frequency evaluated with large language corpora boosts semantic priming effects.

    PubMed

    Brunellière, Angèle; Perre, Laetitia; Tran, ThiMai; Bonnotte, Isabelle

    2017-09-01

    In recent decades, many computational techniques have been developed to analyse the contextual usage of words in large language corpora. The present study examined whether the co-occurrence frequency obtained from large language corpora might boost purely semantic priming effects. Two experiments were conducted: one with conscious semantic priming, the other with subliminal semantic priming. Both experiments contrasted three semantic priming contexts: an unrelated priming context and two related priming contexts with word pairs that are semantically related and that co-occur either frequently or infrequently. In the conscious priming presentation (166-ms stimulus-onset asynchrony, SOA), a semantic priming effect was recorded in both related priming contexts, which was greater with higher co-occurrence frequency. In the subliminal priming presentation (66-ms SOA), no significant priming effect was shown, regardless of the related priming context. These results show that co-occurrence frequency boosts pure semantic priming effects and are discussed with reference to models of semantic network.

  16. Automaticity of phonological and semantic processing during visual word recognition.

    PubMed

    Pattamadilok, Chotiga; Chanoine, Valérie; Pallier, Christophe; Anton, Jean-Luc; Nazarian, Bruno; Belin, Pascal; Ziegler, Johannes C

    2017-04-01

    Reading involves activation of phonological and semantic knowledge. Yet, the automaticity of the activation of these representations remains subject to debate. The present study addressed this issue by examining how different brain areas involved in language processing responded to a manipulation of bottom-up (level of visibility) and top-down information (task demands) applied to written words. The analyses showed that the same brain areas were activated in response to written words whether the task was symbol detection, rime detection, or semantic judgment. This network included posterior, temporal and prefrontal regions, which clearly suggests the involvement of orthographic, semantic and phonological/articulatory processing in all tasks. However, we also found interactions between task and stimulus visibility, which reflected the fact that the strength of the neural responses to written words in several high-level language areas varied across tasks. Together, our findings suggest that the involvement of phonological and semantic processing in reading is supported by two complementary mechanisms. First, an automatic mechanism that results from a task-independent spread of activation throughout a network in which orthography is linked to phonology and semantics. Second, a mechanism that further fine-tunes the sensitivity of high-level language areas to the sensory input in a task-dependent manner. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Autism spectrum disorder: does neuroimaging support the DSM-5 proposal for a symptom dyad? A systematic review of functional magnetic resonance imaging and diffusion tensor imaging studies.

    PubMed

    Pina-Camacho, Laura; Villero, Sonia; Fraguas, David; Boada, Leticia; Janssen, Joost; Navas-Sánchez, Francisco J; Mayoral, Maria; Llorente, Cloe; Arango, Celso; Parellada, Mara

    2012-07-01

    A systematic review of 208 studies comprising functional magnetic resonance imaging and diffusion tensor imaging data in patients with 'autism spectrum disorder' (ASD) was conducted, in order to determine whether these data support the forthcoming DSM-5 proposal of a social communication and behavioral symptom dyad. Studies consistently reported abnormal function and structure of fronto-temporal and limbic networks with social and pragmatic language deficits, of temporo-parieto-occipital networks with syntactic-semantic language deficits, and of fronto-striato-cerebellar networks with repetitive behaviors and restricted interests in ASD patients. Therefore, this review partially supports the DSM-5 proposal for the ASD dyad.

  18. In defense of abstract conceptual representations.

    PubMed

    Binder, Jeffrey R

    2016-08-01

    An extensive program of research in the past 2 decades has focused on the role of modal sensory, motor, and affective brain systems in storing and retrieving concept knowledge. This focus has led in some circles to an underestimation of the need for more abstract, supramodal conceptual representations in semantic cognition. Evidence for supramodal processing comes from neuroimaging work documenting a large, well-defined cortical network that responds to meaningful stimuli regardless of modal content. The nodes in this network correspond to high-level "convergence zones" that receive broadly crossmodal input and presumably process crossmodal conjunctions. It is proposed that highly conjunctive representations are needed for several critical functions, including capturing conceptual similarity structure, enabling thematic associative relationships independent of conceptual similarity, and providing efficient "chunking" of concept representations for a range of higher order tasks that require concepts to be configured as situations. These hypothesized functions account for a wide range of neuroimaging results showing modulation of the supramodal convergence zone network by associative strength, lexicality, familiarity, imageability, frequency, and semantic compositionality. The evidence supports a hierarchical model of knowledge representation in which modal systems provide a mechanism for concept acquisition and serve to ground individual concepts in external reality, whereas broadly conjunctive, supramodal representations play an equally important role in concept association and situation knowledge.

  19. Symbolic modeling of human anatomy for visualization and simulation

    NASA Astrophysics Data System (ADS)

    Pommert, Andreas; Schubert, Rainer; Riemer, Martin; Schiemann, Thomas; Tiede, Ulf; Hoehne, Karl H.

    1994-09-01

    Visualization of human anatomy in a 3D atlas requires both spatial and more abstract symbolic knowledge. Within our 'intelligent volume' model which integrates these two levels, we developed and implemented a semantic network model for describing human anatomy. Concepts for structuring (abstraction levels, domains, views, generic and case-specific modeling, inheritance) are introduced. Model, tools for generation and exploration and applications in our 3D anatomical atlas are presented and discussed.

  20. A Framework for Building and Reasoning with Adaptive and Interoperable PMESII Models

    DTIC Science & Technology

    2007-11-01

    Description Logic SOA Service Oriented Architecture SPARQL Simple Protocol And RDF Query Language SQL Standard Query Language SROM Stability and...another by providing a more expressive ontological structure for one of the models, e.g., semantic networks can be mapped to first- order logical...Pellet is an open-source reasoner that works with OWL-DL. It accepts the SPARQL protocol and RDF query language ( SPARQL ) and provides a Java API to

  1. Visual discrimination predicts naming and semantic association accuracy in Alzheimer disease.

    PubMed

    Harnish, Stacy M; Neils-Strunjas, Jean; Eliassen, James; Reilly, Jamie; Meinzer, Marcus; Clark, John Greer; Joseph, Jane

    2010-12-01

    Language impairment is a common symptom of Alzheimer disease (AD), and is thought to be related to semantic processing. This study examines the contribution of another process, namely visual perception, on measures of confrontation naming and semantic association abilities in persons with probable AD. Twenty individuals with probable mild-moderate Alzheimer disease and 20 age-matched controls completed a battery of neuropsychologic measures assessing visual perception, naming, and semantic association ability. Visual discrimination tasks that varied in the degree to which they likely accessed stored structural representations were used to gauge whether structural processing deficits could account for deficits in naming and in semantic association in AD. Visual discrimination abilities of nameable objects in AD strongly predicted performance on both picture naming and semantic association ability, but lacked the same predictive value for controls. Although impaired, performance on visual discrimination tests of abstract shapes and novel faces showed no significant relationship with picture naming and semantic association. These results provide additional evidence to support that structural processing deficits exist in AD, and may contribute to object recognition and naming deficits. Our findings suggest that there is a common deficit in discrimination of pictures using nameable objects, picture naming, and semantic association of pictures in AD. Disturbances in structural processing of pictured items may be associated with lexical-semantic impairment in AD, owing to degraded internal storage of structural knowledge.

  2. Creative constraints: Brain activity and network dynamics underlying semantic interference during idea production.

    PubMed

    Beaty, Roger E; Christensen, Alexander P; Benedek, Mathias; Silvia, Paul J; Schacter, Daniel L

    2017-03-01

    Functional neuroimaging research has recently revealed brain network interactions during performance on creative thinking tasks-particularly among regions of the default and executive control networks-but the cognitive mechanisms related to these interactions remain poorly understood. Here we test the hypothesis that the executive control network can interact with the default network to inhibit salient conceptual knowledge (i.e., pre-potent responses) elicited from memory during creative idea production. Participants studied common noun-verb pairs and were given a cued-recall test with corrective feedback to strengthen the paired association in memory. They then completed a verb generation task that presented either a previously studied noun (high-constraint) or an unstudied noun (low-constraint), and were asked to "think creatively" while searching for a novel verb to relate to the presented noun. Latent Semantic Analysis of verbal responses showed decreased semantic distance values in the high-constraint (i.e., interference) condition, which corresponded to increased neural activity within regions of the default (posterior cingulate cortex and bilateral angular gyri), salience (right anterior insula), and executive control (left dorsolateral prefrontal cortex) networks. Independent component analysis of intrinsic functional connectivity networks extended this finding by revealing differential interactions among these large-scale networks across the task conditions. The results suggest that interactions between the default and executive control networks underlie response inhibition during constrained idea production, providing insight into specific neurocognitive mechanisms supporting creative cognition. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Getting connected: Both associative and semantic links structure semantic memory for newly learned persons.

    PubMed

    Wiese, Holger; Schweinberger, Stefan R

    2015-01-01

    The present study examined whether semantic memory for newly learned people is structured by visual co-occurrence, shared semantics, or both. Participants were trained with pairs of simultaneously presented (i.e., co-occurring) preexperimentally unfamiliar faces, which either did or did not share additionally provided semantic information (occupation, place of living, etc.). Semantic information could also be shared between faces that did not co-occur. A subsequent priming experiment revealed faster responses for both co-occurrence/no shared semantics and no co-occurrence/shared semantics conditions, than for an unrelated condition. Strikingly, priming was strongest in the co-occurrence/shared semantics condition, suggesting additive effects of these factors. Additional analysis of event-related brain potentials yielded priming in the N400 component only for combined effects of visual co-occurrence and shared semantics, with more positive amplitudes in this than in the unrelated condition. Overall, these findings suggest that both semantic relatedness and visual co-occurrence are important when novel information is integrated into person-related semantic memory.

  4. Modeling the dynamics of evaluation: a multilevel neural network implementation of the iterative reprocessing model.

    PubMed

    Ehret, Phillip J; Monroe, Brian M; Read, Stephen J

    2015-05-01

    We present a neural network implementation of central components of the iterative reprocessing (IR) model. The IR model argues that the evaluation of social stimuli (attitudes, stereotypes) is the result of the IR of stimuli in a hierarchy of neural systems: The evaluation of social stimuli develops and changes over processing. The network has a multilevel, bidirectional feedback evaluation system that integrates initial perceptual processing and later developing semantic processing. The network processes stimuli (e.g., an individual's appearance) over repeated iterations, with increasingly higher levels of semantic processing over time. As a result, the network's evaluations of stimuli evolve. We discuss the implications of the network for a number of different issues involved in attitudes and social evaluation. The success of the network supports the IR model framework and provides new insights into attitude theory. © 2014 by the Society for Personality and Social Psychology, Inc.

  5. Semantic Structures and Diagnostic Thinking of Experts and Novices.

    ERIC Educational Resources Information Center

    Bordage, Georges; Lemieux, Madeleine

    1991-01-01

    The diagnostic discourse of medical students and physicians in thinking-aloud protocols on paper cases was analyzed for evidence of semantic structure. Results show that structural semantics can be used to distinguish various levels of mental processing among novices as well as between novices and professionals. (MSE)

  6. Semantic Structures of One-Step Word Problems Involving Multiplication or Division.

    ERIC Educational Resources Information Center

    Schmidt, Siegbert; Weiser, Werner

    1995-01-01

    Proposes a four-category classification of semantic structures of one-step word problems involving multiplication and division: forming the n-th multiple of measures, combinatorial multiplication, composition of operators, and multiplication by formula. This classification is compatible with semantic structures of addition and subtraction word…

  7. HyQue: evaluating hypotheses using Semantic Web technologies

    PubMed Central

    2011-01-01

    Background Key to the success of e-Science is the ability to computationally evaluate expert-composed hypotheses for validity against experimental data. Researchers face the challenge of collecting, evaluating and integrating large amounts of diverse information to compose and evaluate a hypothesis. Confronted with rapidly accumulating data, researchers currently do not have the software tools to undertake the required information integration tasks. Results We present HyQue, a Semantic Web tool for querying scientific knowledge bases with the purpose of evaluating user submitted hypotheses. HyQue features a knowledge model to accommodate diverse hypotheses structured as events and represented using Semantic Web languages (RDF/OWL). Hypothesis validity is evaluated against experimental and literature-sourced evidence through a combination of SPARQL queries and evaluation rules. Inference over OWL ontologies (for type specifications, subclass assertions and parthood relations) and retrieval of facts stored as Bio2RDF linked data provide support for a given hypothesis. We evaluate hypotheses of varying levels of detail about the genetic network controlling galactose metabolism in Saccharomyces cerevisiae to demonstrate the feasibility of deploying such semantic computing tools over a growing body of structured knowledge in Bio2RDF. Conclusions HyQue is a query-based hypothesis evaluation system that can currently evaluate hypotheses about the galactose metabolism in S. cerevisiae. Hypotheses as well as the supporting or refuting data are represented in RDF and directly linked to one another allowing scientists to browse from data to hypothesis and vice versa. HyQue hypotheses and data are available at http://semanticscience.org/projects/hyque. PMID:21624158

  8. Semantic framework for mapping object-oriented model to semantic web languages

    PubMed Central

    Ježek, Petr; Mouček, Roman

    2015-01-01

    The article deals with and discusses two main approaches in building semantic structures for electrophysiological metadata. It is the use of conventional data structures, repositories, and programming languages on one hand and the use of formal representations of ontologies, known from knowledge representation, such as description logics or semantic web languages on the other hand. Although knowledge engineering offers languages supporting richer semantic means of expression and technological advanced approaches, conventional data structures and repositories are still popular among developers, administrators and users because of their simplicity, overall intelligibility, and lower demands on technical equipment. The choice of conventional data resources and repositories, however, raises the question of how and where to add semantics that cannot be naturally expressed using them. As one of the possible solutions, this semantics can be added into the structures of the programming language that accesses and processes the underlying data. To support this idea we introduced a software prototype that enables its users to add semantically richer expressions into a Java object-oriented code. This approach does not burden users with additional demands on programming environment since reflective Java annotations were used as an entry for these expressions. Moreover, additional semantics need not to be written by the programmer directly to the code, but it can be collected from non-programmers using a graphic user interface. The mapping that allows the transformation of the semantically enriched Java code into the Semantic Web language OWL was proposed and implemented in a library named the Semantic Framework. This approach was validated by the integration of the Semantic Framework in the EEG/ERP Portal and by the subsequent registration of the EEG/ERP Portal in the Neuroscience Information Framework. PMID:25762923

  9. Semantic framework for mapping object-oriented model to semantic web languages.

    PubMed

    Ježek, Petr; Mouček, Roman

    2015-01-01

    The article deals with and discusses two main approaches in building semantic structures for electrophysiological metadata. It is the use of conventional data structures, repositories, and programming languages on one hand and the use of formal representations of ontologies, known from knowledge representation, such as description logics or semantic web languages on the other hand. Although knowledge engineering offers languages supporting richer semantic means of expression and technological advanced approaches, conventional data structures and repositories are still popular among developers, administrators and users because of their simplicity, overall intelligibility, and lower demands on technical equipment. The choice of conventional data resources and repositories, however, raises the question of how and where to add semantics that cannot be naturally expressed using them. As one of the possible solutions, this semantics can be added into the structures of the programming language that accesses and processes the underlying data. To support this idea we introduced a software prototype that enables its users to add semantically richer expressions into a Java object-oriented code. This approach does not burden users with additional demands on programming environment since reflective Java annotations were used as an entry for these expressions. Moreover, additional semantics need not to be written by the programmer directly to the code, but it can be collected from non-programmers using a graphic user interface. The mapping that allows the transformation of the semantically enriched Java code into the Semantic Web language OWL was proposed and implemented in a library named the Semantic Framework. This approach was validated by the integration of the Semantic Framework in the EEG/ERP Portal and by the subsequent registration of the EEG/ERP Portal in the Neuroscience Information Framework.

  10. NEREC, an effective brain mapping protocol for combined language and long-term memory functions.

    PubMed

    Perrone-Bertolotti, Marcela; Girard, Cléa; Cousin, Emilie; Vidal, Juan Ricardo; Pichat, Cédric; Kahane, Philippe; Baciu, Monica

    2015-12-01

    Temporal lobe epilepsy can induce functional plasticity in temporoparietal networks involved in language and long-term memory processing. Previous studies in healthy subjects have revealed the relative difficulty for this network to respond effectively across different experimental designs, as compared to more reactive regions such as frontal lobes. For a protocol to be optimal for clinical use, it has to first show robust effects in a healthy cohort. In this study, we developed a novel experimental paradigm entitled NEREC, which is able to reveal the robust participation of temporoparietal networks in a uniquely combined language and memory task, validated in an fMRI study with healthy subjects. Concretely, NEREC is composed of two runs: (a) an intermixed language-memory task (confrontation naming associated with encoding in nonverbal items, NE) to map language (i.e., word retrieval and lexico-semantic processes) combined with simultaneous long-term verbal memory encoding (NE items named but also explicitly memorized) and (b) a memory retrieval task of items encoded during NE (word recognition, REC) intermixed with new items. Word recognition is based on both perceptual-semantic familiarity (feeling of 'know') and accessing stored memory representations (remembering). In order to maximize the remembering and recruitment of medial temporal lobe structures, we increased REC difficulty by changing the modality of stimulus presentation (from nonverbal during NE to verbal during REC). We report that (a) temporoparietal activation during NE was attributable to both lexico-semantic (language) and memory (episodic encoding and semantic retrieval) processes; that (b) encoding activated the left hippocampus, bilateral fusiform, and bilateral inferior temporal gyri; and that (c) task recognition (recollection) activated the right hippocampus and bilateral but predominant left fusiform gyrus. The novelty of this protocol consists of (a) combining two tasks in one (language and long-term memory encoding/recall) instead of applying isolated tasks to map temporoparietal regions, (b) analyzing NE data based on performances recorded during REC, (c) double-mapping networks involved in naming and in long-term memory encoding and retrieval, (d) focusing on remembering with hippocampal activation and familiarity judgment with lateral temporal cortices activation, and (e) short duration of examination and feasibility. These aspects are of particular interest in patients with TLE, who frequently show impairment of these cognitive functions. Here, we show that the novel protocol is suited for this clinical evaluation. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. Design and Implementation of e-Health System Based on Semantic Sensor Network Using IETF YANG.

    PubMed

    Jin, Wenquan; Kim, Do Hyeun

    2018-02-20

    Recently, healthcare services can be delivered effectively to patients anytime and anywhere using e-Health systems. e-Health systems are developed through Information and Communication Technologies (ICT) that involve sensors, mobiles, and web-based applications for the delivery of healthcare services and information. Remote healthcare is an important purpose of the e-Health system. Usually, the eHealth system includes heterogeneous sensors from diverse manufacturers producing data in different formats. Device interoperability and data normalization is a challenging task that needs research attention. Several solutions are proposed in the literature based on manual interpretation through explicit programming. However, programmatically implementing the interpretation of the data sender and data receiver in the e-Health system for the data transmission is counterproductive as modification will be required for each new device added into the system. In this paper, an e-Health system with the Semantic Sensor Network (SSN) is proposed to address the device interoperability issue. In the proposed system, we have used IETF YANG for modeling the semantic e-Health data to represent the information of e-Health sensors. This modeling scheme helps in provisioning semantic interoperability between devices and expressing the sensing data in a user-friendly manner. For this purpose, we have developed an ontology for e-Health data that supports different styles of data formats. The ontology is defined in YANG for provisioning semantic interpretation of sensing data in the system by constructing meta-models of e-Health sensors. The proposed approach assists in the auto-configuration of eHealth sensors and querying the sensor network with semantic interoperability support for the e-Health system.

  12. Design and Implementation of e-Health System Based on Semantic Sensor Network Using IETF YANG

    PubMed Central

    Kim, Do Hyeun

    2018-01-01

    Recently, healthcare services can be delivered effectively to patients anytime and anywhere using e-Health systems. e-Health systems are developed through Information and Communication Technologies (ICT) that involve sensors, mobiles, and web-based applications for the delivery of healthcare services and information. Remote healthcare is an important purpose of the e-Health system. Usually, the eHealth system includes heterogeneous sensors from diverse manufacturers producing data in different formats. Device interoperability and data normalization is a challenging task that needs research attention. Several solutions are proposed in the literature based on manual interpretation through explicit programming. However, programmatically implementing the interpretation of the data sender and data receiver in the e-Health system for the data transmission is counterproductive as modification will be required for each new device added into the system. In this paper, an e-Health system with the Semantic Sensor Network (SSN) is proposed to address the device interoperability issue. In the proposed system, we have used IETF YANG for modeling the semantic e-Health data to represent the information of e-Health sensors. This modeling scheme helps in provisioning semantic interoperability between devices and expressing the sensing data in a user-friendly manner. For this purpose, we have developed an ontology for e-Health data that supports different styles of data formats. The ontology is defined in YANG for provisioning semantic interpretation of sensing data in the system by constructing meta-models of e-Health sensors. The proposed approach assists in the auto-configuration of eHealth sensors and querying the sensor network with semantic interoperability support for the e-Health system. PMID:29461493

  13. Episodic, but not semantic, autobiographical memory is reduced in amnestic mild cognitive impairment.

    PubMed

    Murphy, Kelly J; Troyer, Angela K; Levine, Brian; Moscovitch, Morris

    2008-11-01

    Amnestic mild cognitive impairment (aMCI) is characterized by decline in anterograde memory as measured by the ability to learn and remember new information. We investigated whether retrograde memory for autobiographical information was affected by aMCI. Eighteen control (age 66-84 years) and 17 aMCI (age 66-84 years) participants described a personal event from each of the five periods across the lifespan. These events were transcribed and scored according to procedures that separate episodic (specific happenings) from semantic (general knowledge) elements of autobiographical memory. Although both groups generated protocols of similar length, the composition of autobiographical recall differentiated the groups. The aMCI group protocols were characterized by reduced episodic and increased semantic information relative to the control group. Both groups showed a similar pattern of recall across time periods, with no evidence that the aMCI group had more difficulty recalling recent, rather than remote, life events. These results indicate that episodic and semantic autobiographical memories are differentially affected by the early brain changes associated with aMCI. Reduced autobiographical episodic memories in aMCI may be the result of medial temporal lobe dysfunction, consistent with multiple trace theory, or alternatively, could be related to dysfunction of a wider related network of neocortical structures. In contrast, the preservation of autobiographical semantic memories in aMCI suggests neural systems, such as lateral temporal cortex, that support these memories, may remain relatively intact.

  14. Executive Semantic Processing Is Underpinned by a Large-scale Neural Network: Revealing the Contribution of Left Prefrontal, Posterior Temporal, and Parietal Cortex to Controlled Retrieval and Selection Using TMS

    ERIC Educational Resources Information Center

    Whitney, Carin; Kirk, Marie; O'Sullivan, Jamie; Ralph, Matthew A. Lambon; Jefferies, Elizabeth

    2012-01-01

    To understand the meanings of words and objects, we need to have knowledge about these items themselves plus executive mechanisms that compute and manipulate semantic information in a task-appropriate way. The neural basis for semantic control remains controversial. Neuroimaging studies have focused on the role of the left inferior frontal gyrus…

  15. The Analysis of RDF Semantic Data Storage Optimization in Large Data Era

    NASA Astrophysics Data System (ADS)

    He, Dandan; Wang, Lijuan; Wang, Can

    2018-03-01

    With the continuous development of information technology and network technology in China, the Internet has also ushered in the era of large data. In order to obtain the effective acquisition of information in the era of large data, it is necessary to optimize the existing RDF semantic data storage and realize the effective query of various data. This paper discusses the storage optimization of RDF semantic data under large data.

  16. Visual Information-Processing in the Perception of Features and Objects

    DTIC Science & Technology

    1989-01-05

    or nodes in a semantic memory network, whereas recall and recognition depend on separate episodic memory traces. In our experiment, we used the same...problem for the account in terms of the separation of episodic from semantic memory , since no pre- existing representations of our line patterns were... semantic memory : amnesic patients were thought to have lost the ability to lay down (or retrieve) episodic traces of autobiographical events, but had

  17. KOJAK: Scalable Semantic Link Discovery Via Integrated Knowledge-Based and Statistical Reasoning

    DTIC Science & Technology

    2006-11-01

    program can find interesting connections in a network without having to learn the patterns of interestingness beforehand. The key advantage of our...Interesting Instances in Semantic Graphs Below we describe how the UNICORN framework can discover interesting instances in a multi-relational dataset...We can now describe how UNICORN solves the first problem of finding the top interesting nodes in a semantic net by ranking them according to

  18. Semantic and episodic memory of music are subserved by distinct neural networks.

    PubMed

    Platel, Hervé; Baron, Jean-Claude; Desgranges, Béatrice; Bernard, Frédéric; Eustache, Francis

    2003-09-01

    Numerous functional imaging studies have shown that retrieval from semantic and episodic memory is subserved by distinct neural networks. However, these results were essentially obtained with verbal and visuospatial material. The aim of this work was to determine the neural substrates underlying the semantic and episodic components of music using familiar and nonfamiliar melodic tunes. To study musical semantic memory, we designed a task in which the instruction was to judge whether or not the musical extract was felt as "familiar." To study musical episodic memory, we constructed two delayed recognition tasks, one containing only familiar and the other only nonfamiliar items. For each recognition task, half of the extracts (targets) were presented in the prior semantic task. The episodic and semantic tasks were to be contrasted by a comparison to two perceptive control tasks and to one another. Cerebral blood flow was assessed by means of the oxygen-15-labeled water injection method, using high-resolution PET. Distinct patterns of activations were found. First, regarding the episodic memory condition, bilateral activations of the middle and superior frontal gyri and precuneus (more prominent on the right side) were observed. Second, the semantic memory condition disclosed extensive activations in the medial and orbital frontal cortex bilaterally, the left angular gyrus, and predominantly the left anterior part of the middle temporal gyri. The findings from this study are discussed in light of the available neuropsychological data obtained in brain-damaged subjects and functional neuroimaging studies.

  19. Alignment of the UMLS semantic network with BioTop: methodology and assessment.

    PubMed

    Schulz, Stefan; Beisswanger, Elena; van den Hoek, László; Bodenreider, Olivier; van Mulligen, Erik M

    2009-06-15

    For many years, the Unified Medical Language System (UMLS) semantic network (SN) has been used as an upper-level semantic framework for the categorization of terms from terminological resources in biomedicine. BioTop has recently been developed as an upper-level ontology for the biomedical domain. In contrast to the SN, it is founded upon strict ontological principles, using OWL DL as a formal representation language, which has become standard in the semantic Web. In order to make logic-based reasoning available for the resources annotated or categorized with the SN, a mapping ontology was developed aligning the SN with BioTop. The theoretical foundations and the practical realization of the alignment are being described, with a focus on the design decisions taken, the problems encountered and the adaptations of BioTop that became necessary. For evaluation purposes, UMLS concept pairs obtained from MEDLINE abstracts by a named entity recognition system were tested for possible semantic relationships. Furthermore, all semantic-type combinations that occur in the UMLS Metathesaurus were checked for satisfiability. The effort-intensive alignment process required major design changes and enhancements of BioTop and brought up several design errors that could be fixed. A comparison between a human curator and the ontology yielded only a low agreement. Ontology reasoning was also used to successfully identify 133 inconsistent semantic-type combinations. BioTop, the OWL DL representation of the UMLS SN, and the mapping ontology are available at http://www.purl.org/biotop/.

  20. Flexible establishment of functional brain networks supports attentional modulation of unconscious cognition.

    PubMed

    Ulrich, Martin; Adams, Sarah C; Kiefer, Markus

    2014-11-01

    In classical theories of attention, unconscious automatic processes are thought to be independent of higher-level attentional influences. Here, we propose that unconscious processing depends on attentional enhancement of task-congruent processing pathways implemented by a dynamic modulation of the functional communication between brain regions. Using functional magnetic resonance imaging, we tested our model with a subliminally primed lexical decision task preceded by an induction task preparing either a semantic or a perceptual task set. Subliminal semantic priming was significantly greater after semantic compared to perceptual induction in ventral occipito-temporal (vOT) and inferior frontal cortex, brain areas known to be involved in semantic processing. The functional connectivity pattern of vOT varied depending on the induction task and successfully predicted the magnitude of behavioral and neural priming. Together, these findings support the proposal that dynamic establishment of functional networks by task sets is an important mechanism in the attentional control of unconscious processing. © 2014 Wiley Periodicals, Inc.

  1. Priming semantic concepts affects the dynamics of aesthetic appreciation.

    PubMed

    Faerber, Stella J; Leder, Helmut; Gerger, Gernot; Carbon, Claus-Christian

    2010-10-01

    Aesthetic appreciation (AA) plays an important role for purchase decisions, for the appreciation of art and even for the selection of potential mates. It is known that AA is highly reliable in single assessments, but over longer periods of time dynamic changes of AA may occur. We measured AA as a construct derived from the literature through attractiveness, arousal, interestingness, valence, boredom and innovativeness. By means of the semantic network theory we investigated how the priming of AA-relevant semantic concepts impacts the dynamics of AA of unfamiliar product designs (car interiors) that are known to be susceptible to triggering such effects. When participants were primed for innovativeness, strong dynamics were observed, especially when the priming involved additional AA-relevant dimensions. This underlines the relevance of priming of specific semantic networks not only for the cognitive processing of visual material in terms of selective perception or specific representation, but also for the affective-cognitive processing in terms of the dynamics of aesthetic processing. Copyright © 2010 Elsevier B.V. All rights reserved.

  2. Evidence of semantic processing impairments in behavioural variant frontotemporal dementia and Parkinson's disease.

    PubMed

    Cousins, Katheryn A Q; Grossman, Murray

    2017-12-01

    Category-specific impairments caused by brain damage can provide important insights into how semantic concepts are organized in the brain. Recent research has demonstrated that disease to sensory and motor cortices can impair perceptual feature knowledge important to the representation of semantic concepts. This evidence supports the grounded cognition theory of semantics, the view that lexical knowledge is partially grounded in perceptual experience and that sensory and motor regions support semantic representations. Less well understood, however, is how heteromodal semantic hubs work to integrate and process semantic information. Although the majority of semantic research to date has focused on how sensory cortical areas are important for the representation of semantic features, new research explores how semantic memory is affected by neurodegeneration in regions important for semantic processing. Here, we review studies that demonstrate impairments to abstract noun knowledge in behavioural variant frontotemporal degeneration (bvFTD) and to action verb knowledge in Parkinson's disease, and discuss how these deficits relate to disease of the semantic selection network. Findings demonstrate that semantic selection processes are supported by the left inferior frontal gyrus (LIFG) and basal ganglia, and that disease to these regions in bvFTD and Parkinson's disease can lead to categorical impairments for abstract nouns and action verbs, respectively.

  3. Dopaminergic modulation of semantic priming in healthy volunteers.

    PubMed

    Roesch-Ely, Daniela; Weiland, Stephan; Scheffel, Hans; Schwaninger, Markus; Hundemer, Hans-Peter; Kolter, Thomas; Weisbrod, Matthias

    2006-09-15

    Semantic priming is a function related to prefrontal cortical (PFC) networks and is lateralized. There is evidence that semantic priming underlies dopaminergic modulation. It is known that the D1-receptor is more abundant in prefrontal networks; however, until now there have been no studies investigating the selective modulation of semantic priming with dopamine agonists. Furthermore, D1 receptor dysfunction has been described in schizophrenia, and patients with formal thought disorder seem to have disturbed focusing of associations and increased indirect priming. With a subtraction design, we compared the influence of pergolide (D1/D2 agonist) with bromocriptine (D2 agonist) and placebo, in a randomized, double-blind, crossover design in 40 healthy male volunteers. Subjects performed a lateralized lexical decision task including direct and indirect related prime-target pairs (stimulus onset asynchrony = 750 msec). Only on pergolide a decrease of the indirect priming in the left hemisphere presentations was found. These findings point to a potential selective modulation of agonists with a D1 component on the focusing of semantic associations. The clinical relevance of this study is that it might help the development of therapeutic strategies for treating cognitive deficits in schizophrenia and Parkinson's disease, which are highly relevant to the functional outcome.

  4. Network structure and influence of the climate change counter-movement

    NASA Astrophysics Data System (ADS)

    Farrell, Justin

    2016-04-01

    Anthropogenic climate change represents a global threat to human well-being and ecosystem functioning. Yet despite its importance for science and policy, our understanding of the causes of widespread uncertainty and doubt found among the general public remains limited. The political and social processes driving such doubt and uncertainty are difficult to rigorously analyse, and research has tended to focus on the individual-level, rather than the larger institutions and social networks that produce and disseminate contrarian information. This study presents a new approach by using network science to uncover the institutional and corporate structure of the climate change counter-movement, and machine-learning text analysis to show its influence in the news media and bureaucratic politics. The data include a new social network of all known organizations and individuals promoting contrarian viewpoints, as well as the entirety of all written and verbal texts about climate change from 1993-2013 from every organization, three major news outlets, all US presidents, and every occurrence on the floor of the US Congress. Using network and computational text analysis, I find that the organizational power within the contrarian network, and the magnitude of semantic similarity, are both predicted by ties to elite corporate benefactors.

  5. Neural mechanisms underlying the facilitation of naming in aphasia using a semantic task: an fMRI study

    PubMed Central

    2012-01-01

    Background Previous attempts to investigate the effects of semantic tasks on picture naming in both healthy controls and people with aphasia have typically been confounded by inclusion of the phonological word form of the target item. As a result, it is difficult to isolate any facilitatory effects of a semantically-focused task to either lexical-semantic or phonological processing. This functional magnetic resonance imaging (fMRI) study examined the neurological mechanisms underlying short-term (within minutes) and long-term (within days) facilitation of naming from a semantic task that did not include the phonological word form, in both participants with aphasia and age-matched controls. Results Behavioral results showed that a semantic task that did not include the phonological word form can successfully facilitate subsequent picture naming in both healthy controls and individuals with aphasia. The whole brain neuroimaging results for control participants identified a repetition enhancement effect in the short-term, with modulation of activity found in regions that have not traditionally been associated with semantic processing, such as the right lingual gyrus (extending to the precuneus) and the left inferior occipital gyrus (extending to the fusiform gyrus). In contrast, the participants with aphasia showed significant differences in activation over both the short- and the long-term for facilitated items, predominantly within either left hemisphere regions linked to semantic processing or their right hemisphere homologues. Conclusions For control participants in this study, the short-lived facilitation effects of a prior semantic task that did not include the phonological word form were primarily driven by object priming and episodic memory mechanisms. However, facilitation effects appeared to engage a predominantly semantic network in participants with aphasia over both the short- and the long-term. The findings of the present study also suggest that right hemisphere involvement may be supportive rather than maladaptive, and that a large distributed perisylvian network in both cerebral hemispheres supports the facilitation of naming in individuals with aphasia. PMID:22882806

  6. Cross-Domain Shoe Retrieval with a Semantic Hierarchy of Attribute Classification Network.

    PubMed

    Zhan, Huijing; Shi, Boxin; Kot, Alex C

    2017-08-04

    Cross-domain shoe image retrieval is a challenging problem, because the query photo from the street domain (daily life scenario) and the reference photo in the online domain (online shop images) have significant visual differences due to the viewpoint and scale variation, self-occlusion, and cluttered background. This paper proposes the Semantic Hierarchy Of attributE Convolutional Neural Network (SHOE-CNN) with a three-level feature representation for discriminative shoe feature expression and efficient retrieval. The SHOE-CNN with its newly designed loss function systematically merges semantic attributes of closer visual appearances to prevent shoe images with the obvious visual differences being confused with each other; the features extracted from image, region, and part levels effectively match the shoe images across different domains. We collect a large-scale shoe dataset composed of 14341 street domain and 12652 corresponding online domain images with fine-grained attributes to train our network and evaluate our system. The top-20 retrieval accuracy improves significantly over the solution with the pre-trained CNN features.

  7. Content-specific network analysis of peer-to-peer communication in an online community for smoking cessation.

    PubMed

    Myneni, Sahiti; Cobb, Nathan K; Cohen, Trevor

    2016-01-01

    Analysis of user interactions in online communities could improve our understanding of health-related behaviors and inform the design of technological solutions that support behavior change. However, to achieve this we would need methods that provide granular perspective, yet are scalable. In this paper, we present a methodology for high-throughput semantic and network analysis of large social media datasets, combining semi-automated text categorization with social network analytics. We apply this method to derive content-specific network visualizations of 16,492 user interactions in an online community for smoking cessation. Performance of the categorization system was reasonable (average F-measure of 0.74, with system-rater reliability approaching rater-rater reliability). The resulting semantically specific network analysis of user interactions reveals content- and behavior-specific network topologies. Implications for socio-behavioral health and wellness platforms are also discussed.

  8. Access to Biomedical Information: The Unified Medical Language System.

    ERIC Educational Resources Information Center

    Squires, Steven J.

    1993-01-01

    Describes the development of a Unified Medical Language System (UMLS) by the National Library of Medicine that will retrieve and integrate information from a variety of information resources. Highlights include the metathesaurus; the UMLS semantic network; semantic locality; information sources map; evaluation of the metathesaurus; future…

  9. Cerebellar tDCS Modulates Neural Circuits during Semantic Prediction: A Combined tDCS-fMRI Study.

    PubMed

    D'Mello, Anila M; Turkeltaub, Peter E; Stoodley, Catherine J

    2017-02-08

    It has been proposed that the cerebellum acquires internal models of mental processes that enable prediction, allowing for the optimization of behavior. In language, semantic prediction speeds speech production and comprehension. Right cerebellar lobules VI and VII (including Crus I/II) are engaged during a variety of language processes and are functionally connected with cerebral cortical language networks. Further, right posterolateral cerebellar neuromodulation modifies behavior during predictive language processing. These data are consistent with a role for the cerebellum in semantic processing and semantic prediction. We combined transcranial direct current stimulation (tDCS) and fMRI to assess the behavioral and neural consequences of cerebellar tDCS during a sentence completion task. Task-based and resting-state fMRI data were acquired in healthy human adults ( n = 32; μ = 23.1 years) both before and after 20 min of 1.5 mA anodal ( n = 18) or sham ( n = 14) tDCS applied to the right posterolateral cerebellum. In the sentence completion task, the first four words of the sentence modulated the predictability of the final target word. In some sentences, the preceding context strongly predicted the target word, whereas other sentences were nonpredictive. Completion of predictive sentences increased activation in right Crus I/II of the cerebellum. Relative to sham tDCS, anodal tDCS increased activation in right Crus I/II during semantic prediction and enhanced resting-state functional connectivity between hubs of the reading/language networks. These results are consistent with a role for the right posterolateral cerebellum beyond motor aspects of language, and suggest that cerebellar internal models of linguistic stimuli support semantic prediction. SIGNIFICANCE STATEMENT Cerebellar involvement in language tasks and language networks is now well established, yet the specific cerebellar contribution to language processing remains unclear. It is thought that the cerebellum acquires internal models of mental processes that enable prediction, allowing for the optimization of behavior. Here we combined neuroimaging and neuromodulation to provide evidence that the cerebellum is specifically involved in semantic prediction during sentence processing. We found that activation within right Crus I/II was enhanced when semantic predictions were made, and we show that modulation of this region with transcranial direct current stimulation alters both activation patterns and functional connectivity within whole-brain language networks. For the first time, these data show that cerebellar neuromodulation impacts activation patterns specifically during predictive language processing. Copyright © 2017 the authors 0270-6474/17/371604-10$15.00/0.

  10. Semantic Processing Impairment in Patients with Temporal Lobe Epilepsy

    PubMed Central

    Jaimes-Bautista, Amanda G.; Rodríguez-Camacho, Mario; Martínez-Juárez, Iris E.; Rodríguez-Agudelo, Yaneth

    2015-01-01

    The impairment in episodic memory system is the best-known cognitive deficit in patients with temporal lobe epilepsy (TLE). Recent studies have shown evidence of semantic disorders, but they have been less studied than episodic memory. The semantic dysfunction in TLE has various cognitive manifestations, such as the presence of language disorders characterized by defects in naming, verbal fluency, or remote semantic information retrieval, which affects the ability of patients to interact with their surroundings. This paper is a review of recent research about the consequences of TLE on semantic processing, considering neuropsychological, electrophysiological, and neuroimaging findings, as well as the functional role of the hippocampus in semantic processing. The evidence from these studies shows disturbance of semantic memory in patients with TLE and supports the theory of declarative memory of the hippocampus. Functional neuroimaging studies show an inefficient compensatory functional reorganization of semantic networks and electrophysiological studies show a lack of N400 effect that could indicate that the deficit in semantic processing in patients with TLE could be due to a failure in the mechanisms of automatic access to lexicon. PMID:26257956

  11. The Influence of Concreteness of Concepts on the Integration of Novel Words into the Semantic Network

    PubMed Central

    Ding, Jinfeng; Liu, Wenjuan; Yang, Yufang

    2017-01-01

    On the basis of previous studies revealing a processing advantage of concrete words over abstract words, the current study aimed to further explore the influence of concreteness on the integration of novel words into semantic memory with the event related potential (ERP) technique. In the experiment during the learning phase participants read two-sentence contexts and inferred the meaning of novel words. The novel words were two-character non-words in Chinese language. Their meaning was either a concrete or abstract known concept which could be inferred from the contexts. During the testing phase participants performed a lexical decision task in which the learned novel words served as primes for either their corresponding concepts, semantically related or unrelated targets. For the concrete novel words, the semantically related words belonged to the same semantic categories with their corresponding concepts. For the abstract novel words, the semantically related words were synonyms of their corresponding concepts. The unrelated targets were real words which were concrete or abstract for the concrete or abstract novel words respectively. The ERP results showed that the corresponding concepts and the semantically related words elicited smaller N400s than the unrelated words. The N400 effect was not modulated by the concreteness of the concepts. In addition, the concrete corresponding concepts elicited a smaller late positive component (LPC) than the concrete unrelated words. This LPC effect was absent for the abstract words. The results indicate that although both concrete and abstract novel words can be acquired and linked to their related words in the semantic network after a short learning phase, the concrete novel words are learned better. Our findings support the (extended) dual coding theory and broaden our understanding of adult word learning and changes in concept organization. PMID:29255440

  12. The Influence of Concreteness of Concepts on the Integration of Novel Words into the Semantic Network.

    PubMed

    Ding, Jinfeng; Liu, Wenjuan; Yang, Yufang

    2017-01-01

    On the basis of previous studies revealing a processing advantage of concrete words over abstract words, the current study aimed to further explore the influence of concreteness on the integration of novel words into semantic memory with the event related potential (ERP) technique. In the experiment during the learning phase participants read two-sentence contexts and inferred the meaning of novel words. The novel words were two-character non-words in Chinese language. Their meaning was either a concrete or abstract known concept which could be inferred from the contexts. During the testing phase participants performed a lexical decision task in which the learned novel words served as primes for either their corresponding concepts, semantically related or unrelated targets. For the concrete novel words, the semantically related words belonged to the same semantic categories with their corresponding concepts. For the abstract novel words, the semantically related words were synonyms of their corresponding concepts. The unrelated targets were real words which were concrete or abstract for the concrete or abstract novel words respectively. The ERP results showed that the corresponding concepts and the semantically related words elicited smaller N400s than the unrelated words. The N400 effect was not modulated by the concreteness of the concepts. In addition, the concrete corresponding concepts elicited a smaller late positive component (LPC) than the concrete unrelated words. This LPC effect was absent for the abstract words. The results indicate that although both concrete and abstract novel words can be acquired and linked to their related words in the semantic network after a short learning phase, the concrete novel words are learned better. Our findings support the (extended) dual coding theory and broaden our understanding of adult word learning and changes in concept organization.

  13. Distinct progression of the deterioration of thematic and taxonomic links in natural and manufactured objects in Alzheimer's disease.

    PubMed

    Simoes Loureiro, Isabelle; Lefebvre, Laurent

    2016-10-01

    Taxonomic and thematic relationships are core elements of lexico-semantic networks. However, the weight of both links differs in semantic memory, with distinct support for natural and manufactured objects: natural objects tend to be more taxonomically identified while manufactured objects benefit more from the underlying thematic relationships. Alzheimer's disease (AD) causes early semantic memory impairment characterized by a category-specific deterioration, where natural objects are more sensitive to the disease than manufactured objects. However, relatively few studies have examined the progressive deterioration of specific thematic versus taxonomic relations in both categories of objects in AD. To better understand semantic memory disorganization in AD and analyze the potential interaction effect between the category (natural/manufactured), the condition (thematic/taxonomic) and AD, we will investigate the lexico-semantic network in 82 AD patients (divided into three groups depending on their global cognitive deterioration and their performance in a preliminary semantic knowledge questionnaire (mild (AD1), moderate (AD2) and advanced (AD3) stages of semantic knowledge alteration). The experimental protocol contains two tasks: an implicit semantic priming paradigm and an explicit card-sorting test that uses the same items, equally divided between natural and manufactured objects. Results show a distinct taxonomic and thematic evolution pattern with early taxonomic deterioration. Natural objects are also more vulnerable to the disease. Lastly, there is an interaction effect between the category and the condition in the priming task indicating that natural objects are more taxonomically organized and manufactured objects benefit more from both thematic and taxonomic organizations, reinforcing the idea of the robustness of this category. The theoretical accounts of these observations will be discussed in detail. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Event Congruency and Episodic Encoding: A Developmental fMRI Study

    ERIC Educational Resources Information Center

    Maril, Anat; Avital, Rinat; Reggev, Niv; Zuckerman, Maya; Sadeh, Talya; Sira, Liat Ben; Livneh, Neta

    2011-01-01

    A known contributor to adults' superior memory performance compared to children is their differential reliance on an existing knowledge base. Compared to those of adults, children's semantic networks are less accessible and less established, a difference that is also thought to contribute to children's relative resistance to semantically related…

  15. The Semantic Web in Education

    ERIC Educational Resources Information Center

    Ohler, Jason

    2008-01-01

    The semantic web or Web 3.0 makes information more meaningful to people by making it more understandable to machines. In this article, the author examines the implications of Web 3.0 for education. The author considers three areas of impact: knowledge construction, personal learning network maintenance, and personal educational administration.…

  16. Shifting Interests: Changes in the Lexical Semantics of ED-MEDIA

    ERIC Educational Resources Information Center

    Wild, Fridolin; Valentine, Chris; Scott, Peter

    2010-01-01

    Large research networks naturally form complex communities with overlapping but not identical expertise. To map the distribution of professional competence in field of "technology-enhanced learning", the lexical semantics expressed in research articles published in a representative, large-scale conference (ED-MEDIA) can be investigated and changes…

  17. A Semantic Graph Query Language

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kaplan, I L

    2006-10-16

    Semantic graphs can be used to organize large amounts of information from a number of sources into one unified structure. A semantic query language provides a foundation for extracting information from the semantic graph. The graph query language described here provides a simple, powerful method for querying semantic graphs.

  18. Medical Concept Normalization in Social Media Posts with Recurrent Neural Networks.

    PubMed

    Tutubalina, Elena; Miftahutdinov, Zulfat; Nikolenko, Sergey; Malykh, Valentin

    2018-06-12

    Text mining of scientific libraries and social media has already proven itself as a reliable tool for drug repurposing and hypothesis generation. The task of mapping a disease mention to a concept in a controlled vocabulary, typically to the standard thesaurus in the Unified Medical Language System (UMLS), is known as medical concept normalization. This task is challenging due to the differences in the use of medical terminology between health care professionals and social media texts coming from the lay public. To bridge this gap, we use sequence learning with recurrent neural networks and semantic representation of one- or multi-word expressions: we develop end-to-end architectures directly tailored to the task, including bidirectional Long Short-Term Memory, Gated Recurrent Units with an attention mechanism, and additional semantic similarity features based on UMLS. Our evaluation against a standard benchmark shows that recurrent neural networks improve results over an effective baseline for classification based on convolutional neural networks. A qualitative examination of mentions discovered in a dataset of user reviews collected from popular online health information platforms as well as a quantitative evaluation both show improvements in the semantic representation of health-related expressions in social media. Copyright © 2018. Published by Elsevier Inc.

  19. Using complex networks for text classification: Discriminating informative and imaginative documents

    NASA Astrophysics Data System (ADS)

    de Arruda, Henrique F.; Costa, Luciano da F.; Amancio, Diego R.

    2016-01-01

    Statistical methods have been widely employed in recent years to grasp many language properties. The application of such techniques have allowed an improvement of several linguistic applications, such as machine translation and document classification. In the latter, many approaches have emphasised the semantical content of texts, as is the case of bag-of-word language models. These approaches have certainly yielded reasonable performance. However, some potential features such as the structural organization of texts have been used only in a few studies. In this context, we probe how features derived from textual structure analysis can be effectively employed in a classification task. More specifically, we performed a supervised classification aiming at discriminating informative from imaginative documents. Using a networked model that describes the local topological/dynamical properties of function words, we achieved an accuracy rate of up to 95%, which is much higher than similar networked approaches. A systematic analysis of feature relevance revealed that symmetry and accessibility measurements are among the most prominent network measurements. Our results suggest that these measurements could be used in related language applications, as they play a complementary role in characterising texts.

  20. What role does the anterior temporal lobe play in sentence-level processing? Neural correlates of syntactic processing in semantic variant primary progressive aphasia.

    PubMed

    Wilson, Stephen M; DeMarco, Andrew T; Henry, Maya L; Gesierich, Benno; Babiak, Miranda; Mandelli, Maria Luisa; Miller, Bruce L; Gorno-Tempini, Maria Luisa

    2014-05-01

    Neuroimaging and neuropsychological studies have implicated the anterior temporal lobe (ATL) in sentence-level processing, with syntactic structure-building and/or combinatorial semantic processing suggested as possible roles. A potential challenge to the view that the ATL is involved in syntactic aspects of sentence processing comes from the clinical syndrome of semantic variant primary progressive aphasia (semantic PPA; also known as semantic dementia). In semantic PPA, bilateral neurodegeneration of the ATLs is associated with profound lexical semantic deficits, yet syntax is strikingly spared. The goal of this study was to investigate the neural correlates of syntactic processing in semantic PPA to determine which regions normally involved in syntactic processing are damaged in semantic PPA and whether spared syntactic processing depends on preserved functionality of intact regions, preserved functionality of atrophic regions, or compensatory functional reorganization. We scanned 20 individuals with semantic PPA and 24 age-matched controls using structural MRI and fMRI. Participants performed a sentence comprehension task that emphasized syntactic processing and minimized lexical semantic demands. We found that, in controls, left inferior frontal and left posterior temporal regions were modulated by syntactic processing, whereas anterior temporal regions were not significantly modulated. In the semantic PPA group, atrophy was most severe in the ATLs but extended to the posterior temporal regions involved in syntactic processing. Functional activity for syntactic processing was broadly similar in patients and controls; in particular, whole-brain analyses revealed no significant differences between patients and controls in the regions modulated by syntactic processing. The atrophic left ATL did show abnormal functionality in semantic PPA patients; however, this took the unexpected form of a failure to deactivate. Taken together, our findings indicate that spared syntactic processing in semantic PPA depends on preserved functionality of structurally intact left frontal regions and moderately atrophic left posterior temporal regions, but no functional reorganization was apparent as a consequence of anterior temporal atrophy and dysfunction. These results suggest that the role of the ATL in sentence processing is less likely to relate to syntactic structure-building and more likely to relate to higher-level processes such as combinatorial semantic processing.

  1. Neural networks involved in learning lexical-semantic and syntactic information in a second language.

    PubMed

    Mueller, Jutta L; Rueschemeyer, Shirley-Ann; Ono, Kentaro; Sugiura, Motoaki; Sadato, Norihiro; Nakamura, Akinori

    2014-01-01

    The present study used functional magnetic resonance imaging (fMRI) to investigate the neural correlates of language acquisition in a realistic learning environment. Japanese native speakers were trained in a miniature version of German prior to fMRI scanning. During scanning they listened to (1) familiar sentences, (2) sentences including a novel sentence structure, and (3) sentences containing a novel word while visual context provided referential information. Learning-related decreases of brain activation over time were found in a mainly left-hemispheric network comprising classical frontal and temporal language areas as well as parietal and subcortical regions and were largely overlapping for novel words and the novel sentence structure in initial stages of learning. Differences occurred at later stages of learning during which content-specific activation patterns in prefrontal, parietal and temporal cortices emerged. The results are taken as evidence for a domain-general network supporting the initial stages of language learning which dynamically adapts as learners become proficient.

  2. The semantic web in translational medicine: current applications and future directions

    PubMed Central

    Machado, Catia M.; Rebholz-Schuhmann, Dietrich; Freitas, Ana T.; Couto, Francisco M.

    2015-01-01

    Semantic web technologies offer an approach to data integration and sharing, even for resources developed independently or broadly distributed across the web. This approach is particularly suitable for scientific domains that profit from large amounts of data that reside in the public domain and that have to be exploited in combination. Translational medicine is such a domain, which in addition has to integrate private data from the clinical domain with proprietary data from the pharmaceutical domain. In this survey, we present the results of our analysis of translational medicine solutions that follow a semantic web approach. We assessed these solutions in terms of their target medical use case; the resources covered to achieve their objectives; and their use of existing semantic web resources for the purposes of data sharing, data interoperability and knowledge discovery. The semantic web technologies seem to fulfill their role in facilitating the integration and exploration of data from disparate sources, but it is also clear that simply using them is not enough. It is fundamental to reuse resources, to define mappings between resources, to share data and knowledge. All these aspects allow the instantiation of translational medicine at the semantic web-scale, thus resulting in a network of solutions that can share resources for a faster transfer of new scientific results into the clinical practice. The envisioned network of translational medicine solutions is on its way, but it still requires resolving the challenges of sharing protected data and of integrating semantic-driven technologies into the clinical practice. PMID:24197933

  3. The semantic web in translational medicine: current applications and future directions.

    PubMed

    Machado, Catia M; Rebholz-Schuhmann, Dietrich; Freitas, Ana T; Couto, Francisco M

    2015-01-01

    Semantic web technologies offer an approach to data integration and sharing, even for resources developed independently or broadly distributed across the web. This approach is particularly suitable for scientific domains that profit from large amounts of data that reside in the public domain and that have to be exploited in combination. Translational medicine is such a domain, which in addition has to integrate private data from the clinical domain with proprietary data from the pharmaceutical domain. In this survey, we present the results of our analysis of translational medicine solutions that follow a semantic web approach. We assessed these solutions in terms of their target medical use case; the resources covered to achieve their objectives; and their use of existing semantic web resources for the purposes of data sharing, data interoperability and knowledge discovery. The semantic web technologies seem to fulfill their role in facilitating the integration and exploration of data from disparate sources, but it is also clear that simply using them is not enough. It is fundamental to reuse resources, to define mappings between resources, to share data and knowledge. All these aspects allow the instantiation of translational medicine at the semantic web-scale, thus resulting in a network of solutions that can share resources for a faster transfer of new scientific results into the clinical practice. The envisioned network of translational medicine solutions is on its way, but it still requires resolving the challenges of sharing protected data and of integrating semantic-driven technologies into the clinical practice. © The Author 2013. Published by Oxford University Press.

  4. A neural network model of semantic memory linking feature-based object representation and words.

    PubMed

    Cuppini, C; Magosso, E; Ursino, M

    2009-06-01

    Recent theories in cognitive neuroscience suggest that semantic memory is a distributed process, which involves many cortical areas and is based on a multimodal representation of objects. The aim of this work is to extend a previous model of object representation to realize a semantic memory, in which sensory-motor representations of objects are linked with words. The model assumes that each object is described as a collection of features, coded in different cortical areas via a topological organization. Features in different objects are segmented via gamma-band synchronization of neural oscillators. The feature areas are further connected with a lexical area, devoted to the representation of words. Synapses among the feature areas, and among the lexical area and the feature areas are trained via a time-dependent Hebbian rule, during a period in which individual objects are presented together with the corresponding words. Simulation results demonstrate that, during the retrieval phase, the network can deal with the simultaneous presence of objects (from sensory-motor inputs) and words (from acoustic inputs), can correctly associate objects with words and segment objects even in the presence of incomplete information. Moreover, the network can realize some semantic links among words representing objects with shared features. These results support the idea that semantic memory can be described as an integrated process, whose content is retrieved by the co-activation of different multimodal regions. In perspective, extended versions of this model may be used to test conceptual theories, and to provide a quantitative assessment of existing data (for instance concerning patients with neural deficits).

  5. SOLE: Applying Semantics and Social Web to Support Technology Enhanced Learning in Software Engineering

    NASA Astrophysics Data System (ADS)

    Colomo-Palacios, Ricardo; Jiménez-López, Diego; García-Crespo, Ángel; Blanco-Iglesias, Borja

    eLearning educative processes are a challenge for educative institutions and education professionals. In an environment in which learning resources are being produced, catalogued and stored using innovative ways, SOLE provides a platform in which exam questions can be produced supported by Web 2.0 tools, catalogued and labeled via semantic web and stored and distributed using eLearning standards. This paper presents, SOLE, a social network of exam questions sharing particularized for Software Engineering domain, based on semantics and built using semantic web and eLearning standards, such as IMS Question and Test Interoperability specification 2.1.

  6. Representations for Semantic Learning Webs: Semantic Web Technology in Learning Support

    ERIC Educational Resources Information Center

    Dzbor, M.; Stutt, A.; Motta, E.; Collins, T.

    2007-01-01

    Recent work on applying semantic technologies to learning has concentrated on providing novel means of accessing and making use of learning objects. However, this is unnecessarily limiting: semantic technologies will make it possible to develop a range of educational Semantic Web services, such as interpretation, structure-visualization, support…

  7. Finding gene regulatory network candidates using the gene expression knowledge base.

    PubMed

    Venkatesan, Aravind; Tripathi, Sushil; Sanz de Galdeano, Alejandro; Blondé, Ward; Lægreid, Astrid; Mironov, Vladimir; Kuiper, Martin

    2014-12-10

    Network-based approaches for the analysis of large-scale genomics data have become well established. Biological networks provide a knowledge scaffold against which the patterns and dynamics of 'omics' data can be interpreted. The background information required for the construction of such networks is often dispersed across a multitude of knowledge bases in a variety of formats. The seamless integration of this information is one of the main challenges in bioinformatics. The Semantic Web offers powerful technologies for the assembly of integrated knowledge bases that are computationally comprehensible, thereby providing a potentially powerful resource for constructing biological networks and network-based analysis. We have developed the Gene eXpression Knowledge Base (GeXKB), a semantic web technology based resource that contains integrated knowledge about gene expression regulation. To affirm the utility of GeXKB we demonstrate how this resource can be exploited for the identification of candidate regulatory network proteins. We present four use cases that were designed from a biological perspective in order to find candidate members relevant for the gastrin hormone signaling network model. We show how a combination of specific query definitions and additional selection criteria derived from gene expression data and prior knowledge concerning candidate proteins can be used to retrieve a set of proteins that constitute valid candidates for regulatory network extensions. Semantic web technologies provide the means for processing and integrating various heterogeneous information sources. The GeXKB offers biologists such an integrated knowledge resource, allowing them to address complex biological questions pertaining to gene expression. This work illustrates how GeXKB can be used in combination with gene expression results and literature information to identify new potential candidates that may be considered for extending a gene regulatory network.

  8. SemanticFind: Locating What You Want in a Patient Record, Not Just What You Ask For

    PubMed Central

    Prager, John M.; Liang, Jennifer J.; Devarakonda, Murthy V.

    2017-01-01

    We present a new model of patient record search, called SemanticFind, which goes beyond traditional textual and medical synonym matches by locating patient data that a clinician would want to see rather than just what they ask for. The new model is implemented by making extensive use of the UMLS semantic network, distributional semantics, and NLP, to match query terms along several dimensions in a patient record with the returned matches organized accordingly. The new approach finds all clinically related concepts without the user having to ask for them. An evaluation of the accuracy of SemanticFind shows that it found twice as many relevant matches compared to those found by literal (traditional) search alone, along with very high precision and recall. These results suggest potential uses for SemanticFind in clinical practice, retrospective chart reviews, and in automated extraction of quality metrics. PMID:28815139

  9. Semi-Supervised Learning to Identify UMLS Semantic Relations.

    PubMed

    Luo, Yuan; Uzuner, Ozlem

    2014-01-01

    The UMLS Semantic Network is constructed by experts and requires periodic expert review to update. We propose and implement a semi-supervised approach for automatically identifying UMLS semantic relations from narrative text in PubMed. Our method analyzes biomedical narrative text to collect semantic entity pairs, and extracts multiple semantic, syntactic and orthographic features for the collected pairs. We experiment with seeded k-means clustering with various distance metrics. We create and annotate a ground truth corpus according to the top two levels of the UMLS semantic relation hierarchy. We evaluate our system on this corpus and characterize the learning curves of different clustering configuration. Using KL divergence consistently performs the best on the held-out test data. With full seeding, we obtain macro-averaged F-measures above 70% for clustering the top level UMLS relations (2-way), and above 50% for clustering the second level relations (7-way).

  10. Imageability and semantic association in the representation and processing of event verbs.

    PubMed

    Xu, Xu; Kang, Chunyan; Guo, Taomei

    2016-05-01

    This study examined the relative salience of imageability (the degree to which a word evokes mental imagery) versus semantic association (the density of semantic network in which a word is embedded) in the representation and processing of four types of event verbs: sensory, cognitive, speech, and motor verbs. ERP responses were recorded, while 34 university students performed on a lexical decision task. Analysis focused primarily on amplitude differences across verb conditions within the N400 time window where activities are considered representing meaning activation. Variation in N400 amplitude across four types of verbs was found significantly associated with the level of imageability, but not the level of semantic association. The findings suggest imageability as a more salient factor relative to semantic association in the processing of these verbs. The role of semantic association and the representation of speech verbs are also discussed.

  11. A re-examination of neural basis of language processing: proposal of a dynamic hodotopical model from data provided by brain stimulation mapping during picture naming.

    PubMed

    Duffau, Hugues; Moritz-Gasser, Sylvie; Mandonnet, Emmanuel

    2014-04-01

    From recent findings provided by brain stimulation mapping during picture naming, we re-examine the neural basis of language. We studied structural-functional relationships by correlating the types of language disturbances generated by stimulation in awake patients, mimicking a transient virtual lesion both at cortical and subcortical levels (white matter and deep grey nuclei), with the anatomical location of the stimulation probe. We propose a hodotopical (delocalized) and dynamic model of language processing, which challenges the traditional modular and serial view. According to this model, following the visual input, the language network is organized in parallel, segregated (even if interconnected) large-scale cortico-subcortical sub-networks underlying semantic, phonological and syntactic processing. Our model offers several advantages (i) it explains double dissociations during stimulation (comprehension versus naming disorders, semantic versus phonemic paraphasias, syntactic versus naming disturbances, plurimodal judgment versus naming disorders); (ii) it takes into account the cortical and subcortical anatomic constraints; (iii) it explains the possible recovery of aphasia following a lesion within the "classical" language areas; (iv) it establishes links with a model executive functions. Copyright © 2013 Elsevier Inc. All rights reserved.

  12. A predictive framework for evaluating models of semantic organization in free recall

    PubMed Central

    Morton, Neal W; Polyn, Sean M.

    2016-01-01

    Research in free recall has demonstrated that semantic associations reliably influence the organization of search through episodic memory. However, the specific structure of these associations and the mechanisms by which they influence memory search remain unclear. We introduce a likelihood-based model-comparison technique, which embeds a model of semantic structure within the context maintenance and retrieval (CMR) model of human memory search. Within this framework, model variants are evaluated in terms of their ability to predict the specific sequence in which items are recalled. We compare three models of semantic structure, latent semantic analysis (LSA), global vectors (GloVe), and word association spaces (WAS), and find that models using WAS have the greatest predictive power. Furthermore, we find evidence that semantic and temporal organization is driven by distinct item and context cues, rather than a single context cue. This finding provides important constraint for theories of memory search. PMID:28331243

  13. An integrative approach to inferring biologically meaningful gene modules.

    PubMed

    Cho, Ji-Hoon; Wang, Kai; Galas, David J

    2011-07-26

    The ability to construct biologically meaningful gene networks and modules is critical for contemporary systems biology. Though recent studies have demonstrated the power of using gene modules to shed light on the functioning of complex biological systems, most modules in these networks have shown little association with meaningful biological function. We have devised a method which directly incorporates gene ontology (GO) annotation in construction of gene modules in order to gain better functional association. We have devised a method, Semantic Similarity-Integrated approach for Modularization (SSIM) that integrates various gene-gene pairwise similarity values, including information obtained from gene expression, protein-protein interactions and GO annotations, in the construction of modules using affinity propagation clustering. We demonstrated the performance of the proposed method using data from two complex biological responses: 1. the osmotic shock response in Saccharomyces cerevisiae, and 2. the prion-induced pathogenic mouse model. In comparison with two previously reported algorithms, modules identified by SSIM showed significantly stronger association with biological functions. The incorporation of semantic similarity based on GO annotation with gene expression and protein-protein interaction data can greatly enhance the functional relevance of inferred gene modules. In addition, the SSIM approach can also reveal the hierarchical structure of gene modules to gain a broader functional view of the biological system. Hence, the proposed method can facilitate comprehensive and in-depth analysis of high throughput experimental data at the gene network level.

  14. The shared neural basis of music and language.

    PubMed

    Yu, Mengxia; Xu, Miao; Li, Xueting; Chen, Zhencai; Song, Yiying; Liu, Jia

    2017-08-15

    Human musical ability is proposed to play a key phylogenetical role in the evolution of language, and the similarity of hierarchical structure in music and language has led to considerable speculation about their shared mechanisms. While behavioral and electrophysioglocial studies have revealed associations between music and linguistic abilities, results from functional magnetic resonance imaging (fMRI) studies on their relations are contradictory, possibly because these studies usually treat music or language as single entities without breaking down to their components. Here, we examined the relations between different components of music (i.e., melodic and rhythmic analysis) and language (i.e., semantic and phonological processing) using both behavioral tests and resting-state fMRI. Behaviorally, we found that individuals with music training experiences were better at semantic processing, but not at phonological processing, than those without training. Further correlation analyses showed that semantic processing of language was related to melodic, but not rhythmic, analysis of music. Neurally, we found that performances in both semantic processing and melodic analysis were correlated with spontaneous brain activities in the bilateral precentral gyrus (PCG) and superior temporal plane at the regional level, and with the resting-state functional connectivity of the left PCG with the left supramarginal gyrus and left superior temporal gyrus at the network level. Together, our study revealed the shared spontaneous neural basis of music and language based on the behavioral link between melodic analysis and semantic processing, which possibly relied on a common mechanism of automatic auditory-motor integration. Copyright © 2017 IBRO. Published by Elsevier Ltd. All rights reserved.

  15. Live Social Semantics

    NASA Astrophysics Data System (ADS)

    Alani, Harith; Szomszor, Martin; Cattuto, Ciro; van den Broeck, Wouter; Correndo, Gianluca; Barrat, Alain

    Social interactions are one of the key factors to the success of conferences and similar community gatherings. This paper describes a novel application that integrates data from the semantic web, online social networks, and a real-world contact sensing platform. This application was successfully deployed at ESWC09, and actively used by 139 people. Personal profiles of the participants were automatically generated using several Web 2.0 systems and semantic academic data sources, and integrated in real-time with face-to-face contact networks derived from wearable sensors. Integration of all these heterogeneous data layers made it possible to offer various services to conference attendees to enhance their social experience such as visualisation of contact data, and a site to explore and connect with other participants. This paper describes the architecture of the application, the services we provided, and the results we achieved in this deployment.

  16. An Approach to Knowledge-Directed Image Analysis,

    DTIC Science & Technology

    1977-09-01

    34AN APPROACH TO KNOWLEDGE -DIRECTED IMAGE ANALYSIS D.H. Ballard, C.M.’Brown, J.A. Feldman Computer Science Department iThe University of Rochester...Rochester, New York 14627 DTII EECTE UTIC FILE COPY o n I, n 83 - ’ f t 8 11 28 19 1f.. AN APPROACH TO KNOWLEDGE -DIRECTED IMAGE ANALYSIS 5*., D.H...semantic network model and a distributed control structure to accomplish the image analysis process. The process of " understanding an image" leads to

  17. Socioreligious Semantic Space in Small Nonconformist Communities: A South African Study.

    ERIC Educational Resources Information Center

    Stones, Christopher R.

    1988-01-01

    Examined the structure of semantic space (Evaluative-Potency-Activity) among four socioreligious communities in South Africa: Jesus People, Hare Krishna Devotees; Maharaj Ji Premies; and Catholic Seminarians. Found significant differences among all groups, particularly in semantic structure between the Jesus People and the Hare Krishna groups; and…

  18. Where Is the Semantic System? A Critical Review and Meta-Analysis of 120 Functional Neuroimaging Studies

    PubMed Central

    Desai, Rutvik H.; Graves, William W.; Conant, Lisa L.

    2009-01-01

    Semantic memory refers to knowledge about people, objects, actions, relations, self, and culture acquired through experience. The neural systems that store and retrieve this information have been studied for many years, but a consensus regarding their identity has not been reached. Using strict inclusion criteria, we analyzed 120 functional neuroimaging studies focusing on semantic processing. Reliable areas of activation in these studies were identified using the activation likelihood estimate (ALE) technique. These activations formed a distinct, left-lateralized network comprised of 7 regions: posterior inferior parietal lobe, middle temporal gyrus, fusiform and parahippocampal gyri, dorsomedial prefrontal cortex, inferior frontal gyrus, ventromedial prefrontal cortex, and posterior cingulate gyrus. Secondary analyses showed specific subregions of this network associated with knowledge of actions, manipulable artifacts, abstract concepts, and concrete concepts. The cortical regions involved in semantic processing can be grouped into 3 broad categories: posterior multimodal and heteromodal association cortex, heteromodal prefrontal cortex, and medial limbic regions. The expansion of these regions in the human relative to the nonhuman primate brain may explain uniquely human capacities to use language productively, plan, solve problems, and create cultural and technological artifacts, all of which depend on the fluid and efficient retrieval and manipulation of semantic knowledge. PMID:19329570

  19. Semantic transcoding of video based on regions of interest

    NASA Astrophysics Data System (ADS)

    Lim, Jeongyeon; Kim, Munchurl; Kim, Jong-Nam; Kim, Kyeongsoo

    2003-06-01

    Traditional transcoding on multimedia has been performed from the perspectives of user terminal capabilities such as display sizes and decoding processing power, and network resources such as available network bandwidth and quality of services (QoS) etc. The adaptation (or transcoding) of multimedia contents to given such constraints has been made by frame dropping and resizing of audiovisual, as well as reduction of SNR (Signal-to-Noise Ratio) values by saving the resulting bitrates. Not only such traditional transcoding is performed from the perspective of user"s environment, but also we incorporate a method of semantic transcoding of audiovisual based on region of interest (ROI) from user"s perspective. Users can designate their interested parts in images or video so that the corresponding video contents can be adapted focused on the user"s ROI. We incorporate the MPEG-21 DIA (Digital Item Adaptation) framework in which such semantic information of the user"s ROI is represented and delivered to the content provider side as XDI (context digital item). Representation schema of our semantic information of the user"s ROI has been adopted in MPEG-21 DIA Adaptation Model. In this paper, we present the usage of semantic information of user"s ROI for transcoding and show our system implementation with experimental results.

  20. Relationship between neuronal network architecture and naming performance in temporal lobe epilepsy: A connectome based approach using machine learning.

    PubMed

    Munsell, B C; Wu, G; Fridriksson, J; Thayer, K; Mofrad, N; Desisto, N; Shen, D; Bonilha, L

    2017-09-09

    Impaired confrontation naming is a common symptom of temporal lobe epilepsy (TLE). The neurobiological mechanisms underlying this impairment are poorly understood but may indicate a structural disorganization of broadly distributed neuronal networks that support naming ability. Importantly, naming is frequently impaired in other neurological disorders and by contrasting the neuronal structures supporting naming in TLE with other diseases, it will become possible to elucidate the common systems supporting naming. We aimed to evaluate the neuronal networks that support naming in TLE by using a machine learning algorithm intended to predict naming performance in subjects with medication refractory TLE using only the structural brain connectome reconstructed from diffusion tensor imaging. A connectome-based prediction framework was developed using network properties from anatomically defined brain regions across the entire brain, which were used in a multi-task machine learning algorithm followed by support vector regression. Nodal eigenvector centrality, a measure of regional network integration, predicted approximately 60% of the variance in naming. The nodes with the highest regression weight were bilaterally distributed among perilimbic sub-networks involving mainly the medial and lateral temporal lobe regions. In the context of emerging evidence regarding the role of large structural networks that support language processing, our results suggest intact naming relies on the integration of sub-networks, as opposed to being dependent on isolated brain areas. In the case of TLE, these sub-networks may be disproportionately indicative naming processes that are dependent semantic integration from memory and lexical retrieval, as opposed to multi-modal perception or motor speech production. Copyright © 2017. Published by Elsevier Inc.

  1. Age-related changes in brain structural covariance networks.

    PubMed

    Li, Xinwei; Pu, Fang; Fan, Yubo; Niu, Haijun; Li, Shuyu; Li, Deyu

    2013-01-01

    Previous neuroimaging studies have suggested that cerebral changes over normal aging are not simply characterized by regional alterations, but rather by the reorganization of cortical connectivity patterns. The investigation of structural covariance networks (SCNs) using voxel-based morphometry is an advanced approach to examining the pattern of covariance in gray matter (GM) volumes among different regions of the human cortex. To date, how the organization of critical SCNs change during normal aging remains largely unknown. In this study, we used an SCN mapping approach to investigate eight large-scale networks in 240 healthy participants aged 18-89 years. These participants were subdivided into young (18-23 years), middle aged (30-58 years), and older (61-89 years) subjects. Eight seed regions were chosen from widely reported functional intrinsic connectivity networks. The voxels showing significant positive associations with these seed regions were used to describe the topological organization of an SCN. All of these networks exhibited non-linear patterns in their spatial extent that were associated with normal aging. These networks, except the primary motor network, had a distributed topology in young participants, a sharply localized topology in middle aged participants, and were relatively stable in older participants. The structural covariance derived using the primary motor cortex was limited to the ipsilateral motor regions in the young and older participants, but included contralateral homologous regions in the middle aged participants. In addition, there were significant between-group differences in the structural networks associated with language-related speech and semantics processing, executive control, and the default-mode network (DMN). Taken together, the results of this study demonstrate age-related changes in the topological organization of SCNs, and provide insights into normal aging of the human brain.

  2. The Activation and Monitoring of Memories Produced by Words and Pseudohomophones

    ERIC Educational Resources Information Center

    Cortese, Michael J.; Khanna, Maya M.; White, Katherine K.; Veljkovic, Ilija; Drumm, Geoffery

    2008-01-01

    Using the DRM paradigm, our experiments examined the activation and monitoring of memories in semantic and phonological networks. Participants viewed lists of words and/or pseudohomophones (e.g., "dreem"). In Experiment 1, participants verbally recalled lists of semantic associates or attempted to write them as they appeared during study. False…

  3. An Investigation of Two Ways of Presenting Vocabulary

    ERIC Educational Resources Information Center

    Papathanasiou, Evagelia

    2009-01-01

    The use of semantic links or networks in L2 vocabulary acquisition has been a popular subject for numerous studies. On one hand, there is a strong theoretical background stating that presenting words in related fashion facilitates the learning of L2 vocabulary. On the other hand, research evidence indicates that semantically related vocabulary…

  4. Provenance-Based Approaches to Semantic Web Service Discovery and Usage

    ERIC Educational Resources Information Center

    Narock, Thomas William

    2012-01-01

    The World Wide Web Consortium defines a Web Service as "a software system designed to support interoperable machine-to-machine interaction over a network." Web Services have become increasingly important both within and across organizational boundaries. With the recent advent of the Semantic Web, web services have evolved into semantic…

  5. Levels of processing and language modality specificity in working memory.

    PubMed

    Rudner, Mary; Karlsson, Thomas; Gunnarsson, Johan; Rönnberg, Jerker

    2013-03-01

    Neural networks underpinning working memory demonstrate sign language specific components possibly related to differences in temporary storage mechanisms. A processing approach to memory systems suggests that the organisation of memory storage is related to type of memory processing as well. In the present study, we investigated for the first time semantic, phonological and orthographic processing in working memory for sign- and speech-based language. During fMRI we administered a picture-based 2-back working memory task with Semantic, Phonological, Orthographic and Baseline conditions to 11 deaf signers and 20 hearing non-signers. Behavioural data showed poorer and slower performance for both groups in Phonological and Orthographic conditions than in the Semantic condition, in line with depth-of-processing theory. An exclusive masking procedure revealed distinct sign-specific neural networks supporting working memory components at all three levels of processing. The overall pattern of sign-specific activations may reflect a relative intermodality difference in the relationship between phonology and semantics influencing working memory storage and processing. Copyright © 2012 Elsevier Ltd. All rights reserved.

  6. Semantic Service Matchmaking in the ATM Domain Considering Infrastructure Capability Constraints

    NASA Astrophysics Data System (ADS)

    Moser, Thomas; Mordinyi, Richard; Sunindyo, Wikan Danar; Biffl, Stefan

    In a service-oriented environment business processes flexibly build on software services provided by systems in a network. A key design challenge is the semantic matchmaking of business processes and software services in two steps: 1. Find for one business process the software services that meet or exceed the BP requirements; 2. Find for all business processes the software services that can be implemented within the capability constraints of the underlying network, which poses a major problem since even for small scenarios the solution space is typically very large. In this chapter we analyze requirements from mission-critical business processes in the Air Traffic Management (ATM) domain and introduce an approach for semi-automatic semantic matchmaking for software services, the “System-Wide Information Sharing” (SWIS) business process integration framework. A tool-supported semantic matchmaking process like SWIS can provide system designers and integrators with a set of promising software service candidates and therefore strongly reduces the human matching effort by focusing on a much smaller space of matchmaking candidates. We evaluate the feasibility of the SWIS approach in an industry use case from the ATM domain.

  7. MESUR: USAGE-BASED METRICS OF SCHOLARLY IMPACT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    BOLLEN, JOHAN; RODRIGUEZ, MARKO A.; VAN DE SOMPEL, HERBERT

    2007-01-30

    The evaluation of scholarly communication items is now largely a matter of expert opinion or metrics derived from citation data. Both approaches can fail to take into account the myriad of factors that shape scholarly impact. Usage data has emerged as a promising complement to existing methods o fassessment but the formal groundwork to reliably and validly apply usage-based metrics of schlolarly impact is lacking. The Andrew W. Mellon Foundation funded MESUR project constitutes a systematic effort to define, validate and cross-validate a range of usage-based metrics of schlolarly impact by creating a semantic model of the scholarly communication process.more » The constructed model will serve as the basis of a creating a large-scale semantic network that seamlessly relates citation, bibliographic and usage data from a variety of sources. A subsequent program that uses the established semantic network as a reference data set will determine the characteristics and semantics of a variety of usage-based metrics of schlolarly impact. This paper outlines the architecture and methodology adopted by the MESUR project and its future direction.« less

  8. Generating Poetry Title Based on Semantic Relevance with Convolutional Neural Network

    NASA Astrophysics Data System (ADS)

    Li, Z.; Niu, K.; He, Z. Q.

    2017-09-01

    Several approaches have been proposed to automatically generate Chinese classical poetry (CCP) in the past few years, but automatically generating the title of CCP is still a difficult problem. The difficulties are mainly reflected in two aspects. First, the words used in CCP are very different from modern Chinese words and there are no valid word segmentation tools. Second, the semantic relevance of characters in CCP not only exists in one sentence but also exists between the same positions of adjacent sentences, which is hard to grasp by the traditional text summarization models. In this paper, we propose an encoder-decoder model for generating the title of CCP. Our model encoder is a convolutional neural network (CNN) with two kinds of filters. To capture the commonly used words in one sentence, one kind of filters covers two characters horizontally at each step. The other covers two characters vertically at each step and can grasp the semantic relevance of characters between adjacent sentences. Experimental results show that our model is better than several other related models and can capture the semantic relevance of CCP more accurately.

  9. Detecting Cyber Attacks On Nuclear Power Plants

    NASA Astrophysics Data System (ADS)

    Rrushi, Julian; Campbell, Roy

    This paper proposes an unconventional anomaly detection approach that provides digital instrumentation and control (I&C) systems in a nuclear power plant (NPP) with the capability to probabilistically discern between legitimate protocol frames and attack frames. The stochastic activity network (SAN) formalism is used to model the fusion of protocol activity in each digital I&C system and the operation of physical components of an NPP. SAN models are employed to analyze links between protocol frames as streams of bytes, their semantics in terms of NPP operations, control data as stored in the memory of I&C systems, the operations of I&C systems on NPP components, and NPP processes. Reward rates and impulse rewards are defined in the SAN models based on the activity-marking reward structure to estimate NPP operation profiles. These profiles are then used to probabilistically estimate the legitimacy of the semantics and payloads of protocol frames received by I&C systems.

  10. The Association between Aerobic Fitness and Language Processing in Children: Implications for Academic Achievement

    PubMed Central

    Scudder, Mark R.; Federmeier, Kara D.; Raine, Lauren B.; Direito, Artur; Boyd, Jeremy K.; Hillman, Charles H.

    2014-01-01

    Event-related brain potentials (ERPs) have been instrumental for discerning the relationship between children’s aerobic fitness and aspects of cognition, yet language processing remains unexplored. ERPs linked to the processing of semantic information (the N400) and the analysis of language structure (the P600) were recorded from higher and lower aerobically fit children as they read normal sentences and those containing semantic or syntactic violations. Results revealed that higher fit children exhibited greater N400 amplitude and shorter latency across all sentence types, and a larger P600 effect for syntactic violations. Such findings suggest that higher fitness may be associated with a richer network of words and their meanings, and a greater ability to detect and/or repair syntactic errors. The current findings extend previous ERP research explicating the cognitive benefits associated with greater aerobic fitness in children and may have important implications for learning and academic performance. PMID:24747513

  11. Design of a web portal for interdisciplinary image retrieval from multiple online image resources.

    PubMed

    Kammerer, F J; Frankewitsch, T; Prokosch, H-U

    2009-01-01

    Images play an important role in medicine. Finding the desired images within the multitude of online image databases is a time-consuming and frustrating process. Existing websites do not meet all the requirements for an ideal learning environment for medical students. This work intends to establish a new web portal providing a centralized access point to a selected number of online image databases. A back-end system locates images on given websites and extracts relevant metadata. The images are indexed using UMLS and the MetaMap system provided by the US National Library of Medicine. Specially developed functions allow to create individual navigation structures. The front-end system suits the specific needs of medical students. A navigation structure consisting of several medical fields, university curricula and the ICD-10 was created. The images may be accessed via the given navigation structure or using different search functions. Cross-references are provided by the semantic relations of the UMLS. Over 25,000 images were identified and indexed. A pilot evaluation among medical students showed good first results concerning the acceptance of the developed navigation structures and search features. The integration of the images from different sources into the UMLS semantic network offers a quick and an easy-to-use learning environment.

  12. On the structure of Bayesian network for Indonesian text document paraphrase identification

    NASA Astrophysics Data System (ADS)

    Prayogo, Ario Harry; Syahrul Mubarok, Mohamad; Adiwijaya

    2018-03-01

    Paraphrase identification is an important process within natural language processing. The idea is to automatically recognize phrases that have different forms but contain same meanings. For examples if we input query “causing fire hazard”, then the computer has to recognize this query that this query has same meaning as “the cause of fire hazard. Paraphrasing is an activity that reveals the meaning of an expression, writing, or speech using different words or forms, especially to achieve greater clarity. In this research we will focus on classifying two Indonesian sentences whether it is a paraphrase to each other or not. There are four steps in this research, first is preprocessing, second is feature extraction, third is classifier building, and the last is performance evaluation. Preprocessing consists of tokenization, non-alphanumerical removal, and stemming. After preprocessing we will conduct feature extraction in order to build new features from given dataset. There are two kinds of features in the research, syntactic features and semantic features. Syntactic features consist of normalized levenshtein distance feature, term-frequency based cosine similarity feature, and LCS (Longest Common Subsequence) feature. Semantic features consist of Wu and Palmer feature and Shortest Path Feature. We use Bayesian Networks as the method of training the classifier. Parameter estimation that we use is called MAP (Maximum A Posteriori). For structure learning of Bayesian Networks DAG (Directed Acyclic Graph), we use BDeu (Bayesian Dirichlet equivalent uniform) scoring function and for finding DAG with the best BDeu score, we use K2 algorithm. In evaluation step we perform cross-validation. The average result that we get from testing the classifier as follows: Precision 75.2%, Recall 76.5%, F1-Measure 75.8% and Accuracy 75.6%.

  13. Monitoring Different Phonological Parameters of Sign Language Engages the Same Cortical Language Network but Distinctive Perceptual Ones.

    PubMed

    Cardin, Velia; Orfanidou, Eleni; Kästner, Lena; Rönnberg, Jerker; Woll, Bencie; Capek, Cheryl M; Rudner, Mary

    2016-01-01

    The study of signed languages allows the dissociation of sensorimotor and cognitive neural components of the language signal. Here we investigated the neurocognitive processes underlying the monitoring of two phonological parameters of sign languages: handshape and location. Our goal was to determine if brain regions processing sensorimotor characteristics of different phonological parameters of sign languages were also involved in phonological processing, with their activity being modulated by the linguistic content of manual actions. We conducted an fMRI experiment using manual actions varying in phonological structure and semantics: (1) signs of a familiar sign language (British Sign Language), (2) signs of an unfamiliar sign language (Swedish Sign Language), and (3) invented nonsigns that violate the phonological rules of British Sign Language and Swedish Sign Language or consist of nonoccurring combinations of phonological parameters. Three groups of participants were tested: deaf native signers, deaf nonsigners, and hearing nonsigners. Results show that the linguistic processing of different phonological parameters of sign language is independent of the sensorimotor characteristics of the language signal. Handshape and location were processed by different perceptual and task-related brain networks but recruited the same language areas. The semantic content of the stimuli did not influence this process, but phonological structure did, with nonsigns being associated with longer RTs and stronger activations in an action observation network in all participants and in the supramarginal gyrus exclusively in deaf signers. These results suggest higher processing demands for stimuli that contravene the phonological rules of a signed language, independently of previous knowledge of signed languages. We suggest that the phonological characteristics of a language may arise as a consequence of more efficient neural processing for its perception and production.

  14. Triangulation of the neurocomputational architecture underpinning reading aloud

    PubMed Central

    Hoffman, Paul; Lambon Ralph, Matthew A.; Woollams, Anna M.

    2015-01-01

    The goal of cognitive neuroscience is to integrate cognitive models with knowledge about underlying neural machinery. This significant challenge was explored in relation to word reading, where sophisticated computational-cognitive models exist but have made limited contact with neural data. Using distortion-corrected functional MRI and dynamic causal modeling, we investigated the interactions between brain regions dedicated to orthographic, semantic, and phonological processing while participants read words aloud. We found that the lateral anterior temporal lobe exhibited increased activation when participants read words with irregular spellings. This area is implicated in semantic processing but has not previously been considered part of the reading network. We also found meaningful individual differences in the activation of this region: Activity was predicted by an independent measure of the degree to which participants use semantic knowledge to read. These characteristics are predicted by the connectionist Triangle Model of reading and indicate a key role for semantic knowledge in reading aloud. Premotor regions associated with phonological processing displayed the reverse characteristics. Changes in the functional connectivity of the reading network during irregular word reading also were consistent with semantic recruitment. These data support the view that reading aloud is underpinned by the joint operation of two neural pathways. They reveal that (i) the ATL is an important element of the ventral semantic pathway and (ii) the division of labor between the two routes varies according to both the properties of the words being read and individual differences in the degree to which participants rely on each route. PMID:26124121

  15. The evolution of social and semantic networks in epistemic communities

    NASA Astrophysics Data System (ADS)

    Margolin, Drew Berkley

    This study describes and tests a model of scientific inquiry as an evolving, organizational phenomenon. Arguments are derived from organizational ecology and evolutionary theory. The empirical subject of study is an epistemic community of scientists publishing on a research topic in physics: the string theoretic concept of "D-branes." The study uses evolutionary theory as a means of predicting change in the way members of the community choose concepts to communicate acceptable knowledge claims. It is argued that the pursuit of new knowledge is risky, because the reliability of a novel knowledge claim cannot be verified until after substantial resources have been invested. Using arguments from both philosophy of science and organizational ecology, it is suggested that scientists can mitigate and sensibly share the risks of knowledge discovery within the community by articulating their claims in legitimate forms, i.e., forms that are testable within and relevant to the community. Evidence from empirical studies of semantic usage suggests that the legitimacy of a knowledge claim is influenced by the characteristics of the concepts in which it is articulated. A model of conceptual retention, variation, and selection is then proposed for predicting the usage of concepts and conceptual co-occurrences in the future publications of the community, based on its past. Results substantially supported hypothesized retention and selection mechanisms. Future concept usage was predictable from previous concept usage, but was limited by conceptual carrying capacity as predicted by density dependence theory. Also as predicted, retention was stronger when the community showed a more cohesive social structure. Similarly, concepts that showed structural signatures of high testability and relevance were more likely to be selected after previous usage frequency was controlled for. By contrast, hypotheses for variation mechanisms were not supported. Surprisingly, concepts whose structural position suggested they would be easiest to discover through search processes were used less frequently, once previous usage frequency was controlled for. The study also makes a theoretical contribution by suggesting ways that evolutionary theory can be used to integrate findings from the study of science with insights from organizational communication. A variety of concrete directions for future studies of social and semantic network evolution are also proposed.

  16. Relating UMLS semantic types and task-based ontology to computer-interpretable clinical practice guidelines.

    PubMed

    Kumar, Anand; Ciccarese, Paolo; Quaglini, Silvana; Stefanelli, Mario; Caffi, Ezio; Boiocchi, Lorenzo

    2003-01-01

    Medical knowledge in clinical practice guideline (GL) texts is the source of task-based computer-interpretable clinical guideline models (CIGMs). We have used Unified Medical Language System (UMLS) semantic types (STs) to understand the percentage of GL text which belongs to a particular ST. We also use UMLS semantic network together with the CIGM-specific ontology to derive a semantic meaning behind the GL text. In order to achieve this objective, we took nine GL texts from the National Guideline Clearinghouse (NGC) and marked up the text dealing with a particular ST. The STs we took into consideration were restricted taking into account the requirements of a task-based CIGM. We used DARPA Agent Markup Language and Ontology Inference Layer (DAML + OIL) to create the UMLS and CIGM specific semantic network. For the latter, as a bench test, we used the 1999 WHO-International Society of Hypertension Guidelines for the Management of Hypertension. We took into consideration the UMLS STs closest to the clinical tasks. The percentage of the GL text dealing with the ST "Health Care Activity" and subtypes "Laboratory Procedure", "Diagnostic Procedure" and "Therapeutic or Preventive Procedure" were measured. The parts of text belonging to other STs or comments were separated. A mapping of terms belonging to other STs was done to the STs under "HCA" for representation in DAML + OIL. As a result, we found that the three STs under "HCA" were the predominant STs present in the GL text. In cases where the terms of related STs existed, they were mapped into one of the three STs. The DAML + OIL representation was able to describe the hierarchy in task-based CIGMs. To conclude, we understood that the three STs could be used to represent the semantic network of the task-bases CIGMs. We identified some mapping operators which could be used for the mapping of other STs into these.

  17. Mining semantic networks of bioinformatics e-resources from the literature

    PubMed Central

    2011-01-01

    Background There have been a number of recent efforts (e.g. BioCatalogue, BioMoby) to systematically catalogue bioinformatics tools, services and datasets. These efforts rely on manual curation, making it difficult to cope with the huge influx of various electronic resources that have been provided by the bioinformatics community. We present a text mining approach that utilises the literature to automatically extract descriptions and semantically profile bioinformatics resources to make them available for resource discovery and exploration through semantic networks that contain related resources. Results The method identifies the mentions of resources in the literature and assigns a set of co-occurring terminological entities (descriptors) to represent them. We have processed 2,691 full-text bioinformatics articles and extracted profiles of 12,452 resources containing associated descriptors with binary and tf*idf weights. Since such representations are typically sparse (on average 13.77 features per resource), we used lexical kernel metrics to identify semantically related resources via descriptor smoothing. Resources are then clustered or linked into semantic networks, providing the users (bioinformaticians, curators and service/tool crawlers) with a possibility to explore algorithms, tools, services and datasets based on their relatedness. Manual exploration of links between a set of 18 well-known bioinformatics resources suggests that the method was able to identify and group semantically related entities. Conclusions The results have shown that the method can reconstruct interesting functional links between resources (e.g. linking data types and algorithms), in particular when tf*idf-like weights are used for profiling. This demonstrates the potential of combining literature mining and simple lexical kernel methods to model relatedness between resource descriptors in particular when there are few features, thus potentially improving the resource description, discovery and exploration process. The resource profiles are available at http://gnode1.mib.man.ac.uk/bioinf/semnets.html PMID:21388573

  18. Semantic eScience for Ecosystem Understanding and Monitoring: The Jefferson Project Case Study

    NASA Astrophysics Data System (ADS)

    McGuinness, D. L.; Pinheiro da Silva, P.; Patton, E. W.; Chastain, K.

    2014-12-01

    Monitoring and understanding ecosystems such as lakes and their watersheds is becoming increasingly important. Accelerated eutrophication threatens our drinking water sources. Many believe that the use of nutrients (e.g., road salts, fertilizers, etc.) near these sources may have negative impacts on animal and plant populations and water quality although it is unclear how to best balance broad community needs. The Jefferson Project is a joint effort between RPI, IBM and the Fund for Lake George aimed at creating an instrumented water ecosystem along with an appropriate cyberinfrastructure that can serve as a global model for ecosystem monitoring, exploration, understanding, and prediction. One goal is to help communities understand the potential impacts of actions such as road salting strategies so that they can make appropriate informed recommendations that serve broad community needs. Our semantic eScience team is creating a semantic infrastructure to support data integration and analysis to help trained scientists as well as the general public to better understand the lake today, and explore potential future scenarios. We are leveraging our RPI Tetherless World Semantic Web methodology that provides an agile process for describing use cases, identification of appropriate background ontologies and technologies, implementation, and evaluation. IBM is providing a state-of-the-art sensor network infrastructure along with a collection of tools to share, maintain, analyze and visualize the network data. In the context of this sensor infrastructure, we will discuss our semantic approach's contributions in three knowledge representation and reasoning areas: (a) human interventions on the deployment and maintenance of local sensor networks including the scientific knowledge to decide how and where sensors are deployed; (b) integration, interpretation and management of data coming from external sources used to complement the project's models; and (c) knowledge about simulation results including parameters, interpretation of results, and comparison of results against external data. We will also demonstrate some example queries highlighting the benefits of our semantic approach and will also identify reusable components.

  19. Event-related rTMS at encoding affects differently deep and shallow memory traces.

    PubMed

    Innocenti, Iglis; Giovannelli, Fabio; Cincotta, Massimo; Feurra, Matteo; Polizzotto, Nicola R; Bianco, Giovanni; Cappa, Stefano F; Rossi, Simone

    2010-10-15

    The "level of processing" effect is a classical finding of the experimental psychology of memory. Actually, the depth of information processing at encoding predicts the accuracy of the subsequent episodic memory performance. When the incoming stimuli are analyzed in terms of their meaning (semantic, or deep, encoding), the memory performance is superior with respect to the case in which the same stimuli are analyzed in terms of their perceptual features (shallow encoding). As suggested by previous neuroimaging studies and by some preliminary findings with transcranial magnetic stimulation (TMS), the left prefrontal cortex may play a role in semantic processing requiring the allocation of working memory resources. However, it still remains unclear whether deep and shallow encoding share or not the same cortical networks, as well as how these networks contribute to the "level of processing" effect. To investigate the brain areas casually involved in this phenomenon, we applied event-related repetitive TMS (rTMS) during deep (semantic) and shallow (perceptual) encoding of words. Retrieval was subsequently tested without rTMS interference. RTMS applied to the left dorsolateral prefrontal cortex (DLPFC) abolished the beneficial effect of deep encoding on memory performance, both in terms of accuracy (decrease) and reaction times (increase). Neither accuracy nor reaction times were instead affected by rTMS to the right DLPFC or to an additional control site excluded by the memory process (vertex). The fact that online measures of semantic processing at encoding were unaffected suggests that the detrimental effect on memory performance for semantically encoded items took place in the subsequent consolidation phase. These results highlight the specific causal role of the left DLPFC among the wide left-lateralized cortical network engaged by long-term memory, suggesting that it probably represents a crucial node responsible for the improved memory performance induced by semantic processing. Copyright 2010 Elsevier Inc. All rights reserved.

  20. Fully convolutional networks with double-label for esophageal cancer image segmentation by self-transfer learning

    NASA Astrophysics Data System (ADS)

    Xue, Di-Xiu; Zhang, Rong; Zhao, Yuan-Yuan; Xu, Jian-Ming; Wang, Ya-Lei

    2017-07-01

    Cancer recognition is the prerequisite to determine appropriate treatment. This paper focuses on the semantic segmentation task of microvascular morphological types on narrowband images to aid clinical examination of esophageal cancer. The most challenge for semantic segmentation is incomplete-labeling. Our key insight is to build fully convolutional networks (FCNs) with double-label to make pixel-wise predictions. The roi-label indicating ROIs (region of interest) is introduced as extra constraint to guild feature learning. Trained end-to-end, the FCN model with two target jointly optimizes both segmentation of sem-label (semantic label) and segmentation of roi-label within the framework of self-transfer learning based on multi-task learning theory. The learning representation ability of shared convolutional networks for sem-label is improved with support of roi-label via achieving a better understanding of information outside the ROIs. Our best FCN model gives satisfactory segmentation result with mean IU up to 77.8% (pixel accuracy > 90%). The results show that the proposed approach is able to assist clinical diagnosis to a certain extent.

  1. Learning the Semantics of Structured Data Sources

    ERIC Educational Resources Information Center

    Taheriyan, Mohsen

    2015-01-01

    Information sources such as relational databases, spreadsheets, XML, JSON, and Web APIs contain a tremendous amount of structured data, however, they rarely provide a semantic model to describe their contents. Semantic models of data sources capture the intended meaning of data sources by mapping them to the concepts and relationships defined by a…

  2. High Performance Semantic Factoring of Giga-Scale Semantic Graph Databases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Joslyn, Cliff A.; Adolf, Robert D.; Al-Saffar, Sinan

    2010-10-04

    As semantic graph database technology grows to address components ranging from extant large triple stores to SPARQL endpoints over SQL-structured relational databases, it will become increasingly important to be able to bring high performance computational resources to bear on their analysis, interpretation, and visualization, especially with respect to their innate semantic structure. Our research group built a novel high performance hybrid system comprising computational capability for semantic graph database processing utilizing the large multithreaded architecture of the Cray XMT platform, conventional clusters, and large data stores. In this paper we describe that architecture, and present the results of our deployingmore » that for the analysis of the Billion Triple dataset with respect to its semantic factors.« less

  3. Statistics and dynamics of attractor networks with inter-correlated patterns

    NASA Astrophysics Data System (ADS)

    Kropff, E.

    2007-02-01

    In an embodied feature representation view, the semantic memory represents concepts in the brain by the associated activation of the features that describe it, each one of them processed in a differentiated region of the cortex. This system has been modeled with a Potts attractor network. Several studies of feature representation show that the correlation between patterns plays a crucial role in semantic memory. The present work focuses on two aspects of the effect of correlations in attractor networks. In first place, it assesses how a Potts network can store a set of patterns with non-trivial correlations between them. This is done through a simple and biologically plausible modification to the classical learning rule. In second place, it studies the complexity of latching transitions between attractor states, and how this complexity can be controlled.

  4. Effects of Transcranial Direct Current Stimulation on Neural Networks in Young and Older Adults

    PubMed

    Martin, Andrew K; Meinzer, Marcus; Lindenberg, Robert; Sieg, Mira M; Nachtigall, Laura; Flöel, Agnes

    2017-11-01

    Transcranial direct current stimulation (tDCS) may be a viable tool to improve motor and cognitive function in advanced age. However, although a number of studies have demonstrated improved cognitive performance in older adults, other studies have failed to show restorative effects. The neural effects of beneficial stimulation response in both age groups is lacking. In the current study, tDCS was administered during simultaneous fMRI in 42 healthy young and older participants. Semantic word generation and motor speech baseline tasks were used to investigate behavioral and neural effects of uni- and bihemispheric motor cortex tDCS in a three-way, crossover, sham tDCS controlled design. Independent components analysis assessed differences in task-related activity between the two age groups and tDCS effects at the network level. We also explored whether laterality of language network organization was effected by tDCS. Behaviorally, both active tDCS conditions significantly improved semantic word retrieval performance in young and older adults and were comparable between groups and stimulation conditions. Network-level tDCS effects were identified in the ventral and dorsal anterior cingulate networks in the combined sample during semantic fluency and motor speech tasks. In addition, a shift toward enhanced left laterality was identified in the older adults for both active stimulation conditions. Thus, tDCS results in common network-level modulations and behavioral improvements for both age groups, with an additional effect of increasing left laterality in older adults.

  5. What role does the anterior temporal lobe play in sentence-level processing? Neural correlates of syntactic processing in semantic PPA

    PubMed Central

    Wilson, Stephen M.; DeMarco, Andrew T.; Henry, Maya L.; Gesierich, Benno; Babiak, Miranda; Mandelli, Maria Luisa; Miller, Bruce L.; Gorno-Tempini, Maria Luisa

    2014-01-01

    Neuroimaging and neuropsychological studies have implicated the anterior temporal lobe (ATL) in sentence-level processing, with syntactic structure-building and/or combinatorial semantic processing suggested as possible roles. A potential challenge to the view that the ATL is involved in syntactic aspects of sentence processing comes from the clinical syndrome of semantic variant primary progressive aphasia (semantic PPA, also known as semantic dementia). In semantic PPA, bilateral neurodegeneration of the anterior temporal lobes is associated with profound lexical semantic deficits, yet syntax is strikingly spared. The goal of this study was to investigate the neural correlates of syntactic processing in semantic PPA, in order to determine which regions normally involved in syntactic processing are damaged in semantic PPA, and whether spared syntactic processing depends on preserved functionality of intact regions, preserved functionality of atrophic regions, or compensatory functional reorganization. We scanned 20 individuals with semantic PPA and 24 age-matched controls using structural and functional MRI. Participants performed a sentence comprehension task that emphasized syntactic processing and minimized lexical semantic demands. We found that in controls, left inferior frontal and left posterior temporal regions were modulated by syntactic processing, while anterior temporal regions were not significantly modulated. In the semantic PPA group, atrophy was most severe in the anterior temporal lobes, but extended to the posterior temporal regions involved in syntactic processing. Functional activity for syntactic processing was broadly similar in patients and controls; in particular, whole-brain analyses revealed no significant differences between patients and controls in the regions modulated by syntactic processing. The atrophic left anterior temporal lobe did show abnormal functionality in semantic PPA patients, however this took the unexpected form of a failure to deactivate. Taken together, our findings indicate that spared syntactic processing in semantic PPA depends on preserved functionality of structurally intact left frontal regions and moderately atrophic left posterior temporal regions, but no functional reorganization was apparent as a consequence of anterior temporal atrophy and dysfunction. These results suggest that the role of the anterior temporal lobe in sentence processing is less likely to relate to syntactic structure-building, and more likely to relate to higher level processes such as combinatorial semantic processing. PMID:24345172

  6. Auditing the NCI Thesaurus with Semantic Web Technologies

    PubMed Central

    Mougin, Fleur; Bodenreider, Olivier

    2008-01-01

    Auditing biomedical terminologies often results in the identification of inconsistencies and thus helps to improve their quality. In this paper, we present a method based on Semantic Web technologies for auditing biomedical terminologies and apply it to the NCI thesaurus. We stored the NCI thesaurus concepts and their properties in an RDF triple store. By querying this store, we assessed the consistency of both hierarchical and associative relations from the NCI thesaurus among themselves and with corresponding relations in the UMLS Semantic Network. We show that the consistency is better for associative relations than for hierarchical relations. Causes for inconsistency and benefits from using Semantic Web technologies for auditing purposes are discussed. PMID:18999265

  7. Auditing the NCI thesaurus with semantic web technologies.

    PubMed

    Mougin, Fleur; Bodenreider, Olivier

    2008-11-06

    Auditing biomedical terminologies often results in the identification of inconsistencies and thus helps to improve their quality. In this paper, we present a method based on Semantic Web technologies for auditing biomedical terminologies and apply it to the NCI thesaurus. We stored the NCI thesaurus concepts and their properties in an RDF triple store. By querying this store, we assessed the consistency of both hierarchical and associative relations from the NCI thesaurus among themselves and with corresponding relations in the UMLS Semantic Network. We show that the consistency is better for associative relations than for hierarchical relations. Causes for inconsistency and benefits from using Semantic Web technologies for auditing purposes are discussed.

  8. Internally- and externally-driven network transitions as a basis for automatic and strategic processes in semantic priming: theory and experimental validation

    PubMed Central

    Lerner, Itamar; Shriki, Oren

    2014-01-01

    For the last four decades, semantic priming—the facilitation in recognition of a target word when it follows the presentation of a semantically related prime word—has been a central topic in research of human cognitive processing. Studies have drawn a complex picture of findings which demonstrated the sensitivity of this priming effect to a unique combination of variables, including, but not limited to, the type of relatedness between primes and targets, the prime-target Stimulus Onset Asynchrony (SOA), the relatedness proportion (RP) in the stimuli list and the specific task subjects are required to perform. Automatic processes depending on the activation patterns of semantic representations in memory and controlled strategies adapted by individuals when attempting to maximize their recognition performance have both been implicated in contributing to the results. Lately, we have published a new model of semantic priming that addresses the majority of these findings within one conceptual framework. In our model, semantic memory is depicted as an attractor neural network in which stochastic transitions from one stored pattern to another are continually taking place due to synaptic depression mechanisms. We have shown how such transitions, in combination with a reinforcement-learning rule that adjusts their pace, resemble the classic automatic and controlled processes involved in semantic priming and account for a great number of the findings in the literature. Here, we review the core findings of our model and present new simulations that show how similar principles of parameter-adjustments could account for additional data not addressed in our previous studies, such as the relation between expectancy and inhibition in priming, target frequency and target degradation effects. Finally, we describe two human experiments that validate several key predictions of the model. PMID:24795670

  9. Increased functional connectivity in the default mode network in mild cognitive impairment: a maladaptive compensatory mechanism associated with poor semantic memory performance.

    PubMed

    Gardini, Simona; Venneri, Annalena; Sambataro, Fabio; Cuetos, Fernando; Fasano, Fabrizio; Marchi, Massimo; Crisi, Girolamo; Caffarra, Paolo

    2015-01-01

    Semantic memory decline and changes of default mode network (DMN) connectivity have been reported in mild cognitive impairment (MCI). Only a few studies, however, have investigated the role of changes of activity in the DMN on semantic memory in this clinical condition. The present study aimed to investigate more extensively the relationship between semantic memory impairment and DMN intrinsic connectivity in MCI. Twenty-one MCI patients and 21 healthy elderly controls matched for demographic variables took part in this study. All participants underwent a comprehensive semantic battery including tasks of category fluency, visual naming and naming from definition for objects, actions and famous people, word-association for early and late acquired words and reading. A subgroup of the original sample (16 MCI patients and 20 healthy elderly controls) was also scanned with resting state functional magnetic resonance imaging and DMN connectivity was estimated using a seed-based approach. Compared with healthy elderly, patients showed an extensive semantic memory decline in category fluency, visual naming, naming from definition, words-association, and reading tasks. Patients presented increased DMN connectivity between the medial prefrontal regions and the posterior cingulate and between the posterior cingulate and the parahippocampus and anterior hippocampus. MCI patients also showed a significant negative correlation of medial prefrontal gyrus connectivity with parahippocampus and posterior hippocampus and visual naming performance. Our findings suggest that increasing DMN connectivity may contribute to semantic memory deficits in MCI, specifically in visual naming. Increased DMN connectivity with posterior cingulate and medio-temporal regions seems to represent a maladaptive reorganization of brain functions in MCI, which detrimentally contributes to cognitive impairment in this clinical population.

  10. The functional connectivity of semantic task changes in the recovery from stroke aphasia

    NASA Astrophysics Data System (ADS)

    Lu, Jie; Wu, Xia; Yao, Li; Li, Kun-Cheng; Shu, Hua; Dong, Qi

    2007-03-01

    Little is known about the difference of functional connectivity of semantic task between the recovery aphasic patients and normal subject. In this paper, an fMRI experiment was performed in a patient with aphasia following a left-sided ischemic lesion and normal subject. Picture naming was used as semantic activation task in this study. We compared the preliminary functional connectivity results of the recovery aphasic patient with the normal subject. The fMRI data were separated by independent component analysis (ICA) into 90 components. According to our experience and other papers, we chose a region of interest (ROI) of semantic (x=-57, y=15, z=8, r=11mm). From the 90 components, we chose one component as the functional connectivity of the semantic ROI according to one criterion. The criterion is the mean value of the voxels in the ROI. So the component of the highest mean value of the ROI is the functional connectivity of the ROI. The voxel with its value higher than 2.4 was thought as activated (p<0.05). And the functional connectivity networks of the normal subjects were t-tested as group network. From the result, we can know the semantic functional connectivity of stroke aphasic patient and normal subjects are different. The activated areas of the left inferior frontal gyrus and inferior/middle temporal gyrus are larger than the ones of normal. The activated area of the right inferior frontal gyrus is smaller than the ones of normal. The functional connectivity of stroke aphasic patient under semantic condition is different with the normal one. The focus of the stroke aphasic patient can affect the functional connectivity.

  11. Exploring MEDLINE Space with Random Indexing and Pathfinder Networks

    PubMed Central

    Cohen, Trevor

    2008-01-01

    The integration of disparate research domains is a prerequisite for the success of the translational science initiative. MEDLINE abstracts contain content from a broad range of disciplines, presenting an opportunity for the development of methods able to integrate the knowledge they contain. Latent Semantic Analysis (LSA) and related methods learn human-like associations between terms from unannotated text. However, their computational and memory demands limits their ability to address a corpus of this size. Furthermore, visualization methods previously used in conjunction with LSA have limited ability to define the local structure of the associative networks LSA learns. This paper explores these issues by (1) processing the entire MEDLINE corpus using Random Indexing, a variant of LSA, and (2) exploring learned associations using Pathfinder Networks. Meaningful associations are inferred from MEDLINE, including a drug-disease association undetected by PUBMED search. PMID:18999236

  12. Exploring MEDLINE space with random indexing and pathfinder networks.

    PubMed

    Cohen, Trevor

    2008-11-06

    The integration of disparate research domains is a prerequisite for the success of the translational science initiative. MEDLINE abstracts contain content from a broad range of disciplines, presenting an opportunity for the development of methods able to integrate the knowledge they contain. Latent Semantic Analysis (LSA) and related methods learn human-like associations between terms from unannotated text. However, their computational and memory demands limits their ability to address a corpus of this size. Furthermore, visualization methods previously used in conjunction with LSA have limited ability to define the local structure of the associative networks LSA learns. This paper explores these issues by (1) processing the entire MEDLINE corpus using Random Indexing, a variant of LSA, and (2) exploring learned associations using Pathfinder Networks. Meaningful associations are inferred from MEDLINE, including a drug-disease association undetected by PUBMED search.

  13. Comparison of Point Matching Techniques for Road Network Matching

    NASA Astrophysics Data System (ADS)

    Hackeloeer, A.; Klasing, K.; Krisp, J. M.; Meng, L.

    2013-05-01

    Map conflation investigates the unique identification of geographical entities across different maps depicting the same geographic region. It involves a matching process which aims to find commonalities between geographic features. A specific subdomain of conflation called Road Network Matching establishes correspondences between road networks of different maps on multiple layers of abstraction, ranging from elementary point locations to high-level structures such as road segments or even subgraphs derived from the induced graph of a road network. The process of identifying points located on different maps by means of geometrical, topological and semantical information is called point matching. This paper provides an overview of various techniques for point matching, which is a fundamental requirement for subsequent matching steps focusing on complex high-level entities in geospatial networks. Common point matching approaches as well as certain combinations of these are described, classified and evaluated. Furthermore, a novel similarity metric called the Exact Angular Index is introduced, which considers both topological and geometrical aspects. The results offer a basis for further research on a bottom-up matching process for complex map features, which must rely upon findings derived from suitable point matching algorithms. In the context of Road Network Matching, reliable point matches provide an immediate starting point for finding matches between line segments describing the geometry and topology of road networks, which may in turn be used for performing a structural high-level matching on the network level.

  14. An ontology for sensor networks

    NASA Astrophysics Data System (ADS)

    Compton, Michael; Neuhaus, Holger; Bermudez, Luis; Cox, Simon

    2010-05-01

    Sensors and networks of sensors are important ways of monitoring and digitizing reality. As the number and size of sensor networks grows, so too does the amount of data collected. Users of such networks typically need to discover the sensors and data that fit their needs without necessarily understanding the complexities of the network itself. The burden on users is eased if the network and its data are expressed in terms of concepts familiar to the users and their job functions, rather than in terms of the network or how it was designed. Furthermore, the task of collecting and combining data from multiple sensor networks is made easier if metadata about the data and the networks is stored in a format and conceptual models that is amenable to machine reasoning and inference. While the OGC's (Open Geospatial Consortium) SWE (Sensor Web Enablement) standards provide for the description and access to data and metadata for sensors, they do not provide facilities for abstraction, categorization, and reasoning consistent with standard technologies. Once sensors and networks are described using rich semantics (that is, by using logic to describe the sensors, the domain of interest, and the measurements) then reasoning and classification can be used to analyse and categorise data, relate measurements with similar information content, and manage, query and task sensors. This will enable types of automated processing and logical assurance built on OGC standards. The W3C SSN-XG (Semantic Sensor Networks Incubator Group) is producing a generic ontology to describe sensors, their environment and the measurements they make. The ontology provides definitions for the structure of sensors and observations, leaving the details of the observed domain unspecified. This allows abstract representations of real world entities, which are not observed directly but through their observable qualities. Domain semantics, units of measurement, time and time series, and location and mobility ontologies can be easily attached when instantiating the ontology for any particular sensors in a domain. After a review of previous work on the specification of sensors, the group is developing the ontology in conjunction with use case development. Part of the difficulty of such work is that relevant concepts from for example OGC standards and other ontologies must be identified and aligned and also placed in a consistent and logically correct way into the ontology. In terms of alignment with OGC's SWE, the ontology is intended to be able to model concepts from SensorML and O&M. Similar to SensorML and O&M, the ontology is based around concepts of systems, processes, and observations. It supports the description of the physical and processing structure of sensors. Sensors are not constrained to physical sensing devices: rather a sensor is anything that can estimate or calculate the value of a phenomenon, so a device or computational process or combination could play the role of a sensor. The representation of a sensor in the ontology links together what is measured (the domain phenomena), the sensor's physical and other properties and its functions and processing. Parts of the ontology are well aligned with SensorML and O&M, but parts are not, and the group is working to understand how differences from (and alignment with) the OGC standards affect the application of the ontology.

  15. The Role of Context in Producing Item Interactions and False Memories

    ERIC Educational Resources Information Center

    Tehan, Gerald; Humphreys, Michael S.; Tolan, Georgina Anne; Pitcher, Cameron

    2004-01-01

    Cued recall with an extralist cue poses a challenge for contemporary memory theory in that there is a need to explain how episodic and semantic information are combined. A parallel activation and intersection approach proposes one such means by assuming that an experimental cue will elicit its preexisting semantic network and a context cue will…

  16. Benefits of an Object-oriented Database Representation for Controlled Medical Terminologies

    PubMed Central

    Gu, Huanying; Halper, Michael; Geller, James; Perl, Yehoshua

    1999-01-01

    Objective: Controlled medical terminologies (CMTs) have been recognized as important tools in a variety of medical informatics applications, ranging from patient-record systems to decision-support systems. Controlled medical terminologies are typically organized in semantic network structures consisting of tens to hundreds of thousands of concepts. This overwhelming size and complexity can be a serious barrier to their maintenance and widespread utilization. The authors propose the use of object-oriented databases to address the problems posed by the extensive scope and high complexity of most CMTs for maintenance personnel and general users alike. Design: The authors present a methodology that allows an existing CMT, modeled as a semantic network, to be represented as an equivalent object-oriented database. Such a representation is called an object-oriented health care terminology repository (OOHTR). Results: The major benefit of an OOHTR is its schema, which provides an important layer of structural abstraction. Using the high-level view of a CMT afforded by the schema, one can gain insight into the CMT's overarching organization and begin to better comprehend it. The authors' methodology is applied to the Medical Entities Dictionary (MED), a large CMT developed at Columbia-Presbyterian Medical Center. Examples of how the OOHTR schema facilitated updating, correcting, and improving the design of the MED are presented. Conclusion: The OOHTR schema can serve as an important abstraction mechanism for enhancing comprehension of a large CMT, and thus promotes its usability. PMID:10428002

  17. Default network activation during episodic and semantic memory retrieval: A selective meta-analytic comparison.

    PubMed

    Kim, Hongkeun

    2016-01-08

    It remains unclear whether and to what extent the default network subregions involved in episodic memory (EM) and semantic memory (SM) processes overlap or are separated from one another. This study addresses this issue through a controlled meta-analysis of functional neuroimaging studies involving healthy participants. Various EM and SM task paradigms differ widely in the extent of default network involvement. Therefore, the issue at hand cannot be properly addressed without some control for this factor. In this regard, this study employs a two-stage analysis: a preliminary meta-analysis to select EM and SM task paradigms that recruit relatively extensive default network regions and a main analysis to compare the selected task paradigms. Based on a within-EM comparison, the default network contributed more to recollection/familiarity effects than to old/new effects, and based on a within-SM comparison, it contributed more to word/pseudoword effects than to semantic/phonological effects. According to a direct comparison of recollection/familiarity and word/pseudoword effects, each involving a range of default network regions, there were more overlaps than separations in default network subregions involved in these two effects. More specifically, overlaps included the bilateral posterior cingulate/retrosplenial cortex, left inferior parietal lobule, and left anteromedial prefrontal regions, whereas separations included only the hippocampal formation and the parahippocampal cortex region, which was unique to recollection/familiarity effects. These results indicate that EM and SM retrieval processes involving strong memory signals recruit extensive and largely overlapping default network regions and differ mainly in distinct contributions of hippocampus and parahippocampal regions to EM retrieval. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. The Episodic/Semantic Memory Distinction as an Heuristic in the Study of Instructional Effects on Cognitive Structure.

    ERIC Educational Resources Information Center

    Konold, Clifford E.; Bates, John A.

    1982-01-01

    Significant correlations between measures of cognitive structure and performance were found using a procedure distinguishing between episodic and semantic memory as an heuristic with achievement test items. The design increased the likelihood of indications of semantic memory. Higher-order and lower-order cognitive processes are discussed.…

  19. Building a transnational biosurveillance network using semantic web technologies: requirements, design, and preliminary evaluation.

    PubMed

    Teodoro, Douglas; Pasche, Emilie; Gobeill, Julien; Emonet, Stéphane; Ruch, Patrick; Lovis, Christian

    2012-05-29

    Antimicrobial resistance has reached globally alarming levels and is becoming a major public health threat. Lack of efficacious antimicrobial resistance surveillance systems was identified as one of the causes of increasing resistance, due to the lag time between new resistances and alerts to care providers. Several initiatives to track drug resistance evolution have been developed. However, no effective real-time and source-independent antimicrobial resistance monitoring system is available publicly. To design and implement an architecture that can provide real-time and source-independent antimicrobial resistance monitoring to support transnational resistance surveillance. In particular, we investigated the use of a Semantic Web-based model to foster integration and interoperability of interinstitutional and cross-border microbiology laboratory databases. Following the agile software development methodology, we derived the main requirements needed for effective antimicrobial resistance monitoring, from which we proposed a decentralized monitoring architecture based on the Semantic Web stack. The architecture uses an ontology-driven approach to promote the integration of a network of sentinel hospitals or laboratories. Local databases are wrapped into semantic data repositories that automatically expose local computing-formalized laboratory information in the Web. A central source mediator, based on local reasoning, coordinates the access to the semantic end points. On the user side, a user-friendly Web interface provides access and graphical visualization to the integrated views. We designed and implemented the online Antimicrobial Resistance Trend Monitoring System (ARTEMIS) in a pilot network of seven European health care institutions sharing 70+ million triples of information about drug resistance and consumption. Evaluation of the computing performance of the mediator demonstrated that, on average, query response time was a few seconds (mean 4.3, SD 0.1 × 10(2) seconds). Clinical pertinence assessment showed that resistance trends automatically calculated by ARTEMIS had a strong positive correlation with the European Antimicrobial Resistance Surveillance Network (EARS-Net) (ρ = .86, P < .001) and the Sentinel Surveillance of Antibiotic Resistance in Switzerland (SEARCH) (ρ = .84, P < .001) systems. Furthermore, mean resistance rates extracted by ARTEMIS were not significantly different from those of either EARS-Net (∆ = ±0.130; 95% confidence interval -0 to 0.030; P < .001) or SEARCH (∆ = ±0.042; 95% confidence interval -0.004 to 0.028; P = .004). We introduce a distributed monitoring architecture that can be used to build transnational antimicrobial resistance surveillance networks. Results indicated that the Semantic Web-based approach provided an efficient and reliable solution for development of eHealth architectures that enable online antimicrobial resistance monitoring from heterogeneous data sources. In future, we expect that more health care institutions can join the ARTEMIS network so that it can provide a large European and wider biosurveillance network that can be used to detect emerging bacterial resistance in a multinational context and support public health actions.

  20. Building a Transnational Biosurveillance Network Using Semantic Web Technologies: Requirements, Design, and Preliminary Evaluation

    PubMed Central

    Pasche, Emilie; Gobeill, Julien; Emonet, Stéphane; Ruch, Patrick; Lovis, Christian

    2012-01-01

    Background Antimicrobial resistance has reached globally alarming levels and is becoming a major public health threat. Lack of efficacious antimicrobial resistance surveillance systems was identified as one of the causes of increasing resistance, due to the lag time between new resistances and alerts to care providers. Several initiatives to track drug resistance evolution have been developed. However, no effective real-time and source-independent antimicrobial resistance monitoring system is available publicly. Objective To design and implement an architecture that can provide real-time and source-independent antimicrobial resistance monitoring to support transnational resistance surveillance. In particular, we investigated the use of a Semantic Web-based model to foster integration and interoperability of interinstitutional and cross-border microbiology laboratory databases. Methods Following the agile software development methodology, we derived the main requirements needed for effective antimicrobial resistance monitoring, from which we proposed a decentralized monitoring architecture based on the Semantic Web stack. The architecture uses an ontology-driven approach to promote the integration of a network of sentinel hospitals or laboratories. Local databases are wrapped into semantic data repositories that automatically expose local computing-formalized laboratory information in the Web. A central source mediator, based on local reasoning, coordinates the access to the semantic end points. On the user side, a user-friendly Web interface provides access and graphical visualization to the integrated views. Results We designed and implemented the online Antimicrobial Resistance Trend Monitoring System (ARTEMIS) in a pilot network of seven European health care institutions sharing 70+ million triples of information about drug resistance and consumption. Evaluation of the computing performance of the mediator demonstrated that, on average, query response time was a few seconds (mean 4.3, SD 0.1×102 seconds). Clinical pertinence assessment showed that resistance trends automatically calculated by ARTEMIS had a strong positive correlation with the European Antimicrobial Resistance Surveillance Network (EARS-Net) (ρ = .86, P < .001) and the Sentinel Surveillance of Antibiotic Resistance in Switzerland (SEARCH) (ρ = .84, P < .001) systems. Furthermore, mean resistance rates extracted by ARTEMIS were not significantly different from those of either EARS-Net (∆ = ±0.130; 95% confidence interval –0 to 0.030; P < .001) or SEARCH (∆ = ±0.042; 95% confidence interval –0.004 to 0.028; P = .004). Conclusions We introduce a distributed monitoring architecture that can be used to build transnational antimicrobial resistance surveillance networks. Results indicated that the Semantic Web-based approach provided an efficient and reliable solution for development of eHealth architectures that enable online antimicrobial resistance monitoring from heterogeneous data sources. In future, we expect that more health care institutions can join the ARTEMIS network so that it can provide a large European and wider biosurveillance network that can be used to detect emerging bacterial resistance in a multinational context and support public health actions. PMID:22642960

  1. High performance semantic factoring of giga-scale semantic graph databases.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    al-Saffar, Sinan; Adolf, Bob; Haglin, David

    2010-10-01

    As semantic graph database technology grows to address components ranging from extant large triple stores to SPARQL endpoints over SQL-structured relational databases, it will become increasingly important to be able to bring high performance computational resources to bear on their analysis, interpretation, and visualization, especially with respect to their innate semantic structure. Our research group built a novel high performance hybrid system comprising computational capability for semantic graph database processing utilizing the large multithreaded architecture of the Cray XMT platform, conventional clusters, and large data stores. In this paper we describe that architecture, and present the results of our deployingmore » that for the analysis of the Billion Triple dataset with respect to its semantic factors, including basic properties, connected components, namespace interaction, and typed paths.« less

  2. Digital Workflows for a 3d Semantic Representation of AN Ancient Mining Landscape

    NASA Astrophysics Data System (ADS)

    Hiebel, G.; Hanke, K.

    2017-08-01

    The ancient mining landscape of Schwaz/Brixlegg in the Tyrol, Austria witnessed mining from prehistoric times to modern times creating a first order cultural landscape when it comes to one of the most important inventions in human history: the production of metal. In 1991 a part of this landscape was lost due to an enormous landslide that reshaped part of the mountain. With our work we want to propose a digital workflow to create a 3D semantic representation of this ancient mining landscape with its mining structures to preserve it for posterity. First, we define a conceptual model to integrate the data. It is based on the CIDOC CRM ontology and CRMgeo for geometric data. To transform our information sources to a formal representation of the classes and properties of the ontology we applied semantic web technologies and created a knowledge graph in RDF (Resource Description Framework). Through the CRMgeo extension coordinate information of mining features can be integrated into the RDF graph and thus related to the detailed digital elevation model that may be visualized together with the mining structures using Geoinformation systems or 3D visualization tools. The RDF network of the triple store can be queried using the SPARQL query language. We created a snapshot of mining, settlement and burial sites in the Bronze Age. The results of the query were loaded into a Geoinformation system and a visualization of known bronze age sites related to mining, settlement and burial activities was created.

  3. Deriving semantic structure from category fluency: clustering techniques and their pitfalls

    PubMed Central

    Voorspoels, Wouter; Storms, Gert; Longenecker, Julia; Verheyen, Steven; Weinberger, Daniel R.; Elvevåg, Brita

    2013-01-01

    Assessing verbal output in category fluency tasks provides a sensitive indicator of cortical dysfunction. The most common metrics are the overall number of words produced and the number of errors. Two main observations have been made about the structure of the output, first that there is a temporal component to it with words being generated in spurts, and second that the clustering pattern may reflect a search for meanings such that the ‘clustering’ is attributable to the activation of a specific semantic field in memory. A number of sophisticated approaches to examining the structure of this clustering have been developed, and a core theme is that the similarity relations between category members will reveal the mental semantic structure of the category underlying an individual’s responses, which can then be visualized by a number of algorithms, such as MDS, hierarchical clustering, ADDTREE, ADCLUS or SVD. Such approaches have been applied to a variety of neurological and psychiatric populations, and the general conclusion has been that the clinical condition systematically distorts the semantic structure in the patients, as compared to the healthy controls. In the present paper we explore this approach to understanding semantic structure using category fluency data. On the basis of a large pool of patients with schizophrenia (n=204) and healthy control participants (n=204), we find that the methods are problematic and unreliable to the extent that it is not possible to conclude that any putative difference reflects a systematic difference between the semantic representations in patients and controls. Moreover, taking into account the unreliability of the methods, we find that the most probable conclusion to be made is that no difference in underlying semantic representation exists. The consequences of these findings to understanding semantic structure, and the use of category fluency data, in cortical dysfunction are discussed. PMID:24275165

  4. The Development of Clinical Document Standards for Semantic Interoperability in China

    PubMed Central

    Yang, Peng; Pan, Feng; Wan, Yi; Tu, Haibo; Tang, Xuejun; Hu, Jianping

    2011-01-01

    Objectives This study is aimed at developing a set of data groups (DGs) to be employed as reusable building blocks for the construction of the eight most common clinical documents used in China's general hospitals in order to achieve their structural and semantic standardization. Methods The Diagnostics knowledge framework, the related approaches taken from the Health Level Seven (HL7), the Integrating the Healthcare Enterprise (IHE), and the Healthcare Information Technology Standards Panel (HITSP) and 1,487 original clinical records were considered together to form the DG architecture and data sets. The internal structure, content, and semantics of each DG were then defined by mapping each DG data set to a corresponding Clinical Document Architecture data element and matching each DG data set to the metadata in the Chinese National Health Data Dictionary. By using the DGs as reusable building blocks, standardized structures and semantics regarding the clinical documents for semantic interoperability were able to be constructed. Results Altogether, 5 header DGs, 48 section DGs, and 17 entry DGs were developed. Several issues regarding the DGs, including their internal structure, identifiers, data set names, definitions, length and format, data types, and value sets, were further defined. Standardized structures and semantics regarding the eight clinical documents were structured by the DGs. Conclusions This approach of constructing clinical document standards using DGs is a feasible standard-driven solution useful in preparing documents possessing semantic interoperability among the disparate information systems in China. These standards need to be validated and refined through further study. PMID:22259722

  5. The cognitive and neural expression of semantic memory impairment in mild cognitive impairment and early Alzheimer's disease.

    PubMed

    Joubert, Sven; Brambati, Simona M; Ansado, Jennyfer; Barbeau, Emmanuel J; Felician, Olivier; Didic, Mira; Lacombe, Jacinthe; Goldstein, Rachel; Chayer, Céline; Kergoat, Marie-Jeanne

    2010-03-01

    Semantic deficits in Alzheimer's disease have been widely documented, but little is known about the integrity of semantic memory in the prodromal stage of the illness. The aims of the present study were to: (i) investigate naming abilities and semantic memory in amnestic mild cognitive impairment (aMCI), early Alzheimer's disease (AD) compared to healthy older subjects; (ii) investigate the association between naming and semantic knowledge in aMCI and AD; (iii) examine if the semantic impairment was present in different modalities; and (iv) study the relationship between semantic performance and grey matter volume using voxel-based morphometry. Results indicate that both naming and semantic knowledge of objects and famous people were impaired in aMCI and early AD groups, when compared to healthy age- and education-matched controls. Item-by-item analyses showed that anomia in aMCI and early AD was significantly associated with underlying semantic knowledge of famous people but not with semantic knowledge of objects. Moreover, semantic knowledge of the same concepts was impaired in both the visual and the verbal modalities. Finally, voxel-based morphometry analyses revealed that semantic impairment in aMCI and AD was associated with cortical atrophy in the anterior temporal lobe (ATL) region as well as in the inferior prefrontal cortex (IPC), some of the key regions of the semantic cognition network. These findings suggest that the semantic impairment in aMCI may result from a breakdown of semantic knowledge of famous people and objects, combined with difficulties in the selection, manipulation and retrieval of this knowledge. Copyright (c) 2009 Elsevier Ltd. All rights reserved.

  6. Semantic Web-based Vocabulary Broker for Open Science

    NASA Astrophysics Data System (ADS)

    Ritschel, B.; Neher, G.; Iyemori, T.; Murayama, Y.; Kondo, Y.; Koyama, Y.; King, T. A.; Galkin, I. A.; Fung, S. F.; Wharton, S.; Cecconi, B.

    2016-12-01

    Keyword vocabularies are used to tag and to identify data of science data repositories. Such vocabularies consist of controlled terms and the appropriate concepts, such as GCMD1 keywords or the ESPAS2 keyword ontology. The Semantic Web-based mash-up of domain-specific, cross- or even trans-domain vocabularies provides unique capabilities in the network of appropriate data resources. Based on a collaboration between GFZ3, the FHP4, the WDC for Geomagnetism5 and the NICT6 we developed the concept of a vocabulary broker for inter- and trans-disciplinary data detection and integration. Our prototype of the Semantic Web-based vocabulary broker uses OSF7 for the mash-up of geo and space research vocabularies, such as GCMD keywords, ESPAS keyword ontology and SPASE8 keyword vocabulary. The vocabulary broker starts the search with "free" keywords or terms of a specific vocabulary scheme. The vocabulary broker almost automatically connects the different science data repositories which are tagged by terms of the aforementioned vocabularies. Therefore the mash-up of the SKOS9 based vocabularies with appropriate metadata from different domains can be realized by addressing LOD10 resources or virtual SPARQL11 endpoints which maps relational structures into the RDF format12. In order to demonstrate such a mash-up approach in real life, we installed and use a D2RQ13 server for the integration of IUGONET14 data which are managed by a relational database. The OSF based vocabulary broker and the D2RQ platform are installed at virtual LINUX machines at the Kyoto University. The vocabulary broker meets the standard of a main component of the WDS15 knowledge network. The Web address of the vocabulary broker is http://wdcosf.kugi.kyoto-u.ac.jp 1 Global Change Master Directory2 Near earth space data infrastructure for e-science3 German Research Centre for Geosciences4 University of Applied Sciences Potsdam5 World Data Center for Geomagnetism Kyoto6 National Institute of Information and Communications Technology Tokyo7 Open Semantic Framework8 Space Physics Archive Search and Extract9 Simple Knowledge Organization System10 Linked Open Data11 SPARQL Protocol And RDF Query12 Resource Description Framework13 Database to RDF Query14 Inter-university Upper atmosphere Global Observation NETwork15 World Data System

  7. Overcoming an obstacle in expanding a UMLS semantic type extent.

    PubMed

    Chen, Yan; Gu, Huanying; Perl, Yehoshua; Geller, James

    2012-02-01

    This paper strives to overcome a major problem encountered by a previous expansion methodology for discovering concepts highly likely to be missing a specific semantic type assignment in the UMLS. This methodology is the basis for an algorithm that presents the discovered concepts to a human auditor for review and possible correction. We analyzed the problem of the previous expansion methodology and discovered that it was due to an obstacle constituted by one or more concepts assigned the UMLS Semantic Network semantic type Classification. A new methodology was designed that bypasses such an obstacle without a combinatorial explosion in the number of concepts presented to the human auditor for review. The new expansion methodology with obstacle avoidance was tested with the semantic type Experimental Model of Disease and found over 500 concepts missed by the previous methodology that are in need of this semantic type assignment. Furthermore, other semantic types suffering from the same major problem were discovered, indicating that the methodology is of more general applicability. The algorithmic discovery of concepts that are likely missing a semantic type assignment is possible even in the face of obstacles, without an explosion in the number of processed concepts. Copyright © 2011 Elsevier Inc. All rights reserved.

  8. Overcoming an Obstacle in Expanding a UMLS Semantic Type Extent

    PubMed Central

    Chen, Yan; Gu, Huanying; Perl, Yehoshua; Geller, James

    2011-01-01

    This paper strives to overcome a major problem encountered by a previous expansion methodology for discovering concepts highly likely to be missing a specific semantic type assignment in the UMLS. This methodology is the basis for an algorithm that presents the discovered concepts to a human auditor for review and possible correction. We analyzed the problem of the previous expansion methodology and discovered that it was due to an obstacle constituted by one or more concepts assigned the UMLS Semantic Network semantic type Classification. A new methodology was designed that bypasses such an obstacle without a combinatorial explosion in the number of concepts presented to the human auditor for review. The new expansion methodology with obstacle avoidance was tested with the semantic type Experimental Model of Disease and found over 500 concepts missed by the previous methodology that are in need of this semantic type assignment. Furthermore, other semantic types suffering from the same major problem were discovered, indicating that the methodology is of more general applicability. The algorithmic discovery of concepts that are likely missing a semantic type assignment is possible even in the face of obstacles, without an explosion in the number of processed concepts. PMID:21925287

  9. Mapping the connectivity underlying multimodal (verbal and non-verbal) semantic processing: a brain electrostimulation study.

    PubMed

    Moritz-Gasser, Sylvie; Herbet, Guillaume; Duffau, Hugues

    2013-08-01

    Accessing the meaning of words, objects, people and facts is a human ability, made possible thanks to semantic processing. Although studies concerning its cortical organization are proficient, the subcortical connectivity underlying this semantic network received less attention. We used intraoperative direct electrostimulation, which mimics a transient virtual lesion during brain surgery for glioma in eight awaken patients, to map the anatomical white matter substrate subserving the semantic system. Patients performed a picture naming task and a non-verbal semantic association test during the electrical mapping. Direct electrostimulation of the inferior fronto-occipital fascicle, a poorly known ventral association pathway which runs throughout the brain, induced in all cases semantic disturbances. These transient disorders were highly reproducible, and concerned verbal as well as non-verbal output. Our results highlight for the first time the essential role of the left inferior fronto-occipital fascicle in multimodal (and not only in verbal) semantic processing. On the basis of these original findings, and in the lights of phylogenetic considerations regarding this fascicle, we suggest its possible implication in the monitoring of the human level of consciousness related to semantic memory, namely noetic consciousness. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. Cortical Memory Mechanisms and Language Origins

    ERIC Educational Resources Information Center

    Aboitiz, Francisco; Garcia, Ricardo R.; Bosman, Conrado; Brunetti, Enzo

    2006-01-01

    We have previously proposed that cortical auditory-vocal networks of the monkey brain can be partly homologized with language networks that participate in the phonological loop. In this paper, we suggest that other linguistic phenomena like semantic and syntactic processing also rely on the activation of transient memory networks, which can be…

  11. The neural correlates of semantic richness: evidence from an fMRI study of word learning.

    PubMed

    Ferreira, Roberto A; Göbel, Silke M; Hymers, Mark; Ellis, Andrew W

    2015-04-01

    We investigated the neural correlates of concrete nouns with either many or few semantic features. A group of 21 participants underwent two days of training and were then asked to categorize 40 newly learned words and a set of matched familiar words as living or nonliving in an MRI scanner. Our results showed that the most reliable effects of semantic richness were located in the left angular gyrus (AG) and middle temporal gyrus (MTG), where activation was higher for semantically rich than poor words. Other areas showing the same pattern included bilateral precuneus and posterior cingulate gyrus. Our findings support the view that AG and anterior MTG, as part of the multimodal network, play a significant role in representing and integrating semantic features from different input modalities. We propose that activation in bilateral precuneus and posterior cingulate gyrus reflects interplay between AG and episodic memory systems during semantic retrieval. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. Divergent Human Cortical Regions for Processing Distinct Acoustic-Semantic Categories of Natural Sounds: Animal Action Sounds vs. Vocalizations

    PubMed Central

    Webster, Paula J.; Skipper-Kallal, Laura M.; Frum, Chris A.; Still, Hayley N.; Ward, B. Douglas; Lewis, James W.

    2017-01-01

    A major gap in our understanding of natural sound processing is knowledge of where or how in a cortical hierarchy differential processing leads to categorical perception at a semantic level. Here, using functional magnetic resonance imaging (fMRI) we sought to determine if and where cortical pathways in humans might diverge for processing action sounds vs. vocalizations as distinct acoustic-semantic categories of real-world sound when matched for duration and intensity. This was tested by using relatively less semantically complex natural sounds produced by non-conspecific animals rather than humans. Our results revealed a striking double-dissociation of activated networks bilaterally. This included a previously well described pathway preferential for processing vocalization signals directed laterally from functionally defined primary auditory cortices to the anterior superior temporal gyri, and a less well-described pathway preferential for processing animal action sounds directed medially to the posterior insulae. We additionally found that some of these regions and associated cortical networks showed parametric sensitivity to high-order quantifiable acoustic signal attributes and/or to perceptual features of the natural stimuli, such as the degree of perceived recognition or intentional understanding. Overall, these results supported a neurobiological theoretical framework for how the mammalian brain may be fundamentally organized to process acoustically and acoustic-semantically distinct categories of ethologically valid, real-world sounds. PMID:28111538

  13. ER2OWL: Generating OWL Ontology from ER Diagram

    NASA Astrophysics Data System (ADS)

    Fahad, Muhammad

    Ontology is the fundamental part of Semantic Web. The goal of W3C is to bring the web into (its full potential) a semantic web with reusing previous systems and artifacts. Most legacy systems have been documented in structural analysis and structured design (SASD), especially in simple or Extended ER Diagram (ERD). Such systems need up-gradation to become the part of semantic web. In this paper, we present ERD to OWL-DL ontology transformation rules at concrete level. These rules facilitate an easy and understandable transformation from ERD to OWL. The set of rules for transformation is tested on a structured analysis and design example. The framework provides OWL ontology for semantic web fundamental. This framework helps software engineers in upgrading the structured analysis and design artifact ERD, to components of semantic web. Moreover our transformation tool, ER2OWL, reduces the cost and time for building OWL ontologies with the reuse of existing entity relationship models.

  14. Deep-learning derived features for lung nodule classification with limited datasets

    NASA Astrophysics Data System (ADS)

    Thammasorn, P.; Wu, W.; Pierce, L. A.; Pipavath, S. N.; Lampe, P. D.; Houghton, A. M.; Haynor, D. R.; Chaovalitwongse, W. A.; Kinahan, P. E.

    2018-02-01

    Only a few percent of indeterminate nodules found in lung CT images are cancer. However, enabling earlier diagnosis is important to avoid invasive procedures or long-time surveillance to those benign nodules. We are evaluating a classification framework using radiomics features derived with a machine learning approach from a small data set of indeterminate CT lung nodule images. We used a retrospective analysis of 194 cases with pulmonary nodules in the CT images with or without contrast enhancement from lung cancer screening clinics. The nodules were contoured by a radiologist and texture features of the lesion were calculated. In addition, sematic features describing shape were categorized. We also explored a Multiband network, a feature derivation path that uses a modified convolutional neural network (CNN) with a Triplet Network. This was trained to create discriminative feature representations useful for variable-sized nodule classification. The diagnostic accuracy was evaluated for multiple machine learning algorithms using texture, shape, and CNN features. In the CT contrast-enhanced group, the texture or semantic shape features yielded an overall diagnostic accuracy of 80%. Use of a standard deep learning network in the framework for feature derivation yielded features that substantially underperformed compared to texture and/or semantic features. However, the proposed Multiband approach of feature derivation produced results similar in diagnostic accuracy to the texture and semantic features. While the Multiband feature derivation approach did not outperform the texture and/or semantic features, its equivalent performance indicates promise for future improvements to increase diagnostic accuracy. Importantly, the Multiband approach adapts readily to different size lesions without interpolation, and performed well with relatively small amount of training data.

  15. Interactions between auditory and visual semantic stimulus classes: evidence for common processing networks for speech and body actions.

    PubMed

    Meyer, Georg F; Greenlee, Mark; Wuerger, Sophie

    2011-09-01

    Incongruencies between auditory and visual signals negatively affect human performance and cause selective activation in neuroimaging studies; therefore, they are increasingly used to probe audiovisual integration mechanisms. An open question is whether the increased BOLD response reflects computational demands in integrating mismatching low-level signals or reflects simultaneous unimodal conceptual representations of the competing signals. To address this question, we explore the effect of semantic congruency within and across three signal categories (speech, body actions, and unfamiliar patterns) for signals with matched low-level statistics. In a localizer experiment, unimodal (auditory and visual) and bimodal stimuli were used to identify ROIs. All three semantic categories cause overlapping activation patterns. We find no evidence for areas that show greater BOLD response to bimodal stimuli than predicted by the sum of the two unimodal responses. Conjunction analysis of the unimodal responses in each category identifies a network including posterior temporal, inferior frontal, and premotor areas. Semantic congruency effects are measured in the main experiment. We find that incongruent combinations of two meaningful stimuli (speech and body actions) but not combinations of meaningful with meaningless stimuli lead to increased BOLD response in the posterior STS (pSTS) bilaterally, the left SMA, the inferior frontal gyrus, the inferior parietal lobule, and the anterior insula. These interactions are not seen in premotor areas. Our findings are consistent with the hypothesis that pSTS and frontal areas form a recognition network that combines sensory categorical representations (in pSTS) with action hypothesis generation in inferior frontal gyrus/premotor areas. We argue that the same neural networks process speech and body actions.

  16. Porting Social Media Contributions with SIOC

    NASA Astrophysics Data System (ADS)

    Bojars, Uldis; Breslin, John G.; Decker, Stefan

    Social media sites, including social networking sites, have captured the attention of millions of users as well as billions of dollars in investment and acquisition. To better enable a user's access to multiple sites, portability between social media sites is required in terms of both (1) the personal profiles and friend networks and (2) a user's content objects expressed on each site. This requires representation mechanisms to interconnect both people and objects on the Web in an interoperable, extensible way. The Semantic Web provides the required representation mechanisms for portability between social media sites: it links people and objects to record and represent the heterogeneous ties that bind each to the other. The FOAF (Friend-of-a-Friend) initiative provides a solution to the first requirement, and this paper discusses how the SIOC (Semantically-Interlinked Online Communities) project can address the latter. By using agreed-upon Semantic Web formats like FOAF and SIOC to describe people, content objects, and the connections that bind them together, social media sites can interoperate and provide portable data by appealing to some common semantics. In this paper, we will discuss the application of Semantic Web technology to enhance current social media sites with semantics and to address issues with portability between social media sites. It has been shown that social media sites can serve as rich data sources for SIOC-based applications such as the SIOC Browser, but in the other direction, we will now show how SIOC data can be used to represent and port the diverse social media contributions (SMCs) made by users on heterogeneous sites.

  17. The Use of a Context-Based Information Retrieval Technique

    DTIC Science & Technology

    2009-07-01

    provided in context. Latent Semantic Analysis (LSA) is a statistical technique for inferring contextual and structural information, and previous studies...WAIS). 10 DSTO-TR-2322 1.4.4 Latent Semantic Analysis LSA, which is also known as latent semantic indexing (LSI), uses a statistical and...1.4.6 Language Models In contrast, natural language models apply algorithms that combine statistical information with semantic information. Semantic

  18. Beyond the temporal pole: limbic memory circuit in the semantic variant of primary progressive aphasia.

    PubMed

    Tan, Rachel H; Wong, Stephanie; Kril, Jillian J; Piguet, Olivier; Hornberger, Michael; Hodges, John R; Halliday, Glenda M

    2014-07-01

    Despite accruing evidence for relative preservation of episodic memory in the semantic variant of primary progressive aphasia (previously semantic dementia), the neural basis for this remains unclear, particularly in light of their well-established hippocampal involvement. We recently investigated the Papez network of memory structures across pathological subtypes of behavioural variant frontotemporal dementia and demonstrated severe degeneration of all relay nodes, with the anterior thalamus in particular emerging as crucial for intact episodic memory. The present study investigated the status of key components of Papez circuit (hippocampus, mammillary bodies, anterior thalamus, cingulate cortex) and anterior temporal cortex using volumetric and quantitative cell counting methods in pathologically-confirmed cases with semantic variant of primary progressive aphasia (n = 8; 61-83 years; three males), behavioural variant frontotemporal dementia with TDP pathology (n = 9; 53-82 years; six males) and healthy controls (n = 8, 50-86 years; four males). Behavioural variant frontotemporal dementia cases with TDP pathology were selected because of the association between the semantic variant of primary progressive aphasia and TDP pathology. Our findings revealed that the semantic variant of primary progressive aphasia and behavioural variant frontotemporal dementia show similar degrees of anterior thalamic atrophy. The mammillary bodies and hippocampal body and tail were preserved in the semantic variant of primary progressive aphasia but were significantly atrophic in behavioural variant frontotemporal dementia. Importantly, atrophy in the anterior thalamus and mild progressive atrophy in the body of the hippocampus emerged as the main memory circuit regions correlated with increasing dementia severity in the semantic variant of primary progressive aphasia. Quantitation of neuronal populations in the cingulate cortices confirmed the selective loss of anterior cingulate von Economo neurons in behavioural variant frontotemporal dementia. We also show that by end-stage these neurons selectively degenerate in the semantic variant of primary progressive aphasia with preservation of neurons in the posterior cingulate cortex. Overall, our findings demonstrate for the first time, severe atrophy, although not necessarily neuronal loss, across all relay nodes of Papez circuit with the exception of the mammillary bodies and hippocampal body and tail in the semantic variant of primary progressive aphasia. Despite the longer disease course in the semantic variant of primary progressive aphasia compared with behavioural variant frontotemporal dementia, we suggest here that the neural preservation of crucial memory relays (hippocampal→mammillary bodies and posterior cingulate→hippocampus) likely reflects the conservation of specific episodic memory components observed in most patients with semantic variant of primary progressive aphasia. © The Author (2014). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  19. Distinct subtypes of behavioral-variant frontotemporal dementia based on patterns of network degeneration

    PubMed Central

    Ranasinghe, Kamalini G; Rankin, Katherine P; Pressman, Peter S; Perry, David C; Lobach, Iryna V; Seeley, William W; Coppola, Giovanni; Karydas, Anna M; Grinberg, Lea T; Shany-Ur, Tal; Lee, Suzee E; Rabinovici, Gil D; Rosen, Howard J; Gorno-Tempini, Maria Luisa; Boxer, Adam L; Miller, Zachary A; Chiong, Winston; DeMay, Mary; Kramer, Joel H; Possin, Katherine L; Sturm, Virginia E; Bettcher, Brianne M; Neylan, Michael; Zackey, Diana D; Nguyen, Lauren A; Ketelle, Robin; Block, Nikolas; Wu, Teresa Q; Dallich, Alison; Russek, Natanya; Caplan, Alyssa; Geschwind, Daniel H; Vossel, Keith A; Miller, Bruce L

    2016-01-01

    Importance Clearer delineation of the phenotypic heterogeneity within behavioral variant frontotemporal dementia (bvFTD) will help uncover underlying biological mechanisms, and will improve clinicians’ ability to predict disease course and design targeted management strategies. Objective To identify subtypes of bvFTD syndrome based on distinctive patterns of atrophy defined by selective vulnerability of specific functional networks targeted in bvFTD, using statistical classification approaches. Design, Setting and Participants In this retrospective observational study, 104 patients meeting the Frontotemporal Dementia Consortium consensus criteria for bvFTD were evaluated at the Memory and Aging Center of Department of Neurology at University of California, San Francisco. Patients underwent a multidisciplinary clinical evaluation, including clinical demographics, genetic testing, symptom evaluation, neurological exam, neuropsychological bedside testing, and socioemotional assessments. Ninety patients underwent structural Magnetic Resonance Imaging at their earliest evaluation at the memory clinic. From each patients’ structural imaging, the mean volumes of 18 regions of interest (ROI) comprising the functional networks specifically vulnerable in bvFTD, including the ‘salience network’ (SN), with key nodes in the frontoinsula and pregenual anterior cingulate, and the ‘semantic appraisal network’ (SAN) anchored in the anterior temporal lobe and subgenual cingulate, were estimated. Principal component and cluster analyses of ROI volumes were used to identify patient clusters with anatomically distinct atrophy patterns. Main Outcome Measures We evaluated brain morphology and other clinical features including presenting symptoms, neurologic exam signs, neuropsychological performance, rate of dementia progression, and socioemotional function in each patient cluster. Results We identified four subgroups of bvFTD patients with distinct anatomic patterns of network degeneration, including two separate salience network–predominant subgroups: frontal/temporal (SN-FT), and frontal (SN-F), and a semantic appraisal network–predominant group (SAN), and a subcortical–predominant group. Subgroups demonstrated distinct patterns of cognitive, socioemotional, and motor symptoms, as well as genetic compositions and estimated rates of disease progression. Conclusions Divergent patterns of vulnerability in specific functional network components make an important contribution to clinical heterogeneity of bvFTD. The data-driven anatomical classification identifies biologically meaningful phenotypes and provides a replicable approach to disambiguate the bvFTD syndrome. PMID:27429218

  20. New methods for analyzing semantic graph based assessments in science education

    NASA Astrophysics Data System (ADS)

    Vikaros, Lance Steven

    This research investigated how the scoring of semantic graphs (known by many as concept maps) could be improved and automated in order to address issues of inter-rater reliability and scalability. As part of the NSF funded SENSE-IT project to introduce secondary school science students to sensor networks (NSF Grant No. 0833440), semantic graphs illustrating how temperature change affects water ecology were collected from 221 students across 16 schools. The graphing task did not constrain students' use of terms, as is often done with semantic graph based assessment due to coding and scoring concerns. The graphing software used provided real-time feedback to help students learn how to construct graphs, stay on topic and effectively communicate ideas. The collected graphs were scored by human raters using assessment methods expected to boost reliability, which included adaptations of traditional holistic and propositional scoring methods, use of expert raters, topical rubrics, and criterion graphs. High levels of inter-rater reliability were achieved, demonstrating that vocabulary constraints may not be necessary after all. To investigate a new approach to automating the scoring of graphs, thirty-two different graph features characterizing graphs' structure, semantics, configuration and process of construction were then used to predict human raters' scoring of graphs in order to identify feature patterns correlated to raters' evaluations of graphs' topical accuracy and complexity. Results led to the development of a regression model able to predict raters' scoring with 77% accuracy, with 46% accuracy expected when used to score new sets of graphs, as estimated via cross-validation tests. Although such performance is comparable to other graph and essay based scoring systems, cross-context testing of the model and methods used to develop it would be needed before it could be recommended for widespread use. Still, the findings suggest techniques for improving the reliability and scalability of semantic graph based assessments without requiring constraint of how ideas are expressed.

  1. Empirical modeling of an alcohol expectancy memory network using multidimensional scaling.

    PubMed

    Rather, B C; Goldman, M S; Roehrich, L; Brannick, M

    1992-02-01

    Risk-related antecedent variables can be linked to later alcohol consumption by memory processes, and alcohol expectancies may be one relevant memory content. To advance research in this area, it would be useful to apply current memory models such as semantic network theory to explain drinking decision processes. We used multidimensional scaling (MDS) to empirically model a preliminary alcohol expectancy semantic network, from which a theoretical account of drinking decision making was generated. Subanalyses (PREFMAP) showed how individuals with differing alcohol consumption histories may have had different association pathways within the expectancy network. These pathways may have, in turn influenced future drinking levels and behaviors while the person was under the influence of alcohol. All individuals associated positive/prosocial effects with drinking, but heavier drinkers indicated arousing effects as their highest probability associates, whereas light drinkers expected sedation. An important early step in this MDS modeling process is the determination of iso-meaning expectancy adjective groups, which correspond to theoretical network nodes.

  2. Research in Knowledge Representation for Natural Language Understanding

    DTIC Science & Technology

    1980-11-01

    artificial intelligence, natural language understanding , parsing, syntax, semantics, speaker meaning, knowledge representation, semantic networks...TinB PAGE map M W006 1Report No. 4513 L RESEARCH IN KNOWLEDGE REPRESENTATION FOR NATURAL LANGUAGE UNDERSTANDING Annual Report 1 September 1979 to 31... understanding , knowledge representation, and knowledge based inference. The work that we have been doing falls into three classes, successively motivated by

  3. Research in Knowledge Representation for Natural Language Understanding.

    DTIC Science & Technology

    1984-09-01

    TYPE OF REPORT & PERIOO COVERED RESEARCH IN KNOWLEDGE REPRESENTATION Annual Report FOR NATURAL LANGUAGE UNDERSTANDING 9/1/83 - 8/31/84 S. PERFORMING...nhaber) Artificial intelligence, natural language understanding , knowledge representation, semantics, semantic networks, KL-TWO, NIKL, belief and...attempting to understand and react to a complex, evolving situation. This report summarizes our research in knowledge representation and natural language

  4. Semi-supervised word polarity identification in resource-lean languages.

    PubMed

    Dehdarbehbahani, Iman; Shakery, Azadeh; Faili, Heshaam

    2014-10-01

    Sentiment words, as fundamental constitutive parts of subjective sentences, have a substantial effect on analysis of opinions, emotions and beliefs. Most of the proposed methods for identifying the semantic orientations of words exploit rich linguistic resources such as WordNet, subjectivity corpora, or polarity tagged words. Shortage of such linguistic resources in resource-lean languages affects the performance of word polarity identification in these languages. In this paper, we present a method which exploits a language with rich subjectivity analysis resources (English) to identify the polarity of words in a resource-lean foreign language. The English WordNet and a sparse foreign WordNet infrastructure are used to create a heterogeneous, multilingual and weighted semantic network. To identify the semantic orientation of foreign words, a random walk based method is applied to the semantic network along with a set of automatically weighted English positive and negative seeds. In a post-processing phase, synonym and antonym relations in the foreign WordNet are used to filter the random walk results. Our experiments on English and Persian languages show that the proposed method can outperform state-of-the-art word polarity identification methods in both languages. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Cortical circuits for mathematical knowledge: evidence for a major subdivision within the brain's semantic networks.

    PubMed

    Amalric, Marie; Dehaene, Stanislas

    2017-02-19

    Is mathematical language similar to natural language? Are language areas used by mathematicians when they do mathematics? And does the brain comprise a generic semantic system that stores mathematical knowledge alongside knowledge of history, geography or famous people? Here, we refute those views by reviewing three functional MRI studies of the representation and manipulation of high-level mathematical knowledge in professional mathematicians. The results reveal that brain activity during professional mathematical reflection spares perisylvian language-related brain regions as well as temporal lobe areas classically involved in general semantic knowledge. Instead, mathematical reflection recycles bilateral intraparietal and ventral temporal regions involved in elementary number sense. Even simple fact retrieval, such as remembering that 'the sine function is periodical' or that 'London buses are red', activates dissociated areas for math versus non-math knowledge. Together with other fMRI and recent intracranial studies, our results indicated a major separation between two brain networks for mathematical and non-mathematical semantics, which goes a long way to explain a variety of facts in neuroimaging, neuropsychology and developmental disorders.This article is part of a discussion meeting issue 'The origins of numerical abilities'. © 2017 The Author(s).

  6. Fuzzy Emotional Semantic Analysis and Automated Annotation of Scene Images

    PubMed Central

    Cao, Jianfang; Chen, Lichao

    2015-01-01

    With the advances in electronic and imaging techniques, the production of digital images has rapidly increased, and the extraction and automated annotation of emotional semantics implied by images have become issues that must be urgently addressed. To better simulate human subjectivity and ambiguity for understanding scene images, the current study proposes an emotional semantic annotation method for scene images based on fuzzy set theory. A fuzzy membership degree was calculated to describe the emotional degree of a scene image and was implemented using the Adaboost algorithm and a back-propagation (BP) neural network. The automated annotation method was trained and tested using scene images from the SUN Database. The annotation results were then compared with those based on artificial annotation. Our method showed an annotation accuracy rate of 91.2% for basic emotional values and 82.4% after extended emotional values were added, which correspond to increases of 5.5% and 8.9%, respectively, compared with the results from using a single BP neural network algorithm. Furthermore, the retrieval accuracy rate based on our method reached approximately 89%. This study attempts to lay a solid foundation for the automated emotional semantic annotation of more types of images and therefore is of practical significance. PMID:25838818

  7. Comprehending expository texts: the dynamic neurobiological correlates of building a coherent text representation

    PubMed Central

    Swett, Katherine; Miller, Amanda C.; Burns, Scott; Hoeft, Fumiko; Davis, Nicole; Petrill, Stephen A.; Cutting, Laurie E.

    2013-01-01

    Little is known about the neural correlates of expository text comprehension. In this study, we sought to identify neural networks underlying expository text comprehension, how those networks change over the course of comprehension, and whether information central to the overall meaning of the text is functionally distinct from peripheral information. Seventeen adult subjects read expository passages while being scanned using functional magnetic resonance imaging (fMRI). By convolving phrase onsets with the hemodynamic response function (HRF), we were able to identify regions that increase and decrease in activation over the course of passage comprehension. We found that expository text comprehension relies on the co-activation of the semantic control network and regions in the posterior midline previously associated with mental model updating and integration [posterior cingulate cortex (PCC) and precuneus (PCU)]. When compared to single word comprehension, left PCC and left Angular Gyrus (AG) were activated only for discourse-level comprehension. Over the course of comprehension, reliance on the same regions in the semantic control network increased, while a parietal region associated with attention [intraparietal sulcus (IPS)] decreased. These results parallel previous findings in narrative comprehension that the initial stages of mental model building require greater visuospatial attention processes, while maintenance of the model increasingly relies on semantic integration regions. Additionally, we used an event-related analysis to examine phrases central to the text's overall meaning vs. peripheral phrases. It was found that central ideas are functionally distinct from peripheral ideas, showing greater activation in the PCC and PCU, while over the course of passage comprehension, central and peripheral ideas increasingly recruit different parts of the semantic control network. The finding that central information elicits greater response in mental model updating regions than peripheral ideas supports previous behavioral models on the cognitive importance of distinguishing textual centrality. PMID:24376411

  8. Scientific and educational recommender systems

    NASA Astrophysics Data System (ADS)

    Guseva, A. I.; Kireev, V. S.; Bochkarev, P. V.; Kuznetsov, I. A.; Philippov, S. A.

    2017-01-01

    This article discusses the questions associated with the use of reference systems in the preparation of graduates in physical function. The objective of this research is creation of model of recommender system user from the sphere of science and education. The detailed review of current scientific and social network for scientists and the problem of constructing recommender systems in this area. The result of this study is to research user information model systems. The model is presented in two versions: the full one - in the form of a semantic network, and short - in a relational form. The relational model is the projection in the form of semantic network, taking into account the restrictions on the amount of bonds that characterize the number of information items (research results), which interact with the system user.

  9. Evaluation of a UMLS Auditing Process of Semantic Type Assignments

    PubMed Central

    Gu, Huanying; Hripcsak, George; Chen, Yan; Morrey, C. Paul; Elhanan, Gai; Cimino, James J.; Geller, James; Perl, Yehoshua

    2007-01-01

    The UMLS is a terminological system that integrates many source terminologies. Each concept in the UMLS is assigned one or more semantic types from the Semantic Network, an upper level ontology for biomedicine. Due to the complexity of the UMLS, errors exist in the semantic type assignments. Finding assignment errors may unearth modeling errors. Even with sophisticated tools, discovering assignment errors requires manual review. In this paper we describe the evaluation of an auditing project of UMLS semantic type assignments. We studied the performance of the auditors who reviewed potential errors. We found that four auditors, interacting according to a multi-step protocol, identified a high rate of errors (one or more errors in 81% of concepts studied) and that results were sufficiently reliable (0.67 to 0.70) for the two most common types of errors. However, reliability was low for each individual auditor, suggesting that review of potential errors is resource-intensive. PMID:18693845

  10. Shared neural processes support semantic control and action understanding

    PubMed Central

    Davey, James; Rueschemeyer, Shirley-Ann; Costigan, Alison; Murphy, Nik; Krieger-Redwood, Katya; Hallam, Glyn; Jefferies, Elizabeth

    2015-01-01

    Executive–semantic control and action understanding appear to recruit overlapping brain regions but existing evidence from neuroimaging meta-analyses and neuropsychology lacks spatial precision; we therefore manipulated difficulty and feature type (visual vs. action) in a single fMRI study. Harder judgements recruited an executive–semantic network encompassing medial and inferior frontal regions (including LIFG) and posterior temporal cortex (including pMTG). These regions partially overlapped with brain areas involved in action but not visual judgements. In LIFG, the peak responses to action and difficulty were spatially identical across participants, while these responses were overlapping yet spatially distinct in posterior temporal cortex. We propose that the co-activation of LIFG and pMTG allows the flexible retrieval of semantic information, appropriate to the current context; this might be necessary both for semantic control and understanding actions. Feature selection in difficult trials also recruited ventral occipital–temporal areas, not implicated in action understanding. PMID:25658631

  11. Interests diffusion in social networks

    NASA Astrophysics Data System (ADS)

    D'Agostino, Gregorio; D'Antonio, Fulvio; De Nicola, Antonio; Tucci, Salvatore

    2015-10-01

    We provide a model for diffusion of interests in Social Networks (SNs). We demonstrate that the topology of the SN plays a crucial role in the dynamics of the individual interests. Understanding cultural phenomena on SNs and exploiting the implicit knowledge about their members is attracting the interest of different research communities both from the academic and the business side. The community of complexity science is devoting significant efforts to define laws, models, and theories, which, based on acquired knowledge, are able to predict future observations (e.g. success of a product). In the mean time, the semantic web community aims at engineering a new generation of advanced services by defining constructs, models and methods, adding a semantic layer to SNs. In this context, a leapfrog is expected to come from a hybrid approach merging the disciplines above. Along this line, this work focuses on the propagation of individual interests in social networks. The proposed framework consists of the following main components: a method to gather information about the members of the social networks; methods to perform some semantic analysis of the Domain of Interest; a procedure to infer members' interests; and an interests evolution theory to predict how the interests propagate in the network. As a result, one achieves an analytic tool to measure individual features, such as members' susceptibilities and authorities. Although the approach applies to any type of social network, here it is has been tested against the computer science research community. The DBLP (Digital Bibliography and Library Project) database has been elected as test-case since it provides the most comprehensive list of scientific production in this field.

  12. Generic Information Can Retrieve Known Biological Associations: Implications for Biomedical Knowledge Discovery

    PubMed Central

    van Haagen, Herman H. H. B. M.; 't Hoen, Peter A. C.; Mons, Barend; Schultes, Erik A.

    2013-01-01

    Motivation Weighted semantic networks built from text-mined literature can be used to retrieve known protein-protein or gene-disease associations, and have been shown to anticipate associations years before they are explicitly stated in the literature. Our text-mining system recognizes over 640,000 biomedical concepts: some are specific (i.e., names of genes or proteins) others generic (e.g., ‘Homo sapiens’). Generic concepts may play important roles in automated information retrieval, extraction, and inference but may also result in concept overload and confound retrieval and reasoning with low-relevance or even spurious links. Here, we attempted to optimize the retrieval performance for protein-protein interactions (PPI) by filtering generic concepts (node filtering) or links to generic concepts (edge filtering) from a weighted semantic network. First, we defined metrics based on network properties that quantify the specificity of concepts. Then using these metrics, we systematically filtered generic information from the network while monitoring retrieval performance of known protein-protein interactions. We also systematically filtered specific information from the network (inverse filtering), and assessed the retrieval performance of networks composed of generic information alone. Results Filtering generic or specific information induced a two-phase response in retrieval performance: initially the effects of filtering were minimal but beyond a critical threshold network performance suddenly drops. Contrary to expectations, networks composed exclusively of generic information demonstrated retrieval performance comparable to unfiltered networks that also contain specific concepts. Furthermore, an analysis using individual generic concepts demonstrated that they can effectively support the retrieval of known protein-protein interactions. For instance the concept “binding” is indicative for PPI retrieval and the concept “mutation abnormality” is indicative for gene-disease associations. Conclusion Generic concepts are important for information retrieval and cannot be removed from semantic networks without negative impact on retrieval performance. PMID:24260124

  13. An integrative approach to inferring biologically meaningful gene modules

    PubMed Central

    2011-01-01

    Background The ability to construct biologically meaningful gene networks and modules is critical for contemporary systems biology. Though recent studies have demonstrated the power of using gene modules to shed light on the functioning of complex biological systems, most modules in these networks have shown little association with meaningful biological function. We have devised a method which directly incorporates gene ontology (GO) annotation in construction of gene modules in order to gain better functional association. Results We have devised a method, Semantic Similarity-Integrated approach for Modularization (SSIM) that integrates various gene-gene pairwise similarity values, including information obtained from gene expression, protein-protein interactions and GO annotations, in the construction of modules using affinity propagation clustering. We demonstrated the performance of the proposed method using data from two complex biological responses: 1. the osmotic shock response in Saccharomyces cerevisiae, and 2. the prion-induced pathogenic mouse model. In comparison with two previously reported algorithms, modules identified by SSIM showed significantly stronger association with biological functions. Conclusions The incorporation of semantic similarity based on GO annotation with gene expression and protein-protein interaction data can greatly enhance the functional relevance of inferred gene modules. In addition, the SSIM approach can also reveal the hierarchical structure of gene modules to gain a broader functional view of the biological system. Hence, the proposed method can facilitate comprehensive and in-depth analysis of high throughput experimental data at the gene network level. PMID:21791051

  14. A main path domain map as digital library interface

    NASA Astrophysics Data System (ADS)

    Demaine, Jeffrey

    2009-01-01

    The shift to electronic publishing of scientific journals is an opportunity for the digital library to provide non-traditional ways of accessing the literature. One method is to use citation metadata drawn from a collection of electronic journals to generate maps of science. These maps visualize the communication patterns in the collection, giving the user an easy-tograsp view of the semantic structure underlying the scientific literature. For this visualization to be understandable the complexity of the citation network must be reduced through an algorithm. This paper describes the Citation Pathfinder application and its integration into a prototype digital library. This application generates small-scale citation networks that expand upon the search results of the digital library. These domain maps are linked to the collection, creating an interface that is based on the communication patterns in science. The Main Path Analysis technique is employed to simplify these networks into linear, sequential structures. By identifying patterns that characterize the evolution of the research field, Citation Pathfinder uses citations to give users a deeper understanding of the scientific literature.

  15. Network analysis of named entity co-occurrences in written texts

    NASA Astrophysics Data System (ADS)

    Amancio, Diego Raphael

    2016-06-01

    The use of methods borrowed from statistics and physics to analyze written texts has allowed the discovery of unprecedent patterns of human behavior and cognition by establishing links between models features and language structure. While current models have been useful to unveil patterns via analysis of syntactical and semantical networks, only a few works have probed the relevance of investigating the structure arising from the relationship between relevant entities such as characters, locations and organizations. In this study, we represent entities appearing in the same context as a co-occurrence network, where links are established according to a null model based on random, shuffled texts. Computational simulations performed in novels revealed that the proposed model displays interesting topological features, such as the small world feature, characterized by high values of clustering coefficient. The effectiveness of our model was verified in a practical pattern recognition task in real networks. When compared with traditional word adjacency networks, our model displayed optimized results in identifying unknown references in texts. Because the proposed representation plays a complementary role in characterizing unstructured documents via topological analysis of named entities, we believe that it could be useful to improve the characterization of written texts (and related systems), specially if combined with traditional approaches based on statistical and deeper paradigms.

  16. On a categorial aspect of knowledge representation

    NASA Astrophysics Data System (ADS)

    Tataj, Emanuel; Mulawka, Jan; Nieznański, Edward

    Adequate representation of data is crucial for modeling any type of data. To faithfully present and describe the relevant section of the world it is necessary to select the method that can easily be implemented on a computer system which will help in further description allowing reasoning. The main objective of this contribution is to present methods of knowledge representation using categorial approach. Next to identify the main advantages for computer implementation. Categorical aspect of knowledge representation is considered in semantic networks realisation. Such method borrows already known metaphysics properties for data modeling process. The potential topics of further development of categorical semantic networks implementations are also underlined.

  17. InteGO2: A web tool for measuring and visualizing gene semantic similarities using Gene Ontology

    DOE PAGES

    Peng, Jiajie; Li, Hongxiang; Liu, Yongzhuang; ...

    2016-08-31

    Here, the Gene Ontology (GO) has been used in high-throughput omics research as a major bioinformatics resource. The hierarchical structure of GO provides users a convenient platform for biological information abstraction and hypothesis testing. Computational methods have been developed to identify functionally similar genes. However, none of the existing measurements take into account all the rich information in GO. Similarly, using these existing methods, web-based applications have been constructed to compute gene functional similarities, and to provide pure text-based outputs. Without a graphical visualization interface, it is difficult for result interpretation. As a result, we present InteGO2, a web toolmore » that allows researchers to calculate the GO-based gene semantic similarities using seven widely used GO-based similarity measurements. Also, we provide an integrative measurement that synergistically integrates all the individual measurements to improve the overall performance. Using HTML5 and cytoscape.js, we provide a graphical interface in InteGO2 to visualize the resulting gene functional association networks. In conclusion, InteGO2 is an easy-to-use HTML5 based web tool. With it, researchers can measure gene or gene product functional similarity conveniently, and visualize the network of functional interactions in a graphical interface.« less

  18. InteGO2: a web tool for measuring and visualizing gene semantic similarities using Gene Ontology.

    PubMed

    Peng, Jiajie; Li, Hongxiang; Liu, Yongzhuang; Juan, Liran; Jiang, Qinghua; Wang, Yadong; Chen, Jin

    2016-08-31

    The Gene Ontology (GO) has been used in high-throughput omics research as a major bioinformatics resource. The hierarchical structure of GO provides users a convenient platform for biological information abstraction and hypothesis testing. Computational methods have been developed to identify functionally similar genes. However, none of the existing measurements take into account all the rich information in GO. Similarly, using these existing methods, web-based applications have been constructed to compute gene functional similarities, and to provide pure text-based outputs. Without a graphical visualization interface, it is difficult for result interpretation. We present InteGO2, a web tool that allows researchers to calculate the GO-based gene semantic similarities using seven widely used GO-based similarity measurements. Also, we provide an integrative measurement that synergistically integrates all the individual measurements to improve the overall performance. Using HTML5 and cytoscape.js, we provide a graphical interface in InteGO2 to visualize the resulting gene functional association networks. InteGO2 is an easy-to-use HTML5 based web tool. With it, researchers can measure gene or gene product functional similarity conveniently, and visualize the network of functional interactions in a graphical interface. InteGO2 can be accessed via http://mlg.hit.edu.cn:8089/ .

  19. InteGO2: A web tool for measuring and visualizing gene semantic similarities using Gene Ontology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peng, Jiajie; Li, Hongxiang; Liu, Yongzhuang

    Here, the Gene Ontology (GO) has been used in high-throughput omics research as a major bioinformatics resource. The hierarchical structure of GO provides users a convenient platform for biological information abstraction and hypothesis testing. Computational methods have been developed to identify functionally similar genes. However, none of the existing measurements take into account all the rich information in GO. Similarly, using these existing methods, web-based applications have been constructed to compute gene functional similarities, and to provide pure text-based outputs. Without a graphical visualization interface, it is difficult for result interpretation. As a result, we present InteGO2, a web toolmore » that allows researchers to calculate the GO-based gene semantic similarities using seven widely used GO-based similarity measurements. Also, we provide an integrative measurement that synergistically integrates all the individual measurements to improve the overall performance. Using HTML5 and cytoscape.js, we provide a graphical interface in InteGO2 to visualize the resulting gene functional association networks. In conclusion, InteGO2 is an easy-to-use HTML5 based web tool. With it, researchers can measure gene or gene product functional similarity conveniently, and visualize the network of functional interactions in a graphical interface.« less

  20. Graphical tool for navigation within the semantic network of the UMLS metathesaurus on a locally installed database.

    PubMed

    Frankewitsch, T; Prokosch, H U

    2000-01-01

    Knowledge in the environment of information technologies is bound to structured vocabularies. Medical data dictionaries are necessary for uniquely describing findings like diagnoses, procedures or functions. Therefore we decided to locally install a version of the Unified Medical Language System (UMLS) of the U.S. National Library of Medicine as a repository for defining entries of a medical multimedia database. Because of the requirement to extend the vocabulary in concepts and relations between existing concepts a graphical tool for appending new items to the database has been developed: Although the database is an instance of a semantic network the focus on single entries offers the opportunity of reducing the net to a tree within this detail. Based on the graph theorem, there are definitions of nodes of concepts and nodes of knowledge. The UMLS additionally offers the specification of sub-relations, which can be represented, too. Using this view it is possible to manage these 1:n-Relations in a simple tree view. On this background an explorer like graphical user interface has been realised to add new concepts and define new relationships between those and existing entries for adapting the UMLS for specific purposes such as describing medical multimedia objects.

  1. Semantic retrieval during overt picture description: Left anterior temporal or the parietal lobe?

    PubMed

    Geranmayeh, Fatemeh; Leech, Robert; Wise, Richard J S

    2015-09-01

    Retrieval of semantic representations is a central process during overt speech production. There is an increasing consensus that an amodal semantic 'hub' must exist that draws together modality-specific representations of concepts. Based on the distribution of atrophy and the behavioral deficit of patients with the semantic variant of fronto-temporal lobar degeneration, it has been proposed that this hub is localized within both anterior temporal lobes (ATL), and is functionally connected with verbal 'output' systems via the left ATL. An alternative view, dating from Geschwind's proposal in 1965, is that the angular gyrus (AG) is central to object-based semantic representations. In this fMRI study we examined the connectivity of the left ATL and parietal lobe (PL) with whole brain networks known to be activated during overt picture description. We decomposed each of these two brain volumes into 15 regions of interest (ROIs), using independent component analysis. A dual regression analysis was used to establish the connectivity of each ROI with whole brain-networks. An ROI within the left anterior superior temporal sulcus (antSTS) was functionally connected to other parts of the left ATL, including anterior ventromedial left temporal cortex (partially attenuated by signal loss due to susceptibility artifact), a large left dorsolateral prefrontal region (including 'classic' Broca's area), extensive bilateral sensory-motor cortices, and the length of both superior temporal gyri. The time-course of this functionally connected network was associated with picture description but not with non-semantic baseline tasks. This system has the distribution expected for the production of overt speech with appropriate semantic content, and the auditory monitoring of the overt speech output. In contrast, the only left PL ROI that showed connectivity with brain systems most strongly activated by the picture-description task, was in the superior parietal lobe (supPL). This region showed connectivity with predominantly posterior cortical regions required for the visual processing of the pictorial stimuli, with additional connectivity to the dorsal left AG and a small component of the left inferior frontal gyrus. None of the other PL ROIs that included part of the left AG were activated by Speech alone. The best interpretation of these results is that the left antSTS connects the proposed semantic hub (specifically localized to ventral anterior temporal cortex based on clinical neuropsychological studies) to posterior frontal regions and sensory-motor cortices responsible for the overt production of speech. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.

  2. The differential contributions of pFC and temporo-parietal cortex to multimodal semantic control: exploring refractory effects in semantic aphasia.

    PubMed

    Gardner, Hannah E; Lambon Ralph, Matthew A; Dodds, Naomi; Jones, Theresa; Ehsan, Sheeba; Jefferies, Elizabeth

    2012-04-01

    Aphasic patients with multimodal semantic impairment following pFC or temporo-parietal (TP) cortex damage (semantic aphasia [SA]) have deficits characterized by poor control of semantic activation/retrieval, as opposed to loss of semantic knowledge per se. In line with this, SA patients show "refractory effects"; that is, declining accuracy in cyclical word-picture matching tasks when semantically related sets are presented rapidly and repeatedly. This is argued to follow a build-up of competition between targets and distractors. However, the link between poor semantic control and refractory effects is still controversial for two reasons. (1) Some theories propose that refractory effects are specific to verbal or auditory tasks, yet SA patients show poor control over semantic processing in both word and picture semantic tasks. (2) SA can result from lesions to either the left pFC or TP cortex, yet previous work suggests that refractory effects are specifically linked to the left inferior frontal cortex. For the first time, verbal, visual, and nonverbal auditory refractory effects were explored in nine SA patients who had pFC (pFC+) or TP cortex (TP-only) lesions. In all modalities, patient accuracy declined significantly over repetitions. This refractory effect at the group level was driven by pFC+ patients and was not shown by individuals with TP-only lesions. These findings support the theory that SA patients have reduced control over multimodal semantic retrieval and, additionally, suggest there may be functional specialization within the posterior versus pFC elements of the semantic control network.

  3. How the Size of Our Social Network Influences Our Semantic Skills

    ERIC Educational Resources Information Center

    Lev-Ari, Shiri

    2016-01-01

    People differ in the size of their social network, and thus in the properties of the linguistic input they receive. This article examines whether differences in social network size influence individuals' linguistic skills in their native language, focusing on global comprehension of evaluative language. Study 1 exploits the natural variation in…

  4. Markov Task Network: A Framework for Service Composition under Uncertainty in Cyber-Physical Systems.

    PubMed

    Mohammed, Abdul-Wahid; Xu, Yang; Hu, Haixiao; Agyemang, Brighter

    2016-09-21

    In novel collaborative systems, cooperative entities collaborate services to achieve local and global objectives. With the growing pervasiveness of cyber-physical systems, however, such collaboration is hampered by differences in the operations of the cyber and physical objects, and the need for the dynamic formation of collaborative functionality given high-level system goals has become practical. In this paper, we propose a cross-layer automation and management model for cyber-physical systems. This models the dynamic formation of collaborative services pursuing laid-down system goals as an ontology-oriented hierarchical task network. Ontological intelligence provides the semantic technology of this model, and through semantic reasoning, primitive tasks can be dynamically composed from high-level system goals. In dealing with uncertainty, we further propose a novel bridge between hierarchical task networks and Markov logic networks, called the Markov task network. This leverages the efficient inference algorithms of Markov logic networks to reduce both computational and inferential loads in task decomposition. From the results of our experiments, high-precision service composition under uncertainty can be achieved using this approach.

  5. Enabling Discoveries in Earth Sciences Through the Geosciences Network (GEON)

    NASA Astrophysics Data System (ADS)

    Seber, D.; Baru, C.; Memon, A.; Lin, K.; Youn, C.

    2005-12-01

    Taking advantage of the state-of-the-art information technology resources GEON researchers are building a cyberinfrastructure designed to enable data sharing, semantic data integration, high-end computations and 4D visualization in easy-to-use web-based environments. The GEON Network currently allows users to search and register Earth science resources such as data sets (GIS layers, GMT files, geoTIFF images, ASCII files, relational databases etc), software applications or ontologies. Portal based access mechanisms enable developers to built dynamic user interfaces to conduct advanced processing and modeling efforts across distributed computers and supercomputers. Researchers and educators can access the networked resources through the GEON portal and its portlets that were developed to conduct better and more comprehensive science and educational studies. For example, the SYNSEIS portlet in GEON enables users to access in near-real time seismic waveforms from the IRIS Data Management Center, easily build a 3D geologic model within the area of the seismic station(s) and the epicenter and perform a 3D synthetic seismogram analysis to understand the lithospheric structure and earthquake source parameters for any given earthquake in the US. Similarly, GEON's workbench area enables users to create their own work environment and copy, visualize and analyze any data sets within the network, and create subsets of the data sets for their own purposes. Since all these resources are built as part of a Service-oriented Architecture (SOA), they are also used in other development platforms. One such platform is Kepler Workflow system which can access web service based resources and provides users with graphical programming interfaces to build a model to conduct computations and/or visualization efforts using the networked resources. Developments in the area of semantic integration of the networked datasets continue to advance and prototype studies can be accessed via the GEON portal at www.geongrid.org

  6. Lexical Semantics and Irregular Inflection

    PubMed Central

    Huang, Yi Ting; Pinker, Steven

    2010-01-01

    Whether a word has an irregular inflection does not depend on its sound alone: compare lie-lay (recline) and lie-lied (prevaricate). Theories of morphology, particularly connectionist and symbolic models, disagree on which nonphonological factors are responsible. We test four possibilities: (1) Lexical effects, in which two lemmas differ in whether they specify an irregular form; (2) Semantic effects, in which the semantic features of a word become associated with regular or irregular forms; (3) Morphological structure effects, in which a word with a headless structure (e.g., a verb derived from a noun) blocks access to a stored irregular form; (4) Compositionality effects, in which the stored combination of an irregular word’s meaning (e.g., the verb’s inherent aspect) with the meaning of the inflection (e.g., pastness) doesn’t readily transfer to new senses with different combinations of such meanings. In four experiments, speakers were presented with existing and novel verbs and asked to rate their past-tense forms, semantic similarities, grammatical structure, and aspectual similarities. We found (1) an interaction between semantic and phonological similarity, coinciding with reported strategies of analogizing to known verbs and implicating lexical effects; (2) weak and inconsistent effects of semantic similarity; (3) robust effects of morphological structure, and (4) robust effects of aspectual compositionality. Results are consistent with theories of language that invoke lexical entries and morphological structure, and which differentiate the mode of storage of regular and irregular verbs. They also suggest how psycholinguistic processes have shaped vocabulary structure over history. PMID:21151703

  7. Analyzing structural changes in SNOMED CT's Bacterial infectious diseases using a visual semantic delta.

    PubMed

    Ochs, Christopher; Case, James T; Perl, Yehoshua

    2017-03-01

    Thousands of changes are applied to SNOMED CT's concepts during each release cycle. These changes are the result of efforts to improve or expand the coverage of health domains in the terminology. Understanding which concepts changed, how they changed, and the overall impact of a set of changes is important for editors and end users. Each SNOMED CT release comes with delta files, which identify all of the individual additions and removals of concepts and relationships. These files typically contain tens of thousands of individual entries, overwhelming users. They also do not identify the editorial processes that were applied to individual concepts and they do not capture the overall impact of a set of changes on a subhierarchy of concepts. In this paper we introduce a methodology and accompanying software tool called a SNOMED CT Visual Semantic Delta ("semantic delta" for short) to enable a comprehensive review of changes in SNOMED CT. The semantic delta displays a graphical list of editing operations that provides semantics and context to the additions and removals in the delta files. However, there may still be thousands of editing operations applied to a set of concepts. To address this issue, a semantic delta includes a visual summary of changes that affected sets of structurally and semantically similar concepts. The software tool for creating semantic deltas offers views of various granularities, allowing a user to control how much change information they view. In this tool a user can select a set of structurally and semantically similar concepts and review the editing operations that affected their modeling. The semantic delta methodology is demonstrated on SNOMED CT's Bacterial infectious disease subhierarchy, which has undergone a significant remodeling effort over the last two years. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Analyzing Structural Changes in SNOMED CT’s Bacterial Infectious Diseases Using a Visual Semantic Delta

    PubMed Central

    Ochs, Christopher; Case, James T.; Perl, Yehoshua

    2017-01-01

    Thousands of changes are applied to SNOMED CT’s concepts during each release cycle. These changes are the result of efforts to improve or expand the coverage of health domains in the terminology. Understanding which concepts changed, how they changed, and the overall impact of a set of changes is important for editors and end users. Each SNOMED CT release comes with delta files, which identify all of the individual additions and removals of concepts and relationships. These files typically contain tens of thousands of individual entries, overwhelming users. They also do not identify the editorial processes that were applied to individual concepts and they do not capture the overall impact of a set of changes on a subhierarchy of concepts. In this paper we introduce a methodology and accompanying software tool called a SNOMED CT Visual Semantic Delta (“semantic delta” for short) to enable a comprehensive review of changes in SNOMED CT. The semantic delta displays a graphical list of editing operations that provides semantics and context to the additions and removals in the delta files. However, there may still be thousands of editing operations applied to a set of concepts. To address this issue, a semantic delta includes a visual summary of changes that affected sets of structurally and semantically similar concepts. The software tool for creating semantic deltas offers views of various granularities, allowing a user to control how much change information they view. In this tool a user can select a set of structurally and semantically similar concepts and review the editing operations that affected their modeling. The semantic delta methodology is demonstrated on SNOMED CT’s Bacterial infectious disease subhierarchy, which has undergone a significant remodeling effort over the last two years. PMID:28215561

  9. Semantic Priming Revisited: In Search of Structural Age Change in Semantic Knowledge.

    ERIC Educational Resources Information Center

    Mergler, Nancy L.; And Others

    Contradictory previous research results showing that (1) language knowledge does not decrease with age; and (2) age differences exist in semantic strategies for memory recall provide the impetus for a study of semantic priming in young adults (mean age = 20) and older adults (mean age = 70) by providing target and prime words with six different…

  10. A unified approach for debugging is-a structure and mappings in networked taxonomies

    PubMed Central

    2013-01-01

    Background With the increased use of ontologies and ontology mappings in semantically-enabled applications such as ontology-based search and data integration, the issue of detecting and repairing defects in ontologies and ontology mappings has become increasingly important. These defects can lead to wrong or incomplete results for the applications. Results We propose a unified framework for debugging the is-a structure of and mappings between taxonomies, the most used kind of ontologies. We present theory and algorithms as well as an implemented system RepOSE, that supports a domain expert in detecting and repairing missing and wrong is-a relations and mappings. We also discuss two experiments performed by domain experts: an experiment on the Anatomy ontologies from the Ontology Alignment Evaluation Initiative, and a debugging session for the Swedish National Food Agency. Conclusions Semantically-enabled applications need high quality ontologies and ontology mappings. One key aspect is the detection and removal of defects in the ontologies and ontology mappings. Our system RepOSE provides an environment that supports domain experts to deal with this issue. We have shown the usefulness of the approach in two experiments by detecting and repairing circa 200 and 30 defects, respectively. PMID:23548155

  11. The role of sleep spindles and slow-wave activity in integrating new information in semantic memory.

    PubMed

    Tamminen, Jakke; Lambon Ralph, Matthew A; Lewis, Penelope A

    2013-09-25

    Assimilating new information into existing knowledge is a fundamental part of consolidating new memories and allowing them to guide behavior optimally and is vital for conceptual knowledge (semantic memory), which is accrued over many years. Sleep is important for memory consolidation, but its impact upon assimilation of new information into existing semantic knowledge has received minimal examination. Here, we examined the integration process by training human participants on novel words with meanings that fell into densely or sparsely populated areas of semantic memory in two separate sessions. Overnight sleep was polysomnographically monitored after each training session and recall was tested immediately after training, after a night of sleep, and 1 week later. Results showed that participants learned equal numbers of both word types, thus equating amount and difficulty of learning across the conditions. Measures of word recognition speed showed a disadvantage for novel words in dense semantic neighborhoods, presumably due to interference from many semantically related concepts, suggesting that the novel words had been successfully integrated into semantic memory. Most critically, semantic neighborhood density influenced sleep architecture, with participants exhibiting more sleep spindles and slow-wave activity after learning the sparse compared with the dense neighborhood words. These findings provide the first evidence that spindles and slow-wave activity mediate integration of new information into existing semantic networks.

  12. Working memory training and semantic structuring improves remembering future events, not past events.

    PubMed

    Richter, Kim Merle; Mödden, Claudia; Eling, Paul; Hildebrandt, Helmut

    2015-01-01

    Objectives. Memory training in combination with practice in semantic structuring and word fluency has been shown to improve memory performance. This study investigated the efficacy of a working memory training combined with exercises in semantic structuring and word fluency and examined whether training effects generalize to other cognitive tasks. Methods. In this double-blind randomized control study, 36 patients with memory impairments following brain damage were allocated to either the experimental or the active control condition, with both groups receiving 9 hours of therapy. The experimental group received a computer-based working memory training and exercises in word fluency and semantic structuring. The control group received the standard memory therapy provided in the rehabilitation center. Patients were tested on a neuropsychological test battery before and after therapy, resulting in composite scores for working memory; immediate, delayed, and prospective memory; word fluency; and attention. Results. The experimental group improved significantly in working memory and word fluency. The training effects also generalized to prospective memory tasks. No specific effect on episodic memory could be demonstrated. Conclusion. Combined treatment of working memory training with exercises in semantic structuring is an effective method for cognitive rehabilitation of organic memory impairment. © The Author(s) 2014.

  13. Semantic message oriented middleware for publish/subscribe networks

    NASA Astrophysics Data System (ADS)

    Li, Han; Jiang, Guofei

    2004-09-01

    The publish/subscribe paradigm of Message Oriented Middleware provides a loosely coupled communication model between distributed applications. Traditional publish/subscribe middleware uses keywords to match advertisements and subscriptions and does not support deep semantic matching. To this end, we designed and implemented a Semantic Message Oriented Middleware system to provide such capabilities for semantic description and matching. We adopted the DARPA Agent Markup Language and Ontology Inference Layer, a formal knowledge representation language for expressing sophisticated classifications and enabling automated inference, as the topic description language in our middleware system. A simple description logic inference system was implemented to handle the matching process between the subscriptions of subscribers and the advertisements of publishers. Moreover our middleware system also has a security architecture to support secure communication and user privilege control.

  14. Contextually guided very-high-resolution imagery classification with semantic segments

    NASA Astrophysics Data System (ADS)

    Zhao, Wenzhi; Du, Shihong; Wang, Qiao; Emery, William J.

    2017-10-01

    Contextual information, revealing relationships and dependencies between image objects, is one of the most important information for the successful interpretation of very-high-resolution (VHR) remote sensing imagery. Over the last decade, geographic object-based image analysis (GEOBIA) technique has been widely used to first divide images into homogeneous parts, and then to assign semantic labels according to the properties of image segments. However, due to the complexity and heterogeneity of VHR images, segments without semantic labels (i.e., semantic-free segments) generated with low-level features often fail to represent geographic entities (such as building roofs usually be partitioned into chimney/antenna/shadow parts). As a result, it is hard to capture contextual information across geographic entities when using semantic-free segments. In contrast to low-level features, "deep" features can be used to build robust segments with accurate labels (i.e., semantic segments) in order to represent geographic entities at higher levels. Based on these semantic segments, semantic graphs can be constructed to capture contextual information in VHR images. In this paper, semantic segments were first explored with convolutional neural networks (CNN) and a conditional random field (CRF) model was then applied to model the contextual information between semantic segments. Experimental results on two challenging VHR datasets (i.e., the Vaihingen and Beijing scenes) indicate that the proposed method is an improvement over existing image classification techniques in classification performance (overall accuracy ranges from 82% to 96%).

  15. Neurology of anomia in the semantic variant of primary progressive aphasia

    PubMed Central

    Rogalski, Emily; Wieneke, Christina; Cobia, Derin; Rademaker, Alfred; Thompson, Cynthia; Weintraub, Sandra

    2009-01-01

    The semantic variant of primary progressive aphasia (PPA) is characterized by the combination of word comprehension deficits, fluent aphasia and a particularly severe anomia. In this study, two novel tasks were used to explore the factors contributing to the anomia. The single most common factor was a blurring of distinctions among members of a semantic category, leading to errors of overgeneralization in word–object matching tasks as well as in word definitions and object descriptions. This factor was more pronounced for natural kinds than artifacts. In patients with the more severe anomias, conceptual maps were more extensively disrupted so that inter-category distinctions were as impaired as intra-category distinctions. Many objects that could not be named aloud could be matched to the correct word in patients with mild but not severe anomia, reflecting a gradual intensification of the semantic factor as the naming disorder becomes more severe. Accurate object descriptions were more frequent than accurate word definitions and all patients experienced prominent word comprehension deficits that interfered with everyday activities but no consequential impairment of object usage or face recognition. Magnetic resonance imaging revealed three characteristics: greater atrophy of the left hemisphere; atrophy of anterior components of the perisylvian language network in the superior and middle temporal gyri; and atrophy of anterior components of the face and object recognition network in the inferior and medial temporal lobes. The left sided asymmetry and perisylvian extension of the atrophy explains the more profound impairment of word than object usage and provides the anatomical basis for distinguishing the semantic variant of primary progressive aphasia from the partially overlapping group of patients that fulfil the widely accepted diagnostic criteria for semantic dementia. PMID:19506067

  16. Neurology of anomia in the semantic variant of primary progressive aphasia.

    PubMed

    Mesulam, Marsel; Rogalski, Emily; Wieneke, Christina; Cobia, Derin; Rademaker, Alfred; Thompson, Cynthia; Weintraub, Sandra

    2009-09-01

    The semantic variant of primary progressive aphasia (PPA) is characterized by the combination of word comprehension deficits, fluent aphasia and a particularly severe anomia. In this study, two novel tasks were used to explore the factors contributing to the anomia. The single most common factor was a blurring of distinctions among members of a semantic category, leading to errors of overgeneralization in word-object matching tasks as well as in word definitions and object descriptions. This factor was more pronounced for natural kinds than artifacts. In patients with the more severe anomias, conceptual maps were more extensively disrupted so that inter-category distinctions were as impaired as intra-category distinctions. Many objects that could not be named aloud could be matched to the correct word in patients with mild but not severe anomia, reflecting a gradual intensification of the semantic factor as the naming disorder becomes more severe. Accurate object descriptions were more frequent than accurate word definitions and all patients experienced prominent word comprehension deficits that interfered with everyday activities but no consequential impairment of object usage or face recognition. Magnetic resonance imaging revealed three characteristics: greater atrophy of the left hemisphere; atrophy of anterior components of the perisylvian language network in the superior and middle temporal gyri; and atrophy of anterior components of the face and object recognition network in the inferior and medial temporal lobes. The left sided asymmetry and perisylvian extension of the atrophy explains the more profound impairment of word than object usage and provides the anatomical basis for distinguishing the semantic variant of primary progressive aphasia from the partially overlapping group of patients that fulfil the widely accepted diagnostic criteria for semantic dementia.

  17. Constructing a Graph Database for Semantic Literature-Based Discovery.

    PubMed

    Hristovski, Dimitar; Kastrin, Andrej; Dinevski, Dejan; Rindflesch, Thomas C

    2015-01-01

    Literature-based discovery (LBD) generates discoveries, or hypotheses, by combining what is already known in the literature. Potential discoveries have the form of relations between biomedical concepts; for example, a drug may be determined to treat a disease other than the one for which it was intended. LBD views the knowledge in a domain as a network; a set of concepts along with the relations between them. As a starting point, we used SemMedDB, a database of semantic relations between biomedical concepts extracted with SemRep from Medline. SemMedDB is distributed as a MySQL relational database, which has some problems when dealing with network data. We transformed and uploaded SemMedDB into the Neo4j graph database, and implemented the basic LBD discovery algorithms with the Cypher query language. We conclude that storing the data needed for semantic LBD is more natural in a graph database. Also, implementing LBD discovery algorithms is conceptually simpler with a graph query language when compared with standard SQL.

  18. A top-down manner-based DCNN architecture for semantic image segmentation.

    PubMed

    Qiao, Kai; Chen, Jian; Wang, Linyuan; Zeng, Lei; Yan, Bin

    2017-01-01

    Given their powerful feature representation for recognition, deep convolutional neural networks (DCNNs) have been driving rapid advances in high-level computer vision tasks. However, their performance in semantic image segmentation is still not satisfactory. Based on the analysis of visual mechanism, we conclude that DCNNs in a bottom-up manner are not enough, because semantic image segmentation task requires not only recognition but also visual attention capability. In the study, superpixels containing visual attention information are introduced in a top-down manner, and an extensible architecture is proposed to improve the segmentation results of current DCNN-based methods. We employ the current state-of-the-art fully convolutional network (FCN) and FCN with conditional random field (DeepLab-CRF) as baselines to validate our architecture. Experimental results of the PASCAL VOC segmentation task qualitatively show that coarse edges and error segmentation results are well improved. We also quantitatively obtain about 2%-3% intersection over union (IOU) accuracy improvement on the PASCAL VOC 2011 and 2012 test sets.

  19. Lexical Processing and Organization in Bilingual First Language Acquisition: Guiding Future Research

    PubMed Central

    DeAnda, Stephanie; Poulin-Dubois, Diane; Zesiger, Pascal; Friend, Margaret

    2016-01-01

    A rich body of work in adult bilinguals documents an interconnected lexical network across languages, such that early word retrieval is language independent. This literature has yielded a number of influential models of bilingual semantic memory. However, extant models provide limited predictions about the emergence of lexical organization in bilingual first language acquisition (BFLA). Empirical evidence from monolingual infants suggests that lexical networks emerge early in development as children integrate phonological and semantic information. These findings tell us little about the interaction between two languages in the early bilingual memory. To date, an understanding of when and how languages interact in early bilingual development is lacking. In this literature review, we present research documenting lexical-semantic development across monolingual and bilingual infants. This is followed by a discussion of current models of bilingual language representation and organization and their ability to account for the available empirical evidence. Together, these theoretical and empirical accounts inform and highlight unexplored areas of research and guide future work on early bilingual memory. PMID:26866430

  20. An event-related potential study of semantic style-match judgments of artistic furniture.

    PubMed

    Lin, Ming-Huang; Wang, Ching-yi; Cheng, Shih-kuen; Cheng, Shih-hung

    2011-11-01

    This study investigates how semantic networks represent different artistic furniture. Event-related potentials (ERPs) were recorded while participants made style-match judgments for table and chair sets. All of the tables were in the Normal style, whereas the chairs were in the Normal, Minimal, ReadyMade, or Deconstruction styles. The Normal and Minimal chairs had the same rates of "match" responses, which were both higher than the rates for the ReadyMade and Deconstruction chairs. Compared with Normal chairs, the ERPs elicited by both ReadyMade chairs and Deconstruction chairs exhibited reliable N400 effects, which suggests that these two design styles were unlike the Normal design style. However, Minimal chairs evoked ERPs that were similar to the ERPs of Normal chairs. Furthermore, the N400 effects elicited by ReadyMade and Deconstruction chairs showed different scalp distributions. These findings reveal that semantic networks represent different design styles for items of the same category. Copyright © 2011 Elsevier B.V. All rights reserved.

  1. Relational, Structural, and Semantic Analysis of Graphical Representations and Concept Maps

    ERIC Educational Resources Information Center

    Ifenthaler, Dirk

    2010-01-01

    The demand for good instructional environments presupposes valid and reliable analytical instruments for educational research. This paper introduces the "SMD Technology" (Surface, Matching, Deep Structure), which measures relational, structural, and semantic levels of graphical representations and concept maps. The reliability and validity of the…

  2. Knowledge Discovery from Biomedical Ontologies in Cross Domains.

    PubMed

    Shen, Feichen; Lee, Yugyung

    2016-01-01

    In recent years, there is an increasing demand for sharing and integration of medical data in biomedical research. In order to improve a health care system, it is required to support the integration of data by facilitating semantic interoperability systems and practices. Semantic interoperability is difficult to achieve in these systems as the conceptual models underlying datasets are not fully exploited. In this paper, we propose a semantic framework, called Medical Knowledge Discovery and Data Mining (MedKDD), that aims to build a topic hierarchy and serve the semantic interoperability between different ontologies. For the purpose, we fully focus on the discovery of semantic patterns about the association of relations in the heterogeneous information network representing different types of objects and relationships in multiple biological ontologies and the creation of a topic hierarchy through the analysis of the discovered patterns. These patterns are used to cluster heterogeneous information networks into a set of smaller topic graphs in a hierarchical manner and then to conduct cross domain knowledge discovery from the multiple biological ontologies. Thus, patterns made a greater contribution in the knowledge discovery across multiple ontologies. We have demonstrated the cross domain knowledge discovery in the MedKDD framework using a case study with 9 primary biological ontologies from Bio2RDF and compared it with the cross domain query processing approach, namely SLAP. We have confirmed the effectiveness of the MedKDD framework in knowledge discovery from multiple medical ontologies.

  3. Knowledge Discovery from Biomedical Ontologies in Cross Domains

    PubMed Central

    Shen, Feichen; Lee, Yugyung

    2016-01-01

    In recent years, there is an increasing demand for sharing and integration of medical data in biomedical research. In order to improve a health care system, it is required to support the integration of data by facilitating semantic interoperability systems and practices. Semantic interoperability is difficult to achieve in these systems as the conceptual models underlying datasets are not fully exploited. In this paper, we propose a semantic framework, called Medical Knowledge Discovery and Data Mining (MedKDD), that aims to build a topic hierarchy and serve the semantic interoperability between different ontologies. For the purpose, we fully focus on the discovery of semantic patterns about the association of relations in the heterogeneous information network representing different types of objects and relationships in multiple biological ontologies and the creation of a topic hierarchy through the analysis of the discovered patterns. These patterns are used to cluster heterogeneous information networks into a set of smaller topic graphs in a hierarchical manner and then to conduct cross domain knowledge discovery from the multiple biological ontologies. Thus, patterns made a greater contribution in the knowledge discovery across multiple ontologies. We have demonstrated the cross domain knowledge discovery in the MedKDD framework using a case study with 9 primary biological ontologies from Bio2RDF and compared it with the cross domain query processing approach, namely SLAP. We have confirmed the effectiveness of the MedKDD framework in knowledge discovery from multiple medical ontologies. PMID:27548262

  4. A Hybrid 3D Indoor Space Model

    NASA Astrophysics Data System (ADS)

    Jamali, Ali; Rahman, Alias Abdul; Boguslawski, Pawel

    2016-10-01

    GIS integrates spatial information and spatial analysis. An important example of such integration is for emergency response which requires route planning inside and outside of a building. Route planning requires detailed information related to indoor and outdoor environment. Indoor navigation network models including Geometric Network Model (GNM), Navigable Space Model, sub-division model and regular-grid model lack indoor data sources and abstraction methods. In this paper, a hybrid indoor space model is proposed. In the proposed method, 3D modeling of indoor navigation network is based on surveying control points and it is less dependent on the 3D geometrical building model. This research proposes a method of indoor space modeling for the buildings which do not have proper 2D/3D geometrical models or they lack semantic or topological information. The proposed hybrid model consists of topological, geometrical and semantical space.

  5. Spreading activation in nonverbal memory networks.

    PubMed

    Foster, Paul S; Wakefield, Candias; Pryjmak, Scott; Roosa, Katelyn M; Branch, Kaylei K; Drago, Valeria; Harrison, David W; Ruff, Ronald

    2017-09-01

    Theories of spreading activation primarily involve semantic memory networks. However, the existence of separate verbal and visuospatial memory networks suggests that spreading activation may also occur in visuospatial memory networks. The purpose of the present investigation was to explore this possibility. Specifically, this study sought to create and describe the design frequency corpus and to determine whether this measure of visuospatial spreading activation was related to right hemisphere functioning and spreading activation in verbal memory networks. We used word frequencies taken from the Controlled Oral Word Association Test and design frequencies taken from the Ruff Figural Fluency Test as measures of verbal and visuospatial spreading activation, respectively. Average word and design frequencies were then correlated with measures of left and right cerebral functioning. The results indicated that a significant relationship exists between performance on a test of right posterior functioning (Block Design) and design frequency. A significant negative relationship also exists between spreading activation in semantic memory networks and design frequency. Based on our findings, the hypotheses were supported. Further research will need to be conducted to examine whether spreading activation exists in visuospatial memory networks as well as the parameters that might modulate this spreading activation, such as the influence of neurotransmitters.

  6. Transcranial Direct Current Stimulation Effects on Semantic Processing in Healthy Individuals.

    PubMed

    Joyal, Marilyne; Fecteau, Shirley

    2016-01-01

    Semantic processing allows us to use conceptual knowledge about the world. It has been associated with a large distributed neural network that includes the frontal, temporal and parietal cortices. Recent studies using transcranial direct current stimulation (tDCS) also contributed at investigating semantic processing. The goal of this article was to review studies investigating semantic processing in healthy individuals with tDCS and discuss findings from these studies in line with neuroimaging results. Based on functional magnetic resonance imaging studies assessing semantic processing, we predicted that tDCS applied over the inferior frontal gyrus, middle temporal gyrus, and posterior parietal cortex will impact semantic processing. We conducted a search on Pubmed and selected 27 articles in which tDCS was used to modulate semantic processing in healthy subjects. We analysed each article according to these criteria: demographic information, experimental outcomes assessing semantic processing, study design, and effects of tDCS on semantic processes. From the 27 reviewed studies, 8 found main effects of stimulation. In addition to these 8 studies, 17 studies reported an interaction between stimulus types and stimulation conditions (e.g. incoherent functional, but not instrumental, actions were processed faster when anodal tDCS was applied over the posterior parietal cortex as compared to sham tDCS). Results suggest that regions in the frontal, temporal, and parietal cortices are involved in semantic processing. tDCS can modulate some aspects of semantic processing and provide information on the functional roles of brain regions involved in this cognitive process. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. A semantic web framework to integrate cancer omics data with biological knowledge.

    PubMed

    Holford, Matthew E; McCusker, James P; Cheung, Kei-Hoi; Krauthammer, Michael

    2012-01-25

    The RDF triple provides a simple linguistic means of describing limitless types of information. Triples can be flexibly combined into a unified data source we call a semantic model. Semantic models open new possibilities for the integration of variegated biological data. We use Semantic Web technology to explicate high throughput clinical data in the context of fundamental biological knowledge. We have extended Corvus, a data warehouse which provides a uniform interface to various forms of Omics data, by providing a SPARQL endpoint. With the querying and reasoning tools made possible by the Semantic Web, we were able to explore quantitative semantic models retrieved from Corvus in the light of systematic biological knowledge. For this paper, we merged semantic models containing genomic, transcriptomic and epigenomic data from melanoma samples with two semantic models of functional data - one containing Gene Ontology (GO) data, the other, regulatory networks constructed from transcription factor binding information. These two semantic models were created in an ad hoc manner but support a common interface for integration with the quantitative semantic models. Such combined semantic models allow us to pose significant translational medicine questions. Here, we study the interplay between a cell's molecular state and its response to anti-cancer therapy by exploring the resistance of cancer cells to Decitabine, a demethylating agent. We were able to generate a testable hypothesis to explain how Decitabine fights cancer - namely, that it targets apoptosis-related gene promoters predominantly in Decitabine-sensitive cell lines, thus conveying its cytotoxic effect by activating the apoptosis pathway. Our research provides a framework whereby similar hypotheses can be developed easily.

  8. Semantic facilitation in bilingual first language acquisition.

    PubMed

    Bilson, Samuel; Yoshida, Hanako; Tran, Crystal D; Woods, Elizabeth A; Hills, Thomas T

    2015-07-01

    Bilingual first language learners face unique challenges that may influence the rate and order of early word learning relative to monolinguals. A comparison of the productive vocabularies of 435 children between the ages of 6 months and 7 years-181 of which were bilingual English learners-found that monolinguals learned both English words and all-language concepts faster than bilinguals. However, bilinguals showed an enhancement of an effect previously found in monolinguals-the preference for learning words with more associative cues. Though both monolinguals and bilinguals were best fit by a similar model of word learning, semantic network structure and growth indicated that the two groups were learning English words in a different order. Further, in comparison with a model of two-monolinguals-in-one-mind, bilinguals overproduced translational equivalents. Our results support an emergent account of bilingual first language acquisition, where learning a word in one language facilitates its acquisition in a second language. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Bim-Based Indoor Path Planning Considering Obstacles

    NASA Astrophysics Data System (ADS)

    Xu, M.; Wei, S.; Zlatanova, S.; Zhang, R.

    2017-09-01

    At present, 87 % of people's activities are in indoor environment; indoor navigation has become a research issue. As the building structures for people's daily life are more and more complex, many obstacles influence humans' moving. Therefore it is essential to provide an accurate and efficient indoor path planning. Nowadays there are many challenges and problems in indoor navigation. Most existing path planning approaches are based on 2D plans, pay more attention to the geometric configuration of indoor space, often ignore rich semantic information of building components, and mostly consider simple indoor layout without taking into account the furniture. Addressing the above shortcomings, this paper uses BIM (IFC) as the input data and concentrates on indoor navigation considering obstacles in the multi-floor buildings. After geometric and semantic information are extracted, 2D and 3D space subdivision methods are adopted to build the indoor navigation network and to realize a path planning that avoids obstacles. The 3D space subdivision is based on triangular prism. The two approaches are verified by the experiments.

  10. SATORI: a system for ontology-guided visual exploration of biomedical data repositories.

    PubMed

    Lekschas, Fritz; Gehlenborg, Nils

    2018-04-01

    The ever-increasing number of biomedical datasets provides tremendous opportunities for re-use but current data repositories provide limited means of exploration apart from text-based search. Ontological metadata annotations provide context by semantically relating datasets. Visualizing this rich network of relationships can improve the explorability of large data repositories and help researchers find datasets of interest. We developed SATORI-an integrative search and visual exploration interface for the exploration of biomedical data repositories. The design is informed by a requirements analysis through a series of semi-structured interviews. We evaluated the implementation of SATORI in a field study on a real-world data collection. SATORI enables researchers to seamlessly search, browse and semantically query data repositories via two visualizations that are highly interconnected with a powerful search interface. SATORI is an open-source web application, which is freely available at http://satori.refinery-platform.org and integrated into the Refinery Platform. nils@hms.harvard.edu. Supplementary data are available at Bioinformatics online.

  11. Towards a Ubiquitous User Model for Profile Sharing and Reuse

    PubMed Central

    de Lourdes Martinez-Villaseñor, Maria; Gonzalez-Mendoza, Miguel; Hernandez-Gress, Neil

    2012-01-01

    People interact with systems and applications through several devices and are willing to share information about preferences, interests and characteristics. Social networking profiles, data from advanced sensors attached to personal gadgets, and semantic web technologies such as FOAF and microformats are valuable sources of personal information that could provide a fair understanding of the user, but profile information is scattered over different user models. Some researchers in the ubiquitous user modeling community envision the need to share user model's information from heterogeneous sources. In this paper, we address the syntactic and semantic heterogeneity of user models in order to enable user modeling interoperability. We present a dynamic user profile structure based in Simple Knowledge Organization for the Web (SKOS) to provide knowledge representation for ubiquitous user model. We propose a two-tier matching strategy for concept schemas alignment to enable user modeling interoperability. Our proposal is proved in the application scenario of sharing and reusing data in order to deal with overweight and obesity. PMID:23201995

  12. The neural mechanisms of semantic and response conflicts: an fMRI study of practice-related effects in the Stroop task.

    PubMed

    Chen, Zhencai; Lei, Xu; Ding, Cody; Li, Hong; Chen, Antao

    2013-02-01

    Previous studies have demonstrated that there are separate neural mechanisms underlying semantic and response conflicts in the Stroop task. However, the practice effects of these conflicts need to be elucidated and the possible involvements of common neural mechanisms are yet to be established. We employed functional magnetic resonance imaging (fMRI) in a 4-2 mapping practice-related Stroop task to determine the neural substrates under these conflicts. Results showed that different patterns of brain activations are associated with practice in the attentional networks (e.g., dorsolateral prefrontal cortex (DLPFC), anterior cingulate cortex (ACC), and posterior parietal cortex (PPC)) for both conflicts, response control regions (e.g., inferior frontal junction (IFJ), inferior frontal gyrus (IFG)/insula, and pre-supplementary motor areas (pre-SMA)) for semantic conflict, and posterior cortex for response conflict. We also found areas of common activation in the left hemisphere within the attentional networks, for the early practice stage in semantic conflict and the late stage in "pure" response conflict using conjunction analysis. The different practice effects indicate that there are distinct mechanisms underlying these two conflict types: semantic conflict practice effects are attributable to the automation of stimulus processing, conflict and response control; response conflict practice effects are attributable to the proportional increase of conflict-related cognitive resources. In addition, the areas of common activation suggest that the semantic conflict effect may contain a partial response conflict effect, particularly at the beginning of the task. These findings indicate that there are two kinds of response conflicts contained in the key-pressing Stroop task: the vocal-level (mainly in the early stage) and key-pressing (mainly in the late stage) response conflicts; thus, the use of the subtraction method for the exploration of semantic and response conflicts may need to be further examined. Copyright © 2012 Elsevier Inc. All rights reserved.

  13. Development and use of the Cytoscape app GFD-Net for measuring semantic dissimilarity of gene networks

    PubMed Central

    Diaz-Montana, Juan J.; Diaz-Diaz, Norberto

    2014-01-01

    Gene networks are one of the main computational models used to study the interaction between different elements during biological processes being widely used to represent gene–gene, or protein–protein interaction complexes. We present GFD-Net, a Cytoscape app for visualizing and analyzing the functional dissimilarity of gene networks. PMID:25400907

  14. Designing a CTSA-Based Social Network Intervention to Foster Cross-Disciplinary Team Science.

    PubMed

    Vacca, Raffaele; McCarty, Christopher; Conlon, Michael; Nelson, David R

    2015-08-01

    This paper explores the application of network intervention strategies to the problem of assembling cross-disciplinary scientific teams in academic institutions. In a project supported by the University of Florida (UF) Clinical and Translational Science Institute, we used VIVO, a semantic-web research networking system, to extract the social network of scientific collaborations on publications and awarded grants across all UF colleges and departments. Drawing on the notion of network interventions, we designed an alteration program to add specific edges to the collaboration network, that is, to create specific collaborations between previously unconnected investigators. The missing collaborative links were identified by a number of network criteria to enhance desirable structural properties of individual positions or the network as a whole. We subsequently implemented an online survey (N = 103) that introduced the potential collaborators to each other through their VIVO profiles, and investigated their attitudes toward starting a project together. We discuss the design of the intervention program, the network criteria adopted, and preliminary survey results. The results provide insight into the feasibility of intervention programs on scientific collaboration networks, as well as suggestions on the implementation of such programs to assemble cross-disciplinary scientific teams in CTSA institutions. © 2015 Wiley Periodicals, Inc.

  15. Monitoring Data-Structure Evolution in Distributed Message-Passing Programs

    NASA Technical Reports Server (NTRS)

    Sarukkai, Sekhar R.; Beers, Andrew; Woodrow, Thomas S. (Technical Monitor)

    1996-01-01

    Monitoring the evolution of data structures in parallel and distributed programs, is critical for debugging its semantics and performance. However, the current state-of-art in tracking and presenting data-structure information on parallel and distributed environments is cumbersome and does not scale. In this paper we present a methodology that automatically tracks memory bindings (not the actual contents) of static and dynamic data-structures of message-passing C programs, using PVM. With the help of a number of examples we show that in addition to determining the impact of memory allocation overheads on program performance, graphical views can help in debugging the semantics of program execution. Scalable animations of virtual address bindings of source-level data-structures are used for debugging the semantics of parallel programs across all processors. In conjunction with light-weight core-files, this technique can be used to complement traditional debuggers on single processors. Detailed information (such as data-structure contents), on specific nodes, can be determined using traditional debuggers after the data structure evolution leading to the semantic error is observed graphically.

  16. Structured Natural-Language Descriptions for Semantic Content Retrieval of Visual Materials.

    ERIC Educational Resources Information Center

    Tam, A. M.; Leung, C. H. C.

    2001-01-01

    Proposes a structure for natural language descriptions of the semantic content of visual materials that requires descriptions to be (modified) keywords, phrases, or simple sentences, with components that are grammatical relations common to many languages. This structure makes it easy to implement a collection's descriptions as a relational…

  17. Interoperability Between Coastal Web Atlases Using Semantic Mediation: A Case Study of the International Coastal Atlas Network (ICAN)

    NASA Astrophysics Data System (ADS)

    Wright, D. J.; Lassoued, Y.; Dwyer, N.; Haddad, T.; Bermudez, L. E.; Dunne, D.

    2009-12-01

    Coastal mapping plays an important role in informing marine spatial planning, resource management, maritime safety, hazard assessment and even national sovereignty. As such, there is now a plethora of data/metadata catalogs, pre-made maps, tabular and text information on resource availability and exploitation, and decision-making tools. A recent trend has been to encapsulate these in a special class of web-enabled geographic information systems called a coastal web atlas (CWA). While multiple benefits are derived from tailor-made atlases, there is great value added from the integration of disparate CWAs. CWAs linked to one another can query more successfully to optimize planning and decision-making. If a dataset is missing in one atlas, it may be immediately located in another. Similar datasets in two atlases may be combined to enhance study in either region. *But how best to achieve semantic interoperability to mitigate vague data queries, concepts or natural language semantics when retrieving and integrating data and information?* We report on the development of a new prototype seeking to interoperate between two initial CWAs: the Marine Irish Digital Atlas (MIDA) and the Oregon Coastal Atlas (OCA). These two mature atlases are used as a testbed for more regional connections, with the intent for the OCA to use lessons learned to develop a regional network of CWAs along the west coast, and for MIDA to do the same in building and strengthening atlas networks with the UK, Belgium, and other parts of Europe. Our prototype uses semantic interoperability via services harmonization and ontology mediation, allowing local atlases to use their own data structures, and vocabularies (ontologies). We use standard technologies such as OGC Web Map Services (WMS) for delivering maps, and OGC Catalogue Service for the Web (CSW) for delivering and querying ISO-19139 metadata. The metadata records of a given CWA use a given ontology of terms called local ontology. Human or machine users formulate their requests using a common ontology of metadata terms, called global ontology. A CSW mediator rewrites the user’s request into CSW requests over local CSWs using their own (local) ontologies, collects the results and sends them back to the user. To extend the system, we have recently added global maritime boundaries and are also considering nearshore ocean observing system data. Ongoing work includes adding WFS, error management, and exception handling, enabling Smart Searches, and writing full documentation. This prototype is a central research project of the new International Coastal Atlas Network (ICAN), a group of 30+ organizations from 14 nations (and growing) dedicated to seeking interoperability approaches to CWAs in support of coastal zone management and the translation of coastal science to coastal decision-making.

  18. A Non-Cognitive Formal Approach to Knowledge Representation in Artificial Intelligence.

    DTIC Science & Technology

    1986-06-01

    example, Duda and others translated production rules into a partitioned semantic network (73). Representations were also translated into production...153. Berlin: Springer-Verlag, 1982. 38. Blikle, Andrzej . "Equational Languages," Information and Control, 21: 134-147 (September 1972). 285 39. Ezawa...Conference on Artificial Intelligence, IJCAI-75. 115-121. William Kaufmann, Inc., Los Altos CA, 1975. 73. Duda , Richard 0. and others. "Semantic

  19. Effects of aging on value-directed modulation of semantic network activity during verbal learning

    PubMed Central

    Cohen, Michael S.; Rissman, Jesse; Suthana, Nanthia A.; Castel, Alan D.; Knowlton, Barbara J.

    2015-01-01

    While impairments in memory recall are apparent in aging, older adults show a remarkably preserved ability to selectively remember information deemed valuable. Here, we use fMRI to compare brain activation in healthy older and younger adults during encoding of high and low value words to determine whether there are differences in how older adults achieve value-directed memory selectivity. We find that memory selectivity in older adults is associated with value-related changes in activation during word presentation in left hemisphere regions that are involved in semantic processing, similar to young adults. However, highly selective young adults show a relatively greater increase in semantic network activity during encoding of high-value items, whereas highly selective older adults show relatively diminished activity during encoding of low-value items. Additionally, only younger adults showed value-related increases in activity in semantic and reward processing regions during presentation of the value cue preceding each to-be-remembered word. Young adults therefore respond to cue value more proactively than do older adults, yet the magnitude of value-related differences in cue period brain activity did not predict individual differences in memory selectivity. Thus, our data also show that age-related reductions in prestimulus activity do not always lead to inefficient performance. PMID:26244278

  20. Learning From Short Text Streams With Topic Drifts.

    PubMed

    Li, Peipei; He, Lu; Wang, Haiyan; Hu, Xuegang; Zhang, Yuhong; Li, Lei; Wu, Xindong

    2017-09-18

    Short text streams such as search snippets and micro blogs have been popular on the Web with the emergence of social media. Unlike traditional normal text streams, these data present the characteristics of short length, weak signal, high volume, high velocity, topic drift, etc. Short text stream classification is hence a very challenging and significant task. However, this challenge has received little attention from the research community. Therefore, a new feature extension approach is proposed for short text stream classification with the help of a large-scale semantic network obtained from a Web corpus. It is built on an incremental ensemble classification model for efficiency. First, more semantic contexts based on the senses of terms in short texts are introduced to make up of the data sparsity using the open semantic network, in which all terms are disambiguated by their semantics to reduce the noise impact. Second, a concept cluster-based topic drifting detection method is proposed to effectively track hidden topic drifts. Finally, extensive studies demonstrate that as compared to several well-known concept drifting detection methods in data stream, our approach can detect topic drifts effectively, and it enables handling short text streams effectively while maintaining the efficiency as compared to several state-of-the-art short text classification approaches.

  1. Preparatory neural activity predicts performance on a conflict task.

    PubMed

    Stern, Emily R; Wager, Tor D; Egner, Tobias; Hirsch, Joy; Mangels, Jennifer A

    2007-10-24

    Advance preparation has been shown to improve the efficiency of conflict resolution. Yet, with little empirical work directly linking preparatory neural activity to the performance benefits of advance cueing, it is not clear whether this relationship results from preparatory activation of task-specific networks, or from activity associated with general alerting processes. Here, fMRI data were acquired during a spatial Stroop task in which advance cues either informed subjects of the upcoming relevant feature of conflict stimuli (spatial or semantic) or were neutral. Informative cues decreased reaction time (RT) relative to neutral cues, and cues indicating that spatial information would be task-relevant elicited greater activity than neutral cues in multiple areas, including right anterior prefrontal and bilateral parietal cortex. Additionally, preparatory activation in bilateral parietal cortex and right dorsolateral prefrontal cortex predicted faster RT when subjects responded to spatial location. No regions were found to be specific to semantic cues at conventional thresholds, and lowering the threshold further revealed little overlap between activity associated with spatial and semantic cueing effects, thereby demonstrating a single dissociation between activations related to preparing a spatial versus semantic task-set. This relationship between preparatory activation of spatial processing networks and efficient conflict resolution suggests that advance information can benefit performance by leading to domain-specific biasing of task-relevant information.

  2. Differential electrophysiological signatures of semantic and syntactic scene processing.

    PubMed

    Võ, Melissa L-H; Wolfe, Jeremy M

    2013-09-01

    In sentence processing, semantic and syntactic violations elicit differential brain responses observable in event-related potentials: An N400 signals semantic violations, whereas a P600 marks inconsistent syntactic structure. Does the brain register similar distinctions in scene perception? To address this question, we presented participants with semantic inconsistencies, in which an object was incongruent with a scene's meaning, and syntactic inconsistencies, in which an object violated structural rules. We found a clear dissociation between semantic and syntactic processing: Semantic inconsistencies produced negative deflections in the N300-N400 time window, whereas mild syntactic inconsistencies elicited a late positivity resembling the P600 found for syntactic inconsistencies in sentence processing. Extreme syntactic violations, such as a hovering beer bottle defying gravity, were associated with earlier perceptual processing difficulties reflected in the N300 response, but failed to produce a P600 effect. We therefore conclude that different neural populations are active during semantic and syntactic processing of scenes, and that syntactically impossible object placements are processed in a categorically different manner than are syntactically resolvable object misplacements.

  3. Neural bases of event knowledge and syntax integration in comprehension of complex sentences.

    PubMed

    Malaia, Evie; Newman, Sharlene

    2015-01-01

    Comprehension of complex sentences is necessarily supported by both syntactic and semantic knowledge, but what linguistic factors trigger a readers' reliance on a specific system? This functional neuroimaging study orthogonally manipulated argument plausibility and verb event type to investigate cortical bases of the semantic effect on argument comprehension during reading. The data suggest that telic verbs facilitate online processing by means of consolidating the event schemas in episodic memory and by easing the computation of syntactico-thematic hierarchies in the left inferior frontal gyrus. The results demonstrate that syntax-semantics integration relies on trade-offs among a distributed network of regions for maximum comprehension efficiency.

  4. The Design of Lexical Database for Indonesian Language

    NASA Astrophysics Data System (ADS)

    Gunawan, D.; Amalia, A.

    2017-03-01

    Kamus Besar Bahasa Indonesia (KBBI), an official dictionary for Indonesian language, provides lists of words with their meaning. The online version can be accessed via Internet network. Another online dictionary is Kateglo. KBBI online and Kateglo only provides an interface for human. A machine cannot retrieve data from the dictionary easily without using advanced techniques. Whereas, lexical of words is required in research or application development which related to natural language processing, text mining, information retrieval or sentiment analysis. To address this requirement, we need to build a lexical database which provides well-defined structured information about words. A well-known lexical database is WordNet, which provides the relation among words in English. This paper proposes the design of a lexical database for Indonesian language based on the combination of KBBI 4th edition, Kateglo and WordNet structure. Knowledge representation by utilizing semantic networks depict the relation among words and provide the new structure of lexical database for Indonesian language. The result of this design can be used as the foundation to build the lexical database for Indonesian language.

  5. Neurolinguistics: Structure, Function, and Connectivity in the Bilingual Brain

    PubMed Central

    Wong, Becky; Yin, Bin; O'Brien, Beth

    2016-01-01

    Advances in neuroimaging techniques and analytic methods have led to a proliferation of studies investigating the impact of bilingualism on the cognitive and brain systems in humans. Lately, these findings have attracted much interest and debate in the field, leading to a number of recent commentaries and reviews. Here, we contribute to the ongoing discussion by compiling and interpreting the plethora of findings that relate to the structural, functional, and connective changes in the brain that ensue from bilingualism. In doing so, we integrate theoretical models and empirical findings from linguistics, cognitive/developmental psychology, and neuroscience to examine the following issues: (1) whether the language neural network is different for first (dominant) versus second (nondominant) language processing; (2) the effects of bilinguals' executive functioning on the structure and function of the “universal” language neural network; (3) the differential effects of bilingualism on phonological, lexical-semantic, and syntactic aspects of language processing on the brain; and (4) the effects of age of acquisition and proficiency of the user's second language in the bilingual brain, and how these have implications for future research in neurolinguistics. PMID:26881224

  6. Vector Symbolic Spiking Neural Network Model of Hippocampal Subarea CA1 Novelty Detection Functionality.

    PubMed

    Agerskov, Claus

    2016-04-01

    A neural network model is presented of novelty detection in the CA1 subdomain of the hippocampal formation from the perspective of information flow. This computational model is restricted on several levels by both anatomical information about hippocampal circuitry and behavioral data from studies done in rats. Several studies report that the CA1 area broadcasts a generalized novelty signal in response to changes in the environment. Using the neural engineering framework developed by Eliasmith et al., a spiking neural network architecture is created that is able to compare high-dimensional vectors, symbolizing semantic information, according to the semantic pointer hypothesis. This model then computes the similarity between the vectors, as both direct inputs and a recalled memory from a long-term memory network by performing the dot-product operation in a novelty neural network architecture. The developed CA1 model agrees with available neuroanatomical data, as well as the presented behavioral data, and so it is a biologically realistic model of novelty detection in the hippocampus, which can provide a feasible explanation for experimentally observed dynamics.

  7. Neural differences in the processing of semantic relationships across cultures.

    PubMed

    Gutchess, Angela H; Hedden, Trey; Ketay, Sarah; Aron, Arthur; Gabrieli, John D E

    2010-06-01

    The current study employed functional MRI to investigate the contribution of domain-general (e.g. executive functions) and domain-specific (e.g. semantic knowledge) processes to differences in semantic judgments across cultures. Previous behavioral experiments have identified cross-cultural differences in categorization, with East Asians preferring strategies involving thematic or functional relationships (e.g. cow-grass) and Americans preferring categorical relationships (e.g. cow-chicken). East Asians and American participants underwent functional imaging while alternating between categorical or thematic strategies to sort triads of words, as well as matching words on control trials. Many similarities were observed. However, across both category and relationship trials compared to match (control) trials, East Asians activated a frontal-parietal network implicated in controlled executive processes, whereas Americans engaged regions of the temporal lobes and the cingulate, possibly in response to conflict in the semantic content of information. The results suggest that cultures differ in the strategies employed to resolve conflict between competing semantic judgments.

  8. Semantic MEDLINE for Discovery Browsing: Using Semantic Predications and the Literature-Based Discovery Paradigm to Elucidate a Mechanism for the Obesity Paradox

    PubMed Central

    Cairelli, Michael J.; Miller, Christopher M.; Fiszman, Marcelo; Workman, T. Elizabeth; Rindflesch, Thomas C.

    2013-01-01

    Applying the principles of literature-based discovery (LBD), we elucidate the paradox that obesity is beneficial in critical care despite contributing to disease generally. Our approach enhances a previous extension to LBD, called “discovery browsing,” and is implemented using Semantic MEDLINE, which summarizes the results of a PubMed search into an interactive graph of semantic predications. The methodology allows a user to construct argumentation underpinning an answer to a biomedical question by engaging the user in an iterative process between system output and user knowledge. Components of the Semantic MEDLINE output graph identified as “interesting” by the user both contribute to subsequent searches and are constructed into a logical chain of relationships constituting an explanatory network in answer to the initial question. Based on this methodology we suggest that phthalates leached from plastic in critical care interventions activate PPAR gamma, which is anti-inflammatory and abundant in obese patients. PMID:24551329

  9. Does the Sound of a Barking Dog Activate its Corresponding Visual Form? An fMRI Investigation of Modality-Specific Semantic Access

    PubMed Central

    Reilly, Jamie; Garcia, Amanda; Binney, Richard J.

    2016-01-01

    Much remains to be learned about the neural architecture underlying word meaning. Fully distributed models of semantic memory predict that the sound of a barking dog will conjointly engage a network of distributed sensorimotor spokes. An alternative framework holds that modality-specific features additionally converge within transmodal hubs. Participants underwent functional MRI while covertly naming familiar objects versus newly learned novel objects from only one of their constituent semantic features (visual form, characteristic sound, or point-light motion representation). Relative to the novel object baseline, familiar concepts elicited greater activation within association regions specific to that presentation modality. Furthermore, visual form elicited activation within high-level auditory association cortex. Conversely, environmental sounds elicited activation in regions proximal to visual association cortex. Both conditions commonly engaged a putative hub region within lateral anterior temporal cortex. These results support hybrid semantic models in which local hubs and distributed spokes are dually engaged in service of semantic memory. PMID:27289210

  10. The failing measurement of attitudes: How semantic determinants of individual survey responses come to replace measures of attitude strength.

    PubMed

    Arnulf, Jan Ketil; Larsen, Kai Rune; Martinsen, Øyvind Lund; Egeland, Thore

    2018-01-12

    The traditional understanding of data from Likert scales is that the quantifications involved result from measures of attitude strength. Applying a recently proposed semantic theory of survey response, we claim that survey responses tap two different sources: a mixture of attitudes plus the semantic structure of the survey. Exploring the degree to which individual responses are influenced by semantics, we hypothesized that in many cases, information about attitude strength is actually filtered out as noise in the commonly used correlation matrix. We developed a procedure to separate the semantic influence from attitude strength in individual response patterns, and compared these results to, respectively, the observed sample correlation matrices and the semantic similarity structures arising from text analysis algorithms. This was done with four datasets, comprising a total of 7,787 subjects and 27,461,502 observed item pair responses. As we argued, attitude strength seemed to account for much information about the individual respondents. However, this information did not seem to carry over into the observed sample correlation matrices, which instead converged around the semantic structures offered by the survey items. This is potentially disturbing for the traditional understanding of what survey data represent. We argue that this approach contributes to a better understanding of the cognitive processes involved in survey responses. In turn, this could help us make better use of the data that such methods provide.

  11. What Information Does Your EHR Contain? Automatic Generation of a Clinical Metadata Warehouse (CMDW) to Support Identification and Data Access Within Distributed Clinical Research Networks.

    PubMed

    Bruland, Philipp; Doods, Justin; Storck, Michael; Dugas, Martin

    2017-01-01

    Data dictionaries provide structural meta-information about data definitions in health information technology (HIT) systems. In this regard, reusing healthcare data for secondary purposes offers several advantages (e.g. reduce documentation times or increased data quality). Prerequisites for data reuse are its quality, availability and identical meaning of data. In diverse projects, research data warehouses serve as core components between heterogeneous clinical databases and various research applications. Given the complexity (high number of data elements) and dynamics (regular updates) of electronic health record (EHR) data structures, we propose a clinical metadata warehouse (CMDW) based on a metadata registry standard. Metadata of two large hospitals were automatically inserted into two CMDWs containing 16,230 forms and 310,519 data elements. Automatic updates of metadata are possible as well as semantic annotations. A CMDW allows metadata discovery, data quality assessment and similarity analyses. Common data models for distributed research networks can be established based on similarity analyses.

  12. The Incremental Multiresolution Matrix Factorization Algorithm

    PubMed Central

    Ithapu, Vamsi K.; Kondor, Risi; Johnson, Sterling C.; Singh, Vikas

    2017-01-01

    Multiresolution analysis and matrix factorization are foundational tools in computer vision. In this work, we study the interface between these two distinct topics and obtain techniques to uncover hierarchical block structure in symmetric matrices – an important aspect in the success of many vision problems. Our new algorithm, the incremental multiresolution matrix factorization, uncovers such structure one feature at a time, and hence scales well to large matrices. We describe how this multiscale analysis goes much farther than what a direct “global” factorization of the data can identify. We evaluate the efficacy of the resulting factorizations for relative leveraging within regression tasks using medical imaging data. We also use the factorization on representations learned by popular deep networks, providing evidence of their ability to infer semantic relationships even when they are not explicitly trained to do so. We show that this algorithm can be used as an exploratory tool to improve the network architecture, and within numerous other settings in vision. PMID:29416293

  13. Semantic wireless localization of WiFi terminals in smart buildings

    NASA Astrophysics Data System (ADS)

    Ahmadi, H.; Polo, A.; Moriyama, T.; Salucci, M.; Viani, F.

    2016-06-01

    The wireless localization of mobile terminals in indoor scenarios by means of a semantic interpretation of the environment is addressed in this work. A training-less approach based on the real-time calibration of a simple path loss model is proposed which combines (i) the received signal strength information measured by the wireless terminal and (ii) the topological features of the localization domain. A customized evolutionary optimization technique has been designed to estimate the optimal target position that fits the complex wireless indoor propagation and the semantic target-environment relation, as well. The proposed approach is experimentally validated in a real building area where the available WiFi network is opportunistically exploited for data collection. The presented results point out a reduction of the localization error obtained with the introduction of a very simple semantic interpretation of the considered scenario.

  14. Electrophysiological study of the basal temporal language area: a convergence zone between language perception and production networks.

    PubMed

    Trébuchon-Da Fonseca, Agnès; Bénar, Christian-G; Bartoloméi, Fabrice; Régis, Jean; Démonet, Jean-François; Chauvel, Patrick; Liégeois-Chauvel, Catherine

    2009-03-01

    Regions involved in language processing have been observed in the inferior part of the left temporal lobe. Although collectively labelled 'the Basal Temporal Language Area' (BTLA), these territories are functionally heterogeneous and are involved in language perception (i.e. reading or semantic task) or language production (speech arrest after stimulation). The objective of this study was to clarify the role of BTLA in the language network in an epileptic patient who displayed jargonaphasia. Intracerebral evoked related potentials to verbal and non-verbal stimuli in auditory and visual modalities were recorded from BTLA. Time-frequency analysis was performed during ictal events. Evoked potentials and induced gamma-band activity provided direct evidence that BTLA is sensitive to language stimuli in both modalities, 350 ms after stimulation. In addition, spontaneous gamma-band discharges were recorded from this region during which we observed phonological jargon. The findings emphasize the multimodal nature of this region in speech perception. In the context of transient dysfunction, the patient's lexical semantic processing network is disrupted, reducing spoken output to meaningless phoneme combinations. This rare opportunity to study the BTLA "in vivo" demonstrates its pivotal role in lexico-semantic processing for speech production and its multimodal nature in speech perception.

  15. Organizing knowledge for tutoring fire loss prevention

    NASA Astrophysics Data System (ADS)

    Schmoldt, Daniel L.

    1989-09-01

    The San Bernardino National Forest in southern California has recently developed a systematic approach to wildfire prevention planning. However, a comprehensive document or other mechanism for teaching this process to other prevention personnel does not exist. An intelligent tutorial expert system is being constructed to provide a means for learning the process and to assist in the creation of specific prevention plans. An intelligent tutoring system (ITS) contains two types of knowledge—domain and tutoring. The domain knowledge for wildfire prevention is structured around several foci: (1) individual concepts used in prevention planning; (2) explicitly specified interrelationships between concepts; (3) deductive methods that contain subjective judgment normally unavailable to less-experienced users; (4) analytical models of fire behavior used for identification of hazard areas; (5) how-to guidance needed for performance of planning tasks; and (6) expository information that provides a rationale for planning steps and ideas. Combining analytical, procedure, inferential, conceptual, and expositional knowledge into a tutoring environment provides the student and/or user with a multiple perspective of the subject matter. A concept network provides a unifying framework for structuring and utilizing these diverse forms of prevention planning knowledge. This network structure borrows from and combines semantic networks and frame-based knowledge representations. The flexibility of this organization facilitates an effective synthesis and organization of multiple knowledge forms.

  16. A Semantic Constraint on Syntactic Parsing.

    ERIC Educational Resources Information Center

    Crain, Stephen; Coker, Pamela L.

    This research examines how semantic information influences syntactic parsing decisions during sentence processing. In the first experiment, subjects were presented lexical strings having syntactically identical surface structures but with two possible underlying structures: "The children taught by the Berlitz method," and "The…

  17. High Performance Descriptive Semantic Analysis of Semantic Graph Databases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Joslyn, Cliff A.; Adolf, Robert D.; al-Saffar, Sinan

    As semantic graph database technology grows to address components ranging from extant large triple stores to SPARQL endpoints over SQL-structured relational databases, it will become increasingly important to be able to understand their inherent semantic structure, whether codified in explicit ontologies or not. Our group is researching novel methods for what we call descriptive semantic analysis of RDF triplestores, to serve purposes of analysis, interpretation, visualization, and optimization. But data size and computational complexity makes it increasingly necessary to bring high performance computational resources to bear on this task. Our research group built a novel high performance hybrid system comprisingmore » computational capability for semantic graph database processing utilizing the large multi-threaded architecture of the Cray XMT platform, conventional servers, and large data stores. In this paper we describe that architecture and our methods, and present the results of our analyses of basic properties, connected components, namespace interaction, and typed paths such for the Billion Triple Challenge 2010 dataset.« less

  18. Action and semantic tool knowledge - Effective connectivity in the underlying neural networks.

    PubMed

    Kleineberg, Nina N; Dovern, Anna; Binder, Ellen; Grefkes, Christian; Eickhoff, Simon B; Fink, Gereon R; Weiss, Peter H

    2018-04-26

    Evidence from neuropsychological and imaging studies indicate that action and semantic knowledge about tools draw upon distinct neural substrates, but little is known about the underlying interregional effective connectivity. With fMRI and dynamic causal modeling (DCM) we investigated effective connectivity in the left-hemisphere (LH) while subjects performed (i) a function knowledge and (ii) a value knowledge task, both addressing semantic tool knowledge, and (iii) a manipulation (action) knowledge task. Overall, the results indicate crosstalk between action nodes and semantic nodes. Interestingly, effective connectivity was weakened between semantic nodes and action nodes during the manipulation task. Furthermore, pronounced modulations of effective connectivity within the fronto-parietal action system of the LH (comprising lateral occipito-temporal cortex, intraparietal sulcus, supramarginal gyrus, inferior frontal gyrus) were observed in a bidirectional manner during the processing of action knowledge. In contrast, the function and value knowledge tasks resulted in a significant strengthening of the effective connectivity between visual cortex and fusiform gyrus. Importantly, this modulation was present in both semantic tasks, indicating that processing different aspects of semantic knowledge about tools evokes similar effective connectivity patterns. Data revealed that interregional effective connectivity during the processing of tool knowledge occurred in a bidirectional manner with a weakening of connectivity between areas engaged in action and semantic knowledge about tools during the processing of action knowledge. Moreover, different semantic tool knowledge tasks elicited similar effective connectivity patterns. © 2018 Wiley Periodicals, Inc.

  19. Age-related differences in resolving semantic and phonological competition during receptive language tasks.

    PubMed

    Zhuang, Jie; Johnson, Micah A; Madden, David J; Burke, Deborah M; Diaz, Michele T

    2016-12-01

    Receptive language (e.g., reading) is largely preserved in the aging brain, and semantic processes in particular may continue to develop throughout the lifespan. We investigated the neural underpinnings of phonological and semantic retrieval in older and younger adults during receptive language tasks (rhyme and semantic similarity judgments). In particular, we were interested in the role of competition on language retrieval and varied the similarities between a cue, target, and distractor that were hypothesized to affect the mental process of competition. Behaviorally, all participants responded faster and more accurately during the rhyme task compared to the semantic task. Moreover, older adults demonstrated higher response accuracy than younger adults during the semantic task. Although there were no overall age-related differences in the neuroimaging results, an Age×Task interaction was found in left inferior frontal gyrus (IFG), with older adults producing greater activation than younger adults during the semantic condition. These results suggest that at lower levels of task difficulty, older and younger adults engaged similar neural networks that benefited behavioral performance. As task difficulty increased during the semantic task, older adults relied more heavily on largely left hemisphere language regions, as well as regions involved in perception and internal monitoring. Our results are consistent with the stability of language comprehension across the adult lifespan and illustrate how the preservation of semantic representations with aging may influence performance under conditions of increased task difficulty. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Structural Complexity in Linguistic Systems Research Topic 3: Mathematical Sciences

    DTIC Science & Technology

    2015-04-01

    understanding of structure (pattern, correlation, memory , semantics , ...) observed in linguistic systems and process? On this score we believe the...on our understanding of structure (pattern, correlation, memory , semantics , ...) observed in linguistic systems and process? On this score we believe...promised to overcome these difficulties, since it gives a clear and constructive view of structure in memoryful stochastic processes. In principle, this

Top