Sample records for semantic web framework

  1. Clever generation of rich SPARQL queries from annotated relational schema: application to Semantic Web Service creation for biological databases.

    PubMed

    Wollbrett, Julien; Larmande, Pierre; de Lamotte, Frédéric; Ruiz, Manuel

    2013-04-15

    In recent years, a large amount of "-omics" data have been produced. However, these data are stored in many different species-specific databases that are managed by different institutes and laboratories. Biologists often need to find and assemble data from disparate sources to perform certain analyses. Searching for these data and assembling them is a time-consuming task. The Semantic Web helps to facilitate interoperability across databases. A common approach involves the development of wrapper systems that map a relational database schema onto existing domain ontologies. However, few attempts have been made to automate the creation of such wrappers. We developed a framework, named BioSemantic, for the creation of Semantic Web Services that are applicable to relational biological databases. This framework makes use of both Semantic Web and Web Services technologies and can be divided into two main parts: (i) the generation and semi-automatic annotation of an RDF view; and (ii) the automatic generation of SPARQL queries and their integration into Semantic Web Services backbones. We have used our framework to integrate genomic data from different plant databases. BioSemantic is a framework that was designed to speed integration of relational databases. We present how it can be used to speed the development of Semantic Web Services for existing relational biological databases. Currently, it creates and annotates RDF views that enable the automatic generation of SPARQL queries. Web Services are also created and deployed automatically, and the semantic annotations of our Web Services are added automatically using SAWSDL attributes. BioSemantic is downloadable at http://southgreen.cirad.fr/?q=content/Biosemantic.

  2. Clever generation of rich SPARQL queries from annotated relational schema: application to Semantic Web Service creation for biological databases

    PubMed Central

    2013-01-01

    Background In recent years, a large amount of “-omics” data have been produced. However, these data are stored in many different species-specific databases that are managed by different institutes and laboratories. Biologists often need to find and assemble data from disparate sources to perform certain analyses. Searching for these data and assembling them is a time-consuming task. The Semantic Web helps to facilitate interoperability across databases. A common approach involves the development of wrapper systems that map a relational database schema onto existing domain ontologies. However, few attempts have been made to automate the creation of such wrappers. Results We developed a framework, named BioSemantic, for the creation of Semantic Web Services that are applicable to relational biological databases. This framework makes use of both Semantic Web and Web Services technologies and can be divided into two main parts: (i) the generation and semi-automatic annotation of an RDF view; and (ii) the automatic generation of SPARQL queries and their integration into Semantic Web Services backbones. We have used our framework to integrate genomic data from different plant databases. Conclusions BioSemantic is a framework that was designed to speed integration of relational databases. We present how it can be used to speed the development of Semantic Web Services for existing relational biological databases. Currently, it creates and annotates RDF views that enable the automatic generation of SPARQL queries. Web Services are also created and deployed automatically, and the semantic annotations of our Web Services are added automatically using SAWSDL attributes. BioSemantic is downloadable at http://southgreen.cirad.fr/?q=content/Biosemantic. PMID:23586394

  3. SAS- Semantic Annotation Service for Geoscience resources on the web

    NASA Astrophysics Data System (ADS)

    Elag, M.; Kumar, P.; Marini, L.; Li, R.; Jiang, P.

    2015-12-01

    There is a growing need for increased integration across the data and model resources that are disseminated on the web to advance their reuse across different earth science applications. Meaningful reuse of resources requires semantic metadata to realize the semantic web vision for allowing pragmatic linkage and integration among resources. Semantic metadata associates standard metadata with resources to turn them into semantically-enabled resources on the web. However, the lack of a common standardized metadata framework as well as the uncoordinated use of metadata fields across different geo-information systems, has led to a situation in which standards and related Standard Names abound. To address this need, we have designed SAS to provide a bridge between the core ontologies required to annotate resources and information systems in order to enable queries and analysis over annotation from a single environment (web). SAS is one of the services that are provided by the Geosematnic framework, which is a decentralized semantic framework to support the integration between models and data and allow semantically heterogeneous to interact with minimum human intervention. Here we present the design of SAS and demonstrate its application for annotating data and models. First we describe how predicates and their attributes are extracted from standards and ingested in the knowledge-base of the Geosemantic framework. Then we illustrate the application of SAS in annotating data managed by SEAD and annotating simulation models that have web interface. SAS is a step in a broader approach to raise the quality of geoscience data and models that are published on the web and allow users to better search, access, and use of the existing resources based on standard vocabularies that are encoded and published using semantic technologies.

  4. Semantic Web Services Challenge, Results from the First Year. Series: Semantic Web And Beyond, Volume 8.

    NASA Astrophysics Data System (ADS)

    Petrie, C.; Margaria, T.; Lausen, H.; Zaremba, M.

    Explores trade-offs among existing approaches. Reveals strengths and weaknesses of proposed approaches, as well as which aspects of the problem are not yet covered. Introduces software engineering approach to evaluating semantic web services. Service-Oriented Computing is one of the most promising software engineering trends because of the potential to reduce the programming effort for future distributed industrial systems. However, only a small part of this potential rests on the standardization of tools offered by the web services stack. The larger part of this potential rests upon the development of sufficient semantics to automate service orchestration. Currently there are many different approaches to semantic web service descriptions and many frameworks built around them. A common understanding, evaluation scheme, and test bed to compare and classify these frameworks in terms of their capabilities and shortcomings, is necessary to make progress in developing the full potential of Service-Oriented Computing. The Semantic Web Services Challenge is an open source initiative that provides a public evaluation and certification of multiple frameworks on common industrially-relevant problem sets. This edited volume reports on the first results in developing common understanding of the various technologies intended to facilitate the automation of mediation, choreography and discovery for Web Services using semantic annotations. Semantic Web Services Challenge: Results from the First Year is designed for a professional audience composed of practitioners and researchers in industry. Professionals can use this book to evaluate SWS technology for their potential practical use. The book is also suitable for advanced-level students in computer science.

  5. The Ontological Perspectives of the Semantic Web and the Metadata Harvesting Protocol: Applications of Metadata for Improving Web Search.

    ERIC Educational Resources Information Center

    Fast, Karl V.; Campbell, D. Grant

    2001-01-01

    Compares the implied ontological frameworks of the Open Archives Initiative Protocol for Metadata Harvesting and the World Wide Web Consortium's Semantic Web. Discusses current search engine technology, semantic markup, indexing principles of special libraries and online databases, and componentization and the distinction between data and…

  6. Social Networking on the Semantic Web

    ERIC Educational Resources Information Center

    Finin, Tim; Ding, Li; Zhou, Lina; Joshi, Anupam

    2005-01-01

    Purpose: Aims to investigate the way that the semantic web is being used to represent and process social network information. Design/methodology/approach: The Swoogle semantic web search engine was used to construct several large data sets of Resource Description Framework (RDF) documents with social network information that were encoded using the…

  7. A user-centred evaluation framework for the Sealife semantic web browsers

    PubMed Central

    Oliver, Helen; Diallo, Gayo; de Quincey, Ed; Alexopoulou, Dimitra; Habermann, Bianca; Kostkova, Patty; Schroeder, Michael; Jupp, Simon; Khelif, Khaled; Stevens, Robert; Jawaheer, Gawesh; Madle, Gemma

    2009-01-01

    Background Semantically-enriched browsing has enhanced the browsing experience by providing contextualised dynamically generated Web content, and quicker access to searched-for information. However, adoption of Semantic Web technologies is limited and user perception from the non-IT domain sceptical. Furthermore, little attention has been given to evaluating semantic browsers with real users to demonstrate the enhancements and obtain valuable feedback. The Sealife project investigates semantic browsing and its application to the life science domain. Sealife's main objective is to develop the notion of context-based information integration by extending three existing Semantic Web browsers (SWBs) to link the existing Web to the eScience infrastructure. Methods This paper describes a user-centred evaluation framework that was developed to evaluate the Sealife SWBs that elicited feedback on users' perceptions on ease of use and information findability. Three sources of data: i) web server logs; ii) user questionnaires; and iii) semi-structured interviews were analysed and comparisons made between each browser and a control system. Results It was found that the evaluation framework used successfully elicited users' perceptions of the three distinct SWBs. The results indicate that the browser with the most mature and polished interface was rated higher for usability, and semantic links were used by the users of all three browsers. Conclusion Confirmation or contradiction of our original hypotheses with relation to SWBs is detailed along with observations of implementation issues. PMID:19796398

  8. A user-centred evaluation framework for the Sealife semantic web browsers.

    PubMed

    Oliver, Helen; Diallo, Gayo; de Quincey, Ed; Alexopoulou, Dimitra; Habermann, Bianca; Kostkova, Patty; Schroeder, Michael; Jupp, Simon; Khelif, Khaled; Stevens, Robert; Jawaheer, Gawesh; Madle, Gemma

    2009-10-01

    Semantically-enriched browsing has enhanced the browsing experience by providing contextualized dynamically generated Web content, and quicker access to searched-for information. However, adoption of Semantic Web technologies is limited and user perception from the non-IT domain sceptical. Furthermore, little attention has been given to evaluating semantic browsers with real users to demonstrate the enhancements and obtain valuable feedback. The Sealife project investigates semantic browsing and its application to the life science domain. Sealife's main objective is to develop the notion of context-based information integration by extending three existing Semantic Web browsers (SWBs) to link the existing Web to the eScience infrastructure. This paper describes a user-centred evaluation framework that was developed to evaluate the Sealife SWBs that elicited feedback on users' perceptions on ease of use and information findability. Three sources of data: i) web server logs; ii) user questionnaires; and iii) semi-structured interviews were analysed and comparisons made between each browser and a control system. It was found that the evaluation framework used successfully elicited users' perceptions of the three distinct SWBs. The results indicate that the browser with the most mature and polished interface was rated higher for usability, and semantic links were used by the users of all three browsers. Confirmation or contradiction of our original hypotheses with relation to SWBs is detailed along with observations of implementation issues.

  9. ADEpedia: a scalable and standardized knowledge base of Adverse Drug Events using semantic web technology.

    PubMed

    Jiang, Guoqian; Solbrig, Harold R; Chute, Christopher G

    2011-01-01

    A source of semantically coded Adverse Drug Event (ADE) data can be useful for identifying common phenotypes related to ADEs. We proposed a comprehensive framework for building a standardized ADE knowledge base (called ADEpedia) through combining ontology-based approach with semantic web technology. The framework comprises four primary modules: 1) an XML2RDF transformation module; 2) a data normalization module based on NCBO Open Biomedical Annotator; 3) a RDF store based persistence module; and 4) a front-end module based on a Semantic Wiki for the review and curation. A prototype is successfully implemented to demonstrate the capability of the system to integrate multiple drug data and ontology resources and open web services for the ADE data standardization. A preliminary evaluation is performed to demonstrate the usefulness of the system, including the performance of the NCBO annotator. In conclusion, the semantic web technology provides a highly scalable framework for ADE data source integration and standard query service.

  10. Semantic Search of Web Services

    ERIC Educational Resources Information Center

    Hao, Ke

    2013-01-01

    This dissertation addresses semantic search of Web services using natural language processing. We first survey various existing approaches, focusing on the fact that the expensive costs of current semantic annotation frameworks result in limited use of semantic search for large scale applications. We then propose a vector space model based service…

  11. An Intelligent Semantic E-Learning Framework Using Context-Aware Semantic Web Technologies

    ERIC Educational Resources Information Center

    Huang, Weihong; Webster, David; Wood, Dawn; Ishaya, Tanko

    2006-01-01

    Recent developments of e-learning specifications such as Learning Object Metadata (LOM), Sharable Content Object Reference Model (SCORM), Learning Design and other pedagogy research in semantic e-learning have shown a trend of applying innovative computational techniques, especially Semantic Web technologies, to promote existing content-focused…

  12. ER2OWL: Generating OWL Ontology from ER Diagram

    NASA Astrophysics Data System (ADS)

    Fahad, Muhammad

    Ontology is the fundamental part of Semantic Web. The goal of W3C is to bring the web into (its full potential) a semantic web with reusing previous systems and artifacts. Most legacy systems have been documented in structural analysis and structured design (SASD), especially in simple or Extended ER Diagram (ERD). Such systems need up-gradation to become the part of semantic web. In this paper, we present ERD to OWL-DL ontology transformation rules at concrete level. These rules facilitate an easy and understandable transformation from ERD to OWL. The set of rules for transformation is tested on a structured analysis and design example. The framework provides OWL ontology for semantic web fundamental. This framework helps software engineers in upgrading the structured analysis and design artifact ERD, to components of semantic web. Moreover our transformation tool, ER2OWL, reduces the cost and time for building OWL ontologies with the reuse of existing entity relationship models.

  13. Semantic web for integrated network analysis in biomedicine.

    PubMed

    Chen, Huajun; Ding, Li; Wu, Zhaohui; Yu, Tong; Dhanapalan, Lavanya; Chen, Jake Y

    2009-03-01

    The Semantic Web technology enables integration of heterogeneous data on the World Wide Web by making the semantics of data explicit through formal ontologies. In this article, we survey the feasibility and state of the art of utilizing the Semantic Web technology to represent, integrate and analyze the knowledge in various biomedical networks. We introduce a new conceptual framework, semantic graph mining, to enable researchers to integrate graph mining with ontology reasoning in network data analysis. Through four case studies, we demonstrate how semantic graph mining can be applied to the analysis of disease-causal genes, Gene Ontology category cross-talks, drug efficacy analysis and herb-drug interactions analysis.

  14. COEUS: “semantic web in a box” for biomedical applications

    PubMed Central

    2012-01-01

    Background As the “omics” revolution unfolds, the growth in data quantity and diversity is bringing about the need for pioneering bioinformatics software, capable of significantly improving the research workflow. To cope with these computer science demands, biomedical software engineers are adopting emerging semantic web technologies that better suit the life sciences domain. The latter’s complex relationships are easily mapped into semantic web graphs, enabling a superior understanding of collected knowledge. Despite increased awareness of semantic web technologies in bioinformatics, their use is still limited. Results COEUS is a new semantic web framework, aiming at a streamlined application development cycle and following a “semantic web in a box” approach. The framework provides a single package including advanced data integration and triplification tools, base ontologies, a web-oriented engine and a flexible exploration API. Resources can be integrated from heterogeneous sources, including CSV and XML files or SQL and SPARQL query results, and mapped directly to one or more ontologies. Advanced interoperability features include REST services, a SPARQL endpoint and LinkedData publication. These enable the creation of multiple applications for web, desktop or mobile environments, and empower a new knowledge federation layer. Conclusions The platform, targeted at biomedical application developers, provides a complete skeleton ready for rapid application deployment, enhancing the creation of new semantic information systems. COEUS is available as open source at http://bioinformatics.ua.pt/coeus/. PMID:23244467

  15. COEUS: "semantic web in a box" for biomedical applications.

    PubMed

    Lopes, Pedro; Oliveira, José Luís

    2012-12-17

    As the "omics" revolution unfolds, the growth in data quantity and diversity is bringing about the need for pioneering bioinformatics software, capable of significantly improving the research workflow. To cope with these computer science demands, biomedical software engineers are adopting emerging semantic web technologies that better suit the life sciences domain. The latter's complex relationships are easily mapped into semantic web graphs, enabling a superior understanding of collected knowledge. Despite increased awareness of semantic web technologies in bioinformatics, their use is still limited. COEUS is a new semantic web framework, aiming at a streamlined application development cycle and following a "semantic web in a box" approach. The framework provides a single package including advanced data integration and triplification tools, base ontologies, a web-oriented engine and a flexible exploration API. Resources can be integrated from heterogeneous sources, including CSV and XML files or SQL and SPARQL query results, and mapped directly to one or more ontologies. Advanced interoperability features include REST services, a SPARQL endpoint and LinkedData publication. These enable the creation of multiple applications for web, desktop or mobile environments, and empower a new knowledge federation layer. The platform, targeted at biomedical application developers, provides a complete skeleton ready for rapid application deployment, enhancing the creation of new semantic information systems. COEUS is available as open source at http://bioinformatics.ua.pt/coeus/.

  16. Science gateways for semantic-web-based life science applications.

    PubMed

    Ardizzone, Valeria; Bruno, Riccardo; Calanducci, Antonio; Carrubba, Carla; Fargetta, Marco; Ingrà, Elisa; Inserra, Giuseppina; La Rocca, Giuseppe; Monforte, Salvatore; Pistagna, Fabrizio; Ricceri, Rita; Rotondo, Riccardo; Scardaci, Diego; Barbera, Roberto

    2012-01-01

    In this paper we present the architecture of a framework for building Science Gateways supporting official standards both for user authentication and authorization and for middleware-independent job and data management. Two use cases of the customization of the Science Gateway framework for Semantic-Web-based life science applications are also described.

  17. A Research on E - learning Resources Construction Based on Semantic Web

    NASA Astrophysics Data System (ADS)

    Rui, Liu; Maode, Deng

    Traditional e-learning platforms have the flaws that it's usually difficult to query or positioning, and realize the cross platform sharing and interoperability. In the paper, the semantic web and metadata standard is discussed, and a kind of e - learning system framework based on semantic web is put forward to try to solve the flaws of traditional elearning platforms.

  18. A Semantic Grid Oriented to E-Tourism

    NASA Astrophysics Data System (ADS)

    Zhang, Xiao Ming

    With increasing complexity of tourism business models and tasks, there is a clear need of the next generation e-Tourism infrastructure to support flexible automation, integration, computation, storage, and collaboration. Currently several enabling technologies such as semantic Web, Web service, agent and grid computing have been applied in the different e-Tourism applications, however there is no a unified framework to be able to integrate all of them. So this paper presents a promising e-Tourism framework based on emerging semantic grid, in which a number of key design issues are discussed including architecture, ontologies structure, semantic reconciliation, service and resource discovery, role based authorization and intelligent agent. The paper finally provides the implementation of the framework.

  19. Information integration from heterogeneous data sources: a Semantic Web approach.

    PubMed

    Kunapareddy, Narendra; Mirhaji, Parsa; Richards, David; Casscells, S Ward

    2006-01-01

    Although the decentralized and autonomous implementation of health information systems has made it possible to extend the reach of surveillance systems to a variety of contextually disparate domains, public health use of data from these systems is not primarily anticipated. The Semantic Web has been proposed to address both representational and semantic heterogeneity in distributed and collaborative environments. We introduce a semantic approach for the integration of health data using the Resource Definition Framework (RDF) and the Simple Knowledge Organization System (SKOS) developed by the Semantic Web community.

  20. Games and Simulations in Online Learning: Research and Development Frameworks

    ERIC Educational Resources Information Center

    Gibson, David; Aldrich, Clark; Prensky, Marc

    2007-01-01

    Games and Simulations in Online Learning: Research and Development Frameworks examines the potential of games and simulations in online learning, and how the future could look as developers learn to use the emerging capabilities of the Semantic Web. It presents a general understanding of how the Semantic Web will impact education and how games and…

  1. Semantic framework for mapping object-oriented model to semantic web languages

    PubMed Central

    Ježek, Petr; Mouček, Roman

    2015-01-01

    The article deals with and discusses two main approaches in building semantic structures for electrophysiological metadata. It is the use of conventional data structures, repositories, and programming languages on one hand and the use of formal representations of ontologies, known from knowledge representation, such as description logics or semantic web languages on the other hand. Although knowledge engineering offers languages supporting richer semantic means of expression and technological advanced approaches, conventional data structures and repositories are still popular among developers, administrators and users because of their simplicity, overall intelligibility, and lower demands on technical equipment. The choice of conventional data resources and repositories, however, raises the question of how and where to add semantics that cannot be naturally expressed using them. As one of the possible solutions, this semantics can be added into the structures of the programming language that accesses and processes the underlying data. To support this idea we introduced a software prototype that enables its users to add semantically richer expressions into a Java object-oriented code. This approach does not burden users with additional demands on programming environment since reflective Java annotations were used as an entry for these expressions. Moreover, additional semantics need not to be written by the programmer directly to the code, but it can be collected from non-programmers using a graphic user interface. The mapping that allows the transformation of the semantically enriched Java code into the Semantic Web language OWL was proposed and implemented in a library named the Semantic Framework. This approach was validated by the integration of the Semantic Framework in the EEG/ERP Portal and by the subsequent registration of the EEG/ERP Portal in the Neuroscience Information Framework. PMID:25762923

  2. Semantic framework for mapping object-oriented model to semantic web languages.

    PubMed

    Ježek, Petr; Mouček, Roman

    2015-01-01

    The article deals with and discusses two main approaches in building semantic structures for electrophysiological metadata. It is the use of conventional data structures, repositories, and programming languages on one hand and the use of formal representations of ontologies, known from knowledge representation, such as description logics or semantic web languages on the other hand. Although knowledge engineering offers languages supporting richer semantic means of expression and technological advanced approaches, conventional data structures and repositories are still popular among developers, administrators and users because of their simplicity, overall intelligibility, and lower demands on technical equipment. The choice of conventional data resources and repositories, however, raises the question of how and where to add semantics that cannot be naturally expressed using them. As one of the possible solutions, this semantics can be added into the structures of the programming language that accesses and processes the underlying data. To support this idea we introduced a software prototype that enables its users to add semantically richer expressions into a Java object-oriented code. This approach does not burden users with additional demands on programming environment since reflective Java annotations were used as an entry for these expressions. Moreover, additional semantics need not to be written by the programmer directly to the code, but it can be collected from non-programmers using a graphic user interface. The mapping that allows the transformation of the semantically enriched Java code into the Semantic Web language OWL was proposed and implemented in a library named the Semantic Framework. This approach was validated by the integration of the Semantic Framework in the EEG/ERP Portal and by the subsequent registration of the EEG/ERP Portal in the Neuroscience Information Framework.

  3. Storage and Retrieval of Large RDF Graph Using Hadoop and MapReduce

    NASA Astrophysics Data System (ADS)

    Farhan Husain, Mohammad; Doshi, Pankil; Khan, Latifur; Thuraisingham, Bhavani

    Handling huge amount of data scalably is a matter of concern for a long time. Same is true for semantic web data. Current semantic web frameworks lack this ability. In this paper, we describe a framework that we built using Hadoop to store and retrieve large number of RDF triples. We describe our schema to store RDF data in Hadoop Distribute File System. We also present our algorithms to answer a SPARQL query. We make use of Hadoop's MapReduce framework to actually answer the queries. Our results reveal that we can store huge amount of semantic web data in Hadoop clusters built mostly by cheap commodity class hardware and still can answer queries fast enough. We conclude that ours is a scalable framework, able to handle large amount of RDF data efficiently.

  4. Privacy Preservation in Context-Aware Systems

    DTIC Science & Technology

    2011-01-01

    Policies and the Semantic Web The Semantic Web refers to both a vision and a set of technologies. The vision was first articulated by Tim Berners - Lee ... Berners - lee 2005) is a distributed framework for describing and reasoning over policies in the Semantic Web. It supports N3 rules ( Berners - Lee ...Connolly 2008), ( Berners - Lee et al. 2005) for representing intercon- nections between policies and resources and uses the CWM forward-chaining reasoning

  5. Progress toward a Semantic eScience Framework; building on advanced cyberinfrastructure

    NASA Astrophysics Data System (ADS)

    McGuinness, D. L.; Fox, P. A.; West, P.; Rozell, E.; Zednik, S.; Chang, C.

    2010-12-01

    The configurable and extensible semantic eScience framework (SESF) has begun development and implementation of several semantic application components. Extensions and improvements to several ontologies have been made based on distinct interdisciplinary use cases ranging from solar physics, to biologicl and chemical oceanography. Importantly, these semantic representations mediate access to a diverse set of existing and emerging cyberinfrastructure. Among the advances are the population of triple stores with web accessible query services. A triple store is akin to a relational data store where the basic stored unit is a subject-predicate-object tuple. Access via a query is provided by the W3 Recommendation language specification SPARQL. Upon this middle tier of semantic cyberinfrastructure, we have developed several forms of semantic faceted search, including provenance-awareness. We report on the rapid advances in semantic technologies and tools and how we are sustaining the software path for the required technical advances as well as the ontology improvements and increased functionality of the semantic applications including how they are integrated into web-based portals (e.g. Drupal) and web services. Lastly, we indicate future work direction and opportunities for collaboration.

  6. A Method for Transforming Existing Web Service Descriptions into an Enhanced Semantic Web Service Framework

    NASA Astrophysics Data System (ADS)

    Du, Xiaofeng; Song, William; Munro, Malcolm

    Web Services as a new distributed system technology has been widely adopted by industries in the areas, such as enterprise application integration (EAI), business process management (BPM), and virtual organisation (VO). However, lack of semantics in the current Web Service standards has been a major barrier in service discovery and composition. In this chapter, we propose an enhanced context-based semantic service description framework (CbSSDF+) that tackles the problem and improves the flexibility of service discovery and the correctness of generated composite services. We also provide an agile transformation method to demonstrate how the various formats of Web Service descriptions on the Web can be managed and renovated step by step into CbSSDF+ based service description without large amount of engineering work. At the end of the chapter, we evaluate the applicability of the transformation method and the effectiveness of CbSSDF+ through a series of experiments.

  7. SPARQLGraph: a web-based platform for graphically querying biological Semantic Web databases.

    PubMed

    Schweiger, Dominik; Trajanoski, Zlatko; Pabinger, Stephan

    2014-08-15

    Semantic Web has established itself as a framework for using and sharing data across applications and database boundaries. Here, we present a web-based platform for querying biological Semantic Web databases in a graphical way. SPARQLGraph offers an intuitive drag & drop query builder, which converts the visual graph into a query and executes it on a public endpoint. The tool integrates several publicly available Semantic Web databases, including the databases of the just recently released EBI RDF platform. Furthermore, it provides several predefined template queries for answering biological questions. Users can easily create and save new query graphs, which can also be shared with other researchers. This new graphical way of creating queries for biological Semantic Web databases considerably facilitates usability as it removes the requirement of knowing specific query languages and database structures. The system is freely available at http://sparqlgraph.i-med.ac.at.

  8. CNTRO: A Semantic Web Ontology for Temporal Relation Inferencing in Clinical Narratives.

    PubMed

    Tao, Cui; Wei, Wei-Qi; Solbrig, Harold R; Savova, Guergana; Chute, Christopher G

    2010-11-13

    Using Semantic-Web specifications to represent temporal information in clinical narratives is an important step for temporal reasoning and answering time-oriented queries. Existing temporal models are either not compatible with the powerful reasoning tools developed for the Semantic Web, or designed only for structured clinical data and therefore are not ready to be applied on natural-language-based clinical narrative reports directly. We have developed a Semantic-Web ontology which is called Clinical Narrative Temporal Relation ontology. Using this ontology, temporal information in clinical narratives can be represented as RDF (Resource Description Framework) triples. More temporal information and relations can then be inferred by Semantic-Web based reasoning tools. Experimental results show that this ontology can represent temporal information in real clinical narratives successfully.

  9. Semantics-enabled service discovery framework in the SIMDAT pharma grid.

    PubMed

    Qu, Cangtao; Zimmermann, Falk; Kumpf, Kai; Kamuzinzi, Richard; Ledent, Valérie; Herzog, Robert

    2008-03-01

    We present the design and implementation of a semantics-enabled service discovery framework in the data Grids for process and product development using numerical simulation and knowledge discovery (SIMDAT) Pharma Grid, an industry-oriented Grid environment for integrating thousands of Grid-enabled biological data services and analysis services. The framework consists of three major components: the Web ontology language (OWL)-description logic (DL)-based biological domain ontology, OWL Web service ontology (OWL-S)-based service annotation, and semantic matchmaker based on the ontology reasoning. Built upon the framework, workflow technologies are extensively exploited in the SIMDAT to assist biologists in (semi)automatically performing in silico experiments. We present a typical usage scenario through the case study of a biological workflow: IXodus.

  10. Vigi4Med Scraper: A Framework for Web Forum Structured Data Extraction and Semantic Representation

    PubMed Central

    Audeh, Bissan; Beigbeder, Michel; Zimmermann, Antoine; Jaillon, Philippe; Bousquet, Cédric

    2017-01-01

    The extraction of information from social media is an essential yet complicated step for data analysis in multiple domains. In this paper, we present Vigi4Med Scraper, a generic open source framework for extracting structured data from web forums. Our framework is highly configurable; using a configuration file, the user can freely choose the data to extract from any web forum. The extracted data are anonymized and represented in a semantic structure using Resource Description Framework (RDF) graphs. This representation enables efficient manipulation by data analysis algorithms and allows the collected data to be directly linked to any existing semantic resource. To avoid server overload, an integrated proxy with caching functionality imposes a minimal delay between sequential requests. Vigi4Med Scraper represents the first step of Vigi4Med, a project to detect adverse drug reactions (ADRs) from social networks founded by the French drug safety agency Agence Nationale de Sécurité du Médicament (ANSM). Vigi4Med Scraper has successfully extracted greater than 200 gigabytes of data from the web forums of over 20 different websites. PMID:28122056

  11. Semantic SenseLab: implementing the vision of the Semantic Web in neuroscience

    PubMed Central

    Samwald, Matthias; Chen, Huajun; Ruttenberg, Alan; Lim, Ernest; Marenco, Luis; Miller, Perry; Shepherd, Gordon; Cheung, Kei-Hoi

    2011-01-01

    Summary Objective Integrative neuroscience research needs a scalable informatics framework that enables semantic integration of diverse types of neuroscience data. This paper describes the use of the Web Ontology Language (OWL) and other Semantic Web technologies for the representation and integration of molecular-level data provided by several of SenseLab suite of neuroscience databases. Methods Based on the original database structure, we semi-automatically translated the databases into OWL ontologies with manual addition of semantic enrichment. The SenseLab ontologies are extensively linked to other biomedical Semantic Web resources, including the Subcellular Anatomy Ontology, Brain Architecture Management System, the Gene Ontology, BIRNLex and UniProt. The SenseLab ontologies have also been mapped to the Basic Formal Ontology and Relation Ontology, which helps ease interoperability with many other existing and future biomedical ontologies for the Semantic Web. In addition, approaches to representing contradictory research statements are described. The SenseLab ontologies are designed for use on the Semantic Web that enables their integration into a growing collection of biomedical information resources. Conclusion We demonstrate that our approach can yield significant potential benefits and that the Semantic Web is rapidly becoming mature enough to realize its anticipated promises. The ontologies are available online at http://neuroweb.med.yale.edu/senselab/ PMID:20006477

  12. Semantic SenseLab: Implementing the vision of the Semantic Web in neuroscience.

    PubMed

    Samwald, Matthias; Chen, Huajun; Ruttenberg, Alan; Lim, Ernest; Marenco, Luis; Miller, Perry; Shepherd, Gordon; Cheung, Kei-Hoi

    2010-01-01

    Integrative neuroscience research needs a scalable informatics framework that enables semantic integration of diverse types of neuroscience data. This paper describes the use of the Web Ontology Language (OWL) and other Semantic Web technologies for the representation and integration of molecular-level data provided by several of SenseLab suite of neuroscience databases. Based on the original database structure, we semi-automatically translated the databases into OWL ontologies with manual addition of semantic enrichment. The SenseLab ontologies are extensively linked to other biomedical Semantic Web resources, including the Subcellular Anatomy Ontology, Brain Architecture Management System, the Gene Ontology, BIRNLex and UniProt. The SenseLab ontologies have also been mapped to the Basic Formal Ontology and Relation Ontology, which helps ease interoperability with many other existing and future biomedical ontologies for the Semantic Web. In addition, approaches to representing contradictory research statements are described. The SenseLab ontologies are designed for use on the Semantic Web that enables their integration into a growing collection of biomedical information resources. We demonstrate that our approach can yield significant potential benefits and that the Semantic Web is rapidly becoming mature enough to realize its anticipated promises. The ontologies are available online at http://neuroweb.med.yale.edu/senselab/. 2009 Elsevier B.V. All rights reserved.

  13. Design and Applications of a GeoSemantic Framework for Integration of Data and Model Resources in Hydrologic Systems

    NASA Astrophysics Data System (ADS)

    Elag, M.; Kumar, P.

    2016-12-01

    Hydrologists today have to integrate resources such as data and models, which originate and reside in multiple autonomous and heterogeneous repositories over the Web. Several resource management systems have emerged within geoscience communities for sharing long-tail data, which are collected by individual or small research groups, and long-tail models, which are developed by scientists or small modeling communities. While these systems have increased the availability of resources within geoscience domains, deficiencies remain due to the heterogeneity in the methods, which are used to describe, encode, and publish information about resources over the Web. This heterogeneity limits our ability to access the right information in the right context so that it can be efficiently retrieved and understood without the Hydrologist's mediation. A primary challenge of the Web today is the lack of the semantic interoperability among the massive number of resources, which already exist and are continually being generated at rapid rates. To address this challenge, we have developed a decentralized GeoSemantic (GS) framework, which provides three sets of micro-web services to support (i) semantic annotation of resources, (ii) semantic alignment between the metadata of two resources, and (iii) semantic mediation among Standard Names. Here we present the design of the framework and demonstrate its application for semantic integration between data and models used in the IML-CZO. First we show how the IML-CZO data are annotated using the Semantic Annotation Services. Then we illustrate how the Resource Alignment Services and Knowledge Integration Services are used to create a semantic workflow among TopoFlow model, which is a spatially-distributed hydrologic model and the annotated data. Results of this work are (i) a demonstration of how the GS framework advances the integration of heterogeneous data and models of water-related disciplines by seamless handling of their semantic heterogeneity, (ii) an introduction of new paradigm for reusing existing and new standards as well as tools and models without the need of their implementation in the Cyberinfrastructures of water-related disciplines, and (iii) an investigation of a methodology by which distributed models can be coupled in a workflow using the GS services.

  14. Hybrid Filtering in Semantic Query Processing

    ERIC Educational Resources Information Center

    Jeong, Hanjo

    2011-01-01

    This dissertation presents a hybrid filtering method and a case-based reasoning framework for enhancing the effectiveness of Web search. Web search may not reflect user needs, intent, context, and preferences, because today's keyword-based search is lacking semantic information to capture the user's context and intent in posing the search query.…

  15. Semantically-enabled sensor plug & play for the sensor web.

    PubMed

    Bröring, Arne; Maúe, Patrick; Janowicz, Krzysztof; Nüst, Daniel; Malewski, Christian

    2011-01-01

    Environmental sensors have continuously improved by becoming smaller, cheaper, and more intelligent over the past years. As consequence of these technological advancements, sensors are increasingly deployed to monitor our environment. The large variety of available sensor types with often incompatible protocols complicates the integration of sensors into observing systems. The standardized Web service interfaces and data encodings defined within OGC's Sensor Web Enablement (SWE) framework make sensors available over the Web and hide the heterogeneous sensor protocols from applications. So far, the SWE framework does not describe how to integrate sensors on-the-fly with minimal human intervention. The driver software which enables access to sensors has to be implemented and the measured sensor data has to be manually mapped to the SWE models. In this article we introduce a Sensor Plug & Play infrastructure for the Sensor Web by combining (1) semantic matchmaking functionality, (2) a publish/subscribe mechanism underlying the SensorWeb, as well as (3) a model for the declarative description of sensor interfaces which serves as a generic driver mechanism. We implement and evaluate our approach by applying it to an oil spill scenario. The matchmaking is realized using existing ontologies and reasoning engines and provides a strong case for the semantic integration capabilities provided by Semantic Web research.

  16. Semantically-Enabled Sensor Plug & Play for the Sensor Web

    PubMed Central

    Bröring, Arne; Maúe, Patrick; Janowicz, Krzysztof; Nüst, Daniel; Malewski, Christian

    2011-01-01

    Environmental sensors have continuously improved by becoming smaller, cheaper, and more intelligent over the past years. As consequence of these technological advancements, sensors are increasingly deployed to monitor our environment. The large variety of available sensor types with often incompatible protocols complicates the integration of sensors into observing systems. The standardized Web service interfaces and data encodings defined within OGC’s Sensor Web Enablement (SWE) framework make sensors available over the Web and hide the heterogeneous sensor protocols from applications. So far, the SWE framework does not describe how to integrate sensors on-the-fly with minimal human intervention. The driver software which enables access to sensors has to be implemented and the measured sensor data has to be manually mapped to the SWE models. In this article we introduce a Sensor Plug & Play infrastructure for the Sensor Web by combining (1) semantic matchmaking functionality, (2) a publish/subscribe mechanism underlying the SensorWeb, as well as (3) a model for the declarative description of sensor interfaces which serves as a generic driver mechanism. We implement and evaluate our approach by applying it to an oil spill scenario. The matchmaking is realized using existing ontologies and reasoning engines and provides a strong case for the semantic integration capabilities provided by Semantic Web research. PMID:22164033

  17. A Formal Theory for Modular ERDF Ontologies

    NASA Astrophysics Data System (ADS)

    Analyti, Anastasia; Antoniou, Grigoris; Damásio, Carlos Viegas

    The success of the Semantic Web is impossible without any form of modularity, encapsulation, and access control. In an earlier paper, we extended RDF graphs with weak and strong negation, as well as derivation rules. The ERDF #n-stable model semantics of the extended RDF framework (ERDF) is defined, extending RDF(S) semantics. In this paper, we propose a framework for modular ERDF ontologies, called modular ERDF framework, which enables collaborative reasoning over a set of ERDF ontologies, while support for hidden knowledge is also provided. In particular, the modular ERDF stable model semantics of modular ERDF ontologies is defined, extending the ERDF #n-stable model semantics. Our proposed framework supports local semantics and different points of view, local closed-world and open-world assumptions, and scoped negation-as-failure. Several complexity results are provided.

  18. Standardized mappings--a framework to combine different semantic mappers into a standardized web-API.

    PubMed

    Neuhaus, Philipp; Doods, Justin; Dugas, Martin

    2015-01-01

    Automatic coding of medical terms is an important, but highly complicated and laborious task. To compare and evaluate different strategies a framework with a standardized web-interface was created. Two UMLS mapping strategies are compared to demonstrate the interface. The framework is a Java Spring application running on a Tomcat application server. It accepts different parameters and returns results in JSON format. To demonstrate the framework, a list of medical data items was mapped by two different methods: similarity search in a large table of terminology codes versus search in a manually curated repository. These mappings were reviewed by a specialist. The evaluation shows that the framework is flexible (due to standardized interfaces like HTTP and JSON), performant and reliable. Accuracy of automatically assigned codes is limited (up to 40%). Combining different semantic mappers into a standardized Web-API is feasible. This framework can be easily enhanced due to its modular design.

  19. Sharing Human-Generated Observations by Integrating HMI and the Semantic Sensor Web

    PubMed Central

    Sigüenza, Álvaro; Díaz-Pardo, David; Bernat, Jesús; Vancea, Vasile; Blanco, José Luis; Conejero, David; Gómez, Luis Hernández

    2012-01-01

    Current “Internet of Things” concepts point to a future where connected objects gather meaningful information about their environment and share it with other objects and people. In particular, objects embedding Human Machine Interaction (HMI), such as mobile devices and, increasingly, connected vehicles, home appliances, urban interactive infrastructures, etc., may not only be conceived as sources of sensor information, but, through interaction with their users, they can also produce highly valuable context-aware human-generated observations. We believe that the great promise offered by combining and sharing all of the different sources of information available can be realized through the integration of HMI and Semantic Sensor Web technologies. This paper presents a technological framework that harmonizes two of the most influential HMI and Sensor Web initiatives: the W3C's Multimodal Architecture and Interfaces (MMI) and the Open Geospatial Consortium (OGC) Sensor Web Enablement (SWE) with its semantic extension, respectively. Although the proposed framework is general enough to be applied in a variety of connected objects integrating HMI, a particular development is presented for a connected car scenario where drivers' observations about the traffic or their environment are shared across the Semantic Sensor Web. For implementation and evaluation purposes an on-board OSGi (Open Services Gateway Initiative) architecture was built, integrating several available HMI, Sensor Web and Semantic Web technologies. A technical performance test and a conceptual validation of the scenario with potential users are reported, with results suggesting the approach is sound. PMID:22778643

  20. Sharing human-generated observations by integrating HMI and the Semantic Sensor Web.

    PubMed

    Sigüenza, Alvaro; Díaz-Pardo, David; Bernat, Jesús; Vancea, Vasile; Blanco, José Luis; Conejero, David; Gómez, Luis Hernández

    2012-01-01

    Current "Internet of Things" concepts point to a future where connected objects gather meaningful information about their environment and share it with other objects and people. In particular, objects embedding Human Machine Interaction (HMI), such as mobile devices and, increasingly, connected vehicles, home appliances, urban interactive infrastructures, etc., may not only be conceived as sources of sensor information, but, through interaction with their users, they can also produce highly valuable context-aware human-generated observations. We believe that the great promise offered by combining and sharing all of the different sources of information available can be realized through the integration of HMI and Semantic Sensor Web technologies. This paper presents a technological framework that harmonizes two of the most influential HMI and Sensor Web initiatives: the W3C's Multimodal Architecture and Interfaces (MMI) and the Open Geospatial Consortium (OGC) Sensor Web Enablement (SWE) with its semantic extension, respectively. Although the proposed framework is general enough to be applied in a variety of connected objects integrating HMI, a particular development is presented for a connected car scenario where drivers' observations about the traffic or their environment are shared across the Semantic Sensor Web. For implementation and evaluation purposes an on-board OSGi (Open Services Gateway Initiative) architecture was built, integrating several available HMI, Sensor Web and Semantic Web technologies. A technical performance test and a conceptual validation of the scenario with potential users are reported, with results suggesting the approach is sound.

  1. Construction of an ortholog database using the semantic web technology for integrative analysis of genomic data.

    PubMed

    Chiba, Hirokazu; Nishide, Hiroyo; Uchiyama, Ikuo

    2015-01-01

    Recently, various types of biological data, including genomic sequences, have been rapidly accumulating. To discover biological knowledge from such growing heterogeneous data, a flexible framework for data integration is necessary. Ortholog information is a central resource for interlinking corresponding genes among different organisms, and the Semantic Web provides a key technology for the flexible integration of heterogeneous data. We have constructed an ortholog database using the Semantic Web technology, aiming at the integration of numerous genomic data and various types of biological information. To formalize the structure of the ortholog information in the Semantic Web, we have constructed the Ortholog Ontology (OrthO). While the OrthO is a compact ontology for general use, it is designed to be extended to the description of database-specific concepts. On the basis of OrthO, we described the ortholog information from our Microbial Genome Database for Comparative Analysis (MBGD) in the form of Resource Description Framework (RDF) and made it available through the SPARQL endpoint, which accepts arbitrary queries specified by users. In this framework based on the OrthO, the biological data of different organisms can be integrated using the ortholog information as a hub. Besides, the ortholog information from different data sources can be compared with each other using the OrthO as a shared ontology. Here we show some examples demonstrating that the ortholog information described in RDF can be used to link various biological data such as taxonomy information and Gene Ontology. Thus, the ortholog database using the Semantic Web technology can contribute to biological knowledge discovery through integrative data analysis.

  2. Towards a Semantic Web of Things: A Hybrid Semantic Annotation, Extraction, and Reasoning Framework for Cyber-Physical System.

    PubMed

    Wu, Zhenyu; Xu, Yuan; Yang, Yunong; Zhang, Chunhong; Zhu, Xinning; Ji, Yang

    2017-02-20

    Web of Things (WoT) facilitates the discovery and interoperability of Internet of Things (IoT) devices in a cyber-physical system (CPS). Moreover, a uniform knowledge representation of physical resources is quite necessary for further composition, collaboration, and decision-making process in CPS. Though several efforts have integrated semantics with WoT, such as knowledge engineering methods based on semantic sensor networks (SSN), it still could not represent the complex relationships between devices when dynamic composition and collaboration occur, and it totally depends on manual construction of a knowledge base with low scalability. In this paper, to addresses these limitations, we propose the semantic Web of Things (SWoT) framework for CPS (SWoT4CPS). SWoT4CPS provides a hybrid solution with both ontological engineering methods by extending SSN and machine learning methods based on an entity linking (EL) model. To testify to the feasibility and performance, we demonstrate the framework by implementing a temperature anomaly diagnosis and automatic control use case in a building automation system. Evaluation results on the EL method show that linking domain knowledge to DBpedia has a relative high accuracy and the time complexity is at a tolerant level. Advantages and disadvantages of SWoT4CPS with future work are also discussed.

  3. Graph Mining Meets the Semantic Web

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Sangkeun; Sukumar, Sreenivas R; Lim, Seung-Hwan

    The Resource Description Framework (RDF) and SPARQL Protocol and RDF Query Language (SPARQL) were introduced about a decade ago to enable flexible schema-free data interchange on the Semantic Web. Today, data scientists use the framework as a scalable graph representation for integrating, querying, exploring and analyzing data sets hosted at different sources. With increasing adoption, the need for graph mining capabilities for the Semantic Web has emerged. We address that need through implementation of three popular iterative Graph Mining algorithms (Triangle count, Connected component analysis, and PageRank). We implement these algorithms as SPARQL queries, wrapped within Python scripts. We evaluatemore » the performance of our implementation on 6 real world data sets and show graph mining algorithms (that have a linear-algebra formulation) can indeed be unleashed on data represented as RDF graphs using the SPARQL query interface.« less

  4. Web Video Event Recognition by Semantic Analysis From Ubiquitous Documents.

    PubMed

    Yu, Litao; Yang, Yang; Huang, Zi; Wang, Peng; Song, Jingkuan; Shen, Heng Tao

    2016-12-01

    In recent years, the task of event recognition from videos has attracted increasing interest in multimedia area. While most of the existing research was mainly focused on exploring visual cues to handle relatively small-granular events, it is difficult to directly analyze video content without any prior knowledge. Therefore, synthesizing both the visual and semantic analysis is a natural way for video event understanding. In this paper, we study the problem of Web video event recognition, where Web videos often describe large-granular events and carry limited textual information. Key challenges include how to accurately represent event semantics from incomplete textual information and how to effectively explore the correlation between visual and textual cues for video event understanding. We propose a novel framework to perform complex event recognition from Web videos. In order to compensate the insufficient expressive power of visual cues, we construct an event knowledge base by deeply mining semantic information from ubiquitous Web documents. This event knowledge base is capable of describing each event with comprehensive semantics. By utilizing this base, the textual cues for a video can be significantly enriched. Furthermore, we introduce a two-view adaptive regression model, which explores the intrinsic correlation between the visual and textual cues of the videos to learn reliable classifiers. Extensive experiments on two real-world video data sets show the effectiveness of our proposed framework and prove that the event knowledge base indeed helps improve the performance of Web video event recognition.

  5. The BiSciCol Triplifier: bringing biodiversity data to the Semantic Web.

    PubMed

    Stucky, Brian J; Deck, John; Conlin, Tom; Ziemba, Lukasz; Cellinese, Nico; Guralnick, Robert

    2014-07-29

    Recent years have brought great progress in efforts to digitize the world's biodiversity data, but integrating data from many different providers, and across research domains, remains challenging. Semantic Web technologies have been widely recognized by biodiversity scientists for their potential to help solve this problem, yet these technologies have so far seen little use for biodiversity data. Such slow uptake has been due, in part, to the relative complexity of Semantic Web technologies along with a lack of domain-specific software tools to help non-experts publish their data to the Semantic Web. The BiSciCol Triplifier is new software that greatly simplifies the process of converting biodiversity data in standard, tabular formats, such as Darwin Core-Archives, into Semantic Web-ready Resource Description Framework (RDF) representations. The Triplifier uses a vocabulary based on the popular Darwin Core standard, includes both Web-based and command-line interfaces, and is fully open-source software. Unlike most other RDF conversion tools, the Triplifier does not require detailed familiarity with core Semantic Web technologies, and it is tailored to a widely popular biodiversity data format and vocabulary standard. As a result, the Triplifier can often fully automate the conversion of biodiversity data to RDF, thereby making the Semantic Web much more accessible to biodiversity scientists who might otherwise have relatively little knowledge of Semantic Web technologies. Easy availability of biodiversity data as RDF will allow researchers to combine data from disparate sources and analyze them with powerful linked data querying tools. However, before software like the Triplifier, and Semantic Web technologies in general, can reach their full potential for biodiversity science, the biodiversity informatics community must address several critical challenges, such as the widespread failure to use robust, globally unique identifiers for biodiversity data.

  6. A semantic web framework to integrate cancer omics data with biological knowledge.

    PubMed

    Holford, Matthew E; McCusker, James P; Cheung, Kei-Hoi; Krauthammer, Michael

    2012-01-25

    The RDF triple provides a simple linguistic means of describing limitless types of information. Triples can be flexibly combined into a unified data source we call a semantic model. Semantic models open new possibilities for the integration of variegated biological data. We use Semantic Web technology to explicate high throughput clinical data in the context of fundamental biological knowledge. We have extended Corvus, a data warehouse which provides a uniform interface to various forms of Omics data, by providing a SPARQL endpoint. With the querying and reasoning tools made possible by the Semantic Web, we were able to explore quantitative semantic models retrieved from Corvus in the light of systematic biological knowledge. For this paper, we merged semantic models containing genomic, transcriptomic and epigenomic data from melanoma samples with two semantic models of functional data - one containing Gene Ontology (GO) data, the other, regulatory networks constructed from transcription factor binding information. These two semantic models were created in an ad hoc manner but support a common interface for integration with the quantitative semantic models. Such combined semantic models allow us to pose significant translational medicine questions. Here, we study the interplay between a cell's molecular state and its response to anti-cancer therapy by exploring the resistance of cancer cells to Decitabine, a demethylating agent. We were able to generate a testable hypothesis to explain how Decitabine fights cancer - namely, that it targets apoptosis-related gene promoters predominantly in Decitabine-sensitive cell lines, thus conveying its cytotoxic effect by activating the apoptosis pathway. Our research provides a framework whereby similar hypotheses can be developed easily.

  7. Kernel Methods for Mining Instance Data in Ontologies

    NASA Astrophysics Data System (ADS)

    Bloehdorn, Stephan; Sure, York

    The amount of ontologies and meta data available on the Web is constantly growing. The successful application of machine learning techniques for learning of ontologies from textual data, i.e. mining for the Semantic Web, contributes to this trend. However, no principal approaches exist so far for mining from the Semantic Web. We investigate how machine learning algorithms can be made amenable for directly taking advantage of the rich knowledge expressed in ontologies and associated instance data. Kernel methods have been successfully employed in various learning tasks and provide a clean framework for interfacing between non-vectorial data and machine learning algorithms. In this spirit, we express the problem of mining instances in ontologies as the problem of defining valid corresponding kernels. We present a principled framework for designing such kernels by means of decomposing the kernel computation into specialized kernels for selected characteristics of an ontology which can be flexibly assembled and tuned. Initial experiments on real world Semantic Web data enjoy promising results and show the usefulness of our approach.

  8. Towards a Semantic Web of Things: A Hybrid Semantic Annotation, Extraction, and Reasoning Framework for Cyber-Physical System

    PubMed Central

    Wu, Zhenyu; Xu, Yuan; Yang, Yunong; Zhang, Chunhong; Zhu, Xinning; Ji, Yang

    2017-01-01

    Web of Things (WoT) facilitates the discovery and interoperability of Internet of Things (IoT) devices in a cyber-physical system (CPS). Moreover, a uniform knowledge representation of physical resources is quite necessary for further composition, collaboration, and decision-making process in CPS. Though several efforts have integrated semantics with WoT, such as knowledge engineering methods based on semantic sensor networks (SSN), it still could not represent the complex relationships between devices when dynamic composition and collaboration occur, and it totally depends on manual construction of a knowledge base with low scalability. In this paper, to addresses these limitations, we propose the semantic Web of Things (SWoT) framework for CPS (SWoT4CPS). SWoT4CPS provides a hybrid solution with both ontological engineering methods by extending SSN and machine learning methods based on an entity linking (EL) model. To testify to the feasibility and performance, we demonstrate the framework by implementing a temperature anomaly diagnosis and automatic control use case in a building automation system. Evaluation results on the EL method show that linking domain knowledge to DBpedia has a relative high accuracy and the time complexity is at a tolerant level. Advantages and disadvantages of SWoT4CPS with future work are also discussed. PMID:28230725

  9. Semantic-JSON: a lightweight web service interface for Semantic Web contents integrating multiple life science databases.

    PubMed

    Kobayashi, Norio; Ishii, Manabu; Takahashi, Satoshi; Mochizuki, Yoshiki; Matsushima, Akihiro; Toyoda, Tetsuro

    2011-07-01

    Global cloud frameworks for bioinformatics research databases become huge and heterogeneous; solutions face various diametric challenges comprising cross-integration, retrieval, security and openness. To address this, as of March 2011 organizations including RIKEN published 192 mammalian, plant and protein life sciences databases having 8.2 million data records, integrated as Linked Open or Private Data (LOD/LPD) using SciNetS.org, the Scientists' Networking System. The huge quantity of linked data this database integration framework covers is based on the Semantic Web, where researchers collaborate by managing metadata across public and private databases in a secured data space. This outstripped the data query capacity of existing interface tools like SPARQL. Actual research also requires specialized tools for data analysis using raw original data. To solve these challenges, in December 2009 we developed the lightweight Semantic-JSON interface to access each fragment of linked and raw life sciences data securely under the control of programming languages popularly used by bioinformaticians such as Perl and Ruby. Researchers successfully used the interface across 28 million semantic relationships for biological applications including genome design, sequence processing, inference over phenotype databases, full-text search indexing and human-readable contents like ontology and LOD tree viewers. Semantic-JSON services of SciNetS.org are provided at http://semanticjson.org.

  10. UBioLab: a web-LABoratory for Ubiquitous in-silico experiments.

    PubMed

    Bartocci, E; Di Berardini, M R; Merelli, E; Vito, L

    2012-03-01

    The huge and dynamic amount of bioinformatic resources (e.g., data and tools) available nowadays in Internet represents a big challenge for biologists -for what concerns their management and visualization- and for bioinformaticians -for what concerns the possibility of rapidly creating and executing in-silico experiments involving resources and activities spread over the WWW hyperspace. Any framework aiming at integrating such resources as in a physical laboratory has imperatively to tackle -and possibly to handle in a transparent and uniform way- aspects concerning physical distribution, semantic heterogeneity, co-existence of different computational paradigms and, as a consequence, of different invocation interfaces (i.e., OGSA for Grid nodes, SOAP for Web Services, Java RMI for Java objects, etc.). The framework UBioLab has been just designed and developed as a prototype following the above objective. Several architectural features -as those ones of being fully Web-based and of combining domain ontologies, Semantic Web and workflow techniques- give evidence of an effort in such a direction. The integration of a semantic knowledge management system for distributed (bioinformatic) resources, a semantic-driven graphic environment for defining and monitoring ubiquitous workflows and an intelligent agent-based technology for their distributed execution allows UBioLab to be a semantic guide for bioinformaticians and biologists providing (i) a flexible environment for visualizing, organizing and inferring any (semantics and computational) "type" of domain knowledge (e.g., resources and activities, expressed in a declarative form), (ii) a powerful engine for defining and storing semantic-driven ubiquitous in-silico experiments on the domain hyperspace, as well as (iii) a transparent, automatic and distributed environment for correct experiment executions.

  11. A Semantic Web-based System for Mining Genetic Mutations in Cancer Clinical Trials.

    PubMed

    Priya, Sambhawa; Jiang, Guoqian; Dasari, Surendra; Zimmermann, Michael T; Wang, Chen; Heflin, Jeff; Chute, Christopher G

    2015-01-01

    Textual eligibility criteria in clinical trial protocols contain important information about potential clinically relevant pharmacogenomic events. Manual curation for harvesting this evidence is intractable as it is error prone and time consuming. In this paper, we develop and evaluate a Semantic Web-based system that captures and manages mutation evidences and related contextual information from cancer clinical trials. The system has 2 main components: an NLP-based annotator and a Semantic Web ontology-based annotation manager. We evaluated the performance of the annotator in terms of precision and recall. We demonstrated the usefulness of the system by conducting case studies in retrieving relevant clinical trials using a collection of mutations identified from TCGA Leukemia patients and Atlas of Genetics and Cytogenetics in Oncology and Haematology. In conclusion, our system using Semantic Web technologies provides an effective framework for extraction, annotation, standardization and management of genetic mutations in cancer clinical trials.

  12. Framework for Building Collaborative Research Environment

    DOE PAGES

    Devarakonda, Ranjeet; Palanisamy, Giriprakash; San Gil, Inigo

    2014-10-25

    Wide range of expertise and technologies are the key to solving some global problems. Semantic web technology can revolutionize the nature of how scientific knowledge is produced and shared. The semantic web is all about enabling machine-machine readability instead of a routine human-human interaction. Carefully structured data, as in machine readable data is the key to enabling these interactions. Drupal is an example of one such toolset that can render all the functionalities of Semantic Web technology right out of the box. Drupal’s content management system automatically stores the data in a structured format enabling it to be machine. Withinmore » this paper, we will discuss how Drupal promotes collaboration in a research setting such as Oak Ridge National Laboratory (ORNL) and Long Term Ecological Research Center (LTER) and how it is effectively using the Semantic Web in achieving this.« less

  13. The semantic web and computer vision: old AI meets new AI

    NASA Astrophysics Data System (ADS)

    Mundy, J. L.; Dong, Y.; Gilliam, A.; Wagner, R.

    2018-04-01

    There has been vast process in linking semantic information across the billions of web pages through the use of ontologies encoded in the Web Ontology Language (OWL) based on the Resource Description Framework (RDF). A prime example is the Wikipedia where the knowledge contained in its more than four million pages is encoded in an ontological database called DBPedia http://wiki.dbpedia.org/. Web-based query tools can retrieve semantic information from DBPedia encoded in interlinked ontologies that can be accessed using natural language. This paper will show how this vast context can be used to automate the process of querying images and other geospatial data in support of report changes in structures and activities. Computer vision algorithms are selected and provided with context based on natural language requests for monitoring and analysis. The resulting reports provide semantically linked observations from images and 3D surface models.

  14. A semantic web framework to integrate cancer omics data with biological knowledge

    PubMed Central

    2012-01-01

    Background The RDF triple provides a simple linguistic means of describing limitless types of information. Triples can be flexibly combined into a unified data source we call a semantic model. Semantic models open new possibilities for the integration of variegated biological data. We use Semantic Web technology to explicate high throughput clinical data in the context of fundamental biological knowledge. We have extended Corvus, a data warehouse which provides a uniform interface to various forms of Omics data, by providing a SPARQL endpoint. With the querying and reasoning tools made possible by the Semantic Web, we were able to explore quantitative semantic models retrieved from Corvus in the light of systematic biological knowledge. Results For this paper, we merged semantic models containing genomic, transcriptomic and epigenomic data from melanoma samples with two semantic models of functional data - one containing Gene Ontology (GO) data, the other, regulatory networks constructed from transcription factor binding information. These two semantic models were created in an ad hoc manner but support a common interface for integration with the quantitative semantic models. Such combined semantic models allow us to pose significant translational medicine questions. Here, we study the interplay between a cell's molecular state and its response to anti-cancer therapy by exploring the resistance of cancer cells to Decitabine, a demethylating agent. Conclusions We were able to generate a testable hypothesis to explain how Decitabine fights cancer - namely, that it targets apoptosis-related gene promoters predominantly in Decitabine-sensitive cell lines, thus conveying its cytotoxic effect by activating the apoptosis pathway. Our research provides a framework whereby similar hypotheses can be developed easily. PMID:22373303

  15. An Ontology of Quality Initiatives and a Model for Decentralized, Collaborative Quality Management on the (Semantic) World Wide Web

    PubMed Central

    2001-01-01

    This editorial provides a model of how quality initiatives concerned with health information on the World Wide Web may in the future interact with each other. This vision fits into the evolving "Semantic Web" architecture - ie, the prospective that the World Wide Web may evolve from a mess of unstructured, human-readable information sources into a global knowledge base with an additional layer providing richer and more meaningful relationships between resources. One first prerequisite for forming such a "Semantic Web" or "web of trust" among the players active in quality management of health information is that these initiatives make statements about themselves and about each other in a machine-processable language. I present a concrete model on how this collaboration could look, and provide some recommendations on what the role of the World Health Organization (WHO) and other policy makers in this framework could be. PMID:11772549

  16. An ontology of quality initiatives and a model for decentralized, collaborative quality management on the (semantic) World-Wide-Web.

    PubMed

    Eysenbach, G

    2001-01-01

    This editorial provides a model of how quality initiatives concerned with health information on the World Wide Web may in the future interact with each other. This vision fits into the evolving "Semantic Web" architecture - ie, the prospective that the World Wide Web may evolve from a mess of unstructured, human-readable information sources into a global knowledge base with an additional layer providing richer and more meaningful relationships between resources. One first prerequisite for forming such a "Semantic Web" or "web of trust" among the players active in quality management of health information is that these initiatives make statements about themselves and about each other in a machine-processable language. I present a concrete model on how this collaboration could look, and provide some recommendations on what the role of the World Health Organization (WHO) and other policy makers in this framework could be.

  17. Ontology Reuse in Geoscience Semantic Applications

    NASA Astrophysics Data System (ADS)

    Mayernik, M. S.; Gross, M. B.; Daniels, M. D.; Rowan, L. R.; Stott, D.; Maull, K. E.; Khan, H.; Corson-Rikert, J.

    2015-12-01

    The tension between local ontology development and wider ontology connections is fundamental to the Semantic web. It is often unclear, however, what the key decision points should be for new semantic web applications in deciding when to reuse existing ontologies and when to develop original ontologies. In addition, with the growth of semantic web ontologies and applications, new semantic web applications can struggle to efficiently and effectively identify and select ontologies to reuse. This presentation will describe the ontology comparison, selection, and consolidation effort within the EarthCollab project. UCAR, Cornell University, and UNAVCO are collaborating on the EarthCollab project to use semantic web technologies to enable the discovery of the research output from a diverse array of projects. The EarthCollab project is using the VIVO Semantic web software suite to increase discoverability of research information and data related to the following two geoscience-based communities: (1) the Bering Sea Project, an interdisciplinary field program whose data archive is hosted by NCAR's Earth Observing Laboratory (EOL), and (2) diverse research projects informed by geodesy through the UNAVCO geodetic facility and consortium. This presentation will outline of EarthCollab use cases, and provide an overview of key ontologies being used, including the VIVO-Integrated Semantic Framework (VIVO-ISF), Global Change Information System (GCIS), and Data Catalog (DCAT) ontologies. We will discuss issues related to bringing these ontologies together to provide a robust ontological structure to support the EarthCollab use cases. It is rare that a single pre-existing ontology meets all of a new application's needs. New projects need to stitch ontologies together in ways that fit into the broader semantic web ecosystem.

  18. The MMI Semantic Framework: Rosetta Stones for Earth Sciences

    NASA Astrophysics Data System (ADS)

    Rueda, C.; Bermudez, L. E.; Graybeal, J.; Alexander, P.

    2009-12-01

    Semantic interoperability—the exchange of meaning among computer systems—is needed to successfully share data in Ocean Science and across all Earth sciences. The best approach toward semantic interoperability requires a designed framework, and operationally tested tools and infrastructure within that framework. Currently available technologies make a scientific semantic framework feasible, but its development requires sustainable architectural vision and development processes. This presentation outlines the MMI Semantic Framework, including recent progress on it and its client applications. The MMI Semantic Framework consists of tools, infrastructure, and operational and community procedures and best practices, to meet short-term and long-term semantic interoperability goals. The design and prioritization of the semantic framework capabilities are based on real-world scenarios in Earth observation systems. We describe some key uses cases, as well as the associated requirements for building the overall infrastructure, which is realized through the MMI Ontology Registry and Repository. This system includes support for community creation and sharing of semantic content, ontology registration, version management, and seamless integration of user-friendly tools and application programming interfaces. The presentation describes the architectural components for semantic mediation, registry and repository for vocabularies, ontology, and term mappings. We show how the technologies and approaches in the framework can address community needs for managing and exchanging semantic information. We will demonstrate how different types of users and client applications exploit the tools and services for data aggregation, visualization, archiving, and integration. Specific examples from OOSTethys (http://www.oostethys.org) and the Ocean Observatories Initiative Cyberinfrastructure (http://www.oceanobservatories.org) will be cited. Finally, we show how semantic augmentation of web services standards could be performed using framework tools.

  19. CelOWS: an ontology based framework for the provision of semantic web services related to biological models.

    PubMed

    Matos, Ely Edison; Campos, Fernanda; Braga, Regina; Palazzi, Daniele

    2010-02-01

    The amount of information generated by biological research has lead to an intensive use of models. Mathematical and computational modeling needs accurate description to share, reuse and simulate models as formulated by original authors. In this paper, we introduce the Cell Component Ontology (CelO), expressed in OWL-DL. This ontology captures both the structure of a cell model and the properties of functional components. We use this ontology in a Web project (CelOWS) to describe, query and compose CellML models, using semantic web services. It aims to improve reuse and composition of existent components and allow semantic validation of new models.

  20. Semantic Web repositories for genomics data using the eXframe platform.

    PubMed

    Merrill, Emily; Corlosquet, Stéphane; Ciccarese, Paolo; Clark, Tim; Das, Sudeshna

    2014-01-01

    With the advent of inexpensive assay technologies, there has been an unprecedented growth in genomics data as well as the number of databases in which it is stored. In these databases, sample annotation using ontologies and controlled vocabularies is becoming more common. However, the annotation is rarely available as Linked Data, in a machine-readable format, or for standardized queries using SPARQL. This makes large-scale reuse, or integration with other knowledge bases very difficult. To address this challenge, we have developed the second generation of our eXframe platform, a reusable framework for creating online repositories of genomics experiments. This second generation model now publishes Semantic Web data. To accomplish this, we created an experiment model that covers provenance, citations, external links, assays, biomaterials used in the experiment, and the data collected during the process. The elements of our model are mapped to classes and properties from various established biomedical ontologies. Resource Description Framework (RDF) data is automatically produced using these mappings and indexed in an RDF store with a built-in Sparql Protocol and RDF Query Language (SPARQL) endpoint. Using the open-source eXframe software, institutions and laboratories can create Semantic Web repositories of their experiments, integrate it with heterogeneous resources and make it interoperable with the vast Semantic Web of biomedical knowledge.

  1. Querying phenotype-genotype relationships on patient datasets using semantic web technology: the example of Cerebrotendinous xanthomatosis.

    PubMed

    Taboada, María; Martínez, Diego; Pilo, Belén; Jiménez-Escrig, Adriano; Robinson, Peter N; Sobrido, María J

    2012-07-31

    Semantic Web technology can considerably catalyze translational genetics and genomics research in medicine, where the interchange of information between basic research and clinical levels becomes crucial. This exchange involves mapping abstract phenotype descriptions from research resources, such as knowledge databases and catalogs, to unstructured datasets produced through experimental methods and clinical practice. This is especially true for the construction of mutation databases. This paper presents a way of harmonizing abstract phenotype descriptions with patient data from clinical practice, and querying this dataset about relationships between phenotypes and genetic variants, at different levels of abstraction. Due to the current availability of ontological and terminological resources that have already reached some consensus in biomedicine, a reuse-based ontology engineering approach was followed. The proposed approach uses the Ontology Web Language (OWL) to represent the phenotype ontology and the patient model, the Semantic Web Rule Language (SWRL) to bridge the gap between phenotype descriptions and clinical data, and the Semantic Query Web Rule Language (SQWRL) to query relevant phenotype-genotype bidirectional relationships. The work tests the use of semantic web technology in the biomedical research domain named cerebrotendinous xanthomatosis (CTX), using a real dataset and ontologies. A framework to query relevant phenotype-genotype bidirectional relationships is provided. Phenotype descriptions and patient data were harmonized by defining 28 Horn-like rules in terms of the OWL concepts. In total, 24 patterns of SWQRL queries were designed following the initial list of competency questions. As the approach is based on OWL, the semantic of the framework adapts the standard logical model of an open world assumption. This work demonstrates how semantic web technologies can be used to support flexible representation and computational inference mechanisms required to query patient datasets at different levels of abstraction. The open world assumption is especially good for describing only partially known phenotype-genotype relationships, in a way that is easily extensible. In future, this type of approach could offer researchers a valuable resource to infer new data from patient data for statistical analysis in translational research. In conclusion, phenotype description formalization and mapping to clinical data are two key elements for interchanging knowledge between basic and clinical research.

  2. Semantic-JSON: a lightweight web service interface for Semantic Web contents integrating multiple life science databases

    PubMed Central

    Kobayashi, Norio; Ishii, Manabu; Takahashi, Satoshi; Mochizuki, Yoshiki; Matsushima, Akihiro; Toyoda, Tetsuro

    2011-01-01

    Global cloud frameworks for bioinformatics research databases become huge and heterogeneous; solutions face various diametric challenges comprising cross-integration, retrieval, security and openness. To address this, as of March 2011 organizations including RIKEN published 192 mammalian, plant and protein life sciences databases having 8.2 million data records, integrated as Linked Open or Private Data (LOD/LPD) using SciNetS.org, the Scientists' Networking System. The huge quantity of linked data this database integration framework covers is based on the Semantic Web, where researchers collaborate by managing metadata across public and private databases in a secured data space. This outstripped the data query capacity of existing interface tools like SPARQL. Actual research also requires specialized tools for data analysis using raw original data. To solve these challenges, in December 2009 we developed the lightweight Semantic-JSON interface to access each fragment of linked and raw life sciences data securely under the control of programming languages popularly used by bioinformaticians such as Perl and Ruby. Researchers successfully used the interface across 28 million semantic relationships for biological applications including genome design, sequence processing, inference over phenotype databases, full-text search indexing and human-readable contents like ontology and LOD tree viewers. Semantic-JSON services of SciNetS.org are provided at http://semanticjson.org. PMID:21632604

  3. UBioLab: a web-laboratory for ubiquitous in-silico experiments.

    PubMed

    Bartocci, Ezio; Cacciagrano, Diletta; Di Berardini, Maria Rita; Merelli, Emanuela; Vito, Leonardo

    2012-07-09

    The huge and dynamic amount of bioinformatic resources (e.g., data and tools) available nowadays in Internet represents a big challenge for biologists –for what concerns their management and visualization– and for bioinformaticians –for what concerns the possibility of rapidly creating and executing in-silico experiments involving resources and activities spread over the WWW hyperspace. Any framework aiming at integrating such resources as in a physical laboratory has imperatively to tackle –and possibly to handle in a transparent and uniform way– aspects concerning physical distribution, semantic heterogeneity, co-existence of different computational paradigms and, as a consequence, of different invocation interfaces (i.e., OGSA for Grid nodes, SOAP for Web Services, Java RMI for Java objects, etc.). The framework UBioLab has been just designed and developed as a prototype following the above objective. Several architectural features –as those ones of being fully Web-based and of combining domain ontologies, Semantic Web and workflow techniques– give evidence of an effort in such a direction. The integration of a semantic knowledge management system for distributed (bioinformatic) resources, a semantic-driven graphic environment for defining and monitoring ubiquitous workflows and an intelligent agent-based technology for their distributed execution allows UBioLab to be a semantic guide for bioinformaticians and biologists providing (i) a flexible environment for visualizing, organizing and inferring any (semantics and computational) "type" of domain knowledge (e.g., resources and activities, expressed in a declarative form), (ii) a powerful engine for defining and storing semantic-driven ubiquitous in-silico experiments on the domain hyperspace, as well as (iii) a transparent, automatic and distributed environment for correct experiment executions.

  4. SADI, SHARE, and the in silico scientific method

    PubMed Central

    2010-01-01

    Background The emergence and uptake of Semantic Web technologies by the Life Sciences provides exciting opportunities for exploring novel ways to conduct in silico science. Web Service Workflows are already becoming first-class objects in “the new way”, and serve as explicit, shareable, referenceable representations of how an experiment was done. In turn, Semantic Web Service projects aim to facilitate workflow construction by biological domain-experts such that workflows can be edited, re-purposed, and re-published by non-informaticians. However the aspects of the scientific method relating to explicit discourse, disagreement, and hypothesis generation have remained relatively impervious to new technologies. Results Here we present SADI and SHARE - a novel Semantic Web Service framework, and a reference implementation of its client libraries. Together, SADI and SHARE allow the semi- or fully-automatic discovery and pipelining of Semantic Web Services in response to ad hoc user queries. Conclusions The semantic behaviours exhibited by SADI and SHARE extend the functionalities provided by Description Logic Reasoners such that novel assertions can be automatically added to a data-set without logical reasoning, but rather by analytical or annotative services. This behaviour might be applied to achieve the “semantification” of those aspects of the in silico scientific method that are not yet supported by Semantic Web technologies. We support this suggestion using an example in the clinical research space. PMID:21210986

  5. Moby and Moby 2: creatures of the deep (web).

    PubMed

    Vandervalk, Ben P; McCarthy, E Luke; Wilkinson, Mark D

    2009-03-01

    Facile and meaningful integration of data from disparate resources is the 'holy grail' of bioinformatics. Some resources have begun to address this problem by providing their data using Semantic Web standards, specifically the Resource Description Framework (RDF) and the Web Ontology Language (OWL). Unfortunately, adoption of Semantic Web standards has been slow overall, and even in cases where the standards are being utilized, interconnectivity between resources is rare. In response, we have seen the emergence of centralized 'semantic warehouses' that collect public data from third parties, integrate it, translate it into OWL/RDF and provide it to the community as a unified and queryable resource. One limitation of the warehouse approach is that queries are confined to the resources that have been selected for inclusion. A related problem, perhaps of greater concern, is that the majority of bioinformatics data exists in the 'Deep Web'-that is, the data does not exist until an application or analytical tool is invoked, and therefore does not have a predictable Web address. The inability to utilize Uniform Resource Identifiers (URIs) to address this data is a barrier to its accessibility via URI-centric Semantic Web technologies. Here we examine 'The State of the Union' for the adoption of Semantic Web standards in the health care and life sciences domain by key bioinformatics resources, explore the nature and connectivity of several community-driven semantic warehousing projects, and report on our own progress with the CardioSHARE/Moby-2 project, which aims to make the resources of the Deep Web transparently accessible through SPARQL queries.

  6. A semantic web ontology for small molecules and their biological targets.

    PubMed

    Choi, Jooyoung; Davis, Melissa J; Newman, Andrew F; Ragan, Mark A

    2010-05-24

    A wide range of data on sequences, structures, pathways, and networks of genes and gene products is available for hypothesis testing and discovery in biological and biomedical research. However, data describing the physical, chemical, and biological properties of small molecules have not been well-integrated with these resources. Semantically rich representations of chemical data, combined with Semantic Web technologies, have the potential to enable the integration of small molecule and biomolecular data resources, expanding the scope and power of biomedical and pharmacological research. We employed the Semantic Web technologies Resource Description Framework (RDF) and Web Ontology Language (OWL) to generate a Small Molecule Ontology (SMO) that represents concepts and provides unique identifiers for biologically relevant properties of small molecules and their interactions with biomolecules, such as proteins. We instanced SMO using data from three public data sources, i.e., DrugBank, PubChem and UniProt, and converted to RDF triples. Evaluation of SMO by use of predetermined competency questions implemented as SPARQL queries demonstrated that data from chemical and biomolecular data sources were effectively represented and that useful knowledge can be extracted. These results illustrate the potential of Semantic Web technologies in chemical, biological, and pharmacological research and in drug discovery.

  7. A novel adaptive Cuckoo search for optimal query plan generation.

    PubMed

    Gomathi, Ramalingam; Sharmila, Dhandapani

    2014-01-01

    The emergence of multiple web pages day by day leads to the development of the semantic web technology. A World Wide Web Consortium (W3C) standard for storing semantic web data is the resource description framework (RDF). To enhance the efficiency in the execution time for querying large RDF graphs, the evolving metaheuristic algorithms become an alternate to the traditional query optimization methods. This paper focuses on the problem of query optimization of semantic web data. An efficient algorithm called adaptive Cuckoo search (ACS) for querying and generating optimal query plan for large RDF graphs is designed in this research. Experiments were conducted on different datasets with varying number of predicates. The experimental results have exposed that the proposed approach has provided significant results in terms of query execution time. The extent to which the algorithm is efficient is tested and the results are documented.

  8. A Semantics-Based Information Distribution Framework for Large Web-Based Course Forum System

    ERIC Educational Resources Information Center

    Chim, Hung; Deng, Xiaotie

    2008-01-01

    We propose a novel data distribution framework for developing a large Web-based course forum system. In the distributed architectural design, each forum server is fully equipped with the ability to support some course forums independently. The forum servers collaborating with each other constitute the whole forum system. Therefore, the workload of…

  9. Building biomedical web communities using a semantically aware content management system.

    PubMed

    Das, Sudeshna; Girard, Lisa; Green, Tom; Weitzman, Louis; Lewis-Bowen, Alister; Clark, Tim

    2009-03-01

    Web-based biomedical communities are becoming an increasingly popular vehicle for sharing information amongst researchers and are fast gaining an online presence. However, information organization and exchange in such communities is usually unstructured, rendering interoperability between communities difficult. Furthermore, specialized software to create such communities at low cost-targeted at the specific common information requirements of biomedical researchers-has been largely lacking. At the same time, a growing number of biological knowledge bases and biomedical resources are being structured for the Semantic Web. Several groups are creating reference ontologies for the biomedical domain, actively publishing controlled vocabularies and making data available in Resource Description Framework (RDF) language. We have developed the Science Collaboration Framework (SCF) as a reusable platform for advanced structured online collaboration in biomedical research that leverages these ontologies and RDF resources. SCF supports structured 'Web 2.0' style community discourse amongst researchers, makes heterogeneous data resources available to the collaborating scientist, captures the semantics of the relationship among the resources and structures discourse around the resources. The first instance of the SCF framework is being used to create an open-access online community for stem cell research-StemBook (http://www.stembook.org). We believe that such a framework is required to achieve optimal productivity and leveraging of resources in interdisciplinary scientific research. We expect it to be particularly beneficial in highly interdisciplinary areas, such as neurodegenerative disease and neurorepair research, as well as having broad utility across the natural sciences.

  10. The Virtual Solar-Terrestrial Observatory; access to and use of diverse solar and solar- terrestrial data.

    NASA Astrophysics Data System (ADS)

    Fox, P.; McGuinness, D.; Cinquini, L.; West, P.; Garcia, J.; Zednik, S.; Benedict, J.

    2008-05-01

    This presentation will demonstrate how users and other data providers can utilize the Virtual Solar-Terrestrial Observatory (VSTO) to find, access and use diverse data holdings from the disciplines of solar, solar-terrestrial and space physics. VSTO provides a web portal, web services and a native applications programming interface for various levels of users. Since these access methods are based on semantic web technologies and refer to the VSTO ontology, users also have the option of taking advantage of value added services when accessing and using the data. We present example of both conventional use of VSTO as well as the advanced semantics use. Finally, we present our future directions for VSTO and semantic data frameworks in general.

  11. The Virtual Solar-Terrestrial Observatory; access to and use of diverse solar and solar-terrestrial data

    NASA Astrophysics Data System (ADS)

    Fox, P.

    2007-05-01

    This presentation will demonstrate how users and other data providers can utilize the Virtual Solar-Terrestrial Observatory (VSTO) to find, access and use diverse data holdings from the disciplines of solar, solar-terrestrial and space physics. VSTO provides a web portal, web services and a native applications programming interface for various levels of users. Since these access methods are based on semantic web technologies and refer to the VSTO ontology, users also have the option of taking advantage of value added services when accessing and using the data. We present example of both conventional use of VSTO as well as the advanced semantics use. Finally, we present our future directions for VSTO and semantic data frameworks in general.

  12. Semantically enabled and statistically supported biological hypothesis testing with tissue microarray databases

    PubMed Central

    2011-01-01

    Background Although many biological databases are applying semantic web technologies, meaningful biological hypothesis testing cannot be easily achieved. Database-driven high throughput genomic hypothesis testing requires both of the capabilities of obtaining semantically relevant experimental data and of performing relevant statistical testing for the retrieved data. Tissue Microarray (TMA) data are semantically rich and contains many biologically important hypotheses waiting for high throughput conclusions. Methods An application-specific ontology was developed for managing TMA and DNA microarray databases by semantic web technologies. Data were represented as Resource Description Framework (RDF) according to the framework of the ontology. Applications for hypothesis testing (Xperanto-RDF) for TMA data were designed and implemented by (1) formulating the syntactic and semantic structures of the hypotheses derived from TMA experiments, (2) formulating SPARQLs to reflect the semantic structures of the hypotheses, and (3) performing statistical test with the result sets returned by the SPARQLs. Results When a user designs a hypothesis in Xperanto-RDF and submits it, the hypothesis can be tested against TMA experimental data stored in Xperanto-RDF. When we evaluated four previously validated hypotheses as an illustration, all the hypotheses were supported by Xperanto-RDF. Conclusions We demonstrated the utility of high throughput biological hypothesis testing. We believe that preliminary investigation before performing highly controlled experiment can be benefited. PMID:21342584

  13. A federated semantic metadata registry framework for enabling interoperability across clinical research and care domains.

    PubMed

    Sinaci, A Anil; Laleci Erturkmen, Gokce B

    2013-10-01

    In order to enable secondary use of Electronic Health Records (EHRs) by bridging the interoperability gap between clinical care and research domains, in this paper, a unified methodology and the supporting framework is introduced which brings together the power of metadata registries (MDR) and semantic web technologies. We introduce a federated semantic metadata registry framework by extending the ISO/IEC 11179 standard, and enable integration of data element registries through Linked Open Data (LOD) principles where each Common Data Element (CDE) can be uniquely referenced, queried and processed to enable the syntactic and semantic interoperability. Each CDE and their components are maintained as LOD resources enabling semantic links with other CDEs, terminology systems and with implementation dependent content models; hence facilitating semantic search, much effective reuse and semantic interoperability across different application domains. There are several important efforts addressing the semantic interoperability in healthcare domain such as IHE DEX profile proposal, CDISC SHARE and CDISC2RDF. Our architecture complements these by providing a framework to interlink existing data element registries and repositories for multiplying their potential for semantic interoperability to a greater extent. Open source implementation of the federated semantic MDR framework presented in this paper is the core of the semantic interoperability layer of the SALUS project which enables the execution of the post marketing safety analysis studies on top of existing EHR systems. Copyright © 2013 Elsevier Inc. All rights reserved.

  14. A Framework of Knowledge Integration and Discovery for Supporting Pharmacogenomics Target Predication of Adverse Drug Events: A Case Study of Drug-Induced Long QT Syndrome.

    PubMed

    Jiang, Guoqian; Wang, Chen; Zhu, Qian; Chute, Christopher G

    2013-01-01

    Knowledge-driven text mining is becoming an important research area for identifying pharmacogenomics target genes. However, few of such studies have been focused on the pharmacogenomics targets of adverse drug events (ADEs). The objective of the present study is to build a framework of knowledge integration and discovery that aims to support pharmacogenomics target predication of ADEs. We integrate a semantically annotated literature corpus Semantic MEDLINE with a semantically coded ADE knowledgebase known as ADEpedia using a semantic web based framework. We developed a knowledge discovery approach combining a network analysis of a protein-protein interaction (PPI) network and a gene functional classification approach. We performed a case study of drug-induced long QT syndrome for demonstrating the usefulness of the framework in predicting potential pharmacogenomics targets of ADEs.

  15. Semantic Web repositories for genomics data using the eXframe platform

    PubMed Central

    2014-01-01

    Background With the advent of inexpensive assay technologies, there has been an unprecedented growth in genomics data as well as the number of databases in which it is stored. In these databases, sample annotation using ontologies and controlled vocabularies is becoming more common. However, the annotation is rarely available as Linked Data, in a machine-readable format, or for standardized queries using SPARQL. This makes large-scale reuse, or integration with other knowledge bases very difficult. Methods To address this challenge, we have developed the second generation of our eXframe platform, a reusable framework for creating online repositories of genomics experiments. This second generation model now publishes Semantic Web data. To accomplish this, we created an experiment model that covers provenance, citations, external links, assays, biomaterials used in the experiment, and the data collected during the process. The elements of our model are mapped to classes and properties from various established biomedical ontologies. Resource Description Framework (RDF) data is automatically produced using these mappings and indexed in an RDF store with a built-in Sparql Protocol and RDF Query Language (SPARQL) endpoint. Conclusions Using the open-source eXframe software, institutions and laboratories can create Semantic Web repositories of their experiments, integrate it with heterogeneous resources and make it interoperable with the vast Semantic Web of biomedical knowledge. PMID:25093072

  16. Connecting geoscience systems and data using Linked Open Data in the Web of Data

    NASA Astrophysics Data System (ADS)

    Ritschel, Bernd; Neher, Günther; Iyemori, Toshihiko; Koyama, Yukinobu; Yatagai, Akiyo; Murayama, Yasuhiro; Galkin, Ivan; King, Todd; Fung, Shing F.; Hughes, Steve; Habermann, Ted; Hapgood, Mike; Belehaki, Anna

    2014-05-01

    Linked Data or Linked Open Data (LOD) in the realm of free and publically accessible data is one of the most promising and most used semantic Web frameworks connecting various types of data and vocabularies including geoscience and related domains. The semantic Web extension to the commonly existing and used World Wide Web is based on the meaning of entities and relationships or in different words classes and properties used for data in a global data and information space, the Web of Data. LOD data is referenced and mash-uped by URIs and is retrievable using simple parameter controlled HTTP-requests leading to a result which is human-understandable or machine-readable. Furthermore the publishing and mash-up of data in the semantic Web realm is realized by specific Web standards, such as RDF, RDFS, OWL and SPARQL defined for the Web of Data. Semantic Web based mash-up is the Web method to aggregate and reuse various contents from different sources, such as e.g. using FOAF as a model and vocabulary for the description of persons and organizations -in our case- related to geoscience projects, instruments, observations, data and so on. On the example of three different geoscience data and information management systems, such as ESPAS, IUGONET and GFZ ISDC and the associated science data and related metadata or better called context data, the concept of the mash-up of systems and data using the semantic Web approach and the Linked Open Data framework is described in this publication. Because the three systems are based on different data models, data storage structures and technical implementations an extra semantic Web layer upon the existing interfaces is used for mash-up solutions. In order to satisfy the semantic Web standards, data transition processes, such as the transfer of content stored in relational databases or mapped in XML documents into SPARQL capable databases or endpoints using D2R or XSLT is necessary. In addition, the use of mapped and/or merged domain specific and cross-domain vocabularies in the sense of terminological ontologies are the foundation for a virtually unified data retrieval and access in IUGONET, ESPAS and GFZ ISDC data management systems. SPARQL endpoints realized either by originally RDF databases, e.g. Virtuoso or by virtual SPARQL endpoints, e.g. D2R services enable an only upon Web standard-based mash-up of domain-specific systems and data, such as in this case the space weather and geomagnetic domain but also cross-domain connection to data and vocabularies, e.g. related to NASA's VxOs, particularly VWO or NASA's PDS data system within LOD. LOD - Linked Open Data RDF - Resource Description Framework RDFS - RDF Schema OWL - Ontology Web Language SPARQL - SPARQL Protocol and RDF Query Language FOAF - Friends of a Friend ontology ESPAS - Near Earth Space Data Infrastructure for e-Science (Project) IUGONET - Inter-university Upper Atmosphere Global Observation Network (Project) GFZ ISDC - German Research Centre for Geosciences Information System and Data Center XML - Extensible Mark-up Language D2R - (Relational) Database to RDF (Transformation) XSLT - Extensible Stylesheet Language Transformation Virtuoso - OpenLink Virtuoso Universal Server (including RDF data management) NASA - National Aeronautics and Space Administration VOx - Virtual Observatories VWO - Virtual Wave Observatory PDS - Planetary Data System

  17. Semantics of data and service registration to advance interdisciplinary information and data access.

    NASA Astrophysics Data System (ADS)

    Fox, P. P.; McGuinness, D. L.; Raskin, R.; Sinha, A. K.

    2008-12-01

    In developing an application of semantic web methods and technologies to address the integration of heterogeneous and interdisciplinary earth-science datasets, we have developed methodologies for creating rich semantic descriptions (ontologies) of the application domains. We have leveraged and extended where possible existing ontology frameworks such as SWEET. As a result of this semantic approach, we have also utilized ontologic descriptions of key enabling elements of the application, such as the registration of datasets with ontologies at several levels of granularity. This has enabled the location and usage of the data across disciplines. We are also realizing the need to develop similar semantic registration of web service data holdings as well as those provided with community and/or standard markup languages (e.g. GeoSciML). This level of semantic enablement extending beyond domain terms and relations significantly enhances our ability to provide a coherent semantic data framework for data and information systems. Much of this work is on the frontier of technology development and we will present the current and near-future capabilities we are developing. This work arises from the Semantically-Enabled Science Data Integration (SESDI) project, which is an NASA/ESTO/ACCESS-funded project involving the High Altitude Observatory at the National Center for Atmospheric Research (NCAR), McGuinness Associates Consulting, NASA/JPL and Virginia Polytechnic University.

  18. Ontology driven integration platform for clinical and translational research

    PubMed Central

    Mirhaji, Parsa; Zhu, Min; Vagnoni, Mattew; Bernstam, Elmer V; Zhang, Jiajie; Smith, Jack W

    2009-01-01

    Semantic Web technologies offer a promising framework for integration of disparate biomedical data. In this paper we present the semantic information integration platform under development at the Center for Clinical and Translational Sciences (CCTS) at the University of Texas Health Science Center at Houston (UTHSC-H) as part of our Clinical and Translational Science Award (CTSA) program. We utilize the Semantic Web technologies not only for integrating, repurposing and classification of multi-source clinical data, but also to construct a distributed environment for information sharing, and collaboration online. Service Oriented Architecture (SOA) is used to modularize and distribute reusable services in a dynamic and distributed environment. Components of the semantic solution and its overall architecture are described. PMID:19208190

  19. Publication and Retrieval of Computational Chemical-Physical Data Via the Semantic Web. Final Technical Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ostlund, Neil

    This research showed the feasibility of applying the concepts of the Semantic Web to Computation Chemistry. We have created the first web portal (www.chemsem.com) that allows data created in the calculations of quantum chemistry, and other such chemistry calculations to be placed on the web in a way that makes the data accessible to scientists in a semantic form never before possible. The semantic web nature of the portal allows data to be searched, found, and used as an advance over the usual approach of a relational database. The semantic data on our portal has the nature of a Giantmore » Global Graph (GGG) that can be easily merged with related data and searched globally via a SPARQL Protocol and RDF Query Language (SPARQL) that makes global searches for data easier than with traditional methods. Our Semantic Web Portal requires that the data be understood by a computer and hence defined by an ontology (vocabulary). This ontology is used by the computer in understanding the data. We have created such an ontology for computational chemistry (purl.org/gc) that encapsulates a broad knowledge of the field of computational chemistry. We refer to this ontology as the Gainesville Core. While it is perhaps the first ontology for computational chemistry and is used by our portal, it is only a start of what must be a long multi-partner effort to define computational chemistry. In conjunction with the above efforts we have defined a new potential file standard (Common Standard for eXchange – CSX for computational chemistry data). This CSX file is the precursor of data in the Resource Description Framework (RDF) form that the semantic web requires. Our portal translates CSX files (as well as other computational chemistry data files) into RDF files that are part of the graph database that the semantic web employs. We propose a CSX file as a convenient way to encapsulate computational chemistry data.« less

  20. Querying phenotype-genotype relationships on patient datasets using semantic web technology: the example of cerebrotendinous xanthomatosis

    PubMed Central

    2012-01-01

    Background Semantic Web technology can considerably catalyze translational genetics and genomics research in medicine, where the interchange of information between basic research and clinical levels becomes crucial. This exchange involves mapping abstract phenotype descriptions from research resources, such as knowledge databases and catalogs, to unstructured datasets produced through experimental methods and clinical practice. This is especially true for the construction of mutation databases. This paper presents a way of harmonizing abstract phenotype descriptions with patient data from clinical practice, and querying this dataset about relationships between phenotypes and genetic variants, at different levels of abstraction. Methods Due to the current availability of ontological and terminological resources that have already reached some consensus in biomedicine, a reuse-based ontology engineering approach was followed. The proposed approach uses the Ontology Web Language (OWL) to represent the phenotype ontology and the patient model, the Semantic Web Rule Language (SWRL) to bridge the gap between phenotype descriptions and clinical data, and the Semantic Query Web Rule Language (SQWRL) to query relevant phenotype-genotype bidirectional relationships. The work tests the use of semantic web technology in the biomedical research domain named cerebrotendinous xanthomatosis (CTX), using a real dataset and ontologies. Results A framework to query relevant phenotype-genotype bidirectional relationships is provided. Phenotype descriptions and patient data were harmonized by defining 28 Horn-like rules in terms of the OWL concepts. In total, 24 patterns of SWQRL queries were designed following the initial list of competency questions. As the approach is based on OWL, the semantic of the framework adapts the standard logical model of an open world assumption. Conclusions This work demonstrates how semantic web technologies can be used to support flexible representation and computational inference mechanisms required to query patient datasets at different levels of abstraction. The open world assumption is especially good for describing only partially known phenotype-genotype relationships, in a way that is easily extensible. In future, this type of approach could offer researchers a valuable resource to infer new data from patient data for statistical analysis in translational research. In conclusion, phenotype description formalization and mapping to clinical data are two key elements for interchanging knowledge between basic and clinical research. PMID:22849591

  1. Enhanced reproducibility of SADI web service workflows with Galaxy and Docker.

    PubMed

    Aranguren, Mikel Egaña; Wilkinson, Mark D

    2015-01-01

    Semantic Web technologies have been widely applied in the life sciences, for example by data providers such as OpenLifeData and through web services frameworks such as SADI. The recently reported OpenLifeData2SADI project offers access to the vast OpenLifeData data store through SADI services. This article describes how to merge data retrieved from OpenLifeData2SADI with other SADI services using the Galaxy bioinformatics analysis platform, thus making this semantic data more amenable to complex analyses. This is demonstrated using a working example, which is made distributable and reproducible through a Docker image that includes SADI tools, along with the data and workflows that constitute the demonstration. The combination of Galaxy and Docker offers a solution for faithfully reproducing and sharing complex data retrieval and analysis workflows based on the SADI Semantic web service design patterns.

  2. An introduction to the Semantic Web for health sciences librarians.

    PubMed

    Robu, Ioana; Robu, Valentin; Thirion, Benoit

    2006-04-01

    The paper (1) introduces health sciences librarians to the main concepts and principles of the Semantic Web (SW) and (2) briefly reviews a number of projects on the handling of biomedical information that uses SW technology. The paper is structured into two main parts. "Semantic Web Technology" provides a high-level description, with examples, of the main standards and concepts: extensible markup language (XML), Resource Description Framework (RDF), RDF Schema (RDFS), ontologies, and their utility in information retrieval, concluding with mention of more advanced SW languages and their characteristics. "Semantic Web Applications and Research Projects in the Biomedical Field" is a brief review of the Unified Medical Language System (UMLS), Generalised Architecture for Languages, Encyclopedias and Nomenclatures in Medicine (GALEN), HealthCyberMap, LinkBase, and the thesaurus of the National Cancer Institute (NCI). The paper also mentions other benefits and by-products of the SW, citing projects related to them. Some of the problems facing the SW vision are presented, especially the ways in which the librarians' expertise in organizing knowledge and in structuring information may contribute to SW projects.

  3. Standard biological parts knowledgebase.

    PubMed

    Galdzicki, Michal; Rodriguez, Cesar; Chandran, Deepak; Sauro, Herbert M; Gennari, John H

    2011-02-24

    We have created the Knowledgebase of Standard Biological Parts (SBPkb) as a publically accessible Semantic Web resource for synthetic biology (sbolstandard.org). The SBPkb allows researchers to query and retrieve standard biological parts for research and use in synthetic biology. Its initial version includes all of the information about parts stored in the Registry of Standard Biological Parts (partsregistry.org). SBPkb transforms this information so that it is computable, using our semantic framework for synthetic biology parts. This framework, known as SBOL-semantic, was built as part of the Synthetic Biology Open Language (SBOL), a project of the Synthetic Biology Data Exchange Group. SBOL-semantic represents commonly used synthetic biology entities, and its purpose is to improve the distribution and exchange of descriptions of biological parts. In this paper, we describe the data, our methods for transformation to SBPkb, and finally, we demonstrate the value of our knowledgebase with a set of sample queries. We use RDF technology and SPARQL queries to retrieve candidate "promoter" parts that are known to be both negatively and positively regulated. This method provides new web based data access to perform searches for parts that are not currently possible.

  4. Using Semantic Web technologies for the generation of domain-specific templates to support clinical study metadata standards.

    PubMed

    Jiang, Guoqian; Evans, Julie; Endle, Cory M; Solbrig, Harold R; Chute, Christopher G

    2016-01-01

    The Biomedical Research Integrated Domain Group (BRIDG) model is a formal domain analysis model for protocol-driven biomedical research, and serves as a semantic foundation for application and message development in the standards developing organizations (SDOs). The increasing sophistication and complexity of the BRIDG model requires new approaches to the management and utilization of the underlying semantics to harmonize domain-specific standards. The objective of this study is to develop and evaluate a Semantic Web-based approach that integrates the BRIDG model with ISO 21090 data types to generate domain-specific templates to support clinical study metadata standards development. We developed a template generation and visualization system based on an open source Resource Description Framework (RDF) store backend, a SmartGWT-based web user interface, and a "mind map" based tool for the visualization of generated domain-specific templates. We also developed a RESTful Web Service informed by the Clinical Information Modeling Initiative (CIMI) reference model for access to the generated domain-specific templates. A preliminary usability study is performed and all reviewers (n = 3) had very positive responses for the evaluation questions in terms of the usability and the capability of meeting the system requirements (with the average score of 4.6). Semantic Web technologies provide a scalable infrastructure and have great potential to enable computable semantic interoperability of models in the intersection of health care and clinical research.

  5. Querying XML Data with SPARQL

    NASA Astrophysics Data System (ADS)

    Bikakis, Nikos; Gioldasis, Nektarios; Tsinaraki, Chrisa; Christodoulakis, Stavros

    SPARQL is today the standard access language for Semantic Web data. In the recent years XML databases have also acquired industrial importance due to the widespread applicability of XML in the Web. In this paper we present a framework that bridges the heterogeneity gap and creates an interoperable environment where SPARQL queries are used to access XML databases. Our approach assumes that fairly generic mappings between ontology constructs and XML Schema constructs have been automatically derived or manually specified. The mappings are used to automatically translate SPARQL queries to semantically equivalent XQuery queries which are used to access the XML databases. We present the algorithms and the implementation of SPARQL2XQuery framework, which is used for answering SPARQL queries over XML databases.

  6. Creating personalised clinical pathways by semantic interoperability with electronic health records.

    PubMed

    Wang, Hua-Qiong; Li, Jing-Song; Zhang, Yi-Fan; Suzuki, Muneou; Araki, Kenji

    2013-06-01

    There is a growing realisation that clinical pathways (CPs) are vital for improving the treatment quality of healthcare organisations. However, treatment personalisation is one of the main challenges when implementing CPs, and the inadequate dynamic adaptability restricts the practicality of CPs. The purpose of this study is to improve the practicality of CPs using semantic interoperability between knowledge-based CPs and semantic electronic health records (EHRs). Simple protocol and resource description framework query language is used to gather patient information from semantic EHRs. The gathered patient information is entered into the CP ontology represented by web ontology language. Then, after reasoning over rules described by semantic web rule language in the Jena semantic framework, we adjust the standardised CPs to meet different patients' practical needs. A CP for acute appendicitis is used as an example to illustrate how to achieve CP customisation based on the semantic interoperability between knowledge-based CPs and semantic EHRs. A personalised care plan is generated by comprehensively analysing the patient's personal allergy history and past medical history, which are stored in semantic EHRs. Additionally, by monitoring the patient's clinical information, an exception is recorded and handled during CP execution. According to execution results of the actual example, the solutions we present are shown to be technically feasible. This study contributes towards improving the clinical personalised practicality of standardised CPs. In addition, this study establishes the foundation for future work on the research and development of an independent CP system. Copyright © 2013 Elsevier B.V. All rights reserved.

  7. A VGI data integration framework based on linked data model

    NASA Astrophysics Data System (ADS)

    Wan, Lin; Ren, Rongrong

    2015-12-01

    This paper aims at the geographic data integration and sharing method for multiple online VGI data sets. We propose a semantic-enabled framework for online VGI sources cooperative application environment to solve a target class of geospatial problems. Based on linked data technologies - which is one of core components of semantic web, we can construct the relationship link among geographic features distributed in diverse VGI platform by using linked data modeling methods, then deploy these semantic-enabled entities on the web, and eventually form an interconnected geographic data network to support geospatial information cooperative application across multiple VGI data sources. The mapping and transformation from VGI sources to RDF linked data model is presented to guarantee the unique data represent model among different online social geographic data sources. We propose a mixed strategy which combined spatial distance similarity and feature name attribute similarity as the measure standard to compare and match different geographic features in various VGI data sets. And our work focuses on how to apply Markov logic networks to achieve interlinks of the same linked data in different VGI-based linked data sets. In our method, the automatic generating method of co-reference object identification model according to geographic linked data is discussed in more detail. It finally built a huge geographic linked data network across loosely-coupled VGI web sites. The results of the experiment built on our framework and the evaluation of our method shows the framework is reasonable and practicable.

  8. Advancing translational research with the Semantic Web.

    PubMed

    Ruttenberg, Alan; Clark, Tim; Bug, William; Samwald, Matthias; Bodenreider, Olivier; Chen, Helen; Doherty, Donald; Forsberg, Kerstin; Gao, Yong; Kashyap, Vipul; Kinoshita, June; Luciano, Joanne; Marshall, M Scott; Ogbuji, Chimezie; Rees, Jonathan; Stephens, Susie; Wong, Gwendolyn T; Wu, Elizabeth; Zaccagnini, Davide; Hongsermeier, Tonya; Neumann, Eric; Herman, Ivan; Cheung, Kei-Hoi

    2007-05-09

    A fundamental goal of the U.S. National Institute of Health (NIH) "Roadmap" is to strengthen Translational Research, defined as the movement of discoveries in basic research to application at the clinical level. A significant barrier to translational research is the lack of uniformly structured data across related biomedical domains. The Semantic Web is an extension of the current Web that enables navigation and meaningful use of digital resources by automatic processes. It is based on common formats that support aggregation and integration of data drawn from diverse sources. A variety of technologies have been built on this foundation that, together, support identifying, representing, and reasoning across a wide range of biomedical data. The Semantic Web Health Care and Life Sciences Interest Group (HCLSIG), set up within the framework of the World Wide Web Consortium, was launched to explore the application of these technologies in a variety of areas. Subgroups focus on making biomedical data available in RDF, working with biomedical ontologies, prototyping clinical decision support systems, working on drug safety and efficacy communication, and supporting disease researchers navigating and annotating the large amount of potentially relevant literature. We present a scenario that shows the value of the information environment the Semantic Web can support for aiding neuroscience researchers. We then report on several projects by members of the HCLSIG, in the process illustrating the range of Semantic Web technologies that have applications in areas of biomedicine. Semantic Web technologies present both promise and challenges. Current tools and standards are already adequate to implement components of the bench-to-bedside vision. On the other hand, these technologies are young. Gaps in standards and implementations still exist and adoption is limited by typical problems with early technology, such as the need for a critical mass of practitioners and installed base, and growing pains as the technology is scaled up. Still, the potential of interoperable knowledge sources for biomedicine, at the scale of the World Wide Web, merits continued work.

  9. Advancing translational research with the Semantic Web

    PubMed Central

    Ruttenberg, Alan; Clark, Tim; Bug, William; Samwald, Matthias; Bodenreider, Olivier; Chen, Helen; Doherty, Donald; Forsberg, Kerstin; Gao, Yong; Kashyap, Vipul; Kinoshita, June; Luciano, Joanne; Marshall, M Scott; Ogbuji, Chimezie; Rees, Jonathan; Stephens, Susie; Wong, Gwendolyn T; Wu, Elizabeth; Zaccagnini, Davide; Hongsermeier, Tonya; Neumann, Eric; Herman, Ivan; Cheung, Kei-Hoi

    2007-01-01

    Background A fundamental goal of the U.S. National Institute of Health (NIH) "Roadmap" is to strengthen Translational Research, defined as the movement of discoveries in basic research to application at the clinical level. A significant barrier to translational research is the lack of uniformly structured data across related biomedical domains. The Semantic Web is an extension of the current Web that enables navigation and meaningful use of digital resources by automatic processes. It is based on common formats that support aggregation and integration of data drawn from diverse sources. A variety of technologies have been built on this foundation that, together, support identifying, representing, and reasoning across a wide range of biomedical data. The Semantic Web Health Care and Life Sciences Interest Group (HCLSIG), set up within the framework of the World Wide Web Consortium, was launched to explore the application of these technologies in a variety of areas. Subgroups focus on making biomedical data available in RDF, working with biomedical ontologies, prototyping clinical decision support systems, working on drug safety and efficacy communication, and supporting disease researchers navigating and annotating the large amount of potentially relevant literature. Results We present a scenario that shows the value of the information environment the Semantic Web can support for aiding neuroscience researchers. We then report on several projects by members of the HCLSIG, in the process illustrating the range of Semantic Web technologies that have applications in areas of biomedicine. Conclusion Semantic Web technologies present both promise and challenges. Current tools and standards are already adequate to implement components of the bench-to-bedside vision. On the other hand, these technologies are young. Gaps in standards and implementations still exist and adoption is limited by typical problems with early technology, such as the need for a critical mass of practitioners and installed base, and growing pains as the technology is scaled up. Still, the potential of interoperable knowledge sources for biomedicine, at the scale of the World Wide Web, merits continued work. PMID:17493285

  10. AlzPharm: integration of neurodegeneration data using RDF.

    PubMed

    Lam, Hugo Y K; Marenco, Luis; Clark, Tim; Gao, Yong; Kinoshita, June; Shepherd, Gordon; Miller, Perry; Wu, Elizabeth; Wong, Gwendolyn T; Liu, Nian; Crasto, Chiquito; Morse, Thomas; Stephens, Susie; Cheung, Kei-Hoi

    2007-05-09

    Neuroscientists often need to access a wide range of data sets distributed over the Internet. These data sets, however, are typically neither integrated nor interoperable, resulting in a barrier to answering complex neuroscience research questions. Domain ontologies can enable the querying heterogeneous data sets, but they are not sufficient for neuroscience since the data of interest commonly span multiple research domains. To this end, e-Neuroscience seeks to provide an integrated platform for neuroscientists to discover new knowledge through seamless integration of the very diverse types of neuroscience data. Here we present a Semantic Web approach to building this e-Neuroscience framework by using the Resource Description Framework (RDF) and its vocabulary description language, RDF Schema (RDFS), as a standard data model to facilitate both representation and integration of the data. We have constructed a pilot ontology for BrainPharm (a subset of SenseLab) using RDFS and then converted a subset of the BrainPharm data into RDF according to the ontological structure. We have also integrated the converted BrainPharm data with existing RDF hypothesis and publication data from a pilot version of SWAN (Semantic Web Applications in Neuromedicine). Our implementation uses the RDF Data Model in Oracle Database 10g release 2 for data integration, query, and inference, while our Web interface allows users to query the data and retrieve the results in a convenient fashion. Accessing and integrating biomedical data which cuts across multiple disciplines will be increasingly indispensable and beneficial to neuroscience researchers. The Semantic Web approach we undertook has demonstrated a promising way to semantically integrate data sets created independently. It also shows how advanced queries and inferences can be performed over the integrated data, which are hard to achieve using traditional data integration approaches. Our pilot results suggest that our Semantic Web approach is suitable for realizing e-Neuroscience and generic enough to be applied in other biomedical fields.

  11. AlzPharm: integration of neurodegeneration data using RDF

    PubMed Central

    Lam, Hugo YK; Marenco, Luis; Clark, Tim; Gao, Yong; Kinoshita, June; Shepherd, Gordon; Miller, Perry; Wu, Elizabeth; Wong, Gwendolyn T; Liu, Nian; Crasto, Chiquito; Morse, Thomas; Stephens, Susie; Cheung, Kei-Hoi

    2007-01-01

    Background Neuroscientists often need to access a wide range of data sets distributed over the Internet. These data sets, however, are typically neither integrated nor interoperable, resulting in a barrier to answering complex neuroscience research questions. Domain ontologies can enable the querying heterogeneous data sets, but they are not sufficient for neuroscience since the data of interest commonly span multiple research domains. To this end, e-Neuroscience seeks to provide an integrated platform for neuroscientists to discover new knowledge through seamless integration of the very diverse types of neuroscience data. Here we present a Semantic Web approach to building this e-Neuroscience framework by using the Resource Description Framework (RDF) and its vocabulary description language, RDF Schema (RDFS), as a standard data model to facilitate both representation and integration of the data. Results We have constructed a pilot ontology for BrainPharm (a subset of SenseLab) using RDFS and then converted a subset of the BrainPharm data into RDF according to the ontological structure. We have also integrated the converted BrainPharm data with existing RDF hypothesis and publication data from a pilot version of SWAN (Semantic Web Applications in Neuromedicine). Our implementation uses the RDF Data Model in Oracle Database 10g release 2 for data integration, query, and inference, while our Web interface allows users to query the data and retrieve the results in a convenient fashion. Conclusion Accessing and integrating biomedical data which cuts across multiple disciplines will be increasingly indispensable and beneficial to neuroscience researchers. The Semantic Web approach we undertook has demonstrated a promising way to semantically integrate data sets created independently. It also shows how advanced queries and inferences can be performed over the integrated data, which are hard to achieve using traditional data integration approaches. Our pilot results suggest that our Semantic Web approach is suitable for realizing e-Neuroscience and generic enough to be applied in other biomedical fields. PMID:17493287

  12. Combining infobuttons and semantic web rules for identifying patterns and delivering highly-personalized education materials.

    PubMed

    Hulse, Nathan C; Long, Jie; Tao, Cui

    2013-01-01

    Infobuttons have been established to be an effective resource for addressing information needs at the point of care, as evidenced by recent research and their inclusion in government-based electronic health record incentive programs in the United States. Yet their utility has been limited to wide success for only a specific set of domains (lab data, medication orders, and problem lists) and only for discrete, singular concepts that are already documented in the electronic medical record. In this manuscript, we present an effort to broaden their utility by connecting a semantic web-based phenotyping engine with an infobutton framework in order to identify and address broader issues in patient data, derived from multiple data sources. We have tested these patterns by defining and testing semantic definitions of pre-diabetes and metabolic syndrome. We intend to carry forward relevant information to the infobutton framework to present timely, relevant education resources to patients and providers.

  13. An introduction to the Semantic Web for health sciences librarians*

    PubMed Central

    Robu, Ioana; Robu, Valentin; Thirion, Benoit

    2006-01-01

    Objectives: The paper (1) introduces health sciences librarians to the main concepts and principles of the Semantic Web (SW) and (2) briefly reviews a number of projects on the handling of biomedical information that uses SW technology. Methodology: The paper is structured into two main parts. “Semantic Web Technology” provides a high-level description, with examples, of the main standards and concepts: extensible markup language (XML), Resource Description Framework (RDF), RDF Schema (RDFS), ontologies, and their utility in information retrieval, concluding with mention of more advanced SW languages and their characteristics. “Semantic Web Applications and Research Projects in the Biomedical Field” is a brief review of the Unified Medical Language System (UMLS), Generalised Architecture for Languages, Encyclopedias and Nomenclatures in Medicine (GALEN), HealthCyberMap, LinkBase, and the thesaurus of the National Cancer Institute (NCI). The paper also mentions other benefits and by-products of the SW, citing projects related to them. Discussion and Conclusions: Some of the problems facing the SW vision are presented, especially the ways in which the librarians' expertise in organizing knowledge and in structuring information may contribute to SW projects. PMID:16636713

  14. Executing SADI services in Galaxy.

    PubMed

    Aranguren, Mikel Egaña; González, Alejandro Rodríguez; Wilkinson, Mark D

    2014-01-01

    In recent years Galaxy has become a popular workflow management system in bioinformatics, due to its ease of installation, use and extension. The availability of Semantic Web-oriented tools in Galaxy, however, is limited. This is also the case for Semantic Web Services such as those provided by the SADI project, i.e. services that consume and produce RDF. Here we present SADI-Galaxy, a tool generator that deploys selected SADI Services as typical Galaxy tools. SADI-Galaxy is a Galaxy tool generator: through SADI-Galaxy, any SADI-compliant service becomes a Galaxy tool that can participate in other out-standing features of Galaxy such as data storage, history, workflow creation, and publication. Galaxy can also be used to execute and combine SADI services as it does with other Galaxy tools. Finally, we have semi-automated the packing and unpacking of data into RDF such that other Galaxy tools can easily be combined with SADI services, plugging the rich SADI Semantic Web Service environment into the popular Galaxy ecosystem. SADI-Galaxy bridges the gap between Galaxy, an easy to use but "static" workflow system with a wide user-base, and SADI, a sophisticated, semantic, discovery-based framework for Web Services, thus benefiting both user communities.

  15. Standard Biological Parts Knowledgebase

    PubMed Central

    Galdzicki, Michal; Rodriguez, Cesar; Chandran, Deepak; Sauro, Herbert M.; Gennari, John H.

    2011-01-01

    We have created the Knowledgebase of Standard Biological Parts (SBPkb) as a publically accessible Semantic Web resource for synthetic biology (sbolstandard.org). The SBPkb allows researchers to query and retrieve standard biological parts for research and use in synthetic biology. Its initial version includes all of the information about parts stored in the Registry of Standard Biological Parts (partsregistry.org). SBPkb transforms this information so that it is computable, using our semantic framework for synthetic biology parts. This framework, known as SBOL-semantic, was built as part of the Synthetic Biology Open Language (SBOL), a project of the Synthetic Biology Data Exchange Group. SBOL-semantic represents commonly used synthetic biology entities, and its purpose is to improve the distribution and exchange of descriptions of biological parts. In this paper, we describe the data, our methods for transformation to SBPkb, and finally, we demonstrate the value of our knowledgebase with a set of sample queries. We use RDF technology and SPARQL queries to retrieve candidate “promoter” parts that are known to be both negatively and positively regulated. This method provides new web based data access to perform searches for parts that are not currently possible. PMID:21390321

  16. From Cues to Nudge: A Knowledge-Based Framework for Surveillance of Healthcare-Associated Infections.

    PubMed

    Shaban-Nejad, Arash; Mamiya, Hiroshi; Riazanov, Alexandre; Forster, Alan J; Baker, Christopher J O; Tamblyn, Robyn; Buckeridge, David L

    2016-01-01

    We propose an integrated semantic web framework consisting of formal ontologies, web services, a reasoner and a rule engine that together recommend appropriate level of patient-care based on the defined semantic rules and guidelines. The classification of healthcare-associated infections within the HAIKU (Hospital Acquired Infections - Knowledge in Use) framework enables hospitals to consistently follow the standards along with their routine clinical practice and diagnosis coding to improve quality of care and patient safety. The HAI ontology (HAIO) groups over thousands of codes into a consistent hierarchy of concepts, along with relationships and axioms to capture knowledge on hospital-associated infections and complications with focus on the big four types, surgical site infections (SSIs), catheter-associated urinary tract infection (CAUTI); hospital-acquired pneumonia, and blood stream infection. By employing statistical inferencing in our study we use a set of heuristics to define the rule axioms to improve the SSI case detection. We also demonstrate how the occurrence of an SSI is identified using semantic e-triggers. The e-triggers will be used to improve our risk assessment of post-operative surgical site infections (SSIs) for patients undergoing certain type of surgeries (e.g., coronary artery bypass graft surgery (CABG)).

  17. Using Semantic Web Technologies for Cohort Identification from Electronic Health Records for Clinical Research

    PubMed Central

    Pathak, Jyotishman; Kiefer, Richard C.; Chute, Christopher G.

    2012-01-01

    The ability to conduct genome-wide association studies (GWAS) has enabled new exploration of how genetic variations contribute to health and disease etiology. One of the key requirements to perform GWAS is the identification of subject cohorts with accurate classification of disease phenotypes. In this work, we study how emerging Semantic Web technologies can be applied in conjunction with clinical data stored in electronic health records (EHRs) to accurately identify subjects with specific diseases for inclusion in cohort studies. In particular, we demonstrate the role of using Resource Description Framework (RDF) for representing EHR data and enabling federated querying and inferencing via standardized Web protocols for identifying subjects with Diabetes Mellitus. Our study highlights the potential of using Web-scale data federation approaches to execute complex queries. PMID:22779040

  18. Supporting open collaboration in science through explicit and linked semantic description of processes

    USGS Publications Warehouse

    Gil, Yolanda; Michel, Felix; Ratnakar, Varun; Read, Jordan S.; Hauder, Matheus; Duffy, Christopher; Hanson, Paul C.; Dugan, Hilary

    2015-01-01

    The Web was originally developed to support collaboration in science. Although scientists benefit from many forms of collaboration on the Web (e.g., blogs, wikis, forums, code sharing, etc.), most collaborative projects are coordinated over email, phone calls, and in-person meetings. Our goal is to develop a collaborative infrastructure for scientists to work on complex science questions that require multi-disciplinary contributions to gather and analyze data, that cannot occur without significant coordination to synthesize findings, and that grow organically to accommodate new contributors as needed as the work evolves over time. Our approach is to develop an organic data science framework based on a task-centered organization of the collaboration, includes principles from social sciences for successful on-line communities, and exposes an open science process. Our approach is implemented as an extension of a semantic wiki platform, and captures formal representations of task decomposition structures, relations between tasks and users, and other properties of tasks, data, and other relevant science objects. All these entities are captured through the semantic wiki user interface, represented as semantic web objects, and exported as linked data.

  19. An Introduction to the Resource Description Framework.

    ERIC Educational Resources Information Center

    Miller, Eric

    1998-01-01

    Explains the Resource Description Framework (RDF), an infrastructure developed under the World Wide Web Consortium that enables the encoding, exchange, and reuse of structured metadata. It is an application of Extended Markup Language (XML), which is a subset of Standard Generalized Markup Language (SGML), and helps with expressing semantics.…

  20. BioSWR – Semantic Web Services Registry for Bioinformatics

    PubMed Central

    Repchevsky, Dmitry; Gelpi, Josep Ll.

    2014-01-01

    Despite of the variety of available Web services registries specially aimed at Life Sciences, their scope is usually restricted to a limited set of well-defined types of services. While dedicated registries are generally tied to a particular format, general-purpose ones are more adherent to standards and usually rely on Web Service Definition Language (WSDL). Although WSDL is quite flexible to support common Web services types, its lack of semantic expressiveness led to various initiatives to describe Web services via ontology languages. Nevertheless, WSDL 2.0 descriptions gained a standard representation based on Web Ontology Language (OWL). BioSWR is a novel Web services registry that provides standard Resource Description Framework (RDF) based Web services descriptions along with the traditional WSDL based ones. The registry provides Web-based interface for Web services registration, querying and annotation, and is also accessible programmatically via Representational State Transfer (REST) API or using a SPARQL Protocol and RDF Query Language. BioSWR server is located at http://inb.bsc.es/BioSWR/and its code is available at https://sourceforge.net/projects/bioswr/under the LGPL license. PMID:25233118

  1. BioSWR--semantic web services registry for bioinformatics.

    PubMed

    Repchevsky, Dmitry; Gelpi, Josep Ll

    2014-01-01

    Despite of the variety of available Web services registries specially aimed at Life Sciences, their scope is usually restricted to a limited set of well-defined types of services. While dedicated registries are generally tied to a particular format, general-purpose ones are more adherent to standards and usually rely on Web Service Definition Language (WSDL). Although WSDL is quite flexible to support common Web services types, its lack of semantic expressiveness led to various initiatives to describe Web services via ontology languages. Nevertheless, WSDL 2.0 descriptions gained a standard representation based on Web Ontology Language (OWL). BioSWR is a novel Web services registry that provides standard Resource Description Framework (RDF) based Web services descriptions along with the traditional WSDL based ones. The registry provides Web-based interface for Web services registration, querying and annotation, and is also accessible programmatically via Representational State Transfer (REST) API or using a SPARQL Protocol and RDF Query Language. BioSWR server is located at http://inb.bsc.es/BioSWR/and its code is available at https://sourceforge.net/projects/bioswr/under the LGPL license.

  2. Semantically Interoperable XML Data

    PubMed Central

    Vergara-Niedermayr, Cristobal; Wang, Fusheng; Pan, Tony; Kurc, Tahsin; Saltz, Joel

    2013-01-01

    XML is ubiquitously used as an information exchange platform for web-based applications in healthcare, life sciences, and many other domains. Proliferating XML data are now managed through latest native XML database technologies. XML data sources conforming to common XML schemas could be shared and integrated with syntactic interoperability. Semantic interoperability can be achieved through semantic annotations of data models using common data elements linked to concepts from ontologies. In this paper, we present a framework and software system to support the development of semantic interoperable XML based data sources that can be shared through a Grid infrastructure. We also present our work on supporting semantic validated XML data through semantic annotations for XML Schema, semantic validation and semantic authoring of XML data. We demonstrate the use of the system for a biomedical database of medical image annotations and markups. PMID:25298789

  3. Integrating Statistical Machine Learning in a Semantic Sensor Web for Proactive Monitoring and Control.

    PubMed

    Adeleke, Jude Adekunle; Moodley, Deshendran; Rens, Gavin; Adewumi, Aderemi Oluyinka

    2017-04-09

    Proactive monitoring and control of our natural and built environments is important in various application scenarios. Semantic Sensor Web technologies have been well researched and used for environmental monitoring applications to expose sensor data for analysis in order to provide responsive actions in situations of interest. While these applications provide quick response to situations, to minimize their unwanted effects, research efforts are still necessary to provide techniques that can anticipate the future to support proactive control, such that unwanted situations can be averted altogether. This study integrates a statistical machine learning based predictive model in a Semantic Sensor Web using stream reasoning. The approach is evaluated in an indoor air quality monitoring case study. A sliding window approach that employs the Multilayer Perceptron model to predict short term PM 2 . 5 pollution situations is integrated into the proactive monitoring and control framework. Results show that the proposed approach can effectively predict short term PM 2 . 5 pollution situations: precision of up to 0.86 and sensitivity of up to 0.85 is achieved over half hour prediction horizons, making it possible for the system to warn occupants or even to autonomously avert the predicted pollution situations within the context of Semantic Sensor Web.

  4. Integrating Statistical Machine Learning in a Semantic Sensor Web for Proactive Monitoring and Control

    PubMed Central

    Adeleke, Jude Adekunle; Moodley, Deshendran; Rens, Gavin; Adewumi, Aderemi Oluyinka

    2017-01-01

    Proactive monitoring and control of our natural and built environments is important in various application scenarios. Semantic Sensor Web technologies have been well researched and used for environmental monitoring applications to expose sensor data for analysis in order to provide responsive actions in situations of interest. While these applications provide quick response to situations, to minimize their unwanted effects, research efforts are still necessary to provide techniques that can anticipate the future to support proactive control, such that unwanted situations can be averted altogether. This study integrates a statistical machine learning based predictive model in a Semantic Sensor Web using stream reasoning. The approach is evaluated in an indoor air quality monitoring case study. A sliding window approach that employs the Multilayer Perceptron model to predict short term PM2.5 pollution situations is integrated into the proactive monitoring and control framework. Results show that the proposed approach can effectively predict short term PM2.5 pollution situations: precision of up to 0.86 and sensitivity of up to 0.85 is achieved over half hour prediction horizons, making it possible for the system to warn occupants or even to autonomously avert the predicted pollution situations within the context of Semantic Sensor Web. PMID:28397776

  5. Leveraging Pattern Semantics for Extracting Entities in Enterprises

    PubMed Central

    Tao, Fangbo; Zhao, Bo; Fuxman, Ariel; Li, Yang; Han, Jiawei

    2015-01-01

    Entity Extraction is a process of identifying meaningful entities from text documents. In enterprises, extracting entities improves enterprise efficiency by facilitating numerous applications, including search, recommendation, etc. However, the problem is particularly challenging on enterprise domains due to several reasons. First, the lack of redundancy of enterprise entities makes previous web-based systems like NELL and OpenIE not effective, since using only high-precision/low-recall patterns like those systems would miss the majority of sparse enterprise entities, while using more low-precision patterns in sparse setting also introduces noise drastically. Second, semantic drift is common in enterprises (“Blue” refers to “Windows Blue”), such that public signals from the web cannot be directly applied on entities. Moreover, many internal entities never appear on the web. Sparse internal signals are the only source for discovering them. To address these challenges, we propose an end-to-end framework for extracting entities in enterprises, taking the input of enterprise corpus and limited seeds to generate a high-quality entity collection as output. We introduce the novel concept of Semantic Pattern Graph to leverage public signals to understand the underlying semantics of lexical patterns, reinforce pattern evaluation using mined semantics, and yield more accurate and complete entities. Experiments on Microsoft enterprise data show the effectiveness of our approach. PMID:26705540

  6. Leveraging Pattern Semantics for Extracting Entities in Enterprises.

    PubMed

    Tao, Fangbo; Zhao, Bo; Fuxman, Ariel; Li, Yang; Han, Jiawei

    2015-05-01

    Entity Extraction is a process of identifying meaningful entities from text documents. In enterprises, extracting entities improves enterprise efficiency by facilitating numerous applications, including search, recommendation, etc. However, the problem is particularly challenging on enterprise domains due to several reasons. First, the lack of redundancy of enterprise entities makes previous web-based systems like NELL and OpenIE not effective, since using only high-precision/low-recall patterns like those systems would miss the majority of sparse enterprise entities, while using more low-precision patterns in sparse setting also introduces noise drastically. Second, semantic drift is common in enterprises ("Blue" refers to "Windows Blue"), such that public signals from the web cannot be directly applied on entities. Moreover, many internal entities never appear on the web. Sparse internal signals are the only source for discovering them. To address these challenges, we propose an end-to-end framework for extracting entities in enterprises, taking the input of enterprise corpus and limited seeds to generate a high-quality entity collection as output. We introduce the novel concept of Semantic Pattern Graph to leverage public signals to understand the underlying semantics of lexical patterns, reinforce pattern evaluation using mined semantics, and yield more accurate and complete entities. Experiments on Microsoft enterprise data show the effectiveness of our approach.

  7. Semantic Integration for Marine Science Interoperability Using Web Technologies

    NASA Astrophysics Data System (ADS)

    Rueda, C.; Bermudez, L.; Graybeal, J.; Isenor, A. W.

    2008-12-01

    The Marine Metadata Interoperability Project, MMI (http://marinemetadata.org) promotes the exchange, integration, and use of marine data through enhanced data publishing, discovery, documentation, and accessibility. A key effort is the definition of an Architectural Framework and Operational Concept for Semantic Interoperability (http://marinemetadata.org/sfc), which is complemented with the development of tools that realize critical use cases in semantic interoperability. In this presentation, we describe a set of such Semantic Web tools that allow performing important interoperability tasks, ranging from the creation of controlled vocabularies and the mapping of terms across multiple ontologies, to the online registration, storage, and search services needed to work with the ontologies (http://mmisw.org). This set of services uses Web standards and technologies, including Resource Description Framework (RDF), Web Ontology language (OWL), Web services, and toolkits for Rich Internet Application development. We will describe the following components: MMI Ontology Registry: The MMI Ontology Registry and Repository provides registry and storage services for ontologies. Entries in the registry are associated with projects defined by the registered users. Also, sophisticated search functions, for example according to metadata items and vocabulary terms, are provided. Client applications can submit search requests using the WC3 SPARQL Query Language for RDF. Voc2RDF: This component converts an ASCII comma-delimited set of terms and definitions into an RDF file. Voc2RDF facilitates the creation of controlled vocabularies by using a simple form-based user interface. Created vocabularies and their descriptive metadata can be submitted to the MMI Ontology Registry for versioning and community access. VINE: The Vocabulary Integration Environment component allows the user to map vocabulary terms across multiple ontologies. Various relationships can be established, for example exactMatch, narrowerThan, and subClassOf. VINE can compute inferred mappings based on the given associations. Attributes about each mapping, like comments and a confidence level, can also be included. VINE also supports registering and storing resulting mapping files in the Ontology Registry. The presentation will describe the application of semantic technologies in general, and our planned applications in particular, to solve data management problems in the marine and environmental sciences.

  8. On the Semantics of SPARQL

    NASA Astrophysics Data System (ADS)

    Arenas, Marcelo; Gutierrez, Claudio; Pérez, Jorge

    The Resource Description Framework (RDF) is the standard data model for representing information about World Wide Web resources. In January 2008, it was released the recommendation of the W3C for querying RDF data, a query language called SPARQL. In this chapter, we give a detailed description of the semantics of this language. We start by focusing on the definition of a formal semantics for the core part of SPARQL, and then move to the definition for the entire language, including all the features in the specification of SPARQL by the W3C such as blank nodes in graph patterns and bag semantics for solutions.

  9. Open semantic annotation of scientific publications using DOMEO.

    PubMed

    Ciccarese, Paolo; Ocana, Marco; Clark, Tim

    2012-04-24

    Our group has developed a useful shared software framework for performing, versioning, sharing and viewing Web annotations of a number of kinds, using an open representation model. The Domeo Annotation Tool was developed in tandem with this open model, the Annotation Ontology (AO). Development of both the Annotation Framework and the open model was driven by requirements of several different types of alpha users, including bench scientists and biomedical curators from university research labs, online scientific communities, publishing and pharmaceutical companies.Several use cases were incrementally implemented by the toolkit. These use cases in biomedical communications include personal note-taking, group document annotation, semantic tagging, claim-evidence-context extraction, reagent tagging, and curation of textmining results from entity extraction algorithms. We report on the Domeo user interface here. Domeo has been deployed in beta release as part of the NIH Neuroscience Information Framework (NIF, http://www.neuinfo.org) and is scheduled for production deployment in the NIF's next full release.Future papers will describe other aspects of this work in detail, including Annotation Framework Services and components for integrating with external textmining services, such as the NCBO Annotator web service, and with other textmining applications using the Apache UIMA framework.

  10. Open semantic annotation of scientific publications using DOMEO

    PubMed Central

    2012-01-01

    Background Our group has developed a useful shared software framework for performing, versioning, sharing and viewing Web annotations of a number of kinds, using an open representation model. Methods The Domeo Annotation Tool was developed in tandem with this open model, the Annotation Ontology (AO). Development of both the Annotation Framework and the open model was driven by requirements of several different types of alpha users, including bench scientists and biomedical curators from university research labs, online scientific communities, publishing and pharmaceutical companies. Several use cases were incrementally implemented by the toolkit. These use cases in biomedical communications include personal note-taking, group document annotation, semantic tagging, claim-evidence-context extraction, reagent tagging, and curation of textmining results from entity extraction algorithms. Results We report on the Domeo user interface here. Domeo has been deployed in beta release as part of the NIH Neuroscience Information Framework (NIF, http://www.neuinfo.org) and is scheduled for production deployment in the NIF’s next full release. Future papers will describe other aspects of this work in detail, including Annotation Framework Services and components for integrating with external textmining services, such as the NCBO Annotator web service, and with other textmining applications using the Apache UIMA framework. PMID:22541592

  11. Towards the novel reasoning among particles in PSO by the use of RDF and SPARQL.

    PubMed

    Fister, Iztok; Yang, Xin-She; Ljubič, Karin; Fister, Dušan; Brest, Janez; Fister, Iztok

    2014-01-01

    The significant development of the Internet has posed some new challenges and many new programming tools have been developed to address such challenges. Today, semantic web is a modern paradigm for representing and accessing knowledge data on the Internet. This paper tries to use the semantic tools such as resource definition framework (RDF) and RDF query language (SPARQL) for the optimization purpose. These tools are combined with particle swarm optimization (PSO) and the selection of the best solutions depends on its fitness. Instead of the local best solution, a neighborhood of solutions for each particle can be defined and used for the calculation of the new position, based on the key ideas from semantic web domain. The preliminary results by optimizing ten benchmark functions showed the promising results and thus this method should be investigated further.

  12. Addressing the Challenges of Multi-Domain Data Integration with the SemantEco Framework

    NASA Astrophysics Data System (ADS)

    Patton, E. W.; Seyed, P.; McGuinness, D. L.

    2013-12-01

    Data integration across multiple domains will continue to be a challenge with the proliferation of big data in the sciences. Data origination issues and how data are manipulated are critical to enable scientists to understand and consume disparate datasets as research becomes more multidisciplinary. We present the SemantEco framework as an exemplar for designing an integrative portal for data discovery, exploration, and interpretation that uses best practice W3C Recommendations. We use the Resource Description Framework (RDF) with extensible ontologies described in the Web Ontology Language (OWL) to provide graph-based data representation. Furthermore, SemantEco ingests data via the software package csv2rdf4lod, which generates data provenance using the W3C provenance recommendation (PROV). Our presentation will discuss benefits and challenges of semantic integration, their effect on runtime performance, and how the SemantEco framework assisted in identifying performance issues and improved query performance across multiple domains by an order of magnitude. SemantEco benefits from a semantic approach that provides an 'open world', which allows data to incrementally change just as it does in the real world. SemantEco modules may load new ontologies and data using the W3C's SPARQL Protocol and RDF Query Language via HTTP. Modules may also provide user interface elements for applications and query capabilities to support new use cases. Modules can associate with domains, which are first-class objects in SemantEco. This enables SemantEco to perform integration and reasoning both within and across domains on module-provided data. The SemantEco framework has been used to construct a web portal for environmental and ecological data. The portal includes water and air quality data from the U.S. Geological Survey (USGS) and Environmental Protection Agency (EPA) and species observation counts for birds and fish from the Avian Knowledge Network and the Santa Barbara Long Term Ecological Research, respectively. We provide regulation ontologies using OWL2 datatype facets to detect out-of-range measurements for environmental standards set by the EPA, i.a. Users adjust queries using module-defined facets and a map presents the resulting measurement sites. Custom icons identify sites that violate regulations, making them easy to locate. Selecting a site gives the option of charting spatially proximate data from different domains over time. Our portal currently provides 1.6 billion triples of scientific data in RDF. We segment data by ZIP code and reasoning over 2157 measurements with our EPA regulation ontology that contains 131 regulations takes 2.5 seconds on a 2.4 GHz Intel Core 2 Quad with 8 GB of RAM. SemantEco's modular design and reasoning capabilities make it an exemplar for building multidisciplinary data integration tools that provide data access to scientists and the general population alike. Its provenance tracking provides accountability and its reasoning services can assist users in interpreting data. Future work includes support for geographical queries using the Open Geospatial Consortium's GeoSPARQL standard.

  13. EAGLE: 'EAGLE'Is an' Algorithmic Graph Library for Exploration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    2015-01-16

    The Resource Description Framework (RDF) and SPARQL Protocol and RDF Query Language (SPARQL) were introduced about a decade ago to enable flexible schema-free data interchange on the Semantic Web. Today data scientists use the framework as a scalable graph representation for integrating, querying, exploring and analyzing data sets hosted at different sources. With increasing adoption, the need for graph mining capabilities for the Semantic Web has emerged. Today there is no tools to conduct "graph mining" on RDF standard data sets. We address that need through implementation of popular iterative Graph Mining algorithms (Triangle count, Connected component analysis, degree distribution,more » diversity degree, PageRank, etc.). We implement these algorithms as SPARQL queries, wrapped within Python scripts and call our software tool as EAGLE. In RDF style, EAGLE stands for "EAGLE 'Is an' algorithmic graph library for exploration. EAGLE is like 'MATLAB' for 'Linked Data.'« less

  14. A Pilot Study on Modeling of Diagnostic Criteria Using OWL and SWRL.

    PubMed

    Hong, Na; Jiang, Guoqian; Pathak, Jyotishiman; Chute, Christopher G

    2015-01-01

    The objective of this study is to describe our efforts in a pilot study on modeling diagnostic criteria using a Semantic Web-based approach. We reused the basic framework of the ICD-11 content model and refined it into an operational model in the Web Ontology Language (OWL). The refinement is based on a bottom-up analysis method, in which we analyzed data elements (including value sets) in a collection (n=20) of randomly selected diagnostic criteria. We also performed a case study to formalize rule logic in the diagnostic criteria of metabolic syndrome using the Semantic Web Rule Language (SWRL). The results demonstrated that it is feasible to use OWL and SWRL to formalize the diagnostic criteria knowledge, and to execute the rules through reasoning.

  15. A Framework for Sharing and Integrating Remote Sensing and GIS Models Based on Web Service

    PubMed Central

    Chen, Zeqiang; Lin, Hui; Chen, Min; Liu, Deer; Bao, Ying; Ding, Yulin

    2014-01-01

    Sharing and integrating Remote Sensing (RS) and Geographic Information System/Science (GIS) models are critical for developing practical application systems. Facilitating model sharing and model integration is a problem for model publishers and model users, respectively. To address this problem, a framework based on a Web service for sharing and integrating RS and GIS models is proposed in this paper. The fundamental idea of the framework is to publish heterogeneous RS and GIS models into standard Web services for sharing and interoperation and then to integrate the RS and GIS models using Web services. For the former, a “black box” and a visual method are employed to facilitate the publishing of the models as Web services. For the latter, model integration based on the geospatial workflow and semantic supported marching method is introduced. Under this framework, model sharing and integration is applied for developing the Pearl River Delta water environment monitoring system. The results show that the framework can facilitate model sharing and model integration for model publishers and model users. PMID:24901016

  16. A framework for sharing and integrating remote sensing and GIS models based on Web service.

    PubMed

    Chen, Zeqiang; Lin, Hui; Chen, Min; Liu, Deer; Bao, Ying; Ding, Yulin

    2014-01-01

    Sharing and integrating Remote Sensing (RS) and Geographic Information System/Science (GIS) models are critical for developing practical application systems. Facilitating model sharing and model integration is a problem for model publishers and model users, respectively. To address this problem, a framework based on a Web service for sharing and integrating RS and GIS models is proposed in this paper. The fundamental idea of the framework is to publish heterogeneous RS and GIS models into standard Web services for sharing and interoperation and then to integrate the RS and GIS models using Web services. For the former, a "black box" and a visual method are employed to facilitate the publishing of the models as Web services. For the latter, model integration based on the geospatial workflow and semantic supported marching method is introduced. Under this framework, model sharing and integration is applied for developing the Pearl River Delta water environment monitoring system. The results show that the framework can facilitate model sharing and model integration for model publishers and model users.

  17. BioHackathon series in 2011 and 2012: penetration of ontology and linked data in life science domains

    PubMed Central

    2014-01-01

    The application of semantic technologies to the integration of biological data and the interoperability of bioinformatics analysis and visualization tools has been the common theme of a series of annual BioHackathons hosted in Japan for the past five years. Here we provide a review of the activities and outcomes from the BioHackathons held in 2011 in Kyoto and 2012 in Toyama. In order to efficiently implement semantic technologies in the life sciences, participants formed various sub-groups and worked on the following topics: Resource Description Framework (RDF) models for specific domains, text mining of the literature, ontology development, essential metadata for biological databases, platforms to enable efficient Semantic Web technology development and interoperability, and the development of applications for Semantic Web data. In this review, we briefly introduce the themes covered by these sub-groups. The observations made, conclusions drawn, and software development projects that emerged from these activities are discussed. PMID:24495517

  18. A neotropical Miocene pollen database employing image-based search and semantic modeling.

    PubMed

    Han, Jing Ginger; Cao, Hongfei; Barb, Adrian; Punyasena, Surangi W; Jaramillo, Carlos; Shyu, Chi-Ren

    2014-08-01

    Digital microscopic pollen images are being generated with increasing speed and volume, producing opportunities to develop new computational methods that increase the consistency and efficiency of pollen analysis and provide the palynological community a computational framework for information sharing and knowledge transfer. • Mathematical methods were used to assign trait semantics (abstract morphological representations) of the images of neotropical Miocene pollen and spores. Advanced database-indexing structures were built to compare and retrieve similar images based on their visual content. A Web-based system was developed to provide novel tools for automatic trait semantic annotation and image retrieval by trait semantics and visual content. • Mathematical models that map visual features to trait semantics can be used to annotate images with morphology semantics and to search image databases with improved reliability and productivity. Images can also be searched by visual content, providing users with customized emphases on traits such as color, shape, and texture. • Content- and semantic-based image searches provide a powerful computational platform for pollen and spore identification. The infrastructure outlined provides a framework for building a community-wide palynological resource, streamlining the process of manual identification, analysis, and species discovery.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yan, Rui; Praggastis, Brenda L.; Smith, William P.

    While streaming data have become increasingly more popular in business and research communities, semantic models and processing software for streaming data have not kept pace. Traditional semantic solutions have not addressed transient data streams. Semantic web languages (e.g., RDF, OWL) have typically addressed static data settings and linked data approaches have predominantly addressed static or growing data repositories. Streaming data settings have some fundamental differences; in particular, data are consumed on the fly and data may expire. Stream reasoning, a combination of stream processing and semantic reasoning, has emerged with the vision of providing "smart" processing of streaming data. C-SPARQLmore » is a prominent stream reasoning system that handles semantic (RDF) data streams. Many stream reasoning systems including C-SPARQL use a sliding window and use data arrival time to evict data. For data streams that include expiration times, a simple arrival time scheme is inadequate if the window size does not match the expiration period. In this paper, we propose a cache-enabled, order-aware, ontology-based stream reasoning framework. This framework consumes RDF streams with expiration timestamps assigned by the streaming source. Our framework utilizes both arrival and expiration timestamps in its cache eviction policies. In addition, we introduce the notion of "semantic importance" which aims to address the relevance of data to the expected reasoning, thus enabling the eviction algorithms to be more context- and reasoning-aware when choosing what data to maintain for question answering. We evaluate this framework by implementing three different prototypes and utilizing five metrics. The trade-offs of deploying the proposed framework are also discussed.« less

  20. SSWAP: A Simple Semantic Web Architecture and Protocol for Semantic Web Services

    USDA-ARS?s Scientific Manuscript database

    SSWAP (Simple Semantic Web Architecture and Protocol) is an architecture, protocol, and platform for using reasoning to semantically integrate heterogeneous disparate data and services on the web. SSWAP is the driving technology behind the Virtual Plant Information Network, an NSF-funded semantic w...

  1. Enrichment and Ranking of the YouTube Tag Space and Integration with the Linked Data Cloud

    NASA Astrophysics Data System (ADS)

    Choudhury, Smitashree; Breslin, John G.; Passant, Alexandre

    The increase of personal digital cameras with video functionality and video-enabled camera phones has increased the amount of user-generated videos on the Web. People are spending more and more time viewing online videos as a major source of entertainment and "infotainment". Social websites allow users to assign shared free-form tags to user-generated multimedia resources, thus generating annotations for objects with a minimum amount of effort. Tagging allows communities to organise their multimedia items into browseable sets, but these tags may be poorly chosen and related tags may be omitted. Current techniques to retrieve, integrate and present this media to users are deficient and could do with improvement. In this paper, we describe a framework for semantic enrichment, ranking and integration of web video tags using Semantic Web technologies. Semantic enrichment of folksonomies can bridge the gap between the uncontrolled and flat structures typically found in user-generated content and structures provided by the Semantic Web. The enhancement of tag spaces with semantics has been accomplished through two major tasks: (1) a tag space expansion and ranking step; and (2) through concept matching and integration with the Linked Data cloud. We have explored social, temporal and spatial contexts to enrich and extend the existing tag space. The resulting semantic tag space is modelled via a local graph based on co-occurrence distances for ranking. A ranked tag list is mapped and integrated with the Linked Data cloud through the DBpedia resource repository. Multi-dimensional context filtering for tag expansion means that tag ranking is much easier and it provides less ambiguous tag to concept matching.

  2. A framework for semantic interoperability in healthcare: a service oriented architecture based on health informatics standards.

    PubMed

    Ryan, Amanda; Eklund, Peter

    2008-01-01

    Healthcare information is composed of many types of varying and heterogeneous data. Semantic interoperability in healthcare is especially important when all these different types of data need to interact. Presented in this paper is a solution to interoperability in healthcare based on a standards-based middleware software architecture used in enterprise solutions. This architecture has been translated into the healthcare domain using a messaging and modeling standard which upholds the ideals of the Semantic Web (HL7 V3) combined with a well-known standard terminology of clinical terms (SNOMED CT).

  3. S3DB core: a framework for RDF generation and management in bioinformatics infrastructures

    PubMed Central

    2010-01-01

    Background Biomedical research is set to greatly benefit from the use of semantic web technologies in the design of computational infrastructure. However, beyond well defined research initiatives, substantial issues of data heterogeneity, source distribution, and privacy currently stand in the way towards the personalization of Medicine. Results A computational framework for bioinformatic infrastructure was designed to deal with the heterogeneous data sources and the sensitive mixture of public and private data that characterizes the biomedical domain. This framework consists of a logical model build with semantic web tools, coupled with a Markov process that propagates user operator states. An accompanying open source prototype was developed to meet a series of applications that range from collaborative multi-institution data acquisition efforts to data analysis applications that need to quickly traverse complex data structures. This report describes the two abstractions underlying the S3DB-based infrastructure, logical and numerical, and discusses its generality beyond the immediate confines of existing implementations. Conclusions The emergence of the "web as a computer" requires a formal model for the different functionalities involved in reading and writing to it. The S3DB core model proposed was found to address the design criteria of biomedical computational infrastructure, such as those supporting large scale multi-investigator research, clinical trials, and molecular epidemiology. PMID:20646315

  4. An Educational Tool for Browsing the Semantic Web

    ERIC Educational Resources Information Center

    Yoo, Sujin; Kim, Younghwan; Park, Seongbin

    2013-01-01

    The Semantic Web is an extension of the current Web where information is represented in a machine processable way. It is not separate from the current Web and one of the confusions that novice users might have is where the Semantic Web is. In fact, users can easily encounter RDF documents that are components of the Semantic Web while they navigate…

  5. Digital Investigations of AN Archaeological Smart Point Cloud: a Real Time Web-Based Platform to Manage the Visualisation of Semantical Queries

    NASA Astrophysics Data System (ADS)

    Poux, F.; Neuville, R.; Hallot, P.; Van Wersch, L.; Luczfalvy Jancsó, A.; Billen, R.

    2017-05-01

    While virtual copies of the real world tend to be created faster than ever through point clouds and derivatives, their working proficiency by all professionals' demands adapted tools to facilitate knowledge dissemination. Digital investigations are changing the way cultural heritage researchers, archaeologists, and curators work and collaborate to progressively aggregate expertise through one common platform. In this paper, we present a web application in a WebGL framework accessible on any HTML5-compatible browser. It allows real time point cloud exploration of the mosaics in the Oratory of Germigny-des-Prés, and emphasises the ease of use as well as performances. Our reasoning engine is constructed over a semantically rich point cloud data structure, where metadata has been injected a priori. We developed a tool that directly allows semantic extraction and visualisation of pertinent information for the end users. It leads to efficient communication between actors by proposing optimal 3D viewpoints as a basis on which interactions can grow.

  6. Semantic Service Design for Collaborative Business Processes in Internetworked Enterprises

    NASA Astrophysics Data System (ADS)

    Bianchini, Devis; Cappiello, Cinzia; de Antonellis, Valeria; Pernici, Barbara

    Modern collaborating enterprises can be seen as borderless organizations whose processes are dynamically transformed and integrated with the ones of their partners (Internetworked Enterprises, IE), thus enabling the design of collaborative business processes. The adoption of Semantic Web and service-oriented technologies for implementing collaboration in such distributed and heterogeneous environments promises significant benefits. IE can model their own processes independently by using the Software as a Service paradigm (SaaS). Each enterprise maintains a catalog of available services and these can be shared across IE and reused to build up complex collaborative processes. Moreover, each enterprise can adopt its own terminology and concepts to describe business processes and component services. This brings requirements to manage semantic heterogeneity in process descriptions which are distributed across different enterprise systems. To enable effective service-based collaboration, IEs have to standardize their process descriptions and model them through component services using the same approach and principles. For enabling collaborative business processes across IE, services should be designed following an homogeneous approach, possibly maintaining a uniform level of granularity. In the paper we propose an ontology-based semantic modeling approach apt to enrich and reconcile semantics of process descriptions to facilitate process knowledge management and to enable semantic service design (by discovery, reuse and integration of process elements/constructs). The approach brings together Semantic Web technologies, techniques in process modeling, ontology building and semantic matching in order to provide a comprehensive semantic modeling framework.

  7. Organizing Diverse, Distributed Project Information

    NASA Technical Reports Server (NTRS)

    Keller, Richard M.

    2003-01-01

    SemanticOrganizer is a software application designed to organize and integrate information generated within a distributed organization or as part of a project that involves multiple, geographically dispersed collaborators. SemanticOrganizer incorporates the capabilities of database storage, document sharing, hypermedia navigation, and semantic-interlinking into a system that can be customized to satisfy the specific information-management needs of different user communities. The program provides a centralized repository of information that is both secure and accessible to project collaborators via the World Wide Web. SemanticOrganizer's repository can be used to collect diverse information (including forms, documents, notes, data, spreadsheets, images, and sounds) from computers at collaborators work sites. The program organizes the information using a unique network-structured conceptual framework, wherein each node represents a data record that contains not only the original information but also metadata (in effect, standardized data that characterize the information). Links among nodes express semantic relationships among the data records. The program features a Web interface through which users enter, interlink, and/or search for information in the repository. By use of this repository, the collaborators have immediate access to the most recent project information, as well as to archived information. A key advantage to SemanticOrganizer is its ability to interlink information together in a natural fashion using customized terminology and concepts that are familiar to a user community.

  8. Neuroimaging, Genetics, and Clinical Data Sharing in Python Using the CubicWeb Framework

    PubMed Central

    Grigis, Antoine; Goyard, David; Cherbonnier, Robin; Gareau, Thomas; Papadopoulos Orfanos, Dimitri; Chauvat, Nicolas; Di Mascio, Adrien; Schumann, Gunter; Spooren, Will; Murphy, Declan; Frouin, Vincent

    2017-01-01

    In neurosciences or psychiatry, the emergence of large multi-center population imaging studies raises numerous technological challenges. From distributed data collection, across different institutions and countries, to final data publication service, one must handle the massive, heterogeneous, and complex data from genetics, imaging, demographics, or clinical scores. These data must be both efficiently obtained and downloadable. We present a Python solution, based on the CubicWeb open-source semantic framework, aimed at building population imaging study repositories. In addition, we focus on the tools developed around this framework to overcome the challenges associated with data sharing and collaborative requirements. We describe a set of three highly adaptive web services that transform the CubicWeb framework into a (1) multi-center upload platform, (2) collaborative quality assessment platform, and (3) publication platform endowed with massive-download capabilities. Two major European projects, IMAGEN and EU-AIMS, are currently supported by the described framework. We also present a Python package that enables end users to remotely query neuroimaging, genetics, and clinical data from scripts. PMID:28360851

  9. Neuroimaging, Genetics, and Clinical Data Sharing in Python Using the CubicWeb Framework.

    PubMed

    Grigis, Antoine; Goyard, David; Cherbonnier, Robin; Gareau, Thomas; Papadopoulos Orfanos, Dimitri; Chauvat, Nicolas; Di Mascio, Adrien; Schumann, Gunter; Spooren, Will; Murphy, Declan; Frouin, Vincent

    2017-01-01

    In neurosciences or psychiatry, the emergence of large multi-center population imaging studies raises numerous technological challenges. From distributed data collection, across different institutions and countries, to final data publication service, one must handle the massive, heterogeneous, and complex data from genetics, imaging, demographics, or clinical scores. These data must be both efficiently obtained and downloadable. We present a Python solution, based on the CubicWeb open-source semantic framework, aimed at building population imaging study repositories. In addition, we focus on the tools developed around this framework to overcome the challenges associated with data sharing and collaborative requirements. We describe a set of three highly adaptive web services that transform the CubicWeb framework into a (1) multi-center upload platform, (2) collaborative quality assessment platform, and (3) publication platform endowed with massive-download capabilities. Two major European projects, IMAGEN and EU-AIMS, are currently supported by the described framework. We also present a Python package that enables end users to remotely query neuroimaging, genetics, and clinical data from scripts.

  10. A neotropical Miocene pollen database employing image-based search and semantic modeling1

    PubMed Central

    Han, Jing Ginger; Cao, Hongfei; Barb, Adrian; Punyasena, Surangi W.; Jaramillo, Carlos; Shyu, Chi-Ren

    2014-01-01

    • Premise of the study: Digital microscopic pollen images are being generated with increasing speed and volume, producing opportunities to develop new computational methods that increase the consistency and efficiency of pollen analysis and provide the palynological community a computational framework for information sharing and knowledge transfer. • Methods: Mathematical methods were used to assign trait semantics (abstract morphological representations) of the images of neotropical Miocene pollen and spores. Advanced database-indexing structures were built to compare and retrieve similar images based on their visual content. A Web-based system was developed to provide novel tools for automatic trait semantic annotation and image retrieval by trait semantics and visual content. • Results: Mathematical models that map visual features to trait semantics can be used to annotate images with morphology semantics and to search image databases with improved reliability and productivity. Images can also be searched by visual content, providing users with customized emphases on traits such as color, shape, and texture. • Discussion: Content- and semantic-based image searches provide a powerful computational platform for pollen and spore identification. The infrastructure outlined provides a framework for building a community-wide palynological resource, streamlining the process of manual identification, analysis, and species discovery. PMID:25202648

  11. Seahawk: moving beyond HTML in Web-based bioinformatics analysis.

    PubMed

    Gordon, Paul M K; Sensen, Christoph W

    2007-06-18

    Traditional HTML interfaces for input to and output from Bioinformatics analysis on the Web are highly variable in style, content and data formats. Combining multiple analyses can therefore be an onerous task for biologists. Semantic Web Services allow automated discovery of conceptual links between remote data analysis servers. A shared data ontology and service discovery/execution framework is particularly attractive in Bioinformatics, where data and services are often both disparate and distributed. Instead of biologists copying, pasting and reformatting data between various Web sites, Semantic Web Service protocols such as MOBY-S hold out the promise of seamlessly integrating multi-step analysis. We have developed a program (Seahawk) that allows biologists to intuitively and seamlessly chain together Web Services using a data-centric, rather than the customary service-centric approach. The approach is illustrated with a ferredoxin mutation analysis. Seahawk concentrates on lowering entry barriers for biologists: no prior knowledge of the data ontology, or relevant services is required. In stark contrast to other MOBY-S clients, in Seahawk users simply load Web pages and text files they already work with. Underlying the familiar Web-browser interaction is an XML data engine based on extensible XSLT style sheets, regular expressions, and XPath statements which import existing user data into the MOBY-S format. As an easily accessible applet, Seahawk moves beyond standard Web browser interaction, providing mechanisms for the biologist to concentrate on the analytical task rather than on the technical details of data formats and Web forms. As the MOBY-S protocol nears a 1.0 specification, we expect more biologists to adopt these new semantic-oriented ways of doing Web-based analysis, which empower them to do more complicated, ad hoc analysis workflow creation without the assistance of a programmer.

  12. Seahawk: moving beyond HTML in Web-based bioinformatics analysis

    PubMed Central

    Gordon, Paul MK; Sensen, Christoph W

    2007-01-01

    Background Traditional HTML interfaces for input to and output from Bioinformatics analysis on the Web are highly variable in style, content and data formats. Combining multiple analyses can therfore be an onerous task for biologists. Semantic Web Services allow automated discovery of conceptual links between remote data analysis servers. A shared data ontology and service discovery/execution framework is particularly attractive in Bioinformatics, where data and services are often both disparate and distributed. Instead of biologists copying, pasting and reformatting data between various Web sites, Semantic Web Service protocols such as MOBY-S hold out the promise of seamlessly integrating multi-step analysis. Results We have developed a program (Seahawk) that allows biologists to intuitively and seamlessly chain together Web Services using a data-centric, rather than the customary service-centric approach. The approach is illustrated with a ferredoxin mutation analysis. Seahawk concentrates on lowering entry barriers for biologists: no prior knowledge of the data ontology, or relevant services is required. In stark contrast to other MOBY-S clients, in Seahawk users simply load Web pages and text files they already work with. Underlying the familiar Web-browser interaction is an XML data engine based on extensible XSLT style sheets, regular expressions, and XPath statements which import existing user data into the MOBY-S format. Conclusion As an easily accessible applet, Seahawk moves beyond standard Web browser interaction, providing mechanisms for the biologist to concentrate on the analytical task rather than on the technical details of data formats and Web forms. As the MOBY-S protocol nears a 1.0 specification, we expect more biologists to adopt these new semantic-oriented ways of doing Web-based analysis, which empower them to do more complicated, ad hoc analysis workflow creation without the assistance of a programmer. PMID:17577405

  13. Semantic representation of CDC-PHIN vocabulary using Simple Knowledge Organization System.

    PubMed

    Zhu, Min; Mirhaji, Parsa

    2008-11-06

    PHIN Vocabulary Access and Distribution System (VADS) promotes the use of standards based vocabulary within CDC information systems. However, the current PHIN vocabulary representation hinders its wide adoption. Simple Knowledge Organization System (SKOS) is a W3C draft specification to support the formal representation of Knowledge Organization Systems (KOS) within the framework of the Semantic Web. We present a method of adopting SKOS to represent PHIN vocabulary in order to enable automated information sharing and integration.

  14. DOORS to the semantic web and grid with a PORTAL for biomedical computing.

    PubMed

    Taswell, Carl

    2008-03-01

    The semantic web remains in the early stages of development. It has not yet achieved the goals envisioned by its founders as a pervasive web of distributed knowledge and intelligence. Success will be attained when a dynamic synergism can be created between people and a sufficient number of infrastructure systems and tools for the semantic web in analogy with those for the original web. The domain name system (DNS), web browsers, and the benefits of publishing web pages motivated many people to register domain names and publish web sites on the original web. An analogous resource label system, semantic search applications, and the benefits of collaborative semantic networks will motivate people to register resource labels and publish resource descriptions on the semantic web. The Domain Ontology Oriented Resource System (DOORS) and Problem Oriented Registry of Tags and Labels (PORTAL) are proposed as infrastructure systems for resource metadata within a paradigm that can serve as a bridge between the original web and the semantic web. The Internet Registry Information Service (IRIS) registers [corrected] domain names while DNS publishes domain addresses with mapping of names to addresses for the original web. Analogously, PORTAL registers resource labels and tags while DOORS publishes resource locations and descriptions with mapping of labels to locations for the semantic web. BioPORT is proposed as a prototype PORTAL registry specific for the problem domain of biomedical computing.

  15. Minimally inconsistent reasoning in Semantic Web.

    PubMed

    Zhang, Xiaowang

    2017-01-01

    Reasoning with inconsistencies is an important issue for Semantic Web as imperfect information is unavoidable in real applications. For this, different paraconsistent approaches, due to their capacity to draw as nontrivial conclusions by tolerating inconsistencies, have been proposed to reason with inconsistent description logic knowledge bases. However, existing paraconsistent approaches are often criticized for being too skeptical. To this end, this paper presents a non-monotonic paraconsistent version of description logic reasoning, called minimally inconsistent reasoning, where inconsistencies tolerated in the reasoning are minimized so that more reasonable conclusions can be inferred. Some desirable properties are studied, which shows that the new semantics inherits advantages of both non-monotonic reasoning and paraconsistent reasoning. A complete and sound tableau-based algorithm, called multi-valued tableaux, is developed to capture the minimally inconsistent reasoning. In fact, the tableaux algorithm is designed, as a framework for multi-valued DL, to allow for different underlying paraconsistent semantics, with the mere difference in the clash conditions. Finally, the complexity of minimally inconsistent description logic reasoning is shown on the same level as the (classical) description logic reasoning.

  16. Minimally inconsistent reasoning in Semantic Web

    PubMed Central

    Zhang, Xiaowang

    2017-01-01

    Reasoning with inconsistencies is an important issue for Semantic Web as imperfect information is unavoidable in real applications. For this, different paraconsistent approaches, due to their capacity to draw as nontrivial conclusions by tolerating inconsistencies, have been proposed to reason with inconsistent description logic knowledge bases. However, existing paraconsistent approaches are often criticized for being too skeptical. To this end, this paper presents a non-monotonic paraconsistent version of description logic reasoning, called minimally inconsistent reasoning, where inconsistencies tolerated in the reasoning are minimized so that more reasonable conclusions can be inferred. Some desirable properties are studied, which shows that the new semantics inherits advantages of both non-monotonic reasoning and paraconsistent reasoning. A complete and sound tableau-based algorithm, called multi-valued tableaux, is developed to capture the minimally inconsistent reasoning. In fact, the tableaux algorithm is designed, as a framework for multi-valued DL, to allow for different underlying paraconsistent semantics, with the mere difference in the clash conditions. Finally, the complexity of minimally inconsistent description logic reasoning is shown on the same level as the (classical) description logic reasoning. PMID:28750030

  17. SSWAP: A Simple Semantic Web Architecture and Protocol for semantic web services

    PubMed Central

    Gessler, Damian DG; Schiltz, Gary S; May, Greg D; Avraham, Shulamit; Town, Christopher D; Grant, David; Nelson, Rex T

    2009-01-01

    Background SSWAP (Simple Semantic Web Architecture and Protocol; pronounced "swap") is an architecture, protocol, and platform for using reasoning to semantically integrate heterogeneous disparate data and services on the web. SSWAP was developed as a hybrid semantic web services technology to overcome limitations found in both pure web service technologies and pure semantic web technologies. Results There are currently over 2400 resources published in SSWAP. Approximately two dozen are custom-written services for QTL (Quantitative Trait Loci) and mapping data for legumes and grasses (grains). The remaining are wrappers to Nucleic Acids Research Database and Web Server entries. As an architecture, SSWAP establishes how clients (users of data, services, and ontologies), providers (suppliers of data, services, and ontologies), and discovery servers (semantic search engines) interact to allow for the description, querying, discovery, invocation, and response of semantic web services. As a protocol, SSWAP provides the vocabulary and semantics to allow clients, providers, and discovery servers to engage in semantic web services. The protocol is based on the W3C-sanctioned first-order description logic language OWL DL. As an open source platform, a discovery server running at (as in to "swap info") uses the description logic reasoner Pellet to integrate semantic resources. The platform hosts an interactive guide to the protocol at , developer tools at , and a portal to third-party ontologies at (a "swap meet"). Conclusion SSWAP addresses the three basic requirements of a semantic web services architecture (i.e., a common syntax, shared semantic, and semantic discovery) while addressing three technology limitations common in distributed service systems: i.e., i) the fatal mutability of traditional interfaces, ii) the rigidity and fragility of static subsumption hierarchies, and iii) the confounding of content, structure, and presentation. SSWAP is novel by establishing the concept of a canonical yet mutable OWL DL graph that allows data and service providers to describe their resources, to allow discovery servers to offer semantically rich search engines, to allow clients to discover and invoke those resources, and to allow providers to respond with semantically tagged data. SSWAP allows for a mix-and-match of terms from both new and legacy third-party ontologies in these graphs. PMID:19775460

  18. Representations for Semantic Learning Webs: Semantic Web Technology in Learning Support

    ERIC Educational Resources Information Center

    Dzbor, M.; Stutt, A.; Motta, E.; Collins, T.

    2007-01-01

    Recent work on applying semantic technologies to learning has concentrated on providing novel means of accessing and making use of learning objects. However, this is unnecessarily limiting: semantic technologies will make it possible to develop a range of educational Semantic Web services, such as interpretation, structure-visualization, support…

  19. Modular Knowledge Representation and Reasoning in the Semantic Web

    NASA Astrophysics Data System (ADS)

    Serafini, Luciano; Homola, Martin

    Construction of modular ontologies by combining different modules is becoming a necessity in ontology engineering in order to cope with the increasing complexity of the ontologies and the domains they represent. The modular ontology approach takes inspiration from software engineering, where modularization is a widely acknowledged feature. Distributed reasoning is the other side of the coin of modular ontologies: given an ontology comprising of a set of modules, it is desired to perform reasoning by combination of multiple reasoning processes performed locally on each of the modules. In the last ten years, a number of approaches for combining logics has been developed in order to formalize modular ontologies. In this chapter, we survey and compare the main formalisms for modular ontologies and distributed reasoning in the Semantic Web. We select four formalisms build on formal logical grounds of Description Logics: Distributed Description Logics, ℰ-connections, Package-based Description Logics and Integrated Distributed Description Logics. We concentrate on expressivity and distinctive modeling features of each framework. We also discuss reasoning capabilities of each framework.

  20. Introducing glycomics data into the Semantic Web

    PubMed Central

    2013-01-01

    Background Glycoscience is a research field focusing on complex carbohydrates (otherwise known as glycans)a, which can, for example, serve as “switches” that toggle between different functions of a glycoprotein or glycolipid. Due to the advancement of glycomics technologies that are used to characterize glycan structures, many glycomics databases are now publicly available and provide useful information for glycoscience research. However, these databases have almost no link to other life science databases. Results In order to implement support for the Semantic Web most efficiently for glycomics research, the developers of major glycomics databases agreed on a minimal standard for representing glycan structure and annotation information using RDF (Resource Description Framework). Moreover, all of the participants implemented this standard prototype and generated preliminary RDF versions of their data. To test the utility of the converted data, all of the data sets were uploaded into a Virtuoso triple store, and several SPARQL queries were tested as “proofs-of-concept” to illustrate the utility of the Semantic Web in querying across databases which were originally difficult to implement. Conclusions We were able to successfully retrieve information by linking UniCarbKB, GlycomeDB and JCGGDB in a single SPARQL query to obtain our target information. We also tested queries linking UniProt with GlycoEpitope as well as lectin data with GlycomeDB through PDB. As a result, we have been able to link proteomics data with glycomics data through the implementation of Semantic Web technologies, allowing for more flexible queries across these domains. PMID:24280648

  1. Introducing glycomics data into the Semantic Web.

    PubMed

    Aoki-Kinoshita, Kiyoko F; Bolleman, Jerven; Campbell, Matthew P; Kawano, Shin; Kim, Jin-Dong; Lütteke, Thomas; Matsubara, Masaaki; Okuda, Shujiro; Ranzinger, Rene; Sawaki, Hiromichi; Shikanai, Toshihide; Shinmachi, Daisuke; Suzuki, Yoshinori; Toukach, Philip; Yamada, Issaku; Packer, Nicolle H; Narimatsu, Hisashi

    2013-11-26

    Glycoscience is a research field focusing on complex carbohydrates (otherwise known as glycans)a, which can, for example, serve as "switches" that toggle between different functions of a glycoprotein or glycolipid. Due to the advancement of glycomics technologies that are used to characterize glycan structures, many glycomics databases are now publicly available and provide useful information for glycoscience research. However, these databases have almost no link to other life science databases. In order to implement support for the Semantic Web most efficiently for glycomics research, the developers of major glycomics databases agreed on a minimal standard for representing glycan structure and annotation information using RDF (Resource Description Framework). Moreover, all of the participants implemented this standard prototype and generated preliminary RDF versions of their data. To test the utility of the converted data, all of the data sets were uploaded into a Virtuoso triple store, and several SPARQL queries were tested as "proofs-of-concept" to illustrate the utility of the Semantic Web in querying across databases which were originally difficult to implement. We were able to successfully retrieve information by linking UniCarbKB, GlycomeDB and JCGGDB in a single SPARQL query to obtain our target information. We also tested queries linking UniProt with GlycoEpitope as well as lectin data with GlycomeDB through PDB. As a result, we have been able to link proteomics data with glycomics data through the implementation of Semantic Web technologies, allowing for more flexible queries across these domains.

  2. Biomedical semantics in the Semantic Web

    PubMed Central

    2011-01-01

    The Semantic Web offers an ideal platform for representing and linking biomedical information, which is a prerequisite for the development and application of analytical tools to address problems in data-intensive areas such as systems biology and translational medicine. As for any new paradigm, the adoption of the Semantic Web offers opportunities and poses questions and challenges to the life sciences scientific community: which technologies in the Semantic Web stack will be more beneficial for the life sciences? Is biomedical information too complex to benefit from simple interlinked representations? What are the implications of adopting a new paradigm for knowledge representation? What are the incentives for the adoption of the Semantic Web, and who are the facilitators? Is there going to be a Semantic Web revolution in the life sciences? We report here a few reflections on these questions, following discussions at the SWAT4LS (Semantic Web Applications and Tools for Life Sciences) workshop series, of which this Journal of Biomedical Semantics special issue presents selected papers from the 2009 edition, held in Amsterdam on November 20th. PMID:21388570

  3. Biomedical semantics in the Semantic Web.

    PubMed

    Splendiani, Andrea; Burger, Albert; Paschke, Adrian; Romano, Paolo; Marshall, M Scott

    2011-03-07

    The Semantic Web offers an ideal platform for representing and linking biomedical information, which is a prerequisite for the development and application of analytical tools to address problems in data-intensive areas such as systems biology and translational medicine. As for any new paradigm, the adoption of the Semantic Web offers opportunities and poses questions and challenges to the life sciences scientific community: which technologies in the Semantic Web stack will be more beneficial for the life sciences? Is biomedical information too complex to benefit from simple interlinked representations? What are the implications of adopting a new paradigm for knowledge representation? What are the incentives for the adoption of the Semantic Web, and who are the facilitators? Is there going to be a Semantic Web revolution in the life sciences?We report here a few reflections on these questions, following discussions at the SWAT4LS (Semantic Web Applications and Tools for Life Sciences) workshop series, of which this Journal of Biomedical Semantics special issue presents selected papers from the 2009 edition, held in Amsterdam on November 20th.

  4. A Semantic Lexicon-Based Approach for Sense Disambiguation and Its WWW Application

    NASA Astrophysics Data System (ADS)

    di Lecce, Vincenzo; Calabrese, Marco; Soldo, Domenico

    This work proposes a basic framework for resolving sense disambiguation through the use of Semantic Lexicon, a machine readable dictionary managing both word senses and lexico-semantic relations. More specifically, polysemous ambiguity characterizing Web documents is discussed. The adopted Semantic Lexicon is WordNet, a lexical knowledge-base of English words widely adopted in many research studies referring to knowledge discovery. The proposed approach extends recent works on knowledge discovery by focusing on the sense disambiguation aspect. By exploiting the structure of WordNet database, lexico-semantic features are used to resolve the inherent sense ambiguity of written text with particular reference to HTML resources. The obtained results may be extended to generic hypertextual repositories as well. Experiments show that polysemy reduction can be used to hint about the meaning of specific senses in given contexts.

  5. Desiderata for an authoritative Representation of MeSH in RDF.

    PubMed

    Winnenburg, Rainer; Bodenreider, Olivier

    2014-01-01

    The Semantic Web provides a framework for the integration of resources on the web, which facilitates information integration and interoperability. RDF is the main representation format for Linked Open Data (LOD). However, datasets are not always made available in RDF by their producers and the Semantic Web community has had to convert some of these datasets to RDF in order for these datasets to participate in the LOD cloud. As a result, the LOD cloud sometimes contains outdated, partial and even inaccurate RDF datasets. We review the LOD landscape for one of these resources, MeSH, and analyze the characteristics of six existing representations in order to identify desirable features for an authoritative version, for which we create a prototype. We illustrate the suitability of this prototype on three common use cases. NLM intends to release an authoritative representation of MeSH in RDF (beta version) in the Fall of 2014.

  6. Desiderata for an authoritative Representation of MeSH in RDF

    PubMed Central

    Winnenburg, Rainer; Bodenreider, Olivier

    2014-01-01

    The Semantic Web provides a framework for the integration of resources on the web, which facilitates information integration and interoperability. RDF is the main representation format for Linked Open Data (LOD). However, datasets are not always made available in RDF by their producers and the Semantic Web community has had to convert some of these datasets to RDF in order for these datasets to participate in the LOD cloud. As a result, the LOD cloud sometimes contains outdated, partial and even inaccurate RDF datasets. We review the LOD landscape for one of these resources, MeSH, and analyze the characteristics of six existing representations in order to identify desirable features for an authoritative version, for which we create a prototype. We illustrate the suitability of this prototype on three common use cases. NLM intends to release an authoritative representation of MeSH in RDF (beta version) in the Fall of 2014. PMID:25954433

  7. Applying semantic web technologies for phenome-wide scan using an electronic health record linked Biobank

    PubMed Central

    2012-01-01

    Background The ability to conduct genome-wide association studies (GWAS) has enabled new exploration of how genetic variations contribute to health and disease etiology. However, historically GWAS have been limited by inadequate sample size due to associated costs for genotyping and phenotyping of study subjects. This has prompted several academic medical centers to form “biobanks” where biospecimens linked to personal health information, typically in electronic health records (EHRs), are collected and stored on a large number of subjects. This provides tremendous opportunities to discover novel genotype-phenotype associations and foster hypotheses generation. Results In this work, we study how emerging Semantic Web technologies can be applied in conjunction with clinical and genotype data stored at the Mayo Clinic Biobank to mine the phenotype data for genetic associations. In particular, we demonstrate the role of using Resource Description Framework (RDF) for representing EHR diagnoses and procedure data, and enable federated querying via standardized Web protocols to identify subjects genotyped for Type 2 Diabetes and Hypothyroidism to discover gene-disease associations. Our study highlights the potential of Web-scale data federation techniques to execute complex queries. Conclusions This study demonstrates how Semantic Web technologies can be applied in conjunction with clinical data stored in EHRs to accurately identify subjects with specific diseases and phenotypes, and identify genotype-phenotype associations. PMID:23244446

  8. Quality evaluation of value sets from cancer study common data elements using the UMLS semantic groups

    PubMed Central

    Solbrig, Harold R; Chute, Christopher G

    2012-01-01

    Objective The objective of this study is to develop an approach to evaluate the quality of terminological annotations on the value set (ie, enumerated value domain) components of the common data elements (CDEs) in the context of clinical research using both unified medical language system (UMLS) semantic types and groups. Materials and methods The CDEs of the National Cancer Institute (NCI) Cancer Data Standards Repository, the NCI Thesaurus (NCIt) concepts and the UMLS semantic network were integrated using a semantic web-based framework for a SPARQL-enabled evaluation. First, the set of CDE-permissible values with corresponding meanings in external controlled terminologies were isolated. The corresponding value meanings were then evaluated against their NCI- or UMLS-generated semantic network mapping to determine whether all of the meanings fell within the same semantic group. Results Of the enumerated CDEs in the Cancer Data Standards Repository, 3093 (26.2%) had elements drawn from more than one UMLS semantic group. A random sample (n=100) of this set of elements indicated that 17% of them were likely to have been misclassified. Discussion The use of existing semantic web tools can support a high-throughput mechanism for evaluating the quality of large CDE collections. This study demonstrates that the involvement of multiple semantic groups in an enumerated value domain of a CDE is an effective anchor to trigger an auditing point for quality evaluation activities. Conclusion This approach produces a useful quality assurance mechanism for a clinical study CDE repository. PMID:22511016

  9. Discovery Mechanisms for the Sensor Web

    PubMed Central

    Jirka, Simon; Bröring, Arne; Stasch, Christoph

    2009-01-01

    This paper addresses the discovery of sensors within the OGC Sensor Web Enablement framework. Whereas services like the OGC Web Map Service or Web Coverage Service are already well supported through catalogue services, the field of sensor networks and the according discovery mechanisms is still a challenge. The focus within this article will be on the use of existing OGC Sensor Web components for realizing a discovery solution. After discussing the requirements for a Sensor Web discovery mechanism, an approach will be presented that was developed within the EU funded project “OSIRIS”. This solution offers mechanisms to search for sensors, exploit basic semantic relationships, harvest sensor metadata and integrate sensor discovery into already existing catalogues. PMID:22574038

  10. SSWAP: A Simple Semantic Web Architecture and Protocol for semantic web services.

    PubMed

    Gessler, Damian D G; Schiltz, Gary S; May, Greg D; Avraham, Shulamit; Town, Christopher D; Grant, David; Nelson, Rex T

    2009-09-23

    SSWAP (Simple Semantic Web Architecture and Protocol; pronounced "swap") is an architecture, protocol, and platform for using reasoning to semantically integrate heterogeneous disparate data and services on the web. SSWAP was developed as a hybrid semantic web services technology to overcome limitations found in both pure web service technologies and pure semantic web technologies. There are currently over 2400 resources published in SSWAP. Approximately two dozen are custom-written services for QTL (Quantitative Trait Loci) and mapping data for legumes and grasses (grains). The remaining are wrappers to Nucleic Acids Research Database and Web Server entries. As an architecture, SSWAP establishes how clients (users of data, services, and ontologies), providers (suppliers of data, services, and ontologies), and discovery servers (semantic search engines) interact to allow for the description, querying, discovery, invocation, and response of semantic web services. As a protocol, SSWAP provides the vocabulary and semantics to allow clients, providers, and discovery servers to engage in semantic web services. The protocol is based on the W3C-sanctioned first-order description logic language OWL DL. As an open source platform, a discovery server running at http://sswap.info (as in to "swap info") uses the description logic reasoner Pellet to integrate semantic resources. The platform hosts an interactive guide to the protocol at http://sswap.info/protocol.jsp, developer tools at http://sswap.info/developer.jsp, and a portal to third-party ontologies at http://sswapmeet.sswap.info (a "swap meet"). SSWAP addresses the three basic requirements of a semantic web services architecture (i.e., a common syntax, shared semantic, and semantic discovery) while addressing three technology limitations common in distributed service systems: i.e., i) the fatal mutability of traditional interfaces, ii) the rigidity and fragility of static subsumption hierarchies, and iii) the confounding of content, structure, and presentation. SSWAP is novel by establishing the concept of a canonical yet mutable OWL DL graph that allows data and service providers to describe their resources, to allow discovery servers to offer semantically rich search engines, to allow clients to discover and invoke those resources, and to allow providers to respond with semantically tagged data. SSWAP allows for a mix-and-match of terms from both new and legacy third-party ontologies in these graphs.

  11. The Semantic Web in Teacher Education

    ERIC Educational Resources Information Center

    Czerkawski, Betül Özkan

    2014-01-01

    The Semantic Web enables increased collaboration among computers and people by organizing unstructured data on the World Wide Web. Rather than a separate body, the Semantic Web is a functional extension of the current Web made possible by defining relationships among websites and other online content. When explicitly defined, these relationships…

  12. Trust estimation of the semantic web using semantic web clustering

    NASA Astrophysics Data System (ADS)

    Shirgahi, Hossein; Mohsenzadeh, Mehran; Haj Seyyed Javadi, Hamid

    2017-05-01

    Development of semantic web and social network is undeniable in the Internet world these days. Widespread nature of semantic web has been very challenging to assess the trust in this field. In recent years, extensive researches have been done to estimate the trust of semantic web. Since trust of semantic web is a multidimensional problem, in this paper, we used parameters of social network authority, the value of pages links authority and semantic authority to assess the trust. Due to the large space of semantic network, we considered the problem scope to the clusters of semantic subnetworks and obtained the trust of each cluster elements as local and calculated the trust of outside resources according to their local trusts and trust of clusters to each other. According to the experimental result, the proposed method shows more than 79% Fscore that is about 11.9% in average more than Eigen, Tidal and centralised trust methods. Mean of error in this proposed method is 12.936, that is 9.75% in average less than Eigen and Tidal trust methods.

  13. Generic Educational Knowledge Representation for Adaptive and Cognitive Systems

    ERIC Educational Resources Information Center

    Caravantes, Arturo; Galan, Ramon

    2011-01-01

    The interoperability of educational systems, encouraged by the development of specifications, standards and tools related to the Semantic Web is limited to the exchange of information in domain and student models. High system interoperability requires that a common framework be defined that represents the functional essence of educational systems.…

  14. ITTALKS: A Case Study in the Semantic Web and DAML

    DTIC Science & Technology

    2005-01-01

    For example, a Centaurus room manager agent [26] could watch ITTALKS for events happening in a room for which it is responsible in order to enable...01), Montreal, Quebec, Canada, May 29 2001. [26] Lalana Kagal, Vlad Korolev, Harry Chen, Anupam Joshi, and Timothy Finin. Centaurus : A framework for

  15. Putting semantics into the semantic web: how well can it capture biology?

    PubMed

    Kazic, Toni

    2006-01-01

    Could the Semantic Web work for computations of biological interest in the way it's intended to work for movie reviews and commercial transactions? It would be wonderful if it could, so it's worth looking to see if its infrastructure is adequate to the job. The technologies of the Semantic Web make several crucial assumptions. I examine those assumptions; argue that they create significant problems; and suggest some alternative ways of achieving the Semantic Web's goals for biology.

  16. Bim-Gis Integrated Geospatial Information Model Using Semantic Web and Rdf Graphs

    NASA Astrophysics Data System (ADS)

    Hor, A.-H.; Jadidi, A.; Sohn, G.

    2016-06-01

    In recent years, 3D virtual indoor/outdoor urban modelling becomes a key spatial information framework for many civil and engineering applications such as evacuation planning, emergency and facility management. For accomplishing such sophisticate decision tasks, there is a large demands for building multi-scale and multi-sourced 3D urban models. Currently, Building Information Model (BIM) and Geographical Information Systems (GIS) are broadly used as the modelling sources. However, data sharing and exchanging information between two modelling domains is still a huge challenge; while the syntactic or semantic approaches do not fully provide exchanging of rich semantic and geometric information of BIM into GIS or vice-versa. This paper proposes a novel approach for integrating BIM and GIS using semantic web technologies and Resources Description Framework (RDF) graphs. The novelty of the proposed solution comes from the benefits of integrating BIM and GIS technologies into one unified model, so-called Integrated Geospatial Information Model (IGIM). The proposed approach consists of three main modules: BIM-RDF and GIS-RDF graphs construction, integrating of two RDF graphs, and query of information through IGIM-RDF graph using SPARQL. The IGIM generates queries from both the BIM and GIS RDF graphs resulting a semantically integrated model with entities representing both BIM classes and GIS feature objects with respect to the target-client application. The linkage between BIM-RDF and GIS-RDF is achieved through SPARQL endpoints and defined by a query using set of datasets and entity classes with complementary properties, relationships and geometries. To validate the proposed approach and its performance, a case study was also tested using IGIM system design.

  17. [Research on tumor information grid framework].

    PubMed

    Zhang, Haowei; Qin, Zhu; Liu, Ying; Tan, Jianghao; Cao, Haitao; Chen, Youping; Zhang, Ke; Ding, Yuqing

    2013-10-01

    In order to realize tumor disease information sharing and unified management, we utilized grid technology to make the data and software resources which distributed in various medical institutions for effective integration so that we could make the heterogeneous resources consistent and interoperable in both semantics and syntax aspects. This article describes the tumor grid framework, the type of the service being packaged in Web Service Description Language (WSDL) and extensible markup language schemas definition (XSD), the client use the serialized document to operate the distributed resources. The service objects could be built by Unified Modeling Language (UML) as middle ware to create application programming interface. All of the grid resources are registered in the index and released in the form of Web Services based on Web Services Resource Framework (WSRF). Using the system we can build a multi-center, large sample and networking tumor disease resource sharing framework to improve the level of development in medical scientific research institutions and the patient's quality of life.

  18. Developing A Web-based User Interface for Semantic Information Retrieval

    NASA Technical Reports Server (NTRS)

    Berrios, Daniel C.; Keller, Richard M.

    2003-01-01

    While there are now a number of languages and frameworks that enable computer-based systems to search stored data semantically, the optimal design for effective user interfaces for such systems is still uncle ar. Such interfaces should mask unnecessary query detail from users, yet still allow them to build queries of arbitrary complexity without significant restrictions. We developed a user interface supporting s emantic query generation for Semanticorganizer, a tool used by scient ists and engineers at NASA to construct networks of knowledge and dat a. Through this interface users can select node types, node attribute s and node links to build ad-hoc semantic queries for searching the S emanticOrganizer network.

  19. NeuroRDF: semantic integration of highly curated data to prioritize biomarker candidates in Alzheimer's disease.

    PubMed

    Iyappan, Anandhi; Kawalia, Shweta Bagewadi; Raschka, Tamara; Hofmann-Apitius, Martin; Senger, Philipp

    2016-07-08

    Neurodegenerative diseases are incurable and debilitating indications with huge social and economic impact, where much is still to be learnt about the underlying molecular events. Mechanistic disease models could offer a knowledge framework to help decipher the complex interactions that occur at molecular and cellular levels. This motivates the need for the development of an approach integrating highly curated and heterogeneous data into a disease model of different regulatory data layers. Although several disease models exist, they often do not consider the quality of underlying data. Moreover, even with the current advancements in semantic web technology, we still do not have cure for complex diseases like Alzheimer's disease. One of the key reasons accountable for this could be the increasing gap between generated data and the derived knowledge. In this paper, we describe an approach, called as NeuroRDF, to develop an integrative framework for modeling curated knowledge in the area of complex neurodegenerative diseases. The core of this strategy lies in the usage of well curated and context specific data for integration into one single semantic web-based framework, RDF. This increases the probability of the derived knowledge to be novel and reliable in a specific disease context. This infrastructure integrates highly curated data from databases (Bind, IntAct, etc.), literature (PubMed), and gene expression resources (such as GEO and ArrayExpress). We illustrate the effectiveness of our approach by asking real-world biomedical questions that link these resources to prioritize the plausible biomarker candidates. Among the 13 prioritized candidate genes, we identified MIF to be a potential emerging candidate due to its role as a pro-inflammatory cytokine. We additionally report on the effort and challenges faced during generation of such an indication-specific knowledge base comprising of curated and quality-controlled data. Although many alternative approaches have been proposed and practiced for modeling diseases, the semantic web technology is a flexible and well established solution for harmonized aggregation. The benefit of this work, to use high quality and context specific data, becomes apparent in speculating previously unattended biomarker candidates around a well-known mechanism, further leveraged for experimental investigations.

  20. A program for the conversion of The National Map data from proprietary format to resource description framework (RDF)

    USGS Publications Warehouse

    Bulen, Andrew; Carter, Jonathan J.; Varanka, Dalia E.

    2011-01-01

    To expand data functionality and capabilities for users of The National Map of the U.S. Geological Survey, data sets for six watersheds and three urban areas were converted from the Best Practices vector data model formats to Semantic Web data formats. This report describes and documents the conver-sion process. The report begins with an introduction to basic Semantic Web standards and the background of The National Map. Data were converted from a proprietary format to Geog-raphy Markup Language to capture the geometric footprint of topographic data features. Configuration files were designed to eliminate redundancy and make the conversion more efficient. A SPARQL endpoint was established for data validation and queries. The report concludes by describing the results of the conversion.

  1. Opportunities for the Mashup of Heterogenous Data Server via Semantic Web Technology

    NASA Astrophysics Data System (ADS)

    Ritschel, Bernd; Seelus, Christoph; Neher, Günther; Iyemori, Toshihiko; Koyama, Yukinobu; Yatagai, Akiyo; Murayama, Yasuhiro; King, Todd; Hughes, John; Fung, Shing; Galkin, Ivan; Hapgood, Michael; Belehaki, Anna

    2015-04-01

    Opportunities for the Mashup of Heterogenous Data Server via Semantic Web Technology European Union ESPAS, Japanese IUGONET and GFZ ISDC data server are developed for the ingestion, archiving and distributing of geo and space science domain data. Main parts of the data -managed by the mentioned data server- are related to near earth-space and geomagnetic field data. A smart mashup of the data server would allow a seamless browse and access to data and related context information. However the achievement of a high level of interoperability is a challenge because the data server are based on different data models and software frameworks. This paper is focused on the latest experiments and results for the mashup of the data server using the semantic Web approach. Besides the mashup of domain and terminological ontologies, especially the options to connect data managed by relational databases using D2R server and SPARQL technology will be addressed. A successful realization of the data server mashup will not only have a positive impact to the data users of the specific scientific domain but also to related projects, such as e.g. the development of a new interoperable version of NASA's Planetary Data System (PDS) or ICUS's World Data System alliance. ESPAS data server: https://www.espas-fp7.eu/portal/ IUGONET data server: http://search.iugonet.org/iugonet/ GFZ ISDC data server (semantic Web based prototype): http://rz-vm30.gfz-potsdam.de/drupal-7.9/ NASA PDS: http://pds.nasa.gov ICSU-WDS: https://www.icsu-wds.org

  2. Exploiting Recurring Structure in a Semantic Network

    NASA Technical Reports Server (NTRS)

    Wolfe, Shawn R.; Keller, Richard M.

    2004-01-01

    With the growing popularity of the Semantic Web, an increasing amount of information is becoming available in machine interpretable, semantically structured networks. Within these semantic networks are recurring structures that could be mined by existing or novel knowledge discovery methods. The mining of these semantic structures represents an interesting area that focuses on mining both for and from the Semantic Web, with surprising applicability to problems confronting the developers of Semantic Web applications. In this paper, we present representative examples of recurring structures and show how these structures could be used to increase the utility of a semantic repository deployed at NASA.

  3. Web 3.0: Implications for Online Learning

    ERIC Educational Resources Information Center

    Morris, Robin D.

    2010-01-01

    The impact of Web 3.0, also known as the Semantic Web, on online learning is yet to be determined as the Semantic Web and its technologies continue to develop. Online instructors must have a rudimentary understanding of Web 3.0 to prepare for the next phase of online learning. This paper provides an understandable definition of the Semantic Web…

  4. Semantic Web and Contextual Information: Semantic Network Analysis of Online Journalistic Texts

    NASA Astrophysics Data System (ADS)

    Lim, Yon Soo

    This study examines why contextual information is important to actualize the idea of semantic web, based on a case study of a socio-political issue in South Korea. For this study, semantic network analyses were conducted regarding English-language based 62 blog posts and 101 news stories on the web. The results indicated the differences of the meaning structures between blog posts and professional journalism as well as between conservative journalism and progressive journalism. From the results, this study ascertains empirical validity of current concerns about the practical application of the new web technology, and discusses how the semantic web should be developed.

  5. A Software Engineering Approach based on WebML and BPMN to the Mediation Scenario of the SWS Challenge

    NASA Astrophysics Data System (ADS)

    Brambilla, Marco; Ceri, Stefano; Valle, Emanuele Della; Facca, Federico M.; Tziviskou, Christina

    Although Semantic Web Services are expected to produce a revolution in the development of Web-based systems, very few enterprise-wide design experiences are available; one of the main reasons is the lack of sound Software Engineering methods and tools for the deployment of Semantic Web applications. In this chapter, we present an approach to software development for the Semantic Web based on classical Software Engineering methods (i.e., formal business process development, computer-aided and component-based software design, and automatic code generation) and on semantic methods and tools (i.e., ontology engineering, semantic service annotation and discovery).

  6. Similarity Based Semantic Web Service Match

    NASA Astrophysics Data System (ADS)

    Peng, Hui; Niu, Wenjia; Huang, Ronghuai

    Semantic web service discovery aims at returning the most matching advertised services to the service requester by comparing the semantic of the request service with an advertised service. The semantic of a web service are described in terms of inputs, outputs, preconditions and results in Ontology Web Language for Service (OWL-S) which formalized by W3C. In this paper we proposed an algorithm to calculate the semantic similarity of two services by weighted averaging their inputs and outputs similarities. Case study and applications show the effectiveness of our algorithm in service match.

  7. SoyBase Simple Semantic Web Architecture and Protocol (SSWAP) Services

    USDA-ARS?s Scientific Manuscript database

    Semantic web technologies offer the potential to link internet resources and data by shared concepts without having to rely on absolute lexical matches. Thus two web sites or web resources which are concerned with similar data types could be identified based on similar semantics. In the biological...

  8. Linked data scientometrics in semantic e-Science

    NASA Astrophysics Data System (ADS)

    Narock, Tom; Wimmer, Hayden

    2017-03-01

    The Semantic Web is inherently multi-disciplinary and many domains have taken advantage of semantic technologies. Yet, the geosciences are one of the fields leading the way in Semantic Web adoption and validation. Astronomy, Earth science, hydrology, and solar-terrestrial physics have seen a noteworthy amount of semantic integration. The geoscience community has been willing early adopters of semantic technologies and have provided essential feedback to the broader semantic web community. Yet, there has been no systematic study of the community as a whole and there exists no quantitative data on the impact and status of semantic technologies in the geosciences. We explore the applicability of Linked Data to scientometrics in the geosciences. In doing so, we gain an initial understanding of the breadth and depth of the Semantic Web in the geosciences. We identify what appears to be a transitionary period in the applicability of these technologies.

  9. Mining the Human Phenome using Semantic Web Technologies: A Case Study for Type 2 Diabetes

    PubMed Central

    Pathak, Jyotishman; Kiefer, Richard C.; Bielinski, Suzette J.; Chute, Christopher G.

    2012-01-01

    The ability to conduct genome-wide association studies (GWAS) has enabled new exploration of how genetic variations contribute to health and disease etiology. However, historically GWAS have been limited by inadequate sample size due to associated costs for genotyping and phenotyping of study subjects. This has prompted several academic medical centers to form “biobanks” where biospecimens linked to personal health information, typically in electronic health records (EHRs), are collected and stored on large number of subjects. This provides tremendous opportunities to discover novel genotype-phenotype associations and foster hypothesis generation. In this work, we study how emerging Semantic Web technologies can be applied in conjunction with clinical and genotype data stored at the Mayo Clinic Biobank to mine the phenotype data for genetic associations. In particular, we demonstrate the role of using Resource Description Framework (RDF) for representing EHR diagnoses and procedure data, and enable federated querying via standardized Web protocols to identify subjects genotyped with Type 2 Diabetes for discovering gene-disease associations. Our study highlights the potential of Web-scale data federation techniques to execute complex queries. PMID:23304343

  10. Mining the human phenome using semantic web technologies: a case study for Type 2 Diabetes.

    PubMed

    Pathak, Jyotishman; Kiefer, Richard C; Bielinski, Suzette J; Chute, Christopher G

    2012-01-01

    The ability to conduct genome-wide association studies (GWAS) has enabled new exploration of how genetic variations contribute to health and disease etiology. However, historically GWAS have been limited by inadequate sample size due to associated costs for genotyping and phenotyping of study subjects. This has prompted several academic medical centers to form "biobanks" where biospecimens linked to personal health information, typically in electronic health records (EHRs), are collected and stored on large number of subjects. This provides tremendous opportunities to discover novel genotype-phenotype associations and foster hypothesis generation. In this work, we study how emerging Semantic Web technologies can be applied in conjunction with clinical and genotype data stored at the Mayo Clinic Biobank to mine the phenotype data for genetic associations. In particular, we demonstrate the role of using Resource Description Framework (RDF) for representing EHR diagnoses and procedure data, and enable federated querying via standardized Web protocols to identify subjects genotyped with Type 2 Diabetes for discovering gene-disease associations. Our study highlights the potential of Web-scale data federation techniques to execute complex queries.

  11. Self-Regulated Workplace Learning: A Pedagogical Framework and Semantic Web-Based Environment

    ERIC Educational Resources Information Center

    Siadaty, Melody; Gasevic, Dragan; Jovanovic, Jelena; Pata, Kai; Milikic, Nikola; Holocher-Ertl, Teresa; Jeremic, Zoran; Ali, Liaqat; Giljanovic, Aleksandar; Hatala, Marek

    2012-01-01

    Self-regulated learning processes have a potential to enhance the motivation of knowledge workers to take part in learning and reflection about learning, and thus contribute to the resolution of an important research challenge in workplace learning. An equally important research challenge for the successful completion of each step of a…

  12. An Ontology Infrastructure for an E-Learning Scenario

    ERIC Educational Resources Information Center

    Guo, Wen-Ying; Chen, De-Ren

    2007-01-01

    Selecting appropriate learning services for a learner from a large number of heterogeneous knowledge sources is a complex and challenging task. This article illustrates and discusses how Semantic Web technologies such as RDF [resource description framework] and ontology can be applied to e-learning systems to help the learner in selecting an…

  13. Semantic Web, Reusable Learning Objects, Personal Learning Networks in Health: Key Pieces for Digital Health Literacy.

    PubMed

    Konstantinidis, Stathis Th; Wharrad, Heather; Windle, Richard; Bamidis, Panagiotis D

    2017-01-01

    The knowledge existing in the World Wide Web is exponentially expanding, while continuous advancements in health sciences contribute to the creation of new knowledge. There are a lot of efforts trying to identify how the social connectivity can endorse patients' empowerment, while other studies look at the identification and the quality of online materials. However, emphasis has not been put on the big picture of connecting the existing resources with the patients "new habits" of learning through their own Personal Learning Networks. In this paper we propose a framework for empowering patients' digital health literacy adjusted to patients' currents needs by utilizing the contemporary way of learning through Personal Learning Networks, existing high quality learning resources and semantics technologies for interconnecting knowledge pieces. The framework based on the concept of knowledge maps for health as defined in this paper. Health Digital Literacy needs definitely further enhancement and the use of the proposed concept might lead to useful tools which enable use of understandable health trusted resources tailored to each person needs.

  14. Evaluation of Semantic Web Technologies for Storing Computable Definitions of Electronic Health Records Phenotyping Algorithms.

    PubMed

    Papež, Václav; Denaxas, Spiros; Hemingway, Harry

    2017-01-01

    Electronic Health Records are electronic data generated during or as a byproduct of routine patient care. Structured, semi-structured and unstructured EHR offer researchers unprecedented phenotypic breadth and depth and have the potential to accelerate the development of precision medicine approaches at scale. A main EHR use-case is defining phenotyping algorithms that identify disease status, onset and severity. Phenotyping algorithms utilize diagnoses, prescriptions, laboratory tests, symptoms and other elements in order to identify patients with or without a specific trait. No common standardized, structured, computable format exists for storing phenotyping algorithms. The majority of algorithms are stored as human-readable descriptive text documents making their translation to code challenging due to their inherent complexity and hinders their sharing and re-use across the community. In this paper, we evaluate the two key Semantic Web Technologies, the Web Ontology Language and the Resource Description Framework, for enabling computable representations of EHR-driven phenotyping algorithms.

  15. Semantic Desktop

    NASA Astrophysics Data System (ADS)

    Sauermann, Leo; Kiesel, Malte; Schumacher, Kinga; Bernardi, Ansgar

    In diesem Beitrag wird gezeigt, wie der Arbeitsplatz der Zukunft aussehen könnte und wo das Semantic Web neue Möglichkeiten eröffnet. Dazu werden Ansätze aus dem Bereich Semantic Web, Knowledge Representation, Desktop-Anwendungen und Visualisierung vorgestellt, die es uns ermöglichen, die bestehenden Daten eines Benutzers neu zu interpretieren und zu verwenden. Dabei bringt die Kombination von Semantic Web und Desktop Computern besondere Vorteile - ein Paradigma, das unter dem Titel Semantic Desktop bekannt ist. Die beschriebenen Möglichkeiten der Applikationsintegration sind aber nicht auf den Desktop beschränkt, sondern können genauso in Web-Anwendungen Verwendung finden.

  16. The Digital electronic Guideline Library (DeGeL): a hybrid framework for representation and use of clinical guidelines.

    PubMed

    Shahar, Yuval; Young, Ohad; Shalom, Erez; Mayaffit, Alon; Moskovitch, Robert; Hessing, Alon; Galperin, Maya

    2004-01-01

    We propose to present a poster (and potentially also a demonstration of the implemented system) summarizing the current state of our work on a hybrid, multiple-format representation of clinical guidelines that facilitates conversion of guidelines from free text to a formal representation. We describe a distributed Web-based architecture (DeGeL) and a set of tools using the hybrid representation. The tools enable performing tasks such as guideline specification, semantic markup, search, retrieval, visualization, eligibility determination, runtime application and retrospective quality assessment. The representation includes four parallel formats: Free text (one or more original sources); semistructured text (labeled by the target guideline-ontology semantic labels); semiformal text (which includes some control specification); and a formal, machine-executable representation. The specification, indexing, search, retrieval, and browsing tools are essentially independent of the ontology chosen for guideline representation, but editing the semi-formal and formal formats requires ontology-specific tools, which we have developed in the case of the Asbru guideline-specification language. The four formats support increasingly sophisticated computational tasks. The hybrid guidelines are stored in a Web-based library. All tools, such as for runtime guideline application or retrospective quality assessment, are designed to operate on all representations. We demonstrate the hybrid framework by providing examples from the semantic markup and search tools.

  17. Design and Development of a Sharable Clinical Decision Support System Based on a Semantic Web Service Framework.

    PubMed

    Zhang, Yi-Fan; Gou, Ling; Tian, Yu; Li, Tian-Chang; Zhang, Mao; Li, Jing-Song

    2016-05-01

    Clinical decision support (CDS) systems provide clinicians and other health care stakeholders with patient-specific assessments or recommendations to aid in the clinical decision-making process. Despite their demonstrated potential for improving health care quality, the widespread availability of CDS systems has been limited mainly by the difficulty and cost of sharing CDS knowledge among heterogeneous healthcare information systems. The purpose of this study was to design and develop a sharable clinical decision support (S-CDS) system that meets this challenge. The fundamental knowledge base consists of independent and reusable knowledge modules (KMs) to meet core CDS needs, wherein each KM is semantically well defined based on the standard information model, terminologies, and representation formalisms. A semantic web service framework was developed to identify, access, and leverage these KMs across diverse CDS applications and care settings. The S-CDS system has been validated in two distinct client CDS applications. Model-level evaluation results confirmed coherent knowledge representation. Application-level evaluation results reached an overall accuracy of 98.66 % and a completeness of 96.98 %. The evaluation results demonstrated the technical feasibility and application prospect of our approach. Compared with other CDS engineering efforts, our approach facilitates system development and implementation and improves system maintainability, scalability and efficiency, which contribute to the widespread adoption of effective CDS within the healthcare domain.

  18. Semantic Web technologies for the big data in life sciences.

    PubMed

    Wu, Hongyan; Yamaguchi, Atsuko

    2014-08-01

    The life sciences field is entering an era of big data with the breakthroughs of science and technology. More and more big data-related projects and activities are being performed in the world. Life sciences data generated by new technologies are continuing to grow in not only size but also variety and complexity, with great speed. To ensure that big data has a major influence in the life sciences, comprehensive data analysis across multiple data sources and even across disciplines is indispensable. The increasing volume of data and the heterogeneous, complex varieties of data are two principal issues mainly discussed in life science informatics. The ever-evolving next-generation Web, characterized as the Semantic Web, is an extension of the current Web, aiming to provide information for not only humans but also computers to semantically process large-scale data. The paper presents a survey of big data in life sciences, big data related projects and Semantic Web technologies. The paper introduces the main Semantic Web technologies and their current situation, and provides a detailed analysis of how Semantic Web technologies address the heterogeneous variety of life sciences big data. The paper helps to understand the role of Semantic Web technologies in the big data era and how they provide a promising solution for the big data in life sciences.

  19. The Semantic Web and Educational Technology

    ERIC Educational Resources Information Center

    Maddux, Cleborne D., Ed.

    2008-01-01

    The "Semantic Web" is an idea proposed by Tim Berners-Lee, the inventor of the "World Wide Web." The topic has been generating a great deal of interest and enthusiasm, and there is a rapidly growing body of literature dealing with it. This article attempts to explain how the Semantic Web would work, and explores short-term and long-term…

  20. A novel architecture for information retrieval system based on semantic web

    NASA Astrophysics Data System (ADS)

    Zhang, Hui

    2011-12-01

    Nowadays, the web has enabled an explosive growth of information sharing (there are currently over 4 billion pages covering most areas of human endeavor) so that the web has faced a new challenge of information overhead. The challenge that is now before us is not only to help people locating relevant information precisely but also to access and aggregate a variety of information from different resources automatically. Current web document are in human-oriented formats and they are suitable for the presentation, but machines cannot understand the meaning of document. To address this issue, Berners-Lee proposed a concept of semantic web. With semantic web technology, web information can be understood and processed by machine. It provides new possibilities for automatic web information processing. A main problem of semantic web information retrieval is that when these is not enough knowledge to such information retrieval system, the system will return to a large of no sense result to uses due to a huge amount of information results. In this paper, we present the architecture of information based on semantic web. In addiction, our systems employ the inference Engine to check whether the query should pose to Keyword-based Search Engine or should pose to the Semantic Search Engine.

  1. Ontology Design of Influential People Identification Using Centrality

    NASA Astrophysics Data System (ADS)

    Maulana Awangga, Rolly; Yusril, Muhammad; Setyawan, Helmi

    2018-04-01

    Identifying influential people as a node in a graph theory commonly calculated by social network analysis. The social network data has the user as node and edge as relation forming a friend relation graph. This research is conducting different meaning of every nodes relation in the social network. Ontology was perfect match science to describe the social network data as conceptual and domain. Ontology gives essential relationship in a social network more than a current graph. Ontology proposed as a standard for knowledge representation for the semantic web by World Wide Web Consortium. The formal data representation use Resource Description Framework (RDF) and Web Ontology Language (OWL) which is strategic for Open Knowledge-Based website data. Ontology used in the semantic description for a relationship in the social network, it is open to developing semantic based relationship ontology by adding and modifying various and different relationship to have influential people as a conclusion. This research proposes a model using OWL and RDF for influential people identification in the social network. The study use degree centrality, between ness centrality, and closeness centrality measurement for data validation. As a conclusion, influential people identification in Facebook can use proposed Ontology model in the Group, Photos, Photo Tag, Friends, Events and Works data.

  2. Conceptual Model Formalization in a Semantic Interoperability Service Framework: Transforming Relational Database Schemas to OWL.

    PubMed

    Bravo, Carlos; Suarez, Carlos; González, Carolina; López, Diego; Blobel, Bernd

    2014-01-01

    Healthcare information is distributed through multiple heterogeneous and autonomous systems. Access to, and sharing of, distributed information sources are a challenging task. To contribute to meeting this challenge, this paper presents a formal, complete and semi-automatic transformation service from Relational Databases to Web Ontology Language. The proposed service makes use of an algorithm that allows to transform several data models of different domains by deploying mainly inheritance rules. The paper emphasizes the relevance of integrating the proposed approach into an ontology-based interoperability service to achieve semantic interoperability.

  3. Towards a semantics-based approach in the development of geographic portals

    NASA Astrophysics Data System (ADS)

    Athanasis, Nikolaos; Kalabokidis, Kostas; Vaitis, Michail; Soulakellis, Nikolaos

    2009-02-01

    As the demand for geospatial data increases, the lack of efficient ways to find suitable information becomes critical. In this paper, a new methodology for knowledge discovery in geographic portals is presented. Based on the Semantic Web, our approach exploits the Resource Description Framework (RDF) in order to describe the geoportal's information with ontology-based metadata. When users traverse from page to page in the portal, they take advantage of the metadata infrastructure to navigate easily through data of interest. New metadata descriptions are published in the geoportal according to the RDF schemas.

  4. Panacea, a semantic-enabled drug recommendations discovery framework.

    PubMed

    Doulaverakis, Charalampos; Nikolaidis, George; Kleontas, Athanasios; Kompatsiaris, Ioannis

    2014-03-06

    Personalized drug prescription can be benefited from the use of intelligent information management and sharing. International standard classifications and terminologies have been developed in order to provide unique and unambiguous information representation. Such standards can be used as the basis of automated decision support systems for providing drug-drug and drug-disease interaction discovery. Additionally, Semantic Web technologies have been proposed in earlier works, in order to support such systems. The paper presents Panacea, a semantic framework capable of offering drug-drug and drug-diseases interaction discovery. For enabling this kind of service, medical information and terminology had to be translated to ontological terms and be appropriately coupled with medical knowledge of the field. International standard classifications and terminologies, provide the backbone of the common representation of medical data while the medical knowledge of drug interactions is represented by a rule base which makes use of the aforementioned standards. Representation is based on a lightweight ontology. A layered reasoning approach is implemented where at the first layer ontological inference is used in order to discover underlying knowledge, while at the second layer a two-step rule selection strategy is followed resulting in a computationally efficient reasoning approach. Details of the system architecture are presented while also giving an outline of the difficulties that had to be overcome. Panacea is evaluated both in terms of quality of recommendations against real clinical data and performance. The quality recommendation gave useful insights regarding requirements for real world deployment and revealed several parameters that affected the recommendation results. Performance-wise, Panacea is compared to a previous published work by the authors, a service for drug recommendations named GalenOWL, and presents their differences in modeling and approach to the problem, while also pinpointing the advantages of Panacea. Overall, the paper presents a framework for providing an efficient drug recommendations service where Semantic Web technologies are coupled with traditional business rule engines.

  5. A Smart Modeling Framework for Integrating BMI-enabled Models as Web Services

    NASA Astrophysics Data System (ADS)

    Jiang, P.; Elag, M.; Kumar, P.; Peckham, S. D.; Liu, R.; Marini, L.; Hsu, L.

    2015-12-01

    Serviced-oriented computing provides an opportunity to couple web service models using semantic web technology. Through this approach, models that are exposed as web services can be conserved in their own local environment, thus making it easy for modelers to maintain and update the models. In integrated modeling, the serviced-oriented loose-coupling approach requires (1) a set of models as web services, (2) the model metadata describing the external features of a model (e.g., variable name, unit, computational grid, etc.) and (3) a model integration framework. We present the architecture of coupling web service models that are self-describing by utilizing a smart modeling framework. We expose models that are encapsulated with CSDMS (Community Surface Dynamics Modeling System) Basic Model Interfaces (BMI) as web services. The BMI-enabled models are self-describing by uncovering models' metadata through BMI functions. After a BMI-enabled model is serviced, a client can initialize, execute and retrieve the meta-information of the model by calling its BMI functions over the web. Furthermore, a revised version of EMELI (Peckham, 2015), an Experimental Modeling Environment for Linking and Interoperability, is chosen as the framework for coupling BMI-enabled web service models. EMELI allows users to combine a set of component models into a complex model by standardizing model interface using BMI as well as providing a set of utilities smoothing the integration process (e.g., temporal interpolation). We modify the original EMELI so that the revised modeling framework is able to initialize, execute and find the dependencies of the BMI-enabled web service models. By using the revised EMELI, an example will be presented on integrating a set of topoflow model components that are BMI-enabled and exposed as web services. Reference: Peckham, S.D. (2014) EMELI 1.0: An experimental smart modeling framework for automatic coupling of self-describing models, Proceedings of HIC 2014, 11th International Conf. on Hydroinformatics, New York, NY.

  6. A model-driven approach for representing clinical archetypes for Semantic Web environments.

    PubMed

    Martínez-Costa, Catalina; Menárguez-Tortosa, Marcos; Fernández-Breis, Jesualdo Tomás; Maldonado, José Alberto

    2009-02-01

    The life-long clinical information of any person supported by electronic means configures his Electronic Health Record (EHR). This information is usually distributed among several independent and heterogeneous systems that may be syntactically or semantically incompatible. There are currently different standards for representing and exchanging EHR information among different systems. In advanced EHR approaches, clinical information is represented by means of archetypes. Most of these approaches use the Archetype Definition Language (ADL) to specify archetypes. However, ADL has some drawbacks when attempting to perform semantic activities in Semantic Web environments. In this work, Semantic Web technologies are used to specify clinical archetypes for advanced EHR architectures. The advantages of using the Ontology Web Language (OWL) instead of ADL are described and discussed in this work. Moreover, a solution combining Semantic Web and Model-driven Engineering technologies is proposed to transform ADL into OWL for the CEN EN13606 EHR architecture.

  7. Designing learning management system interoperability in semantic web

    NASA Astrophysics Data System (ADS)

    Anistyasari, Y.; Sarno, R.; Rochmawati, N.

    2018-01-01

    The extensive adoption of learning management system (LMS) has set the focus on the interoperability requirement. Interoperability is the ability of different computer systems, applications or services to communicate, share and exchange data, information, and knowledge in a precise, effective and consistent way. Semantic web technology and the use of ontologies are able to provide the required computational semantics and interoperability for the automation of tasks in LMS. The purpose of this study is to design learning management system interoperability in the semantic web which currently has not been investigated deeply. Moodle is utilized to design the interoperability. Several database tables of Moodle are enhanced and some features are added. The semantic web interoperability is provided by exploited ontology in content materials. The ontology is further utilized as a searching tool to match user’s queries and available courses. It is concluded that LMS interoperability in Semantic Web is possible to be performed.

  8. Semantic Metadata for Heterogeneous Spatial Planning Documents

    NASA Astrophysics Data System (ADS)

    Iwaniak, A.; Kaczmarek, I.; Łukowicz, J.; Strzelecki, M.; Coetzee, S.; Paluszyński, W.

    2016-09-01

    Spatial planning documents contain information about the principles and rights of land use in different zones of a local authority. They are the basis for administrative decision making in support of sustainable development. In Poland these documents are published on the Web according to a prescribed non-extendable XML schema, designed for optimum presentation to humans in HTML web pages. There is no document standard, and limited functionality exists for adding references to external resources. The text in these documents is discoverable and searchable by general-purpose web search engines, but the semantics of the content cannot be discovered or queried. The spatial information in these documents is geographically referenced but not machine-readable. Major manual efforts are required to integrate such heterogeneous spatial planning documents from various local authorities for analysis, scenario planning and decision support. This article presents results of an implementation using machine-readable semantic metadata to identify relationships among regulations in the text, spatial objects in the drawings and links to external resources. A spatial planning ontology was used to annotate different sections of spatial planning documents with semantic metadata in the Resource Description Framework in Attributes (RDFa). The semantic interpretation of the content, links between document elements and links to external resources were embedded in XHTML pages. An example and use case from the spatial planning domain in Poland is presented to evaluate its efficiency and applicability. The solution enables the automated integration of spatial planning documents from multiple local authorities to assist decision makers with understanding and interpreting spatial planning information. The approach is equally applicable to legal documents from other countries and domains, such as cultural heritage and environmental management.

  9. Getting Ready for RDA: What You Need to Know

    ERIC Educational Resources Information Center

    Hart, Amy

    2010-01-01

    Resource Description and Access (RDA) represents both a revised set of cataloging rules and a completely new framework in which to catalog. It aims for backward compatibility with AACR2 at the same time that it seeks to facilitate moving library data to the Semantic Web. Given these competing goals, it's not surprising that RDA's implementation…

  10. Developing a Data Discovery Tool for Interdisciplinary Science: Leveraging a Web-based Mapping Application and Geosemantic Searching

    NASA Astrophysics Data System (ADS)

    Albeke, S. E.; Perkins, D. G.; Ewers, S. L.; Ewers, B. E.; Holbrook, W. S.; Miller, S. N.

    2015-12-01

    The sharing of data and results is paramount for advancing scientific research. The Wyoming Center for Environmental Hydrology and Geophysics (WyCEHG) is a multidisciplinary group that is driving scientific breakthroughs to help manage water resources in the Western United States. WyCEHG is mandated by the National Science Foundation (NSF) to share their data. However, the infrastructure from which to share such diverse, complex and massive amounts of data did not exist within the University of Wyoming. We developed an innovative framework to meet the data organization, sharing, and discovery requirements of WyCEHG by integrating both open and closed source software, embedded metadata tags, semantic web technologies, and a web-mapping application. The infrastructure uses a Relational Database Management System as the foundation, providing a versatile platform to store, organize, and query myriad datasets, taking advantage of both structured and unstructured formats. Detailed metadata are fundamental to the utility of datasets. We tag data with Uniform Resource Identifiers (URI's) to specify concepts with formal descriptions (i.e. semantic ontologies), thus allowing users the ability to search metadata based on the intended context rather than conventional keyword searches. Additionally, WyCEHG data are geographically referenced. Using the ArcGIS API for Javascript, we developed a web mapping application leveraging database-linked spatial data services, providing a means to visualize and spatially query available data in an intuitive map environment. Using server-side scripting (PHP), the mapping application, in conjunction with semantic search modules, dynamically communicates with the database and file system, providing access to available datasets. Our approach provides a flexible, comprehensive infrastructure from which to store and serve WyCEHG's highly diverse research-based data. This framework has not only allowed WyCEHG to meet its data stewardship requirements, but can provide a template for others to follow.

  11. The STP (Solar-Terrestrial Physics) Semantic Web based on the RSS1.0 and the RDF

    NASA Astrophysics Data System (ADS)

    Kubo, T.; Murata, K. T.; Kimura, E.; Ishikura, S.; Shinohara, I.; Kasaba, Y.; Watari, S.; Matsuoka, D.

    2006-12-01

    In the Solar-Terrestrial Physics (STP), it is pointed out that circulation and utilization of observation data among researchers are insufficient. To archive interdisciplinary researches, we need to overcome this circulation and utilization problems. Under such a background, authors' group has developed a world-wide database that manages meta-data of satellite and ground-based observation data files. It is noted that retrieving meta-data from the observation data and registering them to database have been carried out by hand so far. Our goal is to establish the STP Semantic Web. The Semantic Web provides a common framework that allows a variety of data shared and reused across applications, enterprises, and communities. We also expect that the secondary information related with observations, such as event information and associated news, are also shared over the networks. The most fundamental issue on the establishment is who generates, manages and provides meta-data in the Semantic Web. We developed an automatic meta-data collection system for the observation data using the RSS (RDF Site Summary) 1.0. The RSS1.0 is one of the XML-based markup languages based on the RDF (Resource Description Framework), which is designed for syndicating news and contents of news-like sites. The RSS1.0 is used to describe the STP meta-data, such as data file name, file server address and observation date. To describe the meta-data of the STP beyond RSS1.0 vocabulary, we defined original vocabularies for the STP resources using the RDF Schema. The RDF describes technical terms on the STP along with the Dublin Core Metadata Element Set, which is standard for cross-domain information resource descriptions. Researchers' information on the STP by FOAF, which is known as an RDF/XML vocabulary, creates a machine-readable metadata describing people. Using the RSS1.0 as a meta-data distribution method, the workflow from retrieving meta-data to registering them into the database is automated. This technique is applied for several database systems, such as the DARTS database system and NICT Space Weather Report Service. The DARTS is a science database managed by ISAS/JAXA in Japan. We succeeded in generating and collecting the meta-data automatically for the CDF (Common data Format) data, such as Reimei satellite data, provided by the DARTS. We also create an RDF service for space weather report and real-time global MHD simulation 3D data provided by the NICT. Our Semantic Web system works as follows: The RSS1.0 documents generated on the data sites (ISAS and NICT) are automatically collected by a meta-data collection agent. The RDF documents are registered and the agent extracts meta-data to store them in the Sesame, which is an open source RDF database with support for RDF Schema inferencing and querying. The RDF database provides advanced retrieval processing that has considered property and relation. Finally, the STP Semantic Web provides automatic processing or high level search for the data which are not only for observation data but for space weather news, physical events, technical terms and researches information related to the STP.

  12. Knowledge representation and management: benefits and challenges of the semantic web for the fields of KRM and NLP.

    PubMed

    Rassinoux, A-M

    2011-01-01

    To summarize excellent current research in the field of knowledge representation and management (KRM). A synopsis of the articles selected for the IMIA Yearbook 2011 is provided and an attempt to highlight the current trends in the field is sketched. This last decade, with the extension of the text-based web towards a semantic-structured web, NLP techniques have experienced a renewed interest in knowledge extraction. This trend is corroborated through the five papers selected for the KRM section of the Yearbook 2011. They all depict outstanding studies that exploit NLP technologies whenever possible in order to accurately extract meaningful information from various biomedical textual sources. Bringing semantic structure to the meaningful content of textual web pages affords the user with cooperative sharing and intelligent finding of electronic data. As exemplified by the best paper selection, more and more advanced biomedical applications aim at exploiting the meaningful richness of free-text documents in order to generate semantic metadata and recently to learn and populate domain ontologies. These later are becoming a key piece as they allow portraying the semantics of the Semantic Web content. Maintaining their consistency with documents and semantic annotations that refer to them is a crucial challenge of the Semantic Web for the coming years.

  13. Intelligent Learning Infrastructure for Knowledge Intensive Organizations: A Semantic Web Perspective

    ERIC Educational Resources Information Center

    Lytras, Miltiadis, Ed.; Naeve, Ambjorn, Ed.

    2005-01-01

    In the context of Knowledge Society, the convergence of knowledge and learning management is a critical milestone. "Intelligent Learning Infrastructure for Knowledge Intensive Organizations: A Semantic Web Perspective" provides state-of-the art knowledge through a balanced theoretical and technological discussion. The semantic web perspective…

  14. Lifting Events in RDF from Interactions with Annotated Web Pages

    NASA Astrophysics Data System (ADS)

    Stühmer, Roland; Anicic, Darko; Sen, Sinan; Ma, Jun; Schmidt, Kay-Uwe; Stojanovic, Nenad

    In this paper we present a method and an implementation for creating and processing semantic events from interaction with Web pages which opens possibilities to build event-driven applications for the (Semantic) Web. Events, simple or complex, are models for things that happen e.g., when a user interacts with a Web page. Events are consumed in some meaningful way e.g., for monitoring reasons or to trigger actions such as responses. In order for receiving parties to understand events e.g., comprehend what has led to an event, we propose a general event schema using RDFS. In this schema we cover the composition of complex events and event-to-event relationships. These events can then be used to route semantic information about an occurrence to different recipients helping in making the Semantic Web active. Additionally, we present an architecture for detecting and composing events in Web clients. For the contents of events we show a way of how they are enriched with semantic information about the context in which they occurred. The paper is presented in conjunction with the use case of Semantic Advertising, which extends traditional clickstream analysis by introducing semantic short-term profiling, enabling discovery of the current interest of a Web user and therefore supporting advertisement providers in responding with more relevant advertisements.

  15. A Generic Evaluation Model for Semantic Web Services

    NASA Astrophysics Data System (ADS)

    Shafiq, Omair

    Semantic Web Services research has gained momentum over the last few Years and by now several realizations exist. They are being used in a number of industrial use-cases. Soon software developers will be expected to use this infrastructure to build their B2B applications requiring dynamic integration. However, there is still a lack of guidelines for the evaluation of tools developed to realize Semantic Web Services and applications built on top of them. In normal software engineering practice such guidelines can already be found for traditional component-based systems. Also some efforts are being made to build performance models for servicebased systems. Drawing on these related efforts in component-oriented and servicebased systems, we identified the need for a generic evaluation model for Semantic Web Services applicable to any realization. The generic evaluation model will help users and customers to orient their systems and solutions towards using Semantic Web Services. In this chapter, we have presented the requirements for the generic evaluation model for Semantic Web Services and further discussed the initial steps that we took to sketch such a model. Finally, we discuss related activities for evaluating semantic technologies.

  16. Using RDF to Model the Structure and Process of Systems

    NASA Astrophysics Data System (ADS)

    Rodriguez, Marko A.; Watkins, Jennifer H.; Bollen, Johan; Gershenson, Carlos

    Many systems can be described in terms of networks of discrete elements and their various relationships to one another. A semantic network, or multi-relational network, is a directed labeled graph consisting of a heterogeneous set of entities connected by a heterogeneous set of relationships. Semantic networks serve as a promising general-purpose modeling substrate for complex systems. Various standardized formats and tools are now available to support practical, large-scale semantic network models. First, the Resource Description Framework (RDF) offers a standardized semantic network data model that can be further formalized by ontology modeling languages such as RDF Schema (RDFS) and the Web Ontology Language (OWL). Second, the recent introduction of highly performant triple-stores (i.e. semantic network databases) allows semantic network models on the order of 109 edges to be efficiently stored and manipulated. RDF and its related technologies are currently used extensively in the domains of computer science, digital library science, and the biological sciences. This article will provide an introduction to RDF/RDFS/OWL and an examination of its suitability to model discrete element complex systems.

  17. Discovering Central Practitioners in a Medical Discussion Forum Using Semantic Web Analytics.

    PubMed

    Rajabi, Enayat; Abidi, Syed Sibte Raza

    2017-01-01

    The aim of this paper is to investigate semantic web based methods to enrich and transform a medical discussion forum in order to perform semantics-driven social network analysis. We use the centrality measures as well as semantic similarity metrics to identify the most influential practitioners within a discussion forum. The centrality results of our approach are in line with centrality measures produced by traditional SNA methods, thus validating the applicability of semantic web based methods for SNA, particularly for analyzing social networks for specialized discussion forums.

  18. Challenges Facing the Semantic Web and Social Software as Communication Technology Agents in E-Learning Environments

    ERIC Educational Resources Information Center

    Olaniran, Bolanle A.

    2010-01-01

    The semantic web describes the process whereby information content is made available for machine consumption. With increased reliance on information communication technologies, the semantic web promises effective and efficient information acquisition and dissemination of products and services in the global economy, in particular, e-learning.…

  19. Practical Experiences for the Development of Educational Systems in the Semantic Web

    ERIC Educational Resources Information Center

    Sánchez Vera, Ma. del Mar; Tomás Fernández Breis, Jesualdo; Serrano Sánchez, José Luis; Prendes Espinosa, Ma. Paz

    2013-01-01

    Semantic Web technologies have been applied in educational settings for different purposes in recent years, with the type of application being mainly defined by the way in which knowledge is represented and exploited. The basic technology for knowledge representation in Semantic Web settings is the ontology, which represents a common, shareable…

  20. Comprehensive Analysis of Semantic Web Reasoners and Tools: A Survey

    ERIC Educational Resources Information Center

    Khamparia, Aditya; Pandey, Babita

    2017-01-01

    Ontologies are emerging as best representation techniques for knowledge based context domains. The continuing need for interoperation, collaboration and effective information retrieval has lead to the creation of semantic web with the help of tools and reasoners which manages personalized information. The future of semantic web lies in an ontology…

  1. Using the Semantic Web for Rapid Integration of WikiPathways with Other Biological Online Data Resources

    PubMed Central

    Waagmeester, Andra; Pico, Alexander R.

    2016-01-01

    The diversity of online resources storing biological data in different formats provides a challenge for bioinformaticians to integrate and analyse their biological data. The semantic web provides a standard to facilitate knowledge integration using statements built as triples describing a relation between two objects. WikiPathways, an online collaborative pathway resource, is now available in the semantic web through a SPARQL endpoint at http://sparql.wikipathways.org. Having biological pathways in the semantic web allows rapid integration with data from other resources that contain information about elements present in pathways using SPARQL queries. In order to convert WikiPathways content into meaningful triples we developed two new vocabularies that capture the graphical representation and the pathway logic, respectively. Each gene, protein, and metabolite in a given pathway is defined with a standard set of identifiers to support linking to several other biological resources in the semantic web. WikiPathways triples were loaded into the Open PHACTS discovery platform and are available through its Web API (https://dev.openphacts.org/docs) to be used in various tools for drug development. We combined various semantic web resources with the newly converted WikiPathways content using a variety of SPARQL query types and third-party resources, such as the Open PHACTS API. The ability to use pathway information to form new links across diverse biological data highlights the utility of integrating WikiPathways in the semantic web. PMID:27336457

  2. Using the Semantic Web for Rapid Integration of WikiPathways with Other Biological Online Data Resources.

    PubMed

    Waagmeester, Andra; Kutmon, Martina; Riutta, Anders; Miller, Ryan; Willighagen, Egon L; Evelo, Chris T; Pico, Alexander R

    2016-06-01

    The diversity of online resources storing biological data in different formats provides a challenge for bioinformaticians to integrate and analyse their biological data. The semantic web provides a standard to facilitate knowledge integration using statements built as triples describing a relation between two objects. WikiPathways, an online collaborative pathway resource, is now available in the semantic web through a SPARQL endpoint at http://sparql.wikipathways.org. Having biological pathways in the semantic web allows rapid integration with data from other resources that contain information about elements present in pathways using SPARQL queries. In order to convert WikiPathways content into meaningful triples we developed two new vocabularies that capture the graphical representation and the pathway logic, respectively. Each gene, protein, and metabolite in a given pathway is defined with a standard set of identifiers to support linking to several other biological resources in the semantic web. WikiPathways triples were loaded into the Open PHACTS discovery platform and are available through its Web API (https://dev.openphacts.org/docs) to be used in various tools for drug development. We combined various semantic web resources with the newly converted WikiPathways content using a variety of SPARQL query types and third-party resources, such as the Open PHACTS API. The ability to use pathway information to form new links across diverse biological data highlights the utility of integrating WikiPathways in the semantic web.

  3. The value of the Semantic Web in the laboratory.

    PubMed

    Frey, Jeremy G

    2009-06-01

    The Semantic Web is beginning to impact on the wider chemical and physical sciences, beyond the earlier adopted bio-informatics. While useful in large-scale data driven science with automated processing, these technologies can also help integrate the work of smaller scale laboratories producing diverse data. The semantics aid the discovery, reliable re-use of data, provide improved provenance and facilitate automated processing by increased resilience to changes in presentation and reduced ambiguity. The Semantic Web, its tools and collections are not yet competitive with well-established solutions to current problems. It is in the reduced cost of instituting solutions to new problems that the versatility of Semantic Web-enabled data and resources will make their mark once the more general-purpose tools are more available.

  4. Provenance-Based Approaches to Semantic Web Service Discovery and Usage

    ERIC Educational Resources Information Center

    Narock, Thomas William

    2012-01-01

    The World Wide Web Consortium defines a Web Service as "a software system designed to support interoperable machine-to-machine interaction over a network." Web Services have become increasingly important both within and across organizational boundaries. With the recent advent of the Semantic Web, web services have evolved into semantic…

  5. Semantic Web-based Vocabulary Broker for Open Science

    NASA Astrophysics Data System (ADS)

    Ritschel, B.; Neher, G.; Iyemori, T.; Murayama, Y.; Kondo, Y.; Koyama, Y.; King, T. A.; Galkin, I. A.; Fung, S. F.; Wharton, S.; Cecconi, B.

    2016-12-01

    Keyword vocabularies are used to tag and to identify data of science data repositories. Such vocabularies consist of controlled terms and the appropriate concepts, such as GCMD1 keywords or the ESPAS2 keyword ontology. The Semantic Web-based mash-up of domain-specific, cross- or even trans-domain vocabularies provides unique capabilities in the network of appropriate data resources. Based on a collaboration between GFZ3, the FHP4, the WDC for Geomagnetism5 and the NICT6 we developed the concept of a vocabulary broker for inter- and trans-disciplinary data detection and integration. Our prototype of the Semantic Web-based vocabulary broker uses OSF7 for the mash-up of geo and space research vocabularies, such as GCMD keywords, ESPAS keyword ontology and SPASE8 keyword vocabulary. The vocabulary broker starts the search with "free" keywords or terms of a specific vocabulary scheme. The vocabulary broker almost automatically connects the different science data repositories which are tagged by terms of the aforementioned vocabularies. Therefore the mash-up of the SKOS9 based vocabularies with appropriate metadata from different domains can be realized by addressing LOD10 resources or virtual SPARQL11 endpoints which maps relational structures into the RDF format12. In order to demonstrate such a mash-up approach in real life, we installed and use a D2RQ13 server for the integration of IUGONET14 data which are managed by a relational database. The OSF based vocabulary broker and the D2RQ platform are installed at virtual LINUX machines at the Kyoto University. The vocabulary broker meets the standard of a main component of the WDS15 knowledge network. The Web address of the vocabulary broker is http://wdcosf.kugi.kyoto-u.ac.jp 1 Global Change Master Directory2 Near earth space data infrastructure for e-science3 German Research Centre for Geosciences4 University of Applied Sciences Potsdam5 World Data Center for Geomagnetism Kyoto6 National Institute of Information and Communications Technology Tokyo7 Open Semantic Framework8 Space Physics Archive Search and Extract9 Simple Knowledge Organization System10 Linked Open Data11 SPARQL Protocol And RDF Query12 Resource Description Framework13 Database to RDF Query14 Inter-university Upper atmosphere Global Observation NETwork15 World Data System

  6. A Role for Semantic Web Technologies in Patient Record Data Collection

    NASA Astrophysics Data System (ADS)

    Ogbuji, Chimezie

    Business Process Management Systems (BPMS) are a component of the stack of Web standards that comprise Service Oriented Architecture (SOA). Such systems are representative of the architectural framework of modern information systems built in an enterprise intranet and are in contrast to systems built for deployment on the larger World Wide Web. The REST architectural style is an emerging style for building loosely coupled systems based purely on the native HTTP protocol. It is a coordinated set of architectural constraints with a goal to minimize latency, maximize the independence and scalability of distributed components, and facilitate the use of intermediary processors.Within the development community for distributed, Web-based systems, there has been a debate regarding themerits of both approaches. In some cases, there are legitimate concerns about the differences in both architectural styles. In other cases, the contention seems to be based on concerns that are marginal at best. In this chapter, we will attempt to contribute to this debate by focusing on a specific, deployed use case that emphasizes the role of the Semantic Web, a simple Web application architecture that leverages the use of declarative XML processing, and the needs of a workflow system. The use case involves orchestrating a work process associated with the data entry of structured patient record content into a research registry at the Cleveland Clinic's Clinical Investigation department in the Heart and Vascular Institute.

  7. NASA and The Semantic Web

    NASA Technical Reports Server (NTRS)

    Ashish, Naveen

    2005-01-01

    We provide an overview of several ongoing NASA endeavors based on concepts, systems, and technology from the Semantic Web arena. Indeed NASA has been one of the early adopters of Semantic Web Technology and we describe ongoing and completed R&D efforts for several applications ranging from collaborative systems to airspace information management to enterprise search to scientific information gathering and discovery systems at NASA.

  8. F-OWL: An Inference Engine for Semantic Web

    NASA Technical Reports Server (NTRS)

    Zou, Youyong; Finin, Tim; Chen, Harry

    2004-01-01

    Understanding and using the data and knowledge encoded in semantic web documents requires an inference engine. F-OWL is an inference engine for the semantic web language OWL language based on F-logic, an approach to defining frame-based systems in logic. F-OWL is implemented using XSB and Flora-2 and takes full advantage of their features. We describe how F-OWL computes ontology entailment and compare it with other description logic based approaches. We also describe TAGA, a trading agent environment that we have used as a test bed for F-OWL and to explore how multiagent systems can use semantic web concepts and technology.

  9. SOLE: Applying Semantics and Social Web to Support Technology Enhanced Learning in Software Engineering

    NASA Astrophysics Data System (ADS)

    Colomo-Palacios, Ricardo; Jiménez-López, Diego; García-Crespo, Ángel; Blanco-Iglesias, Borja

    eLearning educative processes are a challenge for educative institutions and education professionals. In an environment in which learning resources are being produced, catalogued and stored using innovative ways, SOLE provides a platform in which exam questions can be produced supported by Web 2.0 tools, catalogued and labeled via semantic web and stored and distributed using eLearning standards. This paper presents, SOLE, a social network of exam questions sharing particularized for Software Engineering domain, based on semantics and built using semantic web and eLearning standards, such as IMS Question and Test Interoperability specification 2.1.

  10. Experimenting with semantic web services to understand the role of NLP technologies in healthcare.

    PubMed

    Jagannathan, V

    2006-01-01

    NLP technologies can play a significant role in healthcare where a predominant segment of the clinical documentation is in text form. In a graduate course focused on understanding semantic web services at West Virginia University, a class project was designed with the purpose of exploring potential use for NLP-based abstraction of clinical documentation. The role of NLP-technology was simulated using human abstractors and various workflows were investigated using public domain workflow and semantic web service technologies. This poster explores the potential use of NLP and the role of workflow and semantic web technologies in developing healthcare IT environments.

  11. Introduction to geospatial semantics and technology workshop handbook

    USGS Publications Warehouse

    Varanka, Dalia E.

    2012-01-01

    The workshop is a tutorial on introductory geospatial semantics with hands-on exercises using standard Web browsers. The workshop is divided into two sections, general semantics on the Web and specific examples of geospatial semantics using data from The National Map of the U.S. Geological Survey and the Open Ontology Repository. The general semantics section includes information and access to publicly available semantic archives. The specific session includes information on geospatial semantics with access to semantically enhanced data for hydrography, transportation, boundaries, and names. The Open Ontology Repository offers open-source ontologies for public use.

  12. Extending the GI Brokering Suite to Support New Interoperability Specifications

    NASA Astrophysics Data System (ADS)

    Boldrini, E.; Papeschi, F.; Santoro, M.; Nativi, S.

    2014-12-01

    The GI brokering suite provides the discovery, access, and semantic Brokers (i.e. GI-cat, GI-axe, GI-sem) that empower a Brokering framework for multi-disciplinary and multi-organizational interoperability. GI suite has been successfully deployed in the framework of several programmes and initiatives, such as European Union funded projects, NSF BCube, and the intergovernmental coordinated effort Global Earth Observation System of Systems (GEOSS). Each GI suite Broker facilitates interoperability for a particular functionality (i.e. discovery, access, semantic extension) among a set of brokered resources published by autonomous providers (e.g. data repositories, web services, semantic assets) and a set of heterogeneous consumers (e.g. client applications, portals, apps). A wide set of data models, encoding formats, and service protocols are already supported by the GI suite, such as the ones defined by international standardizing organizations like OGC and ISO (e.g. WxS, CSW, SWE, GML, netCDF) and by Community specifications (e.g. THREDDS, OpenSearch, OPeNDAP, ESRI APIs). Using GI suite, resources published by a particular Community or organization through their specific technology (e.g. OPeNDAP/netCDF) can be transparently discovered, accessed, and used by different Communities utilizing their preferred tools (e.g. a GIS visualizing WMS layers). Since Information Technology is a moving target, new standards and technologies continuously emerge and are adopted in the Earth Science context too. Therefore, GI Brokering suite was conceived to be flexible and accommodate new interoperability protocols and data models. For example, GI suite has recently added support to well-used specifications, introduced to implement Linked data, Semantic Web and precise community needs. Amongst the others, they included: DCAT: a RDF vocabulary designed to facilitate interoperability between Web data catalogs. CKAN: a data management system for data distribution, particularly used by public administrations. CERIF: used by CRIS (Current Research Information System) instances. HYRAX Server: a scientific dataset publishing component. This presentation will discuss these and other latest GI suite extensions implemented to support new interoperability protocols in use by the Earth Science Communities.

  13. Visual Exploratory Search of Relationship Graphs on Smartphones

    PubMed Central

    Ouyang, Jianquan; Zheng, Hao; Kong, Fanbin; Liu, Tianming

    2013-01-01

    This paper presents a novel framework for Visual Exploratory Search of Relationship Graphs on Smartphones (VESRGS) that is composed of three major components: inference and representation of semantic relationship graphs on the Web via meta-search, visual exploratory search of relationship graphs through both querying and browsing strategies, and human-computer interactions via the multi-touch interface and mobile Internet on smartphones. In comparison with traditional lookup search methodologies, the proposed VESRGS system is characterized with the following perceived advantages. 1) It infers rich semantic relationships between the querying keywords and other related concepts from large-scale meta-search results from Google, Yahoo! and Bing search engines, and represents semantic relationships via graphs; 2) the exploratory search approach empowers users to naturally and effectively explore, adventure and discover knowledge in a rich information world of interlinked relationship graphs in a personalized fashion; 3) it effectively takes the advantages of smartphones’ user-friendly interfaces and ubiquitous Internet connection and portability. Our extensive experimental results have demonstrated that the VESRGS framework can significantly improve the users’ capability of seeking the most relevant relationship information to their own specific needs. We envision that the VESRGS framework can be a starting point for future exploration of novel, effective search strategies in the mobile Internet era. PMID:24223936

  14. A Digital Knowledge Preservation Platform for Environmental Sciences

    NASA Astrophysics Data System (ADS)

    Aguilar Gómez, Fernando; de Lucas, Jesús Marco; Pertinez, Esther; Palacio, Aida; Perez, David

    2017-04-01

    The Digital Knowledge Preservation Platform is the evolution of a pilot project for Open Data supporting the full research data life cycle. It is currently being evolved at IFCA (Instituto de Física de Cantabria) as a combination of different open tools that have been extended: DMPTool (https://dmptool.org/) with pilot semantics features (RDF export, parameters definition), INVENIO (http://invenio-software.org/ ) customized version to integrate the entire research data life cycle and Jupyter (http://jupyter.org/) as processing tool and reproducibility environment. This complete platform aims to provide an integrated environment for research data management following the FAIR+R principles: -Findable: The Web portal based on Invenio provides a search engine and all elements including metadata to make them easily findable. -Accessible: Both data and software are available online with internal PIDs and DOIs (provided by Datacite). -Interoperable: Datasets can be combined to perform new analysis. The OAI-PMH standard is also integrated. -Re-usable: different licenses types and embargo periods can be defined. -+Reproducible: directly integrated with cloud computing resources. The deployment of the entire system over a Cloud framework helps to build a dynamic and scalable solution, not only for managing open datasets but also as a useful tool for the final user, who is able to directly process and analyse the open data. In parallel, the direct use of semantics and metadata is being explored and integrated in the framework. Ontologies, being a knowledge representation, can contribute to define the elements and relationships of the research data life cycle, including DMP, datasets, software, etc. The first advantage of developing an ontology of a knowledge domain is that they provide a common vocabulary hierarchy (i.e. a conceptual schema) that can be used and standardized by all the agents interested in the domain (either humans or machines). This way of using ontologies is one of the basis of the Semantic Web, where ontologies are set to play a key role in establishing a common terminology between agents. To develop the ontology we are using a graphical tool called Protégé. Protégé is a graphical ontology-development tool which supports a rich knowledge model and it is open-source and freely available. However in order to process and manage the ontology from the web framework, we are using Semantic MediaWiki, which is able to process queries. Semantic MediaWiki is an extension of MediaWiki where we can do semantic search and export data in RDF and CSV format. This system is used as a testbed for the potential use of semantics in a more general environment. This Digital Knowledge Preservation Platform is very closed related to INDIGO-DataCloud project (https://www.indigo-datacloud.eu) since the same data life cycle approach is taking into account (Planning, Collect, Curate, Analyze, Publish, Preserve). INDIGO-DataCloud solutions will be able to support all the different elements in the system, as we showed in the last Research Data Alliance Plenary. This presentation will show the different elements on the system and how they work, as well as the roadmap of their continuous integration.

  15. The Semantic Automated Discovery and Integration (SADI) Web service Design-Pattern, API and Reference Implementation

    PubMed Central

    2011-01-01

    Background The complexity and inter-related nature of biological data poses a difficult challenge for data and tool integration. There has been a proliferation of interoperability standards and projects over the past decade, none of which has been widely adopted by the bioinformatics community. Recent attempts have focused on the use of semantics to assist integration, and Semantic Web technologies are being welcomed by this community. Description SADI - Semantic Automated Discovery and Integration - is a lightweight set of fully standards-compliant Semantic Web service design patterns that simplify the publication of services of the type commonly found in bioinformatics and other scientific domains. Using Semantic Web technologies at every level of the Web services "stack", SADI services consume and produce instances of OWL Classes following a small number of very straightforward best-practices. In addition, we provide codebases that support these best-practices, and plug-in tools to popular developer and client software that dramatically simplify deployment of services by providers, and the discovery and utilization of those services by their consumers. Conclusions SADI Services are fully compliant with, and utilize only foundational Web standards; are simple to create and maintain for service providers; and can be discovered and utilized in a very intuitive way by biologist end-users. In addition, the SADI design patterns significantly improve the ability of software to automatically discover appropriate services based on user-needs, and automatically chain these into complex analytical workflows. We show that, when resources are exposed through SADI, data compliant with a given ontological model can be automatically gathered, or generated, from these distributed, non-coordinating resources - a behaviour we have not observed in any other Semantic system. Finally, we show that, using SADI, data dynamically generated from Web services can be explored in a manner very similar to data housed in static triple-stores, thus facilitating the intersection of Web services and Semantic Web technologies. PMID:22024447

  16. The Semantic Automated Discovery and Integration (SADI) Web service Design-Pattern, API and Reference Implementation.

    PubMed

    Wilkinson, Mark D; Vandervalk, Benjamin; McCarthy, Luke

    2011-10-24

    The complexity and inter-related nature of biological data poses a difficult challenge for data and tool integration. There has been a proliferation of interoperability standards and projects over the past decade, none of which has been widely adopted by the bioinformatics community. Recent attempts have focused on the use of semantics to assist integration, and Semantic Web technologies are being welcomed by this community. SADI - Semantic Automated Discovery and Integration - is a lightweight set of fully standards-compliant Semantic Web service design patterns that simplify the publication of services of the type commonly found in bioinformatics and other scientific domains. Using Semantic Web technologies at every level of the Web services "stack", SADI services consume and produce instances of OWL Classes following a small number of very straightforward best-practices. In addition, we provide codebases that support these best-practices, and plug-in tools to popular developer and client software that dramatically simplify deployment of services by providers, and the discovery and utilization of those services by their consumers. SADI Services are fully compliant with, and utilize only foundational Web standards; are simple to create and maintain for service providers; and can be discovered and utilized in a very intuitive way by biologist end-users. In addition, the SADI design patterns significantly improve the ability of software to automatically discover appropriate services based on user-needs, and automatically chain these into complex analytical workflows. We show that, when resources are exposed through SADI, data compliant with a given ontological model can be automatically gathered, or generated, from these distributed, non-coordinating resources - a behaviour we have not observed in any other Semantic system. Finally, we show that, using SADI, data dynamically generated from Web services can be explored in a manner very similar to data housed in static triple-stores, thus facilitating the intersection of Web services and Semantic Web technologies.

  17. Using architectures for semantic interoperability to create journal clubs for emergency response

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Powell, James E; Collins, Linn M; Martinez, Mark L B

    2009-01-01

    In certain types of 'slow burn' emergencies, careful accumulation and evaluation of information can offer a crucial advantage. The SARS outbreak in the first decade of the 21st century was such an event, and ad hoc journal clubs played a critical role in assisting scientific and technical responders in identifying and developing various strategies for halting what could have become a dangerous pandemic. This research-in-progress paper describes a process for leveraging emerging semantic web and digital library architectures and standards to (1) create a focused collection of bibliographic metadata, (2) extract semantic information, (3) convert it to the Resource Descriptionmore » Framework /Extensible Markup Language (RDF/XML), and (4) integrate it so that scientific and technical responders can share and explore critical information in the collections.« less

  18. Graph-Based Semantic Web Service Composition for Healthcare Data Integration.

    PubMed

    Arch-Int, Ngamnij; Arch-Int, Somjit; Sonsilphong, Suphachoke; Wanchai, Paweena

    2017-01-01

    Within the numerous and heterogeneous web services offered through different sources, automatic web services composition is the most convenient method for building complex business processes that permit invocation of multiple existing atomic services. The current solutions in functional web services composition lack autonomous queries of semantic matches within the parameters of web services, which are necessary in the composition of large-scale related services. In this paper, we propose a graph-based Semantic Web Services composition system consisting of two subsystems: management time and run time. The management-time subsystem is responsible for dependency graph preparation in which a dependency graph of related services is generated automatically according to the proposed semantic matchmaking rules. The run-time subsystem is responsible for discovering the potential web services and nonredundant web services composition of a user's query using a graph-based searching algorithm. The proposed approach was applied to healthcare data integration in different health organizations and was evaluated according to two aspects: execution time measurement and correctness measurement.

  19. Graph-Based Semantic Web Service Composition for Healthcare Data Integration

    PubMed Central

    2017-01-01

    Within the numerous and heterogeneous web services offered through different sources, automatic web services composition is the most convenient method for building complex business processes that permit invocation of multiple existing atomic services. The current solutions in functional web services composition lack autonomous queries of semantic matches within the parameters of web services, which are necessary in the composition of large-scale related services. In this paper, we propose a graph-based Semantic Web Services composition system consisting of two subsystems: management time and run time. The management-time subsystem is responsible for dependency graph preparation in which a dependency graph of related services is generated automatically according to the proposed semantic matchmaking rules. The run-time subsystem is responsible for discovering the potential web services and nonredundant web services composition of a user's query using a graph-based searching algorithm. The proposed approach was applied to healthcare data integration in different health organizations and was evaluated according to two aspects: execution time measurement and correctness measurement. PMID:29065602

  20. Semantic annotation of Web data applied to risk in food.

    PubMed

    Hignette, Gaëlle; Buche, Patrice; Couvert, Olivier; Dibie-Barthélemy, Juliette; Doussot, David; Haemmerlé, Ollivier; Mettler, Eric; Soler, Lydie

    2008-11-30

    A preliminary step to risk in food assessment is the gathering of experimental data. In the framework of the Sym'Previus project (http://www.symprevius.org), a complete data integration system has been designed, grouping data provided by industrial partners and data extracted from papers published in the main scientific journals of the domain. Those data have been classified by means of a predefined vocabulary, called ontology. Our aim is to complement the database with data extracted from the Web. In the framework of the WebContent project (www.webcontent.fr), we have designed a semi-automatic acquisition tool, called @WEB, which retrieves scientific documents from the Web. During the @WEB process, data tables are extracted from the documents and then annotated with the ontology. We focus on the data tables as they contain, in general, a synthesis of data published in the documents. In this paper, we explain how the columns of the data tables are automatically annotated with data types of the ontology and how the relations represented by the table are recognised. We also give the results of our experimentation to assess the quality of such an annotation.

  1. linkedISA: semantic representation of ISA-Tab experimental metadata.

    PubMed

    González-Beltrán, Alejandra; Maguire, Eamonn; Sansone, Susanna-Assunta; Rocca-Serra, Philippe

    2014-01-01

    Reporting and sharing experimental metadata- such as the experimental design, characteristics of the samples, and procedures applied, along with the analysis results, in a standardised manner ensures that datasets are comprehensible and, in principle, reproducible, comparable and reusable. Furthermore, sharing datasets in formats designed for consumption by humans and machines will also maximize their use. The Investigation/Study/Assay (ISA) open source metadata tracking framework facilitates standards-compliant collection, curation, visualization, storage and sharing of datasets, leveraging on other platforms to enable analysis and publication. The ISA software suite includes several components used in increasingly diverse set of life science and biomedical domains; it is underpinned by a general-purpose format, ISA-Tab, and conversions exist into formats required by public repositories. While ISA-Tab works well mainly as a human readable format, we have also implemented a linked data approach to semantically define the ISA-Tab syntax. We present a semantic web representation of the ISA-Tab syntax that complements ISA-Tab's syntactic interoperability with semantic interoperability. We introduce the linkedISA conversion tool from ISA-Tab to the Resource Description Framework (RDF), supporting mappings from the ISA syntax to multiple community-defined, open ontologies and capitalising on user-provided ontology annotations in the experimental metadata. We describe insights of the implementation and how annotations can be expanded driven by the metadata. We applied the conversion tool as part of Bio-GraphIIn, a web-based application supporting integration of the semantically-rich experimental descriptions. Designed in a user-friendly manner, the Bio-GraphIIn interface hides most of the complexities to the users, exposing a familiar tabular view of the experimental description to allow seamless interaction with the RDF representation, and visualising descriptors to drive the query over the semantic representation of the experimental design. In addition, we defined queries over the linkedISA RDF representation and demonstrated its use over the linkedISA conversion of datasets from Nature' Scientific Data online publication. Our linked data approach has allowed us to: 1) make the ISA-Tab semantics explicit and machine-processable, 2) exploit the existing ontology-based annotations in the ISA-Tab experimental descriptions, 3) augment the ISA-Tab syntax with new descriptive elements, 4) visualise and query elements related to the experimental design. Reasoning over ISA-Tab metadata and associated data will facilitate data integration and knowledge discovery.

  2. E-Government Goes Semantic Web: How Administrations Can Transform Their Information Processes

    NASA Astrophysics Data System (ADS)

    Klischewski, Ralf; Ukena, Stefan

    E-government applications and services are built mainly on access to, retrieval of, integration of, and delivery of relevant information to citizens, businesses, and administrative users. In order to perform such information processing automatically through the Semantic Web,1 machine-readable2 enhancements of web resources are needed, based on the understanding of the content and context of the information in focus. While these enhancements are far from trivial to produce, administrations in their role of information and service providers so far find little guidance on how to migrate their web resources and enable a new quality of information processing; even research is still seeking best practices. Therefore, the underlying research question of this chapter is: what are the appropriate approaches which guide administrations in transforming their information processes toward the Semantic Web? In search for answers, this chapter analyzes the challenges and possible solutions from the perspective of administrations: (a) the reconstruction of the information processing in the e-government in terms of how semantic technologies must be employed to support information provision and consumption through the Semantic Web; (b) the required contribution to the transformation is compared to the capabilities and expectations of administrations; and (c) available experience with the steps of transformation are reviewed and discussed as to what extent they can be expected to successfully drive the e-government to the Semantic Web. This research builds on studying the case of Schleswig-Holstein, Germany, where semantic technologies have been used within the frame of the Access-eGov3 project in order to semantically enhance electronic service interfaces with the aim of providing a new way of accessing and combining e-government services.

  3. Social Semantics for an Effective Enterprise

    NASA Technical Reports Server (NTRS)

    Berndt, Sarah; Doane, Mike

    2012-01-01

    An evolution of the Semantic Web, the Social Semantic Web (s2w), facilitates knowledge sharing with "useful information based on human contributions, which gets better as more people participate." The s2w reaches beyond the search box to move us from a collection of hyperlinked facts, to meaningful, real time context. When focused through the lens of Enterprise Search, the Social Semantic Web facilitates the fluid transition of meaningful business information from the source to the user. It is the confluence of human thought and computer processing structured with the iterative application of taxonomies, folksonomies, ontologies, and metadata schemas. The importance and nuances of human interaction are often deemphasized when focusing on automatic generation of semantic markup, which results in dissatisfied users and unrealized return on investment. Users consistently qualify the value of information sets through the act of selection, making them the de facto stakeholders of the Social Semantic Web. Employers are the ultimate beneficiaries of s2w utilization with a better informed, more decisive workforce; one not achieved with an IT miracle technology, but by improved human-computer interactions. Johnson Space Center Taxonomist Sarah Berndt and Mike Doane, principal owner of Term Management, LLC discuss the planning, development, and maintenance stages for components of a semantic system while emphasizing the necessity of a Social Semantic Web for the Enterprise. Identification of risks and variables associated with layering the successful implementation of a semantic system are also modeled.

  4. A Semantic Web-based System for Managing Clinical Archetypes.

    PubMed

    Fernandez-Breis, Jesualdo Tomas; Menarguez-Tortosa, Marcos; Martinez-Costa, Catalina; Fernandez-Breis, Eneko; Herrero-Sempere, Jose; Moner, David; Sanchez, Jesus; Valencia-Garcia, Rafael; Robles, Montserrat

    2008-01-01

    Archetypes facilitate the sharing of clinical knowledge and therefore are a basic tool for achieving interoperability between healthcare information systems. In this paper, a Semantic Web System for Managing Archetypes is presented. This system allows for the semantic annotation of archetypes, as well for performing semantic searches. The current system is capable of working with both ISO13606 and OpenEHR archetypes.

  5. Informatics in radiology: radiology gamuts ontology: differential diagnosis for the Semantic Web.

    PubMed

    Budovec, Joseph J; Lam, Cesar A; Kahn, Charles E

    2014-01-01

    The Semantic Web is an effort to add semantics, or "meaning," to empower automated searching and processing of Web-based information. The overarching goal of the Semantic Web is to enable users to more easily find, share, and combine information. Critical to this vision are knowledge models called ontologies, which define a set of concepts and formalize the relations between them. Ontologies have been developed to manage and exploit the large and rapidly growing volume of information in biomedical domains. In diagnostic radiology, lists of differential diagnoses of imaging observations, called gamuts, provide an important source of knowledge. The Radiology Gamuts Ontology (RGO) is a formal knowledge model of differential diagnoses in radiology that includes 1674 differential diagnoses, 19,017 terms, and 52,976 links between terms. Its knowledge is used to provide an interactive, freely available online reference of radiology gamuts ( www.gamuts.net ). A Web service allows its content to be discovered and consumed by other information systems. The RGO integrates radiologic knowledge with other biomedical ontologies as part of the Semantic Web. © RSNA, 2014.

  6. Semantic web data warehousing for caGrid.

    PubMed

    McCusker, James P; Phillips, Joshua A; González Beltrán, Alejandra; Finkelstein, Anthony; Krauthammer, Michael

    2009-10-01

    The National Cancer Institute (NCI) is developing caGrid as a means for sharing cancer-related data and services. As more data sets become available on caGrid, we need effective ways of accessing and integrating this information. Although the data models exposed on caGrid are semantically well annotated, it is currently up to the caGrid client to infer relationships between the different models and their classes. In this paper, we present a Semantic Web-based data warehouse (Corvus) for creating relationships among caGrid models. This is accomplished through the transformation of semantically-annotated caBIG Unified Modeling Language (UML) information models into Web Ontology Language (OWL) ontologies that preserve those semantics. We demonstrate the validity of the approach by Semantic Extraction, Transformation and Loading (SETL) of data from two caGrid data sources, caTissue and caArray, as well as alignment and query of those sources in Corvus. We argue that semantic integration is necessary for integration of data from distributed web services and that Corvus is a useful way of accomplishing this. Our approach is generalizable and of broad utility to researchers facing similar integration challenges.

  7. The Semantic Web in Education

    ERIC Educational Resources Information Center

    Ohler, Jason

    2008-01-01

    The semantic web or Web 3.0 makes information more meaningful to people by making it more understandable to machines. In this article, the author examines the implications of Web 3.0 for education. The author considers three areas of impact: knowledge construction, personal learning network maintenance, and personal educational administration.…

  8. Not Fade Away? Commentary to Paper "Education and The Semantic Web" ("IJAIED" Vol.14, 2004)

    ERIC Educational Resources Information Center

    Devedzic, Vladan

    2016-01-01

    If you ask me "Will Semantic Web 'ever' happen, in general, and specifically in education?", the best answer I can give you is "I don't know," but I know that today we are still far away from the hopes that I had when I wrote my paper "Education and The Semantic Web" (Devedzic 2004) more than 10 years ago. Much of the…

  9. From Science to e-Science to Semantic e-Science: A Heliosphysics Case Study

    NASA Technical Reports Server (NTRS)

    Narock, Thomas; Fox, Peter

    2011-01-01

    The past few years have witnessed unparalleled efforts to make scientific data web accessible. The Semantic Web has proven invaluable in this effort; however, much of the literature is devoted to system design, ontology creation, and trials and tribulations of current technologies. In order to fully develop the nascent field of Semantic e-Science we must also evaluate systems in real-world settings. We describe a case study within the field of Heliophysics and provide a comparison of the evolutionary stages of data discovery, from manual to semantically enable. We describe the socio-technical implications of moving toward automated and intelligent data discovery. In doing so, we highlight how this process enhances what is currently being done manually in various scientific disciplines. Our case study illustrates that Semantic e-Science is more than just semantic search. The integration of search with web services, relational databases, and other cyberinfrastructure is a central tenet of our case study and one that we believe has applicability as a generalized research area within Semantic e-Science. This case study illustrates a specific example of the benefits, and limitations, of semantically replicating data discovery. We show examples of significant reductions in time and effort enable by Semantic e-Science; yet, we argue that a "complete" solution requires integrating semantic search with other research areas such as data provenance and web services.

  10. Semantic e-Learning: Next Generation of e-Learning?

    NASA Astrophysics Data System (ADS)

    Konstantinos, Markellos; Penelope, Markellou; Giannis, Koutsonikos; Aglaia, Liopa-Tsakalidi

    Semantic e-learning aspires to be the next generation of e-learning, since the understanding of learning materials and knowledge semantics allows their advanced representation, manipulation, sharing, exchange and reuse and ultimately promote efficient online experiences for users. In this context, the paper firstly explores some fundamental Semantic Web technologies and then discusses current and potential applications of these technologies in e-learning domain, namely, Semantic portals, Semantic search, personalization, recommendation systems, social software and Web 2.0 tools. Finally, it highlights future research directions and open issues of the field.

  11. The semantic web in translational medicine: current applications and future directions

    PubMed Central

    Machado, Catia M.; Rebholz-Schuhmann, Dietrich; Freitas, Ana T.; Couto, Francisco M.

    2015-01-01

    Semantic web technologies offer an approach to data integration and sharing, even for resources developed independently or broadly distributed across the web. This approach is particularly suitable for scientific domains that profit from large amounts of data that reside in the public domain and that have to be exploited in combination. Translational medicine is such a domain, which in addition has to integrate private data from the clinical domain with proprietary data from the pharmaceutical domain. In this survey, we present the results of our analysis of translational medicine solutions that follow a semantic web approach. We assessed these solutions in terms of their target medical use case; the resources covered to achieve their objectives; and their use of existing semantic web resources for the purposes of data sharing, data interoperability and knowledge discovery. The semantic web technologies seem to fulfill their role in facilitating the integration and exploration of data from disparate sources, but it is also clear that simply using them is not enough. It is fundamental to reuse resources, to define mappings between resources, to share data and knowledge. All these aspects allow the instantiation of translational medicine at the semantic web-scale, thus resulting in a network of solutions that can share resources for a faster transfer of new scientific results into the clinical practice. The envisioned network of translational medicine solutions is on its way, but it still requires resolving the challenges of sharing protected data and of integrating semantic-driven technologies into the clinical practice. PMID:24197933

  12. The semantic web in translational medicine: current applications and future directions.

    PubMed

    Machado, Catia M; Rebholz-Schuhmann, Dietrich; Freitas, Ana T; Couto, Francisco M

    2015-01-01

    Semantic web technologies offer an approach to data integration and sharing, even for resources developed independently or broadly distributed across the web. This approach is particularly suitable for scientific domains that profit from large amounts of data that reside in the public domain and that have to be exploited in combination. Translational medicine is such a domain, which in addition has to integrate private data from the clinical domain with proprietary data from the pharmaceutical domain. In this survey, we present the results of our analysis of translational medicine solutions that follow a semantic web approach. We assessed these solutions in terms of their target medical use case; the resources covered to achieve their objectives; and their use of existing semantic web resources for the purposes of data sharing, data interoperability and knowledge discovery. The semantic web technologies seem to fulfill their role in facilitating the integration and exploration of data from disparate sources, but it is also clear that simply using them is not enough. It is fundamental to reuse resources, to define mappings between resources, to share data and knowledge. All these aspects allow the instantiation of translational medicine at the semantic web-scale, thus resulting in a network of solutions that can share resources for a faster transfer of new scientific results into the clinical practice. The envisioned network of translational medicine solutions is on its way, but it still requires resolving the challenges of sharing protected data and of integrating semantic-driven technologies into the clinical practice. © The Author 2013. Published by Oxford University Press.

  13. A service-oriented distributed semantic mediator: integrating multiscale biomedical information.

    PubMed

    Mora, Oscar; Engelbrecht, Gerhard; Bisbal, Jesus

    2012-11-01

    Biomedical research continuously generates large amounts of heterogeneous and multimodal data spread over multiple data sources. These data, if appropriately shared and exploited, could dramatically improve the research practice itself, and ultimately the quality of health care delivered. This paper presents DISMED (DIstributed Semantic MEDiator), an open source semantic mediator that provides a unified view of a federated environment of multiscale biomedical data sources. DISMED is a Web-based software application to query and retrieve information distributed over a set of registered data sources, using semantic technologies. It also offers a userfriendly interface specifically designed to simplify the usage of these technologies by non-expert users. Although the architecture of the software mediator is generic and domain independent, in the context of this paper, DISMED has been evaluated for managing biomedical environments and facilitating research with respect to the handling of scientific data distributed in multiple heterogeneous data sources. As part of this contribution, a quantitative evaluation framework has been developed. It consist of a benchmarking scenario and the definition of five realistic use-cases. This framework, created entirely with public datasets, has been used to compare the performance of DISMED against other available mediators. It is also available to the scientific community in order to evaluate progress in the domain of semantic mediation, in a systematic and comparable manner. The results show an average improvement in the execution time by DISMED of 55% compared to the second best alternative in four out of the five use-cases of the experimental evaluation.

  14. A Framework to Manage Information Models

    NASA Astrophysics Data System (ADS)

    Hughes, J. S.; King, T.; Crichton, D.; Walker, R.; Roberts, A.; Thieman, J.

    2008-05-01

    The Information Model is the foundation on which an Information System is built. It defines the entities to be processed, their attributes, and the relationships that add meaning. The development and subsequent management of the Information Model is the single most significant factor for the development of a successful information system. A framework of tools has been developed that supports the management of an information model with the rigor typically afforded to software development. This framework provides for evolutionary and collaborative development independent of system implementation choices. Once captured, the modeling information can be exported to common languages for the generation of documentation, application databases, and software code that supports both traditional and semantic web applications. This framework is being successfully used for several science information modeling projects including those for the Planetary Data System (PDS), the International Planetary Data Alliance (IPDA), the National Cancer Institute's Early Detection Research Network (EDRN), and several Consultative Committee for Space Data Systems (CCSDS) projects. The objective of the Space Physics Archive Search and Exchange (SPASE) program is to promote collaboration and coordination of archiving activity for the Space Plasma Physics community and ensure the compatibility of the architectures used for a global distributed system and the individual data centers. Over the past several years, the SPASE data model working group has made great progress in developing the SPASE Data Model and supporting artifacts including a data dictionary, XML Schema, and two ontologies. The authors have captured the SPASE Information Model in this framework. This allows the generation of documentation that presents the SPASE Information Model in object-oriented notation including UML class diagrams and class hierarchies. The modeling information can also be exported to semantic web languages such as OWL and RDF and written to XML Metadata Interchange (XMI) files for import into UML tools.

  15. Web service discovery among large service pools utilising semantic similarity and clustering

    NASA Astrophysics Data System (ADS)

    Chen, Fuzan; Li, Minqiang; Wu, Harris; Xie, Lingli

    2017-03-01

    With the rapid development of electronic business, Web services have attracted much attention in recent years. Enterprises can combine individual Web services to provide new value-added services. An emerging challenge is the timely discovery of close matches to service requests among large service pools. In this study, we first define a new semantic similarity measure combining functional similarity and process similarity. We then present a service discovery mechanism that utilises the new semantic similarity measure for service matching. All the published Web services are pre-grouped into functional clusters prior to the matching process. For a user's service request, the discovery mechanism first identifies matching services clusters and then identifies the best matching Web services within these matching clusters. Experimental results show that the proposed semantic discovery mechanism performs better than a conventional lexical similarity-based mechanism.

  16. Semantics based approach for analyzing disease-target associations.

    PubMed

    Kaalia, Rama; Ghosh, Indira

    2016-08-01

    A complex disease is caused by heterogeneous biological interactions between genes and their products along with the influence of environmental factors. There have been many attempts for understanding the cause of these diseases using experimental, statistical and computational methods. In the present work the objective is to address the challenge of representation and integration of information from heterogeneous biomedical aspects of a complex disease using semantics based approach. Semantic web technology is used to design Disease Association Ontology (DAO-db) for representation and integration of disease associated information with diabetes as the case study. The functional associations of disease genes are integrated using RDF graphs of DAO-db. Three semantic web based scoring algorithms (PageRank, HITS (Hyperlink Induced Topic Search) and HITS with semantic weights) are used to score the gene nodes on the basis of their functional interactions in the graph. Disease Association Ontology for Diabetes (DAO-db) provides a standard ontology-driven platform for describing genes, proteins, pathways involved in diabetes and for integrating functional associations from various interaction levels (gene-disease, gene-pathway, gene-function, gene-cellular component and protein-protein interactions). An automatic instance loader module is also developed in present work that helps in adding instances to DAO-db on a large scale. Our ontology provides a framework for querying and analyzing the disease associated information in the form of RDF graphs. The above developed methodology is used to predict novel potential targets involved in diabetes disease from the long list of loose (statistically associated) gene-disease associations. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. SCALEUS: Semantic Web Services Integration for Biomedical Applications.

    PubMed

    Sernadela, Pedro; González-Castro, Lorena; Oliveira, José Luís

    2017-04-01

    In recent years, we have witnessed an explosion of biological data resulting largely from the demands of life science research. The vast majority of these data are freely available via diverse bioinformatics platforms, including relational databases and conventional keyword search applications. This type of approach has achieved great results in the last few years, but proved to be unfeasible when information needs to be combined or shared among different and scattered sources. During recent years, many of these data distribution challenges have been solved with the adoption of semantic web. Despite the evident benefits of this technology, its adoption introduced new challenges related with the migration process, from existent systems to the semantic level. To facilitate this transition, we have developed Scaleus, a semantic web migration tool that can be deployed on top of traditional systems in order to bring knowledge, inference rules, and query federation to the existent data. Targeted at the biomedical domain, this web-based platform offers, in a single package, straightforward data integration and semantic web services that help developers and researchers in the creation process of new semantically enhanced information systems. SCALEUS is available as open source at http://bioinformatics-ua.github.io/scaleus/ .

  18. Semantic-Web Technology: Applications at NASA

    NASA Technical Reports Server (NTRS)

    Ashish, Naveen

    2004-01-01

    We provide a description of work at the National Aeronautics and Space Administration (NASA) on building system based on semantic-web concepts and technologies. NASA has been one of the early adopters of semantic-web technologies for practical applications. Indeed there are several ongoing 0 endeavors on building semantics based systems for use in diverse NASA domains ranging from collaborative scientific activity to accident and mishap investigation to enterprise search to scientific information gathering and integration to aviation safety decision support We provide a brief overview of many applications and ongoing work with the goal of informing the external community of these NASA endeavors.

  19. Workspaces in the Semantic Web

    NASA Technical Reports Server (NTRS)

    Wolfe, Shawn R.; Keller, RIchard M.

    2005-01-01

    Due to the recency and relatively limited adoption of Semantic Web technologies. practical issues related to technology scaling have received less attention than foundational issues. Nonetheless, these issues must be addressed if the Semantic Web is to realize its full potential. In particular, we concentrate on the lack of scoping methods that reduce the size of semantic information spaces so they are more efficient to work with and more relevant to an agent's needs. We provide some intuition to motivate the need for such reduced information spaces, called workspaces, give a formal definition, and suggest possible methods of deriving them.

  20. Recommendation of standardized health learning contents using archetypes and semantic web technologies.

    PubMed

    Legaz-García, María del Carmen; Martínez-Costa, Catalina; Menárguez-Tortosa, Marcos; Fernández-Breis, Jesualdo Tomás

    2012-01-01

    Linking Electronic Healthcare Records (EHR) content to educational materials has been considered a key international recommendation to enable clinical engagement and to promote patient safety. This would suggest citizens to access reliable information available on the web and to guide them properly. In this paper, we describe an approach in that direction, based on the use of dual model EHR standards and standardized educational contents. The recommendation method will be based on the semantic coverage of the learning content repository for a particular archetype, which will be calculated by applying semantic web technologies like ontologies and semantic annotations.

  1. Versioning System for Distributed Ontology Development

    DTIC Science & Technology

    2016-02-02

    Semantic   Web   community. For example, the distributed and isolated development requirement may apply to non‐cyber  range communities of public ontology... semantic   web .” However, we observe that the  maintenance of an ontology and its reuse is not a high priority for the majority of the publicly available... Semantic )  Web . AAAI Spring Symposium: Symbiotic Relationships between  Semantic   Web  and  Knowledge Engineering. 2008.  [LHK09] Matthias Loskyll

  2. An industrial information integration approach to in-orbit spacecraft

    NASA Astrophysics Data System (ADS)

    Du, Xiaoning; Wang, Hong; Du, Yuhao; Xu, Li Da; Chaudhry, Sohail; Bi, Zhuming; Guo, Rong; Huang, Yongxuan; Li, Jisheng

    2017-01-01

    To operate an in-orbit spacecraft, the spacecraft status has to be monitored autonomously by collecting and analysing real-time data, and then detecting abnormities and malfunctions of system components. To develop an information system for spacecraft state detection, we investigate the feasibility of using ontology-based artificial intelligence in the system development. We propose a new modelling technique based on the semantic web, agent, scenarios and ontologies model. In modelling, the subjects of astronautics fields are classified, corresponding agents and scenarios are defined, and they are connected by the semantic web to analyse data and detect failures. We introduce the modelling methodologies and the resulted framework of the status detection information system in this paper. We discuss system components as well as their interactions in details. The system has been prototyped and tested to illustrate its feasibility and effectiveness. The proposed modelling technique is generic which can be extended and applied to the system development of other large-scale and complex information systems.

  3. Ontologies as integrative tools for plant science

    PubMed Central

    Walls, Ramona L.; Athreya, Balaji; Cooper, Laurel; Elser, Justin; Gandolfo, Maria A.; Jaiswal, Pankaj; Mungall, Christopher J.; Preece, Justin; Rensing, Stefan; Smith, Barry; Stevenson, Dennis W.

    2012-01-01

    Premise of the study Bio-ontologies are essential tools for accessing and analyzing the rapidly growing pool of plant genomic and phenomic data. Ontologies provide structured vocabularies to support consistent aggregation of data and a semantic framework for automated analyses and reasoning. They are a key component of the semantic web. Methods This paper provides background on what bio-ontologies are, why they are relevant to botany, and the principles of ontology development. It includes an overview of ontologies and related resources that are relevant to plant science, with a detailed description of the Plant Ontology (PO). We discuss the challenges of building an ontology that covers all green plants (Viridiplantae). Key results Ontologies can advance plant science in four keys areas: (1) comparative genetics, genomics, phenomics, and development; (2) taxonomy and systematics; (3) semantic applications; and (4) education. Conclusions Bio-ontologies offer a flexible framework for comparative plant biology, based on common botanical understanding. As genomic and phenomic data become available for more species, we anticipate that the annotation of data with ontology terms will become less centralized, while at the same time, the need for cross-species queries will become more common, causing more researchers in plant science to turn to ontologies. PMID:22847540

  4. Semantic web data warehousing for caGrid

    PubMed Central

    McCusker, James P; Phillips, Joshua A; Beltrán, Alejandra González; Finkelstein, Anthony; Krauthammer, Michael

    2009-01-01

    The National Cancer Institute (NCI) is developing caGrid as a means for sharing cancer-related data and services. As more data sets become available on caGrid, we need effective ways of accessing and integrating this information. Although the data models exposed on caGrid are semantically well annotated, it is currently up to the caGrid client to infer relationships between the different models and their classes. In this paper, we present a Semantic Web-based data warehouse (Corvus) for creating relationships among caGrid models. This is accomplished through the transformation of semantically-annotated caBIG® Unified Modeling Language (UML) information models into Web Ontology Language (OWL) ontologies that preserve those semantics. We demonstrate the validity of the approach by Semantic Extraction, Transformation and Loading (SETL) of data from two caGrid data sources, caTissue and caArray, as well as alignment and query of those sources in Corvus. We argue that semantic integration is necessary for integration of data from distributed web services and that Corvus is a useful way of accomplishing this. Our approach is generalizable and of broad utility to researchers facing similar integration challenges. PMID:19796399

  5. Archetype Model-Driven Development Framework for EHR Web System.

    PubMed

    Kobayashi, Shinji; Kimura, Eizen; Ishihara, Ken

    2013-12-01

    This article describes the Web application framework for Electronic Health Records (EHRs) we have developed to reduce construction costs for EHR sytems. The openEHR project has developed clinical model driven architecture for future-proof interoperable EHR systems. This project provides the specifications to standardize clinical domain model implementations, upon which the ISO/CEN 13606 standards are based. The reference implementation has been formally described in Eiffel. Moreover C# and Java implementations have been developed as reference. While scripting languages had been more popular because of their higher efficiency and faster development in recent years, they had not been involved in the openEHR implementations. From 2007, we have used the Ruby language and Ruby on Rails (RoR) as an agile development platform to implement EHR systems, which is in conformity with the openEHR specifications. We implemented almost all of the specifications, the Archetype Definition Language parser, and RoR scaffold generator from archetype. Although some problems have emerged, most of them have been resolved. We have provided an agile EHR Web framework, which can build up Web systems from archetype models using RoR. The feasibility of the archetype model to provide semantic interoperability of EHRs has been demonstrated and we have verified that that it is suitable for the construction of EHR systems.

  6. Protein Data Bank Japan (PDBj): maintaining a structural data archive and resource description framework format

    PubMed Central

    Kinjo, Akira R.; Suzuki, Hirofumi; Yamashita, Reiko; Ikegawa, Yasuyo; Kudou, Takahiro; Igarashi, Reiko; Kengaku, Yumiko; Cho, Hasumi; Standley, Daron M.; Nakagawa, Atsushi; Nakamura, Haruki

    2012-01-01

    The Protein Data Bank Japan (PDBj, http://pdbj.org) is a member of the worldwide Protein Data Bank (wwPDB) and accepts and processes the deposited data of experimentally determined macromolecular structures. While maintaining the archive in collaboration with other wwPDB partners, PDBj also provides a wide range of services and tools for analyzing structures and functions of proteins, which are summarized in this article. To enhance the interoperability of the PDB data, we have recently developed PDB/RDF, PDB data in the Resource Description Framework (RDF) format, along with its ontology in the Web Ontology Language (OWL) based on the PDB mmCIF Exchange Dictionary. Being in the standard format for the Semantic Web, the PDB/RDF data provide a means to integrate the PDB with other biological information resources. PMID:21976737

  7. A Formal Semantics for the WS-BPEL Recovery Framework

    NASA Astrophysics Data System (ADS)

    Dragoni, Nicola; Mazzara, Manuel

    While current studies on Web services composition are mostly focused - from the technical viewpoint - on standards and protocols, this work investigates the adoption of formal methods for dependable composition. The Web Services Business Process Execution Language (WS-BPEL) - an OASIS standard widely adopted both in academic and industrial environments - is considered as a touchstone for concrete composition languages and an analysis of its ambiguous Recovery Framework specification is offered. In order to show the use of formal methods, a precise and unambiguous description of its (simplified) mechanisms is provided by means of a conservative extension of the π-calculus. This has to be intended as a well known case study providing methodological arguments for the adoption of formal methods in software specification. The aspect of verification is not the main topic of the paper but some hints are given.

  8. Ontology Alignment Architecture for Semantic Sensor Web Integration

    PubMed Central

    Fernandez, Susel; Marsa-Maestre, Ivan; Velasco, Juan R.; Alarcos, Bernardo

    2013-01-01

    Sensor networks are a concept that has become very popular in data acquisition and processing for multiple applications in different fields such as industrial, medicine, home automation, environmental detection, etc. Today, with the proliferation of small communication devices with sensors that collect environmental data, semantic Web technologies are becoming closely related with sensor networks. The linking of elements from Semantic Web technologies with sensor networks has been called Semantic Sensor Web and has among its main features the use of ontologies. One of the key challenges of using ontologies in sensor networks is to provide mechanisms to integrate and exchange knowledge from heterogeneous sources (that is, dealing with semantic heterogeneity). Ontology alignment is the process of bringing ontologies into mutual agreement by the automatic discovery of mappings between related concepts. This paper presents a system for ontology alignment in the Semantic Sensor Web which uses fuzzy logic techniques to combine similarity measures between entities of different ontologies. The proposed approach focuses on two key elements: the terminological similarity, which takes into account the linguistic and semantic information of the context of the entity's names, and the structural similarity, based on both the internal and relational structure of the concepts. This work has been validated using sensor network ontologies and the Ontology Alignment Evaluation Initiative (OAEI) tests. The results show that the proposed techniques outperform previous approaches in terms of precision and recall. PMID:24051523

  9. Ontology alignment architecture for semantic sensor Web integration.

    PubMed

    Fernandez, Susel; Marsa-Maestre, Ivan; Velasco, Juan R; Alarcos, Bernardo

    2013-09-18

    Sensor networks are a concept that has become very popular in data acquisition and processing for multiple applications in different fields such as industrial, medicine, home automation, environmental detection, etc. Today, with the proliferation of small communication devices with sensors that collect environmental data, semantic Web technologies are becoming closely related with sensor networks. The linking of elements from Semantic Web technologies with sensor networks has been called Semantic Sensor Web and has among its main features the use of ontologies. One of the key challenges of using ontologies in sensor networks is to provide mechanisms to integrate and exchange knowledge from heterogeneous sources (that is, dealing with semantic heterogeneity). Ontology alignment is the process of bringing ontologies into mutual agreement by the automatic discovery of mappings between related concepts. This paper presents a system for ontology alignment in the Semantic Sensor Web which uses fuzzy logic techniques to combine similarity measures between entities of different ontologies. The proposed approach focuses on two key elements: the terminological similarity, which takes into account the linguistic and semantic information of the context of the entity's names, and the structural similarity, based on both the internal and relational structure of the concepts. This work has been validated using sensor network ontologies and the Ontology Alignment Evaluation Initiative (OAEI) tests. The results show that the proposed techniques outperform previous approaches in terms of precision and recall.

  10. SOMWeb: a semantic web-based system for supporting collaboration of distributed medical communities of practice.

    PubMed

    Falkman, Göran; Gustafsson, Marie; Jontell, Mats; Torgersson, Olof

    2008-08-26

    Information technology (IT) support for remote collaboration of geographically distributed communities of practice (CoP) in health care must deal with a number of sociotechnical aspects of communication within the community. In the mid-1990s, participants of the Swedish Oral Medicine Network (SOMNet) began discussing patient cases in telephone conferences. The cases were distributed prior to the conferences using PowerPoint and email. For the technical support of online CoP, Semantic Web technologies can potentially fulfill needs of knowledge reuse, data exchange, and reasoning based on ontologies. However, more research is needed on the use of Semantic Web technologies in practice. The objectives of this research were to (1) study the communication of distributed health care professionals in oral medicine; (2) apply Semantic Web technologies to describe community data and oral medicine knowledge; (3) develop an online CoP, Swedish Oral Medicine Web (SOMWeb), centered on user-contributed case descriptions and meetings; and (4) evaluate SOMWeb and study how work practices change with IT support. Based on Java, and using the Web Ontology Language and Resource Description Framework for handling community data and oral medicine knowledge, SOMWeb was developed using a user-centered and iterative approach. For studying the work practices and evaluating the system, a mixed-method approach of interviews, observations, and a questionnaire was used. By May 2008, there were 90 registered users of SOMWeb, 93 cases had been added, and 18 meetings had utilized the system. The introduction of SOMWeb has improved the structure of meetings and their discussions, and a tenfold increase in the number of participants has been observed. Users submit cases to seek advice on diagnosis or treatment, to show an unusual case, or to create discussion. Identified barriers to submitting cases are lack of time, concern about whether the case is interesting enough, and showing gaps in one's own knowledge. Three levels of member participation are discernable: a core group that contributes most cases and most meeting feedback; an active group that participates often but only sometimes contribute cases and feedback; and a large peripheral group that seldom or never contribute cases or feedback. SOMWeb is beneficial for individual clinicians as well as for the SOMNet community. The system provides an opportunity for its members to share both high quality clinical practice knowledge and external evidence related to complex oral medicine cases. The foundation in Semantic Web technologies enables formalization and structuring of case data that can be used for further reasoning and research. Main success factors are the long history of collaboration between different disciplines, the user-centered development approach, the existence of a "champion" within the field, and nontechnical community aspects already being in place.

  11. SOMWeb: A Semantic Web-Based System for Supporting Collaboration of Distributed Medical Communities of Practice

    PubMed Central

    Gustafsson, Marie; Jontell, Mats; Torgersson, Olof

    2008-01-01

    Background Information technology (IT) support for remote collaboration of geographically distributed communities of practice (CoP) in health care must deal with a number of sociotechnical aspects of communication within the community. In the mid-1990s, participants of the Swedish Oral Medicine Network (SOMNet) began discussing patient cases in telephone conferences. The cases were distributed prior to the conferences using PowerPoint and email. For the technical support of online CoP, Semantic Web technologies can potentially fulfill needs of knowledge reuse, data exchange, and reasoning based on ontologies. However, more research is needed on the use of Semantic Web technologies in practice. Objectives The objectives of this research were to (1) study the communication of distributed health care professionals in oral medicine; (2) apply Semantic Web technologies to describe community data and oral medicine knowledge; (3) develop an online CoP, Swedish Oral Medicine Web (SOMWeb), centered on user-contributed case descriptions and meetings; and (4) evaluate SOMWeb and study how work practices change with IT support. Methods Based on Java, and using the Web Ontology Language and Resource Description Framework for handling community data and oral medicine knowledge, SOMWeb was developed using a user-centered and iterative approach. For studying the work practices and evaluating the system, a mixed-method approach of interviews, observations, and a questionnaire was used. Results By May 2008, there were 90 registered users of SOMWeb, 93 cases had been added, and 18 meetings had utilized the system. The introduction of SOMWeb has improved the structure of meetings and their discussions, and a tenfold increase in the number of participants has been observed. Users submit cases to seek advice on diagnosis or treatment, to show an unusual case, or to create discussion. Identified barriers to submitting cases are lack of time, concern about whether the case is interesting enough, and showing gaps in one’s own knowledge. Three levels of member participation are discernable: a core group that contributes most cases and most meeting feedback; an active group that participates often but only sometimes contribute cases and feedback; and a large peripheral group that seldom or never contribute cases or feedback. Conclusions SOMWeb is beneficial for individual clinicians as well as for the SOMNet community. The system provides an opportunity for its members to share both high quality clinical practice knowledge and external evidence related to complex oral medicine cases. The foundation in Semantic Web technologies enables formalization and structuring of case data that can be used for further reasoning and research. Main success factors are the long history of collaboration between different disciplines, the user-centered development approach, the existence of a “champion” within the field, and nontechnical community aspects already being in place. PMID:18725355

  12. The 3rd DBCLS BioHackathon: improving life science data integration with Semantic Web technologies.

    PubMed

    Katayama, Toshiaki; Wilkinson, Mark D; Micklem, Gos; Kawashima, Shuichi; Yamaguchi, Atsuko; Nakao, Mitsuteru; Yamamoto, Yasunori; Okamoto, Shinobu; Oouchida, Kenta; Chun, Hong-Woo; Aerts, Jan; Afzal, Hammad; Antezana, Erick; Arakawa, Kazuharu; Aranda, Bruno; Belleau, Francois; Bolleman, Jerven; Bonnal, Raoul Jp; Chapman, Brad; Cock, Peter Ja; Eriksson, Tore; Gordon, Paul Mk; Goto, Naohisa; Hayashi, Kazuhiro; Horn, Heiko; Ishiwata, Ryosuke; Kaminuma, Eli; Kasprzyk, Arek; Kawaji, Hideya; Kido, Nobuhiro; Kim, Young Joo; Kinjo, Akira R; Konishi, Fumikazu; Kwon, Kyung-Hoon; Labarga, Alberto; Lamprecht, Anna-Lena; Lin, Yu; Lindenbaum, Pierre; McCarthy, Luke; Morita, Hideyuki; Murakami, Katsuhiko; Nagao, Koji; Nishida, Kozo; Nishimura, Kunihiro; Nishizawa, Tatsuya; Ogishima, Soichi; Ono, Keiichiro; Oshita, Kazuki; Park, Keun-Joon; Prins, Pjotr; Saito, Taro L; Samwald, Matthias; Satagopam, Venkata P; Shigemoto, Yasumasa; Smith, Richard; Splendiani, Andrea; Sugawara, Hideaki; Taylor, James; Vos, Rutger A; Withers, David; Yamasaki, Chisato; Zmasek, Christian M; Kawamoto, Shoko; Okubo, Kosaku; Asai, Kiyoshi; Takagi, Toshihisa

    2013-02-11

    BioHackathon 2010 was the third in a series of meetings hosted by the Database Center for Life Sciences (DBCLS) in Tokyo, Japan. The overall goal of the BioHackathon series is to improve the quality and accessibility of life science research data on the Web by bringing together representatives from public databases, analytical tool providers, and cyber-infrastructure researchers to jointly tackle important challenges in the area of in silico biological research. The theme of BioHackathon 2010 was the 'Semantic Web', and all attendees gathered with the shared goal of producing Semantic Web data from their respective resources, and/or consuming or interacting those data using their tools and interfaces. We discussed on topics including guidelines for designing semantic data and interoperability of resources. We consequently developed tools and clients for analysis and visualization. We provide a meeting report from BioHackathon 2010, in which we describe the discussions, decisions, and breakthroughs made as we moved towards compliance with Semantic Web technologies - from source provider, through middleware, to the end-consumer.

  13. The 3rd DBCLS BioHackathon: improving life science data integration with Semantic Web technologies

    PubMed Central

    2013-01-01

    Background BioHackathon 2010 was the third in a series of meetings hosted by the Database Center for Life Sciences (DBCLS) in Tokyo, Japan. The overall goal of the BioHackathon series is to improve the quality and accessibility of life science research data on the Web by bringing together representatives from public databases, analytical tool providers, and cyber-infrastructure researchers to jointly tackle important challenges in the area of in silico biological research. Results The theme of BioHackathon 2010 was the 'Semantic Web', and all attendees gathered with the shared goal of producing Semantic Web data from their respective resources, and/or consuming or interacting those data using their tools and interfaces. We discussed on topics including guidelines for designing semantic data and interoperability of resources. We consequently developed tools and clients for analysis and visualization. Conclusion We provide a meeting report from BioHackathon 2010, in which we describe the discussions, decisions, and breakthroughs made as we moved towards compliance with Semantic Web technologies - from source provider, through middleware, to the end-consumer. PMID:23398680

  14. Process model-based atomic service discovery and composition of composite semantic web services using web ontology language for services (OWL-S)

    NASA Astrophysics Data System (ADS)

    Paulraj, D.; Swamynathan, S.; Madhaiyan, M.

    2012-11-01

    Web Service composition has become indispensable as a single web service cannot satisfy complex functional requirements. Composition of services has received much interest to support business-to-business (B2B) or enterprise application integration. An important component of the service composition is the discovery of relevant services. In Semantic Web Services (SWS), service discovery is generally achieved by using service profile of Ontology Web Languages for Services (OWL-S). The profile of the service is a derived and concise description but not a functional part of the service. The information contained in the service profile is sufficient for atomic service discovery, but it is not sufficient for the discovery of composite semantic web services (CSWS). The purpose of this article is two-fold: first to prove that the process model is a better choice than the service profile for service discovery. Second, to facilitate the composition of inter-organisational CSWS by proposing a new composition method which uses process ontology. The proposed service composition approach uses an algorithm which performs a fine grained match at the level of atomic process rather than at the level of the entire service in a composite semantic web service. Many works carried out in this area have proposed solutions only for the composition of atomic services and this article proposes a solution for the composition of composite semantic web services.

  15. Semantator: semantic annotator for converting biomedical text to linked data.

    PubMed

    Tao, Cui; Song, Dezhao; Sharma, Deepak; Chute, Christopher G

    2013-10-01

    More than 80% of biomedical data is embedded in plain text. The unstructured nature of these text-based documents makes it challenging to easily browse and query the data of interest in them. One approach to facilitate browsing and querying biomedical text is to convert the plain text to a linked web of data, i.e., converting data originally in free text to structured formats with defined meta-level semantics. In this paper, we introduce Semantator (Semantic Annotator), a semantic-web-based environment for annotating data of interest in biomedical documents, browsing and querying the annotated data, and interactively refining annotation results if needed. Through Semantator, information of interest can be either annotated manually or semi-automatically using plug-in information extraction tools. The annotated results will be stored in RDF and can be queried using the SPARQL query language. In addition, semantic reasoners can be directly applied to the annotated data for consistency checking and knowledge inference. Semantator has been released online and was used by the biomedical ontology community who provided positive feedbacks. Our evaluation results indicated that (1) Semantator can perform the annotation functionalities as designed; (2) Semantator can be adopted in real applications in clinical and transactional research; and (3) the annotated results using Semantator can be easily used in Semantic-web-based reasoning tools for further inference. Copyright © 2013 Elsevier Inc. All rights reserved.

  16. WebMedSA: a web-based framework for segmenting and annotating medical images using biomedical ontologies

    NASA Astrophysics Data System (ADS)

    Vega, Francisco; Pérez, Wilson; Tello, Andrés.; Saquicela, Victor; Espinoza, Mauricio; Solano-Quinde, Lizandro; Vidal, Maria-Esther; La Cruz, Alexandra

    2015-12-01

    Advances in medical imaging have fostered medical diagnosis based on digital images. Consequently, the number of studies by medical images diagnosis increases, thus, collaborative work and tele-radiology systems are required to effectively scale up to this diagnosis trend. We tackle the problem of the collaborative access of medical images, and present WebMedSA, a framework to manage large datasets of medical images. WebMedSA relies on a PACS and supports the ontological annotation, as well as segmentation and visualization of the images based on their semantic description. Ontological annotations can be performed directly on the volumetric image or at different image planes (e.g., axial, coronal, or sagittal); furthermore, annotations can be complemented after applying a segmentation technique. WebMedSA is based on three main steps: (1) RDF-ization process for extracting, anonymizing, and serializing metadata comprised in DICOM medical images into RDF/XML; (2) Integration of different biomedical ontologies (using L-MOM library), making this approach ontology independent; and (3) segmentation and visualization of annotated data which is further used to generate new annotations according to expert knowledge, and validation. Initial user evaluations suggest that WebMedSA facilitates the exchange of knowledge between radiologists, and provides the basis for collaborative work among them.

  17. Semantic similarity measure in biomedical domain leverage web search engine.

    PubMed

    Chen, Chi-Huang; Hsieh, Sheau-Ling; Weng, Yung-Ching; Chang, Wen-Yung; Lai, Feipei

    2010-01-01

    Semantic similarity measure plays an essential role in Information Retrieval and Natural Language Processing. In this paper we propose a page-count-based semantic similarity measure and apply it in biomedical domains. Previous researches in semantic web related applications have deployed various semantic similarity measures. Despite the usefulness of the measurements in those applications, measuring semantic similarity between two terms remains a challenge task. The proposed method exploits page counts returned by the Web Search Engine. We define various similarity scores for two given terms P and Q, using the page counts for querying P, Q and P AND Q. Moreover, we propose a novel approach to compute semantic similarity using lexico-syntactic patterns with page counts. These different similarity scores are integrated adapting support vector machines, to leverage the robustness of semantic similarity measures. Experimental results on two datasets achieve correlation coefficients of 0.798 on the dataset provided by A. Hliaoutakis, 0.705 on the dataset provide by T. Pedersen with physician scores and 0.496 on the dataset provided by T. Pedersen et al. with expert scores.

  18. A Digital Framework to Support Providers and Patients in Diabetes Related Behavior Modification.

    PubMed

    Abidi, Samina; Vallis, Michael; Piccinini-Vallis, Helena; Imran, Syed Ali; Abidi, Syed Sibte Raza

    2017-01-01

    We present Diabetes Web-Centric Information and Support Environment (D-WISE) that features: (a) Decision support tool to assist family physicians to administer Behavior Modification (BM) strategies to patients; and (b) Patient BM application that offers BM strategies and motivational interventions to engage patients. We take a knowledge management approach, using semantic web technologies, to model the social cognition theory constructs, Canadian diabetes guidelines and BM protocols used locally, in terms of a BM ontology that drives the BM decision support to physicians and BM strategy adherence monitoring and messaging to patients. We present the qualitative analysis of D-WISE usability by both physicians and patients.

  19. HealthCyberMap: a semantic visual browser of medical Internet resources based on clinical codes and the human body metaphor.

    PubMed

    Kamel Boulos, Maged N; Roudsari, Abdul V; Carso N, Ewart R

    2002-12-01

    HealthCyberMap (HCM-http://healthcybermap.semanticweb.org) is a web-based service for healthcare professionals and librarians, patients and the public in general that aims at mapping parts of the health information resources in cyberspace in novel ways to improve their retrieval and navigation. HCM adopts a clinical metadata framework built upon a clinical coding ontology for the semantic indexing, classification and browsing of Internet health information resources. A resource metadata base holds information about selected resources. HCM then uses GIS (Geographic Information Systems) spatialization methods to generate interactive navigational cybermaps from the metadata base. These visual cybermaps are based on familiar medical metaphors. HCM cybermaps can be considered as semantically spatialized, ontology-based browsing views of the underlying resource metadata base. Using a clinical coding scheme as a metric for spatialization ('semantic distance') is unique to HCM and is very much suited for the semantic categorization and navigation of Internet health information resources. Clinical codes ensure reliable and unambiguous topical indexing of these resources. HCM also introduces a useful form of cyberspatial analysis for the detection of topical coverage gaps in the resource metadata base using choropleth (shaded) maps of human body systems.

  20. Automatic Semantic Generation and Arabic Translation of Mathematical Expressions on the Web

    ERIC Educational Resources Information Center

    Doush, Iyad Abu; Al-Bdarneh, Sondos

    2013-01-01

    Automatic processing of mathematical information on the web imposes some difficulties. This paper presents a novel technique for automatic generation of mathematical equations semantic and Arabic translation on the web. The proposed system facilitates unambiguous representation of mathematical equations by correlating equations to their known…

  1. UltiMatch-NL: A Web Service Matchmaker Based on Multiple Semantic Filters

    PubMed Central

    Mohebbi, Keyvan; Ibrahim, Suhaimi; Zamani, Mazdak; Khezrian, Mojtaba

    2014-01-01

    In this paper, a Semantic Web service matchmaker called UltiMatch-NL is presented. UltiMatch-NL applies two filters namely Signature-based and Description-based on different abstraction levels of a service profile to achieve more accurate results. More specifically, the proposed filters rely on semantic knowledge to extract the similarity between a given pair of service descriptions. Thus it is a further step towards fully automated Web service discovery via making this process more semantic-aware. In addition, a new technique is proposed to weight and combine the results of different filters of UltiMatch-NL, automatically. Moreover, an innovative approach is introduced to predict the relevance of requests and Web services and eliminate the need for setting a threshold value of similarity. In order to evaluate UltiMatch-NL, the repository of OWLS-TC is used. The performance evaluation based on standard measures from the information retrieval field shows that semantic matching of OWL-S services can be significantly improved by incorporating designed matching filters. PMID:25157872

  2. Recipes for Semantic Web Dog Food — The ESWC and ISWC Metadata Projects

    NASA Astrophysics Data System (ADS)

    Möller, Knud; Heath, Tom; Handschuh, Siegfried; Domingue, John

    Semantic Web conferences such as ESWC and ISWC offer prime opportunities to test and showcase semantic technologies. Conference metadata about people, papers and talks is diverse in nature and neither too small to be uninteresting or too big to be unmanageable. Many metadata-related challenges that may arise in the Semantic Web at large are also present here. Metadata must be generated from sources which are often unstructured and hard to process, and may originate from many different players, therefore suitable workflows must be established. Moreover, the generated metadata must use appropriate formats and vocabularies, and be served in a way that is consistent with the principles of linked data. This paper reports on the metadata efforts from ESWC and ISWC, identifies specific issues and barriers encountered during the projects, and discusses how these were approached. Recommendations are made as to how these may be addressed in the future, and we discuss how these solutions may generalize to metadata production for the Semantic Web at large.

  3. UltiMatch-NL: a Web service matchmaker based on multiple semantic filters.

    PubMed

    Mohebbi, Keyvan; Ibrahim, Suhaimi; Zamani, Mazdak; Khezrian, Mojtaba

    2014-01-01

    In this paper, a Semantic Web service matchmaker called UltiMatch-NL is presented. UltiMatch-NL applies two filters namely Signature-based and Description-based on different abstraction levels of a service profile to achieve more accurate results. More specifically, the proposed filters rely on semantic knowledge to extract the similarity between a given pair of service descriptions. Thus it is a further step towards fully automated Web service discovery via making this process more semantic-aware. In addition, a new technique is proposed to weight and combine the results of different filters of UltiMatch-NL, automatically. Moreover, an innovative approach is introduced to predict the relevance of requests and Web services and eliminate the need for setting a threshold value of similarity. In order to evaluate UltiMatch-NL, the repository of OWLS-TC is used. The performance evaluation based on standard measures from the information retrieval field shows that semantic matching of OWL-S services can be significantly improved by incorporating designed matching filters.

  4. SemanticSCo: A platform to support the semantic composition of services for gene expression analysis.

    PubMed

    Guardia, Gabriela D A; Ferreira Pires, Luís; da Silva, Eduardo G; de Farias, Cléver R G

    2017-02-01

    Gene expression studies often require the combined use of a number of analysis tools. However, manual integration of analysis tools can be cumbersome and error prone. To support a higher level of automation in the integration process, efforts have been made in the biomedical domain towards the development of semantic web services and supporting composition environments. Yet, most environments consider only the execution of simple service behaviours and requires users to focus on technical details of the composition process. We propose a novel approach to the semantic composition of gene expression analysis services that addresses the shortcomings of the existing solutions. Our approach includes an architecture designed to support the service composition process for gene expression analysis, and a flexible strategy for the (semi) automatic composition of semantic web services. Finally, we implement a supporting platform called SemanticSCo to realize the proposed composition approach and demonstrate its functionality by successfully reproducing a microarray study documented in the literature. The SemanticSCo platform provides support for the composition of RESTful web services semantically annotated using SAWSDL. Our platform also supports the definition of constraints/conditions regarding the order in which service operations should be invoked, thus enabling the definition of complex service behaviours. Our proposed solution for semantic web service composition takes into account the requirements of different stakeholders and addresses all phases of the service composition process. It also provides support for the definition of analysis workflows at a high-level of abstraction, thus enabling users to focus on biological research issues rather than on the technical details of the composition process. The SemanticSCo source code is available at https://github.com/usplssb/SemanticSCo. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Improving life sciences information retrieval using semantic web technology.

    PubMed

    Quan, Dennis

    2007-05-01

    The ability to retrieve relevant information is at the heart of every aspect of research and development in the life sciences industry. Information is often distributed across multiple systems and recorded in a way that makes it difficult to piece together the complete picture. Differences in data formats, naming schemes and network protocols amongst information sources, both public and private, must be overcome, and user interfaces not only need to be able to tap into these diverse information sources but must also assist users in filtering out extraneous information and highlighting the key relationships hidden within an aggregated set of information. The Semantic Web community has made great strides in proposing solutions to these problems, and many efforts are underway to apply Semantic Web techniques to the problem of information retrieval in the life sciences space. This article gives an overview of the principles underlying a Semantic Web-enabled information retrieval system: creating a unified abstraction for knowledge using the RDF semantic network model; designing semantic lenses that extract contextually relevant subsets of information; and assembling semantic lenses into powerful information displays. Furthermore, concrete examples of how these principles can be applied to life science problems including a scenario involving a drug discovery dashboard prototype called BioDash are provided.

  6. Accelerating Cancer Systems Biology Research through Semantic Web Technology

    PubMed Central

    Wang, Zhihui; Sagotsky, Jonathan; Taylor, Thomas; Shironoshita, Patrick; Deisboeck, Thomas S.

    2012-01-01

    Cancer systems biology is an interdisciplinary, rapidly expanding research field in which collaborations are a critical means to advance the field. Yet the prevalent database technologies often isolate data rather than making it easily accessible. The Semantic Web has the potential to help facilitate web-based collaborative cancer research by presenting data in a manner that is self-descriptive, human and machine readable, and easily sharable. We have created a semantically linked online Digital Model Repository (DMR) for storing, managing, executing, annotating, and sharing computational cancer models. Within the DMR, distributed, multidisciplinary, and inter-organizational teams can collaborate on projects, without forfeiting intellectual property. This is achieved by the introduction of a new stakeholder to the collaboration workflow, the institutional licensing officer, part of the Technology Transfer Office. Furthermore, the DMR has achieved silver level compatibility with the National Cancer Institute’s caBIG®, so users can not only interact with the DMR through a web browser but also through a semantically annotated and secure web service. We also discuss the technology behind the DMR leveraging the Semantic Web, ontologies, and grid computing to provide secure inter-institutional collaboration on cancer modeling projects, online grid-based execution of shared models, and the collaboration workflow protecting researchers’ intellectual property. PMID:23188758

  7. Accelerating cancer systems biology research through Semantic Web technology.

    PubMed

    Wang, Zhihui; Sagotsky, Jonathan; Taylor, Thomas; Shironoshita, Patrick; Deisboeck, Thomas S

    2013-01-01

    Cancer systems biology is an interdisciplinary, rapidly expanding research field in which collaborations are a critical means to advance the field. Yet the prevalent database technologies often isolate data rather than making it easily accessible. The Semantic Web has the potential to help facilitate web-based collaborative cancer research by presenting data in a manner that is self-descriptive, human and machine readable, and easily sharable. We have created a semantically linked online Digital Model Repository (DMR) for storing, managing, executing, annotating, and sharing computational cancer models. Within the DMR, distributed, multidisciplinary, and inter-organizational teams can collaborate on projects, without forfeiting intellectual property. This is achieved by the introduction of a new stakeholder to the collaboration workflow, the institutional licensing officer, part of the Technology Transfer Office. Furthermore, the DMR has achieved silver level compatibility with the National Cancer Institute's caBIG, so users can interact with the DMR not only through a web browser but also through a semantically annotated and secure web service. We also discuss the technology behind the DMR leveraging the Semantic Web, ontologies, and grid computing to provide secure inter-institutional collaboration on cancer modeling projects, online grid-based execution of shared models, and the collaboration workflow protecting researchers' intellectual property. Copyright © 2012 Wiley Periodicals, Inc.

  8. An ontology-driven semantic mash-up of gene and biological pathway information: Application to the domain of nicotine dependence

    PubMed Central

    Sahoo, Satya S.; Bodenreider, Olivier; Rutter, Joni L.; Skinner, Karen J.; Sheth, Amit P.

    2008-01-01

    Objectives This paper illustrates how Semantic Web technologies (especially RDF, OWL, and SPARQL) can support information integration and make it easy to create semantic mashups (semantically integrated resources). In the context of understanding the genetic basis of nicotine dependence, we integrate gene and pathway information and show how three complex biological queries can be answered by the integrated knowledge base. Methods We use an ontology-driven approach to integrate two gene resources (Entrez Gene and HomoloGene) and three pathway resources (KEGG, Reactome and BioCyc), for five organisms, including humans. We created the Entrez Knowledge Model (EKoM), an information model in OWL for the gene resources, and integrated it with the extant BioPAX ontology designed for pathway resources. The integrated schema is populated with data from the pathway resources, publicly available in BioPAX-compatible format, and gene resources for which a population procedure was created. The SPARQL query language is used to formulate queries over the integrated knowledge base to answer the three biological queries. Results Simple SPARQL queries could easily identify hub genes, i.e., those genes whose gene products participate in many pathways or interact with many other gene products. The identification of the genes expressed in the brain turned out to be more difficult, due to the lack of a common identification scheme for proteins. Conclusion Semantic Web technologies provide a valid framework for information integration in the life sciences. Ontology-driven integration represents a flexible, sustainable and extensible solution to the integration of large volumes of information. Additional resources, which enable the creation of mappings between information sources, are required to compensate for heterogeneity across namespaces. Resource page http://knoesis.wright.edu/research/lifesci/integration/structured_data/JBI-2008/ PMID:18395495

  9. An ontology-driven semantic mashup of gene and biological pathway information: application to the domain of nicotine dependence.

    PubMed

    Sahoo, Satya S; Bodenreider, Olivier; Rutter, Joni L; Skinner, Karen J; Sheth, Amit P

    2008-10-01

    This paper illustrates how Semantic Web technologies (especially RDF, OWL, and SPARQL) can support information integration and make it easy to create semantic mashups (semantically integrated resources). In the context of understanding the genetic basis of nicotine dependence, we integrate gene and pathway information and show how three complex biological queries can be answered by the integrated knowledge base. We use an ontology-driven approach to integrate two gene resources (Entrez Gene and HomoloGene) and three pathway resources (KEGG, Reactome and BioCyc), for five organisms, including humans. We created the Entrez Knowledge Model (EKoM), an information model in OWL for the gene resources, and integrated it with the extant BioPAX ontology designed for pathway resources. The integrated schema is populated with data from the pathway resources, publicly available in BioPAX-compatible format, and gene resources for which a population procedure was created. The SPARQL query language is used to formulate queries over the integrated knowledge base to answer the three biological queries. Simple SPARQL queries could easily identify hub genes, i.e., those genes whose gene products participate in many pathways or interact with many other gene products. The identification of the genes expressed in the brain turned out to be more difficult, due to the lack of a common identification scheme for proteins. Semantic Web technologies provide a valid framework for information integration in the life sciences. Ontology-driven integration represents a flexible, sustainable and extensible solution to the integration of large volumes of information. Additional resources, which enable the creation of mappings between information sources, are required to compensate for heterogeneity across namespaces. RESOURCE PAGE: http://knoesis.wright.edu/research/lifesci/integration/structured_data/JBI-2008/

  10. Virtual Sensors in a Web 2.0 Digital Watershed

    NASA Astrophysics Data System (ADS)

    Liu, Y.; Hill, D. J.; Marini, L.; Kooper, R.; Rodriguez, A.; Myers, J. D.

    2008-12-01

    The lack of rainfall data in many watersheds is one of the major barriers for modeling and studying many environmental and hydrological processes and supporting decision making. There are just not enough rain gages on the ground. To overcome this data scarcity issue, a Web 2.0 digital watershed is developed at NCSA(National Center for Supercomputing Applications), where users can point-and-click on a web-based google map interface and create new precipitation virtual sensors at any location within the same coverage region as a NEXRAD station. A set of scientific workflows are implemented to perform spatial, temporal and thematic transformations to the near-real-time NEXRAD Level II data. Such workflows can be triggered by the users' actions and generate either rainfall rate or rainfall accumulation streaming data at a user-specified time interval. We will discuss some underlying components of this digital watershed, which consists of a semantic content management middleware, a semantically enhanced streaming data toolkit, virtual sensor management functionality, and RESTful (REpresentational State Transfer) web service that can trigger the workflow execution. Such loosely coupled architecture presents a generic framework for constructing a Web 2.0 style digital watershed. An implementation of this architecture at the Upper Illinois Rive Basin will be presented. We will also discuss the implications of the virtual sensor concept for the broad environmental observatory community and how such concept will help us move towards a participatory digital watershed.

  11. Auditing the NCI Thesaurus with Semantic Web Technologies

    PubMed Central

    Mougin, Fleur; Bodenreider, Olivier

    2008-01-01

    Auditing biomedical terminologies often results in the identification of inconsistencies and thus helps to improve their quality. In this paper, we present a method based on Semantic Web technologies for auditing biomedical terminologies and apply it to the NCI thesaurus. We stored the NCI thesaurus concepts and their properties in an RDF triple store. By querying this store, we assessed the consistency of both hierarchical and associative relations from the NCI thesaurus among themselves and with corresponding relations in the UMLS Semantic Network. We show that the consistency is better for associative relations than for hierarchical relations. Causes for inconsistency and benefits from using Semantic Web technologies for auditing purposes are discussed. PMID:18999265

  12. Auditing the NCI thesaurus with semantic web technologies.

    PubMed

    Mougin, Fleur; Bodenreider, Olivier

    2008-11-06

    Auditing biomedical terminologies often results in the identification of inconsistencies and thus helps to improve their quality. In this paper, we present a method based on Semantic Web technologies for auditing biomedical terminologies and apply it to the NCI thesaurus. We stored the NCI thesaurus concepts and their properties in an RDF triple store. By querying this store, we assessed the consistency of both hierarchical and associative relations from the NCI thesaurus among themselves and with corresponding relations in the UMLS Semantic Network. We show that the consistency is better for associative relations than for hierarchical relations. Causes for inconsistency and benefits from using Semantic Web technologies for auditing purposes are discussed.

  13. An approach for formalising the supply chain operations

    NASA Astrophysics Data System (ADS)

    Zdravković, Milan; Panetto, Hervé; Trajanović, Miroslav; Aubry, Alexis

    2011-11-01

    Reference models play an important role in the knowledge management of the various complex collaboration domains (such as supply chain networks). However, they often show a lack of semantic precision and, they are sometimes incomplete. In this article, we present an approach to overcome semantic inconsistencies and incompleteness of the Supply Chain Operations Reference (SCOR) model and hence improve its usefulness and expand the application domain. First, we describe a literal web ontology language (OWL) specification of SCOR concepts (and related tools) built with the intention to preserve the original approach in the classification of process reference model entities, and hence enable the effectiveness of usage in original contexts. Next, we demonstrate the system for its exploitation, in specific - tools for SCOR framework browsing and rapid supply chain process configuration. Then, we describe the SCOR-Full ontology, its relations with relevant domain ontology and show how it can be exploited for improvement of SCOR ontological framework competence. Finally, we elaborate the potential impact of the presented approach, to interoperability of systems in supply chain networks.

  14. Virtual Patients on the Semantic Web: A Proof-of-Application Study

    PubMed Central

    Dafli, Eleni; Antoniou, Panagiotis; Ioannidis, Lazaros; Dombros, Nicholas; Topps, David

    2015-01-01

    Background Virtual patients are interactive computer simulations that are increasingly used as learning activities in modern health care education, especially in teaching clinical decision making. A key challenge is how to retrieve and repurpose virtual patients as unique types of educational resources between different platforms because of the lack of standardized content-retrieving and repurposing mechanisms. Semantic Web technologies provide the capability, through structured information, for easy retrieval, reuse, repurposing, and exchange of virtual patients between different systems. Objective An attempt to address this challenge has been made through the mEducator Best Practice Network, which provisioned frameworks for the discovery, retrieval, sharing, and reuse of medical educational resources. We have extended the OpenLabyrinth virtual patient authoring and deployment platform to facilitate the repurposing and retrieval of existing virtual patient material. Methods A standalone Web distribution and Web interface, which contains an extension for the OpenLabyrinth virtual patient authoring system, was implemented. This extension was designed to semantically annotate virtual patients to facilitate intelligent searches, complex queries, and easy exchange between institutions. The OpenLabyrinth extension enables OpenLabyrinth authors to integrate and share virtual patient case metadata within the mEducator3.0 network. Evaluation included 3 successive steps: (1) expert reviews; (2) evaluation of the ability of health care professionals and medical students to create, share, and exchange virtual patients through specific scenarios in extended OpenLabyrinth (OLabX); and (3) evaluation of the repurposed learning objects that emerged from the procedure. Results We evaluated 30 repurposed virtual patient cases. The evaluation, with a total of 98 participants, demonstrated the system’s main strength: the core repurposing capacity. The extensive metadata schema presentation facilitated user exploration and filtering of resources. Usability weaknesses were primarily related to standard computer applications’ ease of use provisions. Most evaluators provided positive feedback regarding educational experiences on both content and system usability. Evaluation results replicated across several independent evaluation events. Conclusions The OpenLabyrinth extension, as part of the semantic mEducator3.0 approach, is a virtual patient sharing approach that builds on a collection of Semantic Web services and federates existing sources of clinical and educational data. It is an effective sharing tool for virtual patients and has been merged into the next version of the app (OpenLabyrinth 3.3). Such tool extensions may enhance the medical education arsenal with capacities of creating simulation/game-based learning episodes, massive open online courses, curricular transformations, and a future robust infrastructure for enabling mobile learning. PMID:25616272

  15. Virtual patients on the semantic Web: a proof-of-application study.

    PubMed

    Dafli, Eleni; Antoniou, Panagiotis; Ioannidis, Lazaros; Dombros, Nicholas; Topps, David; Bamidis, Panagiotis D

    2015-01-22

    Virtual patients are interactive computer simulations that are increasingly used as learning activities in modern health care education, especially in teaching clinical decision making. A key challenge is how to retrieve and repurpose virtual patients as unique types of educational resources between different platforms because of the lack of standardized content-retrieving and repurposing mechanisms. Semantic Web technologies provide the capability, through structured information, for easy retrieval, reuse, repurposing, and exchange of virtual patients between different systems. An attempt to address this challenge has been made through the mEducator Best Practice Network, which provisioned frameworks for the discovery, retrieval, sharing, and reuse of medical educational resources. We have extended the OpenLabyrinth virtual patient authoring and deployment platform to facilitate the repurposing and retrieval of existing virtual patient material. A standalone Web distribution and Web interface, which contains an extension for the OpenLabyrinth virtual patient authoring system, was implemented. This extension was designed to semantically annotate virtual patients to facilitate intelligent searches, complex queries, and easy exchange between institutions. The OpenLabyrinth extension enables OpenLabyrinth authors to integrate and share virtual patient case metadata within the mEducator3.0 network. Evaluation included 3 successive steps: (1) expert reviews; (2) evaluation of the ability of health care professionals and medical students to create, share, and exchange virtual patients through specific scenarios in extended OpenLabyrinth (OLabX); and (3) evaluation of the repurposed learning objects that emerged from the procedure. We evaluated 30 repurposed virtual patient cases. The evaluation, with a total of 98 participants, demonstrated the system's main strength: the core repurposing capacity. The extensive metadata schema presentation facilitated user exploration and filtering of resources. Usability weaknesses were primarily related to standard computer applications' ease of use provisions. Most evaluators provided positive feedback regarding educational experiences on both content and system usability. Evaluation results replicated across several independent evaluation events. The OpenLabyrinth extension, as part of the semantic mEducator3.0 approach, is a virtual patient sharing approach that builds on a collection of Semantic Web services and federates existing sources of clinical and educational data. It is an effective sharing tool for virtual patients and has been merged into the next version of the app (OpenLabyrinth 3.3). Such tool extensions may enhance the medical education arsenal with capacities of creating simulation/game-based learning episodes, massive open online courses, curricular transformations, and a future robust infrastructure for enabling mobile learning.

  16. A Ubiquitous Sensor Network Platform for Integrating Smart Devices into the Semantic Sensor Web

    PubMed Central

    de Vera, David Díaz Pardo; Izquierdo, Álvaro Sigüenza; Vercher, Jesús Bernat; Gómez, Luis Alfonso Hernández

    2014-01-01

    Ongoing Sensor Web developments make a growing amount of heterogeneous sensor data available to smart devices. This is generating an increasing demand for homogeneous mechanisms to access, publish and share real-world information. This paper discusses, first, an architectural solution based on Next Generation Networks: a pilot Telco Ubiquitous Sensor Network (USN) Platform that embeds several OGC® Sensor Web services. This platform has already been deployed in large scale projects. Second, the USN-Platform is extended to explore a first approach to Semantic Sensor Web principles and technologies, so that smart devices can access Sensor Web data, allowing them also to share richer (semantically interpreted) information. An experimental scenario is presented: a smart car that consumes and produces real-world information which is integrated into the Semantic Sensor Web through a Telco USN-Platform. Performance tests revealed that observation publishing times with our experimental system were well within limits compatible with the adequate operation of smart safety assistance systems in vehicles. On the other hand, response times for complex queries on large repositories may be inappropriate for rapid reaction needs. PMID:24945678

  17. A ubiquitous sensor network platform for integrating smart devices into the semantic sensor web.

    PubMed

    de Vera, David Díaz Pardo; Izquierdo, Alvaro Sigüenza; Vercher, Jesús Bernat; Hernández Gómez, Luis Alfonso

    2014-06-18

    Ongoing Sensor Web developments make a growing amount of heterogeneous sensor data available to smart devices. This is generating an increasing demand for homogeneous mechanisms to access, publish and share real-world information. This paper discusses, first, an architectural solution based on Next Generation Networks: a pilot Telco Ubiquitous Sensor Network (USN) Platform that embeds several OGC® Sensor Web services. This platform has already been deployed in large scale projects. Second, the USN-Platform is extended to explore a first approach to Semantic Sensor Web principles and technologies, so that smart devices can access Sensor Web data, allowing them also to share richer (semantically interpreted) information. An experimental scenario is presented: a smart car that consumes and produces real-world information which is integrated into the Semantic Sensor Web through a Telco USN-Platform. Performance tests revealed that observation publishing times with our experimental system were well within limits compatible with the adequate operation of smart safety assistance systems in vehicles. On the other hand, response times for complex queries on large repositories may be inappropriate for rapid reaction needs.

  18. Executing Medical Guidelines on the Web: Towards Next Generation Healthcare

    NASA Astrophysics Data System (ADS)

    Argüello, M.; Des, J.; Fernandez-Prieto, M. J.; Perez, R.; Paniagua, H.

    There is still a lack of full integration between current Electronic Health Records (EHRs) and medical guidelines that encapsulate evidence-based medicine. Thus, general practitioners (GPs) and specialised physicians still have to read document-based medical guidelines and decide among various options for managing common non-life-threatening conditions where the selection of the most appropriate therapeutic option for each individual patient can be a difficult task. This paper presents a simulation framework and computational test-bed, called V.A.F. Framework, for supporting simulations of clinical situations that boosted the integration between Health Level Seven (HL7) and Semantic Web technologies (OWL, SWRL, and OWL-S) to achieve content layer interoperability between online clinical cases and medical guidelines, and therefore, it proves that higher integration between EHRs and evidence-based medicine can be accomplished which could lead to a next generation of healthcare systems that provide more support to physicians and increase patients' safety.

  19. Semantic Networks and Social Networks

    ERIC Educational Resources Information Center

    Downes, Stephen

    2005-01-01

    Purpose: To illustrate the need for social network metadata within semantic metadata. Design/methodology/approach: Surveys properties of social networks and the semantic web, suggests that social network analysis applies to semantic content, argues that semantic content is more searchable if social network metadata is merged with semantic web…

  20. Building a semi-automatic ontology learning and construction system for geosciences

    NASA Astrophysics Data System (ADS)

    Babaie, H. A.; Sunderraman, R.; Zhu, Y.

    2013-12-01

    We are developing an ontology learning and construction framework that allows continuous, semi-automatic knowledge extraction, verification, validation, and maintenance by potentially a very large group of collaborating domain experts in any geosciences field. The system brings geoscientists from the side-lines to the center stage of ontology building, allowing them to collaboratively construct and enrich new ontologies, and merge, align, and integrate existing ontologies and tools. These constantly evolving ontologies can more effectively address community's interests, purposes, tools, and change. The goal is to minimize the cost and time of building ontologies, and maximize the quality, usability, and adoption of ontologies by the community. Our system will be a domain-independent ontology learning framework that applies natural language processing, allowing users to enter their ontology in a semi-structured form, and a combined Semantic Web and Social Web approach that lets direct participation of geoscientists who have no skill in the design and development of their domain ontologies. A controlled natural language (CNL) interface and an integrated authoring and editing tool automatically convert syntactically correct CNL text into formal OWL constructs. The WebProtege-based system will allow a potentially large group of geoscientists, from multiple domains, to crowd source and participate in the structuring of their knowledge model by sharing their knowledge through critiquing, testing, verifying, adopting, and updating of the concept models (ontologies). We will use cloud storage for all data and knowledge base components of the system, such as users, domain ontologies, discussion forums, and semantic wikis that can be accessed and queried by geoscientists in each domain. We will use NoSQL databases such as MongoDB as a service in the cloud environment. MongoDB uses the lightweight JSON format, which makes it convenient and easy to build Web applications using just HTML5 and Javascript, thereby avoiding cumbersome server side coding present in the traditional approaches. The JSON format used in MongoDB is also suitable for storing and querying RDF data. We will store the domain ontologies and associated linked data in JSON/RDF formats. Our Web interface will be built upon the open source and configurable WebProtege ontology editor. We will develop a simplified mobile version of our user interface which will automatically detect the hosting device and adjust the user interface layout to accommodate different screen sizes. We will also use the Semantic Media Wiki that allows the user to store and query the data within the wiki pages. By using HTML 5, JavaScript, and WebGL, we aim to create an interactive, dynamic, and multi-dimensional user interface that presents various geosciences data sets in a natural and intuitive way.

  1. Usage and applications of Semantic Web techniques and technologies to support chemistry research

    PubMed Central

    2014-01-01

    Background The drug discovery process is now highly dependent on the management, curation and integration of large amounts of potentially useful data. Semantics are necessary in order to interpret the information and derive knowledge. Advances in recent years have mitigated concerns that the lack of robust, usable tools has inhibited the adoption of methodologies based on semantics. Results This paper presents three examples of how Semantic Web techniques and technologies can be used in order to support chemistry research: a controlled vocabulary for quantities, units and symbols in physical chemistry; a controlled vocabulary for the classification and labelling of chemical substances and mixtures; and, a database of chemical identifiers. This paper also presents a Web-based service that uses the datasets in order to assist with the completion of risk assessment forms, along with a discussion of the legal implications and value-proposition for the use of such a service. Conclusions We have introduced the Semantic Web concepts, technologies, and methodologies that can be used to support chemistry research, and have demonstrated the application of those techniques in three areas very relevant to modern chemistry research, generating three new datasets that we offer as exemplars of an extensible portfolio of advanced data integration facilities. We have thereby established the importance of Semantic Web techniques and technologies for meeting Wild’s fourth “grand challenge”. PMID:24855494

  2. Usage and applications of Semantic Web techniques and technologies to support chemistry research.

    PubMed

    Borkum, Mark I; Frey, Jeremy G

    2014-01-01

    The drug discovery process is now highly dependent on the management, curation and integration of large amounts of potentially useful data. Semantics are necessary in order to interpret the information and derive knowledge. Advances in recent years have mitigated concerns that the lack of robust, usable tools has inhibited the adoption of methodologies based on semantics. THIS PAPER PRESENTS THREE EXAMPLES OF HOW SEMANTIC WEB TECHNIQUES AND TECHNOLOGIES CAN BE USED IN ORDER TO SUPPORT CHEMISTRY RESEARCH: a controlled vocabulary for quantities, units and symbols in physical chemistry; a controlled vocabulary for the classification and labelling of chemical substances and mixtures; and, a database of chemical identifiers. This paper also presents a Web-based service that uses the datasets in order to assist with the completion of risk assessment forms, along with a discussion of the legal implications and value-proposition for the use of such a service. We have introduced the Semantic Web concepts, technologies, and methodologies that can be used to support chemistry research, and have demonstrated the application of those techniques in three areas very relevant to modern chemistry research, generating three new datasets that we offer as exemplars of an extensible portfolio of advanced data integration facilities. We have thereby established the importance of Semantic Web techniques and technologies for meeting Wild's fourth "grand challenge".

  3. Building a semantic web-based metadata repository for facilitating detailed clinical modeling in cancer genome studies.

    PubMed

    Sharma, Deepak K; Solbrig, Harold R; Tao, Cui; Weng, Chunhua; Chute, Christopher G; Jiang, Guoqian

    2017-06-05

    Detailed Clinical Models (DCMs) have been regarded as the basis for retaining computable meaning when data are exchanged between heterogeneous computer systems. To better support clinical cancer data capturing and reporting, there is an emerging need to develop informatics solutions for standards-based clinical models in cancer study domains. The objective of the study is to develop and evaluate a cancer genome study metadata management system that serves as a key infrastructure in supporting clinical information modeling in cancer genome study domains. We leveraged a Semantic Web-based metadata repository enhanced with both ISO11179 metadata standard and Clinical Information Modeling Initiative (CIMI) Reference Model. We used the common data elements (CDEs) defined in The Cancer Genome Atlas (TCGA) data dictionary, and extracted the metadata of the CDEs using the NCI Cancer Data Standards Repository (caDSR) CDE dataset rendered in the Resource Description Framework (RDF). The ITEM/ITEM_GROUP pattern defined in the latest CIMI Reference Model is used to represent reusable model elements (mini-Archetypes). We produced a metadata repository with 38 clinical cancer genome study domains, comprising a rich collection of mini-Archetype pattern instances. We performed a case study of the domain "clinical pharmaceutical" in the TCGA data dictionary and demonstrated enriched data elements in the metadata repository are very useful in support of building detailed clinical models. Our informatics approach leveraging Semantic Web technologies provides an effective way to build a CIMI-compliant metadata repository that would facilitate the detailed clinical modeling to support use cases beyond TCGA in clinical cancer study domains.

  4. A journey to Semantic Web query federation in the life sciences.

    PubMed

    Cheung, Kei-Hoi; Frost, H Robert; Marshall, M Scott; Prud'hommeaux, Eric; Samwald, Matthias; Zhao, Jun; Paschke, Adrian

    2009-10-01

    As interest in adopting the Semantic Web in the biomedical domain continues to grow, Semantic Web technology has been evolving and maturing. A variety of technological approaches including triplestore technologies, SPARQL endpoints, Linked Data, and Vocabulary of Interlinked Datasets have emerged in recent years. In addition to the data warehouse construction, these technological approaches can be used to support dynamic query federation. As a community effort, the BioRDF task force, within the Semantic Web for Health Care and Life Sciences Interest Group, is exploring how these emerging approaches can be utilized to execute distributed queries across different neuroscience data sources. We have created two health care and life science knowledge bases. We have explored a variety of Semantic Web approaches to describe, map, and dynamically query multiple datasets. We have demonstrated several federation approaches that integrate diverse types of information about neurons and receptors that play an important role in basic, clinical, and translational neuroscience research. Particularly, we have created a prototype receptor explorer which uses OWL mappings to provide an integrated list of receptors and executes individual queries against different SPARQL endpoints. We have also employed the AIDA Toolkit, which is directed at groups of knowledge workers who cooperatively search, annotate, interpret, and enrich large collections of heterogeneous documents from diverse locations. We have explored a tool called "FeDeRate", which enables a global SPARQL query to be decomposed into subqueries against the remote databases offering either SPARQL or SQL query interfaces. Finally, we have explored how to use the vocabulary of interlinked Datasets (voiD) to create metadata for describing datasets exposed as Linked Data URIs or SPARQL endpoints. We have demonstrated the use of a set of novel and state-of-the-art Semantic Web technologies in support of a neuroscience query federation scenario. We have identified both the strengths and weaknesses of these technologies. While Semantic Web offers a global data model including the use of Uniform Resource Identifiers (URI's), the proliferation of semantically-equivalent URI's hinders large scale data integration. Our work helps direct research and tool development, which will be of benefit to this community.

  5. A journey to Semantic Web query federation in the life sciences

    PubMed Central

    Cheung, Kei-Hoi; Frost, H Robert; Marshall, M Scott; Prud'hommeaux, Eric; Samwald, Matthias; Zhao, Jun; Paschke, Adrian

    2009-01-01

    Background As interest in adopting the Semantic Web in the biomedical domain continues to grow, Semantic Web technology has been evolving and maturing. A variety of technological approaches including triplestore technologies, SPARQL endpoints, Linked Data, and Vocabulary of Interlinked Datasets have emerged in recent years. In addition to the data warehouse construction, these technological approaches can be used to support dynamic query federation. As a community effort, the BioRDF task force, within the Semantic Web for Health Care and Life Sciences Interest Group, is exploring how these emerging approaches can be utilized to execute distributed queries across different neuroscience data sources. Methods and results We have created two health care and life science knowledge bases. We have explored a variety of Semantic Web approaches to describe, map, and dynamically query multiple datasets. We have demonstrated several federation approaches that integrate diverse types of information about neurons and receptors that play an important role in basic, clinical, and translational neuroscience research. Particularly, we have created a prototype receptor explorer which uses OWL mappings to provide an integrated list of receptors and executes individual queries against different SPARQL endpoints. We have also employed the AIDA Toolkit, which is directed at groups of knowledge workers who cooperatively search, annotate, interpret, and enrich large collections of heterogeneous documents from diverse locations. We have explored a tool called "FeDeRate", which enables a global SPARQL query to be decomposed into subqueries against the remote databases offering either SPARQL or SQL query interfaces. Finally, we have explored how to use the vocabulary of interlinked Datasets (voiD) to create metadata for describing datasets exposed as Linked Data URIs or SPARQL endpoints. Conclusion We have demonstrated the use of a set of novel and state-of-the-art Semantic Web technologies in support of a neuroscience query federation scenario. We have identified both the strengths and weaknesses of these technologies. While Semantic Web offers a global data model including the use of Uniform Resource Identifiers (URI's), the proliferation of semantically-equivalent URI's hinders large scale data integration. Our work helps direct research and tool development, which will be of benefit to this community. PMID:19796394

  6. A Decision Framework for Enhancing Mobile Ad Hoc Network Stability and Security

    DTIC Science & Technology

    2008-06-01

    www.selfless-security.org/papers/addendum.php#ivt, accessed: March 2008. [10] Berners - Lee , T., Hendler, J., and O. Lassila, "The Semantic Web," in...study under her mentorship. Professor Tim Levin consistently offered his time and expertise throughout my time at NPS. Watching and listening to...Senge, "Tests for Building Confidence in System Dynamics Models," in TIMS Studies in the Management Sciences, Vol. 14, pp. 209-228, 1980. [40

  7. Dancing with the Web: Students Bring Meaning to the Semantic Web

    ERIC Educational Resources Information Center

    Brooks, Pauline

    2012-01-01

    This article will discuss the issues concerning the storage, retrieval and use of multimedia technology in dance, and how semantic web technologies can support those requirements. It will identify the key aims and outcomes of four international telematic dance projects, and review the use of reflective practice to engage students in their learning…

  8. Academic Libraries and the Semantic Web: What the Future May Hold for Research-Supporting Library Catalogues

    ERIC Educational Resources Information Center

    Campbell, D. Grant; Fast, Karl V.

    2004-01-01

    This paper examines how future metadata capabilities could enable academic libraries to exploit information on the emerging Semantic Web in their library catalogues. Whereas current metadata architectures treat the Web as a simple means of interchanging bibliographic data that have been created by libraries, this paper suggests that academic…

  9. Populating the Semantic Web by Macro-reading Internet Text

    NASA Astrophysics Data System (ADS)

    Mitchell, Tom M.; Betteridge, Justin; Carlson, Andrew; Hruschka, Estevam; Wang, Richard

    A key question regarding the future of the semantic web is "how will we acquire structured information to populate the semantic web on a vast scale?" One approach is to enter this information manually. A second approach is to take advantage of pre-existing databases, and to develop common ontologies, publishing standards, and reward systems to make this data widely accessible. We consider here a third approach: developing software that automatically extracts structured information from unstructured text present on the web. We also describe preliminary results demonstrating that machine learning algorithms can learn to extract tens of thousands of facts to populate a diverse ontology, with imperfect but reasonably good accuracy.

  10. A service-based framework for pharmacogenomics data integration

    NASA Astrophysics Data System (ADS)

    Wang, Kun; Bai, Xiaoying; Li, Jing; Ding, Cong

    2010-08-01

    Data are central to scientific research and practices. The advance of experiment methods and information retrieval technologies leads to explosive growth of scientific data and databases. However, due to the heterogeneous problems in data formats, structures and semantics, it is hard to integrate the diversified data that grow explosively and analyse them comprehensively. As more and more public databases are accessible through standard protocols like programmable interfaces and Web portals, Web-based data integration becomes a major trend to manage and synthesise data that are stored in distributed locations. Mashup, a Web 2.0 technique, presents a new way to compose content and software from multiple resources. The paper proposes a layered framework for integrating pharmacogenomics data in a service-oriented approach using the mashup technology. The framework separates the integration concerns from three perspectives including data, process and Web-based user interface. Each layer encapsulates the heterogeneous issues of one aspect. To facilitate the mapping and convergence of data, the ontology mechanism is introduced to provide consistent conceptual models across different databases and experiment platforms. To support user-interactive and iterative service orchestration, a context model is defined to capture information of users, tasks and services, which can be used for service selection and recommendation during a dynamic service composition process. A prototype system is implemented and cases studies are presented to illustrate the promising capabilities of the proposed approach.

  11. Archetype Model-Driven Development Framework for EHR Web System

    PubMed Central

    Kimura, Eizen; Ishihara, Ken

    2013-01-01

    Objectives This article describes the Web application framework for Electronic Health Records (EHRs) we have developed to reduce construction costs for EHR sytems. Methods The openEHR project has developed clinical model driven architecture for future-proof interoperable EHR systems. This project provides the specifications to standardize clinical domain model implementations, upon which the ISO/CEN 13606 standards are based. The reference implementation has been formally described in Eiffel. Moreover C# and Java implementations have been developed as reference. While scripting languages had been more popular because of their higher efficiency and faster development in recent years, they had not been involved in the openEHR implementations. From 2007, we have used the Ruby language and Ruby on Rails (RoR) as an agile development platform to implement EHR systems, which is in conformity with the openEHR specifications. Results We implemented almost all of the specifications, the Archetype Definition Language parser, and RoR scaffold generator from archetype. Although some problems have emerged, most of them have been resolved. Conclusions We have provided an agile EHR Web framework, which can build up Web systems from archetype models using RoR. The feasibility of the archetype model to provide semantic interoperability of EHRs has been demonstrated and we have verified that that it is suitable for the construction of EHR systems. PMID:24523991

  12. Semantic Advertising for Web 3.0

    NASA Astrophysics Data System (ADS)

    Thomas, Edward; Pan, Jeff Z.; Taylor, Stuart; Ren, Yuan; Jekjantuk, Nophadol; Zhao, Yuting

    Advertising on the World Wide Web is based around automatically matching web pages with appropriate advertisements, in the form of banner ads, interactive adverts, or text links. Traditionally this has been done by manual classification of pages, or more recently using information retrieval techniques to find the most important keywords from the page, and match these to keywords being used by adverts. In this paper, we propose a new model for online advertising, based around lightweight embedded semantics. This will improve the relevancy of adverts on the World Wide Web and help to kick-start the use of RDFa as a mechanism for adding lightweight semantic attributes to the Web. Furthermore, we propose a system architecture for the proposed new model, based on our scalable ontology reasoning infrastructure TrOWL.

  13. Ubiquitous Computing Services Discovery and Execution Using a Novel Intelligent Web Services Algorithm

    PubMed Central

    Choi, Okkyung; Han, SangYong

    2007-01-01

    Ubiquitous Computing makes it possible to determine in real time the location and situations of service requesters in a web service environment as it enables access to computers at any time and in any place. Though research on various aspects of ubiquitous commerce is progressing at enterprises and research centers, both domestically and overseas, analysis of a customer's personal preferences based on semantic web and rule based services using semantics is not currently being conducted. This paper proposes a Ubiquitous Computing Services System that enables a rule based search as well as semantics based search to support the fact that the electronic space and the physical space can be combined into one and the real time search for web services and the construction of efficient web services thus become possible.

  14. Recognition of pornographic web pages by classifying texts and images.

    PubMed

    Hu, Weiming; Wu, Ou; Chen, Zhouyao; Fu, Zhouyu; Maybank, Steve

    2007-06-01

    With the rapid development of the World Wide Web, people benefit more and more from the sharing of information. However, Web pages with obscene, harmful, or illegal content can be easily accessed. It is important to recognize such unsuitable, offensive, or pornographic Web pages. In this paper, a novel framework for recognizing pornographic Web pages is described. A C4.5 decision tree is used to divide Web pages, according to content representations, into continuous text pages, discrete text pages, and image pages. These three categories of Web pages are handled, respectively, by a continuous text classifier, a discrete text classifier, and an algorithm that fuses the results from the image classifier and the discrete text classifier. In the continuous text classifier, statistical and semantic features are used to recognize pornographic texts. In the discrete text classifier, the naive Bayes rule is used to calculate the probability that a discrete text is pornographic. In the image classifier, the object's contour-based features are extracted to recognize pornographic images. In the text and image fusion algorithm, the Bayes theory is used to combine the recognition results from images and texts. Experimental results demonstrate that the continuous text classifier outperforms the traditional keyword-statistics-based classifier, the contour-based image classifier outperforms the traditional skin-region-based image classifier, the results obtained by our fusion algorithm outperform those by either of the individual classifiers, and our framework can be adapted to different categories of Web pages.

  15. c-Mantic: A Cytoscape plugin for Semantic Web

    EPA Science Inventory

    Semantic Web tools can streamline the process of storing, analyzing and sharing biological information. Visualization is important for communicating such complex biological relationships. Here we use the flexibility and speed of the Cytoscape platform to interactively visualize s...

  16. Semantic Annotations and Querying of Web Data Sources

    NASA Astrophysics Data System (ADS)

    Hornung, Thomas; May, Wolfgang

    A large part of the Web, actually holding a significant portion of the useful information throughout the Web, consists of views on hidden databases, provided by numerous heterogeneous interfaces that are partly human-oriented via Web forms ("Deep Web"), and partly based on Web Services (only machine accessible). In this paper we present an approach for annotating these sources in a way that makes them citizens of the Semantic Web. We illustrate how queries can be stated in terms of the ontology, and how the annotations are used to selected and access appropriate sources and to answer the queries.

  17. Collective dynamics of social annotation

    PubMed Central

    Cattuto, Ciro; Barrat, Alain; Baldassarri, Andrea; Schehr, Gregory; Loreto, Vittorio

    2009-01-01

    The enormous increase of popularity and use of the worldwide web has led in the recent years to important changes in the ways people communicate. An interesting example of this fact is provided by the now very popular social annotation systems, through which users annotate resources (such as web pages or digital photographs) with keywords known as “tags.” Understanding the rich emergent structures resulting from the uncoordinated actions of users calls for an interdisciplinary effort. In particular concepts borrowed from statistical physics, such as random walks (RWs), and complex networks theory, can effectively contribute to the mathematical modeling of social annotation systems. Here, we show that the process of social annotation can be seen as a collective but uncoordinated exploration of an underlying semantic space, pictured as a graph, through a series of RWs. This modeling framework reproduces several aspects, thus far unexplained, of social annotation, among which are the peculiar growth of the size of the vocabulary used by the community and its complex network structure that represents an externalization of semantic structures grounded in cognition and that are typically hard to access. PMID:19506244

  18. BIOMedical Search Engine Framework: Lightweight and customized implementation of domain-specific biomedical search engines.

    PubMed

    Jácome, Alberto G; Fdez-Riverola, Florentino; Lourenço, Anália

    2016-07-01

    Text mining and semantic analysis approaches can be applied to the construction of biomedical domain-specific search engines and provide an attractive alternative to create personalized and enhanced search experiences. Therefore, this work introduces the new open-source BIOMedical Search Engine Framework for the fast and lightweight development of domain-specific search engines. The rationale behind this framework is to incorporate core features typically available in search engine frameworks with flexible and extensible technologies to retrieve biomedical documents, annotate meaningful domain concepts, and develop highly customized Web search interfaces. The BIOMedical Search Engine Framework integrates taggers for major biomedical concepts, such as diseases, drugs, genes, proteins, compounds and organisms, and enables the use of domain-specific controlled vocabulary. Technologies from the Typesafe Reactive Platform, the AngularJS JavaScript framework and the Bootstrap HTML/CSS framework support the customization of the domain-oriented search application. Moreover, the RESTful API of the BIOMedical Search Engine Framework allows the integration of the search engine into existing systems or a complete web interface personalization. The construction of the Smart Drug Search is described as proof-of-concept of the BIOMedical Search Engine Framework. This public search engine catalogs scientific literature about antimicrobial resistance, microbial virulence and topics alike. The keyword-based queries of the users are transformed into concepts and search results are presented and ranked accordingly. The semantic graph view portraits all the concepts found in the results, and the researcher may look into the relevance of different concepts, the strength of direct relations, and non-trivial, indirect relations. The number of occurrences of the concept shows its importance to the query, and the frequency of concept co-occurrence is indicative of biological relations meaningful to that particular scope of research. Conversely, indirect concept associations, i.e. concepts related by other intermediary concepts, can be useful to integrate information from different studies and look into non-trivial relations. The BIOMedical Search Engine Framework supports the development of domain-specific search engines. The key strengths of the framework are modularity and extensibilityin terms of software design, the use of open-source consolidated Web technologies, and the ability to integrate any number of biomedical text mining tools and information resources. Currently, the Smart Drug Search keeps over 1,186,000 documents, containing more than 11,854,000 annotations for 77,200 different concepts. The Smart Drug Search is publicly accessible at http://sing.ei.uvigo.es/sds/. The BIOMedical Search Engine Framework is freely available for non-commercial use at https://github.com/agjacome/biomsef. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  19. Algorithms and semantic infrastructure for mutation impact extraction and grounding.

    PubMed

    Laurila, Jonas B; Naderi, Nona; Witte, René; Riazanov, Alexandre; Kouznetsov, Alexandre; Baker, Christopher J O

    2010-12-02

    Mutation impact extraction is a hitherto unaccomplished task in state of the art mutation extraction systems. Protein mutations and their impacts on protein properties are hidden in scientific literature, making them poorly accessible for protein engineers and inaccessible for phenotype-prediction systems that currently depend on manually curated genomic variation databases. We present the first rule-based approach for the extraction of mutation impacts on protein properties, categorizing their directionality as positive, negative or neutral. Furthermore protein and mutation mentions are grounded to their respective UniProtKB IDs and selected protein properties, namely protein functions to concepts found in the Gene Ontology. The extracted entities are populated to an OWL-DL Mutation Impact ontology facilitating complex querying for mutation impacts using SPARQL. We illustrate retrieval of proteins and mutant sequences for a given direction of impact on specific protein properties. Moreover we provide programmatic access to the data through semantic web services using the SADI (Semantic Automated Discovery and Integration) framework. We address the problem of access to legacy mutation data in unstructured form through the creation of novel mutation impact extraction methods which are evaluated on a corpus of full-text articles on haloalkane dehalogenases, tagged by domain experts. Our approaches show state of the art levels of precision and recall for Mutation Grounding and respectable level of precision but lower recall for the task of Mutant-Impact relation extraction. The system is deployed using text mining and semantic web technologies with the goal of publishing to a broad spectrum of consumers.

  20. Towards an Approach of Semantic Access Control for Cloud Computing

    NASA Astrophysics Data System (ADS)

    Hu, Luokai; Ying, Shi; Jia, Xiangyang; Zhao, Kai

    With the development of cloud computing, the mutual understandability among distributed Access Control Policies (ACPs) has become an important issue in the security field of cloud computing. Semantic Web technology provides the solution to semantic interoperability of heterogeneous applications. In this paper, we analysis existing access control methods and present a new Semantic Access Control Policy Language (SACPL) for describing ACPs in cloud computing environment. Access Control Oriented Ontology System (ACOOS) is designed as the semantic basis of SACPL. Ontology-based SACPL language can effectively solve the interoperability issue of distributed ACPs. This study enriches the research that the semantic web technology is applied in the field of security, and provides a new way of thinking of access control in cloud computing.

  1. SemanticOrganizer: A Customizable Semantic Repository for Distributed NASA Project Teams

    NASA Technical Reports Server (NTRS)

    Keller, Richard M.; Berrios, Daniel C.; Carvalho, Robert E.; Hall, David R.; Rich, Stephen J.; Sturken, Ian B.; Swanson, Keith J.; Wolfe, Shawn R.

    2004-01-01

    SemanticOrganizer is a collaborative knowledge management system designed to support distributed NASA projects, including diverse teams of scientists, engineers, and accident investigators. The system provides a customizable, semantically structured information repository that stores work products relevant to multiple projects of differing types. SemanticOrganizer is one of the earliest and largest semantic web applications deployed at NASA to date, and has been used in diverse contexts ranging from the investigation of Space Shuttle Columbia's accident to the search for life on other planets. Although the underlying repository employs a single unified ontology, access control and ontology customization mechanisms make the repository contents appear different for each project team. This paper describes SemanticOrganizer, its customization facilities, and a sampling of its applications. The paper also summarizes some key lessons learned from building and fielding a successful semantic web application across a wide-ranging set of domains with diverse users.

  2. A semantically rich and standardised approach enhancing discovery of sensor data and metadata

    NASA Astrophysics Data System (ADS)

    Kokkinaki, Alexandra; Buck, Justin; Darroch, Louise

    2016-04-01

    The marine environment plays an essential role in the earth's climate. To enhance the ability to monitor the health of this important system, innovative sensors are being produced and combined with state of the art sensor technology. As the number of sensors deployed is continually increasing,, it is a challenge for data users to find the data that meet their specific needs. Furthermore, users need to integrate diverse ocean datasets originating from the same or even different systems. Standards provide a solution to the above mentioned challenges. The Open Geospatial Consortium (OGC) has created Sensor Web Enablement (SWE) standards that enable different sensor networks to establish syntactic interoperability. When combined with widely accepted controlled vocabularies, they become semantically rich and semantic interoperability is achievable. In addition, Linked Data is the recommended best practice for exposing, sharing and connecting information on the Semantic Web using Uniform Resource Identifiers (URIs), Resource Description Framework (RDF) and RDF Query Language (SPARQL). As part of the EU-funded SenseOCEAN project, the British Oceanographic Data Centre (BODC) is working on the standardisation of sensor metadata enabling 'plug and play' sensor integration. Our approach combines standards, controlled vocabularies and persistent URIs to publish sensor descriptions, their data and associated metadata as 5 star Linked Data and OGC SWE (SensorML, Observations & Measurements) standard. Thus sensors become readily discoverable, accessible and useable via the web. Content and context based searching is also enabled since sensors descriptions are understood by machines. Additionally, sensor data can be combined with other sensor or Linked Data datasets to form knowledge. This presentation will describe the work done in BODC to achieve syntactic and semantic interoperability in the sensor domain. It will illustrate the reuse and extension of the Semantic Sensor Network (SSN) ontology to Linked Sensor Ontology (LSO) and the steps taken to combine OGC SWE with the Linked Data approach through alignment and embodiment of other ontologies. It will then explain how data and models were annotated with controlled vocabularies to establish unambiguous semantics and interconnect them with data from different sources. Finally, it will introduce the RDF triple store where the sensor descriptions and metadata are stored and can be queried through the standard query language SPARQL. Providing different flavours of machine readable interpretations of sensors, sensor data and metadata enhances discoverability but most importantly allows seamless aggregation of information from different networks that will finally produce knowledge.

  3. A Semantic Sensor Web for Environmental Decision Support Applications

    PubMed Central

    Gray, Alasdair J. G.; Sadler, Jason; Kit, Oles; Kyzirakos, Kostis; Karpathiotakis, Manos; Calbimonte, Jean-Paul; Page, Kevin; García-Castro, Raúl; Frazer, Alex; Galpin, Ixent; Fernandes, Alvaro A. A.; Paton, Norman W.; Corcho, Oscar; Koubarakis, Manolis; De Roure, David; Martinez, Kirk; Gómez-Pérez, Asunción

    2011-01-01

    Sensing devices are increasingly being deployed to monitor the physical world around us. One class of application for which sensor data is pertinent is environmental decision support systems, e.g., flood emergency response. For these applications, the sensor readings need to be put in context by integrating them with other sources of data about the surrounding environment. Traditional systems for predicting and detecting floods rely on methods that need significant human resources. In this paper we describe a semantic sensor web architecture for integrating multiple heterogeneous datasets, including live and historic sensor data, databases, and map layers. The architecture provides mechanisms for discovering datasets, defining integrated views over them, continuously receiving data in real-time, and visualising on screen and interacting with the data. Our approach makes extensive use of web service standards for querying and accessing data, and semantic technologies to discover and integrate datasets. We demonstrate the use of our semantic sensor web architecture in the context of a flood response planning web application that uses data from sensor networks monitoring the sea-state around the coast of England. PMID:22164110

  4. Alignment of the UMLS semantic network with BioTop: methodology and assessment.

    PubMed

    Schulz, Stefan; Beisswanger, Elena; van den Hoek, László; Bodenreider, Olivier; van Mulligen, Erik M

    2009-06-15

    For many years, the Unified Medical Language System (UMLS) semantic network (SN) has been used as an upper-level semantic framework for the categorization of terms from terminological resources in biomedicine. BioTop has recently been developed as an upper-level ontology for the biomedical domain. In contrast to the SN, it is founded upon strict ontological principles, using OWL DL as a formal representation language, which has become standard in the semantic Web. In order to make logic-based reasoning available for the resources annotated or categorized with the SN, a mapping ontology was developed aligning the SN with BioTop. The theoretical foundations and the practical realization of the alignment are being described, with a focus on the design decisions taken, the problems encountered and the adaptations of BioTop that became necessary. For evaluation purposes, UMLS concept pairs obtained from MEDLINE abstracts by a named entity recognition system were tested for possible semantic relationships. Furthermore, all semantic-type combinations that occur in the UMLS Metathesaurus were checked for satisfiability. The effort-intensive alignment process required major design changes and enhancements of BioTop and brought up several design errors that could be fixed. A comparison between a human curator and the ontology yielded only a low agreement. Ontology reasoning was also used to successfully identify 133 inconsistent semantic-type combinations. BioTop, the OWL DL representation of the UMLS SN, and the mapping ontology are available at http://www.purl.org/biotop/.

  5. Towards linked open gene mutations data

    PubMed Central

    2012-01-01

    Background With the advent of high-throughput technologies, a great wealth of variation data is being produced. Such information may constitute the basis for correlation analyses between genotypes and phenotypes and, in the future, for personalized medicine. Several databases on gene variation exist, but this kind of information is still scarce in the Semantic Web framework. In this paper, we discuss issues related to the integration of mutation data in the Linked Open Data infrastructure, part of the Semantic Web framework. We present the development of a mapping from the IARC TP53 Mutation database to RDF and the implementation of servers publishing this data. Methods A version of the IARC TP53 Mutation database implemented in a relational database was used as first test set. Automatic mappings to RDF were first created by using D2RQ and later manually refined by introducing concepts and properties from domain vocabularies and ontologies, as well as links to Linked Open Data implementations of various systems of biomedical interest. Since D2RQ query performances are lower than those that can be achieved by using an RDF archive, generated data was also loaded into a dedicated system based on tools from the Jena software suite. Results We have implemented a D2RQ Server for TP53 mutation data, providing data on a subset of the IARC database, including gene variations, somatic mutations, and bibliographic references. The server allows to browse the RDF graph by using links both between classes and to external systems. An alternative interface offers improved performances for SPARQL queries. The resulting data can be explored by using any Semantic Web browser or application. Conclusions This has been the first case of a mutation database exposed as Linked Data. A revised version of our prototype, including further concepts and IARC TP53 Mutation database data sets, is under development. The publication of variation information as Linked Data opens new perspectives: the exploitation of SPARQL searches on mutation data and other biological databases may support data retrieval which is presently not possible. Moreover, reasoning on integrated variation data may support discoveries towards personalized medicine. PMID:22536974

  6. Towards linked open gene mutations data.

    PubMed

    Zappa, Achille; Splendiani, Andrea; Romano, Paolo

    2012-03-28

    With the advent of high-throughput technologies, a great wealth of variation data is being produced. Such information may constitute the basis for correlation analyses between genotypes and phenotypes and, in the future, for personalized medicine. Several databases on gene variation exist, but this kind of information is still scarce in the Semantic Web framework. In this paper, we discuss issues related to the integration of mutation data in the Linked Open Data infrastructure, part of the Semantic Web framework. We present the development of a mapping from the IARC TP53 Mutation database to RDF and the implementation of servers publishing this data. A version of the IARC TP53 Mutation database implemented in a relational database was used as first test set. Automatic mappings to RDF were first created by using D2RQ and later manually refined by introducing concepts and properties from domain vocabularies and ontologies, as well as links to Linked Open Data implementations of various systems of biomedical interest. Since D2RQ query performances are lower than those that can be achieved by using an RDF archive, generated data was also loaded into a dedicated system based on tools from the Jena software suite. We have implemented a D2RQ Server for TP53 mutation data, providing data on a subset of the IARC database, including gene variations, somatic mutations, and bibliographic references. The server allows to browse the RDF graph by using links both between classes and to external systems. An alternative interface offers improved performances for SPARQL queries. The resulting data can be explored by using any Semantic Web browser or application. This has been the first case of a mutation database exposed as Linked Data. A revised version of our prototype, including further concepts and IARC TP53 Mutation database data sets, is under development.The publication of variation information as Linked Data opens new perspectives: the exploitation of SPARQL searches on mutation data and other biological databases may support data retrieval which is presently not possible. Moreover, reasoning on integrated variation data may support discoveries towards personalized medicine.

  7. A Methodology for the Development of RESTful Semantic Web Services for Gene Expression Analysis

    PubMed Central

    Guardia, Gabriela D. A.; Pires, Luís Ferreira; Vêncio, Ricardo Z. N.; Malmegrim, Kelen C. R.; de Farias, Cléver R. G.

    2015-01-01

    Gene expression studies are generally performed through multi-step analysis processes, which require the integrated use of a number of analysis tools. In order to facilitate tool/data integration, an increasing number of analysis tools have been developed as or adapted to semantic web services. In recent years, some approaches have been defined for the development and semantic annotation of web services created from legacy software tools, but these approaches still present many limitations. In addition, to the best of our knowledge, no suitable approach has been defined for the functional genomics domain. Therefore, this paper aims at defining an integrated methodology for the implementation of RESTful semantic web services created from gene expression analysis tools and the semantic annotation of such services. We have applied our methodology to the development of a number of services to support the analysis of different types of gene expression data, including microarray and RNASeq. All developed services are publicly available in the Gene Expression Analysis Services (GEAS) Repository at http://dcm.ffclrp.usp.br/lssb/geas. Additionally, we have used a number of the developed services to create different integrated analysis scenarios to reproduce parts of two gene expression studies documented in the literature. The first study involves the analysis of one-color microarray data obtained from multiple sclerosis patients and healthy donors. The second study comprises the analysis of RNA-Seq data obtained from melanoma cells to investigate the role of the remodeller BRG1 in the proliferation and morphology of these cells. Our methodology provides concrete guidelines and technical details in order to facilitate the systematic development of semantic web services. Moreover, it encourages the development and reuse of these services for the creation of semantically integrated solutions for gene expression analysis. PMID:26207740

  8. The Semantic Web: From Representation to Realization

    NASA Astrophysics Data System (ADS)

    Thórisson, Kristinn R.; Spivack, Nova; Wissner, James M.

    A semantically-linked web of electronic information - the Semantic Web - promises numerous benefits including increased precision in automated information sorting, searching, organizing and summarizing. Realizing this requires significantly more reliable meta-information than is readily available today. It also requires a better way to represent information that supports unified management of diverse data and diverse Manipulation methods: from basic keywords to various types of artificial intelligence, to the highest level of intelligent manipulation - the human mind. How this is best done is far from obvious. Relying solely on hand-crafted annotation and ontologies, or solely on artificial intelligence techniques, seems less likely for success than a combination of the two. In this paper describe an integrated, complete solution to these challenges that has already been implemented and tested with hundreds of thousands of users. It is based on an ontological representational level we call SemCards that combines ontological rigour with flexible user interface constructs. SemCards are machine- and human-readable digital entities that allow non-experts to create and use semantic content, while empowering machines to better assist and participate in the process. SemCards enable users to easily create semantically-grounded data that in turn acts as examples for automation processes, creating a positive iterative feedback loop of metadata creation and refinement between user and machine. They provide a holistic solution to the Semantic Web, supporting powerful management of the full lifecycle of data, including its creation, retrieval, classification, sorting and sharing. We have implemented the SemCard technology on the semantic Web site Twine.com, showing that the technology is indeed versatile and scalable. Here we present the key ideas behind SemCards and describe the initial implementation of the technology.

  9. A Methodology for the Development of RESTful Semantic Web Services for Gene Expression Analysis.

    PubMed

    Guardia, Gabriela D A; Pires, Luís Ferreira; Vêncio, Ricardo Z N; Malmegrim, Kelen C R; de Farias, Cléver R G

    2015-01-01

    Gene expression studies are generally performed through multi-step analysis processes, which require the integrated use of a number of analysis tools. In order to facilitate tool/data integration, an increasing number of analysis tools have been developed as or adapted to semantic web services. In recent years, some approaches have been defined for the development and semantic annotation of web services created from legacy software tools, but these approaches still present many limitations. In addition, to the best of our knowledge, no suitable approach has been defined for the functional genomics domain. Therefore, this paper aims at defining an integrated methodology for the implementation of RESTful semantic web services created from gene expression analysis tools and the semantic annotation of such services. We have applied our methodology to the development of a number of services to support the analysis of different types of gene expression data, including microarray and RNASeq. All developed services are publicly available in the Gene Expression Analysis Services (GEAS) Repository at http://dcm.ffclrp.usp.br/lssb/geas. Additionally, we have used a number of the developed services to create different integrated analysis scenarios to reproduce parts of two gene expression studies documented in the literature. The first study involves the analysis of one-color microarray data obtained from multiple sclerosis patients and healthy donors. The second study comprises the analysis of RNA-Seq data obtained from melanoma cells to investigate the role of the remodeller BRG1 in the proliferation and morphology of these cells. Our methodology provides concrete guidelines and technical details in order to facilitate the systematic development of semantic web services. Moreover, it encourages the development and reuse of these services for the creation of semantically integrated solutions for gene expression analysis.

  10. Concept-oriented indexing of video databases: toward semantic sensitive retrieval and browsing.

    PubMed

    Fan, Jianping; Luo, Hangzai; Elmagarmid, Ahmed K

    2004-07-01

    Digital video now plays an important role in medical education, health care, telemedicine and other medical applications. Several content-based video retrieval (CBVR) systems have been proposed in the past, but they still suffer from the following challenging problems: semantic gap, semantic video concept modeling, semantic video classification, and concept-oriented video database indexing and access. In this paper, we propose a novel framework to make some advances toward the final goal to solve these problems. Specifically, the framework includes: 1) a semantic-sensitive video content representation framework by using principal video shots to enhance the quality of features; 2) semantic video concept interpretation by using flexible mixture model to bridge the semantic gap; 3) a novel semantic video-classifier training framework by integrating feature selection, parameter estimation, and model selection seamlessly in a single algorithm; and 4) a concept-oriented video database organization technique through a certain domain-dependent concept hierarchy to enable semantic-sensitive video retrieval and browsing.

  11. Mainstream web standards now support science data too

    NASA Astrophysics Data System (ADS)

    Richard, S. M.; Cox, S. J. D.; Janowicz, K.; Fox, P. A.

    2017-12-01

    The science community has developed many models and ontologies for representation of scientific data and knowledge. In some cases these have been built as part of coordinated frameworks. For example, the biomedical communities OBO Foundry federates applications covering various aspects of life sciences, which are united through reference to a common foundational ontology (BFO). The SWEET ontology, originally developed at NASA and now governed through ESIP, is a single large unified ontology for earth and environmental sciences. On a smaller scale, GeoSciML provides a UML and corresponding XML representation of geological mapping and observation data. Some of the key concepts related to scientific data and observations have recently been incorporated into domain-neutral mainstream ontologies developed by the World Wide Web consortium through their Spatial Data on the Web working group (SDWWG). OWL-Time has been enhanced to support temporal reference systems needed for science, and has been deployed in a linked data representation of the International Chronostratigraphic Chart. The Semantic Sensor Network ontology has been extended to cover samples and sampling, including relationships between samples. Gridded data and time-series is supported by applications of the statistical data-cube ontology (QB) for earth observations (the EO-QB profile) and spatio-temporal data (QB4ST). These standard ontologies and encodings can be used directly for science data, or can provide a bridge to specialized domain ontologies. There are a number of advantages in alignment with the W3C standards. The W3C vocabularies use discipline-neutral language and thus support cross-disciplinary applications directly without complex mappings. The W3C vocabularies are already aligned with the core ontologies that are the building blocks of the semantic web. The W3C vocabularies are each tightly scoped thus encouraging good practices in the combination of complementary small ontologies. The W3C vocabularies are hosted on well known, reliable infrastructure. The W3C SDWWG outputs are being selectively adopted by the general schema.org discovery framework.

  12. A Framework for Integrating Oceanographic Data Repositories

    NASA Astrophysics Data System (ADS)

    Rozell, E.; Maffei, A. R.; Beaulieu, S. E.; Fox, P. A.

    2010-12-01

    Oceanographic research covers a broad range of science domains and requires a tremendous amount of cross-disciplinary collaboration. Advances in cyberinfrastructure are making it easier to share data across disciplines through the use of web services and community vocabularies. Best practices in the design of web services and vocabularies to support interoperability amongst science data repositories are only starting to emerge. Strategic design decisions in these areas are crucial to the creation of end-user data and application integration tools. We present S2S, a novel framework for deploying customizable user interfaces to support the search and analysis of data from multiple repositories. Our research methods follow the Semantic Web methodology and technology development process developed by Fox et al. This methodology stresses the importance of close scientist-technologist interactions when developing scientific use cases, keeping the project well scoped and ensuring the result meets a real scientific need. The S2S framework motivates the development of standardized web services with well-described parameters, as well as the integration of existing web services and applications in the search and analysis of data. S2S also encourages the use and development of community vocabularies and ontologies to support federated search and reduce the amount of domain expertise required in the data discovery process. S2S utilizes the Web Ontology Language (OWL) to describe the components of the framework, including web service parameters, and OpenSearch as a standard description for web services, particularly search services for oceanographic data repositories. We have created search services for an oceanographic metadata database, a large set of quality-controlled ocean profile measurements, and a biogeographic search service. S2S provides an application programming interface (API) that can be used to generate custom user interfaces, supporting data and application integration across these repositories and other web resources. Although initially targeted towards a general oceanographic audience, the S2S framework shows promise in many science domains, inspired in part by the broad disciplinary coverage of oceanography. This presentation will cover the challenges addressed by the S2S framework, the research methods used in its development, and the resulting architecture for the system. It will demonstrate how S2S is remarkably extensible, and can be generalized to many science domains. Given these characteristics, the framework can simplify the process of data discovery and analysis for the end user, and can help to shift the responsibility of search interface development away from data managers.

  13. The Power and Peril of Web 3.0: It's More than Just Semantics

    ERIC Educational Resources Information Center

    Ohler, Jason

    2010-01-01

    The Information Age has been built, in part, on the belief that more information is always better. True to that sentiment, people have found ways to make a lot of information available to the masses--perhaps more than anyone ever imagined. The goal of the Semantic Web, often called Web 3.0, is for users to spend less time looking for information…

  14. Students as Designers of Semantic Web Applications

    ERIC Educational Resources Information Center

    Tracy, Fran; Jordan, Katy

    2012-01-01

    This paper draws upon the experience of an interdisciplinary research group in engaging undergraduate university students in the design and development of semantic web technologies. A flexible approach to participatory design challenged conventional distinctions between "designer" and "user" and allowed students to play a role…

  15. Cases, Simulacra, and Semantic Web Technologies

    ERIC Educational Resources Information Center

    Carmichael, P.; Tscholl, M.

    2013-01-01

    "Ensemble" is an interdisciplinary research and development project exploring the potential role of emerging Semantic Web technologies in case-based learning across learning environments in higher education. Empirical findings have challenged the claim that cases "bring reality into the classroom" and that this, in turn, might…

  16. A case study of data integration for aquatic resources using semantic web technologies

    USGS Publications Warehouse

    Gordon, Janice M.; Chkhenkeli, Nina; Govoni, David L.; Lightsom, Frances L.; Ostroff, Andrea C.; Schweitzer, Peter N.; Thongsavanh, Phethala; Varanka, Dalia E.; Zednik, Stephan

    2015-01-01

    Use cases, information modeling, and linked data techniques are Semantic Web technologies used to develop a prototype system that integrates scientific observations from four independent USGS and cooperator data systems. The techniques were tested with a use case goal of creating a data set for use in exploring potential relationships among freshwater fish populations and environmental factors. The resulting prototype extracts data from the BioData Retrieval System, the Multistate Aquatic Resource Information System, the National Geochemical Survey, and the National Hydrography Dataset. A prototype user interface allows a scientist to select observations from these data systems and combine them into a single data set in RDF format that includes explicitly defined relationships and data definitions. The project was funded by the USGS Community for Data Integration and undertaken by the Community for Data Integration Semantic Web Working Group in order to demonstrate use of Semantic Web technologies by scientists. This allows scientists to simultaneously explore data that are available in multiple, disparate systems beyond those they traditionally have used.

  17. CASAS: A tool for composing automatically and semantically astrophysical services

    NASA Astrophysics Data System (ADS)

    Louge, T.; Karray, M. H.; Archimède, B.; Knödlseder, J.

    2017-07-01

    Multiple astronomical datasets are available through internet and the astrophysical Distributed Computing Infrastructure (DCI) called Virtual Observatory (VO). Some scientific workflow technologies exist for retrieving and combining data from those sources. However selection of relevant services, automation of the workflows composition and the lack of user-friendly platforms remain a concern. This paper presents CASAS, a tool for semantic web services composition in astrophysics. This tool proposes automatic composition of astrophysical web services and brings a semantics-based, automatic composition of workflows. It widens the services choice and eases the use of heterogeneous services. Semantic web services composition relies on ontologies for elaborating the services composition; this work is based on Astrophysical Services ONtology (ASON). ASON had its structure mostly inherited from the VO services capacities. Nevertheless, our approach is not limited to the VO and brings VO plus non-VO services together without the need for premade recipes. CASAS is available for use through a simple web interface.

  18. Semantic Similarity between Web Documents Using Ontology

    NASA Astrophysics Data System (ADS)

    Chahal, Poonam; Singh Tomer, Manjeet; Kumar, Suresh

    2018-06-01

    The World Wide Web is the source of information available in the structure of interlinked web pages. However, the procedure of extracting significant information with the assistance of search engine is incredibly critical. This is for the reason that web information is written mainly by using natural language, and further available to individual human. Several efforts have been made in semantic similarity computation between documents using words, concepts and concepts relationship but still the outcome available are not as per the user requirements. This paper proposes a novel technique for computation of semantic similarity between documents that not only takes concepts available in documents but also relationships that are available between the concepts. In our approach documents are being processed by making ontology of the documents using base ontology and a dictionary containing concepts records. Each such record is made up of the probable words which represents a given concept. Finally, document ontology's are compared to find their semantic similarity by taking the relationships among concepts. Relevant concepts and relations between the concepts have been explored by capturing author and user intention. The proposed semantic analysis technique provides improved results as compared to the existing techniques.

  19. Semantic Similarity between Web Documents Using Ontology

    NASA Astrophysics Data System (ADS)

    Chahal, Poonam; Singh Tomer, Manjeet; Kumar, Suresh

    2018-03-01

    The World Wide Web is the source of information available in the structure of interlinked web pages. However, the procedure of extracting significant information with the assistance of search engine is incredibly critical. This is for the reason that web information is written mainly by using natural language, and further available to individual human. Several efforts have been made in semantic similarity computation between documents using words, concepts and concepts relationship but still the outcome available are not as per the user requirements. This paper proposes a novel technique for computation of semantic similarity between documents that not only takes concepts available in documents but also relationships that are available between the concepts. In our approach documents are being processed by making ontology of the documents using base ontology and a dictionary containing concepts records. Each such record is made up of the probable words which represents a given concept. Finally, document ontology's are compared to find their semantic similarity by taking the relationships among concepts. Relevant concepts and relations between the concepts have been explored by capturing author and user intention. The proposed semantic analysis technique provides improved results as compared to the existing techniques.

  20. A Tsunami-Focused Tide Station Data Sharing Framework

    NASA Astrophysics Data System (ADS)

    Kari, U. S.; Marra, J. J.; Weinstein, S. A.

    2006-12-01

    The Indian Ocean Tsunami of 26 December 2004 made it clear that information about tide stations that could be used to support detection and warning (such as location, collection and transmission capabilities, operator identification) are insufficiently known or not readily accessible. Parties interested in addressing this problem united under the Pacific Region Data Integrated Data Enterprise (PRIDE), and in 2005 began a multiyear effort to develop a distributed metadata system describing tide stations starting with pilot activities in a regional framework and focusing on tsunami detection and warning systems being developed by various agencies. First, a plain semantic description of the tsunami-focused tide station metadata was developed. The semantic metadata description was, in turn, developed into a formal metadata schema championed by International Tsunami Information Centre (ITIC) as part of a larger effort to develop a prototype web service under the PRIDE program in 2005. Under the 2006 PRIDE program the formal metadata schema was then expanded to corral input parameters for the TideTool application used by Pacific Tsunami Warning Center (PTWC) to drill down into wave activity at a tide station that is located using a web service developed on this metadata schema. This effort contributed to formalization of web service dissemination of PTWC watch and warning tsunami bulletins. During this time, the data content and sharing issues embodied in this schema have been discussed at various forums. The result is that the various stakeholders have different data provider and user perspectives (semantic content) and also exchange formats (not limited to just XML). The challenge then, is not only to capture all data requirements, but also to have formal representation that is easily transformed into any specified format. The latest revision of the tide gauge schema (Version 0.3), begins to address this challenge. It encompasses a broader range of provider and user perspectives, such as station operators, warning system managers, disaster managers, other marine hazard warning systems (such as storm surges and sea level change monitoring and research. In the next revision(s), we hope to take into account various relevant standards, including specifically, the Open Geospatial Consortium (OGC) Sensor Web Enablement (SWE) Framework, that will serve all prospective stakeholders in the most useful (extensible, scalable) manner. This is because Sensor ML has addressed many of the challenges we face already, through very useful fundamental modeling consideration and data types that are particular to sensors in general, with perhaps some extension needed for tide gauges. As a result of developing this schema, and associated client application architectures, we hope to have a much more distributed network of data providers, who are able to contribute to a global tide station metadata from the comfort of their own Information Technology (IT) departments.

  1. Development of Semantic Web - Markup Languages, Web Services, Rules, Explanation, Querying, Proof and Reasoning

    DTIC Science & Technology

    2008-07-01

    Study. WWW2006 Workshop on the Models of Trust for the Web (MTW󈧊), Edinburgh, Scotland, May 22, 2006. • Daniel J. Weitzner, Hal Abelson, Tim Berners ...McGuinness gave an invited talk on ontologies in Intel’s Semantic web day. Other invited speakers were Hendler and Berners - Lee . February 4, 2002...Burke (DARPA) concerning ontology tools. July 19-20, 2000. McGuinness met with W3C representatives ( Berners - Lee , Connolly, Lassila) and other

  2. Spatiotemporal-Thematic Data Processing for the Semantic Web

    NASA Astrophysics Data System (ADS)

    Hakimpour, Farshad; Aleman-Meza, Boanerges; Perry, Matthew; Sheth, Amit

    This chapter presents practical approaches to data processing in the space, time and theme dimensions using existing Semantic Web technologies. It describes how we obtain geographic and event data from Internet sources and also how we integrate them into an RDF store. We briefly introduce a set of functionalities in space, time and semantics. These functionalities are implemented based on our existing technology for main-memory-based RDF data processing developed at the LSDIS Lab. A number of these functionalities are exposed as REST Web services. We present two sample client-side applications that are developed using a combination of our services with Google Maps service.

  3. Spatial Knowledge Infrastructures - Creating Value for Policy Makers and Benefits the Community

    NASA Astrophysics Data System (ADS)

    Arnold, L. M.

    2016-12-01

    The spatial data infrastructure is arguably one of the most significant advancements in the spatial sector. It's been a game changer for governments, providing for the coordination and sharing of spatial data across organisations and the provision of accessible information to the broader community of users. Today however, end-users such as policy-makers require far more from these spatial data infrastructures. They want more than just data; they want the knowledge that can be extracted from data and they don't want to have to download, manipulate and process data in order to get the knowledge they seek. It's time for the spatial sector to reduce its focus on data in spatial data infrastructures and take a more proactive step in emphasising and delivering the knowledge value. Nowadays, decision-makers want to be able to query at will the data to meet their immediate need for knowledge. This is a new value proposal for the decision-making consumer and will require a shift in thinking. This paper presents a model for a Spatial Knowledge Infrastructure and underpinning methods that will realise a new real-time approach to delivering knowledge. The methods embrace the new capabilities afforded through the sematic web, domain and process ontologies and natural query language processing. Semantic Web technologies today have the potential to transform the spatial industry into more than just a distribution channel for data. The Semantic Web RDF (Resource Description Framework) enables meaning to be drawn from data automatically. While pushing data out to end-users will remain a central role for data producers, the power of the semantic web is that end-users have the ability to marshal a broad range of spatial resources via a query to extract knowledge from available data. This can be done without actually having to configure systems specifically for the end-user. All data producers need do is make data accessible in RDF and the spatial analytics does the rest.

  4. Modeling and validating HL7 FHIR profiles using semantic web Shape Expressions (ShEx).

    PubMed

    Solbrig, Harold R; Prud'hommeaux, Eric; Grieve, Grahame; McKenzie, Lloyd; Mandel, Joshua C; Sharma, Deepak K; Jiang, Guoqian

    2017-03-01

    HL7 Fast Healthcare Interoperability Resources (FHIR) is an emerging open standard for the exchange of electronic healthcare information. FHIR resources are defined in a specialized modeling language. FHIR instances can currently be represented in either XML or JSON. The FHIR and Semantic Web communities are developing a third FHIR instance representation format in Resource Description Framework (RDF). Shape Expressions (ShEx), a formal RDF data constraint language, is a candidate for describing and validating the FHIR RDF representation. Create a FHIR to ShEx model transformation and assess its ability to describe and validate FHIR RDF data. We created the methods and tools that generate the ShEx schemas modeling the FHIR to RDF specification being developed by HL7 ITS/W3C RDF Task Force, and evaluated the applicability of ShEx in the description and validation of FHIR to RDF transformations. The ShEx models contributed significantly to workgroup consensus. Algorithmic transformations from the FHIR model to ShEx schemas and FHIR example data to RDF transformations were incorporated into the FHIR build process. ShEx schemas representing 109 FHIR resources were used to validate 511 FHIR RDF data examples from the Standards for Trial Use (STU 3) Ballot version. We were able to uncover unresolved issues in the FHIR to RDF specification and detect 10 types of errors and root causes in the actual implementation. The FHIR ShEx representations have been included in the official FHIR web pages for the STU 3 Ballot version since September 2016. ShEx can be used to define and validate the syntax of a FHIR resource, which is complementary to the use of RDF Schema (RDFS) and Web Ontology Language (OWL) for semantic validation. ShEx proved useful for describing a standard model of FHIR RDF data. The combination of a formal model and a succinct format enabled comprehensive review and automated validation. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Exposing SAMOS Data and Vocabularies within the Semantic Web

    NASA Astrophysics Data System (ADS)

    Dockery, Nkemdirim; Elya, Jocelyn; Smith, Shawn

    2014-05-01

    As part of the Ocean Data Interoperability Platform (ODIP), we at the Center for Ocean-Atmospheric Prediction Studies (COAPS) will present the development process for the exposure of quality-controlled data and core vocabularies managed by the Shipboard Automated Meteorological Oceanographic System (SAMOS) initiative using Semantic Web technologies. Participants in the SAMOS initiative collect continuous navigational (position, course, heading, speed), meteorological (winds, pressure, temperature, humidity, radiation), and near-surface oceanographic (sea temperature, salinity) parameters while at sea. One-minute interval observations are packaged and transmitted back to COAPS via daily emails, where they undergo standardized formatting and quality control. The authors will present methods used to expose these daily datasets. The Semantic Web, a vision of the World Wide Web Consortium, focuses on extending the principles of the web from connecting documents to connecting data. The creation of a web of Linked Data that can be used across different applications in a machine-readable way is the ultimate goal. The Resource Description Framework (RDF) is the standard language and format used in the Semantic Web. RDF pages may be queried using the SPARQL Protocol and RDF Query Language (SPARQL). The authors will showcase the development of RDF resources that map SAMOS vocabularies to internationally served vocabularies such as those found in the Natural Environment Research Council (NERC) Vocabulary Server. Each individual SAMOS vocabulary term (data parameter and quality control flag) will be described in an RDF resource page. These RDF resources will define each SAMOS vocabulary term and provide a link to the mapped vocabulary term (or multiple terms) served externally. Along with enhanced retrieval by parameter, time, and location, we will be able to add additional parameters with the confidence that they follow an international standard. The production of RDF resources that link daily SAMOS data to descriptors such as parameters, time and location information, quality assurance reports, and cruise tracks will also be described. The data is housed on a Thematic Real-time Environmental Distributed Data Services (THREDDS) data server, so these RDF resources will enable enhanced retrieval by any of the linked descriptors. We will showcase our collaboration with the Rolling Deck to Repository (R2R) program to develop SPARQL endpoints that distribute SAMOS content. R2R packages and transmits data on a per cruise basis, so an immediate result of the SAMOS exposure will be the narrowing of the gap between expedition type data (e.g. R2R cruises) and SAMOS observatory type data. The authors will present the development of RDF resources that will collectively expose shipboard data, vocabularies, and quality assurance reports in an overall structure which will serve as the basis for a COAPS SPARQL endpoint, enabling easier programmatic access to SAMOS data.

  6. Automated geospatial Web Services composition based on geodata quality requirements

    NASA Astrophysics Data System (ADS)

    Cruz, Sérgio A. B.; Monteiro, Antonio M. V.; Santos, Rafael

    2012-10-01

    Service-Oriented Architecture and Web Services technologies improve the performance of activities involved in geospatial analysis with a distributed computing architecture. However, the design of the geospatial analysis process on this platform, by combining component Web Services, presents some open issues. The automated construction of these compositions represents an important research topic. Some approaches to solving this problem are based on AI planning methods coupled with semantic service descriptions. This work presents a new approach using AI planning methods to improve the robustness of the produced geospatial Web Services composition. For this purpose, we use semantic descriptions of geospatial data quality requirements in a rule-based form. These rules allow the semantic annotation of geospatial data and, coupled with the conditional planning method, this approach represents more precisely the situations of nonconformities with geodata quality that may occur during the execution of the Web Service composition. The service compositions produced by this method are more robust, thus improving process reliability when working with a composition of chained geospatial Web Services.

  7. Weighted Description Logics Preference Formulas for Multiattribute Negotiation

    NASA Astrophysics Data System (ADS)

    Ragone, Azzurra; di Noia, Tommaso; Donini, Francesco M.; di Sciascio, Eugenio; Wellman, Michael P.

    We propose a framework to compute the utility of an agreement w.r.t a preference set in a negotiation process. In particular, we refer to preferences expressed as weighted formulas in a decidable fragment of First-order Logic and agreements expressed as a formula. We ground our framework in Description Logics (DL) endowed with disjunction, to be compliant with Semantic Web technologies. A logic based approach to preference representation allows, when a background knowledge base is exploited, to relax the often unrealistic assumption of additive independence among attributes. We provide suitable definitions of the problem and present algorithms to compute utility in our setting. We also validate our approach through an experimental evaluation.

  8. An Ontological Approach to Developing Information Operations Applications for Use on the Semantic Web

    DTIC Science & Technology

    2008-09-01

    IWPC 21 Berners - Lee , Tim . (1999). Weaving the Web. New York: HarperCollins Publishers, Inc. 22... Berners - Lee , Tim . (1999). Weaving the Web. New York: HarperCollins Publishers, Inc. Berners - Lee , T., Hendler, J., & Lassila, O. (2001). The Semantic...environment where software agents roaming from page to page can readily carry out sophisticated tasks for users. T. Berners - Lee , J. Hendler, and O

  9. Enhancing e-Learning Content by Using Semantic Web Technologies

    ERIC Educational Resources Information Center

    García-González, Herminio; Gayo, José Emilio Labra; del Puerto Paule-Ruiz, María

    2017-01-01

    We describe a new educational tool that relies on Semantic Web technologies to enhance lessons content. We conducted an experiment with 32 students whose results demonstrate better performance when exposed to our tool in comparison with a plain native tool. Consequently, this prototype opens new possibilities in lessons content enhancement.

  10. Leveraging the Semantic Web for Adaptive Education

    ERIC Educational Resources Information Center

    Kravcik, Milos; Gasevic, Dragan

    2007-01-01

    In the area of technology-enhanced learning reusability and interoperability issues essentially influence the productivity and efficiency of learning and authoring solutions. There are two basic approaches how to overcome these problems--one attempts to do it via standards and the other by means of the Semantic Web. In practice, these approaches…

  11. Semantic Web-Driven LMS Architecture towards a Holistic Learning Process Model Focused on Personalization

    ERIC Educational Resources Information Center

    Kerkiri, Tania

    2010-01-01

    A comprehensive presentation is here made on the modular architecture of an e-learning platform with a distinctive emphasis on content personalization, combining advantages from semantic web technology, collaborative filtering and recommendation systems. Modules of this architecture handle information about both the domain-specific didactic…

  12. RuleML-Based Learning Object Interoperability on the Semantic Web

    ERIC Educational Resources Information Center

    Biletskiy, Yevgen; Boley, Harold; Ranganathan, Girish R.

    2008-01-01

    Purpose: The present paper aims to describe an approach for building the Semantic Web rules for interoperation between heterogeneous learning objects, namely course outlines from different universities, and one of the rule uses: identifying (in)compatibilities between course descriptions. Design/methodology/approach: As proof of concept, a rule…

  13. Climate Change, Disaster and Sentiment Analysis over Social Media Mining

    NASA Astrophysics Data System (ADS)

    Lee, J.; McCusker, J. P.; McGuinness, D. L.

    2012-12-01

    Accelerated climate change causes disasters and disrupts people living all over the globe. Disruptive climate events are often reflected in expressed sentiments of the people affected. Monitoring changes in these sentiments during and after disasters can reveal relationships between climate change and mental health. We developed a semantic web tool that uses linked data principles and semantic web technologies to integrate data from multiple sources and analyze them together. We are converting statistical data on climate change and disaster records obtained from the World Bank data catalog and the International Disaster Database into a Resource Description Framework (RDF) representation that was annotated with the RDF Data Cube vocabulary. We compare these data with a dataset of tweets that mention terms from the Emotion Ontology to get a sense of how disasters can impact the affected populations. This dataset is being gathered using an infrastructure we developed that extracts term uses in Twitter with controlled vocabularies. This data was also converted to RDF structure so that statistical data on the climate change and disasters is analyzed together with sentiment data. To visualize and explore relationship of the multiple data across the dimensions of time and location, we use the qb.js framework. We are using this approach to investigate the social and emotional impact of climate change. We hope that this will demonstrate the use of social media data as a valuable source of understanding on global climate change.

  14. Image processing and applications based on visualizing navigation service

    NASA Astrophysics Data System (ADS)

    Hwang, Chyi-Wen

    2015-07-01

    When facing the "overabundant" of semantic web information, in this paper, the researcher proposes the hierarchical classification and visualizing RIA (Rich Internet Application) navigation system: Concept Map (CM) + Semantic Structure (SS) + the Knowledge on Demand (KOD) service. The aim of the Multimedia processing and empirical applications testing, was to investigating the utility and usability of this visualizing navigation strategy in web communication design, into whether it enables the user to retrieve and construct their personal knowledge or not. Furthermore, based on the segment markets theory in the Marketing model, to propose a User Interface (UI) classification strategy and formulate a set of hypermedia design principles for further UI strategy and e-learning resources in semantic web communication. These research findings: (1) Irrespective of whether the simple declarative knowledge or the complex declarative knowledge model is used, the "CM + SS + KOD navigation system" has a better cognition effect than the "Non CM + SS + KOD navigation system". However, for the" No web design experience user", the navigation system does not have an obvious cognition effect. (2) The essential of classification in semantic web communication design: Different groups of user have a diversity of preference needs and different cognitive styles in the CM + SS + KOD navigation system.

  15. GoWeb: a semantic search engine for the life science web.

    PubMed

    Dietze, Heiko; Schroeder, Michael

    2009-10-01

    Current search engines are keyword-based. Semantic technologies promise a next generation of semantic search engines, which will be able to answer questions. Current approaches either apply natural language processing to unstructured text or they assume the existence of structured statements over which they can reason. Here, we introduce a third approach, GoWeb, which combines classical keyword-based Web search with text-mining and ontologies to navigate large results sets and facilitate question answering. We evaluate GoWeb on three benchmarks of questions on genes and functions, on symptoms and diseases, and on proteins and diseases. The first benchmark is based on the BioCreAtivE 1 Task 2 and links 457 gene names with 1352 functions. GoWeb finds 58% of the functional GeneOntology annotations. The second benchmark is based on 26 case reports and links symptoms with diseases. GoWeb achieves 77% success rate improving an existing approach by nearly 20%. The third benchmark is based on 28 questions in the TREC genomics challenge and links proteins to diseases. GoWeb achieves a success rate of 79%. GoWeb's combination of classical Web search with text-mining and ontologies is a first step towards answering questions in the biomedical domain. GoWeb is online at: http://www.gopubmed.org/goweb.

  16. WebGIS based on semantic grid model and web services

    NASA Astrophysics Data System (ADS)

    Zhang, WangFei; Yue, CaiRong; Gao, JianGuo

    2009-10-01

    As the combination point of the network technology and GIS technology, WebGIS has got the fast development in recent years. With the restriction of Web and the characteristics of GIS, traditional WebGIS has some prominent problems existing in development. For example, it can't accomplish the interoperability of heterogeneous spatial databases; it can't accomplish the data access of cross-platform. With the appearance of Web Service and Grid technology, there appeared great change in field of WebGIS. Web Service provided an interface which can give information of different site the ability of data sharing and inter communication. The goal of Grid technology was to make the internet to a large and super computer, with this computer we can efficiently implement the overall sharing of computing resources, storage resource, data resource, information resource, knowledge resources and experts resources. But to WebGIS, we only implement the physically connection of data and information and these is far from the enough. Because of the different understanding of the world, following different professional regulations, different policies and different habits, the experts in different field will get different end when they observed the same geographic phenomenon and the semantic heterogeneity produced. Since these there are large differences to the same concept in different field. If we use the WebGIS without considering of the semantic heterogeneity, we will answer the questions users proposed wrongly or we can't answer the questions users proposed. To solve this problem, this paper put forward and experienced an effective method of combing semantic grid and Web Services technology to develop WebGIS. In this paper, we studied the method to construct ontology and the method to combine Grid technology and Web Services and with the detailed analysis of computing characteristics and application model in the distribution of data, we designed the WebGIS query system driven by ontology based on Grid technology and Web Services.

  17. Applying Semantic Web technologies to improve the retrieval, credibility and use of health-related web resources.

    PubMed

    Mayer, Miguel A; Karampiperis, Pythagoras; Kukurikos, Antonis; Karkaletsis, Vangelis; Stamatakis, Kostas; Villarroel, Dagmar; Leis, Angela

    2011-06-01

    The number of health-related websites is increasing day-by-day; however, their quality is variable and difficult to assess. Various "trust marks" and filtering portals have been created in order to assist consumers in retrieving quality medical information. Consumers are using search engines as the main tool to get health information; however, the major problem is that the meaning of the web content is not machine-readable in the sense that computers cannot understand words and sentences as humans can. In addition, trust marks are invisible to search engines, thus limiting their usefulness in practice. During the last five years there have been different attempts to use Semantic Web tools to label health-related web resources to help internet users identify trustworthy resources. This paper discusses how Semantic Web technologies can be applied in practice to generate machine-readable labels and display their content, as well as to empower end-users by providing them with the infrastructure for expressing and sharing their opinions on the quality of health-related web resources.

  18. Exploiting Semantic Web Technologies to Develop OWL-Based Clinical Practice Guideline Execution Engines.

    PubMed

    Jafarpour, Borna; Abidi, Samina Raza; Abidi, Syed Sibte Raza

    2016-01-01

    Computerizing paper-based CPG and then executing them can provide evidence-informed decision support to physicians at the point of care. Semantic web technologies especially web ontology language (OWL) ontologies have been profusely used to represent computerized CPG. Using semantic web reasoning capabilities to execute OWL-based computerized CPG unties them from a specific custom-built CPG execution engine and increases their shareability as any OWL reasoner and triple store can be utilized for CPG execution. However, existing semantic web reasoning-based CPG execution engines suffer from lack of ability to execute CPG with high levels of expressivity, high cognitive load of computerization of paper-based CPG and updating their computerized versions. In order to address these limitations, we have developed three CPG execution engines based on OWL 1 DL, OWL 2 DL and OWL 2 DL + semantic web rule language (SWRL). OWL 1 DL serves as the base execution engine capable of executing a wide range of CPG constructs, however for executing highly complex CPG the OWL 2 DL and OWL 2 DL + SWRL offer additional executional capabilities. We evaluated the technical performance and medical correctness of our execution engines using a range of CPG. Technical evaluations show the efficiency of our CPG execution engines in terms of CPU time and validity of the generated recommendation in comparison to existing CPG execution engines. Medical evaluations by domain experts show the validity of the CPG-mediated therapy plans in terms of relevance, safety, and ordering for a wide range of patient scenarios.

  19. Virtual Sensor Web Architecture

    NASA Astrophysics Data System (ADS)

    Bose, P.; Zimdars, A.; Hurlburt, N.; Doug, S.

    2006-12-01

    NASA envisions the development of smart sensor webs, intelligent and integrated observation network that harness distributed sensing assets, their associated continuous and complex data sets, and predictive observation processing mechanisms for timely, collaborative hazard mitigation and enhanced science productivity and reliability. This paper presents Virtual Sensor Web Infrastructure for Collaborative Science (VSICS) Architecture for sustained coordination of (numerical and distributed) model-based processing, closed-loop resource allocation, and observation planning. VSICS's key ideas include i) rich descriptions of sensors as services based on semantic markup languages like OWL and SensorML; ii) service-oriented workflow composition and repair for simple and ensemble models; event-driven workflow execution based on event-based and distributed workflow management mechanisms; and iii) development of autonomous model interaction management capabilities providing closed-loop control of collection resources driven by competing targeted observation needs. We present results from initial work on collaborative science processing involving distributed services (COSEC framework) that is being extended to create VSICS.

  20. The Brainomics/Localizer database.

    PubMed

    Papadopoulos Orfanos, Dimitri; Michel, Vincent; Schwartz, Yannick; Pinel, Philippe; Moreno, Antonio; Le Bihan, Denis; Frouin, Vincent

    2017-01-01

    The Brainomics/Localizer database exposes part of the data collected by the in-house Localizer project, which planned to acquire four types of data from volunteer research subjects: anatomical MRI scans, functional MRI data, behavioral and demographic data, and DNA sampling. Over the years, this local project has been collecting such data from hundreds of subjects. We had selected 94 of these subjects for their complete datasets, including all four types of data, as the basis for a prior publication; the Brainomics/Localizer database publishes the data associated with these 94 subjects. Since regulatory rules prevent us from making genetic data available for download, the database serves only anatomical MRI scans, functional MRI data, behavioral and demographic data. To publish this set of heterogeneous data, we use dedicated software based on the open-source CubicWeb semantic web framework. Through genericity in the data model and flexibility in the display of data (web pages, CSV, JSON, XML), CubicWeb helps us expose these complex datasets in original and efficient ways. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. Linked Registries: Connecting Rare Diseases Patient Registries through a Semantic Web Layer

    PubMed Central

    González-Castro, Lorena; Carta, Claudio; van der Horst, Eelke; Lopes, Pedro; Kaliyaperumal, Rajaram; Thompson, Mark; Thompson, Rachel; Queralt-Rosinach, Núria; Lopez, Estrella; Wood, Libby; Robertson, Agata; Lamanna, Claudia; Gilling, Mette; Orth, Michael; Merino-Martinez, Roxana; Taruscio, Domenica; Lochmüller, Hanns

    2017-01-01

    Patient registries are an essential tool to increase current knowledge regarding rare diseases. Understanding these data is a vital step to improve patient treatments and to create the most adequate tools for personalized medicine. However, the growing number of disease-specific patient registries brings also new technical challenges. Usually, these systems are developed as closed data silos, with independent formats and models, lacking comprehensive mechanisms to enable data sharing. To tackle these challenges, we developed a Semantic Web based solution that allows connecting distributed and heterogeneous registries, enabling the federation of knowledge between multiple independent environments. This semantic layer creates a holistic view over a set of anonymised registries, supporting semantic data representation, integrated access, and querying. The implemented system gave us the opportunity to answer challenging questions across disperse rare disease patient registries. The interconnection between those registries using Semantic Web technologies benefits our final solution in a way that we can query single or multiple instances according to our needs. The outcome is a unique semantic layer, connecting miscellaneous registries and delivering a lightweight holistic perspective over the wealth of knowledge stemming from linked rare disease patient registries. PMID:29214177

  2. Linked Registries: Connecting Rare Diseases Patient Registries through a Semantic Web Layer.

    PubMed

    Sernadela, Pedro; González-Castro, Lorena; Carta, Claudio; van der Horst, Eelke; Lopes, Pedro; Kaliyaperumal, Rajaram; Thompson, Mark; Thompson, Rachel; Queralt-Rosinach, Núria; Lopez, Estrella; Wood, Libby; Robertson, Agata; Lamanna, Claudia; Gilling, Mette; Orth, Michael; Merino-Martinez, Roxana; Posada, Manuel; Taruscio, Domenica; Lochmüller, Hanns; Robinson, Peter; Roos, Marco; Oliveira, José Luís

    2017-01-01

    Patient registries are an essential tool to increase current knowledge regarding rare diseases. Understanding these data is a vital step to improve patient treatments and to create the most adequate tools for personalized medicine. However, the growing number of disease-specific patient registries brings also new technical challenges. Usually, these systems are developed as closed data silos, with independent formats and models, lacking comprehensive mechanisms to enable data sharing. To tackle these challenges, we developed a Semantic Web based solution that allows connecting distributed and heterogeneous registries, enabling the federation of knowledge between multiple independent environments. This semantic layer creates a holistic view over a set of anonymised registries, supporting semantic data representation, integrated access, and querying. The implemented system gave us the opportunity to answer challenging questions across disperse rare disease patient registries. The interconnection between those registries using Semantic Web technologies benefits our final solution in a way that we can query single or multiple instances according to our needs. The outcome is a unique semantic layer, connecting miscellaneous registries and delivering a lightweight holistic perspective over the wealth of knowledge stemming from linked rare disease patient registries.

  3. Link Correlated Military Data for Better Decision Support

    DTIC Science & Technology

    2011-06-01

    automatically translated into URI based links, thus can greatly reduce man power cost on software development. 3 Linked Data Technique Tim Berners - Lee ...Linked Data - while Linked Data is usually considered as part of Semantic Web, or “the Semantic Web done right” as described by Tim himself - has been...Required data of automatic link construction mechanism on more kinds of correlations. References [1] B. L. Tim , “The next Web of open, linked data

  4. Terminology for Neuroscience Data Discovery: Multi-tree Syntax and Investigator-Derived Semantics

    PubMed Central

    Goldberg, David H.; Grafstein, Bernice; Robert, Adrian; Gardner, Esther P.

    2009-01-01

    The Neuroscience Information Framework (NIF), developed for the NIH Blueprint for Neuroscience Research and available at http://nif.nih.gov and http://neurogateway.org, is built upon a set of coordinated terminology components enabling data and web-resource description and selection. Core NIF terminologies use a straightforward syntax designed for ease of use and for navigation by familiar web interfaces, and readily exportable to aid development of relational-model databases for neuroscience data sharing. Datasets, data analysis tools, web resources, and other entities are characterized by multiple descriptors, each addressing core concepts, including data type, acquisition technique, neuroanatomy, and cell class. Terms for each concept are organized in a tree structure, providing is-a and has-a relations. Broad general terms near each root span the category or concept and spawn more detailed entries for specificity. Related but distinct concepts (e.g., brain area and depth) are specified by separate trees, for easier navigation than would be required by graph representation. Semantics enabling NIF data discovery were selected at one or more workshops by investigators expert in particular systems (vision, olfaction, behavioral neuroscience, neurodevelopment), brain areas (cerebellum, thalamus, hippocampus), preparations (molluscs, fly), diseases (neurodegenerative disease), or techniques (microscopy, computation and modeling, neurogenetics). Workshop-derived integrated term lists are available Open Source at http://brainml.org; a complete list of participants is at http://brainml.org/workshops. PMID:18958630

  5. Semantic Web Applications and Tools for the Life Sciences: SWAT4LS 2010

    PubMed Central

    2012-01-01

    As Semantic Web technologies mature and new releases of key elements, such as SPARQL 1.1 and OWL 2.0, become available, the Life Sciences continue to push the boundaries of these technologies with ever more sophisticated tools and applications. Unsurprisingly, therefore, interest in the SWAT4LS (Semantic Web Applications and Tools for the Life Sciences) activities have remained high, as was evident during the third international SWAT4LS workshop held in Berlin in December 2010. Contributors to this workshop were invited to submit extended versions of their papers, the best of which are now made available in the special supplement of BMC Bioinformatics. The papers reflect the wide range of work in this area, covering the storage and querying of Life Sciences data in RDF triple stores, tools for the development of biomedical ontologies and the semantics-based integration of Life Sciences as well as clinicial data. PMID:22373274

  6. Semantic Web applications and tools for the life sciences: SWAT4LS 2010.

    PubMed

    Burger, Albert; Paschke, Adrian; Romano, Paolo; Marshall, M Scott; Splendiani, Andrea

    2012-01-25

    As Semantic Web technologies mature and new releases of key elements, such as SPARQL 1.1 and OWL 2.0, become available, the Life Sciences continue to push the boundaries of these technologies with ever more sophisticated tools and applications. Unsurprisingly, therefore, interest in the SWAT4LS (Semantic Web Applications and Tools for the Life Sciences) activities have remained high, as was evident during the third international SWAT4LS workshop held in Berlin in December 2010. Contributors to this workshop were invited to submit extended versions of their papers, the best of which are now made available in the special supplement of BMC Bioinformatics. The papers reflect the wide range of work in this area, covering the storage and querying of Life Sciences data in RDF triple stores, tools for the development of biomedical ontologies and the semantics-based integration of Life Sciences as well as clinicial data.

  7. Large scale healthcare data integration and analysis using the semantic web.

    PubMed

    Timm, John; Renly, Sondra; Farkash, Ariel

    2011-01-01

    Healthcare data interoperability can only be achieved when the semantics of the content is well defined and consistently implemented across heterogeneous data sources. Achieving these objectives of interoperability requires the collaboration of experts from several domains. This paper describes tooling that integrates Semantic Web technologies with common tools to facilitate cross-domain collaborative development for the purposes of data interoperability. Our approach is divided into stages of data harmonization and representation, model transformation, and instance generation. We applied our approach on Hypergenes, an EU funded project, where we use our method to the Essential Hypertension disease model using a CDA template. Our domain expert partners include clinical providers, clinical domain researchers, healthcare information technology experts, and a variety of clinical data consumers. We show that bringing Semantic Web technologies into the healthcare interoperability toolkit increases opportunities for beneficial collaboration thus improving patient care and clinical research outcomes.

  8. Collaborative E-Learning Using Semantic Course Blog

    ERIC Educational Resources Information Center

    Lu, Lai-Chen; Yeh, Ching-Long

    2008-01-01

    Collaborative e-learning delivers many enhancements to e-learning technology; it enables students to collaborate with each other and improves their learning efficiency. Semantic blog combines semantic Web and blog technology that users can import, export, view, navigate, and query the blog. We developed a semantic course blog for collaborative…

  9. HCLS 2.0/3.0: health care and life sciences data mashup using Web 2.0/3.0.

    PubMed

    Cheung, Kei-Hoi; Yip, Kevin Y; Townsend, Jeffrey P; Scotch, Matthew

    2008-10-01

    We describe the potential of current Web 2.0 technologies to achieve data mashup in the health care and life sciences (HCLS) domains, and compare that potential to the nascent trend of performing semantic mashup. After providing an overview of Web 2.0, we demonstrate two scenarios of data mashup, facilitated by the following Web 2.0 tools and sites: Yahoo! Pipes, Dapper, Google Maps and GeoCommons. In the first scenario, we exploited Dapper and Yahoo! Pipes to implement a challenging data integration task in the context of DNA microarray research. In the second scenario, we exploited Yahoo! Pipes, Google Maps, and GeoCommons to create a geographic information system (GIS) interface that allows visualization and integration of diverse categories of public health data, including cancer incidence and pollution prevalence data. Based on these two scenarios, we discuss the strengths and weaknesses of these Web 2.0 mashup technologies. We then describe Semantic Web, the mainstream Web 3.0 technology that enables more powerful data integration over the Web. We discuss the areas of intersection of Web 2.0 and Semantic Web, and describe the potential benefits that can be brought to HCLS research by combining these two sets of technologies.

  10. HCLS 2.0/3.0: Health Care and Life Sciences Data Mashup Using Web 2.0/3.0

    PubMed Central

    Cheung, Kei-Hoi; Yip, Kevin Y.; Townsend, Jeffrey P.; Scotch, Matthew

    2010-01-01

    We describe the potential of current Web 2.0 technologies to achieve data mashup in the health care and life sciences (HCLS) domains, and compare that potential to the nascent trend of performing semantic mashup. After providing an overview of Web 2.0, we demonstrate two scenarios of data mashup, facilitated by the following Web 2.0 tools and sites: Yahoo! Pipes, Dapper, Google Maps and GeoCommons. In the first scenario, we exploited Dapper and Yahoo! Pipes to implement a challenging data integration task in the context of DNA microarray research. In the second scenario, we exploited Yahoo! Pipes, Google Maps, and GeoCommons to create a geographic information system (GIS) interface that allows visualization and integration of diverse categories of public health data, including cancer incidence and pollution prevalence data. Based on these two scenarios, we discuss the strengths and weaknesses of these Web 2.0 mashup technologies. We then describe Semantic Web, the mainstream Web 3.0 technology that enables more powerful data integration over the Web. We discuss the areas of intersection of Web 2.0 and Semantic Web, and describe the potential benefits that can be brought to HCLS research by combining these two sets of technologies. PMID:18487092

  11. Biotea: RDFizing PubMed Central in support for the paper as an interface to the Web of Data

    PubMed Central

    2013-01-01

    Background The World Wide Web has become a dissemination platform for scientific and non-scientific publications. However, most of the information remains locked up in discrete documents that are not always interconnected or machine-readable. The connectivity tissue provided by RDF technology has not yet been widely used to support the generation of self-describing, machine-readable documents. Results In this paper, we present our approach to the generation of self-describing machine-readable scholarly documents. We understand the scientific document as an entry point and interface to the Web of Data. We have semantically processed the full-text, open-access subset of PubMed Central. Our RDF model and resulting dataset make extensive use of existing ontologies and semantic enrichment services. We expose our model, services, prototype, and datasets at http://biotea.idiginfo.org/ Conclusions The semantic processing of biomedical literature presented in this paper embeds documents within the Web of Data and facilitates the execution of concept-based queries against the entire digital library. Our approach delivers a flexible and adaptable set of tools for metadata enrichment and semantic processing of biomedical documents. Our model delivers a semantically rich and highly interconnected dataset with self-describing content so that software can make effective use of it. PMID:23734622

  12. Reasoning and Ontologies for Personalized E-Learning in the Semantic Web

    ERIC Educational Resources Information Center

    Henze, Nicola; Dolog, Peter; Nejdl, Wolfgang

    2004-01-01

    The challenge of the semantic web is the provision of distributed information with well-defined meaning, understandable for different parties. Particularly, applications should be able to provide individually optimized access to information by taking the individual needs and requirements of the users into account. In this paper we propose a…

  13. 71 FR 66315 - Notice of Availability of Invention for Licensing; Government-Owned Invention

    Federal Register 2010, 2011, 2012, 2013, 2014

    2006-11-14

    ... Coating and Method of Formulator.//Navy Case No. 97,486: Processing Semantic Markups in Web Ontology... Rotating Clip.//Navy Case No. 97,886: Adding Semantic Support to Existing UDDI Infrastructure.//Navy Case..., Binding, and Integration of Non-Registered Geospatial Web Services.//Navy Case No. 98,094: Novel, Single...

  14. E-Learning System Overview Based on Semantic Web

    ERIC Educational Resources Information Center

    Alsultanny, Yas A.

    2006-01-01

    The challenge of the semantic web is the provision of distributed information with well-defined meaning, understandable for different parties. e-Learning is efficient task relevant and just-in-time learning grown from the learning requirements of the new dynamically changing, distributed business world. In this paper we design an e-Learning system…

  15. Entrez Neuron RDFa: a pragmatic semantic web application for data integration in neuroscience research.

    PubMed

    Samwald, Matthias; Lim, Ernest; Masiar, Peter; Marenco, Luis; Chen, Huajun; Morse, Thomas; Mutalik, Pradeep; Shepherd, Gordon; Miller, Perry; Cheung, Kei-Hoi

    2009-01-01

    The amount of biomedical data available in Semantic Web formats has been rapidly growing in recent years. While these formats are machine-friendly, user-friendly web interfaces allowing easy querying of these data are typically lacking. We present "Entrez Neuron", a pilot neuron-centric interface that allows for keyword-based queries against a coherent repository of OWL ontologies. These ontologies describe neuronal structures, physiology, mathematical models and microscopy images. The returned query results are organized hierarchically according to brain architecture. Where possible, the application makes use of entities from the Open Biomedical Ontologies (OBO) and the 'HCLS knowledgebase' developed by the W3C Interest Group for Health Care and Life Science. It makes use of the emerging RDFa standard to embed ontology fragments and semantic annotations within its HTML-based user interface. The application and underlying ontologies demonstrate how Semantic Web technologies can be used for information integration within a curated information repository and between curated information repositories. It also demonstrates how information integration can be accomplished on the client side, through simple copying and pasting of portions of documents that contain RDFa markup.

  16. Component Models for Semantic Web Languages

    NASA Astrophysics Data System (ADS)

    Henriksson, Jakob; Aßmann, Uwe

    Intelligent applications and agents on the Semantic Web typically need to be specified with, or interact with specifications written in, many different kinds of formal languages. Such languages include ontology languages, data and metadata query languages, as well as transformation languages. As learnt from years of experience in development of complex software systems, languages need to support some form of component-based development. Components enable higher software quality, better understanding and reusability of already developed artifacts. Any component approach contains an underlying component model, a description detailing what valid components are and how components can interact. With the multitude of languages developed for the Semantic Web, what are their underlying component models? Do we need to develop one for each language, or is a more general and reusable approach achievable? We present a language-driven component model specification approach. This means that a component model can be (automatically) generated from a given base language (actually, its specification, e.g. its grammar). As a consequence, we can provide components for different languages and simplify the development of software artifacts used on the Semantic Web.

  17. Semantic similarity measures in the biomedical domain by leveraging a web search engine.

    PubMed

    Hsieh, Sheau-Ling; Chang, Wen-Yung; Chen, Chi-Huang; Weng, Yung-Ching

    2013-07-01

    Various researches in web related semantic similarity measures have been deployed. However, measuring semantic similarity between two terms remains a challenging task. The traditional ontology-based methodologies have a limitation that both concepts must be resided in the same ontology tree(s). Unfortunately, in practice, the assumption is not always applicable. On the other hand, if the corpus is sufficiently adequate, the corpus-based methodologies can overcome the limitation. Now, the web is a continuous and enormous growth corpus. Therefore, a method of estimating semantic similarity is proposed via exploiting the page counts of two biomedical concepts returned by Google AJAX web search engine. The features are extracted as the co-occurrence patterns of two given terms P and Q, by querying P, Q, as well as P AND Q, and the web search hit counts of the defined lexico-syntactic patterns. These similarity scores of different patterns are evaluated, by adapting support vector machines for classification, to leverage the robustness of semantic similarity measures. Experimental results validating against two datasets: dataset 1 provided by A. Hliaoutakis; dataset 2 provided by T. Pedersen, are presented and discussed. In dataset 1, the proposed approach achieves the best correlation coefficient (0.802) under SNOMED-CT. In dataset 2, the proposed method obtains the best correlation coefficient (SNOMED-CT: 0.705; MeSH: 0.723) with physician scores comparing with measures of other methods. However, the correlation coefficients (SNOMED-CT: 0.496; MeSH: 0.539) with coder scores received opposite outcomes. In conclusion, the semantic similarity findings of the proposed method are close to those of physicians' ratings. Furthermore, the study provides a cornerstone investigation for extracting fully relevant information from digitizing, free-text medical records in the National Taiwan University Hospital database.

  18. A Hybrid Approach to Finding Relevant Social Media Content for Complex Domain Specific Information Needs.

    PubMed

    Cameron, Delroy; Sheth, Amit P; Jaykumar, Nishita; Thirunarayan, Krishnaprasad; Anand, Gaurish; Smith, Gary A

    2014-12-01

    While contemporary semantic search systems offer to improve classical keyword-based search, they are not always adequate for complex domain specific information needs. The domain of prescription drug abuse, for example, requires knowledge of both ontological concepts and "intelligible constructs" not typically modeled in ontologies. These intelligible constructs convey essential information that include notions of intensity, frequency, interval, dosage and sentiments, which could be important to the holistic needs of the information seeker. In this paper, we present a hybrid approach to domain specific information retrieval that integrates ontology-driven query interpretation with synonym-based query expansion and domain specific rules, to facilitate search in social media on prescription drug abuse. Our framework is based on a context-free grammar (CFG) that defines the query language of constructs interpretable by the search system. The grammar provides two levels of semantic interpretation: 1) a top-level CFG that facilitates retrieval of diverse textual patterns, which belong to broad templates and 2) a low-level CFG that enables interpretation of specific expressions belonging to such textual patterns. These low-level expressions occur as concepts from four different categories of data: 1) ontological concepts, 2) concepts in lexicons (such as emotions and sentiments), 3) concepts in lexicons with only partial ontology representation, called lexico-ontology concepts (such as side effects and routes of administration (ROA)), and 4) domain specific expressions (such as date, time, interval, frequency and dosage) derived solely through rules. Our approach is embodied in a novel Semantic Web platform called PREDOSE, which provides search support for complex domain specific information needs in prescription drug abuse epidemiology. When applied to a corpus of over 1 million drug abuse-related web forum posts, our search framework proved effective in retrieving relevant documents when compared with three existing search systems.

  19. A Hybrid Approach to Finding Relevant Social Media Content for Complex Domain Specific Information Needs

    PubMed Central

    Cameron, Delroy; Sheth, Amit P.; Jaykumar, Nishita; Thirunarayan, Krishnaprasad; Anand, Gaurish; Smith, Gary A.

    2015-01-01

    While contemporary semantic search systems offer to improve classical keyword-based search, they are not always adequate for complex domain specific information needs. The domain of prescription drug abuse, for example, requires knowledge of both ontological concepts and “intelligible constructs” not typically modeled in ontologies. These intelligible constructs convey essential information that include notions of intensity, frequency, interval, dosage and sentiments, which could be important to the holistic needs of the information seeker. In this paper, we present a hybrid approach to domain specific information retrieval that integrates ontology-driven query interpretation with synonym-based query expansion and domain specific rules, to facilitate search in social media on prescription drug abuse. Our framework is based on a context-free grammar (CFG) that defines the query language of constructs interpretable by the search system. The grammar provides two levels of semantic interpretation: 1) a top-level CFG that facilitates retrieval of diverse textual patterns, which belong to broad templates and 2) a low-level CFG that enables interpretation of specific expressions belonging to such textual patterns. These low-level expressions occur as concepts from four different categories of data: 1) ontological concepts, 2) concepts in lexicons (such as emotions and sentiments), 3) concepts in lexicons with only partial ontology representation, called lexico-ontology concepts (such as side effects and routes of administration (ROA)), and 4) domain specific expressions (such as date, time, interval, frequency and dosage) derived solely through rules. Our approach is embodied in a novel Semantic Web platform called PREDOSE, which provides search support for complex domain specific information needs in prescription drug abuse epidemiology. When applied to a corpus of over 1 million drug abuse-related web forum posts, our search framework proved effective in retrieving relevant documents when compared with three existing search systems. PMID:25814917

  20. Software analysis in the semantic web

    NASA Astrophysics Data System (ADS)

    Taylor, Joshua; Hall, Robert T.

    2013-05-01

    Many approaches in software analysis, particularly dynamic malware analyis, benefit greatly from the use of linked data and other Semantic Web technology. In this paper, we describe AIS, Inc.'s Semantic Extractor (SemEx) component from the Malware Analysis and Attribution through Genetic Information (MAAGI) effort, funded under DARPA's Cyber Genome program. The SemEx generates OWL-based semantic models of high and low level behaviors in malware samples from system call traces generated by AIS's introspective hypervisor, IntroVirtTM. Within MAAGI, these semantic models were used by modules that cluster malware samples by functionality, and construct "genealogical" malware lineages. Herein, we describe the design, implementation, and use of the SemEx, as well as the C2DB, an OWL ontology used for representing software behavior and cyber-environments.

  1. Semantic computing and language knowledge bases

    NASA Astrophysics Data System (ADS)

    Wang, Lei; Wang, Houfeng; Yu, Shiwen

    2017-09-01

    As the proposition of the next-generation Web - semantic Web, semantic computing has been drawing more and more attention within the circle and the industries. A lot of research has been conducted on the theory and methodology of the subject, and potential applications have also been investigated and proposed in many fields. The progress of semantic computing made so far cannot be detached from its supporting pivot - language resources, for instance, language knowledge bases. This paper proposes three perspectives of semantic computing from a macro view and describes the current status of affairs about the construction of language knowledge bases and the related research and applications that have been carried out on the basis of these resources via a case study in the Institute of Computational Linguistics at Peking University.

  2. Integrated Data Capturing Requirements for 3d Semantic Modelling of Cultural Heritage: the Inception Protocol

    NASA Astrophysics Data System (ADS)

    Di Giulio, R.; Maietti, F.; Piaia, E.; Medici, M.; Ferrari, F.; Turillazzi, B.

    2017-02-01

    The generation of high quality 3D models can be still very time-consuming and expensive, and the outcome of digital reconstructions is frequently provided in formats that are not interoperable, and therefore cannot be easily accessed. This challenge is even more crucial for complex architectures and large heritage sites, which involve a large amount of data to be acquired, managed and enriched by metadata. In this framework, the ongoing EU funded project INCEPTION - Inclusive Cultural Heritage in Europe through 3D semantic modelling proposes a workflow aimed at the achievements of efficient 3D digitization methods, post-processing tools for an enriched semantic modelling, web-based solutions and applications to ensure a wide access to experts and non-experts. In order to face these challenges and to start solving the issue of the large amount of captured data and time-consuming processes in the production of 3D digital models, an Optimized Data Acquisition Protocol (DAP) has been set up. The purpose is to guide the processes of digitization of cultural heritage, respecting needs, requirements and specificities of cultural assets.

  3. SSEL-ADE: A semi-supervised ensemble learning framework for extracting adverse drug events from social media.

    PubMed

    Liu, Jing; Zhao, Songzheng; Wang, Gang

    2018-01-01

    With the development of Web 2.0 technology, social media websites have become lucrative but under-explored data sources for extracting adverse drug events (ADEs), which is a serious health problem. Besides ADE, other semantic relation types (e.g., drug indication and beneficial effect) could hold between the drug and adverse event mentions, making ADE relation extraction - distinguishing ADE relationship from other relation types - necessary. However, conducting ADE relation extraction in social media environment is not a trivial task because of the expertise-dependent, time-consuming and costly annotation process, and the feature space's high-dimensionality attributed to intrinsic characteristics of social media data. This study aims to develop a framework for ADE relation extraction using patient-generated content in social media with better performance than that delivered by previous efforts. To achieve the objective, a general semi-supervised ensemble learning framework, SSEL-ADE, was developed. The framework exploited various lexical, semantic, and syntactic features, and integrated ensemble learning and semi-supervised learning. A series of experiments were conducted to verify the effectiveness of the proposed framework. Empirical results demonstrate the effectiveness of each component of SSEL-ADE and reveal that our proposed framework outperforms most of existing ADE relation extraction methods The SSEL-ADE can facilitate enhanced ADE relation extraction performance, thereby providing more reliable support for pharmacovigilance. Moreover, the proposed semi-supervised ensemble methods have the potential of being applied to effectively deal with other social media-based problems. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. A Learning Content Authoring Approach Based on Semantic Technologies and Social Networking: An Empirical Study

    ERIC Educational Resources Information Center

    Nesic, Sasa; Gasevic, Dragan; Jazayeri, Mehdi; Landoni, Monica

    2011-01-01

    Semantic web technologies have been applied to many aspects of learning content authoring including semantic annotation, semantic search, dynamic assembly, and personalization of learning content. At the same time, social networking services have started to play an important role in the authoring process by supporting authors' collaborative…

  5. Publication, discovery and interoperability of Clinical Decision Support Systems: A Linked Data approach.

    PubMed

    Marco-Ruiz, Luis; Pedrinaci, Carlos; Maldonado, J A; Panziera, Luca; Chen, Rong; Bellika, J Gustav

    2016-08-01

    The high costs involved in the development of Clinical Decision Support Systems (CDSS) make it necessary to share their functionality across different systems and organizations. Service Oriented Architectures (SOA) have been proposed to allow reusing CDSS by encapsulating them in a Web service. However, strong barriers in sharing CDS functionality are still present as a consequence of lack of expressiveness of services' interfaces. Linked Services are the evolution of the Semantic Web Services paradigm to process Linked Data. They aim to provide semantic descriptions over SOA implementations to overcome the limitations derived from the syntactic nature of Web services technologies. To facilitate the publication, discovery and interoperability of CDS services by evolving them into Linked Services that expose their interfaces as Linked Data. We developed methods and models to enhance CDS SOA as Linked Services that define a rich semantic layer based on machine interpretable ontologies that powers their interoperability and reuse. These ontologies provided unambiguous descriptions of CDS services properties to expose them to the Web of Data. We developed models compliant with Linked Data principles to create a semantic representation of the components that compose CDS services. To evaluate our approach we implemented a set of CDS Linked Services using a Web service definition ontology. The definitions of Web services were linked to the models developed in order to attach unambiguous semantics to the service components. All models were bound to SNOMED-CT and public ontologies (e.g. Dublin Core) in order to count on a lingua franca to explore them. Discovery and analysis of CDS services based on machine interpretable models was performed reasoning over the ontologies built. Linked Services can be used effectively to expose CDS services to the Web of Data by building on current CDS standards. This allows building shared Linked Knowledge Bases to provide machine interpretable semantics to the CDS service description alleviating the challenges on interoperability and reuse. Linked Services allow for building 'digital libraries' of distributed CDS services that can be hosted and maintained in different organizations. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. On2broker: Semantic-Based Access to Information Sources at the WWW.

    ERIC Educational Resources Information Center

    Fensel, Dieter; Angele, Jurgen; Decker, Stefan; Erdmann, Michael; Schnurr, Hans-Peter; Staab, Steffen; Studer, Rudi; Witt, Andreas

    On2broker provides brokering services to improve access to heterogeneous, distributed, and semistructured information sources as they are presented in the World Wide Web. It relies on the use of ontologies to make explicit the semantics of Web pages. This paper discusses the general architecture and main components (i.e., query engine, information…

  7. Case-Based Learning, Pedagogical Innovation, and Semantic Web Technologies

    ERIC Educational Resources Information Center

    Martinez-Garcia, A.; Morris, S.; Tscholl, M.; Tracy, F.; Carmichael, P.

    2012-01-01

    This paper explores the potential of Semantic Web technologies to support teaching and learning in a variety of higher education settings in which some form of case-based learning is the pedagogy of choice. It draws on the empirical work of a major three year research and development project in the United Kingdom: "Ensemble: Semantic…

  8. What Can the Semantic Web Do for Adaptive Educational Hypermedia?

    ERIC Educational Resources Information Center

    Cristea, Alexandra I.

    2004-01-01

    Semantic Web and Adaptive Hypermedia come from different backgrounds, but it turns out that actually, they can benefit from each other, and that their confluence can lead to synergistic effects. This encounter can influence several fields, among which an important one is Education. This paper presents an analysis of this encounter, first from a…

  9. Applying Semantic Web Services and Wireless Sensor Networks for System Integration

    NASA Astrophysics Data System (ADS)

    Berkenbrock, Gian Ricardo; Hirata, Celso Massaki; de Oliveira Júnior, Frederico Guilherme Álvares; de Oliveira, José Maria Parente

    In environments like factories, buildings, and homes automation services tend to often change during their lifetime. Changes are concerned to business rules, process optimization, cost reduction, and so on. It is important to provide a smooth and straightforward way to deal with these changes so that could be handled in a faster and low cost manner. Some prominent solutions use the flexibility of Wireless Sensor Networks and the meaningful description of Semantic Web Services to provide service integration. In this work, we give an overview of current solutions for machinery integration that combine both technologies as well as a discussion about some perspectives and open issues when applying Wireless Sensor Networks and Semantic Web Services for automation services integration.

  10. Reliability prediction of ontology-based service compositions using Petri net and time series models.

    PubMed

    Li, Jia; Xia, Yunni; Luo, Xin

    2014-01-01

    OWL-S, one of the most important Semantic Web service ontologies proposed to date, provides a core ontological framework and guidelines for describing the properties and capabilities of their web services in an unambiguous, computer interpretable form. Predicting the reliability of composite service processes specified in OWL-S allows service users to decide whether the process meets the quantitative quality requirement. In this study, we consider the runtime quality of services to be fluctuating and introduce a dynamic framework to predict the runtime reliability of services specified in OWL-S, employing the Non-Markovian stochastic Petri net (NMSPN) and the time series model. The framework includes the following steps: obtaining the historical response times series of individual service components; fitting these series with a autoregressive-moving-average-model (ARMA for short) and predicting the future firing rates of service components; mapping the OWL-S process into a NMSPN model; employing the predicted firing rates as the model input of NMSPN and calculating the normal completion probability as the reliability estimate. In the case study, a comparison between the static model and our approach based on experimental data is presented and it is shown that our approach achieves higher prediction accuracy.

  11. An Automated Data Fusion Process for an Air Defense Scenario

    DTIC Science & Technology

    2011-06-01

    and Applications, Proceedings of the IEEE, 77(4)541-580, April of 1989. [4] – Antoniou, G. e Harmelen, F.V. A Semantic Web Primer-Second Edition. The...Instituto Tecnológico de Aeronáutica, São Jose dos Campos, SP, Brazil, 2004. [10] – “What is a Web Service?”, at January, 20, 2011, from http://www.w3...org/TR/ws- arch/#introduction [11] – Yasmine Charif, “An Overview of Semantic Web Services Composition Approaches”, Eletronic Notes in Theorical

  12. Building a Semantic Framework for eScience

    NASA Astrophysics Data System (ADS)

    Movva, S.; Ramachandran, R.; Maskey, M.; Li, X.

    2009-12-01

    The e-Science vision focuses on the use of advanced computing technologies to support scientists. Recent research efforts in this area have focused primarily on “enabling” use of infrastructure resources for both data and computational access especially in Geosciences. One of the existing gaps in the existing e-Science efforts has been the failure to incorporate stable semantic technologies within the design process itself. In this presentation, we describe our effort in designing a framework for e-Science built using Service Oriented Architecture. Our framework provides users capabilities to create science workflows and mine distributed data. Our e-Science framework is being designed around a mass market tool to promote reusability across many projects. Semantics is an integral part of this framework and our design goal is to leverage the latest stable semantic technologies. The use of these stable semantic technologies will provide the users of our framework the useful features such as: allow search engines to find their content with RDFa tags; create RDF triple data store for their content; create RDF end points to share with others; and semantically mash their content with other online content available as RDF end point.

  13. GeoSearch: A lightweight broking middleware for geospatial resources discovery

    NASA Astrophysics Data System (ADS)

    Gui, Z.; Yang, C.; Liu, K.; Xia, J.

    2012-12-01

    With petabytes of geodata, thousands of geospatial web services available over the Internet, it is critical to support geoscience research and applications by finding the best-fit geospatial resources from the massive and heterogeneous resources. Past decades' developments witnessed the operation of many service components to facilitate geospatial resource management and discovery. However, efficient and accurate geospatial resource discovery is still a big challenge due to the following reasons: 1)The entry barriers (also called "learning curves") hinder the usability of discovery services to end users. Different portals and catalogues always adopt various access protocols, metadata formats and GUI styles to organize, present and publish metadata. It is hard for end users to learn all these technical details and differences. 2)The cost for federating heterogeneous services is high. To provide sufficient resources and facilitate data discovery, many registries adopt periodic harvesting mechanism to retrieve metadata from other federated catalogues. These time-consuming processes lead to network and storage burdens, data redundancy, and also the overhead of maintaining data consistency. 3)The heterogeneous semantics issues in data discovery. Since the keyword matching is still the primary search method in many operational discovery services, the search accuracy (precision and recall) is hard to guarantee. Semantic technologies (such as semantic reasoning and similarity evaluation) offer a solution to solve these issues. However, integrating semantic technologies with existing service is challenging due to the expandability limitations on the service frameworks and metadata templates. 4)The capabilities to help users make final selection are inadequate. Most of the existing search portals lack intuitive and diverse information visualization methods and functions (sort, filter) to present, explore and analyze search results. Furthermore, the presentation of the value-added additional information (such as, service quality and user feedback), which conveys important decision supporting information, is missing. To address these issues, we prototyped a distributed search engine, GeoSearch, based on brokering middleware framework to search, integrate and visualize heterogeneous geospatial resources. Specifically, 1) A lightweight discover broker is developed to conduct distributed search. The broker retrieves metadata records for geospatial resources and additional information from dispersed services (portals and catalogues) and other systems on the fly. 2) A quality monitoring and evaluation broker (i.e., QoS Checker) is developed and integrated to provide quality information for geospatial web services. 3) The semantic assisted search and relevance evaluation functions are implemented by loosely interoperating with ESIP Testbed component. 4) Sophisticated information and data visualization functionalities and tools are assembled to improve user experience and assist resource selection.

  14. Client-Side Event Processing for Personalized Web Advertisement

    NASA Astrophysics Data System (ADS)

    Stühmer, Roland; Anicic, Darko; Sen, Sinan; Ma, Jun; Schmidt, Kay-Uwe; Stojanovic, Nenad

    The market for Web advertisement is continuously growing and correspondingly, the number of approaches that can be used for realizing Web advertisement are increasing. However, current approaches fail to generate very personalized ads for a current Web user that is visiting a particular Web content. They mainly try to develop a profile based on the content of that Web page or on a long-term user's profile, by not taking into account current user's preferences. We argue that by discovering a user's interest from his current Web behavior we can support the process of ad generation, especially the relevance of an ad for the user. In this paper we present the conceptual architecture and implementation of such an approach. The approach is based on the extraction of simple events from the user interaction with a Web page and their combination in order to discover the user's interests. We use semantic technologies in order to build such an interpretation out of many simple events. We present results from preliminary evaluation studies. The main contribution of the paper is a very efficient, semantic-based client-side architecture for generating and combining Web events. The architecture ensures the agility of the whole advertisement system, by complexly processing events on the client. In general, this work contributes to the realization of new, event-driven applications for the (Semantic) Web.

  15. Toxicology ontology perspectives.

    PubMed

    Hardy, Barry; Apic, Gordana; Carthew, Philip; Clark, Dominic; Cook, David; Dix, Ian; Escher, Sylvia; Hastings, Janna; Heard, David J; Jeliazkova, Nina; Judson, Philip; Matis-Mitchell, Sherri; Mitic, Dragana; Myatt, Glenn; Shah, Imran; Spjuth, Ola; Tcheremenskaia, Olga; Toldo, Luca; Watson, David; White, Andrew; Yang, Chihae

    2012-01-01

    The field of predictive toxicology requires the development of open, public, computable, standardized toxicology vocabularies and ontologies to support the applications required by in silico, in vitro, and in vivo toxicology methods and related analysis and reporting activities. In this article we review ontology developments based on a set of perspectives showing how ontologies are being used in predictive toxicology initiatives and applications. Perspectives on resources and initiatives reviewed include OpenTox, eTOX, Pistoia Alliance, ToxWiz, Virtual Liver, EU-ADR, BEL, ToxML, and Bioclipse. We also review existing ontology developments in neighboring fields that can contribute to establishing an ontological framework for predictive toxicology. A significant set of resources is already available to provide a foundation for an ontological framework for 21st century mechanistic-based toxicology research. Ontologies such as ToxWiz provide a basis for application to toxicology investigations, whereas other ontologies under development in the biological, chemical, and biomedical communities could be incorporated in an extended future framework. OpenTox has provided a semantic web framework for the implementation of such ontologies into software applications and linked data resources. Bioclipse developers have shown the benefit of interoperability obtained through ontology by being able to link their workbench application with remote OpenTox web services. Although these developments are promising, an increased international coordination of efforts is greatly needed to develop a more unified, standardized, and open toxicology ontology framework.

  16. Modeling and formal representation of geospatial knowledge for the Geospatial Semantic Web

    NASA Astrophysics Data System (ADS)

    Huang, Hong; Gong, Jianya

    2008-12-01

    GML can only achieve geospatial interoperation at syntactic level. However, it is necessary to resolve difference of spatial cognition in the first place in most occasions, so ontology was introduced to describe geospatial information and services. But it is obviously difficult and improper to let users to find, match and compose services, especially in some occasions there are complicated business logics. Currently, with the gradual introduction of Semantic Web technology (e.g., OWL, SWRL), the focus of the interoperation of geospatial information has shifted from syntactic level to Semantic and even automatic, intelligent level. In this way, Geospatial Semantic Web (GSM) can be put forward as an augmentation to the Semantic Web that additionally includes geospatial abstractions as well as related reasoning, representation and query mechanisms. To advance the implementation of GSM, we first attempt to construct the mechanism of modeling and formal representation of geospatial knowledge, which are also two mostly foundational phases in knowledge engineering (KE). Our attitude in this paper is quite pragmatical: we argue that geospatial context is a formal model of the discriminate environment characters of geospatial knowledge, and the derivation, understanding and using of geospatial knowledge are located in geospatial context. Therefore, first, we put forward a primitive hierarchy of geospatial knowledge referencing first order logic, formal ontologies, rules and GML. Second, a metamodel of geospatial context is proposed and we use the modeling methods and representation languages of formal ontologies to process geospatial context. Thirdly, we extend Web Process Service (WPS) to be compatible with local DLL for geoprocessing and possess inference capability based on OWL.

  17. Formalization of treatment guidelines using Fuzzy Cognitive Maps and semantic web tools.

    PubMed

    Papageorgiou, Elpiniki I; Roo, Jos De; Huszka, Csaba; Colaert, Dirk

    2012-02-01

    Therapy decision making and support in medicine deals with uncertainty and needs to take into account the patient's clinical parameters, the context of illness and the medical knowledge of the physician and guidelines to recommend a treatment therapy. This research study is focused on the formalization of medical knowledge using a cognitive process, called Fuzzy Cognitive Maps (FCMs) and semantic web approach. The FCM technique is capable of dealing with situations including uncertain descriptions using similar procedure such as human reasoning does. Thus, it was selected for the case of modeling and knowledge integration of clinical practice guidelines. The semantic web tools were established to implement the FCM approach. The knowledge base was constructed from the clinical guidelines as the form of if-then fuzzy rules. These fuzzy rules were transferred to FCM modeling technique and, through the semantic web tools, the whole formalization was accomplished. The problem of urinary tract infection (UTI) in adult community was examined for the proposed approach. Forty-seven clinical concepts and eight therapy concepts were identified for the antibiotic treatment therapy problem of UTIs. A preliminary pilot-evaluation study with 55 patient cases showed interesting findings; 91% of the antibiotic treatments proposed by the implemented approach were in fully agreement with the guidelines and physicians' opinions. The results have shown that the suggested approach formalizes medical knowledge efficiently and gives a front-end decision on antibiotics' suggestion for cystitis. Concluding, modeling medical knowledge/therapeutic guidelines using cognitive methods and web semantic tools is both reliable and useful. Copyright © 2011 Elsevier Inc. All rights reserved.

  18. Porting Social Media Contributions with SIOC

    NASA Astrophysics Data System (ADS)

    Bojars, Uldis; Breslin, John G.; Decker, Stefan

    Social media sites, including social networking sites, have captured the attention of millions of users as well as billions of dollars in investment and acquisition. To better enable a user's access to multiple sites, portability between social media sites is required in terms of both (1) the personal profiles and friend networks and (2) a user's content objects expressed on each site. This requires representation mechanisms to interconnect both people and objects on the Web in an interoperable, extensible way. The Semantic Web provides the required representation mechanisms for portability between social media sites: it links people and objects to record and represent the heterogeneous ties that bind each to the other. The FOAF (Friend-of-a-Friend) initiative provides a solution to the first requirement, and this paper discusses how the SIOC (Semantically-Interlinked Online Communities) project can address the latter. By using agreed-upon Semantic Web formats like FOAF and SIOC to describe people, content objects, and the connections that bind them together, social media sites can interoperate and provide portable data by appealing to some common semantics. In this paper, we will discuss the application of Semantic Web technology to enhance current social media sites with semantics and to address issues with portability between social media sites. It has been shown that social media sites can serve as rich data sources for SIOC-based applications such as the SIOC Browser, but in the other direction, we will now show how SIOC data can be used to represent and port the diverse social media contributions (SMCs) made by users on heterogeneous sites.

  19. Exploiting semantic linkages among multiple sources for semantic information retrieval

    NASA Astrophysics Data System (ADS)

    Li, JianQiang; Yang, Ji-Jiang; Liu, Chunchen; Zhao, Yu; Liu, Bo; Shi, Yuliang

    2014-07-01

    The vision of the Semantic Web is to build a global Web of machine-readable data to be consumed by intelligent applications. As the first step to make this vision come true, the initiative of linked open data has fostered many novel applications aimed at improving data accessibility in the public Web. Comparably, the enterprise environment is so different from the public Web that most potentially usable business information originates in an unstructured form (typically in free text), which poses a challenge for the adoption of semantic technologies in the enterprise environment. Considering that the business information in a company is highly specific and centred around a set of commonly used concepts, this paper describes a pilot study to migrate the concept of linked data into the development of a domain-specific application, i.e. the vehicle repair support system. The set of commonly used concepts, including the part name of a car and the phenomenon term on the car repairing, are employed to build the linkage between data and documents distributed among different sources, leading to the fusion of documents and data across source boundaries. Then, we describe the approaches of semantic information retrieval to consume these linkages for value creation for companies. The experiments on two real-world data sets show that the proposed approaches outperform the best baseline 6.3-10.8% and 6.4-11.1% in terms of top five and top 10 precisions, respectively. We believe that our pilot study can serve as an important reference for the development of similar semantic applications in an enterprise environment.

  20. Enhancing Reading Comprehension and Critical Thinking Skills of First Grade ESOL Students through the Use of Semantic Webbing.

    ERIC Educational Resources Information Center

    Kaufman, Madeline

    In response to low reading scores among first grade students of English as a Second Language (ESL) in one inner-city school, the teaching techniques of semantic webbing and brainstorming were used to improve student reading skills. Subjects were eight first grade ESL students. Pretests were administered to assess student levels of reading…

  1. A Metadata Model for E-Learning Coordination through Semantic Web Languages

    ERIC Educational Resources Information Center

    Elci, Atilla

    2005-01-01

    This paper reports on a study aiming to develop a metadata model for e-learning coordination based on semantic web languages. A survey of e-learning modes are done initially in order to identify content such as phases, activities, data schema, rules and relations, etc. relevant for a coordination model. In this respect, the study looks into the…

  2. Entrez Neuron RDFa: a pragmatic Semantic Web application for data integration in neuroscience research

    PubMed Central

    Samwald, Matthias; Lim, Ernest; Masiar, Peter; Marenco, Luis; Chen, Huajun; Morse, Thomas; Mutalik, Pradeep; Shepherd, Gordon; Miller, Perry; Cheung, Kei-Hoi

    2013-01-01

    The amount of biomedical data available in Semantic Web formats has been rapidly growing in recent years. While these formats are machine-friendly, user-friendly web interfaces allowing easy querying of these data are typically lacking. We present “Entrez Neuron”, a pilot neuron-centric interface that allows for keyword-based queries against a coherent repository of OWL ontologies. These ontologies describe neuronal structures, physiology, mathematical models and microscopy images. The returned query results are organized hierarchically according to brain architecture. Where possible, the application makes use of entities from the Open Biomedical Ontologies (OBO) and the ‘HCLS knowledgebase’ developed by the W3C Interest Group for Health Care and Life Science. It makes use of the emerging RDFa standard to embed ontology fragments and semantic annotations within its HTML-based user interface. The application and underlying ontologies demonstrates how Semantic Web technologies can be used for information integration within a curated information repository and between curated information repositories. It also demonstrates how information integration can be accomplished on the client side, through simple copying and pasting of portions of documents that contain RDFa markup. PMID:19745321

  3. Knowledge represented using RDF semantic network in the concept of semantic web

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lukasova, A., E-mail: alena.lukasova@osu.cz; Vajgl, M., E-mail: marek.vajgl@osu.cz; Zacek, M., E-mail: martin.zacek@osu.cz

    The RDF(S) model has been declared as the basic model to capture knowledge of the semantic web. It provides a common and flexible way to decompose composed knowledge to elementary statements, which can be represented by RDF triples or by RDF graph vectors. From the logical point of view, elements of knowledge can be expressed using at most binary predicates, which can be converted to RDF-triples or graph vectors. However, it is not able to capture implicit knowledge representable by logical formulas. This contribution shows how existing approaches (semantic networks and clausal form logic) can be combined together with RDFmore » to obtain RDF-compatible system with ability to represent implicit knowledge and inference over knowledge base.« less

  4. Pain Research Forum: application of scientific social media frameworks in neuroscience.

    PubMed

    Das, Sudeshna; McCaffrey, Patricia G; Talkington, Megan W T; Andrews, Neil A; Corlosquet, Stéphane; Ivinson, Adrian J; Clark, Tim

    2014-01-01

    Social media has the potential to accelerate the pace of biomedical research through online collaboration, discussions, and faster sharing of information. Focused web-based scientific social collaboratories such as the Alzheimer Research Forum have been successful in engaging scientists in open discussions of the latest research and identifying gaps in knowledge. However, until recently, tools to rapidly create such communities and provide high-bandwidth information exchange between collaboratories in related fields did not exist. We have addressed this need by constructing a reusable framework to build online biomedical communities, based on Drupal, an open-source content management system. The framework incorporates elements of Semantic Web technology combined with social media. Here we present, as an exemplar of a web community built on our framework, the Pain Research Forum (PRF) (http://painresearchforum.org). PRF is a community of chronic pain researchers, established with the goal of fostering collaboration and communication among pain researchers. Launched in 2011, PRF has over 1300 registered members with permission to submit content. It currently hosts over 150 topical news articles on research; more than 30 active or archived forum discussions and journal club features; a webinar series; an editor-curated weekly updated listing of relevant papers; and several other resources for the pain research community. All content is licensed for reuse under a Creative Commons license; the software is freely available. The framework was reused to develop other sites, notably the Multiple Sclerosis Discovery Forum (http://msdiscovery.org) and StemBook (http://stembook.org). Web-based collaboratories are a crucial integrative tool supporting rapid information transmission and translation in several important research areas. In this article, we discuss the success factors, lessons learned, and ongoing challenges in using PRF as a driving force to develop tools for online collaboration in neuroscience. We also indicate ways these tools can be applied to other areas and uses.

  5. Pain Research Forum: application of scientific social media frameworks in neuroscience

    PubMed Central

    Das, Sudeshna; McCaffrey, Patricia G.; Talkington, Megan W. T.; Andrews, Neil A.; Corlosquet, Stéphane; Ivinson, Adrian J.; Clark, Tim

    2014-01-01

    Background: Social media has the potential to accelerate the pace of biomedical research through online collaboration, discussions, and faster sharing of information. Focused web-based scientific social collaboratories such as the Alzheimer Research Forum have been successful in engaging scientists in open discussions of the latest research and identifying gaps in knowledge. However, until recently, tools to rapidly create such communities and provide high-bandwidth information exchange between collaboratories in related fields did not exist. Methods: We have addressed this need by constructing a reusable framework to build online biomedical communities, based on Drupal, an open-source content management system. The framework incorporates elements of Semantic Web technology combined with social media. Here we present, as an exemplar of a web community built on our framework, the Pain Research Forum (PRF) (http://painresearchforum.org). PRF is a community of chronic pain researchers, established with the goal of fostering collaboration and communication among pain researchers. Results: Launched in 2011, PRF has over 1300 registered members with permission to submit content. It currently hosts over 150 topical news articles on research; more than 30 active or archived forum discussions and journal club features; a webinar series; an editor-curated weekly updated listing of relevant papers; and several other resources for the pain research community. All content is licensed for reuse under a Creative Commons license; the software is freely available. The framework was reused to develop other sites, notably the Multiple Sclerosis Discovery Forum (http://msdiscovery.org) and StemBook (http://stembook.org). Discussion: Web-based collaboratories are a crucial integrative tool supporting rapid information transmission and translation in several important research areas. In this article, we discuss the success factors, lessons learned, and ongoing challenges in using PRF as a driving force to develop tools for online collaboration in neuroscience. We also indicate ways these tools can be applied to other areas and uses. PMID:24653693

  6. The Semantic Learning Organization

    ERIC Educational Resources Information Center

    Sicilia, Miguel-Angel; Lytras, Miltiadis D.

    2005-01-01

    Purpose: The aim of this paper is introducing the concept of a "semantic learning organization" (SLO) as an extension of the concept of "learning organization" in the technological domain. Design/methodology/approach: The paper takes existing definitions and conceptualizations of both learning organizations and Semantic Web technology to develop…

  7. Building the Knowledge Base to Support the Automatic Animation Generation of Chinese Traditional Architecture

    NASA Astrophysics Data System (ADS)

    Wei, Gongjin; Bai, Weijing; Yin, Meifang; Zhang, Songmao

    We present a practice of applying the Semantic Web technologies in the domain of Chinese traditional architecture. A knowledge base consisting of one ontology and four rule bases is built to support the automatic generation of animations that demonstrate the construction of various Chinese timber structures based on the user's input. Different Semantic Web formalisms are used, e.g., OWL DL, SWRL and Jess, to capture the domain knowledge, including the wooden components needed for a given building, construction sequence, and the 3D size and position of every piece of wood. Our experience in exploiting the current Semantic Web technologies in real-world application systems indicates their prominent advantages (such as the reasoning facilities and modeling tools) as well as the limitations (such as low efficiency).

  8. Integrating semantic web technologies and geospatial catalog services for geospatial information discovery and processing in cyberinfrastructure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yue, Peng; Gong, Jianya; Di, Liping

    Abstract A geospatial catalogue service provides a network-based meta-information repository and interface for advertising and discovering shared geospatial data and services. Descriptive information (i.e., metadata) for geospatial data and services is structured and organized in catalogue services. The approaches currently available for searching and using that information are often inadequate. Semantic Web technologies show promise for better discovery methods by exploiting the underlying semantics. Such development needs special attention from the Cyberinfrastructure perspective, so that the traditional focus on discovery of and access to geospatial data can be expanded to support the increased demand for processing of geospatial information andmore » discovery of knowledge. Semantic descriptions for geospatial data, services, and geoprocessing service chains are structured, organized, and registered through extending elements in the ebXML Registry Information Model (ebRIM) of a geospatial catalogue service, which follows the interface specifications of the Open Geospatial Consortium (OGC) Catalogue Services for the Web (CSW). The process models for geoprocessing service chains, as a type of geospatial knowledge, are captured, registered, and discoverable. Semantics-enhanced discovery for geospatial data, services/service chains, and process models is described. Semantic search middleware that can support virtual data product materialization is developed for the geospatial catalogue service. The creation of such a semantics-enhanced geospatial catalogue service is important in meeting the demands for geospatial information discovery and analysis in Cyberinfrastructure.« less

  9. Enhancing acronym/abbreviation knowledge bases with semantic information.

    PubMed

    Torii, Manabu; Liu, Hongfang

    2007-10-11

    In the biomedical domain, a terminology knowledge base that associates acronyms/abbreviations (denoted as SFs) with the definitions (denoted as LFs) is highly needed. For the construction such terminology knowledge base, we investigate the feasibility to build a system automatically assigning semantic categories to LFs extracted from text. Given a collection of pairs (SF,LF) derived from text, we i) assess the coverage of LFs and pairs (SF,LF) in the UMLS and justify the need of a semantic category assignment system; and ii) automatically derive name phrases annotated with semantic category and construct a system using machine learning. Utilizing ADAM, an existing collection of (SF,LF) pairs extracted from MEDLINE, our system achieved an f-measure of 87% when assigning eight UMLS-based semantic groups to LFs. The system has been incorporated into a web interface which integrates SF knowledge from multiple SF knowledge bases. Web site: http://gauss.dbb.georgetown.edu/liblab/SFThesurus.

  10. Semantic Analysis of Email Using Domain Ontologies and WordNet

    NASA Technical Reports Server (NTRS)

    Berrios, Daniel C.; Keller, Richard M.

    2005-01-01

    The problem of capturing and accessing knowledge in paper form has been supplanted by a problem of providing structure to vast amounts of electronic information. Systems that can construct semantic links for natural language documents like email messages automatically will be a crucial element of semantic email tools. We have designed an information extraction process that can leverage the knowledge already contained in an existing semantic web, recognizing references in email to existing nodes in a network of ontology instances by using linguistic knowledge and knowledge of the structure of the semantic web. We developed a heuristic score that uses several forms of evidence to detect references in email to existing nodes in the Semanticorganizer repository's network. While these scores cannot directly support automated probabilistic inference, they can be used to rank nodes by relevance and link those deemed most relevant to email messages.

  11. Knowledge-Based Object Detection in Laser Scanning Point Clouds

    NASA Astrophysics Data System (ADS)

    Boochs, F.; Karmacharya, A.; Marbs, A.

    2012-07-01

    Object identification and object processing in 3D point clouds have always posed challenges in terms of effectiveness and efficiency. In practice, this process is highly dependent on human interpretation of the scene represented by the point cloud data, as well as the set of modeling tools available for use. Such modeling algorithms are data-driven and concentrate on specific features of the objects, being accessible to numerical models. We present an approach that brings the human expert knowledge about the scene, the objects inside, and their representation by the data and the behavior of algorithms to the machine. This "understanding" enables the machine to assist human interpretation of the scene inside the point cloud. Furthermore, it allows the machine to understand possibilities and limitations of algorithms and to take this into account within the processing chain. This not only assists the researchers in defining optimal processing steps, but also provides suggestions when certain changes or new details emerge from the point cloud. Our approach benefits from the advancement in knowledge technologies within the Semantic Web framework. This advancement has provided a strong base for applications based on knowledge management. In the article we will present and describe the knowledge technologies used for our approach such as Web Ontology Language (OWL), used for formulating the knowledge base and the Semantic Web Rule Language (SWRL) with 3D processing and topologic built-ins, aiming to combine geometrical analysis of 3D point clouds, and specialists' knowledge of the scene and algorithmic processing.

  12. Next Generation Models for Storage and Representation of Microbial Biological Annotation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Quest, Daniel J; Land, Miriam L; Brettin, Thomas S

    2010-01-01

    Background Traditional genome annotation systems were developed in a very different computing era, one where the World Wide Web was just emerging. Consequently, these systems are built as centralized black boxes focused on generating high quality annotation submissions to GenBank/EMBL supported by expert manual curation. The exponential growth of sequence data drives a growing need for increasingly higher quality and automatically generated annotation. Typical annotation pipelines utilize traditional database technologies, clustered computing resources, Perl, C, and UNIX file systems to process raw sequence data, identify genes, and predict and categorize gene function. These technologies tightly couple the annotation software systemmore » to hardware and third party software (e.g. relational database systems and schemas). This makes annotation systems hard to reproduce, inflexible to modification over time, difficult to assess, difficult to partition across multiple geographic sites, and difficult to understand for those who are not domain experts. These systems are not readily open to scrutiny and therefore not scientifically tractable. The advent of Semantic Web standards such as Resource Description Framework (RDF) and OWL Web Ontology Language (OWL) enables us to construct systems that address these challenges in a new comprehensive way. Results Here, we develop a framework for linking traditional data to OWL-based ontologies in genome annotation. We show how data standards can decouple hardware and third party software tools from annotation pipelines, thereby making annotation pipelines easier to reproduce and assess. An illustrative example shows how TURTLE (Terse RDF Triple Language) can be used as a human readable, but also semantically-aware, equivalent to GenBank/EMBL files. Conclusions The power of this approach lies in its ability to assemble annotation data from multiple databases across multiple locations into a representation that is understandable to researchers. In this way, all researchers, experimental and computational, will more easily understand the informatics processes constructing genome annotation and ultimately be able to help improve the systems that produce them.« less

  13. A User-Centric Knowledge Creation Model in a Web of Object-Enabled Internet of Things Environment

    PubMed Central

    Kibria, Muhammad Golam; Fattah, Sheik Mohammad Mostakim; Jeong, Kwanghyeon; Chong, Ilyoung; Jeong, Youn-Kwae

    2015-01-01

    User-centric service features in a Web of Object-enabled Internet of Things environment can be provided by using a semantic ontology that classifies and integrates objects on the World Wide Web as well as shares and merges context-aware information and accumulated knowledge. The semantic ontology is applied on a Web of Object platform to virtualize the real world physical devices and information to form virtual objects that represent the features and capabilities of devices in the virtual world. Detailed information and functionalities of multiple virtual objects are combined with service rules to form composite virtual objects that offer context-aware knowledge-based services, where context awareness plays an important role in enabling automatic modification of the system to reconfigure the services based on the context. Converting the raw data into meaningful information and connecting the information to form the knowledge and storing and reusing the objects in the knowledge base can both be expressed by semantic ontology. In this paper, a knowledge creation model that synchronizes a service logistic model and a virtual world knowledge model on a Web of Object platform has been proposed. To realize the context-aware knowledge-based service creation and execution, a conceptual semantic ontology model has been developed and a prototype has been implemented for a use case scenario of emergency service. PMID:26393609

  14. A User-Centric Knowledge Creation Model in a Web of Object-Enabled Internet of Things Environment.

    PubMed

    Kibria, Muhammad Golam; Fattah, Sheik Mohammad Mostakim; Jeong, Kwanghyeon; Chong, Ilyoung; Jeong, Youn-Kwae

    2015-09-18

    User-centric service features in a Web of Object-enabled Internet of Things environment can be provided by using a semantic ontology that classifies and integrates objects on the World Wide Web as well as shares and merges context-aware information and accumulated knowledge. The semantic ontology is applied on a Web of Object platform to virtualize the real world physical devices and information to form virtual objects that represent the features and capabilities of devices in the virtual world. Detailed information and functionalities of multiple virtual objects are combined with service rules to form composite virtual objects that offer context-aware knowledge-based services, where context awareness plays an important role in enabling automatic modification of the system to reconfigure the services based on the context. Converting the raw data into meaningful information and connecting the information to form the knowledge and storing and reusing the objects in the knowledge base can both be expressed by semantic ontology. In this paper, a knowledge creation model that synchronizes a service logistic model and a virtual world knowledge model on a Web of Object platform has been proposed. To realize the context-aware knowledge-based service creation and execution, a conceptual semantic ontology model has been developed and a prototype has been implemented for a use case scenario of emergency service.

  15. Annotating Atomic Components of Papers in Digital Libraries: The Semantic and Social Web Heading towards a Living Document Supporting eSciences

    NASA Astrophysics Data System (ADS)

    García Castro, Alexander; García-Castro, Leyla Jael; Labarga, Alberto; Giraldo, Olga; Montaña, César; O'Neil, Kieran; Bateman, John A.

    Rather than a document that is being constantly re-written as in the wiki approach, the Living Document (LD) is one that acts as a document router, operating by means of structured and organized social tagging and existing ontologies. It offers an environment where users can manage papers and related information, share their knowledge with their peers and discover hidden associations among the shared knowledge. The LD builds upon both the Semantic Web, which values the integration of well-structured data, and the Social Web, which aims to facilitate interaction amongst people by means of user-generated content. In this vein, the LD is similar to a social networking system, with users as central nodes in the network, with the difference that interaction is focused on papers rather than people. Papers, with their ability to represent research interests, expertise, affiliations, and links to web based tools and databanks, represent a central axis for interaction amongst users. To begin to show the potential of this vision, we have implemented a novel web prototype that enables researchers to accomplish three activities central to the Semantic Web vision: organizing, sharing and discovering. Availability: http://www.scientifik.info/

  16. Approaching semantic interoperability in Health Level Seven

    PubMed Central

    Alschuler, Liora

    2010-01-01

    ‘Semantic Interoperability’ is a driving objective behind many of Health Level Seven's standards. The objective in this paper is to take a step back, and consider what semantic interoperability means, assess whether or not it has been achieved, and, if not, determine what concrete next steps can be taken to get closer. A framework for measuring semantic interoperability is proposed, using a technique called the ‘Single Logical Information Model’ framework, which relies on an operational definition of semantic interoperability and an understanding that interoperability improves incrementally. Whether semantic interoperability tomorrow will enable one computer to talk to another, much as one person can talk to another person, is a matter for speculation. It is assumed, however, that what gets measured gets improved, and in that spirit this framework is offered as a means to improvement. PMID:21106995

  17. A development framework for semantically interoperable health information systems.

    PubMed

    Lopez, Diego M; Blobel, Bernd G M E

    2009-02-01

    Semantic interoperability is a basic challenge to be met for new generations of distributed, communicating and co-operating health information systems (HIS) enabling shared care and e-Health. Analysis, design, implementation and maintenance of such systems and intrinsic architectures have to follow a unified development methodology. The Generic Component Model (GCM) is used as a framework for modeling any system to evaluate and harmonize state of the art architecture development approaches and standards for health information systems as well as to derive a coherent architecture development framework for sustainable, semantically interoperable HIS and their components. The proposed methodology is based on the Rational Unified Process (RUP), taking advantage of its flexibility to be configured for integrating other architectural approaches such as Service-Oriented Architecture (SOA), Model-Driven Architecture (MDA), ISO 10746, and HL7 Development Framework (HDF). Existing architectural approaches have been analyzed, compared and finally harmonized towards an architecture development framework for advanced health information systems. Starting with the requirements for semantic interoperability derived from paradigm changes for health information systems, and supported in formal software process engineering methods, an appropriate development framework for semantically interoperable HIS has been provided. The usability of the framework has been exemplified in a public health scenario.

  18. Managing biomedical image metadata for search and retrieval of similar images.

    PubMed

    Korenblum, Daniel; Rubin, Daniel; Napel, Sandy; Rodriguez, Cesar; Beaulieu, Chris

    2011-08-01

    Radiology images are generally disconnected from the metadata describing their contents, such as imaging observations ("semantic" metadata), which are usually described in text reports that are not directly linked to the images. We developed a system, the Biomedical Image Metadata Manager (BIMM) to (1) address the problem of managing biomedical image metadata and (2) facilitate the retrieval of similar images using semantic feature metadata. Our approach allows radiologists, researchers, and students to take advantage of the vast and growing repositories of medical image data by explicitly linking images to their associated metadata in a relational database that is globally accessible through a Web application. BIMM receives input in the form of standard-based metadata files using Web service and parses and stores the metadata in a relational database allowing efficient data query and maintenance capabilities. Upon querying BIMM for images, 2D regions of interest (ROIs) stored as metadata are automatically rendered onto preview images included in search results. The system's "match observations" function retrieves images with similar ROIs based on specific semantic features describing imaging observation characteristics (IOCs). We demonstrate that the system, using IOCs alone, can accurately retrieve images with diagnoses matching the query images, and we evaluate its performance on a set of annotated liver lesion images. BIMM has several potential applications, e.g., computer-aided detection and diagnosis, content-based image retrieval, automating medical analysis protocols, and gathering population statistics like disease prevalences. The system provides a framework for decision support systems, potentially improving their diagnostic accuracy and selection of appropriate therapies.

  19. Interleaving Semantic Web Reasoning and Service Discovery to Enforce Context-Sensitive Security and Privacy Policies

    DTIC Science & Technology

    2005-07-01

    policies in pervasive computing environments. In this context, the owner of information sources (e.g. user, sensor, application, or organization...work in decentralized trust management and semantic web technologies . Section 3 introduces an Information Disclosure Agent architecture for...Norman Sadeh July 2005 CMU-ISRI-05-113 School of Computer Science, Carnegie Mellon University 5000 Forbes Avenue, Pittsburgh, PA, 15213

  20. The New Challenges for E-learning: The Educational Semantic Web

    ERIC Educational Resources Information Center

    Aroyo, Lora; Dicheva, Darina

    2004-01-01

    The big question for many researchers in the area of educational systems now is what is the next step in the evolution of e-learning? Are we finally moving from a scattered intelligence to a coherent space of collaborative intelligence? How close we are to the vision of the Educational Semantic Web and what do we need to do in order to realize it?…

  1. Effects of Semantic Web Based Learning on Pre-Service Teachers' ICT Learning Achievement and Satisfaction

    ERIC Educational Resources Information Center

    Karalar, Halit; Korucu, Agah Tugrul

    2016-01-01

    Although the Semantic Web offers many opportunities for learners, effects of it in the classroom is not well known. Therefore, in this study explanations have been stated as how the learning objects defined by means of using the terminology in a developed ontology and kept in objects repository should be presented to learners with the aim of…

  2. Semantic Document Model to Enhance Data and Knowledge Interoperability

    NASA Astrophysics Data System (ADS)

    Nešić, Saša

    To enable document data and knowledge to be efficiently shared and reused across application, enterprise, and community boundaries, desktop documents should be completely open and queryable resources, whose data and knowledge are represented in a form understandable to both humans and machines. At the same time, these are the requirements that desktop documents need to satisfy in order to contribute to the visions of the Semantic Web. With the aim of achieving this goal, we have developed the Semantic Document Model (SDM), which turns desktop documents into Semantic Documents as uniquely identified and semantically annotated composite resources, that can be instantiated into human-readable (HR) and machine-processable (MP) forms. In this paper, we present the SDM along with an RDF and ontology-based solution for the MP document instance. Moreover, on top of the proposed model, we have built the Semantic Document Management System (SDMS), which provides a set of services that exploit the model. As an application example that takes advantage of SDMS services, we have extended MS Office with a set of tools that enables users to transform MS Office documents (e.g., MS Word and MS PowerPoint) into Semantic Documents, and to search local and distant semantic document repositories for document content units (CUs) over Semantic Web protocols.

  3. Can social semantic web techniques foster collaborative curriculum mapping in medicine?

    PubMed

    Spreckelsen, Cord; Finsterer, Sonja; Cremer, Jan; Schenkat, Hennig

    2013-08-15

    Curriculum mapping, which is aimed at the systematic realignment of the planned, taught, and learned curriculum, is considered a challenging and ongoing effort in medical education. Second-generation curriculum managing systems foster knowledge management processes including curriculum mapping in order to give comprehensive support to learners, teachers, and administrators. The large quantity of custom-built software in this field indicates a shortcoming of available IT tools and standards. The project reported here aims at the systematic adoption of techniques and standards of the Social Semantic Web to implement collaborative curriculum mapping for a complete medical model curriculum. A semantic MediaWiki (SMW)-based Web application has been introduced as a platform for the elicitation and revision process of the Aachen Catalogue of Learning Objectives (ACLO). The semantic wiki uses a domain model of the curricular context and offers structured (form-based) data entry, multiple views, structured querying, semantic indexing, and commenting for learning objectives ("LOs"). Semantic indexing of learning objectives relies on both a controlled vocabulary of international medical classifications (ICD, MeSH) and a folksonomy maintained by the users. An additional module supporting the global checking of consistency complements the semantic wiki. Statements of the Object Constraint Language define the consistency criteria. We evaluated the application by a scenario-based formative usability study, where the participants solved tasks in the (fictional) context of 7 typical situations and answered a questionnaire containing Likert-scaled items and free-text questions. At present, ACLO contains roughly 5350 operational (ie, specific and measurable) objectives acquired during the last 25 months. The wiki-based user interface uses 13 online forms for data entry and 4 online forms for flexible searches of LOs, and all the forms are accessible by standard Web browsers. The formative usability study yielded positive results (median rating of 2 ("good") in all 7 general usability items) and produced valuable qualitative feedback, especially concerning navigation and comprehensibility. Although not asked to, the participants (n=5) detected critical aspects of the curriculum (similar learning objectives addressed repeatedly and missing objectives), thus proving the system's ability to support curriculum revision. The SMW-based approach enabled an agile implementation of computer-supported knowledge management. The approach, based on standard Social Semantic Web formats and technology, represents a feasible and effectively applicable compromise between answering to the individual requirements of curriculum management at a particular medical school and using proprietary systems.

  4. Mashup of Geo and Space Science Data Provided via Relational Databases in the Semantic Web

    NASA Astrophysics Data System (ADS)

    Ritschel, B.; Seelus, C.; Neher, G.; Iyemori, T.; Koyama, Y.; Yatagai, A. I.; Murayama, Y.; King, T. A.; Hughes, J. S.; Fung, S. F.; Galkin, I. A.; Hapgood, M. A.; Belehaki, A.

    2014-12-01

    The use of RDBMS for the storage and management of geo and space science data and/or metadata is very common. Although the information stored in tables is based on a data model and therefore well organized and structured, a direct mashup with RDF based data stored in triple stores is not possible. One solution of the problem consists in the transformation of the whole content into RDF structures and storage in triple stores. Another interesting way is the use of a specific system/service, such as e.g. D2RQ, for the access to relational database content as virtual, read only RDF graphs. The Semantic Web based -proof of concept- GFZ ISDC uses the triple store Virtuoso for the storage of general context information/metadata to geo and space science satellite and ground station data. There is information about projects, platforms, instruments, persons, product types, etc. available but no detailed metadata about the data granuals itself. Such important information, as e.g. start or end time or the detailed spatial coverage of a single measurement is stored in RDBMS tables of the ISDC catalog system only. In order to provide a seamless access to all available information about the granuals/data products a mashup of the different data resources (triple store and RDBMS) is necessary. This paper describes the use of D2RQ for a Semantic Web/SPARQL based mashup of relational databases used for ISDC data server but also for the access to IUGONET and/or ESPAS and further geo and space science data resources. RDBMS Relational Database Management System RDF Resource Description Framework SPARQL SPARQL Protocol And RDF Query Language D2RQ Accessing Relational Databases as Virtual RDF Graphs GFZ ISDC German Research Centre for Geosciences Information System and Data Center IUGONET Inter-university Upper Atmosphere Global Observation Network (Japanese project) ESPAS Near earth space data infrastructure for e-science (European Union funded project)

  5. Semantic-Aware Components and Services of ActiveMath

    ERIC Educational Resources Information Center

    Melis, Erica; Goguadze, Giorgi; Homik, Martin; Libbrecht, Paul; Ullrich, Carsten; Winterstein, Stefan

    2006-01-01

    ActiveMath is a complex web-based adaptive learning environment with a number of components and interactive learning tools. The basis for handling semantics of learning content is provided by its semantic (mathematics) content markup, which is additionally annotated with educational metadata. Several components, tools and external services can…

  6. Web information retrieval based on ontology

    NASA Astrophysics Data System (ADS)

    Zhang, Jian

    2013-03-01

    The purpose of the Information Retrieval (IR) is to find a set of documents that are relevant for a specific information need of a user. Traditional Information Retrieval model commonly used in commercial search engine is based on keyword indexing system and Boolean logic queries. One big drawback of traditional information retrieval is that they typically retrieve information without an explicitly defined domain of interest to the users so that a lot of no relevance information returns to users, which burden the user to pick up useful answer from these no relevance results. In order to tackle this issue, many semantic web information retrieval models have been proposed recently. The main advantage of Semantic Web is to enhance search mechanisms with the use of Ontology's mechanisms. In this paper, we present our approach to personalize web search engine based on ontology. In addition, key techniques are also discussed in our paper. Compared to previous research, our works concentrate on the semantic similarity and the whole process including query submission and information annotation.

  7. Problems of teaching students to use the featured technologies in the area of semantic web

    NASA Astrophysics Data System (ADS)

    Klimov, V. V.; Chernyshov, A. A.; Balandina, A. I.; Kostkina, A. D.

    2017-01-01

    The following paper contains the description of up-to-date technologies in the area of web-services development, service-oriented architecture and the Semantic Web. The paper contains the analysis of the most popular and widespread technologies and methods in the semantic web area which are used in the developed educational course. In the paper, we also describe the problem of teaching students to use these technologies and specify conditions for the creation of the learning and development course. We also describe the main exercise for personal work and skills, which all the students learning this course have to gain. Moreover, in the paper we specify the problem with software which students are going to use while learning this course. In order to solve this problem, we introduce the developing system which will be used to support the laboratory works. For this moment this system supports only the fourth work execution, but our following plans contain the expansion of the system in order to support the leftover works.

  8. Towards a semantic medical Web: HealthCyberMap's tool for building an RDF metadata base of health information resources based on the Qualified Dublin Core Metadata Set.

    PubMed

    Boulos, Maged N; Roudsari, Abdul V; Carson, Ewart R

    2002-07-01

    HealthCyberMap (http://healthcybermap.semanticweb.org/) aims at mapping Internet health information resources in novel ways for enhanced retrieval and navigation. This is achieved by collecting appropriate resource metadata in an unambiguous form that preserves semantics. We modelled a qualified Dublin Core (DC) metadata set ontology with extra elements for resource quality and geographical provenance in Prot g -2000. A metadata collection form helps acquiring resource instance data within Prot g . The DC subject field is populated with UMLS terms directly imported from UMLS Knowledge Source Server using UMLS tab, a Prot g -2000 plug-in. The project is saved in RDFS/RDF. The ontology and associated form serve as a free tool for building and maintaining an RDF medical resource metadata base. The UMLS tab enables browsing and searching for concepts that best describe a resource, and importing them to DC subject fields. The resultant metadata base can be used with a search and inference engine, and have textual and/or visual navigation interface(s) applied to it, to ultimately build a medical Semantic Web portal. Different ways of exploiting Prot g -2000 RDF output are discussed. By making the context and semantics of resources, not merely their raw text and formatting, amenable to computer 'understanding,' we can build a Semantic Web that is more useful to humans than the current Web. This requires proper use of metadata and ontologies. Clinical codes can reliably describe the subjects of medical resources, establish the semantic relationships (as defined by underlying coding scheme) between related resources, and automate their topical categorisation.

  9. Learning the Language of Healthcare Enabling Semantic Web Technology in CHCS

    DTIC Science & Technology

    2013-09-01

    tuples”, (subject, predicate, object), to relate data and achieve semantic interoperability . Other similar technologies exist, but their... Semantic Healthcare repository [5]. Ultimately, both of our data approaches were successful. However, our current test system is based on the CPRS demo...to extract system dependencies and workflows; to extract semantically related patient data ; and to browse patient- centric views into the system . We

  10. Sig2BioPAX: Java tool for converting flat files to BioPAX Level 3 format.

    PubMed

    Webb, Ryan L; Ma'ayan, Avi

    2011-03-21

    The World Wide Web plays a critical role in enabling molecular, cell, systems and computational biologists to exchange, search, visualize, integrate, and analyze experimental data. Such efforts can be further enhanced through the development of semantic web concepts. The semantic web idea is to enable machines to understand data through the development of protocol free data exchange formats such as Resource Description Framework (RDF) and the Web Ontology Language (OWL). These standards provide formal descriptors of objects, object properties and their relationships within a specific knowledge domain. However, the overhead of converting datasets typically stored in data tables such as Excel, text or PDF into RDF or OWL formats is not trivial for non-specialists and as such produces a barrier to seamless data exchange between researchers, databases and analysis tools. This problem is particularly of importance in the field of network systems biology where biochemical interactions between genes and their protein products are abstracted to networks. For the purpose of converting biochemical interactions into the BioPAX format, which is the leading standard developed by the computational systems biology community, we developed an open-source command line tool that takes as input tabular data describing different types of molecular biochemical interactions. The tool converts such interactions into the BioPAX level 3 OWL format. We used the tool to convert several existing and new mammalian networks of protein interactions, signalling pathways, and transcriptional regulatory networks into BioPAX. Some of these networks were deposited into PathwayCommons, a repository for consolidating and organizing biochemical networks. The software tool Sig2BioPAX is a resource that enables experimental and computational systems biologists to contribute their identified networks and pathways of molecular interactions for integration and reuse with the rest of the research community.

  11. Development of intelligent semantic search system for rubber research data in Thailand

    NASA Astrophysics Data System (ADS)

    Kaewboonma, Nattapong; Panawong, Jirapong; Pianhanuruk, Ekkawit; Buranarach, Marut

    2017-10-01

    The rubber production of Thailand increased not only by strong demand from the world market, but was also stimulated strongly through the replanting program of the Thai Government from 1961 onwards. With the continuous growth of rubber research data volume on the Web, the search for information has become a challenging task. Ontologies are used to improve the accuracy of information retrieval from the web by incorporating a degree of semantic analysis during the search. In this context, we propose an intelligent semantic search system for rubber research data in Thailand. The research methods included 1) analyzing domain knowledge, 2) ontologies development, and 3) intelligent semantic search system development to curate research data in trusted digital repositories may be shared among the wider Thailand rubber research community.

  12. Model-based document categorization employing semantic pattern analysis and local structure clustering

    NASA Astrophysics Data System (ADS)

    Fume, Kosei; Ishitani, Yasuto

    2008-01-01

    We propose a document categorization method based on a document model that can be defined externally for each task and that categorizes Web content or business documents into a target category in accordance with the similarity of the model. The main feature of the proposed method consists of two aspects of semantics extraction from an input document. The semantics of terms are extracted by the semantic pattern analysis and implicit meanings of document substructure are specified by a bottom-up text clustering technique focusing on the similarity of text line attributes. We have constructed a system based on the proposed method for trial purposes. The experimental results show that the system achieves more than 80% classification accuracy in categorizing Web content and business documents into 15 or 70 categories.

  13. Cheminformatics and the Semantic Web: adding value with linked data and enhanced provenance

    PubMed Central

    Frey, Jeremy G; Bird, Colin L

    2013-01-01

    Cheminformatics is evolving from being a field of study associated primarily with drug discovery into a discipline that embraces the distribution, management, access, and sharing of chemical data. The relationship with the related subject of bioinformatics is becoming stronger and better defined, owing to the influence of Semantic Web technologies, which enable researchers to integrate heterogeneous sources of chemical, biochemical, biological, and medical information. These developments depend on a range of factors: the principles of chemical identifiers and their role in relationships between chemical and biological entities; the importance of preserving provenance and properly curated metadata; and an understanding of the contribution that the Semantic Web can make at all stages of the research lifecycle. The movements toward open access, open source, and open collaboration all contribute to progress toward the goals of integration. PMID:24432050

  14. Automatic geospatial information Web service composition based on ontology interface matching

    NASA Astrophysics Data System (ADS)

    Xu, Xianbin; Wu, Qunyong; Wang, Qinmin

    2008-10-01

    With Web services technology the functions of WebGIS can be presented as a kind of geospatial information service, and helped to overcome the limitation of the information-isolated situation in geospatial information sharing field. Thus Geospatial Information Web service composition, which conglomerates outsourced services working in tandem to offer value-added service, plays the key role in fully taking advantage of geospatial information services. This paper proposes an automatic geospatial information web service composition algorithm that employed the ontology dictionary WordNet to analyze semantic distances among the interfaces. Through making matching between input/output parameters and the semantic meaning of pairs of service interfaces, a geospatial information web service chain can be created from a number of candidate services. A practice of the algorithm is also proposed and the result of it shows the feasibility of this algorithm and the great promise in the emerging demand for geospatial information web service composition.

  15. Improving User Experience by Taking Advance of Semantic Information of Microformats on Municipal Websites

    NASA Astrophysics Data System (ADS)

    Rodríguez, Rocío; Vera, Pablo; Estevez, Elsa; Giulianelli, Daniel; Welicki, León; Trigueros, Artemisa

    This research regards about the use of microformats as a tool to add semantic information to government web sites. The use of microformats allows the developer to add different resources such as maps, calendars, etc, in an easy way. The paper also shows a survey of the already existing microformats and which of them are useful to be applied to government web sites.

  16. Semantic Web and Inferencing Technologies for Department of Defense Systems

    DTIC Science & Technology

    2014-10-01

    contact report for a specific type of aircraft . Intra-domain-specific metadata in the threat data domain might be used to categorize the contact...DEFENSE SYSTEMS by Duane Davis October 2014 Approved for public release; distribution is unlimited Prepared for: The NPS Center for Multi-INT...TITLE AND SUBTITLE Semantic Web and Inferencing Technologies for Department of Defense Systems 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c

  17. Knowledge representation and management: towards an integration of a semantic web in daily health practice.

    PubMed

    Griffon, N; Charlet, J; Darmoni, Sj

    2013-01-01

    To summarize the best papers in the field of Knowledge Representation and Management (KRM). A synopsis of the four selected articles for the IMIA Yearbook 2013 KRM section is provided, as well as highlights of current KRM trends, in particular, of the semantic web in daily health practice. The manual selection was performed in three stages: first a set of 3,106 articles, then a second set of 86 articles followed by a third set of 15 articles, and finally the last set of four chosen articles. Among the four selected articles (see Table 1), one focuses on knowledge engineering to prevent adverse drug events; the objective of the second is to propose mappings between clinical archetypes and SNOMED CT in the context of clinical practice; the third presents an ontology to create a question-answering system; the fourth describes a biomonitoring network based on semantic web technologies. These four articles clearly indicate that the health semantic web has become a part of daily practice of health professionals since 2012. In the review of the second set of 86 articles, the same topics included in the previous IMIA yearbook remain active research fields: Knowledge extraction, automatic indexing, information retrieval, natural language processing, management of health terminologies and ontologies.

  18. CHIP Demonstrator: Semantics-Driven Recommendations and Museum Tour Generation

    NASA Astrophysics Data System (ADS)

    Aroyo, Lora; Stash, Natalia; Wang, Yiwen; Gorgels, Peter; Rutledge, Lloyd

    The main objective of the CHIP project is to demonstrate how Semantic Web technologies can be deployed to provide personalized access to digital museum collections. We illustrate our approach with the digital database ARIA of the Rijksmuseum Amsterdam. For the semantic enrichment of the Rijksmuseum ARIA database we collaborated with the CATCH STITCH project to produce mappings to Iconclass, and with the MultimediaN E-culture project to produce the RDF/OWL of the ARIA and Adlib databases. The main focus of CHIP is on exploring the potential of applying adaptation techniques to provide personalized experience for the museum visitors both on the Web site and in the museum.

  19. Learning the Semantics of Structured Data Sources

    ERIC Educational Resources Information Center

    Taheriyan, Mohsen

    2015-01-01

    Information sources such as relational databases, spreadsheets, XML, JSON, and Web APIs contain a tremendous amount of structured data, however, they rarely provide a semantic model to describe their contents. Semantic models of data sources capture the intended meaning of data sources by mapping them to the concepts and relationships defined by a…

  20. EIIS: An Educational Information Intelligent Search Engine Supported by Semantic Services

    ERIC Educational Resources Information Center

    Huang, Chang-Qin; Duan, Ru-Lin; Tang, Yong; Zhu, Zhi-Ting; Yan, Yong-Jian; Guo, Yu-Qing

    2011-01-01

    The semantic web brings a new opportunity for efficient information organization and search. To meet the special requirements of the educational field, this paper proposes an intelligent search engine enabled by educational semantic support service, where three kinds of searches are integrated into Educational Information Intelligent Search (EIIS)…

  1. Ontology Based Quality Evaluation for Spatial Data

    NASA Astrophysics Data System (ADS)

    Yılmaz, C.; Cömert, Ç.

    2015-08-01

    Many institutions will be providing data to the National Spatial Data Infrastructure (NSDI). Current technical background of the NSDI is based on syntactic web services. It is expected that this will be replaced by semantic web services. The quality of the data provided is important in terms of the decision-making process and the accuracy of transactions. Therefore, the data quality needs to be tested. This topic has been neglected in Turkey. Data quality control for NSDI may be done by private or public "data accreditation" institutions. A methodology is required for data quality evaluation. There are studies for data quality including ISO standards, academic studies and software to evaluate spatial data quality. ISO 19157 standard defines the data quality elements. Proprietary software such as, 1Spatial's 1Validate and ESRI's Data Reviewer offers quality evaluation based on their own classification of rules. Commonly, rule based approaches are used for geospatial data quality check. In this study, we look for the technical components to devise and implement a rule based approach with ontologies using free and open source software in semantic web context. Semantic web uses ontologies to deliver well-defined web resources and make them accessible to end-users and processes. We have created an ontology conforming to the geospatial data and defined some sample rules to show how to test data with respect to data quality elements including; attribute, topo-semantic and geometrical consistency using free and open source software. To test data against rules, sample GeoSPARQL queries are created, associated with specifications.

  2. Integrating semantic dimension into openEHR archetypes for the management of cerebral palsy electronic medical records.

    PubMed

    Ellouze, Afef Samet; Bouaziz, Rafik; Ghorbel, Hanen

    2016-10-01

    Integrating semantic dimension into clinical archetypes is necessary once modeling medical records. First, it enables semantic interoperability and, it offers applying semantic activities on clinical data and provides a higher design quality of Electronic Medical Record (EMR) systems. However, to obtain these advantages, designers need to use archetypes that cover semantic features of clinical concepts involved in their specific applications. In fact, most of archetypes filed within open repositories are expressed in the Archetype Definition Language (ALD) which allows defining only the syntactic structure of clinical concepts weakening semantic activities on the EMR content in the semantic web environment. This paper focuses on the modeling of an EMR prototype for infants affected by Cerebral Palsy (CP), using the dual model approach and integrating semantic web technologies. Such a modeling provides a better delivery of quality of care and ensures semantic interoperability between all involved therapies' information systems. First, data to be documented are identified and collected from the involved therapies. Subsequently, data are analyzed and arranged into archetypes expressed in accordance of ADL. During this step, open archetype repositories are explored, in order to find the suitable archetypes. Then, ADL archetypes are transformed into archetypes expressed in OWL-DL (Ontology Web Language - Description Language). Finally, we construct an ontological source related to these archetypes enabling hence their annotation to facilitate data extraction and providing possibility to exercise semantic activities on such archetypes. Semantic dimension integration into EMR modeled in accordance to the archetype approach. The feasibility of our solution is shown through the development of a prototype, baptized "CP-SMS", which ensures semantic exploitation of CP EMR. This prototype provides the following features: (i) creation of CP EMR instances and their checking by using a knowledge base which we have constructed by interviews with domain experts, (ii) translation of initially CP ADL archetypes into CP OWL-DL archetypes, (iii) creation of an ontological source which we can use to annotate obtained archetypes and (vi) enrichment and supply of the ontological source and integration of semantic relations by providing hence fueling the ontology with new concepts, ensuring consistency and eliminating ambiguity between concepts. The degree of semantic interoperability that could be reached between EMR systems depends strongly on the quality of the used archetypes. Thus, the integration of semantic dimension in archetypes modeling process is crucial. By creating an ontological source and annotating archetypes, we create a supportive platform ensuring semantic interoperability between archetypes-based EMR-systems. Copyright © 2016. Published by Elsevier Inc.

  3. Semantic knowledge for histopathological image analysis: from ontologies to processing portals and deep learning

    NASA Astrophysics Data System (ADS)

    Kergosien, Yannick L.; Racoceanu, Daniel

    2017-11-01

    This article presents our vision about the next generation of challenges in computational/digital pathology. The key role of the domain ontology, developed in a sustainable manner (i.e. using reference checklists and protocols, as the living semantic repositories), opens the way to effective/sustainable traceability and relevance feedback concerning the use of existing machine learning algorithms, proven to be very performant in the latest digital pathology challenges (i.e. convolutional neural networks). Being able to work in an accessible web-service environment, with strictly controlled issues regarding intellectual property (image and data processing/analysis algorithms) and medical data/image confidentiality is essential for the future. Among the web-services involved in the proposed approach, the living yellow pages in the area of computational pathology seems to be very important in order to reach an operational awareness, validation, and feasibility. This represents a very promising way to go to the next generation of tools, able to bring more guidance to the computer scientists and confidence to the pathologists, towards an effective/efficient daily use. Besides, a consistent feedback and insights will be more likely to emerge in the near future - from these sophisticated machine learning tools - back to the pathologists-, strengthening, therefore, the interaction between the different actors of a sustainable biomedical ecosystem (patients, clinicians, biologists, engineers, scientists etc.). Beside going digital/computational - with virtual slide technology demanding new workflows-, Pathology must prepare for another coming revolution: semantic web technologies now enable the knowledge of experts to be stored in databases, shared through the Internet, and accessible by machines. Traceability, disambiguation of reports, quality monitoring, interoperability between health centers are some of the associated benefits that pathologists were seeking. However, major changes are also to be expected for the relation of human diagnosis to machine based procedures. Improving on a former imaging platform which used a local knowledge base and a reasoning engine to combine image processing modules into higher level tasks, we propose a framework where different actors of the histopathology imaging world can cooperate using web services - exchanging knowledge as well as imaging services - and where the results of such collaborations on diagnostic related tasks can be evaluated in international challenges such as those recently organized for mitosis detection, nuclear atypia, or tissue architecture in the context of cancer grading. This framework is likely to offer an effective context-guidance and traceability to Deep Learning approaches, with an interesting promising perspective given by the multi-task learning (MTL) paradigm, distinguished by its applicability to several different learning algorithms, its non- reliance on specialized architectures and the promising results demonstrated, in particular towards the problem of weak supervision-, an issue found when direct links from pathology terms in reports to corresponding regions within images are missing.

  4. DisGeNET-RDF: harnessing the innovative power of the Semantic Web to explore the genetic basis of diseases.

    PubMed

    Queralt-Rosinach, Núria; Piñero, Janet; Bravo, Àlex; Sanz, Ferran; Furlong, Laura I

    2016-07-15

    DisGeNET-RDF makes available knowledge on the genetic basis of human diseases in the Semantic Web. Gene-disease associations (GDAs) and their provenance metadata are published as human-readable and machine-processable web resources. The information on GDAs included in DisGeNET-RDF is interlinked to other biomedical databases to support the development of bioinformatics approaches for translational research through evidence-based exploitation of a rich and fully interconnected linked open data. http://rdf.disgenet.org/ support@disgenet.org. © The Author 2016. Published by Oxford University Press.

  5. Reliability Prediction of Ontology-Based Service Compositions Using Petri Net and Time Series Models

    PubMed Central

    Li, Jia; Xia, Yunni; Luo, Xin

    2014-01-01

    OWL-S, one of the most important Semantic Web service ontologies proposed to date, provides a core ontological framework and guidelines for describing the properties and capabilities of their web services in an unambiguous, computer interpretable form. Predicting the reliability of composite service processes specified in OWL-S allows service users to decide whether the process meets the quantitative quality requirement. In this study, we consider the runtime quality of services to be fluctuating and introduce a dynamic framework to predict the runtime reliability of services specified in OWL-S, employing the Non-Markovian stochastic Petri net (NMSPN) and the time series model. The framework includes the following steps: obtaining the historical response times series of individual service components; fitting these series with a autoregressive-moving-average-model (ARMA for short) and predicting the future firing rates of service components; mapping the OWL-S process into a NMSPN model; employing the predicted firing rates as the model input of NMSPN and calculating the normal completion probability as the reliability estimate. In the case study, a comparison between the static model and our approach based on experimental data is presented and it is shown that our approach achieves higher prediction accuracy. PMID:24688429

  6. Information-computational system for storage, search and analytical processing of environmental datasets based on the Semantic Web technologies

    NASA Astrophysics Data System (ADS)

    Titov, A.; Gordov, E.; Okladnikov, I.

    2009-04-01

    In this report the results of the work devoted to the development of working model of the software system for storage, semantically-enabled search and retrieval along with processing and visualization of environmental datasets containing results of meteorological and air pollution observations and mathematical climate modeling are presented. Specially designed metadata standard for machine-readable description of datasets related to meteorology, climate and atmospheric pollution transport domains is introduced as one of the key system components. To provide semantic interoperability the Resource Description Framework (RDF, http://www.w3.org/RDF/) technology means have been chosen for metadata description model realization in the form of RDF Schema. The final version of the RDF Schema is implemented on the base of widely used standards, such as Dublin Core Metadata Element Set (http://dublincore.org/), Directory Interchange Format (DIF, http://gcmd.gsfc.nasa.gov/User/difguide/difman.html), ISO 19139, etc. At present the system is available as a Web server (http://climate.risks.scert.ru/metadatabase/) based on the web-portal ATMOS engine [1] and is implementing dataset management functionality including SeRQL-based semantic search as well as statistical analysis and visualization of selected data archives [2,3]. The core of the system is Apache web server in conjunction with Tomcat Java Servlet Container (http://jakarta.apache.org/tomcat/) and Sesame Server (http://www.openrdf.org/) used as a database for RDF and RDF Schema. At present statistical analysis of meteorological and climatic data with subsequent visualization of results is implemented for such datasets as NCEP/NCAR Reanalysis, Reanalysis NCEP/DOE AMIP II, JMA/CRIEPI JRA-25, ECMWF ERA-40 and local measurements obtained from meteorological stations on the territory of Russia. This functionality is aimed primarily at finding of main characteristics of regional climate dynamics. The proposed system represents a step in the process of development of a distributed collaborative information-computational environment to support multidisciplinary investigations of Earth regional environment [4]. Partial support of this work by SB RAS Integration Project 34, SB RAS Basic Program Project 4.5.2.2, APN Project CBA2007-08NSY and FP6 Enviro-RISKS project (INCO-CT-2004-013427) is acknowledged. References 1. E.P. Gordov, V.N. Lykosov, and A.Z. Fazliev. Web portal on environmental sciences "ATMOS" // Advances in Geosciences. 2006. Vol. 8. p. 33 - 38. 2. Gordov E.P., Okladnikov I.G., Titov A.G. Development of elements of web based information-computational system supporting regional environment processes investigations // Journal of Computational Technologies, Vol. 12, Special Issue #3, 2007, pp. 20 - 28. 3. Okladnikov I.G., Titov A.G. Melnikova V.N., Shulgina T.M. Web-system for processing and visualization of meteorological and climatic data // Journal of Computational Technologies, Vol. 13, Special Issue #3, 2008, pp. 64 - 69. 4. Gordov E.P., Lykosov V.N. Development of information-computational infrastructure for integrated study of Siberia environment // Journal of Computational Technologies, Vol. 12, Special Issue #2, 2007, pp. 19 - 30.

  7. Semantic Webbing, Semantic-Pictorial Webbing and Standard Basal Teaching Techniques: A Comparison of Three Strategies To Enhance Learning and Memory of a Reading Comprehension Task in the Fourth Grade Classroom.

    ERIC Educational Resources Information Center

    McCarthy-Tucker, Sherri

    A study analyzed the relative effectiveness of three teaching strategies for enhancing vocabulary and reading comprehension. Sixty-eight students in three fourth-grade classrooms in a suburban southwestern public school were presented with a vocabulary lesson on weather from the reading text according to one of the following strategies: (1) basal…

  8. Semantic labeling of digital photos by classification

    NASA Astrophysics Data System (ADS)

    Ciocca, Gianluigi; Cusano, Claudio; Schettini, Raimondo; Brambilla, Carla

    2003-01-01

    The paper addresses the problem of annotating photographs with broad semantic labels. To cope with the great variety of photos available on the WEB we have designed a hierarchical classification strategy which first classifies images as pornographic or not-pornographic. Not-pornographic images are then classified as indoor, outdoor, or close-up. On a database of over 9000 images, mostly downloaded from the web, our method achieves an average accuracy of close to 90%.

  9. Toward Webscale, Rule-Based Inference on the Semantic Web Via Data Parallelism

    DTIC Science & Technology

    2013-02-01

    Another work distinct from its peers is the work on approximate reasoning by Rudolph et al. [34] in which multiple inference sys- tems were combined not...Workshop Scalable Semantic Web Knowledge Base Systems, 2010, pp. 17–31. [34] S. Rudolph , T. Tserendorj, and P. Hitzler, “What is approximate reasoning...2013] [55] M. Duerst and M. Suignard. (2005, Jan .). RFC 3987 – internationalized resource identifiers (IRIs). IETF. [Online]. Available: http

  10. Mining Genotype-Phenotype Associations from Public Knowledge Sources via Semantic Web Querying.

    PubMed

    Kiefer, Richard C; Freimuth, Robert R; Chute, Christopher G; Pathak, Jyotishman

    2013-01-01

    Gene Wiki Plus (GeneWiki+) and the Online Mendelian Inheritance in Man (OMIM) are publicly available resources for sharing information about disease-gene and gene-SNP associations in humans. While immensely useful to the scientific community, both resources are manually curated, thereby making the data entry and publication process time-consuming, and to some degree, error-prone. To this end, this study investigates Semantic Web technologies to validate existing and potentially discover new genotype-phenotype associations in GWP and OMIM. In particular, we demonstrate the applicability of SPARQL queries for identifying associations not explicitly stated for commonly occurring chronic diseases in GWP and OMIM, and report our preliminary findings for coverage, completeness, and validity of the associations. Our results highlight the benefits of Semantic Web querying technology to validate existing disease-gene associations as well as identify novel associations although further evaluation and analysis is required before such information can be applied and used effectively.

  11. Semantic enrichment of medical forms - semi-automated coding of ODM-elements via web services.

    PubMed

    Breil, Bernhard; Watermann, Andreas; Haas, Peter; Dziuballe, Philipp; Dugas, Martin

    2012-01-01

    Semantic interoperability is an unsolved problem which occurs while working with medical forms from different information systems or institutions. Standards like ODM or CDA assure structural homogenization but in order to compare elements from different data models it is necessary to use semantic concepts and codes on an item level of those structures. We developed and implemented a web-based tool which enables a domain expert to perform semi-automated coding of ODM-files. For each item it is possible to inquire web services which result in unique concept codes without leaving the context of the document. Although it was not feasible to perform a totally automated coding we have implemented a dialog based method to perform an efficient coding of all data elements in the context of the whole document. The proportion of codable items was comparable to results from previous studies.

  12. Socio-contextual Network Mining for User Assistance in Web-based Knowledge Gathering Tasks

    NASA Astrophysics Data System (ADS)

    Rajendran, Balaji; Kombiah, Iyakutti

    Web-based Knowledge Gathering (WKG) is a specialized and complex information seeking task carried out by many users on the web, for their various learning, and decision-making requirements. We construct a contextual semantic structure by observing the actions of the users involved in WKG task, in order to gain an understanding of their task and requirement. We also build a knowledge warehouse in the form of a master Semantic Link Network (SLX) that accommodates and assimilates all the contextual semantic structures. This master SLX, which is a socio-contextual network, is then mined to provide contextual inputs to the current users through their agents. We validated our approach through experiments and analyzed the benefits to the users in terms of resource explorations and the time saved. The results are positive enough to motivate us to implement in a larger scale.

  13. Towards a Framework for Developing Semantic Relatedness Reference Standards

    PubMed Central

    Pakhomov, Serguei V.S.; Pedersen, Ted; McInnes, Bridget; Melton, Genevieve B.; Ruggieri, Alexander; Chute, Christopher G.

    2010-01-01

    Our objective is to develop a framework for creating reference standards for functional testing of computerized measures of semantic relatedness. Currently, research on computerized approaches to semantic relatedness between biomedical concepts relies on reference standards created for specific purposes using a variety of methods for their analysis. In most cases, these reference standards are not publicly available and the published information provided in manuscripts that evaluate computerized semantic relatedness measurement approaches is not sufficient to reproduce the results. Our proposed framework is based on the experiences of medical informatics and computational linguistics communities and addresses practical and theoretical issues with creating reference standards for semantic relatedness. We demonstrate the use of the framework on a pilot set of 101 medical term pairs rated for semantic relatedness by 13 medical coding experts. While the reliability of this particular reference standard is in the “moderate” range; we show that using clustering and factor analyses offers a data-driven approach to finding systematic differences among raters and identifying groups of potential outliers. We test two ontology-based measures of relatedness and provide both the reference standard containing individual ratings and the R program used to analyze the ratings as open-source. Currently, these resources are intended to be used to reproduce and compare results of studies involving computerized measures of semantic relatedness. Our framework may be extended to the development of reference standards in other research areas in medical informatics including automatic classification, information retrieval from medical records and vocabulary/ontology development. PMID:21044697

  14. Knowledge-based personalized search engine for the Web-based Human Musculoskeletal System Resources (HMSR) in biomechanics.

    PubMed

    Dao, Tien Tuan; Hoang, Tuan Nha; Ta, Xuan Hien; Tho, Marie Christine Ho Ba

    2013-02-01

    Human musculoskeletal system resources of the human body are valuable for the learning and medical purposes. Internet-based information from conventional search engines such as Google or Yahoo cannot response to the need of useful, accurate, reliable and good-quality human musculoskeletal resources related to medical processes, pathological knowledge and practical expertise. In this present work, an advanced knowledge-based personalized search engine was developed. Our search engine was based on a client-server multi-layer multi-agent architecture and the principle of semantic web services to acquire dynamically accurate and reliable HMSR information by a semantic processing and visualization approach. A security-enhanced mechanism was applied to protect the medical information. A multi-agent crawler was implemented to develop a content-based database of HMSR information. A new semantic-based PageRank score with related mathematical formulas were also defined and implemented. As the results, semantic web service descriptions were presented in OWL, WSDL and OWL-S formats. Operational scenarios with related web-based interfaces for personal computers and mobile devices were presented and analyzed. Functional comparison between our knowledge-based search engine, a conventional search engine and a semantic search engine showed the originality and the robustness of our knowledge-based personalized search engine. In fact, our knowledge-based personalized search engine allows different users such as orthopedic patient and experts or healthcare system managers or medical students to access remotely into useful, accurate, reliable and good-quality HMSR information for their learning and medical purposes. Copyright © 2012 Elsevier Inc. All rights reserved.

  15. Connecting long-tail scientists with big data centers using SaaS

    NASA Astrophysics Data System (ADS)

    Percivall, G. S.; Bermudez, L. E.

    2012-12-01

    Big data centers and long tail scientists represent two extremes in the geoscience research community. Interoperability and inter-use based on software-as-a-service (SaaS) increases access to big data holdings by this underserved community of scientists. Large, institutional data centers have long been recognized as vital resources in the geoscience community. Permanent data archiving and dissemination centers provide "access to the data and (are) a critical source of people who have experience in the use of the data and can provide advice and counsel for new applications." [NRC] The "long-tail of science" is the geoscience researchers that work separate from institutional data centers [Heidorn]. Long-tail scientists need to be efficient consumers of data from large, institutional data centers. Discussions in NSF EarthCube capture the challenges: "Like the vast majority of NSF-funded researchers, Alice (a long-tail scientist) works with limited resources. In the absence of suitable expertise and infrastructure, the apparently simple task that she assigns to her graduate student becomes an information discovery and management nightmare. Downloading and transforming datasets takes weeks." [Foster, et.al.] The long-tail metaphor points to methods to bridge the gap, i.e., the Web. A decade ago, OGC began building a geospatial information space using open, web standards for geoprocessing [ORM]. Recently, [Foster, et.al.] accurately observed that "by adopting, adapting, and applying semantic web and SaaS technologies, we can make the use of geoscience data as easy and convenient as consumption of online media." SaaS places web services into Cloud Computing. SaaS for geospatial is emerging rapidly building on the first-generation geospatial web, e.g., OGC Web Coverage Service [WCS] and the Data Access Protocol [DAP]. Several recent examples show progress in applying SaaS to geosciences: - NASA's Earth Data Coherent Web has a goal to improve science user experience using Web Services (e.g. W*S, SOAP, RESTful) to reduce barriers to using EOSDIS data [ECW]. - NASA's LANCE provides direct access to vast amounts of satellite data using the OGC Web Map Tile Service (WMTS). - NOAA's Unified Access Framework for Gridded Data (UAF Grid) is a web service based capability for direct access to a variety of datasets using netCDF, OPeNDAP, THREDDS, WMS and WCS. [UAF] Tools to access SaaS's are many and varied: some proprietary, others open source; some run in browsers, others are stand-alone applications. What's required is interoperability using web interfaces offered by the data centers. NOAA's UAF service stack supports Matlab, ArcGIS, Ferret, GrADS, Google Earth, IDV, LAS. Any SaaS that offers OGC Web Services (WMS, WFS, WCS) can be accessed by scores of clients [OGC]. While there has been much progress in the recent year toward offering web services for the long-tail of scientists, more needs to be done. Web services offer data access but more than access is needed for inter-use of data, e.g. defining data schemas that allow for data fusion, addressing coordinate systems, spatial geometry, and semantics for observations. Connecting long-tail scientists with large, data centers using SaaS and, in the future, semantic web, will address this large and currently underserved user community.

  16. E-Learning 3.0 = E-Learning 2.0 + Web 3.0?

    ERIC Educational Resources Information Center

    Hussain, Fehmida

    2012-01-01

    Web 3.0, termed as the semantic web or the web of data is the transformed version of Web 2.0 with technologies and functionalities such as intelligent collaborative filtering, cloud computing, big data, linked data, openness, interoperability and smart mobility. If Web 2.0 is about social networking and mass collaboration between the creator and…

  17. A novel visualization model for web search results.

    PubMed

    Nguyen, Tien N; Zhang, Jin

    2006-01-01

    This paper presents an interactive visualization system, named WebSearchViz, for visualizing the Web search results and acilitating users' navigation and exploration. The metaphor in our model is the solar system with its planets and asteroids revolving around the sun. Location, color, movement, and spatial distance of objects in the visual space are used to represent the semantic relationships between a query and relevant Web pages. Especially, the movement of objects and their speeds add a new dimension to the visual space, illustrating the degree of relevance among a query and Web search results in the context of users' subjects of interest. By interacting with the visual space, users are able to observe the semantic relevance between a query and a resulting Web page with respect to their subjects of interest, context information, or concern. Users' subjects of interest can be dynamically changed, redefined, added, or deleted from the visual space.

  18. Can Social Semantic Web Techniques Foster Collaborative Curriculum Mapping In Medicine?

    PubMed Central

    Finsterer, Sonja; Cremer, Jan; Schenkat, Hennig

    2013-01-01

    Background Curriculum mapping, which is aimed at the systematic realignment of the planned, taught, and learned curriculum, is considered a challenging and ongoing effort in medical education. Second-generation curriculum managing systems foster knowledge management processes including curriculum mapping in order to give comprehensive support to learners, teachers, and administrators. The large quantity of custom-built software in this field indicates a shortcoming of available IT tools and standards. Objective The project reported here aims at the systematic adoption of techniques and standards of the Social Semantic Web to implement collaborative curriculum mapping for a complete medical model curriculum. Methods A semantic MediaWiki (SMW)-based Web application has been introduced as a platform for the elicitation and revision process of the Aachen Catalogue of Learning Objectives (ACLO). The semantic wiki uses a domain model of the curricular context and offers structured (form-based) data entry, multiple views, structured querying, semantic indexing, and commenting for learning objectives (“LOs”). Semantic indexing of learning objectives relies on both a controlled vocabulary of international medical classifications (ICD, MeSH) and a folksonomy maintained by the users. An additional module supporting the global checking of consistency complements the semantic wiki. Statements of the Object Constraint Language define the consistency criteria. We evaluated the application by a scenario-based formative usability study, where the participants solved tasks in the (fictional) context of 7 typical situations and answered a questionnaire containing Likert-scaled items and free-text questions. Results At present, ACLO contains roughly 5350 operational (ie, specific and measurable) objectives acquired during the last 25 months. The wiki-based user interface uses 13 online forms for data entry and 4 online forms for flexible searches of LOs, and all the forms are accessible by standard Web browsers. The formative usability study yielded positive results (median rating of 2 (“good”) in all 7 general usability items) and produced valuable qualitative feedback, especially concerning navigation and comprehensibility. Although not asked to, the participants (n=5) detected critical aspects of the curriculum (similar learning objectives addressed repeatedly and missing objectives), thus proving the system’s ability to support curriculum revision. Conclusions The SMW-based approach enabled an agile implementation of computer-supported knowledge management. The approach, based on standard Social Semantic Web formats and technology, represents a feasible and effectively applicable compromise between answering to the individual requirements of curriculum management at a particular medical school and using proprietary systems. PMID:23948519

  19. The Semantic eScience Framework

    NASA Astrophysics Data System (ADS)

    McGuinness, Deborah; Fox, Peter; Hendler, James

    2010-05-01

    The goal of this effort is to design and implement a configurable and extensible semantic eScience framework (SESF). Configuration requires research into accommodating different levels of semantic expressivity and user requirements from use cases. Extensibility is being achieved in a modular approach to the semantic encodings (i.e. ontologies) performed in community settings, i.e. an ontology framework into which specific applications all the way up to communities can extend the semantics for their needs.We report on how we are accommodating the rapid advances in semantic technologies and tools and the sustainable software path for the future (certain) technical advances. In addition to a generalization of the current data science interface, we will present plans for an upper-level interface suitable for use by clearinghouses, and/or educational portals, digital libraries, and other disciplines.SESF builds upon previous work in the Virtual Solar-Terrestrial Observatory. The VSTO utilizes leading edge knowledge representation, query and reasoning techniques to support knowledge-enhanced search, data access, integration, and manipulation. It encodes term meanings and their inter-relationships in ontologies anduses these ontologies and associated inference engines to semantically enable the data services. The Semantically-Enabled Science Data Integration (SESDI) project implemented data integration capabilities among three sub-disciplines; solar radiation, volcanic outgassing and atmospheric structure using extensions to existingmodular ontolgies and used the VSTO data framework, while adding smart faceted search and semantic data registrationtools. The Semantic Provenance Capture in Data Ingest Systems (SPCDIS) has added explanation provenance capabilities to an observational data ingest pipeline for images of the Sun providing a set of tools to answer diverseend user questions such as ``Why does this image look bad?. http://tw.rpi.edu/portal/SESF

  20. The Semantic eScience Framework

    NASA Astrophysics Data System (ADS)

    Fox, P. A.; McGuinness, D. L.

    2009-12-01

    The goal of this effort is to design and implement a configurable and extensible semantic eScience framework (SESF). Configuration requires research into accommodating different levels of semantic expressivity and user requirements from use cases. Extensibility is being achieved in a modular approach to the semantic encodings (i.e. ontologies) performed in community settings, i.e. an ontology framework into which specific applications all the way up to communities can extend the semantics for their needs.We report on how we are accommodating the rapid advances in semantic technologies and tools and the sustainable software path for the future (certain) technical advances. In addition to a generalization of the current data science interface, we will present plans for an upper-level interface suitable for use by clearinghouses, and/or educational portals, digital libraries, and other disciplines.SESF builds upon previous work in the Virtual Solar-Terrestrial Observatory. The VSTO utilizes leading edge knowledge representation, query and reasoning techniques to support knowledge-enhanced search, data access, integration, and manipulation. It encodes term meanings and their inter-relationships in ontologies anduses these ontologies and associated inference engines to semantically enable the data services. The Semantically-Enabled Science Data Integration (SESDI) project implemented data integration capabilities among three sub-disciplines; solar radiation, volcanic outgassing and atmospheric structure using extensions to existingmodular ontolgies and used the VSTO data framework, while adding smart faceted search and semantic data registrationtools. The Semantic Provenance Capture in Data Ingest Systems (SPCDIS) has added explanation provenance capabilities to an observational data ingest pipeline for images of the Sun providing a set of tools to answer diverseend user questions such as ``Why does this image look bad?.

  1. Knowledge-Base Semantic Gap Analysis for the Vulnerability Detection

    NASA Astrophysics Data System (ADS)

    Wu, Raymond; Seki, Keisuke; Sakamoto, Ryusuke; Hisada, Masayuki

    Web security became an alert in internet computing. To cope with ever-rising security complexity, semantic analysis is proposed to fill-in the gap that the current approaches fail to commit. Conventional methods limit their focus to the physical source codes instead of the abstraction of semantics. It bypasses new types of vulnerability and causes tremendous business loss.

  2. Designing Collaborative E-Learning Environments Based upon Semantic Wiki: From Design Models to Application Scenarios

    ERIC Educational Resources Information Center

    Li, Yanyan; Dong, Mingkai; Huang, Ronghuai

    2011-01-01

    The knowledge society requires life-long learning and flexible learning environment that enables fast, just-in-time and relevant learning, aiding the development of communities of knowledge, linking learners and practitioners with experts. Based upon semantic wiki, a combination of wiki and Semantic Web technology, this paper designs and develops…

  3. Automatically exposing OpenLifeData via SADI semantic Web Services.

    PubMed

    González, Alejandro Rodríguez; Callahan, Alison; Cruz-Toledo, José; Garcia, Adrian; Egaña Aranguren, Mikel; Dumontier, Michel; Wilkinson, Mark D

    2014-01-01

    Two distinct trends are emerging with respect to how data is shared, collected, and analyzed within the bioinformatics community. First, Linked Data, exposed as SPARQL endpoints, promises to make data easier to collect and integrate by moving towards the harmonization of data syntax, descriptive vocabularies, and identifiers, as well as providing a standardized mechanism for data access. Second, Web Services, often linked together into workflows, normalize data access and create transparent, reproducible scientific methodologies that can, in principle, be re-used and customized to suit new scientific questions. Constructing queries that traverse semantically-rich Linked Data requires substantial expertise, yet traditional RESTful or SOAP Web Services cannot adequately describe the content of a SPARQL endpoint. We propose that content-driven Semantic Web Services can enable facile discovery of Linked Data, independent of their location. We use a well-curated Linked Dataset - OpenLifeData - and utilize its descriptive metadata to automatically configure a series of more than 22,000 Semantic Web Services that expose all of its content via the SADI set of design principles. The OpenLifeData SADI services are discoverable via queries to the SHARE registry and easy to integrate into new or existing bioinformatics workflows and analytical pipelines. We demonstrate the utility of this system through comparison of Web Service-mediated data access with traditional SPARQL, and note that this approach not only simplifies data retrieval, but simultaneously provides protection against resource-intensive queries. We show, through a variety of different clients and examples of varying complexity, that data from the myriad OpenLifeData can be recovered without any need for prior-knowledge of the content or structure of the SPARQL endpoints. We also demonstrate that, via clients such as SHARE, the complexity of federated SPARQL queries is dramatically reduced.

  4. Information Object Definition–based Unified Modeling Language Representation of DICOM Structured Reporting

    PubMed Central

    Tirado-Ramos, Alfredo; Hu, Jingkun; Lee, K.P.

    2002-01-01

    Supplement 23 to DICOM (Digital Imaging and Communications for Medicine), Structured Reporting, is a specification that supports a semantically rich representation of image and waveform content, enabling experts to share image and related patient information. DICOM SR supports the representation of textual and coded data linked to images and waveforms. Nevertheless, the medical information technology community needs models that work as bridges between the DICOM relational model and open object-oriented technologies. The authors assert that representations of the DICOM Structured Reporting standard, using object-oriented modeling languages such as the Unified Modeling Language, can provide a high-level reference view of the semantically rich framework of DICOM and its complex structures. They have produced an object-oriented model to represent the DICOM SR standard and have derived XML-exchangeable representations of this model using World Wide Web Consortium specifications. They expect the model to benefit developers and system architects who are interested in developing applications that are compliant with the DICOM SR specification. PMID:11751804

  5. On Propagating Interpersonal Trust in Social Networks

    NASA Astrophysics Data System (ADS)

    Ziegler, Cai-Nicolas

    The age of information glut has fostered the proliferation of data and documents on the Web, created by man and machine alike. Hence, there is an enormous wealth of minable knowledge that is yet to be extracted, in particular, on the Semantic Web. However, besides understanding information stated by subjects, knowing about their credibility becomes equally crucial. Hence, trust and trust metrics, conceived as computational means to evaluate trust relationships between individuals, come into play. Our major contribution to Semantic Web trust management through this work is twofold. First, we introduce a classification scheme for trust metrics along various axes and discuss advantages and drawbacks of existing approaches for Semantic Web scenarios. Hereby, we devise an advocacy for local group trust metrics, guiding us to the second part, which presents Appleseed, our novel proposal for local group trust computation. Compelling in its simplicity, Appleseed borrows many ideas from spreading activation models in psychology and relates their concepts to trust evaluation in an intuitive fashion. Moreover, we provide extensions for the Appleseed nucleus that make our trust metric handle distrust statements.

  6. Research of three level match method about semantic web service based on ontology

    NASA Astrophysics Data System (ADS)

    Xiao, Jie; Cai, Fang

    2011-10-01

    An important step of Web service Application is the discovery of useful services. Keywords are used in service discovery in traditional technology like UDDI and WSDL, with the disadvantage of user intervention, lack of semantic description and low accuracy. To cope with these problems, OWL-S is introduced and extended with QoS attributes to describe the attribute and functions of Web Services. A three-level service matching algorithm based on ontology and QOS in proposed in this paper. Our algorithm can match web service by utilizing the service profile, QoS parameters together with input and output of the service. Simulation results shows that it greatly enhanced the speed of service matching while high accuracy is also guaranteed.

  7. ResearchEHR: use of semantic web technologies and archetypes for the description of EHRs.

    PubMed

    Robles, Montserrat; Fernández-Breis, Jesualdo Tomás; Maldonado, Jose A; Moner, David; Martínez-Costa, Catalina; Bosca, Diego; Menárguez-Tortosa, Marcos

    2010-01-01

    In this paper, we present the ResearchEHR project. It focuses on the usability of Electronic Health Record (EHR) sources and EHR standards for building advanced clinical systems. The aim is to support healthcare professional, institutions and authorities by providing a set of generic methods and tools for the capture, standardization, integration, description and dissemination of health related information. ResearchEHR combines several tools to manage EHR at two different levels. The internal level that deals with the normalization and semantic upgrading of exiting EHR by using archetypes and the external level that uses Semantic Web technologies to specify clinical archetypes for advanced EHR architectures and systems.

  8. Target-Oriented High-Resolution SAR Image Formation via Semantic Information Guided Regularizations

    NASA Astrophysics Data System (ADS)

    Hou, Biao; Wen, Zaidao; Jiao, Licheng; Wu, Qian

    2018-04-01

    Sparsity-regularized synthetic aperture radar (SAR) imaging framework has shown its remarkable performance to generate a feature enhanced high resolution image, in which a sparsity-inducing regularizer is involved by exploiting the sparsity priors of some visual features in the underlying image. However, since the simple prior of low level features are insufficient to describe different semantic contents in the image, this type of regularizer will be incapable of distinguishing between the target of interest and unconcerned background clutters. As a consequence, the features belonging to the target and clutters are simultaneously affected in the generated image without concerning their underlying semantic labels. To address this problem, we propose a novel semantic information guided framework for target oriented SAR image formation, which aims at enhancing the interested target scatters while suppressing the background clutters. Firstly, we develop a new semantics-specific regularizer for image formation by exploiting the statistical properties of different semantic categories in a target scene SAR image. In order to infer the semantic label for each pixel in an unsupervised way, we moreover induce a novel high-level prior-driven regularizer and some semantic causal rules from the prior knowledge. Finally, our regularized framework for image formation is further derived as a simple iteratively reweighted $\\ell_1$ minimization problem which can be conveniently solved by many off-the-shelf solvers. Experimental results demonstrate the effectiveness and superiority of our framework for SAR image formation in terms of target enhancement and clutters suppression, compared with the state of the arts. Additionally, the proposed framework opens a new direction of devoting some machine learning strategies to image formation, which can benefit the subsequent decision making tasks.

  9. Semantically optiMize the dAta seRvice operaTion (SMART) system for better data discovery and access

    NASA Astrophysics Data System (ADS)

    Yang, C.; Huang, T.; Armstrong, E. M.; Moroni, D. F.; Liu, K.; Gui, Z.

    2013-12-01

    Abstract: We present a Semantically optiMize the dAta seRvice operaTion (SMART) system for better data discovery and access across the NASA data systems, Global Earth Observation System of Systems (GEOSS) Clearinghouse and Data.gov to facilitate scientists to select Earth observation data that fit better their needs in four aspects: 1. Integrating and interfacing the SMART system to include the functionality of a) semantic reasoning based on Jena, an open source semantic reasoning engine, b) semantic similarity calculation, c) recommendation based on spatiotemporal, semantic, and user workflow patterns, and d) ranking results based on similarity between search terms and data ontology. 2. Collaborating with data user communities to a) capture science data ontology and record relevant ontology triple stores, b) analyze and mine user search and download patterns, c) integrate SMART into metadata-centric discovery system for community-wide usage and feedback, and d) customizing data discovery, search and access user interface to include the ranked results, recommendation components, and semantic based navigations. 3. Laying the groundwork to interface the SMART system with other data search and discovery systems as an open source data search and discovery solution. The SMART systems leverages NASA, GEO, FGDC data discovery, search and access for the Earth science community by enabling scientists to readily discover and access data appropriate to their endeavors, increasing the efficiency of data exploration and decreasing the time that scientists must spend on searching, downloading, and processing the datasets most applicable to their research. By incorporating the SMART system, it is a likely aim that the time being devoted to discovering the most applicable dataset will be substantially reduced, thereby reducing the number of user inquiries and likewise reducing the time and resources expended by a data center in addressing user inquiries. Keywords: EarthCube; ECHO, DAACs, GeoPlatform; Geospatial Cyberinfrastructure References: 1. Yang, P., Evans, J., Cole, M., Alameh, N., Marley, S., & Bambacus, M., (2007). The Emerging Concepts and Applications of the Spatial Web Portal. Photogrammetry Engineering &Remote Sensing,73(6):691-698. 2. Zhang, C, Zhao, T. and W. Li. (2010). The Framework of a Geospatial Semantic Web based Spatial Decision Support System for Digital Earth. International Journal of Digital Earth. 3(2):111-134. 3. Yang C., Raskin R., Goodchild M.F., Gahegan M., 2010, Geospatial Cyberinfrastructure: Past, Present and Future,Computers, Environment, and Urban Systems, 34(4):264-277. 4. Liu K., Yang C., Li W., Gui Z., Xu C., Xia J., 2013. Using ontology and similarity calculations to rank Earth science data searching results, International Journal of Geospatial Information Applications. (in press)

  10. A New Approach for Semantic Web Matching

    NASA Astrophysics Data System (ADS)

    Zamanifar, Kamran; Heidary, Golsa; Nematbakhsh, Naser; Mardukhi, Farhad

    In this work we propose a new approach for semantic web matching to improve the performance of Web Service replacement. Because in automatic systems we should ensure the self-healing, self-configuration, self-optimization and self-management, all services should be always available and if one of them crashes, it should be replaced with the most similar one. Candidate services are advertised in Universal Description, Discovery and Integration (UDDI) all in Web Ontology Language (OWL). By the help of bipartite graph, we did the matching between the crashed service and a Candidate one. Then we chose the best service, which had the maximum rate of matching. In fact we compare two services' functionalities and capabilities to see how much they match. We found that the best way for matching two web services, is comparing the functionalities of them.

  11. Practical solutions to implementing "Born Semantic" data systems

    NASA Astrophysics Data System (ADS)

    Leadbetter, A.; Buck, J. J. H.; Stacey, P.

    2015-12-01

    The concept of data being "Born Semantic" has been proposed in recent years as a Semantic Web analogue to the idea of data being "born digital"[1], [2]. Within the "Born Semantic" concept, data are captured digitally and at a point close to the time of creation are annotated with markup terms from semantic web resources (controlled vocabularies, thesauri or ontologies). This allows heterogeneous data to be more easily ingested and amalgamated in near real-time due to the standards compliant annotation of the data. In taking the "Born Semantic" proposal from concept to operation, a number of difficulties have been encountered. For example, although there are recognised methods such as Header, Dictionary, Triples [3] for the compression, publication and dissemination of large volumes of triples these systems are not practical to deploy in the field on low-powered (both electrically and computationally) devices. Similarly, it is not practical for instruments to output fully formed semantically annotated data files if they are designed to be plugged into a modular system and the data to be centrally logged in the field as is the case on Argo floats and oceanographic gliders where internal bandwidth becomes an issue [2]. In light of these issues, this presentation will concentrate on pragmatic solutions being developed to the problem of generating Linked Data in near real-time systems. Specific examples from the European Commission SenseOCEAN project where Linked Data systems are being developed for autonomous underwater platforms, and from work being undertaken in the streaming of data from the Irish Galway Bay Cable Observatory initiative will be highlighted. Further, developments of a set of tools for the LogStash-ElasticSearch software ecosystem to allow the storing and retrieval of Linked Data will be introduced. References[1] A. Leadbetter & J. Fredericks, We have "born digital" - now what about "born semantic"?, European Geophysical Union General Assembly, 2014.[2] J. Buck & A. Leadbetter, Born semantic: linking data from sensors to users and balancing hardware limitations with data standards, European Geophysical Union General Assembly, 2015.[3] J. Fernandez et al., Binary RDF Representation for Publication and Exchange (HDT), Web Semantics 19:22-41, 2013.

  12. A medical ontology for intelligent web-based skin lesions image retrieval.

    PubMed

    Maragoudakis, Manolis; Maglogiannis, Ilias

    2011-06-01

    Researchers have applied increasing efforts towards providing formal computational frameworks to consolidate the plethora of concepts and relations used in the medical domain. In the domain of skin related diseases, the variability of semantic features contained within digital skin images is a major barrier to the medical understanding of the symptoms and development of early skin cancers. The desideratum of making these standards machine-readable has led to their formalization in ontologies. In this work, in an attempt to enhance an existing Core Ontology for skin lesion images, hand-coded from image features, high quality images were analyzed by an autonomous ontology creation engine. We show that by exploiting agglomerative clustering methods with distance criteria upon the existing ontological structure, the original domain model could be enhanced with new instances, attributes and even relations, thus allowing for better classification and retrieval of skin lesion categories from the web.

  13. A Mediator-Based Approach to Resolving Interface Heterogeneity of Web Services

    NASA Astrophysics Data System (ADS)

    Leitner, Philipp; Rosenberg, Florian; Michlmayr, Anton; Huber, Andreas; Dustdar, Schahram

    In theory, service-oriented architectures are based on the idea of increasing flexibility in the selection of internal and external business partners using loosely-coupled services. However, in practice this flexibility is limited by the fact that partners need not only to provide the same service, but to do so via virtually the same interface in order to actually be interchangeable easily. Invocation-level mediation may be used to overcome this issue — by using mediation interface differences can be resolved transparently at runtime. In this chapter we discuss the basic ideas of mediation, with a focus on interface-level mediation. We show how interface mediation is integrated into our dynamic Web service invocation framework DAIOS, and present three different mediation strategies, one based on structural message similarity, one based on semantically annotated WSDL, and one which is embedded into the VRESCo SOA runtime, a larger research project with explicit support for service mediation.

  14. Semantic Body Browser: graphical exploration of an organism and spatially resolved expression data visualization.

    PubMed

    Lekschas, Fritz; Stachelscheid, Harald; Seltmann, Stefanie; Kurtz, Andreas

    2015-03-01

    Advancing technologies generate large amounts of molecular and phenotypic data on cells, tissues and organisms, leading to an ever-growing detail and complexity while information retrieval and analysis becomes increasingly time-consuming. The Semantic Body Browser is a web application for intuitively exploring the body of an organism from the organ to the subcellular level and visualising expression profiles by means of semantically annotated anatomical illustrations. It is used to comprehend biological and medical data related to the different body structures while relying on the strong pattern recognition capabilities of human users. The Semantic Body Browser is a JavaScript web application that is freely available at http://sbb.cellfinder.org. The source code is provided on https://github.com/flekschas/sbb. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  15. Semantically Enriching the Search System of a Music Digital Library

    NASA Astrophysics Data System (ADS)

    de Juan, Paloma; Iglesias, Carlos

    Traditional search systems are usually based on keywords, a very simple and convenient mechanism to express a need for information. This is the most popular way of searching the Web, although it is not always an easy task to accurately summarize a natural language query in a few keywords. Working with keywords means losing the context, which is the only thing that can help us deal with ambiguity. This is the biggest problem of keyword-based systems. Semantic Web technologies seem a perfect solution to this problem, since they make it possible to represent the semantics of a given domain. In this chapter, we present three projects, Harmos, Semusici and Cantiga, whose aim is to provide access to a music digital library. We will describe two search systems, a traditional one and a semantic one, developed in the context of these projects and compare them in terms of usability and effectiveness.

  16. Semantic interpretation of search engine resultant

    NASA Astrophysics Data System (ADS)

    Nasution, M. K. M.

    2018-01-01

    In semantic, logical language can be interpreted in various forms, but the certainty of meaning is included in the uncertainty, which directly always influences the role of technology. One results of this uncertainty applies to search engines as user interfaces with information spaces such as the Web. Therefore, the behaviour of search engine results should be interpreted with certainty through semantic formulation as interpretation. Behaviour formulation shows there are various interpretations that can be done semantically either temporary, inclusion, or repeat.

  17. Semantic querying of relational data for clinical intelligence: a semantic web services-based approach

    PubMed Central

    2013-01-01

    Background Clinical Intelligence, as a research and engineering discipline, is dedicated to the development of tools for data analysis for the purposes of clinical research, surveillance, and effective health care management. Self-service ad hoc querying of clinical data is one desirable type of functionality. Since most of the data are currently stored in relational or similar form, ad hoc querying is problematic as it requires specialised technical skills and the knowledge of particular data schemas. Results A possible solution is semantic querying where the user formulates queries in terms of domain ontologies that are much easier to navigate and comprehend than data schemas. In this article, we are exploring the possibility of using SADI Semantic Web services for semantic querying of clinical data. We have developed a prototype of a semantic querying infrastructure for the surveillance of, and research on, hospital-acquired infections. Conclusions Our results suggest that SADI can support ad-hoc, self-service, semantic queries of relational data in a Clinical Intelligence context. The use of SADI compares favourably with approaches based on declarative semantic mappings from data schemas to ontologies, such as query rewriting and RDFizing by materialisation, because it can easily cope with situations when (i) some computation is required to turn relational data into RDF or OWL, e.g., to implement temporal reasoning, or (ii) integration with external data sources is necessary. PMID:23497556

  18. Towards a framework for developing semantic relatedness reference standards.

    PubMed

    Pakhomov, Serguei V S; Pedersen, Ted; McInnes, Bridget; Melton, Genevieve B; Ruggieri, Alexander; Chute, Christopher G

    2011-04-01

    Our objective is to develop a framework for creating reference standards for functional testing of computerized measures of semantic relatedness. Currently, research on computerized approaches to semantic relatedness between biomedical concepts relies on reference standards created for specific purposes using a variety of methods for their analysis. In most cases, these reference standards are not publicly available and the published information provided in manuscripts that evaluate computerized semantic relatedness measurement approaches is not sufficient to reproduce the results. Our proposed framework is based on the experiences of medical informatics and computational linguistics communities and addresses practical and theoretical issues with creating reference standards for semantic relatedness. We demonstrate the use of the framework on a pilot set of 101 medical term pairs rated for semantic relatedness by 13 medical coding experts. While the reliability of this particular reference standard is in the "moderate" range; we show that using clustering and factor analyses offers a data-driven approach to finding systematic differences among raters and identifying groups of potential outliers. We test two ontology-based measures of relatedness and provide both the reference standard containing individual ratings and the R program used to analyze the ratings as open-source. Currently, these resources are intended to be used to reproduce and compare results of studies involving computerized measures of semantic relatedness. Our framework may be extended to the development of reference standards in other research areas in medical informatics including automatic classification, information retrieval from medical records and vocabulary/ontology development. Copyright © 2010 Elsevier Inc. All rights reserved.

  19. Making species checklists understandable to machines - a shift from relational databases to ontologies.

    PubMed

    Laurenne, Nina; Tuominen, Jouni; Saarenmaa, Hannu; Hyvönen, Eero

    2014-01-01

    The scientific names of plants and animals play a major role in Life Sciences as information is indexed, integrated, and searched using scientific names. The main problem with names is their ambiguous nature, because more than one name may point to the same taxon and multiple taxa may share the same name. In addition, scientific names change over time, which makes them open to various interpretations. Applying machine-understandable semantics to these names enables efficient processing of biological content in information systems. The first step is to use unique persistent identifiers instead of name strings when referring to taxa. The most commonly used identifiers are Life Science Identifiers (LSID), which are traditionally used in relational databases, and more recently HTTP URIs, which are applied on the Semantic Web by Linked Data applications. We introduce two models for expressing taxonomic information in the form of species checklists. First, we show how species checklists are presented in a relational database system using LSIDs. Then, in order to gain a more detailed representation of taxonomic information, we introduce meta-ontology TaxMeOn to model the same content as Semantic Web ontologies where taxa are identified using HTTP URIs. We also explore how changes in scientific names can be managed over time. The use of HTTP URIs is preferable for presenting the taxonomic information of species checklists. An HTTP URI identifies a taxon and operates as a web address from which additional information about the taxon can be located, unlike LSID. This enables the integration of biological data from different sources on the web using Linked Data principles and prevents the formation of information silos. The Linked Data approach allows a user to assemble information and evaluate the complexity of taxonomical data based on conflicting views of taxonomic classifications. Using HTTP URIs and Semantic Web technologies also facilitate the representation of the semantics of biological data, and in this way, the creation of more "intelligent" biological applications and services.

  20. Application of the Financial Industry Business Ontology (FIBO) for development of a financial organization ontology

    NASA Astrophysics Data System (ADS)

    Petrova, G. G.; Tuzovsky, A. F.; Aksenova, N. V.

    2017-01-01

    The article considers an approach to a formalized description and meaning harmonization for financial terms and means of semantic modeling. Ontologies for the semantic models are described with the help of special languages developed for the Semantic Web. Results of FIBO application to solution of different tasks in the Russian financial sector are given.

  1. The neural and computational bases of semantic cognition.

    PubMed

    Ralph, Matthew A Lambon; Jefferies, Elizabeth; Patterson, Karalyn; Rogers, Timothy T

    2017-01-01

    Semantic cognition refers to our ability to use, manipulate and generalize knowledge that is acquired over the lifespan to support innumerable verbal and non-verbal behaviours. This Review summarizes key findings and issues arising from a decade of research into the neurocognitive and neurocomputational underpinnings of this ability, leading to a new framework that we term controlled semantic cognition (CSC). CSC offers solutions to long-standing queries in philosophy and cognitive science, and yields a convergent framework for understanding the neural and computational bases of healthy semantic cognition and its dysfunction in brain disorders.

  2. Automatic event recognition and anomaly detection with attribute grammar by learning scene semantics

    NASA Astrophysics Data System (ADS)

    Qi, Lin; Yao, Zhenyu; Li, Li; Dong, Junyu

    2007-11-01

    In this paper we present a novel framework for automatic event recognition and abnormal behavior detection with attribute grammar by learning scene semantics. This framework combines learning scene semantics by trajectory analysis and constructing attribute grammar-based event representation. The scene and event information is learned automatically. Abnormal behaviors that disobey scene semantics or event grammars rules are detected. By this method, an approach to understanding video scenes is achieved. Further more, with this prior knowledge, the accuracy of abnormal event detection is increased.

  3. Component, Context, and Manufacturing Model Library (C2M2L)

    DTIC Science & Technology

    2012-11-01

    123 5.1 MML Population and Web Service Interface...104 Table 41. Relevant Questions with Associated Web Services...the models, and implementing web services that provide semantically aware programmatic access to the models, including implementing the MS&T

  4. Chemical Entity Semantic Specification: Knowledge representation for efficient semantic cheminformatics and facile data integration

    PubMed Central

    2011-01-01

    Background Over the past several centuries, chemistry has permeated virtually every facet of human lifestyle, enriching fields as diverse as medicine, agriculture, manufacturing, warfare, and electronics, among numerous others. Unfortunately, application-specific, incompatible chemical information formats and representation strategies have emerged as a result of such diverse adoption of chemistry. Although a number of efforts have been dedicated to unifying the computational representation of chemical information, disparities between the various chemical databases still persist and stand in the way of cross-domain, interdisciplinary investigations. Through a common syntax and formal semantics, Semantic Web technology offers the ability to accurately represent, integrate, reason about and query across diverse chemical information. Results Here we specify and implement the Chemical Entity Semantic Specification (CHESS) for the representation of polyatomic chemical entities, their substructures, bonds, atoms, and reactions using Semantic Web technologies. CHESS provides means to capture aspects of their corresponding chemical descriptors, connectivity, functional composition, and geometric structure while specifying mechanisms for data provenance. We demonstrate that using our readily extensible specification, it is possible to efficiently integrate multiple disparate chemical data sources, while retaining appropriate correspondence of chemical descriptors, with very little additional effort. We demonstrate the impact of some of our representational decisions on the performance of chemically-aware knowledgebase searching and rudimentary reaction candidate selection. Finally, we provide access to the tools necessary to carry out chemical entity encoding in CHESS, along with a sample knowledgebase. Conclusions By harnessing the power of Semantic Web technologies with CHESS, it is possible to provide a means of facile cross-domain chemical knowledge integration with full preservation of data correspondence and provenance. Our representation builds on existing cheminformatics technologies and, by the virtue of RDF specification, remains flexible and amenable to application- and domain-specific annotations without compromising chemical data integration. We conclude that the adoption of a consistent and semantically-enabled chemical specification is imperative for surviving the coming chemical data deluge and supporting systems science research. PMID:21595881

  5. Chemical Entity Semantic Specification: Knowledge representation for efficient semantic cheminformatics and facile data integration.

    PubMed

    Chepelev, Leonid L; Dumontier, Michel

    2011-05-19

    Over the past several centuries, chemistry has permeated virtually every facet of human lifestyle, enriching fields as diverse as medicine, agriculture, manufacturing, warfare, and electronics, among numerous others. Unfortunately, application-specific, incompatible chemical information formats and representation strategies have emerged as a result of such diverse adoption of chemistry. Although a number of efforts have been dedicated to unifying the computational representation of chemical information, disparities between the various chemical databases still persist and stand in the way of cross-domain, interdisciplinary investigations. Through a common syntax and formal semantics, Semantic Web technology offers the ability to accurately represent, integrate, reason about and query across diverse chemical information. Here we specify and implement the Chemical Entity Semantic Specification (CHESS) for the representation of polyatomic chemical entities, their substructures, bonds, atoms, and reactions using Semantic Web technologies. CHESS provides means to capture aspects of their corresponding chemical descriptors, connectivity, functional composition, and geometric structure while specifying mechanisms for data provenance. We demonstrate that using our readily extensible specification, it is possible to efficiently integrate multiple disparate chemical data sources, while retaining appropriate correspondence of chemical descriptors, with very little additional effort. We demonstrate the impact of some of our representational decisions on the performance of chemically-aware knowledgebase searching and rudimentary reaction candidate selection. Finally, we provide access to the tools necessary to carry out chemical entity encoding in CHESS, along with a sample knowledgebase. By harnessing the power of Semantic Web technologies with CHESS, it is possible to provide a means of facile cross-domain chemical knowledge integration with full preservation of data correspondence and provenance. Our representation builds on existing cheminformatics technologies and, by the virtue of RDF specification, remains flexible and amenable to application- and domain-specific annotations without compromising chemical data integration. We conclude that the adoption of a consistent and semantically-enabled chemical specification is imperative for surviving the coming chemical data deluge and supporting systems science research.

  6. Exposing Coverage Data to the Semantic Web within the MELODIES project: Challenges and Solutions

    NASA Astrophysics Data System (ADS)

    Riechert, Maik; Blower, Jon; Griffiths, Guy

    2016-04-01

    Coverage data, typically big in data volume, assigns values to a given set of spatiotemporal positions, together with metadata on how to interpret those values. Existing storage formats like netCDF, HDF and GeoTIFF all have various restrictions that prevent them from being preferred formats for use over the web, especially the semantic web. Factors that are relevant here are the processing complexity, the semantic richness of the metadata, and the ability to request partial information, such as a subset or just the appropriate metadata. Making coverage data available within web browsers opens the door to new ways for working with such data, including new types of visualization and on-the-fly processing. As part of the European project MELODIES (http://melodiesproject.eu) we look into the challenges of exposing such coverage data in an interoperable and web-friendly way, and propose solutions using a host of emerging technologies like JSON-LD, the DCAT and GeoDCAT-AP ontologies, the CoverageJSON format, and new approaches to REST APIs for coverage data. We developed the CoverageJSON format within the MELODIES project as an additional way to expose coverage data to the web, next to having simple rendered images available using standards like OGC's WMS. CoverageJSON partially incorporates JSON-LD but does not encode individual data values as semantic resources, making use of the technology in a practical manner. The development also focused on it being a potential output format for OGC WCS. We will demonstrate how existing netCDF data can be exposed as CoverageJSON resources on the web together with a REST API that allows users to explore the data and run operations such as spatiotemporal subsetting. We will show various use cases from the MELODIES project, including reclassification of a Land Cover dataset client-side within the browser with the ability for the user to influence the reclassification result by making use of the above technologies.

  7. The SADI Personal Health Lens: A Web Browser-Based System for Identifying Personally Relevant Drug Interactions.

    PubMed

    Vandervalk, Ben; McCarthy, E Luke; Cruz-Toledo, José; Klein, Artjom; Baker, Christopher J O; Dumontier, Michel; Wilkinson, Mark D

    2013-04-05

    The Web provides widespread access to vast quantities of health-related information that can improve quality-of-life through better understanding of personal symptoms, medical conditions, and available treatments. Unfortunately, identifying a credible and personally relevant subset of information can be a time-consuming and challenging task for users without a medical background. The objective of the Personal Health Lens system is to aid users when reading health-related webpages by providing warnings about personally relevant drug interactions. More broadly, we wish to present a prototype for a novel, generalizable approach to facilitating interactions between a patient, their practitioner(s), and the Web. We utilized a distributed, Semantic Web-based architecture for recognizing personally dangerous drugs consisting of: (1) a private, local triple store of personal health information, (2) Semantic Web services, following the Semantic Automated Discovery and Integration (SADI) design pattern, for text mining and identifying substance interactions, (3) a bookmarklet to trigger analysis of a webpage and annotate it with personalized warnings, and (4) a semantic query that acts as an abstract template of the analytical workflow to be enacted by the system. A prototype implementation of the system is provided in the form of a Java standalone executable JAR file. The JAR file bundles all components of the system: the personal health database, locally-running versions of the SADI services, and a javascript bookmarklet that triggers analysis of a webpage. In addition, the demonstration includes a hypothetical personal health profile, allowing the system to be used immediately without configuration. Usage instructions are provided. The main strength of the Personal Health Lens system is its ability to organize medical information and to present it to the user in a personalized and contextually relevant manner. While this prototype was limited to a single knowledge domain (drug/drug interactions), the proposed architecture is generalizable, and could act as the foundation for much richer personalized-health-Web clients, while importantly providing a novel and personalizable mechanism for clinical experts to inject their expertise into the browsing experience of their patients in the form of customized semantic queries and ontologies.

  8. The SADI Personal Health Lens: A Web Browser-Based System for Identifying Personally Relevant Drug Interactions

    PubMed Central

    Vandervalk, Ben; McCarthy, E Luke; Cruz-Toledo, José; Klein, Artjom; Baker, Christopher J O; Dumontier, Michel

    2013-01-01

    Background The Web provides widespread access to vast quantities of health-related information that can improve quality-of-life through better understanding of personal symptoms, medical conditions, and available treatments. Unfortunately, identifying a credible and personally relevant subset of information can be a time-consuming and challenging task for users without a medical background. Objective The objective of the Personal Health Lens system is to aid users when reading health-related webpages by providing warnings about personally relevant drug interactions. More broadly, we wish to present a prototype for a novel, generalizable approach to facilitating interactions between a patient, their practitioner(s), and the Web. Methods We utilized a distributed, Semantic Web-based architecture for recognizing personally dangerous drugs consisting of: (1) a private, local triple store of personal health information, (2) Semantic Web services, following the Semantic Automated Discovery and Integration (SADI) design pattern, for text mining and identifying substance interactions, (3) a bookmarklet to trigger analysis of a webpage and annotate it with personalized warnings, and (4) a semantic query that acts as an abstract template of the analytical workflow to be enacted by the system. Results A prototype implementation of the system is provided in the form of a Java standalone executable JAR file. The JAR file bundles all components of the system: the personal health database, locally-running versions of the SADI services, and a javascript bookmarklet that triggers analysis of a webpage. In addition, the demonstration includes a hypothetical personal health profile, allowing the system to be used immediately without configuration. Usage instructions are provided. Conclusions The main strength of the Personal Health Lens system is its ability to organize medical information and to present it to the user in a personalized and contextually relevant manner. While this prototype was limited to a single knowledge domain (drug/drug interactions), the proposed architecture is generalizable, and could act as the foundation for much richer personalized-health-Web clients, while importantly providing a novel and personalizable mechanism for clinical experts to inject their expertise into the browsing experience of their patients in the form of customized semantic queries and ontologies. PMID:23612187

  9. Linked Data: what does it offer Earth Sciences?

    NASA Astrophysics Data System (ADS)

    Cox, Simon; Schade, Sven

    2010-05-01

    'Linked Data' is a current buzz-phrase promoting access to various forms of data on the internet. It starts from the two principles that have underpinned the architecture and scalability of the World Wide Web: 1. Universal Resource Identifiers - using the http protocol which is supported by the DNS system. 2. Hypertext - in which URIs of related resources are embedded within a document. Browsing is the key mode of interaction, with traversal of links between resources under control of the client. Linked Data also adds, or re-emphasizes: • Content negotiation - whereby the client uses http headers to tell the service what representation of a resource is acceptable, • Semantic Web principles - formal semantics for links, following the RDF data model and encoding, and • The 'mashup' effect - in which original and unexpected value may emerge from reuse of data, even if published in raw or unpolished form. Linked Data promotes typed links to all kinds of data, so is where the semantic web meets the 'deep web', i.e. resources which may be accessed using web protocols, but are in representations not indexed by search engines. Earth sciences are data rich, but with a strong legacy of specialized formats managed and processed by disconnected applications. However, most contemporary research problems require a cross-disciplinary approach, in which the heterogeneity resulting from that legacy is a significant challenge. In this context, Linked Data clearly has much to offer the earth sciences. But, there are some important questions to answer. What is a resource? Most earth science data is organized in arrays and databases. A subset useful for a particular study is usually identified by a parameterized query. The Linked Data paradigm emerged from the world of documents, and will often only resolve data-sets. It is impractical to create even nested navigation resources containing links to all potentially useful objects or subsets. From the viewpoint of human user interfaces, the browse metaphor, which has been such an important part of the success of the web, must be augmented with other interaction mechanisms, including query. What are the impacts on search and metadata? Hypertext provides links selected by the page provider. However, science should endeavor to be exhaustive in its use of data. Resource discovery through links must be supplemented by more systematic data discovery through search. Conversely, the crawlers that generate search indexes must be fed by resource providers (a) serving navigation pages with links to every dataset (b) adding enough 'metadata' (semantics) on each link to effectively populate the indexes. Linked Data makes this easier due to its integration with semantic web technologies, including structured vocabularies. What is the relation between structured data and Linked Data? Linked Data has focused on web-pages (primarily HTML) for human browsing, and RDF for semantics, assuming that other representations are opaque. However, this overlooks the wealth of XML data on the web, some of which is structured according to XML Schemas that provide semantics. Technical applications can use content-negotiation to get a structured representation, and exploit its semantics. Particularly relevant for earth sciences are data representations based on OGC Geography Markup Language (GML), such as GeoSciML, O&M and MOLES. GML was strongly influenced by RDF, and typed links are intrinsic: xlink:href plays the role that rdf:resource does in RDF representations. Services which expose GML-formatted resources (such as OGC Web Feature Service) are a prototype of Linked Data. Giving credit where it is due. Organizations investing in data collection may be reluctant to publish the raw data prior to completing an initial analysis. To encourage early data publication the system must provide suitable incentives, and citation analysis must recognize the increasing diversity of publication routes and forms. Linked Data makes it easier to include rich citation information when data is both published and used.

  10. Integrated Japanese Dependency Analysis Using a Dialog Context

    NASA Astrophysics Data System (ADS)

    Ikegaya, Yuki; Noguchi, Yasuhiro; Kogure, Satoru; Itoh, Toshihiko; Konishi, Tatsuhiro; Kondo, Makoto; Asoh, Hideki; Takagi, Akira; Itoh, Yukihiro

    This paper describes how to perform syntactic parsing and semantic analysis in a dialog system. The paper especially deals with how to disambiguate potentially ambiguous sentences using the contextual information. Although syntactic parsing and semantic analysis are often studied independently of each other, correct parsing of a sentence often requires the semantic information on the input and/or the contextual information prior to the input. Accordingly, we merge syntactic parsing with semantic analysis, which enables syntactic parsing taking advantage of the semantic content of an input and its context. One of the biggest problems of semantic analysis is how to interpret dependency structures. We employ a framework for semantic representations that circumvents the problem. Within the framework, the meaning of any predicate is converted into a semantic representation which only permits a single type of predicate: an identifying predicate "aru". The semantic representations are expressed as sets of "attribute-value" pairs, and those semantic representations are stored in the context information. Our system disambiguates syntactic/semantic ambiguities of inputs referring to the attribute-value pairs in the context information. We have experimentally confirmed the effectiveness of our approach; specifically, the experiment confirmed high accuracy of parsing and correctness of generated semantic representations.

  11. Generation of open biomedical datasets through ontology-driven transformation and integration processes.

    PubMed

    Carmen Legaz-García, María Del; Miñarro-Giménez, José Antonio; Menárguez-Tortosa, Marcos; Fernández-Breis, Jesualdo Tomás

    2016-06-03

    Biomedical research usually requires combining large volumes of data from multiple heterogeneous sources, which makes difficult the integrated exploitation of such data. The Semantic Web paradigm offers a natural technological space for data integration and exploitation by generating content readable by machines. Linked Open Data is a Semantic Web initiative that promotes the publication and sharing of data in machine readable semantic formats. We present an approach for the transformation and integration of heterogeneous biomedical data with the objective of generating open biomedical datasets in Semantic Web formats. The transformation of the data is based on the mappings between the entities of the data schema and the ontological infrastructure that provides the meaning to the content. Our approach permits different types of mappings and includes the possibility of defining complex transformation patterns. Once the mappings are defined, they can be automatically applied to datasets to generate logically consistent content and the mappings can be reused in further transformation processes. The results of our research are (1) a common transformation and integration process for heterogeneous biomedical data; (2) the application of Linked Open Data principles to generate interoperable, open, biomedical datasets; (3) a software tool, called SWIT, that implements the approach. In this paper we also describe how we have applied SWIT in different biomedical scenarios and some lessons learned. We have presented an approach that is able to generate open biomedical repositories in Semantic Web formats. SWIT is able to apply the Linked Open Data principles in the generation of the datasets, so allowing for linking their content to external repositories and creating linked open datasets. SWIT datasets may contain data from multiple sources and schemas, thus becoming integrated datasets.

  12. Semantic-based surveillance video retrieval.

    PubMed

    Hu, Weiming; Xie, Dan; Fu, Zhouyu; Zeng, Wenrong; Maybank, Steve

    2007-04-01

    Visual surveillance produces large amounts of video data. Effective indexing and retrieval from surveillance video databases are very important. Although there are many ways to represent the content of video clips in current video retrieval algorithms, there still exists a semantic gap between users and retrieval systems. Visual surveillance systems supply a platform for investigating semantic-based video retrieval. In this paper, a semantic-based video retrieval framework for visual surveillance is proposed. A cluster-based tracking algorithm is developed to acquire motion trajectories. The trajectories are then clustered hierarchically using the spatial and temporal information, to learn activity models. A hierarchical structure of semantic indexing and retrieval of object activities, where each individual activity automatically inherits all the semantic descriptions of the activity model to which it belongs, is proposed for accessing video clips and individual objects at the semantic level. The proposed retrieval framework supports various queries including queries by keywords, multiple object queries, and queries by sketch. For multiple object queries, succession and simultaneity restrictions, together with depth and breadth first orders, are considered. For sketch-based queries, a method for matching trajectories drawn by users to spatial trajectories is proposed. The effectiveness and efficiency of our framework are tested in a crowded traffic scene.

  13. Application of a temporal reasoning framework tool in analysis of medical device adverse events.

    PubMed

    Clark, Kimberly K; Sharma, Deepak K; Chute, Christopher G; Tao, Cui

    2011-01-01

    The Clinical Narrative Temporal Relation Ontology (CNTRO)1 project offers a semantic-web based reasoning framework, which represents temporal events and relationships within clinical narrative texts, and infer new knowledge over them. In this paper, the CNTRO reasoning framework is applied to temporal analysis of medical device adverse event files. One specific adverse event was used as a test case: late stent thrombosis. Adverse event narratives were obtained from the Food and Drug Administration's (FDA) Manufacturing and User Facility Device Experience (MAUDE) database2. 15 adverse event files in which late stent thrombosis was confirmed were randomly selected across multiple drug eluting stent devices. From these files, 81 events and 72 temporal relations were annotated. 73 temporal questions were generated, of which 65 were correctly answered by the CNTRO system. This results in an overall accuracy of 89%. This system should be pursued further to continue assessing its potential benefits in temporal analysis of medical device adverse events.

  14. An ontological knowledge framework for adaptive medical workflow.

    PubMed

    Dang, Jiangbo; Hedayati, Amir; Hampel, Ken; Toklu, Candemir

    2008-10-01

    As emerging technologies, semantic Web and SOA (Service-Oriented Architecture) allow BPMS (Business Process Management System) to automate business processes that can be described as services, which in turn can be used to wrap existing enterprise applications. BPMS provides tools and methodologies to compose Web services that can be executed as business processes and monitored by BPM (Business Process Management) consoles. Ontologies are a formal declarative knowledge representation model. It provides a foundation upon which machine understandable knowledge can be obtained, and as a result, it makes machine intelligence possible. Healthcare systems can adopt these technologies to make them ubiquitous, adaptive, and intelligent, and then serve patients better. This paper presents an ontological knowledge framework that covers healthcare domains that a hospital encompasses-from the medical or administrative tasks, to hospital assets, medical insurances, patient records, drugs, and regulations. Therefore, our ontology makes our vision of personalized healthcare possible by capturing all necessary knowledge for a complex personalized healthcare scenario involving patient care, insurance policies, and drug prescriptions, and compliances. For example, our ontology facilitates a workflow management system to allow users, from physicians to administrative assistants, to manage, even create context-aware new medical workflows and execute them on-the-fly.

  15. Actionable, long-term stable and semantic web compatible identifiers for access to biological collection objects

    PubMed Central

    Hyam, Roger; Hagedorn, Gregor; Chagnoux, Simon; Röpert, Dominik; Casino, Ana; Droege, Gabi; Glöckler, Falko; Gödderz, Karsten; Groom, Quentin; Hoffmann, Jana; Holleman, Ayco; Kempa, Matúš; Koivula, Hanna; Marhold, Karol; Nicolson, Nicky; Smith, Vincent S.; Triebel, Dagmar

    2017-01-01

    With biodiversity research activities being increasingly shifted to the web, the need for a system of persistent and stable identifiers for physical collection objects becomes increasingly pressing. The Consortium of European Taxonomic Facilities agreed on a common system of HTTP-URI-based stable identifiers which is now rolled out to its member organizations. The system follows Linked Open Data principles and implements redirection mechanisms to human-readable and machine-readable representations of specimens facilitating seamless integration into the growing semantic web. The implementation of stable identifiers across collection organizations is supported with open source provider software scripts, best practices documentations and recommendations for RDF metadata elements facilitating harmonized access to collection information in web portals. Database URL: http://cetaf.org/cetaf-stable-identifiers PMID:28365724

  16. WikiHyperGlossary (WHG): an information literacy technology for chemistry documents.

    PubMed

    Bauer, Michael A; Berleant, Daniel; Cornell, Andrew P; Belford, Robert E

    2015-01-01

    The WikiHyperGlossary is an information literacy technology that was created to enhance reading comprehension of documents by connecting them to socially generated multimedia definitions as well as semantically relevant data. The WikiHyperGlossary enhances reading comprehension by using the lexicon of a discipline to generate dynamic links in a document to external resources that can provide implicit information the document did not explicitly provide. Currently, the most common method to acquire additional information when reading a document is to access a search engine and browse the web. This may lead to skimming of multiple documents with the novice actually never returning to the original document of interest. The WikiHyperGlossary automatically brings information to the user within the current document they are reading, enhancing the potential for deeper document understanding. The WikiHyperGlossary allows users to submit a web URL or text to be processed against a chosen lexicon, returning the document with tagged terms. The selection of a tagged term results in the appearance of the WikiHyperGlossary Portlet containing a definition, and depending on the type of word, tabs to additional information and resources. Current types of content include multimedia enhanced definitions, ChemSpider query results, 3D molecular structures, and 2D editable structures connected to ChemSpider queries. Existing glossaries can be bulk uploaded, locked for editing and associated with multiple social generated definitions. The WikiHyperGlossary leverages both social and semantic web technologies to bring relevant information to a document. This can not only aid reading comprehension, but increases the users' ability to obtain additional information within the document. We have demonstrated a molecular editor enabled knowledge framework that can result in a semantic web inductive reasoning process, and integration of the WikiHyperGlossary into other software technologies, like the Jikitou Biomedical Question and Answer system. Although this work was developed in the chemical sciences and took advantage of open science resources and initiatives, the technology is extensible to other knowledge domains. Through the DeepLit (Deeper Literacy: Connecting Documents to Data and Discourse) startup, we seek to extend WikiHyperGlossary technologies to other knowledge domains, and integrate them into other knowledge acquisition workflows.

  17. Ontology development for provenance tracing in National Climate Assessment of the US Global Change Research Program

    NASA Astrophysics Data System (ADS)

    Ma, X.; Zheng, J. G.; Goldstein, J.; Duggan, B.; Xu, J.; Du, C.; Akkiraju, A.; Aulenbach, S.; Tilmes, C.; Fox, P. A.

    2013-12-01

    The periodical National Climate Assessment (NCA) of the US Global Change Research Program (USGCRP) [1] produces reports about findings of global climate change and the impacts of climate change on the United States. Those findings are of great public and academic concerns and are used in policy and management decisions, which make the provenance information of findings in those reports especially important. The USGCRP is developing a Global Change Information System (GCIS), in which the NCA reports and associated provenance information are the primary records. We were modeling and developing Semantic Web applications for the GCIS. By applying a use case-driven iterative methodology [2], we developed an ontology [3] to represent the content structure of a report and the associated provenance information. We also mapped the classes and properties in our ontology into the W3C PROV-O ontology [4] to realize the formal presentation of provenance. We successfully implemented the ontology in several pilot systems for a recent National Climate Assessment report (i.e., the NCA3). They provide users the functionalities to browse and search provenance information with topics of interest. Provenance information of the NCA3 has been made structured and interoperable by applying the developed ontology. Besides the pilot systems we developed, other tools and services are also able to interact with the data in the context of the 'Web of data' and thus create added values. Our research shows that the use case-driven iterative method bridges the gap between Semantic Web researchers and earth and environmental scientists and is able to be deployed rapidly for developing Semantic Web applications. Our work also provides first-hand experience for re-using the W3C PROV-O ontology in the field of earth and environmental sciences, as the PROV-O ontology is recently ratified (on 04/30/2013) by the W3C as a recommendation and relevant applications are still rare. [1] http://www.globalchange.gov [2] Fox, P., McGuinness, D.L., 2008. TWC Semantic Web Methodology. Accessible at: http://tw.rpi.edu/web/doc/TWC_SemanticWebMethodology [3] https://scm.escience.rpi.edu/svn/public/projects/gcis/trunk/rdf/schema/GCISOntology.ttl [4] http://www.w3.org/TR/prov-o/

  18. Knowledge-driven enhancements for task composition in bioinformatics.

    PubMed

    Sutherland, Karen; McLeod, Kenneth; Ferguson, Gus; Burger, Albert

    2009-10-01

    A key application area of semantic technologies is the fast-developing field of bioinformatics. Sealife was a project within this field with the aim of creating semantics-based web browsing capabilities for the Life Sciences. This includes meaningfully linking significant terms from the text of a web page to executable web services. It also involves the semantic mark-up of biological terms, linking them to biomedical ontologies, then discovering and executing services based on terms that interest the user. A system was produced which allows a user to identify terms of interest on a web page and subsequently connects these to a choice of web services which can make use of these inputs. Elements of Artificial Intelligence Planning build on this to present a choice of higher level goals, which can then be broken down to construct a workflow. An Argumentation System was implemented to evaluate the results produced by three different gene expression databases. An evaluation of these modules was carried out on users from a variety of backgrounds. Users with little knowledge of web services were able to achieve tasks that used several services in much less time than they would have taken to do this manually. The Argumentation System was also considered a useful resource and feedback was collected on the best way to present results. Overall the system represents a move forward in helping users to both construct workflows and analyse results by incorporating specific domain knowledge into the software. It also provides a mechanism by which web pages can be linked to web services. However, this work covers a specific domain and much co-ordinated effort is needed to make all web services available for use in such a way, i.e. the integration of underlying knowledge is a difficult but essential task.

  19. Mining Genotype-Phenotype Associations from Public Knowledge Sources via Semantic Web Querying

    PubMed Central

    Kiefer, Richard C.; Freimuth, Robert R.; Chute, Christopher G; Pathak, Jyotishman

    Gene Wiki Plus (GeneWiki+) and the Online Mendelian Inheritance in Man (OMIM) are publicly available resources for sharing information about disease-gene and gene-SNP associations in humans. While immensely useful to the scientific community, both resources are manually curated, thereby making the data entry and publication process time-consuming, and to some degree, error-prone. To this end, this study investigates Semantic Web technologies to validate existing and potentially discover new genotype-phenotype associations in GWP and OMIM. In particular, we demonstrate the applicability of SPARQL queries for identifying associations not explicitly stated for commonly occurring chronic diseases in GWP and OMIM, and report our preliminary findings for coverage, completeness, and validity of the associations. Our results highlight the benefits of Semantic Web querying technology to validate existing disease-gene associations as well as identify novel associations although further evaluation and analysis is required before such information can be applied and used effectively. PMID:24303249

  20. SPARQL Assist language-neutral query composer

    PubMed Central

    2012-01-01

    Background SPARQL query composition is difficult for the lay-person, and even the experienced bioinformatician in cases where the data model is unfamiliar. Moreover, established best-practices and internationalization concerns dictate that the identifiers for ontological terms should be opaque rather than human-readable, which further complicates the task of synthesizing queries manually. Results We present SPARQL Assist: a Web application that addresses these issues by providing context-sensitive type-ahead completion during SPARQL query construction. Ontological terms are suggested using their multi-lingual labels and descriptions, leveraging existing support for internationalization and language-neutrality. Moreover, the system utilizes the semantics embedded in ontologies, and within the query itself, to help prioritize the most likely suggestions. Conclusions To ensure success, the Semantic Web must be easily available to all users, regardless of locale, training, or preferred language. By enhancing support for internationalization, and moreover by simplifying the manual construction of SPARQL queries through the use of controlled-natural-language interfaces, we believe we have made some early steps towards simplifying access to Semantic Web resources. PMID:22373327

  1. SPARQL assist language-neutral query composer.

    PubMed

    McCarthy, Luke; Vandervalk, Ben; Wilkinson, Mark

    2012-01-25

    SPARQL query composition is difficult for the lay-person, and even the experienced bioinformatician in cases where the data model is unfamiliar. Moreover, established best-practices and internationalization concerns dictate that the identifiers for ontological terms should be opaque rather than human-readable, which further complicates the task of synthesizing queries manually. We present SPARQL Assist: a Web application that addresses these issues by providing context-sensitive type-ahead completion during SPARQL query construction. Ontological terms are suggested using their multi-lingual labels and descriptions, leveraging existing support for internationalization and language-neutrality. Moreover, the system utilizes the semantics embedded in ontologies, and within the query itself, to help prioritize the most likely suggestions. To ensure success, the Semantic Web must be easily available to all users, regardless of locale, training, or preferred language. By enhancing support for internationalization, and moreover by simplifying the manual construction of SPARQL queries through the use of controlled-natural-language interfaces, we believe we have made some early steps towards simplifying access to Semantic Web resources.

  2. Exploration of SWRL Rule Bases through Visualization, Paraphrasing, and Categorization of Rules

    NASA Astrophysics Data System (ADS)

    Hassanpour, Saeed; O'Connor, Martin J.; Das, Amar K.

    Rule bases are increasingly being used as repositories of knowledge content on the Semantic Web. As the size and complexity of these rule bases increases, developers and end users need methods of rule abstraction to facilitate rule management. In this paper, we describe a rule abstraction method for Semantic Web Rule Language (SWRL) rules that is based on lexical analysis and a set of heuristics. Our method results in a tree data structure that we exploit in creating techniques to visualize, paraphrase, and categorize SWRL rules. We evaluate our approach by applying it to several biomedical ontologies that contain SWRL rules, and show how the results reveal rule patterns within the rule base. We have implemented our method as a plug-in tool for Protégé-OWL, the most widely used ontology modeling software for the Semantic Web. Our tool can allow users to rapidly explore content and patterns in SWRL rule bases, enabling their acquisition and management.

  3. Publishing high-quality climate data on the semantic web

    NASA Astrophysics Data System (ADS)

    Woolf, Andrew; Haller, Armin; Lefort, Laurent; Taylor, Kerry

    2013-04-01

    The effort over more than a decade to establish the semantic web [Berners-Lee et. al., 2001] has received a major boost in recent years through the Open Government movement. Governments around the world are seeking technical solutions to enable more open and transparent access to Public Sector Information (PSI) they hold. Existing technical protocols and data standards tend to be domain specific, and so limit the ability to publish and integrate data across domains (health, environment, statistics, education, etc.). The web provides a domain-neutral platform for information publishing, and has proven itself beyond expectations for publishing and linking human-readable electronic documents. Extending the web pattern to data (often called Web 3.0) offers enormous potential. The semantic web applies the basic web principles to data [Berners-Lee, 2006]: using URIs as identifiers (for data objects and real-world 'things', instead of documents) making the URIs actionable by providing useful information via HTTP using a common exchange standard (serialised RDF for data instead of HTML for documents) establishing typed links between information objects to enable linking and integration Leading examples of 'linked data' for publishing PSI may be found in both the UK (http://data.gov.uk/linked-data) and US (http://www.data.gov/page/semantic-web). The Bureau of Meteorology (BoM) is Australia's national meteorological agency, and has a new mandate to establish a national environmental information infrastructure (under the National Plan for Environmental Information, NPEI [BoM, 2012a]). While the initial approach is based on the existing best practice Spatial Data Infrastructure (SDI) architecture, linked-data is being explored as a technological alternative that shows great promise for the future. We report here the first trial of government linked-data in Australia under data.gov.au. In this initial pilot study, we have taken BoM's new high-quality reference surface temperature dataset, Australian Climate Observations Reference Network - Surface Air Temperature (ACORN-SAT) [BoM, 2012b]. This dataset contains daily homogenised surface temperature observations for 112 locations around Australia, dating back to 1910. An ontology for the dataset was developed [Lefort et. al., 2012], based on the existing Semantic Sensor Network ontology [Compton et. al., 2012] and the W3C RDF Data Cube vocabulary [W3C, 2012]. Additional vocabularies were developed, e.g. for BoM weather stations and rainfall districts. The dataset was converted to RDF and loaded into an RDF triplestore. The Linked-Data API (http://code.google.com/p/linked-data-api) was used to configure specific URI query patterns (e.g. for observation timeseries slices by station), and a SPARQL endpoint was provided for direct querying. In addition, some demonstration 'mash-ups' were developed, providing an interactive browser-based interface to the temperature timeseries. References [Berners-Lee et. al., 2001] Tim Berners-Lee, James Hendler and Ora Lassila (2001), "The Semantic Web", Scientific American, May 2001. [Berners-Lee, 2006] Tim Berners-Lee (2006), "Linked Data - Design Issues", W3C [http://www.w3.org/DesignIssues/LinkedData.html] [BoM, 2012a] Bureau of Meteorology (2012), "Environmental information" [http://www.bom.gov.au/environment/] [BoM, 2012b] Bureau of Meteorology (2012), "Australian Climate Observations Reference Network - Surface Air Temperature" [http://www.bom.gov.au/climate/change/acorn-sat/] [Compton et. al., 2012] Michael Compton, Payam Barnaghi, Luis Bermudez, Raul Garcia-Castro, Oscar Corcho, Simon Cox, John Graybeal, Manfred Hauswirth, Cory Henson, Arthur Herzog, Vincent Huang, Krzysztof Janowicz, W. David Kelsey, Danh Le Phuoc, Laurent Lefort, Myriam Leggieri, Holger Neuhaus, Andriy Nikolov, Kevin Page, Alexandre Passant, Amit Sheth, Kerry Taylor (2012), "The SSN Ontology of the W3C Semantic Sensor Network Incubator Group", J. Web Semantics, 17 (2012) [http://dx.doi.org/10.1016/j.websem.2012.05.003] [Lefort et. al., 2012] Laurent Lefort, Josh Bobruk, Armin Haller, Kerry Taylor and Andrew Woolf (2012), "A Linked Sensor Data Cube for a 100 Year Homogenised daily temperature dataset", Proc. Semantic Sensor Networks 2012 [http://ceur-ws.org/Vol-904/paper10.pdf] [W3C, 2012] W3C (2012), "The RDF Data Cube Vocabulary", [http://www.w3.org/TR/vocab-data-cube/

  4. Ontology-Based Administration of Web Directories

    NASA Astrophysics Data System (ADS)

    Horvat, Marko; Gledec, Gordan; Bogunović, Nikola

    Administration of a Web directory and maintenance of its content and the associated structure is a delicate and labor intensive task performed exclusively by human domain experts. Subsequently there is an imminent risk of a directory structures becoming unbalanced, uneven and difficult to use to all except for a few users proficient with the particular Web directory and its domain. These problems emphasize the need to establish two important issues: i) generic and objective measures of Web directories structure quality, and ii) mechanism for fully automated development of a Web directory's structure. In this paper we demonstrate how to formally and fully integrate Web directories with the Semantic Web vision. We propose a set of criteria for evaluation of a Web directory's structure quality. Some criterion functions are based on heuristics while others require the application of ontologies. We also suggest an ontology-based algorithm for construction of Web directories. By using ontologies to describe the semantics of Web resources and Web directories' categories it is possible to define algorithms that can build or rearrange the structure of a Web directory. Assessment procedures can provide feedback and help steer the ontology-based construction process. The issues raised in the article can be equally applied to new and existing Web directories.

  5. The EuroGEOSS Advanced Operating Capacity

    NASA Astrophysics Data System (ADS)

    Nativi, S.; Vaccari, L.; Stock, K.; Diaz, L.; Santoro, M.

    2012-04-01

    The concept of multidisciplinary interoperability for managing societal issues is a major challenge presently faced by the Earth and Space Science Informatics community. With this in mind, EuroGEOSS project was launched on May 1st 2009 for a three year period aiming to demonstrate the added value to the scientific community and society of providing existing earth observing systems and applications in an interoperable manner and used within the GEOSS and INSPIRE frameworks. In the first period, the project built an Initial Operating Capability (IOC) in the three strategic areas of Drought, Forestry and Biodiversity; this was then enhanced into an Advanced Operating Capacity (AOC) for multidisciplinary interoperability. Finally, the project extended the infrastructure to other scientific domains (geology, hydrology, etc.). The EuroGEOSS multidisciplinary AOC is based on the Brokering Approach. This approach aims to achieve multidisciplinary interoperability by developing an extended SOA (Service Oriented Architecture) where a new type of "expert" components is introduced: the Broker. These implement all mediation and distribution functionalities needed to interconnect the distributed and heterogeneous resources characterizing a System of Systems (SoS) environment. The EuroGEOSS AOC is comprised of the following components: • EuroGEOSS Discovery Broker: providing harmonized discovery functionalities by mediating and distributing user queries against tens of heterogeneous services; • EuroGEOSS Access Broker: enabling users to seamlessly access and use heterogeneous remote resources via a unique and standard service; • EuroGEOSS Web 2.0 Broker: enhancing the capabilities of the Discovery Broker with queries towards the new Web 2.0 services; • EuroGEOSS Semantic Discovery Broker: enhancing the capabilities of the Discovery Broker with semantic query-expansion; • EuroGEOSS Natural Language Search Component: providing users with the possibilities to search for resources using natural language queries; • Service Composition Broker: allowing users to compose and execute complex Business Processes, based on the technology developed by the FP7 UncertWeb project. Recently, the EuroGEOSS Brokering framework was presented at the GEO-VIII Plenary and Exhibition in Istanbul and introduced into the GEOSS Common Infrastructure.

  6. Computable visually observed phenotype ontological framework for plants

    PubMed Central

    2011-01-01

    Background The ability to search for and precisely compare similar phenotypic appearances within and across species has vast potential in plant science and genetic research. The difficulty in doing so lies in the fact that many visual phenotypic data, especially visually observed phenotypes that often times cannot be directly measured quantitatively, are in the form of text annotations, and these descriptions are plagued by semantic ambiguity, heterogeneity, and low granularity. Though several bio-ontologies have been developed to standardize phenotypic (and genotypic) information and permit comparisons across species, these semantic issues persist and prevent precise analysis and retrieval of information. A framework suitable for the modeling and analysis of precise computable representations of such phenotypic appearances is needed. Results We have developed a new framework called the Computable Visually Observed Phenotype Ontological Framework for plants. This work provides a novel quantitative view of descriptions of plant phenotypes that leverages existing bio-ontologies and utilizes a computational approach to capture and represent domain knowledge in a machine-interpretable form. This is accomplished by means of a robust and accurate semantic mapping module that automatically maps high-level semantics to low-level measurements computed from phenotype imagery. The framework was applied to two different plant species with semantic rules mined and an ontology constructed. Rule quality was evaluated and showed high quality rules for most semantics. This framework also facilitates automatic annotation of phenotype images and can be adopted by different plant communities to aid in their research. Conclusions The Computable Visually Observed Phenotype Ontological Framework for plants has been developed for more efficient and accurate management of visually observed phenotypes, which play a significant role in plant genomics research. The uniqueness of this framework is its ability to bridge the knowledge of informaticians and plant science researchers by translating descriptions of visually observed phenotypes into standardized, machine-understandable representations, thus enabling the development of advanced information retrieval and phenotype annotation analysis tools for the plant science community. PMID:21702966

  7. Web-based Visualization and Query of semantically segmented multiresolution 3D Models in the Field of Cultural Heritage

    NASA Astrophysics Data System (ADS)

    Auer, M.; Agugiaro, G.; Billen, N.; Loos, L.; Zipf, A.

    2014-05-01

    Many important Cultural Heritage sites have been studied over long periods of time by different means of technical equipment, methods and intentions by different researchers. This has led to huge amounts of heterogeneous "traditional" datasets and formats. The rising popularity of 3D models in the field of Cultural Heritage in recent years has brought additional data formats and makes it even more necessary to find solutions to manage, publish and study these data in an integrated way. The MayaArch3D project aims to realize such an integrative approach by establishing a web-based research platform bringing spatial and non-spatial databases together and providing visualization and analysis tools. Especially the 3D components of the platform use hierarchical segmentation concepts to structure the data and to perform queries on semantic entities. This paper presents a database schema to organize not only segmented models but also different Levels-of-Details and other representations of the same entity. It is further implemented in a spatial database which allows the storing of georeferenced 3D data. This enables organization and queries by semantic, geometric and spatial properties. As service for the delivery of the segmented models a standardization candidate of the OpenGeospatialConsortium (OGC), the Web3DService (W3DS) has been extended to cope with the new database schema and deliver a web friendly format for WebGL rendering. Finally a generic user interface is presented which uses the segments as navigation metaphor to browse and query the semantic segmentation levels and retrieve information from an external database of the German Archaeological Institute (DAI).

  8. Generative Semantics.

    ERIC Educational Resources Information Center

    King, Margaret

    The first section of this paper deals with the attempts within the framework of transformational grammar to make semantics a systematic part of linguistic description, and outlines the characteristics of the generative semantics position. The second section takes a critical look at generative semantics in its later manifestations, and makes a case…

  9. Convergence of Health Level Seven Version 2 Messages to Semantic Web Technologies for Software-Intensive Systems in Telemedicine Trauma Care.

    PubMed

    Menezes, Pedro Monteiro; Cook, Timothy Wayne; Cavalini, Luciana Tricai

    2016-01-01

    To present the technical background and the development of a procedure that enriches the semantics of Health Level Seven version 2 (HL7v2) messages for software-intensive systems in telemedicine trauma care. This study followed a multilevel model-driven approach for the development of semantically interoperable health information systems. The Pre-Hospital Trauma Life Support (PHTLS) ABCDE protocol was adopted as the use case. A prototype application embedded the semantics into an HL7v2 message as an eXtensible Markup Language (XML) file, which was validated against an XML schema that defines constraints on a common reference model. This message was exchanged with a second prototype application, developed on the Mirth middleware, which was also used to parse and validate both the original and the hybrid messages. Both versions of the data instance (one pure XML, one embedded in the HL7v2 message) were equally validated and the RDF-based semantics recovered by the receiving side of the prototype from the shared XML schema. This study demonstrated the semantic enrichment of HL7v2 messages for intensive-software telemedicine systems for trauma care, by validating components of extracts generated in various computing environments. The adoption of the method proposed in this study ensures the compliance of the HL7v2 standard in Semantic Web technologies.

  10. NanoParticle Ontology for Cancer Nanotechnology Research

    PubMed Central

    Thomas, Dennis G.; Pappu, Rohit V.; Baker, Nathan A.

    2010-01-01

    Data generated from cancer nanotechnology research are so diverse and large in volume that it is difficult to share and efficiently use them without informatics tools. In particular, ontologies that provide a unifying knowledge framework for annotating the data are required to facilitate the semantic integration, knowledge-based searching, unambiguous interpretation, mining and inferencing of the data using informatics methods. In this paper, we discuss the design and development of NanoParticle Ontology (NPO), which is developed within the framework of the Basic Formal Ontology (BFO), and implemented in the Ontology Web Language (OWL) using well-defined ontology design principles. The NPO was developed to represent knowledge underlying the preparation, chemical composition, and characterization of nanomaterials involved in cancer research. Public releases of the NPO are available through BioPortal website, maintained by the National Center for Biomedical Ontology. Mechanisms for editorial and governance processes are being developed for the maintenance, review, and growth of the NPO. PMID:20211274

  11. Closed-Loop Lifecycle Management of Service and Product in the Internet of Things: Semantic Framework for Knowledge Integration.

    PubMed

    Yoo, Min-Jung; Grozel, Clément; Kiritsis, Dimitris

    2016-07-08

    This paper describes our conceptual framework of closed-loop lifecycle information sharing for product-service in the Internet of Things (IoT). The framework is based on the ontology model of product-service and a type of IoT message standard, Open Messaging Interface (O-MI) and Open Data Format (O-DF), which ensures data communication. (1) BACKGROUND: Based on an existing product lifecycle management (PLM) methodology, we enhanced the ontology model for the purpose of integrating efficiently the product-service ontology model that was newly developed; (2) METHODS: The IoT message transfer layer is vertically integrated into a semantic knowledge framework inside which a Semantic Info-Node Agent (SINA) uses the message format as a common protocol of product-service lifecycle data transfer; (3) RESULTS: The product-service ontology model facilitates information retrieval and knowledge extraction during the product lifecycle, while making more information available for the sake of service business creation. The vertical integration of IoT message transfer, encompassing all semantic layers, helps achieve a more flexible and modular approach to knowledge sharing in an IoT environment; (4) Contribution: A semantic data annotation applied to IoT can contribute to enhancing collected data types, which entails a richer knowledge extraction. The ontology-based PLM model enables as well the horizontal integration of heterogeneous PLM data while breaking traditional vertical information silos; (5) CONCLUSION: The framework was applied to a fictive case study with an electric car service for the purpose of demonstration. For the purpose of demonstrating the feasibility of the approach, the semantic model is implemented in Sesame APIs, which play the role of an Internet-connected Resource Description Framework (RDF) database.

  12. Closed-Loop Lifecycle Management of Service and Product in the Internet of Things: Semantic Framework for Knowledge Integration

    PubMed Central

    Yoo, Min-Jung; Grozel, Clément; Kiritsis, Dimitris

    2016-01-01

    This paper describes our conceptual framework of closed-loop lifecycle information sharing for product-service in the Internet of Things (IoT). The framework is based on the ontology model of product-service and a type of IoT message standard, Open Messaging Interface (O-MI) and Open Data Format (O-DF), which ensures data communication. (1) Background: Based on an existing product lifecycle management (PLM) methodology, we enhanced the ontology model for the purpose of integrating efficiently the product-service ontology model that was newly developed; (2) Methods: The IoT message transfer layer is vertically integrated into a semantic knowledge framework inside which a Semantic Info-Node Agent (SINA) uses the message format as a common protocol of product-service lifecycle data transfer; (3) Results: The product-service ontology model facilitates information retrieval and knowledge extraction during the product lifecycle, while making more information available for the sake of service business creation. The vertical integration of IoT message transfer, encompassing all semantic layers, helps achieve a more flexible and modular approach to knowledge sharing in an IoT environment; (4) Contribution: A semantic data annotation applied to IoT can contribute to enhancing collected data types, which entails a richer knowledge extraction. The ontology-based PLM model enables as well the horizontal integration of heterogeneous PLM data while breaking traditional vertical information silos; (5) Conclusion: The framework was applied to a fictive case study with an electric car service for the purpose of demonstration. For the purpose of demonstrating the feasibility of the approach, the semantic model is implemented in Sesame APIs, which play the role of an Internet-connected Resource Description Framework (RDF) database. PMID:27399717

  13. Computational toxicology using the OpenTox application programming interface and Bioclipse

    PubMed Central

    2011-01-01

    Background Toxicity is a complex phenomenon involving the potential adverse effect on a range of biological functions. Predicting toxicity involves using a combination of experimental data (endpoints) and computational methods to generate a set of predictive models. Such models rely strongly on being able to integrate information from many sources. The required integration of biological and chemical information sources requires, however, a common language to express our knowledge ontologically, and interoperating services to build reliable predictive toxicology applications. Findings This article describes progress in extending the integrative bio- and cheminformatics platform Bioclipse to interoperate with OpenTox, a semantic web framework which supports open data exchange and toxicology model building. The Bioclipse workbench environment enables functionality from OpenTox web services and easy access to OpenTox resources for evaluating toxicity properties of query molecules. Relevant cases and interfaces based on ten neurotoxins are described to demonstrate the capabilities provided to the user. The integration takes advantage of semantic web technologies, thereby providing an open and simplifying communication standard. Additionally, the use of ontologies ensures proper interoperation and reliable integration of toxicity information from both experimental and computational sources. Conclusions A novel computational toxicity assessment platform was generated from integration of two open science platforms related to toxicology: Bioclipse, that combines a rich scriptable and graphical workbench environment for integration of diverse sets of information sources, and OpenTox, a platform for interoperable toxicology data and computational services. The combination provides improved reliability and operability for handling large data sets by the use of the Open Standards from the OpenTox Application Programming Interface. This enables simultaneous access to a variety of distributed predictive toxicology databases, and algorithm and model resources, taking advantage of the Bioclipse workbench handling the technical layers. PMID:22075173

  14. Knowledge bases built on web languages from the point of view of predicate logics

    NASA Astrophysics Data System (ADS)

    Vajgl, Marek; Lukasová, Alena; Žáček, Martin

    2017-06-01

    The article undergoes evaluation of formal systems created on the base of web (ontology/concept) languages by simplifying the usual approach of knowledge representation within the FOPL, but sharing its expressiveness, semantic correct-ness, completeness and decidability. Evaluation of two of them - that one based on description logic and that one built on RDF model principles - identifies some of the lacks of those formal systems and presents, if possible, corrections of them. Possibilities to build an inference system capable to obtain new further knowledge over given knowledge bases including those describing domains by giant linked domain databases has been taken into account. Moreover, the directions towards simplifying FOPL language discussed here has been evaluated from the point of view of a possibility to become a web language for fulfilling an idea of semantic web.

  15. A memory learning framework for effective image retrieval.

    PubMed

    Han, Junwei; Ngan, King N; Li, Mingjing; Zhang, Hong-Jiang

    2005-04-01

    Most current content-based image retrieval systems are still incapable of providing users with their desired results. The major difficulty lies in the gap between low-level image features and high-level image semantics. To address the problem, this study reports a framework for effective image retrieval by employing a novel idea of memory learning. It forms a knowledge memory model to store the semantic information by simply accumulating user-provided interactions. A learning strategy is then applied to predict the semantic relationships among images according to the memorized knowledge. Image queries are finally performed based on a seamless combination of low-level features and learned semantics. One important advantage of our framework is its ability to efficiently annotate images and also propagate the keyword annotation from the labeled images to unlabeled images. The presented algorithm has been integrated into a practical image retrieval system. Experiments on a collection of 10,000 general-purpose images demonstrate the effectiveness of the proposed framework.

  16. JournalMap: Geo-semantic searching for relevant knowledge

    USDA-ARS?s Scientific Manuscript database

    Ecologists struggling to understand rapidly changing environments and evolving ecosystem threats need quick access to relevant research and documentation of natural systems. The advent of semantic and aggregation searching (e.g., Google Scholar, Web of Science) has made it easier to find useful lite...

  17. Constructive Ontology Engineering

    ERIC Educational Resources Information Center

    Sousan, William L.

    2010-01-01

    The proliferation of the Semantic Web depends on ontologies for knowledge sharing, semantic annotation, data fusion, and descriptions of data for machine interpretation. However, ontologies are difficult to create and maintain. In addition, their structure and content may vary depending on the application and domain. Several methods described in…

  18. Interoperability in Personalized Adaptive Learning

    ERIC Educational Resources Information Center

    Aroyo, Lora; Dolog, Peter; Houben, Geert-Jan; Kravcik, Milos; Naeve, Ambjorn; Nilsson, Mikael; Wild, Fridolin

    2006-01-01

    Personalized adaptive learning requires semantic-based and context-aware systems to manage the Web knowledge efficiently as well as to achieve semantic interoperability between heterogeneous information resources and services. The technological and conceptual differences can be bridged either by means of standards or via approaches based on the…

  19. Semantic Enhancement for Enterprise Data Management

    NASA Astrophysics Data System (ADS)

    Ma, Li; Sun, Xingzhi; Cao, Feng; Wang, Chen; Wang, Xiaoyuan; Kanellos, Nick; Wolfson, Dan; Pan, Yue

    Taking customer data as an example, the paper presents an approach to enhance the management of enterprise data by using Semantic Web technologies. Customer data is the most important kind of core business entity a company uses repeatedly across many business processes and systems, and customer data management (CDM) is becoming critical for enterprises because it keeps a single, complete and accurate record of customers across the enterprise. Existing CDM systems focus on integrating customer data from all customer-facing channels and front and back office systems through multiple interfaces, as well as publishing customer data to different applications. To make the effective use of the CDM system, this paper investigates semantic query and analysis over the integrated and centralized customer data, enabling automatic classification and relationship discovery. We have implemented these features over IBM Websphere Customer Center, and shown the prototype to our clients. We believe that our study and experiences are valuable for both Semantic Web community and data management community.

  20. Towards a semantic PACS: Using Semantic Web technology to represent imaging data.

    PubMed

    Van Soest, Johan; Lustberg, Tim; Grittner, Detlef; Marshall, M Scott; Persoon, Lucas; Nijsten, Bas; Feltens, Peter; Dekker, Andre

    2014-01-01

    The DICOM standard is ubiquitous within medicine. However, improved DICOM semantics would significantly enhance search operations. Furthermore, databases of current PACS systems are not flexible enough for the demands within image analysis research. In this paper, we investigated if we can use Semantic Web technology, to store and represent metadata of DICOM image files, as well as linking additional computational results to image metadata. Therefore, we developed a proof of concept containing two applications: one to store commonly used DICOM metadata in an RDF repository, and one to calculate imaging biomarkers based on DICOM images, and store the biomarker values in an RDF repository. This enabled us to search for all patients with a gross tumor volume calculated to be larger than 50 cc. We have shown that we can successfully store the DICOM metadata in an RDF repository and are refining our proof of concept with regards to volume naming, value representation, and the applications themselves.

Top