Hemispheric Differences in the Recruitment of Semantic Processing Mechanisms
ERIC Educational Resources Information Center
Kandhadai, Padmapriya; Federmeier, Kara D.
2010-01-01
This study examined how the two cerebral hemispheres recruit semantic processing mechanisms by combining event-related potential measures and visual half-field methods in a word priming paradigm in which semantic strength and predictability were manipulated using lexically associated word pairs. Activation patterns on the late positive complex…
Coderre, Emily L; Chernenok, Mariya; Gordon, Barry; Ledoux, Kerry
2017-03-01
Individuals with autism spectrum disorders (ASD) experience difficulties with language, particularly higher-level functions like semantic integration. Yet some studies indicate that semantic processing of non-linguistic stimuli is not impaired, suggesting a language-specific deficit in semantic processing. Using a semantic priming task, we compared event-related potentials (ERPs) in response to lexico-semantic processing (written words) and visuo-semantic processing (pictures) in adults with ASD and adults with typical development (TD). The ASD group showed successful lexico-semantic and visuo-semantic processing, indicated by similar N400 effects between groups for word and picture stimuli. However, differences in N400 latency and topography in word conditions suggested different lexico-semantic processing mechanisms: an expectancy-based strategy for the TD group but a controlled post-lexical integration strategy for the ASD group.
Hemispheric differences in the recruitment of semantic processing mechanisms
Kandhadai, Padmapriya; Federmeier, Kara D.
2010-01-01
This study examined how the two cerebral hemispheres recruit semantic processing mechanisms by combining event-related potential measures and visual half-field methods in a word priming paradigm in which semantic strength and predictability were manipulated using lexically associated word pairs. Activation patterns on the Late Positive Complex (LPC), linked to controlled aspects of processing, showed that previously documented left hemisphere (LH) processing benefits for word pairs with a weak forward but strong backward association stem from the ability to appreciate meaning relations in an order-independent fashion and/or strategically reorder them. Whereas there is a LH benefit for such strategic processing during comprehension in passive tasks, the present study further showed that the RH is also able to make use of these mechanisms when explicit semantic judgments are required. In both hemispheres, N400 responses, linked to initial semantic activation, were largely graded by association strength, with more amplitude reduction for forward associates and strong, symmetrically associated pairs compared to backward associates and matched weak, symmetrically associated pairs. However, responses to moderately associated pairs were more facilitated after initial presentation to the LH than to the RH. This pattern converges with sentence processing findings that point to LH advantages for using context information to predict features of likely upcoming words. Together, the results suggest that an important basis for hemispheric asymmetries in language comprehension arises from when and how each uses top-down semantic mechanisms to shape initial semantic activation over time. PMID:20638397
What does semantic tiling of the cortex tell us about semantics?
Barsalou, Lawrence W
2017-10-01
Recent use of voxel-wise modeling in cognitive neuroscience suggests that semantic maps tile the cortex. Although this impressive research establishes distributed cortical areas active during the conceptual processing that underlies semantics, it tells us little about the nature of this processing. While mapping concepts between Marr's computational and implementation levels to support neural encoding and decoding, this approach ignores Marr's algorithmic level, central for understanding the mechanisms that implement cognition, in general, and conceptual processing, in particular. Following decades of research in cognitive science and neuroscience, what do we know so far about the representation and processing mechanisms that implement conceptual abilities? Most basically, much is known about the mechanisms associated with: (1) feature and frame representations, (2) grounded, abstract, and linguistic representations, (3) knowledge-based inference, (4) concept composition, and (5) conceptual flexibility. Rather than explaining these fundamental representation and processing mechanisms, semantic tiles simply provide a trace of their activity over a relatively short time period within a specific learning context. Establishing the mechanisms that implement conceptual processing in the brain will require more than mapping it to cortical (and sub-cortical) activity, with process models from cognitive science likely to play central roles in specifying the intervening mechanisms. More generally, neuroscience will not achieve its basic goals until it establishes algorithmic-level mechanisms that contribute essential explanations to how the brain works, going beyond simply establishing the brain areas that respond to various task conditions. Copyright © 2017 Elsevier Ltd. All rights reserved.
Selective Short-Term Memory Deficits Arise from Impaired Domain-General Semantic Control Mechanisms
ERIC Educational Resources Information Center
Hoffman, Paul; Jefferies, Elizabeth; Ehsan, Sheeba; Hopper, Samantha; Lambon Ralph, Matthew A.
2009-01-01
Semantic short-term memory (STM) patients have a reduced ability to retain semantic information over brief delays but perform well on other semantic tasks; this pattern suggests damage to a dedicated buffer for semantic information. Alternatively, these difficulties may arise from mild disruption to domain-general semantic processes that have…
Ortells, Juan J; Kiefer, Markus; Castillo, Alejandro; Megías, Montserrat; Morillas, Alejandro
2016-01-01
The mechanisms underlying masked congruency priming, semantic mechanisms such as semantic activation or non-semantic mechanisms, for example response activation, remain a matter of debate. In order to decide between these alternatives, reaction times (RTs) and event-related potentials (ERPs) were recorded in the present study, while participants performed a semantic categorization task on visible word targets that were preceded either 167 ms (Experiment 1) or 34 ms before (Experiment 2) by briefly presented (33 ms) novel (unpracticed) masked prime words. The primes and targets belonged to different categories (unrelated), or they were either strongly or weakly semantically related category co-exemplars. Behavioral (RT) and electrophysiological masked congruency priming effects were significantly greater for strongly related pairs than for weakly related pairs, indicating a semantic origin of effects. Priming in the latter condition was not statistically reliable. Furthermore, priming effects modulated the N400 event-related potential (ERP) component, an electrophysiological index of semantic processing, but not ERPs in the time range of the N200 component, associated with response conflict and visuo-motor response priming. The present results demonstrate that masked congruency priming from novel prime words also depends on semantic processing of the primes and is not exclusively driven by non-semantic mechanisms such as response activation. Copyright © 2015 Elsevier B.V. All rights reserved.
Semantic-based crossmodal processing during visual suppression.
Cox, Dustin; Hong, Sang Wook
2015-01-01
To reveal the mechanisms underpinning the influence of auditory input on visual awareness, we examine, (1) whether purely semantic-based multisensory integration facilitates the access to visual awareness for familiar visual events, and (2) whether crossmodal semantic priming is the mechanism responsible for the semantic auditory influence on visual awareness. Using continuous flash suppression, we rendered dynamic and familiar visual events (e.g., a video clip of an approaching train) inaccessible to visual awareness. We manipulated the semantic auditory context of the videos by concurrently pairing them with a semantically matching soundtrack (congruent audiovisual condition), a semantically non-matching soundtrack (incongruent audiovisual condition), or with no soundtrack (neutral video-only condition). We found that participants identified the suppressed visual events significantly faster (an earlier breakup of suppression) in the congruent audiovisual condition compared to the incongruent audiovisual condition and video-only condition. However, this facilitatory influence of semantic auditory input was only observed when audiovisual stimulation co-occurred. Our results suggest that the enhanced visual processing with a semantically congruent auditory input occurs due to audiovisual crossmodal processing rather than semantic priming, which may occur even when visual information is not available to visual awareness.
ERIC Educational Resources Information Center
Long, Nicole M.; Kahana, Michael J.
2017-01-01
Although episodic and semantic memory share overlapping neural mechanisms, it remains unclear how our pre-existing semantic associations modulate the formation of new, episodic associations. When freely recalling recently studied words, people rely on both episodic and semantic associations, shown through temporal and semantic clustering of…
The effect of semantic context on prospective memory performance.
Thomas, Brandon J; McBride, Dawn M
2016-01-01
The current study provides evidence for spontaneous processing in prospective memory (PM) or memory for intentions. Discrepancy-plus-search is the spontaneous processing of PM cues via disruptions in processing fluency of ongoing task items. We tested whether this mechanism can be demonstrated in an ongoing rating task with a dominant semantic context. Ongoing task items were manipulated such that the PM cues were members of a semantic category (i.e., Body Parts) that was congruent or discrepant with the dominant semantic category in the ongoing task. Results showed that participants correctly responded to more PM cues when there was a category discrepancy between the PM cues and ongoing task items. Moreover, participants' identification of PM cues was accompanied by faster ongoing task reaction times when PM cues were discrepant with ongoing task items than when they were congruent. These results suggest that a discrepancy-plus-search process supports PM retrieval in certain contexts, and that some discrepancy-plus-search mechanisms may result from the violation of processing expectations within a semantic context.
Web service discovery among large service pools utilising semantic similarity and clustering
NASA Astrophysics Data System (ADS)
Chen, Fuzan; Li, Minqiang; Wu, Harris; Xie, Lingli
2017-03-01
With the rapid development of electronic business, Web services have attracted much attention in recent years. Enterprises can combine individual Web services to provide new value-added services. An emerging challenge is the timely discovery of close matches to service requests among large service pools. In this study, we first define a new semantic similarity measure combining functional similarity and process similarity. We then present a service discovery mechanism that utilises the new semantic similarity measure for service matching. All the published Web services are pre-grouped into functional clusters prior to the matching process. For a user's service request, the discovery mechanism first identifies matching services clusters and then identifies the best matching Web services within these matching clusters. Experimental results show that the proposed semantic discovery mechanism performs better than a conventional lexical similarity-based mechanism.
Automaticity of phonological and semantic processing during visual word recognition.
Pattamadilok, Chotiga; Chanoine, Valérie; Pallier, Christophe; Anton, Jean-Luc; Nazarian, Bruno; Belin, Pascal; Ziegler, Johannes C
2017-04-01
Reading involves activation of phonological and semantic knowledge. Yet, the automaticity of the activation of these representations remains subject to debate. The present study addressed this issue by examining how different brain areas involved in language processing responded to a manipulation of bottom-up (level of visibility) and top-down information (task demands) applied to written words. The analyses showed that the same brain areas were activated in response to written words whether the task was symbol detection, rime detection, or semantic judgment. This network included posterior, temporal and prefrontal regions, which clearly suggests the involvement of orthographic, semantic and phonological/articulatory processing in all tasks. However, we also found interactions between task and stimulus visibility, which reflected the fact that the strength of the neural responses to written words in several high-level language areas varied across tasks. Together, our findings suggest that the involvement of phonological and semantic processing in reading is supported by two complementary mechanisms. First, an automatic mechanism that results from a task-independent spread of activation throughout a network in which orthography is linked to phonology and semantics. Second, a mechanism that further fine-tunes the sensitivity of high-level language areas to the sensory input in a task-dependent manner. Copyright © 2017 Elsevier Inc. All rights reserved.
Haebig, Eileen; Kaushanskaya, Margarita; Ellis Weismer, Susan
2015-12-01
Children with autism spectrum disorder (ASD) and specific language impairment (SLI) often have immature lexical-semantic knowledge; however, the organization of lexical-semantic knowledge is poorly understood. This study examined lexical processing in school-age children with ASD, SLI, and typical development, who were matched on receptive vocabulary. Children completed a lexical decision task, involving words with high and low semantic network sizes and nonwords. Children also completed nonverbal updating and shifting tasks. Children responded more accurately to words from high than from low semantic networks; however, follow-up analyses identified weaker semantic network effects in the SLI group. Additionally, updating and shifting abilities predicted lexical processing, demonstrating similarity in the mechanisms which underlie semantic processing in children with ASD, SLI, and typical development.
Haebig, Eileen; Kaushanskaya, Margarita; Weismer, Susan Ellis
2016-01-01
Children with autism spectrum disorder (ASD) and specific language impairment (SLI) often have immature lexical-semantic knowledge; however, the organization of lexical-semantic knowledge is poorly understood. This study examined lexical processing in school-age children with ASD, SLI, and typical development, who were matched on receptive vocabulary. Children completed a lexical decision task, involving words with high and low semantic network sizes and nonwords. Children also completed nonverbal updating and shifting tasks. Children responded more accurately to words from high than from low semantic networks; however, follow-up analyses identified weaker semantic network effects in the SLI group. Additionally, updating and shifting abilities predicted lexical processing, demonstrating similarity in the mechanisms which underlie semantic processing in children with ASD, SLI, and typical development. PMID:26210517
Influences of motor contexts on the semantic processing of action-related language.
Yang, Jie
2014-09-01
The contribution of the sensory-motor system to the semantic processing of language stimuli is still controversial. To address the issue, the present article focuses on the impact of motor contexts (i.e., comprehenders' motor behaviors, motor-training experiences, and motor expertise) on the semantic processing of action-related language and reviews the relevant behavioral and neuroimaging findings. The existing evidence shows that although motor contexts can influence the semantic processing of action-related concepts, the mechanism of the contextual influences is still far from clear. Future investigations will be needed to clarify (1) whether motor contexts only modulate activity in motor regions, (2) whether the contextual influences are specific to the semantic features of language stimuli, and (3) what factors can determine the facilitatory or inhibitory contextual influences on the semantic processing of action-related language.
Facilitation and interference in naming: A consequence of the same learning process?
Hughes, Julie W; Schnur, Tatiana T
2017-08-01
Our success with naming depends on what we have named previously, a phenomenon thought to reflect learning processes. Repeatedly producing the same name facilitates language production (i.e., repetition priming), whereas producing semantically related names hinders subsequent performance (i.e., semantic interference). Semantic interference is found whether naming categorically related items once (continuous naming) or multiple times (blocked cyclic naming). A computational model suggests that the same learning mechanism responsible for facilitation in repetition creates semantic interference in categorical naming (Oppenheim, Dell, & Schwartz, 2010). Accordingly, we tested the predictions that variability in semantic interference is correlated across categorical naming tasks and is caused by learning, as measured by two repetition priming tasks (picture-picture repetition priming, Exp. 1; definition-picture repetition priming, Exp. 2, e.g., Wheeldon & Monsell, 1992). In Experiment 1 (77 subjects) semantic interference and repetition priming effects were robust, but the results revealed no relationship between semantic interference effects across contexts. Critically, learning (picture-picture repetition priming) did not predict semantic interference effects in either task. We replicated these results in Experiment 2 (81 subjects), finding no relationship between semantic interference effects across tasks or between semantic interference effects and learning (definition-picture repetition priming). We conclude that the changes underlying facilitatory and interfering effects inherent to lexical access are the result of distinct learning processes where multiple mechanisms contribute to semantic interference in naming. Copyright © 2017 Elsevier B.V. All rights reserved.
Long, Nicole M.; Kahana, Michael J.
2016-01-01
Although episodic and semantic memory share overlapping neural mechanisms, it remains unclear how our pre-existing semantic associations modulate the formation of new, episodic associations. When freely recalling recently studied words, people rely on both episodic and semantic associations, shown through temporal and semantic clustering of responses. We asked whether orienting participants toward semantic associations interferes with or facilitates the formation of episodic associations. We compared electroencephalographic (EEG) activity recorded during the encoding of subsequently recalled words that were either temporally or semantically clustered. Participants studied words with or without a concurrent semantic orienting task. We identified a neural signature of successful episodic association formation whereby high frequency EEG activity (HFA, 44 – 100 Hz) overlying left prefrontal regions increased for subsequently temporally clustered words, but only for those words studied without a concurrent semantic orienting task. To confirm that this disruption in the formation of episodic associations was driven by increased semantic processing, we measured the neural correlates of subsequent semantic clustering. We found that HFA increased for subsequently semantically clustered words only for lists with a concurrent semantic orienting task. This dissociation suggests that increased semantic processing of studied items interferes with the neural processes that support the formation of novel episodic associations. PMID:27617775
Long, Nicole M; Kahana, Michael J
2017-02-01
Although episodic and semantic memory share overlapping neural mechanisms, it remains unclear how our pre-existing semantic associations modulate the formation of new, episodic associations. When freely recalling recently studied words, people rely on both episodic and semantic associations, shown through temporal and semantic clustering of responses. We asked whether orienting participants toward semantic associations interferes with or facilitates the formation of episodic associations. We compared electroencephalographic (EEG) activity recorded during the encoding of subsequently recalled words that were either temporally or semantically clustered. Participants studied words with or without a concurrent semantic orienting task. We identified a neural signature of successful episodic association formation whereby high-frequency EEG activity (HFA, 44-100 Hz) overlying left prefrontal regions increased for subsequently temporally clustered words, but only for those words studied without a concurrent semantic orienting task. To confirm that this disruption in the formation of episodic associations was driven by increased semantic processing, we measured the neural correlates of subsequent semantic clustering. We found that HFA increased for subsequently semantically clustered words only for lists with a concurrent semantic orienting task. This dissociation suggests that increased semantic processing of studied items interferes with the neural processes that support the formation of novel episodic associations. (PsycINFO Database Record (c) 2017 APA, all rights reserved).
Is Semantic Priming (Ir)rational? Insights from the Speeded Word Fragment Completion Task
ERIC Educational Resources Information Center
Heyman, Tom; Hutchison, Keith A.; Storms, Gert
2016-01-01
Semantic priming, the phenomenon that a target is recognized faster if it is preceded by a semantically related prime, is a well-established effect. However, the mechanisms producing semantic priming are subject of debate. Several theories assume that the underlying processes are controllable and tuned to prime utility. In contrast, purely…
Levels of word processing and incidental memory: dissociable mechanisms in the temporal lobe.
Castillo, E M; Simos, P G; Davis, R N; Breier, J; Fitzgerald, M E; Papanicolaou, A C
2001-11-16
Word recall is facilitated when deep (e.g. semantic) processing is applied during encoding. This fact raises the question of the existence of specific brain mechanisms supporting different levels of information processing that can modulate incidental memory performance. In this study we obtained spatiotemporal brain activation profiles, using magnetic source imaging, from 10 adult volunteers as they performed a shallow (phonological) processing task and a deep (semantic) processing task. When phonological analysis of the word stimuli into their constituent phonemes was required, activation was largely restricted to the posterior portion of the left superior temporal gyrus (area 22). Conversely, when access to lexical/semantic representations was required, activation was found predominantly in the left middle temporal gyrus and medial temporal cortex. The differential engagement of each mechanism during word encoding was associated with dramatic changes in subsequent incidental memory performance.
Semantic Processing Impairment in Patients with Temporal Lobe Epilepsy
Jaimes-Bautista, Amanda G.; Rodríguez-Camacho, Mario; Martínez-Juárez, Iris E.; Rodríguez-Agudelo, Yaneth
2015-01-01
The impairment in episodic memory system is the best-known cognitive deficit in patients with temporal lobe epilepsy (TLE). Recent studies have shown evidence of semantic disorders, but they have been less studied than episodic memory. The semantic dysfunction in TLE has various cognitive manifestations, such as the presence of language disorders characterized by defects in naming, verbal fluency, or remote semantic information retrieval, which affects the ability of patients to interact with their surroundings. This paper is a review of recent research about the consequences of TLE on semantic processing, considering neuropsychological, electrophysiological, and neuroimaging findings, as well as the functional role of the hippocampus in semantic processing. The evidence from these studies shows disturbance of semantic memory in patients with TLE and supports the theory of declarative memory of the hippocampus. Functional neuroimaging studies show an inefficient compensatory functional reorganization of semantic networks and electrophysiological studies show a lack of N400 effect that could indicate that the deficit in semantic processing in patients with TLE could be due to a failure in the mechanisms of automatic access to lexicon. PMID:26257956
Martins, Ruben; Simard, France; Monchi, Oury
2014-01-01
It is widely believed that language function tends to show little age-related performance decline. Indeed, some older individuals seem to use compensatory mechanisms to maintain a high level of performance when submitted to lexical tasks. However, how these mechanisms affect cortical and subcortical activity during semantic and phonological processing has not been extensively explored. The purpose of this study was to look at the effect of healthy aging on cortico-subcortical routes related to semantic and phonological processing using a lexical analogue of the Wisconsin Cart-Sorting Task. Our results indicate that while young adults tend to show increased activity in the ventrolateral prefrontal cortex, the dorsolateral prefrontal cortex, the fusiform gyrus, the ventral temporal lobe and the caudate nucleus during semantic decisions and in the posterior Broca's area (area 44), the temporal lobe (area 37), the temporoparietal junction (area 40) and the motor cortical regions during phonological decisions, older individuals showed increased activity in the dorsolateral prefrontal cortex and motor cortical regions during both semantic and phonological decisions. Furthermore, when semantic and phonological decisions were contrasted with each other, younger individuals showed significant brain activity differences in several regions while older individuals did not. Therefore, in older individuals, the semantic and phonological routes seem to merge into a single pathway. These findings represent most probably neural reserve/compensation mechanisms, characterized by a decrease in specificity, on which the elderly rely to maintain an adequate level of performance.
Britt, Allison E.; Ferrara, Casey; Mirman, Daniel
2016-01-01
Producing a word requires selecting among a set of similar alternatives. When many semantically related items become activated, the difficulty of the selection process is increased. Experiment 1 tested naming of items with either multiple synonymous labels (“Alternate Names,” e.g., gift/present) or closely semantically related but non-equivalent responses (“Near Semantic Neighbors,” e.g., jam/jelly). Picture naming was fastest and most accurate for pictures with only one label (“High Name Agreement”), slower and less accurate in the Alternate Names condition, and slowest and least accurate in the Near Semantic Neighbors condition. These results suggest that selection mechanisms in picture naming operate at two distinct levels of processing: selecting between similar but non-equivalent names requires two selection processes (semantic and lexical), whereas selecting among equivalent names only requires one selection at the lexical level. Experiment 2 examined how these selection mechanisms are affected by normal aging and found that older adults had significantly more difficulty in the Near Semantic Neighbors condition, but not in the Alternate Names condition. This suggests that aging affects semantic processing and selection more strongly than it affects lexical selection. Experiment 3 examined the role of the left inferior frontal gyrus (LIFG) in these selection processes by testing individuals with aphasia secondary to stroke lesions that either affected the LIFG or spared it. Surprisingly, there was no interaction between condition and lesion group: the presence of LIFG damage was not associated with substantively worse naming performance for pictures with multiple acceptable labels. These results are not consistent with a simple view of LIFG as the locus of lexical selection and suggest a more nuanced view of the neural basis of lexical and semantic selection. PMID:27458393
Specifying the Mechanisms in a Levels-of-Processing Approach to Memory
ERIC Educational Resources Information Center
Klein, Kitty; Saltz, Eli
1976-01-01
Craik and Lockhart's (1972) levels-of-processing theory has spurred new interest in semantic processing as a factor in memory, particularly with regard to free recall following incidental learning. However, their formulation lacks a clear description of the operations and structures involved in semantic processing. This research outlines a…
Predictions interact with missing sensory evidence in semantic processing areas.
Scharinger, Mathias; Bendixen, Alexandra; Herrmann, Björn; Henry, Molly J; Mildner, Toralf; Obleser, Jonas
2016-02-01
Human brain function draws on predictive mechanisms that exploit higher-level context during lower-level perception. These mechanisms are particularly relevant for situations in which sensory information is compromised or incomplete, as for example in natural speech where speech segments may be omitted due to sluggish articulation. Here, we investigate which brain areas support the processing of incomplete words that were predictable from semantic context, compared with incomplete words that were unpredictable. During functional magnetic resonance imaging (fMRI), participants heard sentences that orthogonally varied in predictability (semantically predictable vs. unpredictable) and completeness (complete vs. incomplete, i.e. missing their final consonant cluster). The effects of predictability and completeness interacted in heteromodal semantic processing areas, including left angular gyrus and left precuneus, where activity did not differ between complete and incomplete words when they were predictable. The same regions showed stronger activity for incomplete than for complete words when they were unpredictable. The interaction pattern suggests that for highly predictable words, the speech signal does not need to be complete for neural processing in semantic processing areas. Hum Brain Mapp 37:704-716, 2016. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.
2012-01-01
Background Previous attempts to investigate the effects of semantic tasks on picture naming in both healthy controls and people with aphasia have typically been confounded by inclusion of the phonological word form of the target item. As a result, it is difficult to isolate any facilitatory effects of a semantically-focused task to either lexical-semantic or phonological processing. This functional magnetic resonance imaging (fMRI) study examined the neurological mechanisms underlying short-term (within minutes) and long-term (within days) facilitation of naming from a semantic task that did not include the phonological word form, in both participants with aphasia and age-matched controls. Results Behavioral results showed that a semantic task that did not include the phonological word form can successfully facilitate subsequent picture naming in both healthy controls and individuals with aphasia. The whole brain neuroimaging results for control participants identified a repetition enhancement effect in the short-term, with modulation of activity found in regions that have not traditionally been associated with semantic processing, such as the right lingual gyrus (extending to the precuneus) and the left inferior occipital gyrus (extending to the fusiform gyrus). In contrast, the participants with aphasia showed significant differences in activation over both the short- and the long-term for facilitated items, predominantly within either left hemisphere regions linked to semantic processing or their right hemisphere homologues. Conclusions For control participants in this study, the short-lived facilitation effects of a prior semantic task that did not include the phonological word form were primarily driven by object priming and episodic memory mechanisms. However, facilitation effects appeared to engage a predominantly semantic network in participants with aphasia over both the short- and the long-term. The findings of the present study also suggest that right hemisphere involvement may be supportive rather than maladaptive, and that a large distributed perisylvian network in both cerebral hemispheres supports the facilitation of naming in individuals with aphasia. PMID:22882806
Structure and Deterioration of Semantic Memory: A Neuropsychological and Computational Investigation
ERIC Educational Resources Information Center
Rogers, Timothy T.; Lambon Ralph, Matthew A.; Garrard, Peter; Bozeat, Sasha; McClelland, James L.; Hodges, John R.; Patterson, Karalyn
2004-01-01
Wernicke (1900, as cited in G. H. Eggert, 1977) suggested that semantic knowledge arises from the interaction of perceptual representations of objects and words. The authors present a parallel distributed processing implementation of this theory, in which semantic representations emerge from mechanisms that acquire the mappings between visual…
Suggestion-Induced Modulation of Semantic Priming during Functional Magnetic Resonance Imaging
Ulrich, Martin; Kiefer, Markus; Bongartz, Walter; Grön, Georg; Hoenig, Klaus
2015-01-01
Using functional magnetic resonance imaging during a primed visual lexical decision task, we investigated the neural and functional mechanisms underlying modulations of semantic word processing through hypnotic suggestions aimed at altering lexical processing of primes. The priming task was to discriminate between target words and pseudowords presented 200 ms after the prime word which was semantically related or unrelated to the target. In a counterbalanced study design, each participant performed the task once at normal wakefulness and once after the administration of hypnotic suggestions to perceive the prime as a meaningless symbol of a foreign language. Neural correlates of priming were defined as significantly lower activations upon semantically related compared to unrelated trials. We found significant suggestive treatment-induced reductions in neural priming, albeit irrespective of the degree of suggestibility. Neural priming was attenuated upon suggestive treatment compared with normal wakefulness in brain regions supporting automatic (fusiform gyrus) and controlled semantic processing (superior and middle temporal gyri, pre- and postcentral gyri, and supplementary motor area). Hence, suggestions reduced semantic word processing by conjointly dampening both automatic and strategic semantic processes. PMID:25923740
Hoffman, Paul
2018-05-25
Semantic cognition refers to the appropriate use of acquired knowledge about the world. This requires representation of knowledge as well as control processes which ensure that currently-relevant aspects of knowledge are retrieved and selected. Although these abilities can be impaired selectively following brain damage, the relationship between them in healthy individuals is unclear. It is also commonly assumed that semantic cognition is preserved in later life, because older people have greater reserves of knowledge. However, this claim overlooks the possibility of decline in semantic control processes. Here, semantic cognition was assessed in 100 young and older adults. Despite having a broader knowledge base, older people showed specific impairments in semantic control, performing more poorly than young people when selecting among competing semantic representations. Conversely, they showed preserved controlled retrieval of less salient information from the semantic store. Breadth of semantic knowledge was positively correlated with controlled retrieval but was unrelated to semantic selection ability, which was instead correlated with non-semantic executive function. These findings indicate that three distinct elements contribute to semantic cognition: semantic representations that accumulate throughout the lifespan, processes for controlled retrieval of less salient semantic information, which appear age-invariant, and mechanisms for selecting task-relevant aspects of semantic knowledge, which decline with age and may relate more closely to domain-general executive control.
Jiang, Jun; Zhang, Qinglin; Van Gaal, Simon
2015-01-01
Although previous work has shown that conflict can be detected in the absence of awareness, it is unknown how different sources of conflict (i.e., semantic, response) are processed in the human brain and whether these processes are differently modulated by conflict awareness. To explore this issue, we extracted oscillatory power dynamics from electroencephalographic (EEG) data recorded while human participants performed a modified version of the Stroop task. Crucially, in this task conflict awareness was manipulated by masking a conflict-inducing color word preceding a color patch target. We isolated semantic from response conflict by introducing four color words/patches, of which two were matched to the same response. We observed that both semantic as well as response conflict were associated with mid-frontal theta-band and parietal alpha-band power modulations, irrespective of the level of conflict awareness (high vs. low), although awareness of conflict increased these conflict-related power dynamics. These results show that both semantic and response conflict can be processed in the human brain and suggest that the neural oscillatory mechanisms in EEG reflect mainly “domain general” conflict processing mechanisms, instead of conflict source specific effects. PMID:26169473
Jiang, Jun; Zhang, Qinglin; Van Gaal, Simon
2015-07-14
Although previous work has shown that conflict can be detected in the absence of awareness, it is unknown how different sources of conflict (i.e., semantic, response) are processed in the human brain and whether these processes are differently modulated by conflict awareness. To explore this issue, we extracted oscillatory power dynamics from electroencephalographic (EEG) data recorded while human participants performed a modified version of the Stroop task. Crucially, in this task conflict awareness was manipulated by masking a conflict-inducing color word preceding a color patch target. We isolated semantic from response conflict by introducing four color words/patches, of which two were matched to the same response. We observed that both semantic as well as response conflict were associated with mid-frontal theta-band and parietal alpha-band power modulations, irrespective of the level of conflict awareness (high vs. low), although awareness of conflict increased these conflict-related power dynamics. These results show that both semantic and response conflict can be processed in the human brain and suggest that the neural oscillatory mechanisms in EEG reflect mainly "domain general" conflict processing mechanisms, instead of conflict source specific effects.
Stone, Anna
2012-05-01
A centre-surround attentional mechanism was proposed by Carr and Dagenbach (Journal of Experimental Psychology: Learning, Memory, and Cognition 16: 341-350, 1990) to account for their observations of negative semantic priming from hard-to-perceive primes. Their mechanism cannot account for the observation of negative semantic priming when primes are clearly visible. Three experiments (Ns = 30, 46, and 30) used a familiarity decision with names of famous people, preceded by a prime name with the same occupation as the target or with a different occupation. Negative semantic priming was observed at a 150- or 200-ms SOA, with positive priming at shorter (50-ms) and longer (1,000-ms) SOAs. In Experiment 3, we verified that the primes were easily recognisable in the priming task at an SOA that yielded negative semantic priming, which cannot be predicted by the original centre-surround mechanism. A modified version is proposed that explains transiently negative semantic priming by proposing that centre-surround inhibition is a normal, automatically invoked aspect of the semantic processing of visually presented famous names.
Kovalenko, Lyudmyla Y; Chaumon, Maximilien; Busch, Niko A
2012-07-01
Semantic processing of verbal and visual stimuli has been investigated in semantic violation or semantic priming paradigms in which a stimulus is either related or unrelated to a previously established semantic context. A hallmark of semantic priming is the N400 event-related potential (ERP)--a deflection of the ERP that is more negative for semantically unrelated target stimuli. The majority of studies investigating the N400 and semantic integration have used verbal material (words or sentences), and standardized stimulus sets with norms for semantic relatedness have been published for verbal but not for visual material. However, semantic processing of visual objects (as opposed to words) is an important issue in research on visual cognition. In this study, we present a set of 800 pairs of semantically related and unrelated visual objects. The images were rated for semantic relatedness by a sample of 132 participants. Furthermore, we analyzed low-level image properties and matched the two semantic categories according to these features. An ERP study confirmed the suitability of this image set for evoking a robust N400 effect of semantic integration. Additionally, using a general linear modeling approach of single-trial data, we also demonstrate that low-level visual image properties and semantic relatedness are in fact only minimally overlapping. The image set is available for download from the authors' website. We expect that the image set will facilitate studies investigating mechanisms of semantic and contextual processing of visual stimuli.
Liegel, Nathalie; Zovko, Monika; Wentura, Dirk
2017-01-01
Abstract Research with the evaluative priming paradigm has shown that affective evaluation processes reliably influence cognition and behavior, even when triggered outside awareness. However, the precise mechanisms underlying such subliminal evaluative priming effects, response activation vs semantic processing, are matter of a debate. In this study, we determined the relative contribution of semantic processing and response activation to masked evaluative priming with pictures and words. To this end, we investigated the modulation of masked pictorial vs verbal priming by previously activated perceptual vs semantic task sets and assessed the electrophysiological correlates of priming using event-related potential (ERP) recordings. Behavioral and electrophysiological effects showed a differential modulation of pictorial and verbal subliminal priming by previously activated task sets: Pictorial priming was only observed during the perceptual but not during the semantic task set. Verbal priming, in contrast, was found when either task set was activated. Furthermore, only verbal priming was associated with a modulation of the N400 ERP component, an index of semantic processing, whereas a priming-related modulation of earlier ERPs, indexing visuo-motor S-R activation, was found for both picture and words. The results thus demonstrate that different neuro-cognitive processes contribute to unconscious evaluative priming depending on the stimulus format. PMID:27998994
Lerner, Itamar; Bentin, Shlomo; Shriki, Oren
2014-01-01
Semantic priming has long been recognized to reflect, along with automatic semantic mechanisms, the contribution of controlled strategies. However, previous theories of controlled priming were mostly qualitative, lacking common grounds with modern mathematical models of automatic priming based on neural networks. Recently, we have introduced a novel attractor network model of automatic semantic priming with latching dynamics. Here, we extend this work to show how the same model can also account for important findings regarding controlled processes. Assuming the rate of semantic transitions in the network can be adapted using simple reinforcement learning, we show how basic findings attributed to controlled processes in priming can be achieved, including their dependency on stimulus onset asynchrony and relatedness proportion and their unique effect on associative, category-exemplar, mediated and backward prime-target relations. We discuss how our mechanism relates to the classic expectancy theory and how it can be further extended in future developments of the model. PMID:24890261
Yeari, Menahem; van den Broek, Paul
2016-09-01
It is a well-accepted view that the prior semantic (general) knowledge that readers possess plays a central role in reading comprehension. Nevertheless, computational models of reading comprehension have not integrated the simulation of semantic knowledge and online comprehension processes under a unified mathematical algorithm. The present article introduces a computational model that integrates the landscape model of comprehension processes with latent semantic analysis representation of semantic knowledge. In three sets of simulations of previous behavioral findings, the integrated model successfully simulated the activation and attenuation of predictive and bridging inferences during reading, as well as centrality estimations and recall of textual information after reading. Analyses of the computational results revealed new theoretical insights regarding the underlying mechanisms of the various comprehension phenomena.
Inhibitory mechanism of the matching heuristic in syllogistic reasoning.
Tse, Ping Ping; Moreno Ríos, Sergio; García-Madruga, Juan Antonio; Bajo Molina, María Teresa
2014-11-01
A number of heuristic-based hypotheses have been proposed to explain how people solve syllogisms with automatic processes. In particular, the matching heuristic employs the congruency of the quantifiers in a syllogism—by matching the quantifier of the conclusion with those of the two premises. When the heuristic leads to an invalid conclusion, successful solving of these conflict problems requires the inhibition of automatic heuristic processing. Accordingly, if the automatic processing were based on processing the set of quantifiers, no semantic contents would be inhibited. The mental model theory, however, suggests that people reason using mental models, which always involves semantic processing. Therefore, whatever inhibition occurs in the processing implies the inhibition of the semantic contents. We manipulated the validity of the syllogism and the congruency of the quantifier of its conclusion with those of the two premises according to the matching heuristic. A subsequent lexical decision task (LDT) with related words in the conclusion was used to test any inhibition of the semantic contents after each syllogistic evaluation trial. In the LDT, the facilitation effect of semantic priming diminished after correctly solved conflict syllogisms (match-invalid or mismatch-valid), but was intact after no-conflict syllogisms. The results suggest the involvement of an inhibitory mechanism of semantic contents in syllogistic reasoning when there is a conflict between the output of the syntactic heuristic and actual validity. Our results do not support a uniquely syntactic process of syllogistic reasoning but fit with the predictions based on mental model theory. Copyright © 2014 Elsevier B.V. All rights reserved.
Effect of semantic coherence on episodic memory processes in schizophrenia.
Battal Merlet, Lâle; Morel, Shasha; Blanchet, Alain; Lockman, Hazlin; Kostova, Milena
2014-12-30
Schizophrenia is associated with severe episodic retrieval impairment. The aim of this study was to investigate the possibility that schizophrenia patients could improve their familiarity and/or recollection processes by manipulating the semantic coherence of to-be-learned stimuli and using deep encoding. Twelve schizophrenia patients and 12 healthy controls of comparable age, gender, and educational level undertook an associative recognition memory task. The stimuli consisted of pairs of words that were either related or unrelated to a given semantic category. The process dissociation procedure was used to calculate the estimates of familiarity and recollection processes. Both groups showed enhanced memory performances for semantically related words. However, in healthy controls, semantic relatedness led to enhanced recollection, while in schizophrenia patients, it induced enhanced familiarity. The familiarity estimates for related words were comparable in both groups, indicating that familiarity could be used as a compensatory mechanism in schizophrenia patients. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
de Wit, Bianca; Kinoshita, Sachiko
2015-01-01
The magnitude of the semantic priming effect is known to increase as the proportion of related prime-target pairs in an experiment increases. This relatedness proportion (RP) effect was studied in a lexical decision task at a short prime-target stimulus onset asynchrony (240 ms), which is widely assumed to preclude strategic prospective usage of the prime. The analysis of the reaction time (RT) distribution suggested that the observed RP effect reflected a modulation of a retrospective semantic matching process. The pattern of the RP effect on the RT distribution found here is contrasted to that reported in De Wit and Kinoshita's (2014) semantic categorization study, and it is concluded that the RP effect is driven by different underlying mechanisms in lexical decision and semantic categorization.
Processing changes when listening to foreign-accented speech
Romero-Rivas, Carlos; Martin, Clara D.; Costa, Albert
2015-01-01
This study investigates the mechanisms responsible for fast changes in processing foreign-accented speech. Event Related brain Potentials (ERPs) were obtained while native speakers of Spanish listened to native and foreign-accented speakers of Spanish. We observed a less positive P200 component for foreign-accented speech relative to native speech comprehension. This suggests that the extraction of spectral information and other important acoustic features was hampered during foreign-accented speech comprehension. However, the amplitude of the N400 component for foreign-accented speech comprehension decreased across the experiment, suggesting the use of a higher level, lexical mechanism. Furthermore, during native speech comprehension, semantic violations in the critical words elicited an N400 effect followed by a late positivity. During foreign-accented speech comprehension, semantic violations only elicited an N400 effect. Overall, our results suggest that, despite a lack of improvement in phonetic discrimination, native listeners experience changes at lexical-semantic levels of processing after brief exposure to foreign-accented speech. Moreover, these results suggest that lexical access, semantic integration and linguistic re-analysis processes are permeable to external factors, such as the accent of the speaker. PMID:25859209
Auditory conflict and congruence in frontotemporal dementia.
Clark, Camilla N; Nicholas, Jennifer M; Agustus, Jennifer L; Hardy, Christopher J D; Russell, Lucy L; Brotherhood, Emilie V; Dick, Katrina M; Marshall, Charles R; Mummery, Catherine J; Rohrer, Jonathan D; Warren, Jason D
2017-09-01
Impaired analysis of signal conflict and congruence may contribute to diverse socio-emotional symptoms in frontotemporal dementias, however the underlying mechanisms have not been defined. Here we addressed this issue in patients with behavioural variant frontotemporal dementia (bvFTD; n = 19) and semantic dementia (SD; n = 10) relative to healthy older individuals (n = 20). We created auditory scenes in which semantic and emotional congruity of constituent sounds were independently probed; associated tasks controlled for auditory perceptual similarity, scene parsing and semantic competence. Neuroanatomical correlates of auditory congruity processing were assessed using voxel-based morphometry. Relative to healthy controls, both the bvFTD and SD groups had impaired semantic and emotional congruity processing (after taking auditory control task performance into account) and reduced affective integration of sounds into scenes. Grey matter correlates of auditory semantic congruity processing were identified in distributed regions encompassing prefrontal, parieto-temporal and insular areas and correlates of auditory emotional congruity in partly overlapping temporal, insular and striatal regions. Our findings suggest that decoding of auditory signal relatedness may probe a generic cognitive mechanism and neural architecture underpinning frontotemporal dementia syndromes. Copyright © 2017 The Author(s). Published by Elsevier Ltd.. All rights reserved.
Peelle, Jonathan E.; Bonner, Michael F.; Grossman, Murray
2016-01-01
A defining aspect of human cognition is the ability to integrate conceptual information into complex semantic combinations. For example, we can comprehend “plaid” and “jacket” as individual concepts, but we can also effortlessly combine these concepts to form the semantic representation of “plaid jacket.” Many neuroanatomic models of semantic memory propose that heteromodal cortical hubs integrate distributed semantic features into coherent representations. However, little work has specifically examined these proposed integrative mechanisms and the causal role of these regions in semantic integration. Here, we test the hypothesis that the angular gyrus (AG) is critical for integrating semantic information by applying high-definition transcranial direct current stimulation (tDCS) to an fMRI-guided region-of-interest in the left AG. We found that anodal stimulation to the left AG modulated semantic integration but had no effect on a letter-string control task. Specifically, anodal stimulation to the left AG resulted in faster comprehension of semantically meaningful combinations like “tiny radish” relative to non-meaningful combinations, such as “fast blueberry,” when compared to the effects observed during sham stimulation and stimulation to a right-hemisphere control brain region. Moreover, the size of the effect from brain stimulation correlated with the degree of semantic coherence between the word pairs. These findings demonstrate that the left AG plays a causal role in the integration of lexical-semantic information, and that high-definition tDCS to an associative cortical hub can selectively modulate integrative processes in semantic memory. SIGNIFICANCE STATEMENT A major goal of neuroscience is to understand the neural basis of behaviors that are fundamental to human intelligence. One essential behavior is the ability to integrate conceptual knowledge from semantic memory, allowing us to construct an almost unlimited number of complex concepts from a limited set of basic constituents (e.g., “leaf” and “wet” can be combined into the more complex representation “wet leaf”). Here, we present a novel approach to studying integrative processes in semantic memory by applying focal brain stimulation to a heteromodal cortical hub implicated in semantic processing. Our findings demonstrate a causal role of the left angular gyrus in lexical-semantic integration and provide motivation for novel therapeutic applications in patients with lexical-semantic deficits. PMID:27030767
Price, Amy Rose; Peelle, Jonathan E; Bonner, Michael F; Grossman, Murray; Hamilton, Roy H
2016-03-30
A defining aspect of human cognition is the ability to integrate conceptual information into complex semantic combinations. For example, we can comprehend "plaid" and "jacket" as individual concepts, but we can also effortlessly combine these concepts to form the semantic representation of "plaid jacket." Many neuroanatomic models of semantic memory propose that heteromodal cortical hubs integrate distributed semantic features into coherent representations. However, little work has specifically examined these proposed integrative mechanisms and the causal role of these regions in semantic integration. Here, we test the hypothesis that the angular gyrus (AG) is critical for integrating semantic information by applying high-definition transcranial direct current stimulation (tDCS) to an fMRI-guided region-of-interest in the left AG. We found that anodal stimulation to the left AG modulated semantic integration but had no effect on a letter-string control task. Specifically, anodal stimulation to the left AG resulted in faster comprehension of semantically meaningful combinations like "tiny radish" relative to non-meaningful combinations, such as "fast blueberry," when compared to the effects observed during sham stimulation and stimulation to a right-hemisphere control brain region. Moreover, the size of the effect from brain stimulation correlated with the degree of semantic coherence between the word pairs. These findings demonstrate that the left AG plays a causal role in the integration of lexical-semantic information, and that high-definition tDCS to an associative cortical hub can selectively modulate integrative processes in semantic memory. A major goal of neuroscience is to understand the neural basis of behaviors that are fundamental to human intelligence. One essential behavior is the ability to integrate conceptual knowledge from semantic memory, allowing us to construct an almost unlimited number of complex concepts from a limited set of basic constituents (e.g., "leaf" and "wet" can be combined into the more complex representation "wet leaf"). Here, we present a novel approach to studying integrative processes in semantic memory by applying focal brain stimulation to a heteromodal cortical hub implicated in semantic processing. Our findings demonstrate a causal role of the left angular gyrus in lexical-semantic integration and provide motivation for novel therapeutic applications in patients with lexical-semantic deficits. Copyright © 2016 the authors 0270-6474/16/363829-10$15.00/0.
Categorizing words through semantic memory navigation
NASA Astrophysics Data System (ADS)
Borge-Holthoefer, J.; Arenas, A.
2010-03-01
Semantic memory is the cognitive system devoted to storage and retrieval of conceptual knowledge. Empirical data indicate that semantic memory is organized in a network structure. Everyday experience shows that word search and retrieval processes provide fluent and coherent speech, i.e. are efficient. This implies either that semantic memory encodes, besides thousands of words, different kind of links for different relationships (introducing greater complexity and storage costs), or that the structure evolves facilitating the differentiation between long-lasting semantic relations from incidental, phenomenological ones. Assuming the latter possibility, we explore a mechanism to disentangle the underlying semantic backbone which comprises conceptual structure (extraction of categorical relations between pairs of words), from the rest of information present in the structure. To this end, we first present and characterize an empirical data set modeled as a network, then we simulate a stochastic cognitive navigation on this topology. We schematize this latter process as uncorrelated random walks from node to node, which converge to a feature vectors network. By doing so we both introduce a novel mechanism for information retrieval, and point at the problem of category formation in close connection to linguistic and non-linguistic experience.
Kiefer, Markus; Liegel, Nathalie; Zovko, Monika; Wentura, Dirk
2017-04-01
Research with the evaluative priming paradigm has shown that affective evaluation processes reliably influence cognition and behavior, even when triggered outside awareness. However, the precise mechanisms underlying such subliminal evaluative priming effects, response activation vs semantic processing, are matter of a debate. In this study, we determined the relative contribution of semantic processing and response activation to masked evaluative priming with pictures and words. To this end, we investigated the modulation of masked pictorial vs verbal priming by previously activated perceptual vs semantic task sets and assessed the electrophysiological correlates of priming using event-related potential (ERP) recordings. Behavioral and electrophysiological effects showed a differential modulation of pictorial and verbal subliminal priming by previously activated task sets: Pictorial priming was only observed during the perceptual but not during the semantic task set. Verbal priming, in contrast, was found when either task set was activated. Furthermore, only verbal priming was associated with a modulation of the N400 ERP component, an index of semantic processing, whereas a priming-related modulation of earlier ERPs, indexing visuo-motor S-R activation, was found for both picture and words. The results thus demonstrate that different neuro-cognitive processes contribute to unconscious evaluative priming depending on the stimulus format. © The Author (2016). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.
Neural correlates of successful semantic processing during propofol sedation.
Adapa, Ram M; Davis, Matthew H; Stamatakis, Emmanuel A; Absalom, Anthony R; Menon, David K
2014-07-01
Sedation has a graded effect on brain responses to auditory stimuli: perceptual processing persists at sedation levels that attenuate more complex processing. We used fMRI in healthy volunteers sedated with propofol to assess changes in neural responses to spoken stimuli. Volunteers were scanned awake, sedated, and during recovery, while making perceptual or semantic decisions about nonspeech sounds or spoken words respectively. Sedation caused increased error rates and response times, and differentially affected responses to words in the left inferior frontal gyrus (LIFG) and the left inferior temporal gyrus (LITG). Activity in LIFG regions putatively associated with semantic processing, was significantly reduced by sedation despite sedated volunteers continuing to make accurate semantic decisions. Instead, LITG activity was preserved for words greater than nonspeech sounds and may therefore be associated with persistent semantic processing during the deepest levels of sedation. These results suggest functionally distinct contributions of frontal and temporal regions to semantic decision making. These results have implications for functional imaging studies of language, for understanding mechanisms of impaired speech comprehension in postoperative patients with residual levels of anesthetic, and may contribute to the development of frameworks against which EEG based monitors could be calibrated to detect awareness under anesthesia. Copyright © 2013 Wiley Periodicals, Inc.
Semi-automated ontology generation and evolution
NASA Astrophysics Data System (ADS)
Stirtzinger, Anthony P.; Anken, Craig S.
2009-05-01
Extending the notion of data models or object models, ontology can provide rich semantic definition not only to the meta-data but also to the instance data of domain knowledge, making these semantic definitions available in machine readable form. However, the generation of an effective ontology is a difficult task involving considerable labor and skill. This paper discusses an Ontology Generation and Evolution Processor (OGEP) aimed at automating this process, only requesting user input when un-resolvable ambiguous situations occur. OGEP directly attacks the main barrier which prevents automated (or self learning) ontology generation: the ability to understand the meaning of artifacts and the relationships the artifacts have to the domain space. OGEP leverages existing lexical to ontological mappings in the form of WordNet, and Suggested Upper Merged Ontology (SUMO) integrated with a semantic pattern-based structure referred to as the Semantic Grounding Mechanism (SGM) and implemented as a Corpus Reasoner. The OGEP processing is initiated by a Corpus Parser performing a lexical analysis of the corpus, reading in a document (or corpus) and preparing it for processing by annotating words and phrases. After the Corpus Parser is done, the Corpus Reasoner uses the parts of speech output to determine the semantic meaning of a word or phrase. The Corpus Reasoner is the crux of the OGEP system, analyzing, extrapolating, and evolving data from free text into cohesive semantic relationships. The Semantic Grounding Mechanism provides a basis for identifying and mapping semantic relationships. By blending together the WordNet lexicon and SUMO ontological layout, the SGM is given breadth and depth in its ability to extrapolate semantic relationships between domain entities. The combination of all these components results in an innovative approach to user assisted semantic-based ontology generation. This paper will describe the OGEP technology in the context of the architectural components referenced above and identify a potential technology transition path to Scott AFB's Tanker Airlift Control Center (TACC) which serves as the Air Operations Center (AOC) for the Air Mobility Command (AMC).
Maxfield, Nathan D.; Pizon-Moore, Angela A.; Frisch, Stefan A.; Constantine, Joseph L.
2011-01-01
Objective Our aim was to investigate how semantic and phonological information is processed in adults who stutter (AWS) preparing to name pictures, following-up a report that event-related potentials (ERPs) in AWS evidenced atypical semantic picture-word priming (Maxfield et al., 2010). Methods Fourteen AWS and 14 typically-fluent adults (TFA) participated. Pictures, named at a delay, were followed by probe words. Design elements not used in Maxfield et al. (2010) let us evaluate both phonological and semantic picture-word priming. Results TFA evidenced typical priming effects in probe-elicited ERPs. AWS evidenced diminished Semantic priming, and reverse Phonological N400 priming. Conclusions Results point to atypical processing of semantic and phonological information in AWS. Discussion considers whether AWS ERP effects reflect unstable activation of target label semantic and phonological representations, strategic inhibition of target label phonological neighbors, and/or phonological label-probe competition. Significance Results raise questions about how mechanisms that regulate activation spreading operate in AWS. PMID:22055837
Riès, Stephanie K; Dhillon, Rummit K; Clarke, Alex; King-Stephens, David; Laxer, Kenneth D; Weber, Peter B; Kuperman, Rachel A; Auguste, Kurtis I; Brunner, Peter; Schalk, Gerwin; Lin, Jack J; Parvizi, Josef; Crone, Nathan E; Dronkers, Nina F; Knight, Robert T
2017-06-06
Word retrieval is core to language production and relies on complementary processes: the rapid activation of lexical and conceptual representations and word selection, which chooses the correct word among semantically related competitors. Lexical and conceptual activation is measured by semantic priming. In contrast, word selection is indexed by semantic interference and is hampered in semantically homogeneous (HOM) contexts. We examined the spatiotemporal dynamics of these complementary processes in a picture naming task with blocks of semantically heterogeneous (HET) or HOM stimuli. We used electrocorticography data obtained from frontal and temporal cortices, permitting detailed spatiotemporal analysis of word retrieval processes. A semantic interference effect was observed with naming latencies longer in HOM versus HET blocks. Cortical response strength as indexed by high-frequency band (HFB) activity (70-150 Hz) amplitude revealed effects linked to lexical-semantic activation and word selection observed in widespread regions of the cortical mantle. Depending on the subsecond timing and cortical region, HFB indexed semantic interference (i.e., more activity in HOM than HET blocks) or semantic priming effects (i.e., more activity in HET than HOM blocks). These effects overlapped in time and space in the left posterior inferior temporal gyrus and the left prefrontal cortex. The data do not support a modular view of word retrieval in speech production but rather support substantial overlap of lexical-semantic activation and word selection mechanisms in the brain.
ERIC Educational Resources Information Center
Borowsky, Ron; Besner, Derek
2006-01-01
D. C. Plaut and J. R. Booth presented a parallel distributed processing model that purports to simulate human lexical decision performance. This model (and D. C. Plaut, 1995) offers a single mechanism account of the pattern of factor effects on reaction time (RT) between semantic priming, word frequency, and stimulus quality without requiring a…
Heisz, Jennifer J; Vakorin, Vasily; Ross, Bernhard; Levine, Brian; McIntosh, Anthony R
2014-01-01
Episodic memory and semantic memory produce very different subjective experiences yet rely on overlapping networks of brain regions for processing. Traditional approaches for characterizing functional brain networks emphasize static states of function and thus are blind to the dynamic information processing within and across brain regions. This study used information theoretic measures of entropy to quantify changes in the complexity of the brain's response as measured by magnetoencephalography while participants listened to audio recordings describing past personal episodic and general semantic events. Personal episodic recordings evoked richer subjective mnemonic experiences and more complex brain responses than general semantic recordings. Critically, we observed a trade-off between the relative contribution of local versus distributed entropy, such that personal episodic recordings produced relatively more local entropy whereas general semantic recordings produced relatively more distributed entropy. Changes in the relative contributions of local and distributed entropy to the total complexity of the system provides a potential mechanism that allows the same network of brain regions to represent cognitive information as either specific episodes or more general semantic knowledge.
Explaining semantic short-term memory deficits: Evidence for the critical role of semantic control
Hoffman, Paul; Jefferies, Elizabeth; Lambon Ralph, Matthew A.
2011-01-01
Patients with apparently selective short-term memory (STM) deficits for semantic information have played an important role in developing multi-store theories of STM and challenge the idea that verbal STM is supported by maintaining activation in the language system. We propose that semantic STM deficits are not as selective as previously thought and can occur as a result of mild disruption to semantic control processes, i.e., mechanisms that bias semantic processing towards task-relevant aspects of knowledge and away from irrelevant information. We tested three semantic STM patients with tasks that tapped four aspects of semantic control: (i) resolving ambiguity between word meanings, (ii) sensitivity to cues, (iii) ignoring irrelevant information and (iv) detecting weak semantic associations. All were impaired in conditions requiring more semantic control, irrespective of the STM demands of the task, suggesting a mild, but task-general, deficit in regulating semantic knowledge. This mild deficit has a disproportionate effect on STM tasks because they have high intrinsic control demands: in STM tasks, control is required to keep information active when it is no longer available in the environment and to manage competition between items held in memory simultaneously. By re-interpreting the core deficit in semantic STM patients in this way, we are able to explain their apparently selective impairment without the need for a specialised STM store. Instead, we argue that semantic STM patients occupy the mildest end of spectrum of semantic control disorders. PMID:21195105
ERIC Educational Resources Information Center
Eberhard-Moscicka, Aleksandra K.; Jost, Lea B.; Raith, Margit; Maurer, Urs
2015-01-01
During reading acquisition children learn to recognize orthographic stimuli and link them to phonology and semantics. The present study investigated neurocognitive processes of learning to read after one year of schooling. We aimed to elucidate the cognitive processes underlying neural tuning for print that has been shown to play an important role…
The shared neural basis of music and language.
Yu, Mengxia; Xu, Miao; Li, Xueting; Chen, Zhencai; Song, Yiying; Liu, Jia
2017-08-15
Human musical ability is proposed to play a key phylogenetical role in the evolution of language, and the similarity of hierarchical structure in music and language has led to considerable speculation about their shared mechanisms. While behavioral and electrophysioglocial studies have revealed associations between music and linguistic abilities, results from functional magnetic resonance imaging (fMRI) studies on their relations are contradictory, possibly because these studies usually treat music or language as single entities without breaking down to their components. Here, we examined the relations between different components of music (i.e., melodic and rhythmic analysis) and language (i.e., semantic and phonological processing) using both behavioral tests and resting-state fMRI. Behaviorally, we found that individuals with music training experiences were better at semantic processing, but not at phonological processing, than those without training. Further correlation analyses showed that semantic processing of language was related to melodic, but not rhythmic, analysis of music. Neurally, we found that performances in both semantic processing and melodic analysis were correlated with spontaneous brain activities in the bilateral precentral gyrus (PCG) and superior temporal plane at the regional level, and with the resting-state functional connectivity of the left PCG with the left supramarginal gyrus and left superior temporal gyrus at the network level. Together, our study revealed the shared spontaneous neural basis of music and language based on the behavioral link between melodic analysis and semantic processing, which possibly relied on a common mechanism of automatic auditory-motor integration. Copyright © 2017 IBRO. Published by Elsevier Ltd. All rights reserved.
Is semantic priming (ir)rational? Insights from the speeded word fragment completion task.
Heyman, Tom; Hutchison, Keith A; Storms, Gert
2016-10-01
Semantic priming, the phenomenon that a target is recognized faster if it is preceded by a semantically related prime, is a well-established effect. However, the mechanisms producing semantic priming are subject of debate. Several theories assume that the underlying processes are controllable and tuned to prime utility. In contrast, purely automatic processes, like automatic spreading activation, should be independent of the prime's usefulness. The present study sought to disentangle both accounts by creating a situation where prime processing is actually detrimental. Specifically, participants were asked to quickly complete word fragments with either the letter a or e (e.g., sh_ve to be completed as shave). Critical fragments were preceded by a prime that was either related (e.g., push) or unrelated (write) to a prohibited completion of the target (e.g., shove). In 2 experiments, we found a significant inhibitory priming effect, which is inconsistent with purely "rational" explanations of semantic priming. (PsycINFO Database Record (c) 2016 APA, all rights reserved).
Dhillon, Rummit K.; Clarke, Alex; King-Stephens, David; Laxer, Kenneth D.; Weber, Peter B.; Kuperman, Rachel A.; Auguste, Kurtis I.; Brunner, Peter; Lin, Jack J.; Parvizi, Josef; Crone, Nathan E.; Dronkers, Nina F.; Knight, Robert T.
2017-01-01
Word retrieval is core to language production and relies on complementary processes: the rapid activation of lexical and conceptual representations and word selection, which chooses the correct word among semantically related competitors. Lexical and conceptual activation is measured by semantic priming. In contrast, word selection is indexed by semantic interference and is hampered in semantically homogeneous (HOM) contexts. We examined the spatiotemporal dynamics of these complementary processes in a picture naming task with blocks of semantically heterogeneous (HET) or HOM stimuli. We used electrocorticography data obtained from frontal and temporal cortices, permitting detailed spatiotemporal analysis of word retrieval processes. A semantic interference effect was observed with naming latencies longer in HOM versus HET blocks. Cortical response strength as indexed by high-frequency band (HFB) activity (70–150 Hz) amplitude revealed effects linked to lexical-semantic activation and word selection observed in widespread regions of the cortical mantle. Depending on the subsecond timing and cortical region, HFB indexed semantic interference (i.e., more activity in HOM than HET blocks) or semantic priming effects (i.e., more activity in HET than HOM blocks). These effects overlapped in time and space in the left posterior inferior temporal gyrus and the left prefrontal cortex. The data do not support a modular view of word retrieval in speech production but rather support substantial overlap of lexical-semantic activation and word selection mechanisms in the brain. PMID:28533406
What lies beneath: A comparison of reading aloud in pure alexia and semantic dementia
Hoffman, Paul; Roberts, Daniel J.; Ralph, Matthew A. Lambon; Patterson, Karalyn E.
2014-01-01
Exaggerated effects of word length upon reading-aloud performance define pure alexia, but have also been observed in semantic dementia. Some researchers have proposed a reading-specific account, whereby performance in these two disorders reflects the same cause: impaired orthographic processing. In contrast, according to the primary systems view of acquired reading disorders, pure alexia results from a basic visual processing deficit, whereas degraded semantic knowledge undermines reading performance in semantic dementia. To explore the source of reading deficits in these two disorders, we compared the reading performance of 10 pure alexic and 10 semantic dementia patients, matched in terms of overall severity of reading deficit. The results revealed comparable frequency effects on reading accuracy, but weaker effects of regularity in pure alexia than in semantic dementia. Analysis of error types revealed a higher rate of letter-based errors and a lower rate of regularization responses in pure alexia than in semantic dementia. Error responses were most often words in pure alexia but most often nonwords in semantic dementia. Although all patients made some letter substitution errors, these were characterized by visual similarity in pure alexia and phonological similarity in semantic dementia. Overall, the data indicate that the reading deficits in pure alexia and semantic dementia arise from impairments of visual processing and knowledge of word meaning, respectively. The locus and mechanisms of these impairments are placed within the context of current connectionist models of reading. PMID:24702272
ERIC Educational Resources Information Center
Whitney, Carin; Kirk, Marie; O'Sullivan, Jamie; Ralph, Matthew A. Lambon; Jefferies, Elizabeth
2012-01-01
To understand the meanings of words and objects, we need to have knowledge about these items themselves plus executive mechanisms that compute and manipulate semantic information in a task-appropriate way. The neural basis for semantic control remains controversial. Neuroimaging studies have focused on the role of the left inferior frontal gyrus…
Intelligent Agents as a Basis for Natural Language Interfaces
1988-01-01
language analysis component of UC, which produces a semantic representa tion of the input. This representation is in the form of a KODIAK network (see...Appendix A). Next, UC’s Concretion Mechanism performs concretion inferences ([Wilensky, 1983] and [Norvig, 1983]) based on the semantic network...The first step in UC’s processing is done by UC’s parser/understander component which produces a KODIAK semantic network representa tion of
Vogelsang, David A; Bonnici, Heidi M; Bergström, Zara M; Ranganath, Charan; Simons, Jon S
2016-08-01
To remember a previous event, it is often helpful to use goal-directed control processes to constrain what comes to mind during retrieval. Behavioral studies have demonstrated that incidental learning of new "foil" words in a recognition test is superior if the participant is trying to remember studied items that were semantically encoded compared to items that were non-semantically encoded. Here, we applied subsequent memory analysis to fMRI data to understand the neural mechanisms underlying the "foil effect". Participants encoded information during deep semantic and shallow non-semantic tasks and were tested in a subsequent blocked memory task to examine how orienting retrieval towards different types of information influences the incidental encoding of new words presented as foils during the memory test phase. To assess memory for foils, participants performed a further surprise old/new recognition test involving foil words that were encountered during the previous memory test blocks as well as completely new words. Subsequent memory effects, distinguishing successful versus unsuccessful incidental encoding of foils, were observed in regions that included the left inferior frontal gyrus and posterior parietal cortex. The left inferior frontal gyrus exhibited disproportionately larger subsequent memory effects for semantic than non-semantic foils, and significant overlap in activity during semantic, but not non-semantic, initial encoding and foil encoding. The results suggest that orienting retrieval towards different types of foils involves re-implementing the neurocognitive processes that were involved during initial encoding. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.
Ulrich, Martin; Adams, Sarah C; Kiefer, Markus
2014-11-01
In classical theories of attention, unconscious automatic processes are thought to be independent of higher-level attentional influences. Here, we propose that unconscious processing depends on attentional enhancement of task-congruent processing pathways implemented by a dynamic modulation of the functional communication between brain regions. Using functional magnetic resonance imaging, we tested our model with a subliminally primed lexical decision task preceded by an induction task preparing either a semantic or a perceptual task set. Subliminal semantic priming was significantly greater after semantic compared to perceptual induction in ventral occipito-temporal (vOT) and inferior frontal cortex, brain areas known to be involved in semantic processing. The functional connectivity pattern of vOT varied depending on the induction task and successfully predicted the magnitude of behavioral and neural priming. Together, these findings support the proposal that dynamic establishment of functional networks by task sets is an important mechanism in the attentional control of unconscious processing. © 2014 Wiley Periodicals, Inc.
Lee, Yujun; Liu, Xin; Wang, Xiaoming
2015-09-30
The present study examined the relationship between prosody and semantic processing in the written form of modern Chinese by analysing behavioural data and event-related potential data. By manipulating the number of noun syllables in verb-objection, we compare the dynamic neural mechanisms of the structure bisyllabic verb (V2)+monosyllabic noun (N1) (i.e. V2+N1) with V2+N1 (N2, bisyllabic noun). In Chinese, the rhythmic pattern V2+N1 is considered to be a metrical incongruity, whereas V2+N2 is considered to be a metrical congruity. For example, the verb yunshu (to transport) can be followed by liangshi (cereals). However, if yunshu is followed by liang (cereals), yunshu liang is usually considered to be metrically incongruous. This paper shows that (i) V2+N1 elicited more negative amplitudes than V2+N2 in the 90-170 ms and 450-500 ms windows, which indicates that metrical incongruities affect semantic processing in Chinese, and (ii) the acceptance rate for V2+N1 is significantly lower than that of V2+N2, which implies that metrical incongruities disrupt semantic processing in modern Chinese. These results are in agreement with previous studies. This is the first study to find that metrical incongruities disrupt semantic processing in Chinese. This study provides convergent evidence that metrical congruities facilitate semantic processing, whereas metrical incongruities disrupt semantic processing. Video abstract available (Supplemental digital content 1, http://links.lww.com/WNR/A340).
A logical approach to semantic interoperability in healthcare.
Bird, Linda; Brooks, Colleen; Cheong, Yu Chye; Tun, Nwe Ni
2011-01-01
Singapore is in the process of rolling out a number of national e-health initiatives, including the National Electronic Health Record (NEHR). A critical enabler in the journey towards semantic interoperability is a Logical Information Model (LIM) that harmonises the semantics of the information structure with the terminology. The Singapore LIM uses a combination of international standards, including ISO 13606-1 (a reference model for electronic health record communication), ISO 21090 (healthcare datatypes), and SNOMED CT (healthcare terminology). The LIM is accompanied by a logical design approach, used to generate interoperability artifacts, and incorporates mechanisms for achieving unidirectional and bidirectional semantic interoperability.
Levels of processing and language modality specificity in working memory.
Rudner, Mary; Karlsson, Thomas; Gunnarsson, Johan; Rönnberg, Jerker
2013-03-01
Neural networks underpinning working memory demonstrate sign language specific components possibly related to differences in temporary storage mechanisms. A processing approach to memory systems suggests that the organisation of memory storage is related to type of memory processing as well. In the present study, we investigated for the first time semantic, phonological and orthographic processing in working memory for sign- and speech-based language. During fMRI we administered a picture-based 2-back working memory task with Semantic, Phonological, Orthographic and Baseline conditions to 11 deaf signers and 20 hearing non-signers. Behavioural data showed poorer and slower performance for both groups in Phonological and Orthographic conditions than in the Semantic condition, in line with depth-of-processing theory. An exclusive masking procedure revealed distinct sign-specific neural networks supporting working memory components at all three levels of processing. The overall pattern of sign-specific activations may reflect a relative intermodality difference in the relationship between phonology and semantics influencing working memory storage and processing. Copyright © 2012 Elsevier Ltd. All rights reserved.
Pulvermüller, Friedemann
2013-10-01
"Embodied" proposals claim that the meaning of at least some words, concepts and constructions is grounded in knowledge about actions and objects. An alternative "disembodied" position locates semantics in a symbolic system functionally detached from sensorimotor modules. This latter view is not tenable theoretically and has been empirically falsified by neuroscience research. A minimally-embodied approach now claims that action-perception systems may "color", but not represent, meaning; however, such minimal embodiment (misembodiment?) still fails to explain why action and perception systems exert causal effects on the processing of symbols from specific semantic classes. Action perception theory (APT) offers neurobiological mechanisms for "embodied" referential, affective and action semantics along with "disembodied" mechanisms of semantic abstraction, generalization and symbol combination, which draw upon multimodal brain systems. In this sense, APT suggests integrative-neuromechanistic explanations of why both sensorimotor and multimodal areas of the human brain differentially contribute to specific facets of meaning and concepts. Copyright © 2013 The Authors. Published by Elsevier Inc. All rights reserved.
A Large-Scale Analysis of Variance in Written Language.
Johns, Brendan T; Jamieson, Randall K
2018-01-22
The collection of very large text sources has revolutionized the study of natural language, leading to the development of several models of language learning and distributional semantics that extract sophisticated semantic representations of words based on the statistical redundancies contained within natural language (e.g., Griffiths, Steyvers, & Tenenbaum, ; Jones & Mewhort, ; Landauer & Dumais, ; Mikolov, Sutskever, Chen, Corrado, & Dean, ). The models treat knowledge as an interaction of processing mechanisms and the structure of language experience. But language experience is often treated agnostically. We report a distributional semantic analysis that shows written language in fiction books varies appreciably between books from the different genres, books from the same genre, and even books written by the same author. Given that current theories assume that word knowledge reflects an interaction between processing mechanisms and the language environment, the analysis shows the need for the field to engage in a more deliberate consideration and curation of the corpora used in computational studies of natural language processing. Copyright © 2018 Cognitive Science Society, Inc.
Thompson, Hannah E; Almaghyuli, Azizah; Noonan, Krist A; Barak, Ohr; Lambon Ralph, Matthew A; Jefferies, Elizabeth
2018-01-03
Semantic cognition, as described by the controlled semantic cognition (CSC) framework (Rogers et al., , Neuropsychologia, 76, 220), involves two key components: activation of coherent, generalizable concepts within a heteromodal 'hub' in combination with modality-specific features (spokes), and a constraining mechanism that manipulates and gates this knowledge to generate time- and task-appropriate behaviour. Executive-semantic goal representations, largely supported by executive regions such as frontal and parietal cortex, are thought to allow the generation of non-dominant aspects of knowledge when these are appropriate for the task or context. Semantic aphasia (SA) patients have executive-semantic deficits, and these are correlated with general executive impairment. If the CSC proposal is correct, patients with executive impairment should not only exhibit impaired semantic cognition, but should also show characteristics that align with those observed in SA. This possibility remains largely untested, as patients selected on the basis that they show executive impairment (i.e., with 'dysexecutive syndrome') have not been extensively tested on tasks tapping semantic control and have not been previously compared with SA cases. We explored conceptual processing in 12 patients showing symptoms consistent with dysexecutive syndrome (DYS) and 24 SA patients, using a range of multimodal semantic assessments which manipulated control demands. Patients with executive impairments, despite not being selected to show semantic impairments, nevertheless showed parallel patterns to SA cases. They showed strong effects of distractor strength, cues and miscues, and probe-target distance, plus minimal effects of word frequency on comprehension (unlike semantic dementia patients with degradation of conceptual knowledge). This supports a component process account of semantic cognition in which retrieval is shaped by control processes, and confirms that deficits in SA patients reflect difficulty controlling semantic retrieval. © 2018 The Authors. Journal of Neuropsychology published by John Wiley & Sons Ltd on behalf of British Psychological Society.
Long-term interference at the semantic level: Evidence from blocked-cyclic picture matching.
Wei, Tao; Schnur, Tatiana T
2016-01-01
Processing semantically related stimuli creates interference across various domains of cognition, including language and memory. In this study, we identify the locus and mechanism of interference when retrieving meanings associated with words and pictures. Subjects matched a probe stimulus (e.g., cat) to its associated target picture (e.g., yarn) from an array of unrelated pictures. Across trials, probes were either semantically related or unrelated. To test the locus of interference, we presented probes as either words or pictures. If semantic interference occurs at the stage common to both tasks, that is, access to semantic representations, then interference should occur in both probe presentation modalities. Results showed clear semantic interference effects independent of presentation modality and lexical frequency, confirming a semantic locus of interference in comprehension. To test the mechanism of interference, we repeated trials across 4 presentation cycles and manipulated the number of unrelated intervening trials (zero vs. two). We found that semantic interference was additive across cycles and survived 2 intervening trials, demonstrating interference to be long-lasting as opposed to short-lived. However, interference was smaller with zero versus 2 intervening trials, which we interpret to suggest that short-lived facilitation counteracted the long-lived interference. We propose that retrieving meanings associated with words/pictures from the same semantic category yields both interference due to long-lasting changes in connection strength between semantic representations (i.e., incremental learning) and facilitation caused by short-lived residual activation. (PsycINFO Database Record (c) 2016 APA, all rights reserved).
Neural Substrates of Semantic Prospection – Evidence from the Dementias
Irish, Muireann; Eyre, Nadine; Dermody, Nadene; O’Callaghan, Claire; Hodges, John R.; Hornberger, Michael; Piguet, Olivier
2016-01-01
The ability to envisage personally relevant events at a future time point represents an incredibly sophisticated cognitive endeavor and one that appears to be intimately linked to episodic memory integrity. Far less is known regarding the neurocognitive mechanisms underpinning the capacity to envisage non-personal future occurrences, known as semantic future thinking. Moreover the degree of overlap between the neural substrates supporting episodic and semantic forms of prospection remains unclear. To this end, we sought to investigate the capacity for episodic and semantic future thinking in Alzheimer’s disease (n = 15) and disease-matched behavioral-variant frontotemporal dementia (n = 15), neurodegenerative disorders characterized by significant medial temporal lobe (MTL) and frontal pathology. Participants completed an assessment of past and future thinking across personal (episodic) and non-personal (semantic) domains, as part of a larger neuropsychological battery investigating episodic and semantic processing, and their performance was contrasted with 20 age- and education-matched healthy older Controls. Participants underwent whole-brain T1-weighted structural imaging and voxel-based morphometry analysis was conducted to determine the relationship between gray matter integrity and episodic and semantic future thinking. Relative to Controls, both patient groups displayed marked future thinking impairments, extending across episodic and semantic domains. Analyses of covariance revealed that while episodic future thinking deficits could be explained solely in terms of episodic memory proficiency, semantic prospection deficits reflected the interplay between episodic and semantic processing. Distinct neural correlates emerged for each form of future simulation with differential involvement of prefrontal, lateral temporal, and medial temporal regions. Notably, the hippocampus was implicated irrespective of future thinking domain, with the suggestion of lateralization effects depending on the type of information being simulated. Whereas episodic future thinking related to right hippocampal integrity, semantic future thinking was found to relate to left hippocampal integrity. Our findings support previous observations of significant MTL involvement for semantic forms of prospection and point to distinct neurocognitive mechanisms which must be functional to support future-oriented forms of thought across personal and non-personal contexts. PMID:27252632
van Schie, Hein T; Wijers, Albertus A; Mars, Rogier B; Benjamins, Jeroen S; Stowe, Laurie A
2005-05-01
Event-related brain potentials were used to study the retrieval of visual semantic information to concrete words, and to investigate possible structural overlap between visual object working memory and concreteness effects in word processing. Subjects performed an object working memory task that involved 5 s retention of simple 4-angled polygons (load 1), complex 10-angled polygons (load 2), and a no-load baseline condition. During the polygon retention interval subjects were presented with a lexical decision task to auditory presented concrete (imageable) and abstract (nonimageable) words, and pseudowords. ERP results are consistent with the use of object working memory for the visualisation of concrete words. Our data indicate a two-step processing model of visual semantics in which visual descriptive information of concrete words is first encoded in semantic memory (indicated by an anterior N400 and posterior occipital positivity), and is subsequently visualised via the network for object working memory (reflected by a left frontal positive slow wave and a bilateral occipital slow wave negativity). Results are discussed in the light of contemporary models of semantic memory.
Altered brain response for semantic knowledge in Alzheimer's disease.
Wierenga, Christina E; Stricker, Nikki H; McCauley, Ashley; Simmons, Alan; Jak, Amy J; Chang, Yu-Ling; Nation, Daniel A; Bangen, Katherine J; Salmon, David P; Bondi, Mark W
2011-02-01
Word retrieval deficits are common in Alzheimer's disease (AD) and are thought to reflect a degradation of semantic memory. Yet, the nature of semantic deterioration in AD and the underlying neural correlates of these semantic memory changes remain largely unknown. We examined the semantic memory impairment in AD by investigating the neural correlates of category knowledge (e.g., living vs. nonliving) and featural processing (global vs. local visual information). During event-related fMRI, 10 adults diagnosed with mild AD and 22 cognitively normal (CN) older adults named aloud items from three categories for which processing of specific visual features has previously been dissociated from categorical features. Results showed widespread group differences in the categorical representation of semantic knowledge in several language-related brain areas. For example, the right inferior frontal gyrus showed selective brain response for nonliving items in the CN group but living items in the AD group. Additionally, the AD group showed increased brain response for word retrieval irrespective of category in Broca's homologue in the right hemisphere and rostral cingulate cortex bilaterally, which suggests greater recruitment of frontally mediated neural compensatory mechanisms in the face of semantic alteration. Copyright © 2010 Elsevier Ltd. All rights reserved.
Neural Basis of Semantic Representation and Semantic Composition
ERIC Educational Resources Information Center
Fernandino, Leonardo F.
2009-01-01
The mechanisms by which the mind encodes meaning into words and reconstructs it from them has been the subject of philosophical speculations at least since Plato and Aristotle in the 4th century B.C. Our current understanding of how the brain is involved in these processes, however, only started in the 19 th century, with precise descriptions of…
Long-Term Interference at the Semantic Level: Evidence from Blocked-Cyclic Picture Matching
ERIC Educational Resources Information Center
Wei, Tao; Schnur, Tatiana T.
2016-01-01
Processing semantically related stimuli creates interference across various domains of cognition, including language and memory. In this study, we identify the locus and mechanism of interference when retrieving meanings associated with words and pictures. Subjects matched a probe stimulus (e.g., cat) to its associated target picture (e.g., yarn)…
EEG source reconstruction evidence for the noun-verb neural dissociation along semantic dimensions.
Zhao, Bin; Dang, Jianwu; Zhang, Gaoyan
2017-09-17
One of the long-standing issues in neurolinguistic research is about the neural basis of word representation, concerning whether grammatical classification or semantic difference causes the neural dissociation of brain activity patterns when processing different word categories, especially nouns and verbs. To disentangle this puzzle, four orthogonalized word categories in Chinese: unambiguous nouns (UN), unambiguous verbs (UV), ambiguous words with noun-biased semantics (AN), and ambiguous words with verb-biased semantics (AV) were adopted in an auditory task for recording electroencephalographic (EEG) signals from 128 electrodes on the scalps of twenty-two subjects. With the advanced current density reconstruction (CDR) algorithm and the constraint of standardized low-resolution electromagnetic tomography, the spatiotemporal brain dynamics of word processing were explored with the results that in multiple time periods including P1 (60-90ms), N1 (100-140ms), P200 (150-250ms) and N400 (350-450ms), noun-verb dissociation over the parietal-occipital and frontal-central cortices appeared not only between the UN-UV grammatical classes but also between the grammatically identical but semantically different AN-AV pairs. The apparent semantic dissociation within one grammatical class strongly suggests that the semantic difference rather than grammatical classification could be interpreted as the origin of the noun-verb neural dissociation. Our results also revealed that semantic dissociation occurs from an early stage and repeats in multiple phases, thus supporting a functionally hierarchical word processing mechanism. Copyright © 2017 IBRO. Published by Elsevier Ltd. All rights reserved.
ERIC Educational Resources Information Center
Sugiura, Motoaki; Mano, Yoko; Sasaki, Akihiro; Sadato, Norihiro
2011-01-01
Special processes recruited during the recognition of personally familiar people have been assumed to reflect the rich episodic and semantic information that selectively represents each person. However, the processes may also include person nonselective ones, which may require interpretation in terms beyond the memory mechanism. To examine this…
Péron, Julie A.; Piolino, Pascale; Moal-Boursiquot, Sandrine Le; Biseul, Isabelle; Leray, Emmanuelle; Bon, Laetitia; Desgranges, Béatrice; Eustache, Francis; Belliard, Serge
2015-01-01
Semantic dementia patients seem to have better knowledge of information linked to the self. More specifically, despite having severe semantic impairment, these patients show that they have more general information about the people they know personally by direct experience than they do about other individuals they know indirectly. However, the role of direct personal experience remains debated because of confounding factors such as frequency, recency of exposure, and affective relevance. We performed an exploratory study comparing the performance of five semantic dementia patients with that of 10 matched healthy controls on the recognition (familiarity judgment) and identification (biographic information recall) of personally familiar names vs. famous names. As expected, intergroup comparisons indicated a semantic breakdown in semantic dementia patients as compared with healthy controls. Moreover, unlike healthy controls, the semantic dementia patients recognized and identified personally familiar names better than they did famous names. This pattern of results suggests that direct personal experience indeed plays a specific role in the relative preservation of person-specific semantic meaning in semantic dementia. We discuss the role of direct personal experience on the preservation of semantic knowledge and the potential neurophysiological mechanisms underlying these processes. PMID:26635578
Hybrid ontology for semantic information retrieval model using keyword matching indexing system.
Uthayan, K R; Mala, G S Anandha
2015-01-01
Ontology is the process of growth and elucidation of concepts of an information domain being common for a group of users. Establishing ontology into information retrieval is a normal method to develop searching effects of relevant information users require. Keywords matching process with historical or information domain is significant in recent calculations for assisting the best match for specific input queries. This research presents a better querying mechanism for information retrieval which integrates the ontology queries with keyword search. The ontology-based query is changed into a primary order to predicate logic uncertainty which is used for routing the query to the appropriate servers. Matching algorithms characterize warm area of researches in computer science and artificial intelligence. In text matching, it is more dependable to study semantics model and query for conditions of semantic matching. This research develops the semantic matching results between input queries and information in ontology field. The contributed algorithm is a hybrid method that is based on matching extracted instances from the queries and information field. The queries and information domain is focused on semantic matching, to discover the best match and to progress the executive process. In conclusion, the hybrid ontology in semantic web is sufficient to retrieve the documents when compared to standard ontology.
Hybrid Ontology for Semantic Information Retrieval Model Using Keyword Matching Indexing System
Uthayan, K. R.; Anandha Mala, G. S.
2015-01-01
Ontology is the process of growth and elucidation of concepts of an information domain being common for a group of users. Establishing ontology into information retrieval is a normal method to develop searching effects of relevant information users require. Keywords matching process with historical or information domain is significant in recent calculations for assisting the best match for specific input queries. This research presents a better querying mechanism for information retrieval which integrates the ontology queries with keyword search. The ontology-based query is changed into a primary order to predicate logic uncertainty which is used for routing the query to the appropriate servers. Matching algorithms characterize warm area of researches in computer science and artificial intelligence. In text matching, it is more dependable to study semantics model and query for conditions of semantic matching. This research develops the semantic matching results between input queries and information in ontology field. The contributed algorithm is a hybrid method that is based on matching extracted instances from the queries and information field. The queries and information domain is focused on semantic matching, to discover the best match and to progress the executive process. In conclusion, the hybrid ontology in semantic web is sufficient to retrieve the documents when compared to standard ontology. PMID:25922851
Neural Correlates of Semantic Prediction and Resolution in Sentence Processing.
Grisoni, Luigi; Miller, Tally McCormick; Pulvermüller, Friedemann
2017-05-03
Most brain-imaging studies of language comprehension focus on activity following meaningful stimuli. Testing adult human participants with high-density EEG, we show that, already before the presentation of a critical word, context-induced semantic predictions are reflected by a neurophysiological index, which we therefore call the semantic readiness potential (SRP). The SRP precedes critical words if a previous sentence context constrains the upcoming semantic content (high-constraint contexts), but not in unpredictable (low-constraint) contexts. Specific semantic predictions were indexed by SRP sources within the motor system-in dorsolateral hand motor areas for expected hand-related words (e.g., "write"), but in ventral motor cortex for face-related words ("talk"). Compared with affirmative sentences, negated ones led to medial prefrontal and more widespread motor source activation, the latter being consistent with predictive semantic computation of alternatives to the negated expected concept. Predictive processing of semantic alternatives in negated sentences is further supported by a negative-going event-related potential at ∼400 ms (N400), which showed the typical enhancement to semantically incongruent sentence endings only in high-constraint affirmative contexts, but not to high-constraint negated ones. These brain dynamics reveal the interplay between semantic prediction and resolution (match vs error) processing in sentence understanding. SIGNIFICANCE STATEMENT Most neuroscientists agree on the eminent importance of predictive mechanisms for understanding basic as well as higher brain functions. This contrasts with a sparseness of brain measures that directly reflects specific aspects of prediction, as they are relevant in the processing of language and thought. Here we show that when critical words are strongly expected in their sentence context, a predictive brain response reflects meaning features of these anticipated symbols already before they appear. The granularity of the semantic predictions was so fine grained that the cortical sources in sensorimotor and medial prefrontal cortex even distinguished between predicted face- or hand-related action words (e.g., the words "lick" or "pick") and between affirmative and negated sentence meanings. Copyright © 2017 Grisoni et al.
Neural Correlates of Semantic Prediction and Resolution in Sentence Processing
2017-01-01
Most brain-imaging studies of language comprehension focus on activity following meaningful stimuli. Testing adult human participants with high-density EEG, we show that, already before the presentation of a critical word, context-induced semantic predictions are reflected by a neurophysiological index, which we therefore call the semantic readiness potential (SRP). The SRP precedes critical words if a previous sentence context constrains the upcoming semantic content (high-constraint contexts), but not in unpredictable (low-constraint) contexts. Specific semantic predictions were indexed by SRP sources within the motor system—in dorsolateral hand motor areas for expected hand-related words (e.g., “write”), but in ventral motor cortex for face-related words (“talk”). Compared with affirmative sentences, negated ones led to medial prefrontal and more widespread motor source activation, the latter being consistent with predictive semantic computation of alternatives to the negated expected concept. Predictive processing of semantic alternatives in negated sentences is further supported by a negative-going event-related potential at ∼400 ms (N400), which showed the typical enhancement to semantically incongruent sentence endings only in high-constraint affirmative contexts, but not to high-constraint negated ones. These brain dynamics reveal the interplay between semantic prediction and resolution (match vs error) processing in sentence understanding. SIGNIFICANCE STATEMENT Most neuroscientists agree on the eminent importance of predictive mechanisms for understanding basic as well as higher brain functions. This contrasts with a sparseness of brain measures that directly reflects specific aspects of prediction, as they are relevant in the processing of language and thought. Here we show that when critical words are strongly expected in their sentence context, a predictive brain response reflects meaning features of these anticipated symbols already before they appear. The granularity of the semantic predictions was so fine grained that the cortical sources in sensorimotor and medial prefrontal cortex even distinguished between predicted face- or hand-related action words (e.g., the words “lick” or “pick”) and between affirmative and negated sentence meanings. PMID:28411271
Nijboer, Tanja C W; van Zandvoort, Martine J E; de Haan, Edward H F
2006-12-01
There is ample evidence that an independent processing stream exists that subserves the perception and appreciation of colour. Neurophysiological research has identified separate brain mechanisms for the processing of wavelength and colour, and neuropsychological studies have revealed selective colour disorders, such as achromatopsia, colour agnosia, and colour anomia. The aim of the present study is to investigate whether the perception of colour may, despite its independent processing, influence other cognitive functions. Specifically, we investigate the possibility that the perception of a colour influences higher order processes such as the activation of semantically related concepts. We designed an associative priming task involving a colour prime (e.g. a red patch or the word RED) and a lexical decision response to a semantically related ('tomato' vs. 'timato') or unrelated ('grass' vs. 'griss') word target. The results of this experiment indicate that there is comparable facilitation of accessing colour-related semantics through the perception of a colour or the reading of a colour name. This suggests that colour has a direct effect on higher order level, cognitive processing. These results are discussed in terms of current models of colour processing.
Kuperberg, Gina R
2010-08-01
This is the second of two articles that discuss higher-order language and semantic processing in schizophrenia. The companion article (Part 1) gives an introduction to language dysfunction in schizophrenia patients. This article reviews a selection of psycholinguistic studies which suggest that sentence-level abnormalities in schizophrenia may stem from a relative overdependence on semantic associative relationships at the expense of building higher-order meaning. Language disturbances in schizophrenia may be best conceptualized as arising from an imbalance of activity across two streams of processing, one drawing upon semantic relationships within semantic memory and the other involving the use of combinatorial mechanisms to build propositional meaning. I will also discuss some of the ways in which the study of schizophrenia may offer new insights into the cognitive and neural architecture of the normal language system.
Semantic mechanisms may be responsible for developing synesthesia
Mroczko-Wąsowicz, Aleksandra; Nikolić, Danko
2014-01-01
Currently, little is known about how synesthesia develops and which aspects of synesthesia can be acquired through a learning process. We review the increasing evidence for the role of semantic representations in the induction of synesthesia, and argue for the thesis that synesthetic abilities are developed and modified by semantic mechanisms. That is, in certain people semantic mechanisms associate concepts with perception-like experiences—and this association occurs in an extraordinary way. This phenomenon can be referred to as “higher” synesthesia or ideasthesia. The present analysis suggests that synesthesia develops during childhood and is being enriched further throughout the synesthetes’ lifetime; for example, the already existing concurrents may be adopted by novel inducers or new concurrents may be formed. For a deeper understanding of the origin and nature of synesthesia we propose to focus future research on two aspects: (i) the similarities between synesthesia and ordinary phenomenal experiences based on concepts; and (ii) the tight entanglement of perception, cognition and the conceptualization of the world. Importantly, an explanation of how biological systems get to generate experiences, synesthetic or not, may have to involve an explanation of how semantic networks are formed in general and what their role is in the ability to be aware of the surrounding world. PMID:25191239
Involvement of the Central Cognitive Mechanism in Word Production in Adults Who Stutter
ERIC Educational Resources Information Center
Tsai, Pei-Tzu; Bernstein Ratner, Nan
2016-01-01
Purpose: The study examined whether semantic and phonological encoding processes were capacity demanding, involving the central cognitive mechanism, in adults who do and do not stutter (AWS and NS) to better understand the role of cognitive demand in linguistic processing and stuttering. We asked (a) whether the two linguistic processes in AWS are…
Leonardi, Giorgio; Striani, Manuel; Quaglini, Silvana; Cavallini, Anna; Montani, Stefania
2018-05-21
Many medical information systems record data about the executed process instances in the form of an event log. In this paper, we present a framework, able to convert actions in the event log into higher level concepts, at different levels of abstraction, on the basis of domain knowledge. Abstracted traces are then provided as an input to trace comparison and semantic process discovery. Our abstraction mechanism is able to manage non trivial situations, such as interleaved actions or delays between two actions that abstract to the same concept. Trace comparison resorts to a similarity metric able to take into account abstraction phase penalties, and to deal with quantitative and qualitative temporal constraints in abstracted traces. As for process discovery, we rely on classical algorithms embedded in the framework ProM, made semantic by the capability of abstracting the actions on the basis of their conceptual meaning. The approach has been tested in stroke care, where we adopted abstraction and trace comparison to cluster event logs of different stroke units, to highlight (in)correct behavior, abstracting from details. We also provide process discovery results, showing how the abstraction mechanism allows to obtain stroke process models more easily interpretable by neurologists. Copyright © 2018. Published by Elsevier Inc.
NASA Astrophysics Data System (ADS)
Macioł, Piotr; Regulski, Krzysztof
2016-08-01
We present a process of semantic meta-model development for data management in an adaptable multiscale modeling framework. The main problems in ontology design are discussed, and a solution achieved as a result of the research is presented. The main concepts concerning the application and data management background for multiscale modeling were derived from the AM3 approach—object-oriented Agile multiscale modeling methodology. The ontological description of multiscale models enables validation of semantic correctness of data interchange between submodels. We also present a possibility of using the ontological model as a supervisor in conjunction with a multiscale model controller and a knowledge base system. Multiscale modeling formal ontology (MMFO), designed for describing multiscale models' data and structures, is presented. A need for applying meta-ontology in the MMFO development process is discussed. Examples of MMFO application in describing thermo-mechanical treatment of metal alloys are discussed. Present and future applications of MMFO are described.
Hoyau, E; Cousin, E; Jaillard, A; Baciu, M
2016-12-01
We evaluated the effect of normal aging on the inter-hemispheric processing of semantic information by using the divided visual field (DVF) method, with words and pictures. Two main theoretical models have been considered, (a) the HAROLD model which posits that aging is associated with supplementary recruitment of the right hemisphere (RH) and decreased hemispheric specialization, and (b) the RH decline theory, which assumes that the RH becomes less efficient with aging, associated with increased LH specialization. Two groups of subjects were examined, a Young Group (YG) and an Old Group (OG), while participants performed a semantic categorization task (living vs. non-living) in words and pictures. The DVF was realized in two steps: (a) unilateral DVF presentation with stimuli presented separately in each visual field, left or right, allowing for their initial processing by only one hemisphere, right or left, respectively; (b) bilateral DVF presentation (BVF) with stimuli presented simultaneously in both visual fields, followed by their processing by both hemispheres. These two types of presentation permitted the evaluation of two main characteristics of the inter-hemispheric processing of information, the hemispheric specialization (HS) and the inter-hemispheric cooperation (IHC). Moreover, the BVF allowed determining the driver-hemisphere for processing information presented in BVF. Results obtained in OG indicated that: (a) semantic categorization was performed as accurately as YG, even if more slowly, (b) a non-semantic RH decline was observed, and (c) the LH controls the semantic processing during the BVF, suggesting an increased role of the LH in aging. However, despite the stronger involvement of the LH in OG, the RH is not completely devoid of semantic abilities. As discussed in the paper, neither the HAROLD nor the RH decline does fully explain this pattern of results. We rather suggest that the effect of aging on the hemispheric specialization and inter-hemispheric cooperation during semantic processing is explained not by only one model, but by an interaction between several complementary mechanisms and models. Copyright © 2015 Elsevier Ltd. All rights reserved.
Cleary, Anne M; Ryals, Anthony J; Wagner, Samantha R
2016-01-01
Research suggests that a feature-matching process underlies cue familiarity-detection when cued recall with graphemic cues fails. When a test cue (e.g., potchbork) overlaps in graphemic features with multiple unrecalled studied items (e.g., patchwork, pitchfork, pocketbook, pullcork), higher cue familiarity ratings are given during recall failure of all of the targets than when the cue overlaps in graphemic features with only one studied target and that target fails to be recalled (e.g., patchwork). The present study used semantic feature production norms (McRae et al., Behavior Research Methods, Instruments, & Computers, 37, 547-559, 2005) to examine whether the same holds true when the cues are semantic in nature (e.g., jaguar is used to cue cheetah). Indeed, test cues (e.g., cedar) that overlapped in semantic features (e.g., a_tree, has_bark, etc.) with four unretrieved studied items (e.g., birch, oak, pine, willow) received higher cue familiarity ratings during recall failure than test cues that overlapped in semantic features with only two (also unretrieved) studied items (e.g., birch, oak), which in turn received higher familiarity ratings during recall failure than cues that did not overlap in semantic features with any studied items. These findings suggest that the feature-matching theory of recognition during recall failure can accommodate recognition of semantic cues during recall failure, providing a potential mechanism for conceptually-based forms of cue recognition during target retrieval failure. They also provide converging evidence for the existence of the semantic features envisaged in feature-based models of semantic knowledge representation and for those more concretely specified by the production norms of McRae et al. (Behavior Research Methods, Instruments, & Computers, 37, 547-559, 2005).
Affective priming effects of musical sounds on the processing of word meaning.
Steinbeis, Nikolaus; Koelsch, Stefan
2011-03-01
Recent studies have shown that music is capable of conveying semantically meaningful concepts. Several questions have subsequently arisen particularly with regard to the precise mechanisms underlying the communication of musical meaning as well as the role of specific musical features. The present article reports three studies investigating the role of affect expressed by various musical features in priming subsequent word processing at the semantic level. By means of an affective priming paradigm, it was shown that both musically trained and untrained participants evaluated emotional words congruous to the affect expressed by a preceding chord faster than words incongruous to the preceding chord. This behavioral effect was accompanied by an N400, an ERP typically linked with semantic processing, which was specifically modulated by the (mis)match between the prime and the target. This finding was shown for the musical parameter of consonance/dissonance (Experiment 1) and then extended to mode (major/minor) (Experiment 2) and timbre (Experiment 3). Seeing that the N400 is taken to reflect the processing of meaning, the present findings suggest that the emotional expression of single musical features is understood by listeners as such and is probably processed on a level akin to other affective communications (i.e., prosody or vocalizations) because it interferes with subsequent semantic processing. There were no group differences, suggesting that musical expertise does not have an influence on the processing of emotional expression in music and its semantic connotations.
Functional changes in the cortical semantic network in amnestic mild cognitive impairment.
Pineault, Jessica; Jolicoeur, Pierre; Grimault, Stephan; Bermudez, Patrick; Brambati, Simona Maria; Lacombe, Jacinthe; Villalpando, Juan Manuel; Kergoat, Marie-Jeanne; Joubert, Sven
2018-05-01
Semantic memory impairment has been documented in individuals with amnestic Mild cognitive impairment (aMCI), who are at risk of developing Alzheimer's disease (AD), yet little is known about the neural basis of this breakdown. The aim of this study was to investigate the brain mechanisms associated with semantic performance in aMCI patients. A group of aMCI patients and a group of healthy controls carried out a semantic categorization task while their brain activity was recorded using magnetoencephalography (MEG). During the task, participants were shown famous faces and had to determine whether each famous person matched a given occupation. The main hypotheses were that (a) semantic processing should be compromised for aMCI patients, and (b) these deficits should be associated with cortical dysfunctions within specific areas of the semantic network. Behavioral results showed that aMCI participants were significantly slower and less accurate than controls at the semantic task. Additionally, relative to controls, a significant pattern of hyperactivation was found in the aMCI group within specific regions of the extended semantic network, including the right anterior temporal lobe (ATL) and fusiform gyrus. Abnormal functional activation within key areas of the semantic network suggests that it is compromised early in the disease process. Moreover, this pattern of right ATL and fusiform gyrus hyperactivation was positively associated with gray matter integrity in specific areas, but was not associated with any pattern of atrophy, suggesting that this pattern of hyperactivation may precede structural alteration of the semantic network in aMCI. (PsycINFO Database Record (c) 2018 APA, all rights reserved).
Zachau, Swantje; Korpilahti, Pirjo; Hämäläinen, Jarmo A; Ervast, Leena; Heinänen, Kaisu; Suominen, Kalervo; Lehtihalmes, Matti; Leppänen, Paavo H T
2014-07-01
We explored semantic integration mechanisms in native and non-native hearing users of sign language and non-signing controls. Event-related brain potentials (ERPs) were recorded while participants performed a semantic decision task for priming lexeme pairs. Pairs were presented either within speech or across speech and sign language. Target-related ERP responses were subjected to principal component analyses (PCA), and neurocognitive basis of semantic integration processes were assessed by analyzing the N400 and the late positive complex (LPC) components in response to spoken (auditory) and signed (visual) antonymic and unrelated targets. Semantically-related effects triggered across modalities would indicate a similar tight interconnection between the signers׳ two languages like that described for spoken language bilinguals. Remarkable structural similarity of the N400 and LPC components with varying group differences between the spoken and signed targets were found. The LPC was the dominant response. The controls׳ LPC differed from the LPC of the two signing groups. It was reduced to the auditory unrelated targets and was less frontal for all the visual targets. The visual LPC was more broadly distributed in native than non-native signers and was left-lateralized for the unrelated targets in the native hearing signers only. Semantic priming effects were found for the auditory N400 in all groups, but only native hearing signers revealed a clear N400 effect to the visual targets. Surprisingly, the non-native signers revealed no semantically-related processing effect to the visual targets reflected in the N400 or the LPC; instead they appeared to rely more on visual post-lexical analyzing stages than native signers. We conclude that native and non-native signers employed different processing strategies to integrate signed and spoken semantic content. It appeared that the signers׳ semantic processing system was affected by group-specific factors like language background and/or usage. Copyright © 2014 Elsevier Ltd. All rights reserved.
Rational integration of noisy evidence and prior semantic expectations in sentence interpretation.
Gibson, Edward; Bergen, Leon; Piantadosi, Steven T
2013-05-14
Sentence processing theories typically assume that the input to our language processing mechanisms is an error-free sequence of words. However, this assumption is an oversimplification because noise is present in typical language use (for instance, due to a noisy environment, producer errors, or perceiver errors). A complete theory of human sentence comprehension therefore needs to explain how humans understand language given imperfect input. Indeed, like many cognitive systems, language processing mechanisms may even be "well designed"--in this case for the task of recovering intended meaning from noisy utterances. In particular, comprehension mechanisms may be sensitive to the types of information that an idealized statistical comprehender would be sensitive to. Here, we evaluate four predictions about such a rational (Bayesian) noisy-channel language comprehender in a sentence comprehension task: (i) semantic cues should pull sentence interpretation towards plausible meanings, especially if the wording of the more plausible meaning is close to the observed utterance in terms of the number of edits; (ii) this process should asymmetrically treat insertions and deletions due to the Bayesian "size principle"; such nonliteral interpretation of sentences should (iii) increase with the perceived noise rate of the communicative situation and (iv) decrease if semantically anomalous meanings are more likely to be communicated. These predictions are borne out, strongly suggesting that human language relies on rational statistical inference over a noisy channel.
Rational integration of noisy evidence and prior semantic expectations in sentence interpretation
Gibson, Edward; Bergen, Leon; Piantadosi, Steven T.
2013-01-01
Sentence processing theories typically assume that the input to our language processing mechanisms is an error-free sequence of words. However, this assumption is an oversimplification because noise is present in typical language use (for instance, due to a noisy environment, producer errors, or perceiver errors). A complete theory of human sentence comprehension therefore needs to explain how humans understand language given imperfect input. Indeed, like many cognitive systems, language processing mechanisms may even be “well designed”–in this case for the task of recovering intended meaning from noisy utterances. In particular, comprehension mechanisms may be sensitive to the types of information that an idealized statistical comprehender would be sensitive to. Here, we evaluate four predictions about such a rational (Bayesian) noisy-channel language comprehender in a sentence comprehension task: (i) semantic cues should pull sentence interpretation towards plausible meanings, especially if the wording of the more plausible meaning is close to the observed utterance in terms of the number of edits; (ii) this process should asymmetrically treat insertions and deletions due to the Bayesian “size principle”; such nonliteral interpretation of sentences should (iii) increase with the perceived noise rate of the communicative situation and (iv) decrease if semantically anomalous meanings are more likely to be communicated. These predictions are borne out, strongly suggesting that human language relies on rational statistical inference over a noisy channel. PMID:23637344
Wu, Chia-Chien; Wang, Hsueh-Cheng; Pomplun, Marc
2014-12-01
A previous study (Vision Research 51 (2011) 1192-1205) found evidence for semantic guidance of visual attention during the inspection of real-world scenes, i.e., an influence of semantic relationships among scene objects on overt shifts of attention. In particular, the results revealed an observer bias toward gaze transitions between semantically similar objects. However, this effect is not necessarily indicative of semantic processing of individual objects but may be mediated by knowledge of the scene gist, which does not require object recognition, or by known spatial dependency among objects. To examine the mechanisms underlying semantic guidance, in the present study, participants were asked to view a series of displays with the scene gist excluded and spatial dependency varied. Our results show that spatial dependency among objects seems to be sufficient to induce semantic guidance. Scene gist, on the other hand, does not seem to affect how observers use semantic information to guide attention while viewing natural scenes. Extracting semantic information mainly based on spatial dependency may be an efficient strategy of the visual system that only adds little cognitive load to the viewing task. Copyright © 2014 Elsevier Ltd. All rights reserved.
Guerra, Ernesto; Knoeferle, Pia
2018-01-01
Existing evidence has shown a processing advantage (or facilitation) when representations derived from a non-linguistic context (spatial proximity depicted by gambling cards moving together) match the semantic content of an ensuing sentence. A match, inspired by conceptual metaphors such as 'similarity is closeness' would, for instance, involve cards moving closer together and the sentence relates similarity between abstract concepts such as war and battle. However, other studies have reported a disadvantage (or interference) for congruence between the semantic content of a sentence and representations of spatial distance derived from this sort of non-linguistic context. In the present article, we investigate the cognitive mechanisms underlying the interaction between the representations of spatial distance and sentence processing. In two eye-tracking experiments, we tested the predictions of a mechanism that considers the competition, activation, and decay of visually and linguistically derived representations as key aspects in determining the qualitative pattern and time course of that interaction. Critical trials presented two playing cards, each showing a written abstract noun; the cards turned around, obscuring the nouns, and moved either farther apart or closer together. Participants then read a sentence expressing either semantic similarity or difference between these two nouns. When instructed to attend to the nouns on the cards (Experiment 1), participants' total reading times revealed interference between spatial distance (e.g., closeness) and semantic relations (similarity) as soon as the sentence explicitly conveyed similarity. But when instructed to attend to the cards (Experiment 2), cards approaching (vs. moving apart) elicited first interference (when similarity was implicit) and then facilitation (when similarity was made explicit) during sentence reading. We discuss these findings in the context of a competition mechanism of interference and facilitation effects.
Lerner, Itamar; Shriki, Oren
2014-01-01
For the last four decades, semantic priming—the facilitation in recognition of a target word when it follows the presentation of a semantically related prime word—has been a central topic in research of human cognitive processing. Studies have drawn a complex picture of findings which demonstrated the sensitivity of this priming effect to a unique combination of variables, including, but not limited to, the type of relatedness between primes and targets, the prime-target Stimulus Onset Asynchrony (SOA), the relatedness proportion (RP) in the stimuli list and the specific task subjects are required to perform. Automatic processes depending on the activation patterns of semantic representations in memory and controlled strategies adapted by individuals when attempting to maximize their recognition performance have both been implicated in contributing to the results. Lately, we have published a new model of semantic priming that addresses the majority of these findings within one conceptual framework. In our model, semantic memory is depicted as an attractor neural network in which stochastic transitions from one stored pattern to another are continually taking place due to synaptic depression mechanisms. We have shown how such transitions, in combination with a reinforcement-learning rule that adjusts their pace, resemble the classic automatic and controlled processes involved in semantic priming and account for a great number of the findings in the literature. Here, we review the core findings of our model and present new simulations that show how similar principles of parameter-adjustments could account for additional data not addressed in our previous studies, such as the relation between expectancy and inhibition in priming, target frequency and target degradation effects. Finally, we describe two human experiments that validate several key predictions of the model. PMID:24795670
Chen, Zhencai; Lei, Xu; Ding, Cody; Li, Hong; Chen, Antao
2013-02-01
Previous studies have demonstrated that there are separate neural mechanisms underlying semantic and response conflicts in the Stroop task. However, the practice effects of these conflicts need to be elucidated and the possible involvements of common neural mechanisms are yet to be established. We employed functional magnetic resonance imaging (fMRI) in a 4-2 mapping practice-related Stroop task to determine the neural substrates under these conflicts. Results showed that different patterns of brain activations are associated with practice in the attentional networks (e.g., dorsolateral prefrontal cortex (DLPFC), anterior cingulate cortex (ACC), and posterior parietal cortex (PPC)) for both conflicts, response control regions (e.g., inferior frontal junction (IFJ), inferior frontal gyrus (IFG)/insula, and pre-supplementary motor areas (pre-SMA)) for semantic conflict, and posterior cortex for response conflict. We also found areas of common activation in the left hemisphere within the attentional networks, for the early practice stage in semantic conflict and the late stage in "pure" response conflict using conjunction analysis. The different practice effects indicate that there are distinct mechanisms underlying these two conflict types: semantic conflict practice effects are attributable to the automation of stimulus processing, conflict and response control; response conflict practice effects are attributable to the proportional increase of conflict-related cognitive resources. In addition, the areas of common activation suggest that the semantic conflict effect may contain a partial response conflict effect, particularly at the beginning of the task. These findings indicate that there are two kinds of response conflicts contained in the key-pressing Stroop task: the vocal-level (mainly in the early stage) and key-pressing (mainly in the late stage) response conflicts; thus, the use of the subtraction method for the exploration of semantic and response conflicts may need to be further examined. Copyright © 2012 Elsevier Inc. All rights reserved.
Kaneda, Takumi; Shigemune, Yayoi; Tsukiura, Takashi
2017-02-01
Memories for emotion-laden stimuli are remembered more accurately than those for neutral stimuli. Although this enhancement reflects stimulus-driven modulation of memory by emotions, functional neuroimaging evidence of the interacting mechanisms between emotions generated by intentional processes, such as semantic elaboration, and memory is scarce. The present fMRI study investigated how encoding-related activation is modulated by emotions generated during the process of semantic elaboration. During encoding with fMRI, healthy young adults viewed neutral (target) pictures either passively or with semantic elaboration. In semantic elaboration, participants imagined background stories related to the pictures. Encoding trials with semantic elaboration were subdivided into conditions in which participants imagined negative, positive, or neutral stories. One week later, memories for target pictures were tested. In behavioral results, memories for target pictures were significantly enhanced by semantic elaboration, compared to passive viewing, and the memory enhancement was more remarkable when negative or positive stories were imagined. fMRI results demonstrated that activations in the left inferior frontal gyrus and dorsal medial prefrontal cortex (dmPFC) were greater during the encoding of target pictures with semantic elaboration than those with passive viewing, and that these activations further increased during encoding with semantic elaboration of emotional stories than of neutral stories. Functional connectivity between the left inferior frontal gyrus and dmPFC/hippocampus during encoding significantly predicted retrieval accuracies of memories encoded with self-generated emotional stories. These findings suggest that networks including the left inferior frontal region, dmPFC, and hippocampus could contribute to the modulation of memories encoded with the emotion generation.
Rice, Grace E; Caswell, Helen; Moore, Perry; Lambon Ralph, Matthew A; Hoffman, Paul
2018-06-06
One critical feature of any well-engineered system is its resilience to perturbation and minor damage. The purpose of the current study was to investigate how resilience is achieved in higher cognitive systems, which we explored through the domain of semantic cognition. Convergent evidence implicates the bilateral anterior temporal lobes (ATLs) as a conceptual knowledge hub. While bilateral damage to this region produces profound semantic impairment, unilateral atrophy/resection or transient perturbation has a limited effect. Two neural mechanisms might underpin this resilience to unilateral ATL damage: 1) the undamaged ATL upregulates its activation in order to compensate; and/or 2) prefrontal regions involved in control of semantic retrieval upregulate to compensate for the impoverished semantic representations that follow from ATL damage. To test these possibilities, 34 postsurgical temporal lobe epilepsy patients and 20 age-matched controls were scanned whilst completing semantic tasks. Pictorial tasks, which produced bilateral frontal and temporal activation, showed few activation differences between patients and control participants. Written word tasks, however, produced a left-lateralized activation pattern and greater differences between the groups. Patients with right ATL resection increased activation in left inferior frontal gyrus (IFG). Patients with left ATL resection upregulated both the right ATL and right IFG. Consistent with recent computational models, these results indicate that 1) written word semantic processing in patients with ATL resection is supported by upregulation of semantic knowledge and control regions, principally in the undamaged hemisphere, and 2) pictorial semantic processing is less affected, presumably because it draws on a more bilateral network.
Ontology Alignment Architecture for Semantic Sensor Web Integration
Fernandez, Susel; Marsa-Maestre, Ivan; Velasco, Juan R.; Alarcos, Bernardo
2013-01-01
Sensor networks are a concept that has become very popular in data acquisition and processing for multiple applications in different fields such as industrial, medicine, home automation, environmental detection, etc. Today, with the proliferation of small communication devices with sensors that collect environmental data, semantic Web technologies are becoming closely related with sensor networks. The linking of elements from Semantic Web technologies with sensor networks has been called Semantic Sensor Web and has among its main features the use of ontologies. One of the key challenges of using ontologies in sensor networks is to provide mechanisms to integrate and exchange knowledge from heterogeneous sources (that is, dealing with semantic heterogeneity). Ontology alignment is the process of bringing ontologies into mutual agreement by the automatic discovery of mappings between related concepts. This paper presents a system for ontology alignment in the Semantic Sensor Web which uses fuzzy logic techniques to combine similarity measures between entities of different ontologies. The proposed approach focuses on two key elements: the terminological similarity, which takes into account the linguistic and semantic information of the context of the entity's names, and the structural similarity, based on both the internal and relational structure of the concepts. This work has been validated using sensor network ontologies and the Ontology Alignment Evaluation Initiative (OAEI) tests. The results show that the proposed techniques outperform previous approaches in terms of precision and recall. PMID:24051523
Ontology alignment architecture for semantic sensor Web integration.
Fernandez, Susel; Marsa-Maestre, Ivan; Velasco, Juan R; Alarcos, Bernardo
2013-09-18
Sensor networks are a concept that has become very popular in data acquisition and processing for multiple applications in different fields such as industrial, medicine, home automation, environmental detection, etc. Today, with the proliferation of small communication devices with sensors that collect environmental data, semantic Web technologies are becoming closely related with sensor networks. The linking of elements from Semantic Web technologies with sensor networks has been called Semantic Sensor Web and has among its main features the use of ontologies. One of the key challenges of using ontologies in sensor networks is to provide mechanisms to integrate and exchange knowledge from heterogeneous sources (that is, dealing with semantic heterogeneity). Ontology alignment is the process of bringing ontologies into mutual agreement by the automatic discovery of mappings between related concepts. This paper presents a system for ontology alignment in the Semantic Sensor Web which uses fuzzy logic techniques to combine similarity measures between entities of different ontologies. The proposed approach focuses on two key elements: the terminological similarity, which takes into account the linguistic and semantic information of the context of the entity's names, and the structural similarity, based on both the internal and relational structure of the concepts. This work has been validated using sensor network ontologies and the Ontology Alignment Evaluation Initiative (OAEI) tests. The results show that the proposed techniques outperform previous approaches in terms of precision and recall.
Semantic associative relations and conceptual processing.
Di Giacomo, Dina; De Federicis, Lucia Serenella; Pistelli, Manuela; Fiorenzi, Daniela; Passafiume, Domenico
2012-02-01
We analysed the organisation of semantic network using associative mechanisms between different types of information and studied the progression of the use of these associative relations during development. We aimed to verify the linkage of concepts with the use of semantic associative relations. The goal of this study was to analyse the cognitive ability to use associative relations between various items when describing old and/or new concepts. We examined the performance of 100 subjects between the ages of 4 and 7 years on an experimental task using five associative relations based on verbal encoding. The results showed that children are able to use the five semantic associative relations at age 4, but performance with each of the different associative relations improves at different times during development. Functional and part/whole relations develop at an early age, whereas the superordinate relations develop later. Our study clarified the characteristics of the progression of semantic associations during development as well as the roles that associative relations play in the structure and improvement of the semantic store.
The role of the left anterior temporal lobe in semantic composition vs. semantic memory.
Westerlund, Masha; Pylkkänen, Liina
2014-05-01
The left anterior temporal lobe (LATL) is robustly implicated in semantic processing by a growing body of literature. However, these results have emerged from two distinct bodies of work, addressing two different processing levels. On the one hand, the LATL has been characterized as a 'semantic hub׳ that binds features of concepts across a distributed network, based on results from semantic dementia and hemodynamic findings on the categorization of specific compared to basic exemplars. On the other, the LATL has been implicated in combinatorial operations in language, as shown by increased activity in this region associated with the processing of sentences and of basic phrases. The present work aimed to reconcile these two literatures by independently manipulating combination and concept specificity within a minimal MEG paradigm. Participants viewed simple nouns that denoted either low specificity (fish) or high specificity categories (trout) presented in either combinatorial (spotted fish/trout) or non-combinatorial contexts (xhsl fish/trout). By combining these paradigms from the two literatures, we directly compared the engagement of the LATL in semantic memory vs. semantic composition. Our results indicate that although noun specificity subtly modulates the LATL activity elicited by single nouns, it most robustly affects the size of the composition effect when these nouns are adjectivally modified, with low specificity nouns eliciting a much larger effect. We conclude that these findings are compatible with an account in which the specificity and composition effects arise from a shared mechanism of meaning specification. Copyright © 2014 Elsevier Ltd. All rights reserved.
Miller, J
1991-03-01
When subjects must respond to a relevant center letter and ignore irrelevant flanking letters, the identities of the flankers produce a response compatibility effect, indicating that they are processed semantically at least to some extent. Because this effect decreases as the separation between target and flankers increases, the effect appears to result from imperfect early selection (attenuation). In the present experiments, several features of the focused attention paradigm were examined, in order to determine whether they might produce the flanker compatibility effect by interfering with the operation of an early selective mechanism. Specifically, the effect might be produced because the paradigm requires subjects to (1) attend exclusively to stimuli within a very small visual angle, (2) maintain a long-term attentional focus on a constant display location, (3) focus attention on an empty display location, (4) exclude onset-transient flankers from semantic processing, or (5) ignore some of the few stimuli in an impoverished visual field. The results indicate that none of these task features is required for semantic processing of unattended stimuli to occur. In fact, visual angle is the only one of the task features that clearly has a strong influence on the size of the flanker compatibility effect. The invariance of the flanker compatibility effect across these conditions suggests that the mechanism for early selection rarely, if ever, completely excludes unattended stimuli from semantic analysis. In addition, it shows that selective mechanisms are relatively insensitive to several factors that might be expected to influence them, thereby supporting the view that spatial separation has a special status for visual selective attention.
Lexical-semantic processing in the semantic priming paradigm in aphasic patients.
Salles, Jerusa Fumagalli de; Holderbaum, Candice Steffen; Parente, Maria Alice Mattos Pimenta; Mansur, Letícia Lessa; Ansaldo, Ana Inès
2012-09-01
There is evidence that the explicit lexical-semantic processing deficits which characterize aphasia may be observed in the absence of implicit semantic impairment. The aim of this article was to critically review the international literature on lexical-semantic processing in aphasia, as tested through the semantic priming paradigm. Specifically, this review focused on aphasia and lexical-semantic processing, the methodological strengths and weaknesses of the semantic paradigms used, and recent evidence from neuroimaging studies on lexical-semantic processing. Furthermore, evidence on dissociations between implicit and explicit lexical-semantic processing reported in the literature will be discussed and interpreted by referring to functional neuroimaging evidence from healthy populations. There is evidence that semantic priming effects can be found both in fluent and in non-fluent aphasias, and that these effects are related to an extensive network which includes the temporal lobe, the pre-frontal cortex, the left frontal gyrus, the left temporal gyrus and the cingulated cortex.
A lexical semantic hub for heteromodal naming in middle fusiform gyrus.
Forseth, Kiefer James; Kadipasaoglu, Cihan Mehmet; Conner, Christopher Richard; Hickok, Gregory; Knight, Robert Thomas; Tandon, Nitin
2018-07-01
Semantic memory underpins our understanding of objects, people, places, and ideas. Anomia, a disruption of semantic memory access, is the most common residual language disturbance and is seen in dementia and following injury to temporal cortex. While such anomia has been well characterized by lesion symptom mapping studies, its pathophysiology is not well understood. We hypothesize that inputs to the semantic memory system engage a specific heteromodal network hub that integrates lexical retrieval with the appropriate semantic content. Such a network hub has been proposed by others, but has thus far eluded precise spatiotemporal delineation. This limitation in our understanding of semantic memory has impeded progress in the treatment of anomia. We evaluated the cortical structure and dynamics of the lexical semantic network in driving speech production in a large cohort of patients with epilepsy using electrocorticography (n = 64), functional MRI (n = 36), and direct cortical stimulation (n = 30) during two generative language processes that rely on semantic knowledge: visual picture naming and auditory naming to definition. Each task also featured a non-semantic control condition: scrambled pictures and reversed speech, respectively. These large-scale data of the left, language-dominant hemisphere uniquely enable convergent, high-resolution analyses of neural mechanisms characterized by rapid, transient dynamics with strong interactions between distributed cortical substrates. We observed three stages of activity during both visual picture naming and auditory naming to definition that were serially organized: sensory processing, lexical semantic processing, and articulation. Critically, the second stage was absent in both the visual and auditory control conditions. Group activity maps from both electrocorticography and functional MRI identified heteromodal responses in middle fusiform gyrus, intraparietal sulcus, and inferior frontal gyrus; furthermore, the spectrotemporal profiles of these three regions revealed coincident activity preceding articulation. Only in the middle fusiform gyrus did direct cortical stimulation disrupt both naming tasks while still preserving the ability to repeat sentences. These convergent data strongly support a model in which a distinct neuroanatomical substrate in middle fusiform gyrus provides access to object semantic information. This under-appreciated locus of semantic processing is at risk in resections for temporal lobe epilepsy as well as in trauma and strokes that affect the inferior temporal cortex-it may explain the range of anomic states seen in these conditions. Further characterization of brain network behaviour engaging this region in both healthy and diseased states will expand our understanding of semantic memory and further development of therapies directed at anomia.
Modeling and formal representation of geospatial knowledge for the Geospatial Semantic Web
NASA Astrophysics Data System (ADS)
Huang, Hong; Gong, Jianya
2008-12-01
GML can only achieve geospatial interoperation at syntactic level. However, it is necessary to resolve difference of spatial cognition in the first place in most occasions, so ontology was introduced to describe geospatial information and services. But it is obviously difficult and improper to let users to find, match and compose services, especially in some occasions there are complicated business logics. Currently, with the gradual introduction of Semantic Web technology (e.g., OWL, SWRL), the focus of the interoperation of geospatial information has shifted from syntactic level to Semantic and even automatic, intelligent level. In this way, Geospatial Semantic Web (GSM) can be put forward as an augmentation to the Semantic Web that additionally includes geospatial abstractions as well as related reasoning, representation and query mechanisms. To advance the implementation of GSM, we first attempt to construct the mechanism of modeling and formal representation of geospatial knowledge, which are also two mostly foundational phases in knowledge engineering (KE). Our attitude in this paper is quite pragmatical: we argue that geospatial context is a formal model of the discriminate environment characters of geospatial knowledge, and the derivation, understanding and using of geospatial knowledge are located in geospatial context. Therefore, first, we put forward a primitive hierarchy of geospatial knowledge referencing first order logic, formal ontologies, rules and GML. Second, a metamodel of geospatial context is proposed and we use the modeling methods and representation languages of formal ontologies to process geospatial context. Thirdly, we extend Web Process Service (WPS) to be compatible with local DLL for geoprocessing and possess inference capability based on OWL.
Human ecstasy (MDMA) polydrug users have altered brain activation during semantic processing.
Watkins, Tristan J; Raj, Vidya; Lee, Junghee; Dietrich, Mary S; Cao, Aize; Blackford, Jennifer U; Salomon, Ronald M; Park, Sohee; Benningfield, Margaret M; Di Iorio, Christina R; Cowan, Ronald L
2013-05-01
Ecstasy (3,4-methylenedioxymethamphetamine [MDMA]) polydrug users have verbal memory performance that is statistically significantly lower than that of control subjects. Studies have correlated long-term MDMA use with altered brain activation in regions that play a role in verbal memory. The aim of our study was to examine the association of lifetime ecstasy use with semantic memory performance and brain activation in ecstasy polydrug users. A total of 23 abstinent ecstasy polydrug users (age = 24.57 years) and 11 controls (age = 22.36 years) performed a two-part functional magnetic resonance imaging (fMRI) semantic encoding and recognition task. To isolate brain regions activated during each semantic task, we created statistical activation maps in which brain activation was greater for word stimuli than for non-word stimuli (corrected p < 0.05). During the encoding phase, ecstasy polydrug users had greater activation during semantic encoding bilaterally in language processing regions, including Brodmann areas 7, 39, and 40. Of this bilateral activation, signal intensity with a peak T in the right superior parietal lobe was correlated with lifetime ecstasy use (r s = 0.43, p = 0.042). Behavioral performance did not differ between groups. These findings demonstrate that ecstasy polydrug users have increased brain activation during semantic processing. This increase in brain activation in the absence of behavioral deficits suggests that ecstasy polydrug users have reduced cortical efficiency during semantic encoding, possibly secondary to MDMA-induced 5-HT neurotoxicity. Although pre-existing differences cannot be ruled out, this suggests the possibility of a compensatory mechanism allowing ecstasy polydrug users to perform equivalently to controls, providing additional support for an association of altered cerebral neurophysiology with MDMA exposure.
Human ecstasy (MDMA) polydrug users have altered brain activation during semantic processing
Watkins, Tristan J.; Raj, Vidya; Lee, Junghee; Dietrich, Mary S.; Cao, Aize; Blackford, Jennifer U.; Salomon, Ronald M.; Park, Sohee; Benningfield, Margaret M.; Di Iorio, Christina R.; Cowan, Ronald L.
2012-01-01
Rationale Ecstasy (MDMA) polydrug users have verbal memory performance that is statistically significantly lower than comparison control subjects. Studies have correlated long-term MDMA use with altered brain activation in regions that play a role in verbal memory. Objectives The aim of our study was to examine the association of lifetime ecstasy use with semantic memory performance and brain activation in ecstasy polydrug users. Methods 23 abstinent ecstasy polydrug users (age=24.57) and 11 controls (age=22.36) performed a two-part fMRI semantic encoding and recognition task. To isolate brain regions activated during each semantic task, we created statistical activation maps in which brain activation was greater for word stimuli than for non-word stimuli (corrected p<0.05). Results During the encoding phase, ecstasy polydrug users had greater activation during semantic encoding bilaterally in language processing regions, including Brodmann Areas 7, 39, and 40. Of this bilateral activation, signal intensity with a peak T in the right superior parietal lobe was correlated with lifetime ecstasy use (rs=0.43, p=0.042). Behavioral performance did not differ between groups. Conclusions These findings demonstrate that ecstasy polydrug users have increased brain activation during semantic processing. This increase in brain activation in the absence of behavioral deficits suggests that ecstasy polydrug users have reduced cortical efficiency during semantic encoding, possibly secondary to MDMA-induced 5-HT neurotoxicity. Although pre-existing differences cannot be ruled out, this suggests the possibility of a compensatory mechanism allowing ecstasy polydrug users to perform equivalently to controls, providing additional support for an association of altered cerebral neurophysiology with MDMA exposure. PMID:23241648
Gattei, Carolina A; Dickey, Michael W; Wainselboim, Alejandro J; París, Luis
2015-01-01
Linking is the theory that captures the mapping of the semantic roles of lexical arguments to the syntactic functions of the phrases that realize them. At the sentence level, linking allows us to understand "who did what to whom" in an event. In Spanish, linking has been shown to interact with word order, verb class, and case marking. The current study aims to provide the first piece of experimental evidence about the interplay between word order and verb type in Spanish. We achieve this by adopting role and reference grammar and the extended argument dependency model. Two different types of clauses were examined in a self-paced reading task: clauses with object-experiencer psychological verbs and activity verbs. These types of verbs differ in the way that their syntactic and semantic structures are linked, and thus they provide interesting evidence on how information that belongs to the syntax-semantics interface might influence the predictive and integrative processes of sentence comprehension with alternative word orders. Results indicate that in Spanish, comprehension and processing speed is enhanced when the order of the constituents in the sentence mirrors their ranking on a semantic hierarchy that encodes a verb's lexical semantics. Moreover, results show that during online comprehension, predictive mechanisms based on argument hierarchization are used rapidly to inform the processing system. Our findings corroborate already existing cross-linguistic evidence on the issue and are briefly discussed in the light of other sentence-processing models.
ERIC Educational Resources Information Center
Gremillion, Monica L.; Martel, Michelle M.
2012-01-01
ADHD is associated with academic underachievement, but it remains unclear what mechanism accounts for this association. Semantic language is an underexplored mechanism that provides a developmental explanation for this association. The present study will examine whether semantic language deficits explain the association between ADHD and reading…
The Semantic Processing of Motion Verbs: Coercion or Underspecification?
ERIC Educational Resources Information Center
Lukassek, Julia; Pryslopska, Anna; Hörnig, Robin; Maienborn, Claudia
2017-01-01
Underspecification and coercion are two prominent interpretive mechanisms to account for meaning variability beyond compositionality. While there is plentiful evidence that natural language meaning constitution exploits both mechanisms, it is an open issue whether a concrete phenomenon of meaning variability is an instance of underspecification or…
Palmiero, Massimiliano; Di Matteo, Rosalia; Belardinelli, Marta Olivetti
2014-05-01
Two experiments comparing imaginative processing in different modalities and semantic processing were carried out to investigate the issue of whether conceptual knowledge can be represented in different format. Participants were asked to judge the similarity between visual images, auditory images, and olfactory images in the imaginative block, if two items belonged to the same category in the semantic block. Items were verbally cued in both experiments. The degree of similarity between the imaginative and semantic items was changed across experiments. Experiment 1 showed that the semantic processing was faster than the visual and the auditory imaginative processing, whereas no differentiation was possible between the semantic processing and the olfactory imaginative processing. Experiment 2 revealed that only the visual imaginative processing could be differentiated from the semantic processing in terms of accuracy. These results showed that the visual and auditory imaginative processing can be differentiated from the semantic processing, although both visual and auditory images strongly rely on semantic representations. On the contrary, no differentiation is possible within the olfactory domain. Results are discussed in the frame of the imagery debate.
Subcortical mechanisms in language: lexical-semantic mechanisms and the thalamus.
Crosson, B
1999-07-01
Four previously published cases of dominant thalamic lesion in which the author has participated are reviewed to gain a better understanding of thalamic participation in lexical-semantic functions. Naming deficits in two cases support Nadeau and Crosson's (1997) hypothesis of a selective engagement mechanism involving the frontal lobes, inferior thalamic peduncle, nucleus reticularis, and other thalamic nuclei, possibly the centromedian nucleus. This mechanism selectively engages those cortical areas required to perform a cognitive task, while maintaining other areas in a state of relative disengagement. Deficits in selective engagement disproportionately affect lexical retrieval based on semantic input, as opposed to lexical and sublexical processes, because the former is more dependent upon this attentional system. The concept of selective engagement is also useful in understanding thalamic participation in working memory, as supported by data from one recent functional neuroimaging study. Other processes also may be compromised in more posterior thalamic lesions which damage the pulvinar but not other components of this selective engagement system. A third case with aphasia after a more superior and posterior thalamic lesion also had oral reading errors similar to those in neglect dyslexia. The pattern of deficits suggested a visual processing problem in the early stages of reading. The fourth case had a category-specific naming deficit after posterior thalamic lesion. Taken together, the latter two cases indicate that the nature of language functions in more posterior regions of the dominant thalamus depends upon the cortical connectivity of the thalamic region. Together, findings from the four cases suggest that thalamic nuclei and systems are involved in multiple processes which directly or indirectly support cortical language functions. Copyright 1999 Academic Press.
Wilson, Stephen M; DeMarco, Andrew T; Henry, Maya L; Gesierich, Benno; Babiak, Miranda; Mandelli, Maria Luisa; Miller, Bruce L; Gorno-Tempini, Maria Luisa
2014-05-01
Neuroimaging and neuropsychological studies have implicated the anterior temporal lobe (ATL) in sentence-level processing, with syntactic structure-building and/or combinatorial semantic processing suggested as possible roles. A potential challenge to the view that the ATL is involved in syntactic aspects of sentence processing comes from the clinical syndrome of semantic variant primary progressive aphasia (semantic PPA; also known as semantic dementia). In semantic PPA, bilateral neurodegeneration of the ATLs is associated with profound lexical semantic deficits, yet syntax is strikingly spared. The goal of this study was to investigate the neural correlates of syntactic processing in semantic PPA to determine which regions normally involved in syntactic processing are damaged in semantic PPA and whether spared syntactic processing depends on preserved functionality of intact regions, preserved functionality of atrophic regions, or compensatory functional reorganization. We scanned 20 individuals with semantic PPA and 24 age-matched controls using structural MRI and fMRI. Participants performed a sentence comprehension task that emphasized syntactic processing and minimized lexical semantic demands. We found that, in controls, left inferior frontal and left posterior temporal regions were modulated by syntactic processing, whereas anterior temporal regions were not significantly modulated. In the semantic PPA group, atrophy was most severe in the ATLs but extended to the posterior temporal regions involved in syntactic processing. Functional activity for syntactic processing was broadly similar in patients and controls; in particular, whole-brain analyses revealed no significant differences between patients and controls in the regions modulated by syntactic processing. The atrophic left ATL did show abnormal functionality in semantic PPA patients; however, this took the unexpected form of a failure to deactivate. Taken together, our findings indicate that spared syntactic processing in semantic PPA depends on preserved functionality of structurally intact left frontal regions and moderately atrophic left posterior temporal regions, but no functional reorganization was apparent as a consequence of anterior temporal atrophy and dysfunction. These results suggest that the role of the ATL in sentence processing is less likely to relate to syntactic structure-building and more likely to relate to higher-level processes such as combinatorial semantic processing.
Semantic Agent-Based Service Middleware and Simulation for Smart Cities
Liu, Ming; Xu, Yang; Hu, Haixiao; Mohammed, Abdul-Wahid
2016-01-01
With the development of Machine-to-Machine (M2M) technology, a variety of embedded and mobile devices is integrated to interact via the platform of the Internet of Things, especially in the domain of smart cities. One of the primary challenges is that selecting the appropriate services or service combination for upper layer applications is hard, which is due to the absence of a unified semantical service description pattern, as well as the service selection mechanism. In this paper, we define a semantic service representation model from four key properties: Capability (C), Deployment (D), Resource (R) and IOData (IO). Based on this model, an agent-based middleware is built to support semantic service enablement. In this middleware, we present an efficient semantic service discovery and matching approach for a service combination process, which calculates the semantic similarity between services, and a heuristic algorithm to search the service candidates for a specific service request. Based on this design, we propose a simulation of virtual urban fire fighting, and the experimental results manifest the feasibility and efficiency of our design. PMID:28009818
Semantic Agent-Based Service Middleware and Simulation for Smart Cities.
Liu, Ming; Xu, Yang; Hu, Haixiao; Mohammed, Abdul-Wahid
2016-12-21
With the development of Machine-to-Machine (M2M) technology, a variety of embedded and mobile devices is integrated to interact via the platform of the Internet of Things, especially in the domain of smart cities. One of the primary challenges is that selecting the appropriate services or service combination for upper layer applications is hard, which is due to the absence of a unified semantical service description pattern, as well as the service selection mechanism. In this paper, we define a semantic service representation model from four key properties: Capability (C), Deployment (D), Resource (R) and IOData (IO). Based on this model, an agent-based middleware is built to support semantic service enablement. In this middleware, we present an efficient semantic service discovery and matching approach for a service combination process, which calculates the semantic similarity between services, and a heuristic algorithm to search the service candidates for a specific service request. Based on this design, we propose a simulation of virtual urban fire fighting, and the experimental results manifest the feasibility and efficiency of our design.
Rodd, Jennifer M; Vitello, Sylvia; Woollams, Anna M; Adank, Patti
2015-02-01
We conducted an Activation Likelihood Estimation (ALE) meta-analysis to identify brain regions that are recruited by linguistic stimuli requiring relatively demanding semantic or syntactic processing. We included 54 functional MRI studies that explicitly varied the semantic or syntactic processing load, while holding constant demands on earlier stages of processing. We included studies that introduced a syntactic/semantic ambiguity or anomaly, used a priming manipulation that specifically reduced the load on semantic/syntactic processing, or varied the level of syntactic complexity. The results confirmed the critical role of the posterior left Inferior Frontal Gyrus (LIFG) in semantic and syntactic processing. These results challenge models of sentence comprehension highlighting the role of anterior LIFG for semantic processing. In addition, the results emphasise the posterior (but not anterior) temporal lobe for both semantic and syntactic processing. Crown Copyright © 2014. Published by Elsevier Inc. All rights reserved.
Cairelli, Michael J.; Miller, Christopher M.; Fiszman, Marcelo; Workman, T. Elizabeth; Rindflesch, Thomas C.
2013-01-01
Applying the principles of literature-based discovery (LBD), we elucidate the paradox that obesity is beneficial in critical care despite contributing to disease generally. Our approach enhances a previous extension to LBD, called “discovery browsing,” and is implemented using Semantic MEDLINE, which summarizes the results of a PubMed search into an interactive graph of semantic predications. The methodology allows a user to construct argumentation underpinning an answer to a biomedical question by engaging the user in an iterative process between system output and user knowledge. Components of the Semantic MEDLINE output graph identified as “interesting” by the user both contribute to subsequent searches and are constructed into a logical chain of relationships constituting an explanatory network in answer to the initial question. Based on this methodology we suggest that phthalates leached from plastic in critical care interventions activate PPAR gamma, which is anti-inflammatory and abundant in obese patients. PMID:24551329
van Ettinger-Veenstra, Helene; Widén, Carin; Engström, Maria; Karlsson, Thomas; Leijon, Ingemar; Nelson, Nina
2017-01-01
In preterm children with very low birth weight (VLBW ≤ 1500 g), reading problems are often observed. Reading comprehension is dependent on word decoding and language comprehension. We investigated neural activation-within brain regions important for reading-related to components of reading comprehension in young VLBW adolescents in direct comparison to normal birth weight (NBW) term-born peers, with the use of functional magnetic resonance imaging (fMRI). We hypothesized that the decoding mechanisms will be affected by VLBW, and expect to see increased neural activity for VLBW which may be modulated by task performance and cognitive ability. The study investigated 13 (11 included in fMRI) young adolescents (ages 12 to 14 years) born preterm with VLBW and in 13 NBW controls (ages 12-14 years) for performance on the Block Design and Vocabulary subtests of the Wechsler Intelligence Scale for Children; and for semantic, orthographic, and phonological processing during an fMRI paradigm. The VLBW group showed increased phonological activation in left inferior frontal gyrus, decreased orthographic activation in right supramarginal gyrus, and decreased semantic activation in left inferior frontal gyrus. Block Design was related to altered right-hemispheric activation, and VLBW showed lower WISC Block Design scores. Left angular gyrus showed activation increase specific for VLBW with high accuracy on the semantic test. Young VLBW adolescents showed no accuracy and reaction time performance differences on our fMRI language tasks, but they did exhibit altered neural activation during these tasks. This altered activation for VLBW was observed as increased activation during phonological decoding, and as mainly decreased activation during orthographic and semantic processing. Correlations of neural activation with accuracy on the semantic fMRI task and with decreased WISC Block Design performance were specific for the VLBW group. Together, results suggest compensatory mechanisms by recruiting additional brain regions upon altered neural development of decoding for VLBW.
Manfredi, Mirella; Cohn, Neil; Kutas, Marta
2017-06-01
Researchers have long questioned whether information presented through different sensory modalities involves distinct or shared semantic systems. We investigated uni-sensory cross-modal processing by recording event-related brain potentials to words replacing the climactic event in a visual narrative sequence (comics). We compared Onomatopoeic words, which phonetically imitate action sounds (Pow!), with Descriptive words, which describe an action (Punch!), that were (in)congruent within their sequence contexts. Across two experiments, larger N400s appeared to Anomalous Onomatopoeic or Descriptive critical panels than to their congruent counterparts, reflecting a difficulty in semantic access/retrieval. Also, Descriptive words evinced a greater late frontal positivity compared to Onomatopoetic words, suggesting that, though plausible, they may be less predictable/expected in visual narratives. Our results indicate that uni-sensory cross-model integration of word/letter-symbol strings within visual narratives elicit ERP patterns typically observed for written sentence processing, thereby suggesting the engagement of similar domain-independent integration/interpretation mechanisms. Copyright © 2017 Elsevier Inc. All rights reserved.
Manfredi, Mirella; Cohn, Neil; Kutas, Marta
2017-01-01
Researchers have long questioned whether information presented through different sensory modalities involves distinct or shared semantic systems. We investigated uni-sensory cross-modal processing by recording event-related brain potentials to words replacing the climactic event in a visual narrative sequence (comics). We compared Onomatopoeic words, which phonetically imitate action sounds (Pow!), with Descriptive words, which describe an action (Punch!), that were (in)congruent within their sequence contexts. Across two experiments, larger N400s appeared to Anomalous Onomatopoeic or Descriptive critical panels than to their congruent counterparts, reflecting a difficulty in semantic access/retrieval. Also, Descriptive words evinced a greater late frontal positivity compared to Onomatopoetic words, suggesting that, though plausible, they may be less predictable/expected in visual narratives. Our results indicate that uni-sensory cross-model integration of word/letter-symbol strings within visual narratives elicit ERP patterns typically observed for written sentence processing, thereby suggesting the engagement of similar domain-independent integration/interpretation mechanisms. PMID:28242517
N400 ERPs for actions: building meaning in context
Amoruso, Lucía; Gelormini, Carlos; Aboitiz, Francisco; Alvarez González, Miguel; Manes, Facundo; Cardona, Juan F.; Ibanez, Agustín
2013-01-01
Converging neuroscientific evidence suggests the existence of close links between language and sensorimotor cognition. Accordingly, during the comprehension of meaningful actions, our brain would recruit semantic-related operations similar to those associated with the processing of language information. Consistent with this view, electrophysiological findings show that the N400 component, traditionally linked to the semantic processing of linguistic material, can also be elicited by action-related material. This review outlines recent data from N400 studies that examine the understanding of action events. We focus on three specific domains, including everyday action comprehension, co-speech gesture integration, and the semantics involved in motor planning and execution. Based on the reviewed findings, we suggest that both negativities (the N400 and the action-N400) reflect a common neurocognitive mechanism involved in the construction of meaning through the expectancies created by previous experiences and current contextual information. To shed light on how this process is instantiated in the brain, a testable contextual fronto-temporo-parietal model is proposed. PMID:23459873
Nelson, James K.; Reuter-Lorenz, Patricia A.; Persson, Jonas; Sylvester, Ching-Yune C.; Jonides, John
2009-01-01
Work in functional neuroimaging has mapped interference resolution processing onto left inferior frontal regions for both verbal working memory and a variety of semantic processing tasks. The proximity of the identified regions from these different tasks suggests the existence of a common, domain-general interference resolution mechanism. The current research specifically tests this idea in a within-subject design using fMRI to assess the activation associated with variable selection requirements in a semantic retrieval task (verb generation) and a verbal working memory task with a trial-specific proactive interference manipulation (recent-probes). High interference trials on both tasks were associated with activity in the midventrolateral region of the left inferior frontal gyrus, and the regions activated in each task strongly overlapped. The results indicate that an elemental component of executive control associated with interference resolution during retrieval from working memory and from semantic memory can be mapped to a common portion of the left inferior frontal gyrus. PMID:19111526
Knoeferle, Pia; Crocker, Matthew W
2009-12-01
Reading times for the second conjunct of and-coordinated clauses are faster when the second conjunct parallels the first conjunct in its syntactic or semantic (animacy) structure than when its structure differs (Frazier, Munn, & Clifton, 2000; Frazier, Taft, Roeper, & Clifton, 1984). What remains unclear, however, is the time course of parallelism effects, their scope, and the kinds of linguistic information to which they are sensitive. Findings from the first two eye-tracking experiments revealed incremental constituent order parallelism across the board-both during structural disambiguation (Experiment 1) and in sentences with unambiguously case-marked constituent order (Experiment 2), as well as for both marked and unmarked constituent orders (Experiments 1 and 2). Findings from Experiment 3 revealed effects of both constituent order and subtle semantic (noun phrase similarity) parallelism. Together our findings provide evidence for an across-the-board account of parallelism for processing and-coordinated clauses, in which both constituent order and semantic aspects of representations contribute towards incremental parallelism effects. We discuss our findings in the context of existing findings on parallelism and priming, as well as mechanisms of sentence processing.
Self-imagining enhances recognition memory in memory-impaired individuals with neurological damage.
Grilli, Matthew D; Glisky, Elizabeth L
2010-11-01
The ability to imagine an elaborative event from a personal perspective relies on several cognitive processes that may potentially enhance subsequent memory for the event, including visual imagery, semantic elaboration, emotional processing, and self-referential processing. In an effort to find a novel strategy for enhancing memory in memory-impaired individuals with neurological damage, we investigated the mnemonic benefit of a method we refer to as self-imagining-the imagining of an event from a realistic, personal perspective. Fourteen individuals with neurologically based memory deficits and 14 healthy control participants intentionally encoded neutral and emotional sentences under three instructions: structural-baseline processing, semantic processing, and self-imagining. Findings revealed a robust "self-imagination effect (SIE)," as self-imagination enhanced recognition memory relative to deep semantic elaboration in both memory-impaired individuals, F(1, 13) = 32.11, p < .001, η2 = .71; and healthy controls, F(1, 13) = 5.57, p < .05, η2 = .30. In addition, results indicated that mnemonic benefits of self-imagination were not limited by severity of the memory disorder nor were they related to self-reported vividness of visual imagery, semantic processing, or emotional content of the materials. The findings suggest that the SIE may depend on unique mnemonic mechanisms possibly related to self-referential processing and that imagining an event from a personal perspective makes that event particularly memorable even for those individuals with severe memory deficits. Self-imagining may thus provide an effective rehabilitation strategy for individuals with memory impairment.
[Schizophrenia and semantic priming effects].
Lecardeur, L; Giffard, B; Eustache, F; Dollfus, S
2006-01-01
This article is a review of studies using the semantic priming paradigm to assess the functioning of semantic memory in schizophrenic patients. Semantic priming describes the phenomenon of increasing the speed with which a string of letters (the target) is recognized as a word (lexical decision task) by presenting to the subject a semantically related word (the prime) prior to the appearance of the target word. This semantic priming is linked to both automatic and controlled processes depending on experimental conditions (stimulus onset asynchrony (SOA), percentage of related words and explicit memory instructions). Automatic process observed with short SOA, low related word percentage and instructions asking only to process the target, could be linked to the "automatic spreading activation" through the semantic network. Controlled processes involve "semantic matching" (the number of related and unrelated pairs influences the subjects decision) and "expectancy" (the prime leads the subject to generate an expectancy set of potential target to the prime). These processes can be observed whatever the SOA for the former and with long SOA for the later, but both with only high related word percentage and explicit memory instructions. Studies evaluating semantic priming effects in schizophrenia show conflicting results: schizophrenic patients can present hyperpriming (semantic priming effect is larger in patients than in controls), hypopriming (semantic priming effect is lower in patients than in controls) or equal semantic priming effects compared to control subjects. These results could be associated to a global impairment of controlled processes in schizophrenia, essentially to a dysfunction of semantic matching process. On the other hand, efficiency of semantic automatic spreading activation process is controversial. These discrepancies could be linked to the different experimental conditions used (duration of SOA, proportion of related pairs and instructions), which influence on the degree of involvement of controlled processes and therefore prevent to really assess its functioning. In addition, manipulations of the relation between prime and target (semantic distance, type of semantic relation and strength of semantic relation) seem to influence reaction times. However, the relation between prime and target (mediated priming) frequently used could not be the most relevant relation to understand the way of spreading of activation in semantic network in patients with schizophrenia. Finally, patients with formal thought disorders present particularly high priming effects relative to controls. These abnormal semantic priming effects could reflect a dysfunction of automatic spreading activation process and consequently an exaggerated diffusion of activation in the semantic network. In the future, the inclusion of different groups schizophrenic subjects could allow us to determine whether semantic memory disorders are pathognomonic or specific of a particular group of patients with schizophrenia.
Yap, Melvin J.; Tse, Chi-Shing; Balota, David A.
2009-01-01
Word frequency and semantic priming effects are among the most robust effects in visual word recognition, and it has been generally assumed that these two variables produce interactive effects in lexical decision performance, with larger priming effects for low-frequency targets. The results from four lexical decision experiments indicate that the joint effects of semantic priming and word frequency are critically dependent upon differences in the vocabulary knowledge of the participants. Specifically, across two Universities, additive effects of the two variables were observed in participants with more vocabulary knowledge, while interactive effects were observed in participants with less vocabulary knowledge. These results are discussed with reference to Borowsky and Besner’s (1993) multistage account and Plaut and Booth’s (2000) single-mechanism model. In general, the findings are also consistent with a flexible lexical processing system that optimizes performance based on processing fluency and task demands. PMID:20161653
Interactions between thalamic and cortical rhythms during semantic memory recall in human
NASA Astrophysics Data System (ADS)
Slotnick, Scott D.; Moo, Lauren R.; Kraut, Michael A.; Lesser, Ronald P.; Hart, John, Jr.
2002-04-01
Human scalp electroencephalographic rhythms, indicative of cortical population synchrony, have long been posited to reflect cognitive processing. Although numerous studies employing simultaneous thalamic and cortical electrode recording in nonhuman animals have explored the role of the thalamus in the modulation of cortical rhythms, direct evidence for thalamocortical modulation in human has not, to our knowledge, been obtained. We simultaneously recorded from thalamic and scalp electrodes in one human during performance of a cognitive task and found a spatially widespread, phase-locked, low-frequency rhythm (7-8 Hz) power decrease at thalamus and scalp during semantic memory recall. This low-frequency rhythm power decrease was followed by a spatially specific, phase-locked, fast-rhythm (21-34 Hz) power increase at thalamus and occipital scalp. Such a pattern of thalamocortical activity reflects a plausible neural mechanism underlying semantic memory recall that may underlie other cognitive processes as well.
Qiao, Hong; Li, Yinlin; Li, Fengfu; Xi, Xuanyang; Wu, Wei
2016-10-01
Recently, many biologically inspired visual computational models have been proposed. The design of these models follows the related biological mechanisms and structures, and these models provide new solutions for visual recognition tasks. In this paper, based on the recent biological evidence, we propose a framework to mimic the active and dynamic learning and recognition process of the primate visual cortex. From principle point of view, the main contributions are that the framework can achieve unsupervised learning of episodic features (including key components and their spatial relations) and semantic features (semantic descriptions of the key components), which support higher level cognition of an object. From performance point of view, the advantages of the framework are as follows: 1) learning episodic features without supervision-for a class of objects without a prior knowledge, the key components, their spatial relations and cover regions can be learned automatically through a deep neural network (DNN); 2) learning semantic features based on episodic features-within the cover regions of the key components, the semantic geometrical values of these components can be computed based on contour detection; 3) forming the general knowledge of a class of objects-the general knowledge of a class of objects can be formed, mainly including the key components, their spatial relations and average semantic values, which is a concise description of the class; and 4) achieving higher level cognition and dynamic updating-for a test image, the model can achieve classification and subclass semantic descriptions. And the test samples with high confidence are selected to dynamically update the whole model. Experiments are conducted on face images, and a good performance is achieved in each layer of the DNN and the semantic description learning process. Furthermore, the model can be generalized to recognition tasks of other objects with learning ability.
Wilson, Stephen M.; DeMarco, Andrew T.; Henry, Maya L.; Gesierich, Benno; Babiak, Miranda; Mandelli, Maria Luisa; Miller, Bruce L.; Gorno-Tempini, Maria Luisa
2014-01-01
Neuroimaging and neuropsychological studies have implicated the anterior temporal lobe (ATL) in sentence-level processing, with syntactic structure-building and/or combinatorial semantic processing suggested as possible roles. A potential challenge to the view that the ATL is involved in syntactic aspects of sentence processing comes from the clinical syndrome of semantic variant primary progressive aphasia (semantic PPA, also known as semantic dementia). In semantic PPA, bilateral neurodegeneration of the anterior temporal lobes is associated with profound lexical semantic deficits, yet syntax is strikingly spared. The goal of this study was to investigate the neural correlates of syntactic processing in semantic PPA, in order to determine which regions normally involved in syntactic processing are damaged in semantic PPA, and whether spared syntactic processing depends on preserved functionality of intact regions, preserved functionality of atrophic regions, or compensatory functional reorganization. We scanned 20 individuals with semantic PPA and 24 age-matched controls using structural and functional MRI. Participants performed a sentence comprehension task that emphasized syntactic processing and minimized lexical semantic demands. We found that in controls, left inferior frontal and left posterior temporal regions were modulated by syntactic processing, while anterior temporal regions were not significantly modulated. In the semantic PPA group, atrophy was most severe in the anterior temporal lobes, but extended to the posterior temporal regions involved in syntactic processing. Functional activity for syntactic processing was broadly similar in patients and controls; in particular, whole-brain analyses revealed no significant differences between patients and controls in the regions modulated by syntactic processing. The atrophic left anterior temporal lobe did show abnormal functionality in semantic PPA patients, however this took the unexpected form of a failure to deactivate. Taken together, our findings indicate that spared syntactic processing in semantic PPA depends on preserved functionality of structurally intact left frontal regions and moderately atrophic left posterior temporal regions, but no functional reorganization was apparent as a consequence of anterior temporal atrophy and dysfunction. These results suggest that the role of the anterior temporal lobe in sentence processing is less likely to relate to syntactic structure-building, and more likely to relate to higher level processes such as combinatorial semantic processing. PMID:24345172
Transcranial Direct Current Stimulation Effects on Semantic Processing in Healthy Individuals.
Joyal, Marilyne; Fecteau, Shirley
2016-01-01
Semantic processing allows us to use conceptual knowledge about the world. It has been associated with a large distributed neural network that includes the frontal, temporal and parietal cortices. Recent studies using transcranial direct current stimulation (tDCS) also contributed at investigating semantic processing. The goal of this article was to review studies investigating semantic processing in healthy individuals with tDCS and discuss findings from these studies in line with neuroimaging results. Based on functional magnetic resonance imaging studies assessing semantic processing, we predicted that tDCS applied over the inferior frontal gyrus, middle temporal gyrus, and posterior parietal cortex will impact semantic processing. We conducted a search on Pubmed and selected 27 articles in which tDCS was used to modulate semantic processing in healthy subjects. We analysed each article according to these criteria: demographic information, experimental outcomes assessing semantic processing, study design, and effects of tDCS on semantic processes. From the 27 reviewed studies, 8 found main effects of stimulation. In addition to these 8 studies, 17 studies reported an interaction between stimulus types and stimulation conditions (e.g. incoherent functional, but not instrumental, actions were processed faster when anodal tDCS was applied over the posterior parietal cortex as compared to sham tDCS). Results suggest that regions in the frontal, temporal, and parietal cortices are involved in semantic processing. tDCS can modulate some aspects of semantic processing and provide information on the functional roles of brain regions involved in this cognitive process. Copyright © 2016 Elsevier Inc. All rights reserved.
ERIC Educational Resources Information Center
Coderre, Emily L.; Chernenok, Mariya; Gordon, Barry; Ledoux, Kerry
2017-01-01
Individuals with autism spectrum disorders (ASD) experience difficulties with language, particularly higher-level functions like semantic integration. Yet some studies indicate that semantic processing of non-linguistic stimuli is not impaired, suggesting a language-specific deficit in semantic processing. Using a semantic priming task, we…
Semantic Typicality Effects in Acquired Dyslexia: Evidence for Semantic Impairment in Deep Dyslexia.
Riley, Ellyn A; Thompson, Cynthia K
2010-06-01
BACKGROUND: Acquired deep dyslexia is characterized by impairment in grapheme-phoneme conversion and production of semantic errors in oral reading. Several theories have attempted to explain the production of semantic errors in deep dyslexia, some proposing that they arise from impairments in both grapheme-phoneme and lexical-semantic processing, and others proposing that such errors stem from a deficit in phonological production. Whereas both views have gained some acceptance, the limited evidence available does not clearly eliminate the possibility that semantic errors arise from a lexical-semantic input processing deficit. AIMS: To investigate semantic processing in deep dyslexia, this study examined the typicality effect in deep dyslexic individuals, phonological dyslexic individuals, and controls using an online category verification paradigm. This task requires explicit semantic access without speech production, focusing observation on semantic processing from written or spoken input. METHODS #ENTITYSTARTX00026; PROCEDURES: To examine the locus of semantic impairment, the task was administered in visual and auditory modalities with reaction time as the primary dependent measure. Nine controls, six phonological dyslexic participants, and five deep dyslexic participants completed the study. OUTCOMES #ENTITYSTARTX00026; RESULTS: Controls and phonological dyslexic participants demonstrated a typicality effect in both modalities, while deep dyslexic participants did not demonstrate a typicality effect in either modality. CONCLUSIONS: These findings suggest that deep dyslexia is associated with a semantic processing deficit. Although this does not rule out the possibility of concomitant deficits in other modules of lexical-semantic processing, this finding suggests a direction for treatment of deep dyslexia focused on semantic processing.
Evidence for the contribution of a threshold retrieval process to semantic memory.
Kempnich, Maria; Urquhart, Josephine A; O'Connor, Akira R; Moulin, Chris J A
2017-10-01
It is widely held that episodic retrieval can recruit two processes: a threshold context retrieval process (recollection) and a continuous signal strength process (familiarity). Conversely the processes recruited during semantic retrieval are less well specified. We developed a semantic task analogous to single-item episodic recognition to interrogate semantic recognition receiver-operating characteristics (ROCs) for a marker of a threshold retrieval process. We fitted observed ROC points to three signal detection models: two models typically used in episodic recognition (unequal variance and dual-process signal detection models) and a novel dual-process recollect-to-reject (DP-RR) signal detection model that allows a threshold recollection process to aid both target identification and lure rejection. Given the nature of most semantic questions, we anticipated the DP-RR model would best fit the semantic task data. Experiment 1 (506 participants) provided evidence for a threshold retrieval process in semantic memory, with overall best fits to the DP-RR model. Experiment 2 (316 participants) found within-subjects estimates of episodic and semantic threshold retrieval to be uncorrelated. Our findings add weight to the proposal that semantic and episodic memory are served by similar dual-process retrieval systems, though the relationship between the two threshold processes needs to be more fully elucidated.
Drakesmith, Mark; El-Deredy, Wael; Welbourne, Stephen
2015-01-01
Reading words for meaning relies on orthographic, phonological and semantic processing. The triangle model implicates a direct orthography-to-semantics pathway and a phonologically mediated orthography-to-semantics pathway, which interact with each other. The temporal evolution of processing in these routes is not well understood, although theoretical evidence predicts early phonological processing followed by interactive phonological and semantic processing. This study used electroencephalography-event-related potential (ERP) analysis and magnetoencephalography (MEG) source localisation to identify temporal markers and the corresponding neural generators of these processes in early (∼200 ms) and late (∼400 ms) neurophysiological responses to visual words, pseudowords and consonant strings. ERP showed an effect of phonology but not semantics in both time windows, although at ∼400 ms there was an effect of stimulus familiarity. Phonological processing at ~200 ms was localised to the left occipitotemporal cortex and the inferior frontal gyrus. At 400 ms, there was continued phonological processing in the inferior frontal gyrus and additional semantic processing in the anterior temporal cortex. There was also an area in the left temporoparietal junction which was implicated in both phonological and semantic processing. In ERP, the semantic response at ∼400 ms appeared to be masked by concurrent processes relating to familiarity, while MEG successfully differentiated these processes. The results support the prediction of early phonological processing followed by an interaction of phonological and semantic processing during word recognition. Neuroanatomical loci of these processes are consistent with previous neuropsychological and functional magnetic resonance imaging studies. The results also have implications for the classical interpretation of N400-like responses as markers for semantic processing.
Gainotti, Guido
2011-04-01
In recent years, the anatomical and functional bases of conceptual activity have attracted a growing interest. In particular, Patterson and Lambon-Ralph have proposed the existence, in the anterior parts of the temporal lobes, of a mechanism (the 'amodal semantic hub') supporting the interactive activation of semantic representations in all modalities and for all semantic categories. The aim of then present paper is to discuss this model, arguing against the notion of an 'amodal' semantic hub, because we maintain, in agreement with the Damasio's construct of 'higher-order convergence zone', that a continuum exists between perceptual information and conceptual representations, whereas the 'amodal' account views perceptual informations only as a channel through which abstract semantic knowledge can be activated. According to our model, semantic organization can be better explained by two orthogonal higher-order convergence systems, concerning, on one hand, the right vs. left hemisphere and, on the other hand, the ventral vs. dorsal processing pathways. This model posits that conceptual representations may be mainly based upon perceptual activities in the right hemisphere and upon verbal mediation in the left side of the brain. It also assumes that conceptual knowledge based on the convergence of highly processed visual information with other perceptual data (and mainly concerning living categories) may be bilaterally represented in the anterior parts of the temporal lobes, whereas knowledge based on the integration of visual data with action schemata (namely knowledge of actions, body parts and artefacts) may be more represented in the left fronto-temporo-parietal areas. Copyright © 2010 Elsevier Inc. All rights reserved.
Straube, Benjamin; Meyer, Lea; Green, Antonia; Kircher, Tilo
2014-06-03
Speech-associated gesturing leads to memory advantages for spoken sentences. However, unexpected or surprising events are also likely to be remembered. With this study we test the hypothesis that different neural mechanisms (semantic elaboration and surprise) lead to memory advantages for iconic and unrelated gestures. During fMRI-data acquisition participants were presented with video clips of an actor verbalising concrete sentences accompanied by iconic gestures (IG; e.g., circular gesture; sentence: "The man is sitting at the round table"), unrelated free gestures (FG; e.g., unrelated up down movements; same sentence) and no gestures (NG; same sentence). After scanning, recognition performance for the three conditions was tested. Videos were evaluated regarding semantic relation and surprise by a different group of participants. The semantic relationship between speech and gesture was rated higher for IG (IG>FG), whereas surprise was rated higher for FG (FG>IG). Activation of the hippocampus correlated with subsequent memory performance of both gesture conditions (IG+FG>NG). For the IG condition we found activation in the left temporal pole and middle cingulate cortex (MCC; IG>FG). In contrast, for the FG condition posterior thalamic structures (FG>IG) as well as anterior and posterior cingulate cortices were activated (FG>NG). Our behavioral and fMRI-data suggest different mechanisms for processing related and unrelated co-verbal gestures, both of them leading to enhanced memory performance. Whereas activation in MCC and left temporal pole for iconic co-verbal gestures may reflect semantic memory processes, memory enhancement for unrelated gestures relies on the surprise response, mediated by anterior/posterior cingulate cortex and thalamico-hippocampal structures. Copyright © 2014 Elsevier B.V. All rights reserved.
A Tri-network Model of Human Semantic Processing
Xu, Yangwen; He, Yong; Bi, Yanchao
2017-01-01
Humans process the meaning of the world via both verbal and nonverbal modalities. It has been established that widely distributed cortical regions are involved in semantic processing, yet the global wiring pattern of this brain system has not been considered in the current neurocognitive semantic models. We review evidence from the brain-network perspective, which shows that the semantic system is topologically segregated into three brain modules. Revisiting previous region-based evidence in light of these new network findings, we postulate that these three modules support multimodal experiential representation, language-supported representation, and semantic control. A tri-network neurocognitive model of semantic processing is proposed, which generates new hypotheses regarding the network basis of different types of semantic processes. PMID:28955266
Payne, Brennan R.; Lee, Chia-Lin; Federmeier, Kara D.
2015-01-01
The amplitude of the N400— an event-related potential (ERP) component linked to meaning processing and initial access to semantic memory— is inversely related to the incremental build-up of semantic context over the course of a sentence. We revisited the nature and scope of this incremental context effect, adopting a word-level linear mixed-effects modeling approach, with the goal of probing the continuous and incremental effects of semantic and syntactic context on multiple aspects of lexical processing during sentence comprehension (i.e., effects of word frequency and orthographic neighborhood). First, we replicated the classic word position effect at the single-word level: open-class words showed reductions in N400 amplitude with increasing word position in semantically congruent sentences only. Importantly, we found that accruing sentence context had separable influences on the effects of frequency and neighborhood on the N400. Word frequency effects were reduced with accumulating semantic context. However, orthographic neighborhood was unaffected by accumulating context, showing robust effects on the N400 across all words, even within congruent sentences. Additionally, we found that N400 amplitudes to closed-class words were reduced with incrementally constraining syntactic context in sentences that provided only syntactic constraints. Taken together, our findings indicate that modeling word-level variability in ERPs reveals mechanisms by which different sources of information simultaneously contribute to the unfolding neural dynamics of comprehension. PMID:26311477
Payne, Brennan R; Lee, Chia-Lin; Federmeier, Kara D
2015-11-01
The amplitude of the N400-an event-related potential (ERP) component linked to meaning processing and initial access to semantic memory-is inversely related to the incremental buildup of semantic context over the course of a sentence. We revisited the nature and scope of this incremental context effect, adopting a word-level linear mixed-effects modeling approach, with the goal of probing the continuous and incremental effects of semantic and syntactic context on multiple aspects of lexical processing during sentence comprehension (i.e., effects of word frequency and orthographic neighborhood). First, we replicated the classic word-position effect at the single-word level: Open-class words showed reductions in N400 amplitude with increasing word position in semantically congruent sentences only. Importantly, we found that accruing sentence context had separable influences on the effects of frequency and neighborhood on the N400. Word frequency effects were reduced with accumulating semantic context. However, orthographic neighborhood was unaffected by accumulating context, showing robust effects on the N400 across all words, even within congruent sentences. Additionally, we found that N400 amplitudes to closed-class words were reduced with incrementally constraining syntactic context in sentences that provided only syntactic constraints. Taken together, our findings indicate that modeling word-level variability in ERPs reveals mechanisms by which different sources of information simultaneously contribute to the unfolding neural dynamics of comprehension. © 2015 Society for Psychophysiological Research.
Relations between Short-term Memory Deficits, Semantic Processing, and Executive Function
Allen, Corinne M.; Martin, Randi C.; Martin, Nadine
2012-01-01
Background Previous research has suggested separable short-term memory (STM) buffers for the maintenance of phonological and lexical-semantic information, as some patients with aphasia show better ability to retain semantic than phonological information and others show the reverse. Recently, researchers have proposed that deficits to the maintenance of semantic information in STM are related to executive control abilities. Aims The present study investigated the relationship of executive function abilities with semantic and phonological short-term memory (STM) and semantic processing in such patients, as some previous research has suggested that semantic STM deficits and semantic processing abilities are critically related to specific or general executive function deficits. Method and Procedures 20 patients with aphasia and STM deficits were tested on measures of short-term retention, semantic processing, and both complex and simple executive function tasks. Outcome and Results In correlational analyses, we found no relation between semantic STM and performance on simple or complex executive function tasks. In contrast, phonological STM was related to executive function performance in tasks that had a verbal component, suggesting that performance in some executive function tasks depends on maintaining or rehearsing phonological codes. Although semantic STM was not related to executive function ability, performance on semantic processing tasks was related to executive function, perhaps due to similar executive task requirements in both semantic processing and executive function tasks. Conclusions Implications for treatment and interpretations of executive deficits are discussed. PMID:22736889
Semantic processing during morphological priming: an ERP study.
Beyersmann, Elisabeth; Iakimova, Galina; Ziegler, Johannes C; Colé, Pascale
2014-09-04
Previous research has yielded conflicting results regarding the onset of semantic processing during morphological priming. The present study was designed to further explore the time-course of morphological processing using event-related potentials (ERPs). We conducted a primed lexical decision study comparing a morphological (LAVAGE - laver [washing - wash]), a semantic (LINGE - laver [laundry - wash]), an orthographic (LAVANDE - laver [lavender - wash]), and an unrelated control condition (HOSPICE - laver [nursing home - wash]), using the same targets across the four priming conditions. The behavioral data showed significant effects of morphological and semantic priming, with the magnitude of morphological priming being significantly larger than the magnitude of semantic priming. The ERP data revealed significant morphological but no semantic priming at 100-250 ms. Furthermore, a reduction of the N400 amplitude in the morphological condition compared to the semantic and orthographic condition demonstrates that the morphological priming effect was not entirely due to the semantic or orthographic overlap between the prime and the target. The present data reflect an early process of semantically blind morphological decomposition, and a later process of morpho-semantic decomposition, which we discuss in the context of recent morphological processing theories. Copyright © 2014 Elsevier B.V. All rights reserved.
Zeng, Tao; Mao, Wen; Lu, Qing
2016-05-25
Scalp-recorded event-related potentials are known to be sensitive to particular aspects of sentence processing. The N400 component is widely recognized as an effect closely related to lexical-semantic processing. The absence of an N400 effect in participants performing tasks in Indo-European languages has been considered evidence that failed syntactic category processing appears to block lexical-semantic integration and that syntactic structure building is a prerequisite of semantic analysis. An event-related potential experiment was designed to investigate whether such syntactic primacy can be considered to apply equally to Chinese sentence processing. Besides correct middles, sentences with either single semantic or single syntactic violation as well as double syntactic and semantic anomaly were used in the present research. Results showed that both purely semantic and combined violation induced a broad negativity in the time window 300-500 ms, indicating the independence of lexical-semantic integration. These findings provided solid evidence that lexical-semantic parsing plays a crucial role in Chinese sentence comprehension.
Neural Substrates of Processing Anger in Language: Contributions of Prosody and Semantics.
Castelluccio, Brian C; Myers, Emily B; Schuh, Jillian M; Eigsti, Inge-Marie
2016-12-01
Emotions are conveyed primarily through two channels in language: semantics and prosody. While many studies confirm the role of a left hemisphere network in processing semantic emotion, there has been debate over the role of the right hemisphere in processing prosodic emotion. Some evidence suggests a preferential role for the right hemisphere, and other evidence supports a bilateral model. The relative contributions of semantics and prosody to the overall processing of affect in language are largely unexplored. The present work used functional magnetic resonance imaging to elucidate the neural bases of processing anger conveyed by prosody or semantic content. Results showed a robust, distributed, bilateral network for processing angry prosody and a more modest left hemisphere network for processing angry semantics when compared to emotionally neutral stimuli. Findings suggest the nervous system may be more responsive to prosodic cues in speech than to the semantic content of speech.
The benefits of sensorimotor knowledge: body-object interaction facilitates semantic processing.
Siakaluk, Paul D; Pexman, Penny M; Sears, Christopher R; Wilson, Kim; Locheed, Keri; Owen, William J
2008-04-05
This article examined the effects of body-object interaction (BOI) on semantic processing. BOI measures perceptions of the ease with which a human body can physically interact with a word's referent. In Experiment 1, BOI effects were examined in 2 semantic categorization tasks (SCT) in which participants decided if words are easily imageable. Responses were faster and more accurate for high BOI words (e.g., mask) than for low BOI words (e.g., ship). In Experiment 2, BOI effects were examined in a semantic lexical decision task (SLDT), which taps both semantic feedback and semantic processing. The BOI effect was larger in the SLDT than in the SCT, suggesting that BOI facilitates both semantic feedback and semantic processing. The findings are consistent with the embodied cognition perspective (e.g., Barsalou's, 1999, Perceptual Symbols Theory), which proposes that sensorimotor interactions with the environment are incorporated in semantic knowledge. 2008 Cognitive Science Society, Inc.
Web information retrieval based on ontology
NASA Astrophysics Data System (ADS)
Zhang, Jian
2013-03-01
The purpose of the Information Retrieval (IR) is to find a set of documents that are relevant for a specific information need of a user. Traditional Information Retrieval model commonly used in commercial search engine is based on keyword indexing system and Boolean logic queries. One big drawback of traditional information retrieval is that they typically retrieve information without an explicitly defined domain of interest to the users so that a lot of no relevance information returns to users, which burden the user to pick up useful answer from these no relevance results. In order to tackle this issue, many semantic web information retrieval models have been proposed recently. The main advantage of Semantic Web is to enhance search mechanisms with the use of Ontology's mechanisms. In this paper, we present our approach to personalize web search engine based on ontology. In addition, key techniques are also discussed in our paper. Compared to previous research, our works concentrate on the semantic similarity and the whole process including query submission and information annotation.
The semantic anatomical network: Evidence from healthy and brain-damaged patient populations.
Fang, Yuxing; Han, Zaizhu; Zhong, Suyu; Gong, Gaolang; Song, Luping; Liu, Fangsong; Huang, Ruiwang; Du, Xiaoxia; Sun, Rong; Wang, Qiang; He, Yong; Bi, Yanchao
2015-09-01
Semantic processing is central to cognition and is supported by widely distributed gray matter (GM) regions and white matter (WM) tracts. The exact manner in which GM regions are anatomically connected to process semantics remains unknown. We mapped the semantic anatomical network (connectome) by conducting diffusion imaging tractography in 48 healthy participants across 90 GM "nodes," and correlating the integrity of each obtained WM edge and semantic performance across 80 brain-damaged patients. Fifty-three WM edges were obtained whose lower integrity associated with semantic deficits and together with their linked GM nodes constitute a semantic WM network. Graph analyses of this network revealed three structurally segregated modules that point to distinct semantic processing components and identified network hubs and connectors that are central in the communication across the subnetworks. Together, our results provide an anatomical framework of human semantic network, advancing the understanding of the structural substrates supporting semantic processing. © 2015 Wiley Periodicals, Inc.
Structuring and extracting knowledge for the support of hypothesis generation in molecular biology
Roos, Marco; Marshall, M Scott; Gibson, Andrew P; Schuemie, Martijn; Meij, Edgar; Katrenko, Sophia; van Hage, Willem Robert; Krommydas, Konstantinos; Adriaans, Pieter W
2009-01-01
Background Hypothesis generation in molecular and cellular biology is an empirical process in which knowledge derived from prior experiments is distilled into a comprehensible model. The requirement of automated support is exemplified by the difficulty of considering all relevant facts that are contained in the millions of documents available from PubMed. Semantic Web provides tools for sharing prior knowledge, while information retrieval and information extraction techniques enable its extraction from literature. Their combination makes prior knowledge available for computational analysis and inference. While some tools provide complete solutions that limit the control over the modeling and extraction processes, we seek a methodology that supports control by the experimenter over these critical processes. Results We describe progress towards automated support for the generation of biomolecular hypotheses. Semantic Web technologies are used to structure and store knowledge, while a workflow extracts knowledge from text. We designed minimal proto-ontologies in OWL for capturing different aspects of a text mining experiment: the biological hypothesis, text and documents, text mining, and workflow provenance. The models fit a methodology that allows focus on the requirements of a single experiment while supporting reuse and posterior analysis of extracted knowledge from multiple experiments. Our workflow is composed of services from the 'Adaptive Information Disclosure Application' (AIDA) toolkit as well as a few others. The output is a semantic model with putative biological relations, with each relation linked to the corresponding evidence. Conclusion We demonstrated a 'do-it-yourself' approach for structuring and extracting knowledge in the context of experimental research on biomolecular mechanisms. The methodology can be used to bootstrap the construction of semantically rich biological models using the results of knowledge extraction processes. Models specific to particular experiments can be constructed that, in turn, link with other semantic models, creating a web of knowledge that spans experiments. Mapping mechanisms can link to other knowledge resources such as OBO ontologies or SKOS vocabularies. AIDA Web Services can be used to design personalized knowledge extraction procedures. In our example experiment, we found three proteins (NF-Kappa B, p21, and Bax) potentially playing a role in the interplay between nutrients and epigenetic gene regulation. PMID:19796406
An investigation into semantic and phonological processing in individuals with Williams syndrome.
Lee, Cheryl S; Binder, Katherine S
2014-02-01
The current study examined semantic and phonological processing in individuals with Williams syndrome (WS). Previous research in language processing in individuals with WS suggests a complex linguistic system characterized by "deviant" semantic organization and differential phonological processing. Two experiments explored these representations in individuals with WS. The first experiment analyzed the relative typicality and frequency of participants' responses to a semantic and phonological fluency task. The second experiment tapped into online language processing through a semantic priming task and an online sentence reading task measuring the effects of word frequency. Thirteen participants with WS were matched to a group of participants on reading grade level and a group of participants on chronological age. The results of the semantic fluency task, semantic priming task, and word frequency task suggest that semantic organization in individuals with WS appears commensurate with their reading level rather than deviant. The pattern of results suggests that individuals with WS do not appear to have deviant semantic organization, while confirming that online tasks that tap into these processes are a promising direction in investigations that include atypically developing populations. These findings for the phonological tasks warrant further research into phonological processing in individuals with WS.
Are all judgments created equal? An fMRI study of semantic and episodic metamemory predictions.
Reggev, Niv; Zuckerman, Maya; Maril, Anat
2011-04-01
Metamemory refers to the ability of individuals to monitor and control their own memory performance. Although little theoretical consideration of the possible differences between the monitoring of episodic and of semantic knowledge has been published, results from patient and drug studies that used the "feeling of knowing" (FOK) paradigm show a selective impairment in the accuracy of episodic monitoring but not in its semantic counterpart. Similarly, neuroimaging studies provide indirect evidence for separate patterns of activation during episodic or semantic FOKs. However, the semantic-episodic distinction hypothesis has not been directly addressed. In the current event-related fMRI study, we used a within-subject, within-experiment comparison of the monitoring of semantic and episodic content. Whereas the common neural correlates of episodic and semantic FOKs observed in this study generally replicate the previous neuroimaging findings, several regions were found to be differentially associated with each task. Activity of the right inferior frontal gyrus was modulated by the semantic-episodic factor only during the negative predictions of retrieval, suggesting that negative predictions are based on partially distinct mechanisms during each task. A posterior midline network, known to be activated during episodic retrieval, was activated during episodic and not semantic monitoring, suggesting that episodic FOKs rely, to some extent, on common episodic retrieval processes. These findings suggest that theoretical accounts of the etiology and function of FOKs may benefit from incorporating the prediction directionality (positive/negative) and the memory domain (semantic/episodic) distinctions. Copyright © 2011 Elsevier Ltd. All rights reserved.
Self-Imagining Enhances Recognition Memory in Memory-Impaired Individuals with Neurological Damage
Grilli, Matthew D.; Glisky, Elizabeth L.
2010-01-01
Objective The ability to imagine an elaborative event from a personal perspective relies on a number of cognitive processes that may potentially enhance subsequent memory for the event, including visual imagery, semantic elaboration, emotional processing, and self-referential processing. In an effort to find a novel strategy for enhancing memory in memory-impaired individuals with neurological damage, the present study investigated the mnemonic benefit of a method we refer to as “self-imagining” – or the imagining of an event from a realistic, personal perspective. Method Fourteen individuals with neurologically-based memory deficits and fourteen healthy control participants intentionally encoded neutral and emotional sentences under three instructions: structural-baseline processing, semantic processing, and self-imagining. Results Findings revealed a robust “self-imagination effect” as self-imagination enhanced recognition memory relative to deep semantic elaboration in both memory-impaired individuals, F (1, 13) = 32.11, p < .001, η2 = .71, and healthy controls, F (1, 13) = 5.57, p < .05, η2 = .30. In addition, results indicated that mnemonic benefits of self-imagination were not limited by severity of the memory disorder nor were they related to self-reported vividness of visual imagery, semantic processing, or emotional content of the materials. Conclusions The findings suggest that the self-imagination effect may depend on unique mnemonic mechanisms possibly related to self-referential processing, and that imagining an event from a personal perspective makes that event particularly memorable even for those individuals with severe memory deficits. Self-imagining may thus provide an effective rehabilitation strategy for individuals with memory impairment. PMID:20873930
Semantic Service Design for Collaborative Business Processes in Internetworked Enterprises
NASA Astrophysics Data System (ADS)
Bianchini, Devis; Cappiello, Cinzia; de Antonellis, Valeria; Pernici, Barbara
Modern collaborating enterprises can be seen as borderless organizations whose processes are dynamically transformed and integrated with the ones of their partners (Internetworked Enterprises, IE), thus enabling the design of collaborative business processes. The adoption of Semantic Web and service-oriented technologies for implementing collaboration in such distributed and heterogeneous environments promises significant benefits. IE can model their own processes independently by using the Software as a Service paradigm (SaaS). Each enterprise maintains a catalog of available services and these can be shared across IE and reused to build up complex collaborative processes. Moreover, each enterprise can adopt its own terminology and concepts to describe business processes and component services. This brings requirements to manage semantic heterogeneity in process descriptions which are distributed across different enterprise systems. To enable effective service-based collaboration, IEs have to standardize their process descriptions and model them through component services using the same approach and principles. For enabling collaborative business processes across IE, services should be designed following an homogeneous approach, possibly maintaining a uniform level of granularity. In the paper we propose an ontology-based semantic modeling approach apt to enrich and reconcile semantics of process descriptions to facilitate process knowledge management and to enable semantic service design (by discovery, reuse and integration of process elements/constructs). The approach brings together Semantic Web technologies, techniques in process modeling, ontology building and semantic matching in order to provide a comprehensive semantic modeling framework.
Semantic processes leading to true and false memory formation in schizophrenia.
Paz-Alonso, Pedro M; Ghetti, Simona; Ramsay, Ian; Solomon, Marjorie; Yoon, Jong; Carter, Cameron S; Ragland, J Daniel
2013-07-01
Encoding semantic relationships between items on word lists (semantic processing) enhances true memories, but also increases memory distortions. Episodic memory impairments in schizophrenia (SZ) are strongly driven by failures to process semantic relations, but the exact nature of these relational semantic processing deficits is not well understood. Here, we used a false memory paradigm to investigate the impact of implicit and explicit semantic processing manipulations on episodic memory in SZ. Thirty SZ and 30 demographically matched healthy controls (HC) studied Deese/Roediger-McDermott (DRM) lists of semantically associated words. Half of the lists had strong implicit semantic associations and the remainder had low strength associations. Similarly, half of the lists were presented under "standard" instructions and the other half under explicit "relational processing" instructions. After study, participants performed recall and old/new recognition tests composed of targets, critical lures, and unrelated lures. HC exhibited higher true memories and better discriminability between true and false memory compared to SZ. High, versus low, associative strength increased false memory rates in both groups. However, explicit "relational processing" instructions positively improved true memory rates only in HC. Finally, true and false memory rates were associated with severity of disorganized and negative symptoms in SZ. These results suggest that reduced processing of semantic relationships during encoding in SZ may stem from an inability to implement explicit relational processing strategies rather than a fundamental deficit in the implicit activation and retrieval of word meanings from patients' semantic lexicon. Copyright © 2013 Elsevier B.V. All rights reserved.
Cousins, Katheryn A Q; Grossman, Murray
2017-12-01
Category-specific impairments caused by brain damage can provide important insights into how semantic concepts are organized in the brain. Recent research has demonstrated that disease to sensory and motor cortices can impair perceptual feature knowledge important to the representation of semantic concepts. This evidence supports the grounded cognition theory of semantics, the view that lexical knowledge is partially grounded in perceptual experience and that sensory and motor regions support semantic representations. Less well understood, however, is how heteromodal semantic hubs work to integrate and process semantic information. Although the majority of semantic research to date has focused on how sensory cortical areas are important for the representation of semantic features, new research explores how semantic memory is affected by neurodegeneration in regions important for semantic processing. Here, we review studies that demonstrate impairments to abstract noun knowledge in behavioural variant frontotemporal degeneration (bvFTD) and to action verb knowledge in Parkinson's disease, and discuss how these deficits relate to disease of the semantic selection network. Findings demonstrate that semantic selection processes are supported by the left inferior frontal gyrus (LIFG) and basal ganglia, and that disease to these regions in bvFTD and Parkinson's disease can lead to categorical impairments for abstract nouns and action verbs, respectively.
Individual Variability in the Semantic Processing of English Compound Words
ERIC Educational Resources Information Center
Schmidtke, Daniel; Van Dyke, Julie A.; Kuperman, Victor
2018-01-01
Semantic transparency effects during compound word recognition provide critical insight into the organization of semantic knowledge and the nature of semantic processing. The past 25 years of psycholinguistic research on compound semantic transparency has produced discrepant effects, leaving the existence and nature of its influence unresolved. In…
Semantic Memory in the Clinical Progression of Alzheimer Disease.
Tchakoute, Christophe T; Sainani, Kristin L; Henderson, Victor W
2017-09-01
Semantic memory measures may be useful in tracking and predicting progression of Alzheimer disease. We investigated relationships among semantic memory tasks and their 1-year predictive value in women with Alzheimer disease. We conducted secondary analyses of a randomized clinical trial of raloxifene in 42 women with late-onset mild-to-moderate Alzheimer disease. We assessed semantic memory with tests of oral confrontation naming, category fluency, semantic recognition and semantic naming, and semantic density in written narrative discourse. We measured global cognition (Alzheimer Disease Assessment Scale, cognitive subscale), dementia severity (Clinical Dementia Rating sum of boxes), and daily function (Activities of Daily Living Inventory) at baseline and 1 year. At baseline and 1 year, most semantic memory scores correlated highly or moderately with each other and with global cognition, dementia severity, and daily function. Semantic memory task performance at 1 year had worsened one-third to one-half standard deviation. Factor analysis of baseline test scores distinguished processes in semantic and lexical retrieval (semantic recognition, semantic naming, confrontation naming) from processes in lexical search (semantic density, category fluency). The semantic-lexical retrieval factor predicted global cognition at 1 year. Considered separately, baseline confrontation naming and category fluency predicted dementia severity, while semantic recognition and a composite of semantic recognition and semantic naming predicted global cognition. No individual semantic memory test predicted daily function. Semantic-lexical retrieval and lexical search may represent distinct aspects of semantic memory. Semantic memory processes are sensitive to cognitive decline and dementia severity in Alzheimer disease.
Crespo-Garcia, Maite; Cantero, Jose L; Atienza, Mercedes
2012-07-16
Growing evidence suggests that age-related deficits in associative memory are alleviated when the to-be-associated items are semantically related. Here we investigate whether this beneficial effect of semantic relatedness is paralleled by spatio-temporal changes in cortical EEG dynamics during incidental encoding. Young and older adults were presented with faces at a particular spatial location preceded by a biographical cue that was either semantically related or unrelated. As expected, automatic encoding of face-location associations benefited from semantic relatedness in the two groups of age. This effect correlated with increased power of theta oscillations over medial and anterior lateral regions of the prefrontal cortex (PFC) and lateral regions of the posterior parietal cortex (PPC) in both groups. But better-performing elders also showed increased brain-behavior correlation in the theta band over the right inferior frontal gyrus (IFG) as compared to young adults. Semantic relatedness was, however, insufficient to fully eliminate age-related differences in associative memory. In line with this finding, poorer-performing elders relative to young adults showed significant reductions of theta power in the left IFG that were further predictive of behavioral impairment in the recognition task. All together, these results suggest that older adults benefit less than young adults from executive processes during encoding mainly due to neural inefficiency over regions of the left ventrolateral prefrontal cortex (VLPFC). But this associative deficit may be partially compensated for by engaging preexistent semantic knowledge, which likely leads to an efficient recruitment of attentional and integration processes supported by the left PPC and left anterior PFC respectively, together with neural compensatory mechanisms governed by the right VLPFC. Copyright © 2012 Elsevier Inc. All rights reserved.
Johns, Brendan T; Taler, Vanessa; Pisoni, David B; Farlow, Martin R; Hake, Ann Marie; Kareken, David A; Unverzagt, Frederick W; Jones, Michael N
2018-06-01
Mild cognitive impairment (MCI) is characterised by subjective and objective memory impairment in the absence of dementia. MCI is a strong predictor for the development of Alzheimer's disease, and may represent an early stage in the disease course in many cases. A standard task used in the diagnosis of MCI is verbal fluency, where participants produce as many items from a specific category (e.g., animals) as possible. Verbal fluency performance is typically analysed by counting the number of items produced. However, analysis of the semantic path of the items produced can provide valuable additional information. We introduce a cognitive model that uses multiple types of lexical information in conjunction with a standard memory search process. The model used a semantic representation derived from a standard semantic space model in conjunction with a memory searching mechanism derived from the Luce choice rule (Luce, 1977). The model was able to detect differences in the memory searching process of patients who were developing MCI, suggesting that the formal analysis of verbal fluency data is a promising avenue to examine the underlying changes occurring in the development of cognitive impairment. (PsycINFO Database Record (c) 2018 APA, all rights reserved).
ERIC Educational Resources Information Center
Emmorey, Karen; Petrich, Jennifer A. F.; Gollan, Tamar H.
2012-01-01
Bilinguals who are fluent in American Sign Language (ASL) and English often produce "code-blends"--simultaneously articulating a sign and a word while conversing with other ASL-English bilinguals. To investigate the cognitive mechanisms underlying code-blend processing, we compared picture-naming times (Experiment 1) and semantic categorization…
The Onset and Time Course of Semantic Priming during Rapid Recognition of Visual Words
Hoedemaker, Renske S.; Gordon, Peter C.
2016-01-01
In two experiments, we assessed the effects of response latency and task-induced goals on the onset and time course of semantic priming during rapid processing of visual words as revealed by ocular response tasks. In Experiment 1 (Ocular Lexical Decision Task), participants performed a lexical decision task using eye-movement responses on a sequence of four words. In Experiment 2, the same words were encoded for an episodic recognition memory task that did not require a meta-linguistic judgment. For both tasks, survival analyses showed that the earliest-observable effect (Divergence Point or DP) of semantic priming on target-word reading times occurred at approximately 260 ms, and ex-Gaussian distribution fits revealed that the magnitude of the priming effect increased as a function of response time. Together, these distributional effects of semantic priming suggest that the influence of the prime increases when target processing is more effortful. This effect does not require that the task include a metalinguistic judgment; manipulation of the task goals across experiments affected the overall response speed but not the location of the DP or the overall distributional pattern of the priming effect. These results are more readily explained as the result of a retrospective rather than a prospective priming mechanism and are consistent with compound-cue models of semantic priming. PMID:28230394
Tsai, Chen-Gia; Chen, Chien-Chung; Wen, Ya-Chien; Chou, Tai-Li
2015-01-01
In human cultures, the perceptual categorization of musical pitches relies on pitch-naming systems. A sung pitch name concurrently holds the information of fundamental frequency and pitch name. These two aspects may be either congruent or incongruent with regard to pitch categorization. The present study aimed to compare the neuromagnetic responses to musical and verbal stimuli for congruency judgments, for example a congruent pair for the pitch C4 sung with the pitch name do in a C-major context (the pitch-semantic task) or for the meaning of a word to match the speaker’s identity (the voice-semantic task). Both the behavioral data and neuromagnetic data showed that congruency detection of the speaker’s identity and word meaning was slower than that of the pitch and pitch name. Congruency effects of musical stimuli revealed that pitch categorization and semantic processing of pitch information were associated with P2m and N400m, respectively. For verbal stimuli, P2m and N400m did not show any congruency effect. In both the pitch-semantic task and the voice-semantic task, we found that incongruent stimuli evoked stronger slow waves with the latency of 500–600 ms than congruent stimuli. These findings shed new light on the neural mechanisms underlying pitch-naming processes. PMID:26347638
The onset and time course of semantic priming during rapid recognition of visual words.
Hoedemaker, Renske S; Gordon, Peter C
2017-05-01
In 2 experiments, we assessed the effects of response latency and task-induced goals on the onset and time course of semantic priming during rapid processing of visual words as revealed by ocular response tasks. In Experiment 1 (ocular lexical decision task), participants performed a lexical decision task using eye movement responses on a sequence of 4 words. In Experiment 2, the same words were encoded for an episodic recognition memory task that did not require a metalinguistic judgment. For both tasks, survival analyses showed that the earliest observable effect (divergence point [DP]) of semantic priming on target-word reading times occurred at approximately 260 ms, and ex-Gaussian distribution fits revealed that the magnitude of the priming effect increased as a function of response time. Together, these distributional effects of semantic priming suggest that the influence of the prime increases when target processing is more effortful. This effect does not require that the task include a metalinguistic judgment; manipulation of the task goals across experiments affected the overall response speed but not the location of the DP or the overall distributional pattern of the priming effect. These results are more readily explained as the result of a retrospective, rather than a prospective, priming mechanism and are consistent with compound-cue models of semantic priming. (PsycINFO Database Record (c) 2017 APA, all rights reserved).
Semantic richness effects in lexical decision: The role of feedback.
Yap, Melvin J; Lim, Gail Y; Pexman, Penny M
2015-11-01
Across lexical processing tasks, it is well established that words with richer semantic representations are recognized faster. This suggests that the lexical system has access to meaning before a word is fully identified, and is consistent with a theoretical framework based on interactive and cascaded processing. Specifically, semantic richness effects are argued to be produced by feedback from semantic representations to lower-level representations. The present study explores the extent to which richness effects are mediated by feedback from lexical- to letter-level representations. In two lexical decision experiments, we examined the joint effects of stimulus quality and four semantic richness dimensions (imageability, number of features, semantic neighborhood density, semantic diversity). With the exception of semantic diversity, robust additive effects of stimulus quality and richness were observed for the targeted dimensions. Our results suggest that semantic feedback does not typically reach earlier levels of representation in lexical decision, and further reinforces the idea that task context modulates the processing dynamics of early word recognition processes.
Syntax does not necessarily precede semantics in sentence processing: ERP evidence from Chinese.
Zhang, Yaxu; Li, Ping; Piao, Qiuhong; Liu, Youyi; Huang, Yongjing; Shu, Hua
2013-07-01
Two event-related potential experiments were conducted to examine whether the processing of syntactic category or syntactic subcategorization frame always needs to temporally precede semantic processing during the reading of Chinese sentences of object-subject-verb construction. The sentences contained (a) no anomalies, (b) semantic only anomalies, (c) syntactic category plus semantic anomalies, or (d) transitivity plus semantic anomalies. In both experiments, all three types of anomalies elicited a broad negativity between 300 and 500 ms. This negativity included an N400 effect, given its distribution. Moreover, syntactic category plus semantic anomalies elicited a P600 response, whereas the other two types of anomalies did not. The finding of N400 effects suggests that semantic integration can be attempted even when the processing of syntactic category or syntactic subcategorization frame is unsuccessful. Thus, syntactic processing is not a necessary prerequisite for the initiation of semantic integration in Chinese. Copyright © 2013 Elsevier Inc. All rights reserved.
Díez, Emiliano; Gómez-Ariza, Carlos J; Díez-Álamo, Antonio M; Alonso, María A; Fernandez, Angel
2017-08-01
A dominant view of the role of the anterior temporal lobe (ATL) in semantic memory is that it serves as an integration hub, specialized in the processing of semantic relatedness by way of mechanisms that bind together information from different brain areas to form coherent amodal representations of concepts. Two recent experiments, using brain stimulation techniques along with the Deese-Roediger-McDermott (DRM) paradigm, have found a consistent false memory reduction effect following stimulation of the ATL, pointing to the importance of the ATL in semantic/conceptual processing. To more precisely identify the specific process being involved, we conducted a DRM experiment in which transcranial direct current stimulation (anode/cathode/sham) was applied over the participants' left ATL during the study of lists of words that were associatively related to their non-presented critical words (e.g., rotten, worm, red, tree, liqueur, unripe, cake, food, eden, peel, for the critical item apple) or categorically related (e.g., pear, banana, peach, orange, cantaloupe, watermelon, strawberry, cherry, kiwi, plum, for the same critical item apple). The results showed that correct recognition was not affected by stimulation. However, an interaction between stimulation condition and type of relation for false memories was found, explained by a significant false recognition reduction effect in the anodal condition for associative lists that was not observed for categorical lists. Results are congruent with previous findings and, more importantly, they help to clarify the nature and locus of false memory reduction effects, suggesting a differential role of the left ATL, and providing critical evidence for understanding the creation of semantic relatedness-based memory illusions. Copyright © 2017 Elsevier Ltd. All rights reserved.
The Function of Semantics in Automated Language Processing.
ERIC Educational Resources Information Center
Pacak, Milos; Pratt, Arnold W.
This paper is a survey of some of the major semantic models that have been developed for automated semantic analysis of natural language. Current approaches to semantic analysis and logical interference are based mainly on models of human cognitive processes such as Quillian's semantic memory, Simmon's Protosynthex III and others. All existing…
ERIC Educational Resources Information Center
Mirman, Daniel; Magnuson, James S.
2008-01-01
The authors investigated semantic neighborhood density effects on visual word processing to examine the dynamics of activation and competition among semantic representations. Experiment 1 validated feature-based semantic representations as a basis for computing semantic neighborhood density and suggested that near and distant neighbors have…
ERIC Educational Resources Information Center
de Wit, Bianca; Kinoshita, Sachiko
2015-01-01
Semantic priming effects are popularly explained in terms of an automatic spreading activation process, according to which the activation of a node in a semantic network spreads automatically to interconnected nodes, preactivating a semantically related word. It is expected from this account that semantic priming effects should be routinely…
Electrophysiological evidence of automatic early semantic processing.
Hinojosa, José A; Martín-Loeches, Manuel; Muñoz, Francisco; Casado, Pilar; Pozo, Miguel A
2004-01-01
This study investigates the automatic-controlled nature of early semantic processing by means of the Recognition Potential (RP), an event-related potential response that reflects lexical selection processes. For this purpose tasks differing in their processing requirements were used. Half of the participants performed a physical task involving a lower-upper case discrimination judgement (shallow processing requirements), whereas the other half carried out a semantic task, consisting in detecting animal names (deep processing requirements). Stimuli were identical in the two tasks. Reaction time measures revealed that the physical task was easier to perform than the semantic task. However, RP effects elicited by the physical and semantic tasks did not differ in either latency, amplitude, or topographic distribution. Thus, the results from the present study suggest that early semantic processing is automatically triggered whenever a linguistic stimulus enters the language processor.
About Edible Restaurants: Conflicts between Syntax and Semantics as Revealed by ERPs
Kos, Miriam; Vosse, Theo; van den Brink, Daniëlle; Hagoort, Peter
2010-01-01
In order to investigate conflicts between semantics and syntax, we recorded ERPs, while participants read Dutch sentences. Sentences containing conflicts between syntax and semantics (Fred eats in a sandwich…/Fred eats a restaurant…) elicited an N400. These results show that conflicts between syntax and semantics not necessarily lead to P600 effects and are in line with the processing competition account. According to this parallel account the syntactic and semantic processing streams are fully interactive and information from one level can influence the processing at another level. The relative strength of the cues of the processing streams determines which level is affected most strongly by the conflict. The processing competition account maintains the distinction between the N400 as index for semantic processing and the P600 as index for structural processing. PMID:21833277
Intelligence related upper alpha desynchronization in a semantic memory task.
Doppelmayr, M; Klimesch, W; Hödlmoser, K; Sauseng, P; Gruber, W
2005-07-30
Recent evidence shows that event-related (upper) alpha desynchronization (ERD) is related to cognitive performance. Several studies observed a positive, some a negative relationship. The latter finding, interpreted in terms of the neural efficiency hypothesis, suggests that good performance is associated with a more 'efficient', smaller extent of cortical activation. Other studies found that ERD increases with semantic processing demands and that this increase is larger for good performers. Studies supporting the neural efficiency hypothesis used tasks that do not specifically require semantic processing. Thus, we assume that the lack of semantic processing demands may at least in part be responsible for the reduced ERD. In the present study we measured ERD during a difficult verbal-semantic task. The findings demonstrate that during semantic processing, more intelligent (as compared to less intelligent) subjects exhibited a significantly larger upper alpha ERD over the left hemisphere. We conclude that more intelligent subjects exhibit a more extensive activation in a semantic processing system and suggest that divergent findings regarding the neural efficiency hypotheses are due to task specific differences in semantic processing demands.
Messina, Irene; Sambin, Marco; Beschoner, Petra; Viviani, Roberto
2016-08-01
Influential neurobiological models of the mechanism of action of psychotherapy attribute its success to increases of activity in prefrontal areas and decreases in limbic areas, interpreted as the successful and adaptive recruitment of controlled processes to achieve emotion regulation. In this article, we review the behavioral and neuroscientific evidence in support of this model and its applicability to explain the mechanism of action of psychotherapy. Neuroimaging studies of explicit emotion regulation, evidence on the neurobiological substrates of implicit emotion regulation, and meta-analyses of neuroimaging studies of the effect of psychotherapy consistently suggest that areas implicated in coding semantic representations play an important role in emotion regulation not covered by existing models based on controlled processes. We discuss the findings that implicate these same areas in supporting working memory, in encoding preferences and the prospective outcome of actions taken in rewarding or aversive contingencies, and show how these functions may be integrated into process models of emotion regulation that depend on elaborate semantic representations for their effectiveness. These alternative models also appear to be more consistent with internal accounts in the psychotherapeutic literature of how psychotherapy works.
The language of future-thought: an fMRI study of embodiment and tense processing.
Gilead, Michael; Liberman, Nira; Maril, Anat
2013-01-15
The ability to comprehend and represent the temporal properties of an occurrence is a crucial aspect of human language and cognition. Despite advances in neurolinguistic research into semantic processing, surprisingly little is known regarding the mechanisms which support the comprehension of temporal semantics. We used fMRI to investigate neural activity associated with processing of concrete and abstract sentences across the three temporal categories: past, present, and future. Theories of embodied cognition predict that concreteness-related activity would be evident in sensory and motor areas regardless of tense. Contrastingly, relying upon construal level theory we hypothesized that: (1) the neural markers associated with concrete language processing would appear for past and present tense sentences, but not for future sentences; (2) future tense sentences would activate intention-processing areas. Consistent with our first prediction, the results showed that activation in the parahippocampal gyrus differentiated between concrete and abstract sentences for past and present tense sentences, but not for future sentences. Not consistent with our second prediction, future tense sentences did not activate most of the regions that are implicated in the processing of intentions, but only activated the vmPFC. We discuss the implications of the current results to theories of embodied cognition and tense semantics. Copyright © 2012 Elsevier Inc. All rights reserved.
Ting, Simon Kang Seng; Hameed, Shahul; Earnest, Arul; Tan, Eng-King
2013-07-01
Category-specific semantic dissociation particularly in terms of biological and non-biological dichotomy has been described in Alzheimer's disease (AD). We re-examine above finding by performing multiple superordinate category verbal fluency test in AD patients. We analyze the baseline neuropsychological assessment performance of food and animal fluency test of AD patients from a tertiary hospital that collected prospectively over 5 years period and correlation was calculated by Kappa test. The analysis is stratified according to literacy level (primary: 0-6 years education and secondary: >6 years education) and disease severity (MMSE score: mild 19-24, moderate 13-18 and severe <13). A total of 296 AD patients were analyzed and only fair to moderate agreement between food and animal category fluency test was found especially in the mild AD cases (primary: kappa 0.42; secondary: kappa 0.40). Kappa agreement level increases when disease progress especially in the secondary education group. Food category, which is a more relevant semantic knowledge to Singapore population, is generally more affected. Higher educated subjects appeared to have less semantic dissociation effect when disease progress. Despite less primed in daily life, biological category of semantic knowledge appears to be affected less during AD process in highly urbanized Singapore society. Brain appears to have special protective mechanism towards living things. However, education level seems have a modulation effect towards the biological protective mechanism. Copyright © 2012 Elsevier B.V. All rights reserved.
An ERP investigation of conditional reasoning with emotional and neutral contents.
Blanchette, Isabelle; El-Deredy, Wael
2014-11-01
In two experiments we investigate conditional reasoning using event-related potentials (ERPs). Our goal was to examine the time course of inference making in two conditional forms, one logically valid (Modus Ponens, MP) and one logically invalid (Affirming the Consequent, AC). We focus particularly on the involvement of semantically-based inferential processes potentially marked by modulations of the N400. We also compared reasoning about emotional and neutral contents with separate sets of stimuli of differing linguistic complexity across the two experiments. Both MP and AC modulated the N400 component, suggesting the involvement of a semantically-based inferential mechanism common across different logical forms, content types, and linguistic features of the problems. Emotion did not have an effect on early components, and did not interact with components related to inference making. There was a main effect of emotion in the 800-1050 ms time window, consistent with an effect on sustained attention. The results suggest that conditional reasoning is not a purely formal process but that it importantly implicates semantic processing, and that the effect of emotion on reasoning does not primarily operate through a modulation of early automatic stages of information processing. Copyright © 2014 Elsevier Inc. All rights reserved.
Semantic Technologies and Bio-Ontologies.
Gutierrez, Fernando
2017-01-01
As information available through data repositories constantly grows, the need for automated mechanisms for linking, querying, and sharing data has become a relevant factor both in research and industry. This situation is more evident in research fields such as the life sciences, where new experiments by different research groups are constantly generating new information regarding a wide variety of related study objects. However, current methods for representing information and knowledge are not suited for machine processing. The Semantic Technologies are a set of standards and protocols that intend to provide methods for representing and handling data that encourages reusability of information and is machine-readable. In this chapter, we will provide a brief introduction to Semantic Technologies, and how these protocols and standards have been incorporated into the life sciences to facilitate dissemination and access to information.
The Semantic Distance Task: Quantifying Semantic Distance with Semantic Network Path Length
ERIC Educational Resources Information Center
Kenett, Yoed N.; Levi, Effi; Anaki, David; Faust, Miriam
2017-01-01
Semantic distance is a determining factor in cognitive processes, such as semantic priming, operating upon semantic memory. The main computational approach to compute semantic distance is through latent semantic analysis (LSA). However, objections have been raised against this approach, mainly in its failure at predicting semantic priming. We…
Concepts, Control, and Context: A Connectionist Account of Normal and Disordered Semantic Cognition
2018-01-01
Semantic cognition requires conceptual representations shaped by verbal and nonverbal experience and executive control processes that regulate activation of knowledge to meet current situational demands. A complete model must also account for the representation of concrete and abstract words, of taxonomic and associative relationships, and for the role of context in shaping meaning. We present the first major attempt to assimilate all of these elements within a unified, implemented computational framework. Our model combines a hub-and-spoke architecture with a buffer that allows its state to be influenced by prior context. This hybrid structure integrates the view, from cognitive neuroscience, that concepts are grounded in sensory-motor representation with the view, from computational linguistics, that knowledge is shaped by patterns of lexical co-occurrence. The model successfully codes knowledge for abstract and concrete words, associative and taxonomic relationships, and the multiple meanings of homonyms, within a single representational space. Knowledge of abstract words is acquired through (a) their patterns of co-occurrence with other words and (b) acquired embodiment, whereby they become indirectly associated with the perceptual features of co-occurring concrete words. The model accounts for executive influences on semantics by including a controlled retrieval mechanism that provides top-down input to amplify weak semantic relationships. The representational and control elements of the model can be damaged independently, and the consequences of such damage closely replicate effects seen in neuropsychological patients with loss of semantic representation versus control processes. Thus, the model provides a wide-ranging and neurally plausible account of normal and impaired semantic cognition. PMID:29733663
Does N200 reflect semantic processing?--An ERP study on Chinese visual word recognition.
Du, Yingchun; Zhang, Qin; Zhang, John X
2014-01-01
Recent event-related potential research has reported a N200 response or a negative deflection peaking around 200 ms following the visual presentation of two-character Chinese words. This N200 shows amplitude enhancement upon immediate repetition and there has been preliminary evidence that it reflects orthographic processing but not semantic processing. The present study tested whether this N200 is indeed unrelated to semantic processing with more sensitive measures, including the use of two tasks engaging semantic processing either implicitly or explicitly and the adoption of a within-trial priming paradigm. In Exp. 1, participants viewed repeated, semantically related and unrelated prime-target word pairs as they performed a lexical decision task judging whether or not each target was a real word. In Exp. 2, participants viewed high-related, low-related and unrelated word pairs as they performed a semantic task judging whether each word pair was related in meaning. In both tasks, semantic priming was found from both the behavioral data and the N400 ERP responses. Critically, while repetition priming elicited a clear and large enhancement on the N200 response, semantic priming did not show any modulation effect on the same response. The results indicate that the N200 repetition enhancement effect cannot be explained with semantic priming and that this specific N200 response is unlikely to reflect semantic processing.
Cross-language parafoveal semantic processing: Evidence from Korean-Chinese bilinguals.
Wang, Aiping; Yeon, Junmo; Zhou, Wei; Shu, Hua; Yan, Ming
2016-02-01
In the present study, we aimed at testing cross-language cognate and semantic preview effects. We tested how native Korean readers who learned Chinese as a second language make use of the parafoveal information during the reading of Chinese sentences. There were 3 types of Korean preview words: cognate translations of the Chinese target words, semantically related noncognate words, and unrelated words. Together with a highly significant cognate preview effect, more critically, we also observed reliable facilitation in processing of the target word from the semantically related previews in all fixation measures. Results from the present study provide first evidence for semantic processing from parafoveally presented Korean words and for cross-language parafoveal semantic processing.
Neural pattern similarity underlies the mnemonic advantages for living words.
Xiao, Xiaoqian; Dong, Qi; Chen, Chuansheng; Xue, Gui
2016-06-01
It has been consistently shown that words representing living things are better remembered than words representing nonliving things, yet the underlying cognitive and neural mechanisms have not been clearly elucidated. The present study used both univariate and multivariate pattern analyses to examine the hypotheses that living words are better remembered because (1) they draw more attention and/or (2) they share more overlapping semantic features. Subjects were asked to study a list of living and nonliving words during a semantic judgment task. An unexpected recognition test was administered 30 min later. We found that subjects recognized significantly more living words than nonliving words. Results supported the overlapping semantic feature hypothesis by showing that (a) semantic ratings showed greater semantic similarity for living words than for nonliving words, (b) there was also significantly greater neural global pattern similarity (nGPS) for living words than for nonliving words in the posterior portion of left parahippocampus (LpPHG), (c) the nGPS in the LpPHG reflected the rated semantic similarity, and also mediated the memory differences between two semantic categories, and (d) greater univariate activation was found for living words than for nonliving words in the left hippocampus (LHIP), which mediated the better memory performance for living words and might reflect greater semantic context binding. In contrast, although living words were processed faster and elicited a stronger activity in the dorsal attention network, these differences did not mediate the animacy effect in memory. Taken together, our results provide strong support to the overlapping semantic features hypothesis, and emphasize the important role of semantic organization in episodic memory encoding. Copyright © 2016 Elsevier Ltd. All rights reserved.
ERIC Educational Resources Information Center
Siakaluk, Paul D.; Pexman, Penny M.; Sears, Christopher R.; Owen, William J.
2007-01-01
The ambiguity disadvantage (slower processing of ambiguous words relative to unambiguous words) has been taken as evidence for a distributed semantic representational system like that embodied in parallel distributed processing (PDP) models. In the present study, we investigated whether semantic ambiguity slows meaning activation, as PDP models…
Levels of processing with free and cued recall and unilateral temporal lobe epilepsy.
Lespinet-Najib, Véronique; N'Kaoua, Bernard; Sauzéon, Hélène; Bresson, Christel; Rougier, Alain; Claverie, Bernard
2004-04-01
This study investigates the role of the temporal lobes in levels-of-processing tasks (phonetic and semantic encoding) according to the nature of recall tasks (free and cued recall). These tasks were administered to 48 patients with unilateral temporal epilepsy (right "RTLE"=24; left "LTLE"=24) and a normal group (n=24). The results indicated that LTLE patients were impaired for semantic processing (free and cued recall) and for phonetic processing (free and cued recall), while for RTLE patients deficits appeared in free recall with semantic processing. It is suggested that the left temporal lobe is involved in all aspects of verbal memory, and that the right temporal lobe is specialized in semantic processing. Moreover, our data seem to indicate that RTLE patients present a retrieval processing impairment (semantic condition), whereas the LTLE group is characterized by encoding difficulties in the phonetic and semantic condition.
Oppenheim, Gary M; Dell, Gary S; Schwartz, Myrna F
2010-02-01
Naming a picture of a dog primes the subsequent naming of a picture of a dog (repetition priming) and interferes with the subsequent naming of a picture of a cat (semantic interference). Behavioral studies suggest that these effects derive from persistent changes in the way that words are activated and selected for production, and some have claimed that the findings are only understandable by positing a competitive mechanism for lexical selection. We present a simple model of lexical retrieval in speech production that applies error-driven learning to its lexical activation network. This model naturally produces repetition priming and semantic interference effects. It predicts the major findings from several published experiments, demonstrating that these effects may arise from incremental learning. Furthermore, analysis of the model suggests that competition during lexical selection is not necessary for semantic interference if the learning process is itself competitive. Copyright 2009 Elsevier B.V. All rights reserved.
Neighing, barking, and drumming horses-object related sounds help and hinder picture naming.
Mädebach, Andreas; Wöhner, Stefan; Kieseler, Marie-Luise; Jescheniak, Jörg D
2017-09-01
The study presented here investigated how environmental sounds influence picture naming. In a series of four experiments participants named pictures (e.g., the picture of a horse) while hearing task-irrelevant sounds (e.g., neighing, barking, or drumming). Experiments 1 and 2 established two findings, facilitation from congruent sounds (e.g., picture: horse, sound: neighing) and interference from semantically related sounds (e.g., sound: barking), both relative to unrelated sounds (e.g., sound: drumming). Experiment 3 replicated the effects in a situation in which participants were not familiarized with the sounds prior to the experiment. Experiment 4 replicated the congruency facilitation effect, but showed that semantic interference was not obtained with distractor sounds which were not associated with target pictures (i.e., were not part of the response set). The general pattern of facilitation from congruent sound distractors and interference from semantically related sound distractors resembles the pattern commonly observed with distractor words. This parallelism suggests that the underlying processes are not specific to either distractor words or distractor sounds but instead reflect general aspects of semantic-lexical selection in language production. The results indicate that language production theories need to include a competitive selection mechanism at either the lexical processing stage, or the prelexical processing stage, or both. (PsycINFO Database Record (c) 2017 APA, all rights reserved).
ERIC Educational Resources Information Center
Subramaniam, Karuna; Faust, Miriam; Beeman, Mark; Mashal, Nira
2012-01-01
The neural mechanisms underlying the process of understanding novel and conventional metaphoric expressions remain unclear largely because the specific brain regions that support the formation of novel semantic relations are still unknown. A well established way to study distinct cognitive processes specifically associated with an event of…
Differential electrophysiological signatures of semantic and syntactic scene processing.
Võ, Melissa L-H; Wolfe, Jeremy M
2013-09-01
In sentence processing, semantic and syntactic violations elicit differential brain responses observable in event-related potentials: An N400 signals semantic violations, whereas a P600 marks inconsistent syntactic structure. Does the brain register similar distinctions in scene perception? To address this question, we presented participants with semantic inconsistencies, in which an object was incongruent with a scene's meaning, and syntactic inconsistencies, in which an object violated structural rules. We found a clear dissociation between semantic and syntactic processing: Semantic inconsistencies produced negative deflections in the N300-N400 time window, whereas mild syntactic inconsistencies elicited a late positivity resembling the P600 found for syntactic inconsistencies in sentence processing. Extreme syntactic violations, such as a hovering beer bottle defying gravity, were associated with earlier perceptual processing difficulties reflected in the N300 response, but failed to produce a P600 effect. We therefore conclude that different neural populations are active during semantic and syntactic processing of scenes, and that syntactically impossible object placements are processed in a categorically different manner than are syntactically resolvable object misplacements.
Electrophysiological effects of semantic context in picture and word naming.
Janssen, Niels; Carreiras, Manuel; Barber, Horacio A
2011-08-01
Recent language production studies have started to use electrophysiological measures to investigate the time course of word selection processes. An important contribution with respect to this issue comes from studies that have relied on an effect of semantic context in the semantic blocking task. Here we used this task to further establish the empirical pattern associated with the effect of semantic context, and whether the effect arises during output processing. Electrophysiological and reaction time measures were co-registered while participants overtly named picture and word stimuli in the semantic blocking task. The results revealed inhibitory reaction time effects of semantic context for both words and pictures, and a corresponding electrophysiological effect that could not be interpreted in terms of output processes. These data suggest that the electrophysiological effect of semantic context in the semantic blocking task does not reflect output processes, and therefore undermine an interpretation of this effect in terms of word selection. Copyright © 2011 Elsevier Inc. All rights reserved.
Jia, Lei; Dickter, Cheryl L; Luo, Junlong; Xiao, Xiao; Yang, Qun; Lei, Ming; Qiu, Jiang; Zhang, Qinglin
2012-01-01
Stereotyping involves two processes in which first, social stereotypes are activated (stereotype activation), and then, stereotypes are applied to given targets (stereotype application). Previous behavioral studies have suggested that these two processes are independent of each other and may have different mechanisms. As few psychophysiological studies have given an integrated account of these stages in stereotyping so far, this study utilized a trait categorization task in which event-related potentials (ERPs) were used to explore the brain mechanisms associated with the processes of stereotype activation and its application. The behavioral (reaction time) and electrophysiological data showed that stereotype activation and application were elicited respectively in an affective valence identification subtask and in a semantic content judgment subtask. The electrophysiological results indicated that the categorization processes involved in stereotype activation to quickly identify stereotypic and nonstereotypic information were quite different from those involved in the application. During the process of stereotype activation, a P2 and N2 effect was observed, indicating that stereotype activation might be facilitated by an early attentional bias. Also, a late positive potential (LPP) was elicited, suggesting that social expectancy violation might be involved. During the process of the stereotype application, electrophysiological data showed a P2 and P3 effect, indicating that stereotype application might be related to the rapid social knowledge identification in semantic representation and thus may be associated with an updating of existing stereotypic contents or a motivation to resolve the inconsistent information. This research strongly suggested that different mechanisms are involved in the stereotype activation and application processes.
Different Loci of Semantic Interference in Picture Naming vs. Word-Picture Matching Tasks.
Harvey, Denise Y; Schnur, Tatiana T
2016-01-01
Naming pictures and matching words to pictures belonging to the same semantic category impairs performance relative to when stimuli come from different semantic categories (i.e., semantic interference). Despite similar semantic interference phenomena in both picture naming and word-picture matching tasks, the locus of interference has been attributed to different levels of the language system - lexical in naming and semantic in word-picture matching. Although both tasks involve access to shared semantic representations, the extent to which interference originates and/or has its locus at a shared level remains unclear, as these effects are often investigated in isolation. We manipulated semantic context in cyclical picture naming and word-picture matching tasks, and tested whether factors tapping semantic-level (generalization of interference to novel category items) and lexical-level processes (interactions with lexical frequency) affected the magnitude of interference, while also assessing whether interference occurs at a shared processing level(s) (transfer of interference across tasks). We found that semantic interference in naming was sensitive to both semantic- and lexical-level processes (i.e., larger interference for novel vs. old and low- vs. high-frequency stimuli), consistent with a semantically mediated lexical locus. Interference in word-picture matching exhibited stable interference for old and novel stimuli and did not interact with lexical frequency. Further, interference transferred from word-picture matching to naming. Together, these experiments provide evidence to suggest that semantic interference in both tasks originates at a shared processing stage (presumably at the semantic level), but that it exerts its effect at different loci when naming pictures vs. matching words to pictures.
Different Loci of Semantic Interference in Picture Naming vs. Word-Picture Matching Tasks
Harvey, Denise Y.; Schnur, Tatiana T.
2016-01-01
Naming pictures and matching words to pictures belonging to the same semantic category impairs performance relative to when stimuli come from different semantic categories (i.e., semantic interference). Despite similar semantic interference phenomena in both picture naming and word-picture matching tasks, the locus of interference has been attributed to different levels of the language system – lexical in naming and semantic in word-picture matching. Although both tasks involve access to shared semantic representations, the extent to which interference originates and/or has its locus at a shared level remains unclear, as these effects are often investigated in isolation. We manipulated semantic context in cyclical picture naming and word-picture matching tasks, and tested whether factors tapping semantic-level (generalization of interference to novel category items) and lexical-level processes (interactions with lexical frequency) affected the magnitude of interference, while also assessing whether interference occurs at a shared processing level(s) (transfer of interference across tasks). We found that semantic interference in naming was sensitive to both semantic- and lexical-level processes (i.e., larger interference for novel vs. old and low- vs. high-frequency stimuli), consistent with a semantically mediated lexical locus. Interference in word-picture matching exhibited stable interference for old and novel stimuli and did not interact with lexical frequency. Further, interference transferred from word-picture matching to naming. Together, these experiments provide evidence to suggest that semantic interference in both tasks originates at a shared processing stage (presumably at the semantic level), but that it exerts its effect at different loci when naming pictures vs. matching words to pictures. PMID:27242621
Cantiani, Chiara; Riva, Valentina; Piazza, Caterina; Melesi, Giulia; Mornati, Giulia; Bettoni, Roberta; Marino, Cecilia; Molteni, Massimo
2017-08-01
Children begin to establish lexical-semantic representations during their first year of life, resulting in a rapid growth of vocabulary around 18-24 months of age. The neural mechanisms underlying this initial ability to map words onto conceptual representations remain relatively unknown. In the present study, the electrophysiological underpinnings of these mechanisms are explored during the critical phase of lexical acquisition using a picture-word matching paradigm. Event-Related Potentials (ERPs) elicited by words (either congruous or incongruous with the previous picture context) and pseudo-words are investigated in 20-month-old toddlers (N = 20) and compared to those elicited in a sample of adults (N = 20), reflecting the final and efficient system, and a sample of toddlers at familial risk for language and learning impairment (LLI, N = 15). The results suggest that the architecture underlying spoken word representation and processing is constant throughout development, even if some differences between children and adults emerged. Interestingly, children seem to be faster than adults in processing incongruent words, probably because relying on a different and more superficial strategy. This early strategy does not seem to be present in children at risk for LLI. In addition, both groups of children do not show different and specific electrophysiological underpinnings in response to real but incongruent words and unknown words, suggesting that during the critical phase of lexical acquisition any potential word is processed in a similar way. Overall, children at risk for LLI turned out to be sensitive to verbal incongruity of the lexical-semantic context, although some differences from typically developing children emerged, reflecting slower processing and less automatic responses. Taken together, the findings of this study pave the way to further research to investigate these effects in clinical and at-risk populations with the general purpose of disentangling the underlying mechanisms of lexical acquisition, and potentially predicting later language (dis)abilities. Copyright © 2017 Elsevier Ltd. All rights reserved.
An Investigation into Semantic and Phonological Processing in Individuals with Williams Syndrome
ERIC Educational Resources Information Center
Lee, Cheryl S.; Binder, Katherine S.
2014-01-01
Purpose: The current study examined semantic and phonological processing in individuals with Williams syndrome (WS). Previous research in language processing in individuals with WS suggests a complex linguistic system characterized by "deviant" semantic organization and differential phonological processing. Method: Two experiments…
Semantic Processing of Mathematical Gestures
ERIC Educational Resources Information Center
Lim, Vanessa K.; Wilson, Anna J.; Hamm, Jeff P.; Phillips, Nicola; Iwabuchi, Sarina J.; Corballis, Michael C.; Arzarello, Ferdinando; Thomas, Michael O. J.
2009-01-01
Objective: To examine whether or not university mathematics students semantically process gestures depicting mathematical functions (mathematical gestures) similarly to the way they process action gestures and sentences. Semantic processing was indexed by the N400 effect. Results: The N400 effect elicited by words primed with mathematical gestures…
Forgács, Bálint; Bohrn, Isabel; Baudewig, Jürgen; Hofmann, Markus J; Pléh, Csaba; Jacobs, Arthur M
2012-11-15
The right hemisphere's role in language comprehension is supported by results from several neuropsychology and neuroimaging studies. Special interest surrounds right temporoparietal structures, which are thought to be involved in processing novel metaphorical expressions, primarily due to the coarse semantic coding of concepts. In this event related fMRI experiment we aimed at assessing the extent of semantic distance processing in the comprehension of figurative meaning to clarify the role of the right hemisphere. Four categories of German noun noun compound words were presented in a semantic decision task: a) conventional metaphors; b) novel metaphors; c) conventional literal, and; d) novel literal expressions, controlled for length, frequency, imageability, arousal, and emotional valence. Conventional literal and metaphorical compounds increased BOLD signal change in right temporoparietal regions, suggesting combinatorial semantic processing, in line with the coarse semantic coding theory, but at odds with the graded salience hypothesis. Both novel literal and novel metaphorical expressions increased activity in left inferior frontal areas, presumably as a result of phonetic, morphosyntactic, and semantic unification processes, challenging predictions regarding right hemispheric involvement in processing unusual meanings. Meanwhile, both conventional and novel metaphorical expressions induced BOLD signal change in left hemispherical regions, suggesting that even novel metaphor processing involves more than linking semantically distant concepts. Copyright © 2012 Elsevier Inc. All rights reserved.
ERIC Educational Resources Information Center
Laszlo, Sarah; Stites, Mallory; Federmeier, Kara D.
2012-01-01
A growing body of evidence suggests that semantic access is obligatory. Several studies have demonstrated that brain activity associated with semantic processing, measured in the N400 component of the event-related brain potential (ERP), is elicited even by meaningless, orthographically illegal strings, suggesting that semantic access is not gated…
The role of attention in subliminal semantic processing: A mouse tracking study.
Xiao, Kunchen; Yamauchi, Takashi
2017-01-01
Recent evidence suggests that top-down attention facilitates unconscious semantic processing. To clarify the role of attention in unconscious semantic processing, we traced trajectories of the computer mouse in a semantic priming task and scrutinized the extent to which top-down attention enhances unconscious semantic processing in four different stimulus-onset asynchrony (SOA: 50, 200, 500, or 1000ms) conditions. Participants judged whether a target digit (e.g., "6") was larger or smaller than five, preceded by a masked priming digit (e.g., "9"). The pre-prime duration changed randomly from trial to trial to disrupt participants' top-down attention in an uncued condition (in a cued condition, a green square cue was presented to facilitate participants' top-down attention). The results show that top-down attention modifies the time course of subliminal semantic processing, and the temporal attention window lasts more than 1000ms; attention facilitated by the cue may amplify semantic priming to some extent, yet the amplification effect of attention is relatively minor.
Yang, Yang; Wu, Fuyun; Zhou, Xiaolin
2015-01-01
The syntax-first model and the parallel/interactive models make different predictions regarding whether syntactic category processing has a temporal and functional primacy over semantic processing. To further resolve this issue, an event-related potential experiment was conducted on 24 Chinese speakers reading Chinese passive sentences with the passive marker BEI (NP1 + BEI + NP2 + Verb). This construction was selected because it is the most-commonly used Chinese passive and very much resembles German passives, upon which the syntax-first hypothesis was primarily based. We manipulated semantic consistency (consistent vs. inconsistent) and syntactic category (noun vs. verb) of the critical verb, yielding four conditions: CORRECT (correct sentences), SEMANTIC (semantic anomaly), SYNTACTIC (syntactic category anomaly), and COMBINED (combined anomalies). Results showed both N400 and P600 effects for sentences with semantic anomaly, with syntactic category anomaly, or with combined anomalies. Converging with recent findings of Chinese ERP studies on various constructions, our study provides further evidence that syntactic category processing does not precede semantic processing in reading Chinese.
Cohen, Michael S.; Rissman, Jesse; Suthana, Nanthia A.; Castel, Alan D.; Knowlton, Barbara J.
2014-01-01
A number of prior fMRI studies have focused on the ways in which the midbrain dopaminergic reward system co-activates with hippocampus to potentiate memory for valuable items. However, another means by which people could selectively remember more valuable to-be-remembered items is to be selective in their use of effective but effortful encoding strategies. To broadly examine the neural mechanisms of value on subsequent memory, we used fMRI to examine how differences in brain activity at encoding as a function of value relate to subsequent free recall for words. Each word was preceded by an arbitrarily assigned point value, and participants went through multiple study-test cycles with feedback on their point total at the end of each list, allowing for sculpting of cognitive strategies. We examined the correlation between value-related modulation of brain activity and participants’ selectivity index, a measure of how close participants were to their optimal point total given the number of items recalled. Greater selectivity scores were associated with greater differences in activation of semantic processing regions, including left inferior frontal gyrus and left posterior lateral temporal cortex, during encoding of high-value words relative to low-value words. Although we also observed value-related modulation within midbrain and ventral striatal reward regions, our fronto-temporal findings suggest that strategic engagement of deep semantic processing may be an important mechanism for selectively encoding valuable items. PMID:24683066
Cohen, Michael S; Rissman, Jesse; Suthana, Nanthia A; Castel, Alan D; Knowlton, Barbara J
2014-06-01
A number of prior fMRI studies have focused on the ways in which the midbrain dopaminergic reward system coactivates with hippocampus to potentiate memory for valuable items. However, another means by which people could selectively remember more valuable to-be-remembered items is to be selective in their use of effective but effortful encoding strategies. To broadly examine the neural mechanisms of value on subsequent memory, we used fMRI to assess how differences in brain activity at encoding as a function of value relate to subsequent free recall for words. Each word was preceded by an arbitrarily assigned point value, and participants went through multiple study-test cycles with feedback on their point total at the end of each list, allowing for sculpting of cognitive strategies. We examined the correlation between value-related modulation of brain activity and participants' selectivity index, which measures how close participants were to their optimal point total, given the number of items recalled. Greater selectivity scores were associated with greater differences in the activation of semantic processing regions, including left inferior frontal gyrus and left posterior lateral temporal cortex, during the encoding of high-value words relative to low-value words. Although we also observed value-related modulation within midbrain and ventral striatal reward regions, our fronto-temporal findings suggest that strategic engagement of deep semantic processing may be an important mechanism for selectively encoding valuable items.
Hodgson, Catherine; Lambon Ralph, Matthew A
2008-01-01
Semantic errors are commonly found in semantic dementia (SD) and some forms of stroke aphasia and provide insights into semantic processing and speech production. Low error rates are found in standard picture naming tasks in normal controls. In order to increase error rates and thus provide an experimental model of aphasic performance, this study utilised a novel method- tempo picture naming. Experiment 1 showed that, compared to standard deadline naming tasks, participants made more errors on the tempo picture naming tasks. Further, RTs were longer and more errors were produced to living items than non-living items a pattern seen in both semantic dementia and semantically-impaired stroke aphasic patients. Experiment 2 showed that providing the initial phoneme as a cue enhanced performance whereas providing an incorrect phonemic cue further reduced performance. These results support the contention that the tempo picture naming paradigm reduces the time allowed for controlled semantic processing causing increased error rates. This experimental procedure would, therefore, appear to mimic the performance of aphasic patients with multi-modal semantic impairment that results from poor semantic control rather than the degradation of semantic representations observed in semantic dementia [Jefferies, E. A., & Lambon Ralph, M. A. (2006). Semantic impairment in stoke aphasia vs. semantic dementia: A case-series comparison. Brain, 129, 2132-2147]. Further implications for theories of semantic cognition and models of speech processing are discussed.
Demb, J B; Desmond, J E; Wagner, A D; Vaidya, C J; Glover, G H; Gabrieli, J D
1995-09-01
Prefrontal cortical function was examined during semantic encoding and repetition priming using functional magnetic resonance imaging (fMRI), a noninvasive technique for localizing regional changes in blood oxygenation, a correlate of neural activity. Words studied in a semantic (deep) encoding condition were better remembered than words studied in both easier and more difficult nonsemantic (shallow) encoding conditions, with difficulty indexed by response time. The left inferior prefrontal cortex (LIPC) (Brodmann's areas 45, 46, 47) showed increased activation during semantic encoding relative to nonsemantic encoding regardless of the relative difficulty of the nonsemantic encoding task. Therefore, LIPC activation appears to be related to semantic encoding and not task difficulty. Semantic encoding decisions are performed faster the second time words are presented. This represents semantic repetition priming, a facilitation in semantic processing for previously encoded words that is not dependent on intentional recollection. The same LIPC area activated during semantic encoding showed decreased activation during repeated semantic encoding relative to initial semantic encoding of the same words. This decrease in activation during repeated encoding was process specific; it occurred when words were semantically reprocessed but not when words were nonsemantically reprocessed. The results were apparent in both individual and averaged functional maps. These findings suggest that the LIPC is part of a semantic executive system that contributes to the on-line retrieval of semantic information.
Plat, Rika; Lowie, Wander; de Bot, Kees
2017-01-01
Reaction time data have long been collected in order to gain insight into the underlying mechanisms involved in language processing. Means analyses often attempt to break down what factors relate to what portion of the total reaction time. From a dynamic systems theory perspective or an interaction dominant view of language processing, it is impossible to isolate discrete factors contributing to language processing, since these continually and interactively play a role. Non-linear analyses offer the tools to investigate the underlying process of language use in time, without having to isolate discrete factors. Patterns of variability in reaction time data may disclose the relative contribution of automatic (grapheme-to-phoneme conversion) processing and attention-demanding (semantic) processing. The presence of a fractal structure in the variability of a reaction time series indicates automaticity in the mental structures contributing to a task. A decorrelated pattern of variability will indicate a higher degree of attention-demanding processing. A focus on variability patterns allows us to examine the relative contribution of automatic and attention-demanding processing when a speaker is using the mother tongue (L1) or a second language (L2). A word naming task conducted in the L1 (Dutch) and L2 (English) shows L1 word processing to rely more on automatic spelling-to-sound conversion than L2 word processing. A word naming task with a semantic categorization subtask showed more reliance on attention-demanding semantic processing when using the L2. A comparison to L1 English data shows this was not only due to the amount of language use or language dominance, but also to the difference in orthographic depth between Dutch and English. An important implication of this finding is that when the same task is used to test and compare different languages, one cannot straightforwardly assume the same cognitive sub processes are involved to an equal degree using the same task in different languages.
The Role of Simple Semantics in the Process of Artificial Grammar Learning.
Öttl, Birgit; Jäger, Gerhard; Kaup, Barbara
2017-10-01
This study investigated the effect of semantic information on artificial grammar learning (AGL). Recursive grammars of different complexity levels (regular language, mirror language, copy language) were investigated in a series of AGL experiments. In the with-semantics condition, participants acquired semantic information prior to the AGL experiment; in the without-semantics control condition, participants did not receive semantic information. It was hypothesized that semantics would generally facilitate grammar acquisition and that the learning benefit in the with-semantics conditions would increase with increasing grammar complexity. Experiment 1 showed learning effects for all grammars but no performance difference between conditions. Experiment 2 replicated the absence of a semantic benefit for all grammars even though semantic information was more prominent during grammar acquisition as compared to Experiment 1. Thus, we did not find evidence for the idea that semantics facilitates grammar acquisition, which seems to support the view of an independent syntactic processing component.
Effects of donepezil on verbal memory after semantic processing in healthy older adults.
FitzGerald, David B; Crucian, Gregory P; Mielke, Jeannine B; Shenal, Brian V; Burks, David; Womack, Kyle B; Ghacibeh, Georges; Drago, Valeria; Foster, Paul S; Valenstein, Edward; Heilman, Kenneth M
2008-06-01
To learn if acetylcholinesterase inhibitors alter verbal recall by improving semantic encoding in a double-blind randomized placebo-controlled trial. Cholinergic supplementation has been shown to improve delayed recall in adults with Alzheimer disease. With functional magnetic resonance imaging, elderly adults, when compared with younger participants, have reduced cortical activation with semantic processing. There have been no studies investigating the effects of cholinergic supplementation on semantic encoding in healthy elderly adults. Twenty elderly participants (mean age 71.5, SD+/-5.2) were recruited. All underwent memory testing before and after receiving donepezil (5 mg, n=11 or 10 mg, n=1) or placebo (n=8) for 6 weeks. Memory was tested using a Levels of Processing task, where a series of words are presented serially. Subjects were either asked to count consonants in a word (superficially process) or decide if the word was "pleasant" or "unpleasant" (semantically process). After 6 weeks of donepezil or placebo treatment, immediate and delayed recall of superficially and semantically processed words was compared with baseline performance. Immediate and delayed recall of superficially processed words did not show significant changes in either treatment group. With semantic processing, both immediate and delayed recall performance improved in the donepezil group. Our results suggest that when using semantic encoding, older normal subjects may be aided by anticholinesterase treatment. However, this treatment does not improve recall of superficially encoded words.
Lexical and sublexical semantic preview benefits in Chinese reading.
Yan, Ming; Zhou, Wei; Shu, Hua; Kliegl, Reinhold
2012-07-01
Semantic processing from parafoveal words is an elusive phenomenon in alphabetic languages, but it has been demonstrated only for a restricted set of noncompound Chinese characters. Using the gaze-contingent boundary paradigm, this experiment examined whether parafoveal lexical and sublexical semantic information was extracted from compound preview characters. Results generalized parafoveal semantic processing to this representative set of Chinese characters and extended the parafoveal processing to radical (sublexical) level semantic information extraction. Implications for notions of parafoveal information extraction during Chinese reading are discussed. 2012 APA, all rights reserved
Less Is More: Semantic Information Survives Interocular Suppression When Attention Is Diverted.
Eo, Kangyong; Cha, Oakyoon; Chong, Sang Chul; Kang, Min-Suk
2016-05-18
The extent of unconscious semantic processing has been debated. It is well established that semantic information is registered in the absence of awareness induced by inattention. However, it has been debated whether semantic information of invisible stimuli is processed during interocular suppression, a procedure that renders one eye's view invisible by presenting a dissimilar stimulus to the other eye. Inspired by recent evidence demonstrating that reduced attention attenuates interocular suppression, we tested a counterintuitive hypothesis that attention withdrawn from the suppressed target location facilitates semantic processing in the absence of awareness induced by interocular suppression. We obtained an electrophysiological marker of semantic processing (N400 component) while human participants' spatial attention was being manipulated with a cueing paradigm during interocular suppression. We found that N400 modulation was absent when participants' attention was directed to the target location, but present when diverted elsewhere. In addition, the correlation analysis across participants indicated that the N400 amplitude was reduced with more attention being directed to the target location. Together, these results indicate that inattention attenuates interocular suppression and thereby makes semantic processing available unconsciously, reconciling conflicting evidence in the literature. We discuss a tight link among interocular suppression, attention, and conscious awareness. Interocular suppression offers a powerful means of studying the extent of unconscious processing by rendering a salient stimulus presented to one eye invisible. Here, we provide evidence that attention is a determining factor for unconscious semantic processing. An electrophysiological marker for semantic processing (N400 component) was present when attention was diverted away from the suppressed stimulus but absent when attention was directed to that stimulus, indicating that inattention facilitates unconscious semantic processing during the interocular suppression. Although contrary to the common sense assumption that attention facilitates information processing, this result is in accordance with recent studies showing that attention modulates interocular suppression but is not necessary for semantic processing. Our finding reconciles the conflicting evidence and advances theories of consciousness. Copyright © 2016 the authors 0270-6474/16/365489-09$15.00/0.
COTARD SYNDROME IN SEMANTIC DEMENTIA
Mendez, Mario F.; Ramírez-Bermúdez, Jesús
2011-01-01
Background Semantic dementia is a neurodegenerative disorder characterized by the loss of meaning of words or concepts. semantic dementia can offer potential insights into the mechanisms of content-specific delusions. Objective The authors present a rare case of semantic dementia with Cotard syndrome, a delusion characterized by nihilism or self-negation. Method The semantic deficits and other features of semantic dementia were evaluated in relation to the patient's Cotard syndrome. Results Mrs. A developed the delusional belief that she was wasting and dying. This occurred after she lost knowledge for her somatic discomforts and sensations and for the organs that were the source of these sensations. Her nihilistic beliefs appeared to emerge from her misunderstanding of her somatic sensations. Conclusion This unique patient suggests that a mechanism for Cotard syndrome is difficulty interpreting the nature and source of internal pains and sensations. We propose that loss of semantic knowledge about one's own body may lead to the delusion of nihilism or death. PMID:22054629
Working memory and semantic involvement in sentence processing: a case of pure progressive amnesia.
Fossard, Marion; Rigalleau, François; Puel, Michèle; Nespoulous, Jean-Luc; Viallard, Gérard; Démonet, Jean-François; Cardebat, Dominique
2006-01-01
ED, a 83-year-old woman, meets the criteria of pure progressive amnesia, with gradual impairment of episodic and autobiographical memory, sparing of semantic processing and strong working memory (WM) deficit. The dissociation between disturbed WM and spared semantic processing permitted testing the role of WM in processing anaphors like pronouns or repeated names. Results showed a globally normal anaphoric behavior in two experiments requiring anaphoric processing in sentence production and comprehension. We suggest that preserved semantic processing in ED would have compensated for working memory deficit in anaphoric processing.
Python, Grégoire; Fargier, Raphaël; Laganaro, Marina
2018-01-01
Background: Producing a word in referential naming requires to select the right word in our mental lexicon among co-activated semantically related words. The mechanisms underlying semantic context effects during speech planning are still controversial, particularly for semantic facilitation which investigation remains under-represented in contrast to the plethora of studies dealing with interference. Our aim is to study the time-course of semantic facilitation in picture naming, using a picture-word “interference” paradigm and event-related potentials (ERPs). Methods: We compared two different types of semantic relationships, associative and categorical, in a single word priming and a double word priming paradigm. The primes were presented visually with a long negative Stimulus Onset Asynchrony (SOA), which is expected to cause facilitation. Results: Shorter naming latencies were observed after both associative and categorical primes, as compared to unrelated primes, and even shorter latencies after two primes. Electrophysiological results showed relatively late modulations of waveform amplitudes for both types of primes (beginning ~330 ms post picture onset with a single prime and ~275 ms post picture onset with two primes), corresponding to a shift in latency of similar topographic maps across conditions. Conclusion: The present results are in favor of a post-lexical locus of semantic facilitation for associative and categorical priming in picture naming and confirm that semantic facilitation is as relevant as semantic interference to inform on word production. The post-lexical locus argued here might be related to self-monitoting or/and to modulations at the level of word-form planning, without excluding the participation of strategic processes. PMID:29692716
Visual and semantic processing of living things and artifacts: an FMRI study.
Zannino, Gian Daniele; Buccione, Ivana; Perri, Roberta; Macaluso, Emiliano; Lo Gerfo, Emanuele; Caltagirone, Carlo; Carlesimo, Giovanni A
2010-03-01
We carried out an fMRI study with a twofold purpose: to investigate the relationship between networks dedicated to semantic and visual processing and to address the issue of whether semantic memory is subserved by a unique network or by different subsystems, according to semantic category or feature type. To achieve our goals, we administered a word-picture matching task, with within-category foils, to 15 healthy subjects during scanning. Semantic distance between the target and the foil and semantic domain of the target-foil pairs were varied orthogonally. Our results suggest that an amodal, undifferentiated network for the semantic processing of living things and artifacts is located in the anterolateral aspects of the temporal lobes; in fact, activity in this substrate was driven by semantic distance, not by semantic category. By contrast, activity in ventral occipito-temporal cortex was driven by category, not by semantic distance. We interpret the latter finding as the effect exerted by systematic differences between living things and artifacts at the level of their structural representations and possibly of their lower-level visual features. Finally, we attempt to reconcile contrasting data in the neuropsychological and functional imaging literature on semantic substrate and category specificity.
Context-rich semantic framework for effective data-to-decisions in coalition networks
NASA Astrophysics Data System (ADS)
Grueneberg, Keith; de Mel, Geeth; Braines, Dave; Wang, Xiping; Calo, Seraphin; Pham, Tien
2013-05-01
In a coalition context, data fusion involves combining of soft (e.g., field reports, intelligence reports) and hard (e.g., acoustic, imagery) sensory data such that the resulting output is better than what it would have been if the data are taken individually. However, due to the lack of explicit semantics attached with such data, it is difficult to automatically disseminate and put the right contextual data in the hands of the decision makers. In order to understand the data, explicit meaning needs to be added by means of categorizing and/or classifying the data in relationship to each other from base reference sources. In this paper, we present a semantic framework that provides automated mechanisms to expose real-time raw data effectively by presenting appropriate information needed for a given situation so that an informed decision could be made effectively. The system utilizes controlled natural language capabilities provided by the ITA (International Technology Alliance) Controlled English (CE) toolkit to provide a human-friendly semantic representation of messages so that the messages can be directly processed in human/machine hybrid environments. The Real-time Semantic Enrichment (RTSE) service adds relevant contextual information to raw data streams from domain knowledge bases using declarative rules. The rules define how the added semantics and context information are derived and stored in a semantic knowledge base. The software framework exposes contextual information from a variety of hard and soft data sources in a fast, reliable manner so that an informed decision can be made using semantic queries in intelligent software systems.
Semantic processing of EHR data for clinical research.
Sun, Hong; Depraetere, Kristof; De Roo, Jos; Mels, Giovanni; De Vloed, Boris; Twagirumukiza, Marc; Colaert, Dirk
2015-12-01
There is a growing need to semantically process and integrate clinical data from different sources for clinical research. This paper presents an approach to integrate EHRs from heterogeneous resources and generate integrated data in different data formats or semantics to support various clinical research applications. The proposed approach builds semantic data virtualization layers on top of data sources, which generate data in the requested semantics or formats on demand. This approach avoids upfront dumping to and synchronizing of the data with various representations. Data from different EHR systems are first mapped to RDF data with source semantics, and then converted to representations with harmonized domain semantics where domain ontologies and terminologies are used to improve reusability. It is also possible to further convert data to application semantics and store the converted results in clinical research databases, e.g. i2b2, OMOP, to support different clinical research settings. Semantic conversions between different representations are explicitly expressed using N3 rules and executed by an N3 Reasoner (EYE), which can also generate proofs of the conversion processes. The solution presented in this paper has been applied to real-world applications that process large scale EHR data. Copyright © 2015 Elsevier Inc. All rights reserved.
Out of the Corner of My Eye: Foveal Semantic Load Modulates Parafoveal Processing in Reading.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Payne, Brennan R.; Stites, Mallory C.; Federmeier, Kara D.
In two experiments, we examined the impact of foveal semantic expectancy and congruity on parafoveal word processing during reading. Experiment 1 utilized an eye-tracking gaze contingent display change paradigm, and Experiment 2 measured event-related brain potentials (ERP) in a modified RSVP paradigm to track the time-course of foveal semantic influences on convert attentional allocation to parafoveal word processing. Furthermore, eye-tracking and ERP data converged to reveal graded effects of semantic foveal load on parafoveal processing.
Out of the Corner of My Eye: Foveal Semantic Load Modulates Parafoveal Processing in Reading.
Payne, Brennan R.; Stites, Mallory C.; Federmeier, Kara D.
2016-07-18
In two experiments, we examined the impact of foveal semantic expectancy and congruity on parafoveal word processing during reading. Experiment 1 utilized an eye-tracking gaze contingent display change paradigm, and Experiment 2 measured event-related brain potentials (ERP) in a modified RSVP paradigm to track the time-course of foveal semantic influences on convert attentional allocation to parafoveal word processing. Furthermore, eye-tracking and ERP data converged to reveal graded effects of semantic foveal load on parafoveal processing.
Gorlick, Marissa A.; Mather, Mara
2012-01-01
Past studies have revealed that encountering negative events interferes with cognitive processing of subsequent stimuli. The present study investigated whether negative events affect semantic and perceptual processing differently. Presentation of negative pictures produced slower reaction times than neutral or positive pictures in tasks that require semantic processing, such as natural/man-made judgments about drawings of objects, commonness judgments about objects, and categorical judgments about pairs of words. In contrast, negative picture presentation did not slow down judgments in subsequent perceptual processing (e.g., color judgments about words, and size judgments about objects). The subjective arousal level of negative pictures did not modulate the interference effects on semantic/perceptual processing. These findings indicate that encountering negative emotional events interferes with semantic processing of subsequent stimuli more strongly than perceptual processing, and that not all types of subsequent cognitive processing are impaired by negative events. PMID:22142207
Sakaki, Michiko; Gorlick, Marissa A; Mather, Mara
2011-12-01
Past studies have revealed that encountering negative events interferes with cognitive processing of subsequent stimuli. The present study investigates whether negative events affect semantic and perceptual processing differently. Presentation of negative pictures produced slower reaction times than neutral or positive pictures in tasks that require semantic processing, such as natural or man-made judgments about drawings of objects, commonness judgments about objects, and categorical judgments about pairs of words. In contrast, negative picture presentation did not slow down judgments in subsequent perceptual processing (e.g., color judgments about words, size judgments about objects). The subjective arousal level of negative pictures did not modulate the interference effects on semantic or perceptual processing. These findings indicate that encountering negative emotional events interferes with semantic processing of subsequent stimuli more strongly than perceptual processing, and that not all types of subsequent cognitive processing are impaired by negative events. (c) 2011 APA, all rights reserved.
Semantic Representation of Newly Learned L2 Words and Their Integration in the L2 Lexicon
ERIC Educational Resources Information Center
Bordag, Denisa; Kirschenbaum, Amit; Rogahn, Maria; Opitz, Andreas
2017-01-01
The present semantic priming study explores the integration of newly learnt L2 German words into the L2 semantic network of German advanced learners. It provides additional evidence in support of earlier findings reporting semantic inhibition effects for emergent representations. An inhibitory mechanism is proposed that temporarily decreases the…
ERIC Educational Resources Information Center
Jared, Debra; Jouravlev, Olessia; Joanisse, Marc F.
2017-01-01
Decomposition theories of morphological processing in visual word recognition posit an early morpho-orthographic parser that is blind to semantic information, whereas parallel distributed processing (PDP) theories assume that the transparency of orthographic-semantic relationships influences processing from the beginning. To test these…
Semantic domain-specific functional integration for action-related vs. abstract concepts.
Ghio, Marta; Tettamanti, Marco
2010-03-01
A central topic in cognitive neuroscience concerns the representation of concepts and the specific neural mechanisms that mediate conceptual knowledge. Recently proposed modal theories assert that concepts are grounded on the integration of multimodal, distributed representations. The aim of the present work is to complement the available neuropsychological and neuroimaging evidence suggesting partially segregated anatomo-functional correlates for concrete vs. abstract concepts, by directly testing the semantic domain-specific patterns of functional integration between language and modal semantic brain regions. We report evidence from a functional magnetic resonance imaging study, in which healthy participants listened to sentences with either an action-related (actions involving physical entities) or an abstract (no physical entities involved) content. We measured functional integration using dynamic causal modeling, and found that the left superior temporal gyrus was more strongly connected: (1) for action-related vs. abstract sentences, with the left-hemispheric action representation system, including sensorimotor areas; (2) for abstract vs. action-related sentences, with left infero-ventral frontal, temporal, and retrosplenial cingulate areas. A selective directionality effect was observed, with causal modulatory effects exerted by perisylvian language regions on peripheral modal areas, and not vice versa. The observed condition-specific modulatory effects are consistent with embodied and situated language processing theories, and indicate that linguistic areas promote a semantic content-specific reactivation of modal simulations by top-down mechanisms. Copyright 2008 Elsevier Inc. All rights reserved.
Syntactic processing in the absence of awareness and semantics.
Hung, Shao-Min; Hsieh, Po-Jang
2015-10-01
The classical view that multistep rule-based operations require consciousness has recently been challenged by findings that both multiword semantic processing and multistep arithmetic equations can be processed unconsciously. It remains unclear, however, whether pure rule-based cognitive processes can occur unconsciously in the absence of semantics. Here, after presenting 2 words consciously, we suppressed the third with continuous flash suppression. First, we showed that the third word in the subject-verb-verb format (syntactically incongruent) broke suppression significantly faster than the third word in the subject-verb-object format (syntactically congruent). Crucially, the same effect was observed even with sentences composed of pseudowords (pseudo subject-verb-adjective vs. pseudo subject-verb-object) without any semantic information. This is the first study to show that syntactic congruency can be processed unconsciously in the complete absence of semantics. Our findings illustrate how abstract rule-based processing (e.g., syntactic categories) can occur in the absence of visual awareness, even when deprived of semantics. (c) 2015 APA, all rights reserved).
The role of attention in subliminal semantic processing: A mouse tracking study
Xiao, Kunchen; Yamauchi, Takashi
2017-01-01
Recent evidence suggests that top-down attention facilitates unconscious semantic processing. To clarify the role of attention in unconscious semantic processing, we traced trajectories of the computer mouse in a semantic priming task and scrutinized the extent to which top-down attention enhances unconscious semantic processing in four different stimulus-onset asynchrony (SOA: 50, 200, 500, or 1000ms) conditions. Participants judged whether a target digit (e.g., “6”) was larger or smaller than five, preceded by a masked priming digit (e.g., “9”). The pre-prime duration changed randomly from trial to trial to disrupt participants’ top-down attention in an uncued condition (in a cued condition, a green square cue was presented to facilitate participants’ top-down attention). The results show that top-down attention modifies the time course of subliminal semantic processing, and the temporal attention window lasts more than 1000ms; attention facilitated by the cue may amplify semantic priming to some extent, yet the amplification effect of attention is relatively minor. PMID:28609460
Niikuni, Keiyu; Muramoto, Toshiaki
2014-06-01
This study explored the effects of a comma on the processing of structurally ambiguous Japanese sentences with a semantic bias. A previous study has shown that a comma which is incompatible with an ambiguous sentence's semantic bias affects the processing of the sentence, but the effects of a comma that is compatible with the bias are unclear. In the present study, we examined the role of a comma compatible with the sentence's semantic bias using the self-paced reading method, which enabled us to determine the reading times for the region of the sentence where readers would be expected to solve the ambiguity using semantic information (the "target region"). The results show that a comma significantly increases the reading time of the punctuated word but decreases the reading time in the target region. We concluded that even if the semantic information provided might be sufficient for disambiguation, the insertion of a comma would affect the processing cost of the ambiguity, indicating that readers use both the comma and semantic information in parallel for sentence processing.
How "mere" is the mere ownership effect in memory? Evidence for semantic organization processes.
Englert, Julia; Wentura, Dirk
2016-11-01
Memory is better for items arbitrarily assigned to the self than for items assigned to another person (mere ownership effect, MOE). In a series of six experiments, we investigated the role of semantic processes for the MOE. Following successful replication, we investigated whether the MOE was contingent upon semantic processing: For meaningless stimuli, there was no MOE. Testing for a potential role of semantic elaboration using meaningful stimuli in an encoding task without verbal labels, we found evidence of spontaneous semantic processing irrespective of self- or other-assignment. When semantic organization was manipulated, the MOE vanished if a semantic classification task was added to the self/other assignment but persisted for a perceptual classification task. Furthermore, we found greater clustering of self-assigned than of other-assigned items in free recall. Taken together, these results suggest that the MOE could be based on the organizational principle of a "me" versus "not-me" categorization. Copyright © 2016 Elsevier Inc. All rights reserved.
Lacombe, Jacinthe; Jolicoeur, Pierre; Grimault, Stephan; Pineault, Jessica; Joubert, Sven
2015-10-01
Semantic memory recruits an extensive neural network including the left inferior prefrontal cortex (IPC) and the left temporoparietal region, which are involved in semantic control processes, as well as the anterior temporal lobe region (ATL) which is considered to be involved in processing semantic information at a central level. However, little is known about the underlying neuronal integrity of the semantic network in normal aging. Young and older healthy adults carried out a semantic judgment task while their cortical activity was recorded using magnetoencephalography (MEG). Despite equivalent behavioral performance, young adults activated the left IPC to a greater extent than older adults, while the latter group recruited the temporoparietal region bilaterally and the left ATL to a greater extent than younger adults. Results indicate that significant neuronal changes occur in normal aging, mainly in regions underlying semantic control processes, despite an apparent stability in performance at the behavioral level. Copyright © 2015 Elsevier Inc. All rights reserved.
Visual discrimination predicts naming and semantic association accuracy in Alzheimer disease.
Harnish, Stacy M; Neils-Strunjas, Jean; Eliassen, James; Reilly, Jamie; Meinzer, Marcus; Clark, John Greer; Joseph, Jane
2010-12-01
Language impairment is a common symptom of Alzheimer disease (AD), and is thought to be related to semantic processing. This study examines the contribution of another process, namely visual perception, on measures of confrontation naming and semantic association abilities in persons with probable AD. Twenty individuals with probable mild-moderate Alzheimer disease and 20 age-matched controls completed a battery of neuropsychologic measures assessing visual perception, naming, and semantic association ability. Visual discrimination tasks that varied in the degree to which they likely accessed stored structural representations were used to gauge whether structural processing deficits could account for deficits in naming and in semantic association in AD. Visual discrimination abilities of nameable objects in AD strongly predicted performance on both picture naming and semantic association ability, but lacked the same predictive value for controls. Although impaired, performance on visual discrimination tests of abstract shapes and novel faces showed no significant relationship with picture naming and semantic association. These results provide additional evidence to support that structural processing deficits exist in AD, and may contribute to object recognition and naming deficits. Our findings suggest that there is a common deficit in discrimination of pictures using nameable objects, picture naming, and semantic association of pictures in AD. Disturbances in structural processing of pictured items may be associated with lexical-semantic impairment in AD, owing to degraded internal storage of structural knowledge.
Wlotko, Edward W.; Federmeier, Kara D.
2015-01-01
Predictive processing is a core component of normal language comprehension, but the brain may not engage in prediction to the same extent in all circumstances. This study investigates the effects of timing on anticipatory comprehension mechanisms. Event-related brain potentials (ERPs) were recorded while participants read two-sentence mini-scenarios previously shown to elicit prediction-related effects for implausible items that are categorically related to expected items (‘They wanted to make the hotel look more like a tropical resort. So along the driveway they planted rows of PALMS/PINES/TULIPS.’). The first sentence of every pair was presented in its entirety and was self-paced. The second sentence was presented word-by-word with a fixed stimulus onset asynchrony (SOA) of either 500 ms or 250 ms that was manipulated in a within-subjects blocked design. Amplitudes of the N400 ERP component are taken as a neural index of demands on semantic processing. At 500 ms SOA, implausible words related to predictable words elicited reduced N400 amplitudes compared to unrelated words (PINES vs. TULIPS), replicating past studies. At 250 ms SOA this prediction-related semantic facilitation was diminished. Thus, timing is a factor in determining the extent to which anticipatory mechanisms are engaged. However, we found evidence that prediction can sometimes be engaged even under speeded presentation rates. Participants who first read sentences in the 250 ms SOA block showed no effect of semantic similarity for this SOA, although these same participants showed the effect in the second block with 500 ms SOA. However, participants who first read sentences in the 500 ms SOA block continued to show the N400 semantic similarity effect in the 250 ms SOA block. These findings add to results showing that the brain flexibly allocates resources to most effectively achieve comprehension goals given the current processing environment. PMID:25987437
Remote semantic memory for public figures in HIV infection, alcoholism, and their comorbidity.
Fama, Rosemary; Rosenbloom, Margaret J; Sassoon, Stephanie A; Thompson, Megan A; Pfefferbaum, Adolf; Sullivan, Edith V
2011-02-01
Impairments in component processes of working and episodic memory mark both HIV infection and chronic alcoholism, with compounded deficits often observed in individuals comorbid for these conditions. Remote semantic memory processes, however, have only seldom been studied in these diagnostic groups. Examination of remote semantic memory could provide insight into the underlying processes associated with storage and retrieval of learned information over extended time periods while elucidating spared and impaired cognitive functions in these clinical groups. We examined component processes of remote semantic memory in HIV infection and chronic alcoholism in 4 subject groups (HIV, ALC, HIV + ALC, and age-matched healthy adults) using a modified version of the Presidents Test. Free recall, recognition, and sequencing of presidential candidates and election dates were assessed. In addition, component processes of working, episodic, and semantic memory were assessed with ancillary cognitive tests. The comorbid group (HIV + ALC) was significantly impaired on sequencing of remote semantic information compared with age-matched healthy adults. Free recall of remote semantic information was also modestly impaired in the HIV + ALC group, but normal performance for recognition of this information was observed. Few differences were observed between the single diagnosis groups (HIV, ALC) and healthy adults, although examination of the component processes underlying remote semantic memory scores elicited differences between the HIV and ALC groups. Selective remote memory processes were related to lifetime alcohol consumption in the ALC group and to viral load and depression level in the HIV group. Hepatitis C diagnosis was associated with lower remote semantic memory scores in all 3 clinical groups. Education level did not account for group differences reported. This study provides behavioral support for the existence of adverse effects associated with the comorbidity of HIV infection and chronic alcoholism on selective component processes of memory function, with untoward effects exacerbated by Hepatitis C infection. The pattern of remote semantic memory function in HIV + ALC is consistent with those observed in neurological conditions primarily affecting frontostriatal pathways and suggests that remote memory dysfunction in HIV + ALC may be a result of impaired retrieval processes rather than loss of remote semantic information per se. Copyright © 2010 by the Research Society on Alcoholism.
Localizing semantic interference from distractor sounds in picture naming: A dual-task study.
Mädebach, Andreas; Kieseler, Marie-Luise; Jescheniak, Jörg D
2017-10-13
In this study we explored the locus of semantic interference in a novel picture-sound interference task in which participants name pictures while ignoring environmental distractor sounds. In a previous study using this task (Mädebach, Wöhner, Kieseler, & Jescheniak, in Journal of Experimental Psychology: Human Perception and Performance, 43, 1629-1646, 2017), we showed that semantically related distractor sounds (e.g., BARKING dog ) interfere with a picture-naming response (e.g., "horse") more strongly than unrelated distractor sounds do (e.g., DRUMMING drum ). In the experiment reported here, we employed the psychological refractory period (PRP) approach to explore the locus of this effect. We combined a geometric form classification task (square vs. circle; Task 1) with the picture-sound interference task (Task 2). The stimulus onset asynchrony (SOA) between the tasks was systematically varied (0 vs. 500 ms). There were three central findings. First, the semantic interference effect from distractor sounds was replicated. Second, picture naming (in Task 2) was slower with the short than with the long task SOA. Third, both effects were additive-that is, the semantic interference effects were of similar magnitude at both task SOAs. This suggests that the interference arises during response selection or later stages, not during early perceptual processing. This finding corroborates the theory that semantic interference from distractor sounds reflects a competitive selection mechanism in word production.
The paca that roared: Immediate cumulative semantic interference among newly acquired words.
Oppenheim, Gary M
2018-08-01
With 40,000 words in the average vocabulary, how can speakers find the specific words that they want so quickly and easily? Cumulative semantic interference in language production provides a clue: when naming a large series of pictures, with a few mammals sprinkled about, naming each subsequent mammal becomes slower and more error-prone. Such interference mirrors predictions from an incremental learning algorithm applied to meaning-driven retrieval from an established vocabulary, suggesting retrieval benefits from a constant, implicit, re-optimization process (Oppenheim et al., 2010). But how quickly would a new mammal (e.g. paca) engage in this re-optimization? In this experiment, 18 participants studied 3 novel and 3 familiar exemplars from each of six semantic categories, and immediately performed a timed picture-naming task. Consistent with the learning model's predictions, naming latencies revealed immediate cumulative semantic interference in all directions: from new words to new words, from new words to old words, from old words to new words, and from old words to old words. Repeating the procedure several days later produced similar-magnitude effects, demonstrating that newly acquired words can be immediately semantically integrated, at least to the extent necessary to produce typical cumulative semantic interference. These findings extend the Dark Side model's scope to include novel word production, and are considered in terms of mechanisms for lexical selection. Copyright © 2018 Elsevier B.V. All rights reserved.
Python, Grégoire; Fargier, Raphaël; Laganaro, Marina
2018-02-01
In everyday conversations, we take advantage of lexical-semantic contexts to facilitate speech production, but at the same time, we also have to reduce interference and inhibit semantic competitors. The blocked cyclic naming paradigm (BCNP) has been used to investigate such context effects. Typical results on production latencies showed semantic facilitation (or no effect) during the first presentation cycle, and interference emerging in subsequent cycles. Even if semantic contexts might be just as facilitative as interfering, previous BCNP studies focused on interference, which was interpreted as reflecting lemma selection and self-monitoring processes. Facilitation in the first cycle was rarely considered/analysed, although it potentially informs on word production to the same extent as interference. Here we contrasted the event-related potential (ERP) signatures of both semantic facilitation and interference in a BCNP. ERPs differed between homogeneous and heterogeneous blocks from about 365 msec post picture onset in the first cycle (facilitation) and in an earlier time-window (270 msec post picture onset) in the third cycle (interference). Three different analyses of the ERPs converge towards distinct processes underlying semantic facilitation and interference (post-lexical vs lexical respectively). The loci of semantic facilitation and interference are interpreted in the context of different theoretical frameworks of language production: the post-lexical locus of semantic facilitation involves interactive phonological-semantic processes and/or self-monitoring, whereas the lexical locus of semantic interference is in line with selection through increased lexical competition. Copyright © 2017 Elsevier Ltd. All rights reserved.
Welcome, Suzanne E; Leonard, Christiana M; Chiarello, Christine
2010-05-01
Resilient readers are characterized by impaired phonological processing despite skilled text comprehension. We investigated orthographic and semantic processing in resilient readers to examine mechanisms of compensation for poor phonological decoding. Performance on phonological (phoneme deletion, pseudoword reading), orthographic (orthographic choice, orthographic analogy), and semantic (semantic priming, homograph resolution) tasks was compared between resilient, poor and proficient readers. Asymmetry of the planum temporale was investigated in order to determine whether atypical readers showed unusual morphology in this language-relevant region. Resilient readers showed deficits on phonological tasks similar to those shown by poor readers. We obtained no evidence that resilient readers compensate via superior orthographic processing, as they showed neither exceptional orthographic skill nor increased reliance on orthography to guide pronunciation. Resilient readers benefited more than poor or proficient readers from semantic relationships between words and experienced greater difficulty when such relationships were not present. We suggest, therefore, that resilient readers compensate for poor phonological decoding via greater reliance on word meaning relationships. The reading groups did not differ in mean asymmetry of the planum temporale. However, resilient readers showed greater variability in planar asymmetry than proficient readers. Poor readers also showed a trend towards greater variability in planar asymmetry, with more poor readers than proficient readers showing extreme asymmetry. Such increased variability suggests that university students with less reading skill display less well regulated brain anatomy than proficient readers. Copyright 2010 Elsevier Inc. All rights reserved.
An investigation of time course of category and semantic priming.
Ray, Suchismita
2008-04-01
Low semantically similar exemplars in a category demonstrate the category-priming effect through priming of the category (i.e., exemplar-category-exemplar), whereas high semantically similar exemplars in the same category demonstrate the semantic-priming effect (i.e., direct activation of one high semantically similar exemplar by another). The author asked whether the category- and semantic-priming effects are based on a common memory process. She examined this question by testing the time courses of category- and semantic-priming effects. She tested participants on either category- or semantic-priming paradigm at 2 different time intervals (6 min and 42 min) by using a lexical decision task using exemplars from categories. Results showed that the time course of category priming was different from that of semantic priming. The author concludes that these 2 priming effects are based on 2 separate memory processes.
Sub-Lexical Phonological and Semantic Processing of Semantic Radicals: A Primed Naming Study
ERIC Educational Resources Information Center
Zhou, Lin; Peng, Gang; Zheng, Hong-Ying; Su, I-Fan; Wang, William S.-Y.
2013-01-01
Most sinograms (i.e., Chinese characters) are phonograms (phonetic compounds). A phonogram is composed of a semantic radical and a phonetic radical, with the former usually implying the meaning of the phonogram, and the latter providing cues to its pronunciation. This study focused on the sub-lexical processing of semantic radicals which are…
ERIC Educational Resources Information Center
de Wit, Bianca; Kinoshita, Sachiko
2014-01-01
Semantic priming effects at a short prime-target stimulus onset asynchrony are commonly explained in terms of an automatic spreading activation process. According to this view, the proportion of related trials should have no impact on the size of the semantic priming effect. Using a semantic categorization task ("Is this a living…
Insights from child development on the relationship between episodic and semantic memory.
Robertson, Erin K; Köhler, Stefan
2007-11-05
The present study was motivated by a recent controversy in the neuropsychological literature on semantic dementia as to whether episodic encoding requires semantic processing or whether it can proceed solely based on perceptual processing. We addressed this issue by examining the effect of age-related limitations in semantic competency on episodic memory in 4-6-year-old children (n=67). We administered three different forced-choice recognition memory tests for pictures previously encountered in a single study episode. The tests varied in the degree to which access to semantically encoded information was required at retrieval. Semantic competency predicted recognition performance regardless of whether access to semantic information was required. A direct relation between picture naming at encoding and subsequent recognition was also found for all tests. Our findings emphasize the importance of semantic encoding processes even in retrieval situations that purportedly do not require access to semantic information. They also highlight the importance of testing neuropsychological models of memory in different populations, healthy and brain damaged, at both ends of the developmental continuum.
Functional MRI evidence for the decline of word retrieval and generation during normal aging.
Baciu, M; Boudiaf, N; Cousin, E; Perrone-Bertolotti, M; Pichat, C; Fournet, N; Chainay, H; Lamalle, L; Krainik, A
2016-02-01
This fMRI study aimed to explore the effect of normal aging on word retrieval and generation. The question addressed is whether lexical production decline is determined by a direct mechanism, which concerns the language operations or is rather indirectly induced by a decline of executive functions. Indeed, the main hypothesis was that normal aging does not induce loss of lexical knowledge, but there is only a general slowdown in retrieval mechanisms involved in lexical processing, due to possible decline of the executive functions. We used three tasks (verbal fluency, object naming, and semantic categorization). Two groups of participants were tested (Young, Y and Aged, A), without cognitive and psychiatric impairment and showing similar levels of vocabulary. Neuropsychological testing revealed that older participants had lower executive function scores, longer processing speeds, and tended to have lower verbal fluency scores. Additionally, older participants showed higher scores for verbal automatisms and overlearned information. In terms of behavioral data, older participants performed as accurate as younger adults, but they were significantly slower for the semantic categorization and were less fluent for verbal fluency task. Functional MRI analyses suggested that older adults did not simply activate fewer brain regions involved in word production, but they actually showed an atypical pattern of activation. Significant correlations between the BOLD (Blood Oxygen Level Dependent) signal of aging-related (A > Y) regions and cognitive scores suggested that this atypical pattern of the activation may reveal several compensatory mechanisms (a) to overcome the slowdown in retrieval, due to the decline of executive functions and processing speed and (b) to inhibit verbal automatic processes. The BOLD signal measured in some other aging-dependent regions did not correlate with the behavioral and neuropsychological scores, and the overactivation of these uncorrelated regions would simply reveal dedifferentiation that occurs with aging. Altogether, our results suggest that normal aging is associated with a more difficult access to lexico-semantic operations and representations by a slowdown in executive functions, without any conceptual loss.
Barraza, Paulo; Chavez, Mario; Rodríguez, Eugenio
2016-01-01
Similar to linguistic stimuli, music can also prime the meaning of a subsequent word. However, it is so far unknown what is the brain dynamics underlying the semantic priming effect induced by music, and its relation to language. To elucidate these issues, we compare the brain oscillatory response to visual words that have been semantically primed either by a musical excerpt or by an auditory sentence. We found that semantic violation between music-word pairs triggers a classical ERP N400, and induces a sustained increase of long-distance theta phase synchrony, along with a transient increase of local gamma activity. Similar results were observed after linguistic semantic violation except for gamma activity, which increased after semantic congruence between sentence-word pairs. Our findings indicate that local gamma activity is a neural marker that signals different ways of semantic processing between music and language, revealing the dynamic and self-organized nature of the semantic processing. Copyright © 2015 Elsevier Inc. All rights reserved.
Grasping the invisible: semantic processing of abstract words.
Zdrazilova, Lenka; Pexman, Penny M
2013-12-01
The problem of how abstract word meanings are represented has been a challenging one. In the present study, we extended the semantic richness approach (e.g., Yap, Tan, Pexman, & Hargreaves in Psychonomic Bulletin & Review 18:742-750, 2011) to abstract words, examining the effects of six semantic richness variables on lexical-semantic processing for 207 abstract nouns. The candidate richness dimensions were context availability (CA), sensory experience rating (SER), valence, arousal, semantic neighborhood (SN), and number of associates (NoA). The behavioral tasks were lexical decision (LDT) and semantic categorization (SCT). Our results showed that the semantic richness variables were significantly related to both LDT and SCT latencies, even after lexical and orthographic factors were controlled. The patterns of richness effects varied across tasks, with CA effects in the LDT, and SER and valence effects in the SCT. These results provide new insight into how abstract meanings may be grounded, and are consistent with a dynamic, multidimensional framework for semantic processing.
Guardia, Gabriela D A; Ferreira Pires, Luís; da Silva, Eduardo G; de Farias, Cléver R G
2017-02-01
Gene expression studies often require the combined use of a number of analysis tools. However, manual integration of analysis tools can be cumbersome and error prone. To support a higher level of automation in the integration process, efforts have been made in the biomedical domain towards the development of semantic web services and supporting composition environments. Yet, most environments consider only the execution of simple service behaviours and requires users to focus on technical details of the composition process. We propose a novel approach to the semantic composition of gene expression analysis services that addresses the shortcomings of the existing solutions. Our approach includes an architecture designed to support the service composition process for gene expression analysis, and a flexible strategy for the (semi) automatic composition of semantic web services. Finally, we implement a supporting platform called SemanticSCo to realize the proposed composition approach and demonstrate its functionality by successfully reproducing a microarray study documented in the literature. The SemanticSCo platform provides support for the composition of RESTful web services semantically annotated using SAWSDL. Our platform also supports the definition of constraints/conditions regarding the order in which service operations should be invoked, thus enabling the definition of complex service behaviours. Our proposed solution for semantic web service composition takes into account the requirements of different stakeholders and addresses all phases of the service composition process. It also provides support for the definition of analysis workflows at a high-level of abstraction, thus enabling users to focus on biological research issues rather than on the technical details of the composition process. The SemanticSCo source code is available at https://github.com/usplssb/SemanticSCo. Copyright © 2017 Elsevier Inc. All rights reserved.
When Sufficiently Processed, Semantically Related Distractor Pictures Hamper Picture Naming.
Matushanskaya, Asya; Mädebach, Andreas; Müller, Matthias M; Jescheniak, Jörg D
2016-11-01
Prominent speech production models view lexical access as a competitive process. According to these models, a semantically related distractor picture should interfere with target picture naming more strongly than an unrelated one. However, several studies failed to obtain such an effect. Here, we demonstrate that semantic interference is obtained, when the distractor picture is sufficiently processed. Participants named one of two pictures presented in close temporal succession, with color cueing the target. Experiment 1 induced the prediction that the target appears first. When this prediction was violated (distractor first), semantic interference was observed. Experiment 2 ruled out that the time available for distractor processing was the driving force. These results show that semantically related distractor pictures interfere with the naming response when they are sufficiently processed. The data thus provide further support for models viewing lexical access as a competitive process.
Borovsky, Arielle; Ellis, Erica M; Evans, Julia L; Elman, Jeffrey L
2016-11-01
Although the size of a child's vocabulary associates with language-processing skills, little is understood regarding how this relation emerges. This investigation asks whether and how the structure of vocabulary knowledge affects language processing in English-learning 24-month-old children (N = 32; 18 F, 14 M). Parental vocabulary report was used to calculate semantic density in several early-acquired semantic categories. Performance on two language-processing tasks (lexical recognition and sentence processing) was compared as a function of semantic density. In both tasks, real-time comprehension was facilitated for higher density items, whereas lower density items experienced more interference. The findings indicate that language-processing skills develop heterogeneously and are influenced by the semantic network surrounding a known word. © 2016 The Authors. Child Development © 2016 Society for Research in Child Development, Inc.
Hohlfeld, Annette; Martín-Loeches, Manuel; Sommer, Werner
2015-01-01
The present study contributes to the discussion on the automaticity of semantic processing. Whereas most previous research investigated semantic processing at word level, the present study addressed semantic processing during sentence reading. A dual task paradigm was combined with the recording of event-related brain potentials. Previous research at word level processing reported different patterns of interference with the N400 by additional tasks: attenuation of amplitude or delay of latency. In the present study, we presented Spanish sentences that were semantically correct or contained a semantic violation in a critical word. At different intervals preceding the critical word a tone was presented that required a high-priority choice response. At short intervals/high temporal overlap between the tasks mean amplitude of the N400 was reduced relative to long intervals/low temporal overlap, but there were no shifts of peak latency. We propose that processing at sentence level exerts a protective effect against the additional task. This is in accord with the attentional sensitization model (Kiefer & Martens, 2010), which suggests that semantic processing is an automatic process that can be enhanced by the currently activated task set. The present experimental sentences also induced a P600, which is taken as an index of integrative processing. Additional task effects are comparable to those in the N400 time window and are briefly discussed. PMID:26203312
Topographical gradients of semantics and phonology revealed by temporal lobe stimulation.
Miozzo, Michele; Williams, Alicia C; McKhann, Guy M; Hamberger, Marla J
2017-02-01
Word retrieval is a fundamental component of oral communication, and it is well established that this function is supported by left temporal cortex. Nevertheless, the specific temporal areas mediating word retrieval and the particular linguistic processes these regions support have not been well delineated. Toward this end, we analyzed over 1000 naming errors induced by left temporal cortical stimulation in epilepsy surgery patients. Errors were primarily semantic (lemon → "pear"), phonological (horn → "corn"), non-responses, and delayed responses (correct responses after a delay), and each error type appeared predominantly in a specific region: semantic errors in mid-middle temporal gyrus (TG), phonological errors and delayed responses in middle and posterior superior TG, and non-responses in anterior inferior TG. To the extent that semantic errors, phonological errors and delayed responses reflect disruptions in different processes, our results imply topographical specialization of semantic and phonological processing. Specifically, results revealed an inferior-to-superior gradient, with more superior regions associated with phonological processing. Further, errors were increasingly semantically related to targets toward posterior temporal cortex. We speculate that detailed semantic input is needed to support phonological retrieval, and thus, the specificity of semantic input increases progressively toward posterior temporal regions implicated in phonological processing. Hum Brain Mapp 38:688-703, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Developmental Levels of Processing in Metaphor Interpretation.
ERIC Educational Resources Information Center
Johnson, Janice; Pascual-Leone, Juan
1989-01-01
Outlines a theory of metaphor that posits varying levels of semantic processing and formalizes the levels in terms of kinds of semantic mapping operators. Predicted complexity of semantic mapping operators was tested using metaphor interpretations of 204 children aged 6-12 years and 24 adults. Processing score increased predictably with age. (SAK)
Semantic Processing of Previews within Compound Words
ERIC Educational Resources Information Center
White, Sarah J.; Bertram, Raymond; Hyona, Jukka
2008-01-01
Previous studies have suggested that previews of words prior to fixation can be processed orthographically, but not semantically, during reading of sentences (K. Rayner, D. A. Balota, & A. Pollatsek, 1986). The present study tested whether semantic processing of previews can occur within words. The preview of the second constituent of…
Creative thinking as orchestrated by semantic processing vs. cognitive control brain networks.
Abraham, Anna
2014-01-01
Creativity is primarily investigated within the neuroscientific perspective as a unitary construct. While such an approach is beneficial when trying to infer the general picture regarding creativity and brain function, it is insufficient if the objective is to uncover the information processing brain mechanisms by which creativity occurs. As creative thinking emerges through the dynamic interplay between several cognitive processes, assessing the neural correlates of these operations would enable the development and characterization of an information processing framework from which to better understand this complex ability. This article focuses on two aspects of creative cognition that are central to generating original ideas. "Conceptual expansion" refers to the ability to widen one's conceptual structures to include unusual or novel associations, while "overcoming knowledge constraints" refers to our ability to override the constraining influence imposed by salient or pertinent knowledge when trying to be creative. Neuroimaging and neuropsychological evidence is presented to illustrate how semantic processing and cognitive control networks in the brain differentially modulate these critical facets of creative cognition.
Semantic and self-referential processing of positive and negative trait adjectives in older adults
Glisky, Elizabeth L.; Marquine, Maria J.
2008-01-01
The beneficial effects of self-referential processing on memory have been demonstrated in numerous experiments with younger adults but have rarely been studied in older individuals. In the present study we tested young people, younger-older adults, and older-older adults in a self-reference paradigm, and compared self-referential processing to general semantic processing. Findings indicated that older adults over the age of 75 and those with below average episodic memory function showed a decreased benefit from both semantic and self-referential processing relative to a structural baseline condition. However, these effects appeared to be confined to the shared semantic processes for the two conditions, leaving the added advantage for self-referential processing unaffected These results suggest that reference to the self engages qualitatively different processes compared to general semantic processing. These processes seem relatively impervious to age and to declining memory and executive function, suggesting that they might provide a particularly useful way for older adults to improve their memories. PMID:18608973
Cortical Memory Mechanisms and Language Origins
ERIC Educational Resources Information Center
Aboitiz, Francisco; Garcia, Ricardo R.; Bosman, Conrado; Brunetti, Enzo
2006-01-01
We have previously proposed that cortical auditory-vocal networks of the monkey brain can be partly homologized with language networks that participate in the phonological loop. In this paper, we suggest that other linguistic phenomena like semantic and syntactic processing also rely on the activation of transient memory networks, which can be…
Harvey, Denise Y; Schnur, Tatiana T
2015-06-01
Naming pictures and matching words to pictures belonging to the same semantic category negatively affects language production and comprehension. By most accounts, semantic interference arises when accessing lexical representations in naming (e.g., Damian, Vigliocco, & Levelt, 2001) and semantic representations in comprehension (e.g., Forde & Humphreys, 1997). Further, damage to the left inferior frontal gyrus (LIFG), a region implicated in cognitive control, results in increasing semantic interference when items repeat across cycles in both language production and comprehension (Jefferies, Baker, Doran, & Lambon Ralph, 2007). This generates the prediction that the LIFG via white matter connections supports resolution of semantic interference arising from different loci (lexical vs semantic) in the temporal lobe. However, it remains unclear whether the cognitive and neural mechanisms that resolve semantic interference are the same across tasks. Thus, we examined which gray matter structures [using whole brain and region of interest (ROI) approaches] and white matter connections (using deterministic tractography) when damaged impact semantic interference and its increase across cycles when repeatedly producing and understanding words in 15 speakers with varying lexical-semantic deficits from left hemisphere stroke. We found that damage to distinct brain regions, the posterior versus anterior temporal lobe, was associated with semantic interference (collapsed across cycles) in naming and comprehension, respectively. Further, those with LIFG damage compared to those without exhibited marginally larger increases in semantic interference across cycles in naming but not comprehension. Lastly, the inferior fronto-occipital fasciculus, connecting the LIFG with posterior temporal lobe, related to semantic interference in naming, whereas the inferior longitudinal fasciculus (ILF), connecting posterior with anterior temporal regions related to semantic interference in comprehension. These neuroanatomical-behavioral findings have implications for models of the lexical-semantic language network by demonstrating that semantic interference in language production and comprehension involves different representations which differentially recruit a cognitive control mechanism for interference resolution. Copyright © 2015 Elsevier Ltd. All rights reserved.
Räling, Romy; Schröder, Astrid; Wartenburger, Isabell
2016-06-01
Age of acquisition (AOA) has frequently been shown to influence response times and accuracy rates in word processing and constitutes a meaningful variable in aphasic language processing, while its origin in the language processing system is still under debate. To find out where AOA originates and whether and how it is related to another important psycholinguistic variable, namely semantic typicality (TYP), we studied healthy, elderly controls and semantically impaired individuals using semantic priming. For this purpose, we collected reaction times and accuracy rates as well as event-related potential data in an auditory category-member-verification task. The present results confirm a semantic origin of TYP, but question the same for AOA while favouring its origin at the phonology-semantics interface. The data are further interpreted in consideration of recent theories of ageing. Copyright © 2016 Elsevier Ltd. All rights reserved.
Miller, Laurie A; Hsieh, Sharpley; Lah, Suncica; Savage, Sharon; Hodges, John R; Piguet, Olivier
2012-01-01
Patients with frontotemporal dementia (both behavioural variant [bvFTD] and semantic dementia [SD]) as well as those with Alzheimer's disease (AD) show deficits on tests of face emotion processing, yet the mechanisms underlying these deficits have rarely been explored. We compared groups of patients with bvFTD (n = 17), SD (n = 12) or AD (n = 20) to an age- and education-matched group of healthy control subjects (n = 36) on three face emotion processing tasks (Ekman 60, Emotion Matching and Emotion Selection) and found that all three patient groups were similarly impaired. Analyses of covariance employed to partial out the influences of language and perceptual impairments, which frequently co-occur in these patients, provided evidence of different underlying cognitive mechanisms. These analyses revealed that language impairments explained the original poor scores obtained by the SD patients on the Ekman 60 and Emotion Selection tasks, which involve verbal labels. Perceptual deficits contributed to Emotion Matching performance in the bvFTD and AD patients. Importantly, all groups remained impaired on one task or more following these analyses, denoting a primary emotion processing disturbance in these dementia syndromes. These findings highlight the multifactorial nature of emotion processing deficits in patients with dementia.
Extracting semantics from audio-visual content: the final frontier in multimedia retrieval.
Naphade, M R; Huang, T S
2002-01-01
Multimedia understanding is a fast emerging interdisciplinary research area. There is tremendous potential for effective use of multimedia content through intelligent analysis. Diverse application areas are increasingly relying on multimedia understanding systems. Advances in multimedia understanding are related directly to advances in signal processing, computer vision, pattern recognition, multimedia databases, and smart sensors. We review the state-of-the-art techniques in multimedia retrieval. In particular, we discuss how multimedia retrieval can be viewed as a pattern recognition problem. We discuss how reliance on powerful pattern recognition and machine learning techniques is increasing in the field of multimedia retrieval. We review the state-of-the-art multimedia understanding systems with particular emphasis on a system for semantic video indexing centered around multijects and multinets. We discuss how semantic retrieval is centered around concepts and context and the various mechanisms for modeling concepts and context.
A possible contributory mechanism for impaired idiom perception in schizophrenia.
Sela, Tal; Lavidor, Michal; Mitchell, Rachel L C
2015-09-30
In this review, we focus on the ability of people with schizophrenia to correctly perceive the meaning of idioms; figurative language expressions in which intended meaning is not derived from the meaning of constituent words. We collate evidence on how idiom perception is impaired, ascertain the clinical relevance of this impairment, and consider possible psychological and neural mechanisms behind the impairment. In reviewing extant literature, we searched the PubMed database, from 1975-2014, focussing on articles that directly concerned schizophrenia and idioms, with follow up searches to explore the viability of possible underlying mechanisms. We learn that there is clear evidence of impairment, with a tendency to err towards literal interpretations unless the figurative meaning is salient, and despite contextual cues to figurative interpretations. Given the importance of idioms in everyday language, the potential impact is significant. Clinically, impaired idiom perception primarily relates to positive symptoms of schizophrenia, but also to negative symptoms. The origins of the impairment remain speculation, with impaired executive function, impaired semantic functions, and impaired context processing all proposed to explain the phenomenon. We conclude that a possible contributory mechanism at the neural level is an impaired dorsolateral prefrontal cortex system for cognitive control over semantic processing. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
ERIC Educational Resources Information Center
Faust, Miriam; Ben-Artzi, Elisheva; Vardi, Nili
2012-01-01
Previous studies suggest that whereas the left hemisphere (LH) is involved in fine semantic processing, the right hemisphere (RH) is uniquely engaged in coarse semantic coding including the comprehension of distinct types of language such as figurative language, lexical ambiguity and verbal humor (e.g., and ). The present study examined the…
Mirman, Daniel; Magnuson, James S.
2008-01-01
The authors investigated semantic neighborhood density effects on visual word processing to examine the dynamics of activation and competition among semantic representations. Experiment 1 validated feature-based semantic representations as a basis for computing semantic neighborhood density and suggested that near and distant neighbors have opposite effects on word processing. Experiment 2 confirmed these results: Word processing was slower for dense near neighborhoods and faster for dense distant neighborhoods. Analysis of a computational model showed that attractor dynamics can produce this pattern of neighborhood effects. The authors argue for reconsideration of traditional models of neighborhood effects in terms of attractor dynamics, which allow both inhibitory and facilitative effects to emerge. PMID:18194055
Premorbid expertise produces category-specific impairment in a domain-general semantic disorder.
Jefferies, Elizabeth; Rogers, Timothy T; Ralph, Matthew A Lambon
2011-10-01
For decades, category-specific semantic impairment - i.e., better comprehension of items from one semantic category than another - has been the driving force behind many claims about the organisation of conceptual knowledge in the brain. Double dissociations between patients with category-specific disorders are widely interpreted as showing that different conceptual domains are necessarily supported by functionally independent systems. We show that, to the contrary, even strong or classical dissociations can also arise from individual differences in premorbid expertise. We examined two patients with global and progressive semantic degradation who, unusually, had known areas of premorbid expertise. Patient 1, a former automotive worker, showed selective preservation of car knowledge, whereas Patient 2, a former botanist, showed selective preservation of information about plants. In non-expert domains, these patients showed the typical pattern: i.e., an inability to differentiate between highly similar concepts (e.g., rose and daisy), but retention of broader distinctions (e.g., between rose and cat). Parallel distributed processing (PDP) models of semantic cognition show that expertise in a particular domain increases the differentiation of specific-level concepts, such that the semantic distance between these items resembles non-expert basic-level distinctions. We propose that these structural changes interact with global semantic degradation, particularly when expert knowledge is acquired early and when exposure to expert concepts continues during disease progression. Therefore, category-specific semantic impairment can arise from at least two distinct mechanisms: damage to representations that are critical for a particular category (e.g., knowledge of hand shape and action for the category 'tools') and differences in premorbid experience. Copyright © 2011 Elsevier Ltd. All rights reserved.
Herbet, Guillaume; Moritz-Gasser, Sylvie; Duffau, Hugues
2017-05-01
The neural foundations underlying semantic processing have been extensively investigated, highlighting a pivotal role of the ventral stream. However, although studies concerning the involvement of the left ventral route in verbal semantics are proficient, the potential implication of the right ventral pathway in non-verbal semantics has been to date unexplored. To gain insights on this matter, we used an intraoperative direct electrostimulation to map the structures mediating the non-verbal semantic system in the right hemisphere. Thirteen patients presenting with a right low-grade glioma located within or close to the ventral stream were included. During the 'awake' procedure, patients performed both a visual non-verbal semantic task and a verbal (control) task. At the cortical level, in the right hemisphere, we found non-verbal semantic-related sites (n = 7 in 6 patients) in structures commonly associated with verbal semantic processes in the left hemisphere, including the superior temporal gyrus, the pars triangularis, and the dorsolateral prefrontal cortex. At the subcortical level, we found non-verbal semantic-related sites in all but one patient (n = 15 sites in 12 patients). Importantly, all these responsive stimulation points were located on the spatial course of the right inferior fronto-occipital fasciculus (IFOF). These findings provide direct support for a critical role of the right IFOF in non-verbal semantic processing. Based upon these original data, and in connection with previous findings showing the involvement of the left IFOF in non-verbal semantic processing, we hypothesize the existence of a bilateral network underpinning the non-verbal semantic system, with a homotopic connectional architecture.
SATware: A Semantic Approach for Building Sentient Spaces
NASA Astrophysics Data System (ADS)
Massaguer, Daniel; Mehrotra, Sharad; Vaisenberg, Ronen; Venkatasubramanian, Nalini
This chapter describes the architecture of a semantic-based middleware environment for building sensor-driven sentient spaces. The proposed middleware explicitly models sentient space semantics (i.e., entities, spaces, activities) and supports mechanisms to map sensor observations to the state of the sentient space. We argue how such a semantic approach provides a powerful programming environment for building sensor spaces. In addition, the approach provides natural ways to exploit semantics for variety of purposes including scheduling under resource constraints and sensor recalibration.
A meta-analysis of fMRI studies on Chinese orthographic, phonological, and semantic processing.
Wu, Chiao-Yi; Ho, Moon-Ho Ringo; Chen, Shen-Hsing Annabel
2012-10-15
A growing body of neuroimaging evidence has shown that Chinese character processing recruits differential activation from alphabetic languages due to its unique linguistic features. As more investigations on Chinese character processing have recently become available, we applied a meta-analytic approach to summarize previous findings and examined the neural networks for orthographic, phonological, and semantic processing of Chinese characters independently. The activation likelihood estimation (ALE) method was used to analyze eight studies in the orthographic task category, eleven in the phonological and fifteen in the semantic task categories. Converging activation among three language-processing components was found in the left middle frontal gyrus, the left superior parietal lobule and the left mid-fusiform gyrus, suggesting a common sub-network underlying the character recognition process regardless of the task nature. With increasing task demands, the left inferior parietal lobule and the right superior temporal gyrus were specialized for phonological processing, while the left middle temporal gyrus was involved in semantic processing. Functional dissociation was identified in the left inferior frontal gyrus, with the posterior dorsal part for phonological processing and the anterior ventral part for semantic processing. Moreover, bilateral involvement of the ventral occipito-temporal regions was found for both phonological and semantic processing. The results provide better understanding of the neural networks underlying Chinese orthographic, phonological, and semantic processing, and consolidate the findings of additional recruitment of the left middle frontal gyrus and the right fusiform gyrus for Chinese character processing as compared with the universal language network that has been based on alphabetic languages. Copyright © 2012 Elsevier Inc. All rights reserved.
Dao, Tien Tuan; Hoang, Tuan Nha; Ta, Xuan Hien; Tho, Marie Christine Ho Ba
2013-02-01
Human musculoskeletal system resources of the human body are valuable for the learning and medical purposes. Internet-based information from conventional search engines such as Google or Yahoo cannot response to the need of useful, accurate, reliable and good-quality human musculoskeletal resources related to medical processes, pathological knowledge and practical expertise. In this present work, an advanced knowledge-based personalized search engine was developed. Our search engine was based on a client-server multi-layer multi-agent architecture and the principle of semantic web services to acquire dynamically accurate and reliable HMSR information by a semantic processing and visualization approach. A security-enhanced mechanism was applied to protect the medical information. A multi-agent crawler was implemented to develop a content-based database of HMSR information. A new semantic-based PageRank score with related mathematical formulas were also defined and implemented. As the results, semantic web service descriptions were presented in OWL, WSDL and OWL-S formats. Operational scenarios with related web-based interfaces for personal computers and mobile devices were presented and analyzed. Functional comparison between our knowledge-based search engine, a conventional search engine and a semantic search engine showed the originality and the robustness of our knowledge-based personalized search engine. In fact, our knowledge-based personalized search engine allows different users such as orthopedic patient and experts or healthcare system managers or medical students to access remotely into useful, accurate, reliable and good-quality HMSR information for their learning and medical purposes. Copyright © 2012 Elsevier Inc. All rights reserved.
Alpha Oscillations during Incidental Encoding Predict Subsequent Memory for New "Foil" Information.
Vogelsang, David A; Gruber, Matthias; Bergström, Zara M; Ranganath, Charan; Simons, Jon S
2018-05-01
People can employ adaptive strategies to increase the likelihood that previously encoded information will be successfully retrieved. One such strategy is to constrain retrieval toward relevant information by reimplementing the neurocognitive processes that were engaged during encoding. Using EEG, we examined the temporal dynamics with which constraining retrieval toward semantic versus nonsemantic information affects the processing of new "foil" information encountered during a memory test. Time-frequency analysis of EEG data acquired during an initial study phase revealed that semantic compared with nonsemantic processing was associated with alpha decreases in a left frontal electrode cluster from around 600 msec after stimulus onset. Successful encoding of semantic versus nonsemantic foils during a subsequent memory test was related to decreases in alpha oscillatory activity in the same left frontal electrode cluster, which emerged relatively late in the trial at around 1000-1600 msec after stimulus onset. Across participants, left frontal alpha power elicited by semantic processing during the study phase correlated significantly with left frontal alpha power associated with semantic foil encoding during the memory test. Furthermore, larger left frontal alpha power decreases elicited by semantic foil encoding during the memory test predicted better subsequent semantic foil recognition in an additional surprise foil memory test, although this effect did not reach significance. These findings indicate that constraining retrieval toward semantic information involves reimplementing semantic encoding operations that are mediated by alpha oscillations and that such reimplementation occurs at a late stage of memory retrieval, perhaps reflecting additional monitoring processes.
Semantic Processing of Living and Nonliving Concepts across the Cerebral Hemispheres
ERIC Educational Resources Information Center
Pilgrim, L.K.; Moss, H.E.; Tyler, L.K.
2005-01-01
Studies of patients with category-specific semantic deficits suggest that the right and left cerebral hemispheres may be differently involved in the processing of living and nonliving domains concepts. In this study, we investigate whether there are hemisphere differences in the semantic processing of these domains in healthy volunteers. Based on…
Semantic Processing in Children and Adults: Incongruity and the N400
ERIC Educational Resources Information Center
Benau, Erik M.; Morris, Joanna; Couperus, J. W.
2011-01-01
Semantic processing in 10-year-old children and adults was examined using event related potentials (ERPs). The N400 component, an index of semantic processing, was studied in relation to sentences that ended with congruent, moderately incongruent, or strongly incongruent words. N400 amplitude in adults corresponded to levels of semantic…
"Truth be told" - Semantic memory as the scaffold for veridical communication.
Hayes, Brett K; Ramanan, Siddharth; Irish, Muireann
2018-01-01
Theoretical accounts placing episodic memory as central to constructive and communicative functions neglect the role of semantic memory. We argue that the decontextualized nature of semantic schemas largely supersedes the computational bottleneck and error-prone nature of episodic memory. Rather, neuroimaging and neuropsychological evidence of episodic-semantic interactions suggest that an integrative framework more accurately captures the mechanisms underpinning social communication.
Jared, Debra; Jouravlev, Olessia; Joanisse, Marc F
2017-03-01
Decomposition theories of morphological processing in visual word recognition posit an early morpho-orthographic parser that is blind to semantic information, whereas parallel distributed processing (PDP) theories assume that the transparency of orthographic-semantic relationships influences processing from the beginning. To test these alternatives, the performance of participants on transparent (foolish), quasi-transparent (bookish), opaque (vanish), and orthographic control words (bucket) was examined in a series of 5 experiments. In Experiments 1-3 variants of a masked priming lexical-decision task were used; Experiment 4 used a masked priming semantic decision task, and Experiment 5 used a single-word (nonpriming) semantic decision task with a color-boundary manipulation. In addition to the behavioral data, event-related potential (ERP) data were collected in Experiments 1, 2, 4, and 5. Across all experiments, we observed a graded effect of semantic transparency in behavioral and ERP data, with the largest effect for semantically transparent words, the next largest for quasi-transparent words, and the smallest for opaque words. The results are discussed in terms of decomposition versus PDP approaches to morphological processing. (PsycINFO Database Record (c) 2017 APA, all rights reserved).
Raucher-Chéné, Delphine; Terrien, Sarah; Gobin, Pamela; Gierski, Fabien; Kaladjian, Arthur; Besche-Richard, Chrystel
2017-09-01
High levels of hypomanic personality traits have been associated with an increased risk of developing bipolar disorder (BD). Changes in semantic content, impaired verbal associations, abnormal prosody, and abnormal speed of language are core features of BD, and are thought to be related to semantic processing abnormalities. In the present study, we used event-related potentials to investigate the relation between semantic processing (N400 component) and hypomanic personality traits. We assessed 65 healthy young adults on the Hypomanic Personality Scale (HPS). Event-related potentials were recorded during a semantic ambiguity resolution task exploring semantic ambiguity (polysemous word ending a sentence) and congruency (target word semantically related to the sentence). As expected, semantic ambiguity and congruency both elicited an N400 effect across our sample. Correlation analyses showed a significant positive relationship between the Social Vitality subscore of the HPS and N400 modulation in the frontal region of interest in the incongruent unambiguous condition, and in the frontocentral region of interest in the incongruent ambiguous condition. We found differences in semantic processing (i.e., detection of incongruence and semantic inhibition) in individuals with higher Social Vitality subscores. In the light of the literature, we discuss the notion that a semantic processing impairment could be a potential marker of vulnerability to BD, and one that needs to be explored further in this clinical population. © 2017 The Authors. Psychiatry and Clinical Neurosciences © 2017 Japanese Society of Psychiatry and Neurology.
Fronto-temporal interactions are functionally relevant for semantic control in language processing.
Wawrzyniak, Max; Hoffstaedter, Felix; Klingbeil, Julian; Stockert, Anika; Wrede, Katrin; Hartwigsen, Gesa; Eickhoff, Simon B; Classen, Joseph; Saur, Dorothee
2017-01-01
Semantic cognition, i.e. processing of meaning is based on semantic representations and their controlled retrieval. Semantic control has been shown to be implemented in a network that consists of left inferior frontal (IFG), and anterior and posterior middle temporal gyri (a/pMTG). We aimed to disrupt semantic control processes with continuous theta burst stimulation (cTBS) over left IFG and pMTG and to study whether behavioral effects are moderated by induced alterations in resting-state functional connectivity. To this end, we applied real cTBS over left IFG and left pMTG as well as sham stimulation on 20 healthy participants in a within-subject design. Stimulation was followed by resting-state functional magnetic resonance imaging and a semantic priming paradigm. Resting-state functional connectivity of regions of interest in left IFG, pMTG and aMTG revealed highly interconnected left-lateralized fronto-temporal networks representing the semantic system. We did not find any significant direct modulation of either task performance or resting-state functional connectivity by effective cTBS. However, after sham cTBS, functional connectivity between IFG and pMTG correlated with task performance under high semantic control demands in the semantic priming paradigm. These findings provide evidence for the functional relevance of interactions between IFG and pMTG for semantic control processes. This interaction was functionally less relevant after cTBS over aIFG which might be interpretable in terms of an indirect disruptive effect of cTBS.
Lambon Ralph, Matthew A; Ehsan, Sheeba; Baker, Gus A; Rogers, Timothy T
2012-01-01
Contemporary clinical and basic neuroscience studies have increasingly implicated the anterior temporal lobe regions, bilaterally, in the formation of coherent concepts. Mounting convergent evidence for the importance of the anterior temporal lobe in semantic memory is found in patients with bilateral anterior temporal lobe damage (e.g. semantic dementia), functional neuroimaging and repetitive transcranial magnetic stimulation studies. If this proposal is correct, then one might expect patients with anterior temporal lobe resection for long-standing temporal lobe epilepsy to be semantically impaired. Such patients, however, do not present clinically with striking comprehension deficits but with amnesia and variable anomia, leading some to conclude that semantic memory is intact in resection for temporal lobe epilepsy and thus casting doubt over the conclusions drawn from semantic dementia and linked basic neuroscience studies. Whilst there is a considerable neuropsychological literature on temporal lobe epilepsy, few studies have probed semantic memory directly, with mixed results, and none have undertaken the same type of systematic investigation of semantic processing that has been conducted with other patient groups. In this study, therefore, we investigated the semantic performance of 20 patients with resection for chronic temporal lobe epilepsy with a full battery of semantic assessments, including more sensitive measures of semantic processing. The results provide a bridge between the current clinical observations about resection for temporal lobe epilepsy and the expectations from semantic dementia and other neuroscience findings. Specifically, we found that on simple semantic tasks, the patients' accuracy fell in the normal range, with the exception that some patients with left resection for temporal lobe epilepsy had measurable anomia. Once the semantic assessments were made more challenging, by probing specific-level concepts, lower frequency/more abstract items or measuring reaction times on semantic tasks versus those on difficulty-matched non-semantic assessments, evidence of a semantic impairment was found in all individuals. We conclude by describing a unified, computationally inspired framework for capturing the variable degrees of semantic impairment found across different patient groups (semantic dementia, temporal lobe epilepsy, glioma and stroke) as well as semantic processing in neurologically intact participants.
Ehsan, Sheeba; Baker, Gus A.; Rogers, Timothy T.
2012-01-01
Contemporary clinical and basic neuroscience studies have increasingly implicated the anterior temporal lobe regions, bilaterally, in the formation of coherent concepts. Mounting convergent evidence for the importance of the anterior temporal lobe in semantic memory is found in patients with bilateral anterior temporal lobe damage (e.g. semantic dementia), functional neuroimaging and repetitive transcranial magnetic stimulation studies. If this proposal is correct, then one might expect patients with anterior temporal lobe resection for long-standing temporal lobe epilepsy to be semantically impaired. Such patients, however, do not present clinically with striking comprehension deficits but with amnesia and variable anomia, leading some to conclude that semantic memory is intact in resection for temporal lobe epilepsy and thus casting doubt over the conclusions drawn from semantic dementia and linked basic neuroscience studies. Whilst there is a considerable neuropsychological literature on temporal lobe epilepsy, few studies have probed semantic memory directly, with mixed results, and none have undertaken the same type of systematic investigation of semantic processing that has been conducted with other patient groups. In this study, therefore, we investigated the semantic performance of 20 patients with resection for chronic temporal lobe epilepsy with a full battery of semantic assessments, including more sensitive measures of semantic processing. The results provide a bridge between the current clinical observations about resection for temporal lobe epilepsy and the expectations from semantic dementia and other neuroscience findings. Specifically, we found that on simple semantic tasks, the patients’ accuracy fell in the normal range, with the exception that some patients with left resection for temporal lobe epilepsy had measurable anomia. Once the semantic assessments were made more challenging, by probing specific-level concepts, lower frequency/more abstract items or measuring reaction times on semantic tasks versus those on difficulty-matched non-semantic assessments, evidence of a semantic impairment was found in all individuals. We conclude by describing a unified, computationally inspired framework for capturing the variable degrees of semantic impairment found across different patient groups (semantic dementia, temporal lobe epilepsy, glioma and stroke) as well as semantic processing in neurologically intact participants. PMID:22287382
Thompson, Hannah E; Jefferies, Elizabeth
2013-08-01
Research suggests that semantic memory deficits can occur in at least three ways. Patients can (1) show amodal degradation of concepts within the semantic store itself, such as in semantic dementia (SD), (2) have difficulty in controlling activation within the semantic system and accessing appropriate knowledge in line with current goals or context, as in semantic aphasia (SA) and (3) experience a semantic deficit in only one modality following degraded input from sensory cortex. Patients with SA show deficits of semantic control and access across word and picture tasks, consistent with the view that their problems arise from impaired modality-general control processes. However, there are a few reports in the literature of patients with semantic access problems restricted to auditory-verbal materials, who show decreasing ability to retrieve concepts from words when they are presented repeatedly with closely related distractors. These patients challenge the notion that semantic control processes are modality-general and suggest instead a separation of 'access' to auditory-verbal and non-verbal semantic systems. We had the rare opportunity to study such a case in detail. Our aims were to examine the effect of manipulations of control demands in auditory-verbal semantic, non-verbal semantic and non-semantic tasks, allowing us to assess whether such cases always show semantic control/access impairments that follow a modality-specific pattern, or whether there are alternative explanations. Our findings revealed: (1) deficits on executive tasks, unrelated to semantic demands, which were more evident in the auditory modality than the visual modality; (2) deficits in executively-demanding semantic tasks which were accentuated in the auditory-verbal domain compared with the visual modality, but still present on non-verbal tasks, and (3) a coupling between comprehension and executive control requirements, in that mild impairment on single word comprehension was greatly increased on more demanding, associative judgements across modalities. This pattern of results suggests that mild executive-semantic impairment, paired with disrupted connectivity from auditory input, may give rise to semantic 'access' deficits affecting only the auditory modality. Copyright © 2013 Elsevier Ltd. All rights reserved.
Neural correlates of concreteness in semantic categorization.
Pexman, Penny M; Hargreaves, Ian S; Edwards, Jodi D; Henry, Luke C; Goodyear, Bradley G
2007-08-01
In some contexts, concrete words (CARROT) are recognized and remembered more readily than abstract words (TRUTH). This concreteness effect has historically been explained by two theories of semantic representation: dual-coding [Paivio, A. Dual coding theory: Retrospect and current status. Canadian Journal of Psychology, 45, 255-287, 1991] and context-availability [Schwanenflugel, P. J. Why are abstract concepts hard to understand? In P. J. Schwanenflugel (Ed.), The psychology of word meanings (pp. 223-250). Hillsdale, NJ: Erlbaum, 1991]. Past efforts to adjudicate between these theories using functional magnetic resonance imaging have produced mixed results. Using event-related functional magnetic resonance imaging, we reexamined this issue with a semantic categorization task that allowed for uniform semantic judgments of concrete and abstract words. The participants were 20 healthy adults. Functional analyses contrasted activation associated with concrete and abstract meanings of ambiguous and unambiguous words. Results showed that for both ambiguous and unambiguous words, abstract meanings were associated with more widespread cortical activation than concrete meanings in numerous regions associated with semantic processing, including temporal, parietal, and frontal cortices. These results are inconsistent with both dual-coding and context-availability theories, as these theories propose that the representations of abstract concepts are relatively impoverished. Our results suggest, instead, that semantic retrieval of abstract concepts involves a network of association areas. We argue that this finding is compatible with a theory of semantic representation such as Barsalou's [Barsalou, L. W. Perceptual symbol systems. Behavioral & Brain Sciences, 22, 577-660, 1999] perceptual symbol systems, whereby concrete and abstract concepts are represented by similar mechanisms but with differences in focal content.
Drijvers, Linda; Özyürek, Asli; Jensen, Ole
2018-06-19
Previous work revealed that visual semantic information conveyed by gestures can enhance degraded speech comprehension, but the mechanisms underlying these integration processes under adverse listening conditions remain poorly understood. We used MEG to investigate how oscillatory dynamics support speech-gesture integration when integration load is manipulated by auditory (e.g., speech degradation) and visual semantic (e.g., gesture congruency) factors. Participants were presented with videos of an actress uttering an action verb in clear or degraded speech, accompanied by a matching (mixing gesture + "mixing") or mismatching (drinking gesture + "walking") gesture. In clear speech, alpha/beta power was more suppressed in the left inferior frontal gyrus and motor and visual cortices when integration load increased in response to mismatching versus matching gestures. In degraded speech, beta power was less suppressed over posterior STS and medial temporal lobe for mismatching compared with matching gestures, showing that integration load was lowest when speech was degraded and mismatching gestures could not be integrated and disambiguate the degraded signal. Our results thus provide novel insights on how low-frequency oscillatory modulations in different parts of the cortex support the semantic audiovisual integration of gestures in clear and degraded speech: When speech is clear, the left inferior frontal gyrus and motor and visual cortices engage because higher-level semantic information increases semantic integration load. When speech is degraded, posterior STS/middle temporal gyrus and medial temporal lobe are less engaged because integration load is lowest when visual semantic information does not aid lexical retrieval and speech and gestures cannot be integrated.
Somatotopic Semantic Priming and Prediction in the Motor System
Grisoni, Luigi; Dreyer, Felix R.; Pulvermüller, Friedemann
2016-01-01
The recognition of action-related sounds and words activates motor regions, reflecting the semantic grounding of these symbols in action information; in addition, motor cortex exerts causal influences on sound perception and language comprehension. However, proponents of classic symbolic theories still dispute the role of modality-preferential systems such as the motor cortex in the semantic processing of meaningful stimuli. To clarify whether the motor system carries semantic processes, we investigated neurophysiological indexes of semantic relationships between action-related sounds and words. Event-related potentials revealed that action-related words produced significantly larger stimulus-evoked (Mismatch Negativity-like) and predictive brain responses (Readiness Potentials) when presented in body-part-incongruent sound contexts (e.g., “kiss” in footstep sound context; “kick” in whistle context) than in body-part-congruent contexts, a pattern reminiscent of neurophysiological correlates of semantic priming. Cortical generators of the semantic relatedness effect were localized in areas traditionally associated with semantic memory, including left inferior frontal cortex and temporal pole, and, crucially, in motor areas, where body-part congruency of action sound–word relationships was indexed by a somatotopic pattern of activation. As our results show neurophysiological manifestations of action-semantic priming in the motor cortex, they prove semantic processing in the motor system and thus in a modality-preferential system of the human brain. PMID:26908635
Integrating a Hypernymic Proposition Interpreter into a Semantic Processor for Biomedical Texts
Fiszman, Marcelo; Rindflesch, Thomas C.; Kilicoglu, Halil
2003-01-01
Semantic processing provides the potential for producing high quality results in natural language processing (NLP) applications in the biomedical domain. In this paper, we address a specific semantic phenomenon, the hypernymic proposition, and concentrate on integrating the interpretation of such predications into a more general semantic processor in order to improve overall accuracy. A preliminary evaluation assesses the contribution of hypernymic propositions in providing more specific semantic predications and thus improving effectiveness in retrieving treatment propositions in MEDLINE abstracts. Finally, we discuss the generalization of this methodology to additional semantic propositions as well as other types of biomedical texts. PMID:14728170
Modality-specific selective attention attenuates multisensory integration.
Mozolic, Jennifer L; Hugenschmidt, Christina E; Peiffer, Ann M; Laurienti, Paul J
2008-01-01
Stimuli occurring in multiple sensory modalities that are temporally synchronous or spatially coincident can be integrated together to enhance perception. Additionally, the semantic content or meaning of a stimulus can influence cross-modal interactions, improving task performance when these stimuli convey semantically congruent or matching information, but impairing performance when they contain non-matching or distracting information. Attention is one mechanism that is known to alter processing of sensory stimuli by enhancing perception of task-relevant information and suppressing perception of task-irrelevant stimuli. It is not known, however, to what extent attention to a single sensory modality can minimize the impact of stimuli in the unattended sensory modality and reduce the integration of stimuli across multiple sensory modalities. Our hypothesis was that modality-specific selective attention would limit processing of stimuli in the unattended sensory modality, resulting in a reduction of performance enhancements produced by semantically matching multisensory stimuli, and a reduction in performance decrements produced by semantically non-matching multisensory stimuli. The results from two experiments utilizing a cued discrimination task demonstrate that selective attention to a single sensory modality prevents the integration of matching multisensory stimuli that is normally observed when attention is divided between sensory modalities. Attention did not reliably alter the amount of distraction caused by non-matching multisensory stimuli on this task; however, these findings highlight a critical role for modality-specific selective attention in modulating multisensory integration.
Multi-talker background and semantic priming effect
Dekerle, Marie; Boulenger, Véronique; Hoen, Michel; Meunier, Fanny
2014-01-01
The reported studies have aimed to investigate whether informational masking in a multi-talker background relies on semantic interference between the background and target using an adapted semantic priming paradigm. In 3 experiments, participants were required to perform a lexical decision task on a target item embedded in backgrounds composed of 1–4 voices. These voices were Semantically Consistent (SC) voices (i.e., pronouncing words sharing semantic features with the target) or Semantically Inconsistent (SI) voices (i.e., pronouncing words semantically unrelated to each other and to the target). In the first experiment, backgrounds consisted of 1 or 2 SC voices. One and 2 SI voices were added in Experiments 2 and 3, respectively. The results showed a semantic priming effect only in the conditions where the number of SC voices was greater than the number of SI voices, suggesting that semantic priming depended on prime intelligibility and strategic processes. However, even if backgrounds were composed of 3 or 4 voices, reducing intelligibility, participants were able to recognize words from these backgrounds, although no semantic priming effect on the targets was observed. Overall this finding suggests that informational masking can occur at a semantic level if intelligibility is sufficient. Based on the Effortfulness Hypothesis, we also suggest that when there is an increased difficulty in extracting target signals (caused by a relatively high number of voices in the background), more cognitive resources were allocated to formal processes (i.e., acoustic and phonological), leading to a decrease in available resources for deeper semantic processing of background words, therefore preventing semantic priming from occurring. PMID:25400572
Jou, Jerwen; Arredondo, Mario L; Li, Cheng; Escamilla, Eric E; Zuniga, Richard
2017-10-01
In this study, the number of semantic associates in Deese-Roediger-McDermott (DRM) lists was varied from 4 to 14 in a modified Sternberg paradigm. The false alarm (FA) and correct rejection (CR) reaction time (RT)/memory-set size (MSS) functions of critical lures showed a cross-over interaction at approximately MSS 7, suggesting a reversal of the relative dominance between these two responses to the critical lure at this point and also indicating the location of the boundary between the sub- and supraspan MSS. For the subspan lists, FA to critical lures was slower than CR, suggesting a slow, strategic mechanism driving the false memory. Conversely, for the supraspan lists, critical lure FA was faster than its CR, suggesting a spontaneous mechanism driving the false memory. Results of two experiments showed that an automatic, fast, and a slow, controlled process could be error-prone or error-corrective, depending on the length of the DRM memory list. Thus there is a dual retrieval process in false memory as in true memory. The findings can be explained by both the activation/monitoring and the fuzzy-trace theories.
Emmorey, Karen; Petrich, Jennifer; Gollan, Tamar H.
2012-01-01
Bilinguals who are fluent in American Sign Language (ASL) and English often produce code-blends - simultaneously articulating a sign and a word while conversing with other ASL-English bilinguals. To investigate the cognitive mechanisms underlying code-blend processing, we compared picture-naming times (Experiment 1) and semantic categorization times (Experiment 2) for code-blends versus ASL signs and English words produced alone. In production, code-blending did not slow lexical retrieval for ASL and actually facilitated access to low-frequency signs. However, code-blending delayed speech production because bimodal bilinguals synchronized English and ASL lexical onsets. In comprehension, code-blending speeded access to both languages. Bimodal bilinguals’ ability to produce code-blends without any cost to ASL implies that the language system either has (or can develop) a mechanism for switching off competition to allow simultaneous production of close competitors. Code-blend facilitation effects during comprehension likely reflect cross-linguistic (and cross-modal) integration at the phonological and/or semantic levels. The absence of any consistent processing costs for code-blending illustrates a surprising limitation on dual-task costs and may explain why bimodal bilinguals code-blend more often than they code-switch. PMID:22773886
Combinatorial semantics strengthens angular-anterior temporal coupling.
Molinaro, Nicola; Paz-Alonso, Pedro M; Duñabeitia, Jon Andoni; Carreiras, Manuel
2015-04-01
The human semantic combinatorial system allows us to create a wide number of new meanings from a finite number of existing representations. The present study investigates the neural dynamics underlying the semantic processing of different conceptual constructions based on predictions from previous neuroanatomical models of the semantic processing network. In two experiments, participants read sentences for comprehension containing noun-adjective pairs in three different conditions: prototypical (Redundant), nonsense (Anomalous) and low-typical but composable (Contrastive). In Experiment 1 we examined the processing costs associated to reading these sentences and found a processing dissociation between Anomalous and Contrastive word pairs, compared to prototypical (Redundant) stimuli. In Experiment 2, functional connectivity results showed strong co-activation across conditions between inferior frontal gyrus (IFG) and posterior middle temporal gyrus (MTG), as well as between these two regions and middle frontal gyrus (MFG), anterior temporal cortex (ATC) and fusiform gyrus (FG), consistent with previous neuroanatomical models. Importantly, processing of low-typical (but composable) meanings relative to prototypical and anomalous constructions was associated with a stronger positive coupling between ATC and angular gyrus (AG). Our results underscore the critical role of IFG-MTG co-activation during semantic processing and how other relevant nodes within the semantic processing network come into play to handle visual-orthographic information, to maintain multiple lexical-semantic representations in working memory and to combine existing representations while creatively constructing meaning. Copyright © 2015 Elsevier Ltd. All rights reserved.
Semantic word category processing in semantic dementia and posterior cortical atrophy.
Shebani, Zubaida; Patterson, Karalyn; Nestor, Peter J; Diaz-de-Grenu, Lara Z; Dawson, Kate; Pulvermüller, Friedemann
2017-08-01
There is general agreement that perisylvian language cortex plays a major role in lexical and semantic processing; but the contribution of additional, more widespread, brain areas in the processing of different semantic word categories remains controversial. We investigated word processing in two groups of patients whose neurodegenerative diseases preferentially affect specific parts of the brain, to determine whether their performance would vary as a function of semantic categories proposed to recruit those brain regions. Cohorts with (i) Semantic Dementia (SD), who have anterior temporal-lobe atrophy, and (ii) Posterior Cortical Atrophy (PCA), who have predominantly parieto-occipital atrophy, performed a lexical decision test on words from five different lexico-semantic categories: colour (e.g., yellow), form (oval), number (seven), spatial prepositions (under) and function words (also). Sets of pseudo-word foils matched the target words in length and bi-/tri-gram frequency. Word-frequency was matched between the two visual word categories (colour and form) and across the three other categories (number, prepositions, and function words). Age-matched healthy individuals served as controls. Although broad word processing deficits were apparent in both patient groups, the deficit was strongest for colour words in SD and for spatial prepositions in PCA. The patterns of performance on the lexical decision task demonstrate (a) general lexicosemantic processing deficits in both groups, though more prominent in SD than in PCA, and (b) differential involvement of anterior-temporal and posterior-parietal cortex in the processing of specific semantic categories of words. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.
Phasic affective modulation of semantic priming.
Topolinski, Sascha; Deutsch, Roland
2013-03-01
The present research demonstrates that very brief variations in affect, being around 1 s in length and changing from trial to trial independently from semantic relatedness of primes and targets, modulate the amount of semantic priming. Implementing consonant and dissonant chords (Experiments 1 and 5), naturalistic sounds (Experiment 2), and visual facial primes (Experiment 3) in an (in)direct semantic priming paradigm, as well as brief facial feedback in a summative priming paradigm (Experiment 4), yielded increased priming effects under brief positive compared to negative affect. Furthermore, this modulation took place on the level of semantic spreading rather than on strategic mechanisms (Experiment 5). Alternative explanations such as distraction, motivation, arousal, and cognitive tuning could be ruled out. This phasic affective modulation constitutes a mechanism overlooked thus far that may contaminate priming effects in all priming paradigms that involve affective stimuli. Furthermore, this mechanism provides a novel explanation for the observation that priming effects are usually larger for positive than for negative stimuli. Finally, it has important implications for linguistic research, by suggesting that association norms may be biased for affective words. (c) 2013 APA, all rights reserved.
Semantic Priming for Coordinate Distant Concepts in Alzheimer's Disease Patients
ERIC Educational Resources Information Center
Perri, R.; Zannino, G. D.; Caltagirone, C.; Carlesimo, G. A.
2011-01-01
Semantic priming paradigms have been used to investigate semantic knowledge in patients with Alzheimer's disease (AD). While priming effects produced by prime-target pairs with associative relatedness reflect processes at both lexical and semantic levels, priming effects produced by words that are semantically related but not associated should…
[Electrophysiological bases of semantic processing of objects].
Kahlaoui, Karima; Baccino, Thierry; Joanette, Yves; Magnié, Marie-Noële
2007-02-01
How pictures and words are stored and processed in the human brain constitute a long-standing question in cognitive psychology. Behavioral studies have yielded a large amount of data addressing this issue. Generally speaking, these data show that there are some interactions between the semantic processing of pictures and words. However, behavioral methods can provide only limited insight into certain findings. Fortunately, Event-Related Potential (ERP) provides on-line cues about the temporal nature of cognitive processes and contributes to the exploration of their neural substrates. ERPs have been used in order to better understand semantic processing of words and pictures. The main objective of this article is to offer an overview of the electrophysiologic bases of semantic processing of words and pictures. Studies presented in this article showed that the processing of words is associated with an N 400 component, whereas pictures elicited both N 300 and N 400 components. Topographical analysis of the N 400 distribution over the scalp is compatible with the idea that both image-mediated concrete words and pictures access an amodal semantic system. However, given the distinctive N 300 patterns, observed only during picture processing, it appears that picture and word processing rely upon distinct neuronal networks, even if they end up activating more or less similar semantic representations.
Uchiyama, Yuji; Toyoda, Hiroshi; Honda, Manabu; Yoshida, Haruyo; Kochiyama, Takanori; Ebe, Kazutoshi; Sadato, Norihiro
2008-07-01
We used functional magnetic resonance imaging in 18 normal volunteers to determine whether there is separate representation of syntactic, semantic, and verbal working memory processing in the left inferior frontal gyrus (GFi). We compared a sentence comprehension task with a short-term memory maintenance task to identify syntactic and semantic processing regions. To investigate the effects of syntactic and verbal working memory load while minimizing the differences in semantic processes, we used comprehension tasks with garden-path (GP) sentences, which require re-parsing, and non-garden-path (NGP) sentences. Compared with the short-term memory task, sentence comprehension activated the left GFi, including Brodmann areas (BAs) 44, 45, and 47, and the left superior temporal gyrus. In GP versus NGP sentences, there was greater activity in the left BAs 44, 45, and 46 extending to the left anterior insula, the pre-supplementary motor area, and the right cerebellum. In the left GFi, verbal working memory activity was located more dorsally (BA 44/45), semantic processing was located more ventrally (BA 47), and syntactic processing was located in between (BA 45). These findings indicate a close relationship between semantic and syntactic processes, and suggest that BA 45 might link verbal working memory and semantic processing via syntactic unification processes.
ERIC Educational Resources Information Center
Maguire, Mandy J.; Brier, Matthew R.; Ferree, Thomas C.
2010-01-01
Despite the importance of semantic relationships to our understanding of semantic knowledge, the nature of the neural processes underlying these abilities are not well understood. In order to investigate these processes, 20 healthy adults listened to thematically related (e.g., leash-dog), taxonomically related (e.g., horse-dog), or unrelated…
ERIC Educational Resources Information Center
Pijnacker, Judith; Davids, Nina; van Weerdenburg, Marjolijn; Verhoeven, Ludo; Knoors, Harry; van Alphen, Petra
2017-01-01
Purpose: Given the complexity of sentence processing and the specific problems that children with specific language impairment (SLI) experience, we investigated the time course and characteristics of semantic processing at the sentence level in Dutch preschoolers with SLI. Method: We measured N400 responses to semantically congruent and…
Mechanisms of masked priming: a meta-analysis.
Van den Bussche, Eva; Van den Noortgate, Wim; Reynvoet, Bert
2009-05-01
The extent to which unconscious information can influence behavior has been a topic of considerable debate throughout the history of psychology. A frequently used method for studying subliminal processing is the masked priming paradigm. The authors focused on studies in which this paradigm was used. Their aim was twofold: first, to assess the magnitude of subliminal priming across the literature and to determine whether subliminal primes are processed semantically, and second, to examine potential moderators of priming effects. The authors found significant priming in their analyses, indicating that unconsciously presented information can influence behavior. Furthermore, priming was observed under circumstances in which a nonsemantic interpretation could not fully explain the effects, suggesting that subliminally presented information can be processed semantically. Nonetheless, the nonsemantic processing of primes is enhanced and priming effects are boosted when the experimental context allows the formation of automatic stimulus-response mappings. This quantitative review also revealed several moderators that influence the strength of priming. (PsycINFO Database Record (c) 2009 APA, all rights reserved).
Broderick, Michael P; Anderson, Andrew J; Di Liberto, Giovanni M; Crosse, Michael J; Lalor, Edmund C
2018-03-05
People routinely hear and understand speech at rates of 120-200 words per minute [1, 2]. Thus, speech comprehension must involve rapid, online neural mechanisms that process words' meanings in an approximately time-locked fashion. However, electrophysiological evidence for such time-locked processing has been lacking for continuous speech. Although valuable insights into semantic processing have been provided by the "N400 component" of the event-related potential [3-6], this literature has been dominated by paradigms using incongruous words within specially constructed sentences, with less emphasis on natural, narrative speech comprehension. Building on the discovery that cortical activity "tracks" the dynamics of running speech [7-9] and psycholinguistic work demonstrating [10-12] and modeling [13-15] how context impacts on word processing, we describe a new approach for deriving an electrophysiological correlate of natural speech comprehension. We used a computational model [16] to quantify the meaning carried by words based on how semantically dissimilar they were to their preceding context and then regressed this measure against electroencephalographic (EEG) data recorded from subjects as they listened to narrative speech. This produced a prominent negativity at a time lag of 200-600 ms on centro-parietal EEG channels, characteristics common to the N400. Applying this approach to EEG datasets involving time-reversed speech, cocktail party attention, and audiovisual speech-in-noise demonstrated that this response was very sensitive to whether or not subjects understood the speech they heard. These findings demonstrate that, when successfully comprehending natural speech, the human brain responds to the contextual semantic content of each word in a relatively time-locked fashion. Copyright © 2018 Elsevier Ltd. All rights reserved.
When Singular and Plural are Both Grammatical: Semantic and Morphophonological Effects in Agreement
Mirković, Jelena; MacDonald, Maryellen C.
2013-01-01
The utterance planning processes allowing speakers to produce agreement between subjects and verbs (the catspl arepl asleep) have been the topic of extensive study as a window into language production mechanisms. A key question has been the extent to which agreement processing is influenced by semantic and phonological factors. Most prior studies have found limited effects of non-syntactic, particularly phonological factors, leading to conclusions that agreement is computed by a process influenced strongly by syntactic factors and with only a minor contribution of semantics. This conclusion may have been influenced by use of agreement error data as the main dependent variable, because errors are rare, potentially reducing sensitivity to the interaction of several factors. Two studies investigate agreement processing in Serbian, which allows both singular and plural verb forms to agree with plural nouns in some constructions. We use these constructions to further investigate the contribution of semantic factors to agreement, by manipulating levels of individuation of the members of a set. In addition, we investigate the effect of morphophonological homophony onto the participants’ productions of agreeing forms. The findings are discussed in the context of three models of agreement (Marking & Morphing, competition and controller misidentification), which differ in the extent to which they allow the influence of non-syntactic factors on agreement. We also compare the behavioral findings with the predictions of four computational implementations of the Marking & Morphing account. We discuss the implications of the behavioral and computational findings for models of agreement and the language production more broadly. Rosemary: Some biscuits or a piece of cake… ‘goes’ or ‘go’ better with an afternoon tea? PMID:24039340
Marko, Martin; Riečanský, Igor
2018-05-01
Cognitive flexibility emerges from an interplay of multiple cognitive systems, of which lexical-semantic and executive are thought to be the most important. Yet this has not been addressed by previous studies demonstrating that such forms of flexible thought deteriorate under stress. Motivated by these shortcomings, the present study evaluated several candidate mechanisms implied to mediate the impairing effects of stress on flexible thinking. Fifty-seven healthy adults were randomly assigned to psychosocial stress or control condition while assessed for performance on cognitive flexibility, working memory capacity, semantic fluency, and self-reported cognitive interference. Stress response was indicated by changes in skin conductance, hearth rate, and state anxiety. Our analyses showed that acute stress impaired cognitive flexibility via a concomitant increase in sympathetic arousal, while this mediator was positively associated with semantic fluency. Stress also decreased working memory capacity, which was partially mediated by elevated cognitive interference, but neither of these two measures were associated with cognitive flexibility or sympathetic arousal. Following these findings, we conclude that acute stress impairs cognitive flexibility via sympathetic arousal that modulates lexical-semantic and associative processes. In particular, the results indicate that stress-level of sympathetic activation may restrict the accessibility and integration of remote associates and bias the response competition towards prepotent and dominant ideas. Importantly, our results indicate that stress-induced impairments of cognitive flexibility and executive functions are mediated by distinct neurocognitive mechanisms. Copyright © 2018 Elsevier B.V. All rights reserved.
Adams, Sarah C.; Kiefer, Markus
2012-01-01
Recent studies challenged the classical notion of automaticity and indicated that even unconscious automatic semantic processing is under attentional control to some extent. In line with our attentional sensitization model, these data suggest that a sensitization of semantic pathways by a semantic task set is necessary for subliminal semantic priming to occur while non-semantic task sets attenuate priming. In the present study, we tested whether masked semantic priming is also reduced by phonological task sets using the previously developed induction task paradigm. This would substantiate the notion that attention to semantics is necessary for eliciting unconscious semantic priming. Participants first performed semantic and phonological induction tasks that should either activate a semantic or a phonological task set. Subsequent to the induction task, a masked prime word, either associated or non-associated with the following lexical decision target word, was presented. Across two experiments, we varied the nature of the phonological induction task (word phonology vs. letter phonology) to assess whether the attentional focus on the entire word vs. single letters modulates subsequent masked semantic priming. In both experiments, subliminal semantic priming was only found subsequent to the semantic induction task, but was attenuated following either phonological induction task. These results indicate that attention to phonology attenuates subsequent semantic processing of unconsciously presented primes whether or not attention is directed to the entire word or to single letters. The present findings therefore substantiate earlier evidence that an attentional orientation toward semantics is necessary for subliminal semantic priming to be elicited. PMID:22952461
Hauk, Olaf
2016-08-01
Theoretical developments about the nature of semantic representations and processes should be accompanied by a discussion of how these theories can be validated on the basis of empirical data. Here, I elaborate on the link between theory and empirical research, highlighting the need for temporal information in order to distinguish fundamental aspects of semantics. The generic point that fast cognitive processes demand fast measurement techniques has been made many times before, although arguably more often in the psychophysiological community than in the metabolic neuroimaging community. Many reviews on the neuroscience of semantics mostly or even exclusively focus on metabolic neuroimaging data. Following an analysis of semantics in terms of the representations and processes involved, I argue that fundamental theoretical debates about the neuroscience of semantics can only be concluded on the basis of data with sufficient temporal resolution. Any "semantic effect" may result from a conflation of long-term memory representations, retrieval and working memory processes, mental imagery, and episodic memory. This poses challenges for all neuroimaging modalities, but especially for those with low temporal resolution. It also throws doubt on the usefulness of contrasts between meaningful and meaningless stimuli, which may differ on a number of semantic and non-semantic dimensions. I will discuss the consequences of this analysis for research on the role of convergence zones or hubs and distributed modal brain networks, top-down modulation of task and context as well as interactivity between levels of the processing hierarchy, for example in the framework of predictive coding.
Neural correlates of semantic associations in patients with schizophrenia.
Sass, Katharina; Heim, Stefan; Sachs, Olga; Straube, Benjamin; Schneider, Frank; Habel, Ute; Kircher, Tilo
2014-03-01
Patients with schizophrenia have semantic processing disturbances leading to expressive language deficits (formal thought disorder). The underlying pathology has been related to alterations in the semantic network and its neural correlates. Moreover, crossmodal processing, an important aspect of communication, is impaired in schizophrenia. Here we investigated specific processing abnormalities in patients with schizophrenia with regard to modality and semantic distance in a semantic priming paradigm. Fourteen patients with schizophrenia and fourteen demographically matched controls made visual lexical decisions on successively presented word-pairs (SOA = 350 ms) with direct or indirect relations, unrelated word-pairs, and pseudoword-target stimuli during fMRI measurement. Stimuli were presented in a unimodal (visual) or crossmodal (auditory-visual) fashion. On the neural level, the effect of semantic relation indicated differences (patients > controls) within the right angular gyrus and precuneus. The effect of modality revealed differences (controls > patients) within the left superior frontal, middle temporal, inferior occipital, right angular gyri, and anterior cingulate cortex. Semantic distance (direct vs. indirect) induced distinct activations within the left middle temporal, fusiform gyrus, right precuneus, and thalamus with patients showing fewer differences between direct and indirect word-pairs. The results highlight aberrant priming-related brain responses in patients with schizophrenia. Enhanced activation for patients possibly reflects deficits in semantic processes that might be caused by a delayed and enhanced spread of activation within the semantic network. Modality-specific decreases of activation in patients might be related to impaired perceptual integration. Those deficits could induce and increase the prominent symptoms of schizophrenia like impaired speech processing.
Semantic processing of actions at 9months is linked to language proficiency at 9 and 18months.
Kaduk, Katharina; Bakker, Marta; Juvrud, Joshua; Gredebäck, Gustaf; Westermann, Gert; Lunn, Judith; Reid, Vincent M
2016-11-01
The current study uses event-related potential methodologies to investigate how social-cognitive processes in preverbal infants relate to language performance. We assessed 9-month-olds' understanding of the semantic structure of actions via an N400 event-related potential (ERP) response to action sequences that contained expected and unexpected outcomes. At 9 and 18months of age, infants' language abilities were measured using the Swedish Early Communicative Development Inventory (SECDI). Here we show that 9-month-olds' understanding of the semantic structure of actions, evidenced in an N400 ERP response to action sequences with unexpected outcomes, is related to language comprehension scores at 9months and is related to language production scores at 18months of age. Infants who showed a selective N400 response to unexpected action outcomes are those who are classed as above mean in their language proficiency. The results provide evidence that language performance is related to the ability to detect and interpret human actions at 9months of age. This study suggests that some basic cognitive mechanisms are involved in the processing of sequential events that are shared between two conceptually different cognitive domains and that pre-linguistic social understanding skills and language proficiency are linked to one another. Copyright © 2016. Published by Elsevier Inc.
Text-Content-Analysis based on the Syntactic Correlations between Ontologies
NASA Astrophysics Data System (ADS)
Tenschert, Axel; Kotsiopoulos, Ioannis; Koller, Bastian
The work presented in this chapter is concerned with the analysis of semantic knowledge structures, represented in the form of Ontologies, through which Service Level Agreements (SLAs) are enriched with new semantic data. The objective of the enrichment process is to enable SLA negotiation in a way that is much more convenient for a Service Users. For this purpose the deployment of an SLA-Management-System as well as the development of an analyzing procedure for Ontologies is required. This chapter will refer to the BREIN, the FinGrid and the LarKC projects. The analyzing procedure examines the syntactic correlations of several Ontologies whose focus lies in the field of mechanical engineering. A method of analyzing text and content is developed as part of this procedure. In order to so, we introduce a formalism as well as a method for understanding content. The analysis and methods are integrated to an SLA Management System which enables a Service User to interact with the system as a service by negotiating the user requests and including the semantic knowledge. Through negotiation between Service User and Service Provider the analysis procedure considers the user requests by extending the SLAs with semantic knowledge. Through this the economic use of an SLA-Management-System is increased by the enhancement of SLAs with semantic knowledge structures. The main focus of this chapter is the analyzing procedure, respectively the Text-Content-Analysis, which provides the mentioned semantic knowledge structures.
ERIC Educational Resources Information Center
Pulvermuller, Friedemann
2010-01-01
Neuroscience has greatly improved our understanding of the brain basis of abstract lexical and semantic processes. The neuronal devices underlying words and concepts are distributed neuronal assemblies reaching into sensory and motor systems of the cortex and, at the cognitive level, information binding in such widely dispersed circuits is…
Nonconscious semantic processing of emotional words modulates conscious access
Gaillard, Raphaël; Del Cul, Antoine; Naccache, Lionel; Vinckier, Fabien; Cohen, Laurent; Dehaene, Stanislas
2006-01-01
Whether masked words can be processed at a semantic level remains a controversial issue in cognitive psychology. Although recent behavioral studies have demonstrated masked semantic priming for number words, attempts to generalize this finding to other categories of words have failed. Here, as an alternative to subliminal priming, we introduce a sensitive behavioral method to detect nonconscious semantic processing of words. The logic of this method consists of presenting words close to the threshold for conscious perception and examining whether their semantic content modulates performance in objective and subjective tasks. Our results disclose two independent sources of modulation of the threshold for access to consciousness. First, prior conscious perception of words increases the detection rate of the same words when they are subsequently presented with stronger masking. Second, the threshold for conscious access is lower for emotional words than for neutral ones, even for words that have not been previously consciously perceived, thus implying that written words can receive nonconscious semantic processing. PMID:16648261
A brain electrical signature of left-lateralized semantic activation from single words.
Koppehele-Gossel, Judith; Schnuerch, Robert; Gibbons, Henning
2016-01-01
Lesion and imaging studies consistently indicate a left-lateralization of semantic language processing in human temporo-parietal cortex. Surprisingly, electrocortical measures, which allow a direct assessment of brain activity and the tracking of cognitive functions with millisecond precision, have not yet been used to capture this hemispheric lateralization, at least with respect to posterior portions of this effect. Using event-related potentials, we employed a simple single-word reading paradigm to compare neural activity during three tasks requiring different degrees of semantic processing. As expected, we were able to derive a simple temporo-parietal left-right asymmetry index peaking around 300ms into word processing that neatly tracks the degree of semantic activation. The validity of this measure in specifically capturing verbal semantic activation was further supported by a significant relation to verbal intelligence. We thus posit that it represents a promising tool to monitor verbal semantic processing in the brain with little technological effort and in a minimal experimental setup. Copyright © 2016 Elsevier Inc. All rights reserved.
Distinct neural substrates for semantic knowledge and naming in the temporoparietal network.
Gesierich, Benno; Jovicich, Jorge; Riello, Marianna; Adriani, Michela; Monti, Alessia; Brentari, Valentina; Robinson, Simon D; Wilson, Stephen M; Fairhall, Scott L; Gorno-Tempini, Maria Luisa
2012-10-01
Patients with anterior temporal lobe (ATL) lesions show semantic and lexical retrieval deficits, and the differential role of this area in the 2 processes is debated. Functional neuroimaging in healthy individuals has not clarified the matter because semantic and lexical processes usually occur simultaneously and automatically. Furthermore, the ATL is a region challenging for functional magnetic resonance imaging (fMRI) due to susceptibility artifacts, especially at high fields. In this study, we established an optimized ATL-sensitive fMRI acquisition protocol at 4 T and applied an event-related paradigm to study the identification (i.e., association of semantic biographical information) of celebrities, with and without the ability to retrieve their proper names. While semantic processing reliably activated the ATL, only more posterior areas in the left temporal and temporal-parietal junction were significantly modulated by covert lexical retrieval. These results suggest that within a temporoparietal network, the ATL is relatively more important for semantic processing, and posterior language regions are relatively more important for lexical retrieval.
Subliminal semantic priming in near absence of attention: A cursor motion study.
Xiao, Kunchen; Yamauchi, Takashi
2015-12-15
The role of attention in subliminal semantic priming remains controversial: some researchers argue that attention is necessary for subliminal semantic priming, while others suggest that subliminal semantic processing is free from the influence of attention. The present study employs a cursor motion method to measure priming and evaluate the influence of attention. Specifically, by employing a semantic priming task developed by Naccache, Blandin, and Dehaene (2002), we investigate the extent to which top-down attention influences semantic priming. Results indicate that, consistent with the Naccache et al. (2002) results, attention facilitates priming. However, inconsistent with their theory, significant priming is still observed even in near absence of attention. We suggest that top-down attention helps but is not necessary for subliminal semantic processing. Copyright © 2015 Elsevier Inc. All rights reserved.
Personal semantic memory: insights from neuropsychological research on amnesia.
Grilli, Matthew D; Verfaellie, Mieke
2014-08-01
This paper provides insight into the cognitive and neural mechanisms of personal semantic memory, knowledge that is specific and unique to individuals, by reviewing neuropsychological research on stable amnesia secondary to medial temporal lobe damage. The results reveal that personal semantic memory does not depend on a unitary set of cognitive and neural mechanisms. Findings show that autobiographical fact knowledge reflects an experience-near type of personal semantic memory that relies on the medial temporal lobe for retrieval, albeit less so than personal episodic memory. Additional evidence demonstrates that new autobiographical fact learning likely relies on the medial temporal lobe, but the extent to which remains unclear. Other findings show that retrieval of personal traits/roles and new learning of personal traits/roles and thoughts/beliefs are independent of the medial temporal lobe and thus may represent highly conceptual types of personal semantic memory that are stored in the neocortex. Published by Elsevier Ltd.
Plat, Rika; Lowie, Wander; de Bot, Kees
2018-01-01
Reaction time data have long been collected in order to gain insight into the underlying mechanisms involved in language processing. Means analyses often attempt to break down what factors relate to what portion of the total reaction time. From a dynamic systems theory perspective or an interaction dominant view of language processing, it is impossible to isolate discrete factors contributing to language processing, since these continually and interactively play a role. Non-linear analyses offer the tools to investigate the underlying process of language use in time, without having to isolate discrete factors. Patterns of variability in reaction time data may disclose the relative contribution of automatic (grapheme-to-phoneme conversion) processing and attention-demanding (semantic) processing. The presence of a fractal structure in the variability of a reaction time series indicates automaticity in the mental structures contributing to a task. A decorrelated pattern of variability will indicate a higher degree of attention-demanding processing. A focus on variability patterns allows us to examine the relative contribution of automatic and attention-demanding processing when a speaker is using the mother tongue (L1) or a second language (L2). A word naming task conducted in the L1 (Dutch) and L2 (English) shows L1 word processing to rely more on automatic spelling-to-sound conversion than L2 word processing. A word naming task with a semantic categorization subtask showed more reliance on attention-demanding semantic processing when using the L2. A comparison to L1 English data shows this was not only due to the amount of language use or language dominance, but also to the difference in orthographic depth between Dutch and English. An important implication of this finding is that when the same task is used to test and compare different languages, one cannot straightforwardly assume the same cognitive sub processes are involved to an equal degree using the same task in different languages. PMID:29403404
Landi, Nicole; Avery, Trey; Crowley, Michael J; Wu, Jia; Mayes, Linda
2017-01-01
Extant research documents impaired language among children with prenatal cocaine exposure (PCE) relative to nondrug exposed (NDE) children, suggesting that cocaine alters development of neurobiological systems that support language. The current study examines behavioral and neural (electrophysiological) indices of language function in older adolescents. Specifically, we compare performance of PCE (N = 59) and NDE (N = 51) adolescents on a battery of cognitive and linguistic assessments that tap word reading, reading comprehension, semantic and grammatical processing, and IQ. In addition, we examine event related potential (ERP) responses in in a subset of these children across three experimental tasks that examine word level phonological processing (rhyme priming), word level semantic processing (semantic priming), and sentence level semantic processing (semantic anomaly). Findings reveal deficits across a number of reading and language assessments, after controlling for socioeconomic status and exposure to other substances. Additionally, ERP data reveal atypical orthography to phonology mapping (reduced N1/P2 response) and atypical rhyme and semantic processing (N400 response). These findings suggest that PCE continues to impact language and reading skills into the late teenage years.
The Yin and the Yang of Prediction: An fMRI Study of Semantic Predictive Processing
Weber, Kirsten; Lau, Ellen F.; Stillerman, Benjamin; Kuperberg, Gina R.
2016-01-01
Probabilistic prediction plays a crucial role in language comprehension. When predictions are fulfilled, the resulting facilitation allows for fast, efficient processing of ambiguous, rapidly-unfolding input; when predictions are not fulfilled, the resulting error signal allows us to adapt to broader statistical changes in this input. We used functional Magnetic Resonance Imaging to examine the neuroanatomical networks engaged in semantic predictive processing and adaptation. We used a relatedness proportion semantic priming paradigm, in which we manipulated the probability of predictions while holding local semantic context constant. Under conditions of higher (versus lower) predictive validity, we replicate previous observations of reduced activity to semantically predictable words in the left anterior superior/middle temporal cortex, reflecting facilitated processing of targets that are consistent with prior semantic predictions. In addition, under conditions of higher (versus lower) predictive validity we observed significant differences in the effects of semantic relatedness within the left inferior frontal gyrus and the posterior portion of the left superior/middle temporal gyrus. We suggest that together these two regions mediated the suppression of unfulfilled semantic predictions and lexico-semantic processing of unrelated targets that were inconsistent with these predictions. Moreover, under conditions of higher (versus lower) predictive validity, a functional connectivity analysis showed that the left inferior frontal and left posterior superior/middle temporal gyrus were more tightly interconnected with one another, as well as with the left anterior cingulate cortex. The left anterior cingulate cortex was, in turn, more tightly connected to superior lateral frontal cortices and subcortical regions—a network that mediates rapid learning and adaptation and that may have played a role in switching to a more predictive mode of processing in response to the statistical structure of the wider environmental context. Together, these findings highlight close links between the networks mediating semantic prediction, executive function and learning, giving new insights into how our brains are able to flexibly adapt to our environment. PMID:27010386
The Yin and the Yang of Prediction: An fMRI Study of Semantic Predictive Processing.
Weber, Kirsten; Lau, Ellen F; Stillerman, Benjamin; Kuperberg, Gina R
2016-01-01
Probabilistic prediction plays a crucial role in language comprehension. When predictions are fulfilled, the resulting facilitation allows for fast, efficient processing of ambiguous, rapidly-unfolding input; when predictions are not fulfilled, the resulting error signal allows us to adapt to broader statistical changes in this input. We used functional Magnetic Resonance Imaging to examine the neuroanatomical networks engaged in semantic predictive processing and adaptation. We used a relatedness proportion semantic priming paradigm, in which we manipulated the probability of predictions while holding local semantic context constant. Under conditions of higher (versus lower) predictive validity, we replicate previous observations of reduced activity to semantically predictable words in the left anterior superior/middle temporal cortex, reflecting facilitated processing of targets that are consistent with prior semantic predictions. In addition, under conditions of higher (versus lower) predictive validity we observed significant differences in the effects of semantic relatedness within the left inferior frontal gyrus and the posterior portion of the left superior/middle temporal gyrus. We suggest that together these two regions mediated the suppression of unfulfilled semantic predictions and lexico-semantic processing of unrelated targets that were inconsistent with these predictions. Moreover, under conditions of higher (versus lower) predictive validity, a functional connectivity analysis showed that the left inferior frontal and left posterior superior/middle temporal gyrus were more tightly interconnected with one another, as well as with the left anterior cingulate cortex. The left anterior cingulate cortex was, in turn, more tightly connected to superior lateral frontal cortices and subcortical regions-a network that mediates rapid learning and adaptation and that may have played a role in switching to a more predictive mode of processing in response to the statistical structure of the wider environmental context. Together, these findings highlight close links between the networks mediating semantic prediction, executive function and learning, giving new insights into how our brains are able to flexibly adapt to our environment.
Sanjuán, Ana; Hope, Thomas M.H.; Parker Jones, 'Ōiwi; Prejawa, Susan; Oberhuber, Marion; Guerin, Julie; Seghier, Mohamed L.; Green, David W.; Price, Cathy J.
2015-01-01
We used fMRI in 35 healthy participants to investigate how two neighbouring subregions in the lateral anterior temporal lobe (LATL) contribute to semantic matching and object naming. Four different levels of processing were considered: (A) recognition of the object concepts; (B) search for semantic associations related to object stimuli; (C) retrieval of semantic concepts of interest; and (D) retrieval of stimulus specific concepts as required for naming. During semantic association matching on picture stimuli or heard object names, we found that activation in both subregions was higher when the objects were semantically related (mug–kettle) than unrelated (car–teapot). This is consistent with both LATL subregions playing a role in (C), the successful retrieval of amodal semantic concepts. In addition, one subregion was more activated for object naming than matching semantically related objects, consistent with (D), the retrieval of a specific concept for naming. We discuss the implications of these novel findings for cognitive models of semantic processing and left anterior temporal lobe function. PMID:25496810
Skotara, Nils; Salden, Uta; Kügow, Monique; Hänel-Faulhaber, Barbara; Röder, Brigitte
2012-05-03
To examine which language function depends on early experience, the present study compared deaf native signers, deaf non-native signers and hearing German native speakers while processing German sentences. The participants watched simple written sentences while event-related potentials (ERPs) were recorded. At the end of each sentence they were asked to judge whether the sentence was correct or not. Two types of violations were introduced in the middle of the sentence: a semantically implausible noun or a violation of subject-verb number agreement. The results showed a similar ERP pattern after semantic violations (an N400 followed by a positivity) in all three groups. After syntactic violations, native German speakers and native signers of German sign language (DGS) with German as second language (L2) showed a left anterior negativity (LAN) followed by a P600, whereas no LAN but a negativity over the right hemisphere instead was found in deaf participants with a delayed onset of first language (L1) acquisition. The P600 of this group had a smaller amplitude and a different scalp distribution as compared to German native speakers. The results of the present study suggest that language deprivation in early childhood alters the cerebral organization of syntactic language processing mechanisms for L2. Semantic language processing instead was unaffected.
From specific examples to general knowledge in language learning.
Tamminen, Jakke; Davis, Matthew H; Rastle, Kathleen
2015-06-01
The extraction of general knowledge from individual episodes is critical if we are to learn new knowledge or abilities. Here we uncover some of the key cognitive mechanisms that characterise this process in the domain of language learning. In five experiments adult participants learned new morphological units embedded in fictitious words created by attaching new affixes (e.g., -afe) to familiar word stems (e.g., "sleepafe is a participant in a study about the effects of sleep"). Participants' ability to generalise semantic knowledge about the affixes was tested using tasks requiring the comprehension and production of novel words containing a trained affix (e.g., sailafe). We manipulated the delay between training and test (Experiment 1), the number of unique exemplars provided for each affix during training (Experiment 2), and the consistency of the form-to-meaning mapping of the affixes (Experiments 3-5). In a task where speeded online language processing is required (semantic priming), generalisation was achieved only after a memory consolidation opportunity following training, and only if the training included a sufficient number of unique exemplars. Semantic inconsistency disrupted speeded generalisation unless consolidation was allowed to operate on one of the two affix-meanings before introducing inconsistencies. In contrast, in tasks that required slow, deliberate reasoning, generalisation could be achieved largely irrespective of the above constraints. These findings point to two different mechanisms of generalisation that have different cognitive demands and rely on different types of memory representations. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.
Automatic Semantic Facilitation in Anterior Temporal Cortex Revealed through Multimodal Neuroimaging
Gramfort, Alexandre; Hämäläinen, Matti S.; Kuperberg, Gina R.
2013-01-01
A core property of human semantic processing is the rapid, facilitatory influence of prior input on extracting the meaning of what comes next, even under conditions of minimal awareness. Previous work has shown a number of neurophysiological indices of this facilitation, but the mapping between time course and localization—critical for separating automatic semantic facilitation from other mechanisms—has thus far been unclear. In the current study, we used a multimodal imaging approach to isolate early, bottom-up effects of context on semantic memory, acquiring a combination of electroencephalography (EEG), magnetoencephalography (MEG), and functional magnetic resonance imaging (fMRI) measurements in the same individuals with a masked semantic priming paradigm. Across techniques, the results provide a strikingly convergent picture of early automatic semantic facilitation. Event-related potentials demonstrated early sensitivity to semantic association between 300 and 500 ms; MEG localized the differential neural response within this time window to the left anterior temporal cortex, and fMRI localized the effect more precisely to the left anterior superior temporal gyrus, a region previously implicated in semantic associative processing. However, fMRI diverged from early EEG/MEG measures in revealing semantic enhancement effects within frontal and parietal regions, perhaps reflecting downstream attempts to consciously access the semantic features of the masked prime. Together, these results provide strong evidence that automatic associative semantic facilitation is realized as reduced activity within the left anterior superior temporal cortex between 300 and 500 ms after a word is presented, and emphasize the importance of multimodal neuroimaging approaches in distinguishing the contributions of multiple regions to semantic processing. PMID:24155321
Shared Features Dominate Semantic Richness Effects for Concrete Concepts
ERIC Educational Resources Information Center
Grondin, Ray; Lupker, Stephen J.; McRae, Ken
2009-01-01
When asked to list semantic features for concrete concepts, participants list many features for some concepts and few for others. Concepts with many semantic features are processed faster in lexical and semantic decision tasks [Pexman, P. M., Lupker, S. J., & Hino, Y. (2002). "The impact of feedback semantics in visual word recognition:…
Orme, Elizabeth; Brown, Louise A.; Riby, Leigh M.
2017-01-01
In this study, we examined electrophysiological indices of episodic remembering whilst participants recalled novel shapes, with and without semantic content, within a visual working memory paradigm. The components of interest were the parietal episodic (PE; 400–800 ms) and late posterior negativity (LPN; 500–900 ms), as these have previously been identified as reliable markers of recollection and post-retrieval monitoring, respectively. Fifteen young adults completed a visual matrix patterns task, assessing memory for low and high semantic visual representations. Matrices with either low semantic or high semantic content (containing familiar visual forms) were briefly presented to participants for study (1500 ms), followed by a retention interval (6000 ms) and finally a same/different recognition phase. The event-related potentials of interest were tracked from the onset of the recognition test stimuli. Analyses revealed equivalent amplitude for the earlier PE effect for the processing of both low and high semantic stimulus types. However, the LPN was more negative-going for the processing of the low semantic stimuli. These data are discussed in terms of relatively ‘pure’ and complete retrieval of high semantic items, where support can readily be recruited from semantic memory. However, for the low semantic items additional executive resources, as indexed by the LPN, are recruited when memory monitoring and uncertainty exist in order to recall previously studied items more effectively. PMID:28725203
Orme, Elizabeth; Brown, Louise A; Riby, Leigh M
2017-01-01
In this study, we examined electrophysiological indices of episodic remembering whilst participants recalled novel shapes, with and without semantic content, within a visual working memory paradigm. The components of interest were the parietal episodic (PE; 400-800 ms) and late posterior negativity (LPN; 500-900 ms), as these have previously been identified as reliable markers of recollection and post-retrieval monitoring, respectively. Fifteen young adults completed a visual matrix patterns task, assessing memory for low and high semantic visual representations. Matrices with either low semantic or high semantic content (containing familiar visual forms) were briefly presented to participants for study (1500 ms), followed by a retention interval (6000 ms) and finally a same/different recognition phase. The event-related potentials of interest were tracked from the onset of the recognition test stimuli. Analyses revealed equivalent amplitude for the earlier PE effect for the processing of both low and high semantic stimulus types. However, the LPN was more negative-going for the processing of the low semantic stimuli. These data are discussed in terms of relatively 'pure' and complete retrieval of high semantic items, where support can readily be recruited from semantic memory. However, for the low semantic items additional executive resources, as indexed by the LPN, are recruited when memory monitoring and uncertainty exist in order to recall previously studied items more effectively.
Visser, M; Forn, C; Lambon Ralph, M A; Hoffman, P; Gómez Ibáñez, A; Sunajuán, Ana; Rosell Negre, P; Villanueva, V; Ávila, C
2018-06-01
According to a large neuropsychological and neuroimaging literature, the bilateral anterior temporal lobe (ATL) is a core region for semantic processing. It seems therefore surprising that semantic memory appears to be preserved in temporal lobe epilepsy (TLE) patients with unilateral ATL resection. However, recent work suggests that the bilateral semantic system is relatively robust against unilateral damage and semantic impairments under these circumstances only become apparent with low frequency specific concepts. In addition, neuroimaging studies have shown that the function of the left and right ATLs differ and therefore left or right ATL resection should lead to a different pattern of impairment. The current study investigated hemispheric differences in the bilateral semantic system by comparing left and right resected TLE patients during verbal semantic processing of low frequency concepts. Picture naming and semantic comprehension tasks with varying word frequencies were included to investigate the pattern of impairment. Left but not right TLE patients showed impaired semantic processing, which was particularly apparent on low frequency items. This indicates that, for verbal information, the bilateral semantic system is more sensitive to damage in the left compared to the right ATL, which is in line with theories that attribute a more prominent role to the left ATL due to connections with pre-semantic verbal regions. Copyright © 2018 Elsevier Ltd. All rights reserved.
ERIC Educational Resources Information Center
Li, Xiao-qing; Ren, Gui-qin
2012-01-01
An event-related brain potentials (ERP) experiment was carried out to investigate how and when accentuation influences temporally selective attention and subsequent semantic processing during on-line spoken language comprehension, and how the effect of accentuation on attention allocation and semantic processing changed with the degree of…
ERIC Educational Resources Information Center
Ruff, Ilana; Blumstein, Sheila E.; Myers, Emily B.; Hutchison, Emmette
2008-01-01
Previous studies examining explicit semantic processing have consistently shown activation of the left inferior frontal gyrus (IFG). In contrast, implicit semantic processing tasks have shown activation in posterior areas including the superior temporal gyrus (STG) and the middle temporal gyrus (MTG) with less consistent activation in the IFG.…
ERIC Educational Resources Information Center
Samson, Dana; Connolly, Catherine; Humphreys, Glyn W.
2007-01-01
The contribution of the left inferior prefrontal cortex in semantic processing has been widely investigated in the last decade. Converging evidence from functional imaging studies shows that this region is involved in the "executive" or "controlled" aspects of semantic processing. In this study, we report a single case study of a patient, PW, with…
Towards Semantic Modelling of Business Processes for Networked Enterprises
NASA Astrophysics Data System (ADS)
Furdík, Karol; Mach, Marián; Sabol, Tomáš
The paper presents an approach to the semantic modelling and annotation of business processes and information resources, as it was designed within the FP7 ICT EU project SPIKE to support creation and maintenance of short-term business alliances and networked enterprises. A methodology for the development of the resource ontology, as a shareable knowledge model for semantic description of business processes, is proposed. Systematically collected user requirements, conceptual models implied by the selected implementation platform as well as available ontology resources and standards are employed in the ontology creation. The process of semantic annotation is described and illustrated using an example taken from a real application case.
Acoustic and semantic interference effects in words and pictures.
Dhawan, M; Pellegrino, J W
1977-05-01
Interference effects for pictures and words were investigated using a probe-recall task. Word stimuli showed acoustic interference effects for items at the end of the list and semantic interference effects for items at the beginning of the list, similar to results of Kintsch and Buschke (1969). Picture stimuli showed large semantic interference effects at all list positions with smaller acoustic interference effects. The results were related to latency data on picture-word processing and interpreted in terms of the differential order, probability, and/or speed of access to acoustic and semantic levels of processing. A levels of processing explanation of picture-word retention differences was related to dual coding theory. Both theoretical positions converge on an explanation of picture-word retention differences as a function of the relative capacity for semantic or associative processing.
The semantic distance task: Quantifying semantic distance with semantic network path length.
Kenett, Yoed N; Levi, Effi; Anaki, David; Faust, Miriam
2017-09-01
Semantic distance is a determining factor in cognitive processes, such as semantic priming, operating upon semantic memory. The main computational approach to compute semantic distance is through latent semantic analysis (LSA). However, objections have been raised against this approach, mainly in its failure at predicting semantic priming. We propose a novel approach to computing semantic distance, based on network science methodology. Path length in a semantic network represents the amount of steps needed to traverse from 1 word in the network to the other. We examine whether path length can be used as a measure of semantic distance, by investigating how path length affect performance in a semantic relatedness judgment task and recall from memory. Our results show a differential effect on performance: Up to 4 steps separating between word-pairs, participants exhibit an increase in reaction time (RT) and decrease in the percentage of word-pairs judged as related. From 4 steps onward, participants exhibit a significant decrease in RT and the word-pairs are dominantly judged as unrelated. Furthermore, we show that as path length between word-pairs increases, success in free- and cued-recall decreases. Finally, we demonstrate how our measure outperforms computational methods measuring semantic distance (LSA and positive pointwise mutual information) in predicting participants RT and subjective judgments of semantic strength. Thus, we provide a computational alternative to computing semantic distance. Furthermore, this approach addresses key issues in cognitive theory, namely the breadth of the spreading activation process and the effect of semantic distance on memory retrieval. (PsycINFO Database Record (c) 2017 APA, all rights reserved).
Imageability and semantic association in the representation and processing of event verbs.
Xu, Xu; Kang, Chunyan; Guo, Taomei
2016-05-01
This study examined the relative salience of imageability (the degree to which a word evokes mental imagery) versus semantic association (the density of semantic network in which a word is embedded) in the representation and processing of four types of event verbs: sensory, cognitive, speech, and motor verbs. ERP responses were recorded, while 34 university students performed on a lexical decision task. Analysis focused primarily on amplitude differences across verb conditions within the N400 time window where activities are considered representing meaning activation. Variation in N400 amplitude across four types of verbs was found significantly associated with the level of imageability, but not the level of semantic association. The findings suggest imageability as a more salient factor relative to semantic association in the processing of these verbs. The role of semantic association and the representation of speech verbs are also discussed.
Kasparian, Kristina; Steinhauer, Karsten
2016-12-01
First language (L1) attrition is a socio-linguistic circumstance where second language (L2) learning coincides with changes in exposure and use of the native-L1. Attriters often report experiencing a decline in automaticity or proficiency in their L1 after a prolonged period in the L2 environment, while their L2 proficiency continues to strengthen. Investigating the neurocognitive correlates of attrition alongside those of late L2 acquisition addresses the question of whether the brain mechanisms underlying both L1 and L2 processing are strongly determined by proficiency, irrespective of whether the language was acquired from birth or in adulthood. Using event-related-potentials (ERPs), we examined lexical-semantic processing in Italian L1 attriters, compared to adult Italian L2 learners and to Italian monolingual native speakers. We contrasted the processing of classical lexical-semantic violations (Mismatch condition) with sentences that were equally semantically implausible but arguably trickier, as the target-noun was "swapped" with an orthographic neighbor that differed only in its final vowel and gender-marking morpheme (e.g., cappello (hat) vs. cappella (chapel)). Our aim was to determine whether sentences with such "confusable nouns" (Swap condition) would be processed as semantically correct by late L2 learners and L1 attriters, especially for those individuals with lower Italian proficiency scores. We found that lower-proficiency Italian speakers did not show significant N400 effects for Swap violations relative to correct sentences, regardless of whether Italian was the L1 or the L2. Crucially, N400 response profiles followed a continuum of "nativelikeness" predicted by Italian proficiency scores - high-proficiency attriters and high-proficiency Italian learners were indistinguishable from native controls, whereas attriters and L2 learners in the lower-proficiency range showed significantly reduced N400 effects for "Swap" errors. Importantly, attriters and late L2 learners did not differ in their N400 responses when they belonged to the same proficiency subgroup. Attriters also showed an enhanced P600 response to both kinds of lexical-semantic anomalies, which we discuss as reflecting increased conflict-monitoring and conscious "second thought" processes specifically in attriters. Our findings provide some of the first ERP evidence of attrition effects, and are compatible with accounts of ongoing neuroplasticity for language in adulthood. Proficiency, rather than age-of-acquisition, seems to be the key factor in modulating certain neurocognitive responses, not only within L2 learners but also in L1 attriters. Copyright © 2016 Elsevier Ltd. All rights reserved.
Action and semantic tool knowledge - Effective connectivity in the underlying neural networks.
Kleineberg, Nina N; Dovern, Anna; Binder, Ellen; Grefkes, Christian; Eickhoff, Simon B; Fink, Gereon R; Weiss, Peter H
2018-04-26
Evidence from neuropsychological and imaging studies indicate that action and semantic knowledge about tools draw upon distinct neural substrates, but little is known about the underlying interregional effective connectivity. With fMRI and dynamic causal modeling (DCM) we investigated effective connectivity in the left-hemisphere (LH) while subjects performed (i) a function knowledge and (ii) a value knowledge task, both addressing semantic tool knowledge, and (iii) a manipulation (action) knowledge task. Overall, the results indicate crosstalk between action nodes and semantic nodes. Interestingly, effective connectivity was weakened between semantic nodes and action nodes during the manipulation task. Furthermore, pronounced modulations of effective connectivity within the fronto-parietal action system of the LH (comprising lateral occipito-temporal cortex, intraparietal sulcus, supramarginal gyrus, inferior frontal gyrus) were observed in a bidirectional manner during the processing of action knowledge. In contrast, the function and value knowledge tasks resulted in a significant strengthening of the effective connectivity between visual cortex and fusiform gyrus. Importantly, this modulation was present in both semantic tasks, indicating that processing different aspects of semantic knowledge about tools evokes similar effective connectivity patterns. Data revealed that interregional effective connectivity during the processing of tool knowledge occurred in a bidirectional manner with a weakening of connectivity between areas engaged in action and semantic knowledge about tools during the processing of action knowledge. Moreover, different semantic tool knowledge tasks elicited similar effective connectivity patterns. © 2018 Wiley Periodicals, Inc.
Chen, Jingjun; Luo, Rong; Liu, Huashan
2017-08-01
With the development of ICT, digital writing is becoming much more common in people's life. Differently from keyboarding alphabets directly to input English words, keyboarding Chinese character is always through typing phonetic alphabets and then identify the glyph provided by Pinyin input-method software while in this process which do not need users to produce orthography spelling, thus it is different from traditional written language production model based on handwriting process. Much of the research in this domain has found that using Pinyin input method is beneficial to Chinese characters recognition, but only a small part explored the effects of individual's Pinyin input experience on the Chinese characters production process. We ask whether using Pinyin input-method will strengthen the semantic-phonology linkage or semantic-orthography linkage in Chinese character mental lexicon. Through recording the RT and accuracy of participants completing semantic-syllable and semantic-glyph consistency judgments, the results found the accuracy of semantic-syllable consistency judgments in high Pinyin input experienced group was higher than that in low-experienced group, and RT was reversed. There were no significant differences on semantic-glyph consistency judgments between the two groups. We conclude that using Pinyin input method in Chinese digital writing can strengthen the semantic-phonology linkage while do not weakening the semantic-orthography linkage in mental lexicon at the same time, which means that Pinyin input method is beneficial to lexical processing involving Chinese cognition.
The influence of speech rate and accent on access and use of semantic information.
Sajin, Stanislav M; Connine, Cynthia M
2017-04-01
Circumstances in which the speech input is presented in sub-optimal conditions generally lead to processing costs affecting spoken word recognition. The current study indicates that some processing demands imposed by listening to difficult speech can be mitigated by feedback from semantic knowledge. A set of lexical decision experiments examined how foreign accented speech and word duration impact access to semantic knowledge in spoken word recognition. Results indicate that when listeners process accented speech, the reliance on semantic information increases. Speech rate was not observed to influence semantic access, except in the setting in which unusually slow accented speech was presented. These findings support interactive activation models of spoken word recognition in which attention is modulated based on speech demands.
The effects of gender and self-insight on early semantic processing.
Xu, Xu; Kang, Chunyan; Guo, Taomei
2014-01-01
This event-related potential (ERP) study explored individual differences associated with gender and level of self-insight in early semantic processing. Forty-eight Chinese native speakers completed a semantic judgment task with three different categories of words: abstract neutral words (e.g., logic, effect), concrete neutral words (e.g., teapot, table), and emotion words (e.g., despair, guilt). They then assessed their levels of self-insight. Results showed that women engaged in greater processing than did men. Gender differences also manifested in the relationship between level of self-insight and word processing. For women, level of self-insight was associated with level of semantic activation for emotion words and abstract neutral words, but not for concrete neutral words. For men, level of self-insight was related to processing speed, particularly in response to abstract and concrete neutral words. These findings provide electrophysiological evidence for the effects of gender and self-insight on semantic processing and highlight the need to take into consideration subject variables in related research.
Aberrant semantic and affective processing in people at risk for psychosis.
Kerns, J G; Berenbaum, H
2000-11-01
Semantic and affective processing were examined in people at risk for psychosis. The participants were 3 groups of college students: 41 people with elevated Perceptual Aberration and Magical Ideation (PerMag) scores, 18 people with elevated Social Anhedonia (SocAnh) scores, and 100 control participants. Participants completed a single-word, continuous presentation pronunciation task that included semantically related words, affectively valenced words, and semantically unrelated and affectively neutral words. PerMag participants exhibited increased semantic priming and increased sensitivity to affectively valenced primes. SocAnh participants had increased sensitivity to affectively valenced targets.
Levels of Processing and the Cue-Dependent Nature of Recollection
ERIC Educational Resources Information Center
Mulligan, Neil W.; Picklesimer, Milton
2012-01-01
Dual-process models differentiate between two bases of memory, recollection and familiarity. It is routinely claimed that deeper, semantic encoding enhances recollection relative to shallow, non-semantic encoding, and that recollection is largely a product of semantic, elaborative rehearsal. The present experiments show that this is not always the…
Orthographic and Semantic Processing in Young Readers
ERIC Educational Resources Information Center
Polse, Lara R.; Reilly, Judy S.
2015-01-01
This investigation examined orthographic and semantic processing during reading acquisition. Children in first to fourth grade were presented with a target word and two response alternatives, and were asked to identify the semantic match. Words were presented in four conditions: an exact match and unrelated foil (STONE-STONE-EARS), an exact match…
Disentangling Linguistic Modality Effects in Semantic Processing
ERIC Educational Resources Information Center
Moita, Mara; Nunes, Maria Vânia
2017-01-01
Sensory systems are essential for perceiving and conceptualizing our semantic knowledge about the world and the way we interact with it. Despite studies reporting neural changes to compensate for the absence of a given sensory modality, studies focusing on the assessment of semantic processing reveal poor performances by deaf individuals when…
Semantics Does Not Need a Processing License from Syntax in Reading Chinese
ERIC Educational Resources Information Center
Zhang, Yaxu; Yu, Jing; Boland, Julie E.
2010-01-01
Two event-related brain potential experiments were conducted to investigate whether there is a functional primacy of syntactic structure building over semantic processes during Chinese sentence reading. In both experiments, we found that semantic interpretation proceeded despite the impossibility of a well-formed syntactic analysis. In Experiment…
Sentence Processing in High Proficient Kannada--English Bilinguals: A Reaction Time Study
ERIC Educational Resources Information Center
Ravi, Sunil Kumar; Chengappa, Shyamala K.
2015-01-01
The present study aimed at exploring the semantic and syntactic processing differences between native and second languages in 20 early high proficient Kannada--English bilingual adults through accuracy and reaction time (RT) measurements. Subjects participated in a semantic judgement task (using 50 semantically correct and 50 semantically…
Boukadi, Mariem; Potvin, Karel; Macoir, Joël; Jr Laforce, Robert; Poulin, Stéphane; Brambati, Simona M; Wilson, Maximiliano A
2016-06-01
The co-occurrence of semantic impairment and surface dyslexia in the semantic variant of primary progressive aphasia (svPPA) has often been taken as supporting evidence for the central role of semantics in visual word processing. According to connectionist models, semantic access is needed to accurately read irregular words. They also postulate that reliance on semantics is necessary to perform the lexical decision task under certain circumstances (for example, when the stimulus list comprises pseudohomophones). In the present study, we report two svPPA cases: M.F. who presented with surface dyslexia but performed accurately on the lexical decision task with pseudohomophones, and R.L. who showed no surface dyslexia but performed below the normal range on the lexical decision task with pseudohomophones. This double dissociation between reading and lexical decision with pseudohomophones is in line with the dual-route cascaded (DRC) model of reading. According to this model, impairments in visual word processing in svPPA are not necessarily associated with the semantic deficits characterizing this disease. Our findings also call into question the central role given to semantics in visual word processing within the connectionist account. Copyright © 2016 Elsevier Ltd. All rights reserved.
Moritz-Gasser, Sylvie; Herbet, Guillaume; Duffau, Hugues
2013-08-01
Accessing the meaning of words, objects, people and facts is a human ability, made possible thanks to semantic processing. Although studies concerning its cortical organization are proficient, the subcortical connectivity underlying this semantic network received less attention. We used intraoperative direct electrostimulation, which mimics a transient virtual lesion during brain surgery for glioma in eight awaken patients, to map the anatomical white matter substrate subserving the semantic system. Patients performed a picture naming task and a non-verbal semantic association test during the electrical mapping. Direct electrostimulation of the inferior fronto-occipital fascicle, a poorly known ventral association pathway which runs throughout the brain, induced in all cases semantic disturbances. These transient disorders were highly reproducible, and concerned verbal as well as non-verbal output. Our results highlight for the first time the essential role of the left inferior fronto-occipital fascicle in multimodal (and not only in verbal) semantic processing. On the basis of these original findings, and in the lights of phylogenetic considerations regarding this fascicle, we suggest its possible implication in the monitoring of the human level of consciousness related to semantic memory, namely noetic consciousness. Copyright © 2013 Elsevier Ltd. All rights reserved.
Semantics vs Pragmatics of a Compound Word
ERIC Educational Resources Information Center
Smirnova, Elena A.; Biktemirova, Ella I.; Davletbaeva, Diana N.
2016-01-01
This paper is devoted to the study of correlation between semantic and pragmatic potential of a compound word, which functions in informal speech, and the mechanisms of secondary nomination, which realizes the potential of semantic-pragmatic features of colloquial compounds. The relevance and the choice of the research question is based on the…
High-Dimensional Semantic Space Accounts of Priming
ERIC Educational Resources Information Center
Jones, Michael N.; Kintsch, Walter; Mewhort, Douglas J. K.
2006-01-01
A broad range of priming data has been used to explore the structure of semantic memory and to test between models of word representation. In this paper, we examine the computational mechanisms required to learn distributed semantic representations for words directly from unsupervised experience with language. To best account for the variety of…
The Influence of Semantic Neighbours on Visual Word Recognition
ERIC Educational Resources Information Center
Yates, Mark
2012-01-01
Although it is assumed that semantics is a critical component of visual word recognition, there is still much that we do not understand. One recent way of studying semantic processing has been in terms of semantic neighbourhood (SN) density, and this research has shown that semantic neighbours facilitate lexical decisions. However, it is not clear…
Diverging receptive and expressive word processing mechanisms in a deep dyslexic reader.
Ablinger, Irene; Radach, Ralph
2016-01-29
We report on KJ, a patient with acquired dyslexia due to cerebral artery infarction. He represents an unusually clear case of an "output" deep dyslexic reader, with a distinct pattern of pure semantic reading. According to current neuropsychological models of reading, the severity of this condition is directly related to the degree of impairment in semantic and phonological representations and the resulting imbalance in the interaction between the two word processing pathways. The present work sought to examine whether an innovative eye movement supported intervention combining lexical and segmental therapy would strengthen phonological processing and lead to an attenuation of the extreme semantic over-involvement in KJ's word identification process. Reading performance was assessed before (T1) between (T2) and after (T3) therapy using both analyses of linguistic errors and word viewing patterns. Therapy resulted in improved reading aloud accuracy along with a change in error distribution that suggested a return to more sequential reading. Interestingly, this was in contrast to the dynamics of moment-to-moment word processing, as eye movement analyses still suggested a predominantly holistic strategy, even at T3. So, in addition to documenting the success of the therapeutic intervention, our results call for a theoretically important conclusion: Real-time letter and word recognition routines should be considered separately from properties of the verbal output. Combining both perspectives may provide a promising strategy for future assessment and therapy evaluation. Copyright © 2015. Published by Elsevier Ltd.
Linguistic processing in idiopathic generalized epilepsy: an auditory event-related potential study.
Henkin, Yael; Kishon-Rabin, Liat; Pratt, Hillel; Kivity, Sara; Sadeh, Michelle; Gadoth, Natan
2003-09-01
Auditory processing of increasing acoustic and linguistic complexity was assessed in children with idiopathic generalized epilepsy (IGE) by using auditory event-related potentials (AERPs) as well as reaction time and performance accuracy. Twenty-four children with IGE [12 with generalized tonic-clonic seizures (GTCSs), and 12 with absence seizures (ASs)] with average intelligence and age-appropriate scholastic skills, uniformly medicated with valproic acid (VPA), and 20 healthy controls, performed oddball discrimination tasks that consisted of the following stimuli: (a) pure tones; (b) nonmeaningful monosyllables that differed by their phonetic features (i.e., phonetic stimuli); and (c) meaningful monosyllabic words from two semantic categories (i.e., semantic stimuli). AERPs elicited by nonlinguistic stimuli were similar in healthy and epilepsy children, whereas those elicited by linguistic stimuli (i.e., phonetic and semantic) differed significantly in latency, amplitude, and scalp distribution. In children with GTCSs, phonetic and semantic processing were characterized by slower processing time, manifested by prolonged N2 and P3 latencies during phonetic processing, and prolongation of all AERPs latencies during semantic processing. In children with ASs, phonetic and semantic processing were characterized by increased allocation of attentional resources, manifested by enhanced N2 amplitudes. Semantic processing also was characterized by prolonged P3 latency. In both patient groups, processing of linguistic stimuli resulted in different patterns of brain-activity lateralization compared with that in healthy controls. Reaction time and performance accuracy did not differ among the study groups. AERPs exposed linguistic-processing deficits related to seizure type in children with IGE. Neurologic follow-up should therefore include evaluation of linguistic functions, and remedial intervention should be provided, accordingly.
Chen, Qingrong; Zhang, Jingjing; Xu, Xiaodong; Scheepers, Christoph; Yang, Yiming; Tanenhaus, Michael K
2016-09-01
In an ERP study, classic Chinese poems with a well-known rhyme scheme were used to generate an expectation of a rhyme in the absence of an expectation for a specific character. Critical characters were either consistent or inconsistent with the expected rhyme scheme and semantically congruent or incongruent with the content of the poem. These stimuli allowed us to examine whether a top-down rhyme scheme expectation would affect relatively early components of the ERP associated with character-to-sound mapping (P200) and lexically-mediated semantic processing (N400). The ERP data revealed that rhyme scheme congruence, but not semantic congruence modulated the P200: rhyme-incongruent characters elicited a P200 effect across the head demonstrating that top-down expectations influence early phonological coding of the character before lexical-semantic processing. Rhyme scheme incongruence also produced a right-lateralized N400-like effect. Moreover, compared to semantically congruous poems, semantically incongruous poems produced a larger N400 response only when the character was consistent with the expected rhyme scheme. The results suggest that top-down prosodic expectations can modulate early phonological processing in visual word recognition, indicating that prosodic expectations might play an important role in silent reading. They also suggest that semantic processing is influenced by general knowledge of text genre. Copyright © 2016 Elsevier B.V. All rights reserved.
Bao, Yan; Yang, Taoxi; Lin, Xiaoxiong; Pöppel, Ernst
2016-09-01
Differences of reaction times to specific stimulus configurations are used as indicators of cognitive processing stages. In this classical experimental paradigm, continuous temporal processing is implicitly assumed. Multimodal response distributions indicate, however, discrete time sampling, which is often masked by experimental conditions. Differences in reaction times reflect discrete temporal mechanisms that are pre-semantically implemented and suggested to be based on entrained neural oscillations. © 2016 The Institute of Psychology, Chinese Academy of Sciences and John Wiley & Sons Australia, Ltd.
Jackson, Rebecca L; Hoffman, Paul; Pobric, Gorana; Lambon Ralph, Matthew A
2016-02-03
The anterior temporal lobe (ATL) makes a critical contribution to semantic cognition. However, the functional connectivity of the ATL and the functional network underlying semantic cognition has not been elucidated. In addition, subregions of the ATL have distinct functional properties and thus the potential differential connectivity between these subregions requires investigation. We explored these aims using both resting-state and active semantic task data in humans in combination with a dual-echo gradient echo planar imaging (EPI) paradigm designed to ensure signal throughout the ATL. In the resting-state analysis, the ventral ATL (vATL) and anterior middle temporal gyrus (MTG) were shown to connect to areas responsible for multimodal semantic cognition, including bilateral ATL, inferior frontal gyrus, medial prefrontal cortex, angular gyrus, posterior MTG, and medial temporal lobes. In contrast, the anterior superior temporal gyrus (STG)/superior temporal sulcus was connected to a distinct set of auditory and language-related areas, including bilateral STG, precentral and postcentral gyri, supplementary motor area, supramarginal gyrus, posterior temporal cortex, and inferior and middle frontal gyri. Complementary analyses of functional connectivity during an active semantic task were performed using a psychophysiological interaction (PPI) analysis. The PPI analysis highlighted the same semantic regions suggesting a core semantic network active during rest and task states. This supports the necessity for semantic cognition in internal processes occurring during rest. The PPI analysis showed additional connectivity of the vATL to regions of occipital and frontal cortex. These areas strongly overlap with regions found to be sensitive to executively demanding, controlled semantic processing. Previous studies have shown that semantic cognition depends on subregions of the anterior temporal lobe (ATL). However, the network of regions functionally connected to these subregions has not been demarcated. Here, we show that these ventrolateral anterior temporal subregions form part of a network responsible for semantic processing during both rest and an explicit semantic task. This demonstrates the existence of a core functional network responsible for multimodal semantic cognition regardless of state. Distinct connectivity is identified in the superior ATL, which is connected to auditory and language areas. Understanding the functional connectivity of semantic cognition allows greater understanding of how this complex process may be performed and the role of distinct subregions of the anterior temporal cortex. Copyright © 2016 Jackson et al.
Jackson, Rebecca L.; Hoffman, Paul; Pobric, Gorana
2016-01-01
The anterior temporal lobe (ATL) makes a critical contribution to semantic cognition. However, the functional connectivity of the ATL and the functional network underlying semantic cognition has not been elucidated. In addition, subregions of the ATL have distinct functional properties and thus the potential differential connectivity between these subregions requires investigation. We explored these aims using both resting-state and active semantic task data in humans in combination with a dual-echo gradient echo planar imaging (EPI) paradigm designed to ensure signal throughout the ATL. In the resting-state analysis, the ventral ATL (vATL) and anterior middle temporal gyrus (MTG) were shown to connect to areas responsible for multimodal semantic cognition, including bilateral ATL, inferior frontal gyrus, medial prefrontal cortex, angular gyrus, posterior MTG, and medial temporal lobes. In contrast, the anterior superior temporal gyrus (STG)/superior temporal sulcus was connected to a distinct set of auditory and language-related areas, including bilateral STG, precentral and postcentral gyri, supplementary motor area, supramarginal gyrus, posterior temporal cortex, and inferior and middle frontal gyri. Complementary analyses of functional connectivity during an active semantic task were performed using a psychophysiological interaction (PPI) analysis. The PPI analysis highlighted the same semantic regions suggesting a core semantic network active during rest and task states. This supports the necessity for semantic cognition in internal processes occurring during rest. The PPI analysis showed additional connectivity of the vATL to regions of occipital and frontal cortex. These areas strongly overlap with regions found to be sensitive to executively demanding, controlled semantic processing. SIGNIFICANCE STATEMENT Previous studies have shown that semantic cognition depends on subregions of the anterior temporal lobe (ATL). However, the network of regions functionally connected to these subregions has not been demarcated. Here, we show that these ventrolateral anterior temporal subregions form part of a network responsible for semantic processing during both rest and an explicit semantic task. This demonstrates the existence of a core functional network responsible for multimodal semantic cognition regardless of state. Distinct connectivity is identified in the superior ATL, which is connected to auditory and language areas. Understanding the functional connectivity of semantic cognition allows greater understanding of how this complex process may be performed and the role of distinct subregions of the anterior temporal cortex. PMID:26843633
Interference from related actions in spoken word production: Behavioural and fMRI evidence.
de Zubicaray, Greig; Fraser, Douglas; Ramajoo, Kori; McMahon, Katie
2017-02-01
Few investigations of lexical access in spoken word production have investigated the cognitive and neural mechanisms involved in action naming. These are likely to be more complex than the mechanisms involved in object naming, due to the ways in which conceptual features of action words are represented. The present study employed a blocked cyclic naming paradigm to examine whether related action contexts elicit a semantic interference effect akin to that observed with categorically related objects. Participants named pictures of intransitive actions to avoid a confound with object processing. In Experiment 1, body-part related actions (e.g., running, walking, skating, hopping) were named significantly slower compared to unrelated actions (e.g., laughing, running, waving, hiding). Experiment 2 employed perfusion functional Magnetic Resonance Imaging (fMRI) to investigate the neural mechanisms involved in this semantic interference effect. Compared to unrelated actions, naming related actions elicited significant perfusion signal increases in frontotemporal cortex, including bilateral inferior frontal gyrus (IFG) and hippocampus, and decreases in bilateral posterior temporal, occipital and parietal cortices, including intraparietal sulcus (IPS). The findings demonstrate a role for temporoparietal cortex in conceptual-lexical processing of intransitive action knowledge during spoken word production, and support the proposed involvement of interference resolution and incremental learning mechanisms in the blocked cyclic naming paradigm. Copyright © 2017 Elsevier Ltd. All rights reserved.
Two mechanisms of constructive recollection: Perceptual recombination and conceptual fluency.
Doss, Manoj K; Bluestone, Maximilian R; Gallo, David A
2016-11-01
Recollection is constructive and prone to distortion, but the mechanisms through which recollections can become embellished with rich yet illusory details are still debated. According to the conceptual fluency hypothesis, abstract semantic or conceptual activation increases the familiarity of a nonstudied event, causing one to falsely attribute imagined features to actual perception. In contrast, according to the perceptual recombination hypothesis, details from actually perceived events are partially recollected and become erroneously bound to a nonstudied event, again causing a detailed yet false recollection. Here, we report the first experiments aimed at disentangling these 2 mechanisms. Participants imagined pictures of common objects, and then they saw an actual picture of some of the imagined objects. We next presented misinformation associated with these studied items, designed to increase conceptual fluency (i.e., semantically related words) or perceptual recombination (i.e., perceptually similar picture fragments). Finally, we tested recollection for the originally seen pictures using verbal labels as retrieval cues. Consistent with conceptual fluency, processing-related words increased false recollection of pictures that were never seen, and consistent with perceptual recombination, processing picture fragments further increased false recollection. We also found that conceptual fluency was more short-lived than perceptual recombination, further dissociating these 2 mechanisms. These experiments provide strong evidence that conceptual fluency and perceptual recombination independently contribute to the constructive aspects of recollection. (PsycINFO Database Record (c) 2016 APA, all rights reserved).
Intuitive (in)coherence judgments are guided by processing fluency, mood and affect.
Sweklej, Joanna; Balas, Robert; Pochwatko, Grzegorz; Godlewska, Małgorzata
2014-01-01
Recently proposed accounts of intuitive judgments of semantic coherence assume that processing fluency results in a positive affective response leading to successful assessment of semantic coherence. The present paper investigates whether processing fluency may indicate semantic incoherence as well. In two studies, we employ a new paradigm in which participants have to detect an incoherent item among semantically coherent words. In Study 1, we show participants accurately indicating an incoherent item despite not being able to provide an accurate solution to coherent words. Further, this effect is modified by affective valence of solution words that are not retrieved from memory. Study 2 replicates those results and extend them by showing that mood moderates incoherence judgments independently of affective valence of solutions. The results support processing fluency account of intuitive semantic coherence judgments and show that it is not fluency per se but fluency variations that drive judgments.
Vowelling and semantic priming effects in Arabic.
Mountaj, Nadia; El Yagoubi, Radouane; Himmi, Majid; Lakhdar Ghazal, Faouzi; Besson, Mireille; Boudelaa, Sami
2015-01-01
In the present experiment we used a semantic judgment task with Arabic words to determine whether semantic priming effects are found in the Arabic language. Moreover, we took advantage of the specificity of the Arabic orthographic system, which is characterized by a shallow (i.e., vowelled words) and a deep orthography (i.e., unvowelled words), to examine the relationship between orthographic and semantic processing. Results showed faster Reaction Times (RTs) for semantically related than unrelated words with no difference between vowelled and unvowelled words. By contrast, Event Related Potentials (ERPs) revealed larger N1 and N2 components to vowelled words than unvowelled words suggesting that visual-orthographic complexity taxes the early word processing stages. Moreover, semantically unrelated Arabic words elicited larger N400 components than related words thereby demonstrating N400 effects in Arabic. Finally, the Arabic N400 effect was not influenced by orthographic depth. The implications of these results for understanding the processing of orthographic, semantic, and morphological structures in Modern Standard Arabic are discussed. Copyright © 2014 Elsevier B.V. All rights reserved.
A computational language approach to modeling prose recall in schizophrenia
Rosenstein, Mark; Diaz-Asper, Catherine; Foltz, Peter W.; Elvevåg, Brita
2014-01-01
Many cortical disorders are associated with memory problems. In schizophrenia, verbal memory deficits are a hallmark feature. However, the exact nature of this deficit remains elusive. Modeling aspects of language features used in memory recall have the potential to provide means for measuring these verbal processes. We employ computational language approaches to assess time-varying semantic and sequential properties of prose recall at various retrieval intervals (immediate, 30 min and 24 h later) in patients with schizophrenia, unaffected siblings and healthy unrelated control participants. First, we model the recall data to quantify the degradation of performance with increasing retrieval interval and the effect of diagnosis (i.e., group membership) on performance. Next we model the human scoring of recall performance using an n-gram language sequence technique, and then with a semantic feature based on Latent Semantic Analysis. These models show that automated analyses of the recalls can produce scores that accurately mimic human scoring. The final analysis addresses the validity of this approach by ascertaining the ability to predict group membership from models built on the two classes of language features. Taken individually, the semantic feature is most predictive, while a model combining the features improves accuracy of group membership prediction slightly above the semantic feature alone as well as over the human rating approach. We discuss the implications for cognitive neuroscience of such a computational approach in exploring the mechanisms of prose recall. PMID:24709122
Creative thinking as orchestrated by semantic processing vs. cognitive control brain networks
Abraham, Anna
2014-01-01
Creativity is primarily investigated within the neuroscientific perspective as a unitary construct. While such an approach is beneficial when trying to infer the general picture regarding creativity and brain function, it is insufficient if the objective is to uncover the information processing brain mechanisms by which creativity occurs. As creative thinking emerges through the dynamic interplay between several cognitive processes, assessing the neural correlates of these operations would enable the development and characterization of an information processing framework from which to better understand this complex ability. This article focuses on two aspects of creative cognition that are central to generating original ideas. “Conceptual expansion” refers to the ability to widen one’s conceptual structures to include unusual or novel associations, while “overcoming knowledge constraints” refers to our ability to override the constraining influence imposed by salient or pertinent knowledge when trying to be creative. Neuroimaging and neuropsychological evidence is presented to illustrate how semantic processing and cognitive control networks in the brain differentially modulate these critical facets of creative cognition. PMID:24605098
Li, Xiaoqing; Zhao, Haiyan; Lu, Yong
2014-01-01
Sentence comprehension involves timely computing different types of relations between its verbs and noun arguments, such as morphosyntactic, semantic, and thematic relations. Here, we used EEG technique to investigate the potential differences in thematic role computing and lexical-semantic relatedness processing during on-line sentence comprehension, and the interaction between these two types of processes. Mandarin Chinese sentences were used as materials. The basic structure of those sentences is “Noun+Verb+‘le’+a two-character word”, with the Noun being the initial argument. The verb disambiguates the initial argument as an agent or a patient. Meanwhile, the initial argument and the verb are highly or lowly semantically related. The ERPs at the verbs revealed that: relative to the agent condition, the patient condition evoked a larger N400 only when the argument and verb were lowly semantically related; however, relative to the high-relatedness condition, the low-relatedness condition elicited a larger N400 regardless of the thematic relation; although both thematic role variation and semantic relatedness variation elicited N400 effects, the N400 effect elicited by the former was broadly distributed and reached maximum over the frontal electrodes, and the N400 effect elicited by the latter had a posterior distribution. In addition, the brain oscillations results showed that, although thematic role variation (patient vs. agent) induced power decreases around the beta frequency band (15–30 Hz), semantic relatedness variation (low-relatedness vs. high-relatedness) induced power increases in the theta frequency band (4–7 Hz). These results suggested that, in the sentence context, thematic role computing is modulated by the semantic relatedness between the verb and its argument; semantic relatedness processing, however, is in some degree independent from the thematic relations. Moreover, our results indicated that, during on-line sentence comprehension, thematic role computing and semantic relatedness processing are mediated by distinct neural systems. PMID:24755643
Neural correlates of implicit and explicit combinatorial semantic processing
Graves, William W.; Binder, Jeffrey R.; Desai, Rutvik H.; Conant, Lisa L.; Seidenberg, Mark S.
2010-01-01
Language consists of sequences of words, but comprehending phrases involves more than concatenating meanings: A boat house is a shelter for boats, whereas a summer house is a house used during summer, and a ghost house is typically uninhabited. Little is known about the brain bases of combinatorial semantic processes. We performed two fMRI experiments using familiar, highly meaningful phrases (LAKE HOUSE) and unfamiliar phrases with minimal meaning created by reversing the word order of the familiar items (HOUSE LAKE). The first experiment used a 1-back matching task to assess implicit semantic processing, and the second used a classification task to engage explicit semantic processing. These conditions required processing of the same words, but with more effective combinatorial processing in the meaningful condition. The contrast of meaningful versus reversed phrases revealed activation primarily during the classification task, to a greater extent in the right hemisphere, including right angular gyrus, dorsomedial prefrontal cortex, and bilateral posterior cingulate/precuneus, areas previously implicated in semantic processing. Positive correlations of fMRI signal with lexical (word-level) frequency occurred exclusively with the 1-back task and to a greater spatial extent on the left, including left posterior middle temporal gyrus and bilateral parahippocampus. These results reveal strong effects of task demands on engagement of lexical versus combinatorial processing and suggest a hemispheric dissociation between these levels of semantic representation. PMID:20600969
Räling, Romy; Holzgrefe-Lang, Julia; Schröder, Astrid; Wartenburger, Isabell
2015-08-01
Various behavioural studies show that semantic typicality (TYP) and age of acquisition (AOA) of a specific word influence processing time and accuracy during the performance of lexical-semantic tasks. This study examines the influence of TYP and AOA on semantic processing at behavioural (response times and accuracy data) and electrophysiological levels using an auditory category-member-verification task. Reaction time data reveal independent TYP and AOA effects, while in the accuracy data and the event-related potentials predominantly effects of TYP can be found. The present study thus confirms previous findings and extends evidence found in the visual modality to the auditory modality. A modality-independent influence on semantic word processing is manifested. However, with regard to the influence of AOA, the diverging results raise questions on the origin of AOA effects as well as on the interpretation of offline and online data. Hence, results will be discussed against the background of recent theories on N400 correlates in semantic processing. In addition, an argument in favour of a complementary use of research techniques will be made. Copyright © 2015 Elsevier Ltd. All rights reserved.
Self-imagination can enhance memory in individuals with schizophrenia.
Raffard, Stéphane; Bortolon, Catherine; Burca, Mariana; Novara, Caroline; Gely-Nargeot, Marie-Christine; Capdevielle, Delphine; Van der Linden, Martial
2016-01-01
Previous research has demonstrated that self-referential strategies can be applied to improve memory in various memory- impaired populations. However, little is known regarding the relative effectiveness of self-referential strategies in schizophrenia patients. The main aim of this study was to assess the effectiveness of a new self-referential strategy known as self- imagination (SI) on a free recall task. Twenty schizophrenia patients and 20 healthy controls intentionally encoded words under five instructions: superficial processing, semantic processing, semantic self-referential processing, episodic self-referential processing and semantic self- imagining. Other measures included depression, psychotic symptoms and cognitive measures. We found a SI effect in memory as self- imagining resulted in better performance in memory retrieval than semantic and superficial encoding in schizophrenia patients. The memory boost for self-referenced information in comparison to semantic processing was not found for other self-referential strategies. In addition no relationship between clinical variables and free recall performances was found. In controls, the SI condition did not result in better performance. The three self-referential strategies yielded better free recall than both superficial and semantic encoding. This study provides evidence of the clinical utility of self-imagining as a mnemonic strategy in schizophrenia patients.
Attention and Semantic Processing during Speech: An fMRI Study
ERIC Educational Resources Information Center
Rama, Pia; Relander-Syrjanen, Kristiina; Carlson, Synnove; Salonen, Oili; Kujala, Teija
2012-01-01
This fMRI study was conducted to investigate whether language semantics is processed even when attention is not explicitly directed to word meanings. In the "unattended" condition, the subjects performed a visual detection task while hearing semantically related and unrelated word pairs. In the "phoneme" condition, the subjects made phoneme…
Semantic Processing in the Production of Numerals across Notations
ERIC Educational Resources Information Center
Herrera, Amparo; Macizo, Pedro
2012-01-01
In the present work, we conducted a series of experiments to explore the processing stages required to name numerals presented in different notations. To this end, we used the semantic blocking paradigm previously used in psycholinguist studies. We found a facilitative effect of the semantic blocked context relative to the mixed context for Arabic…
Is Syntactic-Category Processing Obligatory in Visual Word Recognition? Evidence from Chinese
ERIC Educational Resources Information Center
Wong, Andus Wing-Kuen; Chen, Hsuan-Chih
2012-01-01
Three experiments were conducted to investigate how syntactic-category and semantic information is processed in visual word recognition. The stimuli were two-character Chinese words in which semantic and syntactic-category ambiguities were factorially manipulated. A lexical decision task was employed in Experiment 1, whereas a semantic relatedness…
Semantic priming from crowded words.
Yeh, Su-Ling; He, Sheng; Cavanagh, Patrick
2012-06-01
Vision in a cluttered scene is extremely inefficient. This damaging effect of clutter, known as crowding, affects many aspects of visual processing (e.g., reading speed). We examined observers' processing of crowded targets in a lexical decision task, using single-character Chinese words that are compact but carry semantic meaning. Despite being unrecognizable and indistinguishable from matched nonwords, crowded prime words still generated robust semantic-priming effects on lexical decisions for test words presented in isolation. Indeed, the semantic-priming effect of crowded primes was similar to that of uncrowded primes. These findings show that the meanings of words survive crowding even when the identities of the words do not, suggesting that crowding does not prevent semantic activation, a process that may have evolved in the context of a cluttered visual environment.
Cognitive search model and a new query paradigm
NASA Astrophysics Data System (ADS)
Xu, Zhonghui
2001-06-01
This paper proposes a cognitive model in which people begin to search pictures by using semantic content and find a right picture by judging whether its visual content is a proper visualization of the semantics desired. It is essential that human search is not just a process of matching computation on visual feature but rather a process of visualization of the semantic content known. For people to search electronic images in the way as they manually do in the model, we suggest that querying be a semantic-driven process like design. A query-by-design paradigm is prosed in the sense that what you design is what you find. Unlike query-by-example, query-by-design allows users to specify the semantic content through an iterative and incremental interaction process so that a retrieval can start with association and identification of the given semantic content and get refined while further visual cues are available. An experimental image retrieval system, Kuafu, has been under development using the query-by-design paradigm and an iconic language is adopted.
Federmeier, Kara D.
2017-01-01
There is growing recognition that some important forms of long-term memory are difficult to classify into one of the well-studied memory subtypes. One example is personal semantics. Like the episodes that are stored as part of one’s autobiography, personal semantics is linked to an individual, yet, like general semantic memory, it is detached from a specific encoding context. Access to general semantics elicits an electrophysiological response known as the N400, which has been characterized across three decades of research; surprisingly, this response has not been fully examined in the context of personal semantics. In this study, we assessed responses to congruent and incongruent statements about people’s own, personal preferences. We found that access to personal preferences elicited N400 responses, with congruency effects that were similar in latency and distribution to those for general semantic statements elicited from the same participants. These results suggest that the processing of personal and general semantics share important functional and neurobiological features. PMID:26825011
A Linked Data-Based Collaborative Annotation System for Increasing Learning Achievements
ERIC Educational Resources Information Center
Zarzour, Hafed; Sellami, Mokhtar
2017-01-01
With the emergence of the Web 2.0, collaborative annotation practices have become more mature in the field of learning. In this context, several recent studies have shown the powerful effects of the integration of annotation mechanism in learning process. However, most of these studies provide poor support for semantically structured resources,…
Colangelo, Annette; Buchanan, Lori
2006-12-01
The failure of inhibition hypothesis posits a theoretical distinction between implicit and explicit access in deep dyslexia. Specifically, the effects of failure of inhibition are assumed only in conditions that have an explicit selection requirement in the context of production (i.e., aloud reading). In contrast, the failure of inhibition hypothesis proposes that implicit processing and explicit access to semantic information without production demands are intact in deep dyslexia. Evidence for intact implicit and explicit access requires that performance in deep dyslexia parallels that observed in neurologically intact participants on tasks based on implicit and explicit processes. In other words, deep dyslexics should produce normal effects in conditions with implicit task demands (i.e., lexical decision) and on tasks based on explicit access without production (i.e., forced choice semantic decisions) because failure of inhibition does not impact the availability of lexical information, only explicit retrieval in the context of production. This research examined the distinction between implicit and explicit processes in deep dyslexia using semantic blocking in lexical decision and forced choice semantic decisions as a test for the failure of inhibition hypothesis. The results of the semantic blocking paradigm support the distinction between implicit and explicit processing and provide evidence for failure of inhibition as an explanation for semantic errors in deep dyslexia.
Emmorey, Karen; Weisberg, Jill; McCullough, Stephen; Petrich, Jennifer A F
2013-08-01
We examined word-level reading circuits in skilled deaf readers whose primary language is American Sign Language, and hearing readers matched for reading ability (college level). During fMRI scanning, participants performed a semantic decision (concrete concept?), a phonological decision (two syllables?), and a false-font control task (string underlined?). The groups performed equally well on the semantic task, but hearing readers performed better on the phonological task. Semantic processing engaged similar left frontotemporal language circuits in deaf and hearing readers. However, phonological processing elicited increased neural activity in deaf, relative to hearing readers, in the left precentral gyrus, suggesting greater reliance on articulatory phonological codes, and in bilateral parietal cortex, suggesting increased phonological processing effort. Deaf readers also showed stronger anterior-posterior functional segregation between semantic and phonological processes in left inferior prefrontal cortex. Finally, weaker phonological decoding ability did not alter activation in the visual word form area for deaf readers. Copyright © 2013 Elsevier Inc. All rights reserved.
Reilly, Jamie; Rodriguez, Amy D; Peelle, Jonathan E; Grossman, Murray
2011-06-01
Portions of left inferior frontal cortex have been linked to semantic memory both in terms of the content of conceptual representation (e.g., motor aspects in an embodied semantics framework) and the cognitive processes used to access these representations (e.g., response selection). Progressive non-fluent aphasia (PNFA) is a neurodegenerative condition characterized by progressive atrophy of left inferior frontal cortex. PNFA can, therefore, provide a lesion model for examining the impact of frontal lobe damage on semantic processing and content. In the current study we examined picture naming in a cohort of PNFA patients across a variety of semantic categories. An embodied approach to semantic memory holds that sensorimotor features such as self-initiated action may assume differential importance for the representation of manufactured artifacts (e.g., naming hand tools). Embodiment theories might therefore predict that patients with frontal damage would be differentially impaired on manufactured artifacts relative to natural kinds, and this prediction was borne out. We also examined patterns of naming errors across a wide range of semantic categories and found that naming error distributions were heterogeneous. Although PNFA patients performed worse overall on naming manufactured artifacts, there was no reliable relationship between anomia and manipulability across semantic categories. These results add to a growing body of research arguing against a purely sensorimotor account of semantic memory, suggesting instead a more nuanced balance of process and content in how the brain represents conceptual knowledge. Copyright © 2010 Elsevier Srl. All rights reserved.
SemanticOrganizer: A Customizable Semantic Repository for Distributed NASA Project Teams
NASA Technical Reports Server (NTRS)
Keller, Richard M.; Berrios, Daniel C.; Carvalho, Robert E.; Hall, David R.; Rich, Stephen J.; Sturken, Ian B.; Swanson, Keith J.; Wolfe, Shawn R.
2004-01-01
SemanticOrganizer is a collaborative knowledge management system designed to support distributed NASA projects, including diverse teams of scientists, engineers, and accident investigators. The system provides a customizable, semantically structured information repository that stores work products relevant to multiple projects of differing types. SemanticOrganizer is one of the earliest and largest semantic web applications deployed at NASA to date, and has been used in diverse contexts ranging from the investigation of Space Shuttle Columbia's accident to the search for life on other planets. Although the underlying repository employs a single unified ontology, access control and ontology customization mechanisms make the repository contents appear different for each project team. This paper describes SemanticOrganizer, its customization facilities, and a sampling of its applications. The paper also summarizes some key lessons learned from building and fielding a successful semantic web application across a wide-ranging set of domains with diverse users.
[False recognition of faces associated with fronto-temporal dementia with prosopagnosia].
Verstichel, P
2005-09-01
The association of prosopagnosia and false recognition of faces is unusual and contributes to our understanding of the generation of facial familiarity. A 67-year-old man with a left prefrontal traumatic lesion, developed a temporal variety of fronto-temporal dementia (semantic dementia) with amyotrophic lateral sclerosis. Cerebral imagery demonstrated a bilateral, temporal anterior atrophy predominating in the right hemisphere. The main cognitive signs consisted in severe difficulties to recognize faces of familiar people (prosopagnosia), associated with systematic false recognition of unfamiliar people. Neuropsychological testing indicated that the prosopagnosia probably resulted from the association of an associative/mnemonic mechanism (inability to activate the Face Recognition Units (FRU) from the visual input) and a semantic mechanism (degradation of semantic/biographical information or deconnexion between FRU and this information). At the early stage of the disease, the patient could activate residual semantic information about individuals from their names, but after a 4-year course, he failed to do so. This worsening could be attributed to the extension of the degenerative lesions to the left temporal lobe. Familiar and unfamiliar faces triggered a marked feeling of knowing. False recognition concerned all the unfamiliar faces, and the patient claimed spontaneously that they corresponded to actors, but he could not provide any additional information about their specific identities. The coexistence of prosopagnosia and false recognition suggests the existence of different interconnected systems processing face recognition, one intended to identification of individuals, and the other producing the sense of familiarity. Dysfunctions at different stages of one or the other of these two processes could result in distortions in the feeling of knowing. From this case and others reported in literature, we propose to complete the classical model of face processing by adding a pathway linked to limbic system and frontal structures. This later pathway could normally emit signals for familiarity, essentially autonomic, in response to the familiar faces. These signals, primitively unconscious, secondly reach consciousness and are then integrated by a central supervisor system which evaluates and verifies identity-specific biographical information in order to make a decision about the sense of familiarity.
ERIC Educational Resources Information Center
Gainotti, Guido
2011-01-01
In recent years, the anatomical and functional bases of conceptual activity have attracted a growing interest. In particular, Patterson and Lambon-Ralph have proposed the existence, in the anterior parts of the temporal lobes, of a mechanism (the "amodal semantic hub") supporting the interactive activation of semantic representations in all…
Wang, Fang; Ouyang, Guang; Zhou, Changsong; Wang, Suiping
2015-01-01
A number of studies have explored the time course of Chinese semantic and syntactic processing. However, whether syntactic processing occurs earlier than semantics during Chinese sentence reading is still under debate. To further explore this issue, an event-related potentials (ERPs) experiment was conducted on 21 native Chinese speakers who read individually-presented Chinese simple sentences (NP1+VP+NP2) word-by-word for comprehension and made semantic plausibility judgments. The transitivity of the verbs was manipulated to form three types of stimuli: congruent sentences (CON), sentences with a semantically violated NP2 following a transitive verb (semantic violation, SEM), and sentences with a semantically violated NP2 following an intransitive verb (combined semantic and syntactic violation, SEM+SYN). The ERPs evoked from the target NP2 were analyzed by using the Residue Iteration Decomposition (RIDE) method to reconstruct the ERP waveform blurred by trial-to-trial variability, as well as by using the conventional ERP method based on stimulus-locked averaging. The conventional ERP analysis showed that, compared with the critical words in CON, those in SEM and SEM+SYN elicited an N400-P600 biphasic pattern. The N400 effects in both violation conditions were of similar size and distribution, but the P600 in SEM+SYN was bigger than that in SEM. Compared with the conventional ERP analysis, RIDE analysis revealed a larger N400 effect and an earlier P600 effect (in the time window of 500-800 ms instead of 570-810ms). Overall, the combination of conventional ERP analysis and the RIDE method for compensating for trial-to-trial variability confirmed the non-significant difference between SEM and SEM+SYN in the earlier N400 time window. Converging with previous findings on other Chinese structures, the current study provides further precise evidence that syntactic processing in Chinese does not occur earlier than semantic processing.
A DNA-based semantic fusion model for remote sensing data.
Sun, Heng; Weng, Jian; Yu, Guangchuang; Massawe, Richard H
2013-01-01
Semantic technology plays a key role in various domains, from conversation understanding to algorithm analysis. As the most efficient semantic tool, ontology can represent, process and manage the widespread knowledge. Nowadays, many researchers use ontology to collect and organize data's semantic information in order to maximize research productivity. In this paper, we firstly describe our work on the development of a remote sensing data ontology, with a primary focus on semantic fusion-driven research for big data. Our ontology is made up of 1,264 concepts and 2,030 semantic relationships. However, the growth of big data is straining the capacities of current semantic fusion and reasoning practices. Considering the massive parallelism of DNA strands, we propose a novel DNA-based semantic fusion model. In this model, a parallel strategy is developed to encode the semantic information in DNA for a large volume of remote sensing data. The semantic information is read in a parallel and bit-wise manner and an individual bit is converted to a base. By doing so, a considerable amount of conversion time can be saved, i.e., the cluster-based multi-processes program can reduce the conversion time from 81,536 seconds to 4,937 seconds for 4.34 GB source data files. Moreover, the size of result file recording DNA sequences is 54.51 GB for parallel C program compared with 57.89 GB for sequential Perl. This shows that our parallel method can also reduce the DNA synthesis cost. In addition, data types are encoded in our model, which is a basis for building type system in our future DNA computer. Finally, we describe theoretically an algorithm for DNA-based semantic fusion. This algorithm enables the process of integration of the knowledge from disparate remote sensing data sources into a consistent, accurate, and complete representation. This process depends solely on ligation reaction and screening operations instead of the ontology.
A DNA-Based Semantic Fusion Model for Remote Sensing Data
Sun, Heng; Weng, Jian; Yu, Guangchuang; Massawe, Richard H.
2013-01-01
Semantic technology plays a key role in various domains, from conversation understanding to algorithm analysis. As the most efficient semantic tool, ontology can represent, process and manage the widespread knowledge. Nowadays, many researchers use ontology to collect and organize data's semantic information in order to maximize research productivity. In this paper, we firstly describe our work on the development of a remote sensing data ontology, with a primary focus on semantic fusion-driven research for big data. Our ontology is made up of 1,264 concepts and 2,030 semantic relationships. However, the growth of big data is straining the capacities of current semantic fusion and reasoning practices. Considering the massive parallelism of DNA strands, we propose a novel DNA-based semantic fusion model. In this model, a parallel strategy is developed to encode the semantic information in DNA for a large volume of remote sensing data. The semantic information is read in a parallel and bit-wise manner and an individual bit is converted to a base. By doing so, a considerable amount of conversion time can be saved, i.e., the cluster-based multi-processes program can reduce the conversion time from 81,536 seconds to 4,937 seconds for 4.34 GB source data files. Moreover, the size of result file recording DNA sequences is 54.51 GB for parallel C program compared with 57.89 GB for sequential Perl. This shows that our parallel method can also reduce the DNA synthesis cost. In addition, data types are encoded in our model, which is a basis for building type system in our future DNA computer. Finally, we describe theoretically an algorithm for DNA-based semantic fusion. This algorithm enables the process of integration of the knowledge from disparate remote sensing data sources into a consistent, accurate, and complete representation. This process depends solely on ligation reaction and screening operations instead of the ontology. PMID:24116207
(Pea)nuts and bolts of visual narrative: Structure and meaning in sequential image comprehension
Cohn, Neil; Paczynski, Martin; Jackendoff, Ray; Holcomb, Phillip J.; Kuperberg, Gina R.
2012-01-01
Just as syntax differentiates coherent sentences from scrambled word strings, the comprehension of sequential images must also use a cognitive system to distinguish coherent narrative sequences from random strings of images. We conducted experiments analogous to two classic studies of language processing to examine the contributions of narrative structure and semantic relatedness to processing sequential images. We compared four types of comic strips: 1) Normal sequences with both structure and meaning, 2) Semantic Only sequences (in which the panels were related to a common semantic theme, but had no narrative structure), 3) Structural Only sequences (narrative structure but no semantic relatedness), and 4) Scrambled sequences of randomly-ordered panels. In Experiment 1, participants monitored for target panels in sequences presented panel-by-panel. Reaction times were slowest to panels in Scrambled sequences, intermediate in both Structural Only and Semantic Only sequences, and fastest in Normal sequences. This suggests that both semantic relatedness and narrative structure offer advantages to processing. Experiment 2 measured ERPs to all panels across the whole sequence. The N300/N400 was largest to panels in both the Scrambled and Structural Only sequences, intermediate in Semantic Only sequences and smallest in the Normal sequences. This implies that a combination of narrative structure and semantic relatedness can facilitate semantic processing of upcoming panels (as reflected by the N300/N400). Also, panels in the Scrambled sequences evoked a larger left-lateralized anterior negativity than panels in the Structural Only sequences. This localized effect was distinct from the N300/N400, and appeared despite the fact that these two sequence types were matched on local semantic relatedness between individual panels. These findings suggest that sequential image comprehension uses a narrative structure that may be independent of semantic relatedness. Altogether, we argue that the comprehension of visual narrative is guided by an interaction between structure and meaning. PMID:22387723
Blanchet, Alain; Lockman, Hazlin
2018-01-01
The objective of this electrophysiological study was to investigate the processing of semantic coherence during encoding in relation to episodic memory processes promoted at test, in schizophrenia patients, by using the N400 paradigm. Eighteen schizophrenia patients and 15 healthy participants undertook a recognition memory task. The stimuli consisted of pairs of words either semantically related or unrelated to a given category name (context). During encoding, both groups exhibited an N400 external semantic coherence effect. Healthy controls also showed an N400 internal semantic coherence effect, but this effect was not present in patients. At test, related stimuli were accompanied by an FN400 old/new effect in both groups and by a parietal old/new effect in the control group alone. In the patient group, external semantic coherence effect was associated with FN400, while, in the control group, it was correlated to the parietal old/new effect. Our results indicate that schizophrenia patients can process the contextual information at encoding to enhance familiarity process for related stimuli at test. Therefore, cognitive rehabilitation therapies targeting the implementation of semantic encoding strategies can mobilize familiarity which in turn can overcome the recollection deficit, promoting successful episodic memory performance in schizophrenia patients. PMID:29535872
Olson, Ingrid R.
2012-01-01
Famous people and artifacts are referred to as “unique entities” (UEs) due to the unique nature of the knowledge we have about them. Past imaging and lesion experiments have indicated that the anterior temporal lobes (ATLs) as having a special role in the processing of UEs. It has remained unclear which attributes of UEs were responsible for the observed effects in imaging experiments. In this study, we investigated what factors of UEs influence brain activity. In a training paradigm, we systematically varied the uniqueness of semantic associations, the presence/absence of a proper name, and the number of semantic associations to determine factors modulating activity in regions subserving the processing of UEs. We found that a conjunction of unique semantic information and proper names modulated activity within a section of the left ATL. Overall, the processing of UEs involved a wider left-hemispheric cortical network. Within these regions, brain activity was significantly affected by the unique semantic attributes especially in the presence of a proper name, but we could not find evidence for an effect of the number of semantic associations. Findings are discussed in regard to current models of ATL function, the neurophysiology of semantics, and social cognitive processing. PMID:22021913
Examining Lateralized Semantic Access Using Pictures
ERIC Educational Resources Information Center
Lovseth, Kyle; Atchley, Ruth Ann
2010-01-01
A divided visual field (DVF) experiment examined the semantic processing strategies employed by the cerebral hemispheres to determine if strategies observed with written word stimuli generalize to other media for communicating semantic information. We employed picture stimuli and vary the degree of semantic relatedness between the picture pairs.…
Electrophysiological signatures of phonological and semantic maintenance in sentence repetition.
Meltzer, Jed A; Kielar, Aneta; Panamsky, Lilia; Links, Kira A; Deschamps, Tiffany; Leigh, Rosie C
2017-08-01
Verbal short-term memory comprises resources for phonological rehearsal, which have been characterized anatomically, and for maintenance of semantic information, which are less understood. Sentence repetition tasks tap both processes interactively. To distinguish brain activity involved in phonological vs. semantic maintenance, we recorded magnetoencephalography during a sentence repetition task, incorporating three manipulations emphasizing one mechanism over the other. Participants heard sentences or word lists and attempted to repeat them verbatim after a 5-second delay. After MEG, participants completed a cued recall task testing how much they remembered of each sentence. Greater semantic engagement relative to phonological rehearsal was hypothesized for 1) sentences vs. word lists, 2) concrete vs. abstract sentences, and 3) well recalled vs. poorly recalled sentences. During auditory perception and the memory delay period, we found highly left-lateralized activation in the form of 8-30 Hz event-related desynchronization. Compared to abstract sentences, concrete sentences recruited posterior temporal cortex bilaterally, demonstrating a neural signature for the engagement of visual imagery in sentence maintenance. Maintenance of arbitrary word lists recruited right hemisphere dorsal regions, reflecting increased demands on phonological rehearsal. Sentences that were ultimately poorly recalled in the post-test also elicited extra right hemisphere activation when they were held in short-term memory, suggesting increased demands on phonological resources. Frontal midline theta oscillations also reflected phonological rather than semantic demand, being increased for word lists and poorly recalled sentences. These findings highlight distinct neural resources for phonological and semantic maintenance, with phonological maintenance associated with stronger oscillatory modulations. Copyright © 2017 Elsevier Inc. All rights reserved.
Diagnostic and prognostic role of semantic processing in preclinical Alzheimer's disease.
Venneri, Annalena; Jahn-Carta, Caroline; Marco, Matteo De; Quaranta, Davide; Marra, Camillo
2018-06-13
Relatively spared during most of the timeline of normal aging, semantic memory shows a subtle yet measurable decline even during the pre-clinical stage of Alzheimer's disease. This decline is thought to reflect early neurofibrillary changes and impairment is detectable using tests of language relying on lexical-semantic abilities. A promising approach is the characterization of semantic parameters such as typicality and age of acquisition of words, and propositional density from verbal output. Seminal research like the Nun Study or the analysis of the linguistic decline of famous writers and politicians later diagnosed with Alzheimer's disease supports the early diagnostic value of semantic processing and semantic memory. Moreover, measures of these skills may play an important role for the prognosis of patients with mild cognitive impairment.
Faust, Miriam; Ben-Artzi, Elisheva; Vardi, Nili
2012-12-01
Previous studies suggest that whereas the left hemisphere (LH) is involved in fine semantic processing, the right hemisphere (RH) is uniquely engaged in coarse semantic coding including the comprehension of distinct types of language such as figurative language, lexical ambiguity and verbal humor (e.g., Chiarello, 2003; Faust, 2012). The present study examined the patterns of hemispheric involvement in fine/coarse semantic processing in native and non-native languages using a split visual field priming paradigm. Thirty native Hebrew speaking students made lexical decision judgments of Hebrew and English target words preceded by strongly, weakly, or unrelated primes. Results indicated that whereas for Hebrew pairs, priming effect for the weakly-related word pairs was obtained only for RH presented target words, for English pairs, no priming effect for the weakly-related pairs emerged for either LH or RH presented targets, suggesting that coarse semantic coding is much weaker for a non-native than native language. Copyright © 2012 Elsevier Inc. All rights reserved.
Differentiation of perceptual and semantic subsequent memory effects using an orthographic paradigm.
Kuo, Michael C C; Liu, Karen P Y; Ting, Kin Hung; Chan, Chetwyn C H
2012-11-27
This study aimed to differentiate perceptual and semantic encoding processes using subsequent memory effects (SMEs) elicited by the recognition of orthographs of single Chinese characters. Participants studied a series of Chinese characters perceptually (by inspecting orthographic components) or semantically (by determining the object making sounds), and then made studied or unstudied judgments during the recognition phase. Recognition performance in terms of d-prime measure in the semantic condition was higher, though not significant, than that of the perceptual condition. The between perceptual-semantic condition differences in SMEs at P550 and late positive component latencies (700-1000ms) were not significant in the frontal area. An additional analysis identified larger SME in the semantic condition during 600-1000ms in the frontal pole regions. These results indicate that coordination and incorporation of orthographic information into mental representation is essential to both task conditions. The differentiation was also revealed in earlier SMEs (perceptual>semantic) at N3 (240-360ms) latency, which is a novel finding. The left-distributed N3 was interpreted as more efficient processing of meaning with semantically learned characters. Frontal pole SMEs indicated strategic processing by executive functions, which would further enhance memory. Copyright © 2012 Elsevier B.V. All rights reserved.
The Influence of Task-Irrelevant Music on Language Processing: Syntactic and Semantic Structures
Hoch, Lisianne; Poulin-Charronnat, Benedicte; Tillmann, Barbara
2011-01-01
Recent research has suggested that music and language processing share neural resources, leading to new hypotheses about interference in the simultaneous processing of these two structures. The present study investigated the effect of a musical chord's tonal function on syntactic processing (Experiment 1) and semantic processing (Experiment 2) using a cross-modal paradigm and controlling for acoustic differences. Participants read sentences and performed a lexical decision task on the last word, which was, syntactically or semantically, expected or unexpected. The simultaneously presented (task-irrelevant) musical sequences ended on either an expected tonic or a less-expected subdominant chord. Experiment 1 revealed interactive effects between music-syntactic and linguistic-syntactic processing. Experiment 2 showed only main effects of both music-syntactic and linguistic-semantic expectations. An additional analysis over the two experiments revealed that linguistic violations interacted with musical violations, though not differently as a function of the type of linguistic violations. The present findings were discussed in light of currently available data on the processing of music as well as of syntax and semantics in language, leading to the hypothesis that resources might be shared for structural integration processes and sequencing. PMID:21713122
Gerfo, Emanuele Lo; Oliveri, Massimiliano; Torriero, Sara; Salerno, Silvia; Koch, Giacomo; Caltagirone, Carlo
2008-01-31
We investigated the differential role of two frontal regions in the processing of grammatical and semantic knowledge. Given the documented specificity of the prefrontal cortex for the grammatical class of verbs, and of the primary motor cortex for the semantic class of action words, we sought to investigate whether the prefrontal cortex is also sensitive to semantic effects, and whether the motor cortex is also sensitive to grammatical class effects. We used repetitive transcranial magnetic stimulation (rTMS) to suppress the excitability of a portion of left prefontal cortex (first experiment) and of the motor area (second experiment). In the first experiment we found that rTMS applied to the left prefrontal cortex delays the processing of action verbs' retrieval, but is not critical for retrieval of state verbs and state nouns. In the second experiment we found that rTMS applied to the left motor cortex delays the processing of action words, both name and verbs, while it is not critical for the processing of state words. These results support the notion that left prefrontal and motor cortex are involved in the process of action word retrieval. Left prefrontal cortex subserves processing of both grammatical and semantic information, whereas motor cortex contributes to the processing of semantic representation of action words without any involvement in the representation of grammatical categories.
Spatial and temporal features of superordinate semantic processing studied with fMRI and EEG.
Costanzo, Michelle E; McArdle, Joseph J; Swett, Bruce; Nechaev, Vladimir; Kemeny, Stefan; Xu, Jiang; Braun, Allen R
2013-01-01
The relationships between the anatomical representation of semantic knowledge in the human brain and the timing of neurophysiological mechanisms involved in manipulating such information remain unclear. This is the case for superordinate semantic categorization-the extraction of general features shared by broad classes of exemplars (e.g., living vs. non-living semantic categories). We proposed that, because of the abstract nature of this information, input from diverse input modalities (visual or auditory, lexical or non-lexical) should converge and be processed in the same regions of the brain, at similar time scales during superordinate categorization-specifically in a network of heteromodal regions, and late in the course of the categorization process. In order to test this hypothesis, we utilized electroencephalography and event related potentials (EEG/ERP) with functional magnetic resonance imaging (fMRI) to characterize subjects' responses as they made superordinate categorical decisions (living vs. non-living) about objects presented as visual pictures or auditory words. Our results reveal that, consistent with our hypothesis, during the course of superordinate categorization, information provided by these diverse inputs appears to converge in both time and space: fMRI showed that heteromodal areas of the parietal and temporal cortices are active during categorization of both classes of stimuli. The ERP results suggest that superordinate categorization is reflected as a late positive component (LPC) with a parietal distribution and long latencies for both stimulus types. Within the areas and times in which modality independent responses were identified, some differences between living and non-living categories were observed, with a more widespread spatial extent and longer latency responses for categorization of non-living items.
Spatial and temporal features of superordinate semantic processing studied with fMRI and EEG
Costanzo, Michelle E.; McArdle, Joseph J.; Swett, Bruce; Nechaev, Vladimir; Kemeny, Stefan; Xu, Jiang; Braun, Allen R.
2013-01-01
The relationships between the anatomical representation of semantic knowledge in the human brain and the timing of neurophysiological mechanisms involved in manipulating such information remain unclear. This is the case for superordinate semantic categorization—the extraction of general features shared by broad classes of exemplars (e.g., living vs. non-living semantic categories). We proposed that, because of the abstract nature of this information, input from diverse input modalities (visual or auditory, lexical or non-lexical) should converge and be processed in the same regions of the brain, at similar time scales during superordinate categorization—specifically in a network of heteromodal regions, and late in the course of the categorization process. In order to test this hypothesis, we utilized electroencephalography and event related potentials (EEG/ERP) with functional magnetic resonance imaging (fMRI) to characterize subjects' responses as they made superordinate categorical decisions (living vs. non-living) about objects presented as visual pictures or auditory words. Our results reveal that, consistent with our hypothesis, during the course of superordinate categorization, information provided by these diverse inputs appears to converge in both time and space: fMRI showed that heteromodal areas of the parietal and temporal cortices are active during categorization of both classes of stimuli. The ERP results suggest that superordinate categorization is reflected as a late positive component (LPC) with a parietal distribution and long latencies for both stimulus types. Within the areas and times in which modality independent responses were identified, some differences between living and non-living categories were observed, with a more widespread spatial extent and longer latency responses for categorization of non-living items. PMID:23847490
Marumo, Kohei; Takizawa, Ryu; Kinou, Masaru; Kawasaki, Shingo; Kawakubo, Yuki; Fukuda, Masato; Kasai, Kiyoto
2014-01-15
Thought disorder is one of the primary symptoms in schizophrenia, yet the neural correlates and related semantic processing abnormalities remain unclear. We aimed to investigate the relationship between functional prefrontal abnormalities and thought disorder in schizophrenia using 2 types of verbal fluency tasks: the letter fluency task (LFT) and the category fluency task (CFT). Fifty-six adult patients with schizophrenia and 56 healthy controls matched for age, gender, and IQ participated in the study. During completion of the 2 types of verbal fluency tasks, we measured oxy- and deoxy-hemoglobin concentration ([oxy-Hb] and [deoxy-Hb]) signal changes over a wide area of the bilateral prefrontal cortex, using a 52-channel near-infrared spectroscopy (NIRS) system. Thought disorder scores were evaluated using the positive and negative syndrome scale. CFT performance was significantly higher than LFT performance in both groups, while there was no significant difference in any prefrontal NIRS signal changes between the 2 tasks in either group. In both versions of verbal fluency task, healthy controls exhibited a significantly greater NIRS signal change than did patients with schizophrenia. On the CFT only, left ventrolateral prefrontal NIRS [deoxy-Hb] signals were significantly associated with thought disorder scores in patients with schizophrenia. Our results suggest that left ventrolateral prefrontal abnormalities in category fluency might be related to thought disorder in schizophrenia. This could lead to an improved understanding of the neural mechanisms within the left ventrolateral prefrontal cortex involved in mediating semantic processing, as well as the relationship between semantic processing abnormalities and thought disorder in schizophrenia. Copyright © 2013 Elsevier Inc. All rights reserved.
ERIC Educational Resources Information Center
Kuchinke, Lars; van der Meer, Elke; Krueger, Frank
2009-01-01
Conceptual knowledge of our world is represented in semantic memory in terms of concepts and semantic relations between concepts. We used functional magnetic resonance imaging (fMRI) to examine the cortical regions underlying the processing of sequential and taxonomic relations. Participants were presented verbal cues and performed three tasks:…
Complexity and Hemispheric Abilities: Evidence for a Differential Impact on Semantics and Phonology
ERIC Educational Resources Information Center
Tremblay, Tania; Monetta, Laura; Joanette, Yves
2009-01-01
The main goal of this study was to determine whether the phonological and semantic processing of words are similarly influenced by an increase in processing complexity. Thirty-six French-speaking young adults performed both semantic and phonological word judgment tasks, using a divided visual field procedure. The phonological complexity of words…
ERIC Educational Resources Information Center
Assaf, Michal; Jagannathan, Kanchana; Calhoun, Vince; Kraut, Michael; Hart, John, Jr.; Pearlson, Godfrey
2009-01-01
To explore the temporal sequence of, and the relationship between, the left and right hemispheres (LH and RH) during semantic memory (SM) processing we identified the neural networks involved in the performance of functional MRI semantic object retrieval task (SORT) using group independent component analysis (ICA) in 47 healthy individuals. SORT…
The Benefits of Sensorimotor Knowledge: Body-Object Interaction Facilitates Semantic Processing
ERIC Educational Resources Information Center
Siakaluk, Paul D.; Pexman, Penny M.; Sears, Christopher R.; Wilson, Kim; Locheed, Keri; Owen, William J.
2008-01-01
This article examined the effects of body-object interaction (BOI) on semantic processing. BOI measures perceptions of the ease with which a human body can physically interact with a word's referent. In Experiment 1, BOI effects were examined in 2 semantic categorization tasks (SCT) in which participants decided if words are easily imageable.…
ERIC Educational Resources Information Center
Hargreaves, Ian S.; White, Michelle; Pexman, Penny M.; Pittman, Dan; Goodyear, Brad G.
2012-01-01
Task effects in semantic processing were investigated by contrasting the neural activation associated with two semantic categorization tasks (SCT) using event-related fMRI. The two SCTs involved different decision categories: "is it an animal?" vs. "is it a concrete thing?" Participants completed both tasks and, across participants, the same core…
ERIC Educational Resources Information Center
Kamio, Yoko; Robins, Diana; Kelley, Elizabeth; Swainson, Brook; Fein, Deborah
2007-01-01
Although autism is associated with impaired language functions, the nature of semantic processing in high-functioning pervasive developmental disorders (HFPDD) without a history of early language delay has been debated. In this study, we aimed to examine whether the automatic lexical/semantic aspect of language is impaired or intact in these…
ERIC Educational Resources Information Center
Haebig, Eileen; Kaushanskaya, Margarita; Weismer, Susan Ellis
2015-01-01
Children with autism spectrum disorder (ASD) and specific language impairment (SLI) often have immature lexical-semantic knowledge; however, the organization of lexical-semantic knowledge is poorly understood. This study examined lexical processing in school-age children with ASD, SLI, and typical development, who were matched on receptive…
ERIC Educational Resources Information Center
Tivarus, Madalina E.; Hillier, Ashleigh; Schmalbrock, Petra; Beversdorf, David Q.
2008-01-01
We describe an fMRI experiment examining the functional connectivity (FC) between regions of the brain associated with semantic and phonological processing. We wished to explore whether L-Dopa administration affects the interaction between language network components in semantic and phonological categorization tasks, as revealed by FC. We…
Semantic Boost on Episodic Associations: An Empirically-Based Computational Model
ERIC Educational Resources Information Center
Silberman, Yaron; Bentin, Shlomo; Miikkulainen, Risto
2007-01-01
Words become associated following repeated co-occurrence episodes. This process might be further determined by the semantic characteristics of the words. The present study focused on how semantic and episodic factors interact in incidental formation of word associations. First, we found that human participants associate semantically related words…
Semantic Search of Web Services
ERIC Educational Resources Information Center
Hao, Ke
2013-01-01
This dissertation addresses semantic search of Web services using natural language processing. We first survey various existing approaches, focusing on the fact that the expensive costs of current semantic annotation frameworks result in limited use of semantic search for large scale applications. We then propose a vector space model based service…
What Do Graded Effects of Semantic Transparency Reveal about Morphological Processing?
ERIC Educational Resources Information Center
Feldman, Laurie Beth; Soltano, Emily G.; Pastizzo, Matthew J.; Francis, Sarah E.
2004-01-01
We examined the influence of semantic transparency on morphological facilitation in English in three lexical decision experiments. Decision latencies to visual targets (e.g., CASUALNESS) were faster after semantically transparent (e.g., CASUALLY) than semantically opaque (e.g., CASUALTY) primes whether primes were auditory and presented…
The Role of Simple Semantics in the Process of Artificial Grammar Learning
ERIC Educational Resources Information Center
Öttl, Birgit; Jäger, Gerhard; Kaup, Barbara
2017-01-01
This study investigated the effect of semantic information on artificial grammar learning (AGL). Recursive grammars of different complexity levels (regular language, mirror language, copy language) were investigated in a series of AGL experiments. In the with-semantics condition, participants acquired semantic information prior to the AGL…
Solbrig, Harold R; Chute, Christopher G
2012-01-01
Objective The objective of this study is to develop an approach to evaluate the quality of terminological annotations on the value set (ie, enumerated value domain) components of the common data elements (CDEs) in the context of clinical research using both unified medical language system (UMLS) semantic types and groups. Materials and methods The CDEs of the National Cancer Institute (NCI) Cancer Data Standards Repository, the NCI Thesaurus (NCIt) concepts and the UMLS semantic network were integrated using a semantic web-based framework for a SPARQL-enabled evaluation. First, the set of CDE-permissible values with corresponding meanings in external controlled terminologies were isolated. The corresponding value meanings were then evaluated against their NCI- or UMLS-generated semantic network mapping to determine whether all of the meanings fell within the same semantic group. Results Of the enumerated CDEs in the Cancer Data Standards Repository, 3093 (26.2%) had elements drawn from more than one UMLS semantic group. A random sample (n=100) of this set of elements indicated that 17% of them were likely to have been misclassified. Discussion The use of existing semantic web tools can support a high-throughput mechanism for evaluating the quality of large CDE collections. This study demonstrates that the involvement of multiple semantic groups in an enumerated value domain of a CDE is an effective anchor to trigger an auditing point for quality evaluation activities. Conclusion This approach produces a useful quality assurance mechanism for a clinical study CDE repository. PMID:22511016
Hoffman, Paul; Jefferies, Elizabeth; Ralph, Matthew A Lambon
2011-02-01
More efficient processing of high frequency (HF) words is a ubiquitous finding in healthy individuals, yet frequency effects are often small or absent in stroke aphasia. We propose that some patients fail to show the expected frequency effect because processing of HF words places strong demands on semantic control and regulation processes, counteracting the usual effect. This may occur because HF words appear in a wide range of linguistic contexts, each associated with distinct semantic information. This theory predicts that in extreme circumstances, patients with impaired semantic control should show an outright reversal of the normal frequency effect. To test this prediction, we tested two patients with impaired semantic control with a delayed repetition task that emphasised activation of semantic representations. By alternating HF and low frequency (LF) trials, we demonstrated a significant repetition advantage for LF words, principally because of perseverative errors in which patients produced the previous LF response in place of the HF target. These errors indicated that HF words were more weakly activated than LF words. We suggest that when presented with no contextual information, patients generate a weak and unstable pattern of semantic activation for HF words because information relating to many possible contexts and interpretations is activated. In contrast, LF words are associated with more stable patterns of activation because similar semantic information is activated whenever they are encountered. Copyright © 2011 Elsevier Ltd. All rights reserved.
Wright, Paul; Randall, Billi; Clarke, Alex; Tyler, Lorraine K
2015-09-01
The anterior temporal lobe (ATL) plays a prominent role in models of semantic knowledge, although it remains unclear how the specific subregions within the ATL contribute to semantic memory. Patients with neurodegenerative diseases, like semantic dementia, have widespread damage to the ATL thus making inferences about the relationship between anatomy and cognition problematic. Here we take a detailed anatomical approach to ask which substructures within the ATL contribute to conceptual processing, with the prediction that the perirhinal cortex (PRc) will play a critical role for concepts that are more semantically confusable. We tested two patient groups, those with and without damage to the PRc, across two behavioural experiments - picture naming and word-picture matching. For both tasks, we manipulated the degree of semantic confusability of the concepts. By contrasting the performance of the two groups, along with healthy controls, we show that damage to the PRc results in worse performance in processing concepts with higher semantic confusability across both experiments. Further by correlating the degree of damage across anatomically defined regions of interest with performance, we find that PRc damage is related to performance for concepts with increased semantic confusability. Our results show that the PRc supports a necessary and crucial neurocognitve function that enables fine-grained conceptual processes to take place through the resolution of semantic confusability. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.
Semantic Neighborhood Effects for Abstract versus Concrete Words
Danguecan, Ashley N.; Buchanan, Lori
2016-01-01
Studies show that semantic effects may be task-specific, and thus, that semantic representations are flexible and dynamic. Such findings are critical to the development of a comprehensive theory of semantic processing in visual word recognition, which should arguably account for how semantic effects may vary by task. It has been suggested that semantic effects are more directly examined using tasks that explicitly require meaning processing relative to those for which meaning processing is not necessary (e.g., lexical decision task). The purpose of the present study was to chart the processing of concrete versus abstract words in the context of a global co-occurrence variable, semantic neighborhood density (SND), by comparing word recognition response times (RTs) across four tasks varying in explicit semantic demands: standard lexical decision task (with non-pronounceable non-words), go/no-go lexical decision task (with pronounceable non-words), progressive demasking task, and sentence relatedness task. The same experimental stimulus set was used across experiments and consisted of 44 concrete and 44 abstract words, with half of these being low SND, and half being high SND. In this way, concreteness and SND were manipulated in a factorial design using a number of visual word recognition tasks. A consistent RT pattern emerged across tasks, in which SND effects were found for abstract (but not necessarily concrete) words. Ultimately, these findings highlight the importance of studying interactive effects in word recognition, and suggest that linguistic associative information is particularly important for abstract words. PMID:27458422
Semantic Neighborhood Effects for Abstract versus Concrete Words.
Danguecan, Ashley N; Buchanan, Lori
2016-01-01
Studies show that semantic effects may be task-specific, and thus, that semantic representations are flexible and dynamic. Such findings are critical to the development of a comprehensive theory of semantic processing in visual word recognition, which should arguably account for how semantic effects may vary by task. It has been suggested that semantic effects are more directly examined using tasks that explicitly require meaning processing relative to those for which meaning processing is not necessary (e.g., lexical decision task). The purpose of the present study was to chart the processing of concrete versus abstract words in the context of a global co-occurrence variable, semantic neighborhood density (SND), by comparing word recognition response times (RTs) across four tasks varying in explicit semantic demands: standard lexical decision task (with non-pronounceable non-words), go/no-go lexical decision task (with pronounceable non-words), progressive demasking task, and sentence relatedness task. The same experimental stimulus set was used across experiments and consisted of 44 concrete and 44 abstract words, with half of these being low SND, and half being high SND. In this way, concreteness and SND were manipulated in a factorial design using a number of visual word recognition tasks. A consistent RT pattern emerged across tasks, in which SND effects were found for abstract (but not necessarily concrete) words. Ultimately, these findings highlight the importance of studying interactive effects in word recognition, and suggest that linguistic associative information is particularly important for abstract words.
Must analysis of meaning follow analysis of form? A time course analysis
Feldman, Laurie B.; Milin, Petar; Cho, Kit W.; Moscoso del Prado Martín, Fermín; O’Connor, Patrick A.
2015-01-01
Many models of word recognition assume that processing proceeds sequentially from analysis of form to analysis of meaning. In the context of morphological processing, this implies that morphemes are processed as units of form prior to any influence of their meanings. Some interpret the apparent absence of differences in recognition latencies to targets (SNEAK) in form and semantically similar (sneaky-SNEAK) and in form similar and semantically dissimilar (sneaker-SNEAK) prime contexts at a stimulus onset asynchrony (SOA) of 48 ms as consistent with this claim. To determine the time course over which degree of semantic similarity between morphologically structured primes and their targets influences recognition in the forward masked priming variant of the lexical decision paradigm, we compared facilitation for the same targets after semantically similar and dissimilar primes across a range of SOAs (34–100 ms). The effect of shared semantics on recognition latency increased linearly with SOA when long SOAs were intermixed (Experiments 1A and 1B) and latencies were significantly faster after semantically similar than dissimilar primes at homogeneous SOAs of 48 ms (Experiment 2) and 34 ms (Experiment 3). Results limit the scope of form-then-semantics models of recognition and demonstrate that semantics influences even the very early stages of recognition. Finally, once general performance across trials has been accounted for, we fail to provide evidence for individual differences in morphological processing that can be linked to measures of reading proficiency. PMID:25852512
Must analysis of meaning follow analysis of form? A time course analysis.
Feldman, Laurie B; Milin, Petar; Cho, Kit W; Moscoso Del Prado Martín, Fermín; O'Connor, Patrick A
2015-01-01
Many models of word recognition assume that processing proceeds sequentially from analysis of form to analysis of meaning. In the context of morphological processing, this implies that morphemes are processed as units of form prior to any influence of their meanings. Some interpret the apparent absence of differences in recognition latencies to targets (SNEAK) in form and semantically similar (sneaky-SNEAK) and in form similar and semantically dissimilar (sneaker-SNEAK) prime contexts at a stimulus onset asynchrony (SOA) of 48 ms as consistent with this claim. To determine the time course over which degree of semantic similarity between morphologically structured primes and their targets influences recognition in the forward masked priming variant of the lexical decision paradigm, we compared facilitation for the same targets after semantically similar and dissimilar primes across a range of SOAs (34-100 ms). The effect of shared semantics on recognition latency increased linearly with SOA when long SOAs were intermixed (Experiments 1A and 1B) and latencies were significantly faster after semantically similar than dissimilar primes at homogeneous SOAs of 48 ms (Experiment 2) and 34 ms (Experiment 3). Results limit the scope of form-then-semantics models of recognition and demonstrate that semantics influences even the very early stages of recognition. Finally, once general performance across trials has been accounted for, we fail to provide evidence for individual differences in morphological processing that can be linked to measures of reading proficiency.
Visual search for verbal material in patients with obsessive-compulsive disorder.
Botta, Fabiano; Vibert, Nicolas; Harika-Germaneau, Ghina; Frasca, Mickaël; Rigalleau, François; Fakra, Eric; Ros, Christine; Rouet, Jean-François; Ferreri, Florian; Jaafari, Nematollah
2018-06-01
This study aimed at investigating attentional mechanisms in obsessive-compulsive disorder (OCD) by analysing how visual search processes are modulated by normal and obsession-related distracting information in OCD patients and whether these modulations differ from those observed in healthy people. OCD patients were asked to search for a target word within distractor words that could be orthographically similar to the target, semantically related to the target, semantically related to the most typical obsessions/compulsions observed in OCD patients, or unrelated to the target. Patients' performance and eye movements were compared with those of individually matched healthy controls. In controls, the distractors that were visually similar to the target mostly captured attention. Conversely, patients' attention was captured equally by all kinds of distractor words, whatever their similarity with the target, except obsession-related distractors that attracted patients' attention less than the other distractors. OCD had a major impact on the mostly subliminal mechanisms that guide attention within the search display, but had much less impact on the distractor rejection processes that take place when a distractor is fixated. Hence, visual search in OCD is characterized by abnormal subliminal, but not supraliminal, processing of obsession-related information and by an impaired ability to inhibit task-irrelevant inputs. Copyright © 2018 Elsevier B.V. All rights reserved.
Using music to study the evolution of cognitive mechanisms relevant to language.
Patel, Aniruddh D
2017-02-01
This article argues that music can be used in cross-species research to study the evolution of cognitive mechanisms relevant to spoken language. This is because music and language share certain cognitive processing mechanisms and because music offers specific advantages for cross-species research. Music has relatively simple building blocks (tones without semantic properties), yet these building blocks are combined into rich hierarchical structures that engage complex cognitive processing. I illustrate this point with regard to the processing of musical harmonic structure. Because the processing of musical harmonic structure has been shown to interact with linguistic syntactic processing in humans, it is of interest to know if other species can acquire implicit knowledge of harmonic structure through extended exposure to music during development (vs. through explicit training). I suggest that domestic dogs would be a good species to study in addressing this question.
Language Networks Associated with Computerized Semantic Indices
Pakhomov, Serguei V. S.; Jones, David T.; Knopman, David S.
2014-01-01
Tests of generative semantic verbal fluency are widely used to study organization and representation of concepts in the human brain. Previous studies demonstrated that clustering and switching behavior during verbal fluency tasks is supported by multiple brain mechanisms associated with semantic memory and executive control. Previous work relied on manual assessments of semantic relatedness between words and grouping of words into semantic clusters. We investigated a computational linguistic approach to measuring the strength of semantic relatedness between words based on latent semantic analysis of word co-occurrences in a subset of a large online encyclopedia. We computed semantic clustering indices and compared them to brain network connectivity measures obtained with task-free fMRI in a sample consisting of healthy participants and those differentially affected by cognitive impairment. We found that semantic clustering indices were associated with brain network connectivity in distinct areas including fronto-temporal, fronto-parietal and fusiform gyrus regions. This study shows that computerized semantic indices complement traditional assessments of verbal fluency to provide a more complete account of the relationship between brain and verbal behavior involved organization and retrieval of lexical information from memory. PMID:25315785
Life, Information, Entropy, and Time: Vehicles for Semantic Inheritance.
Crofts, Antony R
2007-01-01
Attempts to understand how information content can be included in an accounting of the energy flux of the biosphere have led to the conclusion that, in information transmission, one component, the semantic content, or "the meaning of the message," adds no thermodynamic burden over and above costs arising from coding, transmission and translation. In biology, semantic content has two major roles. For all life forms, the message of the genotype encoded in DNA specifies the phenotype, and hence the organism that is tested against the real world through the mechanisms of Darwinian evolution. For human beings, communication through language and similar abstractions provides an additional supra-phenotypic vehicle for semantic inheritance, which supports the cultural heritages around which civilizations revolve. The following three postulates provide the basis for discussion of a number of themes that demonstrate some important consequences. (i) Information transmission through either pathway has thermodynamic components associated with data storage and transmission. (ii) The semantic content adds no additional thermodynamic cost. (iii) For all semantic exchange, meaning is accessible only through translation and interpretation, and has a value only in context. (1) For both pathways of semantic inheritance, translational and copying machineries are imperfect. As a consequence both pathways are subject to mutation and to evolutionary pressure by selection. Recognition of semantic content as a common component allows an understanding of the relationship between genes and memes, and a reformulation of Universal Darwinism. (2) The emergent properties of life are dependent on a processing of semantic content. The translational steps allow amplification in complexity through combinatorial possibilities in space and time. Amplification depends on the increased potential for complexity opened by 3D interaction specificity of proteins, and on the selection of useful variants by evolution. The initial interpretational steps include protein synthesis, molecular recognition, and catalytic potential that facilitate structural and functional roles. Combinatorial possibilities are extended through interactions of increasing complexity in the temporal dimension. (3) All living things show a behavior that indicates awareness of time, or chronognosis. The ∼4 billion years of biological evolution have given rise to forms with increasing sophistication in sensory adaptation. This has been linked to the development of an increasing chronognostic range, and an associated increase in combinatorial complexity. (4) Development of a modern human phenotype and the ability to communicate through language, led to the development of archival storage, and invention of the basic skills, institutions and mechanisms that allowed the evolution of modern civilizations. Combinatorial amplification at the supra-phenotypical level arose from the invention of syntax, grammar, numbers, and the subsequent developments of abstraction in writing, algorithms, etc. The translational machineries of the human mind, the "mutation" of ideas therein, and the "conversations" of our social intercourse, have allowed a limited set of symbolic descriptors to evolve into an exponentially expanding semantic heritage. (5) The three postulates above open interesting epistemological questions. An understanding of topics such dualism, the élan vital, the status of hypothesis in science, memetics, the nature of consciousness, the role of semantic processing in the survival of societies, and Popper's three worlds, require recognition of an insubstantial component. By recognizing a necessary linkage between semantic content and a physical machinery, we can bring these perennial problems into the framework of a realistic philosophy. It is suggested, following Popper, that the ∼4 billion years of evolution of the biosphere represents an exploration of the nature of reality at the physicochemical level, which, together with the conscious extension of this exploration through science and culture, provides a firm epistemological underpinning for such a philosophy.
Impaired semantic inhibition during lexical ambiguity repetition in Parkinson's disease.
Copland, David A; Sefe, Gameli; Ashley, Jane; Hudson, Carrie; Chenery, Helen J
2009-09-01
Impairments of semantic processing and inhibition have been observed in Parkinson's disease (PD), however, the consequences of faulty meaning selection and suppression have not been considered in terms of subsequent lexical processing. The present study employed a lexical ambiguity repetition paradigm where the first presentation of an ambiguity paired with a target biasing its dominant or subordinate meaning (e.g., bank - money or bank - river) was followed after several intervening trials by a presentation of the same ambiguity paired with a different target that biases the same (congruent) or a different (incongruent) meaning to that biased on the first presentation. Meaning dominance (dominant or subordinate weaker meanings) and interstimulus interval (ISI) were manipulated. Analyses conducted on the second presentation indicated priming of congruent meanings and no priming for the incongruent meanings at both short and long ISIs in the healthy controls, consistent with suppression of meanings competing with the representation biased in the first presentation. In contrast, the PD group failed to dampen activation for the incongruent meaning at the long ISI when the first presentation was subordinate. This pattern is consistent with an impairment of meaning suppression which is observed under controlled processing conditions and varies as a function of meaning dominance of the first presentation. These findings further refine our understanding of lexical-semantic impairments in PD and suggest a mechanism that may contribute to discourse comprehension impairments in this population.
Kuperberg, Gina R; Delaney-Busch, Nathaniel; Fanucci, Kristina; Blackford, Trevor
2018-01-01
Lexico-semantic disturbances are considered central to schizophrenia. Clinically, their clearest manifestation is in language production. However, most studies probing their underlying mechanisms have used comprehension or categorization tasks. Here, we probed automatic semantic activity prior to language production in schizophrenia using event-related potentials (ERPs). 19 people with schizophrenia and 16 demographically-matched healthy controls named target pictures that were very quickly preceded by masked prime words. To probe automatic semantic activity prior to production, we measured the N400 ERP component evoked by these targets. To determine the origin of any automatic semantic abnormalities, we manipulated the type of relationship between prime and target such that they overlapped in (a) their semantic features (semantically related, e.g. "cake" preceding a < picture of a pie >, (b) their initial phonemes (phonemically related, e.g. "stomach" preceding a < picture of a starfish >), or (c) both their semantic features and their orthographic/phonological word form (identity related, e.g. "socks" preceding a < picture of socks >). For each of these three types of relationship, the same targets were paired with unrelated prime words (counterbalanced across lists). We contrasted ERPs and naming times to each type of related target with its corresponding unrelated target. People with schizophrenia showed abnormal N400 modulation prior to naming identity related (versus unrelated) targets: whereas healthy control participants produced a smaller amplitude N400 to identity related than unrelated targets, patients showed the opposite pattern, producing a larger N400 to identity related than unrelated targets. This abnormality was specific to the identity related targets. Just like healthy control participants, people with schizophrenia produced a smaller N400 to semantically related than to unrelated targets, and showed no difference in the N400 evoked by phonemically related and unrelated targets. There were no differences between the two groups in the pattern of naming times across conditions. People with schizophrenia can show abnormal neural activity associated with automatic semantic processing prior to language production. The specificity of this abnormality to the identity related targets suggests that that, rather than arising from abnormalities of either semantic features or lexical form alone, it may stem from disruptions of mappings (connections) between the meaning of words and their form.
Stites, Mallory C.; Federmeier, Kara D.; Stine-Morrow, Elizabeth A. L.
2013-01-01
Eye-tracking was used to investigate how younger and older (60+) adults use syntactic and semantic information to disambiguate noun/verb (NV) homographs (e.g. park). In event-related potential work using the same materials, Lee and Federmeier (2009, 2011) found that young adults elicited a sustained frontal negativity to NV-homographs when only syntactic cues were available (i.e., in syntactic prose); this effect was eliminated by semantic constraints. The negativity was only present in older adults with high verbal fluency. The current study shows parallel findings: young adults exhibit inflated first fixation durations to NV-homographs in syntactic prose, but not semantically congruent sentences. This effect is absent in older adults as a group. Verbal fluency modulates the effect in both age groups: high fluency is associated with larger first fixation effects in syntactic prose. Older, but not younger, adults also show significantly increased rereading of the NV-homographs in syntactic prose. Verbal fluency modulates this effect as well: high fluency is associated with a reduced tendency to reread, regardless of age. This relationship suggests a tradeoff between initial and downstream processing costs for ambiguity during natural reading. Together, the eye-tracking and ERP data suggest that effortful meaning selection recruits mechanisms important for suppressing contextually inappropriate meanings, which also slow eye movements. Efficacy of fronto-temporal circuitry, as captured by verbal fluency, predicts the success of engaging these mechanisms in both young and older adults. Failure to recruit these processes requires compensatory rereading or leads to comprehension failures (Lee & Federmeier, 2012). PMID:23687920
Distributed semantic networks and CLIPS
NASA Technical Reports Server (NTRS)
Snyder, James; Rodriguez, Tony
1991-01-01
Semantic networks of frames are commonly used as a method of reasoning in many problems. In most of these applications the semantic network exists as a single entity in a single process environment. Advances in workstation hardware provide support for more sophisticated applications involving multiple processes, interacting in a distributed environment. In these applications the semantic network may well be distributed over several concurrently executing tasks. This paper describes the design and implementation of a frame based, distributed semantic network in which frames are accessed both through C Language Integrated Production System (CLIPS) expert systems and procedural C++ language programs. The application area is a knowledge based, cooperative decision making model utilizing both rule based and procedural experts.
The timing of anterior temporal lobe involvement in semantic processing.
Jackson, Rebecca L; Lambon Ralph, Matthew A; Pobric, Gorana
2015-07-01
Despite indications that regions within the anterior temporal lobe (ATL) might make a crucial contribution to pan-modal semantic representation, to date there have been no investigations of when during semantic processing the ATL plays a critical role. To test the timing of the ATL involvement in semantic processing, we studied the effect of double-pulse TMS on behavioral responses in semantic and difficulty-matched control tasks. Chronometric TMS was delivered over the left ATL (10 mm from the tip of the temporal pole along the middle temporal gyrus). During each trial, two pulses of TMS (40 msec apart) were delivered either at baseline (before stimulus presentation) or at one of the experimental time points 100, 250, 400, and 800 msec poststimulus onset. A significant disruption to performance was identified from 400 msec on the semantic task but not on the control assessment. Our results not only reinforce the key role of the left ATL in semantic representation but also indicate that its contribution is especially important around 400 msec poststimulus onset. Together, these facts suggest that the ATL may be one of the neural sources of the N400 ERP component.
Remembering the Important Things: Semantic Importance in Stream Reasoning
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yan, Rui; Greaves, Mark T.; Smith, William P.
Reasoning and querying over data streams rely on the abil- ity to deliver a sequence of stream snapshots to the processing algo- rithms. These snapshots are typically provided using windows as views into streams and associated window management strategies. Generally, the goal of any window management strategy is to preserve the most im- portant data in the current window and preferentially evict the rest, so that the retained data can continue to be exploited. A simple timestamp- based strategy is rst-in-rst-out (FIFO), in which items are replaced in strict order of arrival. All timestamp-based strategies implicitly assume that a temporalmore » ordering reliably re ects importance to the processing task at hand, and thus that window management using timestamps will maximize the ability of the processing algorithms to deliver accurate interpretations of the stream. In this work, we explore a general no- tion of semantic importance that can be used for window management for streams of RDF data using semantically-aware processing algorithms like deduction or semantic query. Semantic importance exploits the infor- mation carried in RDF and surrounding ontologies for ranking window data in terms of its likely contribution to the processing algorithms. We explore the general semantic categories of query contribution, prove- nance, and trustworthiness, as well as the contribution of domain-specic ontologies. We describe how these categories behave using several con- crete examples. Finally, we consider how a stream window management strategy based on semantic importance could improve overall processing performance, especially as available window sizes decrease.« less
A Comparison of Five FMRI Protocols for Mapping Speech Comprehension Systems
Binder, Jeffrey R.; Swanson, Sara J.; Hammeke, Thomas A.; Sabsevitz, David S.
2008-01-01
Aims Many fMRI protocols for localizing speech comprehension have been described, but there has been little quantitative comparison of these methods. We compared five such protocols in terms of areas activated, extent of activation, and lateralization. Methods FMRI BOLD signals were measured in 26 healthy adults during passive listening and active tasks using words and tones. Contrasts were designed to identify speech perception and semantic processing systems. Activation extent and lateralization were quantified by counting activated voxels in each hemisphere for each participant. Results Passive listening to words produced bilateral superior temporal activation. After controlling for pre-linguistic auditory processing, only a small area in the left superior temporal sulcus responded selectively to speech. Active tasks engaged an extensive, bilateral attention and executive processing network. Optimal results (consistent activation and strongly lateralized pattern) were obtained by contrasting an active semantic decision task with a tone decision task. There was striking similarity between the network of brain regions activated by the semantic task and the network of brain regions that showed task-induced deactivation, suggesting that semantic processing occurs during the resting state. Conclusions FMRI protocols for mapping speech comprehension systems differ dramatically in pattern, extent, and lateralization of activation. Brain regions involved in semantic processing were identified only when an active, non-linguistic task was used as a baseline, supporting the notion that semantic processing occurs whenever attentional resources are not controlled. Identification of these lexical-semantic regions is particularly important for predicting language outcome in patients undergoing temporal lobe surgery. PMID:18513352
How Semantic Radicals in Chinese characters Facilitate Hierarchical Category-Based Induction.
Wang, Xiaoxi; Ma, Xie; Tao, Yun; Tao, Yachen; Li, Hong
2018-04-03
Prior studies indicate that the semantic radical in Chinese characters contains category information that can support the independent retrieval of category information through the lexical network to the conceptual network. Inductive reasoning relies on category information; thus, semantic radicals may influence inductive reasoning. As most natural concepts are hierarchically structured in the human brain, this study examined how semantic radicals impact inductive reasoning for hierarchical concepts. The study used animal and plant nouns, organized in basic, superordinate, and subordinate levels; half had a semantic radical and half did not. Eighteen participants completed an inductive reasoning task. Behavioural and event-related potential (ERP) data were collected. The behavioural results showed that participants reacted faster and more accurately in the with-semantic-radical condition than in the without-semantic-radical condition. For the ERPs, differences between the conditions were found, and these differences lasted from the very early cognitive processing stage (i.e., the N1 time window) to the relatively late processing stages (i.e., the N400 and LPC time windows). Semantic radicals can help to distinguish the hierarchies earlier (in the N400 period) than characters without a semantic radical (in the LPC period). These results provide electrophysiological evidence that semantic radicals may improve sensitivity to distinguish between hierarchical concepts.
2014-01-01
Background The processing of verbal fluency tasks relies on the coordinated activity of a number of brain areas, particularly in the frontal and temporal lobes of the left hemisphere. Recent studies using functional magnetic resonance imaging (fMRI) to study the neural networks subserving verbal fluency functions have yielded divergent results especially with respect to a parcellation of the inferior frontal gyrus for phonemic and semantic verbal fluency. We conducted a coordinate-based activation likelihood estimation (ALE) meta-analysis on brain activation during the processing of phonemic and semantic verbal fluency tasks involving 28 individual studies with 490 healthy volunteers. Results For phonemic as well as for semantic verbal fluency, the most prominent clusters of brain activation were found in the left inferior/middle frontal gyrus (LIFG/MIFG) and the anterior cingulate gyrus. BA 44 was only involved in the processing of phonemic verbal fluency tasks, BA 45 and 47 in the processing of phonemic and semantic fluency tasks. Conclusions Our comparison of brain activation during the execution of either phonemic or semantic verbal fluency tasks revealed evidence for spatially different activation in BA 44, but not other regions of the LIFG/LMFG (BA 9, 45, 47) during phonemic and semantic verbal fluency processing. PMID:24456150
Gremillion, Monica L; Martel, Michelle M
2012-11-01
ADHD is associated with academic underachievement, but it remains unclear what mechanism accounts for this association. Semantic language is an underexplored mechanism that provides a developmental explanation for this association. The present study will examine whether semantic language deficits explain the association between ADHD and reading and mathematics underachievement, taking into account alternative explanations for associations, including verbal working memory (WM) impairments, as well as specificity of effects to inattentive and hyperactive-impulsive ADHD symptom domains. Participants in this cross-sectional study were 546 children (54 % male) ages six to twelve (M = 9.77, SD = 1.49). ADHD symptoms were measured via maternal and teacher report during structured interviews and on standardized rating forms. Children completed standardized semantic language, verbal WM, and academic testing. Semantic language fully mediated the ADHD-reading achievement association and partially mediated the ADHD-mathematics achievement association. Verbal WM also partially mediated the ADHD-mathematics association but did not mediate the ADHD-reading achievement association. Results generalized across inattentive and hyperactive-impulsive ADHD symptom domains. Semantic language explained the association between ADHD and reading underachievement and partially explained the association between ADHD and mathematics underachievement. Together, language impairment and WM fully explained the association between ADHD and reading underachievement, in line with developmental models suggesting that language and WM conjointly influence the development of attention and subsequent academic achievement. This work has implication for the development of tailored interventions for academic underachievement in children with ADHD.
E-Government Goes Semantic Web: How Administrations Can Transform Their Information Processes
NASA Astrophysics Data System (ADS)
Klischewski, Ralf; Ukena, Stefan
E-government applications and services are built mainly on access to, retrieval of, integration of, and delivery of relevant information to citizens, businesses, and administrative users. In order to perform such information processing automatically through the Semantic Web,1 machine-readable2 enhancements of web resources are needed, based on the understanding of the content and context of the information in focus. While these enhancements are far from trivial to produce, administrations in their role of information and service providers so far find little guidance on how to migrate their web resources and enable a new quality of information processing; even research is still seeking best practices. Therefore, the underlying research question of this chapter is: what are the appropriate approaches which guide administrations in transforming their information processes toward the Semantic Web? In search for answers, this chapter analyzes the challenges and possible solutions from the perspective of administrations: (a) the reconstruction of the information processing in the e-government in terms of how semantic technologies must be employed to support information provision and consumption through the Semantic Web; (b) the required contribution to the transformation is compared to the capabilities and expectations of administrations; and (c) available experience with the steps of transformation are reviewed and discussed as to what extent they can be expected to successfully drive the e-government to the Semantic Web. This research builds on studying the case of Schleswig-Holstein, Germany, where semantic technologies have been used within the frame of the Access-eGov3 project in order to semantically enhance electronic service interfaces with the aim of providing a new way of accessing and combining e-government services.
Hill, Holger; Ott, Friederike; Weisbrod, Matthias
2005-06-01
In a previous semantic priming study, we found a semantic distance effect on the lexical-decision-related P300 when SOA was short (150 ms) only, but no different RT and N400 priming effects between short and long (700 ms) SOAs. To investigate this further, we separated priming from lexical decision, using a delayed lexical decision in the present study. In the short SOA only, primed targets evoked an early peaking (approximately 480 ms) P300-like component, probably because the subject detected the semantic relationship implicitly. We hypothesize that in tasks requiring an immediate lexical decision, this early P300 and the later lexical decision P300 (approximately 600 ms) are additive. Secondly, we found both a direct and an indirect priming effect for both SOAs for the ERP amplitude of the N400 time window. However the N400 component itself was considerably larger in the long SOA than in the short SOA. We interpreted this finding as an ERP correlate for deeper semantic processing in the long SOA, due to increased attention that was provoked by the use of pseudoword primes. In contrast, in the short SOA, subjects might have used a shallowed semantic processing. N400, P300, and RTs are sensitive to semantic priming-but the modulation patterns are not consistent. This raises the question as to which variable reflects an immediate physiological correlate of semantic priming, and which variable reflects co-occurring processes associated with semantic priming.
Ludersdorfer, Philipp; Wimmer, Heinz; Richlan, Fabio; Schurz, Matthias; Hutzler, Florian; Kronbichler, Martin
2016-01-01
The present fMRI study investigated the hypothesis that activation of the left ventral occipitotemporal cortex (vOT) in response to auditory words can be attributed to lexical orthographic rather than lexico-semantic processing. To this end, we presented auditory words in both an orthographic ("three or four letter word?") and a semantic ("living or nonliving?") task. In addition, a auditory control condition presented tones in a pitch evaluation task. The results showed that the left vOT exhibited higher activation for orthographic relative to semantic processing of auditory words with a peak in the posterior part of vOT. Comparisons to the auditory control condition revealed that orthographic processing of auditory words elicited activation in a large vOT cluster. In contrast, activation for semantic processing was only weak and restricted to the middle part vOT. We interpret our findings as speaking for orthographic processing in left vOT. In particular, we suggest that activation in left middle vOT can be attributed to accessing orthographic whole-word representations. While activation of such representations was experimentally ascertained in the orthographic task, it might have also occurred automatically in the semantic task. Activation in the more posterior vOT region, on the other hand, may reflect the generation of explicit images of word-specific letter sequences required by the orthographic but not the semantic task. In addition, based on cross-modal suppression, the finding of marked deactivations in response to the auditory tones is taken to reflect the visual nature of representations and processes in left vOT. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.
ERIC Educational Resources Information Center
Nobre, Alexandre de Pontes; de Salles, Jerusa Fumagalli
2016-01-01
The aim of this study was to investigate relations between lexical-semantic processing and two components of reading: visual word recognition and reading comprehension. Sixty-eight children from private schools in Porto Alegre, Brazil, from 7 to 12 years, were evaluated. Reading was assessed with a word/nonword reading task and a reading…
The Neural Correlates of Infant and Adult Goal Prediction: Evidence for Semantic Processing Systems
ERIC Educational Resources Information Center
Reid, Vincent M.; Hoehl, Stefanie; Grigutsch, Maren; Groendahl, Anna; Parise, Eugenio; Striano, Tricia
2009-01-01
The sequential nature of action ensures that an individual can anticipate the conclusion of an observed action via the use of semantic rules. The semantic processing of language and action has been linked to the N400 component of the event-related potential (ERP). The authors developed an ERP paradigm in which infants and adults observed simple…
USDA-ARS?s Scientific Manuscript database
Studies comparing child cognitive development and brain activity during cognitive functions between children who were fed breast milk (BF), milk formula (MF), or soy formula (SF) have not been reported. We recorded event-related scalp potentials reflecting semantic processing (N400 ERP) from 20 homo...
Semantic Richness and Word Learning in Children with Autism Spectrum Disorder
ERIC Educational Resources Information Center
Gladfelter, Allison; Goffman, Lisa
2018-01-01
Semantically rich learning contexts facilitate semantic, phonological, and articulatory aspects of word learning in children with typical development (TD). However, because children with autism spectrum disorder (ASD) show differences at each of these processing levels, it is unclear whether they will benefit from semantic cues in the same manner…
Auditory Distraction in Semantic Memory: A Process-Based Approach
ERIC Educational Resources Information Center
Marsh, John E.; Hughes, Robert W.; Jones, Dylan M.
2008-01-01
Five experiments demonstrate auditory-semantic distraction in tests of memory for semantic category-exemplars. The effects of irrelevant sound on category-exemplar recall are shown to be functionally distinct from those found in the context of serial short-term memory by showing sensitivity to: The lexical-semantic, rather than acoustic,…
Influences of Semantic and Prosodic Cues on Word Repetition and Categorization in Autism
ERIC Educational Resources Information Center
Singh, Leher; Harrow, MariLouise S.
2014-01-01
Purpose: To investigate sensitivity to prosodic and semantic cues to emotion in individuals with high-functioning autism (HFA). Method: Emotional prosody and semantics were independently manipulated to assess the relative influence of prosody versus semantics on speech processing. A sample of 10-year-old typically developing children (n = 10) and…
ERIC Educational Resources Information Center
Nesic, Sasa; Gasevic, Dragan; Jazayeri, Mehdi; Landoni, Monica
2011-01-01
Semantic web technologies have been applied to many aspects of learning content authoring including semantic annotation, semantic search, dynamic assembly, and personalization of learning content. At the same time, social networking services have started to play an important role in the authoring process by supporting authors' collaborative…
Henry, Maya L; Beeson, Pélagie M; Alexander, Gene E; Rapcsak, Steven Z
2012-02-01
Connectionist theories of language propose that written language deficits arise as a result of damage to semantic and phonological systems that also support spoken language production and comprehension, a view referred to as the "primary systems" hypothesis. The objective of the current study was to evaluate the primary systems account in a mixed group of individuals with primary progressive aphasia (PPA) by investigating the relation between measures of nonorthographic semantic and phonological processing and written language performance and by examining whether common patterns of cortical atrophy underlie impairments in spoken versus written language domains. Individuals with PPA and healthy controls were administered a language battery, including assessments of semantics, phonology, reading, and spelling. Voxel-based morphometry was used to examine the relation between gray matter volumes and language measures within brain regions previously implicated in semantic and phonological processing. In accordance with the primary systems account, our findings indicate that spoken language performance is strongly predictive of reading/spelling profile in individuals with PPA and suggest that common networks of critical left hemisphere regions support central semantic and phonological processes recruited for spoken and written language.
Shimotake, Akihiro; Matsumoto, Riki; Ueno, Taiji; Kunieda, Takeharu; Saito, Satoru; Hoffman, Paul; Kikuchi, Takayuki; Fukuyama, Hidenao; Miyamoto, Susumu; Takahashi, Ryosuke; Ikeda, Akio; Lambon Ralph, Matthew A.
2015-01-01
Semantic memory is a crucial higher cortical function that codes the meaning of objects and words, and when impaired after neurological damage, patients are left with significant disability. Investigations of semantic dementia have implicated the anterior temporal lobe (ATL) region, in general, as crucial for multimodal semantic memory. The potentially crucial role of the ventral ATL subregion has been emphasized by recent functional neuroimaging studies, but the necessity of this precise area has not been selectively tested. The implantation of subdural electrode grids over this subregion, for the presurgical assessment of patients with partial epilepsy or brain tumor, offers the dual yet rare opportunities to record cortical local field potentials while participants complete semantic tasks and to stimulate the functionally identified regions in the same participants to evaluate the necessity of these areas in semantic processing. Across 6 patients, and utilizing a variety of semantic assessments, we evaluated and confirmed that the anterior fusiform/inferior temporal gyrus is crucial in multimodal, receptive, and expressive, semantic processing. PMID:25491206
Coronel, Jason C; Federmeier, Kara D
2016-04-01
There is growing recognition that some important forms of long-term memory are difficult to classify into one of the well-studied memory subtypes. One example is personal semantics. Like the episodes that are stored as part of one's autobiography, personal semantics is linked to an individual, yet, like general semantic memory, it is detached from a specific encoding context. Access to general semantics elicits an electrophysiological response known as the N400, which has been characterized across three decades of research; surprisingly, this response has not been fully examined in the context of personal semantics. In this study, we assessed responses to congruent and incongruent statements about people's own, personal preferences. We found that access to personal preferences elicited N400 responses, with congruency effects that were similar in latency and distribution to those for general semantic statements elicited from the same participants. These results suggest that the processing of personal and general semantics share important functional and neurobiological features. Copyright © 2016 Elsevier Ltd. All rights reserved.
Implicit and explicit forgetting: when is gist remembered?
Dorfman, J; Mandler, G
1994-08-01
Recognition (YES/NO) and stem completion (cued: complete with a word from the list; and uncued: complete with the first word that comes to mind) were tested following either semantic or non-semantic processing of a categorized input list. Item/instance information was tested by contrasting target items from the input list with new items that were categorically related to them; gist/categorical information was tested by comparing target items semantically related to the input items with unrelated new items. For both recognition and stem completion, regardless of initial processing condition, item information decayed rapidly over a period of one week. Gist information was maintained over the same period when initial processing was semantic but only in the cued condition for completion. These results are discussed in terms of dual process theory, which postulates activation/integration of a representation as primarily relevant to implicit item information and elaboration of a representation as mainly relevant to semantic (i.e. categorical) information.
Soshi, Takahiro; Nakajima, Heizo; Hagiwara, Hiroko
2016-10-01
Static knowledge about the grammar of a natural language is represented in the cortico-subcortical system. However, the differences in dynamic verbal processing under different cognitive conditions are unclear. To clarify this, we conducted an electrophysiological experiment involving a semantic priming paradigm in which semantically congruent or incongruent word sequences (prime nouns-target verbs) were randomly presented. We examined the event-related brain potentials that occurred in response to congruent and incongruent target words that were preceded by primes with or without grammatical case markers. The two participant groups performed either the shallow (lexical judgment) or deep (direct semantic judgment) semantic tasks. We hypothesized that, irrespective of the case markers, the congruent targets would reduce centro-posterior N400 activities under the deep semantic condition, which induces selective attention to the semantic relatedness of content words. However, the same congruent targets with correct case markers would reduce lateralized negativity under the shallow semantic condition because grammatical case markers are related to automatic structural integration under semantically unattended conditions. We observed that congruent targets (e.g., 'open') that were preceded by primes with congruent case markers (e.g., 'shutter-object case') reduced lateralized negativity under the shallow semantic condition. In contrast, congruent targets, irrespective of case markers, consistently yielded N400 reductions under the deep semantic condition. To summarize, human neural verbal processing differed in response to the same grammatical markers in the same verbal expressions under semantically attended or unattended conditions.
Semantic Congruence Accelerates the Onset of the Neural Signals of Successful Memory Encoding.
Packard, Pau A; Rodríguez-Fornells, Antoni; Bunzeck, Nico; Nicolás, Berta; de Diego-Balaguer, Ruth; Fuentemilla, Lluís
2017-01-11
As the stream of experience unfolds, our memory system rapidly transforms current inputs into long-lasting meaningful memories. A putative neural mechanism that strongly influences how input elements are transformed into meaningful memory codes relies on the ability to integrate them with existing structures of knowledge or schemas. However, it is not yet clear whether schema-related integration neural mechanisms occur during online encoding. In the current investigation, we examined the encoding-dependent nature of this phenomenon in humans. We showed that actively integrating words with congruent semantic information provided by a category cue enhances memory for words and increases false recall. The memory effect of such active integration with congruent information was robust, even with an interference task occurring right after each encoding word list. In addition, via electroencephalography, we show in 2 separate studies that the onset of the neural signals of successful encoding appeared early (∼400 ms) during the encoding of congruent words. That the neural signals of successful encoding of congruent and incongruent information followed similarly ∼200 ms later suggests that this earlier neural response contributed to memory formation. We propose that the encoding of events that are congruent with readily available contextual semantics can trigger an accelerated onset of the neural mechanisms, supporting the integration of semantic information with the event input. This faster onset would result in a long-lasting and meaningful memory trace for the event but, at the same time, make it difficult to distinguish it from plausible but never encoded events (i.e., related false memories). Conceptual or schema congruence has a strong influence on long-term memory. However, the question of whether schema-related integration neural mechanisms occur during online encoding has yet to be clarified. We investigated the neural mechanisms reflecting how the active integration of words with congruent semantic categories enhances memory for words and increases false recall of semantically related words. We analyzed event-related potentials during encoding and showed that the onset of the neural signals of successful encoding appeared early (∼400 ms) during the encoding of congruent words. Our findings indicate that congruent events can trigger an accelerated onset of neural encoding mechanisms supporting the integration of semantic information with the event input. Copyright © 2017 the authors 0270-6474/17/370291-11$15.00/0.
Evolving Agents: Communication and Cognition
2005-06-01
systems [11] and the first Chomsky ideas concerning mechanisms of language grammar related to deep structure [12] encountered CC of rules. Model-based...Perennial (2000) 3. Jackendoff, R.: Foundations of Language: Brain, Meaning, Grammar , Evolution. Oxford University Press, New York, NY (2002) 4. Pinker, S... University Press, Princeton, NJ (1961) 11. Minsky, M.L.: Semantic Information Processing. The MIT Press, Cambridge, MA (1968) 12. Chomsky , N
An fMRI study of semantic processing in men with schizophrenia
Kubicki, M.; McCarley, R.W.; Nestor, P.G.; Huh, T.; Kikinis, R.; Shenton, M.E.; Wible, C.G.
2009-01-01
As a means toward understanding the neural bases of schizophrenic thought disturbance, we examined brain activation patterns in response to semantically and superficially encoded words in patients with schizophrenia. Nine male schizophrenic and 9 male control subjects were tested in a visual levels of processing (LOP) task first outside the magnet and then during the fMRI scanning procedures (using a different set of words). During the experiments visual words were presented under two conditions. Under the deep, semantic encoding condition, subjects made semantic judgments as to whether the words were abstract or concrete. Under the shallow, nonsemantic encoding condition, subjects made perceptual judgments of the font size (uppercase/lowercase) of the presented words. After performance of the behavioral task, a recognition test was used to assess the depth of processing effect, defined as better performance for semantically encoded words than for perceptually encoded words. For the scanned version only, the words for both conditions were repeated in order to assess repetition-priming effects. Reaction times were assessed in both testing scenarios. Both groups showed the expected depth of processing effect for recognition, and control subjects showed the expected increased activation of the left inferior prefrontal cortex (LIPC) under semantic encoding relative to perceptual encoding conditions as well as repetition priming for semantic conditions only. In contrast, schizophrenics showed similar patterns of fMRI activation regardless of condition. Most striking in relation to controls, patients showed decreased LIFC activation concurrent with increased left superior temporal gyrus activation for semantic encoding versus shallow encoding. Furthermore, schizophrenia subjects did not show the repetition priming effect, either behaviorally or as a decrease in LIPC activity. In patients with schizophrenia, LIFC underactivation and left superior temporal gyrus overactivation for semantically encoded words may reflect a disease-related disruption of a distributed frontal temporal network that is engaged in the representation and processing of meaning of words, text, and discourse and which may underlie schizophrenic thought disturbance. PMID:14683698
Ji, Xiaonan; Ritter, Alan; Yen, Po-Yin
2017-05-01
Systematic Reviews (SRs) are utilized to summarize evidence from high quality studies and are considered the preferred source of evidence-based practice (EBP). However, conducting SRs can be time and labor intensive due to the high cost of article screening. In previous studies, we demonstrated utilizing established (lexical) article relationships to facilitate the identification of relevant articles in an efficient and effective manner. Here we propose to enhance article relationships with background semantic knowledge derived from Unified Medical Language System (UMLS) concepts and ontologies. We developed a pipelined semantic concepts representation process to represent articles from an SR into an optimized and enriched semantic space of UMLS concepts. Throughout the process, we leveraged concepts and concept relations encoded in biomedical ontologies (SNOMED-CT and MeSH) within the UMLS framework to prompt concept features of each article. Article relationships (similarities) were established and represented as a semantic article network, which was readily applied to assist with the article screening process. We incorporated the concept of active learning to simulate an interactive article recommendation process, and evaluated the performance on 15 completed SRs. We used work saved over sampling at 95% recall (WSS95) as the performance measure. We compared the WSS95 performance of our ontology-based semantic approach to existing lexical feature approaches and corpus-based semantic approaches, and found that we had better WSS95 in most SRs. We also had the highest average WSS95 of 43.81% and the highest total WSS95 of 657.18%. We demonstrated using ontology-based semantics to facilitate the identification of relevant articles for SRs. Effective concepts and concept relations derived from UMLS ontologies can be utilized to establish article semantic relationships. Our approach provided a promising performance and can easily apply to any SR topics in the biomedical domain with generalizability. Copyright © 2017 Elsevier Inc. All rights reserved.
An fMRI study of semantic processing in men with schizophrenia.
Kubicki, M; McCarley, R W; Nestor, P G; Huh, T; Kikinis, R; Shenton, M E; Wible, C G
2003-12-01
As a means toward understanding the neural bases of schizophrenic thought disturbance, we examined brain activation patterns in response to semantically and superficially encoded words in patients with schizophrenia. Nine male schizophrenic and 9 male control subjects were tested in a visual levels of processing (LOP) task first outside the magnet and then during the fMRI scanning procedures (using a different set of words). During the experiments visual words were presented under two conditions. Under the deep, semantic encoding condition, subjects made semantic judgments as to whether the words were abstract or concrete. Under the shallow, nonsemantic encoding condition, subjects made perceptual judgments of the font size (uppercase/lowercase) of the presented words. After performance of the behavioral task, a recognition test was used to assess the depth of processing effect, defined as better performance for semantically encoded words than for perceptually encoded words. For the scanned version only, the words for both conditions were repeated in order to assess repetition-priming effects. Reaction times were assessed in both testing scenarios. Both groups showed the expected depth of processing effect for recognition, and control subjects showed the expected increased activation of the left inferior prefrontal cortex (LIPC) under semantic encoding relative to perceptual encoding conditions as well as repetition priming for semantic conditions only. In contrast, schizophrenics showed similar patterns of fMRI activation regardless of condition. Most striking in relation to controls, patients showed decreased LIFC activation concurrent with increased left superior temporal gyrus activation for semantic encoding versus shallow encoding. Furthermore, schizophrenia subjects did not show the repetition priming effect, either behaviorally or as a decrease in LIPC activity. In patients with schizophrenia, LIFC underactivation and left superior temporal gyrus overactivation for semantically encoded words may reflect a disease-related disruption of a distributed frontal temporal network that is engaged in the representation and processing of meaning of words, text, and discourse and which may underlie schizophrenic thought disturbance.
Dew, Ilana T. Z.; Ritchey, Maureen; LaBar, Kevin S.; Cabeza, Roberto
2014-01-01
A fundamental idea in memory research is that items are more likely to be remembered if encoded with a semantic, rather than perceptual, processing strategy. Interestingly, this effect has been shown to reverse for emotionally arousing materials, such that perceptual processing enhances memory for emotional information or events. The current fMRI study investigated the neural mechanisms of this effect by testing how neural activations during emotional memory retrieval are influenced by the prior encoding strategy. Participants incidentally encoded emotional and neutral pictures under instructions to attend to either semantic or perceptual properties of each picture. Recognition memory was tested two days later. fMRI analyses yielded three main findings. First, right amygdalar activity associated with emotional memory strength was enhanced by prior perceptual processing. Second, prior perceptual processing of emotional pictures produced a stronger effect on recollection- than familiarity-related activations in the right amygdala and left hippocampus. Finally, prior perceptual processing enhanced amygdalar connectivity with regions strongly associated with retrieval success, including hippocampal/parahippocampal regions, visual cortex, and ventral parietal cortex. Taken together, the results specify how encoding orientations yield alterations in brain systems that retrieve emotional memories. PMID:24380867
A familiar pattern? Semantic memory contributes to the enhancement of visuo-spatial memories.
Riby, Leigh M; Orme, Elizabeth
2013-03-01
In this study we quantify for the first time electrophysiological components associated with incorporating long-term semantic knowledge with visuo-spatial information using two variants of a traditional matrix patterns task. Results indicated that the matrix task with greater semantic content was associated with enhanced accuracy and RTs in a change-detection paradigm; this was also associated with increased P300 and N400 components as well as a sustained negative slow wave (NSW). In contrast, processing of the low semantic stimuli was associated with an increased N200 and a reduction in the P300. These findings suggest that semantic content can aid in reducing early visual processing of information and subsequent memory load by unitizing complex patterns into familiar forms. The N400/NSW may be associated with the requirements for maintaining visuo-spatial information about semantic forms such as orientation and relative location. Evidence for individual differences in semantic elaboration strategies used by participants is also discussed. Copyright © 2012 Elsevier Inc. All rights reserved.
On the influence of affective states on intuitive coherence judgements.
Balas, Robert; Sweklej, Joanna; Pochwatko, Grzegorz; Godlewska, Malgorzata
2012-01-01
Recent research has shown that coherence judgements of semantically related word triads are facilitated by a subtle positive response triggered by their increased fluency of processing. Such positive affective response serves as a cue indicating semantic coherence. However, we argue that the fluency of processing is not the only source of affective response that can influence intuitive judgements. The present study investigated differential influences of mood and affective valence of solution words on intuitive coherence judgements. We show that affective cues resulting from processing fluency can be strengthened or weakened by inducing positive or negative affective response through the activation of solutions to semantically coherent triads. Also, mood is shown to impact the breadth of activated associations therefore affecting not only judgements of semantic coherence but also solvability of word triads. We discuss the implications of our findings for how people might form intuitive judgements of semantic coherence.
Yang, Yung-Hao; Zhou, Jifan; Li, Kuei-An; Hung, Tifan; Pegna, Alan J; Yeh, Su-Ling
2017-09-01
We examined whether semantic processing occurs without awareness using continuous flash suppression (CFS). In two priming tasks, participants were required to judge whether a target was a word or a non-word, and to report whether the masked prime was visible. Experiment 1 manipulated the lexical congruency between the prime-target pairs and Experiment 2 manipulated their semantic relatedness. Despite the absence of behavioral priming effects (Experiment 1), the ERP results revealed that an N4 component was sensitive to the prime-target lexical congruency (Experiment 1) and semantic relatedness (Experiment 2) when the prime was rendered invisible under CFS. However, these results were reversed with respect to those that emerged when the stimuli were perceived consciously. Our findings suggest that some form of lexical and semantic processing can occur during CFS-induced unawareness, but are associated with different electrophysiological outcomes. Copyright © 2017 Elsevier Inc. All rights reserved.
The Pivotal Role of Semantic Memory in Remembering the Past and Imagining the Future
Irish, Muireann; Piguet, Olivier
2013-01-01
Episodic memory refers to a complex and multifaceted process which enables the retrieval of richly detailed evocative memories from the past. In contrast, semantic memory is conceptualized as the retrieval of general conceptual knowledge divested of a specific spatiotemporal context. The neural substrates of the episodic and semantic memory systems have been dissociated in healthy individuals during functional imaging studies, and in clinical cohorts, leading to the prevailing view that episodic and semantic memory represent functionally distinct systems subtended by discrete neurobiological substrates. Importantly, however, converging evidence focusing on widespread neural networks now points to significant overlap between those regions essential for retrieval of autobiographical memories, episodic learning, and semantic processing. Here we review recent advances in episodic memory research focusing on neurodegenerative populations which has proved revelatory for our understanding of the complex interplay between episodic and semantic memory. Whereas episodic memory research has traditionally focused on retrieval of autobiographical events from the past, we also include evidence from the recent paradigm shift in which episodic memory is viewed as an adaptive and constructive process which facilitates the imagining of possible events in the future. We examine the available evidence which converges to highlight the pivotal role of semantic memory in providing schemas and meaning whether one is engaged in autobiographical retrieval for the past, or indeed, is endeavoring to construct a plausible scenario of an event in the future. It therefore seems plausible to contend that semantic processing may underlie most, if not all, forms of episodic memory, irrespective of temporal condition. PMID:23565081
Spatt, Josef; Bak, Thomas; Bozeat, Sasha; Patterson, Karalyn; Hodges, John R
2002-05-01
To investigate the nature of the apraxia in corticobasal degeneration (CBD) five patients with CBD and five matched controls were compared on tests of: i) meaningless and symbolic gesture production, ii) a battery of semantic tasks based on 20 everyday items (involving naming and picture-picture matching according to semantic attributes, matching gestures-to-objects, object usage from name and with the real object) and iii) a novel tool test of mechanical problem solving. All five patients showed severe impairment in the production of meaningless and symbolic gestures from command, and by imitation, and were also impaired when using real objects. Deficits were not, however, restricted to action production: four were unable to match gestures to objects and all five showed impairment in the selection and usage of novel tools in the mechanical problem solving task. Surprising was the finding of an additional semantic knowledge breakdown in three cases, two of whom were markedly anomic. The apraxia in CBD is, therefore, multifactorial. There is profound breakdown in the organisation and co-ordination of motor programming. In addition, patients show central deficits in action knowledge and mechanical problem solving, which has been linked to parietal lobe pathology. General semantic memory may also be affected in CBD in some cases and this may then contribute to impaired object usage. This combination of more than one deficit relevant for object use may explain why CBD patients are far more disabled by their dyspraxia in everyday life than any other patient group.
Lesourd, Mathieu; Budriesi, Carla; Osiurak, François; Nichelli, Paolo F; Bartolo, Angela
2017-12-20
In the literature on apraxia of tool use, it is now accepted that using familiar tools requires semantic and mechanical knowledge. However, mechanical knowledge is nearly always assessed with production tasks, so one may assume that mechanical knowledge and familiar tool use are associated only because of their common motor mechanisms. This notion may be challenged by demonstrating that familiar tool use depends on an alternative tool selection task assessing mechanical knowledge, where alternative uses of tools are assumed according to their physical properties but where actual use of tools is not needed. We tested 21 left brain-damaged patients and 21 matched controls with familiar tool use tasks (pantomime and single tool use), semantic tasks and an alternative tool selection task. The alternative tool selection task accounted for a large amount of variance in the single tool use task and was the best predictor among all the semantic tasks. Concerning the pantomime of tool use task, group and individual results suggested that the integrity of the semantic system and preserved mechanical knowledge are neither necessary nor sufficient to produce pantomimes. These results corroborate the idea that mechanical knowledge is essential when we use tools, even when tasks assessing mechanical knowledge do not require the production of any motor action. Our results also confirm the value of pantomime of tool use, which can be considered as a complex activity involving several cognitive abilities (e.g., communicative skills) rather than the activation of gesture engrams. © 2017 The British Psychological Society.
Gagnepain, Pierre; Fauvel, Baptiste; Desgranges, Béatrice; Gaubert, Malo; Viader, Fausto; Eustache, Francis; Groussard, Mathilde; Platel, Hervé
2017-01-01
The hippocampus has classically been associated with episodic memory, but is sometimes also recruited during semantic memory tasks, especially for the skilled exploration of familiar information. Cognitive control mechanisms guiding semantic memory search may benefit from the set of cognitive processes at stake during musical training. Here, we examined using functional magnetic resonance imaging, whether musical expertise would promote the top–down control of the left inferior frontal gyrus (LIFG) over the generation of hippocampally based goal-directed thoughts mediating the familiarity judgment of proverbs and musical items. Analyses of behavioral data confirmed that musical experts more efficiently access familiar melodies than non-musicians although such increased ability did not transfer to verbal semantic memory. At the brain level, musical expertise specifically enhanced the recruitment of the hippocampus during semantic access to melodies, but not proverbs. Additionally, hippocampal activation contributed to speed of access to familiar melodies, but only in musicians. Critically, causal modeling of neural dynamics between LIFG and the hippocampus further showed that top–down excitatory regulation over the hippocampus during familiarity decision specifically increases with musical expertise – an effect that generalized across melodies and proverbs. At the local level, our data show that musical expertise modulates the online recruitment of hippocampal response to serve semantic memory retrieval of familiar melodies. The reconfiguration of memory network dynamics following musical training could constitute a promising framework to understand its ability to preserve brain functions. PMID:29033805
Transfer-appropriate processing in the testing effect.
Veltre, Mary T; Cho, Kit W; Neely, James H
2015-01-01
The testing effect is the finding that taking a review test enhances performance on a final test relative to restudying the material. The present experiment investigated transfer-appropriate processing in the testing effect using semantic and orthographic cues to evoke conceptual and data-driven processing, respectively. After a study phase, subjects either restudied the material or took a cued-recall test consisting of half semantic and half orthographic cues in which the correct response was given as feedback. A final, cued-recall test consisted of the identical cue, or a new cue that was of the same type or different type of cue (semantic/orthographic or orthographic/semantic) as that used for that target in the review test. Testing enhanced memory in all conditions. When the review cues and final-test cues were identical, final recall was higher for semantic than orthographic cues. Consistent with test-based transfer-appropriate processing, memory performance improved as the review and final cues became more similar. These results suggest that the testing effect could potentially be caused by the episodic retrieval processes in a final memory test overlapping more with the episodic retrieval processes in a review test than with the encoding operations performed during restudy.
Matsumoto, Atsushi; Kakigi, Ryusuke
2014-01-01
Recent neuroimaging experiments have revealed that subliminal priming of a target stimulus leads to the reduction of neural activity in specific regions concerned with processing the target. Such findings lead to questions about the degree to which the subliminal priming effect is based only on decreased activity in specific local brain regions, as opposed to the influence of neural mechanisms that regulate communication between brain regions. To address this question, this study recorded EEG during performance of a subliminal semantic priming task. We adopted an information-based approach that used independent component analysis and multivariate autoregressive modeling. Results indicated that subliminal semantic priming caused significant modulation of alpha band activity in the left inferior frontal cortex and modulation of gamma band activity in the left inferior temporal regions. The multivariate autoregressive approach confirmed significant increases in information flow from the inferior frontal cortex to inferior temporal regions in the early time window that was induced by subliminal priming. In the later time window, significant enhancement of bidirectional causal flow between these two regions underlying subliminal priming was observed. Results suggest that unconscious processing of words influences not only local activity of individual brain regions but also the dynamics of neural communication between those regions.
A distributed reasoning engine ecosystem for semantic context-management in smart environments.
Almeida, Aitor; López-de-Ipiña, Diego
2012-01-01
To be able to react adequately a smart environment must be aware of the context and its changes. Modeling the context allows applications to better understand it and to adapt to its changes. In order to do this an appropriate formal representation method is needed. Ontologies have proven themselves to be one of the best tools to do it. Semantic inference provides a powerful framework to reason over the context data. But there are some problems with this approach. The inference over semantic context information can be cumbersome when working with a large amount of data. This situation has become more common in modern smart environments where there are a lot sensors and devices available. In order to tackle this problem we have developed a mechanism to distribute the context reasoning problem into smaller parts in order to reduce the inference time. In this paper we describe a distributed peer-to-peer agent architecture of context consumers and context providers. We explain how this inference sharing process works, partitioning the context information according to the interests of the agents, location and a certainty factor. We also discuss the system architecture, analyzing the negotiation process between the agents. Finally we compare the distributed reasoning with the centralized one, analyzing in which situations is more suitable each approach.
Statecharts Via Process Algebra
NASA Technical Reports Server (NTRS)
Luttgen, Gerald; vonderBeeck, Michael; Cleaveland, Rance
1999-01-01
Statecharts is a visual language for specifying the behavior of reactive systems. The Language extends finite-state machines with concepts of hierarchy, concurrency, and priority. Despite its popularity as a design notation for embedded system, precisely defining its semantics has proved extremely challenging. In this paper, a simple process algebra, called Statecharts Process Language (SPL), is presented, which is expressive enough for encoding Statecharts in a structure-preserving and semantic preserving manner. It is establish that the behavioral relation bisimulation, when applied to SPL, preserves Statecharts semantics
Ambiguity and Relatedness Effects in Semantic Tasks: Are They Due to Semantic Coding?
ERIC Educational Resources Information Center
Hino, Yasushi; Pexman, Penny M.; Lupker, Stephen J.
2006-01-01
According to parallel distributed processing (PDP) models of visual word recognition, the speed of semantic coding is modulated by the nature of the orthographic-to-semantic mappings. Consistent with this idea, an ambiguity disadvantage and a relatedness-of-meaning (ROM) advantage have been reported in some word recognition tasks in which semantic…
Preview Fixation Duration Modulates Identical and Semantic Preview Benefit in Chinese Reading
ERIC Educational Resources Information Center
Yan, Ming; Risse, Sarah; Zhou, Xiaolin; Kliegl, Reinhold
2012-01-01
Semantic preview benefit from parafoveal words is critical for proposals of distributed lexical processing during reading. Semantic preview benefit has been demonstrated for Chinese reading with the boundary paradigm in which unrelated or semantically related previews of a target word "N" + 1 are replaced by the target word once the eyes cross an…
ERIC Educational Resources Information Center
Pan, Jinger; Laubrock, Jochen; Yan, Ming
2016-01-01
We examined how reading mode (i.e., silent vs. oral reading) influences parafoveal semantic and phonological processing during the reading of Chinese sentences, using the gaze-contingent boundary paradigm. In silent reading, we found in 2 experiments that reading times on target words were shortened with semantic previews in early and late…
The value of the Semantic Web in the laboratory.
Frey, Jeremy G
2009-06-01
The Semantic Web is beginning to impact on the wider chemical and physical sciences, beyond the earlier adopted bio-informatics. While useful in large-scale data driven science with automated processing, these technologies can also help integrate the work of smaller scale laboratories producing diverse data. The semantics aid the discovery, reliable re-use of data, provide improved provenance and facilitate automated processing by increased resilience to changes in presentation and reduced ambiguity. The Semantic Web, its tools and collections are not yet competitive with well-established solutions to current problems. It is in the reduced cost of instituting solutions to new problems that the versatility of Semantic Web-enabled data and resources will make their mark once the more general-purpose tools are more available.
Concepts Within Reach: Action Performance Predicts Action Language Processing in Stroke
Desai, Rutvik H.; Herter, Troy; Riccardi, Nicholas; Rorden, Chris; Fridriksson, Julius
2015-01-01
The relationship between the brain’s conceptual or semantic and sensory-motor systems remains controversial. Here, we tested manual and conceptual abilities of 41 chronic stroke patients in order to examine their relationship. Manual abilities were assed through a reaching task using an exoskeleton robot. Semantic abilities were assessed with implicit as well as explicit semantic tasks, for both verbs and nouns. The results show that that the degree of selective impairment for action word processing was predicted by the degree of impairment in reaching performance. Moreover, the implicit semantic measures showed a correlation with a global reaching parameter, while the explicit semantic similarity judgment task predicted performance in action initiation. These results indicate that action concepts are dynamically grounded through motoric simulations, and that more details are simulated for more explicit semantic tasks. This is evidence for a close and causal relationship between sensory-motor and conceptual systems of the brain. PMID:25858602
Musical emotions: Functions, origins, evolution
NASA Astrophysics Data System (ADS)
Perlovsky, Leonid
2010-03-01
Theories of music origins and the role of musical emotions in the mind are reviewed. Most existing theories contradict each other, and cannot explain mechanisms or roles of musical emotions in workings of the mind, nor evolutionary reasons for music origins. Music seems to be an enigma. Nevertheless, a synthesis of cognitive science and mathematical models of the mind has been proposed describing a fundamental role of music in the functioning and evolution of the mind, consciousness, and cultures. The review considers ancient theories of music as well as contemporary theories advanced by leading authors in this field. It addresses one hypothesis that promises to unify the field and proposes a theory of musical origin based on a fundamental role of music in cognition and evolution of consciousness and culture. We consider a split in the vocalizations of proto-humans into two types: one less emotional and more concretely-semantic, evolving into language, and the other preserving emotional connections along with semantic ambiguity, evolving into music. The proposed hypothesis departs from other theories in considering specific mechanisms of the mind-brain, which required the evolution of music parallel with the evolution of cultures and languages. Arguments are reviewed that the evolution of language toward becoming the semantically powerful tool of today required emancipation from emotional encumbrances. The opposite, no less powerful mechanisms required a compensatory evolution of music toward more differentiated and refined emotionality. The need for refined music in the process of cultural evolution is grounded in fundamental mechanisms of the mind. This is why today's human mind and cultures cannot exist without today's music. The reviewed hypothesis gives a basis for future analysis of why different evolutionary paths of languages were paralleled by different evolutionary paths of music. Approaches toward experimental verification of this hypothesis in psychological and neuroimaging research are reviewed.
Material specific lateralization of medial temporal lobe function: An fMRI investigation.
Dalton, Marshall A; Hornberger, Michael; Piguet, Olivier
2016-03-01
The theory of material specific lateralization of memory function posits that left and right MTL regions are asymmetrically involved in mnemonic processing of verbal and nonverbal material respectively. Lesion and functional imaging (fMRI) studies provide robust evidence for a left MTL asymmetry in the verbal memory domain. Evidence for a right MTL/nonverbal asymmetry is not as robust. A handful of fMRI studies have investigated this issue but have generally utilised nonverbal stimuli which are amenable to semantic elaboration. This fMRI study aimed to investigate the neural correlates of recognition memory processing in 20 healthy young adults (mean age = 26 years) for verbal stimuli and nonverbal stimuli that were specifically designed to minimize verbalisation. Analyses revealed that the neural correlates of recognition memory processing for verbal and nonverbal stimuli were differentiable and asymmetrically recruited the left and right MTL respectively. The right perirhinal cortex and hippocampus were preferentially involved in successful recognition memory of items devoid of semantic information. In contrast, the left anterior hippocampus was preferentially involved in successful recognition memory of stimuli which contained semantic meaning. These results suggest that the left MTL is preferentially involved in mnemonic processing of verbal/semantic information. In contrast, the right MTL is preferentially involved in visual/non-semantic mnemonic processing. We propose that during development, the left MTL becomes specialised for verbal mnemonic processing due to its proximity with left lateralised cortical language processing areas while visual/non-semantic mnemonic processing gets 'crowded out' to become predominantly, but not completely, the domain of the right MTL. © 2015 Wiley Periodicals, Inc.
Natural language acquisition in large scale neural semantic networks
NASA Astrophysics Data System (ADS)
Ealey, Douglas
This thesis puts forward the view that a purely signal- based approach to natural language processing is both plausible and desirable. By questioning the veracity of symbolic representations of meaning, it argues for a unified, non-symbolic model of knowledge representation that is both biologically plausible and, potentially, highly efficient. Processes to generate a grounded, neural form of this model-dubbed the semantic filter-are discussed. The combined effects of local neural organisation, coincident with perceptual maturation, are used to hypothesise its nature. This theoretical model is then validated in light of a number of fundamental neurological constraints and milestones. The mechanisms of semantic and episodic development that the model predicts are then used to explain linguistic properties, such as propositions and verbs, syntax and scripting. To mimic the growth of locally densely connected structures upon an unbounded neural substrate, a system is developed that can grow arbitrarily large, data- dependant structures composed of individual self- organising neural networks. The maturational nature of the data used results in a structure in which the perception of concepts is refined by the networks, but demarcated by subsequent structure. As a consequence, the overall structure shows significant memory and computational benefits, as predicted by the cognitive and neural models. Furthermore, the localised nature of the neural architecture also avoids the increasing error sensitivity and redundancy of traditional systems as the training domain grows. The semantic and episodic filters have been demonstrated to perform as well, or better, than more specialist networks, whilst using significantly larger vocabularies, more complex sentence forms and more natural corpora.
Chen, Hong; Voss, Joel L; Guo, Chunyan
2012-07-30
False memory often involves retrieving events from the distant past that did not actually happen. However, recent evidence obtained using the Deese/Roediger-McDermott (DRM) paradigm for eliciting false memory experiences suggests that individuals can falsely believe that events occurred mere seconds in the past when they in fact did not. Subjects in these experiments endorsed unstudied critical lure words as having been studied, despite the fact that word lists were studied just moments before. We identified event-related brain potential (ERP) correlates of this experience, and included a repetition priming manipulation to better assess the functional significance of these ERPs. Behavioral and ERP data were collected from 21 Capital Normal University students using a short-term DRM task. Two categories of effects were identified that distinguished true from false short-term memory: (1) early semantic priming effects from 300 to 500 ms and (2) later retrieval and retrieval-monitoring effects after 500 ms. The repetition priming manipulation had distinct influences on these effects, consistent with their differential associations with semantic priming versus episodic retrieval. Characterization of ERPs related to semantic priming and episodic retrieval provides important information regarding the mechanisms of short-term false memory. In contrast, most studies examining false memory in standard long-delay DRM paradigms identify ERP effects related only to retrieval monitoring. These findings highlight the neural processing involved in illusions of memory after very brief delays and highlight the role of semantic processing in short-term false memory.
2012-01-01
Background False memory often involves retrieving events from the distant past that did not actually happen. However, recent evidence obtained using the Deese/Roediger-McDermott (DRM) paradigm for eliciting false memory experiences suggests that individuals can falsely believe that events occurred mere seconds in the past when they in fact did not. Subjects in these experiments endorsed unstudied critical lure words as having been studied, despite the fact that word lists were studied just moments before. We identified event-related brain potential (ERP) correlates of this experience, and included a repetition priming manipulation to better assess the functional significance of these ERPs. Methods Behavioral and ERP data were collected from 21 Capital Normal University students using a short-term DRM task. Results Two categories of effects were identified that distinguished true from false short-term memory: (1) early semantic priming effects from 300 to 500 ms and (2) later retrieval and retrieval-monitoring effects after 500 ms. The repetition priming manipulation had distinct influences on these effects, consistent with their differential associations with semantic priming versus episodic retrieval. Conclusion Characterization of ERPs related to semantic priming and episodic retrieval provides important information regarding the mechanisms of short-term false memory. In contrast, most studies examining false memory in standard long-delay DRM paradigms identify ERP effects related only to retrieval monitoring. These findings highlight the neural processing involved in illusions of memory after very brief delays and highlight the role of semantic processing in short-term false memory. PMID:22846189
Language networks associated with computerized semantic indices.
Pakhomov, Serguei V S; Jones, David T; Knopman, David S
2015-01-01
Tests of generative semantic verbal fluency are widely used to study organization and representation of concepts in the human brain. Previous studies demonstrated that clustering and switching behavior during verbal fluency tasks is supported by multiple brain mechanisms associated with semantic memory and executive control. Previous work relied on manual assessments of semantic relatedness between words and grouping of words into semantic clusters. We investigated a computational linguistic approach to measuring the strength of semantic relatedness between words based on latent semantic analysis of word co-occurrences in a subset of a large online encyclopedia. We computed semantic clustering indices and compared them to brain network connectivity measures obtained with task-free fMRI in a sample consisting of healthy participants and those differentially affected by cognitive impairment. We found that semantic clustering indices were associated with brain network connectivity in distinct areas including fronto-temporal, fronto-parietal and fusiform gyrus regions. This study shows that computerized semantic indices complement traditional assessments of verbal fluency to provide a more complete account of the relationship between brain and verbal behavior involved organization and retrieval of lexical information from memory. Copyright © 2014 Elsevier Inc. All rights reserved.
Measurements of auditory-verbal STM span in aphasia: effects of item, task, and lexical impairment.
Martin, Nadine; Ayala, Jennifer
2004-06-01
In the first part of this study, we investigated effects of item and task type on span performance in a group of aphasic individuals with word processing and STM deficits. Group analyses revealed significant effects of item on span performance with span being greater for digits than for words. We also investigated associations between subjects' lexical-semantic and phonological processing abilities and performance on four measures of verbal span (digit and word span, each varied for type of response, verbal vs. pointing) as well as one measure of nonverbal span. We predicted and found that the patterns of association between verbal span tasks and lexical abilities reflected the integrity of language processes and representations deployed in each paradigm used to assess span. Performance on the pointing span task, which engages both lexical-semantic and phonological processes, correlated with measures of both lexical-semantic and phonological abilities. Performance on repetition span, which engages primarily input and output phonological processes, correlated with measures of phonological abilities but not measures of lexical-semantic abilities. However, when partial correlations were performed for two subject groups based on their relative preservation of lexical-semantic ability (less or more than phonological ability), repetition span correlated with lexical-semantic measures only in the subgroup with relatively impaired lexical-semantics. Additionally, performance on the nonverbal span task correlated with measures of phonological abilities, suggesting either a general cognitive deficit affecting verbal and nonverbal STM or possibly, the use of a verbal strategy to perform this task. Our discussion focuses on the interpretation of span measurements in clinical practice and research, as well as the implications of these data for theories of short-term memory and word processing.
Deep processing activates the medial temporal lobe in young but not in old adults.
Daselaar, Sander M; Veltman, Dick J; Rombouts, Serge A R B; Raaijmakers, Jeroen G W; Jonker, Cees
2003-11-01
Age-related impairments in episodic memory have been related to a deficiency in semantic processing, based on the finding that elderly adults typically benefit less than young adults from deep, semantic as opposed to shallow, nonsemantic processing of study items. In the present study, we tested the hypothesis that elderly adults are not able to perform certain cognitive operations under deep processing conditions. We further hypothesised that this inability does not involve regions commonly associated with lexical/semantic retrieval processes, but rather involves a dysfunction of the medial temporal lobe (MTL) memory system. To this end, we used functional MRI on rather extensive groups of young and elderly adults to compare brain activity patterns obtained during a deep (living/nonliving) and a shallow (uppercase/lowercase) classification task. Common activity in relation to semantic classification was observed in regions that have been previously related to semantic retrieval, including mainly left-lateralised activity in the inferior prefrontal, middle temporal, and middle frontal/anterior cingulate gyrus. Although the young adults showed more activity in some of these areas, the finding of mainly overlapping activation patterns during semantic classification supports the idea that lexical/semantic retrieval processes are still intact in elderly adults. This received further support by the finding that both groups showed similar behavioural performances as well on the deep and shallow classification tasks. Importantly, though, the young revealed significantly more activity than the elderly adults in the left anterior hippocampus during deep relative to shallow classification. This finding is in line with the idea that age-related impairments in episodic encoding are, at least partly, due to an under-recruitment of the medial temporal lobe memory system.
The geometric semantics of algebraic quantum mechanics.
Cruz Morales, John Alexander; Zilber, Boris
2015-08-06
In this paper, we will present an ongoing project that aims to use model theory as a suitable mathematical setting for studying the formalism of quantum mechanics. We argue that this approach provides a geometric semantics for such a formalism by means of establishing a (non-commutative) duality between certain algebraic and geometric objects. © 2015 The Author(s) Published by the Royal Society. All rights reserved.
Grilli, Matthew D; Bercel, John J; Wank, Aubrey A; Rapcsak, Steven Z
2018-06-04
Autobiographical facts and personal trait knowledge are conceptualized as distinct types of personal semantics, but the cognitive and neural mechanisms that separate them remain underspecified. One distinction may be their level of specificity, with autobiographical facts reflecting idiosyncratic conceptual knowledge and personal traits representing basic level category knowledge about the self. Given the critical role of the left anterior ventrolateral temporal lobe (AVTL) in the storage and retrieval of semantic information about unique entities, we hypothesized that knowledge of autobiographical facts may depend on the integrity of this region to a greater extent than personal traits. To provide neuropsychological evidence relevant to this issue, we investigated personal semantics, semantic knowledge of non-personal unique entities, and episodic memory in two individuals with well-defined left (MK) versus right (DW) AVTL lesions. Relative to controls, MK demonstrated preserved personal trait knowledge but impaired "experience-far" (i.e., spatiotemporal independent) autobiographical fact knowledge, semantic memory for non-personal unique entities, and episodic memory. In contrast, both experience-far autobiographical facts and personal traits were spared in DW, whereas episodic memory and aspects of semantic memory for non-personal unique entities were impaired. These findings support the notion that autobiographical facts and personal traits have distinct cognitive features and neural mechanisms. They also suggest a common organizing principle for personal and non-personal semantics, namely the specificity of such knowledge to an entity, which is reflected in the contribution of the left AVTL to retrieval. Copyright © 2018 Elsevier Ltd. All rights reserved.
Developmental changes in the neural influence of sublexical information on semantic processing.
Lee, Shu-Hui; Booth, James R; Chou, Tai-Li
2015-07-01
Functional magnetic resonance imaging (fMRI) was used to examine the developmental changes in a group of normally developing children (aged 8-12) and adolescents (aged 13-16) during semantic processing. We manipulated association strength (i.e. a global reading unit) and semantic radical (i.e. a local reading unit) to explore the interaction of lexical and sublexical semantic information in making semantic judgments. In the semantic judgment task, two types of stimuli were used: visually-similar (i.e. shared a semantic radical) versus visually-dissimilar (i.e. did not share a semantic radical) character pairs. Participants were asked to indicate if two Chinese characters, arranged according to association strength, were related in meaning. The results showed greater developmental increases in activation in left angular gyrus (BA 39) in the visually-similar compared to the visually-dissimilar pairs for the strong association. There were also greater age-related increases in angular gyrus for the strong compared to weak association in the visually-similar pairs. Both of these results suggest that shared semantics at the sublexical level facilitates the integration of overlapping features at the lexical level in older children. In addition, there was a larger developmental increase in left posterior middle temporal gyrus (BA 21) for the weak compared to strong association in the visually-dissimilar pairs, suggesting conflicting sublexical information placed greater demands on access to lexical representations in the older children. All together, these results suggest that older children are more sensitive to sublexical information when processing lexical representations. Copyright © 2015 Elsevier Ltd. All rights reserved.
Rogalsky, Corianne
2009-01-01
Numerous studies have identified an anterior temporal lobe (ATL) region that responds preferentially to sentence-level stimuli. It is unclear, however, whether this activity reflects a response to syntactic computations or some form of semantic integration. This distinction is difficult to investigate with the stimulus manipulations and anomaly detection paradigms traditionally implemented. The present functional magnetic resonance imaging study addresses this question via a selective attention paradigm. Subjects monitored for occasional semantic anomalies or occasional syntactic errors, thus directing their attention to semantic integration, or syntactic properties of the sentences. The hemodynamic response in the sentence-selective ATL region (defined with a localizer scan) was examined during anomaly/error-free sentences only, to avoid confounds due to error detection. The majority of the sentence-specific region of interest was equally modulated by attention to syntactic or compositional semantic features, whereas a smaller subregion was only modulated by the semantic task. We suggest that the sentence-specific ATL region is sensitive to both syntactic and integrative semantic functions during sentence processing, with a smaller portion of this area preferentially involved in the later. This study also suggests that selective attention paradigms may be effective tools to investigate the functional diversity of networks involved in sentence processing. PMID:18669589
Bakker, Iske; Takashima, Atsuko; van Hell, Janet G; Janzen, Gabriele; McQueen, James M
2015-12-01
Novel words can be recalled immediately and after little exposure, but require a post-learning consolidation period to show word-like behaviour such as lexical competition. This pattern is thought to reflect a qualitative shift from episodic to lexical representations. However, several studies have reported immediate effects of meaningful novel words on semantic processing, suggesting that integration of novel word meanings may not require consolidation. The current study synthesises and extends these findings by showing a dissociation between lexical and semantic effects on the electrophysiological (N400, LPC) response to novel words. The difference in N400 amplitude between novel and existing words (a lexical effect) decreased significantly after a 24-h consolidation period, providing novel support for the hypothesis that offline consolidation aids lexicalisation. In contrast, novel words preceded by semantically related primes elicited a more positive LPC response (a semantic-priming effect) both before and after consolidation, indicating that certain semantic effects can be observed even when words have not been fully lexicalised. We propose that novel meanings immediately start to contribute to semantic processing, but that the underlying neural processes may shift from strategic to more automatic with consolidation. Copyright © 2015 Elsevier Ltd. All rights reserved.
Electrophysiological Evidence of Automatic Early Semantic Processing
ERIC Educational Resources Information Center
Hinojosa, Jose A.; Martin-Loeches, Manuel; Munoz, Francisco; Casado, Pilar; Pozo, Miguel A.
2004-01-01
This study investigates the automatic-controlled nature of early semantic processing by means of the Recognition Potential (RP), an event-related potential response that reflects lexical selection processes. For this purpose tasks differing in their processing requirements were used. Half of the participants performed a physical task involving a…
Dynamic information processing states revealed through neurocognitive models of object semantics
Clarke, Alex
2015-01-01
Recognising objects relies on highly dynamic, interactive brain networks to process multiple aspects of object information. To fully understand how different forms of information about objects are represented and processed in the brain requires a neurocognitive account of visual object recognition that combines a detailed cognitive model of semantic knowledge with a neurobiological model of visual object processing. Here we ask how specific cognitive factors are instantiated in our mental processes and how they dynamically evolve over time. We suggest that coarse semantic information, based on generic shared semantic knowledge, is rapidly extracted from visual inputs and is sufficient to drive rapid category decisions. Subsequent recurrent neural activity between the anterior temporal lobe and posterior fusiform supports the formation of object-specific semantic representations – a conjunctive process primarily driven by the perirhinal cortex. These object-specific representations require the integration of shared and distinguishing object properties and support the unique recognition of objects. We conclude that a valuable way of understanding the cognitive activity of the brain is though testing the relationship between specific cognitive measures and dynamic neural activity. This kind of approach allows us to move towards uncovering the information processing states of the brain and how they evolve over time. PMID:25745632
Altmann, Gerry T M
2017-01-05
Statistical approaches to emergent knowledge have tended to focus on the process by which experience of individual episodes accumulates into generalizable experience across episodes. However, there is a seemingly opposite, but equally critical, process that such experience affords: the process by which, from a space of types (e.g. onions-a semantic class that develops through exposure to individual episodes involving individual onions), we can perceive or create, on-the-fly, a specific token (a specific onion, perhaps one that is chopped) in the absence of any prior perceptual experience with that specific token. This article reviews a selection of statistical learning studies that lead to the speculation that this process-the generation, on the basis of semantic memory, of a novel episodic representation-is itself an instance of a statistical, in fact associative, process. The article concludes that the same processes that enable statistical abstraction across individual episodes to form semantic memories also enable the generation, from those semantic memories, of representations that correspond to individual tokens, and of novel episodic facts about those tokens. Statistical learning is a window onto these deeper processes that underpin cognition.This article is part of the themed issue 'New frontiers for statistical learning in the cognitive sciences'. © 2016 The Author(s).
Life, Information, Entropy, and Time
Crofts, Antony R.
2008-01-01
Attempts to understand how information content can be included in an accounting of the energy flux of the biosphere have led to the conclusion that, in information transmission, one component, the semantic content, or “the meaning of the message,” adds no thermodynamic burden over and above costs arising from coding, transmission and translation. In biology, semantic content has two major roles. For all life forms, the message of the genotype encoded in DNA specifies the phenotype, and hence the organism that is tested against the real world through the mechanisms of Darwinian evolution. For human beings, communication through language and similar abstractions provides an additional supra-phenotypic vehicle for semantic inheritance, which supports the cultural heritages around which civilizations revolve. The following three postulates provide the basis for discussion of a number of themes that demonstrate some important consequences. (i) Information transmission through either pathway has thermodynamic components associated with data storage and transmission. (ii) The semantic content adds no additional thermodynamic cost. (iii) For all semantic exchange, meaning is accessible only through translation and interpretation, and has a value only in context. (1) For both pathways of semantic inheritance, translational and copying machineries are imperfect. As a consequence both pathways are subject to mutation and to evolutionary pressure by selection. Recognition of semantic content as a common component allows an understanding of the relationship between genes and memes, and a reformulation of Universal Darwinism. (2) The emergent properties of life are dependent on a processing of semantic content. The translational steps allow amplification in complexity through combinatorial possibilities in space and time. Amplification depends on the increased potential for complexity opened by 3D interaction specificity of proteins, and on the selection of useful variants by evolution. The initial interpretational steps include protein synthesis, molecular recognition, and catalytic potential that facilitate structural and functional roles. Combinatorial possibilities are extended through interactions of increasing complexity in the temporal dimension. (3) All living things show a behavior that indicates awareness of time, or chronognosis. The ∼4 billion years of biological evolution have given rise to forms with increasing sophistication in sensory adaptation. This has been linked to the development of an increasing chronognostic range, and an associated increase in combinatorial complexity. (4) Development of a modern human phenotype and the ability to communicate through language, led to the development of archival storage, and invention of the basic skills, institutions and mechanisms that allowed the evolution of modern civilizations. Combinatorial amplification at the supra-phenotypical level arose from the invention of syntax, grammar, numbers, and the subsequent developments of abstraction in writing, algorithms, etc. The translational machineries of the human mind, the “mutation” of ideas therein, and the “conversations” of our social intercourse, have allowed a limited set of symbolic descriptors to evolve into an exponentially expanding semantic heritage. (5) The three postulates above open interesting epistemological questions. An understanding of topics such dualism, the élan vital, the status of hypothesis in science, memetics, the nature of consciousness, the role of semantic processing in the survival of societies, and Popper's three worlds, require recognition of an insubstantial component. By recognizing a necessary linkage between semantic content and a physical machinery, we can bring these perennial problems into the framework of a realistic philosophy. It is suggested, following Popper, that the ∼4 billion years of evolution of the biosphere represents an exploration of the nature of reality at the physicochemical level, which, together with the conscious extension of this exploration through science and culture, provides a firm epistemological underpinning for such a philosophy. PMID:18978960
Memory Scanning, Introversion-Extraversion, and Levels of Processing.
ERIC Educational Resources Information Center
Eysenck, Michael W.; Eysenck, M. Christine
1979-01-01
Investigated was the hypothesis that high arousal increases processing of physical characteristics and reduces processing of semantic characteristics. While introverts and extroverts had equivalent scanning rates for physical features, introverts were significantly slower in searching for semantic features of category membership, indicating…
Stanley, Nicholas; Davis, Tara; Estis, Julie
2017-03-01
Aging effects on speech understanding in noise have primarily been assessed through speech recognition tasks. Recognition tasks, which focus on bottom-up, perceptual aspects of speech understanding, intentionally limit linguistic and cognitive factors by asking participants to only repeat what they have heard. On the other hand, linguistic processing tasks require bottom-up and top-down (linguistic, cognitive) processing skills and are, therefore, more reflective of speech understanding abilities used in everyday communication. The effect of signal-to-noise ratio (SNR) on linguistic processing ability is relatively unknown for either young (YAs) or older adults (OAs). To determine if reduced SNRs would be more deleterious to the linguistic processing of OAs than YAs, as measured by accuracy and reaction time in a semantic judgment task in competing speech. In the semantic judgment task, participants indicated via button press whether word pairs were a semantic Match or No Match. This task was performed in quiet, as well as, +3, 0, -3, and -6 dB SNR with two-talker speech competition. Seventeen YAs (20-30 yr) with normal hearing sensitivity and 17 OAs (60-68 yr) with normal hearing sensitivity or mild-to-moderate sensorineural hearing loss within age-appropriate norms. Accuracy, reaction time, and false alarm rate were measured and analyzed using a mixed design analysis of variance. A decrease in SNR level significantly reduced accuracy and increased reaction time in both YAs and OAs. However, poor SNRs affected accuracy and reaction time of Match and No Match word pairs differently. Accuracy for Match pairs declined at a steeper rate than No Match pairs in both groups as SNR decreased. In addition, reaction time for No Match pairs increased at a greater rate than Match pairs in more difficult SNRs, particularly at -3 and -6 dB SNR. False-alarm rates indicated that participants had a response bias to No Match pairs as the SNR decreased. Age-related differences were limited to No Match pair accuracies at -6 dB SNR. The ability to correctly identify semantically matched word pairs was more susceptible to disruption by a poor SNR than semantically unrelated words in both YAs and OAs. The effect of SNR on this semantic judgment task implies that speech competition differentially affected the facilitation of semantically related words and the inhibition of semantically incompatible words, although processing speed, as measured by reaction time, remained faster for semantically matched pairs. Overall, the semantic judgment task in competing speech elucidated the effect of a poor listening environment on the higher order processing of words. American Academy of Audiology
The semantic richness of abstract concepts
Recchia, Gabriel; Jones, Michael N.
2012-01-01
We contrasted the predictive power of three measures of semantic richness—number of features (NFs), contextual dispersion (CD), and a novel measure of number of semantic neighbors (NSN)—for a large set of concrete and abstract concepts on lexical decision and naming tasks. NSN (but not NF) facilitated processing for abstract concepts, while NF (but not NSN) facilitated processing for the most concrete concepts, consistent with claims that linguistic information is more relevant for abstract concepts in early processing. Additionally, converging evidence from two datasets suggests that when NSN and CD are controlled for, the features that most facilitate processing are those associated with a concept's physical characteristics and real-world contexts. These results suggest that rich linguistic contexts (many semantic neighbors) facilitate early activation of abstract concepts, whereas concrete concepts benefit more from rich physical contexts (many associated objects and locations). PMID:23205008
Mroczko-Wąsowicz, Aleksandra; Werning, Markus
2012-01-01
Synesthesia is traditionally regarded as a phenomenon in which an additional non-standard phenomenal experience occurs consistently in response to ordinary stimulation applied to the same or another modality. Recent studies suggest an important role of semantic representations in the induction of synesthesia. In the present proposal we try to link the empirically grounded theory of sensory-motor contingency and mirror system based embodied simulation/emulation to newly discovered cases of swimming style-color synesthesia. In the latter color experiences are evoked only by showing the synesthetes a picture of a swimming person or asking them to think about a given swimming style. Neural mechanisms of mirror systems seem to be involved here. It has been shown that for mirror-sensory synesthesia, such as mirror-touch or mirror-pain synesthesia (when visually presented tactile or noxious stimulation of others results in the projection of the tactile or pain experience onto oneself), concurrent experiences are caused by overactivity in the mirror neuron system responding to the specific observation. The comparison of different forms of synesthesia has the potential of challenging conventional thinking on this phenomenon and providing a more general, sensory-motor account of synesthesia encompassing cases driven by semantic or emulational rather than pure sensory or motor representations. Such an interpretation could include top-down associations, questioning the explanation in terms of hard-wired structural connectivity. In the paper the hypothesis is developed that the wide-ranging phenomenon of synesthesia might result from a process of hyperbinding between "too many" semantic attribute domains. This hypothesis is supplemented by some suggestions for an underlying neural mechanism.
Mroczko-Wąsowicz, Aleksandra; Werning, Markus
2012-01-01
Synesthesia is traditionally regarded as a phenomenon in which an additional non-standard phenomenal experience occurs consistently in response to ordinary stimulation applied to the same or another modality. Recent studies suggest an important role of semantic representations in the induction of synesthesia. In the present proposal we try to link the empirically grounded theory of sensory-motor contingency and mirror system based embodied simulation/emulation to newly discovered cases of swimming style-color synesthesia. In the latter color experiences are evoked only by showing the synesthetes a picture of a swimming person or asking them to think about a given swimming style. Neural mechanisms of mirror systems seem to be involved here. It has been shown that for mirror-sensory synesthesia, such as mirror-touch or mirror-pain synesthesia (when visually presented tactile or noxious stimulation of others results in the projection of the tactile or pain experience onto oneself), concurrent experiences are caused by overactivity in the mirror neuron system responding to the specific observation. The comparison of different forms of synesthesia has the potential of challenging conventional thinking on this phenomenon and providing a more general, sensory-motor account of synesthesia encompassing cases driven by semantic or emulational rather than pure sensory or motor representations. Such an interpretation could include top-down associations, questioning the explanation in terms of hard-wired structural connectivity. In the paper the hypothesis is developed that the wide-ranging phenomenon of synesthesia might result from a process of hyperbinding between “too many” semantic attribute domains. This hypothesis is supplemented by some suggestions for an underlying neural mechanism. PMID:22936919
An Educational Tool for Browsing the Semantic Web
ERIC Educational Resources Information Center
Yoo, Sujin; Kim, Younghwan; Park, Seongbin
2013-01-01
The Semantic Web is an extension of the current Web where information is represented in a machine processable way. It is not separate from the current Web and one of the confusions that novice users might have is where the Semantic Web is. In fact, users can easily encounter RDF documents that are components of the Semantic Web while they navigate…
ERIC Educational Resources Information Center
Hodgson, Catherine; Lambon Ralph, Matthew A.
2008-01-01
Semantic errors are commonly found in semantic dementia (SD) and some forms of stroke aphasia and provide insights into semantic processing and speech production. Low error rates are found in standard picture naming tasks in normal controls. In order to increase error rates and thus provide an experimental model of aphasic performance, this study…
Wong, Winsy; Low, Sam-Po
2008-07-01
The present study investigated verbal recall of semantically preserved and degraded words and nonwords by taking into consideration the status of one's semantic short-term memory (STM). Two experiments were conducted on 2 Chinese individuals with aphasia. The first experiment showed that they had largely preserved phonological processing abilities accompanied by mild but comparable semantic processing deficits; however, their performance on STM tasks revealed a double dissociation. The second experiment found that the participant with more preserved semantic STM had better recall of known words and nonwords than of their unknown counterparts, whereas such effects were absent in the patient with severe semantic STM deficit. The results are compatible with models that assume separate phonological and semantic STM components, such as that of R. C. Martin, M. Lesch, and M. Bartha (1999). In addition, the distribution of error types was different from previous studies. This is discussed in terms of the methodology of the authors' experiments and current views regarding the nature of semantic STM and representations in the Chinese mental lexicon. (c) 2008 APA
Shimotake, Akihiro; Matsumoto, Riki; Ueno, Taiji; Kunieda, Takeharu; Saito, Satoru; Hoffman, Paul; Kikuchi, Takayuki; Fukuyama, Hidenao; Miyamoto, Susumu; Takahashi, Ryosuke; Ikeda, Akio; Lambon Ralph, Matthew A
2015-10-01
Semantic memory is a crucial higher cortical function that codes the meaning of objects and words, and when impaired after neurological damage, patients are left with significant disability. Investigations of semantic dementia have implicated the anterior temporal lobe (ATL) region, in general, as crucial for multimodal semantic memory. The potentially crucial role of the ventral ATL subregion has been emphasized by recent functional neuroimaging studies, but the necessity of this precise area has not been selectively tested. The implantation of subdural electrode grids over this subregion, for the presurgical assessment of patients with partial epilepsy or brain tumor, offers the dual yet rare opportunities to record cortical local field potentials while participants complete semantic tasks and to stimulate the functionally identified regions in the same participants to evaluate the necessity of these areas in semantic processing. Across 6 patients, and utilizing a variety of semantic assessments, we evaluated and confirmed that the anterior fusiform/inferior temporal gyrus is crucial in multimodal, receptive, and expressive, semantic processing. © The Author 2014. Published by Oxford University Press.
Sui, Jie; Humphreys, Glyn W
2013-11-01
We report data demonstrating that self-referential encoding facilitates memory performance in the absence of effects of semantic elaboration in a severely amnesic patient also suffering semantic problems. In Part 1, the patient, GA, was trained to associate items with the self or a familiar other during the encoding phase of a memory task (self-ownership decisions in Experiment 1 and self-evaluation decisions in Experiment 2). Tests of memory showed a consistent self-reference advantage, relative to a condition where the reference was another person in both experiments. The pattern of the self-reference advantage was similar to that in healthy controls. In Part 2 we demonstrate that GA showed minimal effects of semantic elaboration on memory for items he semantically classified, compared with items subject to physical size decisions; in contrast, healthy controls demonstrated enhanced memory performance after semantic relative to physical encoding. The results indicate that self-referential encoding, not semantic elaboration, improves memory in amnesia. Self-referential processing may provide a unique scaffold to help improve learning in amnesic cases. Copyright © 2013 Elsevier Ltd. All rights reserved.
Chen, Yi-Chuan; Spence, Charles
2013-01-01
The time-course of cross-modal semantic interactions between pictures and either naturalistic sounds or spoken words was compared. Participants performed a speeded picture categorization task while hearing a task-irrelevant auditory stimulus presented at various stimulus onset asynchronies (SOAs) with respect to the visual picture. Both naturalistic sounds and spoken words gave rise to cross-modal semantic congruency effects (i.e., facilitation by semantically congruent sounds and inhibition by semantically incongruent sounds, as compared to a baseline noise condition) when the onset of the sound led that of the picture by 240 ms or more. Both naturalistic sounds and spoken words also gave rise to inhibition irrespective of their semantic congruency when presented within 106 ms of the onset of the picture. The peak of this cross-modal inhibitory effect occurred earlier for spoken words than for naturalistic sounds. These results therefore demonstrate that the semantic priming of visual picture categorization by auditory stimuli only occurs when the onset of the sound precedes that of the visual stimulus. The different time-courses observed for naturalistic sounds and spoken words likely reflect the different processing pathways to access the relevant semantic representations.
Büttner, Anke Caroline
2012-01-01
When asked how many animals of each kind Moses took on the Ark, most people respond with "two" despite the substituted name (Moses for Noah) in the question. Possible explanations for semantic illusions appear to be related to processing limitations such as those of working memory. Indeed, individual working memory capacity has an impact upon how sentences containing substitutions are processed. This experiment examined further the role of working memory in the occurrence of semantic illusions using a dual-task working memory load approach. Participants verified statements while engaging in either articulatory suppression or random number generation. Secondary task type had a significant effect on semantic illusion rate, but only when comparing the control condition to the two dual-task conditions. Furthermore, secondary task performance in the random number generation condition declined, suggesting a tradeoff between tasks. Response time analyses also showed a different pattern of processing across the conditions. The findings suggest that the phonological loop plays a role in representing semantic illusion sentences coherently and in monitoring for details, while the role of the central executive is to assist gist-processing of sentences. This usually efficient strategy leads to error in the case of semantic illusions.
Miozzo, Michele; Pulvermüller, Friedemann; Hauk, Olaf
2015-01-01
The time course of brain activation during word production has become an area of increasingly intense investigation in cognitive neuroscience. The predominant view has been that semantic and phonological processes are activated sequentially, at about 150 and 200–400 ms after picture onset. Although evidence from prior studies has been interpreted as supporting this view, these studies were arguably not ideally suited to detect early brain activation of semantic and phonological processes. We here used a multiple linear regression approach to magnetoencephalography (MEG) analysis of picture naming in order to investigate early effects of variables specifically related to visual, semantic, and phonological processing. This was combined with distributed minimum-norm source estimation and region-of-interest analysis. Brain activation associated with visual image complexity appeared in occipital cortex at about 100 ms after picture presentation onset. At about 150 ms, semantic variables became physiologically manifest in left frontotemporal regions. In the same latency range, we found an effect of phonological variables in the left middle temporal gyrus. Our results demonstrate that multiple linear regression analysis is sensitive to early effects of multiple psycholinguistic variables in picture naming. Crucially, our results suggest that access to phonological information might begin in parallel with semantic processing around 150 ms after picture onset. PMID:25005037
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yue, Peng; Gong, Jianya; Di, Liping
Abstract A geospatial catalogue service provides a network-based meta-information repository and interface for advertising and discovering shared geospatial data and services. Descriptive information (i.e., metadata) for geospatial data and services is structured and organized in catalogue services. The approaches currently available for searching and using that information are often inadequate. Semantic Web technologies show promise for better discovery methods by exploiting the underlying semantics. Such development needs special attention from the Cyberinfrastructure perspective, so that the traditional focus on discovery of and access to geospatial data can be expanded to support the increased demand for processing of geospatial information andmore » discovery of knowledge. Semantic descriptions for geospatial data, services, and geoprocessing service chains are structured, organized, and registered through extending elements in the ebXML Registry Information Model (ebRIM) of a geospatial catalogue service, which follows the interface specifications of the Open Geospatial Consortium (OGC) Catalogue Services for the Web (CSW). The process models for geoprocessing service chains, as a type of geospatial knowledge, are captured, registered, and discoverable. Semantics-enhanced discovery for geospatial data, services/service chains, and process models is described. Semantic search middleware that can support virtual data product materialization is developed for the geospatial catalogue service. The creation of such a semantics-enhanced geospatial catalogue service is important in meeting the demands for geospatial information discovery and analysis in Cyberinfrastructure.« less
ERIC Educational Resources Information Center
Lopez, Beatriz; Leekam, Susan R.; Arts, Gerda R. J.
2008-01-01
This study aimed to test the assumption drawn from weak central coherence theory that a central cognitive mechanism is responsible for integrating information at both conceptual and perceptual levels. A visual semantic memory task and a face recognition task measuring use of holistic information were administered to 15 children with autism and 16…
Electrophysiological evidence for effects of color knowledge in object recognition.
Lu, Aitao; Xu, Guiping; Jin, Hua; Mo, Lei; Zhang, Jijia; Zhang, John X
2010-01-29
Knowledge about the typical colors associated with familiar everyday objects (i.e., strawberries are red) is well-known to be represented in the conceptual semantic system. Evidence that such knowledge may also play a role in early perceptual processes for object recognition is scant. In the present ERP study, participants viewed a list of object pictures and detected infrequent stimulus repetitions. Results show that shortly after stimulus onset, ERP components indexing early perceptual processes, including N1, P2, and N2, differentiated between objects in their appropriate or congruent color from these objects in an inappropriate or incongruent color. Such congruence effect also occurred in N3 associated with semantic processing of pictures but not in N4 for domain-general semantic processing. Our results demonstrate a clear effect of color knowledge in early object recognition stages and support the following proposal-color as a surface property is stored in a multiple-memory system where pre-semantic perceptual and semantic conceptual representations interact during object recognition. (c) 2009 Elsevier Ireland Ltd. All rights reserved.
How meaning similarity influences ambiguous word processing: the current state of the literature
Tokowicz, Natasha
2016-01-01
The majority of words in the English language do not correspond to a single meaning, but rather correspond to two or more unrelated meanings (i.e., are homonyms) or multiple related senses (i.e., are polysemes). It has been proposed that the different types of “semantically-ambiguous words” (i.e., words with more than one meaning) are processed and represented differently in the human mind. Several review papers and books have been written on the subject of semantic ambiguity (e.g., Adriaens, Small, Cottrell, & Tanenhaus, 1988; Burgess & Simpson, 1988; Degani & Tokowicz, 2010; Gorfein, 1989, 2001; Simpson, 1984). However, several more recent studies (e.g., Klein & Murphy, 2001; Klepousniotou, 2002; Klepousniotou & Baum, 2007; Rodd, Gaskell, & Marslen-Wilson, 2002) have investigated the role of the semantic similarity between the multiple meanings of ambiguous words on processing and representation, whereas this was not the emphasis of previous reviews of the literature. In this review, we focus on the current state of the semantic ambiguity literature that examines how different types of ambiguous words influence processing and representation. We analyze the consistent and inconsistent findings reported in the literature and how factors such as semantic similarity, meaning/sense frequency, task, timing, and modality affect ambiguous word processing. We discuss the findings with respect to recent parallel distributed processing (PDP) models of ambiguity processing (Armstrong & Plaut, 2008, 2011; Rodd, Gaskell, & Marslen-Wilson, 2004). Finally, we discuss how experience/instance-based models (e.g., Hintzman, 1986; Reichle & Perfetti, 2003) can inform a comprehensive understanding of semantic ambiguity resolution. PMID:24889119
Chen, Vicky; Paisley, John; Lu, Xinghua
2017-03-14
Cancer is a complex disease driven by somatic genomic alterations (SGAs) that perturb signaling pathways and consequently cellular function. Identifying patterns of pathway perturbations would provide insights into common disease mechanisms shared among tumors, which is important for guiding treatment and predicting outcome. However, identifying perturbed pathways is challenging, because different tumors can have the same perturbed pathways that are perturbed by different SGAs. Here, we designed novel semantic representations that capture the functional similarity of distinct SGAs perturbing a common pathway in different tumors. Combining this representation with topic modeling would allow us to identify patterns in altered signaling pathways. We represented each gene with a vector of words describing its function, and we represented the SGAs of a tumor as a text document by pooling the words representing individual SGAs. We applied the nested hierarchical Dirichlet process (nHDP) model to a collection of tumors of 5 cancer types from TCGA. We identified topics (consisting of co-occurring words) representing the common functional themes of different SGAs. Tumors were clustered based on their topic associations, such that each cluster consists of tumors sharing common functional themes. The resulting clusters contained mixtures of cancer types, which indicates that different cancer types can share disease mechanisms. Survival analysis based on the clusters revealed significant differences in survival among the tumors of the same cancer type that were assigned to different clusters. The results indicate that applying topic modeling to semantic representations of tumors identifies patterns in the combinations of altered functional pathways in cancer.
Pan, Jinger; Laubrock, Jochen; Yan, Ming
2016-08-01
We examined how reading mode (i.e., silent vs. oral reading) influences parafoveal semantic and phonological processing during the reading of Chinese sentences, using the gaze-contingent boundary paradigm. In silent reading, we found in 2 experiments that reading times on target words were shortened with semantic previews in early and late processing, whereas phonological preview effects mainly occurred in gaze duration or second-pass reading. In contrast, results showed that phonological preview information is obtained early on in oral reading. Strikingly, in oral reading, we observed a semantic preview cost on the target word in Experiment 1 and a decrease in the effect size of preview benefit from first- to second-pass measures in Experiment 2, which we hypothesize to result from increased preview duration. Taken together, our results indicate that parafoveal semantic information can be obtained irrespective of reading mode, whereas readers more efficiently process parafoveal phonological information in oral reading. We discuss implications for notions of information processing priority and saccade generation during silent and oral reading. (PsycINFO Database Record (c) 2016 APA, all rights reserved).
An approach to define semantics for BPM systems interoperability
NASA Astrophysics Data System (ADS)
Rico, Mariela; Caliusco, María Laura; Chiotti, Omar; Rosa Galli, María
2015-04-01
This article proposes defining semantics for Business Process Management systems interoperability through the ontology of Electronic Business Documents (EBD) used to interchange the information required to perform cross-organizational processes. The semantic model generated allows aligning enterprise's business processes to support cross-organizational processes by matching the business ontology of each business partner with the EBD ontology. The result is a flexible software architecture that allows dynamically defining cross-organizational business processes by reusing the EBD ontology. For developing the semantic model, a method is presented, which is based on a strategy for discovering entity features whose interpretation depends on the context, and representing them for enriching the ontology. The proposed method complements ontology learning techniques that can not infer semantic features not represented in data sources. In order to improve the representation of these entity features, the method proposes using widely accepted ontologies, for representing time entities and relations, physical quantities, measurement units, official country names, and currencies and funds, among others. When the ontologies reuse is not possible, the method proposes identifying whether that feature is simple or complex, and defines a strategy to be followed. An empirical validation of the approach has been performed through a case study.
Davis, Matthew H; Rastle, Kathleen
2010-10-01
Feldman, O'Connor, and Moscoso del Prado Martín (2009) reported evidence for differential priming of semantically transparent (talker-talk) and semantically opaque (corner-corn) morphological pairs under masked presentation conditions. The present commentary argues that these data should not call into question the theory that morphologically structured words undergo a segmentation process based solely on form, because (1) these results do not contradict existing evidence for morpho-orthographic segmentation, (2) funnel plots suggest that the lack of priming observed for semantically opaque items in this study is inconsistent with findings in the existing literature, and (3) orthographic characteristics of the semantically opaque pairs in this study (rather than semantic factors) are the most likely explanation for these discrepant results.
A dual contribution to the involuntary semantic processing of unexpected spoken words.
Parmentier, Fabrice B R; Turner, Jacqueline; Perez, Laura
2014-02-01
Sounds are a major cause of distraction. Unexpected to-be-ignored auditory stimuli presented in the context of an otherwise repetitive acoustic background ineluctably break through selective attention and distract people from an unrelated visual task (deviance distraction). This involuntary capture of attention by deviant sounds has been hypothesized to trigger their semantic appraisal and, in some circumstances, interfere with ongoing performance, but it remains unclear how such processing compares with the automatic processing of distractors in classic interference tasks (e.g., Stroop, flanker, Simon tasks). Using a cross-modal oddball task, we assessed the involuntary semantic processing of deviant sounds in the presence and absence of deviance distraction. The results revealed that some involuntary semantic analysis of spoken distractors occurs in the absence of deviance distraction but that this processing is significantly greater in its presence. We conclude that the automatic processing of spoken distractors reflects 2 contributions, one that is contingent upon deviance distraction and one that is independent from it.
Semantics-Based Intelligent Indexing and Retrieval of Digital Images - A Case Study
NASA Astrophysics Data System (ADS)
Osman, Taha; Thakker, Dhavalkumar; Schaefer, Gerald
The proliferation of digital media has led to a huge interest in classifying and indexing media objects for generic search and usage. In particular, we are witnessing colossal growth in digital image repositories that are difficult to navigate using free-text search mechanisms, which often return inaccurate matches as they typically rely on statistical analysis of query keyword recurrence in the image annotation or surrounding text. In this chapter we present a semantically enabled image annotation and retrieval engine that is designed to satisfy the requirements of commercial image collections market in terms of both accuracy and efficiency of the retrieval process. Our search engine relies on methodically structured ontologies for image annotation, thus allowing for more intelligent reasoning about the image content and subsequently obtaining a more accurate set of results and a richer set of alternatives matchmaking the original query. We also show how our well-analysed and designed domain ontology contributes to the implicit expansion of user queries as well as presenting our initial thoughts on exploiting lexical databases for explicit semantic-based query expansion.
Forced to remember: when memory is biased by salient information.
Santangelo, Valerio
2015-04-15
The last decades have seen a rapid growing in the attempt to understand the key factors involved in the internal memory representation of the external world. Visual salience have been found to provide a major contribution in predicting the probability for an item/object embedded in a complex setting (i.e., a natural scene) to be encoded and then remembered later on. Here I review the existing literature highlighting the impact of perceptual- (based on low-level sensory features) and semantics-related salience (based on high-level knowledge) on short-term memory representation, along with the neural mechanisms underpinning the interplay between these factors. The available evidence reveal that both perceptual- and semantics-related factors affect attention selection mechanisms during the encoding of natural scenes. Biasing internal memory representation, both perceptual and semantics factors increase the probability to remember high- to the detriment of low-saliency items. The available evidence also highlight an interplay between these factors, with a reduced impact of perceptual-related salience in biasing memory representation as a function of the increasing availability of semantics-related salient information. The neural mechanisms underpinning this interplay involve the activation of different portions of the frontoparietal attention control network. Ventral regions support the assignment of selection/encoding priorities based on high-level semantics, while the involvement of dorsal regions reflects priorities assignment based on low-level sensory features. Copyright © 2015 Elsevier B.V. All rights reserved.
Semantic size of abstract concepts: it gets emotional when you can't see it.
Yao, Bo; Vasiljevic, Milica; Weick, Mario; Sereno, Margaret E; O'Donnell, Patrick J; Sereno, Sara C
2013-01-01
Size is an important visuo-spatial characteristic of the physical world. In language processing, previous research has demonstrated a processing advantage for words denoting semantically "big" (e.g., jungle) versus "small" (e.g., needle) concrete objects. We investigated whether semantic size plays a role in the recognition of words expressing abstract concepts (e.g., truth). Semantically "big" and "small" concrete and abstract words were presented in a lexical decision task. Responses to "big" words, regardless of their concreteness, were faster than those to "small" words. Critically, we explored the relationship between semantic size and affective characteristics of words as well as their influence on lexical access. Although a word's semantic size was correlated with its emotional arousal, the temporal locus of arousal effects may depend on the level of concreteness. That is, arousal seemed to have an earlier (lexical) effect on abstract words, but a later (post-lexical) effect on concrete words. Our findings provide novel insights into the semantic representations of size in abstract concepts and highlight that affective attributes of words may not always index lexical access.
Kuipers, Jan-Rouke; van Koningsbruggen, Martijn; Thierry, Guillaume
2013-08-21
Reading action verbs is associated with activity in the motor cortices involved in performing the corresponding actions. Here, we present new evidence that the motor cortex is involved in semantic processing of bodily action verbs. In contrast to previous studies, we used a direct, nonbehavioural index of semantic processing after repetitive transcranial magnetic stimulation (rTMS). Participants saw pairs of hand-related (e.g. to grab-to point) or mouth-related (e.g. to speak-to sing) verbs, whereas semantic priming was assessed using event-related potentials. Presentation of the first verb coincided with rTMS over the participant's cortical-left hand area and event-related brain potentials were analysed time-locked to the presentation onset of the second verb. Semantic integration - indexed by the N400 brain potential - was impaired for hand-related but not for mouth-related verb pairs after rTMS. This finding provides strong evidence that the motor cortex is involved in semantic encoding of action verbs, and supports the 'embodied semantics' hypothesis.
Stites, Mallory C; Federmeier, Kara D; Stine-Morrow, Elizabeth A L
2013-11-01
Eye tracking was used to investigate how younger and older (60 or more years) adults use syntactic and semantic information to disambiguate noun/verb (NV) homographs (e.g., park). In event-related potential (ERP) work using the same materials, Lee and Federmeier (2009, 2011) found that young adults elicited a sustained frontal negativity to NV homographs when only syntactic cues were available (i.e., in syntactic prose); this effect was eliminated by semantic constraints. The negativity was only present in older adults with high verbal fluency. The current study shows parallel findings: Young adults exhibit inflated first fixation durations to NV homographs in syntactic prose, but not semantically congruent sentences. This effect is absent in older adults as a group. Verbal fluency modulates the effect in both age groups: High fluency is associated with larger first fixation effects in syntactic prose. Older, but not younger, adults also show significantly increased rereading of the NV homographs in syntactic prose. Verbal fluency modulates this effect as well: High fluency is associated with a reduced tendency to reread, regardless of age. This relationship suggests a trade-off between initial and downstream processing costs for ambiguity during natural reading. Together the eye-tracking and ERP data suggest that effortful meaning selection recruits mechanisms important for suppressing contextually inappropriate meanings, which also slow eye movements. Efficacy of frontotemporal circuitry, as captured by verbal fluency, predicts the success of engaging these mechanisms in both young and older adults. Failure to recruit these processes requires compensatory rereading or leads to comprehension failures (Lee & Federmeier, 2012). PsycINFO Database Record (c) 2013 APA, all rights reserved.
Frequency Drives Lexical Access in Reading but not in Speaking: The Frequency-Lag Hypothesis
Gollan, Tamar H.; Slattery, Timothy J.; Goldenberg, Diane; van Assche, Eva; Duyck, Wouter; Rayner, Keith
2010-01-01
To contrast mechanisms of lexical access in production versus comprehension we compared the effects of word-frequency (high, low), context (none, low-constraining, high-constraining), and level of English proficiency (monolinguals, Spanish-English bilinguals, Dutch-English bilinguals), on picture naming, lexical decision, and eye fixation times. Semantic constraint effects were larger in production than in reading. Frequency effects were larger in production than in reading without constraining context, but larger in reading than in production with constraining context. Bilingual disadvantages were modulated by frequency in production but not in eye fixation times, were not smaller in low-constraining context, and were reduced by high-constraining context only in production and only at the lowest level of English proficiency. These results challenge existing accounts of bilingual disadvantages, and reveal fundamentally different processes during lexical access across modalities, entailing a primarily semantically driven search in production, but a frequency driven search in comprehension. The apparently more interactive process in production than comprehension could simply reflect a greater number of frequency-sensitive processing stages in production. PMID:21219080
Smith, Andrew P
2012-10-01
Previous research has shown that people with the common cold report a more negative mood and psychomotor slowing. Recent research suggests that memory speed may also be impaired. This was examined in the study reported here. A prospective design was used and all participants (N=200; half male, half female; mean age 21 years, range 18-30 years) carried out a baseline session when healthy. The test battery involved mood rating, simple and choice reaction time, verbal reasoning and semantic processing. Volunteers returned when they developed an upper respiratory tract illness (URTI) and repeated the test battery. If they remained healthy they were recalled as a control. One hundred and eighty-nine participants completed the study and 48 developed URTIs and 141 were in the healthy control group. Symptoms and signs suggested that those who were ill had colds rather than influenza. The results showed that those with colds reported lower alertness, a more negative mood, and psychomotor slowing. They were also slower at encoding new information and slower on the verbal reasoning and semantic processing tasks. The magnitude of the mood changes associated with being ill were correlated with symptom severity. The performance changes were not correlated with symptom severity, sleep duration or mood changes. Further research is now needed to elucidate the underlying mechanisms of the behavioral malaise associated with URTIs. Copyright © 2012 Elsevier Inc. All rights reserved.
Gao, Ying; Zhang, Hao
2014-05-01
Previous behavioral studies have identified the significant role of subliminal cues in creative problem solving. However, neural mechanisms of such unconscious processing remain poorly understood. Here we utilized an event-related potential (ERP) approach and sandwich mask technique to investigate cerebral activities underlying the unconscious processing of cues in creative problem solving. College students were instructed to solve divergent problems under three different conditions (conscious cue, unconscious cue and no-cue conditions). Our data showed that creative problem solving can benefit from unconscious cues, although not as much as from conscious cues. More importantly, we found that there are crucial ERP components associated with unconscious processing of cues in solving divergent problems. Similar to the processing of conscious cues, processing unconscious cues in problem solving involves the semantic activation of unconscious cues (N280-340) in the right inferior parietal lobule (BA 40), new association formation (P350-450) in the right parahippocampal gyrus (BA 36), and mental representation transformation (P500-760) in the right superior temporal gyrus (BA 22). The present results suggest that creative problem solving can be modulated by unconscious processing of enlightening information that is weakly diffused in the semantic network beyond our conscious awareness. Copyright © 2014 Elsevier Inc. All rights reserved.
Right Hemisphere Metaphor Processing? Characterizing the Lateralization of Semantic Processes
ERIC Educational Resources Information Center
Schmidt, Gwen L.; DeBuse, Casey J.; Seger, Carol A.
2007-01-01
Previous laterality studies have implicated the right hemisphere in the processing of metaphors, however it is not clear if this result is due to metaphoricity per se or another aspect of semantic processing. Three divided visual field experiments varied metaphorical and literal sentence familiarity. We found a right hemisphere advantage for…