Sample records for semantic sensor network

  1. Ontology Alignment Architecture for Semantic Sensor Web Integration

    PubMed Central

    Fernandez, Susel; Marsa-Maestre, Ivan; Velasco, Juan R.; Alarcos, Bernardo

    2013-01-01

    Sensor networks are a concept that has become very popular in data acquisition and processing for multiple applications in different fields such as industrial, medicine, home automation, environmental detection, etc. Today, with the proliferation of small communication devices with sensors that collect environmental data, semantic Web technologies are becoming closely related with sensor networks. The linking of elements from Semantic Web technologies with sensor networks has been called Semantic Sensor Web and has among its main features the use of ontologies. One of the key challenges of using ontologies in sensor networks is to provide mechanisms to integrate and exchange knowledge from heterogeneous sources (that is, dealing with semantic heterogeneity). Ontology alignment is the process of bringing ontologies into mutual agreement by the automatic discovery of mappings between related concepts. This paper presents a system for ontology alignment in the Semantic Sensor Web which uses fuzzy logic techniques to combine similarity measures between entities of different ontologies. The proposed approach focuses on two key elements: the terminological similarity, which takes into account the linguistic and semantic information of the context of the entity's names, and the structural similarity, based on both the internal and relational structure of the concepts. This work has been validated using sensor network ontologies and the Ontology Alignment Evaluation Initiative (OAEI) tests. The results show that the proposed techniques outperform previous approaches in terms of precision and recall. PMID:24051523

  2. Ontology alignment architecture for semantic sensor Web integration.

    PubMed

    Fernandez, Susel; Marsa-Maestre, Ivan; Velasco, Juan R; Alarcos, Bernardo

    2013-09-18

    Sensor networks are a concept that has become very popular in data acquisition and processing for multiple applications in different fields such as industrial, medicine, home automation, environmental detection, etc. Today, with the proliferation of small communication devices with sensors that collect environmental data, semantic Web technologies are becoming closely related with sensor networks. The linking of elements from Semantic Web technologies with sensor networks has been called Semantic Sensor Web and has among its main features the use of ontologies. One of the key challenges of using ontologies in sensor networks is to provide mechanisms to integrate and exchange knowledge from heterogeneous sources (that is, dealing with semantic heterogeneity). Ontology alignment is the process of bringing ontologies into mutual agreement by the automatic discovery of mappings between related concepts. This paper presents a system for ontology alignment in the Semantic Sensor Web which uses fuzzy logic techniques to combine similarity measures between entities of different ontologies. The proposed approach focuses on two key elements: the terminological similarity, which takes into account the linguistic and semantic information of the context of the entity's names, and the structural similarity, based on both the internal and relational structure of the concepts. This work has been validated using sensor network ontologies and the Ontology Alignment Evaluation Initiative (OAEI) tests. The results show that the proposed techniques outperform previous approaches in terms of precision and recall.

  3. A Ubiquitous Sensor Network Platform for Integrating Smart Devices into the Semantic Sensor Web

    PubMed Central

    de Vera, David Díaz Pardo; Izquierdo, Álvaro Sigüenza; Vercher, Jesús Bernat; Gómez, Luis Alfonso Hernández

    2014-01-01

    Ongoing Sensor Web developments make a growing amount of heterogeneous sensor data available to smart devices. This is generating an increasing demand for homogeneous mechanisms to access, publish and share real-world information. This paper discusses, first, an architectural solution based on Next Generation Networks: a pilot Telco Ubiquitous Sensor Network (USN) Platform that embeds several OGC® Sensor Web services. This platform has already been deployed in large scale projects. Second, the USN-Platform is extended to explore a first approach to Semantic Sensor Web principles and technologies, so that smart devices can access Sensor Web data, allowing them also to share richer (semantically interpreted) information. An experimental scenario is presented: a smart car that consumes and produces real-world information which is integrated into the Semantic Sensor Web through a Telco USN-Platform. Performance tests revealed that observation publishing times with our experimental system were well within limits compatible with the adequate operation of smart safety assistance systems in vehicles. On the other hand, response times for complex queries on large repositories may be inappropriate for rapid reaction needs. PMID:24945678

  4. A ubiquitous sensor network platform for integrating smart devices into the semantic sensor web.

    PubMed

    de Vera, David Díaz Pardo; Izquierdo, Alvaro Sigüenza; Vercher, Jesús Bernat; Hernández Gómez, Luis Alfonso

    2014-06-18

    Ongoing Sensor Web developments make a growing amount of heterogeneous sensor data available to smart devices. This is generating an increasing demand for homogeneous mechanisms to access, publish and share real-world information. This paper discusses, first, an architectural solution based on Next Generation Networks: a pilot Telco Ubiquitous Sensor Network (USN) Platform that embeds several OGC® Sensor Web services. This platform has already been deployed in large scale projects. Second, the USN-Platform is extended to explore a first approach to Semantic Sensor Web principles and technologies, so that smart devices can access Sensor Web data, allowing them also to share richer (semantically interpreted) information. An experimental scenario is presented: a smart car that consumes and produces real-world information which is integrated into the Semantic Sensor Web through a Telco USN-Platform. Performance tests revealed that observation publishing times with our experimental system were well within limits compatible with the adequate operation of smart safety assistance systems in vehicles. On the other hand, response times for complex queries on large repositories may be inappropriate for rapid reaction needs.

  5. Architecture for WSN Nodes Integration in Context Aware Systems Using Semantic Messages

    NASA Astrophysics Data System (ADS)

    Larizgoitia, Iker; Muguira, Leire; Vazquez, Juan Ignacio

    Wireless sensor networks (WSN) are becoming extremely popular in the development of context aware systems. Traditionally WSN have been focused on capturing data, which was later analyzed and interpreted in a server with more computational power. In this kind of scenario the problem of representing the sensor information needs to be addressed. Every node in the network might have different sensors attached; therefore their correspondent packet structures will be different. The server has to be aware of the meaning of every single structure and data in order to be able to interpret them. Multiple sensors, multiple nodes, multiple packet structures (and not following a standard format) is neither scalable nor interoperable. Context aware systems have solved this problem with the use of semantic technologies. They provide a common framework to achieve a standard definition of any domain. Nevertheless, these representations are computationally expensive, so a WSN cannot afford them. The work presented in this paper tries to bridge the gap between the sensor information and its semantic representation, by defining a simple architecture that enables the definition of this information natively in a semantic way, achieving the integration of the semantic information in the network packets. This will have several benefits, the most important being the possibility of promoting every WSN node to a real semantic information source.

  6. SITRUS: Semantic Infrastructure for Wireless Sensor Networks

    PubMed Central

    Bispo, Kalil A.; Rosa, Nelson S.; Cunha, Paulo R. F.

    2015-01-01

    Wireless sensor networks (WSNs) are made up of nodes with limited resources, such as processing, bandwidth, memory and, most importantly, energy. For this reason, it is essential that WSNs always work to reduce the power consumption as much as possible in order to maximize its lifetime. In this context, this paper presents SITRUS (semantic infrastructure for wireless sensor networks), which aims to reduce the power consumption of WSN nodes using ontologies. SITRUS consists of two major parts: a message-oriented middleware responsible for both an oriented message communication service and a reconfiguration service; and a semantic information processing module whose purpose is to generate a semantic database that provides the basis to decide whether a WSN node needs to be reconfigurated or not. In order to evaluate the proposed solution, we carried out an experimental evaluation to assess the power consumption and memory usage of WSN applications built atop SITRUS. PMID:26528974

  7. Applying Semantic Web Services and Wireless Sensor Networks for System Integration

    NASA Astrophysics Data System (ADS)

    Berkenbrock, Gian Ricardo; Hirata, Celso Massaki; de Oliveira Júnior, Frederico Guilherme Álvares; de Oliveira, José Maria Parente

    In environments like factories, buildings, and homes automation services tend to often change during their lifetime. Changes are concerned to business rules, process optimization, cost reduction, and so on. It is important to provide a smooth and straightforward way to deal with these changes so that could be handled in a faster and low cost manner. Some prominent solutions use the flexibility of Wireless Sensor Networks and the meaningful description of Semantic Web Services to provide service integration. In this work, we give an overview of current solutions for machinery integration that combine both technologies as well as a discussion about some perspectives and open issues when applying Wireless Sensor Networks and Semantic Web Services for automation services integration.

  8. Design and Implementation of e-Health System Based on Semantic Sensor Network Using IETF YANG.

    PubMed

    Jin, Wenquan; Kim, Do Hyeun

    2018-02-20

    Recently, healthcare services can be delivered effectively to patients anytime and anywhere using e-Health systems. e-Health systems are developed through Information and Communication Technologies (ICT) that involve sensors, mobiles, and web-based applications for the delivery of healthcare services and information. Remote healthcare is an important purpose of the e-Health system. Usually, the eHealth system includes heterogeneous sensors from diverse manufacturers producing data in different formats. Device interoperability and data normalization is a challenging task that needs research attention. Several solutions are proposed in the literature based on manual interpretation through explicit programming. However, programmatically implementing the interpretation of the data sender and data receiver in the e-Health system for the data transmission is counterproductive as modification will be required for each new device added into the system. In this paper, an e-Health system with the Semantic Sensor Network (SSN) is proposed to address the device interoperability issue. In the proposed system, we have used IETF YANG for modeling the semantic e-Health data to represent the information of e-Health sensors. This modeling scheme helps in provisioning semantic interoperability between devices and expressing the sensing data in a user-friendly manner. For this purpose, we have developed an ontology for e-Health data that supports different styles of data formats. The ontology is defined in YANG for provisioning semantic interpretation of sensing data in the system by constructing meta-models of e-Health sensors. The proposed approach assists in the auto-configuration of eHealth sensors and querying the sensor network with semantic interoperability support for the e-Health system.

  9. Design and Implementation of e-Health System Based on Semantic Sensor Network Using IETF YANG

    PubMed Central

    Kim, Do Hyeun

    2018-01-01

    Recently, healthcare services can be delivered effectively to patients anytime and anywhere using e-Health systems. e-Health systems are developed through Information and Communication Technologies (ICT) that involve sensors, mobiles, and web-based applications for the delivery of healthcare services and information. Remote healthcare is an important purpose of the e-Health system. Usually, the eHealth system includes heterogeneous sensors from diverse manufacturers producing data in different formats. Device interoperability and data normalization is a challenging task that needs research attention. Several solutions are proposed in the literature based on manual interpretation through explicit programming. However, programmatically implementing the interpretation of the data sender and data receiver in the e-Health system for the data transmission is counterproductive as modification will be required for each new device added into the system. In this paper, an e-Health system with the Semantic Sensor Network (SSN) is proposed to address the device interoperability issue. In the proposed system, we have used IETF YANG for modeling the semantic e-Health data to represent the information of e-Health sensors. This modeling scheme helps in provisioning semantic interoperability between devices and expressing the sensing data in a user-friendly manner. For this purpose, we have developed an ontology for e-Health data that supports different styles of data formats. The ontology is defined in YANG for provisioning semantic interpretation of sensing data in the system by constructing meta-models of e-Health sensors. The proposed approach assists in the auto-configuration of eHealth sensors and querying the sensor network with semantic interoperability support for the e-Health system. PMID:29461493

  10. A semantically rich and standardised approach enhancing discovery of sensor data and metadata

    NASA Astrophysics Data System (ADS)

    Kokkinaki, Alexandra; Buck, Justin; Darroch, Louise

    2016-04-01

    The marine environment plays an essential role in the earth's climate. To enhance the ability to monitor the health of this important system, innovative sensors are being produced and combined with state of the art sensor technology. As the number of sensors deployed is continually increasing,, it is a challenge for data users to find the data that meet their specific needs. Furthermore, users need to integrate diverse ocean datasets originating from the same or even different systems. Standards provide a solution to the above mentioned challenges. The Open Geospatial Consortium (OGC) has created Sensor Web Enablement (SWE) standards that enable different sensor networks to establish syntactic interoperability. When combined with widely accepted controlled vocabularies, they become semantically rich and semantic interoperability is achievable. In addition, Linked Data is the recommended best practice for exposing, sharing and connecting information on the Semantic Web using Uniform Resource Identifiers (URIs), Resource Description Framework (RDF) and RDF Query Language (SPARQL). As part of the EU-funded SenseOCEAN project, the British Oceanographic Data Centre (BODC) is working on the standardisation of sensor metadata enabling 'plug and play' sensor integration. Our approach combines standards, controlled vocabularies and persistent URIs to publish sensor descriptions, their data and associated metadata as 5 star Linked Data and OGC SWE (SensorML, Observations & Measurements) standard. Thus sensors become readily discoverable, accessible and useable via the web. Content and context based searching is also enabled since sensors descriptions are understood by machines. Additionally, sensor data can be combined with other sensor or Linked Data datasets to form knowledge. This presentation will describe the work done in BODC to achieve syntactic and semantic interoperability in the sensor domain. It will illustrate the reuse and extension of the Semantic Sensor Network (SSN) ontology to Linked Sensor Ontology (LSO) and the steps taken to combine OGC SWE with the Linked Data approach through alignment and embodiment of other ontologies. It will then explain how data and models were annotated with controlled vocabularies to establish unambiguous semantics and interconnect them with data from different sources. Finally, it will introduce the RDF triple store where the sensor descriptions and metadata are stored and can be queried through the standard query language SPARQL. Providing different flavours of machine readable interpretations of sensors, sensor data and metadata enhances discoverability but most importantly allows seamless aggregation of information from different networks that will finally produce knowledge.

  11. Secure Sensor Semantic Web and Information Fusion

    DTIC Science & Technology

    2014-06-25

    data acquired and transmitted by wireless sensor networks (WSNs). In a WSN, due to a need for robustness of monitoring and low cost of the nodes...3 S. Ozdemir and Y. Xiao, “Secure data aggregation in wireless sensor networks : A comprehensive overview...Elisa Bertino, and Somesh Jha: Secure data aggregation technique for wireless sensor networks in the presence of collusion attacks. To appear in

  12. A Semantic Sensor Web for Environmental Decision Support Applications

    PubMed Central

    Gray, Alasdair J. G.; Sadler, Jason; Kit, Oles; Kyzirakos, Kostis; Karpathiotakis, Manos; Calbimonte, Jean-Paul; Page, Kevin; García-Castro, Raúl; Frazer, Alex; Galpin, Ixent; Fernandes, Alvaro A. A.; Paton, Norman W.; Corcho, Oscar; Koubarakis, Manolis; De Roure, David; Martinez, Kirk; Gómez-Pérez, Asunción

    2011-01-01

    Sensing devices are increasingly being deployed to monitor the physical world around us. One class of application for which sensor data is pertinent is environmental decision support systems, e.g., flood emergency response. For these applications, the sensor readings need to be put in context by integrating them with other sources of data about the surrounding environment. Traditional systems for predicting and detecting floods rely on methods that need significant human resources. In this paper we describe a semantic sensor web architecture for integrating multiple heterogeneous datasets, including live and historic sensor data, databases, and map layers. The architecture provides mechanisms for discovering datasets, defining integrated views over them, continuously receiving data in real-time, and visualising on screen and interacting with the data. Our approach makes extensive use of web service standards for querying and accessing data, and semantic technologies to discover and integrate datasets. We demonstrate the use of our semantic sensor web architecture in the context of a flood response planning web application that uses data from sensor networks monitoring the sea-state around the coast of England. PMID:22164110

  13. Semantic eScience for Ecosystem Understanding and Monitoring: The Jefferson Project Case Study

    NASA Astrophysics Data System (ADS)

    McGuinness, D. L.; Pinheiro da Silva, P.; Patton, E. W.; Chastain, K.

    2014-12-01

    Monitoring and understanding ecosystems such as lakes and their watersheds is becoming increasingly important. Accelerated eutrophication threatens our drinking water sources. Many believe that the use of nutrients (e.g., road salts, fertilizers, etc.) near these sources may have negative impacts on animal and plant populations and water quality although it is unclear how to best balance broad community needs. The Jefferson Project is a joint effort between RPI, IBM and the Fund for Lake George aimed at creating an instrumented water ecosystem along with an appropriate cyberinfrastructure that can serve as a global model for ecosystem monitoring, exploration, understanding, and prediction. One goal is to help communities understand the potential impacts of actions such as road salting strategies so that they can make appropriate informed recommendations that serve broad community needs. Our semantic eScience team is creating a semantic infrastructure to support data integration and analysis to help trained scientists as well as the general public to better understand the lake today, and explore potential future scenarios. We are leveraging our RPI Tetherless World Semantic Web methodology that provides an agile process for describing use cases, identification of appropriate background ontologies and technologies, implementation, and evaluation. IBM is providing a state-of-the-art sensor network infrastructure along with a collection of tools to share, maintain, analyze and visualize the network data. In the context of this sensor infrastructure, we will discuss our semantic approach's contributions in three knowledge representation and reasoning areas: (a) human interventions on the deployment and maintenance of local sensor networks including the scientific knowledge to decide how and where sensors are deployed; (b) integration, interpretation and management of data coming from external sources used to complement the project's models; and (c) knowledge about simulation results including parameters, interpretation of results, and comparison of results against external data. We will also demonstrate some example queries highlighting the benefits of our semantic approach and will also identify reusable components.

  14. An ontology for sensor networks

    NASA Astrophysics Data System (ADS)

    Compton, Michael; Neuhaus, Holger; Bermudez, Luis; Cox, Simon

    2010-05-01

    Sensors and networks of sensors are important ways of monitoring and digitizing reality. As the number and size of sensor networks grows, so too does the amount of data collected. Users of such networks typically need to discover the sensors and data that fit their needs without necessarily understanding the complexities of the network itself. The burden on users is eased if the network and its data are expressed in terms of concepts familiar to the users and their job functions, rather than in terms of the network or how it was designed. Furthermore, the task of collecting and combining data from multiple sensor networks is made easier if metadata about the data and the networks is stored in a format and conceptual models that is amenable to machine reasoning and inference. While the OGC's (Open Geospatial Consortium) SWE (Sensor Web Enablement) standards provide for the description and access to data and metadata for sensors, they do not provide facilities for abstraction, categorization, and reasoning consistent with standard technologies. Once sensors and networks are described using rich semantics (that is, by using logic to describe the sensors, the domain of interest, and the measurements) then reasoning and classification can be used to analyse and categorise data, relate measurements with similar information content, and manage, query and task sensors. This will enable types of automated processing and logical assurance built on OGC standards. The W3C SSN-XG (Semantic Sensor Networks Incubator Group) is producing a generic ontology to describe sensors, their environment and the measurements they make. The ontology provides definitions for the structure of sensors and observations, leaving the details of the observed domain unspecified. This allows abstract representations of real world entities, which are not observed directly but through their observable qualities. Domain semantics, units of measurement, time and time series, and location and mobility ontologies can be easily attached when instantiating the ontology for any particular sensors in a domain. After a review of previous work on the specification of sensors, the group is developing the ontology in conjunction with use case development. Part of the difficulty of such work is that relevant concepts from for example OGC standards and other ontologies must be identified and aligned and also placed in a consistent and logically correct way into the ontology. In terms of alignment with OGC's SWE, the ontology is intended to be able to model concepts from SensorML and O&M. Similar to SensorML and O&M, the ontology is based around concepts of systems, processes, and observations. It supports the description of the physical and processing structure of sensors. Sensors are not constrained to physical sensing devices: rather a sensor is anything that can estimate or calculate the value of a phenomenon, so a device or computational process or combination could play the role of a sensor. The representation of a sensor in the ontology links together what is measured (the domain phenomena), the sensor's physical and other properties and its functions and processing. Parts of the ontology are well aligned with SensorML and O&M, but parts are not, and the group is working to understand how differences from (and alignment with) the OGC standards affect the application of the ontology.

  15. A fusion network for semantic segmentation using RGB-D data

    NASA Astrophysics Data System (ADS)

    Yuan, Jiahui; Zhang, Kun; Xia, Yifan; Qi, Lin; Dong, Junyu

    2018-04-01

    Semantic scene parsing is considerable in many intelligent field, including perceptual robotics. For the past few years, pixel-wise prediction tasks like semantic segmentation with RGB images has been extensively studied and has reached very remarkable parsing levels, thanks to convolutional neural networks (CNNs) and large scene datasets. With the development of stereo cameras and RGBD sensors, it is expected that additional depth information will help improving accuracy. In this paper, we propose a semantic segmentation framework incorporating RGB and complementary depth information. Motivated by the success of fully convolutional networks (FCN) in semantic segmentation field, we design a fully convolutional networks consists of two branches which extract features from both RGB and depth data simultaneously and fuse them as the network goes deeper. Instead of aggregating multiple model, our goal is to utilize RGB data and depth data more effectively in a single model. We evaluate our approach on the NYU-Depth V2 dataset, which consists of 1449 cluttered indoor scenes, and achieve competitive results with the state-of-the-art methods.

  16. Combining Wireless Sensor Networks and Semantic Middleware for an Internet of Things-Based Sportsman/Woman Monitoring Application

    PubMed Central

    Rodríguez-Molina, Jesús; Martínez, José-Fernán; Castillejo, Pedro; López, Lourdes

    2013-01-01

    Wireless Sensor Networks (WSNs) are spearheading the efforts taken to build and deploy systems aiming to accomplish the ultimate objectives of the Internet of Things. Due to the sensors WSNs nodes are provided with, and to their ubiquity and pervasive capabilities, these networks become extremely suitable for many applications that so-called conventional cabled or wireless networks are unable to handle. One of these still underdeveloped applications is monitoring physical parameters on a person. This is an especially interesting application regarding their age or activity, for any detected hazardous parameter can be notified not only to the monitored person as a warning, but also to any third party that may be helpful under critical circumstances, such as relatives or healthcare centers. We propose a system built to monitor a sportsman/woman during a workout session or performing a sport-related indoor activity. Sensors have been deployed by means of several nodes acting as the nodes of a WSN, along with a semantic middleware development used for hardware complexity abstraction purposes. The data extracted from the environment, combined with the information obtained from the user, will compose the basis of the services that can be obtained. PMID:23385405

  17. Combining wireless sensor networks and semantic middleware for an Internet of Things-based sportsman/woman monitoring application.

    PubMed

    Rodríguez-Molina, Jesús; Martínez, José-Fernán; Castillejo, Pedro; López, Lourdes

    2013-01-31

    Wireless Sensor Networks (WSNs) are spearheading the efforts taken to build and deploy systems aiming to accomplish the ultimate objectives of the Internet of Things. Due to the sensors WSNs nodes are provided with, and to their ubiquity and pervasive capabilities, these networks become extremely suitable for many applications that so-called conventional cabled or wireless networks are unable to handle. One of these still underdeveloped applications is monitoring physical parameters on a person. This is an especially interesting application regarding their age or activity, for any detected hazardous parameter can be notified not only to the monitored person as a warning, but also to any third party that may be helpful under critical circumstances, such as relatives or healthcare centers. We propose a system built to monitor a sportsman/woman during a workout session or performing a sport-related indoor activity. Sensors have been deployed by means of several nodes acting as the nodes of a WSN, along with a semantic middleware development used for hardware complexity abstraction purposes. The data extracted from the environment, combined with the information obtained from the user, will compose the basis of the services that can be obtained.

  18. Semantic Visualization of Wireless Sensor Networks for Elderly Monitoring

    NASA Astrophysics Data System (ADS)

    Stocklöw, Carsten; Kamieth, Felix

    In the area of Ambient Intelligence, Wireless Sensor Networks are commonly used for user monitoring purposes like health monitoring and user localization. Existing work on visualization of wireless sensor networks focuses mainly on displaying individual nodes and logical, graph-based topologies. This way, the relation to the real-world deployment is lost. This paper presents a novel approach for visualization of wireless sensor networks and interaction with complex services on the nodes. The environment is realized as a 3D model, and multiple nodes, that are worn by a single individual, are grouped together to allow an intuitive interface for end users. We describe application examples and show that our approach allows easier access to network information and functionality by comparing it with existing solutions.

  19. AEGIS: A Lightweight Firewall for Wireless Sensor Networks

    NASA Astrophysics Data System (ADS)

    Hossain, Mohammad Sajjad; Raghunathan, Vijay

    Firewalls are an essential component in today's networked computing systems (desktops, laptops, and servers) and provide effective protection against a variety of over-the-network security attacks. With the development of technologies such as IPv6 and 6LoWPAN that pave the way for Internet-connected embedded systems and sensor networks, these devices will soon be subject to (and need to be defended against) similar security threats. As a first step, this paper presents Aegis, a lightweight, rule-based firewall for networked embedded systems such as wireless sensor networks. Aegis is based on a semantically rich, yet simple, rule definition language. In addition, Aegis is highly efficient during operation, runs in a transparent manner from running applications, and is easy to maintain. Experimental results obtained using real sensor nodes and cycle-accurate simulations demonstrate that Aegis successfully performs gatekeeping of a sensor node's communication traffic in a flexible manner with minimal overheads.

  20. The MMI Device Ontology: Enabling Sensor Integration

    NASA Astrophysics Data System (ADS)

    Rueda, C.; Galbraith, N.; Morris, R. A.; Bermudez, L. E.; Graybeal, J.; Arko, R. A.; Mmi Device Ontology Working Group

    2010-12-01

    The Marine Metadata Interoperability (MMI) project has developed an ontology for devices to describe sensors and sensor networks. This ontology is implemented in the W3C Web Ontology Language (OWL) and provides an extensible conceptual model and controlled vocabularies for describing heterogeneous instrument types, with different data characteristics, and their attributes. It can help users populate metadata records for sensors; associate devices with their platforms, deployments, measurement capabilities and restrictions; aid in discovery of sensor data, both historic and real-time; and improve the interoperability of observational oceanographic data sets. We developed the MMI Device Ontology following a community-based approach. By building on and integrating other models and ontologies from related disciplines, we sought to facilitate semantic interoperability while avoiding duplication. Key concepts and insights from various communities, including the Open Geospatial Consortium (eg., SensorML and Observations and Measurements specifications), Semantic Web for Earth and Environmental Terminology (SWEET), and W3C Semantic Sensor Network Incubator Group, have significantly enriched the development of the ontology. Individuals ranging from instrument designers, science data producers and consumers to ontology specialists and other technologists contributed to the work. Applications of the MMI Device Ontology are underway for several community use cases. These include vessel-mounted multibeam mapping sonars for the Rolling Deck to Repository (R2R) program and description of diverse instruments on deepwater Ocean Reference Stations for the OceanSITES program. These trials involve creation of records completely describing instruments, either by individual instances or by manufacturer and model. Individual terms in the MMI Device Ontology can be referenced with their corresponding Uniform Resource Identifiers (URIs) in sensor-related metadata specifications (e.g., SensorML, NetCDF). These identifiers can be resolved through a web browser, or other client applications via HTTP against the MMI Ontology Registry and Repository (ORR), where the ontology is maintained. SPARQL-based query capabilities, which are enhanced with reasoning, along with several supported output formats, allow the effective interaction of diverse client applications with the semantic information associated with the device ontology. In this presentation we describe the process for the development of the MMI Device Ontology and illustrate extensions and applications that demonstrate the benefits of adopting this semantic approach, including example queries involving inference. We also highlight the issues encountered and future work.

  1. Path Network Recovery Using Remote Sensing Data and Geospatial-Temporal Semantic Graphs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    William C. McLendon III; Brost, Randy C.

    Remote sensing systems produce large volumes of high-resolution images that are difficult to search. The GeoGraphy (pronounced Geo-Graph-y) framework [2, 20] encodes remote sensing imagery into a geospatial-temporal semantic graph representation to enable high level semantic searches to be performed. Typically scene objects such as buildings and trees tend to be shaped like blocks with few holes, but other shapes generated from path networks tend to have a large number of holes and can span a large geographic region due to their connectedness. For example, we have a dataset covering the city of Philadelphia in which there is a singlemore » road network node spanning a 6 mile x 8 mile region. Even a simple question such as "find two houses near the same street" might give unexpected results. More generally, nodes arising from networks of paths (roads, sidewalks, trails, etc.) require additional processing to make them useful for searches in GeoGraphy. We have assigned the term Path Network Recovery to this process. Path Network Recovery is a three-step process involving (1) partitioning the network node into segments, (2) repairing broken path segments interrupted by occlusions or sensor noise, and (3) adding path-aware search semantics into GeoQuestions. This report covers the path network recovery process, how it is used, and some example use cases of the current capabilities.« less

  2. Scene Semantic Segmentation from Indoor Rgb-D Images Using Encode-Decoder Fully Convolutional Networks

    NASA Astrophysics Data System (ADS)

    Wang, Z.; Li, T.; Pan, L.; Kang, Z.

    2017-09-01

    With increasing attention for the indoor environment and the development of low-cost RGB-D sensors, indoor RGB-D images are easily acquired. However, scene semantic segmentation is still an open area, which restricts indoor applications. The depth information can help to distinguish the regions which are difficult to be segmented out from the RGB images with similar color or texture in the indoor scenes. How to utilize the depth information is the key problem of semantic segmentation for RGB-D images. In this paper, we propose an Encode-Decoder Fully Convolutional Networks for RGB-D image classification. We use Multiple Kernel Maximum Mean Discrepancy (MK-MMD) as a distance measure to find common and special features of RGB and D images in the network to enhance performance of classification automatically. To explore better methods of applying MMD, we designed two strategies; the first calculates MMD for each feature map, and the other calculates MMD for whole batch features. Based on the result of classification, we use the full connect CRFs for the semantic segmentation. The experimental results show that our method can achieve a good performance on indoor RGB-D image semantic segmentation.

  3. Live Social Semantics

    NASA Astrophysics Data System (ADS)

    Alani, Harith; Szomszor, Martin; Cattuto, Ciro; van den Broeck, Wouter; Correndo, Gianluca; Barrat, Alain

    Social interactions are one of the key factors to the success of conferences and similar community gatherings. This paper describes a novel application that integrates data from the semantic web, online social networks, and a real-world contact sensing platform. This application was successfully deployed at ESWC09, and actively used by 139 people. Personal profiles of the participants were automatically generated using several Web 2.0 systems and semantic academic data sources, and integrated in real-time with face-to-face contact networks derived from wearable sensors. Integration of all these heterogeneous data layers made it possible to offer various services to conference attendees to enhance their social experience such as visualisation of contact data, and a site to explore and connect with other participants. This paper describes the architecture of the application, the services we provided, and the results we achieved in this deployment.

  4. Discovery Mechanisms for the Sensor Web

    PubMed Central

    Jirka, Simon; Bröring, Arne; Stasch, Christoph

    2009-01-01

    This paper addresses the discovery of sensors within the OGC Sensor Web Enablement framework. Whereas services like the OGC Web Map Service or Web Coverage Service are already well supported through catalogue services, the field of sensor networks and the according discovery mechanisms is still a challenge. The focus within this article will be on the use of existing OGC Sensor Web components for realizing a discovery solution. After discussing the requirements for a Sensor Web discovery mechanism, an approach will be presented that was developed within the EU funded project “OSIRIS”. This solution offers mechanisms to search for sensors, exploit basic semantic relationships, harvest sensor metadata and integrate sensor discovery into already existing catalogues. PMID:22574038

  5. Sensor-based architecture for medical imaging workflow analysis.

    PubMed

    Silva, Luís A Bastião; Campos, Samuel; Costa, Carlos; Oliveira, José Luis

    2014-08-01

    The growing use of computer systems in medical institutions has been generating a tremendous quantity of data. While these data have a critical role in assisting physicians in the clinical practice, the information that can be extracted goes far beyond this utilization. This article proposes a platform capable of assembling multiple data sources within a medical imaging laboratory, through a network of intelligent sensors. The proposed integration framework follows a SOA hybrid architecture based on an information sensor network, capable of collecting information from several sources in medical imaging laboratories. Currently, the system supports three types of sensors: DICOM repository meta-data, network workflows and examination reports. Each sensor is responsible for converting unstructured information from data sources into a common format that will then be semantically indexed in the framework engine. The platform was deployed in the Cardiology department of a central hospital, allowing identification of processes' characteristics and users' behaviours that were unknown before the utilization of this solution.

  6. SATware: A Semantic Approach for Building Sentient Spaces

    NASA Astrophysics Data System (ADS)

    Massaguer, Daniel; Mehrotra, Sharad; Vaisenberg, Ronen; Venkatasubramanian, Nalini

    This chapter describes the architecture of a semantic-based middleware environment for building sensor-driven sentient spaces. The proposed middleware explicitly models sentient space semantics (i.e., entities, spaces, activities) and supports mechanisms to map sensor observations to the state of the sentient space. We argue how such a semantic approach provides a powerful programming environment for building sensor spaces. In addition, the approach provides natural ways to exploit semantics for variety of purposes including scheduling under resource constraints and sensor recalibration.

  7. Autonomous Mission Operations for Sensor Webs

    NASA Astrophysics Data System (ADS)

    Underbrink, A.; Witt, K.; Stanley, J.; Mandl, D.

    2008-12-01

    We present interim results of a 2005 ROSES AIST project entitled, "Using Intelligent Agents to Form a Sensor Web for Autonomous Mission Operations", or SWAMO. The goal of the SWAMO project is to shift the control of spacecraft missions from a ground-based, centrally controlled architecture to a collaborative, distributed set of intelligent agents. The network of intelligent agents intends to reduce management requirements by utilizing model-based system prediction and autonomic model/agent collaboration. SWAMO agents are distributed throughout the Sensor Web environment, which may include multiple spacecraft, aircraft, ground systems, and ocean systems, as well as manned operations centers. The agents monitor and manage sensor platforms, Earth sensing systems, and Earth sensing models and processes. The SWAMO agents form a Sensor Web of agents via peer-to-peer coordination. Some of the intelligent agents are mobile and able to traverse between on-orbit and ground-based systems. Other agents in the network are responsible for encapsulating system models to perform prediction of future behavior of the modeled subsystems and components to which they are assigned. The software agents use semantic web technologies to enable improved information sharing among the operational entities of the Sensor Web. The semantics include ontological conceptualizations of the Sensor Web environment, plus conceptualizations of the SWAMO agents themselves. By conceptualizations of the agents, we mean knowledge of their state, operational capabilities, current operational capacities, Web Service search and discovery results, agent collaboration rules, etc. The need for ontological conceptualizations over the agents is to enable autonomous and autonomic operations of the Sensor Web. The SWAMO ontology enables automated decision making and responses to the dynamic Sensor Web environment and to end user science requests. The current ontology is compatible with Open Geospatial Consortium (OGC) Sensor Web Enablement (SWE) Sensor Model Language (SensorML) concepts and structures. The agents are currently deployed on the U.S. Naval Academy MidSTAR-1 satellite and are actively managing the power subsystem on-orbit without the need for human intervention.

  8. Publishing high-quality climate data on the semantic web

    NASA Astrophysics Data System (ADS)

    Woolf, Andrew; Haller, Armin; Lefort, Laurent; Taylor, Kerry

    2013-04-01

    The effort over more than a decade to establish the semantic web [Berners-Lee et. al., 2001] has received a major boost in recent years through the Open Government movement. Governments around the world are seeking technical solutions to enable more open and transparent access to Public Sector Information (PSI) they hold. Existing technical protocols and data standards tend to be domain specific, and so limit the ability to publish and integrate data across domains (health, environment, statistics, education, etc.). The web provides a domain-neutral platform for information publishing, and has proven itself beyond expectations for publishing and linking human-readable electronic documents. Extending the web pattern to data (often called Web 3.0) offers enormous potential. The semantic web applies the basic web principles to data [Berners-Lee, 2006]: using URIs as identifiers (for data objects and real-world 'things', instead of documents) making the URIs actionable by providing useful information via HTTP using a common exchange standard (serialised RDF for data instead of HTML for documents) establishing typed links between information objects to enable linking and integration Leading examples of 'linked data' for publishing PSI may be found in both the UK (http://data.gov.uk/linked-data) and US (http://www.data.gov/page/semantic-web). The Bureau of Meteorology (BoM) is Australia's national meteorological agency, and has a new mandate to establish a national environmental information infrastructure (under the National Plan for Environmental Information, NPEI [BoM, 2012a]). While the initial approach is based on the existing best practice Spatial Data Infrastructure (SDI) architecture, linked-data is being explored as a technological alternative that shows great promise for the future. We report here the first trial of government linked-data in Australia under data.gov.au. In this initial pilot study, we have taken BoM's new high-quality reference surface temperature dataset, Australian Climate Observations Reference Network - Surface Air Temperature (ACORN-SAT) [BoM, 2012b]. This dataset contains daily homogenised surface temperature observations for 112 locations around Australia, dating back to 1910. An ontology for the dataset was developed [Lefort et. al., 2012], based on the existing Semantic Sensor Network ontology [Compton et. al., 2012] and the W3C RDF Data Cube vocabulary [W3C, 2012]. Additional vocabularies were developed, e.g. for BoM weather stations and rainfall districts. The dataset was converted to RDF and loaded into an RDF triplestore. The Linked-Data API (http://code.google.com/p/linked-data-api) was used to configure specific URI query patterns (e.g. for observation timeseries slices by station), and a SPARQL endpoint was provided for direct querying. In addition, some demonstration 'mash-ups' were developed, providing an interactive browser-based interface to the temperature timeseries. References [Berners-Lee et. al., 2001] Tim Berners-Lee, James Hendler and Ora Lassila (2001), "The Semantic Web", Scientific American, May 2001. [Berners-Lee, 2006] Tim Berners-Lee (2006), "Linked Data - Design Issues", W3C [http://www.w3.org/DesignIssues/LinkedData.html] [BoM, 2012a] Bureau of Meteorology (2012), "Environmental information" [http://www.bom.gov.au/environment/] [BoM, 2012b] Bureau of Meteorology (2012), "Australian Climate Observations Reference Network - Surface Air Temperature" [http://www.bom.gov.au/climate/change/acorn-sat/] [Compton et. al., 2012] Michael Compton, Payam Barnaghi, Luis Bermudez, Raul Garcia-Castro, Oscar Corcho, Simon Cox, John Graybeal, Manfred Hauswirth, Cory Henson, Arthur Herzog, Vincent Huang, Krzysztof Janowicz, W. David Kelsey, Danh Le Phuoc, Laurent Lefort, Myriam Leggieri, Holger Neuhaus, Andriy Nikolov, Kevin Page, Alexandre Passant, Amit Sheth, Kerry Taylor (2012), "The SSN Ontology of the W3C Semantic Sensor Network Incubator Group", J. Web Semantics, 17 (2012) [http://dx.doi.org/10.1016/j.websem.2012.05.003] [Lefort et. al., 2012] Laurent Lefort, Josh Bobruk, Armin Haller, Kerry Taylor and Andrew Woolf (2012), "A Linked Sensor Data Cube for a 100 Year Homogenised daily temperature dataset", Proc. Semantic Sensor Networks 2012 [http://ceur-ws.org/Vol-904/paper10.pdf] [W3C, 2012] W3C (2012), "The RDF Data Cube Vocabulary", [http://www.w3.org/TR/vocab-data-cube/

  9. Service Oriented Architecture for Wireless Sensor Networks in Agriculture

    NASA Astrophysics Data System (ADS)

    Sawant, S. A.; Adinarayana, J.; Durbha, S. S.; Tripathy, A. K.; Sudharsan, D.

    2012-08-01

    Rapid advances in Wireless Sensor Network (WSN) for agricultural applications has provided a platform for better decision making for crop planning and management, particularly in precision agriculture aspects. Due to the ever-increasing spread of WSNs there is a need for standards, i.e. a set of specifications and encodings to bring multiple sensor networks on common platform. Distributed sensor systems when brought together can facilitate better decision making in agricultural domain. The Open Geospatial Consortium (OGC) through Sensor Web Enablement (SWE) provides guidelines for semantic and syntactic standardization of sensor networks. In this work two distributed sensing systems (Agrisens and FieldServer) were selected to implement OGC SWE standards through a Service Oriented Architecture (SOA) approach. Online interoperable data processing was developed through SWE components such as Sensor Model Language (SensorML) and Sensor Observation Service (SOS). An integrated web client was developed to visualize the sensor observations and measurements that enables the retrieval of crop water resources availability and requirements in a systematic manner for both the sensing devices. Further, the client has also the ability to operate in an interoperable manner with any other OGC standardized WSN systems. The study of WSN systems has shown that there is need to augment the operations / processing capabilities of SOS in order to understand about collected sensor data and implement the modelling services. Also, the very low cost availability of WSN systems in future, it is possible to implement the OGC standardized SWE framework for agricultural applications with open source software tools.

  10. Semantic Networks and Social Networks

    ERIC Educational Resources Information Center

    Downes, Stephen

    2005-01-01

    Purpose: To illustrate the need for social network metadata within semantic metadata. Design/methodology/approach: Surveys properties of social networks and the semantic web, suggests that social network analysis applies to semantic content, argues that semantic content is more searchable if social network metadata is merged with semantic web…

  11. On performing semantic queries in small devices

    NASA Astrophysics Data System (ADS)

    Costea, C.; Petrovan, A.; Neamţ, L.; Chiver, O.

    2016-08-01

    The sensors have a well-defined role in control or monitoring industrial processes; the data given by them can generate valuable information of the trend of the systems to which they belong, but to store a large volume of data and then analysis offline is not always practical. One solution is on-line analysis, preferably as close to the place where data have been generated (edge computing). An increasing amount of data generated by a growing number of devices connected to the Internet resulted in processing data sensors to the edge of the network, in a middle layer where smart entities should interoperate. Diversity of communication technologies outlined the idea of using intermediate devices such as gateways in sensor networks and for this reason the paper examines the functionality of a SPARQL endpoint in the Raspberry Pi device.

  12. FuGeF: A Resource Bound Secure Forwarding Protocol for Wireless Sensor Networks

    PubMed Central

    Umar, Idris Abubakar; Mohd Hanapi, Zurina; Sali, A.; Zulkarnain, Zuriati A.

    2016-01-01

    Resource bound security solutions have facilitated the mitigation of spatio-temporal attacks by altering protocol semantics to provide minimal security while maintaining an acceptable level of performance. The Dynamic Window Secured Implicit Geographic Forwarding (DWSIGF) routing protocol for Wireless Sensor Network (WSN) has been proposed to achieve a minimal selection of malicious nodes by introducing a dynamic collection window period to the protocol’s semantics. However, its selection scheme suffers substantial packet losses due to the utilization of a single distance based parameter for node selection. In this paper, we propose a Fuzzy-based Geographic Forwarding protocol (FuGeF) to minimize packet loss, while maintaining performance. The FuGeF utilizes a new form of dynamism and introduces three selection parameters: remaining energy, connectivity cost, and progressive distance, as well as a Fuzzy Logic System (FLS) for node selection. These introduced mechanisms ensure the appropriate selection of a non-malicious node. Extensive simulation experiments have been conducted to evaluate the performance of the proposed FuGeF protocol as compared to DWSIGF variants. The simulation results show that the proposed FuGeF outperforms the two DWSIGF variants (DWSIGF-P and DWSIGF-R) in terms of packet delivery. PMID:27338411

  13. FuGeF: A Resource Bound Secure Forwarding Protocol for Wireless Sensor Networks.

    PubMed

    Umar, Idris Abubakar; Mohd Hanapi, Zurina; Sali, A; Zulkarnain, Zuriati A

    2016-06-22

    Resource bound security solutions have facilitated the mitigation of spatio-temporal attacks by altering protocol semantics to provide minimal security while maintaining an acceptable level of performance. The Dynamic Window Secured Implicit Geographic Forwarding (DWSIGF) routing protocol for Wireless Sensor Network (WSN) has been proposed to achieve a minimal selection of malicious nodes by introducing a dynamic collection window period to the protocol's semantics. However, its selection scheme suffers substantial packet losses due to the utilization of a single distance based parameter for node selection. In this paper, we propose a Fuzzy-based Geographic Forwarding protocol (FuGeF) to minimize packet loss, while maintaining performance. The FuGeF utilizes a new form of dynamism and introduces three selection parameters: remaining energy, connectivity cost, and progressive distance, as well as a Fuzzy Logic System (FLS) for node selection. These introduced mechanisms ensure the appropriate selection of a non-malicious node. Extensive simulation experiments have been conducted to evaluate the performance of the proposed FuGeF protocol as compared to DWSIGF variants. The simulation results show that the proposed FuGeF outperforms the two DWSIGF variants (DWSIGF-P and DWSIGF-R) in terms of packet delivery.

  14. Semantically-enabled sensor plug & play for the sensor web.

    PubMed

    Bröring, Arne; Maúe, Patrick; Janowicz, Krzysztof; Nüst, Daniel; Malewski, Christian

    2011-01-01

    Environmental sensors have continuously improved by becoming smaller, cheaper, and more intelligent over the past years. As consequence of these technological advancements, sensors are increasingly deployed to monitor our environment. The large variety of available sensor types with often incompatible protocols complicates the integration of sensors into observing systems. The standardized Web service interfaces and data encodings defined within OGC's Sensor Web Enablement (SWE) framework make sensors available over the Web and hide the heterogeneous sensor protocols from applications. So far, the SWE framework does not describe how to integrate sensors on-the-fly with minimal human intervention. The driver software which enables access to sensors has to be implemented and the measured sensor data has to be manually mapped to the SWE models. In this article we introduce a Sensor Plug & Play infrastructure for the Sensor Web by combining (1) semantic matchmaking functionality, (2) a publish/subscribe mechanism underlying the SensorWeb, as well as (3) a model for the declarative description of sensor interfaces which serves as a generic driver mechanism. We implement and evaluate our approach by applying it to an oil spill scenario. The matchmaking is realized using existing ontologies and reasoning engines and provides a strong case for the semantic integration capabilities provided by Semantic Web research.

  15. Semantically-Enabled Sensor Plug & Play for the Sensor Web

    PubMed Central

    Bröring, Arne; Maúe, Patrick; Janowicz, Krzysztof; Nüst, Daniel; Malewski, Christian

    2011-01-01

    Environmental sensors have continuously improved by becoming smaller, cheaper, and more intelligent over the past years. As consequence of these technological advancements, sensors are increasingly deployed to monitor our environment. The large variety of available sensor types with often incompatible protocols complicates the integration of sensors into observing systems. The standardized Web service interfaces and data encodings defined within OGC’s Sensor Web Enablement (SWE) framework make sensors available over the Web and hide the heterogeneous sensor protocols from applications. So far, the SWE framework does not describe how to integrate sensors on-the-fly with minimal human intervention. The driver software which enables access to sensors has to be implemented and the measured sensor data has to be manually mapped to the SWE models. In this article we introduce a Sensor Plug & Play infrastructure for the Sensor Web by combining (1) semantic matchmaking functionality, (2) a publish/subscribe mechanism underlying the SensorWeb, as well as (3) a model for the declarative description of sensor interfaces which serves as a generic driver mechanism. We implement and evaluate our approach by applying it to an oil spill scenario. The matchmaking is realized using existing ontologies and reasoning engines and provides a strong case for the semantic integration capabilities provided by Semantic Web research. PMID:22164033

  16. Dragon pulse information management system (DPIMS): A unique model-based approach to implementing domain agnostic system of systems and behaviors

    NASA Astrophysics Data System (ADS)

    Anderson, Thomas S.

    2016-05-01

    The Global Information Network Architecture is an information technology based on Vector Relational Data Modeling, a unique computational paradigm, DoD network certified by USARMY as the Dragon Pulse Informa- tion Management System. This network available modeling environment for modeling models, where models are configured using domain relevant semantics and use network available systems, sensors, databases and services as loosely coupled component objects and are executable applications. Solutions are based on mission tactics, techniques, and procedures and subject matter input. Three recent ARMY use cases are discussed a) ISR SoS. b) Modeling and simulation behavior validation. c) Networked digital library with behaviors.

  17. A Complex Network Approach to Distributional Semantic Models

    PubMed Central

    Utsumi, Akira

    2015-01-01

    A number of studies on network analysis have focused on language networks based on free word association, which reflects human lexical knowledge, and have demonstrated the small-world and scale-free properties in the word association network. Nevertheless, there have been very few attempts at applying network analysis to distributional semantic models, despite the fact that these models have been studied extensively as computational or cognitive models of human lexical knowledge. In this paper, we analyze three network properties, namely, small-world, scale-free, and hierarchical properties, of semantic networks created by distributional semantic models. We demonstrate that the created networks generally exhibit the same properties as word association networks. In particular, we show that the distribution of the number of connections in these networks follows the truncated power law, which is also observed in an association network. This indicates that distributional semantic models can provide a plausible model of lexical knowledge. Additionally, the observed differences in the network properties of various implementations of distributional semantic models are consistently explained or predicted by considering the intrinsic semantic features of a word-context matrix and the functions of matrix weighting and smoothing. Furthermore, to simulate a semantic network with the observed network properties, we propose a new growing network model based on the model of Steyvers and Tenenbaum. The idea underlying the proposed model is that both preferential and random attachments are required to reflect different types of semantic relations in network growth process. We demonstrate that this model provides a better explanation of network behaviors generated by distributional semantic models. PMID:26295940

  18. The semantic anatomical network: Evidence from healthy and brain-damaged patient populations.

    PubMed

    Fang, Yuxing; Han, Zaizhu; Zhong, Suyu; Gong, Gaolang; Song, Luping; Liu, Fangsong; Huang, Ruiwang; Du, Xiaoxia; Sun, Rong; Wang, Qiang; He, Yong; Bi, Yanchao

    2015-09-01

    Semantic processing is central to cognition and is supported by widely distributed gray matter (GM) regions and white matter (WM) tracts. The exact manner in which GM regions are anatomically connected to process semantics remains unknown. We mapped the semantic anatomical network (connectome) by conducting diffusion imaging tractography in 48 healthy participants across 90 GM "nodes," and correlating the integrity of each obtained WM edge and semantic performance across 80 brain-damaged patients. Fifty-three WM edges were obtained whose lower integrity associated with semantic deficits and together with their linked GM nodes constitute a semantic WM network. Graph analyses of this network revealed three structurally segregated modules that point to distinct semantic processing components and identified network hubs and connectors that are central in the communication across the subnetworks. Together, our results provide an anatomical framework of human semantic network, advancing the understanding of the structural substrates supporting semantic processing. © 2015 Wiley Periodicals, Inc.

  19. A Tri-network Model of Human Semantic Processing

    PubMed Central

    Xu, Yangwen; He, Yong; Bi, Yanchao

    2017-01-01

    Humans process the meaning of the world via both verbal and nonverbal modalities. It has been established that widely distributed cortical regions are involved in semantic processing, yet the global wiring pattern of this brain system has not been considered in the current neurocognitive semantic models. We review evidence from the brain-network perspective, which shows that the semantic system is topologically segregated into three brain modules. Revisiting previous region-based evidence in light of these new network findings, we postulate that these three modules support multimodal experiential representation, language-supported representation, and semantic control. A tri-network neurocognitive model of semantic processing is proposed, which generates new hypotheses regarding the network basis of different types of semantic processes. PMID:28955266

  20. Qualitative dynamics semantics for SBGN process description.

    PubMed

    Rougny, Adrien; Froidevaux, Christine; Calzone, Laurence; Paulevé, Loïc

    2016-06-16

    Qualitative dynamics semantics provide a coarse-grain modeling of networks dynamics by abstracting away kinetic parameters. They allow to capture general features of systems dynamics, such as attractors or reachability properties, for which scalable analyses exist. The Systems Biology Graphical Notation Process Description language (SBGN-PD) has become a standard to represent reaction networks. However, no qualitative dynamics semantics taking into account all the main features available in SBGN-PD had been proposed so far. We propose two qualitative dynamics semantics for SBGN-PD reaction networks, namely the general semantics and the stories semantics, that we formalize using asynchronous automata networks. While the general semantics extends standard Boolean semantics of reaction networks by taking into account all the main features of SBGN-PD, the stories semantics allows to model several molecules of a network by a unique variable. The obtained qualitative models can be checked against dynamical properties and therefore validated with respect to biological knowledge. We apply our framework to reason on the qualitative dynamics of a large network (more than 200 nodes) modeling the regulation of the cell cycle by RB/E2F. The proposed semantics provide a direct formalization of SBGN-PD networks in dynamical qualitative models that can be further analyzed using standard tools for discrete models. The dynamics in stories semantics have a lower dimension than the general one and prune multiple behaviors (which can be considered as spurious) by enforcing the mutual exclusiveness between the activity of different nodes of a same story. Overall, the qualitative semantics for SBGN-PD allow to capture efficiently important dynamical features of reaction network models and can be exploited to further refine them.

  1. Exploiting Recurring Structure in a Semantic Network

    NASA Technical Reports Server (NTRS)

    Wolfe, Shawn R.; Keller, Richard M.

    2004-01-01

    With the growing popularity of the Semantic Web, an increasing amount of information is becoming available in machine interpretable, semantically structured networks. Within these semantic networks are recurring structures that could be mined by existing or novel knowledge discovery methods. The mining of these semantic structures represents an interesting area that focuses on mining both for and from the Semantic Web, with surprising applicability to problems confronting the developers of Semantic Web applications. In this paper, we present representative examples of recurring structures and show how these structures could be used to increase the utility of a semantic repository deployed at NASA.

  2. First Steps to Automated Interior Reconstruction from Semantically Enriched Point Clouds and Imagery

    NASA Astrophysics Data System (ADS)

    Obrock, L. S.; Gülch, E.

    2018-05-01

    The automated generation of a BIM-Model from sensor data is a huge challenge for the modeling of existing buildings. Currently the measurements and analyses are time consuming, allow little automation and require expensive equipment. We do lack an automated acquisition of semantical information of objects in a building. We are presenting first results of our approach based on imagery and derived products aiming at a more automated modeling of interior for a BIM building model. We examine the building parts and objects visible in the collected images using Deep Learning Methods based on Convolutional Neural Networks. For localization and classification of building parts we apply the FCN8s-Model for pixel-wise Semantic Segmentation. We, so far, reach a Pixel Accuracy of 77.2 % and a mean Intersection over Union of 44.2 %. We finally use the network for further reasoning on the images of the interior room. We combine the segmented images with the original images and use photogrammetric methods to produce a three-dimensional point cloud. We code the extracted object types as colours of the 3D-points. We thus are able to uniquely classify the points in three-dimensional space. We preliminary investigate a simple extraction method for colour and material of building parts. It is shown, that the combined images are very well suited to further extract more semantic information for the BIM-Model. With the presented methods we see a sound basis for further automation of acquisition and modeling of semantic and geometric information of interior rooms for a BIM-Model.

  3. Virtual Sensor Web Architecture

    NASA Astrophysics Data System (ADS)

    Bose, P.; Zimdars, A.; Hurlburt, N.; Doug, S.

    2006-12-01

    NASA envisions the development of smart sensor webs, intelligent and integrated observation network that harness distributed sensing assets, their associated continuous and complex data sets, and predictive observation processing mechanisms for timely, collaborative hazard mitigation and enhanced science productivity and reliability. This paper presents Virtual Sensor Web Infrastructure for Collaborative Science (VSICS) Architecture for sustained coordination of (numerical and distributed) model-based processing, closed-loop resource allocation, and observation planning. VSICS's key ideas include i) rich descriptions of sensors as services based on semantic markup languages like OWL and SensorML; ii) service-oriented workflow composition and repair for simple and ensemble models; event-driven workflow execution based on event-based and distributed workflow management mechanisms; and iii) development of autonomous model interaction management capabilities providing closed-loop control of collection resources driven by competing targeted observation needs. We present results from initial work on collaborative science processing involving distributed services (COSEC framework) that is being extended to create VSICS.

  4. Center for Advanced Sensors Year Two Funding (FY2006)

    DTIC Science & Technology

    2008-02-26

    Cheong, and F. Zhao (2005) "Semantics-Based Optimization Across Uncoordinated Tasks in Networked Embedded Systems," Proceedings of the 5th ACM Conference...analysis," Optical Engineering, vol. 46, 116401, 2007. R.L. Espinola, E.L. Jacobs, C.E. Halford, D.H. Tofsted and R. Vollmerhausen, "Modeling...the target acquisition performance of active imaging systems," Optics Express, vol. 15, March, 2007. C.E. Halford, A.L. Robinson, E.L. Jacobs and

  5. Auditing Associative Relations across Two Knowledge Sources

    PubMed Central

    Vizenor, Lowell T.; Bodenreider, Olivier; McCray, Alexa T.

    2009-01-01

    Objectives This paper proposes a novel semantic method for auditing associative relations in biomedical terminologies. We tested our methodology on two Unified Medical Language System (UMLS) knowledge sources. Methods We use the UMLS semantic groups as high-level representations of the domain and range of relationships in the Metathesaurus and in the Semantic Network. A mapping created between Metathesaurus relationships and Semantic Network relationships forms the basis for comparing the signatures of a given Metathesaurus relationship to the signatures of the semantic relationship to which it is mapped. The consistency of Metathesaurus relations is studied for each relationship. Results Of the 177 associative relationships in the Metathesaurus, 84 (48%) exhibit a high degree of consistency with the corresponding Semantic Network relationships. Overall, 63% of the 1.8M associative relations in the Metathesaurus are consistent with relations in the Semantic Network. Conclusion The semantics of associative relationships in biomedical terminologies should be defined explicitly by their developers. The Semantic Network would benefit from being extended with new relationships and with new relations for some existing relationships. The UMLS editing environment could take advantage of the correspondence established between relationships in the Metathesaurus and the Semantic Network. Finally, the auditing method also yielded useful information for refining the mapping of associative relationships between the two sources. PMID:19475724

  6. Sharing Human-Generated Observations by Integrating HMI and the Semantic Sensor Web

    PubMed Central

    Sigüenza, Álvaro; Díaz-Pardo, David; Bernat, Jesús; Vancea, Vasile; Blanco, José Luis; Conejero, David; Gómez, Luis Hernández

    2012-01-01

    Current “Internet of Things” concepts point to a future where connected objects gather meaningful information about their environment and share it with other objects and people. In particular, objects embedding Human Machine Interaction (HMI), such as mobile devices and, increasingly, connected vehicles, home appliances, urban interactive infrastructures, etc., may not only be conceived as sources of sensor information, but, through interaction with their users, they can also produce highly valuable context-aware human-generated observations. We believe that the great promise offered by combining and sharing all of the different sources of information available can be realized through the integration of HMI and Semantic Sensor Web technologies. This paper presents a technological framework that harmonizes two of the most influential HMI and Sensor Web initiatives: the W3C's Multimodal Architecture and Interfaces (MMI) and the Open Geospatial Consortium (OGC) Sensor Web Enablement (SWE) with its semantic extension, respectively. Although the proposed framework is general enough to be applied in a variety of connected objects integrating HMI, a particular development is presented for a connected car scenario where drivers' observations about the traffic or their environment are shared across the Semantic Sensor Web. For implementation and evaluation purposes an on-board OSGi (Open Services Gateway Initiative) architecture was built, integrating several available HMI, Sensor Web and Semantic Web technologies. A technical performance test and a conceptual validation of the scenario with potential users are reported, with results suggesting the approach is sound. PMID:22778643

  7. Sharing human-generated observations by integrating HMI and the Semantic Sensor Web.

    PubMed

    Sigüenza, Alvaro; Díaz-Pardo, David; Bernat, Jesús; Vancea, Vasile; Blanco, José Luis; Conejero, David; Gómez, Luis Hernández

    2012-01-01

    Current "Internet of Things" concepts point to a future where connected objects gather meaningful information about their environment and share it with other objects and people. In particular, objects embedding Human Machine Interaction (HMI), such as mobile devices and, increasingly, connected vehicles, home appliances, urban interactive infrastructures, etc., may not only be conceived as sources of sensor information, but, through interaction with their users, they can also produce highly valuable context-aware human-generated observations. We believe that the great promise offered by combining and sharing all of the different sources of information available can be realized through the integration of HMI and Semantic Sensor Web technologies. This paper presents a technological framework that harmonizes two of the most influential HMI and Sensor Web initiatives: the W3C's Multimodal Architecture and Interfaces (MMI) and the Open Geospatial Consortium (OGC) Sensor Web Enablement (SWE) with its semantic extension, respectively. Although the proposed framework is general enough to be applied in a variety of connected objects integrating HMI, a particular development is presented for a connected car scenario where drivers' observations about the traffic or their environment are shared across the Semantic Sensor Web. For implementation and evaluation purposes an on-board OSGi (Open Services Gateway Initiative) architecture was built, integrating several available HMI, Sensor Web and Semantic Web technologies. A technical performance test and a conceptual validation of the scenario with potential users are reported, with results suggesting the approach is sound.

  8. Semantic markup of sensor capabilities: how simple it too simple?

    NASA Astrophysics Data System (ADS)

    Rueda-Velasquez, C. A.; Janowicz, K.; Fredericks, J.

    2016-12-01

    Semantics plays a key role for the publication, retrieval, integration, and reuse of observational data across the geosciences. In most cases, one can safely assume that the providers of such data, e.g., individual scientists, understand the observation context in which their data are collected,e.g., the used observation procedure, the sampling strategy, the feature of interest being studied, and so forth. However, can we expect that the same is true for the technical details of the used sensors and especially the nuanced changes that can impact observations in often unpredictable ways? Should the burden of annotating the sensor capabilities, firmware, operation ranges, and so forth be really part of a scientist's responsibility? Ideally, semantic annotations should be provided by the parties that understand these details and have a vested interest in maintaining these data. With manufactures providing semantically-enabled metadata for their sensors and instruments, observations could more easily be annotated and thereby enriched using this information. Unfortunately, today's sensor ontologies and tool chains developed for the Semantic Web community require expertise beyond the knowledge and interest of most manufacturers. Consequently, knowledge engineers need to better understand the sweet spot between simple ontologies/vocabularies and sufficient expressivity as well as the tools required to enable manufacturers to share data about their sensors. Here, we report on the current results of EarthCube's X-Domes project that aims to address the questions outlined above.

  9. Mapping the Structure of Semantic Memory

    ERIC Educational Resources Information Center

    Morais, Ana Sofia; Olsson, Henrik; Schooler, Lael J.

    2013-01-01

    Aggregating snippets from the semantic memories of many individuals may not yield a good map of an individual's semantic memory. The authors analyze the structure of semantic networks that they sampled from individuals through a new snowball sampling paradigm during approximately 6 weeks of 1-hr daily sessions. The semantic networks of individuals…

  10. Towards a Semantic Web of Things: A Hybrid Semantic Annotation, Extraction, and Reasoning Framework for Cyber-Physical System.

    PubMed

    Wu, Zhenyu; Xu, Yuan; Yang, Yunong; Zhang, Chunhong; Zhu, Xinning; Ji, Yang

    2017-02-20

    Web of Things (WoT) facilitates the discovery and interoperability of Internet of Things (IoT) devices in a cyber-physical system (CPS). Moreover, a uniform knowledge representation of physical resources is quite necessary for further composition, collaboration, and decision-making process in CPS. Though several efforts have integrated semantics with WoT, such as knowledge engineering methods based on semantic sensor networks (SSN), it still could not represent the complex relationships between devices when dynamic composition and collaboration occur, and it totally depends on manual construction of a knowledge base with low scalability. In this paper, to addresses these limitations, we propose the semantic Web of Things (SWoT) framework for CPS (SWoT4CPS). SWoT4CPS provides a hybrid solution with both ontological engineering methods by extending SSN and machine learning methods based on an entity linking (EL) model. To testify to the feasibility and performance, we demonstrate the framework by implementing a temperature anomaly diagnosis and automatic control use case in a building automation system. Evaluation results on the EL method show that linking domain knowledge to DBpedia has a relative high accuracy and the time complexity is at a tolerant level. Advantages and disadvantages of SWoT4CPS with future work are also discussed.

  11. Topological Alterations and Symptom-Relevant Modules in the Whole-Brain Structural Network in Semantic Dementia.

    PubMed

    Ding, Junhua; Chen, Keliang; Zhang, Weibin; Li, Ming; Chen, Yan; Yang, Qing; Lv, Yingru; Guo, Qihao; Han, Zaizhu

    2017-01-01

    Semantic dementia (SD) is characterized by a selective decline in semantic processing. Although the neuropsychological pattern of this disease has been identified, its topological global alterations and symptom-relevant modules in the whole-brain anatomical network have not been fully elucidated. This study aims to explore the topological alteration of anatomical network in SD and reveal the modules associated with semantic deficits in this disease. We first constructed the whole-brain white-matter networks of 20 healthy controls and 19 patients with SD. Then, the network metrics of graph theory were compared between these two groups. Finally, we separated the network of SD patients into different modules and correlated the structural integrity of each module with the severity of the semantic deficits across patients. The network of the SD patients presented a significantly reduced global efficiency, indicating that the long-distance connections were damaged. The network was divided into the following four distinctive modules: the left temporal/occipital/parietal, frontal, right temporal/occipital, and frontal/parietal modules. The first two modules were associated with the semantic deficits of SD. These findings illustrate the skeleton of the neuroanatomical network of SD patients and highlight the key role of the left temporal/occipital/parietal module and the left frontal module in semantic processing.

  12. Semantic Support for Complex Ecosystem Research Environments

    NASA Astrophysics Data System (ADS)

    Klawonn, M.; McGuinness, D. L.; Pinheiro, P.; Santos, H. O.; Chastain, K.

    2015-12-01

    As ecosystems come under increasing stresses from diverse sources, there is growing interest in research efforts aimed at monitoring, modeling, and improving understanding of ecosystems and protection options. We aimed to provide a semantic infrastructure capable of representing data initially related to one large aquatic ecosystem research effort - the Jefferson project at Lake George. This effort includes significant historical observational data, extensive sensor-based monitoring data, experimental data, as well as model and simulation data covering topics including lake circulation, watershed runoff, lake biome food webs, etc. The initial measurement representation has been centered on monitoring data and related provenance. We developed a human-aware sensor network ontology (HASNetO) that leverages existing ontologies (PROV-O, OBOE, VSTO*) in support of measurement annotations. We explicitly support the human-aware aspects of human sensor deployment and collection activity to help capture key provenance that often is lacking. Our foundational ontology has since been generalized into a family of ontologies and used to create our human-aware data collection infrastructure that now supports the integration of measurement data along with simulation data. Interestingly, we have also utilized the same infrastructure to work with partners who have some more specific needs for specifying the environmental conditions where measurements occur, for example, knowing that an air temperature is not an external air temperature, but of the air temperature when windows are shut and curtains are open. We have also leveraged the same infrastructure to work with partners more interested in modeling smart cities with data feeds more related to people, mobility, environment, and living. We will introduce our human-aware data collection infrastructure, and demonstrate how it uses HASNetO and its supporting SOLR-based search platform to support data integration and semantic browsing. Further we will present learnings from its use in three relatively diverse large ecosystem research efforts and highlight some benefits and challenges related to our semantically-enhanced foundation.

  13. Distributed semantic networks and CLIPS

    NASA Technical Reports Server (NTRS)

    Snyder, James; Rodriguez, Tony

    1991-01-01

    Semantic networks of frames are commonly used as a method of reasoning in many problems. In most of these applications the semantic network exists as a single entity in a single process environment. Advances in workstation hardware provide support for more sophisticated applications involving multiple processes, interacting in a distributed environment. In these applications the semantic network may well be distributed over several concurrently executing tasks. This paper describes the design and implementation of a frame based, distributed semantic network in which frames are accessed both through C Language Integrated Production System (CLIPS) expert systems and procedural C++ language programs. The application area is a knowledge based, cooperative decision making model utilizing both rule based and procedural experts.

  14. A Wireless Sensor Network-Based Approach with Decision Support for Monitoring Lake Water Quality.

    PubMed

    Huang, Xiaoci; Yi, Jianjun; Chen, Shaoli; Zhu, Xiaomin

    2015-11-19

    Online monitoring and water quality analysis of lakes are urgently needed. A feasible and effective approach is to use a Wireless Sensor Network (WSN). Lake water environments, like other real world environments, present many changing and unpredictable situations. To ensure flexibility in such an environment, the WSN node has to be prepared to deal with varying situations. This paper presents a WSN self-configuration approach for lake water quality monitoring. The approach is based on the integration of a semantic framework, where a reasoner can make decisions on the configuration of WSN services. We present a WSN ontology and the relevant water quality monitoring context information, which considers its suitability in a pervasive computing environment. We also propose a rule-based reasoning engine that is used to conduct decision support through reasoning techniques and context-awareness. To evaluate the approach, we conduct usability experiments and performance benchmarks.

  15. GOOSE: semantic search on internet connected sensors

    NASA Astrophysics Data System (ADS)

    Schutte, Klamer; Bomhof, Freek; Burghouts, Gertjan; van Diggelen, Jurriaan; Hiemstra, Peter; van't Hof, Jaap; Kraaij, Wessel; Pasman, Huib; Smith, Arthur; Versloot, Corne; de Wit, Joost

    2013-05-01

    More and more sensors are getting Internet connected. Examples are cameras on cell phones, CCTV cameras for traffic control as well as dedicated security and defense sensor systems. Due to the steadily increasing data volume, human exploitation of all this sensor data is impossible for effective mission execution. Smart access to all sensor data acts as enabler for questions such as "Is there a person behind this building" or "Alert me when a vehicle approaches". The GOOSE concept has the ambition to provide the capability to search semantically for any relevant information within "all" (including imaging) sensor streams in the entire Internet of sensors. This is similar to the capability provided by presently available Internet search engines which enable the retrieval of information on "all" web pages on the Internet. In line with current Internet search engines any indexing services shall be utilized cross-domain. The two main challenge for GOOSE is the Semantic Gap and Scalability. The GOOSE architecture consists of five elements: (1) an online extraction of primitives on each sensor stream; (2) an indexing and search mechanism for these primitives; (3) a ontology based semantic matching module; (4) a top-down hypothesis verification mechanism and (5) a controlling man-machine interface. This paper reports on the initial GOOSE demonstrator, which consists of the MES multimedia analysis platform and the CORTEX action recognition module. It also provides an outlook into future GOOSE development.

  16. Using RDF to Model the Structure and Process of Systems

    NASA Astrophysics Data System (ADS)

    Rodriguez, Marko A.; Watkins, Jennifer H.; Bollen, Johan; Gershenson, Carlos

    Many systems can be described in terms of networks of discrete elements and their various relationships to one another. A semantic network, or multi-relational network, is a directed labeled graph consisting of a heterogeneous set of entities connected by a heterogeneous set of relationships. Semantic networks serve as a promising general-purpose modeling substrate for complex systems. Various standardized formats and tools are now available to support practical, large-scale semantic network models. First, the Resource Description Framework (RDF) offers a standardized semantic network data model that can be further formalized by ontology modeling languages such as RDF Schema (RDFS) and the Web Ontology Language (OWL). Second, the recent introduction of highly performant triple-stores (i.e. semantic network databases) allows semantic network models on the order of 109 edges to be efficiently stored and manipulated. RDF and its related technologies are currently used extensively in the domains of computer science, digital library science, and the biological sciences. This article will provide an introduction to RDF/RDFS/OWL and an examination of its suitability to model discrete element complex systems.

  17. Developing Visualization Techniques for Semantics-based Information Networks

    NASA Technical Reports Server (NTRS)

    Keller, Richard M.; Hall, David R.

    2003-01-01

    Information systems incorporating complex network structured information spaces with a semantic underpinning - such as hypermedia networks, semantic networks, topic maps, and concept maps - are being deployed to solve some of NASA s critical information management problems. This paper describes some of the human interaction and navigation problems associated with complex semantic information spaces and describes a set of new visual interface approaches to address these problems. A key strategy is to leverage semantic knowledge represented within these information spaces to construct abstractions and views that will be meaningful to the human user. Human-computer interaction methodologies will guide the development and evaluation of these approaches, which will benefit deployed NASA systems and also apply to information systems based on the emerging Semantic Web.

  18. Semantic Likelihood Models for Bayesian Inference in Human-Robot Interaction

    NASA Astrophysics Data System (ADS)

    Sweet, Nicholas

    Autonomous systems, particularly unmanned aerial systems (UAS), remain limited in au- tonomous capabilities largely due to a poor understanding of their environment. Current sensors simply do not match human perceptive capabilities, impeding progress towards full autonomy. Recent work has shown the value of humans as sources of information within a human-robot team; in target applications, communicating human-generated 'soft data' to autonomous systems enables higher levels of autonomy through large, efficient information gains. This requires development of a 'human sensor model' that allows soft data fusion through Bayesian inference to update the probabilistic belief representations maintained by autonomous systems. Current human sensor models that capture linguistic inputs as semantic information are limited in their ability to generalize likelihood functions for semantic statements: they may be learned from dense data; they do not exploit the contextual information embedded within groundings; and they often limit human input to restrictive and simplistic interfaces. This work provides mechanisms to synthesize human sensor models from constraints based on easily attainable a priori knowledge, develops compression techniques to capture information-dense semantics, and investigates the problem of capturing and fusing semantic information contained within unstructured natural language. A robotic experimental testbed is also developed to validate the above contributions.

  19. Auditing the Assignments of Top-Level Semantic Types in the UMLS Semantic Network to UMLS Concepts

    PubMed Central

    He, Zhe; Perl, Yehoshua; Elhanan, Gai; Chen, Yan; Geller, James; Bian, Jiang

    2018-01-01

    The Unified Medical Language System (UMLS) is an important terminological system. By the policy of its curators, each concept of the UMLS should be assigned the most specific Semantic Types (STs) in the UMLS Semantic Network (SN). Hence, the Semantic Types of most UMLS concepts are assigned at or near the bottom (leaves) of the UMLS Semantic Network. While most ST assignments are correct, some errors do occur. Therefore, Quality Assurance efforts of UMLS curators for ST assignments should concentrate on automatically detected sets of UMLS concepts with higher error rates than random sets. In this paper, we investigate the assignments of top-level semantic types in the UMLS semantic network to concepts, identify potential erroneous assignments, define four categories of errors, and thus provide assistance to curators of the UMLS to avoid these assignments errors. Human experts analyzed samples of concepts assigned 10 of the top-level semantic types and categorized the erroneous ST assignments into these four logical categories. Two thirds of the concepts assigned these 10 top-level semantic types are erroneous. Our results demonstrate that reviewing top-level semantic type assignments to concepts provides an effective way for UMLS quality assurance, comparing to reviewing a random selection of semantic type assignments. PMID:29375930

  20. Auditing the Assignments of Top-Level Semantic Types in the UMLS Semantic Network to UMLS Concepts.

    PubMed

    He, Zhe; Perl, Yehoshua; Elhanan, Gai; Chen, Yan; Geller, James; Bian, Jiang

    2017-11-01

    The Unified Medical Language System (UMLS) is an important terminological system. By the policy of its curators, each concept of the UMLS should be assigned the most specific Semantic Types (STs) in the UMLS Semantic Network (SN). Hence, the Semantic Types of most UMLS concepts are assigned at or near the bottom (leaves) of the UMLS Semantic Network. While most ST assignments are correct, some errors do occur. Therefore, Quality Assurance efforts of UMLS curators for ST assignments should concentrate on automatically detected sets of UMLS concepts with higher error rates than random sets. In this paper, we investigate the assignments of top-level semantic types in the UMLS semantic network to concepts, identify potential erroneous assignments, define four categories of errors, and thus provide assistance to curators of the UMLS to avoid these assignments errors. Human experts analyzed samples of concepts assigned 10 of the top-level semantic types and categorized the erroneous ST assignments into these four logical categories. Two thirds of the concepts assigned these 10 top-level semantic types are erroneous. Our results demonstrate that reviewing top-level semantic type assignments to concepts provides an effective way for UMLS quality assurance, comparing to reviewing a random selection of semantic type assignments.

  1. A Survey of Data Semantization in Internet of Things

    PubMed Central

    Shi, Feifei; Zhu, Tao

    2018-01-01

    With the development of Internet of Things (IoT), more and more sensors, actuators and mobile devices have been deployed into our daily lives. The result is that tremendous data are produced and it is urgent to dig out hidden information behind these volumous data. However, IoT data generated by multi-modal sensors or devices show great differences in formats, domains and types, which poses challenges for machines to process and understand. Therefore, adding semantics to Internet of Things becomes an overwhelming tendency. This paper provides a systematic review of data semantization in IoT, including its backgrounds, processing flows, prevalent techniques, applications, existing challenges and open issues. It surveys development status of adding semantics to IoT data, mainly referring to sensor data and points out current issues and challenges that are worth further study. PMID:29361772

  2. A Survey of Data Semantization in Internet of Things.

    PubMed

    Shi, Feifei; Li, Qingjuan; Zhu, Tao; Ning, Huansheng

    2018-01-22

    With the development of Internet of Things (IoT), more and more sensors, actuators and mobile devices have been deployed into our daily lives. The result is that tremendous data are produced and it is urgent to dig out hidden information behind these volumous data. However, IoT data generated by multi-modal sensors or devices show great differences in formats, domains and types, which poses challenges for machines to process and understand. Therefore, adding semantics to Internet of Things becomes an overwhelming tendency. This paper provides a systematic review of data semantization in IoT, including its backgrounds, processing flows, prevalent techniques, applications, existing challenges and open issues. It surveys development status of adding semantics to IoT data, mainly referring to sensor data and points out current issues and challenges that are worth further study.

  3. The semantic distance task: Quantifying semantic distance with semantic network path length.

    PubMed

    Kenett, Yoed N; Levi, Effi; Anaki, David; Faust, Miriam

    2017-09-01

    Semantic distance is a determining factor in cognitive processes, such as semantic priming, operating upon semantic memory. The main computational approach to compute semantic distance is through latent semantic analysis (LSA). However, objections have been raised against this approach, mainly in its failure at predicting semantic priming. We propose a novel approach to computing semantic distance, based on network science methodology. Path length in a semantic network represents the amount of steps needed to traverse from 1 word in the network to the other. We examine whether path length can be used as a measure of semantic distance, by investigating how path length affect performance in a semantic relatedness judgment task and recall from memory. Our results show a differential effect on performance: Up to 4 steps separating between word-pairs, participants exhibit an increase in reaction time (RT) and decrease in the percentage of word-pairs judged as related. From 4 steps onward, participants exhibit a significant decrease in RT and the word-pairs are dominantly judged as unrelated. Furthermore, we show that as path length between word-pairs increases, success in free- and cued-recall decreases. Finally, we demonstrate how our measure outperforms computational methods measuring semantic distance (LSA and positive pointwise mutual information) in predicting participants RT and subjective judgments of semantic strength. Thus, we provide a computational alternative to computing semantic distance. Furthermore, this approach addresses key issues in cognitive theory, namely the breadth of the spreading activation process and the effect of semantic distance on memory retrieval. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  4. Disruption of Semantic Network in Mild Alzheimer’s Disease Revealed by Resting-State fMRI

    PubMed Central

    Mascali, Daniele; DiNuzzo, Mauro; Serra, Laura; Mangia, Silvia; Maraviglia, Bruno; Bozzali, Marco; Giove, Federico

    2018-01-01

    Subtle semantic deficits can be observed in Alzheimer’s disease (AD) patients even in the early stages of the illness. In this work, we tested the hypothesis that the semantic control network is deregulated in mild AD patients. We assessed the integrity of the semantic control system using resting-state functional magnetic resonance imaging in a cohort of patients with mild AD (n = 38; mean mini-mental state examination = 20.5) and in a group of age-matched healthy controls (n = 19). Voxel-wise analysis spatially constrained in the left fronto-temporal semantic control network identified two regions with altered functional connectivity (FC) in AD patients, specifically in the pars opercularis (POp, BA44) and in the posterior middle temporal gyrus (pMTG, BA21). Using whole-brain seed-based analysis, we demonstrated that these two regions have altered FC even beyond the semantic control network. In particular, the pMTG displayed a wide-distributed pattern of lower connectivity to several brain regions involved in language-semantic processing, along with a possibly compensatory higher connectivity to the Wernicke’s area. We conclude that in mild AD brain regions belonging to the semantic control network are abnormally connected not only within the network, but also to other areas known to be critical for language processing. PMID:29197559

  5. Fast Distributed Dynamics of Semantic Networks via Social Media.

    PubMed

    Carrillo, Facundo; Cecchi, Guillermo A; Sigman, Mariano; Slezak, Diego Fernández

    2015-01-01

    We investigate the dynamics of semantic organization using social media, a collective expression of human thought. We propose a novel, time-dependent semantic similarity measure (TSS), based on the social network Twitter. We show that TSS is consistent with static measures of similarity but provides high temporal resolution for the identification of real-world events and induced changes in the distributed structure of semantic relationships across the entire lexicon. Using TSS, we measured the evolution of a concept and its movement along the semantic neighborhood, driven by specific news/events. Finally, we showed that particular events may trigger a temporary reorganization of elements in the semantic network.

  6. Fast Distributed Dynamics of Semantic Networks via Social Media

    PubMed Central

    Carrillo, Facundo; Cecchi, Guillermo A.; Sigman, Mariano; Fernández Slezak, Diego

    2015-01-01

    We investigate the dynamics of semantic organization using social media, a collective expression of human thought. We propose a novel, time-dependent semantic similarity measure (TSS), based on the social network Twitter. We show that TSS is consistent with static measures of similarity but provides high temporal resolution for the identification of real-world events and induced changes in the distributed structure of semantic relationships across the entire lexicon. Using TSS, we measured the evolution of a concept and its movement along the semantic neighborhood, driven by specific news/events. Finally, we showed that particular events may trigger a temporary reorganization of elements in the semantic network. PMID:26074953

  7. Semantic web for integrated network analysis in biomedicine.

    PubMed

    Chen, Huajun; Ding, Li; Wu, Zhaohui; Yu, Tong; Dhanapalan, Lavanya; Chen, Jake Y

    2009-03-01

    The Semantic Web technology enables integration of heterogeneous data on the World Wide Web by making the semantics of data explicit through formal ontologies. In this article, we survey the feasibility and state of the art of utilizing the Semantic Web technology to represent, integrate and analyze the knowledge in various biomedical networks. We introduce a new conceptual framework, semantic graph mining, to enable researchers to integrate graph mining with ontology reasoning in network data analysis. Through four case studies, we demonstrate how semantic graph mining can be applied to the analysis of disease-causal genes, Gene Ontology category cross-talks, drug efficacy analysis and herb-drug interactions analysis.

  8. Graph-Theoretic Properties of Networks Based on Word Association Norms: Implications for Models of Lexical Semantic Memory

    ERIC Educational Resources Information Center

    Gruenenfelder, Thomas M.; Recchia, Gabriel; Rubin, Tim; Jones, Michael N.

    2016-01-01

    We compared the ability of three different contextual models of lexical semantic memory (BEAGLE, Latent Semantic Analysis, and the Topic model) and of a simple associative model (POC) to predict the properties of semantic networks derived from word association norms. None of the semantic models were able to accurately predict all of the network…

  9. Social Networking on the Semantic Web

    ERIC Educational Resources Information Center

    Finin, Tim; Ding, Li; Zhou, Lina; Joshi, Anupam

    2005-01-01

    Purpose: Aims to investigate the way that the semantic web is being used to represent and process social network information. Design/methodology/approach: The Swoogle semantic web search engine was used to construct several large data sets of Resource Description Framework (RDF) documents with social network information that were encoded using the…

  10. Graph-Theoretic Properties of Networks Based on Word Association Norms: Implications for Models of Lexical Semantic Memory.

    PubMed

    Gruenenfelder, Thomas M; Recchia, Gabriel; Rubin, Tim; Jones, Michael N

    2016-08-01

    We compared the ability of three different contextual models of lexical semantic memory (BEAGLE, Latent Semantic Analysis, and the Topic model) and of a simple associative model (POC) to predict the properties of semantic networks derived from word association norms. None of the semantic models were able to accurately predict all of the network properties. All three contextual models over-predicted clustering in the norms, whereas the associative model under-predicted clustering. Only a hybrid model that assumed that some of the responses were based on a contextual model and others on an associative network (POC) successfully predicted all of the network properties and predicted a word's top five associates as well as or better than the better of the two constituent models. The results suggest that participants switch between a contextual representation and an associative network when generating free associations. We discuss the role that each of these representations may play in lexical semantic memory. Concordant with recent multicomponent theories of semantic memory, the associative network may encode coordinate relations between concepts (e.g., the relation between pea and bean, or between sparrow and robin), and contextual representations may be used to process information about more abstract concepts. Copyright © 2015 Cognitive Science Society, Inc.

  11. Hypermedia-Assisted Instruction and Second Language Learning: A Semantic-Network-Based Approach.

    ERIC Educational Resources Information Center

    Liu, Min

    This literature review examines a hypermedia learning environment from a semantic network basis and the application of such an environment to second language learning. (A semantic network is defined as a conceptual representation of knowledge in human memory). The discussion is organized under the following headings and subheadings: (1) Advantages…

  12. Disruption of Semantic Network in Mild Alzheimer's Disease Revealed by Resting-State fMRI.

    PubMed

    Mascali, Daniele; DiNuzzo, Mauro; Serra, Laura; Mangia, Silvia; Maraviglia, Bruno; Bozzali, Marco; Giove, Federico

    2018-02-10

    Subtle semantic deficits can be observed in Alzheimer's disease (AD) patients even in the early stages of the illness. In this work, we tested the hypothesis that the semantic control network is deregulated in mild AD patients. We assessed the integrity of the semantic control system using resting-state functional magnetic resonance imaging in a cohort of patients with mild AD (n = 38; mean mini-mental state examination = 20.5) and in a group of age-matched healthy controls (n = 19). Voxel-wise analysis spatially constrained in the left fronto-temporal semantic control network identified two regions with altered functional connectivity (FC) in AD patients, specifically in the pars opercularis (POp, BA44) and in the posterior middle temporal gyrus (pMTG, BA21). Using whole-brain seed-based analysis, we demonstrated that these two regions have altered FC even beyond the semantic control network. In particular, the pMTG displayed a wide-distributed pattern of lower connectivity to several brain regions involved in language-semantic processing, along with a possibly compensatory higher connectivity to the Wernicke's area. We conclude that in mild AD brain regions belonging to the semantic control network are abnormally connected not only within the network, but also to other areas known to be critical for language processing. Copyright © 2017 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  13. A Learning Content Authoring Approach Based on Semantic Technologies and Social Networking: An Empirical Study

    ERIC Educational Resources Information Center

    Nesic, Sasa; Gasevic, Dragan; Jazayeri, Mehdi; Landoni, Monica

    2011-01-01

    Semantic web technologies have been applied to many aspects of learning content authoring including semantic annotation, semantic search, dynamic assembly, and personalization of learning content. At the same time, social networking services have started to play an important role in the authoring process by supporting authors' collaborative…

  14. Mobile Phone Detection of Semantic Location and Its Relationship to Depression and Anxiety.

    PubMed

    Saeb, Sohrab; Lattie, Emily G; Kording, Konrad P; Mohr, David C

    2017-08-10

    Is someone at home, at their friend's place, at a restaurant, or enjoying the outdoors? Knowing the semantic location of an individual matters for delivering medical interventions, recommendations, and other context-aware services. This knowledge is particularly useful in mental health care for monitoring relevant behavioral indicators to improve treatment delivery. Local search-and-discovery services such as Foursquare can be used to detect semantic locations based on the global positioning system (GPS) coordinates, but GPS alone is often inaccurate. Mobile phones can also sense other signals (such as movement, light, and sound), and the use of these signals promises to lead to a better estimation of an individual's semantic location. We aimed to examine the ability of mobile phone sensors to estimate semantic locations, and to evaluate the relationship between semantic location visit patterns and depression and anxiety. A total of 208 participants across the United States were asked to log the type of locations they visited daily, using their mobile phones for a period of 6 weeks, while their phone sensor data was recorded. Using the sensor data and Foursquare queries based on GPS coordinates, we trained models to predict these logged locations, and evaluated their prediction accuracy on participants that models had not seen during training. We also evaluated the relationship between the amount of time spent in each semantic location and depression and anxiety assessed at baseline, in the middle, and at the end of the study. While Foursquare queries detected true semantic locations with an average area under the curve (AUC) of 0.62, using phone sensor data alone increased the AUC to 0.84. When we used Foursquare and sensor data together, the AUC further increased to 0.88. We found some significant relationships between the time spent in certain locations and depression and anxiety, although these relationships were not consistent. The accuracy of location services such as Foursquare can significantly benefit from using phone sensor data. However, our results suggest that the nature of the places people visit explains only a small part of the variation in their anxiety and depression symptoms. ©Sohrab Saeb, Emily G Lattie, Konrad P Kording, David C Mohr. Originally published in JMIR Mhealth and Uhealth (http://mhealth.jmir.org), 10.08.2017.

  15. Towards a Semantic Web of Things: A Hybrid Semantic Annotation, Extraction, and Reasoning Framework for Cyber-Physical System

    PubMed Central

    Wu, Zhenyu; Xu, Yuan; Yang, Yunong; Zhang, Chunhong; Zhu, Xinning; Ji, Yang

    2017-01-01

    Web of Things (WoT) facilitates the discovery and interoperability of Internet of Things (IoT) devices in a cyber-physical system (CPS). Moreover, a uniform knowledge representation of physical resources is quite necessary for further composition, collaboration, and decision-making process in CPS. Though several efforts have integrated semantics with WoT, such as knowledge engineering methods based on semantic sensor networks (SSN), it still could not represent the complex relationships between devices when dynamic composition and collaboration occur, and it totally depends on manual construction of a knowledge base with low scalability. In this paper, to addresses these limitations, we propose the semantic Web of Things (SWoT) framework for CPS (SWoT4CPS). SWoT4CPS provides a hybrid solution with both ontological engineering methods by extending SSN and machine learning methods based on an entity linking (EL) model. To testify to the feasibility and performance, we demonstrate the framework by implementing a temperature anomaly diagnosis and automatic control use case in a building automation system. Evaluation results on the EL method show that linking domain knowledge to DBpedia has a relative high accuracy and the time complexity is at a tolerant level. Advantages and disadvantages of SWoT4CPS with future work are also discussed. PMID:28230725

  16. Temporal Sequence of Hemispheric Network Activation during Semantic Processing: A Functional Network Connectivity Analysis

    ERIC Educational Resources Information Center

    Assaf, Michal; Jagannathan, Kanchana; Calhoun, Vince; Kraut, Michael; Hart, John, Jr.; Pearlson, Godfrey

    2009-01-01

    To explore the temporal sequence of, and the relationship between, the left and right hemispheres (LH and RH) during semantic memory (SM) processing we identified the neural networks involved in the performance of functional MRI semantic object retrieval task (SORT) using group independent component analysis (ICA) in 47 healthy individuals. SORT…

  17. Lexical Processing in School-Age Children with Autism Spectrum Disorder and Children with Specific Language Impairment: The Role of Semantics.

    PubMed

    Haebig, Eileen; Kaushanskaya, Margarita; Ellis Weismer, Susan

    2015-12-01

    Children with autism spectrum disorder (ASD) and specific language impairment (SLI) often have immature lexical-semantic knowledge; however, the organization of lexical-semantic knowledge is poorly understood. This study examined lexical processing in school-age children with ASD, SLI, and typical development, who were matched on receptive vocabulary. Children completed a lexical decision task, involving words with high and low semantic network sizes and nonwords. Children also completed nonverbal updating and shifting tasks. Children responded more accurately to words from high than from low semantic networks; however, follow-up analyses identified weaker semantic network effects in the SLI group. Additionally, updating and shifting abilities predicted lexical processing, demonstrating similarity in the mechanisms which underlie semantic processing in children with ASD, SLI, and typical development.

  18. Lexical Processing in School-Age Children with Autism Spectrum Disorder and Children with Specific Language Impairment: The Role of Semantics

    PubMed Central

    Haebig, Eileen; Kaushanskaya, Margarita; Weismer, Susan Ellis

    2016-01-01

    Children with autism spectrum disorder (ASD) and specific language impairment (SLI) often have immature lexical-semantic knowledge; however, the organization of lexical-semantic knowledge is poorly understood. This study examined lexical processing in school-age children with ASD, SLI, and typical development, who were matched on receptive vocabulary. Children completed a lexical decision task, involving words with high and low semantic network sizes and nonwords. Children also completed nonverbal updating and shifting tasks. Children responded more accurately to words from high than from low semantic networks; however, follow-up analyses identified weaker semantic network effects in the SLI group. Additionally, updating and shifting abilities predicted lexical processing, demonstrating similarity in the mechanisms which underlie semantic processing in children with ASD, SLI, and typical development. PMID:26210517

  19. Language Networks Associated with Computerized Semantic Indices

    PubMed Central

    Pakhomov, Serguei V. S.; Jones, David T.; Knopman, David S.

    2014-01-01

    Tests of generative semantic verbal fluency are widely used to study organization and representation of concepts in the human brain. Previous studies demonstrated that clustering and switching behavior during verbal fluency tasks is supported by multiple brain mechanisms associated with semantic memory and executive control. Previous work relied on manual assessments of semantic relatedness between words and grouping of words into semantic clusters. We investigated a computational linguistic approach to measuring the strength of semantic relatedness between words based on latent semantic analysis of word co-occurrences in a subset of a large online encyclopedia. We computed semantic clustering indices and compared them to brain network connectivity measures obtained with task-free fMRI in a sample consisting of healthy participants and those differentially affected by cognitive impairment. We found that semantic clustering indices were associated with brain network connectivity in distinct areas including fronto-temporal, fronto-parietal and fusiform gyrus regions. This study shows that computerized semantic indices complement traditional assessments of verbal fluency to provide a more complete account of the relationship between brain and verbal behavior involved organization and retrieval of lexical information from memory. PMID:25315785

  20. Integrating Statistical Machine Learning in a Semantic Sensor Web for Proactive Monitoring and Control.

    PubMed

    Adeleke, Jude Adekunle; Moodley, Deshendran; Rens, Gavin; Adewumi, Aderemi Oluyinka

    2017-04-09

    Proactive monitoring and control of our natural and built environments is important in various application scenarios. Semantic Sensor Web technologies have been well researched and used for environmental monitoring applications to expose sensor data for analysis in order to provide responsive actions in situations of interest. While these applications provide quick response to situations, to minimize their unwanted effects, research efforts are still necessary to provide techniques that can anticipate the future to support proactive control, such that unwanted situations can be averted altogether. This study integrates a statistical machine learning based predictive model in a Semantic Sensor Web using stream reasoning. The approach is evaluated in an indoor air quality monitoring case study. A sliding window approach that employs the Multilayer Perceptron model to predict short term PM 2 . 5 pollution situations is integrated into the proactive monitoring and control framework. Results show that the proposed approach can effectively predict short term PM 2 . 5 pollution situations: precision of up to 0.86 and sensitivity of up to 0.85 is achieved over half hour prediction horizons, making it possible for the system to warn occupants or even to autonomously avert the predicted pollution situations within the context of Semantic Sensor Web.

  1. Integrating Statistical Machine Learning in a Semantic Sensor Web for Proactive Monitoring and Control

    PubMed Central

    Adeleke, Jude Adekunle; Moodley, Deshendran; Rens, Gavin; Adewumi, Aderemi Oluyinka

    2017-01-01

    Proactive monitoring and control of our natural and built environments is important in various application scenarios. Semantic Sensor Web technologies have been well researched and used for environmental monitoring applications to expose sensor data for analysis in order to provide responsive actions in situations of interest. While these applications provide quick response to situations, to minimize their unwanted effects, research efforts are still necessary to provide techniques that can anticipate the future to support proactive control, such that unwanted situations can be averted altogether. This study integrates a statistical machine learning based predictive model in a Semantic Sensor Web using stream reasoning. The approach is evaluated in an indoor air quality monitoring case study. A sliding window approach that employs the Multilayer Perceptron model to predict short term PM2.5 pollution situations is integrated into the proactive monitoring and control framework. Results show that the proposed approach can effectively predict short term PM2.5 pollution situations: precision of up to 0.86 and sensitivity of up to 0.85 is achieved over half hour prediction horizons, making it possible for the system to warn occupants or even to autonomously avert the predicted pollution situations within the context of Semantic Sensor Web. PMID:28397776

  2. The Semantic Network at Work and Rest: Differential Connectivity of Anterior Temporal Lobe Subregions.

    PubMed

    Jackson, Rebecca L; Hoffman, Paul; Pobric, Gorana; Lambon Ralph, Matthew A

    2016-02-03

    The anterior temporal lobe (ATL) makes a critical contribution to semantic cognition. However, the functional connectivity of the ATL and the functional network underlying semantic cognition has not been elucidated. In addition, subregions of the ATL have distinct functional properties and thus the potential differential connectivity between these subregions requires investigation. We explored these aims using both resting-state and active semantic task data in humans in combination with a dual-echo gradient echo planar imaging (EPI) paradigm designed to ensure signal throughout the ATL. In the resting-state analysis, the ventral ATL (vATL) and anterior middle temporal gyrus (MTG) were shown to connect to areas responsible for multimodal semantic cognition, including bilateral ATL, inferior frontal gyrus, medial prefrontal cortex, angular gyrus, posterior MTG, and medial temporal lobes. In contrast, the anterior superior temporal gyrus (STG)/superior temporal sulcus was connected to a distinct set of auditory and language-related areas, including bilateral STG, precentral and postcentral gyri, supplementary motor area, supramarginal gyrus, posterior temporal cortex, and inferior and middle frontal gyri. Complementary analyses of functional connectivity during an active semantic task were performed using a psychophysiological interaction (PPI) analysis. The PPI analysis highlighted the same semantic regions suggesting a core semantic network active during rest and task states. This supports the necessity for semantic cognition in internal processes occurring during rest. The PPI analysis showed additional connectivity of the vATL to regions of occipital and frontal cortex. These areas strongly overlap with regions found to be sensitive to executively demanding, controlled semantic processing. Previous studies have shown that semantic cognition depends on subregions of the anterior temporal lobe (ATL). However, the network of regions functionally connected to these subregions has not been demarcated. Here, we show that these ventrolateral anterior temporal subregions form part of a network responsible for semantic processing during both rest and an explicit semantic task. This demonstrates the existence of a core functional network responsible for multimodal semantic cognition regardless of state. Distinct connectivity is identified in the superior ATL, which is connected to auditory and language areas. Understanding the functional connectivity of semantic cognition allows greater understanding of how this complex process may be performed and the role of distinct subregions of the anterior temporal cortex. Copyright © 2016 Jackson et al.

  3. The Semantic Network at Work and Rest: Differential Connectivity of Anterior Temporal Lobe Subregions

    PubMed Central

    Jackson, Rebecca L.; Hoffman, Paul; Pobric, Gorana

    2016-01-01

    The anterior temporal lobe (ATL) makes a critical contribution to semantic cognition. However, the functional connectivity of the ATL and the functional network underlying semantic cognition has not been elucidated. In addition, subregions of the ATL have distinct functional properties and thus the potential differential connectivity between these subregions requires investigation. We explored these aims using both resting-state and active semantic task data in humans in combination with a dual-echo gradient echo planar imaging (EPI) paradigm designed to ensure signal throughout the ATL. In the resting-state analysis, the ventral ATL (vATL) and anterior middle temporal gyrus (MTG) were shown to connect to areas responsible for multimodal semantic cognition, including bilateral ATL, inferior frontal gyrus, medial prefrontal cortex, angular gyrus, posterior MTG, and medial temporal lobes. In contrast, the anterior superior temporal gyrus (STG)/superior temporal sulcus was connected to a distinct set of auditory and language-related areas, including bilateral STG, precentral and postcentral gyri, supplementary motor area, supramarginal gyrus, posterior temporal cortex, and inferior and middle frontal gyri. Complementary analyses of functional connectivity during an active semantic task were performed using a psychophysiological interaction (PPI) analysis. The PPI analysis highlighted the same semantic regions suggesting a core semantic network active during rest and task states. This supports the necessity for semantic cognition in internal processes occurring during rest. The PPI analysis showed additional connectivity of the vATL to regions of occipital and frontal cortex. These areas strongly overlap with regions found to be sensitive to executively demanding, controlled semantic processing. SIGNIFICANCE STATEMENT Previous studies have shown that semantic cognition depends on subregions of the anterior temporal lobe (ATL). However, the network of regions functionally connected to these subregions has not been demarcated. Here, we show that these ventrolateral anterior temporal subregions form part of a network responsible for semantic processing during both rest and an explicit semantic task. This demonstrates the existence of a core functional network responsible for multimodal semantic cognition regardless of state. Distinct connectivity is identified in the superior ATL, which is connected to auditory and language areas. Understanding the functional connectivity of semantic cognition allows greater understanding of how this complex process may be performed and the role of distinct subregions of the anterior temporal cortex. PMID:26843633

  4. Semantic Registration and Discovery System of Subsystems and Services within an Interoperable Coordination Platform in Smart Cities

    PubMed Central

    Rubio, Gregorio; Martínez, José Fernán; Gómez, David; Li, Xin

    2016-01-01

    Smart subsystems like traffic, Smart Homes, the Smart Grid, outdoor lighting, etc. are built in many urban areas, each with a set of services that are offered to citizens. These subsystems are managed by self-contained embedded systems. However, coordination and cooperation between them are scarce. An integration of these systems which truly represents a “system of systems” could introduce more benefits, such as allowing the development of new applications and collective optimization. The integration should allow maximum reusability of available services provided by entities (e.g., sensors or Wireless Sensor Networks). Thus, it is of major importance to facilitate the discovery and registration of available services and subsystems in an integrated way. Therefore, an ontology-based and automatic system for subsystem and service registration and discovery is presented. Using this proposed system, heterogeneous subsystems and services could be registered and discovered in a dynamic manner with additional semantic annotations. In this way, users are able to build customized applications across different subsystems by using available services. The proposed system has been fully implemented and a case study is presented to show the usefulness of the proposed method. PMID:27347965

  5. Semantic Registration and Discovery System of Subsystems and Services within an Interoperable Coordination Platform in Smart Cities.

    PubMed

    Rubio, Gregorio; Martínez, José Fernán; Gómez, David; Li, Xin

    2016-06-24

    Smart subsystems like traffic, Smart Homes, the Smart Grid, outdoor lighting, etc. are built in many urban areas, each with a set of services that are offered to citizens. These subsystems are managed by self-contained embedded systems. However, coordination and cooperation between them are scarce. An integration of these systems which truly represents a "system of systems" could introduce more benefits, such as allowing the development of new applications and collective optimization. The integration should allow maximum reusability of available services provided by entities (e.g., sensors or Wireless Sensor Networks). Thus, it is of major importance to facilitate the discovery and registration of available services and subsystems in an integrated way. Therefore, an ontology-based and automatic system for subsystem and service registration and discovery is presented. Using this proposed system, heterogeneous subsystems and services could be registered and discovered in a dynamic manner with additional semantic annotations. In this way, users are able to build customized applications across different subsystems by using available services. The proposed system has been fully implemented and a case study is presented to show the usefulness of the proposed method.

  6. Functional changes in the cortical semantic network in amnestic mild cognitive impairment.

    PubMed

    Pineault, Jessica; Jolicoeur, Pierre; Grimault, Stephan; Bermudez, Patrick; Brambati, Simona Maria; Lacombe, Jacinthe; Villalpando, Juan Manuel; Kergoat, Marie-Jeanne; Joubert, Sven

    2018-05-01

    Semantic memory impairment has been documented in individuals with amnestic Mild cognitive impairment (aMCI), who are at risk of developing Alzheimer's disease (AD), yet little is known about the neural basis of this breakdown. The aim of this study was to investigate the brain mechanisms associated with semantic performance in aMCI patients. A group of aMCI patients and a group of healthy controls carried out a semantic categorization task while their brain activity was recorded using magnetoencephalography (MEG). During the task, participants were shown famous faces and had to determine whether each famous person matched a given occupation. The main hypotheses were that (a) semantic processing should be compromised for aMCI patients, and (b) these deficits should be associated with cortical dysfunctions within specific areas of the semantic network. Behavioral results showed that aMCI participants were significantly slower and less accurate than controls at the semantic task. Additionally, relative to controls, a significant pattern of hyperactivation was found in the aMCI group within specific regions of the extended semantic network, including the right anterior temporal lobe (ATL) and fusiform gyrus. Abnormal functional activation within key areas of the semantic network suggests that it is compromised early in the disease process. Moreover, this pattern of right ATL and fusiform gyrus hyperactivation was positively associated with gray matter integrity in specific areas, but was not associated with any pattern of atrophy, suggesting that this pattern of hyperactivation may precede structural alteration of the semantic network in aMCI. (PsycINFO Database Record (c) 2018 APA, all rights reserved).

  7. Visual and semantic processing of living things and artifacts: an FMRI study.

    PubMed

    Zannino, Gian Daniele; Buccione, Ivana; Perri, Roberta; Macaluso, Emiliano; Lo Gerfo, Emanuele; Caltagirone, Carlo; Carlesimo, Giovanni A

    2010-03-01

    We carried out an fMRI study with a twofold purpose: to investigate the relationship between networks dedicated to semantic and visual processing and to address the issue of whether semantic memory is subserved by a unique network or by different subsystems, according to semantic category or feature type. To achieve our goals, we administered a word-picture matching task, with within-category foils, to 15 healthy subjects during scanning. Semantic distance between the target and the foil and semantic domain of the target-foil pairs were varied orthogonally. Our results suggest that an amodal, undifferentiated network for the semantic processing of living things and artifacts is located in the anterolateral aspects of the temporal lobes; in fact, activity in this substrate was driven by semantic distance, not by semantic category. By contrast, activity in ventral occipito-temporal cortex was driven by category, not by semantic distance. We interpret the latter finding as the effect exerted by systematic differences between living things and artifacts at the level of their structural representations and possibly of their lower-level visual features. Finally, we attempt to reconcile contrasting data in the neuropsychological and functional imaging literature on semantic substrate and category specificity.

  8. The Semantic Distance Task: Quantifying Semantic Distance with Semantic Network Path Length

    ERIC Educational Resources Information Center

    Kenett, Yoed N.; Levi, Effi; Anaki, David; Faust, Miriam

    2017-01-01

    Semantic distance is a determining factor in cognitive processes, such as semantic priming, operating upon semantic memory. The main computational approach to compute semantic distance is through latent semantic analysis (LSA). However, objections have been raised against this approach, mainly in its failure at predicting semantic priming. We…

  9. Neural Substrates of Processing Anger in Language: Contributions of Prosody and Semantics.

    PubMed

    Castelluccio, Brian C; Myers, Emily B; Schuh, Jillian M; Eigsti, Inge-Marie

    2016-12-01

    Emotions are conveyed primarily through two channels in language: semantics and prosody. While many studies confirm the role of a left hemisphere network in processing semantic emotion, there has been debate over the role of the right hemisphere in processing prosodic emotion. Some evidence suggests a preferential role for the right hemisphere, and other evidence supports a bilateral model. The relative contributions of semantics and prosody to the overall processing of affect in language are largely unexplored. The present work used functional magnetic resonance imaging to elucidate the neural bases of processing anger conveyed by prosody or semantic content. Results showed a robust, distributed, bilateral network for processing angry prosody and a more modest left hemisphere network for processing angry semantics when compared to emotionally neutral stimuli. Findings suggest the nervous system may be more responsive to prosodic cues in speech than to the semantic content of speech.

  10. Using semantic technologies and the OSU ontology for modelling context and activities in multi-sensory surveillance systems

    NASA Astrophysics Data System (ADS)

    Gómez A, Héctor F.; Martínez-Tomás, Rafael; Arias Tapia, Susana A.; Rincón Zamorano, Mariano

    2014-04-01

    Automatic systems that monitor human behaviour for detecting security problems are a challenge today. Previously, our group defined the Horus framework, which is a modular architecture for the integration of multi-sensor monitoring stages. In this work, structure and technologies required for high-level semantic stages of Horus are proposed, and the associated methodological principles established with the aim of recognising specific behaviours and situations. Our methodology distinguishes three semantic levels of events: low level (compromised with sensors), medium level (compromised with context), and high level (target behaviours). The ontology for surveillance and ubiquitous computing has been used to integrate ontologies from specific domains and together with semantic technologies have facilitated the modelling and implementation of scenes and situations by reusing components. A home context and a supermarket context were modelled following this approach, where three suspicious activities were monitored via different virtual sensors. The experiments demonstrate that our proposals facilitate the rapid prototyping of this kind of systems.

  11. Trust estimation of the semantic web using semantic web clustering

    NASA Astrophysics Data System (ADS)

    Shirgahi, Hossein; Mohsenzadeh, Mehran; Haj Seyyed Javadi, Hamid

    2017-05-01

    Development of semantic web and social network is undeniable in the Internet world these days. Widespread nature of semantic web has been very challenging to assess the trust in this field. In recent years, extensive researches have been done to estimate the trust of semantic web. Since trust of semantic web is a multidimensional problem, in this paper, we used parameters of social network authority, the value of pages links authority and semantic authority to assess the trust. Due to the large space of semantic network, we considered the problem scope to the clusters of semantic subnetworks and obtained the trust of each cluster elements as local and calculated the trust of outside resources according to their local trusts and trust of clusters to each other. According to the experimental result, the proposed method shows more than 79% Fscore that is about 11.9% in average more than Eigen, Tidal and centralised trust methods. Mean of error in this proposed method is 12.936, that is 9.75% in average less than Eigen and Tidal trust methods.

  12. Using ontological inference and hierarchical matchmaking to overcome semantic heterogeneity in remote sensing-based biodiversity monitoring

    NASA Astrophysics Data System (ADS)

    Nieland, Simon; Kleinschmit, Birgit; Förster, Michael

    2015-05-01

    Ontology-based applications hold promise in improving spatial data interoperability. In this work we use remote sensing-based biodiversity information and apply semantic formalisation and ontological inference to show improvements in data interoperability/comparability. The proposed methodology includes an observation-based, "bottom-up" engineering approach for remote sensing applications and gives a practical example of semantic mediation of geospatial products. We apply the methodology to three different nomenclatures used for remote sensing-based classification of two heathland nature conservation areas in Belgium and Germany. We analysed sensor nomenclatures with respect to their semantic formalisation and their bio-geographical differences. The results indicate that a hierarchical and transparent nomenclature is far more important for transferability than the sensor or study area. The inclusion of additional information, not necessarily belonging to a vegetation class description, is a key factor for the future success of using semantics for interoperability in remote sensing.

  13. Language networks associated with computerized semantic indices.

    PubMed

    Pakhomov, Serguei V S; Jones, David T; Knopman, David S

    2015-01-01

    Tests of generative semantic verbal fluency are widely used to study organization and representation of concepts in the human brain. Previous studies demonstrated that clustering and switching behavior during verbal fluency tasks is supported by multiple brain mechanisms associated with semantic memory and executive control. Previous work relied on manual assessments of semantic relatedness between words and grouping of words into semantic clusters. We investigated a computational linguistic approach to measuring the strength of semantic relatedness between words based on latent semantic analysis of word co-occurrences in a subset of a large online encyclopedia. We computed semantic clustering indices and compared them to brain network connectivity measures obtained with task-free fMRI in a sample consisting of healthy participants and those differentially affected by cognitive impairment. We found that semantic clustering indices were associated with brain network connectivity in distinct areas including fronto-temporal, fronto-parietal and fusiform gyrus regions. This study shows that computerized semantic indices complement traditional assessments of verbal fluency to provide a more complete account of the relationship between brain and verbal behavior involved organization and retrieval of lexical information from memory. Copyright © 2014 Elsevier Inc. All rights reserved.

  14. Semantic networks based on titles of scientific papers

    NASA Astrophysics Data System (ADS)

    Pereira, H. B. B.; Fadigas, I. S.; Senna, V.; Moret, M. A.

    2011-03-01

    In this paper we study the topological structure of semantic networks based on titles of papers published in scientific journals. It discusses its properties and presents some reflections on how the use of social and complex network models can contribute to the diffusion of knowledge. The proposed method presented here is applied to scientific journals where the titles of papers are in English or in Portuguese. We show that the topology of studied semantic networks are small-world and scale-free.

  15. A health analytics semantic ETL service for obesity surveillance.

    PubMed

    Poulymenopoulou, M; Papakonstantinou, D; Malamateniou, F; Vassilacopoulos, G

    2015-01-01

    The increasingly large amount of data produced in healthcare (e.g. collected through health information systems such as electronic medical records - EMRs or collected through novel data sources such as personal health records - PHRs, social media, web resources) enable the creation of detailed records about people's health, sentiments and activities (e.g. physical activity, diet, sleep quality) that can be used in the public health area among others. However, despite the transformative potential of big data in public health surveillance there are several challenges in integrating big data. In this paper, the interoperability challenge is tackled and a semantic Extract Transform Load (ETL) service is proposed that seeks to semantically annotate big data to result into valuable data for analysis. This service is considered as part of a health analytics engine on the cloud that interacts with existing healthcare information exchange networks, like the Integrating the Healthcare Enterprise (IHE), PHRs, sensors, mobile applications, and other web resources to retrieve patient health, behavioral and daily activity data. The semantic ETL service aims at semantically integrating big data for use by analytic mechanisms. An illustrative implementation of the service on big data which is potentially relevant to human obesity, enables using appropriate analytic techniques (e.g. machine learning, text mining) that are expected to assist in identifying patterns and contributing factors (e.g. genetic background, social, environmental) for this social phenomenon and, hence, drive health policy changes and promote healthy behaviors where residents live, work, learn, shop and play.

  16. An object-oriented design for automated navigation of semantic networks inside a medical data dictionary.

    PubMed

    Ruan, W; Bürkle, T; Dudeck, J

    2000-01-01

    In this paper we present a data dictionary server for the automated navigation of information sources. The underlying knowledge is represented within a medical data dictionary. The mapping between medical terms and information sources is based on a semantic network. The key aspect of implementing the dictionary server is how to represent the semantic network in a way that is easier to navigate and to operate, i.e. how to abstract the semantic network and to represent it in memory for various operations. This paper describes an object-oriented design based on Java that represents the semantic network in terms of a group of objects. A node and its relationships to its neighbors are encapsulated in one object. Based on such a representation model, several operations have been implemented. They comprise the extraction of parts of the semantic network which can be reached from a given node as well as finding all paths between a start node and a predefined destination node. This solution is independent of any given layout of the semantic structure. Therefore the module, called Giessen Data Dictionary Server can act independent of a specific clinical information system. The dictionary server will be used to present clinical information, e.g. treatment guidelines or drug information sources to the clinician in an appropriate working context. The server is invoked from clinical documentation applications which contain an infobutton. Automated navigation will guide the user to all the information relevant to her/his topic, which is currently available inside our closed clinical network.

  17. Semantic policy and adversarial modeling for cyber threat identification and avoidance

    NASA Astrophysics Data System (ADS)

    DeFrancesco, Anton; McQueary, Bruce

    2009-05-01

    Today's enterprise networks undergo a relentless barrage of attacks from foreign and domestic adversaries. These attacks may be perpetrated with little to no funding, but may wreck incalculable damage upon the enterprises security, network infrastructure, and services. As more services come online, systems that were once in isolation now provide information that may be combined dynamically with information from other systems to create new meaning on the fly. Security issues are compounded by the potential to aggregate individual pieces of information and infer knowledge at a higher classification than any of its constituent parts. To help alleviate these challenges, in this paper we introduce the notion of semantic policy and discuss how it's use is evolving from a robust approach to access control to preempting and combating attacks in the cyber domain, The introduction of semantic policy and adversarial modeling to network security aims to ask 'where is the network most vulnerable', 'how is the network being attacked', and 'why is the network being attacked'. The first aspect of our approach is integration of semantic policy into enterprise security to augment traditional network security with an overall awareness of policy access and violations. This awareness allows the semantic policy to look at the big picture - analyzing trends and identifying critical relations in system wide data access. The second aspect of our approach is to couple adversarial modeling with semantic policy to move beyond reactive security measures and into a proactive identification of system weaknesses and areas of vulnerability. By utilizing Bayesian-based methodologies, the enterprise wide meaning of data and semantic policy is applied to probability and high-level risk identification. This risk identification will help mitigate potential harm to enterprise networks by enabling resources to proactively isolate, lock-down, and secure systems that are most vulnerable.

  18. A multilayer network analysis of hashtags in twitter via co-occurrence and semantic links

    NASA Astrophysics Data System (ADS)

    Türker, Ilker; Sulak, Eyüb Ekmel

    2018-02-01

    Complex network studies, as an interdisciplinary framework, span a large variety of subjects including social media. In social networks, several mechanisms generate miscellaneous structures like friendship networks, mention networks, tag networks, etc. Focusing on tag networks (namely, hashtags in twitter), we made a two-layer analysis of tag networks from a massive dataset of Twitter entries. The first layer is constructed by converting the co-occurrences of these tags in a single entry (tweet) into links, while the second layer is constructed converting the semantic relations of the tags into links. We observed that the universal properties of the real networks like small-world property, clustering and power-law distributions in various network parameters are also evident in the multilayer network of hashtags. Moreover, we outlined that co-occurrences of hashtags in tweets are mostly coupled with semantic relations, whereas a small number of semantically unrelated, therefore random links reduce node separation and network diameter in the co-occurrence network layer. Together with the degree distributions, the power-law consistencies of degree difference, edge weight and cosine similarity distributions in both layers are also appealing forms of Zipf’s law evident in nature.

  19. Discovering Central Practitioners in a Medical Discussion Forum Using Semantic Web Analytics.

    PubMed

    Rajabi, Enayat; Abidi, Syed Sibte Raza

    2017-01-01

    The aim of this paper is to investigate semantic web based methods to enrich and transform a medical discussion forum in order to perform semantics-driven social network analysis. We use the centrality measures as well as semantic similarity metrics to identify the most influential practitioners within a discussion forum. The centrality results of our approach are in line with centrality measures produced by traditional SNA methods, thus validating the applicability of semantic web based methods for SNA, particularly for analyzing social networks for specialized discussion forums.

  20. Image quality assessment using deep convolutional networks

    NASA Astrophysics Data System (ADS)

    Li, Yezhou; Ye, Xiang; Li, Yong

    2017-12-01

    This paper proposes a method of accurately assessing image quality without a reference image by using a deep convolutional neural network. Existing training based methods usually utilize a compact set of linear filters for learning features of images captured by different sensors to assess their quality. These methods may not be able to learn the semantic features that are intimately related with the features used in human subject assessment. Observing this drawback, this work proposes training a deep convolutional neural network (CNN) with labelled images for image quality assessment. The ReLU in the CNN allows non-linear transformations for extracting high-level image features, providing a more reliable assessment of image quality than linear filters. To enable the neural network to take images of any arbitrary size as input, the spatial pyramid pooling (SPP) is introduced connecting the top convolutional layer and the fully-connected layer. In addition, the SPP makes the CNN robust to object deformations to a certain extent. The proposed method taking an image as input carries out an end-to-end learning process, and outputs the quality of the image. It is tested on public datasets. Experimental results show that it outperforms existing methods by a large margin and can accurately assess the image quality on images taken by different sensors of varying sizes.

  1. Intelligent Agents as a Basis for Natural Language Interfaces

    DTIC Science & Technology

    1988-01-01

    language analysis component of UC, which produces a semantic representa tion of the input. This representation is in the form of a KODIAK network (see...Appendix A). Next, UC’s Concretion Mechanism performs concretion inferences ([Wilensky, 1983] and [Norvig, 1983]) based on the semantic network...The first step in UC’s processing is done by UC’s parser/understander component which produces a KODIAK semantic network representa tion of

  2. Spreading Activation in an Attractor Network with Latching Dynamics: Automatic Semantic Priming Revisited

    ERIC Educational Resources Information Center

    Lerner, Itamar; Bentin, Shlomo; Shriki, Oren

    2012-01-01

    Localist models of spreading activation (SA) and models assuming distributed representations offer very different takes on semantic priming, a widely investigated paradigm in word recognition and semantic memory research. In this study, we implemented SA in an attractor neural network model with distributed representations and created a unified…

  3. Semantic network analysis of vaccine sentiment in online social media.

    PubMed

    Kang, Gloria J; Ewing-Nelson, Sinclair R; Mackey, Lauren; Schlitt, James T; Marathe, Achla; Abbas, Kaja M; Swarup, Samarth

    2017-06-22

    To examine current vaccine sentiment on social media by constructing and analyzing semantic networks of vaccine information from highly shared websites of Twitter users in the United States; and to assist public health communication of vaccines. Vaccine hesitancy continues to contribute to suboptimal vaccination coverage in the United States, posing significant risk of disease outbreaks, yet remains poorly understood. We constructed semantic networks of vaccine information from internet articles shared by Twitter users in the United States. We analyzed resulting network topology, compared semantic differences, and identified the most salient concepts within networks expressing positive, negative, and neutral vaccine sentiment. The semantic network of positive vaccine sentiment demonstrated greater cohesiveness in discourse compared to the larger, less-connected network of negative vaccine sentiment. The positive sentiment network centered around parents and focused on communicating health risks and benefits, highlighting medical concepts such as measles, autism, HPV vaccine, vaccine-autism link, meningococcal disease, and MMR vaccine. In contrast, the negative network centered around children and focused on organizational bodies such as CDC, vaccine industry, doctors, mainstream media, pharmaceutical companies, and United States. The prevalence of negative vaccine sentiment was demonstrated through diverse messaging, framed around skepticism and distrust of government organizations that communicate scientific evidence supporting positive vaccine benefits. Semantic network analysis of vaccine sentiment in online social media can enhance understanding of the scope and variability of current attitudes and beliefs toward vaccines. Our study synthesizes quantitative and qualitative evidence from an interdisciplinary approach to better understand complex drivers of vaccine hesitancy for public health communication, to improve vaccine confidence and vaccination coverage in the United States. Copyright © 2017. Published by Elsevier Ltd.

  4. Human behavior understanding for assisted living by means of hierarchical context free grammars

    NASA Astrophysics Data System (ADS)

    Rosani, A.; Conci, N.; De Natale, F. G. B.

    2014-03-01

    Human behavior understanding has attracted the attention of researchers in various fields over the last years. Recognizing behaviors with sufficient accuracy from sensors analysis is still an unsolved problem, because of many reasons, including the low accuracy of the data, differences in the human behaviors as well as the gap between low-level sensors data and high-level scene semantics. In this context, an application that is attracting the interest of both public and industrial entities is the possibility to allow elderly or physically impaired people conducting a normal life at home. Ambient intelligence (AmI) technologies, intended as the possibility of automatically detecting and reacting to the status of the environment and of the persons, is probably the major enabling factor for the achievement of such an ambitious objective. AmI technologies require suitable networks of sensors and actuators, as well as adequate processing and communication technologies. In this paper we propose a solution based on context free grammars for human behavior understanding with an application to assisted living. First, the grammars of the different actions performed by a person in his/her daily life are discovered. Then, a longterm analysis of the behavior is used to generate a control grammar, taking care of the context when an action is performed, and adding semantics. The proposed framework is tested on a dataset acquired in a real environment and compared with state of the art methods already available for the problem considered.

  5. Semantic encoding of relational databases in wireless networks

    NASA Astrophysics Data System (ADS)

    Benjamin, David P.; Walker, Adrian

    2005-03-01

    Semantic Encoding is a new, patented technology that greatly increases the speed of transmission of distributed databases over networks, especially over ad hoc wireless networks, while providing a novel method of data security. It reduces bandwidth consumption and storage requirements, while speeding up query processing, encryption and computation of digital signatures. We describe the application of Semantic Encoding in a wireless setting and provide an example of its operation in which a compression of 290:1 would be achieved.

  6. A suffix arrays based approach to semantic search in P2P systems

    NASA Astrophysics Data System (ADS)

    Shi, Qingwei; Zhao, Zheng; Bao, Hu

    2007-09-01

    Building a semantic search system on top of peer-to-peer (P2P) networks is becoming an attractive and promising alternative scheme for the reason of scalability, Data freshness and search cost. In this paper, we present a Suffix Arrays based algorithm for Semantic Search (SASS) in P2P systems, which generates a distributed Semantic Overlay Network (SONs) construction for full-text search in P2P networks. For each node through the P2P network, SASS distributes document indices based on a set of suffix arrays, by which clusters are created depending on words or phrases shared between documents, therefore, the search cost for a given query is decreased by only scanning semantically related documents. In contrast to recently announced SONs scheme designed by using metadata or predefined-class, SASS is an unsupervised approach for decentralized generation of SONs. SASS is also an incremental, linear time algorithm, which efficiently handle the problem of nodes update in P2P networks. Our simulation results demonstrate that SASS yields high search efficiency in dynamic environments.

  7. Network-Based Visual Analysis of Tabular Data

    ERIC Educational Resources Information Center

    Liu, Zhicheng

    2012-01-01

    Tabular data is pervasive in the form of spreadsheets and relational databases. Although tables often describe multivariate data without explicit network semantics, it may be advantageous to explore the data modeled as a graph or network for analysis. Even when a given table design conveys some static network semantics, analysts may want to look…

  8. I See What You Mean: Theta Power Increases Are Involved in the Retrieval of Lexical Semantic Information

    ERIC Educational Resources Information Center

    Bastiaansen, Marcel C. M.; Oostenveld, Robert; Jensen, Ole; Hagoort, Peter

    2008-01-01

    An influential hypothesis regarding the neural basis of the mental lexicon is that semantic representations are neurally implemented as distributed networks carrying sensory, motor and/or more abstract functional information. This work investigates whether the semantic properties of words partly determine the topography of such networks. Subjects…

  9. Behavioural and magnetoencephalographic evidence for the interaction between semantic and episodic memory in healthy elderly subjects.

    PubMed

    La Corte, Valentina; Dalla Barba, Gianfranco; Lemaréchal, Jean-Didier; Garnero, Line; George, Nathalie

    2012-10-01

    The relationship between episodic and semantic memory systems has long been debated. Some authors argue that episodic memory is contingent on semantic memory (Tulving 1984), while others postulate that both systems are independent since they can be selectively damaged (Squire 1987). The interaction between these memory systems is particularly important in the elderly, since the dissociation of episodic and semantic memory defects characterize different aging-related pathologies. Here, we investigated the interaction between semantic knowledge and episodic memory processes associated with faces in elderly subjects using an experimental paradigm where the semantic encoding of famous and unknown faces was compared to their episodic recognition. Results showed that the level of semantic awareness of items affected the recognition of those items in the episodic memory task. Event-related magnetic fields confirmed this interaction between episodic and semantic memory: ERFs related to the old/new effect during the episodic task were markedly different for famous and unknown faces. The old/new effect for famous faces involved sustained activities maximal over right temporal sensors, showing a spatio-temporal pattern partly similar to that found for famous versus unknown faces during the semantic task. By contrast, an old/new effect for unknown faces was observed on left parieto-occipital sensors. These findings suggest that the episodic memory for famous faces activated the retrieval of stored semantic information, whereas it was based on items' perceptual features for unknown faces. Overall, our results show that semantic information interfered markedly with episodic memory processes and suggested that the neural substrates of these two memory systems overlap.

  10. Investigating the structure of semantic networks in low and high creative persons

    PubMed Central

    Kenett, Yoed N.; Anaki, David; Faust, Miriam

    2014-01-01

    According to Mednick's (1962) theory of individual differences in creativity, creative individuals appear to have a richer and more flexible associative network than less creative individuals. Thus, creative individuals are characterized by “flat” (broader associations) instead of “steep” (few, common associations) associational hierarchies. To study these differences, we implement a novel computational approach to the study of semantic networks, through the analysis of free associations. The core notion of our method is that concepts in the network are related to each other by their association correlations—overlap of similar associative responses (“association clouds”). We began by collecting a large sample of participants who underwent several creativity measurements and used a decision tree approach to divide the sample into low and high creative groups. Next, each group underwent a free association generation paradigm which allowed us to construct and analyze the semantic networks of both groups. Comparison of the semantic memory networks of persons with low creative ability and persons with high creative ability revealed differences between the two networks. The semantic memory network of persons with low creative ability seems to be more rigid, compared to the network of persons with high creative ability, in the sense that it is more spread out and breaks apart into more sub-parts. We discuss how our findings are in accord and extend Mednick's (1962) theory and the feasibility of using network science paradigms to investigate high level cognition. PMID:24959129

  11. Integrating the automatic and the controlled: Strategies in Semantic Priming in an Attractor Network with Latching Dynamics

    PubMed Central

    Lerner, Itamar; Bentin, Shlomo; Shriki, Oren

    2014-01-01

    Semantic priming has long been recognized to reflect, along with automatic semantic mechanisms, the contribution of controlled strategies. However, previous theories of controlled priming were mostly qualitative, lacking common grounds with modern mathematical models of automatic priming based on neural networks. Recently, we have introduced a novel attractor network model of automatic semantic priming with latching dynamics. Here, we extend this work to show how the same model can also account for important findings regarding controlled processes. Assuming the rate of semantic transitions in the network can be adapted using simple reinforcement learning, we show how basic findings attributed to controlled processes in priming can be achieved, including their dependency on stimulus onset asynchrony and relatedness proportion and their unique effect on associative, category-exemplar, mediated and backward prime-target relations. We discuss how our mechanism relates to the classic expectancy theory and how it can be further extended in future developments of the model. PMID:24890261

  12. A hierarchical, ontology-driven Bayesian concept for ubiquitous medical environments--a case study for pulmonary diseases.

    PubMed

    Maragoudakis, Manolis; Lymberopoulos, Dimitrios; Fakotakis, Nikos; Spiropoulos, Kostas

    2008-01-01

    The present paper extends work on an existing computer-based Decision Support System (DSS) that aims to provide assistance to physicians as regards to pulmonary diseases. The extension deals with allowing for a hierarchical decomposition of the task, at different levels of domain granularity, using a novel approach, i.e. Hierarchical Bayesian Networks. The proposed framework uses data from various networking appliances such as mobile phones and wireless medical sensors to establish a ubiquitous environment for medical treatment of pulmonary diseases. Domain knowledge is encoded at the upper levels of the hierarchy, thus making the process of generalization easier to accomplish. The experimental results were carried out under the Pulmonary Department, University Regional Hospital Patras, Patras, Greece. They have supported our initial beliefs about the ability of Bayesian networks to provide an effective, yet semantically-oriented, means of prognosis and reasoning under conditions of uncertainty.

  13. SSWAP: A Simple Semantic Web Architecture and Protocol for Semantic Web Services

    USDA-ARS?s Scientific Manuscript database

    SSWAP (Simple Semantic Web Architecture and Protocol) is an architecture, protocol, and platform for using reasoning to semantically integrate heterogeneous disparate data and services on the web. SSWAP is the driving technology behind the Virtual Plant Information Network, an NSF-funded semantic w...

  14. Exploratory community sensing in social networks

    NASA Astrophysics Data System (ADS)

    Khrabrov, Alexy; Stocco, Gabriel; Cybenko, George

    2010-04-01

    Social networks generally provide an implementation of some kind of groups or communities which users can voluntarily join. Twitter does not have this functionality, and there is no notion of a formal group or community. We propose a method for identification of communities and assignment of semantic meaning to the discussion topics of the resulting communities. Using this analysis method and a sample of roughly a month's worth of Tweets from Twitter's "gardenhose" feed, we demonstrate the discovery of meaningful user communities on Twitter. We examine Twitter data streaming in real time and treat it as a sensor. Twitter is a social network which pioneered microblogging with the messages fitting an SMS, and a variety of clients, browsers, smart phones and PDAs are used for status updates by individuals, businesses, media outlets and even devices all over the world. Often an aggregate trend of such statuses may represent an important development in the world, which has been demonstrated with the Iran and Moldova elections and the anniversary of the Tiananmen in China. We propose using Twitter as a sensor, tracking individuals and communities of interest, and characterizing individual roles and dynamics of their communications. We developed a novel algorithm of community identification in social networks based on direct communication, as opposed to linking. We show ways to find communities of interest and then browse their neighborhoods by either similarity or diversity of individuals and groups adjacent to the one of interest. We use frequent collocations and statistically improbable phrases to summarize the focus of the community, giving a quick overview of its main topics. Our methods provide insight into the largest social sensor network in the world and constitute a platform for social sensing.

  15. An Enriched Unified Medical Language System Semantic Network with a Multiple Subsumption Hierarchy

    PubMed Central

    Zhang, Li; Perl, Yehoshua; Halper, Michael; Geller, James; Cimino, James J.

    2004-01-01

    Objective: The Unified Medical Language System's (UMLS's) Semantic Network's (SN's) two-tree structure is restrictive because it does not allow a semantic type to be a specialization of several other semantic types. In this article, the SN is expanded into a multiple subsumption structure with a directed acyclic graph (DAG) IS-A hierarchy, allowing a semantic type to have multiple parents. New viable IS-A links are added as warranted. Design: Two methodologies are presented to identify and add new viable IS-A links. The first methodology is based on imposing the characteristic of connectivity on a previously presented partition of the SN. Four transformations are provided to find viable IS-A links in the process of converting the partition's disconnected groups into connected ones. The second methodology identifies new IS-A links through a string matching process involving names and definitions of various semantic types in the SN. A domain expert is needed to review all the results to determine the validity of the new IS-A links. Results: Nineteen new IS-A links are added to the SN, and four new semantic types are also created to support the multiple subsumption framework. The resulting network, called the Enriched Semantic Network (ESN), exhibits a DAG-structured hierarchy. A partition of the ESN containing 19 connected groups is also derived. Conclusion: The ESN is an expanded abstraction of the UMLS compared with the original SN. Its multiple subsumption hierarchy can accommodate semantic types with multiple parents. Its representation thus provides direct access to a broader range of subsumption knowledge. PMID:14764611

  16. The Functional Organisation of the Fronto-Temporal Language System: Evidence from Syntactic and Semantic Ambiguity

    ERIC Educational Resources Information Center

    Rodd, Jennifer M.; Longe, Olivia A.; Randall, Billi; Tyler, Lorraine K.

    2010-01-01

    Spoken language comprehension is known to involve a large left-dominant network of fronto-temporal brain regions, but there is still little consensus about how the syntactic and semantic aspects of language are processed within this network. In an fMRI study, volunteers heard spoken sentences that contained either syntactic or semantic ambiguities…

  17. The Large-Scale Structure of Semantic Networks: Statistical Analyses and a Model of Semantic Growth

    ERIC Educational Resources Information Center

    Steyvers, Mark; Tenenbaum, Joshua B.

    2005-01-01

    We present statistical analyses of the large-scale structure of 3 types of semantic networks: word associations, WordNet, and Roget's Thesaurus. We show that they have a small-world structure, characterized by sparse connectivity, short average path lengths between words, and strong local clustering. In addition, the distributions of the number of…

  18. Filtering Gene Ontology semantic similarity for identifying protein complexes in large protein interaction networks.

    PubMed

    Wang, Jian; Xie, Dong; Lin, Hongfei; Yang, Zhihao; Zhang, Yijia

    2012-06-21

    Many biological processes recognize in particular the importance of protein complexes, and various computational approaches have been developed to identify complexes from protein-protein interaction (PPI) networks. However, high false-positive rate of PPIs leads to challenging identification. A protein semantic similarity measure is proposed in this study, based on the ontology structure of Gene Ontology (GO) terms and GO annotations to estimate the reliability of interactions in PPI networks. Interaction pairs with low GO semantic similarity are removed from the network as unreliable interactions. Then, a cluster-expanding algorithm is used to detect complexes with core-attachment structure on filtered network. Our method is applied to three different yeast PPI networks. The effectiveness of our method is examined on two benchmark complex datasets. Experimental results show that our method performed better than other state-of-the-art approaches in most evaluation metrics. The method detects protein complexes from large scale PPI networks by filtering GO semantic similarity. Removing interactions with low GO similarity significantly improves the performance of complex identification. The expanding strategy is also effective to identify attachment proteins of complexes.

  19. Sculpting the UMLS Refined Semantic Network.

    PubMed

    He, Zhe; Morrey, C Paul; Perl, Yehoshua; Elhanan, Gai; Chen, Ling; Chen, Yan; Geller, James

    2014-01-01

    The Refined Semantic Network (RSN) for the UMLS was previously introduced to complement the UMLS Semantic Network (SN). The RSN partitions the UMLS Metathesaurus (META) into disjoint groups of concepts. Each such group is semantically uniform. However, the RSN was initially an order of magnitude larger than the SN, which is undesirable since to be useful, a semantic network should be compact. Most semantic types in the RSN represent combinations of semantic types in the UMLS SN. Such a "combination semantic type" is called Intersection Semantic Type (IST). Many ISTs are assigned to very few concepts. Moreover, when reviewing those concepts, many semantic type assignment inconsistencies were found. After correcting those inconsistencies many ISTs, among them some that contradicted UMLS rules, disappeared, which made the RSN smaller. The authors performed a longitudinal study with the goal of reducing the size of the RSN to become compact. This goal was achieved by correcting inconsistencies and errors in the IST assignments in the UMLS, which additionally helped identify and correct ambiguities, inconsistencies, and errors in source terminologies widely used in the realm of public health. In this paper, we discuss the process and steps employed in this longitudinal study and the intermediate results for different stages. The sculpting process includes removing redundant semantic type assignments, expanding semantic type assignments, and removing illegitimate ISTs by auditing ISTs of small extents. However, the emphasis of this paper is not on the auditing methodologies employed during the process, since they were introduced in earlier publications, but on the strategy of employing them in order to transform the RSN into a compact network. For this paper we also performed a comprehensive audit of 168 "small ISTs" in the 2013AA version of the UMLS to finalize the longitudinal study. Over the years it was found that the editors of the UMLS introduced some new inconsistencies that resulted in the reintroduction of unwarranted ISTs that had already been eliminated as a result of their previous corrections. Because of that, the transformation of the RSN into a compact network covering all necessary categories for the UMLS was slowed down. The corrections suggested by an audit of the 2013AA version of the UMLS achieve a compact RSN of equal magnitude as the UMLS SN. The number of ISTs has been reduced to 336. We also demonstrate how auditing the semantic type assignments of UMLS concepts can expose other modeling errors in the UMLS source terminologies, e.g., SNOMED CT, LOINC, and RxNORM that are important for health informatics. Such errors would otherwise stay hidden. It is hoped that the UMLS curators will implement all required corrections and use the RSN along with the SN when maintaining and extending the UMLS. When used correctly, the RSN will support the prevention of the accidental introduction of inconsistent semantic type assignments into the UMLS. Furthermore, this way the RSN will support the exposure of other hidden errors and inconsistencies in health informatics terminologies, which are sources of the UMLS. Notably, the development of the RSN materializes the deeper, more refined Semantic Network for the UMLS that its designers envisioned originally but had not implemented.

  20. Semantic Web and Contextual Information: Semantic Network Analysis of Online Journalistic Texts

    NASA Astrophysics Data System (ADS)

    Lim, Yon Soo

    This study examines why contextual information is important to actualize the idea of semantic web, based on a case study of a socio-political issue in South Korea. For this study, semantic network analyses were conducted regarding English-language based 62 blog posts and 101 news stories on the web. The results indicated the differences of the meaning structures between blog posts and professional journalism as well as between conservative journalism and progressive journalism. From the results, this study ascertains empirical validity of current concerns about the practical application of the new web technology, and discusses how the semantic web should be developed.

  1. We have "born digital" - now what about "born semantic"?

    NASA Astrophysics Data System (ADS)

    Leadbetter, Adam; Fredericks, Janet

    2014-05-01

    The phrase "born-digital" refers to those materials which originate in a digital form. In Earth and Space Sciences, this is now very much the norm for data: analogue to digital converters sit on instrument boards and produce a digital record of the observed environment. While much effort has been put in to creating and curating these digital data, there has been little work on using semantic mark up of data from the point of collection - what we term 'born semantic'. In this presentation we report on two efforts to expand this area: Qartod-to-OGC (Q2O) and SenseOCEAN. These projects have taken a common approach to 'born semantic': create or reuse appropriate controlled vocabularies, published to World Wide Web Commission (W3C) standards use standards from the Open Geospatial Consortium's Sensor Web Enablement (SWE) initiative to describe instrument setup, deployment and/or outputs using terms from those controlled vocabularies embed URLs from the controlled vocabularies within the SWE documents in a "Linked Data" conformant approach Q2O developed best practices examples of SensorML descriptions of Original Equipment Manufacturers' metadata (model characteristics, capabilities, manufacturer contact, etc ...) set-up and deployment SensorML files; and data centre process-lineage using registered vocabularies to describe terms (including input, output, processes, parameters, quality control flags) One Q2O use case, the Martha's Vineyard Coastal Observatory ADCP Waves instance, uses SensorML and registered vocabularies to fully describe the process of computing wave parameters from sensed properties, including quality control tests and associated results. The European Commission Framework Programme 7 project SenseOCEAN draws together world leading marine sensor developers to create a highly integrated multifunction and cost-effective in situ marine biogeochemical sensor system. This project will provide a quantum leap in the ability to measure crucial biogeochemical parameters. Innovations will be combined with state of the art sensor technology to produce a modular sensor system that can be deployed on many platforms. The sensor descriptions are being profiled in SensorML and the controlled vocabularies are being repurposed from those used within the European Commission SeaDataNet project and published on the community standard NERC Vocabulary Server.

  2. Towards A Topological Framework for Integrating Semantic Information Sources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Joslyn, Cliff A.; Hogan, Emilie A.; Robinson, Michael

    2014-09-07

    In this position paper we argue for the role that topological modeling principles can play in providing a framework for sensor integration. While used successfully in standard (quantitative) sensors, we are developing this methodology in new directions to make it appropriate specifically for semantic information sources, including keyterms, ontology terms, and other general Boolean, categorical, ordinal, and partially-ordered data types. We illustrate the basics of the methodology in an extended use case/example, and discuss path forward.

  3. A Drone Remote Sensing for Virtual Reality Simulation System for Forest Fires: Semantic Neural Network Approach

    NASA Astrophysics Data System (ADS)

    Narasimha Rao, Gudikandhula; Jagadeeswara Rao, Peddada; Duvvuru, Rajesh

    2016-09-01

    Wild fires have significant impact on atmosphere and lives. The demand of predicting exact fire area in forest may help fire management team by using drone as a robot. These are flexible, inexpensive and elevated-motion remote sensing systems that use drones as platforms are important for substantial data gaps and supplementing the capabilities of manned aircraft and satellite remote sensing systems. In addition, powerful computational tools are essential for predicting certain burned area in the duration of a forest fire. The reason of this study is to built up a smart system based on semantic neural networking for the forecast of burned areas. The usage of virtual reality simulator is used to support the instruction process of fire fighters and all users for saving of surrounded wild lives by using a naive method Semantic Neural Network System (SNNS). Semantics are valuable initially to have a enhanced representation of the burned area prediction and better alteration of simulation situation to the users. In meticulous, consequences obtained with geometric semantic neural networking is extensively superior to other methods. This learning suggests that deeper investigation of neural networking in the field of forest fires prediction could be productive.

  4. The Masked Semantic Priming Effect Is Task Dependent: Reconsidering the Automatic Spreading Activation Process

    ERIC Educational Resources Information Center

    de Wit, Bianca; Kinoshita, Sachiko

    2015-01-01

    Semantic priming effects are popularly explained in terms of an automatic spreading activation process, according to which the activation of a node in a semantic network spreads automatically to interconnected nodes, preactivating a semantically related word. It is expected from this account that semantic priming effects should be routinely…

  5. Generating Researcher Networks with Identified Persons on a Semantic Service Platform

    NASA Astrophysics Data System (ADS)

    Jung, Hanmin; Lee, Mikyoung; Kim, Pyung; Lee, Seungwoo

    This paper describes a Semantic Web-based method to acquire researcher networks by means of identification scheme, ontology, and reasoning. Three steps are required to realize it; resolving co-references, finding experts, and generating researcher networks. We adopt OntoFrame as an underlying semantic service platform and apply reasoning to make direct relations between far-off classes in ontology schema. 453,124 Elsevier journal articles with metadata and full-text documents in information technology and biomedical domains have been loaded and served on the platform as a test set.

  6. Towards a Ubiquitous User Model for Profile Sharing and Reuse

    PubMed Central

    de Lourdes Martinez-Villaseñor, Maria; Gonzalez-Mendoza, Miguel; Hernandez-Gress, Neil

    2012-01-01

    People interact with systems and applications through several devices and are willing to share information about preferences, interests and characteristics. Social networking profiles, data from advanced sensors attached to personal gadgets, and semantic web technologies such as FOAF and microformats are valuable sources of personal information that could provide a fair understanding of the user, but profile information is scattered over different user models. Some researchers in the ubiquitous user modeling community envision the need to share user model's information from heterogeneous sources. In this paper, we address the syntactic and semantic heterogeneity of user models in order to enable user modeling interoperability. We present a dynamic user profile structure based in Simple Knowledge Organization for the Web (SKOS) to provide knowledge representation for ubiquitous user model. We propose a two-tier matching strategy for concept schemas alignment to enable user modeling interoperability. Our proposal is proved in the application scenario of sharing and reusing data in order to deal with overweight and obesity. PMID:23201995

  7. Semantic Social Network Portal for Collaborative Online Communities

    ERIC Educational Resources Information Center

    Neumann, Marco; O'Murchu, Ina; Breslin, John; Decker, Stefan; Hogan, Deirdre; MacDonaill, Ciaran

    2005-01-01

    Purpose: The motivation for this investigation is to apply social networking features to a semantic network portal, which supports the efforts in enterprise training units to up-skill the employee in the company, and facilitates the creation and reuse of knowledge in online communities. Design/methodology/approach: The paper provides an overview…

  8. Computer-Based Semantic Network in Molecular Biology: A Demonstration.

    ERIC Educational Resources Information Center

    Callman, Joshua L.; And Others

    This paper analyzes the hardware and software features that would be desirable in a computer-based semantic network system for representing biology knowledge. It then describes in detail a prototype network of molecular biology knowledge that has been developed using Filevision software and a Macintosh computer. The prototype contains about 100…

  9. Musical and verbal semantic memory: two distinct neural networks?

    PubMed

    Groussard, M; Viader, F; Hubert, V; Landeau, B; Abbas, A; Desgranges, B; Eustache, F; Platel, H

    2010-02-01

    Semantic memory has been investigated in numerous neuroimaging and clinical studies, most of which have used verbal or visual, but only very seldom, musical material. Clinical studies have suggested that there is a relative neural independence between verbal and musical semantic memory. In the present study, "musical semantic memory" is defined as memory for "well-known" melodies without any knowledge of the spatial or temporal circumstances of learning, while "verbal semantic memory" corresponds to general knowledge about concepts, again without any knowledge of the spatial or temporal circumstances of learning. Our aim was to compare the neural substrates of musical and verbal semantic memory by administering the same type of task in each modality. We used high-resolution PET H(2)O(15) to observe 11 young subjects performing two main tasks: (1) a musical semantic memory task, where the subjects heard the first part of familiar melodies and had to decide whether the second part they heard matched the first, and (2) a verbal semantic memory task with the same design, but where the material consisted of well-known expressions or proverbs. The musical semantic memory condition activated the superior temporal area and inferior and middle frontal areas in the left hemisphere and the inferior frontal area in the right hemisphere. The verbal semantic memory condition activated the middle temporal region in the left hemisphere and the cerebellum in the right hemisphere. We found that the verbal and musical semantic processes activated a common network extending throughout the left temporal neocortex. In addition, there was a material-dependent topographical preference within this network, with predominantly anterior activation during musical tasks and predominantly posterior activation during semantic verbal tasks. Copyright (c) 2009 Elsevier Inc. All rights reserved.

  10. Sculpting the UMLS Refined Semantic Network

    PubMed Central

    Morrey, C. Paul; Perl, Yehoshua; Elhanan, Gai; Chen, Ling; Chen, Yan; Geller, James

    2014-01-01

    Background The Refined Semantic Network (RSN) for the UMLS was previously introduced to complement the UMLS Semantic Network (SN). The RSN partitions the UMLS Metathesaurus (META) into disjoint groups of concepts. Each such group is semantically uniform. However, the RSN was initially an order of magnitude larger than the SN, which is undesirable since to be useful, a semantic network should be compact. Most semantic types in the RSN represent combinations of semantic types in the UMLS SN. Such a “combination semantic type” is called Intersection Semantic Type (IST). Many ISTs are assigned to very few concepts. Moreover, when reviewing those concepts, many semantic type assignment inconsistencies were found. After correcting those inconsistencies many ISTs, among them some that contradicted UMLS rules, disappeared, which made the RSN smaller. Objective The authors performed a longitudinal study with the goal of reducing the size of the RSN to become compact. This goal was achieved by correcting inconsistencies and errors in the IST assignments in the UMLS, which additionally helped identify and correct ambiguities, inconsistencies, and errors in source terminologies widely used in the realm of public health. Methods In this paper, we discuss the process and steps employed in this longitudinal study and the intermediate results for different stages. The sculpting process includes removing redundant semantic type assignments, expanding semantic type assignments, and removing illegitimate ISTs by auditing ISTs of small extents. However, the emphasis of this paper is not on the auditing methodologies employed during the process, since they were introduced in earlier publications, but on the strategy of employing them in order to transform the RSN into a compact network. For this paper we also performed a comprehensive audit of 168 “small ISTs” in the 2013AA version of the UMLS to finalize the longitudinal study. Results Over the years it was found that the editors of the UMLS introduced some new inconsistencies that resulted in the reintroduction of unwarranted ISTs that had already been eliminated as a result of their previous corrections. Because of that, the transformation of the RSN into a compact network covering all necessary categories for the UMLS was slowed down. The corrections suggested by an audit of the 2013AA version of the UMLS achieve a compact RSN of equal magnitude as the UMLS SN. The number of ISTs has been reduced to 336. We also demonstrate how auditing the semantic type assignments of UMLS concepts can expose other modeling errors in the UMLS source terminologies, e.g., SNOMED CT, LOINC, and RxNORM that are important for health informatics. Such errors would otherwise stay hidden. Conclusions It is hoped that the UMLS curators will implement all required corrections and use the RSN along with the SN when maintaining and extending the UMLS. When used correctly, the RSN will support the prevention of the accidental introduction of inconsistent semantic type assignments into the UMLS. Furthermore, this way the RSN will support the exposure of other hidden errors and inconsistencies in health informatics terminologies, which are sources of the UMLS. Notably, the development of the RSN materializes the deeper, more refined Semantic Network for the UMLS that its designers envisioned originally but had not implemented. PMID:25422719

  11. A trade-off between local and distributed information processing associated with remote episodic versus semantic memory.

    PubMed

    Heisz, Jennifer J; Vakorin, Vasily; Ross, Bernhard; Levine, Brian; McIntosh, Anthony R

    2014-01-01

    Episodic memory and semantic memory produce very different subjective experiences yet rely on overlapping networks of brain regions for processing. Traditional approaches for characterizing functional brain networks emphasize static states of function and thus are blind to the dynamic information processing within and across brain regions. This study used information theoretic measures of entropy to quantify changes in the complexity of the brain's response as measured by magnetoencephalography while participants listened to audio recordings describing past personal episodic and general semantic events. Personal episodic recordings evoked richer subjective mnemonic experiences and more complex brain responses than general semantic recordings. Critically, we observed a trade-off between the relative contribution of local versus distributed entropy, such that personal episodic recordings produced relatively more local entropy whereas general semantic recordings produced relatively more distributed entropy. Changes in the relative contributions of local and distributed entropy to the total complexity of the system provides a potential mechanism that allows the same network of brain regions to represent cognitive information as either specific episodes or more general semantic knowledge.

  12. Topic segmentation via community detection in complex networks

    NASA Astrophysics Data System (ADS)

    de Arruda, Henrique F.; Costa, Luciano da F.; Amancio, Diego R.

    2016-06-01

    Many real systems have been modeled in terms of network concepts, and written texts are a particular example of information networks. In recent years, the use of network methods to analyze language has allowed the discovery of several interesting effects, including the proposition of novel models to explain the emergence of fundamental universal patterns. While syntactical networks, one of the most prevalent networked models of written texts, display both scale-free and small-world properties, such a representation fails in capturing other textual features, such as the organization in topics or subjects. We propose a novel network representation whose main purpose is to capture the semantical relationships of words in a simple way. To do so, we link all words co-occurring in the same semantic context, which is defined in a threefold way. We show that the proposed representations favor the emergence of communities of semantically related words, and this feature may be used to identify relevant topics. The proposed methodology to detect topics was applied to segment selected Wikipedia articles. We found that, in general, our methods outperform traditional bag-of-words representations, which suggests that a high-level textual representation may be useful to study the semantical features of texts.

  13. Topic segmentation via community detection in complex networks.

    PubMed

    de Arruda, Henrique F; Costa, Luciano da F; Amancio, Diego R

    2016-06-01

    Many real systems have been modeled in terms of network concepts, and written texts are a particular example of information networks. In recent years, the use of network methods to analyze language has allowed the discovery of several interesting effects, including the proposition of novel models to explain the emergence of fundamental universal patterns. While syntactical networks, one of the most prevalent networked models of written texts, display both scale-free and small-world properties, such a representation fails in capturing other textual features, such as the organization in topics or subjects. We propose a novel network representation whose main purpose is to capture the semantical relationships of words in a simple way. To do so, we link all words co-occurring in the same semantic context, which is defined in a threefold way. We show that the proposed representations favor the emergence of communities of semantically related words, and this feature may be used to identify relevant topics. The proposed methodology to detect topics was applied to segment selected Wikipedia articles. We found that, in general, our methods outperform traditional bag-of-words representations, which suggests that a high-level textual representation may be useful to study the semantical features of texts.

  14. Semantic integration to identify overlapping functional modules in protein interaction networks

    PubMed Central

    Cho, Young-Rae; Hwang, Woochang; Ramanathan, Murali; Zhang, Aidong

    2007-01-01

    Background The systematic analysis of protein-protein interactions can enable a better understanding of cellular organization, processes and functions. Functional modules can be identified from the protein interaction networks derived from experimental data sets. However, these analyses are challenging because of the presence of unreliable interactions and the complex connectivity of the network. The integration of protein-protein interactions with the data from other sources can be leveraged for improving the effectiveness of functional module detection algorithms. Results We have developed novel metrics, called semantic similarity and semantic interactivity, which use Gene Ontology (GO) annotations to measure the reliability of protein-protein interactions. The protein interaction networks can be converted into a weighted graph representation by assigning the reliability values to each interaction as a weight. We presented a flow-based modularization algorithm to efficiently identify overlapping modules in the weighted interaction networks. The experimental results show that the semantic similarity and semantic interactivity of interacting pairs were positively correlated with functional co-occurrence. The effectiveness of the algorithm for identifying modules was evaluated using functional categories from the MIPS database. We demonstrated that our algorithm had higher accuracy compared to other competing approaches. Conclusion The integration of protein interaction networks with GO annotation data and the capability of detecting overlapping modules substantially improve the accuracy of module identification. PMID:17650343

  15. Visual analysis of large heterogeneous social networks by semantic and structural abstraction.

    PubMed

    Shen, Zeqian; Ma, Kwan-Liu; Eliassi-Rad, Tina

    2006-01-01

    Social network analysis is an active area of study beyond sociology. It uncovers the invisible relationships between actors in a network and provides understanding of social processes and behaviors. It has become an important technique in a variety of application areas such as the Web, organizational studies, and homeland security. This paper presents a visual analytics tool, OntoVis, for understanding large, heterogeneous social networks, in which nodes and links could represent different concepts and relations, respectively. These concepts and relations are related through an ontology (also known as a schema). OntoVis is named such because it uses information in the ontology associated with a social network to semantically prune a large, heterogeneous network. In addition to semantic abstraction, OntoVis also allows users to do structural abstraction and importance filtering to make large networks manageable and to facilitate analytic reasoning. All these unique capabilities of OntoVis are illustrated with several case studies.

  16. The Semantic Network Model of Creativity: Analysis of Online Social Media Data

    ERIC Educational Resources Information Center

    Yu, Feng; Peng, Theodore; Peng, Kaiping; Zheng, Sam Xianjun; Liu, Zhiyuan

    2016-01-01

    The central hypothesis of Semantic Network Model of Creativity is that creative people, who are exposed to more information that are both novel and useful, will have more interconnections between event schemas in their associations. The networks of event schemas in creative people's minds were expected to be wider and denser than those in less…

  17. Interconnected growing self-organizing maps for auditory and semantic acquisition modeling.

    PubMed

    Cao, Mengxue; Li, Aijun; Fang, Qiang; Kaufmann, Emily; Kröger, Bernd J

    2014-01-01

    Based on the incremental nature of knowledge acquisition, in this study we propose a growing self-organizing neural network approach for modeling the acquisition of auditory and semantic categories. We introduce an Interconnected Growing Self-Organizing Maps (I-GSOM) algorithm, which takes associations between auditory information and semantic information into consideration, in this paper. Direct phonetic-semantic association is simulated in order to model the language acquisition in early phases, such as the babbling and imitation stages, in which no phonological representations exist. Based on the I-GSOM algorithm, we conducted experiments using paired acoustic and semantic training data. We use a cyclical reinforcing and reviewing training procedure to model the teaching and learning process between children and their communication partners. A reinforcing-by-link training procedure and a link-forgetting procedure are introduced to model the acquisition of associative relations between auditory and semantic information. Experimental results indicate that (1) I-GSOM has good ability to learn auditory and semantic categories presented within the training data; (2) clear auditory and semantic boundaries can be found in the network representation; (3) cyclical reinforcing and reviewing training leads to a detailed categorization as well as to a detailed clustering, while keeping the clusters that have already been learned and the network structure that has already been developed stable; and (4) reinforcing-by-link training leads to well-perceived auditory-semantic associations. Our I-GSOM model suggests that it is important to associate auditory information with semantic information during language acquisition. Despite its high level of abstraction, our I-GSOM approach can be interpreted as a biologically-inspired neurocomputational model.

  18. An fMRI examination of the effects of acoustic-phonetic and lexical competition on access to the lexical-semantic network.

    PubMed

    Minicucci, Domenic; Guediche, Sara; Blumstein, Sheila E

    2013-08-01

    The current study explored how factors of acoustic-phonetic and lexical competition affect access to the lexical-semantic network during spoken word recognition. An auditory semantic priming lexical decision task was presented to subjects while in the MR scanner. Prime-target pairs consisted of prime words with the initial voiceless stop consonants /p/, /t/, and /k/ followed by word and nonword targets. To examine the neural consequences of lexical and sound structure competition, primes either had voiced minimal pair competitors or they did not, and they were either acoustically modified to be poorer exemplars of the voiceless phonetic category or not. Neural activation associated with semantic priming (Unrelated-Related conditions) revealed a bilateral fronto-temporo-parietal network. Within this network, clusters in the left insula/inferior frontal gyrus (IFG), left superior temporal gyrus (STG), and left posterior middle temporal gyrus (pMTG) showed sensitivity to lexical competition. The pMTG also demonstrated sensitivity to acoustic modification, and the insula/IFG showed an interaction between lexical competition and acoustic modification. These findings suggest the posterior lexical-semantic network is modulated by both acoustic-phonetic and lexical structure, and that the resolution of these two sources of competition recruits frontal structures. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. A Semantic Approach with Decision Support for Safety Service in Smart Home Management

    PubMed Central

    Huang, Xiaoci; Yi, Jianjun; Zhu, Xiaomin; Chen, Shaoli

    2016-01-01

    Research on smart homes (SHs) has increased significantly in recent years because of the convenience provided by having an assisted living environment. The functions of SHs as mentioned in previous studies, particularly safety services, are seldom discussed or mentioned. Thus, this study proposes a semantic approach with decision support for safety service in SH management. The focus of this contribution is to explore a context awareness and reasoning approach for risk recognition in SH that enables the proper decision support for flexible safety service provision. The framework of SH based on a wireless sensor network is described from the perspective of neighbourhood management. This approach is based on the integration of semantic knowledge in which a reasoner can make decisions about risk recognition and safety service. We present a management ontology for a SH and relevant monitoring contextual information, which considers its suitability in a pervasive computing environment and is service-oriented. We also propose a rule-based reasoning method to provide decision support through reasoning techniques and context-awareness. A system prototype is developed to evaluate the feasibility, time response and extendibility of the approach. The evaluation of our approach shows that it is more effective in daily risk event recognition. The decisions for service provision are shown to be accurate. PMID:27527170

  20. A Semantic Approach with Decision Support for Safety Service in Smart Home Management.

    PubMed

    Huang, Xiaoci; Yi, Jianjun; Zhu, Xiaomin; Chen, Shaoli

    2016-08-03

    Research on smart homes (SHs) has increased significantly in recent years because of the convenience provided by having an assisted living environment. The functions of SHs as mentioned in previous studies, particularly safety services, are seldom discussed or mentioned. Thus, this study proposes a semantic approach with decision support for safety service in SH management. The focus of this contribution is to explore a context awareness and reasoning approach for risk recognition in SH that enables the proper decision support for flexible safety service provision. The framework of SH based on a wireless sensor network is described from the perspective of neighbourhood management. This approach is based on the integration of semantic knowledge in which a reasoner can make decisions about risk recognition and safety service. We present a management ontology for a SH and relevant monitoring contextual information, which considers its suitability in a pervasive computing environment and is service-oriented. We also propose a rule-based reasoning method to provide decision support through reasoning techniques and context-awareness. A system prototype is developed to evaluate the feasibility, time response and extendibility of the approach. The evaluation of our approach shows that it is more effective in daily risk event recognition. The decisions for service provision are shown to be accurate.

  1. Semantic Interpretation of An Artificial Neural Network

    DTIC Science & Technology

    1995-12-01

    ARTIFICIAL NEURAL NETWORK .7,’ THESIS Stanley Dale Kinderknecht Captain, USAF 770 DEAT7ET77,’H IR O C 7... ARTIFICIAL NEURAL NETWORK THESIS Stanley Dale Kinderknecht Captain, USAF AFIT/GCS/ENG/95D-07 Approved for public release; distribution unlimited The views...Government. AFIT/GCS/ENG/95D-07 SEMANTIC INTERPRETATION OF AN ARTIFICIAL NEURAL NETWORK THESIS Presented to the Faculty of the School of Engineering of

  2. An Observation Capability Semantic-Associated Approach to the Selection of Remote Sensing Satellite Sensors: A Case Study of Flood Observations in the Jinsha River Basin.

    PubMed

    Hu, Chuli; Li, Jie; Lin, Xin; Chen, Nengcheng; Yang, Chao

    2018-05-21

    Observation schedules depend upon the accurate understanding of a single sensor’s observation capability and the interrelated observation capability information on multiple sensors. The general ontologies for sensors and observations are abundant. However, few observation capability ontologies for satellite sensors are available, and no study has described the dynamic associations among the observation capabilities of multiple sensors used for integrated observational planning. This limitation results in a failure to realize effective sensor selection. This paper develops a sensor observation capability association (SOCA) ontology model that is resolved around the task-sensor-observation capability (TSOC) ontology pattern. The pattern is developed considering the stimulus-sensor-observation (SSO) ontology design pattern, which focuses on facilitating sensor selection for one observation task. The core aim of the SOCA ontology model is to achieve an observation capability semantic association. A prototype system called SemOCAssociation was developed, and an experiment was conducted for flood observations in the Jinsha River basin in China. The results of this experiment verified that the SOCA ontology based association method can help sensor planners intuitively and accurately make evidence-based sensor selection decisions for a given flood observation task, which facilitates efficient and effective observational planning for flood satellite sensors.

  3. Integrating Dynamic Data and Sensors with Semantic 3D City Models in the Context of Smart Cities

    NASA Astrophysics Data System (ADS)

    Chaturvedi, K.; Kolbe, T. H.

    2016-10-01

    Smart cities provide effective integration of human, physical and digital systems operating in the built environment. The advancements in city and landscape models, sensor web technologies, and simulation methods play a significant role in city analyses and improving quality of life of citizens and governance of cities. Semantic 3D city models can provide substantial benefits and can become a central information backbone for smart city infrastructures. However, current generation semantic 3D city models are static in nature and do not support dynamic properties and sensor observations. In this paper, we propose a new concept called Dynamizer allowing to represent highly dynamic data and providing a method for injecting dynamic variations of city object properties into the static representation. The approach also provides direct capability to model complex patterns based on statistics and general rules and also, real-time sensor observations. The concept is implemented as an Application Domain Extension for the CityGML standard. However, it could also be applied to other GML-based application schemas including the European INSPIRE data themes and national standards for topography and cadasters like the British Ordnance Survey Mastermap or the German cadaster standard ALKIS.

  4. Mining integrated semantic networks for drug repositioning opportunities

    PubMed Central

    Mullen, Joseph; Tipney, Hannah

    2016-01-01

    Current research and development approaches to drug discovery have become less fruitful and more costly. One alternative paradigm is that of drug repositioning. Many marketed examples of repositioned drugs have been identified through serendipitous or rational observations, highlighting the need for more systematic methodologies to tackle the problem. Systems level approaches have the potential to enable the development of novel methods to understand the action of therapeutic compounds, but requires an integrative approach to biological data. Integrated networks can facilitate systems level analyses by combining multiple sources of evidence to provide a rich description of drugs, their targets and their interactions. Classically, such networks can be mined manually where a skilled person is able to identify portions of the graph (semantic subgraphs) that are indicative of relationships between drugs and highlight possible repositioning opportunities. However, this approach is not scalable. Automated approaches are required to systematically mine integrated networks for these subgraphs and bring them to the attention of the user. We introduce a formal framework for the definition of integrated networks and their associated semantic subgraphs for drug interaction analysis and describe DReSMin, an algorithm for mining semantically-rich networks for occurrences of a given semantic subgraph. This algorithm allows instances of complex semantic subgraphs that contain data about putative drug repositioning opportunities to be identified in a computationally tractable fashion, scaling close to linearly with network data. We demonstrate the utility of our approach by mining an integrated drug interaction network built from 11 sources. This work identified and ranked 9,643,061 putative drug-target interactions, showing a strong correlation between highly scored associations and those supported by literature. We discuss the 20 top ranked associations in more detail, of which 14 are novel and 6 are supported by the literature. We also show that our approach better prioritizes known drug-target interactions, than other state-of-the art approaches for predicting such interactions. PMID:26844016

  5. Spreading Activation in an Attractor Network with Latching Dynamics: Automatic Semantic Priming Revisited

    PubMed Central

    Lerner, Itamar; Bentin, Shlomo; Shriki, Oren

    2012-01-01

    Localist models of spreading activation (SA) and models assuming distributed-representations offer very different takes on semantic priming, a widely investigated paradigm in word recognition and semantic memory research. In the present study we implemented SA in an attractor neural network model with distributed representations and created a unified framework for the two approaches. Our models assumes a synaptic depression mechanism leading to autonomous transitions between encoded memory patterns (latching dynamics), which account for the major characteristics of automatic semantic priming in humans. Using computer simulations we demonstrated how findings that challenged attractor-based networks in the past, such as mediated and asymmetric priming, are a natural consequence of our present model’s dynamics. Puzzling results regarding backward priming were also given a straightforward explanation. In addition, the current model addresses some of the differences between semantic and associative relatedness and explains how these differences interact with stimulus onset asynchrony in priming experiments. PMID:23094718

  6. The association of personal semantic memory to identity representations: insight into higher-order networks of autobiographical contents.

    PubMed

    Grilli, Matthew D

    2017-11-01

    Identity representations are higher-order knowledge structures that organise autobiographical memories on the basis of personality and role-based themes of one's self-concept. In two experiments, the extent to which different types of personal semantic content are reflected in these higher-order networks of memories was investigated. Healthy, young adult participants generated identity representations that varied in remoteness of formation and verbally reflected on these themes in an open-ended narrative task. The narrative responses were scored for retrieval of episodic, experience-near personal semantic and experience-far (i.e., abstract) personal semantic contents. Results revealed that to reflect on remotely formed identity representations, experience-far personal semantic contents were retrieved more than experience-near personal semantic contents. In contrast, to reflect on recently formed identity representations, experience-near personal semantic contents were retrieved more than experience-far personal semantic contents. Although episodic memory contents were retrieved less than both personal semantic content types to reflect on remotely formed identity representations, this content type was retrieved at a similar frequency as experience-far personal semantic content to reflect on recently formed identity representations. These findings indicate that the association of personal semantic content to identity representations is robust and related to time since acquisition of these knowledge structures.

  7. An Observation Capability Semantic-Associated Approach to the Selection of Remote Sensing Satellite Sensors: A Case Study of Flood Observations in the Jinsha River Basin

    PubMed Central

    Hu, Chuli; Li, Jie; Lin, Xin

    2018-01-01

    Observation schedules depend upon the accurate understanding of a single sensor’s observation capability and the interrelated observation capability information on multiple sensors. The general ontologies for sensors and observations are abundant. However, few observation capability ontologies for satellite sensors are available, and no study has described the dynamic associations among the observation capabilities of multiple sensors used for integrated observational planning. This limitation results in a failure to realize effective sensor selection. This paper develops a sensor observation capability association (SOCA) ontology model that is resolved around the task-sensor-observation capability (TSOC) ontology pattern. The pattern is developed considering the stimulus-sensor-observation (SSO) ontology design pattern, which focuses on facilitating sensor selection for one observation task. The core aim of the SOCA ontology model is to achieve an observation capability semantic association. A prototype system called SemOCAssociation was developed, and an experiment was conducted for flood observations in the Jinsha River basin in China. The results of this experiment verified that the SOCA ontology based association method can help sensor planners intuitively and accurately make evidence-based sensor selection decisions for a given flood observation task, which facilitates efficient and effective observational planning for flood satellite sensors. PMID:29883425

  8. A Supramodal Neural Network for Speech and Gesture Semantics: An fMRI Study

    PubMed Central

    Weis, Susanne; Kircher, Tilo

    2012-01-01

    In a natural setting, speech is often accompanied by gestures. As language, speech-accompanying iconic gestures to some extent convey semantic information. However, if comprehension of the information contained in both the auditory and visual modality depends on same or different brain-networks is quite unknown. In this fMRI study, we aimed at identifying the cortical areas engaged in supramodal processing of semantic information. BOLD changes were recorded in 18 healthy right-handed male subjects watching video clips showing an actor who either performed speech (S, acoustic) or gestures (G, visual) in more (+) or less (−) meaningful varieties. In the experimental conditions familiar speech or isolated iconic gestures were presented; during the visual control condition the volunteers watched meaningless gestures (G−), while during the acoustic control condition a foreign language was presented (S−). The conjunction of the visual and acoustic semantic processing revealed activations extending from the left inferior frontal gyrus to the precentral gyrus, and included bilateral posterior temporal regions. We conclude that proclaiming this frontotemporal network the brain's core language system is to take too narrow a view. Our results rather indicate that these regions constitute a supramodal semantic processing network. PMID:23226488

  9. Interests diffusion on a semantic multiplex. Comparing Computer Science and American Physical Society communities

    NASA Astrophysics Data System (ADS)

    D'Agostino, Gregorio; De Nicola, Antonio

    2016-10-01

    Exploiting the information about members of a Social Network (SN) represents one of the most attractive and dwelling subjects for both academic and applied scientists. The community of Complexity Science and especially those researchers working on multiplex social systems are devoting increasing efforts to outline general laws, models, and theories, to the purpose of predicting emergent phenomena in SN's (e.g. success of a product). On the other side the semantic web community aims at engineering a new generation of advanced services tailored to specific people needs. This implies defining constructs, models and methods for handling the semantic layer of SNs. We combined models and techniques from both the former fields to provide a hybrid approach to understand a basic (yet complex) phenomenon: the propagation of individual interests along the social networks. Since information may move along different social networks, one should take into account a multiplex structure. Therefore we introduced the notion of "Semantic Multiplex". In this paper we analyse two different semantic social networks represented by authors publishing in the Computer Science and those in the American Physical Society Journals. The comparison allows to outline common and specific features.

  10. Lateralized direct and indirect semantic priming effects in subjects with paranormal experiences and beliefs.

    PubMed

    Pizzagalli, D; Lehmann, D; Brugger, P

    2001-01-01

    The present investigation tested the hypothesis that, as an aspect of schizotypal thinking, the formation of paranormal beliefs was related to spreading activation characteristics within semantic networks. From a larger student population (n = 117) prescreened for paranormal belief, 12 strong believers and 12 strong disbelievers (all women) were invited for a lateralized semantic priming task with directly and indirectly related prime-target pairs. Believers showed stronger indirect (but not direct) semantic priming effects than disbelievers after left (but not right) visual field stimulation, indicating faster appreciation of distant semantic relations specifically by the right hemisphere, reportedly specialized in coarse rather than focused semantic processing. These results are discussed in the light of recent findings in schizophrenic patients with thought disorders. They suggest that a disinhibition with semantic networks may underlie the formation of paranormal belief. The potential usefulness of work with healthy subjects for neuropsychiatric research is stressed. Copyright 2001 S. Karger AG, Basel

  11. Neural changes associated with semantic processing in healthy aging despite intact behavioral performance.

    PubMed

    Lacombe, Jacinthe; Jolicoeur, Pierre; Grimault, Stephan; Pineault, Jessica; Joubert, Sven

    2015-10-01

    Semantic memory recruits an extensive neural network including the left inferior prefrontal cortex (IPC) and the left temporoparietal region, which are involved in semantic control processes, as well as the anterior temporal lobe region (ATL) which is considered to be involved in processing semantic information at a central level. However, little is known about the underlying neuronal integrity of the semantic network in normal aging. Young and older healthy adults carried out a semantic judgment task while their cortical activity was recorded using magnetoencephalography (MEG). Despite equivalent behavioral performance, young adults activated the left IPC to a greater extent than older adults, while the latter group recruited the temporoparietal region bilaterally and the left ATL to a greater extent than younger adults. Results indicate that significant neuronal changes occur in normal aging, mainly in regions underlying semantic control processes, despite an apparent stability in performance at the behavioral level. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. Some Semantic Structures for Representing English Meanings.

    ERIC Educational Resources Information Center

    Simmons, R. F.

    This paper defines the structure of a semantic network for use in representing discourse and lexical meanings. The structure is designed to represent underlying semantic meanings that, with a lexicon and a grammar, can generate natural-language sentences in a linguistically justifiable manner. The semantics of natural English can be defined as a…

  13. Modeling of cell signaling pathways in macrophages by semantic networks

    PubMed Central

    Hsing, Michael; Bellenson, Joel L; Shankey, Conor; Cherkasov, Artem

    2004-01-01

    Background Substantial amounts of data on cell signaling, metabolic, gene regulatory and other biological pathways have been accumulated in literature and electronic databases. Conventionally, this information is stored in the form of pathway diagrams and can be characterized as highly "compartmental" (i.e. individual pathways are not connected into more general networks). Current approaches for representing pathways are limited in their capacity to model molecular interactions in their spatial and temporal context. Moreover, the critical knowledge of cause-effect relationships among signaling events is not reflected by most conventional approaches for manipulating pathways. Results We have applied a semantic network (SN) approach to develop and implement a model for cell signaling pathways. The semantic model has mapped biological concepts to a set of semantic agents and relationships, and characterized cell signaling events and their participants in the hierarchical and spatial context. In particular, the available information on the behaviors and interactions of the PI3K enzyme family has been integrated into the SN environment and a cell signaling network in human macrophages has been constructed. A SN-application has been developed to manipulate the locations and the states of molecules and to observe their actions under different biological scenarios. The approach allowed qualitative simulation of cell signaling events involving PI3Ks and identified pathways of molecular interactions that led to known cellular responses as well as other potential responses during bacterial invasions in macrophages. Conclusions We concluded from our results that the semantic network is an effective method to model cell signaling pathways. The semantic model allows proper representation and integration of information on biological structures and their interactions at different levels. The reconstruction of the cell signaling network in the macrophage allowed detailed investigation of connections among various essential molecules and reflected the cause-effect relationships among signaling events. The simulation demonstrated the dynamics of the semantic network, where a change of states on a molecule can alter its function and potentially cause a chain-reaction effect in the system. PMID:15494071

  14. [Schizophrenia and semantic priming effects].

    PubMed

    Lecardeur, L; Giffard, B; Eustache, F; Dollfus, S

    2006-01-01

    This article is a review of studies using the semantic priming paradigm to assess the functioning of semantic memory in schizophrenic patients. Semantic priming describes the phenomenon of increasing the speed with which a string of letters (the target) is recognized as a word (lexical decision task) by presenting to the subject a semantically related word (the prime) prior to the appearance of the target word. This semantic priming is linked to both automatic and controlled processes depending on experimental conditions (stimulus onset asynchrony (SOA), percentage of related words and explicit memory instructions). Automatic process observed with short SOA, low related word percentage and instructions asking only to process the target, could be linked to the "automatic spreading activation" through the semantic network. Controlled processes involve "semantic matching" (the number of related and unrelated pairs influences the subjects decision) and "expectancy" (the prime leads the subject to generate an expectancy set of potential target to the prime). These processes can be observed whatever the SOA for the former and with long SOA for the later, but both with only high related word percentage and explicit memory instructions. Studies evaluating semantic priming effects in schizophrenia show conflicting results: schizophrenic patients can present hyperpriming (semantic priming effect is larger in patients than in controls), hypopriming (semantic priming effect is lower in patients than in controls) or equal semantic priming effects compared to control subjects. These results could be associated to a global impairment of controlled processes in schizophrenia, essentially to a dysfunction of semantic matching process. On the other hand, efficiency of semantic automatic spreading activation process is controversial. These discrepancies could be linked to the different experimental conditions used (duration of SOA, proportion of related pairs and instructions), which influence on the degree of involvement of controlled processes and therefore prevent to really assess its functioning. In addition, manipulations of the relation between prime and target (semantic distance, type of semantic relation and strength of semantic relation) seem to influence reaction times. However, the relation between prime and target (mediated priming) frequently used could not be the most relevant relation to understand the way of spreading of activation in semantic network in patients with schizophrenia. Finally, patients with formal thought disorders present particularly high priming effects relative to controls. These abnormal semantic priming effects could reflect a dysfunction of automatic spreading activation process and consequently an exaggerated diffusion of activation in the semantic network. In the future, the inclusion of different groups schizophrenic subjects could allow us to determine whether semantic memory disorders are pathognomonic or specific of a particular group of patients with schizophrenia.

  15. Towards Semantic Modelling of Business Processes for Networked Enterprises

    NASA Astrophysics Data System (ADS)

    Furdík, Karol; Mach, Marián; Sabol, Tomáš

    The paper presents an approach to the semantic modelling and annotation of business processes and information resources, as it was designed within the FP7 ICT EU project SPIKE to support creation and maintenance of short-term business alliances and networked enterprises. A methodology for the development of the resource ontology, as a shareable knowledge model for semantic description of business processes, is proposed. Systematically collected user requirements, conceptual models implied by the selected implementation platform as well as available ontology resources and standards are employed in the ontology creation. The process of semantic annotation is described and illustrated using an example taken from a real application case.

  16. Categorizing words through semantic memory navigation

    NASA Astrophysics Data System (ADS)

    Borge-Holthoefer, J.; Arenas, A.

    2010-03-01

    Semantic memory is the cognitive system devoted to storage and retrieval of conceptual knowledge. Empirical data indicate that semantic memory is organized in a network structure. Everyday experience shows that word search and retrieval processes provide fluent and coherent speech, i.e. are efficient. This implies either that semantic memory encodes, besides thousands of words, different kind of links for different relationships (introducing greater complexity and storage costs), or that the structure evolves facilitating the differentiation between long-lasting semantic relations from incidental, phenomenological ones. Assuming the latter possibility, we explore a mechanism to disentangle the underlying semantic backbone which comprises conceptual structure (extraction of categorical relations between pairs of words), from the rest of information present in the structure. To this end, we first present and characterize an empirical data set modeled as a network, then we simulate a stochastic cognitive navigation on this topology. We schematize this latter process as uncorrelated random walks from node to node, which converge to a feature vectors network. By doing so we both introduce a novel mechanism for information retrieval, and point at the problem of category formation in close connection to linguistic and non-linguistic experience.

  17. Interconnected growing self-organizing maps for auditory and semantic acquisition modeling

    PubMed Central

    Cao, Mengxue; Li, Aijun; Fang, Qiang; Kaufmann, Emily; Kröger, Bernd J.

    2014-01-01

    Based on the incremental nature of knowledge acquisition, in this study we propose a growing self-organizing neural network approach for modeling the acquisition of auditory and semantic categories. We introduce an Interconnected Growing Self-Organizing Maps (I-GSOM) algorithm, which takes associations between auditory information and semantic information into consideration, in this paper. Direct phonetic–semantic association is simulated in order to model the language acquisition in early phases, such as the babbling and imitation stages, in which no phonological representations exist. Based on the I-GSOM algorithm, we conducted experiments using paired acoustic and semantic training data. We use a cyclical reinforcing and reviewing training procedure to model the teaching and learning process between children and their communication partners. A reinforcing-by-link training procedure and a link-forgetting procedure are introduced to model the acquisition of associative relations between auditory and semantic information. Experimental results indicate that (1) I-GSOM has good ability to learn auditory and semantic categories presented within the training data; (2) clear auditory and semantic boundaries can be found in the network representation; (3) cyclical reinforcing and reviewing training leads to a detailed categorization as well as to a detailed clustering, while keeping the clusters that have already been learned and the network structure that has already been developed stable; and (4) reinforcing-by-link training leads to well-perceived auditory–semantic associations. Our I-GSOM model suggests that it is important to associate auditory information with semantic information during language acquisition. Despite its high level of abstraction, our I-GSOM approach can be interpreted as a biologically-inspired neurocomputational model. PMID:24688478

  18. A meta-analysis of fMRI studies on Chinese orthographic, phonological, and semantic processing.

    PubMed

    Wu, Chiao-Yi; Ho, Moon-Ho Ringo; Chen, Shen-Hsing Annabel

    2012-10-15

    A growing body of neuroimaging evidence has shown that Chinese character processing recruits differential activation from alphabetic languages due to its unique linguistic features. As more investigations on Chinese character processing have recently become available, we applied a meta-analytic approach to summarize previous findings and examined the neural networks for orthographic, phonological, and semantic processing of Chinese characters independently. The activation likelihood estimation (ALE) method was used to analyze eight studies in the orthographic task category, eleven in the phonological and fifteen in the semantic task categories. Converging activation among three language-processing components was found in the left middle frontal gyrus, the left superior parietal lobule and the left mid-fusiform gyrus, suggesting a common sub-network underlying the character recognition process regardless of the task nature. With increasing task demands, the left inferior parietal lobule and the right superior temporal gyrus were specialized for phonological processing, while the left middle temporal gyrus was involved in semantic processing. Functional dissociation was identified in the left inferior frontal gyrus, with the posterior dorsal part for phonological processing and the anterior ventral part for semantic processing. Moreover, bilateral involvement of the ventral occipito-temporal regions was found for both phonological and semantic processing. The results provide better understanding of the neural networks underlying Chinese orthographic, phonological, and semantic processing, and consolidate the findings of additional recruitment of the left middle frontal gyrus and the right fusiform gyrus for Chinese character processing as compared with the universal language network that has been based on alphabetic languages. Copyright © 2012 Elsevier Inc. All rights reserved.

  19. New methods for analyzing semantic graph based assessments in science education

    NASA Astrophysics Data System (ADS)

    Vikaros, Lance Steven

    This research investigated how the scoring of semantic graphs (known by many as concept maps) could be improved and automated in order to address issues of inter-rater reliability and scalability. As part of the NSF funded SENSE-IT project to introduce secondary school science students to sensor networks (NSF Grant No. 0833440), semantic graphs illustrating how temperature change affects water ecology were collected from 221 students across 16 schools. The graphing task did not constrain students' use of terms, as is often done with semantic graph based assessment due to coding and scoring concerns. The graphing software used provided real-time feedback to help students learn how to construct graphs, stay on topic and effectively communicate ideas. The collected graphs were scored by human raters using assessment methods expected to boost reliability, which included adaptations of traditional holistic and propositional scoring methods, use of expert raters, topical rubrics, and criterion graphs. High levels of inter-rater reliability were achieved, demonstrating that vocabulary constraints may not be necessary after all. To investigate a new approach to automating the scoring of graphs, thirty-two different graph features characterizing graphs' structure, semantics, configuration and process of construction were then used to predict human raters' scoring of graphs in order to identify feature patterns correlated to raters' evaluations of graphs' topical accuracy and complexity. Results led to the development of a regression model able to predict raters' scoring with 77% accuracy, with 46% accuracy expected when used to score new sets of graphs, as estimated via cross-validation tests. Although such performance is comparable to other graph and essay based scoring systems, cross-context testing of the model and methods used to develop it would be needed before it could be recommended for widespread use. Still, the findings suggest techniques for improving the reliability and scalability of semantic graph based assessments without requiring constraint of how ideas are expressed.

  20. Unsupervised user similarity mining in GSM sensor networks.

    PubMed

    Shad, Shafqat Ali; Chen, Enhong

    2013-01-01

    Mobility data has attracted the researchers for the past few years because of its rich context and spatiotemporal nature, where this information can be used for potential applications like early warning system, route prediction, traffic management, advertisement, social networking, and community finding. All the mentioned applications are based on mobility profile building and user trend analysis, where mobility profile building is done through significant places extraction, user's actual movement prediction, and context awareness. However, significant places extraction and user's actual movement prediction for mobility profile building are a trivial task. In this paper, we present the user similarity mining-based methodology through user mobility profile building by using the semantic tagging information provided by user and basic GSM network architecture properties based on unsupervised clustering approach. As the mobility information is in low-level raw form, our proposed methodology successfully converts it to a high-level meaningful information by using the cell-Id location information rather than previously used location capturing methods like GPS, Infrared, and Wifi for profile mining and user similarity mining.

  1. How Semantic Radicals in Chinese characters Facilitate Hierarchical Category-Based Induction.

    PubMed

    Wang, Xiaoxi; Ma, Xie; Tao, Yun; Tao, Yachen; Li, Hong

    2018-04-03

    Prior studies indicate that the semantic radical in Chinese characters contains category information that can support the independent retrieval of category information through the lexical network to the conceptual network. Inductive reasoning relies on category information; thus, semantic radicals may influence inductive reasoning. As most natural concepts are hierarchically structured in the human brain, this study examined how semantic radicals impact inductive reasoning for hierarchical concepts. The study used animal and plant nouns, organized in basic, superordinate, and subordinate levels; half had a semantic radical and half did not. Eighteen participants completed an inductive reasoning task. Behavioural and event-related potential (ERP) data were collected. The behavioural results showed that participants reacted faster and more accurately in the with-semantic-radical condition than in the without-semantic-radical condition. For the ERPs, differences between the conditions were found, and these differences lasted from the very early cognitive processing stage (i.e., the N1 time window) to the relatively late processing stages (i.e., the N400 and LPC time windows). Semantic radicals can help to distinguish the hierarchies earlier (in the N400 period) than characters without a semantic radical (in the LPC period). These results provide electrophysiological evidence that semantic radicals may improve sensitivity to distinguish between hierarchical concepts.

  2. A Bloom Filter-Powered Technique Supporting Scalable Semantic Discovery in Data Service Networks

    NASA Astrophysics Data System (ADS)

    Zhang, J.; Shi, R.; Bao, Q.; Lee, T. J.; Ramachandran, R.

    2016-12-01

    More and more Earth data analytics software products are published onto the Internet as a service, in the format of either heavyweight WSDL service or lightweight RESTful API. Such reusable data analytics services form a data service network, which allows Earth scientists to compose (mashup) services into value-added ones. Therefore, it is important to have a technique that is capable of helping Earth scientists quickly identify appropriate candidate datasets and services in the global data service network. Most existing services discovery techniques, however, mainly rely on syntax or semantics-based service matchmaking between service requests and available services. Since the scale of the data service network is increasing rapidly, the run-time computational cost will soon become a bottleneck. To address this issue, this project presents a way of applying network routing mechanism to facilitate data service discovery in a service network, featuring scalability and performance. Earth data services are automatically annotated in Web Ontology Language for Services (OWL-S) based on their metadata, semantic information, and usage history. Deterministic Annealing (DA) technique is applied to dynamically organize annotated data services into a hierarchical network, where virtual routers are created to represent semantic local network featuring leading terms. Afterwards Bloom Filters are generated over virtual routers. A data service search request is transformed into a network routing problem in order to quickly locate candidate services through network hierarchy. A neural network-powered technique is applied to assure network address encoding and routing performance. A series of empirical study has been conducted to evaluate the applicability and effectiveness of the proposed approach.

  3. Semantic Representation of Newly Learned L2 Words and Their Integration in the L2 Lexicon

    ERIC Educational Resources Information Center

    Bordag, Denisa; Kirschenbaum, Amit; Rogahn, Maria; Opitz, Andreas

    2017-01-01

    The present semantic priming study explores the integration of newly learnt L2 German words into the L2 semantic network of German advanced learners. It provides additional evidence in support of earlier findings reporting semantic inhibition effects for emergent representations. An inhibitory mechanism is proposed that temporarily decreases the…

  4. Episodic Memory, Semantic Memory, and Fluency.

    ERIC Educational Resources Information Center

    Schaefer, Carl F.

    1980-01-01

    Suggests that creating a second-language semantic network can be conceived as developing a plan for retrieving second-language word forms. Characteristics of linguistic performance which will promote fluency are discussed in light of the distinction between episodic and semantic memory. (AMH)

  5. Design for Connecting Spatial Data Infrastructures with Sensor Web (sensdi)

    NASA Astrophysics Data System (ADS)

    Bhattacharya, D.; M., M.

    2016-06-01

    Integrating Sensor Web With Spatial Data Infrastructures (SENSDI) aims to extend SDIs with sensor web enablement, converging geospatial and built infrastructure, and implement test cases with sensor data and SDI. It is about research to harness the sensed environment by utilizing domain specific sensor data to create a generalized sensor webframework. The challenges being semantic enablement for Spatial Data Infrastructures, and connecting the interfaces of SDI with interfaces of Sensor Web. The proposed research plan is to Identify sensor data sources, Setup an open source SDI, Match the APIs and functions between Sensor Web and SDI, and Case studies like hazard applications, urban applications etc. We take up co-operative development of SDI best practices to enable a new realm of a location enabled and semantically enriched World Wide Web - the "Geospatial Web" or "Geosemantic Web" by setting up one to one correspondence between WMS, WFS, WCS, Metadata and 'Sensor Observation Service' (SOS); 'Sensor Planning Service' (SPS); 'Sensor Alert Service' (SAS); a service that facilitates asynchronous message interchange between users and services, and between two OGC-SWE services, called the 'Web Notification Service' (WNS). Hence in conclusion, it is of importance to geospatial studies to integrate SDI with Sensor Web. The integration can be done through merging the common OGC interfaces of SDI and Sensor Web. Multi-usability studies to validate integration has to be undertaken as future research.

  6. Reliable Adaptive Video Streaming Driven by Perceptual Semantics for Situational Awareness

    PubMed Central

    Pimentel-Niño, M. A.; Saxena, Paresh; Vazquez-Castro, M. A.

    2015-01-01

    A novel cross-layer optimized video adaptation driven by perceptual semantics is presented. The design target is streamed live video to enhance situational awareness in challenging communications conditions. Conventional solutions for recreational applications are inadequate and novel quality of experience (QoE) framework is proposed which allows fully controlled adaptation and enables perceptual semantic feedback. The framework relies on temporal/spatial abstraction for video applications serving beyond recreational purposes. An underlying cross-layer optimization technique takes into account feedback on network congestion (time) and erasures (space) to best distribute available (scarce) bandwidth. Systematic random linear network coding (SRNC) adds reliability while preserving perceptual semantics. Objective metrics of the perceptual features in QoE show homogeneous high performance when using the proposed scheme. Finally, the proposed scheme is in line with content-aware trends, by complying with information-centric-networking philosophy and architecture. PMID:26247057

  7. Semantic Edge Based Disparity Estimation Using Adaptive Dynamic Programming for Binocular Sensors

    PubMed Central

    Zhu, Dongchen; Li, Jiamao; Wang, Xianshun; Peng, Jingquan; Shi, Wenjun; Zhang, Xiaolin

    2018-01-01

    Disparity calculation is crucial for binocular sensor ranging. The disparity estimation based on edges is an important branch in the research of sparse stereo matching and plays an important role in visual navigation. In this paper, we propose a robust sparse stereo matching method based on the semantic edges. Some simple matching costs are used first, and then a novel adaptive dynamic programming algorithm is proposed to obtain optimal solutions. This algorithm makes use of the disparity or semantic consistency constraint between the stereo images to adaptively search parameters, which can improve the robustness of our method. The proposed method is compared quantitatively and qualitatively with the traditional dynamic programming method, some dense stereo matching methods, and the advanced edge-based method respectively. Experiments show that our method can provide superior performance on the above comparison. PMID:29614028

  8. Semantic Edge Based Disparity Estimation Using Adaptive Dynamic Programming for Binocular Sensors.

    PubMed

    Zhu, Dongchen; Li, Jiamao; Wang, Xianshun; Peng, Jingquan; Shi, Wenjun; Zhang, Xiaolin

    2018-04-03

    Disparity calculation is crucial for binocular sensor ranging. The disparity estimation based on edges is an important branch in the research of sparse stereo matching and plays an important role in visual navigation. In this paper, we propose a robust sparse stereo matching method based on the semantic edges. Some simple matching costs are used first, and then a novel adaptive dynamic programming algorithm is proposed to obtain optimal solutions. This algorithm makes use of the disparity or semantic consistency constraint between the stereo images to adaptively search parameters, which can improve the robustness of our method. The proposed method is compared quantitatively and qualitatively with the traditional dynamic programming method, some dense stereo matching methods, and the advanced edge-based method respectively. Experiments show that our method can provide superior performance on the above comparison.

  9. Conceptual Hierarchies in a Flat Attractor Network

    PubMed Central

    O’Connor, Christopher M.; Cree, George S.; McRae, Ken

    2009-01-01

    The structure of people’s conceptual knowledge of concrete nouns has traditionally been viewed as hierarchical (Collins & Quillian, 1969). For example, superordinate concepts (vegetable) are assumed to reside at a higher level than basic-level concepts (carrot). A feature-based attractor network with a single layer of semantic features developed representations of both basic-level and superordinate concepts. No hierarchical structure was built into the network. In Experiment and Simulation 1, the graded structure of categories (typicality ratings) is accounted for by the flat attractor-network. Experiment and Simulation 2 show that, as with basic-level concepts, such a network predicts feature verification latencies for superordinate concepts (vegetable ). In Experiment and Simulation 3, counterintuitive results regarding the temporal dynamics of similarity in semantic priming are explained by the model. By treating both types of concepts the same in terms of representation, learning, and computations, the model provides new insights into semantic memory. PMID:19543434

  10. A lexical semantic hub for heteromodal naming in middle fusiform gyrus.

    PubMed

    Forseth, Kiefer James; Kadipasaoglu, Cihan Mehmet; Conner, Christopher Richard; Hickok, Gregory; Knight, Robert Thomas; Tandon, Nitin

    2018-07-01

    Semantic memory underpins our understanding of objects, people, places, and ideas. Anomia, a disruption of semantic memory access, is the most common residual language disturbance and is seen in dementia and following injury to temporal cortex. While such anomia has been well characterized by lesion symptom mapping studies, its pathophysiology is not well understood. We hypothesize that inputs to the semantic memory system engage a specific heteromodal network hub that integrates lexical retrieval with the appropriate semantic content. Such a network hub has been proposed by others, but has thus far eluded precise spatiotemporal delineation. This limitation in our understanding of semantic memory has impeded progress in the treatment of anomia. We evaluated the cortical structure and dynamics of the lexical semantic network in driving speech production in a large cohort of patients with epilepsy using electrocorticography (n = 64), functional MRI (n = 36), and direct cortical stimulation (n = 30) during two generative language processes that rely on semantic knowledge: visual picture naming and auditory naming to definition. Each task also featured a non-semantic control condition: scrambled pictures and reversed speech, respectively. These large-scale data of the left, language-dominant hemisphere uniquely enable convergent, high-resolution analyses of neural mechanisms characterized by rapid, transient dynamics with strong interactions between distributed cortical substrates. We observed three stages of activity during both visual picture naming and auditory naming to definition that were serially organized: sensory processing, lexical semantic processing, and articulation. Critically, the second stage was absent in both the visual and auditory control conditions. Group activity maps from both electrocorticography and functional MRI identified heteromodal responses in middle fusiform gyrus, intraparietal sulcus, and inferior frontal gyrus; furthermore, the spectrotemporal profiles of these three regions revealed coincident activity preceding articulation. Only in the middle fusiform gyrus did direct cortical stimulation disrupt both naming tasks while still preserving the ability to repeat sentences. These convergent data strongly support a model in which a distinct neuroanatomical substrate in middle fusiform gyrus provides access to object semantic information. This under-appreciated locus of semantic processing is at risk in resections for temporal lobe epilepsy as well as in trauma and strokes that affect the inferior temporal cortex-it may explain the range of anomic states seen in these conditions. Further characterization of brain network behaviour engaging this region in both healthy and diseased states will expand our understanding of semantic memory and further development of therapies directed at anomia.

  11. A Distributed Architecture for Tsunami Early Warning and Collaborative Decision-support in Crises

    NASA Astrophysics Data System (ADS)

    Moßgraber, J.; Middleton, S.; Hammitzsch, M.; Poslad, S.

    2012-04-01

    The presentation will describe work on the system architecture that is being developed in the EU FP7 project TRIDEC on "Collaborative, Complex and Critical Decision-Support in Evolving Crises". The challenges for a Tsunami Early Warning System (TEWS) are manifold and the success of a system depends crucially on the system's architecture. A modern warning system following a system-of-systems approach has to integrate various components and sub-systems such as different information sources, services and simulation systems. Furthermore, it has to take into account the distributed and collaborative nature of warning systems. In order to create an architecture that supports the whole spectrum of a modern, distributed and collaborative warning system one must deal with multiple challenges. Obviously, one cannot expect to tackle these challenges adequately with a monolithic system or with a single technology. Therefore, a system architecture providing the blueprints to implement the system-of-systems approach has to combine multiple technologies and architectural styles. At the bottom layer it has to reliably integrate a large set of conventional sensors, such as seismic sensors and sensor networks, buoys and tide gauges, and also innovative and unconventional sensors, such as streams of messages from social media services. At the top layer it has to support collaboration on high-level decision processes and facilitates information sharing between organizations. In between, the system has to process all data and integrate information on a semantic level in a timely manner. This complex communication follows an event-driven mechanism allowing events to be published, detected and consumed by various applications within the architecture. Therefore, at the upper layer the event-driven architecture (EDA) aspects are combined with principles of service-oriented architectures (SOA) using standards for communication and data exchange. The most prominent challenges on this layer include providing a framework for information integration on a syntactic and semantic level, leveraging distributed processing resources for a scalable data processing platform, and automating data processing and decision support workflows.

  12. Convergence of semantics and emotional expression within the IFG pars orbitalis.

    PubMed

    Belyk, Michel; Brown, Steven; Lim, Jessica; Kotz, Sonja A

    2017-08-01

    Humans communicate through a combination of linguistic and emotional channels, including propositional speech, writing, sign language, music, but also prosodic, facial, and gestural expression. These channels can be interpreted separately or they can be integrated to multimodally convey complex meanings. Neural models of the perception of semantics and emotion include nodes for both functions in the inferior frontal gyrus pars orbitalis (IFGorb). However, it is not known whether this convergence involves a common functional zone or instead specialized subregions that process semantics and emotion separately. To address this, we performed Kernel Density Estimation meta-analyses of published neuroimaging studies of the perception of semantics or emotion that reported activation in the IFGorb. The results demonstrated that the IFGorb contains two zones with distinct functional profiles. A lateral zone, situated immediately ventral to Broca's area, was implicated in both semantics and emotion. Another zone, deep within the ventral frontal operculum, was engaged almost exclusively by studies of emotion. Follow-up analysis using Meta-Analytic Connectivity Modeling demonstrated that both zones were frequently co-activated with a common network of sensory, motor, and limbic structures, although the lateral zone had a greater association with prefrontal cortical areas involved in executive function. The status of the lateral IFGorb as a point of convergence between the networks for processing semantic and emotional content across modalities of communication is intriguing since this structure is preserved across primates with limited semantic abilities. Hence, the IFGorb may have initially evolved to support the comprehension of emotional signals, being later co-opted to support semantic communication in humans by forming new connections with brain regions that formed the human semantic network. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Cross-modal integration of lexical-semantic features during word processing: evidence from oscillatory dynamics during EEG.

    PubMed

    van Ackeren, Markus J; Rueschemeyer, Shirley-Ann

    2014-01-01

    In recent years, numerous studies have provided converging evidence that word meaning is partially stored in modality-specific cortical networks. However, little is known about the mechanisms supporting the integration of this distributed semantic content into coherent conceptual representations. In the current study we aimed to address this issue by using EEG to look at the spatial and temporal dynamics of feature integration during word comprehension. Specifically, participants were presented with two modality-specific features (i.e., visual or auditory features such as silver and loud) and asked to verify whether these two features were compatible with a subsequently presented target word (e.g., WHISTLE). Each pair of features described properties from either the same modality (e.g., silver, tiny  =  visual features) or different modalities (e.g., silver, loud  =  visual, auditory). Behavioral and EEG data were collected. The results show that verifying features that are putatively represented in the same modality-specific network is faster than verifying features across modalities. At the neural level, integrating features across modalities induces sustained oscillatory activity around the theta range (4-6 Hz) in left anterior temporal lobe (ATL), a putative hub for integrating distributed semantic content. In addition, enhanced long-range network interactions in the theta range were seen between left ATL and a widespread cortical network. These results suggest that oscillatory dynamics in the theta range could be involved in integrating multimodal semantic content by creating transient functional networks linking distributed modality-specific networks and multimodal semantic hubs such as left ATL.

  14. Rule-based support system for multiple UMLS semantic type assignments

    PubMed Central

    Geller, James; He, Zhe; Perl, Yehoshua; Morrey, C. Paul; Xu, Julia

    2012-01-01

    Background When new concepts are inserted into the UMLS, they are assigned one or several semantic types from the UMLS Semantic Network by the UMLS editors. However, not every combination of semantic types is permissible. It was observed that many concepts with rare combinations of semantic types have erroneous semantic type assignments or prohibited combinations of semantic types. The correction of such errors is resource-intensive. Objective We design a computational system to inform UMLS editors as to whether a specific combination of two, three, four, or five semantic types is permissible or prohibited or questionable. Methods We identify a set of inclusion and exclusion instructions in the UMLS Semantic Network documentation and derive corresponding rule-categories as well as rule-categories from the UMLS concept content. We then design an algorithm adviseEditor based on these rule-categories. The algorithm specifies rules for an editor how to proceed when considering a tuple (pair, triple, quadruple, quintuple) of semantic types to be assigned to a concept. Results Eight rule-categories were identified. A Web-based system was developed to implement the adviseEditor algorithm, which returns for an input combination of semantic types whether it is permitted, prohibited or (in a few cases) requires more research. The numbers of semantic type pairs assigned to each rule-category are reported. Interesting examples for each rule-category are illustrated. Cases of semantic type assignments that contradict rules are listed, including recently introduced ones. Conclusion The adviseEditor system implements explicit and implicit knowledge available in the UMLS in a system that informs UMLS editors about the permissibility of a desired combination of semantic types. Using adviseEditor might help accelerate the work of the UMLS editors and prevent erroneous semantic type assignments. PMID:23041716

  15. Classification with an edge: Improving semantic image segmentation with boundary detection

    NASA Astrophysics Data System (ADS)

    Marmanis, D.; Schindler, K.; Wegner, J. D.; Galliani, S.; Datcu, M.; Stilla, U.

    2018-01-01

    We present an end-to-end trainable deep convolutional neural network (DCNN) for semantic segmentation with built-in awareness of semantically meaningful boundaries. Semantic segmentation is a fundamental remote sensing task, and most state-of-the-art methods rely on DCNNs as their workhorse. A major reason for their success is that deep networks learn to accumulate contextual information over very large receptive fields. However, this success comes at a cost, since the associated loss of effective spatial resolution washes out high-frequency details and leads to blurry object boundaries. Here, we propose to counter this effect by combining semantic segmentation with semantically informed edge detection, thus making class boundaries explicit in the model. First, we construct a comparatively simple, memory-efficient model by adding boundary detection to the SEGNET encoder-decoder architecture. Second, we also include boundary detection in FCN-type models and set up a high-end classifier ensemble. We show that boundary detection significantly improves semantic segmentation with CNNs in an end-to-end training scheme. Our best model achieves >90% overall accuracy on the ISPRS Vaihingen benchmark.

  16. Semantic deficits in Spanish-English bilingual children with language impairment.

    PubMed

    Sheng, Li; Peña, Elizabeth D; Bedore, Lisa M; Fiestas, Christine E

    2012-02-01

    To examine the nature and extent of semantic deficits in bilingual children with language impairment (LI). Thirty-seven Spanish-English bilingual children with LI (ranging from age 7;0 [years;months] to 9;10) and 37 typically developing (TD) age-matched peers generated 3 associations to 12 pairs of translation equivalents in English and Spanish. Responses were coded as paradigmatic (e.g., dinner-lunch, cena-desayuno [dinner-breakfast]), syntagmatic (e.g., delicious-pizza, delicioso-frijoles [delicious-beans]), and errors (e.g., wearing-where, vestirse-mal [to get dressed-bad]). A semantic depth score was derived in each language and conceptually by combining children's performance in both languages. The LI group achieved significantly lower semantic depth scores than the TD group after controlling for group differences in vocabulary size. Children showed higher conceptual scores than single-language scores. Both groups showed decreases in semantic depth scores across multiple elicitations. Analyses of individual performances indicated that semantic deficits (1 SD below the TD mean semantic depth score) were manifested in 65% of the children with LI and in 14% of the TD children. School-age bilingual children with and without LI demonstrated spreading activation of semantic networks. Consistent with the literature on monolingual children with LI, sparsely linked semantic networks characterize a considerable proportion of bilingual children with LI.

  17. Knowledge Representation Issues in Semantic Graphs for Relationship Detection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barthelemy, M; Chow, E; Eliassi-Rad, T

    2005-02-02

    An important task for Homeland Security is the prediction of threat vulnerabilities, such as through the detection of relationships between seemingly disjoint entities. A structure used for this task is a ''semantic graph'', also known as a ''relational data graph'' or an ''attributed relational graph''. These graphs encode relationships as typed links between a pair of typed nodes. Indeed, semantic graphs are very similar to semantic networks used in AI. The node and link types are related through an ontology graph (also known as a schema). Furthermore, each node has a set of attributes associated with it (e.g., ''age'' maymore » be an attribute of a node of type ''person''). Unfortunately, the selection of types and attributes for both nodes and links depends on human expertise and is somewhat subjective and even arbitrary. This subjectiveness introduces biases into any algorithm that operates on semantic graphs. Here, we raise some knowledge representation issues for semantic graphs and provide some possible solutions using recently developed ideas in the field of complex networks. In particular, we use the concept of transitivity to evaluate the relevance of individual links in the semantic graph for detecting relationships. We also propose new statistical measures for semantic graphs and illustrate these semantic measures on graphs constructed from movies and terrorism data.« less

  18. Brain network of semantic integration in sentence reading: insights from independent component analysis and graph theoretical analysis.

    PubMed

    Ye, Zheng; Doñamayor, Nuria; Münte, Thomas F

    2014-02-01

    A set of cortical and sub-cortical brain structures has been linked with sentence-level semantic processes. However, it remains unclear how these brain regions are organized to support the semantic integration of a word into sentential context. To look into this issue, we conducted a functional magnetic resonance imaging (fMRI) study that required participants to silently read sentences with semantically congruent or incongruent endings and analyzed the network properties of the brain with two approaches, independent component analysis (ICA) and graph theoretical analysis (GTA). The GTA suggested that the whole-brain network is topologically stable across conditions. The ICA revealed a network comprising the supplementary motor area (SMA), left inferior frontal gyrus, left middle temporal gyrus, left caudate nucleus, and left angular gyrus, which was modulated by the incongruity of sentence ending. Furthermore, the GTA specified that the connections between the left SMA and left caudate nucleus as well as that between the left caudate nucleus and right thalamus were stronger in response to incongruent vs. congruent endings. Copyright © 2012 Wiley Periodicals, Inc.

  19. Distinct neural substrates for semantic knowledge and naming in the temporoparietal network.

    PubMed

    Gesierich, Benno; Jovicich, Jorge; Riello, Marianna; Adriani, Michela; Monti, Alessia; Brentari, Valentina; Robinson, Simon D; Wilson, Stephen M; Fairhall, Scott L; Gorno-Tempini, Maria Luisa

    2012-10-01

    Patients with anterior temporal lobe (ATL) lesions show semantic and lexical retrieval deficits, and the differential role of this area in the 2 processes is debated. Functional neuroimaging in healthy individuals has not clarified the matter because semantic and lexical processes usually occur simultaneously and automatically. Furthermore, the ATL is a region challenging for functional magnetic resonance imaging (fMRI) due to susceptibility artifacts, especially at high fields. In this study, we established an optimized ATL-sensitive fMRI acquisition protocol at 4 T and applied an event-related paradigm to study the identification (i.e., association of semantic biographical information) of celebrities, with and without the ability to retrieve their proper names. While semantic processing reliably activated the ATL, only more posterior areas in the left temporal and temporal-parietal junction were significantly modulated by covert lexical retrieval. These results suggest that within a temporoparietal network, the ATL is relatively more important for semantic processing, and posterior language regions are relatively more important for lexical retrieval.

  20. LDRD final report :

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brost, Randolph C.; McLendon, William Clarence,

    2013-01-01

    Modeling geospatial information with semantic graphs enables search for sites of interest based on relationships between features, without requiring strong a priori models of feature shape or other intrinsic properties. Geospatial semantic graphs can be constructed from raw sensor data with suitable preprocessing to obtain a discretized representation. This report describes initial work toward extending geospatial semantic graphs to include temporal information, and initial results applying semantic graph techniques to SAR image data. We describe an efficient graph structure that includes geospatial and temporal information, which is designed to support simultaneous spatial and temporal search queries. We also report amore » preliminary implementation of feature recognition, semantic graph modeling, and graph search based on input SAR data. The report concludes with lessons learned and suggestions for future improvements.« less

  1. The canonical semantic network supports residual language function in chronic post-stroke aphasia

    PubMed Central

    Griffis, Joseph C.; Nenert, Rodolphe; Allendorfer, Jane B.; Vannest, Jennifer; Holland, Scott; Dietz, Aimee; Szaflarski, Jerzy P.

    2016-01-01

    Current theories of language recovery after stroke are limited by a reliance on small studies. Here, we aimed to test predictions of current theory and resolve inconsistencies regarding right hemispheric contributions to long-term recovery. We first defined the canonical semantic network in 43 healthy controls. Then, in a group of 43 patients with chronic post-stroke aphasia, we tested whether activity in this network predicted performance on measures of semantic comprehension, naming, and fluency while controlling for lesion volume effects. Canonical network activation accounted for 22–33% of the variance in language test scores. Whole-brain analyses corroborated these findings, and revealed a core set of regions showing positive relationships to all language measures. We next evaluated the relationship between activation magnitudes in left and right hemispheric portions of the network, and characterized how right hemispheric activation related to the extent of left hemispheric damage. Activation magnitudes in each hemispheric network were strongly correlated, but four right frontal regions showed heightened activity in patients with large lesions. Activity in two of these regions (inferior frontal gyrus pars opercularis and supplementary motor area) was associated with better language abilities in patients with larger lesions, but poorer language abilities in patients with smaller lesions. Our results indicate that bilateral language networks support language processing after stroke, and that right hemispheric activations related to extensive left hemisphere damage occur outside of the canonical semantic network and differentially relate to behavior depending on the extent of left hemispheric damage. PMID:27981674

  2. Aging and Semantic Activation.

    ERIC Educational Resources Information Center

    Howard, Darlene V.

    Three studies tested the theory that long term memory consists of a semantically organized network of concept nodes interconnected by leveled associations or relations, and that when a stimulus is processed, the corresponding concept node is assumed to be temporarily activated and this activation spreads to nearby semantically related nodes. In…

  3. Focal temporal pole atrophy and network degeneration in semantic variant primary progressive aphasia

    PubMed Central

    Collins, Jessica A; Montal, Victor; Hochberg, Daisy; Quimby, Megan; Mandelli, Maria Luisa; Makris, Nikos; Seeley, William W; Gorno-Tempini, Maria Luisa; Dickerson, Bradford C

    2017-01-01

    Abstract A wealth of neuroimaging research has associated semantic variant primary progressive aphasia with distributed cortical atrophy that is most prominent in the left anterior temporal cortex; however, there is little consensus regarding which region within the anterior temporal cortex is most prominently damaged, which may indicate the putative origin of neurodegeneration. In this study, we localized the most prominent and consistent region of atrophy in semantic variant primary progressive aphasia using cortical thickness analysis in two independent patient samples (n = 16 and 28, respectively) relative to age-matched controls (n = 30). Across both samples the point of maximal atrophy was located in the same region of the left temporal pole. This same region was the point of maximal atrophy in 100% of individual patients in both semantic variant primary progressive aphasia samples. Using resting state functional connectivity in healthy young adults (n = 89), we showed that the seed region derived from the semantic variant primary progressive aphasia analysis was strongly connected with a large-scale network that closely resembled the distributed atrophy pattern in semantic variant primary progressive aphasia. In both patient samples, the magnitude of atrophy within a brain region was predicted by that region’s strength of functional connectivity to the temporopolar seed region in healthy adults. These findings suggest that cortical atrophy in semantic variant primary progressive aphasia may follow connectional pathways within a large-scale network that converges on the temporal pole. PMID:28040670

  4. Scientific Knowledge Discovery in Complex Semantic Networks of Geophysical Systems

    NASA Astrophysics Data System (ADS)

    Fox, P.

    2012-04-01

    The vast majority of explorations of the Earth's systems are limited in their ability to effectively explore the most important (often most difficult) problems because they are forced to interconnect at the data-element, or syntactic, level rather than at a higher scientific, or semantic, level. Recent successes in the application of complex network theory and algorithms to climate data, raise expectations that more general graph-based approaches offer the opportunity for new discoveries. In the past ~ 5 years in the natural sciences there has substantial progress in providing both specialists and non-specialists the ability to describe in machine readable form, geophysical quantities and relations among them in meaningful and natural ways, effectively breaking the prior syntax barrier. The corresponding open-world semantics and reasoning provide higher-level interconnections. That is, semantics provided around the data structures, using semantically-equipped tools, and semantically aware interfaces between science application components allowing for discovery at the knowledge level. More recently, formal semantic approaches to continuous and aggregate physical processes are beginning to show promise and are soon likely to be ready to apply to geoscientific systems. To illustrate these opportunities, this presentation presents two application examples featuring domain vocabulary (ontology) and property relations (named and typed edges in the graphs). First, a climate knowledge discovery pilot encoding and exploration of CMIP5 catalog information with the eventual goal to encode and explore CMIP5 data. Second, a multi-stakeholder knowledge network for integrated assessments in marine ecosystems, where the data is highly inter-disciplinary.

  5. Semantic Analysis of Email Using Domain Ontologies and WordNet

    NASA Technical Reports Server (NTRS)

    Berrios, Daniel C.; Keller, Richard M.

    2005-01-01

    The problem of capturing and accessing knowledge in paper form has been supplanted by a problem of providing structure to vast amounts of electronic information. Systems that can construct semantic links for natural language documents like email messages automatically will be a crucial element of semantic email tools. We have designed an information extraction process that can leverage the knowledge already contained in an existing semantic web, recognizing references in email to existing nodes in a network of ontology instances by using linguistic knowledge and knowledge of the structure of the semantic web. We developed a heuristic score that uses several forms of evidence to detect references in email to existing nodes in the Semanticorganizer repository's network. While these scores cannot directly support automated probabilistic inference, they can be used to rank nodes by relevance and link those deemed most relevant to email messages.

  6. GFD-Net: A novel semantic similarity methodology for the analysis of gene networks.

    PubMed

    Díaz-Montaña, Juan J; Díaz-Díaz, Norberto; Gómez-Vela, Francisco

    2017-04-01

    Since the popularization of biological network inference methods, it has become crucial to create methods to validate the resulting models. Here we present GFD-Net, the first methodology that applies the concept of semantic similarity to gene network analysis. GFD-Net combines the concept of semantic similarity with the use of gene network topology to analyze the functional dissimilarity of gene networks based on Gene Ontology (GO). The main innovation of GFD-Net lies in the way that semantic similarity is used to analyze gene networks taking into account the network topology. GFD-Net selects a functionality for each gene (specified by a GO term), weights each edge according to the dissimilarity between the nodes at its ends and calculates a quantitative measure of the network functional dissimilarity, i.e. a quantitative value of the degree of dissimilarity between the connected genes. The robustness of GFD-Net as a gene network validation tool was demonstrated by performing a ROC analysis on several network repositories. Furthermore, a well-known network was analyzed showing that GFD-Net can also be used to infer knowledge. The relevance of GFD-Net becomes more evident in Section "GFD-Net applied to the study of human diseases" where an example of how GFD-Net can be applied to the study of human diseases is presented. GFD-Net is available as an open-source Cytoscape app which offers a user-friendly interface to configure and execute the algorithm as well as the ability to visualize and interact with the results(http://apps.cytoscape.org/apps/gfdnet). Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Knowledge represented using RDF semantic network in the concept of semantic web

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lukasova, A., E-mail: alena.lukasova@osu.cz; Vajgl, M., E-mail: marek.vajgl@osu.cz; Zacek, M., E-mail: martin.zacek@osu.cz

    The RDF(S) model has been declared as the basic model to capture knowledge of the semantic web. It provides a common and flexible way to decompose composed knowledge to elementary statements, which can be represented by RDF triples or by RDF graph vectors. From the logical point of view, elements of knowledge can be expressed using at most binary predicates, which can be converted to RDF-triples or graph vectors. However, it is not able to capture implicit knowledge representable by logical formulas. This contribution shows how existing approaches (semantic networks and clausal form logic) can be combined together with RDFmore » to obtain RDF-compatible system with ability to represent implicit knowledge and inference over knowledge base.« less

  8. The Yin and the Yang of Prediction: An fMRI Study of Semantic Predictive Processing

    PubMed Central

    Weber, Kirsten; Lau, Ellen F.; Stillerman, Benjamin; Kuperberg, Gina R.

    2016-01-01

    Probabilistic prediction plays a crucial role in language comprehension. When predictions are fulfilled, the resulting facilitation allows for fast, efficient processing of ambiguous, rapidly-unfolding input; when predictions are not fulfilled, the resulting error signal allows us to adapt to broader statistical changes in this input. We used functional Magnetic Resonance Imaging to examine the neuroanatomical networks engaged in semantic predictive processing and adaptation. We used a relatedness proportion semantic priming paradigm, in which we manipulated the probability of predictions while holding local semantic context constant. Under conditions of higher (versus lower) predictive validity, we replicate previous observations of reduced activity to semantically predictable words in the left anterior superior/middle temporal cortex, reflecting facilitated processing of targets that are consistent with prior semantic predictions. In addition, under conditions of higher (versus lower) predictive validity we observed significant differences in the effects of semantic relatedness within the left inferior frontal gyrus and the posterior portion of the left superior/middle temporal gyrus. We suggest that together these two regions mediated the suppression of unfulfilled semantic predictions and lexico-semantic processing of unrelated targets that were inconsistent with these predictions. Moreover, under conditions of higher (versus lower) predictive validity, a functional connectivity analysis showed that the left inferior frontal and left posterior superior/middle temporal gyrus were more tightly interconnected with one another, as well as with the left anterior cingulate cortex. The left anterior cingulate cortex was, in turn, more tightly connected to superior lateral frontal cortices and subcortical regions—a network that mediates rapid learning and adaptation and that may have played a role in switching to a more predictive mode of processing in response to the statistical structure of the wider environmental context. Together, these findings highlight close links between the networks mediating semantic prediction, executive function and learning, giving new insights into how our brains are able to flexibly adapt to our environment. PMID:27010386

  9. The Yin and the Yang of Prediction: An fMRI Study of Semantic Predictive Processing.

    PubMed

    Weber, Kirsten; Lau, Ellen F; Stillerman, Benjamin; Kuperberg, Gina R

    2016-01-01

    Probabilistic prediction plays a crucial role in language comprehension. When predictions are fulfilled, the resulting facilitation allows for fast, efficient processing of ambiguous, rapidly-unfolding input; when predictions are not fulfilled, the resulting error signal allows us to adapt to broader statistical changes in this input. We used functional Magnetic Resonance Imaging to examine the neuroanatomical networks engaged in semantic predictive processing and adaptation. We used a relatedness proportion semantic priming paradigm, in which we manipulated the probability of predictions while holding local semantic context constant. Under conditions of higher (versus lower) predictive validity, we replicate previous observations of reduced activity to semantically predictable words in the left anterior superior/middle temporal cortex, reflecting facilitated processing of targets that are consistent with prior semantic predictions. In addition, under conditions of higher (versus lower) predictive validity we observed significant differences in the effects of semantic relatedness within the left inferior frontal gyrus and the posterior portion of the left superior/middle temporal gyrus. We suggest that together these two regions mediated the suppression of unfulfilled semantic predictions and lexico-semantic processing of unrelated targets that were inconsistent with these predictions. Moreover, under conditions of higher (versus lower) predictive validity, a functional connectivity analysis showed that the left inferior frontal and left posterior superior/middle temporal gyrus were more tightly interconnected with one another, as well as with the left anterior cingulate cortex. The left anterior cingulate cortex was, in turn, more tightly connected to superior lateral frontal cortices and subcortical regions-a network that mediates rapid learning and adaptation and that may have played a role in switching to a more predictive mode of processing in response to the statistical structure of the wider environmental context. Together, these findings highlight close links between the networks mediating semantic prediction, executive function and learning, giving new insights into how our brains are able to flexibly adapt to our environment.

  10. Network Alterations Supporting Word Retrieval in Patients with Medial Temporal Lobe Epilepsy

    ERIC Educational Resources Information Center

    Protzner, Andrea B.; McAndrews, Mary Pat

    2011-01-01

    Although the hippocampus is not considered a key structure in semantic memory, patients with medial-temporal lobe epilepsy (mTLE) have deficits in semantic access on some word retrieval tasks. We hypothesized that these deficits reflect the negative impact of focal epilepsy on remote cerebral structures. Thus, we expected that the networks that…

  11. Fully convolutional network with cluster for semantic segmentation

    NASA Astrophysics Data System (ADS)

    Ma, Xiao; Chen, Zhongbi; Zhang, Jianlin

    2018-04-01

    At present, image semantic segmentation technology has been an active research topic for scientists in the field of computer vision and artificial intelligence. Especially, the extensive research of deep neural network in image recognition greatly promotes the development of semantic segmentation. This paper puts forward a method based on fully convolutional network, by cluster algorithm k-means. The cluster algorithm using the image's low-level features and initializing the cluster centers by the super-pixel segmentation is proposed to correct the set of points with low reliability, which are mistakenly classified in great probability, by the set of points with high reliability in each clustering regions. This method refines the segmentation of the target contour and improves the accuracy of the image segmentation.

  12. Exploitation of Semantic Building Model in Indoor Navigation Systems

    NASA Astrophysics Data System (ADS)

    Anjomshoaa, A.; Shayeganfar, F.; Tjoa, A. Min

    2009-04-01

    There are many types of indoor and outdoor navigation tools and methodologies available. A majority of these solutions are based on Global Positioning Systems (GPS) and instant video and image processing. These approaches are ideal for open world environments where very few information about the target location is available, but for large scale building environments such as hospitals, governmental offices, etc the end-user will need more detailed information about the surrounding context which is especially important in case of people with special needs. This paper presents a smart indoor navigation solution that is based on Semantic Web technologies and Building Information Model (BIM). The proposed solution is also aligned with Google Android's concepts to enlighten the realization of results. Keywords: IAI IFCXML, Building Information Model, Indoor Navigation, Semantic Web, Google Android, People with Special Needs 1 Introduction Built environment is a central factor in our daily life and a big portion of human life is spent inside buildings. Traditionally the buildings are documented using building maps and plans by utilization of IT tools such as computer-aided design (CAD) applications. Documenting the maps in an electronic way is already pervasive but CAD drawings do not suffice the requirements regarding effective building models that can be shared with other building-related applications such as indoor navigation systems. The navigation in built environment is not a new issue, however with the advances in emerging technologies like GPS, mobile and networked environments, and Semantic Web new solutions have been suggested to enrich the traditional building maps and convert them to smart information resources that can be reused in other applications and improve the interpretability with building inhabitants and building visitors. Other important issues that should be addressed in building navigation scenarios are location tagging and end-user communication. The available solutions for location tagging are mostly based on proximity sensors and the information are bound to sensor references. In the proposed solution of this paper, the sensors simply play a role similar to annotations in Semantic Web world. Hence the sensors data in ontology sense bridges the gap between sensed information and building model. Combining these two and applying the proper inference rules, the building visitors will be able to reach their destinations with instant support of their communication devices such as hand helds, wearable computers, mobiles, etc. In a typical scenario of this kind, user's profile will be delivered to the smart building (via building ad-hoc services) and the appropriate route for user will be calculated and delivered to user's end-device. The calculated route is calculated by considering all constraints and requirements of the end user. So for example if the user is using a wheelchair, the calculated route should not contain stairs or narrow corridors that the wheelchair does not pass through. Then user starts to navigate through building by following the instructions of the end-device which are in turn generated from the calculated route. During the navigation process, the end-device should also interact with the smart building to sense the locations by reading the surrounding tags. So for example when a visually impaired person arrives at an unknown space, the tags will be sensed and the relevant information will be delivered to user in the proper way of communication. For example the building model can be used to generate a voice message for a blind person about a space and tell him/her that "the space has 3 doors, and the door on the left should be chosen which needs to be pushed to open". In this paper we will mainly focus on automatic generation of semantic building information models (Semantic BIM) and delivery of results to the end user. Combining the building information model with the environment and user constraints using Semantic Web technologies will make many scenarios conceivable. The generated IFC ontology that is base on the commonly accepted IFC (Industry Foundation Classes) standard can be used as the basis of information sharing between buildings, people, and applications. The proposed solution is aiming to facilitate the building navigation in an intuitive and extendable way that is easy to use by end-users and at the same time easy to maintain and manage by building administrators.

  13. Residual Shuffling Convolutional Neural Networks for Deep Semantic Image Segmentation Using Multi-Modal Data

    NASA Astrophysics Data System (ADS)

    Chen, K.; Weinmann, M.; Gao, X.; Yan, M.; Hinz, S.; Jutzi, B.; Weinmann, M.

    2018-05-01

    In this paper, we address the deep semantic segmentation of aerial imagery based on multi-modal data. Given multi-modal data composed of true orthophotos and the corresponding Digital Surface Models (DSMs), we extract a variety of hand-crafted radiometric and geometric features which are provided separately and in different combinations as input to a modern deep learning framework. The latter is represented by a Residual Shuffling Convolutional Neural Network (RSCNN) combining the characteristics of a Residual Network with the advantages of atrous convolution and a shuffling operator to achieve a dense semantic labeling. Via performance evaluation on a benchmark dataset, we analyze the value of different feature sets for the semantic segmentation task. The derived results reveal that the use of radiometric features yields better classification results than the use of geometric features for the considered dataset. Furthermore, the consideration of data on both modalities leads to an improvement of the classification results. However, the derived results also indicate that the use of all defined features is less favorable than the use of selected features. Consequently, data representations derived via feature extraction and feature selection techniques still provide a gain if used as the basis for deep semantic segmentation.

  14. Order recall in verbal short-term memory: The role of semantic networks.

    PubMed

    Poirier, Marie; Saint-Aubin, Jean; Mair, Ali; Tehan, Gerry; Tolan, Anne

    2015-04-01

    In their recent article, Acheson, MacDonald, and Postle (Journal of Experimental Psychology: Learning, Memory, and Cognition 37:44-59, 2011) made an important but controversial suggestion: They hypothesized that (a) semantic information has an effect on order information in short-term memory (STM) and (b) order recall in STM is based on the level of activation of items within the relevant lexico-semantic long-term memory (LTM) network. However, verbal STM research has typically led to the conclusion that factors such as semantic category have a large effect on the number of correctly recalled items, but little or no impact on order recall (Poirier & Saint-Aubin, Quarterly Journal of Experimental Psychology 48A:384-404, 1995; Saint-Aubin, Ouellette, & Poirier, Psychonomic Bulletin & Review 12:171-177, 2005; Tse, Memory 17:874-891, 2009). Moreover, most formal models of short-term order memory currently suggest a separate mechanism for order coding-that is, one that is separate from item representation and not associated with LTM lexico-semantic networks. Both of the experiments reported here tested the predictions that we derived from Acheson et al. The findings show that, as predicted, manipulations aiming to affect the activation of item representations significantly impacted order memory.

  15. Improving the measurement of semantic similarity by combining gene ontology and co-functional network: a random walk based approach.

    PubMed

    Peng, Jiajie; Zhang, Xuanshuo; Hui, Weiwei; Lu, Junya; Li, Qianqian; Liu, Shuhui; Shang, Xuequn

    2018-03-19

    Gene Ontology (GO) is one of the most popular bioinformatics resources. In the past decade, Gene Ontology-based gene semantic similarity has been effectively used to model gene-to-gene interactions in multiple research areas. However, most existing semantic similarity approaches rely only on GO annotations and structure, or incorporate only local interactions in the co-functional network. This may lead to inaccurate GO-based similarity resulting from the incomplete GO topology structure and gene annotations. We present NETSIM2, a new network-based method that allows researchers to measure GO-based gene functional similarities by considering the global structure of the co-functional network with a random walk with restart (RWR)-based method, and by selecting the significant term pairs to decrease the noise information. Based on the EC number (Enzyme Commission)-based groups of yeast and Arabidopsis, evaluation test shows that NETSIM2 can enhance the accuracy of Gene Ontology-based gene functional similarity. Using NETSIM2 as an example, we found that the accuracy of semantic similarities can be significantly improved after effectively incorporating the global gene-to-gene interactions in the co-functional network, especially on the species that gene annotations in GO are far from complete.

  16. The Topology of a Discussion: The #Occupy Case.

    PubMed

    Gargiulo, Floriana; Bindi, Jacopo; Apolloni, Andrea

    2015-01-01

    We analyse a large sample of the Twitter activity that developed around the social movement 'Occupy Wall Street', to study the complex interactions between the human communication activity and the semantic content of a debate. We use a network approach based on the analysis of the bipartite graph @Users-#Hashtags and of its projections: the 'semantic network', whose nodes are hashtags, and the 'users interest network', whose nodes are users. In the first instance, we find out that discussion topics (#hashtags) present a high structural heterogeneity, with a relevant role played by the semantic hubs that are responsible to guarantee the continuity of the debate. In the users' case, the self-organisation process of users' activity, leads to the emergence of two classes of communicators: the 'professionals' and the 'amateurs'. Both the networks present a strong community structure, based on the differentiation of the semantic topics, and a high level of structural robustness when certain sets of topics are censored and/or accounts are removed. By analysing the characteristics of the dynamical networks we can distinguish three phases of the discussion about the movement. Each phase corresponds to a specific moment of the movement: from declaration of intent, organisation and development and the final phase of political reactions. Each phase is characterised by the presence of prototypical #hashtags in the discussion.

  17. Depth Reconstruction from Single Images Using a Convolutional Neural Network and a Condition Random Field Model.

    PubMed

    Liu, Dan; Liu, Xuejun; Wu, Yiguang

    2018-04-24

    This paper presents an effective approach for depth reconstruction from a single image through the incorporation of semantic information and local details from the image. A unified framework for depth acquisition is constructed by joining a deep Convolutional Neural Network (CNN) and a continuous pairwise Conditional Random Field (CRF) model. Semantic information and relative depth trends of local regions inside the image are integrated into the framework. A deep CNN network is firstly used to automatically learn a hierarchical feature representation of the image. To get more local details in the image, the relative depth trends of local regions are incorporated into the network. Combined with semantic information of the image, a continuous pairwise CRF is then established and is used as the loss function of the unified model. Experiments on real scenes demonstrate that the proposed approach is effective and that the approach obtains satisfactory results.

  18. Structure at every scale: A semantic network account of the similarities between unrelated concepts.

    PubMed

    De Deyne, Simon; Navarro, Daniel J; Perfors, Amy; Storms, Gert

    2016-09-01

    Similarity plays an important role in organizing the semantic system. However, given that similarity cannot be defined on purely logical grounds, it is important to understand how people perceive similarities between different entities. Despite this, the vast majority of studies focus on measuring similarity between very closely related items. When considering concepts that are very weakly related, little is known. In this article, we present 4 experiments showing that there are reliable and systematic patterns in how people evaluate the similarities between very dissimilar entities. We present a semantic network account of these similarities showing that a spreading activation mechanism defined over a word association network naturally makes correct predictions about weak similarities, whereas, though simpler, models based on direct neighbors between word pairs derived using the same network cannot. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  19. Semantic Segmentation of Convolutional Neural Network for Supervised Classification of Multispectral Remote Sensing

    NASA Astrophysics Data System (ADS)

    Xue, L.; Liu, C.; Wu, Y.; Li, H.

    2018-04-01

    Semantic segmentation is a fundamental research in remote sensing image processing. Because of the complex maritime environment, the classification of roads, vegetation, buildings and water from remote Sensing Imagery is a challenging task. Although the neural network has achieved excellent performance in semantic segmentation in the last years, there are a few of works using CNN for ground object segmentation and the results could be further improved. This paper used convolution neural network named U-Net, its structure has a contracting path and an expansive path to get high resolution output. In the network , We added BN layers, which is more conducive to the reverse pass. Moreover, after upsampling convolution , we add dropout layers to prevent overfitting. They are promoted to get more precise segmentation results. To verify this network architecture, we used a Kaggle dataset. Experimental results show that U-Net achieved good performance compared with other architectures, especially in high-resolution remote sensing imagery.

  20. Semantic graphs and associative memories

    NASA Astrophysics Data System (ADS)

    Pomi, Andrés; Mizraji, Eduardo

    2004-12-01

    Graphs have been increasingly utilized in the characterization of complex networks from diverse origins, including different kinds of semantic networks. Human memories are associative and are known to support complex semantic nets; these nets are represented by graphs. However, it is not known how the brain can sustain these semantic graphs. The vision of cognitive brain activities, shown by modern functional imaging techniques, assigns renewed value to classical distributed associative memory models. Here we show that these neural network models, also known as correlation matrix memories, naturally support a graph representation of the stored semantic structure. We demonstrate that the adjacency matrix of this graph of associations is just the memory coded with the standard basis of the concept vector space, and that the spectrum of the graph is a code invariant of the memory. As long as the assumptions of the model remain valid this result provides a practical method to predict and modify the evolution of the cognitive dynamics. Also, it could provide us with a way to comprehend how individual brains that map the external reality, almost surely with different particular vector representations, are nevertheless able to communicate and share a common knowledge of the world. We finish presenting adaptive association graphs, an extension of the model that makes use of the tensor product, which provides a solution to the known problem of branching in semantic nets.

  1. Fronto-temporal interactions are functionally relevant for semantic control in language processing.

    PubMed

    Wawrzyniak, Max; Hoffstaedter, Felix; Klingbeil, Julian; Stockert, Anika; Wrede, Katrin; Hartwigsen, Gesa; Eickhoff, Simon B; Classen, Joseph; Saur, Dorothee

    2017-01-01

    Semantic cognition, i.e. processing of meaning is based on semantic representations and their controlled retrieval. Semantic control has been shown to be implemented in a network that consists of left inferior frontal (IFG), and anterior and posterior middle temporal gyri (a/pMTG). We aimed to disrupt semantic control processes with continuous theta burst stimulation (cTBS) over left IFG and pMTG and to study whether behavioral effects are moderated by induced alterations in resting-state functional connectivity. To this end, we applied real cTBS over left IFG and left pMTG as well as sham stimulation on 20 healthy participants in a within-subject design. Stimulation was followed by resting-state functional magnetic resonance imaging and a semantic priming paradigm. Resting-state functional connectivity of regions of interest in left IFG, pMTG and aMTG revealed highly interconnected left-lateralized fronto-temporal networks representing the semantic system. We did not find any significant direct modulation of either task performance or resting-state functional connectivity by effective cTBS. However, after sham cTBS, functional connectivity between IFG and pMTG correlated with task performance under high semantic control demands in the semantic priming paradigm. These findings provide evidence for the functional relevance of interactions between IFG and pMTG for semantic control processes. This interaction was functionally less relevant after cTBS over aIFG which might be interpretable in terms of an indirect disruptive effect of cTBS.

  2. Using triggered operations to offload collective communication operations.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barrett, Brian W.; Hemmert, K. Scott; Underwood, Keith Douglas

    2010-04-01

    Efficient collective operations are a major component of application scalability. Offload of collective operations onto the network interface reduces many of the latencies that are inherent in network communications and, consequently, reduces the time to perform the collective operation. To support offload, it is desirable to expose semantic building blocks that are simple to offload and yet powerful enough to implement a variety of collective algorithms. This paper presents the implementation of barrier and broadcast leveraging triggered operations - a semantic building block for collective offload. Triggered operations are shown to be both semantically powerful and capable of improving performance.

  3. [Semantic Network Analysis of Online News and Social Media Text Related to Comprehensive Nursing Care Service].

    PubMed

    Kim, Minji; Choi, Mona; Youm, Yoosik

    2017-12-01

    As comprehensive nursing care service has gradually expanded, it has become necessary to explore the various opinions about it. The purpose of this study is to explore the large amount of text data regarding comprehensive nursing care service extracted from online news and social media by applying a semantic network analysis. The web pages of the Korean Nurses Association (KNA) News, major daily newspapers, and Twitter were crawled by searching the keyword 'comprehensive nursing care service' using Python. A morphological analysis was performed using KoNLPy. Nodes on a 'comprehensive nursing care service' cluster were selected, and frequency, edge weight, and degree centrality were calculated and visualized with Gephi for the semantic network. A total of 536 news pages and 464 tweets were analyzed. In the KNA News and major daily newspapers, 'nursing workforce' and 'nursing service' were highly rated in frequency, edge weight, and degree centrality. On Twitter, the most frequent nodes were 'National Health Insurance Service' and 'comprehensive nursing care service hospital.' The nodes with the highest edge weight were 'national health insurance,' 'wards without caregiver presence,' and 'caregiving costs.' 'National Health Insurance Service' was highest in degree centrality. This study provides an example of how to use atypical big data for a nursing issue through semantic network analysis to explore diverse perspectives surrounding the nursing community through various media sources. Applying semantic network analysis to online big data to gather information regarding various nursing issues would help to explore opinions for formulating and implementing nursing policies. © 2017 Korean Society of Nursing Science

  4. Issues in Semantic Memory: A Response to Glass and Holyoak. Technical Report No. 101.

    ERIC Educational Resources Information Center

    Shoben, Edward J.; And Others

    Glass and Holyoak (1975) have raised two issues related to the distinction between set-theoretic and network theories of semantic memory, contending that: (a) their version of a network theory, the Marker Search model, is conceptually and empirically superior to the Feature Comparison model version of a set-theoretic theory; and (b) the contrast…

  5. Impact of Machine-Translated Text on Entity and Relationship Extraction

    DTIC Science & Technology

    2014-12-01

    20 1 1. Introduction Using social network analysis tools is an important asset in...semantic modeling software to automatically build detailed network models from unstructured text. Contour imports unstructured text and then maps the text...onto an existing ontology of frames at the sentence level, using FrameNet, a structured language model, and through Semantic Role Labeling ( SRL

  6. Translation-aware semantic segmentation via conditional least-square generative adversarial networks

    NASA Astrophysics Data System (ADS)

    Zhang, Mi; Hu, Xiangyun; Zhao, Like; Pang, Shiyan; Gong, Jinqi; Luo, Min

    2017-10-01

    Semantic segmentation has recently made rapid progress in the field of remote sensing and computer vision. However, many leading approaches cannot simultaneously translate label maps to possible source images with a limited number of training images. The core issue is insufficient adversarial information to interpret the inverse process and proper objective loss function to overcome the vanishing gradient problem. We propose the use of conditional least squares generative adversarial networks (CLS-GAN) to delineate visual objects and solve these problems. We trained the CLS-GAN network for semantic segmentation to discriminate dense prediction information either from training images or generative networks. We show that the optimal objective function of CLS-GAN is a special class of f-divergence and yields a generator that lies on the decision boundary of discriminator that reduces possible vanished gradient. We also demonstrate the effectiveness of the proposed architecture at translating images from label maps in the learning process. Experiments on a limited number of high resolution images, including close-range and remote sensing datasets, indicate that the proposed method leads to the improved semantic segmentation accuracy and can simultaneously generate high quality images from label maps.

  7. Lexical-semantic processing in the semantic priming paradigm in aphasic patients.

    PubMed

    Salles, Jerusa Fumagalli de; Holderbaum, Candice Steffen; Parente, Maria Alice Mattos Pimenta; Mansur, Letícia Lessa; Ansaldo, Ana Inès

    2012-09-01

    There is evidence that the explicit lexical-semantic processing deficits which characterize aphasia may be observed in the absence of implicit semantic impairment. The aim of this article was to critically review the international literature on lexical-semantic processing in aphasia, as tested through the semantic priming paradigm. Specifically, this review focused on aphasia and lexical-semantic processing, the methodological strengths and weaknesses of the semantic paradigms used, and recent evidence from neuroimaging studies on lexical-semantic processing. Furthermore, evidence on dissociations between implicit and explicit lexical-semantic processing reported in the literature will be discussed and interpreted by referring to functional neuroimaging evidence from healthy populations. There is evidence that semantic priming effects can be found both in fluent and in non-fluent aphasias, and that these effects are related to an extensive network which includes the temporal lobe, the pre-frontal cortex, the left frontal gyrus, the left temporal gyrus and the cingulated cortex.

  8. Frontotemporal neural systems supporting semantic processing in Alzheimer's disease.

    PubMed

    Peelle, Jonathan E; Powers, John; Cook, Philip A; Smith, Edward E; Grossman, Murray

    2014-03-01

    We hypothesized that semantic memory for object concepts involves both representations of visual feature knowledge in modality-specific association cortex and heteromodal regions that are important for integrating and organizing this semantic knowledge so that it can be used in a flexible, contextually appropriate manner. We examined this hypothesis in an fMRI study of mild Alzheimer's disease (AD). Participants were presented with pairs of printed words and asked whether the words matched on a given visual-perceptual feature (e.g., guitar, violin: SHAPE). The stimuli probed natural kinds and manufactured objects, and the judgments involved shape or color. We found activation of bilateral ventral temporal cortex and left dorsolateral prefrontal cortex during semantic judgments, with AD patients showing less activation of these regions than healthy seniors. Moreover, AD patients showed less ventral temporal activation than did healthy seniors for manufactured objects, but not for natural kinds. We also used diffusion-weighted MRI of white matter to examine fractional anisotropy (FA). Patients with AD showed significantly reduced FA in the superior longitudinal fasciculus and inferior frontal-occipital fasciculus, which carry projections linking temporal and frontal regions of this semantic network. Our results are consistent with the hypothesis that semantic memory is supported in part by a large-scale neural network involving modality-specific association cortex, heteromodal association cortex, and projections between these regions. The semantic deficit in AD thus arises from gray matter disease that affects the representation of feature knowledge and processing its content, as well as white matter disease that interrupts the integrated functioning of this large-scale network.

  9. A Comparison of Five FMRI Protocols for Mapping Speech Comprehension Systems

    PubMed Central

    Binder, Jeffrey R.; Swanson, Sara J.; Hammeke, Thomas A.; Sabsevitz, David S.

    2008-01-01

    Aims Many fMRI protocols for localizing speech comprehension have been described, but there has been little quantitative comparison of these methods. We compared five such protocols in terms of areas activated, extent of activation, and lateralization. Methods FMRI BOLD signals were measured in 26 healthy adults during passive listening and active tasks using words and tones. Contrasts were designed to identify speech perception and semantic processing systems. Activation extent and lateralization were quantified by counting activated voxels in each hemisphere for each participant. Results Passive listening to words produced bilateral superior temporal activation. After controlling for pre-linguistic auditory processing, only a small area in the left superior temporal sulcus responded selectively to speech. Active tasks engaged an extensive, bilateral attention and executive processing network. Optimal results (consistent activation and strongly lateralized pattern) were obtained by contrasting an active semantic decision task with a tone decision task. There was striking similarity between the network of brain regions activated by the semantic task and the network of brain regions that showed task-induced deactivation, suggesting that semantic processing occurs during the resting state. Conclusions FMRI protocols for mapping speech comprehension systems differ dramatically in pattern, extent, and lateralization of activation. Brain regions involved in semantic processing were identified only when an active, non-linguistic task was used as a baseline, supporting the notion that semantic processing occurs whenever attentional resources are not controlled. Identification of these lexical-semantic regions is particularly important for predicting language outcome in patients undergoing temporal lobe surgery. PMID:18513352

  10. Understanding Nomophobia: Structural Equation Modeling and Semantic Network Analysis of Smartphone Separation Anxiety.

    PubMed

    Han, Seunghee; Kim, Ki Joon; Kim, Jang Hyun

    2017-07-01

    This study explicates nomophobia by developing a research model that identifies several determinants of smartphone separation anxiety and by conducting semantic network analyses on smartphone users' verbal descriptions of the meaning of their smartphones. Structural equation modeling of the proposed model indicates that personal memories evoked by smartphones encourage users to extend their identity onto their devices. When users perceive smartphones as their extended selves, they are more likely to get attached to the devices, which, in turn, leads to nomophobia by heightening the phone proximity-seeking tendency. This finding is also supplemented by the results of the semantic network analyses revealing that the words related to memory, self, and proximity-seeking are indeed more frequently used in the high, compared with low, nomophobia group.

  11. Data interoperabilty between European Environmental Research Infrastructures and their contribution to global data networks

    NASA Astrophysics Data System (ADS)

    Kutsch, W. L.; Zhao, Z.; Hardisty, A.; Hellström, M.; Chin, Y.; Magagna, B.; Asmi, A.; Papale, D.; Pfeil, B.; Atkinson, M.

    2017-12-01

    Environmental Research Infrastructures (ENVRIs) are expected to become important pillars not only for supporting their own scientific communities, but also a) for inter-disciplinary research and b) for the European Earth Observation Program Copernicus as a contribution to the Global Earth Observation System of Systems (GEOSS) or global thematic data networks. As such, it is very important that data-related activities of the ENVRIs will be well integrated. This requires common policies, models and e-infrastructure to optimise technological implementation, define workflows, and ensure coordination, harmonisation, integration and interoperability of data, applications and other services. The key is interoperating common metadata systems (utilising a richer metadata model as the `switchboard' for interoperation with formal syntax and declared semantics). The metadata characterises data, services, users and ICT resources (including sensors and detectors). The European Cluster Project ENVRIplus has developed a reference model (ENVRI RM) for common data infrastructure architecture to promote interoperability among ENVRIs. The presentation will provide an overview of recent progress and give examples for the integration of ENVRI data in global integration networks.

  12. Unsupervised User Similarity Mining in GSM Sensor Networks

    PubMed Central

    Shad, Shafqat Ali; Chen, Enhong

    2013-01-01

    Mobility data has attracted the researchers for the past few years because of its rich context and spatiotemporal nature, where this information can be used for potential applications like early warning system, route prediction, traffic management, advertisement, social networking, and community finding. All the mentioned applications are based on mobility profile building and user trend analysis, where mobility profile building is done through significant places extraction, user's actual movement prediction, and context awareness. However, significant places extraction and user's actual movement prediction for mobility profile building are a trivial task. In this paper, we present the user similarity mining-based methodology through user mobility profile building by using the semantic tagging information provided by user and basic GSM network architecture properties based on unsupervised clustering approach. As the mobility information is in low-level raw form, our proposed methodology successfully converts it to a high-level meaningful information by using the cell-Id location information rather than previously used location capturing methods like GPS, Infrared, and Wifi for profile mining and user similarity mining. PMID:23576905

  13. Ontological Representation of Light Wave Camera Data to Support Vision-Based AmI

    PubMed Central

    Serrano, Miguel Ángel; Gómez-Romero, Juan; Patricio, Miguel Ángel; García, Jesús; Molina, José Manuel

    2012-01-01

    Recent advances in technologies for capturing video data have opened a vast amount of new application areas in visual sensor networks. Among them, the incorporation of light wave cameras on Ambient Intelligence (AmI) environments provides more accurate tracking capabilities for activity recognition. Although the performance of tracking algorithms has quickly improved, symbolic models used to represent the resulting knowledge have not yet been adapted to smart environments. This lack of representation does not allow to take advantage of the semantic quality of the information provided by new sensors. This paper advocates for the introduction of a part-based representational level in cognitive-based systems in order to accurately represent the novel sensors' knowledge. The paper also reviews the theoretical and practical issues in part-whole relationships proposing a specific taxonomy for computer vision approaches. General part-based patterns for human body and transitive part-based representation and inference are incorporated to an ontology-based previous framework to enhance scene interpretation in the area of video-based AmI. The advantages and new features of the model are demonstrated in a Social Signal Processing (SSP) application for the elaboration of live market researches.

  14. The time course of auditory-visual processing of speech and body actions: evidence for the simultaneous activation of an extended neural network for semantic processing.

    PubMed

    Meyer, Georg F; Harrison, Neil R; Wuerger, Sophie M

    2013-08-01

    An extensive network of cortical areas is involved in multisensory object and action recognition. This network draws on inferior frontal, posterior temporal, and parietal areas; activity is modulated by familiarity and the semantic congruency of auditory and visual component signals even if semantic incongruences are created by combining visual and auditory signals representing very different signal categories, such as speech and whole body actions. Here we present results from a high-density ERP study designed to examine the time-course and source location of responses to semantically congruent and incongruent audiovisual speech and body actions to explore whether the network involved in action recognition consists of a hierarchy of sequentially activated processing modules or a network of simultaneously active processing sites. We report two main results:1) There are no significant early differences in the processing of congruent and incongruent audiovisual action sequences. The earliest difference between congruent and incongruent audiovisual stimuli occurs between 240 and 280 ms after stimulus onset in the left temporal region. Between 340 and 420 ms, semantic congruence modulates responses in central and right frontal areas. Late differences (after 460 ms) occur bilaterally in frontal areas.2) Source localisation (dipole modelling and LORETA) reveals that an extended network encompassing inferior frontal, temporal, parasaggital, and superior parietal sites are simultaneously active between 180 and 420 ms to process auditory–visual action sequences. Early activation (before 120 ms) can be explained by activity in mainly sensory cortices. . The simultaneous activation of an extended network between 180 and 420 ms is consistent with models that posit parallel processing of complex action sequences in frontal, temporal and parietal areas rather than models that postulate hierarchical processing in a sequence of brain regions. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. Structured Semantic Knowledge Can Emerge Automatically from Predicting Word Sequences in Child-Directed Speech

    PubMed Central

    Huebner, Philip A.; Willits, Jon A.

    2018-01-01

    Previous research has suggested that distributional learning mechanisms may contribute to the acquisition of semantic knowledge. However, distributional learning mechanisms, statistical learning, and contemporary “deep learning” approaches have been criticized for being incapable of learning the kind of abstract and structured knowledge that many think is required for acquisition of semantic knowledge. In this paper, we show that recurrent neural networks, trained on noisy naturalistic speech to children, do in fact learn what appears to be abstract and structured knowledge. We trained two types of recurrent neural networks (Simple Recurrent Network, and Long Short-Term Memory) to predict word sequences in a 5-million-word corpus of speech directed to children ages 0–3 years old, and assessed what semantic knowledge they acquired. We found that learned internal representations are encoding various abstract grammatical and semantic features that are useful for predicting word sequences. Assessing the organization of semantic knowledge in terms of the similarity structure, we found evidence of emergent categorical and hierarchical structure in both models. We found that the Long Short-term Memory (LSTM) and SRN are both learning very similar kinds of representations, but the LSTM achieved higher levels of performance on a quantitative evaluation. We also trained a non-recurrent neural network, Skip-gram, on the same input to compare our results to the state-of-the-art in machine learning. We found that Skip-gram achieves relatively similar performance to the LSTM, but is representing words more in terms of thematic compared to taxonomic relations, and we provide reasons why this might be the case. Our findings show that a learning system that derives abstract, distributed representations for the purpose of predicting sequential dependencies in naturalistic language may provide insight into emergence of many properties of the developing semantic system. PMID:29520243

  16. Semantic Indexing of Medical Learning Objects: Medical Students' Usage of a Semantic Network

    PubMed Central

    Gießler, Paul; Ohnesorge-Radtke, Ursula; Spreckelsen, Cord

    2015-01-01

    Background The Semantically Annotated Media (SAM) project aims to provide a flexible platform for searching, browsing, and indexing medical learning objects (MLOs) based on a semantic network derived from established classification systems. Primarily, SAM supports the Aachen emedia skills lab, but SAM is ready for indexing distributed content and the Simple Knowledge Organizing System standard provides a means for easily upgrading or even exchanging SAM’s semantic network. There is a lack of research addressing the usability of MLO indexes or search portals like SAM and the user behavior with such platforms. Objective The purpose of this study was to assess the usability of SAM by investigating characteristic user behavior of medical students accessing MLOs via SAM. Methods In this study, we chose a mixed-methods approach. Lean usability testing was combined with usability inspection by having the participants complete four typical usage scenarios before filling out a questionnaire. The questionnaire was based on the IsoMetrics usability inventory. Direct user interaction with SAM (mouse clicks and pages accessed) was logged. Results The study analyzed the typical usage patterns and habits of students using a semantic network for accessing MLOs. Four scenarios capturing characteristics of typical tasks to be solved by using SAM yielded high ratings of usability items and showed good results concerning the consistency of indexing by different users. Long-tail phenomena emerge as they are typical for a collaborative Web 2.0 platform. Suitable but nonetheless rarely used keywords were assigned to MLOs by some users. Conclusions It is possible to develop a Web-based tool with high usability and acceptance for indexing and retrieval of MLOs. SAM can be applied to indexing multicentered repositories of MLOs collaboratively. PMID:27731860

  17. Semantic Indexing of Medical Learning Objects: Medical Students' Usage of a Semantic Network.

    PubMed

    Tix, Nadine; Gießler, Paul; Ohnesorge-Radtke, Ursula; Spreckelsen, Cord

    2015-11-11

    The Semantically Annotated Media (SAM) project aims to provide a flexible platform for searching, browsing, and indexing medical learning objects (MLOs) based on a semantic network derived from established classification systems. Primarily, SAM supports the Aachen emedia skills lab, but SAM is ready for indexing distributed content and the Simple Knowledge Organizing System standard provides a means for easily upgrading or even exchanging SAM's semantic network. There is a lack of research addressing the usability of MLO indexes or search portals like SAM and the user behavior with such platforms. The purpose of this study was to assess the usability of SAM by investigating characteristic user behavior of medical students accessing MLOs via SAM. In this study, we chose a mixed-methods approach. Lean usability testing was combined with usability inspection by having the participants complete four typical usage scenarios before filling out a questionnaire. The questionnaire was based on the IsoMetrics usability inventory. Direct user interaction with SAM (mouse clicks and pages accessed) was logged. The study analyzed the typical usage patterns and habits of students using a semantic network for accessing MLOs. Four scenarios capturing characteristics of typical tasks to be solved by using SAM yielded high ratings of usability items and showed good results concerning the consistency of indexing by different users. Long-tail phenomena emerge as they are typical for a collaborative Web 2.0 platform. Suitable but nonetheless rarely used keywords were assigned to MLOs by some users. It is possible to develop a Web-based tool with high usability and acceptance for indexing and retrieval of MLOs. SAM can be applied to indexing multicentered repositories of MLOs collaboratively.

  18. Provenance in Data Interoperability for Multi-Sensor Intercomparison

    NASA Technical Reports Server (NTRS)

    Lynnes, Chris; Leptoukh, Greg; Berrick, Steve; Shen, Suhung; Prados, Ana; Fox, Peter; Yang, Wenli; Min, Min; Holloway, Dan; Enloe, Yonsook

    2008-01-01

    As our inventory of Earth science data sets grows, the ability to compare, merge and fuse multiple datasets grows in importance. This requires a deeper data interoperability than we have now. Efforts such as Open Geospatial Consortium and OPeNDAP (Open-source Project for a Network Data Access Protocol) have broken down format barriers to interoperability; the next challenge is the semantic aspects of the data. Consider the issues when satellite data are merged, cross-calibrated, validated, inter-compared and fused. We must match up data sets that are related, yet different in significant ways: the phenomenon being measured, measurement technique, location in space-time or quality of the measurements. If subtle distinctions between similar measurements are not clear to the user, results can be meaningless or lead to an incorrect interpretation of the data. Most of these distinctions trace to how the data came to be: sensors, processing and quality assessment. For example, monthly averages of satellite-based aerosol measurements often show significant discrepancies, which might be due to differences in spatio- temporal aggregation, sampling issues, sensor biases, algorithm differences or calibration issues. Provenance information must be captured in a semantic framework that allows data inter-use tools to incorporate it and aid in the intervention of comparison or merged products. Semantic web technology allows us to encode our knowledge of measurement characteristics, phenomena measured, space-time representation, and data quality attributes in a well-structured, machine-readable ontology and rulesets. An analysis tool can use this knowledge to show users the provenance-related distrintions between two variables, advising on options for further data processing and analysis. An additional problem for workflows distributed across heterogeneous systems is retrieval and transport of provenance. Provenance may be either embedded within the data payload, or transmitted from server to client in an out-of-band mechanism. The out of band mechanism is more flexible in the richness of provenance information that can be accomodated, but it relies on a persistent framework and can be difficult for legacy clients to use. We are prototyping the embedded model, incorporating provenance within metadata objects in the data payload. Thus, it always remains with the data. The downside is a limit to the size of provenance metadata that we can include, an issue that will eventually need resolution to encompass the richness of provenance information required for daata intercomparison and merging.

  19. Lexico-Semantic Processing in Children with Specific Language Impairment: The Overactivation Hypothesis

    ERIC Educational Resources Information Center

    Pizzioli, Fabrizio; Schelstraete, Marie-Anne

    2011-01-01

    The hypothesis indicating an overactivation of the lexico-semantic network in children with specific language impairment (SLI) was tested using an auditory pair-primed paradigm (PPP), where participants made a lexical-decision on the second word of a noun pair that could be semantically related, or not, to the first one. Though children with SLI…

  20. Determinants of Multiple Semantic Priming: A Meta-Analysis and Spike Frequency Adaptive Model of a Cortical Network

    ERIC Educational Resources Information Center

    Lavigne, Frederic; Dumercy, Laurent; Darmon, Nelly

    2011-01-01

    Recall and language comprehension while processing sequences of words involves multiple semantic priming between several related and/or unrelated words. Accounting for multiple and interacting priming effects in terms of underlying neuronal structure and dynamics is a challenge for current models of semantic priming. Further elaboration of current…

  1. Functional Connectivity in an fMRI Study of Semantic and Phonological Processes and the Effect of L-Dopa

    ERIC Educational Resources Information Center

    Tivarus, Madalina E.; Hillier, Ashleigh; Schmalbrock, Petra; Beversdorf, David Q.

    2008-01-01

    We describe an fMRI experiment examining the functional connectivity (FC) between regions of the brain associated with semantic and phonological processing. We wished to explore whether L-Dopa administration affects the interaction between language network components in semantic and phonological categorization tasks, as revealed by FC. We…

  2. Causal premise semantics.

    PubMed

    Kaufmann, Stefan

    2013-08-01

    The rise of causality and the attendant graph-theoretic modeling tools in the study of counterfactual reasoning has had resounding effects in many areas of cognitive science, but it has thus far not permeated the mainstream in linguistic theory to a comparable degree. In this study I show that a version of the predominant framework for the formal semantic analysis of conditionals, Kratzer-style premise semantics, allows for a straightforward implementation of the crucial ideas and insights of Pearl-style causal networks. I spell out the details of such an implementation, focusing especially on the notions of intervention on a network and backtracking interpretations of counterfactuals. Copyright © 2013 Cognitive Science Society, Inc.

  3. Real-time object detection and semantic segmentation for autonomous driving

    NASA Astrophysics Data System (ADS)

    Li, Baojun; Liu, Shun; Xu, Weichao; Qiu, Wei

    2018-02-01

    In this paper, we proposed a Highly Coupled Network (HCNet) for joint objection detection and semantic segmentation. It follows that our method is faster and performs better than the previous approaches whose decoder networks of different tasks are independent. Besides, we present multi-scale loss architecture to learn better representation for different scale objects, but without extra time in the inference phase. Experiment results show that our method achieves state-of-the-art results on the KITTI datasets. Moreover, it can run at 35 FPS on a GPU and thus is a practical solution to object detection and semantic segmentation for autonomous driving.

  4. If You Don't Have Valence, Ask Your Neighbor: Evaluation of Neutral Words as a Function of Affective Semantic Associates

    PubMed Central

    Kuhlmann, Michael; Hofmann, Markus J.; Jacobs, Arthur M.

    2017-01-01

    How do humans perform difficult forced-choice evaluations, e.g., of words that have been previously rated as being neutral? Here we tested the hypothesis that in this case, the valence of semantic associates is of significant influence. From corpus based co-occurrence statistics as a measure of association strength we computed individual neighborhoods for single neutral words comprised of the 10 words with the largest association strength. We then selected neutral words according to the valence of the associated words included in the neighborhoods, which were either mostly positive, mostly negative, mostly neutral or mixed positive and negative, and tested them using a valence decision task (VDT). The data showed that the valence of semantic neighbors can predict valence judgments to neutral words. However, all but the positive neighborhood items revealed a high tendency to elicit negative responses. For the positive and negative neighborhood categories responses congruent with the neighborhood's valence were faster than incongruent responses. We interpret this effect as a semantic network process that supports the evaluation of neutral words by assessing the valence of the associative semantic neighborhood. In this perspective, valence is considered a semantic super-feature, at least partially represented in associative activation patterns of semantic networks. PMID:28348538

  5. Multiple Regions of a Cortical Network Commonly Encode the Meaning of Words in Multiple Grammatical Positions of Read Sentences.

    PubMed

    Anderson, Andrew James; Lalor, Edmund C; Lin, Feng; Binder, Jeffrey R; Fernandino, Leonardo; Humphries, Colin J; Conant, Lisa L; Raizada, Rajeev D S; Grimm, Scott; Wang, Xixi

    2018-05-16

    Deciphering how sentence meaning is represented in the brain remains a major challenge to science. Semantically related neural activity has recently been shown to arise concurrently in distributed brain regions as successive words in a sentence are read. However, what semantic content is represented by different regions, what is common across them, and how this relates to words in different grammatical positions of sentences is weakly understood. To address these questions, we apply a semantic model of word meaning to interpret brain activation patterns elicited in sentence reading. The model is based on human ratings of 65 sensory/motor/emotional and cognitive features of experience with words (and their referents). Through a process of mapping functional Magnetic Resonance Imaging activation back into model space we test: which brain regions semantically encode content words in different grammatical positions (e.g., subject/verb/object); and what semantic features are encoded by different regions. In left temporal, inferior parietal, and inferior/superior frontal regions we detect the semantic encoding of words in all grammatical positions tested and reveal multiple common components of semantic representation. This suggests that sentence comprehension involves a common core representation of multiple words' meaning being encoded in a network of regions distributed across the brain.

  6. If You Don't Have Valence, Ask Your Neighbor: Evaluation of Neutral Words as a Function of Affective Semantic Associates.

    PubMed

    Kuhlmann, Michael; Hofmann, Markus J; Jacobs, Arthur M

    2017-01-01

    How do humans perform difficult forced-choice evaluations, e.g., of words that have been previously rated as being neutral? Here we tested the hypothesis that in this case, the valence of semantic associates is of significant influence. From corpus based co-occurrence statistics as a measure of association strength we computed individual neighborhoods for single neutral words comprised of the 10 words with the largest association strength. We then selected neutral words according to the valence of the associated words included in the neighborhoods, which were either mostly positive, mostly negative, mostly neutral or mixed positive and negative, and tested them using a valence decision task (VDT). The data showed that the valence of semantic neighbors can predict valence judgments to neutral words. However, all but the positive neighborhood items revealed a high tendency to elicit negative responses. For the positive and negative neighborhood categories responses congruent with the neighborhood's valence were faster than incongruent responses. We interpret this effect as a semantic network process that supports the evaluation of neutral words by assessing the valence of the associative semantic neighborhood. In this perspective, valence is considered a semantic super-feature, at least partially represented in associative activation patterns of semantic networks.

  7. Selective Attention to Semantic and Syntactic Features Modulates Sentence Processing Networks in Anterior Temporal Cortex

    PubMed Central

    Rogalsky, Corianne

    2009-01-01

    Numerous studies have identified an anterior temporal lobe (ATL) region that responds preferentially to sentence-level stimuli. It is unclear, however, whether this activity reflects a response to syntactic computations or some form of semantic integration. This distinction is difficult to investigate with the stimulus manipulations and anomaly detection paradigms traditionally implemented. The present functional magnetic resonance imaging study addresses this question via a selective attention paradigm. Subjects monitored for occasional semantic anomalies or occasional syntactic errors, thus directing their attention to semantic integration, or syntactic properties of the sentences. The hemodynamic response in the sentence-selective ATL region (defined with a localizer scan) was examined during anomaly/error-free sentences only, to avoid confounds due to error detection. The majority of the sentence-specific region of interest was equally modulated by attention to syntactic or compositional semantic features, whereas a smaller subregion was only modulated by the semantic task. We suggest that the sentence-specific ATL region is sensitive to both syntactic and integrative semantic functions during sentence processing, with a smaller portion of this area preferentially involved in the later. This study also suggests that selective attention paradigms may be effective tools to investigate the functional diversity of networks involved in sentence processing. PMID:18669589

  8. Improving life sciences information retrieval using semantic web technology.

    PubMed

    Quan, Dennis

    2007-05-01

    The ability to retrieve relevant information is at the heart of every aspect of research and development in the life sciences industry. Information is often distributed across multiple systems and recorded in a way that makes it difficult to piece together the complete picture. Differences in data formats, naming schemes and network protocols amongst information sources, both public and private, must be overcome, and user interfaces not only need to be able to tap into these diverse information sources but must also assist users in filtering out extraneous information and highlighting the key relationships hidden within an aggregated set of information. The Semantic Web community has made great strides in proposing solutions to these problems, and many efforts are underway to apply Semantic Web techniques to the problem of information retrieval in the life sciences space. This article gives an overview of the principles underlying a Semantic Web-enabled information retrieval system: creating a unified abstraction for knowledge using the RDF semantic network model; designing semantic lenses that extract contextually relevant subsets of information; and assembling semantic lenses into powerful information displays. Furthermore, concrete examples of how these principles can be applied to life science problems including a scenario involving a drug discovery dashboard prototype called BioDash are provided.

  9. Semantic Segmentation of Indoor Point Clouds Using Convolutional Neural Network

    NASA Astrophysics Data System (ADS)

    Babacan, K.; Chen, L.; Sohn, G.

    2017-11-01

    As Building Information Modelling (BIM) thrives, geometry becomes no longer sufficient; an ever increasing variety of semantic information is needed to express an indoor model adequately. On the other hand, for the existing buildings, automatically generating semantically enriched BIM from point cloud data is in its infancy. The previous research to enhance the semantic content rely on frameworks in which some specific rules and/or features that are hand coded by specialists. These methods immanently lack generalization and easily break in different circumstances. On this account, a generalized framework is urgently needed to automatically and accurately generate semantic information. Therefore we propose to employ deep learning techniques for the semantic segmentation of point clouds into meaningful parts. More specifically, we build a volumetric data representation in order to efficiently generate the high number of training samples needed to initiate a convolutional neural network architecture. The feedforward propagation is used in such a way to perform the classification in voxel level for achieving semantic segmentation. The method is tested both for a mobile laser scanner point cloud, and a larger scale synthetically generated data. We also demonstrate a case study, in which our method can be effectively used to leverage the extraction of planar surfaces in challenging cluttered indoor environments.

  10. A dictionary server for supplying context sensitive medical knowledge.

    PubMed

    Ruan, W; Bürkle, T; Dudeck, J

    2000-01-01

    The Giessen Data Dictionary Server (GDDS), developed at Giessen University Hospital, integrates clinical systems with on-line, context sensitive medical knowledge to help with making medical decisions. By "context" we mean the clinical information that is being presented at the moment the information need is occurring. The dictionary server makes use of a semantic network supported by a medical data dictionary to link terms from clinical applications to their proper information sources. It has been designed to analyze the network structure itself instead of knowing the layout of the semantic net in advance. This enables us to map appropriate information sources to various clinical applications, such as nursing documentation, drug prescription and cancer follow up systems. This paper describes the function of the dictionary server and shows how the knowledge stored in the semantic network is used in the dictionary service.

  11. An open repositories network development for medical teaching resources.

    PubMed

    Soula, Gérard; Darmoni, Stefan; Le Beux, Pierre; Renard, Jean-Marie; Dahamna, Badisse; Fieschi, Marius

    2010-01-01

    The lack of interoperability between repositories of heterogeneous and geographically widespread data is an obstacle to the diffusion, sharing and reutilization of those data. We present the development of an open repositories network taking into account both the syntactic and semantic interoperability of the different repositories and based on international standards in this field. The network is used by the medical community in France for the diffusion and sharing of digital teaching resources. The syntactic interoperability of the repositories is managed using the OAI-PMH protocol for the exchange of metadata describing the resources. Semantic interoperability is based, on one hand, on the LOM standard for the description of resources and on MESH for the indexing of the latter and, on the other hand, on semantic interoperability management designed to optimize compliance with standards and the quality of the metadata.

  12. Interleaving Semantic Web Reasoning and Service Discovery to Enforce Context-Sensitive Security and Privacy Policies

    DTIC Science & Technology

    2005-07-01

    policies in pervasive computing environments. In this context, the owner of information sources (e.g. user, sensor, application, or organization...work in decentralized trust management and semantic web technologies . Section 3 introduces an Information Disclosure Agent architecture for...Norman Sadeh July 2005 CMU-ISRI-05-113 School of Computer Science, Carnegie Mellon University 5000 Forbes Avenue, Pittsburgh, PA, 15213

  13. Energy-efficient privacy protection for smart home environments using behavioral semantics.

    PubMed

    Park, Homin; Basaran, Can; Park, Taejoon; Son, Sang Hyuk

    2014-09-02

    Research on smart environments saturated with ubiquitous computing devices is rapidly advancing while raising serious privacy issues. According to recent studies, privacy concerns significantly hinder widespread adoption of smart home technologies. Previous work has shown that it is possible to infer the activities of daily living within environments equipped with wireless sensors by monitoring radio fingerprints and traffic patterns. Since data encryption cannot prevent privacy invasions exploiting transmission pattern analysis and statistical inference, various methods based on fake data generation for concealing traffic patterns have been studied. In this paper, we describe an energy-efficient, light-weight, low-latency algorithm for creating dummy activities that are semantically similar to the observed phenomena. By using these cloaking activities, the amount of  fake data transmissions can be flexibly controlled to support a trade-off between energy efficiency and privacy protection. According to the experiments using real data collected from a smart home environment, our proposed method can extend the lifetime of the network by more than 2× compared to the previous methods in the literature. Furthermore, the activity cloaking method supports low latency transmission of real data while also significantly reducing the accuracy of the wireless snooping attacks.

  14. Energy-Efficient Privacy Protection for Smart Home Environments Using Behavioral Semantics

    PubMed Central

    Park, Homin; Basaran, Can; Park, Taejoon; Son, Sang Hyuk

    2014-01-01

    Research on smart environments saturated with ubiquitous computing devices is rapidly advancing while raising serious privacy issues. According to recent studies, privacy concerns significantly hinder widespread adoption of smart home technologies. Previous work has shown that it is possible to infer the activities of daily living within environments equipped with wireless sensors by monitoring radio fingerprints and traffic patterns. Since data encryption cannot prevent privacy invasions exploiting transmission pattern analysis and statistical inference, various methods based on fake data generation for concealing traffic patterns have been studied. In this paper, we describe an energy-efficient, light-weight, low-latency algorithm for creating dummy activities that are semantically similar to the observed phenomena. By using these cloaking activities, the amount of fake data transmissions can be flexibly controlled to support a trade-off between energy efficiency and privacy protection. According to the experiments using real data collected from a smart home environment, our proposed method can extend the lifetime of the network by more than 2× compared to the previous methods in the literature. Furthermore, the activity cloaking method supports low latency transmission of real data while also significantly reducing the accuracy of the wireless snooping attacks. PMID:25184489

  15. Varieties of semantic cognition revealed through simultaneous decomposition of intrinsic brain connectivity and behaviour.

    PubMed

    Vatansever, Deniz; Bzdok, Danilo; Wang, Hao-Ting; Mollo, Giovanna; Sormaz, Mladen; Murphy, Charlotte; Karapanagiotidis, Theodoros; Smallwood, Jonathan; Jefferies, Elizabeth

    2017-09-01

    Contemporary theories assume that semantic cognition emerges from a neural architecture in which different component processes are combined to produce aspects of conceptual thought and behaviour. In addition to the state-level, momentary variation in brain connectivity, individuals may also differ in their propensity to generate particular configurations of such components, and these trait-level differences may relate to individual differences in semantic cognition. We tested this view by exploring how variation in intrinsic brain functional connectivity between semantic nodes in fMRI was related to performance on a battery of semantic tasks in 154 healthy participants. Through simultaneous decomposition of brain functional connectivity and semantic task performance, we identified distinct components of semantic cognition at rest. In a subsequent validation step, these data-driven components demonstrated explanatory power for neural responses in an fMRI-based semantic localiser task and variation in self-generated thoughts during the resting-state scan. Our findings showed that good performance on harder semantic tasks was associated with relative segregation at rest between frontal brain regions implicated in controlled semantic retrieval and the default mode network. Poor performance on easier tasks was linked to greater coupling between the same frontal regions and the anterior temporal lobe; a pattern associated with deliberate, verbal thematic thoughts at rest. We also identified components that related to qualities of semantic cognition: relatively good performance on pictorial semantic tasks was associated with greater separation of angular gyrus from frontal control sites and greater integration with posterior cingulate and anterior temporal cortex. In contrast, good speech production was linked to the separation of angular gyrus, posterior cingulate and temporal lobe regions. Together these data show that quantitative and qualitative variation in semantic cognition across individuals emerges from variations in the interaction of nodes within distinct functional brain networks. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. GeoChronos: An On-line Collaborative Platform for Earth Observation Scientists

    NASA Astrophysics Data System (ADS)

    Gamon, J. A.; Kiddle, C.; Curry, R.; Markatchev, N.; Zonta-Pastorello, G., Jr.; Rivard, B.; Sanchez-Azofeifa, G. A.; Simmonds, R.; Tan, T.

    2009-12-01

    Recent advances in cyberinfrastructure are offering new solutions to the growing challenges of managing and sharing large data volumes. Web 2.0 and social networking technologies, provide the means for scientists to collaborate and share information more effectively. Cloud computing technologies can provide scientists with transparent and on-demand access to applications served over the Internet in a dynamic and scalable manner. Semantic Web technologies allow for data to be linked together in a manner understandable by machines, enabling greater automation. Combining all of these technologies together can enable the creation of very powerful platforms. GeoChronos (http://geochronos.org/), part of a CANARIE Network Enabled Platforms project, is an online collaborative platform that incorporates these technologies to enable members of the earth observation science community to share data and scientific applications and to collaborate more effectively. The GeoChronos portal is built on an open source social networking platform called Elgg. Elgg provides a full set of social networking functionalities similar to Facebook including blogs, tags, media/document sharing, wikis, friends/contacts, groups, discussions, message boards, calendars, status, activity feeds and more. An underlying cloud computing infrastructure enables scientists to access dynamically provisioned applications via the portal for visualizing and analyzing data. Users are able to access and run the applications from any computer that has a Web browser and Internet connectivity and do not need to manage and maintain the applications themselves. Semantic Web Technologies, such as the Resource Description Framework (RDF) are being employed for relating and linking together spectral, satellite, meteorological and other data. Social networking functionality plays an integral part in facilitating the sharing of data and applications. Examples of recent GeoChronos users during the early testing phase have included the IAI International Wireless Sensor Networking Summer School at the University of Alberta, and the IAI Tropi-Dry community. Current GeoChronos activities include the development of a web-based spectral library and related analytical and visualization tools, in collaboration with members of the SpecNet community. The GeoChronos portal will be open to all members of the earth observation science community when the project nears completion at the end of 2010.

  17. Single Sided Messaging v. 0.6.6

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Curry, Matthew Leon; Farmer, Matthew Shane; Hassani, Amin

    Single-Sided Messaging (SSM) is a portable, multitransport networking library that enables applications to leverage potential one-sided capabilities of underlying network transports. It also provides desirable semantics that services for highperformance, massively parallel computers can leverage, such as an explicit cancel operation for pending transmissions, as well as enhanced matching semantics favoring large numbers of buffers attached to a single match entry. This release supports TCP/IP, shared memory, and Infiniband.

  18. Effects of semantic relatedness on recall of stimuli preceding emotional oddballs.

    PubMed

    Smith, Ryan M; Beversdorf, David Q

    2008-07-01

    Semantic and episodic memory networks function as highly interconnected systems, both relying on the hippocampal/medial temporal lobe complex (HC/MTL). Episodic memory encoding triggers the retrieval of semantic information, serving to incorporate contextual relationships between the newly acquired memory and existing semantic representations. While emotional material augments episodic memory encoding at the time of stimulus presentation, interactions between emotion and semantic memory that contribute to subsequent episodic recall are not well understood. Using a modified oddball task, we examined the modulatory effects of negative emotion on semantic interactions with episodic memory by measuring the free-recall of serially presented neutral or negative words varying in semantic relatedness. We found increased free-recall for words related to and preceding emotionally negative oddballs, suggesting that negative emotion can indirectly facilitate episodic free-recall by enhancing semantic contributions during encoding. Our findings demonstrate the ability of emotion and semantic memory to interact to mutually enhance free-recall.

  19. When cancer is associated with illness but no longer with animal or zodiac sign: investigation of biased semantic networks in obsessive-compulsive disorder (OCD).

    PubMed

    Jelinek, Lena; Hottenrott, Birgit; Moritz, Steffen

    2009-12-01

    Building upon semantic network models, it is proposed that individuals with obsessive-compulsive disorder (OCD) process ambiguous words (e.g., homographs such as cancer) preferably in the context of the OC meaning (i.e., illness) and connect them to a lesser degree to other (neutral) cognitions (e.g., animal). To investigate this assumption, a new task was designed requiring participants to generate up to five associations for different cue words. Cue words were either emotionally neutral, negative or OC-relevant. Two thirds of the items were homographs, while the rest was unambiguous. Twenty-five OCD and 21 healthy participants were recruited via internet. Analyses reveal that OCD participants produced significantly more negative and OC-relevant associations than controls, supporting the assumption of biased associative networks in OCD. The findings support the use of psychological interventions such as Association Splitting that aim at restructuring associative networks in OCD by broadening the semantic scope of OC cognitions.

  20. Social networking sites use and the morphology of a social-semantic brain network.

    PubMed

    Turel, Ofir; He, Qinghua; Brevers, Damien; Bechara, Antoine

    2017-09-30

    Social lives have shifted, at least in part, for large portions of the population to social networking sites. How such lifestyle changes may be associated with brain structures is still largely unknown. In this manuscript, we describe two preliminary studies aimed at exploring this issue. The first study (n = 276) showed that Facebook users reported on increased social-semantic and mentalizing demands, and that such increases were positively associated with people's level of Facebook use. The second study (n = 33) theorized on and examined likely anatomical correlates of such changes in demands on the brain. Findings indicated that the grey matter volumes of the posterior parts of the bilateral middle and superior temporal, and left fusiform gyri were positively associated with the level of Facebook use. These results provided preliminary evidence that grey matter volumes of brain structures involved in social-semantic and mentalizing tasks may be linked to the extent of social networking sites use.

  1. Semantic disturbance in schizophrenia and its relationship to the cognitive neuroscience of attention

    PubMed Central

    Nestor, P.G.; Han, S.D.; Niznikiewicz, M.; Salisbury, D.; Spencer, K.; Shenton, M.E.; McCarley, R.W.

    2010-01-01

    We view schizophrenia as producing a failure of attentional modulation that leads to a breakdown in the selective enhancement or inhibition of semantic/lexical representations whose biological substrata are widely distributed across left (dominant) temporal and frontal lobes. Supporting behavioral evidence includes word recall studies that have pointed to a disturbance in connectivity (associative strength) but not network size (number of associates) in patients with schizophrenia. Paralleling these findings are recent neural network simulation studies of the abnormal connectivity effect in schizophrenia through ‘lesioning’ network connection weights while holding constant network size. Supporting evidence at the level of biology are in vitro studies examining N-methyl-d-aspartate (NMDA) receptor antagonists on recurrent inhibition; simulations in neural populations with realistically modeled biophysical properties show NMDA antagonists produce a schizophrenia-like disturbance in pattern association. We propose a similar failure of NMDA-mediated recurrent inhibition as a candidate biological substrate for attention and semantic anomalies of schizophrenia. PMID:11454433

  2. Semantic segmentation of mFISH images using convolutional networks.

    PubMed

    Pardo, Esteban; Morgado, José Mário T; Malpica, Norberto

    2018-04-30

    Multicolor in situ hybridization (mFISH) is a karyotyping technique used to detect major chromosomal alterations using fluorescent probes and imaging techniques. Manual interpretation of mFISH images is a time consuming step that can be automated using machine learning; in previous works, pixel or patch wise classification was employed, overlooking spatial information which can help identify chromosomes. In this work, we propose a fully convolutional semantic segmentation network for the interpretation of mFISH images, which uses both spatial and spectral information to classify each pixel in an end-to-end fashion. The semantic segmentation network developed was tested on samples extracted from a public dataset using cross validation. Despite having no labeling information of the image it was tested on, our algorithm yielded an average correct classification ratio (CCR) of 87.41%. Previously, this level of accuracy was only achieved with state of the art algorithms when classifying pixels from the same image in which the classifier has been trained. These results provide evidence that fully convolutional semantic segmentation networks may be employed in the computer aided diagnosis of genetic diseases with improved performance over the current image analysis methods. © 2018 International Society for Advancement of Cytometry. © 2018 International Society for Advancement of Cytometry.

  3. Modeling the N400 ERP component as transient semantic over-activation within a neural network model of word comprehension

    PubMed Central

    Cheyette, Samuel J.; Plaut, David C.

    2016-01-01

    The study of the N400 event-related brain potential has provided fundamental insights into the nature of real-time comprehension processes, and its amplitude is modulated by a wide variety of stimulus and context factors. It is generally thought to reflect the difficulty of semantic access, but formulating a precise characterization of this process has proved difficult. Laszlo and colleagues (Laszlo & Plaut, 2012, Brain and Language, 120, 271-281; Laszlo & Armstrong, 2014, Brain and Language, 132, 22-27) used physiologically constrained neural networks to model the N400 as transient over-activation within semantic representations, arising as a consequence of the distribution of excitation and inhibition within and between cortical areas. The current work extends this approach to successfully model effects on both N400 amplitudes and behavior of word frequency, semantic richness, repetition, semantic and associative priming, and orthographic neighborhood size. The account is argued to be preferable to one based on “implicit semantic prediction error” (Rabovsky & McRae, 2014, Cognition, 132, 68-98) for a number of reasons, the most fundamental of which is that the current model actually produces N400-like waveforms in its real-time activation dynamics. PMID:27871623

  4. Modeling the N400 ERP component as transient semantic over-activation within a neural network model of word comprehension.

    PubMed

    Cheyette, Samuel J; Plaut, David C

    2017-05-01

    The study of the N400 event-related brain potential has provided fundamental insights into the nature of real-time comprehension processes, and its amplitude is modulated by a wide variety of stimulus and context factors. It is generally thought to reflect the difficulty of semantic access, but formulating a precise characterization of this process has proved difficult. Laszlo and colleagues (Laszlo & Plaut, 2012; Laszlo & Armstrong, 2014) used physiologically constrained neural networks to model the N400 as transient over-activation within semantic representations, arising as a consequence of the distribution of excitation and inhibition within and between cortical areas. The current work extends this approach to successfully model effects on both N400 amplitudes and behavior of word frequency, semantic richness, repetition, semantic and associative priming, and orthographic neighborhood size. The account is argued to be preferable to one based on "implicit semantic prediction error" (Rabovsky & McRae, 2014) for a number of reasons, the most fundamental of which is that the current model actually produces N400-like waveforms in its real-time activation dynamics. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Modal and Temporal Argumentation Networks

    NASA Astrophysics Data System (ADS)

    Barringer, Howard; Gabbay, Dov M.

    The traditional Dung networks depict arguments as atomic and studies the relationships of attack between them. This can be generalised in two ways. One is to consider, for example, various forms of attack, support and feedback. Another is to add content to nodes and put there not just atomic arguments but more structure, for example, proofs in some logic or simply just formulas from a richer language. This paper offers to use temporal and modal language formulas to represent arguments in the nodes of a network. The suitable semantics for such networks is Kripke semantics. We also introduce a new key concept of usability of an argument.

  6. Intrinsic functional network architecture of human semantic processing: Modules and hubs.

    PubMed

    Xu, Yangwen; Lin, Qixiang; Han, Zaizhu; He, Yong; Bi, Yanchao

    2016-05-15

    Semantic processing entails the activation of widely distributed brain areas across the temporal, parietal, and frontal lobes. To understand the functional structure of this semantic system, we examined its intrinsic functional connectivity pattern using a database of 146 participants. Focusing on areas consistently activated during semantic processing generated from a meta-analysis of 120 neuroimaging studies (Binder et al., 2009), we found that these regions were organized into three stable modules corresponding to the default mode network (Module DMN), the left perisylvian network (Module PSN), and the left frontoparietal network (Module FPN). These three dissociable modules were integrated by multiple connector hubs-the left angular gyrus (AG) and the left superior/middle frontal gyrus linking all three modules, the left anterior temporal lobe linking Modules DMN and PSN, the left posterior portion of dorsal intraparietal sulcus (IPS) linking Modules DMN and FPN, and the left posterior middle temporal gyrus (MTG) linking Modules PSN and FPN. Provincial hubs, which converge local information within each system, were also identified: the bilateral posterior cingulate cortices/precuneus, the bilateral border area of the posterior AG and the superior lateral occipital gyrus for Module DMN; the left supramarginal gyrus, the middle part of the left MTG and the left orbital inferior frontal gyrus (IFG) for Module FPN; and the left triangular IFG and the left IPS for Module FPN. A neuro-functional model for semantic processing was derived based on these findings, incorporating the interactions of memory, language, and control. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. A Framework of Knowledge Integration and Discovery for Supporting Pharmacogenomics Target Predication of Adverse Drug Events: A Case Study of Drug-Induced Long QT Syndrome.

    PubMed

    Jiang, Guoqian; Wang, Chen; Zhu, Qian; Chute, Christopher G

    2013-01-01

    Knowledge-driven text mining is becoming an important research area for identifying pharmacogenomics target genes. However, few of such studies have been focused on the pharmacogenomics targets of adverse drug events (ADEs). The objective of the present study is to build a framework of knowledge integration and discovery that aims to support pharmacogenomics target predication of ADEs. We integrate a semantically annotated literature corpus Semantic MEDLINE with a semantically coded ADE knowledgebase known as ADEpedia using a semantic web based framework. We developed a knowledge discovery approach combining a network analysis of a protein-protein interaction (PPI) network and a gene functional classification approach. We performed a case study of drug-induced long QT syndrome for demonstrating the usefulness of the framework in predicting potential pharmacogenomics targets of ADEs.

  8. Overlap in the functional neural systems involved in semantic and episodic memory retrieval.

    PubMed

    Rajah, M N; McIntosh, A R

    2005-03-01

    Neuroimaging and neuropsychological data suggest that episodic and semantic memory may be mediated by distinct neural systems. However, an alternative perspective is that episodic and semantic memory represent different modes of processing within a single declarative memory system. To examine whether the multiple or the unitary system view better represents the data we conducted a network analysis using multivariate partial least squares (PLS ) activation analysis followed by covariance structural equation modeling (SEM) of positron emission tomography data obtained while healthy adults performed episodic and semantic verbal retrieval tasks. It is argued that if performance of episodic and semantic retrieval tasks are mediated by different memory systems, then there should differences in both regional activations and interregional correlations related to each type of retrieval task, respectively. The PLS results identified brain regions that were differentially active during episodic retrieval versus semantic retrieval. Regions that showed maximal differences in regional activity between episodic retrieval tasks were used to construct separate functional models for episodic and semantic retrieval. Omnibus tests of these functional models failed to find a significant difference across tasks for both functional models. The pattern of path coefficients for the episodic retrieval model were not different across tasks, nor were the path coefficients for the semantic retrieval model. The SEM results suggest that the same memory network/system was engaged across tasks, given the similarities in path coefficients. Therefore, activation differences between episodic and semantic retrieval may ref lect variation along a continuum of processing during task performance within the context of a single memory system.

  9. Revealing the Dynamic Modulations That Underpin a Resilient Neural Network for Semantic Cognition: An fMRI Investigation in Patients With Anterior Temporal Lobe Resection.

    PubMed

    Rice, Grace E; Caswell, Helen; Moore, Perry; Lambon Ralph, Matthew A; Hoffman, Paul

    2018-06-06

    One critical feature of any well-engineered system is its resilience to perturbation and minor damage. The purpose of the current study was to investigate how resilience is achieved in higher cognitive systems, which we explored through the domain of semantic cognition. Convergent evidence implicates the bilateral anterior temporal lobes (ATLs) as a conceptual knowledge hub. While bilateral damage to this region produces profound semantic impairment, unilateral atrophy/resection or transient perturbation has a limited effect. Two neural mechanisms might underpin this resilience to unilateral ATL damage: 1) the undamaged ATL upregulates its activation in order to compensate; and/or 2) prefrontal regions involved in control of semantic retrieval upregulate to compensate for the impoverished semantic representations that follow from ATL damage. To test these possibilities, 34 postsurgical temporal lobe epilepsy patients and 20 age-matched controls were scanned whilst completing semantic tasks. Pictorial tasks, which produced bilateral frontal and temporal activation, showed few activation differences between patients and control participants. Written word tasks, however, produced a left-lateralized activation pattern and greater differences between the groups. Patients with right ATL resection increased activation in left inferior frontal gyrus (IFG). Patients with left ATL resection upregulated both the right ATL and right IFG. Consistent with recent computational models, these results indicate that 1) written word semantic processing in patients with ATL resection is supported by upregulation of semantic knowledge and control regions, principally in the undamaged hemisphere, and 2) pictorial semantic processing is less affected, presumably because it draws on a more bilateral network.

  10. Quality evaluation of value sets from cancer study common data elements using the UMLS semantic groups

    PubMed Central

    Solbrig, Harold R; Chute, Christopher G

    2012-01-01

    Objective The objective of this study is to develop an approach to evaluate the quality of terminological annotations on the value set (ie, enumerated value domain) components of the common data elements (CDEs) in the context of clinical research using both unified medical language system (UMLS) semantic types and groups. Materials and methods The CDEs of the National Cancer Institute (NCI) Cancer Data Standards Repository, the NCI Thesaurus (NCIt) concepts and the UMLS semantic network were integrated using a semantic web-based framework for a SPARQL-enabled evaluation. First, the set of CDE-permissible values with corresponding meanings in external controlled terminologies were isolated. The corresponding value meanings were then evaluated against their NCI- or UMLS-generated semantic network mapping to determine whether all of the meanings fell within the same semantic group. Results Of the enumerated CDEs in the Cancer Data Standards Repository, 3093 (26.2%) had elements drawn from more than one UMLS semantic group. A random sample (n=100) of this set of elements indicated that 17% of them were likely to have been misclassified. Discussion The use of existing semantic web tools can support a high-throughput mechanism for evaluating the quality of large CDE collections. This study demonstrates that the involvement of multiple semantic groups in an enumerated value domain of a CDE is an effective anchor to trigger an auditing point for quality evaluation activities. Conclusion This approach produces a useful quality assurance mechanism for a clinical study CDE repository. PMID:22511016

  11. Neural correlates of semantic associations in patients with schizophrenia.

    PubMed

    Sass, Katharina; Heim, Stefan; Sachs, Olga; Straube, Benjamin; Schneider, Frank; Habel, Ute; Kircher, Tilo

    2014-03-01

    Patients with schizophrenia have semantic processing disturbances leading to expressive language deficits (formal thought disorder). The underlying pathology has been related to alterations in the semantic network and its neural correlates. Moreover, crossmodal processing, an important aspect of communication, is impaired in schizophrenia. Here we investigated specific processing abnormalities in patients with schizophrenia with regard to modality and semantic distance in a semantic priming paradigm. Fourteen patients with schizophrenia and fourteen demographically matched controls made visual lexical decisions on successively presented word-pairs (SOA = 350 ms) with direct or indirect relations, unrelated word-pairs, and pseudoword-target stimuli during fMRI measurement. Stimuli were presented in a unimodal (visual) or crossmodal (auditory-visual) fashion. On the neural level, the effect of semantic relation indicated differences (patients > controls) within the right angular gyrus and precuneus. The effect of modality revealed differences (controls > patients) within the left superior frontal, middle temporal, inferior occipital, right angular gyri, and anterior cingulate cortex. Semantic distance (direct vs. indirect) induced distinct activations within the left middle temporal, fusiform gyrus, right precuneus, and thalamus with patients showing fewer differences between direct and indirect word-pairs. The results highlight aberrant priming-related brain responses in patients with schizophrenia. Enhanced activation for patients possibly reflects deficits in semantic processes that might be caused by a delayed and enhanced spread of activation within the semantic network. Modality-specific decreases of activation in patients might be related to impaired perceptual integration. Those deficits could induce and increase the prominent symptoms of schizophrenia like impaired speech processing.

  12. How activation, entanglement, and searching a semantic network contribute to event memory.

    PubMed

    Nelson, Douglas L; Kitto, Kirsty; Galea, David; McEvoy, Cathy L; Bruza, Peter D

    2013-08-01

    Free-association norms indicate that words are organized into semantic/associative neighborhoods within a larger network of words and links that bind the net together. We present evidence indicating that memory for a recent word event can depend on implicitly and simultaneously activating related words in its neighborhood. Processing a word during encoding primes its network representation as a function of the density of the links in its neighborhood. Such priming increases recall and recognition and can have long-lasting effects when the word is processed in working memory. Evidence for this phenomenon is reviewed in extralist-cuing, primed free-association, intralist-cuing, and single-item recognition tasks. The findings also show that when a related word is presented in order to cue the recall of a studied word, the cue activates the target in an array of related words that distract and reduce the probability of the target's selection. The activation of the semantic network produces priming benefits during encoding, and search costs during retrieval. In extralist cuing, recall is a negative function of cue-to-distractor strength, and a positive function of neighborhood density, cue-to-target strength, and target-to-cue strength. We show how these four measures derived from the network can be combined and used to predict memory performance. These measures play different roles in different tasks, indicating that the contribution of the semantic network varies with the context provided by the task. Finally, we evaluate spreading-activation and quantum-like entanglement explanations for the priming effects produced by neighborhood density.

  13. Ontology Design of Influential People Identification Using Centrality

    NASA Astrophysics Data System (ADS)

    Maulana Awangga, Rolly; Yusril, Muhammad; Setyawan, Helmi

    2018-04-01

    Identifying influential people as a node in a graph theory commonly calculated by social network analysis. The social network data has the user as node and edge as relation forming a friend relation graph. This research is conducting different meaning of every nodes relation in the social network. Ontology was perfect match science to describe the social network data as conceptual and domain. Ontology gives essential relationship in a social network more than a current graph. Ontology proposed as a standard for knowledge representation for the semantic web by World Wide Web Consortium. The formal data representation use Resource Description Framework (RDF) and Web Ontology Language (OWL) which is strategic for Open Knowledge-Based website data. Ontology used in the semantic description for a relationship in the social network, it is open to developing semantic based relationship ontology by adding and modifying various and different relationship to have influential people as a conclusion. This research proposes a model using OWL and RDF for influential people identification in the social network. The study use degree centrality, between ness centrality, and closeness centrality measurement for data validation. As a conclusion, influential people identification in Facebook can use proposed Ontology model in the Group, Photos, Photo Tag, Friends, Events and Works data.

  14. Developing A Web-based User Interface for Semantic Information Retrieval

    NASA Technical Reports Server (NTRS)

    Berrios, Daniel C.; Keller, Richard M.

    2003-01-01

    While there are now a number of languages and frameworks that enable computer-based systems to search stored data semantically, the optimal design for effective user interfaces for such systems is still uncle ar. Such interfaces should mask unnecessary query detail from users, yet still allow them to build queries of arbitrary complexity without significant restrictions. We developed a user interface supporting s emantic query generation for Semanticorganizer, a tool used by scient ists and engineers at NASA to construct networks of knowledge and dat a. Through this interface users can select node types, node attribute s and node links to build ad-hoc semantic queries for searching the S emanticOrganizer network.

  15. Mathematical Logic in the Human Brain: Semantics

    PubMed Central

    Friedrich, Roland M.; Friederici, Angela D.

    2013-01-01

    As a higher cognitive function in humans, mathematics is supported by parietal and prefrontal brain regions. Here, we give an integrative account of the role of the different brain systems in processing the semantics of mathematical logic from the perspective of macroscopic polysynaptic networks. By comparing algebraic and arithmetic expressions of identical underlying structure, we show how the different subparts of a fronto-parietal network are modulated by the semantic domain, over which the mathematical formulae are interpreted. Within this network, the prefrontal cortex represents a system that hosts three major components, namely, control, arithmetic-logic, and short-term memory. This prefrontal system operates on data fed to it by two other systems: a premotor-parietal top-down system that updates and transforms (external) data into an internal format, and a hippocampal bottom-up system that either detects novel information or serves as an access device to memory for previously acquired knowledge. PMID:23301101

  16. A dictionary server for supplying context sensitive medical knowledge.

    PubMed Central

    Ruan, W.; Bürkle, T.; Dudeck, J.

    2000-01-01

    The Giessen Data Dictionary Server (GDDS), developed at Giessen University Hospital, integrates clinical systems with on-line, context sensitive medical knowledge to help with making medical decisions. By "context" we mean the clinical information that is being presented at the moment the information need is occurring. The dictionary server makes use of a semantic network supported by a medical data dictionary to link terms from clinical applications to their proper information sources. It has been designed to analyze the network structure itself instead of knowing the layout of the semantic net in advance. This enables us to map appropriate information sources to various clinical applications, such as nursing documentation, drug prescription and cancer follow up systems. This paper describes the function of the dictionary server and shows how the knowledge stored in the semantic network is used in the dictionary service. PMID:11079978

  17. Mathematical logic in the human brain: semantics.

    PubMed

    Friedrich, Roland M; Friederici, Angela D

    2013-01-01

    As a higher cognitive function in humans, mathematics is supported by parietal and prefrontal brain regions. Here, we give an integrative account of the role of the different brain systems in processing the semantics of mathematical logic from the perspective of macroscopic polysynaptic networks. By comparing algebraic and arithmetic expressions of identical underlying structure, we show how the different subparts of a fronto-parietal network are modulated by the semantic domain, over which the mathematical formulae are interpreted. Within this network, the prefrontal cortex represents a system that hosts three major components, namely, control, arithmetic-logic, and short-term memory. This prefrontal system operates on data fed to it by two other systems: a premotor-parietal top-down system that updates and transforms (external) data into an internal format, and a hippocampal bottom-up system that either detects novel information or serves as an access device to memory for previously acquired knowledge.

  18. Socio-contextual Network Mining for User Assistance in Web-based Knowledge Gathering Tasks

    NASA Astrophysics Data System (ADS)

    Rajendran, Balaji; Kombiah, Iyakutti

    Web-based Knowledge Gathering (WKG) is a specialized and complex information seeking task carried out by many users on the web, for their various learning, and decision-making requirements. We construct a contextual semantic structure by observing the actions of the users involved in WKG task, in order to gain an understanding of their task and requirement. We also build a knowledge warehouse in the form of a master Semantic Link Network (SLX) that accommodates and assimilates all the contextual semantic structures. This master SLX, which is a socio-contextual network, is then mined to provide contextual inputs to the current users through their agents. We validated our approach through experiments and analyzed the benefits to the users in terms of resource explorations and the time saved. The results are positive enough to motivate us to implement in a larger scale.

  19. Information Warfare: Evaluation of Operator Information Processing Models

    DTIC Science & Technology

    1997-10-01

    that people can describe or report, including both episodic and semantic information. Declarative memory contains a network of knowledge represented...second dimension corresponds roughly to the distinction between episodic and semantic memory that is commonly made in cognitive psychology. Episodic ...3 is long-term memory for the discourse, a subset of episodic memory . Partition 4 is long-term semantic memory , or the knowledge-base. According to

  20. Face (and Nose) Priming for Book: The Malleability of Semantic Memory

    PubMed Central

    Coane, Jennifer H.; Balota, David A.

    2010-01-01

    There are two general classes of models of semantic structure that support semantic priming effects. Feature-overlap models of semantic priming assume that shared features between primes and targets are critical (e.g., cat-DOG). Associative accounts assume that contextual co-occurrence is critical and that the system is organized along associations independent of featural overlap (e.g., leash-DOG). If unrelated concepts can become related as a result of contextual co-occurrence, this would be more supportive of associative accounts and provide insight into the nature of the network underlying “semantic” priming effects. Naturally co-occurring recent associations (e.g., face-BOOK) were tested under conditions that minimize strategic influences (i.e., short stimulus onset asynchrony, low relatedness proportion) in a semantic priming paradigm. Priming for new associations did not differ from the priming found for pre-existing relations (e.g., library-BOOK). Mediated priming (e.g., nose-BOOK) was also found. These results suggest that contextual associations can result in the reorganization of the network that subserves “semantic” priming effects. PMID:20494866

  1. Combinatorial semantics strengthens angular-anterior temporal coupling.

    PubMed

    Molinaro, Nicola; Paz-Alonso, Pedro M; Duñabeitia, Jon Andoni; Carreiras, Manuel

    2015-04-01

    The human semantic combinatorial system allows us to create a wide number of new meanings from a finite number of existing representations. The present study investigates the neural dynamics underlying the semantic processing of different conceptual constructions based on predictions from previous neuroanatomical models of the semantic processing network. In two experiments, participants read sentences for comprehension containing noun-adjective pairs in three different conditions: prototypical (Redundant), nonsense (Anomalous) and low-typical but composable (Contrastive). In Experiment 1 we examined the processing costs associated to reading these sentences and found a processing dissociation between Anomalous and Contrastive word pairs, compared to prototypical (Redundant) stimuli. In Experiment 2, functional connectivity results showed strong co-activation across conditions between inferior frontal gyrus (IFG) and posterior middle temporal gyrus (MTG), as well as between these two regions and middle frontal gyrus (MFG), anterior temporal cortex (ATC) and fusiform gyrus (FG), consistent with previous neuroanatomical models. Importantly, processing of low-typical (but composable) meanings relative to prototypical and anomalous constructions was associated with a stronger positive coupling between ATC and angular gyrus (AG). Our results underscore the critical role of IFG-MTG co-activation during semantic processing and how other relevant nodes within the semantic processing network come into play to handle visual-orthographic information, to maintain multiple lexical-semantic representations in working memory and to combine existing representations while creatively constructing meaning. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Static, Dynamic and Semantic Dimensions: Towards a Multidisciplinary Approach of Social Networks Analysis

    NASA Astrophysics Data System (ADS)

    Thovex, Christophe; Trichet, Francky

    The objective of our work is to extend static and dynamic models of Social Networks Analysis (SNA), by taking conceptual aspects of enterprises and institutions social graph into account. The originality of our multidisciplinary work is to introduce abstract notions of electro-physic to define new measures in SNA, for new decision-making functions dedicated to Human Resource Management (HRM). This paper introduces a multidimensional system and new measures: (1) a tension measure for social network analysis, (2) an electrodynamic, predictive and semantic system for recommendations on social graphs evolutions and (3) a reactance measure used to evaluate the individual stress at work of the members of a social network.

  3. Squeeze-SegNet: a new fast deep convolutional neural network for semantic segmentation

    NASA Astrophysics Data System (ADS)

    Nanfack, Geraldin; Elhassouny, Azeddine; Oulad Haj Thami, Rachid

    2018-04-01

    The recent researches in Deep Convolutional Neural Network have focused their attention on improving accuracy that provide significant advances. However, if they were limited to classification tasks, nowadays with contributions from Scientific Communities who are embarking in this field, they have become very useful in higher level tasks such as object detection and pixel-wise semantic segmentation. Thus, brilliant ideas in the field of semantic segmentation with deep learning have completed the state of the art of accuracy, however this architectures become very difficult to apply in embedded systems as is the case for autonomous driving. We present a new Deep fully Convolutional Neural Network for pixel-wise semantic segmentation which we call Squeeze-SegNet. The architecture is based on Encoder-Decoder style. We use a SqueezeNet-like encoder and a decoder formed by our proposed squeeze-decoder module and upsample layer using downsample indices like in SegNet and we add a deconvolution layer to provide final multi-channel feature map. On datasets like Camvid or City-states, our net gets SegNet-level accuracy with less than 10 times fewer parameters than SegNet.

  4. Semantic Space as a Metapopulation System: Modelling the Wikipedia Information Flow Network

    NASA Astrophysics Data System (ADS)

    Masucci, A. Paolo; Kalampokis, Alkiviadis; Eguíluz, Víctor M.; Hernández-García, Emilio

    The meaning of a word can be defined as an indefinite set of interpretants, which are other words that circumscribe the semantic content of the word they represent (Derrida 1982). In the same way each interpretant has a set of interpretants representing it and so on. Hence the indefinite chain of meaning assumes a rhizomatic shape that can be represented and analysed via the modern techniques of network theory (Dorogovtsev and Mendes 2013).

  5. Exemplar-Based Image and Video Stylization Using Fully Convolutional Semantic Features.

    PubMed

    Zhu, Feida; Yan, Zhicheng; Bu, Jiajun; Yu, Yizhou

    2017-05-10

    Color and tone stylization in images and videos strives to enhance unique themes with artistic color and tone adjustments. It has a broad range of applications from professional image postprocessing to photo sharing over social networks. Mainstream photo enhancement softwares, such as Adobe Lightroom and Instagram, provide users with predefined styles, which are often hand-crafted through a trial-and-error process. Such photo adjustment tools lack a semantic understanding of image contents and the resulting global color transform limits the range of artistic styles it can represent. On the other hand, stylistic enhancement needs to apply distinct adjustments to various semantic regions. Such an ability enables a broader range of visual styles. In this paper, we first propose a novel deep learning architecture for exemplar-based image stylization, which learns local enhancement styles from image pairs. Our deep learning architecture consists of fully convolutional networks (FCNs) for automatic semantics-aware feature extraction and fully connected neural layers for adjustment prediction. Image stylization can be efficiently accomplished with a single forward pass through our deep network. To extend our deep network from image stylization to video stylization, we exploit temporal superpixels (TSPs) to facilitate the transfer of artistic styles from image exemplars to videos. Experiments on a number of datasets for image stylization as well as a diverse set of video clips demonstrate the effectiveness of our deep learning architecture.

  6. Co-occurrence frequency evaluated with large language corpora boosts semantic priming effects.

    PubMed

    Brunellière, Angèle; Perre, Laetitia; Tran, ThiMai; Bonnotte, Isabelle

    2017-09-01

    In recent decades, many computational techniques have been developed to analyse the contextual usage of words in large language corpora. The present study examined whether the co-occurrence frequency obtained from large language corpora might boost purely semantic priming effects. Two experiments were conducted: one with conscious semantic priming, the other with subliminal semantic priming. Both experiments contrasted three semantic priming contexts: an unrelated priming context and two related priming contexts with word pairs that are semantically related and that co-occur either frequently or infrequently. In the conscious priming presentation (166-ms stimulus-onset asynchrony, SOA), a semantic priming effect was recorded in both related priming contexts, which was greater with higher co-occurrence frequency. In the subliminal priming presentation (66-ms SOA), no significant priming effect was shown, regardless of the related priming context. These results show that co-occurrence frequency boosts pure semantic priming effects and are discussed with reference to models of semantic network.

  7. Decoding the Formation of New Semantics: MVPA Investigation of Rapid Neocortical Plasticity during Associative Encoding through Fast Mapping.

    PubMed

    Atir-Sharon, Tali; Gilboa, Asaf; Hazan, Hananel; Koilis, Ester; Manevitz, Larry M

    2015-01-01

    Neocortical structures typically only support slow acquisition of declarative memory; however, learning through fast mapping may facilitate rapid learning-induced cortical plasticity and hippocampal-independent integration of novel associations into existing semantic networks. During fast mapping the meaning of new words and concepts is inferred, and durable novel associations are incidentally formed, a process thought to support early childhood's exuberant learning. The anterior temporal lobe, a cortical semantic memory hub, may critically support such learning. We investigated encoding of semantic associations through fast mapping using fMRI and multivoxel pattern analysis. Subsequent memory performance following fast mapping was more efficiently predicted using anterior temporal lobe than hippocampal voxels, while standard explicit encoding was best predicted by hippocampal activity. Searchlight algorithms revealed additional activity patterns that predicted successful fast mapping semantic learning located in lateral occipitotemporal and parietotemporal neocortex and ventrolateral prefrontal cortex. By contrast, successful explicit encoding could be classified by activity in medial and dorsolateral prefrontal and parahippocampal cortices. We propose that fast mapping promotes incidental rapid integration of new associations into existing neocortical semantic networks by activating related, nonoverlapping conceptual knowledge. In healthy adults, this is better captured by unique anterior and lateral temporal lobe activity patterns, while hippocampal involvement is less predictive of this kind of learning.

  8. Automaticity of phonological and semantic processing during visual word recognition.

    PubMed

    Pattamadilok, Chotiga; Chanoine, Valérie; Pallier, Christophe; Anton, Jean-Luc; Nazarian, Bruno; Belin, Pascal; Ziegler, Johannes C

    2017-04-01

    Reading involves activation of phonological and semantic knowledge. Yet, the automaticity of the activation of these representations remains subject to debate. The present study addressed this issue by examining how different brain areas involved in language processing responded to a manipulation of bottom-up (level of visibility) and top-down information (task demands) applied to written words. The analyses showed that the same brain areas were activated in response to written words whether the task was symbol detection, rime detection, or semantic judgment. This network included posterior, temporal and prefrontal regions, which clearly suggests the involvement of orthographic, semantic and phonological/articulatory processing in all tasks. However, we also found interactions between task and stimulus visibility, which reflected the fact that the strength of the neural responses to written words in several high-level language areas varied across tasks. Together, our findings suggest that the involvement of phonological and semantic processing in reading is supported by two complementary mechanisms. First, an automatic mechanism that results from a task-independent spread of activation throughout a network in which orthography is linked to phonology and semantics. Second, a mechanism that further fine-tunes the sensitivity of high-level language areas to the sensory input in a task-dependent manner. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Creative constraints: Brain activity and network dynamics underlying semantic interference during idea production.

    PubMed

    Beaty, Roger E; Christensen, Alexander P; Benedek, Mathias; Silvia, Paul J; Schacter, Daniel L

    2017-03-01

    Functional neuroimaging research has recently revealed brain network interactions during performance on creative thinking tasks-particularly among regions of the default and executive control networks-but the cognitive mechanisms related to these interactions remain poorly understood. Here we test the hypothesis that the executive control network can interact with the default network to inhibit salient conceptual knowledge (i.e., pre-potent responses) elicited from memory during creative idea production. Participants studied common noun-verb pairs and were given a cued-recall test with corrective feedback to strengthen the paired association in memory. They then completed a verb generation task that presented either a previously studied noun (high-constraint) or an unstudied noun (low-constraint), and were asked to "think creatively" while searching for a novel verb to relate to the presented noun. Latent Semantic Analysis of verbal responses showed decreased semantic distance values in the high-constraint (i.e., interference) condition, which corresponded to increased neural activity within regions of the default (posterior cingulate cortex and bilateral angular gyri), salience (right anterior insula), and executive control (left dorsolateral prefrontal cortex) networks. Independent component analysis of intrinsic functional connectivity networks extended this finding by revealing differential interactions among these large-scale networks across the task conditions. The results suggest that interactions between the default and executive control networks underlie response inhibition during constrained idea production, providing insight into specific neurocognitive mechanisms supporting creative cognition. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Modeling the dynamics of evaluation: a multilevel neural network implementation of the iterative reprocessing model.

    PubMed

    Ehret, Phillip J; Monroe, Brian M; Read, Stephen J

    2015-05-01

    We present a neural network implementation of central components of the iterative reprocessing (IR) model. The IR model argues that the evaluation of social stimuli (attitudes, stereotypes) is the result of the IR of stimuli in a hierarchy of neural systems: The evaluation of social stimuli develops and changes over processing. The network has a multilevel, bidirectional feedback evaluation system that integrates initial perceptual processing and later developing semantic processing. The network processes stimuli (e.g., an individual's appearance) over repeated iterations, with increasingly higher levels of semantic processing over time. As a result, the network's evaluations of stimuli evolve. We discuss the implications of the network for a number of different issues involved in attitudes and social evaluation. The success of the network supports the IR model framework and provides new insights into attitude theory. © 2014 by the Society for Personality and Social Psychology, Inc.

  11. Multimedia Information Networks in Social Media

    NASA Astrophysics Data System (ADS)

    Cao, Liangliang; Qi, Guojun; Tsai, Shen-Fu; Tsai, Min-Hsuan; Pozo, Andrey Del; Huang, Thomas S.; Zhang, Xuemei; Lim, Suk Hwan

    The popularity of personal digital cameras and online photo/video sharing community has lead to an explosion of multimedia information. Unlike traditional multimedia data, many new multimedia datasets are organized in a structural way, incorporating rich information such as semantic ontology, social interaction, community media, geographical maps, in addition to the multimedia contents by themselves. Studies of such structured multimedia data have resulted in a new research area, which is referred to as Multimedia Information Networks. Multimedia information networks are closely related to social networks, but especially focus on understanding the topics and semantics of the multimedia files in the context of network structure. This chapter reviews different categories of recent systems related to multimedia information networks, summarizes the popular inference methods used in recent works, and discusses the applications related to multimedia information networks. We also discuss a wide range of topics including public datasets, related industrial systems, and potential future research directions in this field.

  12. Automatically augmenting lifelog events using pervasively generated content from millions of people.

    PubMed

    Doherty, Aiden R; Smeaton, Alan F

    2010-01-01

    In sensor research we take advantage of additional contextual sensor information to disambiguate potentially erroneous sensor readings or to make better informed decisions on a single sensor's output. This use of additional information reinforces, validates, semantically enriches, and augments sensed data. Lifelog data is challenging to augment, as it tracks one's life with many images including the places they go, making it non-trivial to find associated sources of information. We investigate realising the goal of pervasive user-generated content based on sensors, by augmenting passive visual lifelogs with "Web 2.0" content collected by millions of other individuals.

  13. Real-time method for establishing a detection map for a network of sensors

    DOEpatents

    Nguyen, Hung D; Koch, Mark W; Giron, Casey; Rondeau, Daniel M; Russell, John L

    2012-09-11

    A method for establishing a detection map of a dynamically configurable sensor network. This method determines an appropriate set of locations for a plurality of sensor units of a sensor network and establishes a detection map for the network of sensors while the network is being set up; the detection map includes the effects of the local terrain and individual sensor performance. Sensor performance is characterized during the placement of the sensor units, which enables dynamic adjustment or reconfiguration of the placement of individual elements of the sensor network during network set-up to accommodate variations in local terrain and individual sensor performance. The reconfiguration of the network during initial set-up to accommodate deviations from idealized individual sensor detection zones improves the effectiveness of the sensor network in detecting activities at a detection perimeter and can provide the desired sensor coverage of an area while minimizing unintentional gaps in coverage.

  14. Sensor Network Architectures for Monitoring Underwater Pipelines

    PubMed Central

    Mohamed, Nader; Jawhar, Imad; Al-Jaroodi, Jameela; Zhang, Liren

    2011-01-01

    This paper develops and compares different sensor network architecture designs that can be used for monitoring underwater pipeline infrastructures. These architectures are underwater wired sensor networks, underwater acoustic wireless sensor networks, RF (Radio Frequency) wireless sensor networks, integrated wired/acoustic wireless sensor networks, and integrated wired/RF wireless sensor networks. The paper also discusses the reliability challenges and enhancement approaches for these network architectures. The reliability evaluation, characteristics, advantages, and disadvantages among these architectures are discussed and compared. Three reliability factors are used for the discussion and comparison: the network connectivity, the continuity of power supply for the network, and the physical network security. In addition, the paper also develops and evaluates a hierarchical sensor network framework for underwater pipeline monitoring. PMID:22346669

  15. Sensor network architectures for monitoring underwater pipelines.

    PubMed

    Mohamed, Nader; Jawhar, Imad; Al-Jaroodi, Jameela; Zhang, Liren

    2011-01-01

    This paper develops and compares different sensor network architecture designs that can be used for monitoring underwater pipeline infrastructures. These architectures are underwater wired sensor networks, underwater acoustic wireless sensor networks, RF (radio frequency) wireless sensor networks, integrated wired/acoustic wireless sensor networks, and integrated wired/RF wireless sensor networks. The paper also discusses the reliability challenges and enhancement approaches for these network architectures. The reliability evaluation, characteristics, advantages, and disadvantages among these architectures are discussed and compared. Three reliability factors are used for the discussion and comparison: the network connectivity, the continuity of power supply for the network, and the physical network security. In addition, the paper also develops and evaluates a hierarchical sensor network framework for underwater pipeline monitoring.

  16. Semantic networks for odors and colors in Alzheimer's disease.

    PubMed

    Razani, Jill; Chan, Agnes; Nordin, Steven; Murphy, Claire

    2010-05-01

    Impairment in odor-naming ability and in verbal and visual semantic networks raised the hypothesis of a breakdown in the semantic network for odors in Alzheimer's disease (AD). The current study addressed this hypothesis. Twenty-four individuals, half patients with probable AD and half control participants, performed triadic-similarity judgments for odors and colors, separately, which, utilizing the multidimensional scaling (MDS) technique of individual difference scaling analysis (INDSCAL), generated two-dimensional configurations of similarity. The abilities to match odors and colors with written name labels were assessed to investigate disease-related differences in ability to identify and conceptualize the stimuli. In addition, responses on attribute-sorting tasks, requiring the odor and color perceptions to be categorized as one polarity of a certain dimension, were obtained to allow for objective interpretation of the MDS spatial maps. Whereas comparison subjects generated spatial maps based predominantly on relatively abstract characteristics, patients with AD classified odors on perceptual characteristics. The maps for patients with AD also showed disorganized groupings and loose associations between odors. Their normal configurations for colors imply that the patients were able to comprehend the task per se. The data for label matching and for attribute sorting provide further evidence for a disturbance in semantic odor memory in AD. The patients performed poorer than controls on both these odor tasks, implying that the ability to identify and/or conceptualize odors is impaired in AD. The results provide clear evidence for deterioration of the structure of semantic knowledge for odors in AD.

  17. Structural and functional correlates for language efficiency in auditory word processing.

    PubMed

    Jung, JeYoung; Kim, Sunmi; Cho, Hyesuk; Nam, Kichun

    2017-01-01

    This study aims to provide convergent understanding of the neural basis of auditory word processing efficiency using a multimodal imaging. We investigated the structural and functional correlates of word processing efficiency in healthy individuals. We acquired two structural imaging (T1-weighted imaging and diffusion tensor imaging) and functional magnetic resonance imaging (fMRI) during auditory word processing (phonological and semantic tasks). Our results showed that better phonological performance was predicted by the greater thalamus activity. In contrary, better semantic performance was associated with the less activation in the left posterior middle temporal gyrus (pMTG), supporting the neural efficiency hypothesis that better task performance requires less brain activation. Furthermore, our network analysis revealed the semantic network including the left anterior temporal lobe (ATL), dorsolateral prefrontal cortex (DLPFC) and pMTG was correlated with the semantic efficiency. Especially, this network acted as a neural efficient manner during auditory word processing. Structurally, DLPFC and cingulum contributed to the word processing efficiency. Also, the parietal cortex showed a significate association with the word processing efficiency. Our results demonstrated that two features of word processing efficiency, phonology and semantics, can be supported in different brain regions and, importantly, the way serving it in each region was different according to the feature of word processing. Our findings suggest that word processing efficiency can be achieved by in collaboration of multiple brain regions involved in language and general cognitive function structurally and functionally.

  18. Structural and functional correlates for language efficiency in auditory word processing

    PubMed Central

    Kim, Sunmi; Cho, Hyesuk; Nam, Kichun

    2017-01-01

    This study aims to provide convergent understanding of the neural basis of auditory word processing efficiency using a multimodal imaging. We investigated the structural and functional correlates of word processing efficiency in healthy individuals. We acquired two structural imaging (T1-weighted imaging and diffusion tensor imaging) and functional magnetic resonance imaging (fMRI) during auditory word processing (phonological and semantic tasks). Our results showed that better phonological performance was predicted by the greater thalamus activity. In contrary, better semantic performance was associated with the less activation in the left posterior middle temporal gyrus (pMTG), supporting the neural efficiency hypothesis that better task performance requires less brain activation. Furthermore, our network analysis revealed the semantic network including the left anterior temporal lobe (ATL), dorsolateral prefrontal cortex (DLPFC) and pMTG was correlated with the semantic efficiency. Especially, this network acted as a neural efficient manner during auditory word processing. Structurally, DLPFC and cingulum contributed to the word processing efficiency. Also, the parietal cortex showed a significate association with the word processing efficiency. Our results demonstrated that two features of word processing efficiency, phonology and semantics, can be supported in different brain regions and, importantly, the way serving it in each region was different according to the feature of word processing. Our findings suggest that word processing efficiency can be achieved by in collaboration of multiple brain regions involved in language and general cognitive function structurally and functionally. PMID:28892503

  19. Executive Semantic Processing Is Underpinned by a Large-scale Neural Network: Revealing the Contribution of Left Prefrontal, Posterior Temporal, and Parietal Cortex to Controlled Retrieval and Selection Using TMS

    ERIC Educational Resources Information Center

    Whitney, Carin; Kirk, Marie; O'Sullivan, Jamie; Ralph, Matthew A. Lambon; Jefferies, Elizabeth

    2012-01-01

    To understand the meanings of words and objects, we need to have knowledge about these items themselves plus executive mechanisms that compute and manipulate semantic information in a task-appropriate way. The neural basis for semantic control remains controversial. Neuroimaging studies have focused on the role of the left inferior frontal gyrus…

  20. The Analysis of RDF Semantic Data Storage Optimization in Large Data Era

    NASA Astrophysics Data System (ADS)

    He, Dandan; Wang, Lijuan; Wang, Can

    2018-03-01

    With the continuous development of information technology and network technology in China, the Internet has also ushered in the era of large data. In order to obtain the effective acquisition of information in the era of large data, it is necessary to optimize the existing RDF semantic data storage and realize the effective query of various data. This paper discusses the storage optimization of RDF semantic data under large data.

  1. Visual Information-Processing in the Perception of Features and Objects

    DTIC Science & Technology

    1989-01-05

    or nodes in a semantic memory network, whereas recall and recognition depend on separate episodic memory traces. In our experiment, we used the same...problem for the account in terms of the separation of episodic from semantic memory , since no pre- existing representations of our line patterns were... semantic memory : amnesic patients were thought to have lost the ability to lay down (or retrieve) episodic traces of autobiographical events, but had

  2. KOJAK: Scalable Semantic Link Discovery Via Integrated Knowledge-Based and Statistical Reasoning

    DTIC Science & Technology

    2006-11-01

    program can find interesting connections in a network without having to learn the patterns of interestingness beforehand. The key advantage of our...Interesting Instances in Semantic Graphs Below we describe how the UNICORN framework can discover interesting instances in a multi-relational dataset...We can now describe how UNICORN solves the first problem of finding the top interesting nodes in a semantic net by ranking them according to

  3. Semantic and episodic memory of music are subserved by distinct neural networks.

    PubMed

    Platel, Hervé; Baron, Jean-Claude; Desgranges, Béatrice; Bernard, Frédéric; Eustache, Francis

    2003-09-01

    Numerous functional imaging studies have shown that retrieval from semantic and episodic memory is subserved by distinct neural networks. However, these results were essentially obtained with verbal and visuospatial material. The aim of this work was to determine the neural substrates underlying the semantic and episodic components of music using familiar and nonfamiliar melodic tunes. To study musical semantic memory, we designed a task in which the instruction was to judge whether or not the musical extract was felt as "familiar." To study musical episodic memory, we constructed two delayed recognition tasks, one containing only familiar and the other only nonfamiliar items. For each recognition task, half of the extracts (targets) were presented in the prior semantic task. The episodic and semantic tasks were to be contrasted by a comparison to two perceptive control tasks and to one another. Cerebral blood flow was assessed by means of the oxygen-15-labeled water injection method, using high-resolution PET. Distinct patterns of activations were found. First, regarding the episodic memory condition, bilateral activations of the middle and superior frontal gyri and precuneus (more prominent on the right side) were observed. Second, the semantic memory condition disclosed extensive activations in the medial and orbital frontal cortex bilaterally, the left angular gyrus, and predominantly the left anterior part of the middle temporal gyri. The findings from this study are discussed in light of the available neuropsychological data obtained in brain-damaged subjects and functional neuroimaging studies.

  4. Alignment of the UMLS semantic network with BioTop: methodology and assessment.

    PubMed

    Schulz, Stefan; Beisswanger, Elena; van den Hoek, László; Bodenreider, Olivier; van Mulligen, Erik M

    2009-06-15

    For many years, the Unified Medical Language System (UMLS) semantic network (SN) has been used as an upper-level semantic framework for the categorization of terms from terminological resources in biomedicine. BioTop has recently been developed as an upper-level ontology for the biomedical domain. In contrast to the SN, it is founded upon strict ontological principles, using OWL DL as a formal representation language, which has become standard in the semantic Web. In order to make logic-based reasoning available for the resources annotated or categorized with the SN, a mapping ontology was developed aligning the SN with BioTop. The theoretical foundations and the practical realization of the alignment are being described, with a focus on the design decisions taken, the problems encountered and the adaptations of BioTop that became necessary. For evaluation purposes, UMLS concept pairs obtained from MEDLINE abstracts by a named entity recognition system were tested for possible semantic relationships. Furthermore, all semantic-type combinations that occur in the UMLS Metathesaurus were checked for satisfiability. The effort-intensive alignment process required major design changes and enhancements of BioTop and brought up several design errors that could be fixed. A comparison between a human curator and the ontology yielded only a low agreement. Ontology reasoning was also used to successfully identify 133 inconsistent semantic-type combinations. BioTop, the OWL DL representation of the UMLS SN, and the mapping ontology are available at http://www.purl.org/biotop/.

  5. Flexible establishment of functional brain networks supports attentional modulation of unconscious cognition.

    PubMed

    Ulrich, Martin; Adams, Sarah C; Kiefer, Markus

    2014-11-01

    In classical theories of attention, unconscious automatic processes are thought to be independent of higher-level attentional influences. Here, we propose that unconscious processing depends on attentional enhancement of task-congruent processing pathways implemented by a dynamic modulation of the functional communication between brain regions. Using functional magnetic resonance imaging, we tested our model with a subliminally primed lexical decision task preceded by an induction task preparing either a semantic or a perceptual task set. Subliminal semantic priming was significantly greater after semantic compared to perceptual induction in ventral occipito-temporal (vOT) and inferior frontal cortex, brain areas known to be involved in semantic processing. The functional connectivity pattern of vOT varied depending on the induction task and successfully predicted the magnitude of behavioral and neural priming. Together, these findings support the proposal that dynamic establishment of functional networks by task sets is an important mechanism in the attentional control of unconscious processing. © 2014 Wiley Periodicals, Inc.

  6. Priming semantic concepts affects the dynamics of aesthetic appreciation.

    PubMed

    Faerber, Stella J; Leder, Helmut; Gerger, Gernot; Carbon, Claus-Christian

    2010-10-01

    Aesthetic appreciation (AA) plays an important role for purchase decisions, for the appreciation of art and even for the selection of potential mates. It is known that AA is highly reliable in single assessments, but over longer periods of time dynamic changes of AA may occur. We measured AA as a construct derived from the literature through attractiveness, arousal, interestingness, valence, boredom and innovativeness. By means of the semantic network theory we investigated how the priming of AA-relevant semantic concepts impacts the dynamics of AA of unfamiliar product designs (car interiors) that are known to be susceptible to triggering such effects. When participants were primed for innovativeness, strong dynamics were observed, especially when the priming involved additional AA-relevant dimensions. This underlines the relevance of priming of specific semantic networks not only for the cognitive processing of visual material in terms of selective perception or specific representation, but also for the affective-cognitive processing in terms of the dynamics of aesthetic processing. Copyright © 2010 Elsevier B.V. All rights reserved.

  7. Anatomy is strategy: Skilled reading differences associated with structural connectivity differences in the reading network

    PubMed Central

    Graves, William W.; Binder, Jeffrey R.; Desai, Rutvik H.; Humphries, Colin; Stengel, Benjamin C.; Seidenberg, Mark S.

    2014-01-01

    Are there multiple ways to be a skilled reader? To address this longstanding, unresolved question, we hypothesized that individual variability in using semantic information in reading aloud would be associated with neuroanatomical variation in pathways linking semantics and phonology. Left-hemisphere regions of interest for diffusion tensor imaging analysis were defined based on fMRI results, including two regions linked with semantic processing – angular gyrus (AG) and inferior temporal sulcus (ITS) – and two linked with phonological processing – posterior superior temporal gyrus (pSTG) and posterior middle temporal gyrus (pMTG). Effects of imageability (a semantic measure) on response times varied widely among individuals and covaried with the volume of pathways through the ITS and pMTG, and through AG and pSTG, partially overlapping the inferior longitudinal fasciculus and the posterior branch of the arcuate fasciculus. These results suggest strategy differences among skilled readers associated with structural variation in the neural reading network. PMID:24735993

  8. a Conceptual Framework for Indoor Mapping by Using Grammars

    NASA Astrophysics Data System (ADS)

    Hu, X.; Fan, H.; Zipf, A.; Shang, J.; Gu, F.

    2017-09-01

    Maps are the foundation of indoor location-based services. Many automatic indoor mapping approaches have been proposed, but they rely highly on sensor data, such as point clouds and users' location traces. To address this issue, this paper presents a conceptual framework to represent the layout principle of research buildings by using grammars. This framework can benefit the indoor mapping process by improving the accuracy of generated maps and by dramatically reducing the volume of the sensor data required by traditional reconstruction approaches. In addition, we try to present more details of partial core modules of the framework. An example using the proposed framework is given to show the generation process of a semantic map. This framework is part of an ongoing research for the development of an approach for reconstructing semantic maps.

  9. Evidence of semantic processing impairments in behavioural variant frontotemporal dementia and Parkinson's disease.

    PubMed

    Cousins, Katheryn A Q; Grossman, Murray

    2017-12-01

    Category-specific impairments caused by brain damage can provide important insights into how semantic concepts are organized in the brain. Recent research has demonstrated that disease to sensory and motor cortices can impair perceptual feature knowledge important to the representation of semantic concepts. This evidence supports the grounded cognition theory of semantics, the view that lexical knowledge is partially grounded in perceptual experience and that sensory and motor regions support semantic representations. Less well understood, however, is how heteromodal semantic hubs work to integrate and process semantic information. Although the majority of semantic research to date has focused on how sensory cortical areas are important for the representation of semantic features, new research explores how semantic memory is affected by neurodegeneration in regions important for semantic processing. Here, we review studies that demonstrate impairments to abstract noun knowledge in behavioural variant frontotemporal degeneration (bvFTD) and to action verb knowledge in Parkinson's disease, and discuss how these deficits relate to disease of the semantic selection network. Findings demonstrate that semantic selection processes are supported by the left inferior frontal gyrus (LIFG) and basal ganglia, and that disease to these regions in bvFTD and Parkinson's disease can lead to categorical impairments for abstract nouns and action verbs, respectively.

  10. A Passive Learning Sensor Architecture for Multimodal Image Labeling: An Application for Social Robots.

    PubMed

    Gutiérrez, Marco A; Manso, Luis J; Pandya, Harit; Núñez, Pedro

    2017-02-11

    Object detection and classification have countless applications in human-robot interacting systems. It is a necessary skill for autonomous robots that perform tasks in household scenarios. Despite the great advances in deep learning and computer vision, social robots performing non-trivial tasks usually spend most of their time finding and modeling objects. Working in real scenarios means dealing with constant environment changes and relatively low-quality sensor data due to the distance at which objects are often found. Ambient intelligence systems equipped with different sensors can also benefit from the ability to find objects, enabling them to inform humans about their location. For these applications to succeed, systems need to detect the objects that may potentially contain other objects, working with relatively low-resolution sensor data. A passive learning architecture for sensors has been designed in order to take advantage of multimodal information, obtained using an RGB-D camera and trained semantic language models. The main contribution of the architecture lies in the improvement of the performance of the sensor under conditions of low resolution and high light variations using a combination of image labeling and word semantics. The tests performed on each of the stages of the architecture compare this solution with current research labeling techniques for the application of an autonomous social robot working in an apartment. The results obtained demonstrate that the proposed sensor architecture outperforms state-of-the-art approaches.

  11. Dopaminergic modulation of semantic priming in healthy volunteers.

    PubMed

    Roesch-Ely, Daniela; Weiland, Stephan; Scheffel, Hans; Schwaninger, Markus; Hundemer, Hans-Peter; Kolter, Thomas; Weisbrod, Matthias

    2006-09-15

    Semantic priming is a function related to prefrontal cortical (PFC) networks and is lateralized. There is evidence that semantic priming underlies dopaminergic modulation. It is known that the D1-receptor is more abundant in prefrontal networks; however, until now there have been no studies investigating the selective modulation of semantic priming with dopamine agonists. Furthermore, D1 receptor dysfunction has been described in schizophrenia, and patients with formal thought disorder seem to have disturbed focusing of associations and increased indirect priming. With a subtraction design, we compared the influence of pergolide (D1/D2 agonist) with bromocriptine (D2 agonist) and placebo, in a randomized, double-blind, crossover design in 40 healthy male volunteers. Subjects performed a lateralized lexical decision task including direct and indirect related prime-target pairs (stimulus onset asynchrony = 750 msec). Only on pergolide a decrease of the indirect priming in the left hemisphere presentations was found. These findings point to a potential selective modulation of agonists with a D1 component on the focusing of semantic associations. The clinical relevance of this study is that it might help the development of therapeutic strategies for treating cognitive deficits in schizophrenia and Parkinson's disease, which are highly relevant to the functional outcome.

  12. Brain connections of words, perceptions and actions: A neurobiological model of spatio-temporal semantic activation in the human cortex.

    PubMed

    Tomasello, Rosario; Garagnani, Max; Wennekers, Thomas; Pulvermüller, Friedemann

    2017-04-01

    Neuroimaging and patient studies show that different areas of cortex respectively specialize for general and selective, or category-specific, semantic processing. Why are there both semantic hubs and category-specificity, and how come that they emerge in different cortical regions? Can the activation time-course of these areas be predicted and explained by brain-like network models? In this present work, we extend a neurocomputational model of human cortical function to simulate the time-course of cortical processes of understanding meaningful concrete words. The model implements frontal and temporal cortical areas for language, perception, and action along with their connectivity. It uses Hebbian learning to semantically ground words in aspects of their referential object- and action-related meaning. Compared with earlier proposals, the present model incorporates additional neuroanatomical links supported by connectivity studies and downscaled synaptic weights in order to control for functional between-area differences purely due to the number of in- or output links of an area. We show that learning of semantic relationships between words and the objects and actions these symbols are used to speak about, leads to the formation of distributed circuits, which all include neuronal material in connector hub areas bridging between sensory and motor cortical systems. Therefore, these connector hub areas acquire a role as semantic hubs. By differentially reaching into motor or visual areas, the cortical distributions of the emergent 'semantic circuits' reflect aspects of the represented symbols' meaning, thus explaining category-specificity. The improved connectivity structure of our model entails a degree of category-specificity even in the 'semantic hubs' of the model. The relative time-course of activation of these areas is typically fast and near-simultaneous, with semantic hubs central to the network structure activating before modality-preferential areas carrying semantic information. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  13. Neural mechanisms underlying the facilitation of naming in aphasia using a semantic task: an fMRI study

    PubMed Central

    2012-01-01

    Background Previous attempts to investigate the effects of semantic tasks on picture naming in both healthy controls and people with aphasia have typically been confounded by inclusion of the phonological word form of the target item. As a result, it is difficult to isolate any facilitatory effects of a semantically-focused task to either lexical-semantic or phonological processing. This functional magnetic resonance imaging (fMRI) study examined the neurological mechanisms underlying short-term (within minutes) and long-term (within days) facilitation of naming from a semantic task that did not include the phonological word form, in both participants with aphasia and age-matched controls. Results Behavioral results showed that a semantic task that did not include the phonological word form can successfully facilitate subsequent picture naming in both healthy controls and individuals with aphasia. The whole brain neuroimaging results for control participants identified a repetition enhancement effect in the short-term, with modulation of activity found in regions that have not traditionally been associated with semantic processing, such as the right lingual gyrus (extending to the precuneus) and the left inferior occipital gyrus (extending to the fusiform gyrus). In contrast, the participants with aphasia showed significant differences in activation over both the short- and the long-term for facilitated items, predominantly within either left hemisphere regions linked to semantic processing or their right hemisphere homologues. Conclusions For control participants in this study, the short-lived facilitation effects of a prior semantic task that did not include the phonological word form were primarily driven by object priming and episodic memory mechanisms. However, facilitation effects appeared to engage a predominantly semantic network in participants with aphasia over both the short- and the long-term. The findings of the present study also suggest that right hemisphere involvement may be supportive rather than maladaptive, and that a large distributed perisylvian network in both cerebral hemispheres supports the facilitation of naming in individuals with aphasia. PMID:22882806

  14. Cross-Domain Shoe Retrieval with a Semantic Hierarchy of Attribute Classification Network.

    PubMed

    Zhan, Huijing; Shi, Boxin; Kot, Alex C

    2017-08-04

    Cross-domain shoe image retrieval is a challenging problem, because the query photo from the street domain (daily life scenario) and the reference photo in the online domain (online shop images) have significant visual differences due to the viewpoint and scale variation, self-occlusion, and cluttered background. This paper proposes the Semantic Hierarchy Of attributE Convolutional Neural Network (SHOE-CNN) with a three-level feature representation for discriminative shoe feature expression and efficient retrieval. The SHOE-CNN with its newly designed loss function systematically merges semantic attributes of closer visual appearances to prevent shoe images with the obvious visual differences being confused with each other; the features extracted from image, region, and part levels effectively match the shoe images across different domains. We collect a large-scale shoe dataset composed of 14341 street domain and 12652 corresponding online domain images with fine-grained attributes to train our network and evaluate our system. The top-20 retrieval accuracy improves significantly over the solution with the pre-trained CNN features.

  15. Content-specific network analysis of peer-to-peer communication in an online community for smoking cessation.

    PubMed

    Myneni, Sahiti; Cobb, Nathan K; Cohen, Trevor

    2016-01-01

    Analysis of user interactions in online communities could improve our understanding of health-related behaviors and inform the design of technological solutions that support behavior change. However, to achieve this we would need methods that provide granular perspective, yet are scalable. In this paper, we present a methodology for high-throughput semantic and network analysis of large social media datasets, combining semi-automated text categorization with social network analytics. We apply this method to derive content-specific network visualizations of 16,492 user interactions in an online community for smoking cessation. Performance of the categorization system was reasonable (average F-measure of 0.74, with system-rater reliability approaching rater-rater reliability). The resulting semantically specific network analysis of user interactions reveals content- and behavior-specific network topologies. Implications for socio-behavioral health and wellness platforms are also discussed.

  16. a Task-Oriented Disaster Information Correlation Method

    NASA Astrophysics Data System (ADS)

    Linyao, Q.; Zhiqiang, D.; Qing, Z.

    2015-07-01

    With the rapid development of sensor networks and Earth observation technology, a large quantity of disaster-related data is available, such as remotely sensed data, historic data, case data, simulated data, and disaster products. However, the efficiency of current data management and service systems has become increasingly difficult due to the task variety and heterogeneous data. For emergency task-oriented applications, the data searches primarily rely on artificial experience based on simple metadata indices, the high time consumption and low accuracy of which cannot satisfy the speed and veracity requirements for disaster products. In this paper, a task-oriented correlation method is proposed for efficient disaster data management and intelligent service with the objectives of 1) putting forward disaster task ontology and data ontology to unify the different semantics of multi-source information, 2) identifying the semantic mapping from emergency tasks to multiple data sources on the basis of uniform description in 1), and 3) linking task-related data automatically and calculating the correlation between each data set and a certain task. The method goes beyond traditional static management of disaster data and establishes a basis for intelligent retrieval and active dissemination of disaster information. The case study presented in this paper illustrates the use of the method on an example flood emergency relief task.

  17. a Task-Driven Disaster Data Link Approach

    NASA Astrophysics Data System (ADS)

    Qiu, L. Y.; Zhu, Q.; Gu, J. Y.; Du, Z. Q.

    2015-08-01

    With the rapid development of sensor networks and Earth observation technology, a large quantity of disaster-related data is available, such as remotely sensed data, historic data, cases data, simulation data, disaster products and so on. However, the efficiency of current data management and service systems has become increasingly serious due to the task variety and heterogeneous data. For emergency task-oriented applications, data searching mainly relies on artificial experience based on simple metadata index, whose high time-consuming and low accuracy cannot satisfy the requirements of disaster products on velocity and veracity. In this paper, a task-oriented linking method is proposed for efficient disaster data management and intelligent service, with the objectives of 1) putting forward ontologies of disaster task and data to unify the different semantics of multi-source information, 2) identifying the semantic mapping from emergency tasks to multiple sources on the basis of uniform description in 1), 3) linking task-related data automatically and calculating the degree of correlation between each data and a target task. The method breaks through traditional static management of disaster data and establishes a base for intelligent retrieval and active push of disaster information. The case study presented in this paper illustrates the use of the method with a flood emergency relief task.

  18. Learning to Predict Consequences as a Method of Knowledge Transfer in Reinforcement Learning.

    PubMed

    Chalmers, Eric; Contreras, Edgar Bermudez; Robertson, Brandon; Luczak, Artur; Gruber, Aaron

    2017-04-17

    The reinforcement learning (RL) paradigm allows agents to solve tasks through trial-and-error learning. To be capable of efficient, long-term learning, RL agents should be able to apply knowledge gained in the past to new tasks they may encounter in the future. The ability to predict actions' consequences may facilitate such knowledge transfer. We consider here domains where an RL agent has access to two kinds of information: agent-centric information with constant semantics across tasks, and environment-centric information, which is necessary to solve the task, but with semantics that differ between tasks. For example, in robot navigation, environment-centric information may include the robot's geographic location, while agent-centric information may include sensor readings of various nearby obstacles. We propose that these situations provide an opportunity for a very natural style of knowledge transfer, in which the agent learns to predict actions' environmental consequences using agent-centric information. These predictions contain important information about the affordances and dangers present in a novel environment, and can effectively transfer knowledge from agent-centric to environment-centric learning systems. Using several example problems including spatial navigation and network routing, we show that our knowledge transfer approach can allow faster and lower cost learning than existing alternatives.

  19. Access to Biomedical Information: The Unified Medical Language System.

    ERIC Educational Resources Information Center

    Squires, Steven J.

    1993-01-01

    Describes the development of a Unified Medical Language System (UMLS) by the National Library of Medicine that will retrieve and integrate information from a variety of information resources. Highlights include the metathesaurus; the UMLS semantic network; semantic locality; information sources map; evaluation of the metathesaurus; future…

  20. Cerebellar tDCS Modulates Neural Circuits during Semantic Prediction: A Combined tDCS-fMRI Study.

    PubMed

    D'Mello, Anila M; Turkeltaub, Peter E; Stoodley, Catherine J

    2017-02-08

    It has been proposed that the cerebellum acquires internal models of mental processes that enable prediction, allowing for the optimization of behavior. In language, semantic prediction speeds speech production and comprehension. Right cerebellar lobules VI and VII (including Crus I/II) are engaged during a variety of language processes and are functionally connected with cerebral cortical language networks. Further, right posterolateral cerebellar neuromodulation modifies behavior during predictive language processing. These data are consistent with a role for the cerebellum in semantic processing and semantic prediction. We combined transcranial direct current stimulation (tDCS) and fMRI to assess the behavioral and neural consequences of cerebellar tDCS during a sentence completion task. Task-based and resting-state fMRI data were acquired in healthy human adults ( n = 32; μ = 23.1 years) both before and after 20 min of 1.5 mA anodal ( n = 18) or sham ( n = 14) tDCS applied to the right posterolateral cerebellum. In the sentence completion task, the first four words of the sentence modulated the predictability of the final target word. In some sentences, the preceding context strongly predicted the target word, whereas other sentences were nonpredictive. Completion of predictive sentences increased activation in right Crus I/II of the cerebellum. Relative to sham tDCS, anodal tDCS increased activation in right Crus I/II during semantic prediction and enhanced resting-state functional connectivity between hubs of the reading/language networks. These results are consistent with a role for the right posterolateral cerebellum beyond motor aspects of language, and suggest that cerebellar internal models of linguistic stimuli support semantic prediction. SIGNIFICANCE STATEMENT Cerebellar involvement in language tasks and language networks is now well established, yet the specific cerebellar contribution to language processing remains unclear. It is thought that the cerebellum acquires internal models of mental processes that enable prediction, allowing for the optimization of behavior. Here we combined neuroimaging and neuromodulation to provide evidence that the cerebellum is specifically involved in semantic prediction during sentence processing. We found that activation within right Crus I/II was enhanced when semantic predictions were made, and we show that modulation of this region with transcranial direct current stimulation alters both activation patterns and functional connectivity within whole-brain language networks. For the first time, these data show that cerebellar neuromodulation impacts activation patterns specifically during predictive language processing. Copyright © 2017 the authors 0270-6474/17/371604-10$15.00/0.

  1. Architecture and Protocol of a Semantic System Designed for Video Tagging with Sensor Data in Mobile Devices

    PubMed Central

    Macias, Elsa; Lloret, Jaime; Suarez, Alvaro; Garcia, Miguel

    2012-01-01

    Current mobile phones come with several sensors and powerful video cameras. These video cameras can be used to capture good quality scenes, which can be complemented with the information gathered by the sensors also embedded in the phones. For example, the surroundings of a beach recorded by the camera of the mobile phone, jointly with the temperature of the site can let users know via the Internet if the weather is nice enough to swim. In this paper, we present a system that tags the video frames of the video recorded from mobile phones with the data collected by the embedded sensors. The tagged video is uploaded to a video server, which is placed on the Internet and is accessible by any user. The proposed system uses a semantic approach with the stored information in order to make easy and efficient video searches. Our experimental results show that it is possible to tag video frames in real time and send the tagged video to the server with very low packet delay variations. As far as we know there is not any other application developed as the one presented in this paper. PMID:22438753

  2. Architecture and protocol of a semantic system designed for video tagging with sensor data in mobile devices.

    PubMed

    Macias, Elsa; Lloret, Jaime; Suarez, Alvaro; Garcia, Miguel

    2012-01-01

    Current mobile phones come with several sensors and powerful video cameras. These video cameras can be used to capture good quality scenes, which can be complemented with the information gathered by the sensors also embedded in the phones. For example, the surroundings of a beach recorded by the camera of the mobile phone, jointly with the temperature of the site can let users know via the Internet if the weather is nice enough to swim. In this paper, we present a system that tags the video frames of the video recorded from mobile phones with the data collected by the embedded sensors. The tagged video is uploaded to a video server, which is placed on the Internet and is accessible by any user. The proposed system uses a semantic approach with the stored information in order to make easy and efficient video searches. Our experimental results show that it is possible to tag video frames in real time and send the tagged video to the server with very low packet delay variations. As far as we know there is not any other application developed as the one presented in this paper.

  3. Performance Evaluation of a Prototyped Wireless Ground Sensor Network

    DTIC Science & Technology

    2005-03-01

    the network was capable of dynamic adaptation to failure and degradation. 14. SUBJECT TERMS: Wireless Sensor Network , Unmanned Sensor, Unattended...2 H. WIRELESS SENSOR NETWORKS .................................................................... 3...zation, and network traffic. The evaluated scenarios included outdoor, urban and indoor environments. The characteristics of wireless sensor networks , types

  4. Sensor Authentication in Collaborating Sensor Networks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bielefeldt, Jake Uriah

    2014-11-01

    In this thesis, we address a new security problem in the realm of collaborating sensor networks. By collaborating sensor networks, we refer to the networks of sensor networks collaborating on a mission, with each sensor network is independently owned and operated by separate entities. Such networks are practical where a number of independent entities can deploy their own sensor networks in multi-national, commercial, and environmental scenarios, and some of these networks will integrate complementary functionalities for a mission. In the scenario, we address an authentication problem wherein the goal is for the Operator O i of Sensor Network S imore » to correctly determine the number of active sensors in Network Si. Such a problem is challenging in collaborating sensor networks where other sensor networks, despite showing an intent to collaborate, may not be completely trustworthy and could compromise the authentication process. We propose two authentication protocols to address this problem. Our protocols rely on Physically Unclonable Functions, which are a hardware based authentication primitive exploiting inherent randomness in circuit fabrication. Our protocols are light-weight, energy efficient, and highly secure against a number of attacks. To the best of our knowledge, ours is the first to addresses a practical security problem in collaborating sensor networks.« less

  5. Semantic Processing Impairment in Patients with Temporal Lobe Epilepsy

    PubMed Central

    Jaimes-Bautista, Amanda G.; Rodríguez-Camacho, Mario; Martínez-Juárez, Iris E.; Rodríguez-Agudelo, Yaneth

    2015-01-01

    The impairment in episodic memory system is the best-known cognitive deficit in patients with temporal lobe epilepsy (TLE). Recent studies have shown evidence of semantic disorders, but they have been less studied than episodic memory. The semantic dysfunction in TLE has various cognitive manifestations, such as the presence of language disorders characterized by defects in naming, verbal fluency, or remote semantic information retrieval, which affects the ability of patients to interact with their surroundings. This paper is a review of recent research about the consequences of TLE on semantic processing, considering neuropsychological, electrophysiological, and neuroimaging findings, as well as the functional role of the hippocampus in semantic processing. The evidence from these studies shows disturbance of semantic memory in patients with TLE and supports the theory of declarative memory of the hippocampus. Functional neuroimaging studies show an inefficient compensatory functional reorganization of semantic networks and electrophysiological studies show a lack of N400 effect that could indicate that the deficit in semantic processing in patients with TLE could be due to a failure in the mechanisms of automatic access to lexicon. PMID:26257956

  6. An efficient management system for wireless sensor networks.

    PubMed

    Ma, Yi-Wei; Chen, Jiann-Liang; Huang, Yueh-Min; Lee, Mei-Yu

    2010-01-01

    Wireless sensor networks have garnered considerable attention recently. Networks typically have many sensor nodes, and are used in commercial, medical, scientific, and military applications for sensing and monitoring the physical world. Many researchers have attempted to improve wireless sensor network management efficiency. A Simple Network Management Protocol (SNMP)-based sensor network management system was developed that is a convenient and effective way for managers to monitor and control sensor network operations. This paper proposes a novel WSNManagement system that can show the connections stated of relationships among sensor nodes and can be used for monitoring, collecting, and analyzing information obtained by wireless sensor networks. The proposed network management system uses collected information for system configuration. The function of performance analysis facilitates convenient management of sensors. Experimental results show that the proposed method enhances the alive rate of an overall sensor node system, reduces the packet lost rate by roughly 5%, and reduces delay time by roughly 0.2 seconds. Performance analysis demonstrates that the proposed system is effective for wireless sensor network management.

  7. The Influence of Concreteness of Concepts on the Integration of Novel Words into the Semantic Network

    PubMed Central

    Ding, Jinfeng; Liu, Wenjuan; Yang, Yufang

    2017-01-01

    On the basis of previous studies revealing a processing advantage of concrete words over abstract words, the current study aimed to further explore the influence of concreteness on the integration of novel words into semantic memory with the event related potential (ERP) technique. In the experiment during the learning phase participants read two-sentence contexts and inferred the meaning of novel words. The novel words were two-character non-words in Chinese language. Their meaning was either a concrete or abstract known concept which could be inferred from the contexts. During the testing phase participants performed a lexical decision task in which the learned novel words served as primes for either their corresponding concepts, semantically related or unrelated targets. For the concrete novel words, the semantically related words belonged to the same semantic categories with their corresponding concepts. For the abstract novel words, the semantically related words were synonyms of their corresponding concepts. The unrelated targets were real words which were concrete or abstract for the concrete or abstract novel words respectively. The ERP results showed that the corresponding concepts and the semantically related words elicited smaller N400s than the unrelated words. The N400 effect was not modulated by the concreteness of the concepts. In addition, the concrete corresponding concepts elicited a smaller late positive component (LPC) than the concrete unrelated words. This LPC effect was absent for the abstract words. The results indicate that although both concrete and abstract novel words can be acquired and linked to their related words in the semantic network after a short learning phase, the concrete novel words are learned better. Our findings support the (extended) dual coding theory and broaden our understanding of adult word learning and changes in concept organization. PMID:29255440

  8. The Influence of Concreteness of Concepts on the Integration of Novel Words into the Semantic Network.

    PubMed

    Ding, Jinfeng; Liu, Wenjuan; Yang, Yufang

    2017-01-01

    On the basis of previous studies revealing a processing advantage of concrete words over abstract words, the current study aimed to further explore the influence of concreteness on the integration of novel words into semantic memory with the event related potential (ERP) technique. In the experiment during the learning phase participants read two-sentence contexts and inferred the meaning of novel words. The novel words were two-character non-words in Chinese language. Their meaning was either a concrete or abstract known concept which could be inferred from the contexts. During the testing phase participants performed a lexical decision task in which the learned novel words served as primes for either their corresponding concepts, semantically related or unrelated targets. For the concrete novel words, the semantically related words belonged to the same semantic categories with their corresponding concepts. For the abstract novel words, the semantically related words were synonyms of their corresponding concepts. The unrelated targets were real words which were concrete or abstract for the concrete or abstract novel words respectively. The ERP results showed that the corresponding concepts and the semantically related words elicited smaller N400s than the unrelated words. The N400 effect was not modulated by the concreteness of the concepts. In addition, the concrete corresponding concepts elicited a smaller late positive component (LPC) than the concrete unrelated words. This LPC effect was absent for the abstract words. The results indicate that although both concrete and abstract novel words can be acquired and linked to their related words in the semantic network after a short learning phase, the concrete novel words are learned better. Our findings support the (extended) dual coding theory and broaden our understanding of adult word learning and changes in concept organization.

  9. Distinct progression of the deterioration of thematic and taxonomic links in natural and manufactured objects in Alzheimer's disease.

    PubMed

    Simoes Loureiro, Isabelle; Lefebvre, Laurent

    2016-10-01

    Taxonomic and thematic relationships are core elements of lexico-semantic networks. However, the weight of both links differs in semantic memory, with distinct support for natural and manufactured objects: natural objects tend to be more taxonomically identified while manufactured objects benefit more from the underlying thematic relationships. Alzheimer's disease (AD) causes early semantic memory impairment characterized by a category-specific deterioration, where natural objects are more sensitive to the disease than manufactured objects. However, relatively few studies have examined the progressive deterioration of specific thematic versus taxonomic relations in both categories of objects in AD. To better understand semantic memory disorganization in AD and analyze the potential interaction effect between the category (natural/manufactured), the condition (thematic/taxonomic) and AD, we will investigate the lexico-semantic network in 82 AD patients (divided into three groups depending on their global cognitive deterioration and their performance in a preliminary semantic knowledge questionnaire (mild (AD1), moderate (AD2) and advanced (AD3) stages of semantic knowledge alteration). The experimental protocol contains two tasks: an implicit semantic priming paradigm and an explicit card-sorting test that uses the same items, equally divided between natural and manufactured objects. Results show a distinct taxonomic and thematic evolution pattern with early taxonomic deterioration. Natural objects are also more vulnerable to the disease. Lastly, there is an interaction effect between the category and the condition in the priming task indicating that natural objects are more taxonomically organized and manufactured objects benefit more from both thematic and taxonomic organizations, reinforcing the idea of the robustness of this category. The theoretical accounts of these observations will be discussed in detail. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Event Congruency and Episodic Encoding: A Developmental fMRI Study

    ERIC Educational Resources Information Center

    Maril, Anat; Avital, Rinat; Reggev, Niv; Zuckerman, Maya; Sadeh, Talya; Sira, Liat Ben; Livneh, Neta

    2011-01-01

    A known contributor to adults' superior memory performance compared to children is their differential reliance on an existing knowledge base. Compared to those of adults, children's semantic networks are less accessible and less established, a difference that is also thought to contribute to children's relative resistance to semantically related…

  11. The Semantic Web in Education

    ERIC Educational Resources Information Center

    Ohler, Jason

    2008-01-01

    The semantic web or Web 3.0 makes information more meaningful to people by making it more understandable to machines. In this article, the author examines the implications of Web 3.0 for education. The author considers three areas of impact: knowledge construction, personal learning network maintenance, and personal educational administration.…

  12. Shifting Interests: Changes in the Lexical Semantics of ED-MEDIA

    ERIC Educational Resources Information Center

    Wild, Fridolin; Valentine, Chris; Scott, Peter

    2010-01-01

    Large research networks naturally form complex communities with overlapping but not identical expertise. To map the distribution of professional competence in field of "technology-enhanced learning", the lexical semantics expressed in research articles published in a representative, large-scale conference (ED-MEDIA) can be investigated and changes…

  13. Hybrid architecture for building secure sensor networks

    NASA Astrophysics Data System (ADS)

    Owens, Ken R., Jr.; Watkins, Steve E.

    2012-04-01

    Sensor networks have various communication and security architectural concerns. Three approaches are defined to address these concerns for sensor networks. The first area is the utilization of new computing architectures that leverage embedded virtualization software on the sensor. Deploying a small, embedded virtualization operating system on the sensor nodes that is designed to communicate to low-cost cloud computing infrastructure in the network is the foundation to delivering low-cost, secure sensor networks. The second area focuses on securing the sensor. Sensor security components include developing an identification scheme, and leveraging authentication algorithms and protocols that address security assurance within the physical, communication network, and application layers. This function will primarily be accomplished through encrypting the communication channel and integrating sensor network firewall and intrusion detection/prevention components to the sensor network architecture. Hence, sensor networks will be able to maintain high levels of security. The third area addresses the real-time and high priority nature of the data that sensor networks collect. This function requires that a quality-of-service (QoS) definition and algorithm be developed for delivering the right data at the right time. A hybrid architecture is proposed that combines software and hardware features to handle network traffic with diverse QoS requirements.

  14. Global Network Connectivity Assessment via Local Data Exchange for Underwater Acoustic Sensor Networks

    DTIC Science & Technology

    2014-03-31

    Network Connectivity Assessment via Local Data Exchange for Underwater Acoustic Sensor Networks M.M. Asadi H. Mahboubi A...2014 Global Network Connectivity Assessment via Local Data Exchange for Underwater Acoustic Sensor Networks Contract Report # AMBUSH.1.1 Contract...pi j /= 0. The sensor network considered in this work is composed of underwater sensors , which use acoustic waves for

  15. Model for Semantically Rich Point Cloud Data

    NASA Astrophysics Data System (ADS)

    Poux, F.; Neuville, R.; Hallot, P.; Billen, R.

    2017-10-01

    This paper proposes an interoperable model for managing high dimensional point clouds while integrating semantics. Point clouds from sensors are a direct source of information physically describing a 3D state of the recorded environment. As such, they are an exhaustive representation of the real world at every scale: 3D reality-based spatial data. Their generation is increasingly fast but processing routines and data models lack of knowledge to reason from information extraction rather than interpretation. The enhanced smart point cloud developed model allows to bring intelligence to point clouds via 3 connected meta-models while linking available knowledge and classification procedures that permits semantic injection. Interoperability drives the model adaptation to potentially many applications through specialized domain ontologies. A first prototype is implemented in Python and PostgreSQL database and allows to combine semantic and spatial concepts for basic hybrid queries on different point clouds.

  16. Cooperative UAV-Based Communications Backbone for Sensor Networks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roberts, R S

    2001-10-07

    The objective of this project is to investigate the use of unmanned air vehicles (UAVs) as mobile, adaptive communications backbones for ground-based sensor networks. In this type of network, the UAVs provide communication connectivity to sensors that cannot communicate with each other because of terrain, distance, or other geographical constraints. In these situations, UAVs provide a vertical communication path for the sensors, thereby mitigating geographic obstacles often imposed on networks. With the proper use of UAVs, connectivity to a widely disbursed sensor network in rugged terrain is readily achieved. Our investigation has focused on networks where multiple cooperating UAVs aremore » used to form a network backbone. The advantage of using multiple UAVs to form the network backbone is parallelization of sensor connectivity. Many widely spaced or isolated sensors can be connected to the network at once using this approach. In these networks, the UAVs logically partition the sensor network into sub-networks (subnets), with one UAV assigned per subnet. Partitioning the network into subnets allows the UAVs to service sensors in parallel thereby decreasing the sensor-to-network connectivity. A UAV services sensors in its subnet by flying a route (path) through the subnet, uplinking data collected by the sensors, and forwarding the data to a ground station. An additional advantage of using multiple UAVs in the network is that they provide redundancy in the communications backbone, so that the failure of a single UAV does not necessarily imply the loss of the network.« less

  17. Mapping the semantic structure of cognitive neuroscience.

    PubMed

    Beam, Elizabeth; Appelbaum, L Gregory; Jack, Jordynn; Moody, James; Huettel, Scott A

    2014-09-01

    Cognitive neuroscience, as a discipline, links the biological systems studied by neuroscience to the processing constructs studied by psychology. By mapping these relations throughout the literature of cognitive neuroscience, we visualize the semantic structure of the discipline and point to directions for future research that will advance its integrative goal. For this purpose, network text analyses were applied to an exhaustive corpus of abstracts collected from five major journals over a 30-month period, including every study that used fMRI to investigate psychological processes. From this, we generate network maps that illustrate the relationships among psychological and anatomical terms, along with centrality statistics that guide inferences about network structure. Three terms--prefrontal cortex, amygdala, and anterior cingulate cortex--dominate the network structure with their high frequency in the literature and the density of their connections with other neuroanatomical terms. From network statistics, we identify terms that are understudied compared with their importance in the network (e.g., insula and thalamus), are underspecified in the language of the discipline (e.g., terms associated with executive function), or are imperfectly integrated with other concepts (e.g., subdisciplines like decision neuroscience that are disconnected from the main network). Taking these results as the basis for prescriptive recommendations, we conclude that semantic analyses provide useful guidance for cognitive neuroscience as a discipline, both by illustrating systematic biases in the conduct and presentation of research and by identifying directions that may be most productive for future research.

  18. Medical Concept Normalization in Social Media Posts with Recurrent Neural Networks.

    PubMed

    Tutubalina, Elena; Miftahutdinov, Zulfat; Nikolenko, Sergey; Malykh, Valentin

    2018-06-12

    Text mining of scientific libraries and social media has already proven itself as a reliable tool for drug repurposing and hypothesis generation. The task of mapping a disease mention to a concept in a controlled vocabulary, typically to the standard thesaurus in the Unified Medical Language System (UMLS), is known as medical concept normalization. This task is challenging due to the differences in the use of medical terminology between health care professionals and social media texts coming from the lay public. To bridge this gap, we use sequence learning with recurrent neural networks and semantic representation of one- or multi-word expressions: we develop end-to-end architectures directly tailored to the task, including bidirectional Long Short-Term Memory, Gated Recurrent Units with an attention mechanism, and additional semantic similarity features based on UMLS. Our evaluation against a standard benchmark shows that recurrent neural networks improve results over an effective baseline for classification based on convolutional neural networks. A qualitative examination of mentions discovered in a dataset of user reviews collected from popular online health information platforms as well as a quantitative evaluation both show improvements in the semantic representation of health-related expressions in social media. Copyright © 2018. Published by Elsevier Inc.

  19. The semantic web in translational medicine: current applications and future directions

    PubMed Central

    Machado, Catia M.; Rebholz-Schuhmann, Dietrich; Freitas, Ana T.; Couto, Francisco M.

    2015-01-01

    Semantic web technologies offer an approach to data integration and sharing, even for resources developed independently or broadly distributed across the web. This approach is particularly suitable for scientific domains that profit from large amounts of data that reside in the public domain and that have to be exploited in combination. Translational medicine is such a domain, which in addition has to integrate private data from the clinical domain with proprietary data from the pharmaceutical domain. In this survey, we present the results of our analysis of translational medicine solutions that follow a semantic web approach. We assessed these solutions in terms of their target medical use case; the resources covered to achieve their objectives; and their use of existing semantic web resources for the purposes of data sharing, data interoperability and knowledge discovery. The semantic web technologies seem to fulfill their role in facilitating the integration and exploration of data from disparate sources, but it is also clear that simply using them is not enough. It is fundamental to reuse resources, to define mappings between resources, to share data and knowledge. All these aspects allow the instantiation of translational medicine at the semantic web-scale, thus resulting in a network of solutions that can share resources for a faster transfer of new scientific results into the clinical practice. The envisioned network of translational medicine solutions is on its way, but it still requires resolving the challenges of sharing protected data and of integrating semantic-driven technologies into the clinical practice. PMID:24197933

  20. The semantic web in translational medicine: current applications and future directions.

    PubMed

    Machado, Catia M; Rebholz-Schuhmann, Dietrich; Freitas, Ana T; Couto, Francisco M

    2015-01-01

    Semantic web technologies offer an approach to data integration and sharing, even for resources developed independently or broadly distributed across the web. This approach is particularly suitable for scientific domains that profit from large amounts of data that reside in the public domain and that have to be exploited in combination. Translational medicine is such a domain, which in addition has to integrate private data from the clinical domain with proprietary data from the pharmaceutical domain. In this survey, we present the results of our analysis of translational medicine solutions that follow a semantic web approach. We assessed these solutions in terms of their target medical use case; the resources covered to achieve their objectives; and their use of existing semantic web resources for the purposes of data sharing, data interoperability and knowledge discovery. The semantic web technologies seem to fulfill their role in facilitating the integration and exploration of data from disparate sources, but it is also clear that simply using them is not enough. It is fundamental to reuse resources, to define mappings between resources, to share data and knowledge. All these aspects allow the instantiation of translational medicine at the semantic web-scale, thus resulting in a network of solutions that can share resources for a faster transfer of new scientific results into the clinical practice. The envisioned network of translational medicine solutions is on its way, but it still requires resolving the challenges of sharing protected data and of integrating semantic-driven technologies into the clinical practice. © The Author 2013. Published by Oxford University Press.

  1. A neural network model of semantic memory linking feature-based object representation and words.

    PubMed

    Cuppini, C; Magosso, E; Ursino, M

    2009-06-01

    Recent theories in cognitive neuroscience suggest that semantic memory is a distributed process, which involves many cortical areas and is based on a multimodal representation of objects. The aim of this work is to extend a previous model of object representation to realize a semantic memory, in which sensory-motor representations of objects are linked with words. The model assumes that each object is described as a collection of features, coded in different cortical areas via a topological organization. Features in different objects are segmented via gamma-band synchronization of neural oscillators. The feature areas are further connected with a lexical area, devoted to the representation of words. Synapses among the feature areas, and among the lexical area and the feature areas are trained via a time-dependent Hebbian rule, during a period in which individual objects are presented together with the corresponding words. Simulation results demonstrate that, during the retrieval phase, the network can deal with the simultaneous presence of objects (from sensory-motor inputs) and words (from acoustic inputs), can correctly associate objects with words and segment objects even in the presence of incomplete information. Moreover, the network can realize some semantic links among words representing objects with shared features. These results support the idea that semantic memory can be described as an integrated process, whose content is retrieved by the co-activation of different multimodal regions. In perspective, extended versions of this model may be used to test conceptual theories, and to provide a quantitative assessment of existing data (for instance concerning patients with neural deficits).

  2. SOLE: Applying Semantics and Social Web to Support Technology Enhanced Learning in Software Engineering

    NASA Astrophysics Data System (ADS)

    Colomo-Palacios, Ricardo; Jiménez-López, Diego; García-Crespo, Ángel; Blanco-Iglesias, Borja

    eLearning educative processes are a challenge for educative institutions and education professionals. In an environment in which learning resources are being produced, catalogued and stored using innovative ways, SOLE provides a platform in which exam questions can be produced supported by Web 2.0 tools, catalogued and labeled via semantic web and stored and distributed using eLearning standards. This paper presents, SOLE, a social network of exam questions sharing particularized for Software Engineering domain, based on semantics and built using semantic web and eLearning standards, such as IMS Question and Test Interoperability specification 2.1.

  3. Finding gene regulatory network candidates using the gene expression knowledge base.

    PubMed

    Venkatesan, Aravind; Tripathi, Sushil; Sanz de Galdeano, Alejandro; Blondé, Ward; Lægreid, Astrid; Mironov, Vladimir; Kuiper, Martin

    2014-12-10

    Network-based approaches for the analysis of large-scale genomics data have become well established. Biological networks provide a knowledge scaffold against which the patterns and dynamics of 'omics' data can be interpreted. The background information required for the construction of such networks is often dispersed across a multitude of knowledge bases in a variety of formats. The seamless integration of this information is one of the main challenges in bioinformatics. The Semantic Web offers powerful technologies for the assembly of integrated knowledge bases that are computationally comprehensible, thereby providing a potentially powerful resource for constructing biological networks and network-based analysis. We have developed the Gene eXpression Knowledge Base (GeXKB), a semantic web technology based resource that contains integrated knowledge about gene expression regulation. To affirm the utility of GeXKB we demonstrate how this resource can be exploited for the identification of candidate regulatory network proteins. We present four use cases that were designed from a biological perspective in order to find candidate members relevant for the gastrin hormone signaling network model. We show how a combination of specific query definitions and additional selection criteria derived from gene expression data and prior knowledge concerning candidate proteins can be used to retrieve a set of proteins that constitute valid candidates for regulatory network extensions. Semantic web technologies provide the means for processing and integrating various heterogeneous information sources. The GeXKB offers biologists such an integrated knowledge resource, allowing them to address complex biological questions pertaining to gene expression. This work illustrates how GeXKB can be used in combination with gene expression results and literature information to identify new potential candidates that may be considered for extending a gene regulatory network.

  4. Exploiting semantics for sensor re-calibration in event detection systems

    NASA Astrophysics Data System (ADS)

    Vaisenberg, Ronen; Ji, Shengyue; Hore, Bijit; Mehrotra, Sharad; Venkatasubramanian, Nalini

    2008-01-01

    Event detection from a video stream is becoming an important and challenging task in surveillance and sentient systems. While computer vision has been extensively studied to solve different kinds of detection problems over time, it is still a hard problem and even in a controlled environment only simple events can be detected with a high degree of accuracy. Instead of struggling to improve event detection using image processing only, we bring in semantics to direct traditional image processing. Semantics are the underlying facts that hide beneath video frames, which can not be "seen" directly by image processing. In this work we demonstrate that time sequence semantics can be exploited to guide unsupervised re-calibration of the event detection system. We present an instantiation of our ideas by using an appliance as an example--Coffee Pot level detection based on video data--to show that semantics can guide the re-calibration of the detection model. This work exploits time sequence semantics to detect when re-calibration is required to automatically relearn a new detection model for the newly evolved system state and to resume monitoring with a higher rate of accuracy.

  5. Cognitive radio wireless sensor networks: applications, challenges and research trends.

    PubMed

    Joshi, Gyanendra Prasad; Nam, Seung Yeob; Kim, Sung Won

    2013-08-22

    A cognitive radio wireless sensor network is one of the candidate areas where cognitive techniques can be used for opportunistic spectrum access. Research in this area is still in its infancy, but it is progressing rapidly. The aim of this study is to classify the existing literature of this fast emerging application area of cognitive radio wireless sensor networks, highlight the key research that has already been undertaken, and indicate open problems. This paper describes the advantages of cognitive radio wireless sensor networks, the difference between ad hoc cognitive radio networks, wireless sensor networks, and cognitive radio wireless sensor networks, potential application areas of cognitive radio wireless sensor networks, challenges and research trend in cognitive radio wireless sensor networks. The sensing schemes suited for cognitive radio wireless sensor networks scenarios are discussed with an emphasis on cooperation and spectrum access methods that ensure the availability of the required QoS. Finally, this paper lists several open research challenges aimed at drawing the attention of the readers toward the important issues that need to be addressed before the vision of completely autonomous cognitive radio wireless sensor networks can be realized.

  6. A Risk Based Approach to Limit the Effects of Covert Channels for Internet Sensor Data Aggregators for Sensor Privacy

    NASA Astrophysics Data System (ADS)

    Viecco, Camilo H.; Camp, L. Jean

    Effective defense against Internet threats requires data on global real time network status. Internet sensor networks provide such real time network data. However, an organization that participates in a sensor network risks providing a covert channel to attackers if that organization’s sensor can be identified. While there is benefit for every party when any individual participates in such sensor deployments, there are perverse incentives against individual participation. As a result, Internet sensor networks currently provide limited data. Ensuring anonymity of individual sensors can decrease the risk of participating in a sensor network without limiting data provision.

  7. The structure of semantic person memory: evidence from semantic priming in person recognition.

    PubMed

    Wiese, Holger

    2011-11-01

    This paper reviews research on the structure of semantic person memory as examined with semantic priming. In this experimental paradigm, a familiarity decision on a target face or written name is usually faster when it is preceded by a related as compared to an unrelated prime. This effect has been shown to be relatively short lived and susceptible to interfering items. Moreover, semantic priming can cross stimulus domains, such that a written name can prime a target face and vice versa. However, it remains controversial whether representations of people are stored in associative networks based on co-occurrence, or in more abstract semantic categories. In line with prominent cognitive models of face recognition, which explain semantic priming by shared semantic information between prime and target, recent research demonstrated that priming could be obtained from purely categorically related, non-associated prime/target pairs. Although strategic processes, such as expectancy and retrospective matching likely contribute, there is also evidence for a non-strategic contribution to priming, presumably related to spreading activation. Finally, a semantic priming effect has been demonstrated in the N400 event-related potential (ERP) component, which may reflect facilitated access to semantic information. It is concluded that categorical relatedness is one organizing principle of semantic person memory. ©2011 The British Psychological Society.

  8. SemanticFind: Locating What You Want in a Patient Record, Not Just What You Ask For

    PubMed Central

    Prager, John M.; Liang, Jennifer J.; Devarakonda, Murthy V.

    2017-01-01

    We present a new model of patient record search, called SemanticFind, which goes beyond traditional textual and medical synonym matches by locating patient data that a clinician would want to see rather than just what they ask for. The new model is implemented by making extensive use of the UMLS semantic network, distributional semantics, and NLP, to match query terms along several dimensions in a patient record with the returned matches organized accordingly. The new approach finds all clinically related concepts without the user having to ask for them. An evaluation of the accuracy of SemanticFind shows that it found twice as many relevant matches compared to those found by literal (traditional) search alone, along with very high precision and recall. These results suggest potential uses for SemanticFind in clinical practice, retrospective chart reviews, and in automated extraction of quality metrics. PMID:28815139

  9. Semi-Supervised Learning to Identify UMLS Semantic Relations.

    PubMed

    Luo, Yuan; Uzuner, Ozlem

    2014-01-01

    The UMLS Semantic Network is constructed by experts and requires periodic expert review to update. We propose and implement a semi-supervised approach for automatically identifying UMLS semantic relations from narrative text in PubMed. Our method analyzes biomedical narrative text to collect semantic entity pairs, and extracts multiple semantic, syntactic and orthographic features for the collected pairs. We experiment with seeded k-means clustering with various distance metrics. We create and annotate a ground truth corpus according to the top two levels of the UMLS semantic relation hierarchy. We evaluate our system on this corpus and characterize the learning curves of different clustering configuration. Using KL divergence consistently performs the best on the held-out test data. With full seeding, we obtain macro-averaged F-measures above 70% for clustering the top level UMLS relations (2-way), and above 50% for clustering the second level relations (7-way).

  10. Imageability and semantic association in the representation and processing of event verbs.

    PubMed

    Xu, Xu; Kang, Chunyan; Guo, Taomei

    2016-05-01

    This study examined the relative salience of imageability (the degree to which a word evokes mental imagery) versus semantic association (the density of semantic network in which a word is embedded) in the representation and processing of four types of event verbs: sensory, cognitive, speech, and motor verbs. ERP responses were recorded, while 34 university students performed on a lexical decision task. Analysis focused primarily on amplitude differences across verb conditions within the N400 time window where activities are considered representing meaning activation. Variation in N400 amplitude across four types of verbs was found significantly associated with the level of imageability, but not the level of semantic association. The findings suggest imageability as a more salient factor relative to semantic association in the processing of these verbs. The role of semantic association and the representation of speech verbs are also discussed.

  11. Twitter as Information Source for Rapid Damage Estimation after Major Earthquakes

    NASA Astrophysics Data System (ADS)

    Eggert, Silke; Fohringer, Joachim

    2014-05-01

    Natural disasters like earthquakes require a fast response from local authorities. Well trained rescue teams have to be available, equipment and technology has to be ready set up, information have to be directed to the right positions so the head quarter can manage the operation precisely. The main goal is to reach the most affected areas in a minimum of time. But even with the best preparation for these cases, there will always be the uncertainty of what really happened in the affected area. Modern geophysical sensor networks provide high quality data. These measurements, however, are only mapping disjoint values from their respective locations for a limited amount of parameters. Using observations of witnesses represents one approach to enhance measured values from sensors ("humans as sensors"). These observations are increasingly disseminated via social media platforms. These "social sensors" offer several advantages over common sensors, e.g. high mobility, high versatility of captured parameters as well as rapid distribution of information. Moreover, the amount of data offered by social media platforms is quite extensive. We analyze messages distributed via Twitter after major earthquakes to get rapid information on what eye-witnesses report from the epicentral area. We use this information to (a) quickly learn about damage and losses to support fast disaster response and to (b) densify geophysical networks in areas where there is sparse information to gain a more detailed insight on felt intensities. We present a case study from the Mw 7.1 Philippines (Bohol) earthquake that happened on Oct. 15 2013. We extract Twitter messages, so called tweets containing one or more specified keywords from the semantic field of "earthquake" and use them for further analysis. For the time frame of Oct. 15 to Oct 18 we get a data base of in total 50.000 tweets whereof 2900 tweets are geo-localized and 470 have a photo attached. Analyses for both national level and locally for the City of Cebu show that Twitter is an important and useful piece to the situational awareness of the earthquake's impact.

  12. A case for user-generated sensor metadata

    NASA Astrophysics Data System (ADS)

    Nüst, Daniel

    2015-04-01

    Cheap and easy to use sensing technology and new developments in ICT towards a global network of sensors and actuators promise previously unthought of changes for our understanding of the environment. Large professional as well as amateur sensor networks exist, and they are used for specific yet diverse applications across domains such as hydrology, meteorology or early warning systems. However the impact this "abundance of sensors" had so far is somewhat disappointing. There is a gap between (community-driven) sensor networks that could provide very useful data and the users of the data. In our presentation, we argue this is due to a lack of metadata which allows determining the fitness of use of a dataset. Syntactic or semantic interoperability for sensor webs have made great progress and continue to be an active field of research, yet they often are quite complex, which is of course due to the complexity of the problem at hand. But still, we see the most generic information to determine fitness for use is a dataset's provenance, because it allows users to make up their own minds independently from existing classification schemes for data quality. In this work we will make the case how curated user-contributed metadata has the potential to improve this situation. This especially applies for scenarios in which an observed property is applicable in different domains, and for set-ups where the understanding about metadata concepts and (meta-)data quality differs between data provider and user. On the one hand a citizen does not understand the ISO provenance metadata. On the other hand a researcher might find issues in publicly accessible time series published by citizens, which the latter might not be aware of or care about. Because users will have to determine fitness for use for each application on their own anyway, we suggest an online collaboration platform for user-generated metadata based on an extremely simplified data model. In the most basic fashion, metadata generated by users can be boiled down to a basic property of the world wide web: many information items, such as news or blog posts, allow users to create comments and rate the content. Therefore we argue to focus a core data model on one text field for a textual comment, one optional numerical field for a rating, and a resolvable identifier for the dataset that is commented on. We present a conceptual framework that integrates user comments in existing standards and relevant applications of online sensor networks and discuss possible approaches, such as linked data, brokering, or standalone metadata portals. We relate this framework to existing work in user generated content, such as proprietary rating systems on commercial websites, microformats, the GeoViQua User Quality Model, the CHARMe annotations, or W3C Open Annotation. These systems are also explored for commonalities and based on their very useful concepts and ideas; we present an outline for future extensions of the minimal model. Building on this framework we present a concept how a simplistic comment-rating-system can be extended to capture provenance information for spatio-temporal observations in the sensor web, and how this framework can be evaluated.

  13. Where Is the Semantic System? A Critical Review and Meta-Analysis of 120 Functional Neuroimaging Studies

    PubMed Central

    Desai, Rutvik H.; Graves, William W.; Conant, Lisa L.

    2009-01-01

    Semantic memory refers to knowledge about people, objects, actions, relations, self, and culture acquired through experience. The neural systems that store and retrieve this information have been studied for many years, but a consensus regarding their identity has not been reached. Using strict inclusion criteria, we analyzed 120 functional neuroimaging studies focusing on semantic processing. Reliable areas of activation in these studies were identified using the activation likelihood estimate (ALE) technique. These activations formed a distinct, left-lateralized network comprised of 7 regions: posterior inferior parietal lobe, middle temporal gyrus, fusiform and parahippocampal gyri, dorsomedial prefrontal cortex, inferior frontal gyrus, ventromedial prefrontal cortex, and posterior cingulate gyrus. Secondary analyses showed specific subregions of this network associated with knowledge of actions, manipulable artifacts, abstract concepts, and concrete concepts. The cortical regions involved in semantic processing can be grouped into 3 broad categories: posterior multimodal and heteromodal association cortex, heteromodal prefrontal cortex, and medial limbic regions. The expansion of these regions in the human relative to the nonhuman primate brain may explain uniquely human capacities to use language productively, plan, solve problems, and create cultural and technological artifacts, all of which depend on the fluid and efficient retrieval and manipulation of semantic knowledge. PMID:19329570

  14. Semantic transcoding of video based on regions of interest

    NASA Astrophysics Data System (ADS)

    Lim, Jeongyeon; Kim, Munchurl; Kim, Jong-Nam; Kim, Kyeongsoo

    2003-06-01

    Traditional transcoding on multimedia has been performed from the perspectives of user terminal capabilities such as display sizes and decoding processing power, and network resources such as available network bandwidth and quality of services (QoS) etc. The adaptation (or transcoding) of multimedia contents to given such constraints has been made by frame dropping and resizing of audiovisual, as well as reduction of SNR (Signal-to-Noise Ratio) values by saving the resulting bitrates. Not only such traditional transcoding is performed from the perspective of user"s environment, but also we incorporate a method of semantic transcoding of audiovisual based on region of interest (ROI) from user"s perspective. Users can designate their interested parts in images or video so that the corresponding video contents can be adapted focused on the user"s ROI. We incorporate the MPEG-21 DIA (Digital Item Adaptation) framework in which such semantic information of the user"s ROI is represented and delivered to the content provider side as XDI (context digital item). Representation schema of our semantic information of the user"s ROI has been adopted in MPEG-21 DIA Adaptation Model. In this paper, we present the usage of semantic information of user"s ROI for transcoding and show our system implementation with experimental results.

  15. Time Synchronization in Wireless Sensor Networks

    DTIC Science & Technology

    2003-01-01

    University of California Los Angeles Time Synchronization in Wireless Sensor Networks A dissertation submitted in partial satisfaction of the...4. TITLE AND SUBTITLE Time Synchronization in Wireless Sensor Networks 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6...1 1.1 Wireless Sensor Networks . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Time Synchronization in Sensor Networks

  16. The Activation and Monitoring of Memories Produced by Words and Pseudohomophones

    ERIC Educational Resources Information Center

    Cortese, Michael J.; Khanna, Maya M.; White, Katherine K.; Veljkovic, Ilija; Drumm, Geoffery

    2008-01-01

    Using the DRM paradigm, our experiments examined the activation and monitoring of memories in semantic and phonological networks. Participants viewed lists of words and/or pseudohomophones (e.g., "dreem"). In Experiment 1, participants verbally recalled lists of semantic associates or attempted to write them as they appeared during study. False…

  17. An Investigation of Two Ways of Presenting Vocabulary

    ERIC Educational Resources Information Center

    Papathanasiou, Evagelia

    2009-01-01

    The use of semantic links or networks in L2 vocabulary acquisition has been a popular subject for numerous studies. On one hand, there is a strong theoretical background stating that presenting words in related fashion facilitates the learning of L2 vocabulary. On the other hand, research evidence indicates that semantically related vocabulary…

  18. Provenance-Based Approaches to Semantic Web Service Discovery and Usage

    ERIC Educational Resources Information Center

    Narock, Thomas William

    2012-01-01

    The World Wide Web Consortium defines a Web Service as "a software system designed to support interoperable machine-to-machine interaction over a network." Web Services have become increasingly important both within and across organizational boundaries. With the recent advent of the Semantic Web, web services have evolved into semantic…

  19. Levels of processing and language modality specificity in working memory.

    PubMed

    Rudner, Mary; Karlsson, Thomas; Gunnarsson, Johan; Rönnberg, Jerker

    2013-03-01

    Neural networks underpinning working memory demonstrate sign language specific components possibly related to differences in temporary storage mechanisms. A processing approach to memory systems suggests that the organisation of memory storage is related to type of memory processing as well. In the present study, we investigated for the first time semantic, phonological and orthographic processing in working memory for sign- and speech-based language. During fMRI we administered a picture-based 2-back working memory task with Semantic, Phonological, Orthographic and Baseline conditions to 11 deaf signers and 20 hearing non-signers. Behavioural data showed poorer and slower performance for both groups in Phonological and Orthographic conditions than in the Semantic condition, in line with depth-of-processing theory. An exclusive masking procedure revealed distinct sign-specific neural networks supporting working memory components at all three levels of processing. The overall pattern of sign-specific activations may reflect a relative intermodality difference in the relationship between phonology and semantics influencing working memory storage and processing. Copyright © 2012 Elsevier Ltd. All rights reserved.

  20. Semantic Service Matchmaking in the ATM Domain Considering Infrastructure Capability Constraints

    NASA Astrophysics Data System (ADS)

    Moser, Thomas; Mordinyi, Richard; Sunindyo, Wikan Danar; Biffl, Stefan

    In a service-oriented environment business processes flexibly build on software services provided by systems in a network. A key design challenge is the semantic matchmaking of business processes and software services in two steps: 1. Find for one business process the software services that meet or exceed the BP requirements; 2. Find for all business processes the software services that can be implemented within the capability constraints of the underlying network, which poses a major problem since even for small scenarios the solution space is typically very large. In this chapter we analyze requirements from mission-critical business processes in the Air Traffic Management (ATM) domain and introduce an approach for semi-automatic semantic matchmaking for software services, the “System-Wide Information Sharing” (SWIS) business process integration framework. A tool-supported semantic matchmaking process like SWIS can provide system designers and integrators with a set of promising software service candidates and therefore strongly reduces the human matching effort by focusing on a much smaller space of matchmaking candidates. We evaluate the feasibility of the SWIS approach in an industry use case from the ATM domain.

  1. MESUR: USAGE-BASED METRICS OF SCHOLARLY IMPACT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    BOLLEN, JOHAN; RODRIGUEZ, MARKO A.; VAN DE SOMPEL, HERBERT

    2007-01-30

    The evaluation of scholarly communication items is now largely a matter of expert opinion or metrics derived from citation data. Both approaches can fail to take into account the myriad of factors that shape scholarly impact. Usage data has emerged as a promising complement to existing methods o fassessment but the formal groundwork to reliably and validly apply usage-based metrics of schlolarly impact is lacking. The Andrew W. Mellon Foundation funded MESUR project constitutes a systematic effort to define, validate and cross-validate a range of usage-based metrics of schlolarly impact by creating a semantic model of the scholarly communication process.more » The constructed model will serve as the basis of a creating a large-scale semantic network that seamlessly relates citation, bibliographic and usage data from a variety of sources. A subsequent program that uses the established semantic network as a reference data set will determine the characteristics and semantics of a variety of usage-based metrics of schlolarly impact. This paper outlines the architecture and methodology adopted by the MESUR project and its future direction.« less

  2. Generating Poetry Title Based on Semantic Relevance with Convolutional Neural Network

    NASA Astrophysics Data System (ADS)

    Li, Z.; Niu, K.; He, Z. Q.

    2017-09-01

    Several approaches have been proposed to automatically generate Chinese classical poetry (CCP) in the past few years, but automatically generating the title of CCP is still a difficult problem. The difficulties are mainly reflected in two aspects. First, the words used in CCP are very different from modern Chinese words and there are no valid word segmentation tools. Second, the semantic relevance of characters in CCP not only exists in one sentence but also exists between the same positions of adjacent sentences, which is hard to grasp by the traditional text summarization models. In this paper, we propose an encoder-decoder model for generating the title of CCP. Our model encoder is a convolutional neural network (CNN) with two kinds of filters. To capture the commonly used words in one sentence, one kind of filters covers two characters horizontally at each step. The other covers two characters vertically at each step and can grasp the semantic relevance of characters between adjacent sentences. Experimental results show that our model is better than several other related models and can capture the semantic relevance of CCP more accurately.

  3. Geoscience Australia Publishes Sample Descriptions using W3C standards

    NASA Astrophysics Data System (ADS)

    Car, N. J.; Cox, S. J. D.; Bastrakova, I.; Wyborn, L. A.

    2017-12-01

    The recent revision of the W3C Semantic Sensor Network Ontology (SSN) has focused on three key concerns: Extending the scope of the ontology to include sampling and actuation as well as observation and sensing Modularizing the ontology into a simple core with few classes and properties and little formal axiomatization, supplemented by additional modules that formalize the semantics and extend the scope Alignments with several existing applications and upper ontologies These enhancements mean that SSN can now be used as the basis for publishing descriptions of geologic samples as Linked Data. Geoscience Australia maintains a database of about three million samples, collected over 50 years through projects from ocean core, terrestrial rock and hydrochemistry borehole projects, almost all of which are held in in the special-purpose GA samples repository. Access to descriptions of these samples as Linked Data has recently been enabled. The sample descriptions can be viewed in various machine-readable formalizations, including IGSN (XML & RDF), Dublin Core (XML & RDF) and SSN (RDF), as well as web landing-pages for people. Of particular importance is the support for encoding relationships between samples, and between samples and surveys, boreholes, and traverses which they are related to, as well as between samples processed for analytical purposes and their parents, siblings, and back to the original field samples. The SSN extension for Sample Relationships provides an extensible, semantically rich mechanism to capture any relationship necessary to explain the provenance of observation results obtained from samples. Sample citation is facilitated through the use of URI-based persistent identifiers which resolve to samples' landing pages. The sample system also allows PROV pingbacks to be received for samples when users of them record provenance for their actions.

  4. Natural language acquisition in large scale neural semantic networks

    NASA Astrophysics Data System (ADS)

    Ealey, Douglas

    This thesis puts forward the view that a purely signal- based approach to natural language processing is both plausible and desirable. By questioning the veracity of symbolic representations of meaning, it argues for a unified, non-symbolic model of knowledge representation that is both biologically plausible and, potentially, highly efficient. Processes to generate a grounded, neural form of this model-dubbed the semantic filter-are discussed. The combined effects of local neural organisation, coincident with perceptual maturation, are used to hypothesise its nature. This theoretical model is then validated in light of a number of fundamental neurological constraints and milestones. The mechanisms of semantic and episodic development that the model predicts are then used to explain linguistic properties, such as propositions and verbs, syntax and scripting. To mimic the growth of locally densely connected structures upon an unbounded neural substrate, a system is developed that can grow arbitrarily large, data- dependant structures composed of individual self- organising neural networks. The maturational nature of the data used results in a structure in which the perception of concepts is refined by the networks, but demarcated by subsequent structure. As a consequence, the overall structure shows significant memory and computational benefits, as predicted by the cognitive and neural models. Furthermore, the localised nature of the neural architecture also avoids the increasing error sensitivity and redundancy of traditional systems as the training domain grows. The semantic and episodic filters have been demonstrated to perform as well, or better, than more specialist networks, whilst using significantly larger vocabularies, more complex sentence forms and more natural corpora.

  5. Real-Time Performance of a Self-Powered Environmental IoT Sensor Network System.

    PubMed

    Wu, Fan; Rüdiger, Christoph; Yuce, Mehmet Rasit

    2017-02-01

    Wireless sensor networks (WSNs) play an increasingly important role in monitoring applications in many areas. With the emergence of the Internet-of-Things (IoT), many more lowpower sensors will need to be deployed in various environments to collect and monitor data about environmental factors in real time. Providing power supply to these sensor nodes becomes a critical challenge for realizations of IoT applications as sensor nodes are normally battery-powered and have a limited lifetime. This paper proposes a wireless sensor network that is powered by solar energy harvesting. The sensor network monitors the environmental data with low-power sensor electronics and forms a network using multiple XBee wireless modules. A detailed performance analysis of the network system under solar energy harvesting has been presented. The sensor network system and the proposed energy-harvesting techniques are configured to achieve a continuous energy source for the sensor network. The proposed energy-harvesting system has been successfully designed to enable an energy solution in order to keep sensor nodes active and reliable for a whole day. The paper also outlines some of our experiences in real-time implementation of a sensor network system with energy harvesting.

  6. Real-Time Performance of a Self-Powered Environmental IoT Sensor Network System

    PubMed Central

    Wu, Fan; Rüdiger, Christoph; Yuce, Mehmet Rasit

    2017-01-01

    Wireless sensor networks (WSNs) play an increasingly important role in monitoring applications in many areas. With the emergence of the Internet-of-Things (IoT), many more low-power sensors will need to be deployed in various environments to collect and monitor data about environmental factors in real time. Providing power supply to these sensor nodes becomes a critical challenge for realizations of IoT applications as sensor nodes are normally battery-powered and have a limited lifetime. This paper proposes a wireless sensor network that is powered by solar energy harvesting. The sensor network monitors the environmental data with low-power sensor electronics and forms a network using multiple XBee wireless modules. A detailed performance analysis of the network system under solar energy harvesting has been presented. The sensor network system and the proposed energy-harvesting techniques are configured to achieve a continuous energy source for the sensor network. The proposed energy-harvesting system has been successfully designed to enable an energy solution in order to keep sensor nodes active and reliable for a whole day. The paper also outlines some of our experiences in real-time implementation of a sensor network system with energy harvesting. PMID:28157148

  7. Triangulation of the neurocomputational architecture underpinning reading aloud

    PubMed Central

    Hoffman, Paul; Lambon Ralph, Matthew A.; Woollams, Anna M.

    2015-01-01

    The goal of cognitive neuroscience is to integrate cognitive models with knowledge about underlying neural machinery. This significant challenge was explored in relation to word reading, where sophisticated computational-cognitive models exist but have made limited contact with neural data. Using distortion-corrected functional MRI and dynamic causal modeling, we investigated the interactions between brain regions dedicated to orthographic, semantic, and phonological processing while participants read words aloud. We found that the lateral anterior temporal lobe exhibited increased activation when participants read words with irregular spellings. This area is implicated in semantic processing but has not previously been considered part of the reading network. We also found meaningful individual differences in the activation of this region: Activity was predicted by an independent measure of the degree to which participants use semantic knowledge to read. These characteristics are predicted by the connectionist Triangle Model of reading and indicate a key role for semantic knowledge in reading aloud. Premotor regions associated with phonological processing displayed the reverse characteristics. Changes in the functional connectivity of the reading network during irregular word reading also were consistent with semantic recruitment. These data support the view that reading aloud is underpinned by the joint operation of two neural pathways. They reveal that (i) the ATL is an important element of the ventral semantic pathway and (ii) the division of labor between the two routes varies according to both the properties of the words being read and individual differences in the degree to which participants rely on each route. PMID:26124121

  8. Cognitive Radio Wireless Sensor Networks: Applications, Challenges and Research Trends

    PubMed Central

    Joshi, Gyanendra Prasad; Nam, Seung Yeob; Kim, Sung Won

    2013-01-01

    A cognitive radio wireless sensor network is one of the candidate areas where cognitive techniques can be used for opportunistic spectrum access. Research in this area is still in its infancy, but it is progressing rapidly. The aim of this study is to classify the existing literature of this fast emerging application area of cognitive radio wireless sensor networks, highlight the key research that has already been undertaken, and indicate open problems. This paper describes the advantages of cognitive radio wireless sensor networks, the difference between ad hoc cognitive radio networks, wireless sensor networks, and cognitive radio wireless sensor networks, potential application areas of cognitive radio wireless sensor networks, challenges and research trend in cognitive radio wireless sensor networks. The sensing schemes suited for cognitive radio wireless sensor networks scenarios are discussed with an emphasis on cooperation and spectrum access methods that ensure the availability of the required QoS. Finally, this paper lists several open research challenges aimed at drawing the attention of the readers toward the important issues that need to be addressed before the vision of completely autonomous cognitive radio wireless sensor networks can be realized. PMID:23974152

  9. Predicting floods with Flickr tags.

    PubMed

    Tkachenko, Nataliya; Jarvis, Stephen; Procter, Rob

    2017-01-01

    Increasingly, user generated content (UGC) in social media postings and their associated metadata such as time and location stamps are being used to provide useful operational information during natural hazard events such as hurricanes, storms and floods. The main advantage of these new sources of data are twofold. First, in a purely additive sense, they can provide much denser geographical coverage of the hazard as compared to traditional sensor networks. Second, they provide what physical sensors are not able to do: By documenting personal observations and experiences, they directly record the impact of a hazard on the human environment. For this reason interpretation of the content (e.g., hashtags, images, text, emojis, etc) and metadata (e.g., keywords, tags, geolocation) have been a focus of much research into social media analytics. However, as choices of semantic tags in the current methods are usually reduced to the exact name or type of the event (e.g., hashtags '#Sandy' or '#flooding'), the main limitation of such approaches remains their mere nowcasting capacity. In this study we make use of polysemous tags of images posted during several recent flood events and demonstrate how such volunteered geographic data can be used to provide early warning of an event before its outbreak.

  10. Relating UMLS semantic types and task-based ontology to computer-interpretable clinical practice guidelines.

    PubMed

    Kumar, Anand; Ciccarese, Paolo; Quaglini, Silvana; Stefanelli, Mario; Caffi, Ezio; Boiocchi, Lorenzo

    2003-01-01

    Medical knowledge in clinical practice guideline (GL) texts is the source of task-based computer-interpretable clinical guideline models (CIGMs). We have used Unified Medical Language System (UMLS) semantic types (STs) to understand the percentage of GL text which belongs to a particular ST. We also use UMLS semantic network together with the CIGM-specific ontology to derive a semantic meaning behind the GL text. In order to achieve this objective, we took nine GL texts from the National Guideline Clearinghouse (NGC) and marked up the text dealing with a particular ST. The STs we took into consideration were restricted taking into account the requirements of a task-based CIGM. We used DARPA Agent Markup Language and Ontology Inference Layer (DAML + OIL) to create the UMLS and CIGM specific semantic network. For the latter, as a bench test, we used the 1999 WHO-International Society of Hypertension Guidelines for the Management of Hypertension. We took into consideration the UMLS STs closest to the clinical tasks. The percentage of the GL text dealing with the ST "Health Care Activity" and subtypes "Laboratory Procedure", "Diagnostic Procedure" and "Therapeutic or Preventive Procedure" were measured. The parts of text belonging to other STs or comments were separated. A mapping of terms belonging to other STs was done to the STs under "HCA" for representation in DAML + OIL. As a result, we found that the three STs under "HCA" were the predominant STs present in the GL text. In cases where the terms of related STs existed, they were mapped into one of the three STs. The DAML + OIL representation was able to describe the hierarchy in task-based CIGMs. To conclude, we understood that the three STs could be used to represent the semantic network of the task-bases CIGMs. We identified some mapping operators which could be used for the mapping of other STs into these.

  11. Mining semantic networks of bioinformatics e-resources from the literature

    PubMed Central

    2011-01-01

    Background There have been a number of recent efforts (e.g. BioCatalogue, BioMoby) to systematically catalogue bioinformatics tools, services and datasets. These efforts rely on manual curation, making it difficult to cope with the huge influx of various electronic resources that have been provided by the bioinformatics community. We present a text mining approach that utilises the literature to automatically extract descriptions and semantically profile bioinformatics resources to make them available for resource discovery and exploration through semantic networks that contain related resources. Results The method identifies the mentions of resources in the literature and assigns a set of co-occurring terminological entities (descriptors) to represent them. We have processed 2,691 full-text bioinformatics articles and extracted profiles of 12,452 resources containing associated descriptors with binary and tf*idf weights. Since such representations are typically sparse (on average 13.77 features per resource), we used lexical kernel metrics to identify semantically related resources via descriptor smoothing. Resources are then clustered or linked into semantic networks, providing the users (bioinformaticians, curators and service/tool crawlers) with a possibility to explore algorithms, tools, services and datasets based on their relatedness. Manual exploration of links between a set of 18 well-known bioinformatics resources suggests that the method was able to identify and group semantically related entities. Conclusions The results have shown that the method can reconstruct interesting functional links between resources (e.g. linking data types and algorithms), in particular when tf*idf-like weights are used for profiling. This demonstrates the potential of combining literature mining and simple lexical kernel methods to model relatedness between resource descriptors in particular when there are few features, thus potentially improving the resource description, discovery and exploration process. The resource profiles are available at http://gnode1.mib.man.ac.uk/bioinf/semnets.html PMID:21388573

  12. Event-related rTMS at encoding affects differently deep and shallow memory traces.

    PubMed

    Innocenti, Iglis; Giovannelli, Fabio; Cincotta, Massimo; Feurra, Matteo; Polizzotto, Nicola R; Bianco, Giovanni; Cappa, Stefano F; Rossi, Simone

    2010-10-15

    The "level of processing" effect is a classical finding of the experimental psychology of memory. Actually, the depth of information processing at encoding predicts the accuracy of the subsequent episodic memory performance. When the incoming stimuli are analyzed in terms of their meaning (semantic, or deep, encoding), the memory performance is superior with respect to the case in which the same stimuli are analyzed in terms of their perceptual features (shallow encoding). As suggested by previous neuroimaging studies and by some preliminary findings with transcranial magnetic stimulation (TMS), the left prefrontal cortex may play a role in semantic processing requiring the allocation of working memory resources. However, it still remains unclear whether deep and shallow encoding share or not the same cortical networks, as well as how these networks contribute to the "level of processing" effect. To investigate the brain areas casually involved in this phenomenon, we applied event-related repetitive TMS (rTMS) during deep (semantic) and shallow (perceptual) encoding of words. Retrieval was subsequently tested without rTMS interference. RTMS applied to the left dorsolateral prefrontal cortex (DLPFC) abolished the beneficial effect of deep encoding on memory performance, both in terms of accuracy (decrease) and reaction times (increase). Neither accuracy nor reaction times were instead affected by rTMS to the right DLPFC or to an additional control site excluded by the memory process (vertex). The fact that online measures of semantic processing at encoding were unaffected suggests that the detrimental effect on memory performance for semantically encoded items took place in the subsequent consolidation phase. These results highlight the specific causal role of the left DLPFC among the wide left-lateralized cortical network engaged by long-term memory, suggesting that it probably represents a crucial node responsible for the improved memory performance induced by semantic processing. Copyright 2010 Elsevier Inc. All rights reserved.

  13. Cortico-subcortical organization of language networks in the right hemisphere: an electrostimulation study in left-handers.

    PubMed

    Duffau, Hugues; Leroy, Marianne; Gatignol, Peggy

    2008-12-01

    We have studied the configuration of the cortico-subcortical language networks within the right hemisphere (RH) in nine left-handers, being operated on while awake for a cerebral glioma. Intraoperatively, language was mapped using cortico-subcortical electrostimulation, to avoid permanent deficit. In frontal regions, cortical stimulation elicited articulatory disorders (ventral premotor cortex), anomia (dorsal premotor cortex), speech arrest (pars opercularis), and semantic paraphasia (dorsolateral prefrontal cortex). Insular stimulation generated dysarthria, parietal stimulation phonemic paraphasias, and temporal stimulation semantic paraphasias. Subcortically, the superior longitudinal fasciculus (inducing phonological disturbances when stimulated), inferior occipito-frontal fasciculus (eliciting semantic disturbances during stimulation), subcallosal fasciculus (generating control disturbances when stimulated), and common final pathway (inducing articulatory disorders during stimulation) were identified. These cortical and subcortical structures were preserved, avoiding permanent aphasia, despite a transient immediate postoperative language worsening. Both intraoperative results and postsurgical transitory dysphasia support the major role of the RH in language in left-handers, and provide new insights into the anatomo-functional cortico-subcortical organization of the language networks in the RH-suggesting a "mirror" configuration in comparison to the left hemisphere.

  14. Fully convolutional networks with double-label for esophageal cancer image segmentation by self-transfer learning

    NASA Astrophysics Data System (ADS)

    Xue, Di-Xiu; Zhang, Rong; Zhao, Yuan-Yuan; Xu, Jian-Ming; Wang, Ya-Lei

    2017-07-01

    Cancer recognition is the prerequisite to determine appropriate treatment. This paper focuses on the semantic segmentation task of microvascular morphological types on narrowband images to aid clinical examination of esophageal cancer. The most challenge for semantic segmentation is incomplete-labeling. Our key insight is to build fully convolutional networks (FCNs) with double-label to make pixel-wise predictions. The roi-label indicating ROIs (region of interest) is introduced as extra constraint to guild feature learning. Trained end-to-end, the FCN model with two target jointly optimizes both segmentation of sem-label (semantic label) and segmentation of roi-label within the framework of self-transfer learning based on multi-task learning theory. The learning representation ability of shared convolutional networks for sem-label is improved with support of roi-label via achieving a better understanding of information outside the ROIs. Our best FCN model gives satisfactory segmentation result with mean IU up to 77.8% (pixel accuracy > 90%). The results show that the proposed approach is able to assist clinical diagnosis to a certain extent.

  15. Statistics and dynamics of attractor networks with inter-correlated patterns

    NASA Astrophysics Data System (ADS)

    Kropff, E.

    2007-02-01

    In an embodied feature representation view, the semantic memory represents concepts in the brain by the associated activation of the features that describe it, each one of them processed in a differentiated region of the cortex. This system has been modeled with a Potts attractor network. Several studies of feature representation show that the correlation between patterns plays a crucial role in semantic memory. The present work focuses on two aspects of the effect of correlations in attractor networks. In first place, it assesses how a Potts network can store a set of patterns with non-trivial correlations between them. This is done through a simple and biologically plausible modification to the classical learning rule. In second place, it studies the complexity of latching transitions between attractor states, and how this complexity can be controlled.

  16. Effects of Transcranial Direct Current Stimulation on Neural Networks in Young and Older Adults

    PubMed

    Martin, Andrew K; Meinzer, Marcus; Lindenberg, Robert; Sieg, Mira M; Nachtigall, Laura; Flöel, Agnes

    2017-11-01

    Transcranial direct current stimulation (tDCS) may be a viable tool to improve motor and cognitive function in advanced age. However, although a number of studies have demonstrated improved cognitive performance in older adults, other studies have failed to show restorative effects. The neural effects of beneficial stimulation response in both age groups is lacking. In the current study, tDCS was administered during simultaneous fMRI in 42 healthy young and older participants. Semantic word generation and motor speech baseline tasks were used to investigate behavioral and neural effects of uni- and bihemispheric motor cortex tDCS in a three-way, crossover, sham tDCS controlled design. Independent components analysis assessed differences in task-related activity between the two age groups and tDCS effects at the network level. We also explored whether laterality of language network organization was effected by tDCS. Behaviorally, both active tDCS conditions significantly improved semantic word retrieval performance in young and older adults and were comparable between groups and stimulation conditions. Network-level tDCS effects were identified in the ventral and dorsal anterior cingulate networks in the combined sample during semantic fluency and motor speech tasks. In addition, a shift toward enhanced left laterality was identified in the older adults for both active stimulation conditions. Thus, tDCS results in common network-level modulations and behavioral improvements for both age groups, with an additional effect of increasing left laterality in older adults.

  17. Auditing the NCI Thesaurus with Semantic Web Technologies

    PubMed Central

    Mougin, Fleur; Bodenreider, Olivier

    2008-01-01

    Auditing biomedical terminologies often results in the identification of inconsistencies and thus helps to improve their quality. In this paper, we present a method based on Semantic Web technologies for auditing biomedical terminologies and apply it to the NCI thesaurus. We stored the NCI thesaurus concepts and their properties in an RDF triple store. By querying this store, we assessed the consistency of both hierarchical and associative relations from the NCI thesaurus among themselves and with corresponding relations in the UMLS Semantic Network. We show that the consistency is better for associative relations than for hierarchical relations. Causes for inconsistency and benefits from using Semantic Web technologies for auditing purposes are discussed. PMID:18999265

  18. Auditing the NCI thesaurus with semantic web technologies.

    PubMed

    Mougin, Fleur; Bodenreider, Olivier

    2008-11-06

    Auditing biomedical terminologies often results in the identification of inconsistencies and thus helps to improve their quality. In this paper, we present a method based on Semantic Web technologies for auditing biomedical terminologies and apply it to the NCI thesaurus. We stored the NCI thesaurus concepts and their properties in an RDF triple store. By querying this store, we assessed the consistency of both hierarchical and associative relations from the NCI thesaurus among themselves and with corresponding relations in the UMLS Semantic Network. We show that the consistency is better for associative relations than for hierarchical relations. Causes for inconsistency and benefits from using Semantic Web technologies for auditing purposes are discussed.

  19. Internally- and externally-driven network transitions as a basis for automatic and strategic processes in semantic priming: theory and experimental validation

    PubMed Central

    Lerner, Itamar; Shriki, Oren

    2014-01-01

    For the last four decades, semantic priming—the facilitation in recognition of a target word when it follows the presentation of a semantically related prime word—has been a central topic in research of human cognitive processing. Studies have drawn a complex picture of findings which demonstrated the sensitivity of this priming effect to a unique combination of variables, including, but not limited to, the type of relatedness between primes and targets, the prime-target Stimulus Onset Asynchrony (SOA), the relatedness proportion (RP) in the stimuli list and the specific task subjects are required to perform. Automatic processes depending on the activation patterns of semantic representations in memory and controlled strategies adapted by individuals when attempting to maximize their recognition performance have both been implicated in contributing to the results. Lately, we have published a new model of semantic priming that addresses the majority of these findings within one conceptual framework. In our model, semantic memory is depicted as an attractor neural network in which stochastic transitions from one stored pattern to another are continually taking place due to synaptic depression mechanisms. We have shown how such transitions, in combination with a reinforcement-learning rule that adjusts their pace, resemble the classic automatic and controlled processes involved in semantic priming and account for a great number of the findings in the literature. Here, we review the core findings of our model and present new simulations that show how similar principles of parameter-adjustments could account for additional data not addressed in our previous studies, such as the relation between expectancy and inhibition in priming, target frequency and target degradation effects. Finally, we describe two human experiments that validate several key predictions of the model. PMID:24795670

  20. Increased functional connectivity in the default mode network in mild cognitive impairment: a maladaptive compensatory mechanism associated with poor semantic memory performance.

    PubMed

    Gardini, Simona; Venneri, Annalena; Sambataro, Fabio; Cuetos, Fernando; Fasano, Fabrizio; Marchi, Massimo; Crisi, Girolamo; Caffarra, Paolo

    2015-01-01

    Semantic memory decline and changes of default mode network (DMN) connectivity have been reported in mild cognitive impairment (MCI). Only a few studies, however, have investigated the role of changes of activity in the DMN on semantic memory in this clinical condition. The present study aimed to investigate more extensively the relationship between semantic memory impairment and DMN intrinsic connectivity in MCI. Twenty-one MCI patients and 21 healthy elderly controls matched for demographic variables took part in this study. All participants underwent a comprehensive semantic battery including tasks of category fluency, visual naming and naming from definition for objects, actions and famous people, word-association for early and late acquired words and reading. A subgroup of the original sample (16 MCI patients and 20 healthy elderly controls) was also scanned with resting state functional magnetic resonance imaging and DMN connectivity was estimated using a seed-based approach. Compared with healthy elderly, patients showed an extensive semantic memory decline in category fluency, visual naming, naming from definition, words-association, and reading tasks. Patients presented increased DMN connectivity between the medial prefrontal regions and the posterior cingulate and between the posterior cingulate and the parahippocampus and anterior hippocampus. MCI patients also showed a significant negative correlation of medial prefrontal gyrus connectivity with parahippocampus and posterior hippocampus and visual naming performance. Our findings suggest that increasing DMN connectivity may contribute to semantic memory deficits in MCI, specifically in visual naming. Increased DMN connectivity with posterior cingulate and medio-temporal regions seems to represent a maladaptive reorganization of brain functions in MCI, which detrimentally contributes to cognitive impairment in this clinical population.

  1. The functional connectivity of semantic task changes in the recovery from stroke aphasia

    NASA Astrophysics Data System (ADS)

    Lu, Jie; Wu, Xia; Yao, Li; Li, Kun-Cheng; Shu, Hua; Dong, Qi

    2007-03-01

    Little is known about the difference of functional connectivity of semantic task between the recovery aphasic patients and normal subject. In this paper, an fMRI experiment was performed in a patient with aphasia following a left-sided ischemic lesion and normal subject. Picture naming was used as semantic activation task in this study. We compared the preliminary functional connectivity results of the recovery aphasic patient with the normal subject. The fMRI data were separated by independent component analysis (ICA) into 90 components. According to our experience and other papers, we chose a region of interest (ROI) of semantic (x=-57, y=15, z=8, r=11mm). From the 90 components, we chose one component as the functional connectivity of the semantic ROI according to one criterion. The criterion is the mean value of the voxels in the ROI. So the component of the highest mean value of the ROI is the functional connectivity of the ROI. The voxel with its value higher than 2.4 was thought as activated (p<0.05). And the functional connectivity networks of the normal subjects were t-tested as group network. From the result, we can know the semantic functional connectivity of stroke aphasic patient and normal subjects are different. The activated areas of the left inferior frontal gyrus and inferior/middle temporal gyrus are larger than the ones of normal. The activated area of the right inferior frontal gyrus is smaller than the ones of normal. The functional connectivity of stroke aphasic patient under semantic condition is different with the normal one. The focus of the stroke aphasic patient can affect the functional connectivity.

  2. Dependable Wireless Sensor Networks for Prognostics and Health Management: A Survey

    DTIC Science & Technology

    2014-10-02

    sensor network has many advantages. First of all, the absence of wires gives sensor networks the ability to cover a large scale surveillance area...system/component health state. Usually, this information is gathered through independent sensors or a wired network of sensors. The use of a wireless

  3. Utilizing semantic networks to database and retrieve generalized stochastic colored Petri nets

    NASA Technical Reports Server (NTRS)

    Farah, Jeffrey J.; Kelley, Robert B.

    1992-01-01

    Previous work has introduced the Planning Coordinator (PCOORD), a coordinator functioning within the hierarchy of the Intelligent Machine Mode. Within the structure of the Planning Coordinator resides the Primitive Structure Database (PSDB) functioning to provide the primitive structures utilized by the Planning Coordinator in the establishing of error recovery or on-line path plans. This report further explores the Primitive Structure Database and establishes the potential of utilizing semantic networks as a means of efficiently storing and retrieving the Generalized Stochastic Colored Petri Nets from which the error recovery plans are derived.

  4. Multipath Routing in Wireless Sensor Networks: Survey and Research Challenges

    PubMed Central

    Radi, Marjan; Dezfouli, Behnam; Bakar, Kamalrulnizam Abu; Lee, Malrey

    2012-01-01

    A wireless sensor network is a large collection of sensor nodes with limited power supply and constrained computational capability. Due to the restricted communication range and high density of sensor nodes, packet forwarding in sensor networks is usually performed through multi-hop data transmission. Therefore, routing in wireless sensor networks has been considered an important field of research over the past decade. Nowadays, multipath routing approach is widely used in wireless sensor networks to improve network performance through efficient utilization of available network resources. Accordingly, the main aim of this survey is to present the concept of the multipath routing approach and its fundamental challenges, as well as the basic motivations for utilizing this technique in wireless sensor networks. In addition, we present a comprehensive taxonomy on the existing multipath routing protocols, which are especially designed for wireless sensor networks. We highlight the primary motivation behind the development of each protocol category and explain the operation of different protocols in detail, with emphasis on their advantages and disadvantages. Furthermore, this paper compares and summarizes the state-of-the-art multipath routing techniques from the network application point of view. Finally, we identify open issues for further research in the development of multipath routing protocols for wireless sensor networks. PMID:22368490

  5. Multipath routing in wireless sensor networks: survey and research challenges.

    PubMed

    Radi, Marjan; Dezfouli, Behnam; Abu Bakar, Kamalrulnizam; Lee, Malrey

    2012-01-01

    A wireless sensor network is a large collection of sensor nodes with limited power supply and constrained computational capability. Due to the restricted communication range and high density of sensor nodes, packet forwarding in sensor networks is usually performed through multi-hop data transmission. Therefore, routing in wireless sensor networks has been considered an important field of research over the past decade. Nowadays, multipath routing approach is widely used in wireless sensor networks to improve network performance through efficient utilization of available network resources. Accordingly, the main aim of this survey is to present the concept of the multipath routing approach and its fundamental challenges, as well as the basic motivations for utilizing this technique in wireless sensor networks. In addition, we present a comprehensive taxonomy on the existing multipath routing protocols, which are especially designed for wireless sensor networks. We highlight the primary motivation behind the development of each protocol category and explain the operation of different protocols in detail, with emphasis on their advantages and disadvantages. Furthermore, this paper compares and summarizes the state-of-the-art multipath routing techniques from the network application point of view. Finally, we identify open issues for further research in the development of multipath routing protocols for wireless sensor networks.

  6. The Role of Context in Producing Item Interactions and False Memories

    ERIC Educational Resources Information Center

    Tehan, Gerald; Humphreys, Michael S.; Tolan, Georgina Anne; Pitcher, Cameron

    2004-01-01

    Cued recall with an extralist cue poses a challenge for contemporary memory theory in that there is a need to explain how episodic and semantic information are combined. A parallel activation and intersection approach proposes one such means by assuming that an experimental cue will elicit its preexisting semantic network and a context cue will…

  7. Semantic Structure in Vocabulary Knowledge Interacts With Lexical and Sentence Processing in Infancy.

    PubMed

    Borovsky, Arielle; Ellis, Erica M; Evans, Julia L; Elman, Jeffrey L

    2016-11-01

    Although the size of a child's vocabulary associates with language-processing skills, little is understood regarding how this relation emerges. This investigation asks whether and how the structure of vocabulary knowledge affects language processing in English-learning 24-month-old children (N = 32; 18 F, 14 M). Parental vocabulary report was used to calculate semantic density in several early-acquired semantic categories. Performance on two language-processing tasks (lexical recognition and sentence processing) was compared as a function of semantic density. In both tasks, real-time comprehension was facilitated for higher density items, whereas lower density items experienced more interference. The findings indicate that language-processing skills develop heterogeneously and are influenced by the semantic network surrounding a known word. © 2016 The Authors. Child Development © 2016 Society for Research in Child Development, Inc.

  8. Default network activation during episodic and semantic memory retrieval: A selective meta-analytic comparison.

    PubMed

    Kim, Hongkeun

    2016-01-08

    It remains unclear whether and to what extent the default network subregions involved in episodic memory (EM) and semantic memory (SM) processes overlap or are separated from one another. This study addresses this issue through a controlled meta-analysis of functional neuroimaging studies involving healthy participants. Various EM and SM task paradigms differ widely in the extent of default network involvement. Therefore, the issue at hand cannot be properly addressed without some control for this factor. In this regard, this study employs a two-stage analysis: a preliminary meta-analysis to select EM and SM task paradigms that recruit relatively extensive default network regions and a main analysis to compare the selected task paradigms. Based on a within-EM comparison, the default network contributed more to recollection/familiarity effects than to old/new effects, and based on a within-SM comparison, it contributed more to word/pseudoword effects than to semantic/phonological effects. According to a direct comparison of recollection/familiarity and word/pseudoword effects, each involving a range of default network regions, there were more overlaps than separations in default network subregions involved in these two effects. More specifically, overlaps included the bilateral posterior cingulate/retrosplenial cortex, left inferior parietal lobule, and left anteromedial prefrontal regions, whereas separations included only the hippocampal formation and the parahippocampal cortex region, which was unique to recollection/familiarity effects. These results indicate that EM and SM retrieval processes involving strong memory signals recruit extensive and largely overlapping default network regions and differ mainly in distinct contributions of hippocampus and parahippocampal regions to EM retrieval. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Wireless Sensor Networks for Detection of IED Emplacement

    DTIC Science & Technology

    2009-06-01

    unclassified Standard Form 298 (Rev. 8-98) Prescribed by ANSI Std Z39-18 Abstract We are investigating the use of wireless nonimaging -sensor...networks for the difficult problem of detection of suspicious behavior related to IED emplacement. Hardware for surveillance by nonimaging -sensor networks...with people crossing a live sensor network. We conclude that nonimaging -sensor networks can detect a variety of suspicious behavior, but

  10. Building a transnational biosurveillance network using semantic web technologies: requirements, design, and preliminary evaluation.

    PubMed

    Teodoro, Douglas; Pasche, Emilie; Gobeill, Julien; Emonet, Stéphane; Ruch, Patrick; Lovis, Christian

    2012-05-29

    Antimicrobial resistance has reached globally alarming levels and is becoming a major public health threat. Lack of efficacious antimicrobial resistance surveillance systems was identified as one of the causes of increasing resistance, due to the lag time between new resistances and alerts to care providers. Several initiatives to track drug resistance evolution have been developed. However, no effective real-time and source-independent antimicrobial resistance monitoring system is available publicly. To design and implement an architecture that can provide real-time and source-independent antimicrobial resistance monitoring to support transnational resistance surveillance. In particular, we investigated the use of a Semantic Web-based model to foster integration and interoperability of interinstitutional and cross-border microbiology laboratory databases. Following the agile software development methodology, we derived the main requirements needed for effective antimicrobial resistance monitoring, from which we proposed a decentralized monitoring architecture based on the Semantic Web stack. The architecture uses an ontology-driven approach to promote the integration of a network of sentinel hospitals or laboratories. Local databases are wrapped into semantic data repositories that automatically expose local computing-formalized laboratory information in the Web. A central source mediator, based on local reasoning, coordinates the access to the semantic end points. On the user side, a user-friendly Web interface provides access and graphical visualization to the integrated views. We designed and implemented the online Antimicrobial Resistance Trend Monitoring System (ARTEMIS) in a pilot network of seven European health care institutions sharing 70+ million triples of information about drug resistance and consumption. Evaluation of the computing performance of the mediator demonstrated that, on average, query response time was a few seconds (mean 4.3, SD 0.1 × 10(2) seconds). Clinical pertinence assessment showed that resistance trends automatically calculated by ARTEMIS had a strong positive correlation with the European Antimicrobial Resistance Surveillance Network (EARS-Net) (ρ = .86, P < .001) and the Sentinel Surveillance of Antibiotic Resistance in Switzerland (SEARCH) (ρ = .84, P < .001) systems. Furthermore, mean resistance rates extracted by ARTEMIS were not significantly different from those of either EARS-Net (∆ = ±0.130; 95% confidence interval -0 to 0.030; P < .001) or SEARCH (∆ = ±0.042; 95% confidence interval -0.004 to 0.028; P = .004). We introduce a distributed monitoring architecture that can be used to build transnational antimicrobial resistance surveillance networks. Results indicated that the Semantic Web-based approach provided an efficient and reliable solution for development of eHealth architectures that enable online antimicrobial resistance monitoring from heterogeneous data sources. In future, we expect that more health care institutions can join the ARTEMIS network so that it can provide a large European and wider biosurveillance network that can be used to detect emerging bacterial resistance in a multinational context and support public health actions.

  11. Building a Transnational Biosurveillance Network Using Semantic Web Technologies: Requirements, Design, and Preliminary Evaluation

    PubMed Central

    Pasche, Emilie; Gobeill, Julien; Emonet, Stéphane; Ruch, Patrick; Lovis, Christian

    2012-01-01

    Background Antimicrobial resistance has reached globally alarming levels and is becoming a major public health threat. Lack of efficacious antimicrobial resistance surveillance systems was identified as one of the causes of increasing resistance, due to the lag time between new resistances and alerts to care providers. Several initiatives to track drug resistance evolution have been developed. However, no effective real-time and source-independent antimicrobial resistance monitoring system is available publicly. Objective To design and implement an architecture that can provide real-time and source-independent antimicrobial resistance monitoring to support transnational resistance surveillance. In particular, we investigated the use of a Semantic Web-based model to foster integration and interoperability of interinstitutional and cross-border microbiology laboratory databases. Methods Following the agile software development methodology, we derived the main requirements needed for effective antimicrobial resistance monitoring, from which we proposed a decentralized monitoring architecture based on the Semantic Web stack. The architecture uses an ontology-driven approach to promote the integration of a network of sentinel hospitals or laboratories. Local databases are wrapped into semantic data repositories that automatically expose local computing-formalized laboratory information in the Web. A central source mediator, based on local reasoning, coordinates the access to the semantic end points. On the user side, a user-friendly Web interface provides access and graphical visualization to the integrated views. Results We designed and implemented the online Antimicrobial Resistance Trend Monitoring System (ARTEMIS) in a pilot network of seven European health care institutions sharing 70+ million triples of information about drug resistance and consumption. Evaluation of the computing performance of the mediator demonstrated that, on average, query response time was a few seconds (mean 4.3, SD 0.1×102 seconds). Clinical pertinence assessment showed that resistance trends automatically calculated by ARTEMIS had a strong positive correlation with the European Antimicrobial Resistance Surveillance Network (EARS-Net) (ρ = .86, P < .001) and the Sentinel Surveillance of Antibiotic Resistance in Switzerland (SEARCH) (ρ = .84, P < .001) systems. Furthermore, mean resistance rates extracted by ARTEMIS were not significantly different from those of either EARS-Net (∆ = ±0.130; 95% confidence interval –0 to 0.030; P < .001) or SEARCH (∆ = ±0.042; 95% confidence interval –0.004 to 0.028; P = .004). Conclusions We introduce a distributed monitoring architecture that can be used to build transnational antimicrobial resistance surveillance networks. Results indicated that the Semantic Web-based approach provided an efficient and reliable solution for development of eHealth architectures that enable online antimicrobial resistance monitoring from heterogeneous data sources. In future, we expect that more health care institutions can join the ARTEMIS network so that it can provide a large European and wider biosurveillance network that can be used to detect emerging bacterial resistance in a multinational context and support public health actions. PMID:22642960

  12. A Two-Phase Coverage-Enhancing Algorithm for Hybrid Wireless Sensor Networks.

    PubMed

    Zhang, Qingguo; Fok, Mable P

    2017-01-09

    Providing field coverage is a key task in many sensor network applications. In certain scenarios, the sensor field may have coverage holes due to random initial deployment of sensors; thus, the desired level of coverage cannot be achieved. A hybrid wireless sensor network is a cost-effective solution to this problem, which is achieved by repositioning a portion of the mobile sensors in the network to meet the network coverage requirement. This paper investigates how to redeploy mobile sensor nodes to improve network coverage in hybrid wireless sensor networks. We propose a two-phase coverage-enhancing algorithm for hybrid wireless sensor networks. In phase one, we use a differential evolution algorithm to compute the candidate's target positions in the mobile sensor nodes that could potentially improve coverage. In the second phase, we use an optimization scheme on the candidate's target positions calculated from phase one to reduce the accumulated potential moving distance of mobile sensors, such that the exact mobile sensor nodes that need to be moved as well as their final target positions can be determined. Experimental results show that the proposed algorithm provided significant improvement in terms of area coverage rate, average moving distance, area coverage-distance rate and the number of moved mobile sensors, when compare with other approaches.

  13. A Two-Phase Coverage-Enhancing Algorithm for Hybrid Wireless Sensor Networks

    PubMed Central

    Zhang, Qingguo; Fok, Mable P.

    2017-01-01

    Providing field coverage is a key task in many sensor network applications. In certain scenarios, the sensor field may have coverage holes due to random initial deployment of sensors; thus, the desired level of coverage cannot be achieved. A hybrid wireless sensor network is a cost-effective solution to this problem, which is achieved by repositioning a portion of the mobile sensors in the network to meet the network coverage requirement. This paper investigates how to redeploy mobile sensor nodes to improve network coverage in hybrid wireless sensor networks. We propose a two-phase coverage-enhancing algorithm for hybrid wireless sensor networks. In phase one, we use a differential evolution algorithm to compute the candidate’s target positions in the mobile sensor nodes that could potentially improve coverage. In the second phase, we use an optimization scheme on the candidate’s target positions calculated from phase one to reduce the accumulated potential moving distance of mobile sensors, such that the exact mobile sensor nodes that need to be moved as well as their final target positions can be determined. Experimental results show that the proposed algorithm provided significant improvement in terms of area coverage rate, average moving distance, area coverage–distance rate and the number of moved mobile sensors, when compare with other approaches. PMID:28075365

  14. Key Exchange Trust Evaluation in Peer-to-Peer Sensor Networks With Unconditionally Secure Key Exchange

    NASA Astrophysics Data System (ADS)

    Gonzalez, Elias; Kish, Laszlo B.

    2016-03-01

    As the utilization of sensor networks continue to increase, the importance of security becomes more profound. Many industries depend on sensor networks for critical tasks, and a malicious entity can potentially cause catastrophic damage. We propose a new key exchange trust evaluation for peer-to-peer sensor networks, where part of the network has unconditionally secure key exchange. For a given sensor, the higher the portion of channels with unconditionally secure key exchange the higher the trust value. We give a brief introduction to unconditionally secured key exchange concepts and mention current trust measures in sensor networks. We demonstrate the new key exchange trust measure on a hypothetical sensor network using both wired and wireless communication channels.

  15. The cognitive and neural expression of semantic memory impairment in mild cognitive impairment and early Alzheimer's disease.

    PubMed

    Joubert, Sven; Brambati, Simona M; Ansado, Jennyfer; Barbeau, Emmanuel J; Felician, Olivier; Didic, Mira; Lacombe, Jacinthe; Goldstein, Rachel; Chayer, Céline; Kergoat, Marie-Jeanne

    2010-03-01

    Semantic deficits in Alzheimer's disease have been widely documented, but little is known about the integrity of semantic memory in the prodromal stage of the illness. The aims of the present study were to: (i) investigate naming abilities and semantic memory in amnestic mild cognitive impairment (aMCI), early Alzheimer's disease (AD) compared to healthy older subjects; (ii) investigate the association between naming and semantic knowledge in aMCI and AD; (iii) examine if the semantic impairment was present in different modalities; and (iv) study the relationship between semantic performance and grey matter volume using voxel-based morphometry. Results indicate that both naming and semantic knowledge of objects and famous people were impaired in aMCI and early AD groups, when compared to healthy age- and education-matched controls. Item-by-item analyses showed that anomia in aMCI and early AD was significantly associated with underlying semantic knowledge of famous people but not with semantic knowledge of objects. Moreover, semantic knowledge of the same concepts was impaired in both the visual and the verbal modalities. Finally, voxel-based morphometry analyses revealed that semantic impairment in aMCI and AD was associated with cortical atrophy in the anterior temporal lobe (ATL) region as well as in the inferior prefrontal cortex (IPC), some of the key regions of the semantic cognition network. These findings suggest that the semantic impairment in aMCI may result from a breakdown of semantic knowledge of famous people and objects, combined with difficulties in the selection, manipulation and retrieval of this knowledge. Copyright (c) 2009 Elsevier Ltd. All rights reserved.

  16. Overcoming an obstacle in expanding a UMLS semantic type extent.

    PubMed

    Chen, Yan; Gu, Huanying; Perl, Yehoshua; Geller, James

    2012-02-01

    This paper strives to overcome a major problem encountered by a previous expansion methodology for discovering concepts highly likely to be missing a specific semantic type assignment in the UMLS. This methodology is the basis for an algorithm that presents the discovered concepts to a human auditor for review and possible correction. We analyzed the problem of the previous expansion methodology and discovered that it was due to an obstacle constituted by one or more concepts assigned the UMLS Semantic Network semantic type Classification. A new methodology was designed that bypasses such an obstacle without a combinatorial explosion in the number of concepts presented to the human auditor for review. The new expansion methodology with obstacle avoidance was tested with the semantic type Experimental Model of Disease and found over 500 concepts missed by the previous methodology that are in need of this semantic type assignment. Furthermore, other semantic types suffering from the same major problem were discovered, indicating that the methodology is of more general applicability. The algorithmic discovery of concepts that are likely missing a semantic type assignment is possible even in the face of obstacles, without an explosion in the number of processed concepts. Copyright © 2011 Elsevier Inc. All rights reserved.

  17. Overcoming an Obstacle in Expanding a UMLS Semantic Type Extent

    PubMed Central

    Chen, Yan; Gu, Huanying; Perl, Yehoshua; Geller, James

    2011-01-01

    This paper strives to overcome a major problem encountered by a previous expansion methodology for discovering concepts highly likely to be missing a specific semantic type assignment in the UMLS. This methodology is the basis for an algorithm that presents the discovered concepts to a human auditor for review and possible correction. We analyzed the problem of the previous expansion methodology and discovered that it was due to an obstacle constituted by one or more concepts assigned the UMLS Semantic Network semantic type Classification. A new methodology was designed that bypasses such an obstacle without a combinatorial explosion in the number of concepts presented to the human auditor for review. The new expansion methodology with obstacle avoidance was tested with the semantic type Experimental Model of Disease and found over 500 concepts missed by the previous methodology that are in need of this semantic type assignment. Furthermore, other semantic types suffering from the same major problem were discovered, indicating that the methodology is of more general applicability. The algorithmic discovery of concepts that are likely missing a semantic type assignment is possible even in the face of obstacles, without an explosion in the number of processed concepts. PMID:21925287

  18. Mapping the connectivity underlying multimodal (verbal and non-verbal) semantic processing: a brain electrostimulation study.

    PubMed

    Moritz-Gasser, Sylvie; Herbet, Guillaume; Duffau, Hugues

    2013-08-01

    Accessing the meaning of words, objects, people and facts is a human ability, made possible thanks to semantic processing. Although studies concerning its cortical organization are proficient, the subcortical connectivity underlying this semantic network received less attention. We used intraoperative direct electrostimulation, which mimics a transient virtual lesion during brain surgery for glioma in eight awaken patients, to map the anatomical white matter substrate subserving the semantic system. Patients performed a picture naming task and a non-verbal semantic association test during the electrical mapping. Direct electrostimulation of the inferior fronto-occipital fascicle, a poorly known ventral association pathway which runs throughout the brain, induced in all cases semantic disturbances. These transient disorders were highly reproducible, and concerned verbal as well as non-verbal output. Our results highlight for the first time the essential role of the left inferior fronto-occipital fascicle in multimodal (and not only in verbal) semantic processing. On the basis of these original findings, and in the lights of phylogenetic considerations regarding this fascicle, we suggest its possible implication in the monitoring of the human level of consciousness related to semantic memory, namely noetic consciousness. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. Three-dimensional ocean sensor networks: A survey

    NASA Astrophysics Data System (ADS)

    Wang, Yu; Liu, Yingjian; Guo, Zhongwen

    2012-12-01

    The past decade has seen a growing interest in ocean sensor networks because of their wide applications in marine research, oceanography, ocean monitoring, offshore exploration, and defense or homeland security. Ocean sensor networks are generally formed with various ocean sensors, autonomous underwater vehicles, surface stations, and research vessels. To make ocean sensor network applications viable, efficient communication among all devices and components is crucial. Due to the unique characteristics of underwater acoustic channels and the complex deployment environment in three dimensional (3D) ocean spaces, new efficient and reliable communication and networking protocols are needed in design of ocean sensor networks. In this paper, we aim to provide an overview of the most recent advances in network design principles for 3D ocean sensor networks, with focuses on deployment, localization, topology design, and position-based routing in 3D ocean spaces.

  20. Availability Issues in Wireless Visual Sensor Networks

    PubMed Central

    Costa, Daniel G.; Silva, Ivanovitch; Guedes, Luiz Affonso; Vasques, Francisco; Portugal, Paulo

    2014-01-01

    Wireless visual sensor networks have been considered for a large set of monitoring applications related with surveillance, tracking and multipurpose visual monitoring. When sensors are deployed over a monitored field, permanent faults may happen during the network lifetime, reducing the monitoring quality or rendering parts or the entire network unavailable. In a different way from scalar sensor networks, camera-enabled sensors collect information following a directional sensing model, which changes the notions of vicinity and redundancy. Moreover, visual source nodes may have different relevancies for the applications, according to the monitoring requirements and cameras' poses. In this paper we discuss the most relevant availability issues related to wireless visual sensor networks, addressing availability evaluation and enhancement. Such discussions are valuable when designing, deploying and managing wireless visual sensor networks, bringing significant contributions to these networks. PMID:24526301

  1. Cortical Memory Mechanisms and Language Origins

    ERIC Educational Resources Information Center

    Aboitiz, Francisco; Garcia, Ricardo R.; Bosman, Conrado; Brunetti, Enzo

    2006-01-01

    We have previously proposed that cortical auditory-vocal networks of the monkey brain can be partly homologized with language networks that participate in the phonological loop. In this paper, we suggest that other linguistic phenomena like semantic and syntactic processing also rely on the activation of transient memory networks, which can be…

  2. A comparative study of wireless sensor networks and their routing protocols.

    PubMed

    Bhattacharyya, Debnath; Kim, Tai-hoon; Pal, Subhajit

    2010-01-01

    Recent developments in the area of micro-sensor devices have accelerated advances in the sensor networks field leading to many new protocols specifically designed for wireless sensor networks (WSNs). Wireless sensor networks with hundreds to thousands of sensor nodes can gather information from an unattended location and transmit the gathered data to a particular user, depending on the application. These sensor nodes have some constraints due to their limited energy, storage capacity and computing power. Data are routed from one node to other using different routing protocols. There are a number of routing protocols for wireless sensor networks. In this review article, we discuss the architecture of wireless sensor networks. Further, we categorize the routing protocols according to some key factors and summarize their mode of operation. Finally, we provide a comparative study on these various protocols.

  3. The neural correlates of semantic richness: evidence from an fMRI study of word learning.

    PubMed

    Ferreira, Roberto A; Göbel, Silke M; Hymers, Mark; Ellis, Andrew W

    2015-04-01

    We investigated the neural correlates of concrete nouns with either many or few semantic features. A group of 21 participants underwent two days of training and were then asked to categorize 40 newly learned words and a set of matched familiar words as living or nonliving in an MRI scanner. Our results showed that the most reliable effects of semantic richness were located in the left angular gyrus (AG) and middle temporal gyrus (MTG), where activation was higher for semantically rich than poor words. Other areas showing the same pattern included bilateral precuneus and posterior cingulate gyrus. Our findings support the view that AG and anterior MTG, as part of the multimodal network, play a significant role in representing and integrating semantic features from different input modalities. We propose that activation in bilateral precuneus and posterior cingulate gyrus reflects interplay between AG and episodic memory systems during semantic retrieval. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. Semantic associative relations and conceptual processing.

    PubMed

    Di Giacomo, Dina; De Federicis, Lucia Serenella; Pistelli, Manuela; Fiorenzi, Daniela; Passafiume, Domenico

    2012-02-01

    We analysed the organisation of semantic network using associative mechanisms between different types of information and studied the progression of the use of these associative relations during development. We aimed to verify the linkage of concepts with the use of semantic associative relations. The goal of this study was to analyse the cognitive ability to use associative relations between various items when describing old and/or new concepts. We examined the performance of 100 subjects between the ages of 4 and 7 years on an experimental task using five associative relations based on verbal encoding. The results showed that children are able to use the five semantic associative relations at age 4, but performance with each of the different associative relations improves at different times during development. Functional and part/whole relations develop at an early age, whereas the superordinate relations develop later. Our study clarified the characteristics of the progression of semantic associations during development as well as the roles that associative relations play in the structure and improvement of the semantic store.

  5. Divergent Human Cortical Regions for Processing Distinct Acoustic-Semantic Categories of Natural Sounds: Animal Action Sounds vs. Vocalizations

    PubMed Central

    Webster, Paula J.; Skipper-Kallal, Laura M.; Frum, Chris A.; Still, Hayley N.; Ward, B. Douglas; Lewis, James W.

    2017-01-01

    A major gap in our understanding of natural sound processing is knowledge of where or how in a cortical hierarchy differential processing leads to categorical perception at a semantic level. Here, using functional magnetic resonance imaging (fMRI) we sought to determine if and where cortical pathways in humans might diverge for processing action sounds vs. vocalizations as distinct acoustic-semantic categories of real-world sound when matched for duration and intensity. This was tested by using relatively less semantically complex natural sounds produced by non-conspecific animals rather than humans. Our results revealed a striking double-dissociation of activated networks bilaterally. This included a previously well described pathway preferential for processing vocalization signals directed laterally from functionally defined primary auditory cortices to the anterior superior temporal gyri, and a less well-described pathway preferential for processing animal action sounds directed medially to the posterior insulae. We additionally found that some of these regions and associated cortical networks showed parametric sensitivity to high-order quantifiable acoustic signal attributes and/or to perceptual features of the natural stimuli, such as the degree of perceived recognition or intentional understanding. Overall, these results supported a neurobiological theoretical framework for how the mammalian brain may be fundamentally organized to process acoustically and acoustic-semantically distinct categories of ethologically valid, real-world sounds. PMID:28111538

  6. On the universal structure of human lexical semantics

    PubMed Central

    Sutton, Logan; Smith, Eric; Moore, Cristopher; Wilkins, Jon F.; Maddieson, Ian; Croft, William

    2016-01-01

    How universal is human conceptual structure? The way concepts are organized in the human brain may reflect distinct features of cultural, historical, and environmental background in addition to properties universal to human cognition. Semantics, or meaning expressed through language, provides indirect access to the underlying conceptual structure, but meaning is notoriously difficult to measure, let alone parameterize. Here, we provide an empirical measure of semantic proximity between concepts using cross-linguistic dictionaries to translate words to and from languages carefully selected to be representative of worldwide diversity. These translations reveal cases where a particular language uses a single “polysemous” word to express multiple concepts that another language represents using distinct words. We use the frequency of such polysemies linking two concepts as a measure of their semantic proximity and represent the pattern of these linkages by a weighted network. This network is highly structured: Certain concepts are far more prone to polysemy than others, and naturally interpretable clusters of closely related concepts emerge. Statistical analysis of the polysemies observed in a subset of the basic vocabulary shows that these structural properties are consistent across different language groups, and largely independent of geography, environment, and the presence or absence of a literary tradition. The methods developed here can be applied to any semantic domain to reveal the extent to which its conceptual structure is, similarly, a universal attribute of human cognition and language use. PMID:26831113

  7. Deep-learning derived features for lung nodule classification with limited datasets

    NASA Astrophysics Data System (ADS)

    Thammasorn, P.; Wu, W.; Pierce, L. A.; Pipavath, S. N.; Lampe, P. D.; Houghton, A. M.; Haynor, D. R.; Chaovalitwongse, W. A.; Kinahan, P. E.

    2018-02-01

    Only a few percent of indeterminate nodules found in lung CT images are cancer. However, enabling earlier diagnosis is important to avoid invasive procedures or long-time surveillance to those benign nodules. We are evaluating a classification framework using radiomics features derived with a machine learning approach from a small data set of indeterminate CT lung nodule images. We used a retrospective analysis of 194 cases with pulmonary nodules in the CT images with or without contrast enhancement from lung cancer screening clinics. The nodules were contoured by a radiologist and texture features of the lesion were calculated. In addition, sematic features describing shape were categorized. We also explored a Multiband network, a feature derivation path that uses a modified convolutional neural network (CNN) with a Triplet Network. This was trained to create discriminative feature representations useful for variable-sized nodule classification. The diagnostic accuracy was evaluated for multiple machine learning algorithms using texture, shape, and CNN features. In the CT contrast-enhanced group, the texture or semantic shape features yielded an overall diagnostic accuracy of 80%. Use of a standard deep learning network in the framework for feature derivation yielded features that substantially underperformed compared to texture and/or semantic features. However, the proposed Multiband approach of feature derivation produced results similar in diagnostic accuracy to the texture and semantic features. While the Multiband feature derivation approach did not outperform the texture and/or semantic features, its equivalent performance indicates promise for future improvements to increase diagnostic accuracy. Importantly, the Multiband approach adapts readily to different size lesions without interpolation, and performed well with relatively small amount of training data.

  8. Interactions between auditory and visual semantic stimulus classes: evidence for common processing networks for speech and body actions.

    PubMed

    Meyer, Georg F; Greenlee, Mark; Wuerger, Sophie

    2011-09-01

    Incongruencies between auditory and visual signals negatively affect human performance and cause selective activation in neuroimaging studies; therefore, they are increasingly used to probe audiovisual integration mechanisms. An open question is whether the increased BOLD response reflects computational demands in integrating mismatching low-level signals or reflects simultaneous unimodal conceptual representations of the competing signals. To address this question, we explore the effect of semantic congruency within and across three signal categories (speech, body actions, and unfamiliar patterns) for signals with matched low-level statistics. In a localizer experiment, unimodal (auditory and visual) and bimodal stimuli were used to identify ROIs. All three semantic categories cause overlapping activation patterns. We find no evidence for areas that show greater BOLD response to bimodal stimuli than predicted by the sum of the two unimodal responses. Conjunction analysis of the unimodal responses in each category identifies a network including posterior temporal, inferior frontal, and premotor areas. Semantic congruency effects are measured in the main experiment. We find that incongruent combinations of two meaningful stimuli (speech and body actions) but not combinations of meaningful with meaningless stimuli lead to increased BOLD response in the posterior STS (pSTS) bilaterally, the left SMA, the inferior frontal gyrus, the inferior parietal lobule, and the anterior insula. These interactions are not seen in premotor areas. Our findings are consistent with the hypothesis that pSTS and frontal areas form a recognition network that combines sensory categorical representations (in pSTS) with action hypothesis generation in inferior frontal gyrus/premotor areas. We argue that the same neural networks process speech and body actions.

  9. Underwater Sensor Nodes and Networks

    PubMed Central

    Lloret, Jaime

    2013-01-01

    Sensor technology has matured enough to be used in any type of environment. The appearance of new physical sensors has increased the range of environmental parameters for gathering data. Because of the huge amount of unexploited resources in the ocean environment, there is a need of new research in the field of sensors and sensor networks. This special issue is focused on collecting recent advances on underwater sensors and underwater sensor networks in order to measure, monitor, surveillance of and control of underwater environments. On the one hand, from the sensor node perspective, we will see works related with the deployment of physical sensors, development of sensor nodes and transceivers for sensor nodes, sensor measurement analysis and several issues such as layer 1 and 2 protocols for underwater communication and sensor localization and positioning systems. On the other hand, from the sensor network perspective, we will see several architectures and protocols for underwater environments and analysis concerning sensor network measurements. Both sides will provide us a complete view of last scientific advances in this research field. PMID:24013489

  10. A Tsunami-Focused Tide Station Data Sharing Framework

    NASA Astrophysics Data System (ADS)

    Kari, U. S.; Marra, J. J.; Weinstein, S. A.

    2006-12-01

    The Indian Ocean Tsunami of 26 December 2004 made it clear that information about tide stations that could be used to support detection and warning (such as location, collection and transmission capabilities, operator identification) are insufficiently known or not readily accessible. Parties interested in addressing this problem united under the Pacific Region Data Integrated Data Enterprise (PRIDE), and in 2005 began a multiyear effort to develop a distributed metadata system describing tide stations starting with pilot activities in a regional framework and focusing on tsunami detection and warning systems being developed by various agencies. First, a plain semantic description of the tsunami-focused tide station metadata was developed. The semantic metadata description was, in turn, developed into a formal metadata schema championed by International Tsunami Information Centre (ITIC) as part of a larger effort to develop a prototype web service under the PRIDE program in 2005. Under the 2006 PRIDE program the formal metadata schema was then expanded to corral input parameters for the TideTool application used by Pacific Tsunami Warning Center (PTWC) to drill down into wave activity at a tide station that is located using a web service developed on this metadata schema. This effort contributed to formalization of web service dissemination of PTWC watch and warning tsunami bulletins. During this time, the data content and sharing issues embodied in this schema have been discussed at various forums. The result is that the various stakeholders have different data provider and user perspectives (semantic content) and also exchange formats (not limited to just XML). The challenge then, is not only to capture all data requirements, but also to have formal representation that is easily transformed into any specified format. The latest revision of the tide gauge schema (Version 0.3), begins to address this challenge. It encompasses a broader range of provider and user perspectives, such as station operators, warning system managers, disaster managers, other marine hazard warning systems (such as storm surges and sea level change monitoring and research. In the next revision(s), we hope to take into account various relevant standards, including specifically, the Open Geospatial Consortium (OGC) Sensor Web Enablement (SWE) Framework, that will serve all prospective stakeholders in the most useful (extensible, scalable) manner. This is because Sensor ML has addressed many of the challenges we face already, through very useful fundamental modeling consideration and data types that are particular to sensors in general, with perhaps some extension needed for tide gauges. As a result of developing this schema, and associated client application architectures, we hope to have a much more distributed network of data providers, who are able to contribute to a global tide station metadata from the comfort of their own Information Technology (IT) departments.

  11. Development and Implementation of Low-Cost Mobile Sensor Platforms Within a Wireless Sensor Network

    DTIC Science & Technology

    2010-09-01

    WIRELESS SENSOR NETWORK by Michael Jay Tozzi September 2010 Thesis Advisor: Rachel Goshorn Second Reader: Duane Davis Approved for...Platforms Within a Wireless Sensor Network 6. AUTHOR(S) Tozzi, Michael Jay 5. FUNDING NUMBERS 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Naval...IMPLEMENTATION OF LOW-COST MOBILE SENSOR PLATFORMS WITHIN A WIRELESS SENSOR NETWORK Michael Jay Tozzi Lieutenant, United States Navy B.S., United

  12. Porting Social Media Contributions with SIOC

    NASA Astrophysics Data System (ADS)

    Bojars, Uldis; Breslin, John G.; Decker, Stefan

    Social media sites, including social networking sites, have captured the attention of millions of users as well as billions of dollars in investment and acquisition. To better enable a user's access to multiple sites, portability between social media sites is required in terms of both (1) the personal profiles and friend networks and (2) a user's content objects expressed on each site. This requires representation mechanisms to interconnect both people and objects on the Web in an interoperable, extensible way. The Semantic Web provides the required representation mechanisms for portability between social media sites: it links people and objects to record and represent the heterogeneous ties that bind each to the other. The FOAF (Friend-of-a-Friend) initiative provides a solution to the first requirement, and this paper discusses how the SIOC (Semantically-Interlinked Online Communities) project can address the latter. By using agreed-upon Semantic Web formats like FOAF and SIOC to describe people, content objects, and the connections that bind them together, social media sites can interoperate and provide portable data by appealing to some common semantics. In this paper, we will discuss the application of Semantic Web technology to enhance current social media sites with semantics and to address issues with portability between social media sites. It has been shown that social media sites can serve as rich data sources for SIOC-based applications such as the SIOC Browser, but in the other direction, we will now show how SIOC data can be used to represent and port the diverse social media contributions (SMCs) made by users on heterogeneous sites.

  13. Engineering of Sensor Network Structure for Dependable Fusion

    DTIC Science & Technology

    2014-08-15

    Lossy Wireless Sensor Networks , IEEE/ACM Transactions on Networking , (04 2013): 0. doi: 10.1109/TNET.2013.2256795 Soumik Sarkar, Kushal Mukherjee...Phoha, Bharat B. Madan, Asok Ray. Distributed Network Control for Mobile Multi-Modal Wireless Sensor Networks , Journal of Parallel and Distributed...Deadline Constraints, IEEE Transactions on Automatic Control special issue on Wireless Sensor and Actuator Networks , (01 2011): 1. doi: Eric Keller

  14. Distributed sensor coordination for advanced energy systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tumer, Kagan

    Motivation: The ability to collect key system level information is critical to the safe, efficient and reliable operation of advanced power systems. Recent advances in sensor technology have enabled some level of decision making directly at the sensor level. However, coordinating large numbers of sensors, particularly heterogeneous sensors, to achieve system level objectives such as predicting plant efficiency, reducing downtime or predicting outages requires sophisticated coordination algorithms. Indeed, a critical issue in such systems is how to ensure the interaction of a large number of heterogenous system components do not interfere with one another and lead to undesirable behavior. Objectivesmore » and Contributions: The long-term objective of this work is to provide sensor deployment, coordination and networking algorithms for large numbers of sensors to ensure the safe, reliable, and robust operation of advanced energy systems. Our two specific objectives are to: 1. Derive sensor performance metrics for heterogeneous sensor networks. 2. Demonstrate effectiveness, scalability and reconfigurability of heterogeneous sensor network in advanced power systems. The key technical contribution of this work is to push the coordination step to the design of the objective functions of the sensors, allowing networks of heterogeneous sensors to be controlled. By ensuring that the control and coordination is not specific to particular sensor hardware, this approach enables the design and operation of large heterogeneous sensor networks. In addition to the coordination coordination mechanism, this approach allows the system to be reconfigured in response to changing needs (e.g., sudden external events requiring new responses) or changing sensor network characteristics (e.g., sudden changes to plant condition). Impact: The impact of this work extends to a large class of problems relevant to the National Energy Technology Laboratory including sensor placement, heterogeneous sensor coordination, and sensor network control in advanced power systems. Each application has specific needs, but they all share the one crucial underlying problem: how to ensure that the interactions of a large number of heterogenous agents lead to coordinated system behavior. This proposal describes a new paradigm that addresses that very issue in a systematic way. Key Results and Findings: All milestones have been completed. Our results demonstrate that by properly shaping agent objective functions, we can develop large (up to 10,000 devices) heterogeneous sensor networks with key desirable properties. The first milestone shows that properly choosing agent-specific objective functions increases system performance by up to 99.9% compared to global evaluations. The second milestone shows evolutionary algorithms learn excellent sensor network coordination policies prior to network deployment, and these policies can be refined online once the network is deployed. The third milestone shows the resulting sensor networks networks are extremely robust to sensor noise, where networks with up to 25% sensor noise are capable of providing measurements with errors on the order of 10⁻³. The fourth milestone shows the resulting sensor networks are extremely robust to sensor failure, with 25% of the sensors in the system failing resulting in no significant performance losses after system reconfiguration.« less

  15. Semantic modeling and structural synthesis of onboard electronics protection means as open information system

    NASA Astrophysics Data System (ADS)

    Zhevnerchuk, D. V.; Surkova, A. S.; Lomakina, L. S.; Golubev, A. S.

    2018-05-01

    The article describes the component representation approach and semantic models of on-board electronics protection from ionizing radiation of various nature. Semantic models are constructed, the feature of which is the representation of electronic elements, protection modules, sources of impact in the form of blocks with interfaces. The rules of logical inference and algorithms for synthesizing the object properties of the semantic network, imitating the interface between the components of the protection system and the sources of radiation, are developed. The results of the algorithm are considered using the example of radiation-resistant microcircuits 1645RU5U, 1645RT2U and the calculation and experimental method for estimating the durability of on-board electronics.

  16. Game-theoretic approach for improving cooperation in wireless multihop networks.

    PubMed

    Ng, See-Kee; Seah, Winston K G

    2010-06-01

    Traditional networks are built on the assumption that network entities cooperate based on a mandatory network communication semantic to achieve desirable qualities such as efficiency and scalability. Over the years, this assumption has been eroded by the emergence of users that alter network behavior in a way to benefit themselves at the expense of others. At one extreme, a malicious user/node may eavesdrop on sensitive data or deliberately inject packets into the network to disrupt network operations. The solution to this generally lies in encryption and authentication. In contrast, a rational node acts only to achieve an outcome that he desires most. In such a case, cooperation is still achievable if the outcome is to the best interest of the node. The node misbehavior problem would be more pronounced in multihop wireless networks like mobile ad hoc and sensor networks, which are typically made up of wireless battery-powered devices that must cooperate to forward packets for one another. However, cooperation may be hard to maintain as it consumes scarce resources such as bandwidth, computational power, and battery power. This paper applies game theory to achieve collusive networking behavior in such network environments. In this paper, pricing, promiscuous listening, and mass punishments are avoided altogether. Our model builds on recent work in the field of Economics on the theory of imperfect private monitoring for the dynamic Bertrand oligopoly, and adapts it to the wireless multihop network. The model derives conditions for collusive packet forwarding, truthful routing broadcasts, and packet acknowledgments under a lossy wireless multihop environment, thus capturing many important characteristics of the network layer and link layer in one integrated analysis that has not been achieved previously. We also provide a proof of the viability of the model under a theoretical wireless environment. Finally, we show how the model can be applied to design a generic protocol which we call the Selfishness Resilient Resource Reservation protocol, and validate the effectiveness of this protocol in ensuring cooperation using simulations.

  17. Empirical modeling of an alcohol expectancy memory network using multidimensional scaling.

    PubMed

    Rather, B C; Goldman, M S; Roehrich, L; Brannick, M

    1992-02-01

    Risk-related antecedent variables can be linked to later alcohol consumption by memory processes, and alcohol expectancies may be one relevant memory content. To advance research in this area, it would be useful to apply current memory models such as semantic network theory to explain drinking decision processes. We used multidimensional scaling (MDS) to empirically model a preliminary alcohol expectancy semantic network, from which a theoretical account of drinking decision making was generated. Subanalyses (PREFMAP) showed how individuals with differing alcohol consumption histories may have had different association pathways within the expectancy network. These pathways may have, in turn influenced future drinking levels and behaviors while the person was under the influence of alcohol. All individuals associated positive/prosocial effects with drinking, but heavier drinkers indicated arousing effects as their highest probability associates, whereas light drinkers expected sedation. An important early step in this MDS modeling process is the determination of iso-meaning expectancy adjective groups, which correspond to theoretical network nodes.

  18. Research in Knowledge Representation for Natural Language Understanding

    DTIC Science & Technology

    1980-11-01

    artificial intelligence, natural language understanding , parsing, syntax, semantics, speaker meaning, knowledge representation, semantic networks...TinB PAGE map M W006 1Report No. 4513 L RESEARCH IN KNOWLEDGE REPRESENTATION FOR NATURAL LANGUAGE UNDERSTANDING Annual Report 1 September 1979 to 31... understanding , knowledge representation, and knowledge based inference. The work that we have been doing falls into three classes, successively motivated by

  19. Research in Knowledge Representation for Natural Language Understanding.

    DTIC Science & Technology

    1984-09-01

    TYPE OF REPORT & PERIOO COVERED RESEARCH IN KNOWLEDGE REPRESENTATION Annual Report FOR NATURAL LANGUAGE UNDERSTANDING 9/1/83 - 8/31/84 S. PERFORMING...nhaber) Artificial intelligence, natural language understanding , knowledge representation, semantics, semantic networks, KL-TWO, NIKL, belief and...attempting to understand and react to a complex, evolving situation. This report summarizes our research in knowledge representation and natural language

  20. A feedback-based secure path approach for wireless sensor network data collection.

    PubMed

    Mao, Yuxin; Wei, Guiyi

    2010-01-01

    The unattended nature of wireless sensor networks makes them very vulnerable to malicious attacks. Therefore, how to preserve secure data collection is an important issue to wireless sensor networks. In this paper, we propose a novel approach of secure data collection for wireless sensor networks. We explore secret sharing and multipath routing to achieve secure data collection in wireless sensor network with compromised nodes. We present a novel tracing-feedback mechanism, which makes full use of the routing functionality of wireless sensor networks, to improve the quality of data collection. The major advantage of the approach is that the secure paths are constructed as a by-product of data collection. The process of secure routing causes little overhead to the sensor nodes in the network. Compared with existing works, the algorithms of the proposed approach are easy to implement and execute in resource-constrained wireless sensor networks. According to the result of a simulation experiment, the performance of the approach is better than the recent approaches with a similar purpose.

  1. Semi-supervised word polarity identification in resource-lean languages.

    PubMed

    Dehdarbehbahani, Iman; Shakery, Azadeh; Faili, Heshaam

    2014-10-01

    Sentiment words, as fundamental constitutive parts of subjective sentences, have a substantial effect on analysis of opinions, emotions and beliefs. Most of the proposed methods for identifying the semantic orientations of words exploit rich linguistic resources such as WordNet, subjectivity corpora, or polarity tagged words. Shortage of such linguistic resources in resource-lean languages affects the performance of word polarity identification in these languages. In this paper, we present a method which exploits a language with rich subjectivity analysis resources (English) to identify the polarity of words in a resource-lean foreign language. The English WordNet and a sparse foreign WordNet infrastructure are used to create a heterogeneous, multilingual and weighted semantic network. To identify the semantic orientation of foreign words, a random walk based method is applied to the semantic network along with a set of automatically weighted English positive and negative seeds. In a post-processing phase, synonym and antonym relations in the foreign WordNet are used to filter the random walk results. Our experiments on English and Persian languages show that the proposed method can outperform state-of-the-art word polarity identification methods in both languages. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Cortical circuits for mathematical knowledge: evidence for a major subdivision within the brain's semantic networks.

    PubMed

    Amalric, Marie; Dehaene, Stanislas

    2017-02-19

    Is mathematical language similar to natural language? Are language areas used by mathematicians when they do mathematics? And does the brain comprise a generic semantic system that stores mathematical knowledge alongside knowledge of history, geography or famous people? Here, we refute those views by reviewing three functional MRI studies of the representation and manipulation of high-level mathematical knowledge in professional mathematicians. The results reveal that brain activity during professional mathematical reflection spares perisylvian language-related brain regions as well as temporal lobe areas classically involved in general semantic knowledge. Instead, mathematical reflection recycles bilateral intraparietal and ventral temporal regions involved in elementary number sense. Even simple fact retrieval, such as remembering that 'the sine function is periodical' or that 'London buses are red', activates dissociated areas for math versus non-math knowledge. Together with other fMRI and recent intracranial studies, our results indicated a major separation between two brain networks for mathematical and non-mathematical semantics, which goes a long way to explain a variety of facts in neuroimaging, neuropsychology and developmental disorders.This article is part of a discussion meeting issue 'The origins of numerical abilities'. © 2017 The Author(s).

  3. Fuzzy Emotional Semantic Analysis and Automated Annotation of Scene Images

    PubMed Central

    Cao, Jianfang; Chen, Lichao

    2015-01-01

    With the advances in electronic and imaging techniques, the production of digital images has rapidly increased, and the extraction and automated annotation of emotional semantics implied by images have become issues that must be urgently addressed. To better simulate human subjectivity and ambiguity for understanding scene images, the current study proposes an emotional semantic annotation method for scene images based on fuzzy set theory. A fuzzy membership degree was calculated to describe the emotional degree of a scene image and was implemented using the Adaboost algorithm and a back-propagation (BP) neural network. The automated annotation method was trained and tested using scene images from the SUN Database. The annotation results were then compared with those based on artificial annotation. Our method showed an annotation accuracy rate of 91.2% for basic emotional values and 82.4% after extended emotional values were added, which correspond to increases of 5.5% and 8.9%, respectively, compared with the results from using a single BP neural network algorithm. Furthermore, the retrieval accuracy rate based on our method reached approximately 89%. This study attempts to lay a solid foundation for the automated emotional semantic annotation of more types of images and therefore is of practical significance. PMID:25838818

  4. Comprehending expository texts: the dynamic neurobiological correlates of building a coherent text representation

    PubMed Central

    Swett, Katherine; Miller, Amanda C.; Burns, Scott; Hoeft, Fumiko; Davis, Nicole; Petrill, Stephen A.; Cutting, Laurie E.

    2013-01-01

    Little is known about the neural correlates of expository text comprehension. In this study, we sought to identify neural networks underlying expository text comprehension, how those networks change over the course of comprehension, and whether information central to the overall meaning of the text is functionally distinct from peripheral information. Seventeen adult subjects read expository passages while being scanned using functional magnetic resonance imaging (fMRI). By convolving phrase onsets with the hemodynamic response function (HRF), we were able to identify regions that increase and decrease in activation over the course of passage comprehension. We found that expository text comprehension relies on the co-activation of the semantic control network and regions in the posterior midline previously associated with mental model updating and integration [posterior cingulate cortex (PCC) and precuneus (PCU)]. When compared to single word comprehension, left PCC and left Angular Gyrus (AG) were activated only for discourse-level comprehension. Over the course of comprehension, reliance on the same regions in the semantic control network increased, while a parietal region associated with attention [intraparietal sulcus (IPS)] decreased. These results parallel previous findings in narrative comprehension that the initial stages of mental model building require greater visuospatial attention processes, while maintenance of the model increasingly relies on semantic integration regions. Additionally, we used an event-related analysis to examine phrases central to the text's overall meaning vs. peripheral phrases. It was found that central ideas are functionally distinct from peripheral ideas, showing greater activation in the PCC and PCU, while over the course of passage comprehension, central and peripheral ideas increasingly recruit different parts of the semantic control network. The finding that central information elicits greater response in mental model updating regions than peripheral ideas supports previous behavioral models on the cognitive importance of distinguishing textual centrality. PMID:24376411

  5. Scientific and educational recommender systems

    NASA Astrophysics Data System (ADS)

    Guseva, A. I.; Kireev, V. S.; Bochkarev, P. V.; Kuznetsov, I. A.; Philippov, S. A.

    2017-01-01

    This article discusses the questions associated with the use of reference systems in the preparation of graduates in physical function. The objective of this research is creation of model of recommender system user from the sphere of science and education. The detailed review of current scientific and social network for scientists and the problem of constructing recommender systems in this area. The result of this study is to research user information model systems. The model is presented in two versions: the full one - in the form of a semantic network, and short - in a relational form. The relational model is the projection in the form of semantic network, taking into account the restrictions on the amount of bonds that characterize the number of information items (research results), which interact with the system user.

  6. Evaluation of a UMLS Auditing Process of Semantic Type Assignments

    PubMed Central

    Gu, Huanying; Hripcsak, George; Chen, Yan; Morrey, C. Paul; Elhanan, Gai; Cimino, James J.; Geller, James; Perl, Yehoshua

    2007-01-01

    The UMLS is a terminological system that integrates many source terminologies. Each concept in the UMLS is assigned one or more semantic types from the Semantic Network, an upper level ontology for biomedicine. Due to the complexity of the UMLS, errors exist in the semantic type assignments. Finding assignment errors may unearth modeling errors. Even with sophisticated tools, discovering assignment errors requires manual review. In this paper we describe the evaluation of an auditing project of UMLS semantic type assignments. We studied the performance of the auditors who reviewed potential errors. We found that four auditors, interacting according to a multi-step protocol, identified a high rate of errors (one or more errors in 81% of concepts studied) and that results were sufficiently reliable (0.67 to 0.70) for the two most common types of errors. However, reliability was low for each individual auditor, suggesting that review of potential errors is resource-intensive. PMID:18693845

  7. [Knowing without remembering: the contribution of developmental amnesia].

    PubMed

    Lebrun-Givois, C; Guillery-Girard, B; Thomas-Anterion, C; Laurent, B

    2008-05-01

    The organization of episodic and semantic memory is currently debated, and especially the rule of the hippocampus in the functioning of these two systems. Since theories derived from the observation of the famous patient HM, that highlighted the involvement of this structure in these two systems, numerous studies questioned the implication of the hippocampus in learning a new semantic knowledge. Among these studies, we found Vargha-Kadem's cases of developmental amnesia. In spite of their clear hippocampal atrophy and a massive impairment of episodic memory, these children were able to acquire de novo new semantic knowledge. In the present paper, we describe a new case of developmental amnesia characteristic of this syndrome. In conclusion, the whole published data question the implication of the hippocampus in every semantic learning and suggest the existence of a neocortical network, slower and that needs more exposures to semantic stimuli than the hippocampal one, which can supply a massive hippocampal impairment.

  8. Shared neural processes support semantic control and action understanding

    PubMed Central

    Davey, James; Rueschemeyer, Shirley-Ann; Costigan, Alison; Murphy, Nik; Krieger-Redwood, Katya; Hallam, Glyn; Jefferies, Elizabeth

    2015-01-01

    Executive–semantic control and action understanding appear to recruit overlapping brain regions but existing evidence from neuroimaging meta-analyses and neuropsychology lacks spatial precision; we therefore manipulated difficulty and feature type (visual vs. action) in a single fMRI study. Harder judgements recruited an executive–semantic network encompassing medial and inferior frontal regions (including LIFG) and posterior temporal cortex (including pMTG). These regions partially overlapped with brain areas involved in action but not visual judgements. In LIFG, the peak responses to action and difficulty were spatially identical across participants, while these responses were overlapping yet spatially distinct in posterior temporal cortex. We propose that the co-activation of LIFG and pMTG allows the flexible retrieval of semantic information, appropriate to the current context; this might be necessary both for semantic control and understanding actions. Feature selection in difficult trials also recruited ventral occipital–temporal areas, not implicated in action understanding. PMID:25658631

  9. Interests diffusion in social networks

    NASA Astrophysics Data System (ADS)

    D'Agostino, Gregorio; D'Antonio, Fulvio; De Nicola, Antonio; Tucci, Salvatore

    2015-10-01

    We provide a model for diffusion of interests in Social Networks (SNs). We demonstrate that the topology of the SN plays a crucial role in the dynamics of the individual interests. Understanding cultural phenomena on SNs and exploiting the implicit knowledge about their members is attracting the interest of different research communities both from the academic and the business side. The community of complexity science is devoting significant efforts to define laws, models, and theories, which, based on acquired knowledge, are able to predict future observations (e.g. success of a product). In the mean time, the semantic web community aims at engineering a new generation of advanced services by defining constructs, models and methods, adding a semantic layer to SNs. In this context, a leapfrog is expected to come from a hybrid approach merging the disciplines above. Along this line, this work focuses on the propagation of individual interests in social networks. The proposed framework consists of the following main components: a method to gather information about the members of the social networks; methods to perform some semantic analysis of the Domain of Interest; a procedure to infer members' interests; and an interests evolution theory to predict how the interests propagate in the network. As a result, one achieves an analytic tool to measure individual features, such as members' susceptibilities and authorities. Although the approach applies to any type of social network, here it is has been tested against the computer science research community. The DBLP (Digital Bibliography and Library Project) database has been elected as test-case since it provides the most comprehensive list of scientific production in this field.

  10. Generic Information Can Retrieve Known Biological Associations: Implications for Biomedical Knowledge Discovery

    PubMed Central

    van Haagen, Herman H. H. B. M.; 't Hoen, Peter A. C.; Mons, Barend; Schultes, Erik A.

    2013-01-01

    Motivation Weighted semantic networks built from text-mined literature can be used to retrieve known protein-protein or gene-disease associations, and have been shown to anticipate associations years before they are explicitly stated in the literature. Our text-mining system recognizes over 640,000 biomedical concepts: some are specific (i.e., names of genes or proteins) others generic (e.g., ‘Homo sapiens’). Generic concepts may play important roles in automated information retrieval, extraction, and inference but may also result in concept overload and confound retrieval and reasoning with low-relevance or even spurious links. Here, we attempted to optimize the retrieval performance for protein-protein interactions (PPI) by filtering generic concepts (node filtering) or links to generic concepts (edge filtering) from a weighted semantic network. First, we defined metrics based on network properties that quantify the specificity of concepts. Then using these metrics, we systematically filtered generic information from the network while monitoring retrieval performance of known protein-protein interactions. We also systematically filtered specific information from the network (inverse filtering), and assessed the retrieval performance of networks composed of generic information alone. Results Filtering generic or specific information induced a two-phase response in retrieval performance: initially the effects of filtering were minimal but beyond a critical threshold network performance suddenly drops. Contrary to expectations, networks composed exclusively of generic information demonstrated retrieval performance comparable to unfiltered networks that also contain specific concepts. Furthermore, an analysis using individual generic concepts demonstrated that they can effectively support the retrieval of known protein-protein interactions. For instance the concept “binding” is indicative for PPI retrieval and the concept “mutation abnormality” is indicative for gene-disease associations. Conclusion Generic concepts are important for information retrieval and cannot be removed from semantic networks without negative impact on retrieval performance. PMID:24260124

  11. Linking Simulation with Formal Verification and Modeling of Wireless Sensor Network in TLA+

    NASA Astrophysics Data System (ADS)

    Martyna, Jerzy

    In this paper, we present the results of the simulation of a wireless sensor network based on the flooding technique and SPIN protocols. The wireless sensor network was specified and verified by means of the TLA+ specification language [1]. For a model of wireless sensor network built this way simulation was carried with the help of specially constructed software tools. The obtained results allow us to predict the behaviour of the wireless sensor network in various topologies and spatial densities. Visualization of the output data enable precise examination of some phenomenas in wireless sensor networks, such as a hidden terminal, etc.

  12. On Applicability of Network Coding Technique for 6LoWPAN-based Sensor Networks.

    PubMed

    Amanowicz, Marek; Krygier, Jaroslaw

    2018-05-26

    In this paper, the applicability of the network coding technique in 6LoWPAN-based sensor multihop networks is examined. The 6LoWPAN is one of the standards proposed for the Internet of Things architecture. Thus, we can expect the significant growth of traffic in such networks, which can lead to overload and decrease in the sensor network lifetime. The authors propose the inter-session network coding mechanism that can be implemented in resource-limited sensor motes. The solution reduces the overall traffic in the network, and in consequence, the energy consumption is decreased. Used procedures take into account deep header compressions of the native 6LoWPAN packets and the hop-by-hop changes of the header structure. Applied simplifications reduce signaling traffic that is typically occurring in network coding deployments, keeping the solution usefulness for the wireless sensor networks with limited resources. The authors validate the proposed procedures in terms of end-to-end packet delay, packet loss ratio, traffic in the air, total energy consumption, and network lifetime. The solution has been tested in a real wireless sensor network. The results confirm the efficiency of the proposed technique, mostly in delay-tolerant sensor networks.

  13. Energy optimization in mobile sensor networks

    NASA Astrophysics Data System (ADS)

    Yu, Shengwei

    Mobile sensor networks are considered to consist of a network of mobile robots, each of which has computation, communication and sensing capabilities. Energy efficiency is a critical issue in mobile sensor networks, especially when mobility (i.e., locomotion control), routing (i.e., communications) and sensing are unique characteristics of mobile robots for energy optimization. This thesis focuses on the problem of energy optimization of mobile robotic sensor networks, and the research results can be extended to energy optimization of a network of mobile robots that monitors the environment, or a team of mobile robots that transports materials from stations to stations in a manufacturing environment. On the energy optimization of mobile robotic sensor networks, our research focuses on the investigation and development of distributed optimization algorithms to exploit the mobility of robotic sensor nodes for network lifetime maximization. In particular, the thesis studies these five problems: 1. Network-lifetime maximization by controlling positions of networked mobile sensor robots based on local information with distributed optimization algorithms; 2. Lifetime maximization of mobile sensor networks with energy harvesting modules; 3. Lifetime maximization using joint design of mobility and routing; 4. Optimal control for network energy minimization; 5. Network lifetime maximization in mobile visual sensor networks. In addressing the first problem, we consider only the mobility strategies of the robotic relay nodes in a mobile sensor network in order to maximize its network lifetime. By using variable substitutions, the original problem is converted into a convex problem, and a variant of the sub-gradient method for saddle-point computation is developed for solving this problem. An optimal solution is obtained by the method. Computer simulations show that mobility of robotic sensors can significantly prolong the lifetime of the whole robotic sensor network while consuming negligible amount of energy for mobility cost. For the second problem, the problem is extended to accommodate mobile robotic nodes with energy harvesting capability, which makes it a non-convex optimization problem. The non-convexity issue is tackled by using the existing sequential convex approximation method, based on which we propose a novel procedure of modified sequential convex approximation that has fast convergence speed. For the third problem, the proposed procedure is used to solve another challenging non-convex problem, which results in utilizing mobility and routing simultaneously in mobile robotic sensor networks to prolong the network lifetime. The results indicate that joint design of mobility and routing has an edge over other methods in prolonging network lifetime, which is also the justification for the use of mobility in mobile sensor networks for energy efficiency purpose. For the fourth problem, we include the dynamics of the robotic nodes in the problem by modeling the networked robotic system using hybrid systems theory. A novel distributed method for the networked hybrid system is used to solve the optimal moving trajectories for robotic nodes and optimal network links, which are not answered by previous approaches. Finally, the fact that mobility is more effective in prolonging network lifetime for a data-intensive network leads us to apply our methods to study mobile visual sensor networks, which are useful in many applications. We investigate the joint design of mobility, data routing, and encoding power to help improving the video quality while maximizing the network lifetime. This study leads to a better understanding of the role mobility can play in data-intensive surveillance sensor networks.

  14. Announcement/Subscription/Publication: Message Based Communication for Heterogeneous Mobile Environments

    NASA Astrophysics Data System (ADS)

    Ristau, Henry

    Many tasks in smart environments can be implemented using message based communication paradigms that decouple applications in time, space, synchronization and semantics. Current solutions for decoupled message based communication either do not support message processing and thus semantic decoupling or rely on clearly defined network structures. In this paper we present ASP, a novel concept for such communication that can directly operate on neighbor relations between brokers and does not rely on a homogeneous addressing scheme or anymore than simple link layer communication. We show by simulation that ASP performs well in a heterogeneous scenario with mobile nodes and decreases network or processor load significantly compared to message flooding.

  15. On a categorial aspect of knowledge representation

    NASA Astrophysics Data System (ADS)

    Tataj, Emanuel; Mulawka, Jan; Nieznański, Edward

    Adequate representation of data is crucial for modeling any type of data. To faithfully present and describe the relevant section of the world it is necessary to select the method that can easily be implemented on a computer system which will help in further description allowing reasoning. The main objective of this contribution is to present methods of knowledge representation using categorial approach. Next to identify the main advantages for computer implementation. Categorical aspect of knowledge representation is considered in semantic networks realisation. Such method borrows already known metaphysics properties for data modeling process. The potential topics of further development of categorical semantic networks implementations are also underlined.

  16. Heterogeniety and Heterarchy: How far can network analyses in Earth and space sciences?

    NASA Astrophysics Data System (ADS)

    Prabhu, A.; Fox, P. A.; Eleish, A.; Li, C.; Pan, F.; Zhong, H.

    2017-12-01

    The vast majority of explorations of Earth systems are limited in their ability to effectively explore the most important (often most difficult) problems because they are forced to interconnect at the data-element, or syntactic, level rather than at a higher scientific, or conceptual/ semantic, level. Recent successes in the application of complex network theory and algorithms to minerology, fossils and proteins over billions of years of Earth's history, raise expectations that more general graph-based approaches offer the opportunity for new discoveries = needles instead of haystacks. In the past 10 years in the natural sciences there has substantial progress in providing both specialists and non-specialists the ability to describe in machine readable form, geophysical quantities and relations among them in meaningful and natural ways, effectively breaking the prior syntax barrier. The corresponding open-world semantics and reasoning provide higher-level interconnections. That is, semantics provided around the data structures, using open-source tools, allow for discovery at the knowledge level. This presentation will cover the fundamentals of data-rich network analyses for geosciences, provide illustrative examples in mineral evolution and offer future paths for consideration.

  17. Network Computing for Distributed Underwater Acoustic Sensors

    DTIC Science & Technology

    2014-03-31

    underwater sensor network with mobility. In preparation. [3] EvoLogics (2013), Underwater Acoustic Modems, (Product Information Guide... Wireless Communications, 9(9), 2934–2944. [21] Pompili, D. and Akyildiz, I. (2010), A multimedia cross-layer protocol for underwater acoustic sensor networks ... Network Computing for Distributed Underwater Acoustic Sensors M. Barbeau E. Kranakis

  18. Semantic retrieval during overt picture description: Left anterior temporal or the parietal lobe?

    PubMed

    Geranmayeh, Fatemeh; Leech, Robert; Wise, Richard J S

    2015-09-01

    Retrieval of semantic representations is a central process during overt speech production. There is an increasing consensus that an amodal semantic 'hub' must exist that draws together modality-specific representations of concepts. Based on the distribution of atrophy and the behavioral deficit of patients with the semantic variant of fronto-temporal lobar degeneration, it has been proposed that this hub is localized within both anterior temporal lobes (ATL), and is functionally connected with verbal 'output' systems via the left ATL. An alternative view, dating from Geschwind's proposal in 1965, is that the angular gyrus (AG) is central to object-based semantic representations. In this fMRI study we examined the connectivity of the left ATL and parietal lobe (PL) with whole brain networks known to be activated during overt picture description. We decomposed each of these two brain volumes into 15 regions of interest (ROIs), using independent component analysis. A dual regression analysis was used to establish the connectivity of each ROI with whole brain-networks. An ROI within the left anterior superior temporal sulcus (antSTS) was functionally connected to other parts of the left ATL, including anterior ventromedial left temporal cortex (partially attenuated by signal loss due to susceptibility artifact), a large left dorsolateral prefrontal region (including 'classic' Broca's area), extensive bilateral sensory-motor cortices, and the length of both superior temporal gyri. The time-course of this functionally connected network was associated with picture description but not with non-semantic baseline tasks. This system has the distribution expected for the production of overt speech with appropriate semantic content, and the auditory monitoring of the overt speech output. In contrast, the only left PL ROI that showed connectivity with brain systems most strongly activated by the picture-description task, was in the superior parietal lobe (supPL). This region showed connectivity with predominantly posterior cortical regions required for the visual processing of the pictorial stimuli, with additional connectivity to the dorsal left AG and a small component of the left inferior frontal gyrus. None of the other PL ROIs that included part of the left AG were activated by Speech alone. The best interpretation of these results is that the left antSTS connects the proposed semantic hub (specifically localized to ventral anterior temporal cortex based on clinical neuropsychological studies) to posterior frontal regions and sensory-motor cortices responsible for the overt production of speech. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.

  19. The differential contributions of pFC and temporo-parietal cortex to multimodal semantic control: exploring refractory effects in semantic aphasia.

    PubMed

    Gardner, Hannah E; Lambon Ralph, Matthew A; Dodds, Naomi; Jones, Theresa; Ehsan, Sheeba; Jefferies, Elizabeth

    2012-04-01

    Aphasic patients with multimodal semantic impairment following pFC or temporo-parietal (TP) cortex damage (semantic aphasia [SA]) have deficits characterized by poor control of semantic activation/retrieval, as opposed to loss of semantic knowledge per se. In line with this, SA patients show "refractory effects"; that is, declining accuracy in cyclical word-picture matching tasks when semantically related sets are presented rapidly and repeatedly. This is argued to follow a build-up of competition between targets and distractors. However, the link between poor semantic control and refractory effects is still controversial for two reasons. (1) Some theories propose that refractory effects are specific to verbal or auditory tasks, yet SA patients show poor control over semantic processing in both word and picture semantic tasks. (2) SA can result from lesions to either the left pFC or TP cortex, yet previous work suggests that refractory effects are specifically linked to the left inferior frontal cortex. For the first time, verbal, visual, and nonverbal auditory refractory effects were explored in nine SA patients who had pFC (pFC+) or TP cortex (TP-only) lesions. In all modalities, patient accuracy declined significantly over repetitions. This refractory effect at the group level was driven by pFC+ patients and was not shown by individuals with TP-only lesions. These findings support the theory that SA patients have reduced control over multimodal semantic retrieval and, additionally, suggest there may be functional specialization within the posterior versus pFC elements of the semantic control network.

  20. Capacity Building for Research and Education in GIS/GPS Technology and Systems

    DTIC Science & Technology

    2015-05-20

    In multi- sensor area Wireless Sensor Networking (WSN) fields will be explored. As a step forward the research to be conducted in WSN field is to...Agriculture Using Technology for Crops Scouting in Agriculture Application of Technology in Precision Agriculture Wireless Sensor Network (WSN) in...Cooperative Engagement Capability Range based algorithms for Wireless Sensor Network Self-configurable Wireless Sensor Network Energy Efficient Wireless

  1. How the Size of Our Social Network Influences Our Semantic Skills

    ERIC Educational Resources Information Center

    Lev-Ari, Shiri

    2016-01-01

    People differ in the size of their social network, and thus in the properties of the linguistic input they receive. This article examines whether differences in social network size influence individuals' linguistic skills in their native language, focusing on global comprehension of evaluative language. Study 1 exploits the natural variation in…

  2. A method for exploring implicit concept relatedness in biomedical knowledge network.

    PubMed

    Bai, Tian; Gong, Leiguang; Wang, Ye; Wang, Yan; Kulikowski, Casimir A; Huang, Lan

    2016-07-19

    Biomedical information and knowledge, structural and non-structural, stored in different repositories can be semantically connected to form a hybrid knowledge network. How to compute relatedness between concepts and discover valuable but implicit information or knowledge from it effectively and efficiently is of paramount importance for precision medicine, and a major challenge facing the biomedical research community. In this study, a hybrid biomedical knowledge network is constructed by linking concepts across multiple biomedical ontologies as well as non-structural biomedical knowledge sources. To discover implicit relatedness between concepts in ontologies for which potentially valuable relationships (implicit knowledge) may exist, we developed a Multi-Ontology Relatedness Model (MORM) within the knowledge network, for which a relatedness network (RN) is defined and computed across multiple ontologies using a formal inference mechanism of set-theoretic operations. Semantic constraints are designed and implemented to prune the search space of the relatedness network. Experiments to test examples of several biomedical applications have been carried out, and the evaluation of the results showed an encouraging potential of the proposed approach to biomedical knowledge discovery.

  3. Markov Task Network: A Framework for Service Composition under Uncertainty in Cyber-Physical Systems.

    PubMed

    Mohammed, Abdul-Wahid; Xu, Yang; Hu, Haixiao; Agyemang, Brighter

    2016-09-21

    In novel collaborative systems, cooperative entities collaborate services to achieve local and global objectives. With the growing pervasiveness of cyber-physical systems, however, such collaboration is hampered by differences in the operations of the cyber and physical objects, and the need for the dynamic formation of collaborative functionality given high-level system goals has become practical. In this paper, we propose a cross-layer automation and management model for cyber-physical systems. This models the dynamic formation of collaborative services pursuing laid-down system goals as an ontology-oriented hierarchical task network. Ontological intelligence provides the semantic technology of this model, and through semantic reasoning, primitive tasks can be dynamically composed from high-level system goals. In dealing with uncertainty, we further propose a novel bridge between hierarchical task networks and Markov logic networks, called the Markov task network. This leverages the efficient inference algorithms of Markov logic networks to reduce both computational and inferential loads in task decomposition. From the results of our experiments, high-precision service composition under uncertainty can be achieved using this approach.

  4. Demonstration of a roving-host wireless sensor network for rapid assessment monitoring of structural health

    NASA Astrophysics Data System (ADS)

    Mascarenas, David D. L.; Flynn, Eric; Lin, Kaisen; Farinholt, Kevin; Park, Gyuhae; Gupta, Rajesh; Todd, Michael; Farrar, Charles

    2008-03-01

    A major challenge impeding the deployment of wireless sensor networks for structural health monitoring (SHM) is developing means to supply power to the sensor nodes in a cost-effective manner. In this work an initial test of a roving-host wireless sensor network was performed on a bridge near Truth or Consequences, NM in August of 2007. The roving-host wireless sensor network features a radio controlled helicopter responsible for wirelessly delivering energy to sensor nodes on an "as-needed" basis. In addition, the helicopter also serves as a central data repository and processing center for the information collected by the sensor network. The sensor nodes used on the bridge were developed for measuring the peak displacement of the bridge, as well as measuring the preload of some of the bolted joints in the bridge. These sensors and sensor nodes were specifically designed to be able to operate from energy supplied wirelessly from the helicopter. The ultimate goal of this research is to ease the requirement for battery power supplies in wireless sensor networks.

  5. An Embedded Multi-Agent Systems Based Industrial Wireless Sensor Network

    PubMed Central

    Brennan, Robert W.

    2017-01-01

    With the emergence of cyber-physical systems, there has been a growing interest in network-connected devices. One of the key requirements of a cyber-physical device is the ability to sense its environment. Wireless sensor networks are a widely-accepted solution for this requirement. In this study, an embedded multi-agent systems-managed wireless sensor network is presented. A novel architecture is proposed, along with a novel wireless sensor network architecture. Active and passive wireless sensor node types are defined, along with their communication protocols, and two application-specific examples are presented. A series of three experiments is conducted to evaluate the performance of the agent-embedded wireless sensor network. PMID:28906452

  6. An Embedded Multi-Agent Systems Based Industrial Wireless Sensor Network.

    PubMed

    Taboun, Mohammed S; Brennan, Robert W

    2017-09-14

    With the emergence of cyber-physical systems, there has been a growing interest in network-connected devices. One of the key requirements of a cyber-physical device is the ability to sense its environment. Wireless sensor networks are a widely-accepted solution for this requirement. In this study, an embedded multi-agent systems-managed wireless sensor network is presented. A novel architecture is proposed, along with a novel wireless sensor network architecture. Active and passive wireless sensor node types are defined, along with their communication protocols, and two application-specific examples are presented. A series of three experiments is conducted to evaluate the performance of the agent-embedded wireless sensor network.

  7. Generation of Ground Truth Datasets for the Analysis of 3d Point Clouds in Urban Scenes Acquired via Different Sensors

    NASA Astrophysics Data System (ADS)

    Xu, Y.; Sun, Z.; Boerner, R.; Koch, T.; Hoegner, L.; Stilla, U.

    2018-04-01

    In this work, we report a novel way of generating ground truth dataset for analyzing point cloud from different sensors and the validation of algorithms. Instead of directly labeling large amount of 3D points requiring time consuming manual work, a multi-resolution 3D voxel grid for the testing site is generated. Then, with the help of a set of basic labeled points from the reference dataset, we can generate a 3D labeled space of the entire testing site with different resolutions. Specifically, an octree-based voxel structure is applied to voxelize the annotated reference point cloud, by which all the points are organized by 3D grids of multi-resolutions. When automatically annotating the new testing point clouds, a voting based approach is adopted to the labeled points within multiple resolution voxels, in order to assign a semantic label to the 3D space represented by the voxel. Lastly, robust line- and plane-based fast registration methods are developed for aligning point clouds obtained via various sensors. Benefiting from the labeled 3D spatial information, we can easily create new annotated 3D point clouds of different sensors of the same scene directly by considering the corresponding labels of 3D space the points located, which would be convenient for the validation and evaluation of algorithms related to point cloud interpretation and semantic segmentation.

  8. An Effective Semantic Event Matching System in the Internet of Things (IoT) Environment.

    PubMed

    Alhakbani, Noura; Hassan, Mohammed Mehedi; Ykhlef, Mourad

    2017-09-02

    IoT sensors use the publish/subscribe model for communication to benefit from its decoupled nature with respect to space, time, and synchronization. Because of the heterogeneity of communicating parties, semantic decoupling is added as a fourth dimension. The added semantic decoupling complicates the matching process and reduces its efficiency. Our proposed algorithm clusters subscriptions and events according to topic and performs the matching process within these clusters, which increases the throughput by reducing the matching time from the range of 16-18 ms to 2-4 ms. Moreover, the accuracy of matching is improved when subscriptions must be fully approximated, as demonstrated by an over 40% increase in F-score results. This work shows the benefit of clustering, as well as the improvement in the matching accuracy and efficiency achieved using this approach.

  9. Bio-Inspired Stretchable Absolute Pressure Sensor Network

    PubMed Central

    Guo, Yue; Li, Yu-Hung; Guo, Zhiqiang; Kim, Kyunglok; Chang, Fu-Kuo; Wang, Shan X.

    2016-01-01

    A bio-inspired absolute pressure sensor network has been developed. Absolute pressure sensors, distributed on multiple silicon islands, are connected as a network by stretchable polyimide wires. This sensor network, made on a 4’’ wafer, has 77 nodes and can be mounted on various curved surfaces to cover an area up to 0.64 m × 0.64 m, which is 100 times larger than its original size. Due to Micro Electro-Mechanical system (MEMS) surface micromachining technology, ultrathin sensing nodes can be realized with thicknesses of less than 100 µm. Additionally, good linearity and high sensitivity (~14 mV/V/bar) have been achieved. Since the MEMS sensor process has also been well integrated with a flexible polymer substrate process, the entire sensor network can be fabricated in a time-efficient and cost-effective manner. Moreover, an accurate pressure contour can be obtained from the sensor network. Therefore, this absolute pressure sensor network holds significant promise for smart vehicle applications, especially for unmanned aerial vehicles. PMID:26729134

  10. The Coverage Problem in Video-Based Wireless Sensor Networks: A Survey

    PubMed Central

    Costa, Daniel G.; Guedes, Luiz Affonso

    2010-01-01

    Wireless sensor networks typically consist of a great number of tiny low-cost electronic devices with limited sensing and computing capabilities which cooperatively communicate to collect some kind of information from an area of interest. When wireless nodes of such networks are equipped with a low-power camera, visual data can be retrieved, facilitating a new set of novel applications. The nature of video-based wireless sensor networks demands new algorithms and solutions, since traditional wireless sensor networks approaches are not feasible or even efficient for that specialized communication scenario. The coverage problem is a crucial issue of wireless sensor networks, requiring specific solutions when video-based sensors are employed. In this paper, it is surveyed the state of the art of this particular issue, regarding strategies, algorithms and general computational solutions. Open research areas are also discussed, envisaging promising investigation considering coverage in video-based wireless sensor networks. PMID:22163651

  11. Distinct loci of lexical and semantic access deficits in aphasia: Evidence from voxel-based lesion-symptom mapping and diffusion tensor imaging.

    PubMed

    Harvey, Denise Y; Schnur, Tatiana T

    2015-06-01

    Naming pictures and matching words to pictures belonging to the same semantic category negatively affects language production and comprehension. By most accounts, semantic interference arises when accessing lexical representations in naming (e.g., Damian, Vigliocco, & Levelt, 2001) and semantic representations in comprehension (e.g., Forde & Humphreys, 1997). Further, damage to the left inferior frontal gyrus (LIFG), a region implicated in cognitive control, results in increasing semantic interference when items repeat across cycles in both language production and comprehension (Jefferies, Baker, Doran, & Lambon Ralph, 2007). This generates the prediction that the LIFG via white matter connections supports resolution of semantic interference arising from different loci (lexical vs semantic) in the temporal lobe. However, it remains unclear whether the cognitive and neural mechanisms that resolve semantic interference are the same across tasks. Thus, we examined which gray matter structures [using whole brain and region of interest (ROI) approaches] and white matter connections (using deterministic tractography) when damaged impact semantic interference and its increase across cycles when repeatedly producing and understanding words in 15 speakers with varying lexical-semantic deficits from left hemisphere stroke. We found that damage to distinct brain regions, the posterior versus anterior temporal lobe, was associated with semantic interference (collapsed across cycles) in naming and comprehension, respectively. Further, those with LIFG damage compared to those without exhibited marginally larger increases in semantic interference across cycles in naming but not comprehension. Lastly, the inferior fronto-occipital fasciculus, connecting the LIFG with posterior temporal lobe, related to semantic interference in naming, whereas the inferior longitudinal fasciculus (ILF), connecting posterior with anterior temporal regions related to semantic interference in comprehension. These neuroanatomical-behavioral findings have implications for models of the lexical-semantic language network by demonstrating that semantic interference in language production and comprehension involves different representations which differentially recruit a cognitive control mechanism for interference resolution. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Distributed Estimation, Coding, and Scheduling in Wireless Visual Sensor Networks

    ERIC Educational Resources Information Center

    Yu, Chao

    2013-01-01

    In this thesis, we consider estimation, coding, and sensor scheduling for energy efficient operation of wireless visual sensor networks (VSN), which consist of battery-powered wireless sensors with sensing (imaging), computation, and communication capabilities. The competing requirements for applications of these wireless sensor networks (WSN)…

  13. Measuring semantic similarities by combining gene ontology annotations and gene co-function networks

    DOE PAGES

    Peng, Jiajie; Uygun, Sahra; Kim, Taehyong; ...

    2015-02-14

    Background: Gene Ontology (GO) has been used widely to study functional relationships between genes. The current semantic similarity measures rely only on GO annotations and GO structure. This limits the power of GO-based similarity because of the limited proportion of genes that are annotated to GO in most organisms. Results: We introduce a novel approach called NETSIM (network-based similarity measure) that incorporates information from gene co-function networks in addition to using the GO structure and annotations. Using metabolic reaction maps of yeast, Arabidopsis, and human, we demonstrate that NETSIM can improve the accuracy of GO term similarities. We also demonstratemore » that NETSIM works well even for genomes with sparser gene annotation data. We applied NETSIM on large Arabidopsis gene families such as cytochrome P450 monooxygenases to group the members functionally and show that this grouping could facilitate functional characterization of genes in these families. Conclusions: Using NETSIM as an example, we demonstrated that the performance of a semantic similarity measure could be significantly improved after incorporating genome-specific information. NETSIM incorporates both GO annotations and gene co-function network data as a priori knowledge in the model. Therefore, functional similarities of GO terms that are not explicitly encoded in GO but are relevant in a taxon-specific manner become measurable when GO annotations are limited.« less

  14. Optimizing Cluster Heads for Energy Efficiency in Large-Scale Heterogeneous Wireless Sensor Networks

    DOE PAGES

    Gu, Yi; Wu, Qishi; Rao, Nageswara S. V.

    2010-01-01

    Many complex sensor network applications require deploying a large number of inexpensive and small sensors in a vast geographical region to achieve quality through quantity. Hierarchical clustering is generally considered as an efficient and scalable way to facilitate the management and operation of such large-scale networks and minimize the total energy consumption for prolonged lifetime. Judicious selection of cluster heads for data integration and communication is critical to the success of applications based on hierarchical sensor networks organized as layered clusters. We investigate the problem of selecting sensor nodes in a predeployed sensor network to be the cluster heads tomore » minimize the total energy needed for data gathering. We rigorously derive an analytical formula to optimize the number of cluster heads in sensor networks under uniform node distribution, and propose a Distance-based Crowdedness Clustering algorithm to determine the cluster heads in sensor networks under general node distribution. The results from an extensive set of experiments on a large number of simulated sensor networks illustrate the performance superiority of the proposed solution over the clustering schemes based on k -means algorithm.« less

  15. Wireless Sensor Network Applications for the Combat Air Forces

    DTIC Science & Technology

    2006-06-13

    WIRELESS SENSOR NETWORK APPLICATIONS FOR THE COMBAT AIR FORCES GRADUATE RESEARCH PROJECT...Government. AFIT/IC4/ENG/06-05 WIRELESS SENSOR NETWORK APPLICATIONS FOR THE COMBAT AIR FORCES GRADUATE RESEARCH PROJECT Presented to the...Major, USAF June 2006 APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED AFIT/IC4/ENG/06-05 WIRELESS SENSOR NETWORK APPLICATIONS

  16. A Feedback-Based Secure Path Approach for Wireless Sensor Network Data Collection

    PubMed Central

    Mao, Yuxin; Wei, Guiyi

    2010-01-01

    The unattended nature of wireless sensor networks makes them very vulnerable to malicious attacks. Therefore, how to preserve secure data collection is an important issue to wireless sensor networks. In this paper, we propose a novel approach of secure data collection for wireless sensor networks. We explore secret sharing and multipath routing to achieve secure data collection in wireless sensor network with compromised nodes. We present a novel tracing-feedback mechanism, which makes full use of the routing functionality of wireless sensor networks, to improve the quality of data collection. The major advantage of the approach is that the secure paths are constructed as a by-product of data collection. The process of secure routing causes little overhead to the sensor nodes in the network. Compared with existing works, the algorithms of the proposed approach are easy to implement and execute in resource-constrained wireless sensor networks. According to the result of a simulation experiment, the performance of the approach is better than the recent approaches with a similar purpose. PMID:22163424

  17. Smart border: ad-hoc wireless sensor networks for border surveillance

    NASA Astrophysics Data System (ADS)

    He, Jun; Fallahi, Mahmoud; Norwood, Robert A.; Peyghambarian, Nasser

    2011-06-01

    Wireless sensor networks have been proposed as promising candidates to provide automated monitoring, target tracking, and intrusion detection for border surveillance. In this paper, we demonstrate an ad-hoc wireless sensor network system for border surveillance. The network consists of heterogeneously autonomous sensor nodes that distributively cooperate with each other to enable a smart border in remote areas. This paper also presents energy-aware and sleeping algorithms designed to maximize the operating lifetime of the deployed sensor network. Lessons learned in building the network and important findings from field experiments are shared in the paper.

  18. Automated Construction of Node Software Using Attributes in a Ubiquitous Sensor Network Environment

    PubMed Central

    Lee, Woojin; Kim, Juil; Kang, JangMook

    2010-01-01

    In sensor networks, nodes must often operate in a demanding environment facing restrictions such as restricted computing resources, unreliable wireless communication and power shortages. Such factors make the development of ubiquitous sensor network (USN) applications challenging. To help developers construct a large amount of node software for sensor network applications easily and rapidly, this paper proposes an approach to the automated construction of node software for USN applications using attributes. In the proposed technique, application construction proceeds by first developing a model for the sensor network and then designing node software by setting the values of the predefined attributes. After that, the sensor network model and the design of node software are verified. The final source codes of the node software are automatically generated from the sensor network model. We illustrate the efficiency of the proposed technique by using a gas/light monitoring application through a case study of a Gas and Light Monitoring System based on the Nano-Qplus operating system. We evaluate the technique using a quantitative metric—the memory size of execution code for node software. Using the proposed approach, developers are able to easily construct sensor network applications and rapidly generate a large number of node softwares at a time in a ubiquitous sensor network environment. PMID:22163678

  19. Automated construction of node software using attributes in a ubiquitous sensor network environment.

    PubMed

    Lee, Woojin; Kim, Juil; Kang, JangMook

    2010-01-01

    In sensor networks, nodes must often operate in a demanding environment facing restrictions such as restricted computing resources, unreliable wireless communication and power shortages. Such factors make the development of ubiquitous sensor network (USN) applications challenging. To help developers construct a large amount of node software for sensor network applications easily and rapidly, this paper proposes an approach to the automated construction of node software for USN applications using attributes. In the proposed technique, application construction proceeds by first developing a model for the sensor network and then designing node software by setting the values of the predefined attributes. After that, the sensor network model and the design of node software are verified. The final source codes of the node software are automatically generated from the sensor network model. We illustrate the efficiency of the proposed technique by using a gas/light monitoring application through a case study of a Gas and Light Monitoring System based on the Nano-Qplus operating system. We evaluate the technique using a quantitative metric-the memory size of execution code for node software. Using the proposed approach, developers are able to easily construct sensor network applications and rapidly generate a large number of node softwares at a time in a ubiquitous sensor network environment.

  20. SAMuS: Service-Oriented Architecture for Multisensor Surveillance in Smart Homes

    PubMed Central

    Van de Walle, Rik

    2014-01-01

    The design of a service-oriented architecture for multisensor surveillance in smart homes is presented as an integrated solution enabling automatic deployment, dynamic selection, and composition of sensors. Sensors are implemented as Web-connected devices, with a uniform Web API. RESTdesc is used to describe the sensors and a novel solution is presented to automatically compose Web APIs that can be applied with existing Semantic Web reasoners. We evaluated the solution by building a smart Kinect sensor that is able to dynamically switch between IR and RGB and optimizing person detection by incorporating feedback from pressure sensors, as such demonstrating the collaboration among sensors to enhance detection of complex events. The performance results show that the platform scales for many Web APIs as composition time remains limited to a few hundred milliseconds in almost all cases. PMID:24778579

  1. The role of sleep spindles and slow-wave activity in integrating new information in semantic memory.

    PubMed

    Tamminen, Jakke; Lambon Ralph, Matthew A; Lewis, Penelope A

    2013-09-25

    Assimilating new information into existing knowledge is a fundamental part of consolidating new memories and allowing them to guide behavior optimally and is vital for conceptual knowledge (semantic memory), which is accrued over many years. Sleep is important for memory consolidation, but its impact upon assimilation of new information into existing semantic knowledge has received minimal examination. Here, we examined the integration process by training human participants on novel words with meanings that fell into densely or sparsely populated areas of semantic memory in two separate sessions. Overnight sleep was polysomnographically monitored after each training session and recall was tested immediately after training, after a night of sleep, and 1 week later. Results showed that participants learned equal numbers of both word types, thus equating amount and difficulty of learning across the conditions. Measures of word recognition speed showed a disadvantage for novel words in dense semantic neighborhoods, presumably due to interference from many semantically related concepts, suggesting that the novel words had been successfully integrated into semantic memory. Most critically, semantic neighborhood density influenced sleep architecture, with participants exhibiting more sleep spindles and slow-wave activity after learning the sparse compared with the dense neighborhood words. These findings provide the first evidence that spindles and slow-wave activity mediate integration of new information into existing semantic networks.

  2. IJA: an efficient algorithm for query processing in sensor networks.

    PubMed

    Lee, Hyun Chang; Lee, Young Jae; Lim, Ji Hyang; Kim, Dong Hwa

    2011-01-01

    One of main features in sensor networks is the function that processes real time state information after gathering needed data from many domains. The component technologies consisting of each node called a sensor node that are including physical sensors, processors, actuators and power have advanced significantly over the last decade. Thanks to the advanced technology, over time sensor networks have been adopted in an all-round industry sensing physical phenomenon. However, sensor nodes in sensor networks are considerably constrained because with their energy and memory resources they have a very limited ability to process any information compared to conventional computer systems. Thus query processing over the nodes should be constrained because of their limitations. Due to the problems, the join operations in sensor networks are typically processed in a distributed manner over a set of nodes and have been studied. By way of example while simple queries, such as select and aggregate queries, in sensor networks have been addressed in the literature, the processing of join queries in sensor networks remains to be investigated. Therefore, in this paper, we propose and describe an Incremental Join Algorithm (IJA) in Sensor Networks to reduce the overhead caused by moving a join pair to the final join node or to minimize the communication cost that is the main consumer of the battery when processing the distributed queries in sensor networks environments. At the same time, the simulation result shows that the proposed IJA algorithm significantly reduces the number of bytes to be moved to join nodes compared to the popular synopsis join algorithm.

  3. IJA: An Efficient Algorithm for Query Processing in Sensor Networks

    PubMed Central

    Lee, Hyun Chang; Lee, Young Jae; Lim, Ji Hyang; Kim, Dong Hwa

    2011-01-01

    One of main features in sensor networks is the function that processes real time state information after gathering needed data from many domains. The component technologies consisting of each node called a sensor node that are including physical sensors, processors, actuators and power have advanced significantly over the last decade. Thanks to the advanced technology, over time sensor networks have been adopted in an all-round industry sensing physical phenomenon. However, sensor nodes in sensor networks are considerably constrained because with their energy and memory resources they have a very limited ability to process any information compared to conventional computer systems. Thus query processing over the nodes should be constrained because of their limitations. Due to the problems, the join operations in sensor networks are typically processed in a distributed manner over a set of nodes and have been studied. By way of example while simple queries, such as select and aggregate queries, in sensor networks have been addressed in the literature, the processing of join queries in sensor networks remains to be investigated. Therefore, in this paper, we propose and describe an Incremental Join Algorithm (IJA) in Sensor Networks to reduce the overhead caused by moving a join pair to the final join node or to minimize the communication cost that is the main consumer of the battery when processing the distributed queries in sensor networks environments. At the same time, the simulation result shows that the proposed IJA algorithm significantly reduces the number of bytes to be moved to join nodes compared to the popular synopsis join algorithm. PMID:22319375

  4. Zone-Based Routing Protocol for Wireless Sensor Networks

    PubMed Central

    Venkateswarlu Kumaramangalam, Muni; Adiyapatham, Kandasamy; Kandasamy, Chandrasekaran

    2014-01-01

    Extensive research happening across the globe witnessed the importance of Wireless Sensor Network in the present day application world. In the recent past, various routing algorithms have been proposed to elevate WSN network lifetime. Clustering mechanism is highly successful in conserving energy resources for network activities and has become promising field for researches. However, the problem of unbalanced energy consumption is still open because the cluster head activities are tightly coupled with role and location of a particular node in the network. Several unequal clustering algorithms are proposed to solve this wireless sensor network multihop hot spot problem. Current unequal clustering mechanisms consider only intra- and intercluster communication cost. Proper organization of wireless sensor network into clusters enables efficient utilization of limited resources and enhances lifetime of deployed sensor nodes. This paper considers a novel network organization scheme, energy-efficient edge-based network partitioning scheme, to organize sensor nodes into clusters of equal size. Also, it proposes a cluster-based routing algorithm, called zone-based routing protocol (ZBRP), for elevating sensor network lifetime. Experimental results show that ZBRP out-performs interims of network lifetime and energy conservation with its uniform energy consumption among the cluster heads. PMID:27437455

  5. Zone-Based Routing Protocol for Wireless Sensor Networks.

    PubMed

    Venkateswarlu Kumaramangalam, Muni; Adiyapatham, Kandasamy; Kandasamy, Chandrasekaran

    2014-01-01

    Extensive research happening across the globe witnessed the importance of Wireless Sensor Network in the present day application world. In the recent past, various routing algorithms have been proposed to elevate WSN network lifetime. Clustering mechanism is highly successful in conserving energy resources for network activities and has become promising field for researches. However, the problem of unbalanced energy consumption is still open because the cluster head activities are tightly coupled with role and location of a particular node in the network. Several unequal clustering algorithms are proposed to solve this wireless sensor network multihop hot spot problem. Current unequal clustering mechanisms consider only intra- and intercluster communication cost. Proper organization of wireless sensor network into clusters enables efficient utilization of limited resources and enhances lifetime of deployed sensor nodes. This paper considers a novel network organization scheme, energy-efficient edge-based network partitioning scheme, to organize sensor nodes into clusters of equal size. Also, it proposes a cluster-based routing algorithm, called zone-based routing protocol (ZBRP), for elevating sensor network lifetime. Experimental results show that ZBRP out-performs interims of network lifetime and energy conservation with its uniform energy consumption among the cluster heads.

  6. Neural Network-Based Sensor Validation for Turboshaft Engines

    NASA Technical Reports Server (NTRS)

    Moller, James C.; Litt, Jonathan S.; Guo, Ten-Huei

    1998-01-01

    Sensor failure detection, isolation, and accommodation using a neural network approach is described. An auto-associative neural network is configured to perform dimensionality reduction on the sensor measurement vector and provide estimated sensor values. The sensor validation scheme is applied in a simulation of the T700 turboshaft engine in closed loop operation. Performance is evaluated based on the ability to detect faults correctly and maintain stable and responsive engine operation. The set of sensor outputs used for engine control forms the network input vector. Analytical redundancy is verified by training networks of successively smaller bottleneck layer sizes. Training data generation and strategy are discussed. The engine maintained stable behavior in the presence of sensor hard failures. With proper selection of fault determination thresholds, stability was maintained in the presence of sensor soft failures.

  7. Decentralized sensor fusion for Ubiquitous Networking Robotics in Urban Areas.

    PubMed

    Sanfeliu, Alberto; Andrade-Cetto, Juan; Barbosa, Marco; Bowden, Richard; Capitán, Jesús; Corominas, Andreu; Gilbert, Andrew; Illingworth, John; Merino, Luis; Mirats, Josep M; Moreno, Plínio; Ollero, Aníbal; Sequeira, João; Spaan, Matthijs T J

    2010-01-01

    In this article we explain the architecture for the environment and sensors that has been built for the European project URUS (Ubiquitous Networking Robotics in Urban Sites), a project whose objective is to develop an adaptable network robot architecture for cooperation between network robots and human beings and/or the environment in urban areas. The project goal is to deploy a team of robots in an urban area to give a set of services to a user community. This paper addresses the sensor architecture devised for URUS and the type of robots and sensors used, including environment sensors and sensors onboard the robots. Furthermore, we also explain how sensor fusion takes place to achieve urban outdoor execution of robotic services. Finally some results of the project related to the sensor network are highlighted.

  8. Semantic message oriented middleware for publish/subscribe networks

    NASA Astrophysics Data System (ADS)

    Li, Han; Jiang, Guofei

    2004-09-01

    The publish/subscribe paradigm of Message Oriented Middleware provides a loosely coupled communication model between distributed applications. Traditional publish/subscribe middleware uses keywords to match advertisements and subscriptions and does not support deep semantic matching. To this end, we designed and implemented a Semantic Message Oriented Middleware system to provide such capabilities for semantic description and matching. We adopted the DARPA Agent Markup Language and Ontology Inference Layer, a formal knowledge representation language for expressing sophisticated classifications and enabling automated inference, as the topic description language in our middleware system. A simple description logic inference system was implemented to handle the matching process between the subscriptions of subscribers and the advertisements of publishers. Moreover our middleware system also has a security architecture to support secure communication and user privilege control.

  9. Contextually guided very-high-resolution imagery classification with semantic segments

    NASA Astrophysics Data System (ADS)

    Zhao, Wenzhi; Du, Shihong; Wang, Qiao; Emery, William J.

    2017-10-01

    Contextual information, revealing relationships and dependencies between image objects, is one of the most important information for the successful interpretation of very-high-resolution (VHR) remote sensing imagery. Over the last decade, geographic object-based image analysis (GEOBIA) technique has been widely used to first divide images into homogeneous parts, and then to assign semantic labels according to the properties of image segments. However, due to the complexity and heterogeneity of VHR images, segments without semantic labels (i.e., semantic-free segments) generated with low-level features often fail to represent geographic entities (such as building roofs usually be partitioned into chimney/antenna/shadow parts). As a result, it is hard to capture contextual information across geographic entities when using semantic-free segments. In contrast to low-level features, "deep" features can be used to build robust segments with accurate labels (i.e., semantic segments) in order to represent geographic entities at higher levels. Based on these semantic segments, semantic graphs can be constructed to capture contextual information in VHR images. In this paper, semantic segments were first explored with convolutional neural networks (CNN) and a conditional random field (CRF) model was then applied to model the contextual information between semantic segments. Experimental results on two challenging VHR datasets (i.e., the Vaihingen and Beijing scenes) indicate that the proposed method is an improvement over existing image classification techniques in classification performance (overall accuracy ranges from 82% to 96%).

  10. Neurology of anomia in the semantic variant of primary progressive aphasia

    PubMed Central

    Rogalski, Emily; Wieneke, Christina; Cobia, Derin; Rademaker, Alfred; Thompson, Cynthia; Weintraub, Sandra

    2009-01-01

    The semantic variant of primary progressive aphasia (PPA) is characterized by the combination of word comprehension deficits, fluent aphasia and a particularly severe anomia. In this study, two novel tasks were used to explore the factors contributing to the anomia. The single most common factor was a blurring of distinctions among members of a semantic category, leading to errors of overgeneralization in word–object matching tasks as well as in word definitions and object descriptions. This factor was more pronounced for natural kinds than artifacts. In patients with the more severe anomias, conceptual maps were more extensively disrupted so that inter-category distinctions were as impaired as intra-category distinctions. Many objects that could not be named aloud could be matched to the correct word in patients with mild but not severe anomia, reflecting a gradual intensification of the semantic factor as the naming disorder becomes more severe. Accurate object descriptions were more frequent than accurate word definitions and all patients experienced prominent word comprehension deficits that interfered with everyday activities but no consequential impairment of object usage or face recognition. Magnetic resonance imaging revealed three characteristics: greater atrophy of the left hemisphere; atrophy of anterior components of the perisylvian language network in the superior and middle temporal gyri; and atrophy of anterior components of the face and object recognition network in the inferior and medial temporal lobes. The left sided asymmetry and perisylvian extension of the atrophy explains the more profound impairment of word than object usage and provides the anatomical basis for distinguishing the semantic variant of primary progressive aphasia from the partially overlapping group of patients that fulfil the widely accepted diagnostic criteria for semantic dementia. PMID:19506067

  11. Neurology of anomia in the semantic variant of primary progressive aphasia.

    PubMed

    Mesulam, Marsel; Rogalski, Emily; Wieneke, Christina; Cobia, Derin; Rademaker, Alfred; Thompson, Cynthia; Weintraub, Sandra

    2009-09-01

    The semantic variant of primary progressive aphasia (PPA) is characterized by the combination of word comprehension deficits, fluent aphasia and a particularly severe anomia. In this study, two novel tasks were used to explore the factors contributing to the anomia. The single most common factor was a blurring of distinctions among members of a semantic category, leading to errors of overgeneralization in word-object matching tasks as well as in word definitions and object descriptions. This factor was more pronounced for natural kinds than artifacts. In patients with the more severe anomias, conceptual maps were more extensively disrupted so that inter-category distinctions were as impaired as intra-category distinctions. Many objects that could not be named aloud could be matched to the correct word in patients with mild but not severe anomia, reflecting a gradual intensification of the semantic factor as the naming disorder becomes more severe. Accurate object descriptions were more frequent than accurate word definitions and all patients experienced prominent word comprehension deficits that interfered with everyday activities but no consequential impairment of object usage or face recognition. Magnetic resonance imaging revealed three characteristics: greater atrophy of the left hemisphere; atrophy of anterior components of the perisylvian language network in the superior and middle temporal gyri; and atrophy of anterior components of the face and object recognition network in the inferior and medial temporal lobes. The left sided asymmetry and perisylvian extension of the atrophy explains the more profound impairment of word than object usage and provides the anatomical basis for distinguishing the semantic variant of primary progressive aphasia from the partially overlapping group of patients that fulfil the widely accepted diagnostic criteria for semantic dementia.

  12. Constructing a Graph Database for Semantic Literature-Based Discovery.

    PubMed

    Hristovski, Dimitar; Kastrin, Andrej; Dinevski, Dejan; Rindflesch, Thomas C

    2015-01-01

    Literature-based discovery (LBD) generates discoveries, or hypotheses, by combining what is already known in the literature. Potential discoveries have the form of relations between biomedical concepts; for example, a drug may be determined to treat a disease other than the one for which it was intended. LBD views the knowledge in a domain as a network; a set of concepts along with the relations between them. As a starting point, we used SemMedDB, a database of semantic relations between biomedical concepts extracted with SemRep from Medline. SemMedDB is distributed as a MySQL relational database, which has some problems when dealing with network data. We transformed and uploaded SemMedDB into the Neo4j graph database, and implemented the basic LBD discovery algorithms with the Cypher query language. We conclude that storing the data needed for semantic LBD is more natural in a graph database. Also, implementing LBD discovery algorithms is conceptually simpler with a graph query language when compared with standard SQL.

  13. A top-down manner-based DCNN architecture for semantic image segmentation.

    PubMed

    Qiao, Kai; Chen, Jian; Wang, Linyuan; Zeng, Lei; Yan, Bin

    2017-01-01

    Given their powerful feature representation for recognition, deep convolutional neural networks (DCNNs) have been driving rapid advances in high-level computer vision tasks. However, their performance in semantic image segmentation is still not satisfactory. Based on the analysis of visual mechanism, we conclude that DCNNs in a bottom-up manner are not enough, because semantic image segmentation task requires not only recognition but also visual attention capability. In the study, superpixels containing visual attention information are introduced in a top-down manner, and an extensible architecture is proposed to improve the segmentation results of current DCNN-based methods. We employ the current state-of-the-art fully convolutional network (FCN) and FCN with conditional random field (DeepLab-CRF) as baselines to validate our architecture. Experimental results of the PASCAL VOC segmentation task qualitatively show that coarse edges and error segmentation results are well improved. We also quantitatively obtain about 2%-3% intersection over union (IOU) accuracy improvement on the PASCAL VOC 2011 and 2012 test sets.

  14. Lexical Processing and Organization in Bilingual First Language Acquisition: Guiding Future Research

    PubMed Central

    DeAnda, Stephanie; Poulin-Dubois, Diane; Zesiger, Pascal; Friend, Margaret

    2016-01-01

    A rich body of work in adult bilinguals documents an interconnected lexical network across languages, such that early word retrieval is language independent. This literature has yielded a number of influential models of bilingual semantic memory. However, extant models provide limited predictions about the emergence of lexical organization in bilingual first language acquisition (BFLA). Empirical evidence from monolingual infants suggests that lexical networks emerge early in development as children integrate phonological and semantic information. These findings tell us little about the interaction between two languages in the early bilingual memory. To date, an understanding of when and how languages interact in early bilingual development is lacking. In this literature review, we present research documenting lexical-semantic development across monolingual and bilingual infants. This is followed by a discussion of current models of bilingual language representation and organization and their ability to account for the available empirical evidence. Together, these theoretical and empirical accounts inform and highlight unexplored areas of research and guide future work on early bilingual memory. PMID:26866430

  15. An event-related potential study of semantic style-match judgments of artistic furniture.

    PubMed

    Lin, Ming-Huang; Wang, Ching-yi; Cheng, Shih-kuen; Cheng, Shih-hung

    2011-11-01

    This study investigates how semantic networks represent different artistic furniture. Event-related potentials (ERPs) were recorded while participants made style-match judgments for table and chair sets. All of the tables were in the Normal style, whereas the chairs were in the Normal, Minimal, ReadyMade, or Deconstruction styles. The Normal and Minimal chairs had the same rates of "match" responses, which were both higher than the rates for the ReadyMade and Deconstruction chairs. Compared with Normal chairs, the ERPs elicited by both ReadyMade chairs and Deconstruction chairs exhibited reliable N400 effects, which suggests that these two design styles were unlike the Normal design style. However, Minimal chairs evoked ERPs that were similar to the ERPs of Normal chairs. Furthermore, the N400 effects elicited by ReadyMade and Deconstruction chairs showed different scalp distributions. These findings reveal that semantic networks represent different design styles for items of the same category. Copyright © 2011 Elsevier B.V. All rights reserved.

  16. Biology-Inspired Distributed Consensus in Massively-Deployed Sensor Networks

    NASA Technical Reports Server (NTRS)

    Jones, Kennie H.; Lodding, Kenneth N.; Olariu, Stephan; Wilson, Larry; Xin, Chunsheng

    2005-01-01

    Promises of ubiquitous control of the physical environment by large-scale wireless sensor networks open avenues for new applications that are expected to redefine the way we live and work. Most of recent research has concentrated on developing techniques for performing relatively simple tasks in small-scale sensor networks assuming some form of centralized control. The main contribution of this work is to propose a new way of looking at large-scale sensor networks, motivated by lessons learned from the way biological ecosystems are organized. Indeed, we believe that techniques used in small-scale sensor networks are not likely to scale to large networks; that such large-scale networks must be viewed as an ecosystem in which the sensors/effectors are organisms whose autonomous actions, based on local information, combine in a communal way to produce global results. As an example of a useful function, we demonstrate that fully distributed consensus can be attained in a scalable fashion in massively deployed sensor networks where individual motes operate based on local information, making local decisions that are aggregated across the network to achieve globally-meaningful effects.

  17. A Mobile Sensor Network System for Monitoring of Unfriendly Environments.

    PubMed

    Song, Guangming; Zhou, Yaoxin; Ding, Fei; Song, Aiguo

    2008-11-14

    Observing microclimate changes is one of the most popular applications of wireless sensor networks. However, some target environments are often too dangerous or inaccessible to humans or large robots and there are many challenges for deploying and maintaining wireless sensor networks in those unfriendly environments. This paper presents a mobile sensor network system for solving this problem. The system architecture, the mobile node design, the basic behaviors and advanced network capabilities have been investigated respectively. A wheel-based robotic node architecture is proposed here that can add controlled mobility to wireless sensor networks. A testbed including some prototype nodes has also been created for validating the basic functions of the proposed mobile sensor network system. Motion performance tests have been done to get the positioning errors and power consumption model of the mobile nodes. Results of the autonomous deployment experiment show that the mobile nodes can be distributed evenly into the previously unknown environments. It provides powerful support for network deployment and maintenance and can ensure that the sensor network will work properly in unfriendly environments.

  18. Knowledge Discovery from Biomedical Ontologies in Cross Domains.

    PubMed

    Shen, Feichen; Lee, Yugyung

    2016-01-01

    In recent years, there is an increasing demand for sharing and integration of medical data in biomedical research. In order to improve a health care system, it is required to support the integration of data by facilitating semantic interoperability systems and practices. Semantic interoperability is difficult to achieve in these systems as the conceptual models underlying datasets are not fully exploited. In this paper, we propose a semantic framework, called Medical Knowledge Discovery and Data Mining (MedKDD), that aims to build a topic hierarchy and serve the semantic interoperability between different ontologies. For the purpose, we fully focus on the discovery of semantic patterns about the association of relations in the heterogeneous information network representing different types of objects and relationships in multiple biological ontologies and the creation of a topic hierarchy through the analysis of the discovered patterns. These patterns are used to cluster heterogeneous information networks into a set of smaller topic graphs in a hierarchical manner and then to conduct cross domain knowledge discovery from the multiple biological ontologies. Thus, patterns made a greater contribution in the knowledge discovery across multiple ontologies. We have demonstrated the cross domain knowledge discovery in the MedKDD framework using a case study with 9 primary biological ontologies from Bio2RDF and compared it with the cross domain query processing approach, namely SLAP. We have confirmed the effectiveness of the MedKDD framework in knowledge discovery from multiple medical ontologies.

  19. Knowledge Discovery from Biomedical Ontologies in Cross Domains

    PubMed Central

    Shen, Feichen; Lee, Yugyung

    2016-01-01

    In recent years, there is an increasing demand for sharing and integration of medical data in biomedical research. In order to improve a health care system, it is required to support the integration of data by facilitating semantic interoperability systems and practices. Semantic interoperability is difficult to achieve in these systems as the conceptual models underlying datasets are not fully exploited. In this paper, we propose a semantic framework, called Medical Knowledge Discovery and Data Mining (MedKDD), that aims to build a topic hierarchy and serve the semantic interoperability between different ontologies. For the purpose, we fully focus on the discovery of semantic patterns about the association of relations in the heterogeneous information network representing different types of objects and relationships in multiple biological ontologies and the creation of a topic hierarchy through the analysis of the discovered patterns. These patterns are used to cluster heterogeneous information networks into a set of smaller topic graphs in a hierarchical manner and then to conduct cross domain knowledge discovery from the multiple biological ontologies. Thus, patterns made a greater contribution in the knowledge discovery across multiple ontologies. We have demonstrated the cross domain knowledge discovery in the MedKDD framework using a case study with 9 primary biological ontologies from Bio2RDF and compared it with the cross domain query processing approach, namely SLAP. We have confirmed the effectiveness of the MedKDD framework in knowledge discovery from multiple medical ontologies. PMID:27548262

  20. On the universal structure of human lexical semantics

    DOE PAGES

    Youn, Hyejin; Sutton, Logan; Smith, Eric; ...

    2016-02-01

    How universal is human conceptual structure? The way concepts are organized in the human brain may reflect distinct features of cultural, historical, and environmental background in addition to properties universal to human cognition. Semantics, or meaning expressed through language, provides indirect access to the underlying conceptual structure, but meaning is notoriously difficult to measure, let alone parameterize. Here, we provide an empirical measure of semantic proximity between concepts using cross-linguistic dictionaries to translate words to and from languages carefully selected to be representative of worldwide diversity. These translations reveal cases where a particular language uses a single “polysemous” word tomore » express multiple concepts that another language represents using distinct words. We use the frequency of such polysemies linking two concepts as a measure of their semantic proximity and represent the pattern of these linkages by a weighted network. This network is highly structured: Certain concepts are far more prone to polysemy than others, and naturally interpretable clusters of closely related concepts emerge. Statistical analysis of the polysemies observed in a subset of the basic vocabulary shows that these structural properties are consistent across different language groups, and largely independent of geography, environment, and the presence or absence of a literary tradition. As a result, the methods developed here can be applied to any semantic domain to reveal the extent to which its conceptual structure is, similarly, a universal attribute of human cognition and language use.« less

  1. On the universal structure of human lexical semantics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Youn, Hyejin; Sutton, Logan; Smith, Eric

    How universal is human conceptual structure? The way concepts are organized in the human brain may reflect distinct features of cultural, historical, and environmental background in addition to properties universal to human cognition. Semantics, or meaning expressed through language, provides indirect access to the underlying conceptual structure, but meaning is notoriously difficult to measure, let alone parameterize. Here, we provide an empirical measure of semantic proximity between concepts using cross-linguistic dictionaries to translate words to and from languages carefully selected to be representative of worldwide diversity. These translations reveal cases where a particular language uses a single “polysemous” word tomore » express multiple concepts that another language represents using distinct words. We use the frequency of such polysemies linking two concepts as a measure of their semantic proximity and represent the pattern of these linkages by a weighted network. This network is highly structured: Certain concepts are far more prone to polysemy than others, and naturally interpretable clusters of closely related concepts emerge. Statistical analysis of the polysemies observed in a subset of the basic vocabulary shows that these structural properties are consistent across different language groups, and largely independent of geography, environment, and the presence or absence of a literary tradition. As a result, the methods developed here can be applied to any semantic domain to reveal the extent to which its conceptual structure is, similarly, a universal attribute of human cognition and language use.« less

  2. LinkMind: link optimization in swarming mobile sensor networks.

    PubMed

    Ngo, Trung Dung

    2011-01-01

    A swarming mobile sensor network is comprised of a swarm of wirelessly connected mobile robots equipped with various sensors. Such a network can be applied in an uncertain environment for services such as cooperative navigation and exploration, object identification and information gathering. One of the most advantageous properties of the swarming wireless sensor network is that mobile nodes can work cooperatively to organize an ad-hoc network and optimize the network link capacity to maximize the transmission of gathered data from a source to a target. This paper describes a new method of link optimization of swarming mobile sensor networks. The new method is based on combination of the artificial potential force guaranteeing connectivities of the mobile sensor nodes and the max-flow min-cut theorem of graph theory ensuring optimization of the network link capacity. The developed algorithm is demonstrated and evaluated in simulation.

  3. LinkMind: Link Optimization in Swarming Mobile Sensor Networks

    PubMed Central

    Ngo, Trung Dung

    2011-01-01

    A swarming mobile sensor network is comprised of a swarm of wirelessly connected mobile robots equipped with various sensors. Such a network can be applied in an uncertain environment for services such as cooperative navigation and exploration, object identification and information gathering. One of the most advantageous properties of the swarming wireless sensor network is that mobile nodes can work cooperatively to organize an ad-hoc network and optimize the network link capacity to maximize the transmission of gathered data from a source to a target. This paper describes a new method of link optimization of swarming mobile sensor networks. The new method is based on combination of the artificial potential force guaranteeing connectivities of the mobile sensor nodes and the max-flow min-cut theorem of graph theory ensuring optimization of the network link capacity. The developed algorithm is demonstrated and evaluated in simulation. PMID:22164070

  4. Using Neural Networks for Sensor Validation

    NASA Technical Reports Server (NTRS)

    Mattern, Duane L.; Jaw, Link C.; Guo, Ten-Huei; Graham, Ronald; McCoy, William

    1998-01-01

    This paper presents the results of applying two different types of neural networks in two different approaches to the sensor validation problem. The first approach uses a functional approximation neural network as part of a nonlinear observer in a model-based approach to analytical redundancy. The second approach uses an auto-associative neural network to perform nonlinear principal component analysis on a set of redundant sensors to provide an estimate for a single failed sensor. The approaches are demonstrated using a nonlinear simulation of a turbofan engine. The fault detection and sensor estimation results are presented and the training of the auto-associative neural network to provide sensor estimates is discussed.

  5. Open-WiSe: a solar powered wireless sensor network platform.

    PubMed

    González, Apolinar; Aquino, Raúl; Mata, Walter; Ochoa, Alberto; Saldaña, Pedro; Edwards, Arthur

    2012-01-01

    Because battery-powered nodes are required in wireless sensor networks and energy consumption represents an important design consideration, alternate energy sources are needed to provide more effective and optimal function. The main goal of this work is to present an energy harvesting wireless sensor network platform, the Open Wireless Sensor node (WiSe). The design and implementation of the solar powered wireless platform is described including the hardware architecture, firmware, and a POSIX Real-Time Kernel. A sleep and wake up strategy was implemented to prolong the lifetime of the wireless sensor network. This platform was developed as a tool for researchers investigating Wireless sensor network or system integrators.

  6. Bluetooth-based wireless sensor networks

    NASA Astrophysics Data System (ADS)

    You, Ke; Liu, Rui Qiang

    2007-11-01

    In this work a Bluetooth-based wireless sensor network is proposed. In this bluetooth-based wireless sensor networks, information-driven star topology and energy-saved mode are used, through which a blue master node can control more than seven slave node, the energy of each sensor node is reduced and secure management of each sensor node is improved.

  7. A Hybrid 3D Indoor Space Model

    NASA Astrophysics Data System (ADS)

    Jamali, Ali; Rahman, Alias Abdul; Boguslawski, Pawel

    2016-10-01

    GIS integrates spatial information and spatial analysis. An important example of such integration is for emergency response which requires route planning inside and outside of a building. Route planning requires detailed information related to indoor and outdoor environment. Indoor navigation network models including Geometric Network Model (GNM), Navigable Space Model, sub-division model and regular-grid model lack indoor data sources and abstraction methods. In this paper, a hybrid indoor space model is proposed. In the proposed method, 3D modeling of indoor navigation network is based on surveying control points and it is less dependent on the 3D geometrical building model. This research proposes a method of indoor space modeling for the buildings which do not have proper 2D/3D geometrical models or they lack semantic or topological information. The proposed hybrid model consists of topological, geometrical and semantical space.

  8. Dynamic Hierarchical Sleep Scheduling for Wireless Ad-Hoc Sensor Networks

    PubMed Central

    Wen, Chih-Yu; Chen, Ying-Chih

    2009-01-01

    This paper presents two scheduling management schemes for wireless sensor networks, which manage the sensors by utilizing the hierarchical network structure and allocate network resources efficiently. A local criterion is used to simultaneously establish the sensing coverage and connectivity such that dynamic cluster-based sleep scheduling can be achieved. The proposed schemes are simulated and analyzed to abstract the network behaviors in a number of settings. The experimental results show that the proposed algorithms provide efficient network power control and can achieve high scalability in wireless sensor networks. PMID:22412343

  9. Dynamic hierarchical sleep scheduling for wireless ad-hoc sensor networks.

    PubMed

    Wen, Chih-Yu; Chen, Ying-Chih

    2009-01-01

    This paper presents two scheduling management schemes for wireless sensor networks, which manage the sensors by utilizing the hierarchical network structure and allocate network resources efficiently. A local criterion is used to simultaneously establish the sensing coverage and connectivity such that dynamic cluster-based sleep scheduling can be achieved. The proposed schemes are simulated and analyzed to abstract the network behaviors in a number of settings. The experimental results show that the proposed algorithms provide efficient network power control and can achieve high scalability in wireless sensor networks.

  10. Spreading activation in nonverbal memory networks.

    PubMed

    Foster, Paul S; Wakefield, Candias; Pryjmak, Scott; Roosa, Katelyn M; Branch, Kaylei K; Drago, Valeria; Harrison, David W; Ruff, Ronald

    2017-09-01

    Theories of spreading activation primarily involve semantic memory networks. However, the existence of separate verbal and visuospatial memory networks suggests that spreading activation may also occur in visuospatial memory networks. The purpose of the present investigation was to explore this possibility. Specifically, this study sought to create and describe the design frequency corpus and to determine whether this measure of visuospatial spreading activation was related to right hemisphere functioning and spreading activation in verbal memory networks. We used word frequencies taken from the Controlled Oral Word Association Test and design frequencies taken from the Ruff Figural Fluency Test as measures of verbal and visuospatial spreading activation, respectively. Average word and design frequencies were then correlated with measures of left and right cerebral functioning. The results indicated that a significant relationship exists between performance on a test of right posterior functioning (Block Design) and design frequency. A significant negative relationship also exists between spreading activation in semantic memory networks and design frequency. Based on our findings, the hypotheses were supported. Further research will need to be conducted to examine whether spreading activation exists in visuospatial memory networks as well as the parameters that might modulate this spreading activation, such as the influence of neurotransmitters.

  11. Neural correlates of lexical-semantic memory: A voxel-based morphometry study in mild AD, aMCI and normal aging

    PubMed Central

    Balthazar, Marcio L.F.; Yasuda, Clarissa L.; Lopes, Tátila M.; Pereira, Fabrício R.S.; Damasceno, Benito Pereira; Cendes, Fernando

    2011-01-01

    Neuroanatomical correlations of naming and lexical-semantic memory are not yet fully understood. The most influential approaches share the view that semantic representations reflect the manner in which information has been acquired through perception and action, and that each brain area processes different modalities of semantic representations. Despite these anatomical differences in semantic processing, generalization across different features that have similar semantic significance is one of the main characteristics of human cognition. Methods We evaluated the brain regions related to naming, and to the semantic generalization, of visually presented drawings of objects from the Boston Naming Test (BNT), which comprises different categories, such as animals, vegetables, tools, food, and furniture. In order to create a model of lesion method, a sample of 48 subjects presenting with a continuous decline both in cognitive functions, including naming skills, and in grey matter density (GMD) was compared to normal young adults with normal aging, amnestic mild cognitive impairment (aMCI) and mild Alzheimer’s disease (AD). Semantic errors on the BNT, as well as naming performance, were correlated with whole brain GMD as measured by voxel-based morphometry (VBM). Results The areas most strongly related to naming and to semantic errors were the medial temporal structures, thalami, superior and inferior temporal gyri, especially their anterior parts, as well as prefrontal cortices (inferior and superior frontal gyri). Conclusion The possible role of each of these areas in the lexical-semantic networks was discussed, along with their contribution to the models of semantic memory organization. PMID:29213726

  12. Transcranial Direct Current Stimulation Effects on Semantic Processing in Healthy Individuals.

    PubMed

    Joyal, Marilyne; Fecteau, Shirley

    2016-01-01

    Semantic processing allows us to use conceptual knowledge about the world. It has been associated with a large distributed neural network that includes the frontal, temporal and parietal cortices. Recent studies using transcranial direct current stimulation (tDCS) also contributed at investigating semantic processing. The goal of this article was to review studies investigating semantic processing in healthy individuals with tDCS and discuss findings from these studies in line with neuroimaging results. Based on functional magnetic resonance imaging studies assessing semantic processing, we predicted that tDCS applied over the inferior frontal gyrus, middle temporal gyrus, and posterior parietal cortex will impact semantic processing. We conducted a search on Pubmed and selected 27 articles in which tDCS was used to modulate semantic processing in healthy subjects. We analysed each article according to these criteria: demographic information, experimental outcomes assessing semantic processing, study design, and effects of tDCS on semantic processes. From the 27 reviewed studies, 8 found main effects of stimulation. In addition to these 8 studies, 17 studies reported an interaction between stimulus types and stimulation conditions (e.g. incoherent functional, but not instrumental, actions were processed faster when anodal tDCS was applied over the posterior parietal cortex as compared to sham tDCS). Results suggest that regions in the frontal, temporal, and parietal cortices are involved in semantic processing. tDCS can modulate some aspects of semantic processing and provide information on the functional roles of brain regions involved in this cognitive process. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. A semantic web framework to integrate cancer omics data with biological knowledge.

    PubMed

    Holford, Matthew E; McCusker, James P; Cheung, Kei-Hoi; Krauthammer, Michael

    2012-01-25

    The RDF triple provides a simple linguistic means of describing limitless types of information. Triples can be flexibly combined into a unified data source we call a semantic model. Semantic models open new possibilities for the integration of variegated biological data. We use Semantic Web technology to explicate high throughput clinical data in the context of fundamental biological knowledge. We have extended Corvus, a data warehouse which provides a uniform interface to various forms of Omics data, by providing a SPARQL endpoint. With the querying and reasoning tools made possible by the Semantic Web, we were able to explore quantitative semantic models retrieved from Corvus in the light of systematic biological knowledge. For this paper, we merged semantic models containing genomic, transcriptomic and epigenomic data from melanoma samples with two semantic models of functional data - one containing Gene Ontology (GO) data, the other, regulatory networks constructed from transcription factor binding information. These two semantic models were created in an ad hoc manner but support a common interface for integration with the quantitative semantic models. Such combined semantic models allow us to pose significant translational medicine questions. Here, we study the interplay between a cell's molecular state and its response to anti-cancer therapy by exploring the resistance of cancer cells to Decitabine, a demethylating agent. We were able to generate a testable hypothesis to explain how Decitabine fights cancer - namely, that it targets apoptosis-related gene promoters predominantly in Decitabine-sensitive cell lines, thus conveying its cytotoxic effect by activating the apoptosis pathway. Our research provides a framework whereby similar hypotheses can be developed easily.

  14. The neural mechanisms of semantic and response conflicts: an fMRI study of practice-related effects in the Stroop task.

    PubMed

    Chen, Zhencai; Lei, Xu; Ding, Cody; Li, Hong; Chen, Antao

    2013-02-01

    Previous studies have demonstrated that there are separate neural mechanisms underlying semantic and response conflicts in the Stroop task. However, the practice effects of these conflicts need to be elucidated and the possible involvements of common neural mechanisms are yet to be established. We employed functional magnetic resonance imaging (fMRI) in a 4-2 mapping practice-related Stroop task to determine the neural substrates under these conflicts. Results showed that different patterns of brain activations are associated with practice in the attentional networks (e.g., dorsolateral prefrontal cortex (DLPFC), anterior cingulate cortex (ACC), and posterior parietal cortex (PPC)) for both conflicts, response control regions (e.g., inferior frontal junction (IFJ), inferior frontal gyrus (IFG)/insula, and pre-supplementary motor areas (pre-SMA)) for semantic conflict, and posterior cortex for response conflict. We also found areas of common activation in the left hemisphere within the attentional networks, for the early practice stage in semantic conflict and the late stage in "pure" response conflict using conjunction analysis. The different practice effects indicate that there are distinct mechanisms underlying these two conflict types: semantic conflict practice effects are attributable to the automation of stimulus processing, conflict and response control; response conflict practice effects are attributable to the proportional increase of conflict-related cognitive resources. In addition, the areas of common activation suggest that the semantic conflict effect may contain a partial response conflict effect, particularly at the beginning of the task. These findings indicate that there are two kinds of response conflicts contained in the key-pressing Stroop task: the vocal-level (mainly in the early stage) and key-pressing (mainly in the late stage) response conflicts; thus, the use of the subtraction method for the exploration of semantic and response conflicts may need to be further examined. Copyright © 2012 Elsevier Inc. All rights reserved.

  15. Tactical Network Load Balancing in Multi-Gateway Wireless Sensor Networks

    DTIC Science & Technology

    2013-12-01

    writeup scrsz = get( 0 ,’ScreenSize’); %Creation of the random Sensor Network fig = figure(1); set(fig, ’Position’,[1 scrsz( 4 )*.25 scrsz(3)*.7...thesis writeup scrsz = get( 0 ,’ScreenSize’); %Creation of the random Sensor Network fig = figure(1); set(fig, ’Position’,[1 scrsz( 4 )*.25 scrsz(3)*.7...TYPE AND DATES COVERED Master’s Thesis 4 . TITLE AND SUBTITLE TACTICAL NETWORK LOAD BALANCING IN MULTI-GATEWAY WIRELESS SENSOR NETWORKS 5

  16. Development and use of the Cytoscape app GFD-Net for measuring semantic dissimilarity of gene networks

    PubMed Central

    Diaz-Montana, Juan J.; Diaz-Diaz, Norberto

    2014-01-01

    Gene networks are one of the main computational models used to study the interaction between different elements during biological processes being widely used to represent gene–gene, or protein–protein interaction complexes. We present GFD-Net, a Cytoscape app for visualizing and analyzing the functional dissimilarity of gene networks. PMID:25400907

  17. Web-Based Interface for Command and Control of Network Sensors

    NASA Technical Reports Server (NTRS)

    Wallick, Michael N.; Doubleday, Joshua R.; Shams, Khawaja S.

    2010-01-01

    This software allows for the visualization and control of a network of sensors through a Web browser interface. It is currently being deployed for a network of sensors monitoring Mt. Saint Helen s volcano; however, this innovation is generic enough that it can be deployed for any type of sensor Web. From this interface, the user is able to fully control and monitor the sensor Web. This includes, but is not limited to, sending "test" commands to individual sensors in the network, monitoring for real-world events, and reacting to those events

  18. Wireless in-situ Sensor Network for Agriculture and Water Monitoring on a River Basin Scale in Southern Finland: Evaluation from a Data User’s Perspective

    PubMed Central

    Kotamäki, Niina; Thessler, Sirpa; Koskiaho, Jari; Hannukkala, Asko O.; Huitu, Hanna; Huttula, Timo; Havento, Jukka; Järvenpää, Markku

    2009-01-01

    Sensor networks are increasingly being implemented for environmental monitoring and agriculture to provide spatially accurate and continuous environmental information and (near) real-time applications. These networks provide a large amount of data which poses challenges for ensuring data quality and extracting relevant information. In the present paper we describe a river basin scale wireless sensor network for agriculture and water monitoring. The network, called SoilWeather, is unique and the first of this type in Finland. The performance of the network is assessed from the user and maintainer perspectives, concentrating on data quality, network maintenance and applications. The results showed that the SoilWeather network has been functioning in a relatively reliable way, but also that the maintenance and data quality assurance by automatic algorithms and calibration samples requires a lot of effort, especially in continuous water monitoring over large areas. We see great benefits on sensor networks enabling continuous, real-time monitoring, while data quality control and maintenance efforts highlight the need for tight collaboration between sensor and sensor network owners to decrease costs and increase the quality of the sensor data in large scale applications. PMID:22574050

  19. Fiber optic sensors; Proceedings of the Meeting, Cannes, France, November 26, 27, 1985

    NASA Technical Reports Server (NTRS)

    Arditty, Herve J. (Editor); Jeunhomme, Luc B. (Editor)

    1986-01-01

    The conference presents papers on distributed sensors and sensor networks, signal processing and detection techniques, temperature measurements, chemical sensors, and the measurement of pressure, strain, and displacements. Particular attention is given to optical fiber distributed sensors and sensor networks, tactile sensing in robotics using an optical network and Z-plane techniques, and a spontaneous Raman temperature sensor. Other topics include coherence in optical fiber gyroscopes, a high bandwidth two-phase flow void fraction fiber optic sensor, and a fiber-optic dark-field microbend sensor.

  20. Sensor Data Qualification Technique Applied to Gas Turbine Engines

    NASA Technical Reports Server (NTRS)

    Csank, Jeffrey T.; Simon, Donald L.

    2013-01-01

    This paper applies a previously developed sensor data qualification technique to a commercial aircraft engine simulation known as the Commercial Modular Aero-Propulsion System Simulation 40,000 (C-MAPSS40k). The sensor data qualification technique is designed to detect, isolate, and accommodate faulty sensor measurements. It features sensor networks, which group various sensors together and relies on an empirically derived analytical model to relate the sensor measurements. Relationships between all member sensors of the network are analyzed to detect and isolate any faulty sensor within the network.

  1. Multistage Security Mechanism For Hybrid, Large-Scale Wireless Sensor Networks

    DTIC Science & Technology

    2007-06-01

    sensor network . Building on research in the areas of the wireless sensor networks (WSN) and the mobile ad hoc networks (MANET), this thesis proposes an...A wide area network consisting of ballistic missile defense satellites and terrestrial nodes can be viewed as a hybrid, large-scale mobile wireless

  2. Direct evidence for the contributive role of the right inferior fronto-occipital fasciculus in non-verbal semantic cognition.

    PubMed

    Herbet, Guillaume; Moritz-Gasser, Sylvie; Duffau, Hugues

    2017-05-01

    The neural foundations underlying semantic processing have been extensively investigated, highlighting a pivotal role of the ventral stream. However, although studies concerning the involvement of the left ventral route in verbal semantics are proficient, the potential implication of the right ventral pathway in non-verbal semantics has been to date unexplored. To gain insights on this matter, we used an intraoperative direct electrostimulation to map the structures mediating the non-verbal semantic system in the right hemisphere. Thirteen patients presenting with a right low-grade glioma located within or close to the ventral stream were included. During the 'awake' procedure, patients performed both a visual non-verbal semantic task and a verbal (control) task. At the cortical level, in the right hemisphere, we found non-verbal semantic-related sites (n = 7 in 6 patients) in structures commonly associated with verbal semantic processes in the left hemisphere, including the superior temporal gyrus, the pars triangularis, and the dorsolateral prefrontal cortex. At the subcortical level, we found non-verbal semantic-related sites in all but one patient (n = 15 sites in 12 patients). Importantly, all these responsive stimulation points were located on the spatial course of the right inferior fronto-occipital fasciculus (IFOF). These findings provide direct support for a critical role of the right IFOF in non-verbal semantic processing. Based upon these original data, and in connection with previous findings showing the involvement of the left IFOF in non-verbal semantic processing, we hypothesize the existence of a bilateral network underpinning the non-verbal semantic system, with a homotopic connectional architecture.

  3. Beyond the word and image: characteristics of a common meaning system for language and vision revealed by functional and structural imaging.

    PubMed

    Jouen, A L; Ellmore, T M; Madden, C J; Pallier, C; Dominey, P F; Ventre-Dominey, J

    2015-02-01

    This research tests the hypothesis that comprehension of human events will engage an extended semantic representation system, independent of the input modality (sentence vs. picture). To investigate this, we examined brain activation and connectivity in 19 subjects who read sentences and viewed pictures depicting everyday events, in a combined fMRI and DTI study. Conjunction of activity in understanding sentences and pictures revealed a common fronto-temporo-parietal network that included the middle and inferior frontal gyri, the parahippocampal-retrosplenial complex, the anterior and middle temporal gyri, the inferior parietal lobe in particular the temporo-parietal cortex. DTI tractography seeded from this temporo-parietal cortex hub revealed a multi-component network reaching into the temporal pole, the ventral frontal pole and premotor cortex. A significant correlation was found between the relative pathway density issued from the temporo-parietal cortex and the imageability of sentences for individual subjects, suggesting a potential functional link between comprehension and the temporo-parietal connectivity strength. These data help to define a "meaning" network that includes components of recently characterized systems for semantic memory, embodied simulation, and visuo-spatial scene representation. The network substantially overlaps with the "default mode" network implicated as part of a core network of semantic representation, along with brain systems related to the formation of mental models, and reasoning. These data are consistent with a model of real-world situational understanding that is highly embodied. Crucially, the neural basis of this embodied understanding is not limited to sensorimotor systems, but extends to the highest levels of cognition, including autobiographical memory, scene analysis, mental model formation, reasoning and theory of mind. Copyright © 2014 Elsevier Inc. All rights reserved.

  4. Real-time high-level video understanding using data warehouse

    NASA Astrophysics Data System (ADS)

    Lienard, Bruno; Desurmont, Xavier; Barrie, Bertrand; Delaigle, Jean-Francois

    2006-02-01

    High-level Video content analysis such as video-surveillance is often limited by computational aspects of automatic image understanding, i.e. it requires huge computing resources for reasoning processes like categorization and huge amount of data to represent knowledge of objects, scenarios and other models. This article explains how to design and develop a "near real-time adaptive image datamart", used, as a decisional support system for vision algorithms, and then as a mass storage system. Using RDF specification as storing format of vision algorithms meta-data, we can optimise the data warehouse concepts for video analysis, add some processes able to adapt the current model and pre-process data to speed-up queries. In this way, when new data is sent from a sensor to the data warehouse for long term storage, using remote procedure call embedded in object-oriented interfaces to simplified queries, they are processed and in memory data-model is updated. After some processing, possible interpretations of this data can be returned back to the sensor. To demonstrate this new approach, we will present typical scenarios applied to this architecture such as people tracking and events detection in a multi-camera network. Finally we will show how this system becomes a high-semantic data container for external data-mining.

  5. Predicting floods with Flickr tags

    PubMed Central

    Jarvis, Stephen; Procter, Rob

    2017-01-01

    Increasingly, user generated content (UGC) in social media postings and their associated metadata such as time and location stamps are being used to provide useful operational information during natural hazard events such as hurricanes, storms and floods. The main advantage of these new sources of data are twofold. First, in a purely additive sense, they can provide much denser geographical coverage of the hazard as compared to traditional sensor networks. Second, they provide what physical sensors are not able to do: By documenting personal observations and experiences, they directly record the impact of a hazard on the human environment. For this reason interpretation of the content (e.g., hashtags, images, text, emojis, etc) and metadata (e.g., keywords, tags, geolocation) have been a focus of much research into social media analytics. However, as choices of semantic tags in the current methods are usually reduced to the exact name or type of the event (e.g., hashtags ‘#Sandy’ or ‘#flooding’), the main limitation of such approaches remains their mere nowcasting capacity. In this study we make use of polysemous tags of images posted during several recent flood events and demonstrate how such volunteered geographic data can be used to provide early warning of an event before its outbreak. PMID:28235035

  6. Sinkhole Avoidance Routing in Wireless Sensor Networks

    DTIC Science & Technology

    2011-05-09

    sensor network consists of individual sensor nodes that work cooperatively to collect and communicate environmental data. In a surveillance role, a WSN...Wireless sensor networks, or WSNs, are an emerging commercial technology that may have practical applications on the modern battlefield. A wireless

  7. Using Neural Networks to Generate Inferential Roles for Natural Language

    PubMed Central

    Blouw, Peter; Eliasmith, Chris

    2018-01-01

    Neural networks have long been used to study linguistic phenomena spanning the domains of phonology, morphology, syntax, and semantics. Of these domains, semantics is somewhat unique in that there is little clarity concerning what a model needs to be able to do in order to provide an account of how the meanings of complex linguistic expressions, such as sentences, are understood. We argue that one thing such models need to be able to do is generate predictions about which further sentences are likely to follow from a given sentence; these define the sentence's “inferential role.” We then show that it is possible to train a tree-structured neural network model to generate very simple examples of such inferential roles using the recently released Stanford Natural Language Inference (SNLI) dataset. On an empirical front, we evaluate the performance of this model by reporting entailment prediction accuracies on a set of test sentences not present in the training data. We also report the results of a simple study that compares human plausibility ratings for both human-generated and model-generated entailments for a random selection of sentences in this test set. On a more theoretical front, we argue in favor of a revision to some common assumptions about semantics: understanding a linguistic expression is not only a matter of mapping it onto a representation that somehow constitutes its meaning; rather, understanding a linguistic expression is mainly a matter of being able to draw certain inferences. Inference should accordingly be at the core of any model of semantic cognition. PMID:29387031

  8. Decentralized Sensor Fusion for Ubiquitous Networking Robotics in Urban Areas

    PubMed Central

    Sanfeliu, Alberto; Andrade-Cetto, Juan; Barbosa, Marco; Bowden, Richard; Capitán, Jesús; Corominas, Andreu; Gilbert, Andrew; Illingworth, John; Merino, Luis; Mirats, Josep M.; Moreno, Plínio; Ollero, Aníbal; Sequeira, João; Spaan, Matthijs T.J.

    2010-01-01

    In this article we explain the architecture for the environment and sensors that has been built for the European project URUS (Ubiquitous Networking Robotics in Urban Sites), a project whose objective is to develop an adaptable network robot architecture for cooperation between network robots and human beings and/or the environment in urban areas. The project goal is to deploy a team of robots in an urban area to give a set of services to a user community. This paper addresses the sensor architecture devised for URUS and the type of robots and sensors used, including environment sensors and sensors onboard the robots. Furthermore, we also explain how sensor fusion takes place to achieve urban outdoor execution of robotic services. Finally some results of the project related to the sensor network are highlighted. PMID:22294927

  9. SoilNet - A hybrid underground wireless sensor network for near real-time monitoring of hydrological processes

    NASA Astrophysics Data System (ADS)

    Bogena, H. R.; Huisman, S.; Rosenbaum, U.; Wuethen, A.; Vereecken, H.

    2009-04-01

    Wireless sensor network technology allows near real-time monitoring of soil properties with a high spatial and temporal resolution for observing hydrological processes in small watersheds. The novel wireless sensor network SoilNet uses the low-cost ZigBee radio network for communication and a hybrid topology with a mixture of underground end devices each wired to several soil sensors and aboveground router devices. The SoilNet sensor network consists of soil water content, salinity and temperature sensors attached to end devices by cables, router devices and a coordinator device. The end devices are buried in the soil and linked wirelessly with nearby aboveground router devices. This ZigBee network design considers channel errors, delays, packet losses, and power and topology constraints. In order to conserve battery power, a reactive routing protocol is used that determines a new route only when it is required. The sensor network is also able to react to external influences, e.g. the occurrence of precipitation. The SoilNet communicator, routing and end devices have been developed by the Forschungszentrum Juelich and will be marketed through external companies. Simultaneously, we have also developed a data management and visualisation system. Recently, a small forest catchment Wüstebach (27 ha) was instrumented with 50 end devices and more than 400 soil sensors in the frame of the TERENO-RUR hydrological observatory. We will present first results of this large sensor network both in terms of spatial-temporal variations in soil water content and the performance of the sensor network (e.g. network stability and power use).

  10. Quantized Synchronization of Chaotic Neural Networks With Scheduled Output Feedback Control.

    PubMed

    Wan, Ying; Cao, Jinde; Wen, Guanghui

    In this paper, the synchronization problem of master-slave chaotic neural networks with remote sensors, quantization process, and communication time delays is investigated. The information communication channel between the master chaotic neural network and slave chaotic neural network consists of several remote sensors, with each sensor able to access only partial knowledge of output information of the master neural network. At each sampling instants, each sensor updates its own measurement and only one sensor is scheduled to transmit its latest information to the controller's side in order to update the control inputs for the slave neural network. Thus, such communication process and control strategy are much more energy-saving comparing with the traditional point-to-point scheme. Sufficient conditions for output feedback control gain matrix, allowable length of sampling intervals, and upper bound of network-induced delays are derived to ensure the quantized synchronization of master-slave chaotic neural networks. Lastly, Chua's circuit system and 4-D Hopfield neural network are simulated to validate the effectiveness of the main results.In this paper, the synchronization problem of master-slave chaotic neural networks with remote sensors, quantization process, and communication time delays is investigated. The information communication channel between the master chaotic neural network and slave chaotic neural network consists of several remote sensors, with each sensor able to access only partial knowledge of output information of the master neural network. At each sampling instants, each sensor updates its own measurement and only one sensor is scheduled to transmit its latest information to the controller's side in order to update the control inputs for the slave neural network. Thus, such communication process and control strategy are much more energy-saving comparing with the traditional point-to-point scheme. Sufficient conditions for output feedback control gain matrix, allowable length of sampling intervals, and upper bound of network-induced delays are derived to ensure the quantized synchronization of master-slave chaotic neural networks. Lastly, Chua's circuit system and 4-D Hopfield neural network are simulated to validate the effectiveness of the main results.

  11. Mechanisms for Prolonging Network Lifetime in Wireless Sensor Networks

    ERIC Educational Resources Information Center

    Yang, Yinying

    2010-01-01

    Sensors are used to monitor and control the physical environment. A Wireless Sensor Network (WSN) is composed of a large number of sensor nodes that are densely deployed either inside the phenomenon or very close to it [18][5]. Sensor nodes measure various parameters of the environment and transmit data collected to one or more sinks, using…

  12. Wireless Sensor Network Radio Power Management and Simulation Models

    DTIC Science & Technology

    2010-01-01

    The Open Electrical & Electronic Engineering Journal, 2010, 4, 21-31 21 1874-1290/10 2010 Bentham Open Open Access Wireless Sensor Network Radio...Air Force Institute of Technology, Wright-Patterson AFB, OH, USA Abstract: Wireless sensor networks (WSNs) create a new frontier in collecting and...consumption. Keywords: Wireless sensor network , power management, energy-efficiency, medium access control (MAC), simulation pa- rameters. 1

  13. Building SDN-Based Agricultural Vehicular Sensor Networks Based on Extended Open vSwitch.

    PubMed

    Huang, Tao; Yan, Siyu; Yang, Fan; Pan, Tian; Liu, Jiang

    2016-01-19

    Software-defined vehicular sensor networks in agriculture, such as autonomous vehicle navigation based on wireless multi-sensor networks, can lead to more efficient precision agriculture. In SDN-based vehicle sensor networks, the data plane is simplified and becomes more efficient by introducing a centralized controller. However, in a wireless environment, the main controller node may leave the sensor network due to the dynamic topology change or the unstable wireless signal, leaving the rest of network devices without control, e.g., a sensor node as a switch may forward packets according to stale rules until the controller updates the flow table entries. To solve this problem, this paper proposes a novel SDN-based vehicular sensor networks architecture which can minimize the performance penalty of controller connection loss. We achieve this by designing a connection state detection and self-learning mechanism. We build prototypes based on extended Open vSwitch and Ryu. The experimental results show that the recovery time from controller connection loss is under 100 ms and it keeps rule updating in real time with a stable throughput. This architecture enhances the survivability and stability of SDN-based vehicular sensor networks in precision agriculture.

  14. Building SDN-Based Agricultural Vehicular Sensor Networks Based on Extended Open vSwitch

    PubMed Central

    Huang, Tao; Yan, Siyu; Yang, Fan; Pan, Tian; Liu, Jiang

    2016-01-01

    Software-defined vehicular sensor networks in agriculture, such as autonomous vehicle navigation based on wireless multi-sensor networks, can lead to more efficient precision agriculture. In SDN-based vehicle sensor networks, the data plane is simplified and becomes more efficient by introducing a centralized controller. However, in a wireless environment, the main controller node may leave the sensor network due to the dynamic topology change or the unstable wireless signal, leaving the rest of network devices without control, e.g., a sensor node as a switch may forward packets according to stale rules until the controller updates the flow table entries. To solve this problem, this paper proposes a novel SDN-based vehicular sensor networks architecture which can minimize the performance penalty of controller connection loss. We achieve this by designing a connection state detection and self-learning mechanism. We build prototypes based on extended Open vSwitch and Ryu. The experimental results show that the recovery time from controller connection loss is under 100 ms and it keeps rule updating in real time with a stable throughput. This architecture enhances the survivability and stability of SDN-based vehicular sensor networks in precision agriculture. PMID:26797616

  15. High capacity fiber optic sensor networks using hybrid multiplexing techniques and their applications

    NASA Astrophysics Data System (ADS)

    Sun, Qizhen; Li, Xiaolei; Zhang, Manliang; Liu, Qi; Liu, Hai; Liu, Deming

    2013-12-01

    Fiber optic sensor network is the development trend of fiber senor technologies and industries. In this paper, I will discuss recent research progress on high capacity fiber sensor networks with hybrid multiplexing techniques and their applications in the fields of security monitoring, environment monitoring, Smart eHome, etc. Firstly, I will present the architecture of hybrid multiplexing sensor passive optical network (HSPON), and the key technologies for integrated access and intelligent management of massive fiber sensor units. Two typical hybrid WDM/TDM fiber sensor networks for perimeter intrusion monitor and cultural relics security are introduced. Secondly, we propose the concept of "Microstructure-Optical X Domin Refecltor (M-OXDR)" for fiber sensor network expansion. By fabricating smart micro-structures with the ability of multidimensional encoded and low insertion loss along the fiber, the fiber sensor network of simple structure and huge capacity more than one thousand could be achieved. Assisted by the WDM/TDM and WDM/FDM decoding methods respectively, we built the verification systems for long-haul and real-time temperature sensing. Finally, I will show the high capacity and flexible fiber sensor network with IPv6 protocol based hybrid fiber/wireless access. By developing the fiber optic sensor with embedded IPv6 protocol conversion module and IPv6 router, huge amounts of fiber optic sensor nodes can be uniquely addressed. Meanwhile, various sensing information could be integrated and accessed to the Next Generation Internet.

  16. Object Detection and Classification by Decision-Level Fusion for Intelligent Vehicle Systems.

    PubMed

    Oh, Sang-Il; Kang, Hang-Bong

    2017-01-22

    To understand driving environments effectively, it is important to achieve accurate detection and classification of objects detected by sensor-based intelligent vehicle systems, which are significantly important tasks. Object detection is performed for the localization of objects, whereas object classification recognizes object classes from detected object regions. For accurate object detection and classification, fusing multiple sensor information into a key component of the representation and perception processes is necessary. In this paper, we propose a new object-detection and classification method using decision-level fusion. We fuse the classification outputs from independent unary classifiers, such as 3D point clouds and image data using a convolutional neural network (CNN). The unary classifiers for the two sensors are the CNN with five layers, which use more than two pre-trained convolutional layers to consider local to global features as data representation. To represent data using convolutional layers, we apply region of interest (ROI) pooling to the outputs of each layer on the object candidate regions generated using object proposal generation to realize color flattening and semantic grouping for charge-coupled device and Light Detection And Ranging (LiDAR) sensors. We evaluate our proposed method on a KITTI benchmark dataset to detect and classify three object classes: cars, pedestrians and cyclists. The evaluation results show that the proposed method achieves better performance than the previous methods. Our proposed method extracted approximately 500 proposals on a 1226 × 370 image, whereas the original selective search method extracted approximately 10 6 × n proposals. We obtained classification performance with 77.72% mean average precision over the entirety of the classes in the moderate detection level of the KITTI benchmark dataset.

  17. Object Detection and Classification by Decision-Level Fusion for Intelligent Vehicle Systems

    PubMed Central

    Oh, Sang-Il; Kang, Hang-Bong

    2017-01-01

    To understand driving environments effectively, it is important to achieve accurate detection and classification of objects detected by sensor-based intelligent vehicle systems, which are significantly important tasks. Object detection is performed for the localization of objects, whereas object classification recognizes object classes from detected object regions. For accurate object detection and classification, fusing multiple sensor information into a key component of the representation and perception processes is necessary. In this paper, we propose a new object-detection and classification method using decision-level fusion. We fuse the classification outputs from independent unary classifiers, such as 3D point clouds and image data using a convolutional neural network (CNN). The unary classifiers for the two sensors are the CNN with five layers, which use more than two pre-trained convolutional layers to consider local to global features as data representation. To represent data using convolutional layers, we apply region of interest (ROI) pooling to the outputs of each layer on the object candidate regions generated using object proposal generation to realize color flattening and semantic grouping for charge-coupled device and Light Detection And Ranging (LiDAR) sensors. We evaluate our proposed method on a KITTI benchmark dataset to detect and classify three object classes: cars, pedestrians and cyclists. The evaluation results show that the proposed method achieves better performance than the previous methods. Our proposed method extracted approximately 500 proposals on a 1226×370 image, whereas the original selective search method extracted approximately 106×n proposals. We obtained classification performance with 77.72% mean average precision over the entirety of the classes in the moderate detection level of the KITTI benchmark dataset. PMID:28117742

  18. A Non-Cognitive Formal Approach to Knowledge Representation in Artificial Intelligence.

    DTIC Science & Technology

    1986-06-01

    example, Duda and others translated production rules into a partitioned semantic network (73). Representations were also translated into production...153. Berlin: Springer-Verlag, 1982. 38. Blikle, Andrzej . "Equational Languages," Information and Control, 21: 134-147 (September 1972). 285 39. Ezawa...Conference on Artificial Intelligence, IJCAI-75. 115-121. William Kaufmann, Inc., Los Altos CA, 1975. 73. Duda , Richard 0. and others. "Semantic

  19. A Geospatial Semantic Enrichment and Query Service for Geotagged Photographs

    PubMed Central

    Ennis, Andrew; Nugent, Chris; Morrow, Philip; Chen, Liming; Ioannidis, George; Stan, Alexandru; Rachev, Preslav

    2015-01-01

    With the increasing abundance of technologies and smart devices, equipped with a multitude of sensors for sensing the environment around them, information creation and consumption has now become effortless. This, in particular, is the case for photographs with vast amounts being created and shared every day. For example, at the time of this writing, Instagram users upload 70 million photographs a day. Nevertheless, it still remains a challenge to discover the “right” information for the appropriate purpose. This paper describes an approach to create semantic geospatial metadata for photographs, which can facilitate photograph search and discovery. To achieve this we have developed and implemented a semantic geospatial data model by which a photograph can be enrich with geospatial metadata extracted from several geospatial data sources based on the raw low-level geo-metadata from a smartphone photograph. We present the details of our method and implementation for searching and querying the semantic geospatial metadata repository to enable a user or third party system to find the information they are looking for. PMID:26205265

  20. Effects of aging on value-directed modulation of semantic network activity during verbal learning

    PubMed Central

    Cohen, Michael S.; Rissman, Jesse; Suthana, Nanthia A.; Castel, Alan D.; Knowlton, Barbara J.

    2015-01-01

    While impairments in memory recall are apparent in aging, older adults show a remarkably preserved ability to selectively remember information deemed valuable. Here, we use fMRI to compare brain activation in healthy older and younger adults during encoding of high and low value words to determine whether there are differences in how older adults achieve value-directed memory selectivity. We find that memory selectivity in older adults is associated with value-related changes in activation during word presentation in left hemisphere regions that are involved in semantic processing, similar to young adults. However, highly selective young adults show a relatively greater increase in semantic network activity during encoding of high-value items, whereas highly selective older adults show relatively diminished activity during encoding of low-value items. Additionally, only younger adults showed value-related increases in activity in semantic and reward processing regions during presentation of the value cue preceding each to-be-remembered word. Young adults therefore respond to cue value more proactively than do older adults, yet the magnitude of value-related differences in cue period brain activity did not predict individual differences in memory selectivity. Thus, our data also show that age-related reductions in prestimulus activity do not always lead to inefficient performance. PMID:26244278

Top