Science.gov

Sample records for semi-analytic expansion method

  1. A two-dimensional, semi-analytic expansion method for nodal calculations

    SciTech Connect

    Palmtag, Scott P.

    1995-08-01

    Most modern nodal methods used today are based upon the transverse integration procedure in which the multi-dimensional flux shape is integrated over the transverse directions in order to produce a set of coupled one-dimensional flux shapes. The one-dimensional flux shapes are then solved either analytically or by representing the flux shape by a finite polynomial expansion. While these methods have been verified for most light-water reactor applications, they have been found to have difficulty predicting the large thermal flux gradients near the interfaces of highly-enriched MOX fuel assemblies. A new method is presented here in which the neutron flux is represented by a non-seperable, two-dimensional, semi-analytic flux expansion. The main features of this method are (1) the leakage terms from the node are modeled explicitly and therefore, the transverse integration procedure is not used, (2) the corner point flux values for each node are directly edited from the solution method, and a corner-point interpolation is not needed in the flux reconstruction, (3) the thermal flux expansion contains hyperbolic terms representing analytic solutions to the thermal flux diffusion equation, and (4) the thermal flux expansion contains a thermal to fast flux ratio term which reduces the number of polynomial expansion functions needed to represent the thermal flux. This new nodal method has been incorporated into the computer code COLOR2G and has been used to solve a two-dimensional, two-group colorset problem containing uranium and highly-enriched MOX fuel assemblies. The results from this calculation are compared to the results found using a code based on the traditional transverse integration procedure.

  2. A semi-analytical method of computation of oceanic tidal perturbations in the motion of artificial satellites

    NASA Technical Reports Server (NTRS)

    Musen, P.

    1973-01-01

    The method of expansion of the satellite's perturbations, as caused by the oceanic tides, into Fourier series is discussed. The coefficients of the expansion are purely numerical and peculiar to each particular satellite. Such a method is termed as semi-analytical in celestial mechanics. Gaussian form of the differential equations for variation of elements, with the right hand sides averaged over the orbit of the satellite, is convenient to use with the semi-analytical expansion.

  3. Approximate semi-analytical solutions for the steady-state expansion of a contactor plasma

    NASA Astrophysics Data System (ADS)

    Camporeale, E.; Hogan, E. A.; MacDonald, E. A.

    2015-04-01

    We study the steady-state expansion of a collisionless, electrostatic, quasi-neutral plasma plume into vacuum, with a fluid model. We analyze approximate semi-analytical solutions, that can be used in lieu of much more expensive numerical solutions. In particular, we focus on the earlier studies presented in Parks and Katz (1979 American Institute of Aeronautics, Astronautics Conf. vol 1), Korsun and Tverdokhlebova (1997 33rd Joint Prop. Conf. (Seattle, WA) AIAA-97-3065), and Ashkenazy and Fruchtman (2001 27th Int. Electric Propulsion Conf. (Pasadena, CA)). By calculating the error with respect to the numerical solution, we can judge the range of validity for each solution. Moreover, we introduce a generalization of earlier models that has a wider range of applicability, in terms of plasma injection profiles. We conclude by showing a straightforward way to extend the discussed solutions to the case of a plasma plume injected with non-null azimuthal velocity.

  4. Semi-analytical method for solving nonlinear heat diffusion problems in spherical medium

    NASA Astrophysics Data System (ADS)

    Abd-El-Malek, Mina B.; Helal, Medhat M.

    2006-08-01

    A semi-analytical methodology, based on the finite integral transform technique, is proposed to solve the heat diffusion problem in a spherical medium subject to nonlinear boundary conditions due to radiation exchange at the interface according to the fourth power law. The method proceeds by treating the nonlinearity term in the boundary condition as a source in the differential equation and keeping other conditions unchanged. The results obtained from this semi-analytical solutions are compared with those obtained from a numerical solution developed using an explicit finite difference method, which showed very good agreement.

  5. Study on Two Methods for Nonlinear Force-Free Extrapolation Based on Semi-Analytical Field

    NASA Astrophysics Data System (ADS)

    Liu, S.; Zhang, H. Q.; Su, J. T.; Song, M. T.

    2011-03-01

    In this paper, two semi-analytical solutions of force-free fields (Low and Lou, Astrophys. J. 352, 343, 1990) have been used to test two nonlinear force-free extrapolation methods. One is the boundary integral equation (BIE) method developed by Yan and Sakurai ( Solar Phys. 195, 89, 2000), and the other is the approximate vertical integration (AVI) method developed by Song et al. ( Astrophys. J. 649, 1084, 2006). Some improvements have been made to the AVI method to avoid the singular points in the process of calculation. It is found that the correlation coefficients between the first semi-analytical field and extrapolated field using the BIE method, and also that obtained by the improved AVI method, are greater than 90% below a height 10 of the 64×64 lower boundary. For the second semi-analytical field, these correlation coefficients are greater than 80% below the same relative height. Although differences between the semi-analytical solutions and the extrapolated fields exist for both the BIE and AVI methods, these two methods can give reliable results for heights of about 15% of the extent of the lower boundary.

  6. 1-D diffusion based solidification model with volumetric expansion and shrinkage effect: A semi-analytical approach

    NASA Astrophysics Data System (ADS)

    Monde, Aniket D.; Chakraborty, Prodyut R.

    2017-10-01

    Volumetric expansion and shrinkage due to different densities of solid and liquid phases are common phenomena during solidification process. Simple analytical models addressing effect of volumetric expansion/shrinkage during solidification are rarely found. The few existing 1-D solidification models are valid only for semi-infinite domain with limitations of their application for finite domain size. The focus of the present work is to develop a 1-D semi-analytical solidification model addressing effects of volumetric expansion/shrinkage in a finite domain. The proposed semi-analytical scheme involves finding simultaneous solution of transient 1-D heat diffusion equations at solid and liquid domain coupled at the interface by Stefan condition. The change of the total domain length during solidification due to volumetric expansion/shrinkage is addressed by using mass conservation. For validation of the proposed model, solidification of water in a finite domain is studied without considering volumetric expansion/shrinkage effect and results are compared with those obtained from existing enthalpy updating based numerical model. After validation, case studies pertaining to volumetric expansion and shrinkage are performed considering solidification of water and paraffin respectively and physically consistent results are obtained. The study is relevant for understanding unidirectional crystal growth under the effect of controlled boundary condition.

  7. The applicability of semi-analytical method for different orbits in long term prediction

    NASA Astrophysics Data System (ADS)

    Wang, Dawei; Tang, Jingshi; Liu, Lin

    2016-07-01

    To understand the long-term evolution and distribution of the space objects, it is necessary to propagate the orbits of respective objects. Compared with the short-term prediction of a few days, the priority concerns are the accuracy of major orbital elements including the semi-major axis and eccentricity which define the shape of the orbit, the orbital inclination and the right ascension of the ascending node which define the orientation of the orbit, as well as the calculation speed. Given such requirement, it is preferable to adopt the semi-analytical method, which averages the system over the orbital period, and integrates the averaged system using the numerical method. However, throughout available literatures, it is rarely seen that the semi-analytical methods are quantitatively assessed regarding the accuracy when applied to various types of orbits. In this paper, we would like to report our implementation and assessment of the semi-analytical method. The quantitative assessment covers the commonly used orbits for Earth satellites. In some rare special cases where the performance of our method appears abnormal, we discuss the reasons and possible solutions.

  8. A semi-analytical method for simulating matrix diffusion in numerical transport models

    NASA Astrophysics Data System (ADS)

    Falta, Ronald W.; Wang, Wenwen

    2017-02-01

    A semi-analytical approximation for transient matrix diffusion is developed for use in numerical contaminant transport simulators. This method is an adaptation and extension of the heat conduction method of Vinsome and Westerveld (1980) used to simulate heat losses during thermally enhanced oil recovery. The semi-analytical method is used in place of discretization of the low permeability materials, and it represents the concentration profile in the low permeability materials with a fitting function that is adjusted in each element at each time-step. The resulting matrix diffusion fluxes are added to the numerical model as linear concentration-dependent source/sink terms. Since only the high permeability zones need to be discretized, the numerical formulation is extremely efficient compared to traditional approaches that require discretization of both the high and low permeability zones. The semi-analytical method compares favorably with the analytical solution for transient one-dimensional diffusion with first order decay, with a two-layer aquifer/aquitard solution, with the solution for transport in a fracture with matrix diffusion and decay, and with a fully numerical solution for transport in a thin sand zone bounded by clay with variable decay rates.

  9. A semi-analytical method for simulating matrix diffusion in numerical transport models.

    PubMed

    Falta, Ronald W; Wang, Wenwen

    2017-02-01

    A semi-analytical approximation for transient matrix diffusion is developed for use in numerical contaminant transport simulators. This method is an adaptation and extension of the heat conduction method of Vinsome and Westerveld (1980) used to simulate heat losses during thermally enhanced oil recovery. The semi-analytical method is used in place of discretization of the low permeability materials, and it represents the concentration profile in the low permeability materials with a fitting function that is adjusted in each element at each time-step. The resulting matrix diffusion fluxes are added to the numerical model as linear concentration-dependent source/sink terms. Since only the high permeability zones need to be discretized, the numerical formulation is extremely efficient compared to traditional approaches that require discretization of both the high and low permeability zones. The semi-analytical method compares favorably with the analytical solution for transient one-dimensional diffusion with first order decay, with a two-layer aquifer/aquitard solution, with the solution for transport in a fracture with matrix diffusion and decay, and with a fully numerical solution for transport in a thin sand zone bounded by clay with variable decay rates. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Stable semi-analytical method for analysis of plasmonic propagation on periodically patterned metal plates

    NASA Astrophysics Data System (ADS)

    Yasrebi, Navid; Khorasani, Sina; Karami-Taheri, Hossein; Rashidian, Bizhan; Hosseini, Amir

    2010-02-01

    The need for antennas with improved characteristics for communication and radar applications has resulted in an ever-increasing demand for research in the field of high impedance surfaces, which can work as an artificial magnetic conductor. One method in fabrication of these surfaces is formation of a metamaterial by patterning a metallic surface in the shape of space filling curves (e.g. Hilbert or Peanu Curves). In this paper, we present a novel semi-analytical solution to the problem of plasmonic propagation on these surfaces. The method is based on a previously presented Green's function formalism, which has been reported in an earlier paper of ours. We have modified and improved the method for analysis of periodic structures with a large number of spatial harmonics, and used different methods to get the necessary stabilization. Here propagating modes of different structures and their corresponding frequencies are calculated, and the possibility of frequency gap formation and stability of the method are investigated.

  11. Numerical analysis of leaky Lamb wave propagation using a semi-analytical finite element method

    NASA Astrophysics Data System (ADS)

    Hayashi, Takahiro; Inoue, Daisuke

    2015-03-01

    Dispersion curves and wave structures for leaky Lamb waves were numerically analyzed with a semi-analytical finite element method. Solving governing equations derived for a leaky plate mode and a total transmission mode provided dispersion curves of fundamental Lamb modes and Scholte waves with several differences. The Scholte waves in the non-dispersive region were modes with large vibration in the vicinity of a single interface between a plate surface and fluid. Moreover, in low frequency-thickness product (fd) range in the dispersion curves, the Scholte waves became highly dispersive modes. Wave structures obtained for the Scholte wave in the SAFE calculations implied that the high dispersion in the low fd range is caused by the fact that wave energy of Scholte wave penetrates deeper in the plate in lower fd range and that the the opposite boundary of the plate affects the Scholte wave.

  12. Calculation of leaky Lamb waves with a semi-analytical finite element method.

    PubMed

    Hayashi, Takahiro; Inoue, Daisuke

    2014-08-01

    A semi-analytical finite element method (SAFE) has been widely used for calculating dispersion curves and mode shapes of guided waves as well as transient waves in a bar like structures. Although guided wave inspection is often conducted for water-loaded plates and pipes, most of the SAFE techniques have not been extended to a plate with leaky media. This study describes leaky Lamb wave calculation with the SAFE. We formulated a new solution using a feature that a single Lamb wave mode generates a harmonic plane wave in leaky media. Dispersion curves obtained with the SAFE agreed well with the previous theoretical studies, which represents that the SAFE calculation was conducted with sufficient accuracy. Moreover, we discussed dispersion curves, attenuation curves, and displacement distributions for total transmission modes and leaky plate modes in a single side and both two side water-loaded plate.

  13. Study of plasmonic slot waveguides with a nonlinear metamaterial core: semi-analytical and numerical methods

    NASA Astrophysics Data System (ADS)

    Elsawy, Mahmoud M. R.; Renversez, Gilles

    2017-07-01

    Two distinct models are developed to investigate the transverse magnetic stationary solutions propagating in one-dimensional anisotropic nonlinear plasmonic structures made from a Kerr-type nonlinear metamaterial core embedded between two semi-infinite metal claddings. The first model is semi-analytical, in which we assume that the anisotropic nonlinearity depends only on the transverse component of the electric field and that the nonlinear refractive index modification is small compared to the linear one. This method allows us to derive analytically the field profiles and nonlinear dispersion relations in terms of the Jacobi elliptical functions. The second model is fully numerical and is based on the finite element method in which all the components of the electric field are considered in the Kerr-type nonlinearity, with no presumptions as to the nonlinear refractive index change. Our finite-element-based model is valid beyond the weak nonlinearity regime and generalizes the well-known single-component fixed power algorithm that is usually used. Examples of the main cases are investigated, including those with strong spatial nonlinear effects at low power. Loss issues are reduced through the use of a gain medium in the nonlinear metamaterial core. Using anisotropic nonlinear FDTD simulations, we provide some results for the properties of the main solution.

  14. Transient analysis of leaky Lamb waves with a semi-analytical finite element method.

    PubMed

    Inoue, Daisuke; Hayashi, Takahiro

    2015-09-01

    We previously formulated a semi-analytical finite element technique for Lamb waves in a plate surrounded by fluids and investigated the dispersion curves and wave structures for leaky Lamb waves. Herein, this technique is extended to the calculation of transient responses both in a plate and in fluids for dynamic loading on the plate surface. To gain fundamental insights into guided wave inspection for a water-filled pipe or tank, guided waves generated upon transient loading of a flat plate water-loaded on one side were analyzed. The results show that a quasi-Scholte mode propagating at the plate-water interface is useful for the long-range inspection of a water-loaded plate because of its non-attenuation and minimal dispersion; moreover, this mode has superior generation efficiency in the low-frequency range, while it is localized near the plate-water interface at higher frequencies.

  15. Numerical hydrodynamic simulations based on semi-analytic galaxy merger trees: method and Milky Way-like galaxies

    NASA Astrophysics Data System (ADS)

    Moster, Benjamin P.; Macciò, Andrea V.; Somerville, Rachel S.

    2014-01-01

    We present a new approach to study galaxy evolution in a cosmological context. We combine cosmological merger trees and semi-analytic models of galaxy formation to provide the initial conditions for multimerger hydrodynamic simulations. In this way, we exploit the advantages of merger simulations (high resolution and inclusion of the gas physics) and semi-analytic models (cosmological background and low computational cost), and integrate them to create a novel tool. This approach allows us to study the evolution of various galaxy properties, including the treatment of the hot gaseous halo from which gas cools and accretes on to the central disc, which has been neglected in many previous studies. This method shows several advantages over other methods. As only the particles in the regions of interest are included, the run time is much shorter than in traditional cosmological simulations, leading to greater computational efficiency. Using cosmological simulations, we show that multiple mergers are expected to be more common than sequences of isolated mergers, and therefore studies of galaxy mergers should take this into account. In this pilot study, we present our method and illustrate the results of simulating 10 Milky Way-like galaxies since z = 1. We find good agreement with observations for the total stellar masses, star formation rates, cold gas fractions and disc scalelength parameters. We expect that this novel numerical approach will be very useful for pursuing a number of questions pertaining to the transformation of galaxy internal structure through cosmic time.

  16. Dynamical analysis of the avian-human influenza epidemic model using the semi-analytical method

    NASA Astrophysics Data System (ADS)

    Jabbari, Azizeh; Kheiri, Hossein; Bekir, Ahmet

    2015-03-01

    In this work, we present a dynamic behavior of the avian-human influenza epidemic model by using efficient computational algorithm, namely the multistage differential transform method(MsDTM). The MsDTM is used here as an algorithm for approximating the solutions of the avian-human influenza epidemic model in a sequence of time intervals. In order to show the efficiency of the method, the obtained numerical results are compared with the fourth-order Runge-Kutta method (RK4M) and differential transform method(DTM) solutions. It is shown that the MsDTM has the advantage of giving an analytical form of the solution within each time interval which is not possible in purely numerical techniques like RK4M.

  17. Dispersion analysis of guided waves in the finned tube using the semi-analytical finite element method

    NASA Astrophysics Data System (ADS)

    Cong, Ming; Wu, Xinjun; Liu, Ran

    2017-08-01

    To increase heat exchange efficiency, finned tubes are widely used in petrochemical facilities. Recently, the application of guided wave testing to finned tube inspection has received attention. Since dispersion curves have not been obtained, the guided wave propagation process is still not clearly understood. Hence, the purpose of this paper is to calculate dispersion curves of the finned tube based on an accurate theoretical model, then features of guided waves propagating in finned tubes are further investigated. As fins are helicoidally welded around the outer surface of the tube with an equal interval, the semi-analytical finite element method is extended to this geometrically periodic waveguide. The shape of the discretized cross section is determined by geometric parameters of the finned tube. Numerical solutions show that group velocities of longitudinal modes in finned tubes are significantly slower than those in bare tubes and a special phenomenon of frequency pass bands and stop bands is presented. The changes of dispersion curves are also investigated with various geometric parameters of fins. Besides, torsional modes cannot propagate in finned tubes. By using an electromagnetic acoustic transducer, experimental results are in good agreement with numerical solutions, which indicates features of the guided wave propagation in finned tubes can be well predicted based on the proposed theoretical model.

  18. On Lambert’s problem and the elliptic time of flight equation: A simple semi-analytical inversion method

    NASA Astrophysics Data System (ADS)

    Wailliez, Sébastien E.

    2014-03-01

    In the two-body model, time of flight between two positions can be expressed as a single-variable function and a variety of formulations exist. Lambert’s problem can be solved by inverting such a function. In this article, a method which inverts Lagrange’s flight time equation and supports the problematic 180° transfer is proposed. This method relies on a Householder algorithm of variable order. However, unlike other iterative methods, it is semi-analytical in the sense that flight time functions are derived analytically to second order vs. first order finite differences. The author investigated the profile of Lagrange’s elliptic flight time equation and its derivatives with a special focus on their significance to the behaviour of the proposed method and the stated goal of guaranteed convergence. Possible numerical deficiencies were identified and dealt with. As a test, 28 scenarios of variable difficulty were designed to cover a wide variety of geometries. The context of this research being the orbit determination of artificial satellites and debris, the scenarios are representative of typical such objects in Low-Earth, Geostationary and Geostationary Transfer Orbits. An analysis of the computational impact of the quality of the initial guess vs. that of the order of the method was also done, providing clues for further research and optimisations (e.g. asteroids, long period comets, multi-revolution cases). The results indicate fast to very fast convergence in all test cases, they validate the numerical safeguards and also give a quantitative assessment of the importance of the initial guess.

  19. An efficient semi-analytical method for modeling strongly coupled diffusion and deformation processes in layered poroelastic media

    NASA Astrophysics Data System (ADS)

    Wang, R.; Kuempel, H.

    2003-12-01

    From poroelasticity theory we know that fluid diffusion will induce matrix deformation and vice versa. In practice, well known phenomena for such coupled processes are, for example, occurrence of seismo-tectonically induced groundwater fluctuations, land subsidence as a result of fluid extraction from subsurface reservoirs, production-induced surface strain near the vicinity of wells, reservoir- or injection-induced seismicity. Modeling of deformation and pore-pressure data that have been observed near the surface can help to image the dynamics and to assess the hydraulic properties of subsurface aquifers. We here present a semi-analytical Haskell propagator method to fully handle linear poroelastic problems in a multilayered half-space. Our method is a powerful tool for various reasons: (1) It is faster than traditional numerical schemes when respective discretization of the object region is chosen and solutions are sought for single locations only; (2) a problem is easily formulated, as only a set of five poroelastic parameters per layer plus the layers' thicknesses need to be specified; (3) the method is highly flexible, as forcing functions of point injection, single force (e.g., surface loading), double couple dislocation (earthquakes), etc. may be readily incorporated; (4) the so-called loss-of-precision problem of the original propagator algorithm has been fully overcome using the orthonormalization technique. The effectiveness of the new tool has been demonstrated by modeling pump-induced near-surface tilt data obtained at a test site near Sopron in western Hungary. The results show that the hydraulic diffusivity of the shallow subsurface aquifer can be assessed with an accuracy better than half an order of magnitude, if other elastic parameters and the geometry (depth and thickness) of the water-bearing formations are sufficiently known from, for example, bore-log records. Moreover, the present method can be applied to model induced seismicity based on the

  20. Semi-analytical solution to arbitrarily shaped beam scattering

    NASA Astrophysics Data System (ADS)

    Wang, Wenjie; Zhang, Huayong; Sun, Yufa

    2017-07-01

    Based on the field expansions in terms of appropriate spherical vector wave functions and the method of moments scheme, an exact semi-analytical solution to the scattering of an arbitrarily shaped beam is given. For incidence of a Gaussian beam, zero-order Bessel beam and Hertzian electric dipole radiation, numerical results of the normalized differential scattering cross section are presented to a spheroid and a circular cylinder of finite length, and the scattering properties are analyzed concisely.

  1. Petermann I and II spot size: Accurate semi analytical description involving Nelder-Mead method of nonlinear unconstrained optimization and three parameter fundamental modal field

    NASA Astrophysics Data System (ADS)

    Roy Choudhury, Raja; Roy Choudhury, Arundhati; Kanti Ghose, Mrinal

    2013-01-01

    A semi-analytical model with three optimizing parameters and a novel non-Gaussian function as the fundamental modal field solution has been proposed to arrive at an accurate solution to predict various propagation parameters of graded-index fibers with less computational burden than numerical methods. In our semi analytical formulation the optimization of core parameter U which is usually uncertain, noisy or even discontinuous, is being calculated by Nelder-Mead method of nonlinear unconstrained minimizations as it is an efficient and compact direct search method and does not need any derivative information. Three optimizing parameters are included in the formulation of fundamental modal field of an optical fiber to make it more flexible and accurate than other available approximations. Employing variational technique, Petermann I and II spot sizes have been evaluated for triangular and trapezoidal-index fibers with the proposed fundamental modal field. It has been demonstrated that, the results of the proposed solution identically match with the numerical results over a wide range of normalized frequencies. This approximation can also be used in the study of doped and nonlinear fiber amplifier.

  2. A comparison of numerical and semi-analytical methods for the case of heat transfer equations arising in porous medium

    NASA Astrophysics Data System (ADS)

    Parand, K.; Rad, J. A.; Ahmadi, M.

    2016-09-01

    Natural convective heat transfer in porous media which is of importance in the design of canisters for nuclear waste disposal has received considerable attention during the past few decades. This paper presents a comparison between two different analytical and numerical methods, i.e. pseudospectral and Adomian decomposition methods. The pseudospectral approach makes use of the orthogonal rational Jacobi functions; this method reduces the solution of the problem to a solution of a system of algebraic equations. Numerical results are compared with each other, showing that the pseudospectral method leads to more accurate results and is applicable on similar problems.

  3. Scattering of targets over layered half space using a semi-analytic method in conjunction with FDTD algorithm.

    PubMed

    Cao, Le; Wei, Bing

    2014-08-25

    Finite-difference time-domain (FDTD) algorithm with a new method of plane wave excitation is used to investigate the RCS (Radar Cross Section) characteristics of targets over layered half space. Compare with the traditional excitation plane wave method, the calculation memory and time requirement is greatly decreased. The FDTD calculation is performed with a plane wave incidence, and the RCS of far field is obtained by extrapolating the currently calculated data on the output boundary. However, methods available for extrapolating have to evaluate the half space Green function. In this paper, a new method which avoids using the complex and time-consuming half space Green function is proposed. Numerical results show that this method is in good agreement with classic algorithm and it can be used in the fast calculation of scattering and radiation of targets over layered half space.

  4. Generalized semi-analytical finite difference method for dispersion curves calculation and numerical dispersion analysis for Lamb waves.

    PubMed

    Packo, Pawel; Uhl, Tadeusz; Staszewski, Wieslaw J

    2014-09-01

    The paper presents an efficient and accurate method for dispersion curve calculation and analysis of numerical models for guided waves. The method can be used for any arbitrarily selected anisotropic material. The proposed approach utilizes the wave equation and through-thickness-only discretization of anisotropic, layered plates to obtain the Lamb wave characteristics. Thus, layered structures, such as composites, can be analyzed in a straightforward manner. A general framework for the proposed analysis is given, along with application examples. Although these examples are based on the local interaction simulation approach for elastic waves propagation, the proposed methodology can be easily adopted for other methods (e.g., finite elements). The method can be also used to study the influence of discretization parameters on dispersion curves estimates.

  5. Modeling of guided circumferential SH and Lamb-type waves in open waveguides with semi-analytical finite element and Perfectly Matched Layer method

    NASA Astrophysics Data System (ADS)

    Matuszyk, Paweł J.

    2017-01-01

    The circumferential guided waves (CGW) are of increasing interest for non-destructive inspecting pipes or other cylindrical structures. If such structures are buried underground, these modes can also deliver some valuable information about the surrounding medium or the quality of the contact between the pipe and the embedding medium. Toward this goal, the detailed knowledge of the dispersive characteristics of CGW is required; henceforth, the robust numerical method has to be established, which allows for the extensive study of the propagation of these modes under different loading conditions. Mathematically, this is the problem of the propagation of guided waves in an open waveguide. This problem differs significantly from the corresponding problem of a closed waveguide both in physical and numerical aspect. The paper presents a combination of semi-analytical finite element method with Perfectly Matched Layer technique for a class of coupled acoustics/elasticity problems with application to modeling of CGW. We discuss different aspects of our algorithm and validate the proposed approach against other established methods available in the literature. The presented numerical examples positively verify the robustness of the proposed method.

  6. A semi-analytical method to evaluate the dynamic response of functionally graded plates subjected to underwater shock

    NASA Astrophysics Data System (ADS)

    Liang, Xu; Wang, Zhenyu; Wang, Lizhong; Izzuddin, Bassam A.; Liu, Guohua

    2015-02-01

    Functionally graded (FG) plates are of current interest and are widely used in a variety of applications including deep sea exploration and naval/marine and coastal engineering, despite the fact that there has, to date, been little research undertaken on the subject. In order to remedy the situation, an analytical method to investigate the elastic dynamic responses of FG plates to underwater shock is proposed here, their material properties varying by the same exponential law along the thickness direction. Taylor's one dimensional fluid solid interaction (FSI) model is extended to fit a three dimensional model suitable for FG plates. The extended FSI model and Laplace transform are integrated into the state space method, with the transient solution in the time domain being obtained by using the numerical inversion of the Laplace transform. The solutions of the total forces acting throughout the front and back faces in the time domain are derived for the first time. The present method is validated by comparing it with the results of other methods and experiments found in the relevant literature. The influence of the boundary conditions at the backside of the plate and FG parameters on front and back side pressures, cavitations, displacements, stresses and total forces acting throughout the faces are then investigated, with the time progression of the cavitation areas of air-backed plates and water-backed plates being investigated in detail. The method proposed in this paper may prove useful for the future three-dimensional assessment of the response of FG structures when FSI effects are taken into consideration. It is hoped that the results will lead to a full understanding of the mechanism of the interaction between fluid and an FG plate, and that they can be used as benchmark solutions in further research.

  7. A Semi-Analytical Method for Determining the Energy Release Rate of Cracks in Adhesively-Bonded Single-Lap Composite Joints

    NASA Technical Reports Server (NTRS)

    Yang, Charles; Sun, Wenjun; Tomblin, John S.; Smeltzer, Stanley S., III

    2007-01-01

    A semi-analytical method for determining the strain energy release rate due to a prescribed interface crack in an adhesively-bonded, single-lap composite joint subjected to axial tension is presented. The field equations in terms of displacements within the joint are formulated by using first-order shear deformable, laminated plate theory together with kinematic relations and force equilibrium conditions. The stress distributions for the adherends and adhesive are determined after the appropriate boundary and loading conditions are applied and the equations for the field displacements are solved. Based on the adhesive stress distributions, the forces at the crack tip are obtained and the strain energy release rate of the crack is determined by using the virtual crack closure technique (VCCT). Additionally, the test specimen geometry from both the ASTM D3165 and D1002 test standards are utilized during the derivation of the field equations in order to correlate analytical models with future test results. The system of second-order differential field equations is solved to provide the adherend and adhesive stress response using the symbolic computation tool, Maple 9. Finite element analyses using J-integral as well as VCCT were performed to verify the developed analytical model. The finite element analyses were conducted using the commercial finite element analysis software ABAQUS. The results determined using the analytical method correlated well with the results from the finite element analyses.

  8. A semi-analytical Lagrangian dispersion model in inhomogeneous turbulence

    SciTech Connect

    Zhuang, Y.

    1996-12-31

    Probably the most natural method to describe turbulent dispersion in the atmosphere is the Lagrangian trajectory model. In this approach, one builds the joint probability density function (PDF) of particle velocity and position by following a large number of particle trajectories in a turbulent flow given the Eulerian flow statistics. The statistics of the concentration can then be found from the joint PDF. However, the usefulness of the Lagrangian trajectory model in practice has been hindered by the necessary lengthy and stochastic numerical calculations. As a result, few operational models based on the Lagrangian trajectory approach have been proposed. This paper reports the first attempt to solve the Fokker-Planck equation using the function expansion method. The semi-analytical solution retains the characteristics of the Lagrangian trajectory model, but takes little computation effort. The solutions for Gaussian inhomogeneous turbulence and skewed homogeneous turbulence are discussed by comparing them with those calculated using the trajectory simulation method.

  9. A Semi-Analytical Method for Rapid Estimation of Near-Well Saturation, Temperature, Pressure and Stress in Non-Isothermal CO2 Injection

    NASA Astrophysics Data System (ADS)

    LaForce, T.; Ennis-King, J.; Paterson, L.

    2015-12-01

    Reservoir cooling near the wellbore is expected when fluids are injected into a reservoir or aquifer in CO2 storage, enhanced oil or gas recovery, enhanced geothermal systems, and water injection for disposal. Ignoring thermal effects near the well can lead to under-prediction of changes in reservoir pressure and stress due to competition between increased pressure and contraction of the rock in the cooled near-well region. In this work a previously developed semi-analytical model for immiscible, nonisothermal fluid injection is generalised to include partitioning of components between two phases. Advection-dominated radial flow is assumed so that the coupled two-phase flow and thermal conservation laws can be solved analytically. The temperature and saturation profiles are used to find the increase in reservoir pressure, tangential, and radial stress near the wellbore in a semi-analytical, forward-coupled model. Saturation, temperature, pressure, and stress profiles are found for parameters representative of several CO2 storage demonstration projects around the world. General results on maximum injection rates vs depth for common reservoir parameters are also presented. Prior to drilling an injection well there is often little information about the properties that will determine the injection rate that can be achieved without exceeding fracture pressure, yet injection rate and pressure are key parameters in well design and placement decisions. Analytical solutions to simplified models such as these can quickly provide order of magnitude estimates for flow and stress near the well based on a range of likely parameters.

  10. Computing dispersion curves of elastic/viscoelastic transversely-isotropic bone plates coupled with soft tissue and marrow using semi-analytical finite element (SAFE) method.

    PubMed

    Nguyen, Vu-Hieu; Tran, Tho N H T; Sacchi, Mauricio D; Naili, Salah; Le, Lawrence H

    2017-08-01

    We present a semi-analytical finite element (SAFE) scheme for accurately computing the velocity dispersion and attenuation in a trilayered system consisting of a transversely-isotropic (TI) cortical bone plate sandwiched between the soft tissue and marrow layers. The soft tissue and marrow are mimicked by two fluid layers of finite thickness. A Kelvin-Voigt model accounts for the absorption of all three biological domains. The simulated dispersion curves are validated by the results from the commercial software DISPERSE and published literature. Finally, the algorithm is applied to a viscoelastic trilayered TI bone model to interpret the guided modes of an ex-vivo experimental data set from a bone phantom. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. A semi-analytical approach to black body radiation

    NASA Astrophysics Data System (ADS)

    Calcaneo-Roldan, C.; Salcido, O.; Santana, D.

    2017-09-01

    We describe a semi-analytical method to calculate the total radiance received from a black body, between two frequencies. As has been done before, the method takes advantage of the fact that the solution simplifies with the use of polylogarithm functions. We then use it to study the amount of radiation from the Sun received by bodies at the Earth’s surface.

  12. Semi-analytic valuation of stock loans with finite maturity

    NASA Astrophysics Data System (ADS)

    Lu, Xiaoping; Putri, Endah R. M.

    2015-10-01

    In this paper we study stock loans of finite maturity with different dividend distributions semi-analytically using the analytical approximation method in Zhu (2006). Stock loan partial differential equations (PDEs) are established under Black-Scholes framework. Laplace transform method is used to solve the PDEs. Optimal exit price and stock loan value are obtained in Laplace space. Values in the original time space are recovered by numerical Laplace inversion. To demonstrate the efficiency and accuracy of our semi-analytic method several examples are presented, the results are compared with those calculated using existing methods. We also present a calculation of fair service fee charged by the lender for different loan parameters.

  13. Roll levelling semi-analytical model for process optimization

    NASA Astrophysics Data System (ADS)

    Silvestre, E.; Garcia, D.; Galdos, L.; Saenz de Argandoña, E.; Mendiguren, J.

    2016-08-01

    Roll levelling is a primary manufacturing process used to remove residual stresses and imperfections of metal strips in order to make them suitable for subsequent forming operations. In the last years the importance of this process has been evidenced with the apparition of Ultra High Strength Steels with strength > 900 MPa. The optimal setting of the machine as well as a robust machine design has become critical for the correct processing of these materials. Finite Element Method (FEM) analysis is the widely used technique for both aspects. However, in this case, the FEM simulation times are above the admissible ones in both machine development and process optimization. In the present work, a semi-analytical model based on a discrete bending theory is presented. This model is able to calculate the critical levelling parameters i.e. force, plastification rate, residual stresses in a few seconds. First the semi-analytical model is presented. Next, some experimental industrial cases are analyzed by both the semi-analytical model and the conventional FEM model. Finally, results and computation times of both methods are compared.

  14. Gravity Field Recovery from the Cartwheel Formation by the Semi-analytical Approach

    NASA Astrophysics Data System (ADS)

    Li, Huishu; Reubelt, Tilo; Antoni, Markus; Sneeuw, Nico; Zhong, Min; Zhou, Zebing

    2016-04-01

    Past and current gravimetric satellite missions have contributed drastically to our knowledge of the Earth's gravity field. Nevertheless, several geoscience disciplines push for even higher requirements on accuracy, homogeneity and time- and space-resolution of the Earth's gravity field. Apart from better instruments or new observables, alternative satellite formations could improve the signal and error structure. With respect to other methods, one significant advantage of the semi-analytical approach is its effective pre-mission error assessment for gravity field missions. The semi-analytical approach builds a linear analytical relationship between the Fourier spectrum of the observables and the spherical harmonic spectrum of the gravity field. The spectral link between observables and gravity field parameters is given by the transfer coefficients, which constitutes the observation model. In connection with a stochastic model, it can be used for pre-mission error assessment of gravity field mission. The cartwheel formation is formed by two satellites on elliptic orbits in the same plane. The time dependent ranging will be considered in the transfer coefficients via convolution including the series expansion of the eccentricity functions. The transfer coefficients are applied to assess the error patterns, which are caused by different orientation of the cartwheel for range-rate and range acceleration. This work will present the isotropy and magnitude of the formal errors of the gravity field coefficients, for different orientations of the cartwheel.

  15. Implicit, semi-analytical solution of the generalized Riemann problem for stiff hyperbolic balance laws

    NASA Astrophysics Data System (ADS)

    Toro, Eleuterio F.; Montecinos, Gino I.

    2015-12-01

    We present a semi-analytical, implicit solution to the generalized Riemann problem (GRP) for non-linear systems of hyperbolic balance laws with stiff source terms. The solution method is based on an implicit, time Taylor series expansion and the Cauchy-Kowalewskaya procedure, along with the solution of a sequence of classical Riemann problems. Our new GRP solver is then used to construct locally implicit ADER methods of arbitrary accuracy in space and time for solving the general initial-boundary value problem for non-linear systems of hyperbolic balance laws with stiff source terms. Analysis of the method for model problems is carried out and empirical convergence rate studies for suitable tests problems are performed, confirming the theoretically expected high order of accuracy.

  16. Semi-analytic texturing algorithm for polygon computer-generated holograms.

    PubMed

    Lee, Wooyoung; Im, Dajeong; Paek, Jeongyeup; Hahn, Joonku; Kim, Hwi

    2014-12-15

    A texturing method for the semi-analytic polygon computer-generated hologram synthesis algorithm is studied. Through this, the full-potential and development direction of the semi-analytic polygon computer-generated holograms are discussed and compared to that of the conventional numerical algorithm of polygon computer-generated hologram generation based on the fast Fourier transform and bilinear interpolation. The theoretical hurdle of the semi-analytic texturing algorithm is manifested and an approach to resolve this problen. A key mathematical approximation in the angular spectrum computer-generated hologram computation, as well as the trade-offs between texturing effects and computational efficiencies are analyzed through numerical simulation. In this fundamental study, theoretical potential of the semi-analytic polygon computer-generated hologram algorithm is revealed and the ultimate goal of research into the algorithm clarified.

  17. A semi analytical method for electro-thermo-mechanical nonlinear vibration analysis of nanobeam resting on the Winkler-Pasternak foundations with general elastic boundary conditions

    NASA Astrophysics Data System (ADS)

    Zarepour, Misagh; Amirhosein Hosseini, Seyed

    2016-08-01

    This study presents an examination of nonlinear free vibration of a nanobeam under electro-thermo-mechanical loading with elastic medium and various boundary conditions, especially the elastic boundary condition. The nanobeam is modeled as an Euler-Bernoulli beam. The von Kármán strain-displacement relationship together with Hamilton’s principle and Eringen’s theory are employed to derive equations of motion. The nonlinear free vibration frequency is obtained for simply supported (S-S) and elastic supported (E-E) boundary conditions. E-E boundary condition is a general and actual form of boundary conditions and it is chosen because of more realistic behavior. By applying the differential transform method (DTM), the nanobeam’s natural frequencies can be easily obtained for the two different boundary conditions mentioned above. Performing a precise study led to investigation of the influences of nonlocal parameter, temperature change, spring constants (either for elastic medium or boundary condition) and imposed electric potential on the nonlinear free vibration characteristics of nanobeam. The results for S-S and E-E nanobeams are compared with each other. In order to validate the results, some comparisons are presented between DTM results and open literature to show the accuracy of this new approach. It has been discovered that DTM solves the equations with minimum calculation cost.

  18. Semi-Analytic Reconstruction of Flux in Finite Volume Formulations

    NASA Technical Reports Server (NTRS)

    Gnoffo, Peter A.

    2006-01-01

    Semi-analytic reconstruction uses the analytic solution to a second-order, steady, ordinary differential equation (ODE) to simultaneously evaluate the convective and diffusive flux at all interfaces of a finite volume formulation. The second-order ODE is itself a linearized approximation to the governing first- and second- order partial differential equation conservation laws. Thus, semi-analytic reconstruction defines a family of formulations for finite volume interface fluxes using analytic solutions to approximating equations. Limiters are not applied in a conventional sense; rather, diffusivity is adjusted in the vicinity of changes in sign of eigenvalues in order to achieve a sufficiently small cell Reynolds number in the analytic formulation across critical points. Several approaches for application of semi-analytic reconstruction for the solution of one-dimensional scalar equations are introduced. Results are compared with exact analytic solutions to Burger s Equation as well as a conventional, upwind discretization using Roe s method. One approach, the end-point wave speed (EPWS) approximation, is further developed for more complex applications. One-dimensional vector equations are tested on a quasi one-dimensional nozzle application. The EPWS algorithm has a more compact difference stencil than Roe s algorithm but reconstruction time is approximately a factor of four larger than for Roe. Though both are second-order accurate schemes, Roe s method approaches a grid converged solution with fewer grid points. Reconstruction of flux in the context of multi-dimensional, vector conservation laws including effects of thermochemical nonequilibrium in the Navier-Stokes equations is developed.

  19. A semi-analytical solution for the mean wind profile in the Atmospheric Boundary Layer: the convective case

    NASA Astrophysics Data System (ADS)

    Buligon, L.; Degrazia, G. A.; Acevedo, O. C.; Szinvelski, C. R. P.; Goulart, A. G. O.

    2010-03-01

    A novel methodology to derive the average wind profile from the Navier-Stokes equations is presented. The development employs the Generalized Integral Transform Technique (GITT), which combines series expansions with Integral Transforms. The new approach provides a solution described in terms of the quantities that control the wind vector with height. Parameters, such as divergence and vorticity, whose magnitudes represent sinoptic patterns are contained in the semi-analytical solution. The results of this new method applied to the convective boundary layer are shown to agree with wind data measured in Wangara experiment.

  20. A semi-analytical solution for the mean wind profile in the Atmospheric Boundary Layer: the convective case

    NASA Astrophysics Data System (ADS)

    Buligon, L.; Degrazia, G. A.; Acevedo, O. C.; Szinvelski, C. R. P.; Goulart, A. G. O.

    2009-09-01

    A novel methodology to derive the average wind profile from the Navier-Stokes equations is presented. The development employs the Generalized Integral Transform Technique (GITT), which joints series expansions with Integral Transforms. The new approach provides a solution described in terms of the quantities that control the wind vector with height. Parameters, such as divergence and vorticity, whose magnitudes represent sinoptic patterns are contained in the semi-analytical solution. The results of this new method applied to the convective boundary layer are shown to agree with wind data measured in Wangara experiment.

  1. Semi-analytical computation of displacement in linear viscoelastic materials

    NASA Astrophysics Data System (ADS)

    Spinu, S.; Gradinaru, D.

    2015-11-01

    Prediction of mechanical contact performance based on elastic models is not accurate in case of viscoelastic materials; however, a closed-form description of the viscoelastic contact has yet to be found. This paper aims to advance a semi-analytical method for computation of displacement induced in viscoelastic materials by arbitrary surface tractions, as a prerequisite to a semi-analytical solution for the viscoelastic contact problem. The newly advanced model is expected to provide greater generality, allowing for arbitrary contact geometry and / or arbitrary loading history. While time-independent equations in the purely elastic model can be treated numerically by imposing a spatial discretization only, a viscoelastic constitutive law requires supplementary temporal discretization capable of simulating the memory effect specific to viscoelastic materials. By deriving new influence coefficients, computation of displacement induced in a viscoelastic material by a known but otherwise arbitrary history of surface tractions can be achieved via superposition authorized by the Boltzmann superposition theory applicable in the frame of linear viscoelasticity.

  2. Semi-analytic algorithms for the electrohydrodynamic flow equation

    NASA Astrophysics Data System (ADS)

    Pandey, Ram K.; Baranwal, Vipul K.; Singh, Chandra S.; Singh, Om P.

    2012-12-01

    In this paper, we consider the nonlinear boundary value problem for the electrohydrodynamic (EHD) flow of a fluid in an ion-drag configuration in a circular cylindrical conduit. This phenomenon is governed by a nonlinear second-order differential equation. The degree of nonlinearity is determined by a nondimensional parameter α. We present two semi-analytic algorithms to solve the EHD flow equation for various values of relevant parameters based on optimal homotopy asymptotic method (OHAM) and optimal homotopy analysis method. In 1999, Paullet has shown that for large α, the solutions are qualitatively different from those calculated by Mckee in 1997. Both of our solutions obtained by OHAM and optimal homotopy analysis method are qualitatively similar with Paullet's solutions.

  3. Singularity Expansion Method

    NASA Astrophysics Data System (ADS)

    Riggs, Lloyd Stephen

    In this work the transient currents induced on an arbitrary system of thin linear scatterers by an electromagnetic plane wave are solved by using an electric field integral equation (EFIE) formulation. The transient analysis is carried out using the singularity expansion method (SEM). The general analysis developed here is useful for assessing the vulnerability of military aircraft to a nuclear generated electromagnetic pulse (EMP). It is also useful as a modal synthesis tool in the analysis and design of frequency selective surfaces (FSS). SEM parameters for a variety of thin cylindrical geometries have been computed. Specifically, SEM poles, modes, coupling coefficients, and transient currents are given for the two and three element planar array. Poles and modes for planar arrays with a larger number (as many as eight) of identical equally spaced elements are also considered. SEM pole-mode results are given for identical parallel elements with ends located at the vertices of a regular N-agon. Pole-mode patterns are found for symmetric (and slightly perturbed) single junction N-arm elements and for the five junction Jerusalem cross. The Jerusalem cross element has been used extensively in FSS.

  4. Semi-analytic approach for electromagnetic problems of large arrays structures

    NASA Astrophysics Data System (ADS)

    Rostami-Angas, Masoud

    There are limited electromagnetic problems which have closed form analytic solutions. Most of the real-world electromagnetic problems like electromagnetic scattering, electromagnetic radiation, waveguide modeling, etc., are not analytically calculable, because of the multitude of irregular geometries found in actual devices. Numerical computational techniques can be used as alternative method to overcome the inability of deriving closed form solutions of Maxwell's equations under various constitutive relations of media, and boundary conditions. This makes computational electromagnetics important in microwave, RF and photonic areas. Care must be taken into choosing the right method; otherwise the wrong method can either yield incorrect results, or results which take excessively long or demand great computational resources. Moreover, there are important electromagnetic problems for which numerical method solutions are challenging, if not impossible. Large non-periodic array of dipoles and multilayer spheres are examples of those problems. Some of these problems, because of their specific geometries and characteristics, can be modeled accurately and efficiently by applying Discrete Dipole Approximation (DDA), multipole expansion and translation addition theorem. The usual solution approach is to model the electromagnetic fields, or other unknowns, using multipole expansions, truncate appropriately the infinite summations, apply the boundary conditions, and then solve the resulting matrix problem by numerical methods. Because the approach contains both of analytic methods and numerical matrix solvers, it can be considered as a semi-analytic approach. The first chapter briefly describes the electromagnetic problems and semi-analytic approaches of this thesis. In the second chapter, a large array of molecular aggregates is investigated with the goal of solving the multiscale problem of a large array of molecules to explore its optical behaviors. Quantum electrodynamics

  5. Control of Inconel 738LC superalloy microstructure with the aid of a precipitate dissolution semi-analytical modeling

    NASA Astrophysics Data System (ADS)

    Danis, Yann; Arvieu, Corinne; Lacoste, Eric; Quenisset, Jean-Michel

    2010-12-01

    After experimental identification of the main factors influencing Inconel 738LC superalloy microstructures, a semi-analytical modeling of precipitate dissolution during thermal cycle has been proposed. It was based on an isokinetic model of phase transformation adapted to the presence of high-precipitate density as observed in γ' precipitate hardened IN738LC. Some data required as input for the semi-analytical modeling could be determined by an inverse method applied to isothermal treatments. Finally the semi-analytical modeling was validated through non-isothermal treatments and used to predict the occurrence of hot cracking depending on welding conditions.

  6. Error analysis for semi-analytic displacement derivatives with respect to shape and sizing variables

    NASA Technical Reports Server (NTRS)

    Fenyes, Peter A.; Lust, Robert V.

    1989-01-01

    Sensitivity analysis is fundamental to the solution of structural optimization problems. Consequently, much research has focused on the efficient computation of static displacement derivatives. As originally developed, these methods relied on analytical representations for the derivatives of the structural stiffness matrix (K) with respect to the design variables (b sub i). To extend these methods for use with complex finite element formulations and facilitate their implementation into structural optimization programs using the general finite element method analysis codes, the semi-analytic method was developed. In this method the matrix the derivative of K/the derivative b sub i is approximated by finite difference. Although it is well known that the accuracy of the semi-analytic method is dependent on the finite difference parameter, recent work has suggested that more fundamental inaccuracies exist in the method when used for shape optimization. Another study has argued qualitatively that these errors are related to nonuniform errors in the stiffness matrix derivatives. The accuracy of the semi-analytic method is investigated. A general framework was developed for the error analysis and then it is shown analytically that the errors in the method are entirely accounted for by errors in delta K/delta b sub i. Furthermore, it is demonstrated that acceptable accuracy in the derivatives can be obtained through careful selection of the finite difference parameter.

  7. Semi-analytical solution for the generalized absorbing boundary condition in molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Lee, Chung-Shuo; Chen, Yan-Yu; Yu, Chi-Hua; Hsu, Yu-Chuan; Chen, Chuin-Shan

    2017-02-01

    We present a semi-analytical solution of a time-history kernel for the generalized absorbing boundary condition in molecular dynamics (MD) simulations. To facilitate the kernel derivation, the concept of virtual atoms in real space that can conform with an arbitrary boundary in an arbitrary lattice is adopted. The generalized Langevin equation is regularized using eigenvalue decomposition and, consequently, an analytical expression of an inverse Laplace transform is obtained. With construction of dynamical matrices in the virtual domain, a semi-analytical form of the time-history kernel functions for an arbitrary boundary in an arbitrary lattice can be found. The time-history kernel functions for different crystal lattices are derived to show the generality of the proposed method. Non-equilibrium MD simulations in a triangular lattice with and without the absorbing boundary condition are conducted to demonstrate the validity of the solution.

  8. Semi-analytical solution for the generalized absorbing boundary condition in molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Lee, Chung-Shuo; Chen, Yan-Yu; Yu, Chi-Hua; Hsu, Yu-Chuan; Chen, Chuin-Shan

    2017-07-01

    We present a semi-analytical solution of a time-history kernel for the generalized absorbing boundary condition in molecular dynamics (MD) simulations. To facilitate the kernel derivation, the concept of virtual atoms in real space that can conform with an arbitrary boundary in an arbitrary lattice is adopted. The generalized Langevin equation is regularized using eigenvalue decomposition and, consequently, an analytical expression of an inverse Laplace transform is obtained. With construction of dynamical matrices in the virtual domain, a semi-analytical form of the time-history kernel functions for an arbitrary boundary in an arbitrary lattice can be found. The time-history kernel functions for different crystal lattices are derived to show the generality of the proposed method. Non-equilibrium MD simulations in a triangular lattice with and without the absorbing boundary condition are conducted to demonstrate the validity of the solution.

  9. Semi-analytical proton exchange membrane fuel cell modeling

    NASA Astrophysics Data System (ADS)

    Cheddie, Denver F.; Munroe, Norman D. H.

    Mathematical techniques are presented which allow for analytical solutions of the catalyst layer transport and electrochemical problem in PEM fuel cells. These techniques transform the volumetric reaction terms to boundary flux terms, thereby eliminating the need for computational solving of the catalyst layer problem. The result is a semi-analytical fuel cell model-a computational model that entails analytical rather than computational catalyst layer solutions. This helps to alleviate the meshing difficulties inherent in the catalyst layers caused by large geometric aspect ratios, and hence reduce the computational requirements for fuel cell models. These analytical solutions are implemented in a 3D PEM fuel cell model, and the results of the semi-analytical model match well with the full computational model in terms of the polarization performance and species concentration distribution. In addition, these analytical solutions were able to reduce the required computational memory by a factor of approximately 3, and the computational time by a factor of approximately 4.

  10. Dark Sage: Semi-analytic model of galaxy evolution

    NASA Astrophysics Data System (ADS)

    Stevens, Adam R. H.; Croton, Darren J.; Mutch, Simon J.; Sinha, Manodeep

    2017-06-01

    DARK SAGE is a semi-analytic model of galaxy formation that focuses on detailing the structure and evolution of galaxies' discs. The code-base, written in C, is an extension of SAGE (ascl:1601.006) and maintains the modularity of SAGE. DARK SAGE runs on any N-body simulation with trees organized in a supported format and containing a minimum set of basic halo properties.

  11. Semi-analytical solution to the frequency-dependent Boltzmann transport equation for cross-plane heat conduction in thin films

    SciTech Connect

    Hua, Chengyun; Minnich, Austin J.

    2015-05-07

    Cross-plane heat transport in thin films with thicknesses comparable to the phonon mean free paths is of both fundamental and practical interest for applications such as light-emitting diodes and quantum well lasers. However, physical insight is difficult to obtain for the cross-plane geometry due to the challenge of solving the Boltzmann equation in a finite domain. Here, we present a semi-analytical series expansion method to solve the transient, frequency-dependent Boltzmann transport equation that is valid from the diffusive to ballistic transport regimes and rigorously includes the frequency-dependence of phonon properties. Further, our method is more than three orders of magnitude faster than prior numerical methods and provides a simple analytical expression for the thermal conductivity as a function of film thickness. Our result enables a straightforward physical understanding of cross-plane heat conduction in thin films.

  12. Fast semi-analytical solution of Maxwell's equations in Born approximation for periodic structures.

    PubMed

    Pisarenco, Maxim; Quintanilha, Richard; van Kraaij, Mark G M M; Coene, Wim M J

    2016-04-01

    We propose a fast semi-analytical approach for solving Maxwell's equations in Born approximation based on the Fourier modal method (FMM). We show that, as a result of Born approximation, most matrices in the FMM algorithm become diagonal, thus allowing a reduction of computational complexity from cubic to linear. Moreover, due to the analytical representation of the solution in the vertical direction, the number of degrees of freedom in this direction is independent of the wavelength. The method is derived for planar illumination with two basic polarizations (TE/TM) and an arbitrary 2D geometry infinitely periodic in one horizontal direction.

  13. CALIBRATION OF SEMI-ANALYTIC MODELS OF GALAXY FORMATION USING PARTICLE SWARM OPTIMIZATION

    SciTech Connect

    Ruiz, Andrés N.; Domínguez, Mariano J.; Yaryura, Yamila; Lambas, Diego García; Cora, Sofía A.; Martínez, Cristian A. Vega-; Gargiulo, Ignacio D.; Padilla, Nelson D.; Tecce, Tomás E.; Orsi, Álvaro; Arancibia, Alejandra M. Muñoz

    2015-03-10

    We present a fast and accurate method to select an optimal set of parameters in semi-analytic models of galaxy formation and evolution (SAMs). Our approach compares the results of a model against a set of observables applying a stochastic technique called Particle Swarm Optimization (PSO), a self-learning algorithm for localizing regions of maximum likelihood in multidimensional spaces that outperforms traditional sampling methods in terms of computational cost. We apply the PSO technique to the SAG semi-analytic model combined with merger trees extracted from a standard Lambda Cold Dark Matter N-body simulation. The calibration is performed using a combination of observed galaxy properties as constraints, including the local stellar mass function and the black hole to bulge mass relation. We test the ability of the PSO algorithm to find the best set of free parameters of the model by comparing the results with those obtained using a MCMC exploration. Both methods find the same maximum likelihood region, however, the PSO method requires one order of magnitude fewer evaluations. This new approach allows a fast estimation of the best-fitting parameter set in multidimensional spaces, providing a practical tool to test the consequences of including other astrophysical processes in SAMs.

  14. A multi-band semi-analytical algorithm for estimating chlorophyll-a concentration in the Yellow River Estuary, China.

    PubMed

    Chen, Jun; Quan, Wenting; Cui, Tingwei

    2015-01-01

    In this study, two sample semi-analytical algorithms and one new unified multi-band semi-analytical algorithm (UMSA) for estimating chlorophyll-a (Chla) concentration were constructed by specifying optimal wavelengths. The three sample semi-analytical algorithms, including the three-band semi-analytical algorithm (TSA), four-band semi-analytical algorithm (FSA), and UMSA algorithm, were calibrated and validated by the dataset collected in the Yellow River Estuary between September 1 and 10, 2009. By comparing of the accuracy of assessment of TSA, FSA, and UMSA algorithms, it was found that the UMSA algorithm had a superior performance in comparison with the two other algorithms, TSA and FSA. Using the UMSA algorithm in retrieving Chla concentration in the Yellow River Estuary decreased by 25.54% NRMSE (normalized root mean square error) when compared with the FSA algorithm, and 29.66% NRMSE in comparison with the TSA algorithm. These are very significant improvements upon previous methods. Additionally, the study revealed that the TSA and FSA algorithms are merely more specific forms of the UMSA algorithm. Owing to the special form of the UMSA algorithm, if the same bands were used for both the TSA and UMSA algorithms or FSA and UMSA algorithms, the UMSA algorithm would theoretically produce superior results in comparison with the TSA and FSA algorithms. Thus, good results may also be produced if the UMSA algorithm were to be applied for predicting Chla concentration for datasets of Gitelson et al. (2008) and Le et al. (2009).

  15. Multipole expansion method for supernova neutrino oscillations

    SciTech Connect

    Duan, Huaiyu; Shalgar, Shashank E-mail: shashankshalgar@unm.edu

    2014-10-01

    We demonstrate a multipole expansion method to calculate collective neutrino oscillations in supernovae using the neutrino bulb model. We show that it is much more efficient to solve multi-angle neutrino oscillations in multipole basis than in angle basis. The multipole expansion method also provides interesting insights into multi-angle calculations that were accomplished previously in angle basis.

  16. A (semi)-analytic view of the inner structure of Pulsar Wind Nebulae

    NASA Astrophysics Data System (ADS)

    Bandiera, R.; Olmi, B.; del Zanna, L.; Bucciantini, N.; Amato, E.

    2016-06-01

    When the wind of an active pulsar impacts on the surrounding medium, it forms a termination shock (TS) that feeds a relativistic and magnetized bubble, known as "Pulsar Wind Nebula". About thirty years ago, Kennel Coroniti investigated this scenario, but unfortunately their results failed to match the observed morphologies. That model was in principle correct, but its main drawback was the assumption of a spherical symmetry. More recently, numerical codes have been used to simulate in detail the dynamical structure of PWNe: they have shown complex morphologies, with a closer resemblance with observations. We show how Kennel Coroniti model can be generalized to two dimensions, by solving the jump equations for an oblique TS, and then the relativistic MHD equations in the downstream regions closest to the TS. In this way we can obtain two dimensional, steady state solutions, which in the inner regions agree quite well with the numerical ones. This method is semi-analytic and computationally rather light: given the shape of the TS (in an analytic form), the spatial behaviour of the physical quantities (like velocity, pressure, magnetic field) is derived. Maps of the synchrotron emission are also obtained. A final goal is to use semi-analytic modelling, together with numerical simulations, to improve inversion techniques, aimed at deriving the pulsar-wind parameters from observations.

  17. Semi-analytical solutions of groundwater flow in multi-zone (patchy) wedge-shaped aquifers

    NASA Astrophysics Data System (ADS)

    Samani, Nozar; Sedghi, Mohammad M.

    2015-03-01

    Alluvial fans are potential sites of potable groundwater in many parts of the world. Characteristics of alluvial fans sediments are changed radially from high energy coarse-grained deposition near the apex to low energy fine-grained deposition downstream so that patchy wedge-shaped aquifers with radial heterogeneity are formed. The hydraulic parameters of the aquifers (e.g. hydraulic conductivity and specific storage) change in the same fashion. Analytical or semi-analytical solutions of the flow in wedge-shaped aquifers are available for homogeneous cases. In this paper we derive semi-analytical solutions of groundwater flow to a well in multi-zone wedge-shaped aquifers. Solutions are provided for three wedge boundary configurations namely: constant head-constant head wedge, constant head-barrier wedge and barrier-barrier wedge. Derivation involves the use of integral transforms methods. The effect of heterogeneity ratios of zones on the response of the aquifer is examined. The results are presented in form of drawdown and drawdown derivative type curves. Heterogeneity has a significant effect on over all response of the pumped aquifer. Solutions help understanding the behavior of heterogeneous multi-zone aquifers for sustainable development of the groundwater resources in alluvial fans.

  18. Numerical methods on European option second order asymptotic expansions for multiscale stochastic volatility

    NASA Astrophysics Data System (ADS)

    Canhanga, Betuel; Ni, Ying; Rančić, Milica; Malyarenko, Anatoliy; Silvestrov, Sergei

    2017-01-01

    After Black-Scholes proposed a model for pricing European Options in 1973, Cox, Ross and Rubinstein in 1979, and Heston in 1993, showed that the constant volatility assumption made by Black-Scholes was one of the main reasons for the model to be unable to capture some market details. Instead of constant volatilities, they introduced stochastic volatilities to the asset dynamic modeling. In 2009, Christoffersen empirically showed "why multifactor stochastic volatility models work so well". Four years later, Chiarella and Ziveyi solved the model proposed by Christoffersen. They considered an underlying asset whose price is governed by two factor stochastic volatilities of mean reversion type. Applying Fourier transforms, Laplace transforms and the method of characteristics they presented a semi-analytical formula to compute an approximate price for American options. The huge calculation involved in the Chiarella and Ziveyi approach motivated the authors of this paper in 2014 to investigate another methodology to compute European Option prices on a Christoffersen type model. Using the first and second order asymptotic expansion method we presented a closed form solution for European option, and provided experimental and numerical studies on investigating the accuracy of the approximation formulae given by the first order asymptotic expansion. In the present paper we will perform experimental and numerical studies for the second order asymptotic expansion and compare the obtained results with results presented by Chiarella and Ziveyi.

  19. A semi-analytic model of magnetized liner inertial fusion

    SciTech Connect

    McBride, Ryan D.; Slutz, Stephen A.

    2015-05-15

    Presented is a semi-analytic model of magnetized liner inertial fusion (MagLIF). This model accounts for several key aspects of MagLIF, including: (1) preheat of the fuel (optionally via laser absorption); (2) pulsed-power-driven liner implosion; (3) liner compressibility with an analytic equation of state, artificial viscosity, internal magnetic pressure, and ohmic heating; (4) adiabatic compression and heating of the fuel; (5) radiative losses and fuel opacity; (6) magnetic flux compression with Nernst thermoelectric losses; (7) magnetized electron and ion thermal conduction losses; (8) end losses; (9) enhanced losses due to prescribed dopant concentrations and contaminant mix; (10) deuterium-deuterium and deuterium-tritium primary fusion reactions for arbitrary deuterium to tritium fuel ratios; and (11) magnetized α-particle fuel heating. We show that this simplified model, with its transparent and accessible physics, can be used to reproduce the general 1D behavior presented throughout the original MagLIF paper [S. A. Slutz et al., Phys. Plasmas 17, 056303 (2010)]. We also discuss some important physics insights gained as a result of developing this model, such as the dependence of radiative loss rates on the radial fraction of the fuel that is preheated.

  20. A semi-analytical guidance algorithm for autonomous landing

    NASA Astrophysics Data System (ADS)

    Lunghi, Paolo; Lavagna, Michèle; Armellin, Roberto

    2015-06-01

    One of the main challenges posed by the next space systems generation is the high level of autonomy they will require. Hazard Detection and Avoidance is a key technology in this context. An adaptive guidance algorithm for landing that updates the trajectory to the surface by means of an optimal control problem solving is here presented. A semi-analytical approach is proposed. The trajectory is expressed in a polynomial form of minimum order to satisfy a set of boundary constraints derived from initial and final states and attitude requirements. By imposing boundary conditions, a fully determined guidance profile is obtained, function of a restricted set of parameters. The guidance computation is reduced to the determination of these parameters in order to satisfy path constraints and other additional constraints not implicitly satisfied by the polynomial formulation. The algorithm is applied to two different scenarios, a lunar landing and an asteroidal landing, to highlight its general validity. An extensive Monte Carlo test campaign is conducted to verify the versatility of the algorithm in realistic cases, by the introduction of attitude control systems, thrust modulation, and navigation errors. The proposed approach proved to be flexible and accurate, granting a precision of a few meters at touchdown.

  1. A semi-analytic model of magnetized liner inertial fusion

    DOE PAGES

    McBride, Ryan D.; Slutz, Stephen A.

    2015-05-21

    Presented is a semi-analytic model of magnetized liner inertial fusion (MagLIF). This model accounts for several key aspects of MagLIF, including: (1) preheat of the fuel (optionally via laser absorption); (2) pulsed-power-driven liner implosion; (3) liner compressibility with an analytic equation of state, artificial viscosity, internal magnetic pressure, and ohmic heating; (4) adiabatic compression and heating of the fuel; (5) radiative losses and fuel opacity; (6) magnetic flux compression with Nernst thermoelectric losses; (7) magnetized electron and ion thermal conduction losses; (8) end losses; (9) enhanced losses due to prescribed dopant concentrations and contaminant mix; (10) deuterium-deuterium and deuterium-tritium primarymore » fusion reactions for arbitrary deuterium to tritium fuel ratios; and (11) magnetized α-particle fuel heating. We show that this simplified model, with its transparent and accessible physics, can be used to reproduce the general 1D behavior presented throughout the original MagLIF paper [S. A. Slutz et al., Phys. Plasmas 17, 056303 (2010)]. We also discuss some important physics insights gained as a result of developing this model, such as the dependence of radiative loss rates on the radial fraction of the fuel that is preheated.« less

  2. A semi-analytical variable property droplet combustion model

    NASA Astrophysics Data System (ADS)

    Sisti, John

    A multizone droplet burn model is developed to account for changes in the thermal and transport properties as a function of droplet radius. The formulation is semi-analytical---allowing for accurate and computationally efficient estimates of flame structure and burn rates. Zonal thermal and transport properties are computed using the Cantera software and pre-tabulated for rapid evaluation during run-time. Model predictions are compared to experimental measurements of burning n-heptane, ethanol and methanol droplets. An adaptive zone refinement algorithm is developed that minimizes the number of zones required to provide accurate estimates of burn time without excess zones. A sensitivity study of burn rate and flame stand-off with far-field oxygen concentration is conducted with comparisons to experimental data. Overall agreement to data is encouraging with errors typically less than 20% for predictions of burn rates, stand-off ratio and flame temperature for the fuels considered. The quiescent quasi-steady solution is extended to a convective transient solution without the need to solve an eigenvalue solution in time. The time history of the burning droplets show good comparison with experimental data. To further decrease computational cost, the source terms for the transient solution are linearized for an explicit time marching solution. An error convergence study was performed to show a time-step independent solution exists at a reasonable Delta t.

  3. Machine learning and cosmological simulations - I. Semi-analytical models

    NASA Astrophysics Data System (ADS)

    Kamdar, Harshil M.; Turk, Matthew J.; Brunner, Robert J.

    2016-01-01

    We present a new exploratory framework to model galaxy formation and evolution in a hierarchical Universe by using machine learning (ML). Our motivations are two-fold: (1) presenting a new, promising technique to study galaxy formation, and (2) quantitatively analysing the extent of the influence of dark matter halo properties on galaxies in the backdrop of semi-analytical models (SAMs). We use the influential Millennium Simulation and the corresponding Munich SAM to train and test various sophisticated ML algorithms (k-Nearest Neighbors, decision trees, random forests, and extremely randomized trees). By using only essential dark matter halo physical properties for haloes of M > 1012 M⊙ and a partial merger tree, our model predicts the hot gas mass, cold gas mass, bulge mass, total stellar mass, black hole mass and cooling radius at z = 0 for each central galaxy in a dark matter halo for the Millennium run. Our results provide a unique and powerful phenomenological framework to explore the galaxy-halo connection that is built upon SAMs and demonstrably place ML as a promising and a computationally efficient tool to study small-scale structure formation.

  4. Star formation in Herschel's Monsters versus semi-analytic models

    NASA Astrophysics Data System (ADS)

    Gruppioni, C.; Calura, F.; Pozzi, F.; Delvecchio, I.; Berta, S.; De Lucia, G.; Fontanot, F.; Franceschini, A.; Marchetti, L.; Menci, N.; Monaco, P.; Vaccari, M.

    2015-08-01

    We present a direct comparison between the observed star formation rate functions (SFRFs) and the state-of-the-art predictions of semi-analytic models (SAMs) of galaxy formation and evolution. We use the PACS Evolutionary Probe Survey and Herschel Multi-tiered Extragalactic Survey data sets in the COSMOS and GOODS-South fields, combined with broad-band photometry from UV to sub-mm, to obtain total (IR+UV) instantaneous star formation rates (SFRs) for individual Herschel galaxies up to z ˜ 4, subtracted of possible active galactic nucleus (AGN) contamination. The comparison with model predictions shows that SAMs broadly reproduce the observed SFRFs up to z ˜ 2, when the observational errors on the SFR are taken into account. However, all the models seem to underpredict the bright end of the SFRF at z ≳ 2. The cause of this underprediction could lie in an improper modelling of several model ingredients, like too strong (AGN or stellar) feedback in the brighter objects or too low fallback of gas, caused by weak feedback and outflows at earlier epochs.

  5. Simulation of ultrasonic inspection of curved composites using a hybrid semi-analytical/numerical code

    NASA Astrophysics Data System (ADS)

    Reverdy, Frédéric; Mahaut, Steve; Dominguez, Nicolas; Dubois, Philippe

    2015-03-01

    Carbon Fiber reinforced composites are increasingly used in structural parts in the aeronautics industry, as they allow to reduce the weight of aircrafts while maintaining high mechanical performances. However, such structures can be complicated to inspect due to their complex geometries and complex composite properties, leading to highly heterogeneous and anisotropic materials. Different potential damages and manufacturing flaws related to these parts are to be detected: porosities, ply waviness, delaminations after impact. Ultrasonic inspection, which is commonly used to test the full volume of composite panels, thus has to cope with both complex wave propagation (within anisotropic parts whose crystallographic orientation varies according to the layers structure) and flaw interaction (local distortion of plies such as ply waviness, small pores, structural noise due to periodicity patterns…). Developing NDT procedures for those parts therefore requires simulation tools to help for understanding those phenomena, and to optimize probes and techniques. Within the CIVA multi-techniques platform, CEA-LIST has developed semi-analytical tools for ultrasonic techniques, which have the advantages of high computational efficiency (fast calculations), but with limited range of application due to some hypothesis (for instance, homogenization approaches which don't allow to take account of structural noise). On the other hand, numerical methods such as finite element (FEM) or finite difference in time domain (FDTD) are more suitable to compute ultrasonic wave propagation and defect scattering in complex materials such as composite but require more computational efforts. Hybrid methods couple semi-analytical solutions and numerical computations in limited spatial domains to handle complex cases with high computation performances. In CIVA we have integrated a hybrid model that combines the semi-analytical methods developed at CEA to FDTD codes developed at Airbus Group

  6. Semi-analytical expression of stochastic closed curve attractors in nonlinear dynamical systems under weak noise

    NASA Astrophysics Data System (ADS)

    Guo, Kongming; Jiang, Jun; Xu, Yalan

    2016-09-01

    In this paper, a simple but accurate semi-analytical method to approximate probability density function of stochastic closed curve attractors is proposed. The expression of distribution applies to systems with strong nonlinearities, while only weak noise condition is needed. With the understanding that additive noise does not change the longitudinal distribution of the attractors, the high-dimensional probability density distribution is decomposed into two low-dimensional distributions: the longitudinal and the transverse probability density distributions. The longitudinal distribution can be calculated from the deterministic systems, while the probability density in the transverse direction of the curve can be approximated by the stochastic sensitivity function method. The effectiveness of this approach is verified by comparing the expression of distribution with the results of Monte Carlo numerical simulations in several planar systems.

  7. A semi-analytical solution for slug tests in an unconfined aquifer considering unsaturated flow

    NASA Astrophysics Data System (ADS)

    Sun, Hongbing

    2016-01-01

    A semi-analytical solution considering the vertical unsaturated flow is developed for groundwater flow in response to a slug test in an unconfined aquifer in Laplace space. The new solution incorporates the effects of partial penetrating, anisotropy, vertical unsaturated flow, and a moving water table boundary. Compared to the Kansas Geological Survey (KGS) model, the new solution can significantly improve the fittings of the modeled to the measured hydraulic heads at the late stage of slug tests in an unconfined aquifer, particularly when the slug well has a partially submerged screen and moisture drainage above the water table is significant. The radial hydraulic conductivities estimated with the new solution are comparable to those from the KGS, Bouwer and Rice, and Hvorslev methods. In addition, the new solution also can be used to examine the vertical conductivity, specific storage, specific yield, and the moisture retention parameters in an unconfined aquifer based on slug test data.

  8. Semi-analytical models of hydroelastic sloshing impact in tanks of liquefied natural gas vessels.

    PubMed

    Ten, I; Malenica, Š; Korobkin, A

    2011-07-28

    The present paper deals with the methods for the evaluation of the hydroelastic interactions that appear during the violent sloshing impacts inside the tanks of liquefied natural gas carriers. The complexity of both the fluid flow and the structural behaviour (containment system and ship structure) does not allow for a fully consistent direct approach according to the present state of the art. Several simplifications are thus necessary in order to isolate the most dominant physical aspects and to treat them properly. In this paper, choice was made of semi-analytical modelling for the hydrodynamic part and finite-element modelling for the structural part. Depending on the impact type, different hydrodynamic models are proposed, and the basic principles of hydroelastic coupling are clearly described and validated with respect to the accuracy and convergence of the numerical results.

  9. Semi-analytical model for quasi-double-layer surface electrode ion traps

    NASA Astrophysics Data System (ADS)

    Zhang, Jian; Chen, Shuming; Wang, Yaohua

    2016-11-01

    To realize scale quantum processors, the surface-electrode ion trap is an effective scaling approach, including single-layer, double-layer, and quasi-double-layer traps. To calculate critical trap parameters such as the trap center and trap depth, the finite element method (FEM) simulation was widely used, however, it is always time consuming. Moreover, the FEM simulation is also incapable of exhibiting the direct relationship between the geometry dimension and these parameters. To eliminate the problems above, House and Madsen et al. have respectively provided analytic models for single-layer traps and double-layer traps. In this paper, we propose a semi-analytical model for quasi-double-layer traps. This model can be applied to calculate the important parameters above of the ion trap in the trap design process. With this model, we can quickly and precisely find the optimum geometry design for trap electrodes in various cases.

  10. The Multi-SAG project: filling the MultiDark simulations with semi-analytic galaxies

    NASA Astrophysics Data System (ADS)

    Vega-Martínez, C. A.; Cora, S. A.; Padilla, N. D.; Muñoz Arancibia, A. M.; Orsi, A. A.; Ruiz, A. N.

    2016-08-01

    The semi-analytical model sag is a code of galaxy formation and evolution which is applied to halo catalogs and merger trees extracted from cosmological -body simulations of dark matter. This contribution describes the project of constructing a catalog of simulated galaxies by adapting and applying the model sag over two dark matter simulations of the spanish MultiDark Project publicly available. Those simulations have particles, each, in boxes with sizes of 1000 Mpc and 400 Mpc respectively with Planck cosmological parameters. They cover a large range of masses and have halo mass resolutions of , therefore each simulation is able to produce more than 150 millions of simulated galaxies. A detailed description of the method is explained, and the first statistical results are shown.

  11. Coupling Semi-Analytic Models and N-Body Simulations: A New Way of Making Galaxies and Stellar Halos

    NASA Astrophysics Data System (ADS)

    McCord, Krista M.; Bailin, Jeremy; Croton, Darren; Valluri, Monica

    2015-01-01

    Stellar halos give insight to the initial conditions that existed when a host galaxy first formed and provide details on disrupted satellites by looking at the different stellar populations. An algorithm that is computationally inexpensive compared to hydrodynamic simulations is necessary in order to theoretically study the structure and formation of galactic stellar halos in sufficient detail to probe substructure. Currently being developed is CoSANG (Coupled Semi-Analytic/N-body Galaxies), a new computational method that will couple pure dark matter N-body simulations with a semi-analytic model. At each timestep, results from the N-body simulation will feed into the semi-analytic code, whose results will feed back into the N-body code making the evolution of the dark matter and baryonic matter dependent on one another. CoSANG will require much less computing power than hydrodynamical simulations, and will enable a variety of galaxy formation science, including analysis of stellar populations, halo merging, satellite accretion, supermassive black holes, and indirect and direct dark matter detection.

  12. Semi-analytical model of cross-borehole flow experiments for fractured medium characterization

    NASA Astrophysics Data System (ADS)

    Roubinet, D.; Irving, J.; Day-Lewis, F. D.

    2014-12-01

    The study of fractured rocks is extremely important in a wide variety of research fields where the fractures and faults can represent either rapid access to some resource of interest or potential pathways for the migration of contaminants in the subsurface. Identification of their presence and determination of their properties are critical and challenging tasks that have led to numerous fracture characterization methods. Among these methods, cross-borehole flowmeter analysis aims to evaluate fracture connections and hydraulic properties from vertical-flow-velocity measurements conducted in one or more observation boreholes under forced hydraulic conditions. Previous studies have demonstrated that analysis of these data can provide important information on fracture connectivity, transmissivity, and storativity. Estimating these properties requires the development of analytical and/or numerical modeling tools that are well adapted to the complexity of the problem. Quantitative analysis of cross-borehole flowmeter experiments, in particular, requires modeling formulations that: (i) can be adapted to a variety of fracture and experimental configurations; (ii) can take into account interactions between the boreholes because their radii of influence may overlap; and (iii) can be readily cast into an inversion framework that allows for not only the estimation of fracture hydraulic properties, but also an assessment of estimation error. To this end, we present a new semi-analytical formulation for cross-borehole flow in fractured media that links transient vertical-flow velocities measured in one or a series of observation wells during hydraulic forcing to the transmissivity and storativity of the fractures intersected by these wells. Our model addresses the above needs and provides a flexible and computationally efficient semi-analytical framework having strong potential for future adaptation to more complex configurations. The proposed modeling approach is demonstrated

  13. A new semi-analytical solution for inertial waves in a rectangular parallelepiped

    NASA Astrophysics Data System (ADS)

    Nurijanyan, S.; Bokhove, O.; Maas, L. R. M.

    2013-12-01

    A study of inertial gyroscopic waves in a rotating homogeneous fluid is undertaken both theoretically and numerically. A novel approach is presented to construct a semi-analytical solution of a linear three-dimensional fluid flow in a rotating rectangular parallelepiped bounded by solid walls. The three-dimensional solution is expanded in vertical modes to reduce the dynamics to the horizontal plane. On this horizontal plane, the two dimensional solution is constructed via superposition of "inertial" analogs of surface Poincaré and Kelvin waves reflecting from the walls. The infinite sum of inertial Poincaré waves has to cancel the normal flow of two inertial Kelvin waves near the boundaries. The wave system corresponding to every vertical mode results in an eigenvalue problem. Corresponding computations for rotationally modified surface gravity waves are in agreement with numerical values obtained by Taylor ["Tidal oscillations in gulfs and basins," Proc. London Math. Soc., Ser. 2 XX, 148-181 (1921)], Rao ["Free gravitational oscillations in rotating rectangular basins," J. Fluid Mech. 25, 523-555 (1966)] and also, for inertial waves, by Maas ["On the amphidromic structure of inertial waves in a rectangular parallelepiped," Fluid Dyn. Res. 33, 373-401 (2003)] upon truncation of an infinite matrix. The present approach enhances the currently available, structurally concise modal solution introduced by Maas. In contrast to Maas' approach, our solution does not have any convergence issues in the interior and does not suffer from Gibbs phenomenon at the boundaries. Additionally, an alternative finite element method is used to contrast these two semi-analytical solutions with a purely numerical one. The main differences are discussed for a particular example and one eigenfrequency.

  14. Theory for the semi-analytical calculation of oil recovery and effective relative permeabilities using streamtubes

    NASA Astrophysics Data System (ADS)

    Hewett, Thomas A.; Yamada, Tomomi

    A semi-analytical method has been developed for calculating oil recovery in two and three dimensions, and for calculating effective relative permeabilities for coarse grids. The calculations are based on the assumption that the effects of a changing mobility field can be accounted for by using fixed streamtube geometries with flowrates updated to account for the changing mobility distribution. The single-phase pressure distribution from a numerical solution of Laplace's equation is used to calculate the pressure distribution for a two-phase flow based on a mapping of the solution of the Buckley-Leverett equation onto the streamtubes derived from the single-phase solution. The displacement calculations for oil recovery are based on theory previously developed by Dykstra and Parsons, extended to include the effects of spatially varying permeability and continuously changing mobilities, as occurs in solutions of the Buckley-Leverett equation for typical values of the mobility ratio. This idea has also been extended to the calculation of effective relative permeabilities for coarse-grid simulation and finally establishes the proper rules for averaging the results of fine-grid numerical simulations of two-phase flow for the definition of effective two-phase flow properties on coarse grids. These calculations have been generalized to three-dimensional flows by the simple device of conceptually inserting a gridded plane across the flow and defining each streamtube at that location as those streamlines which pass through any one of the grid cells. When combined with time-of-flight calculations from the gridded plane to both the producer and injector, the distribution of pore volume along each streamtube can be calculated. This information, combined with a tabulation of the single-phase, steady-state pressure distribution along each streamtube, provides all of the information needed for the semi-analytical calculation of oil recovery and effective flow properties in three

  15. Analytical and semi-analytical investigations of geosynchronous space debris with high area-to-mass ratios

    NASA Astrophysics Data System (ADS)

    Valk, S.; Lemaître, A.; Anselmo, L.

    This paper provides a Hamiltonian formulation of the averaged equations of motion with respect to short periods (1 day) of a space debris subjected to direct solar radiation pressure and orbiting near the geostationary ring. This theory is based on a semi-analytical theory of order 1 regarding the averaging process, formulated using canonical and non-singular elements for eccentricity and inclination. The analysis is based on an expansion in powers of the eccentricity and of the inclination, truncated at an arbitrary high order. First, the dynamical evolution of space debris released near the geostationary ring, with area-to-mass ratios as high as 40 m2/kg is analyzed within the framework of mid-term evolution (˜1 year) as well as long-term evolution (several decades). This study is carried out, using both simplified analytical models to clarify some properties, as well as our complete semi-analytical theory which leads to an accurate understanding of the mid-term and long-term evolution of the eccentricity and of the inclination. We also analyzed the coupling equations between the eccentricity and the inclination, considering a doubly averaged analytical model. Second, we also focused our attention on the comparison of various direct radiation pressure approximations in order to assess their consequences. Last, this paper claims to be the continuation and the counterpart of previous papers dealing with geosynchronous orbits and radiation pressure, that is Anselmo and Pardini (2005) [Anselmo, L., Pardini, C. Orbital evolution of geosynchronous objects with high area-to-mass ratios. In: Danesy, D. (Ed.), Proceedings of the Fourth European Conference on Space Debris, ESA SP-587. ESA Publications Division, Noordwijk, The Netherlands, pp. 279 284, 2005] and Valk et al. (submitted for publication) [Valk, S., Lemaître, A., Deleflie, F. Semi-analytical theory of mean orbital motion for geosynchronous space debris under gravitational influence, Advances in Space Research

  16. Semi-analytical investigations of high area-to-mass ratio geosynchronous space debris including Earth’s shadowing effects

    NASA Astrophysics Data System (ADS)

    Valk, S.; Lemaître, A.

    2008-10-01

    This paper investigates the long-term perturbations of the orbits of geosynchronous space debris influenced by direct radiation pressure including the Earth's shadowing effects. For this purpose, we propose an extension of our homemade semi-analytical theory [Valk, S., Lemaître, A., Deleflie, F. Semi-analytical theory of mean orbital motion for geosynchronous space debris under gravitational influence. Adv. Space Res., submitted for publication], based on the method developed by Aksnes [Aksnes, K. Short-period and long-period perturbations of a spherical satellite due to direct solar radiation. Celest. Mech. Dyn. Astron. 13, 89-104, 1976] and generalized into a more convenient non-singular formalism. The perturbations accounting for the direct radiation pressure with the Earth's shadow are computed on a revolution-by-revolution basis, retaining the original osculating Hamiltonian disturbing function. In this framework, we compute the non-singular mean longitude at shadow entry and shadow exit at every orbital revolution in opposition to classical approaches where the singular eccentric anomalies at shadow entry and shadow exit are computed. This new algorithm is developed using non-singular variables. Consequently, it is particularly suitable for both near-circular and near-equatorial orbits as well as orbits which transit periodically around null eccentricities and null inclinations. The algorithm is tested by means of numerical integrations of the equations, averaged over the short periods, including radiation pressure, J2, the combined Moon and Sun third body attraction as well as the long-term effects of the 1:1 resonance occurring for geosynchronous objects. As an extension of [Valk, S., Lemaître, A., Anselmo, L. Analytical and semi-analytical investigations of geosynchronous space debris with high area-to-mass ratios influenced by solar radiation pressure. Adv. Space Res., doi:10.1016/j.asr.2007.10.025, 2007b], we especially apply our analysis to space

  17. Development of new hole expansion testing method

    NASA Astrophysics Data System (ADS)

    Kim, Hyunok; Shang, Jianhui; Beam, Kevin; Samant, Anoop; Hoschouer, Cliff; Dykeman, Jim

    2016-08-01

    This paper introduces a new hole expansion (HE) testing method that could be more relevant to the edge cracking problem observed in stamping advanced high strength steel (AHSS). The new testing method adopted a large hole diameter of 75 mm compared to the standard hole diameter of 10 mm. An inline monitoring system was developed to visually monitor the hole edge cracking during the test and synchronize the load-displacement data with the recorded video for capturing the initial crack. A new hole expansion testing method was found to be effective in evaluating the edge cracking by considering the effects of material properties and trimming methods. It showed a much larger difference, up to 11%, of the HE ratio between DP980 and TRIP780 compared to the standard HE testing method giving less than a 2% difference.

  18. A semi-analytic theory for the motion of a close-earth artificial satellite with drag

    NASA Technical Reports Server (NTRS)

    Liu, J. J. F.; Alford, R. L.

    1979-01-01

    A semi-analytic method is used to estimate the decay history/lifetime and to generate orbital ephemeris for close-earth satellites perturbed by the atmospheric drag and earth oblateness due to the spherical harmonics J2, J3, and J4. The theory maintains efficiency through the application of the theory of a method of averaging and employs sufficient numerical emphasis to include a rather sophisticated atmospheric density model. The averaged drag effects with respect to mean anomaly are evaluated by a Gauss-Legendre quadrature while the averaged variational equations of motion are integrated numerically with automatic step size and error control.

  19. A semi-analytic theory for the motion of a close-earth artificial satellite with drag

    NASA Technical Reports Server (NTRS)

    Liu, J. J. F.; Alford, R. L.

    1979-01-01

    A semi-analytic method is used to estimate the decay history/lifetime and to generate orbital ephemeris for close-earth satellites perturbed by the atmospheric drag and earth oblateness due to the spherical harmonics J2, J3, and J4. The theory maintains efficiency through the application of the theory of a method of averaging and employs sufficient numerical emphasis to include a rather sophisticated atmospheric density model. The averaged drag effects with respect to mean anomaly are evaluated by a Gauss-Legendre quadrature while the averaged variational equations of motion are integrated numerically with automatic step size and error control.

  20. Determination of transport properties from flowing fluid temperature logging in unsaturated fractured rocks: Theory and semi-analytical solution

    NASA Astrophysics Data System (ADS)

    Mukhopadhyay, Sumit; Tsang, Yvonne W.

    2008-10-01

    Flowing fluid temperature logging (FFTL) has recently been proposed as a method to locate flowing fractures. We argue that FFTL, backed up by data from high-precision distributed temperature sensors, can be a useful tool in locating flowing fractures and in estimating the transport properties of unsaturated fractured rocks. We have developed the theoretical background needed to analyze data from FFTL. In this article, we present a simplified conceptualization of FFTL in unsaturated fractured rock and develop a semi-analytical solution for spatial and temporal variations of pressure and temperature inside a borehole in response to an applied perturbation (pumping of air from the borehole). We compare the semi-analytical solution with predictions from the TOUGH2 numerical simulator. On the basis of the semi-analytical solution, we propose a method to estimate the permeability of the fracture continuum surrounding the borehole. Using this proposed method, we estimated the effective fracture continuum permeability of the unsaturated rock hosting the Drift Scale Test (DST) at Yucca Mountain, Nevada. Our estimate compares well with previous independent estimates for fracture permeability of the DST host rock. The conceptual model of FFTL presented in this article is based on the assumptions of single-phase flow, convection-only heat transfer, and negligible change in system state of the rock formation. In a sequel article, we extend the conceptual model to evaluate some of these assumptions. In that paper, we also perform inverse modeling of FFTL data to estimate, in addition to permeability, other transport parameters (such as porosity and thermal conductivity) of unsaturated fractured rocks.

  1. Long-term density evolution through semi-analytical and differential algebra techniques

    NASA Astrophysics Data System (ADS)

    Wittig, Alexander; Colombo, Camilla; Armellin, Roberto

    2017-08-01

    This paper introduces and combines for the first time two techniques to allow long-term density propagation in astrodynamics. First, we introduce an efficient method for the propagation of phase space densities based on differential algebra (DA) techniques. Second, this DA density propagator is used in combination with a DA implementation of the averaged orbital dynamics through semi-analytical methods. This approach combines the power of orbit averaging with the efficiency of DA techniques. While the DA-based method for the propagation of densities introduced in this paper is independent of the dynamical system under consideration, the particular combination of DA techniques with averaged equations of motion yields a fast and accurate technique to propagate large clouds of initial conditions and their associated probability density functions very efficiently for long time. This enables the study of the long-term behavior of particles subjected to the given dynamics. To demonstrate the effectiveness of the proposed approach, the evolution of a cloud of high area-to-mass objects in Medium Earth Orbit is reproduced considering the effects of solar radiation pressure, the Earth's oblateness and luni-solar perturbations. The method can propagate 10,000 random fragments and their density for 1 year within a few seconds on a common desktop PC.

  2. Long-term density evolution through semi-analytical and differential algebra techniques

    NASA Astrophysics Data System (ADS)

    Wittig, Alexander; Colombo, Camilla; Armellin, Roberto

    2017-02-01

    This paper introduces and combines for the first time two techniques to allow long-term density propagation in astrodynamics. First, we introduce an efficient method for the propagation of phase space densities based on differential algebra (DA) techniques. Second, this DA density propagator is used in combination with a DA implementation of the averaged orbital dynamics through semi-analytical methods. This approach combines the power of orbit averaging with the efficiency of DA techniques. While the DA-based method for the propagation of densities introduced in this paper is independent of the dynamical system under consideration, the particular combination of DA techniques with averaged equations of motion yields a fast and accurate technique to propagate large clouds of initial conditions and their associated probability density functions very efficiently for long time. This enables the study of the long-term behavior of particles subjected to the given dynamics. To demonstrate the effectiveness of the proposed approach, the evolution of a cloud of high area-to-mass objects in Medium Earth Orbit is reproduced considering the effects of solar radiation pressure, the Earth's oblateness and luni-solar perturbations. The method can propagate 10,000 random fragments and their density for 1 year within a few seconds on a common desktop PC.

  3. A semi-analytical formulation for the elastoplastic analysis of imperfect cylindrical shells

    NASA Astrophysics Data System (ADS)

    Deerenberg, E.

    1991-12-01

    A semi-analytical formulation for the elastoplastic analysis of initially imperfect cylindrical shells under axial compression and lateral pressure was developed. The formulation is based on a small strain, moderate rotation shell theory and small strain incremental constitutive theory. The basic shell equations and the partially inverted constitutive relations in total form are reduced to a set of coupled nonlinear algebraic/ordinary differential equations by means of a Fourier decomposition of the state variables, imperfections and loads in circumferential direction of the shell, and application of Galerkin's method. The governing nonlinear equations are solved with an incremental iterative technique. The method of quasilinearization is used to generate the governing equations of the iterative procedure which consistently takes into account both geometrical and material nonlinearities. Plasticity effects are described using a layered approach. The classical flow theory based on the von Mises yield surface, associative flow rule, and the isotropic hardening law is used to describe the evolution of the plastic strains in the integration points. In every iteration a set of linear ordinary differential equations is solved numerically with a shooting method and a return mapping algorithm is used to integrate the constitutive equations locally. A number of elastic and elastoplastic buckling problems are solved for which results are known from literature. It is shown that the quadratic rate of convergence, characteristic for a Newton type iteration procedure, is retained even for large load steps. A comparison between the present results and the results from literature shows a good agreement.

  4. A SEMI-ANALYTIC FORMULATION FOR RELATIVISTIC BLAST WAVES WITH A LONG-LIVED REVERSE SHOCK

    SciTech Connect

    Uhm, Z. Lucas

    2011-06-01

    This paper performs a semi-analytic study of relativistic blast waves in the context of gamma-ray bursts. Although commonly used in a wide range of analytical and numerical studies, the equation of state (EOS) with a constant adiabatic index is a poor approximation for relativistic hydrodynamics. Adopting a more realistic EOS with a variable adiabatic index, we present a simple form of jump conditions for relativistic hydrodynamical shocks. Then we describe in detail our technique of modeling a very general class of GRB blast waves with a long-lived reverse shock. Our technique admits an arbitrary radial stratification of the ejecta and ambient medium. We use two different methods to find dynamics of the blast wave: (1) customary pressure balance across the blast wave and (2) the 'mechanical model'. Using a simple example model, we demonstrate that the two methods yield significantly different dynamical evolutions of the blast wave. We show that the pressure balance does not satisfy the energy conservation for an adiabatic blast wave while the mechanical model does. We also compare two sets of afterglow light curves obtained with the two different methods.

  5. Gravity field error analysis for pendulum formations by a semi-analytical approach

    NASA Astrophysics Data System (ADS)

    Li, Huishu; Reubelt, Tilo; Antoni, Markus; Sneeuw, Nico

    2016-10-01

    Many geoscience disciplines push for ever higher requirements on accuracy, homogeneity and time- and space-resolution of the Earth's gravity field. Apart from better instruments or new observables, alternative satellite formations could improve the signal and error structure compared to uc(Grace). One possibility to increase the sensitivity and isotropy by adding cross-track information is a pair of satellites flying in a pendulum formation. This formation contains two satellites which have different ascending nodes and arguments of latitude, but have the same orbital height and inclination. In this study, the semi-analytical approach for efficient pre-mission error assessment is presented, and the transfer coefficients of range, range-rate and range-acceleration gravitational perturbations are derived analytically for the pendulum formation considering a set of opening angles. The new challenge is the time variations of the opening angle and the range, leading to temporally variable transfer coefficients. This is solved by Fourier expansion of the sine/cosine of the opening angle and the central angle. The transfer coefficients are further applied to assess the error patterns which are caused by different orbital parameters. The simulation results indicate that a significant improvement in accuracy and isotropy is obtained for small and medium initial opening angles of single polar pendulums, compared to uc(Grace). The optimal initial opening angles are 45° and 15° for accuracy and isotropy, respectively. For a Bender configuration, which is constituted by a polar uc(Grace) and an inclined pendulum in this paper, the behaviour of results is dependent on the inclination (prograde vs. retrograde) and on the relative baseline orientation (left or right leading). The simulation for a sun-synchronous orbit shows better results for the left leading case.

  6. Gravity field error analysis for pendulum formations by a semi-analytical approach

    NASA Astrophysics Data System (ADS)

    Li, Huishu; Reubelt, Tilo; Antoni, Markus; Sneeuw, Nico

    2017-03-01

    Many geoscience disciplines push for ever higher requirements on accuracy, homogeneity and time- and space-resolution of the Earth's gravity field. Apart from better instruments or new observables, alternative satellite formations could improve the signal and error structure compared to Grace. One possibility to increase the sensitivity and isotropy by adding cross-track information is a pair of satellites flying in a pendulum formation. This formation contains two satellites which have different ascending nodes and arguments of latitude, but have the same orbital height and inclination. In this study, the semi-analytical approach for efficient pre-mission error assessment is presented, and the transfer coefficients of range, range-rate and range-acceleration gravitational perturbations are derived analytically for the pendulum formation considering a set of opening angles. The new challenge is the time variations of the opening angle and the range, leading to temporally variable transfer coefficients. This is solved by Fourier expansion of the sine/cosine of the opening angle and the central angle. The transfer coefficients are further applied to assess the error patterns which are caused by different orbital parameters. The simulation results indicate that a significant improvement in accuracy and isotropy is obtained for small and medium initial opening angles of single polar pendulums, compared to Grace. The optimal initial opening angles are 45° and 15° for accuracy and isotropy, respectively. For a Bender configuration, which is constituted by a polar Grace and an inclined pendulum in this paper, the behaviour of results is dependent on the inclination (prograde vs. retrograde) and on the relative baseline orientation (left or right leading). The simulation for a sun-synchronous orbit shows better results for the left leading case.

  7. Elastoplastic buckling analysis of cylindrical shells using a semi-analytical formulation

    NASA Astrophysics Data System (ADS)

    Deerenberg, E.

    1994-10-01

    In this thesis, a semi-analytical formulation for the buckling analysis of circular cylindrical shells is described that takes into account the combined effects of initial geometric imperfections, elastoplastic material behavior and boundary conditions. The model is based on small strains-moderate rotations shell theory. The governing equations are formulated as a coupled set of first-order ordinary differential and algebraic equations. The basic variables in these equations are the variables that can be prescribed at the shell edges. The model described in this thesis is valid for cylinders with a multi-layer wall construction that may be loaded by axial compression, external pressure and/or torsion. The governing differential/algebraic equations are solved using Newton-type iteration methods. Separate equations are formulated for the bifurcation analysis of axisymmetric prebuckling states and an efficient solution method for the eigenvalue problem is described. The correctness of the formulation is checked by analyzing a number of elastic and elastoplastic buckling problems of perfect and imperfect shells.

  8. Coupling Semi-Analytic Models and N-Body Simulations: A New Way of Making Galaxies and Stellar Halos

    NASA Astrophysics Data System (ADS)

    McCord, Krista

    Stellar halos give insight into the initial conditions that existed when a host galaxy first formed and provide details on disrupted satellites via their different stellar populations. An algorithm that is computationally inexpensive compared to hydrodynamic simulations is necessary in order to theoretically study the structure and formation of galactic stellar halos in sufficient detail to probe substructure. CoSANG (Coupling Semi-Analytic/N-body Galaxies) is a new computational method that we are developing which couples pure dark matter N-body simulations with a semi-analytic galaxy formation model. At each timestep, results from the N-body simulation feed into the semi-analytic code, whose results feed back into the N-body code making the evolution of the dark matter and baryonic matter dependent on one another. CoSANG will enable a variety of galaxy formation science, including analysis of stellar populations, halo merging, satellite accretion, supermassive black holes, and indirect and direct dark matter detection. In this dissertation, I will describe the new simulation code CoSANG. The results from the extensive testing phase on CoSANG will be presented which indicate CoSANG is properly simulating feedback from galaxies within a dark matter halo. I used this validated code to analyze a CoSANG zoom simulation of a 1012M solar masses dark matter halo. Results showed a flatter inner halo near the disk and a more spherical outer halo which is expected when a galaxy exists at the center of a dark matter halo. A comparison is made with a simulation run with the same initial conditions, but with the baryonic component simulated using a hydrodynamic algorithm. The semi-analytic model predicted galaxy types better than the hydrodynamic simulation leading to the conclusion that the CoSANG halo is more accurate. I also present a dark matter direct detection analysis on the CoSANG zoom halo to measure the dark matter velocity distributions and modulation amplitudes

  9. Stability analysis of magnetized neutron stars - a semi-analytic approach

    NASA Astrophysics Data System (ADS)

    Herbrik, Marlene; Kokkotas, Kostas D.

    2017-04-01

    We implement a semi-analytic approach for stability analysis, addressing the ongoing uncertainty about stability and structure of neutron star magnetic fields. Applying the energy variational principle, a model system is displaced from its equilibrium state. The related energy density variation is set up analytically, whereas its volume integration is carried out numerically. This facilitates the consideration of more realistic neutron star characteristics within the model compared to analytical treatments. At the same time, our method retains the possibility to yield general information about neutron star magnetic field and composition structures that are likely to be stable. In contrast to numerical studies, classes of parametrized systems can be studied at once, finally constraining realistic configurations for interior neutron star magnetic fields. We apply the stability analysis scheme on polytropic and non-barotropic neutron stars with toroidal, poloidal and mixed fields testing their stability in a Newtonian framework. Furthermore, we provide the analytical scheme for dropping the Cowling approximation in an axisymmetric system and investigate its impact. Our results confirm the instability of simple magnetized neutron star models as well as a stabilization tendency in the case of mixed fields and stratification. These findings agree with analytical studies whose spectrum of model systems we extend by lifting former simplifications.

  10. Semi-analytical approach for free vibration analysis of cracked beams resting on two-parameter elastic foundation with elastically restrained ends

    NASA Astrophysics Data System (ADS)

    Mirzabeigy, Alborz; Bakhtiari-Nejad, Firooz

    2014-06-01

    In present study, free vibration of cracked beams resting on two-parameter elastic foundation with elastically restrained ends is considered. Euler-Bernoulli beam hypothesis has been applied and translational and rotational elastic springs in each end considered as support. The crack is modeled as a mass-less rotational spring which divides beam into two segments. After governing the equations of motion, the differential transform method (DTM) has been served to determine dimensionless frequencies and normalized mode shapes. DTM is a semi-analytical approach based on Taylor expansion series that converts differential equations to recursive algebraic equations. The DTM results for the natural frequencies in special cases are in very good agreement with results reported by well-known references. Also, the DTM procedure yields rapid convergence beside high accuracy without any frequency missing. Comprehensive studies to analyze the effects of crack location, crack severity, parameters of elastic foundation and boundary conditions on dimensionless frequencies as well as effects of elastic boundary conditions on cracked beams mode shapes are carried out and some problems handled for first time in this paper. Since this paper deals with general problem, the derived formulation has capability for analyzing free vibration of cracked beam with every boundary condition.

  11. Empirical and semi-analytical chlorophyll a algorithms for multi-temporal monitoring of New Zealand lakes using Landsat.

    PubMed

    Allan, Mathew G; Hamilton, David P; Hicks, Brendan; Brabyn, Lars

    2015-06-01

    The concentration of chlorophyll a (chl a; as a proxy for phytoplankton biomass) provides an indication of the water quality and ecosystem health of lakes. An automated image processing method for Landsat images was used to derive chl a concentrations in 12 Rotorua lakes of North Island, New Zealand, with widely varying trophic status. Semi-analytical and empirical models were used to process 137 Landsat 7 Enhanced Thematic Mapper (ETM+) images using records from 1999 to 2013. Atmospheric correction used radiative transfer modelling, with atmospheric conditions prescribed with Moderate Resolution Imaging Spectroradiometer (MODIS) Terra and AIRS data. The best-performing semi-analytical and empirical equations resulted in similar levels of variation explained (r (2) = 0.68 for both equations) and root-mean-square error (RMSE = 10.69 and 10.43 μg L(-1), respectively) between observed and estimated chl a. However, the symbolic regression algorithm performed better for chl a concentrations <5 μg L(-1). Our Landsat-based algorithms provide a valuable method for synoptic assessments of chl a across the 12 lakes in this region. They also provide a basis for assessing changes in chl a individual lakes through time. Our methods provide a basis for cost-effective hindcasting of lake trophic status at a regional scale, informing on spatial variability of chl a within and between lakes.

  12. Application of Semi-analytical Satellite Theory orbit propagator to orbit determination for space object catalog maintenance

    NASA Astrophysics Data System (ADS)

    Setty, Srinivas J.; Cefola, Paul J.; Montenbruck, Oliver; Fiedler, Hauke

    2016-05-01

    Catalog maintenance for Space Situational Awareness (SSA) demands an accurate and computationally lean orbit propagation and orbit determination technique to cope with the ever increasing number of observed space objects. As an alternative to established numerical and analytical methods, we investigate the accuracy and computational load of the Draper Semi-analytical Satellite Theory (DSST). The standalone version of the DSST was enhanced with additional perturbation models to improve its recovery of short periodic motion. The accuracy of DSST is, for the first time, compared to a numerical propagator with fidelity force models for a comprehensive grid of low, medium, and high altitude orbits with varying eccentricity and different inclinations. Furthermore, the run-time of both propagators is compared as a function of propagation arc, output step size and gravity field order to assess its performance for a full range of relevant use cases. For use in orbit determination, a robust performance of DSST is demonstrated even in the case of sparse observations, which is most sensitive to mismodeled short periodic perturbations. Overall, DSST is shown to exhibit adequate accuracy at favorable computational speed for the full set of orbits that need to be considered in space surveillance. Along with the inherent benefits of a semi-analytical orbit representation, DSST provides an attractive alternative to the more common numerical orbit propagation techniques.

  13. Controlled Space Radiation concept for mesh-free semi-analytical technique to model wave fields in complex geometries.

    PubMed

    Banerjee, Sourav; Das, Samik; Kundu, Tribikram; Placko, Dominique

    2009-12-01

    Numerical modelling of the ultrasonic wave propagation is important for Structural Heath Monitoring and System Prognosis problems. In order to develop intelligent and adaptive structures with embedded damage detector and classifier mechanisms, detailed understanding of scattered wave fields due to anomaly in the structure is inevitably required. A detailed understanding of the problem demands a good modelling of the wave propagation in the problem geometry in virtual form. Therefore, efficient analytical, semi-analytical or numerical modelling techniques are required. In recent years a semi-analytical mesh-free technique called Distributed Point Source Method (DPSM) is being used for modelling various ultrasonic, electrostatic and electromagnetic wave field problems. In the conventional DPSM approach point sources are placed along the transducer faces, problem boundaries and interfaces to model incident and scattered fields. Every point source emits energy in all directions uniformly. Source strengths of these 360 degrees radiation sources are obtained by satisfying interface and boundary conditions of the problem. In conventional DPSM modelling approach it is assumed that the shadow zone does not require any special consideration. 360 degrees Radiation point sources should be capable of properly modelling shadow zones because all boundary and interface conditions are satisfied. In this paper it is investigated how good this assumption is by introducing the 'shadow zone' concept at the point source level and comparing the results generated by the conventional DPSM and by this modified approach where the conventional 360 degrees radiation point sources are replaced by the Controlled Space Radiation (CSR) sources.

  14. Computation of potentials from current electrodes in cylindrically stratified media: A stable, rescaled semi-analytical formulation

    NASA Astrophysics Data System (ADS)

    Moon, Haksu; Teixeira, Fernando L.; Donderici, Burkay

    2015-01-01

    We present an efficient and robust semi-analytical formulation to compute the electric potential due to arbitrary-located point electrodes in three-dimensional cylindrically stratified media, where the radial thickness and the medium resistivity of each cylindrical layer can vary by many orders of magnitude. A basic roadblock for robust potential computations in such scenarios is the poor scaling of modified-Bessel functions used for computation of the semi-analytical solution, for extreme arguments and/or orders. To accommodate this, we construct a set of rescaled versions of modified-Bessel functions, which avoids underflows and overflows in finite precision arithmetic, and minimizes round-off errors. In addition, several extrapolation methods are applied and compared to expedite the numerical evaluation of the (otherwise slowly convergent) associated Sommerfeld-type integrals. The proposed algorithm is verified in a number of scenarios relevant to geophysical exploration, but the general formulation presented is also applicable to other problems governed by Poisson equation such as Newtonian gravity, heat flow, and potential flow in fluid mechanics, involving cylindrically stratified environments.

  15. A Semi-Analytical Orbit Propagator Program for Highly Elliptical Orbits

    NASA Astrophysics Data System (ADS)

    Lara, M.; San-Juan, J. F.; Hautesserres, D.

    2016-05-01

    A semi-analytical orbit propagator to study the long-term evolution of spacecraft in Highly Elliptical Orbits is presented. The perturbation model taken into account includes the gravitational effects produced by the first nine zonal harmonics and the main tesseral harmonics affecting to the 2:1 resonance, which has an impact on Molniya orbit-types, of Earth's gravitational potential, the mass-point approximation for third body perturbations, which on ly include the Legendre polynomial of second order for the sun and the polynomials from second order to sixth order for the moon, solar radiation pressure and atmospheric drag. Hamiltonian formalism is used to model the forces of gravitational nature so as to avoid time-dependence issues the problem is formulated in the extended phase space. The solar radiation pressure is modeled as a potential and included in the Hamiltonian, whereas the atmospheric drag is added as a generalized force. The semi-analytical theory is developed using perturbation techniques based on Lie transforms. Deprit's perturbation algorithm is applied up to the second order of the second zonal harmonics, J2, including Kozay-type terms in the mean elements Hamiltonian to get "centered" elements. The transformation is developed in closed-form of the eccentricity except for tesseral resonances and the coupling between J_2 and the moon's disturbing effects are neglected. This paper describes the semi-analytical theory, the semi-analytical orbit propagator program and some of the numerical validations.

  16. Semi-analytical Model for Estimating Absorption Coefficients of Optically Active Constituents in Coastal Waters

    NASA Astrophysics Data System (ADS)

    Wang, D.; Cui, Y.

    2015-12-01

    The objectives of this paper are to validate the applicability of a multi-band quasi-analytical algorithm (QAA) in retrieval absorption coefficients of optically active constituents in turbid coastal waters, and to further improve the model using a proposed semi-analytical model (SAA). The ap(531) and ag(531) semi-analytically derived using SAA model are quite different from the retrievals procedures of QAA model that ap(531) and ag(531) are semi-analytically derived from the empirical retrievals results of a(531) and a(551). The two models are calibrated and evaluated against datasets taken from 19 independent cruises in West Florida Shelf in 1999-2003, provided by SeaBASS. The results indicate that the SAA model produces a superior performance to QAA model in absorption retrieval. Using of the SAA model in retrieving absorption coefficients of optically active constituents from West Florida Shelf decreases the random uncertainty of estimation by >23.05% from the QAA model. This study demonstrates the potential of the SAA model in absorption coefficients of optically active constituents estimating even in turbid coastal waters. Keywords: Remote sensing; Coastal Water; Absorption Coefficient; Semi-analytical Model

  17. Analytical and Semi-Analytical Tools for the Design of Oscillatory Pumping Tests.

    PubMed

    Cardiff, Michael; Barrash, Warren

    2015-01-01

    Oscillatory pumping tests-in which flow is varied in a periodic fashion-provide a method for understanding aquifer heterogeneity that is complementary to strategies such as slug testing and constant-rate pumping tests. During oscillatory testing, pressure data collected at non-pumping wells can be processed to extract metrics, such as signal amplitude and phase lag, from a time series. These metrics are robust against common sensor problems (including drift and noise) and have been shown to provide information about aquifer heterogeneity. Field implementations of oscillatory pumping tests for characterization, however, are not common and thus there are few guidelines for their design and implementation. Here, we use available analytical solutions from the literature to develop design guidelines for oscillatory pumping tests, while considering practical field constraints. We present two key analytical results for design and analysis of oscillatory pumping tests. First, we provide methods for choosing testing frequencies and flow rates which maximize the signal amplitude that can be expected at a distance from an oscillating pumping well, given design constraints such as maximum/minimum oscillator frequency and maximum volume cycled. Preliminary data from field testing helps to validate the methodology. Second, we develop a semi-analytical method for computing the sensitivity of oscillatory signals to spatially distributed aquifer flow parameters. This method can be quickly applied to understand the "sensed" extent of an aquifer at a given testing frequency. Both results can be applied given only bulk aquifer parameter estimates, and can help to optimize design of oscillatory pumping test campaigns.

  18. A semi-analytical approach to the study of an elastic circular cylinder confined in a cylindrical fluid domain subjected to small-amplitude transient motions

    NASA Astrophysics Data System (ADS)

    Leblond, C.; Sigrist, J. F.; Auvity, B.; Peerhossaini, H.

    2009-01-01

    This paper deals with the transient motions experienced by an elastic circular cylinder in a cylindrical fluid domain initially at rest and subjected to small-amplitude imposed displacements. Three fluid models are considered, namely potential, viscous and acoustic, to cover different fluid-structure interaction regimes. They are derived here from the general compressible Navier-Stokes equations by a formal perturbation method so as to underline their links and ranges of validity a priori. The resulting fluid models are linear owing to the small-amplitude-displacement hypothesis. For simplicity, the elastic flexure beam model is chosen for the circular cylinder dynamics. The semi-analytical approach used here is based on the methods of Laplace transform in time, in vacuo eigenvector expansion with time-dependent coefficients for the transverse beam displacement and separation of variables for the fluid. Moreover, the viscous case is handled with a matched asymptotic expansion performed at first order. The projection of the fluid forces on the in vacuo eigenvectors leads to a fully coupled system involving the modal time-dependent displacement coefficients. These coefficients are then obtained by matrix inversion in the Laplace domain and fast numerical inversion of the Laplace transform. The three models, written in the form of convolution products, are described through the analysis of their kernels, involving both the wave propagation phenomena in the fluid domain and the beam elasticity. Last, the three models are illustrated for a specific imposed motion mimicking shock loading. It is shown that their combination permits coverage of a broad range of motions.

  19. A Bayesian approach to the semi-analytic model of galaxy formation

    NASA Astrophysics Data System (ADS)

    Lu, Yu

    It is believed that a wide range of physical processes conspire to shape the observed galaxy population but it remains unsure of their detailed interactions. The semi-analytic model (SAM) of galaxy formation uses multi-dimensional parameterizations of the physical processes of galaxy formation and provides a tool to constrain these underlying physical interactions. Because of the high dimensionality and large uncertainties in the model, the parametric problem of galaxy formation can be profitably tackled with a Bayesian-inference based approach, which allows one to constrain theory with data in a statistically rigorous way. In this thesis, I present a newly developed method to build SAM upon the framework of Bayesian inference. I show that, aided by advanced Markov-Chain Monte-Carlo algorithms, the method has the power to efficiently combine information from diverse data sources, rigorously establish confidence bounds on model parameters, and provide powerful probability-based methods for hypothesis test. Using various data sets (stellar mass function, conditional stellar mass function, K-band luminosity function, and cold gas mass functions) of galaxies in the local Universe, I carry out a series of Bayesian model inferences. The results show that SAM contains huge degeneracies among its parameters, indicating that some of the conclusions drawn previously with the conventional approach may not be truly valid but need to be revisited by the Bayesian approach. Second, some of the degeneracy of the model can be broken by adopting multiple data sets that constrain different aspects of the galaxy population. Third, the inferences reveal that model has challenge to simultaneously explain some important observational results, suggesting that some key physics governing the evolution of star formation and feedback may still be missing from the model. These analyses show clearly that the Bayesian inference based SAM can be used to perform systematic and statistically

  20. Interrogating Emergent Transport Properties for Molecular Motor Ensembles: A Semi-analytical Approach.

    PubMed

    Bhaban, Shreyas; Materassi, Donatello; Li, Mingang; Hays, Thomas; Salapaka, Murti

    2016-11-01

    Intracellular transport is an essential function in eucaryotic cells, facilitated by motor proteins-proteins converting chemical energy into kinetic energy. It is understood that motor proteins work in teams enabling unidirectional and bidirectional transport of intracellular cargo over long distances. Disruptions of the underlying transport mechanisms, often caused by mutations that alter single motor characteristics, are known to cause neurodegenerative diseases. For example, phosphorylation of kinesin motor domain at the serine residue is implicated in Huntington's disease, with a recent study of phosphorylated and phosphomimetic serine residues indicating lowered single motor stalling forces. In this article we report the effects of mutations of this nature on transport properties of cargo carried by multiple wild-type and mutant motors. Results indicate that mutants with altered stall forces might determine the average velocity and run-length even when they are outnumbered by wild type motors in the ensemble. It is shown that mutants gain a competitive advantage and lead to an increase in the expected run-length when the load on the cargo is in the vicinity of the mutant's stalling force or a multiple of its stalling force. A separate contribution of this article is the development of a semi-analytic method to analyze transport of cargo by multiple motors of multiple types. The technique determines transition rates between various relative configurations of motors carrying the cargo using the transition rates between various absolute configurations. This enables a computation of biologically relevant quantities like average velocity and run-length without resorting to Monte Carlo simulations. It can also be used to introduce alterations of various single motor parameters to model a mutation and to deduce effects of such alterations on the transport of a common cargo by multiple motors. Our method is easily implementable and we provide a software package for

  1. Interrogating Emergent Transport Properties for Molecular Motor Ensembles: A Semi-analytical Approach

    PubMed Central

    Materassi, Donatello; Li, Mingang; Hays, Thomas; Salapaka, Murti

    2016-01-01

    Intracellular transport is an essential function in eucaryotic cells, facilitated by motor proteins—proteins converting chemical energy into kinetic energy. It is understood that motor proteins work in teams enabling unidirectional and bidirectional transport of intracellular cargo over long distances. Disruptions of the underlying transport mechanisms, often caused by mutations that alter single motor characteristics, are known to cause neurodegenerative diseases. For example, phosphorylation of kinesin motor domain at the serine residue is implicated in Huntington’s disease, with a recent study of phosphorylated and phosphomimetic serine residues indicating lowered single motor stalling forces. In this article we report the effects of mutations of this nature on transport properties of cargo carried by multiple wild-type and mutant motors. Results indicate that mutants with altered stall forces might determine the average velocity and run-length even when they are outnumbered by wild type motors in the ensemble. It is shown that mutants gain a competitive advantage and lead to an increase in the expected run-length when the load on the cargo is in the vicinity of the mutant’s stalling force or a multiple of its stalling force. A separate contribution of this article is the development of a semi-analytic method to analyze transport of cargo by multiple motors of multiple types. The technique determines transition rates between various relative configurations of motors carrying the cargo using the transition rates between various absolute configurations. This enables a computation of biologically relevant quantities like average velocity and run-length without resorting to Monte Carlo simulations. It can also be used to introduce alterations of various single motor parameters to model a mutation and to deduce effects of such alterations on the transport of a common cargo by multiple motors. Our method is easily implementable and we provide a software package

  2. Viscoelastic characterization of elliptical mechanical heterogeneities using a semi-analytical shear-wave scattering model for elastometry measures.

    PubMed

    Montagnon, Emmanuel; Hadj-Henni, Anis; Schmitt, Cédric; Cloutier, Guy

    2013-04-07

    This paper presents a semi-analytical model of shear wave scattering by a viscoelastic elliptical structure embedded in a viscoelastic medium, and its application in the context of dynamic elastography imaging. The commonly used assumption of mechanical homogeneity in the inversion process is removed introducing a priori geometrical information to model physical interactions of plane shear waves with the confined mechanical heterogeneity. Theoretical results are first validated using the finite element method for various mechanical configurations and incidence angles. Secondly, an inverse problem is formulated to assess viscoelastic parameters of both the elliptic inclusion and its surrounding medium, and applied in vitro to characterize mechanical properties of agar-gelatin phantoms. The robustness of the proposed inversion method is then assessed under various noise conditions, biased geometrical parameters and compared to direct inversion, phase gradient and time-of-flight methods. The proposed elastometry method appears reliable in the context of estimating confined lesion viscoelastic parameters.

  3. A semi-analytic dynamical friction model that reproduces core stalling

    NASA Astrophysics Data System (ADS)

    Petts, J. A.; Gualandris, A.; Read, J. I.

    2015-12-01

    We present a new semi-analytic model for dynamical friction based on Chandrasekhar's formalism. The key novelty is the introduction of physically motivated, radially varying, maximum and minimum impact parameters. With these, our model gives an excellent match to full N-body simulations for isotropic background density distributions, both cuspy and shallow, without any fine tuning of the model parameters. In particular, we are able to reproduce the dramatic core-stalling effect that occurs in shallow/constant-density cores, for the first time. This gives us new physical insight into the core-stalling phenomenon. We show that core stalling occurs in the limit in which the product of the Coulomb logarithm and the local fraction of stars with velocity lower than the infalling body tends to zero. For cuspy backgrounds, this occurs when the infalling mass approaches the enclosed background mass. For cored backgrounds, it occurs at larger distances from the centre, due to a combination of a rapidly increasing minimum impact parameter and a lack of slow moving stars in the core. This demonstrates that the physics of core stalling is likely the same for both massive infalling objects and low-mass objects moving in shallow-density backgrounds. We implement our prescription for dynamical friction in the direct summation code NBODY6 as an analytic correction for stars that remain within the Roche volume of the infalling object. This approach is computationally efficient, since only stars in the inspiralling system need to be evolved with direct summation. Our method can be applied to study a variety of astrophysical systems, including young star clusters orbiting near the Galactic Centre; globular clusters moving within the Galaxy; and dwarf galaxies orbiting within dark matter haloes.

  4. Semi-analytical solution of the steady three-dimensional advection-diffusion equation in the planetary boundary layer

    NASA Astrophysics Data System (ADS)

    Costa, C. P.; Vilhena, M. T.; Moreira, D. M.; Tirabassi, T.

    We present a three-dimensional solution of the steady-state advection-diffusion equation considering a vertically inhomogeneous planetary boundary layer (PBL). We reach this goal applying the generalized integral transform technique (GITT), a hybrid method that had solved a wide class of direct and inverse problems mainly in the area of heat transfer and fluid mechanics. The transformed problem is solved by the advection-diffusion multilayer model (ADMM) method, a semi-analytical solution based on a discretization of the PBL in sub-layers where the advection-diffusion equation is solved by the Laplace transform technique. Numerical simulations are presented and the performances of the solution are compared against field experiments data.

  5. SASRST: Semi-Analytic Solutions for 1-D Radiative Shock Tubes

    NASA Astrophysics Data System (ADS)

    Ramsey, Jon P.

    2017-07-01

    SASRST, a small collection of Python scripts, attempts to reproduce the semi-analytical one-dimensional equilibrium and non-equilibrium radiative shock tube solutions of Lowrie & Rauenzahn (2007) and Lowrie & Edwards (2008), respectively. The included code calculates the solution for a given set of input parameters and also plots the results using Matplotlib. This software was written to provide validation for numerical radiative shock tube solutions produced by a radiation hydrodynamics code.

  6. Galaxy group dynamics using the GAMA survey and predictions from semi-analytics and cosmological simulation.

    NASA Astrophysics Data System (ADS)

    Kafle, Prajwal R.; Robotham, Aaron; Lagos, Claudia; Driver, Simon P.

    2017-01-01

    We aim to discuss the dynamics of galaxies in group environment. We present our current findings on the contentious issue of the stellar mass segregation in galaxy groups using the Galaxy And Mass Assembly (GAMA) survey, the GALFORM semi-analytic and the EAGLE cosmological hydrodynamical simulation catalogues of galaxy groups. We will discuss our main results that show negligible mass segregation in galaxy groups, which also show a lack of redshift evolution.

  7. Determination of Transport Properties From Flowing Fluid Temperature LoggingIn Unsaturated Fractured Rocks: Theory And Semi-Analytical Solution

    SciTech Connect

    Mukhopadhyay, Sumit; Tsang, Yvonne W.

    2008-08-01

    Flowing fluid temperature logging (FFTL) has been recently proposed as a method to locate flowing fractures. We argue that FFTL, backed up by data from high-precision distributed temperature sensors, can be a useful tool in locating flowing fractures and in estimating the transport properties of unsaturated fractured rocks. We have developed the theoretical background needed to analyze data from FFTL. In this paper, we present a simplified conceptualization of FFTL in unsaturated fractured rock, and develop a semianalytical solution for spatial and temporal variations of pressure and temperature inside a borehole in response to an applied perturbation (pumping of air from the borehole). We compare the semi-analytical solution with predictions from the TOUGH2 numerical simulator. Based on the semi-analytical solution, we propose a method to estimate the permeability of the fracture continuum surrounding the borehole. Using this proposed method, we estimated the effective fracture continuum permeability of the unsaturated rock hosting the Drift Scale Test (DST) at Yucca Mountain, Nevada. Our estimate compares well with previous independent estimates for fracture permeability of the DST host rock. The conceptual model of FFTL presented in this paper is based on the assumptions of single-phase flow, convection-only heat transfer, and negligible change in system state of the rock formation. In a sequel paper [Mukhopadhyay et al., 2008], we extend the conceptual model to evaluate some of these assumptions. We also perform inverse modeling of FFTL data to estimate, in addition to permeability, other transport parameters (such as porosity and thermal conductivity) of unsaturated fractured rocks.

  8. Taylor Expansion Method for Paleosecular Variation

    NASA Astrophysics Data System (ADS)

    Kono, M.

    2004-12-01

    Constable and Parker (1988) first suggested that auss coefficients can be treated as independent normal random variables with variances depending only on the degree. Kono et al. (2000) and Kono and Roberts (2002) demonstrated that this postulate is well satisfied in the long time behavior of various numerical dynamo models. However, significant deviations from the original model of Constable and Parker were also found by the analysis of the paleomagnetic data of the last 5 Ma; most notably the large amplitude in the fluctuation of the (2,1) harmonic. In order to express these facts better, Kono and Tanaka (1995) developed Taylor expansion method. But its performance was not satisfactory enough because the approximation used in the calculation was only up to the second order. This paper presents the Taylor expansion method extended to arbitrarily high approximation. We assume that the long term behavior of the geomagnetic field can be modeled as the sum of two parts; the mean field and the fluctuation m=μ +Δ m, where all the elements of Δ m, mj, are zero-mean normal variates with the variance σ j2. The mean value of a nonlinear quantity can be obtained by averaging the Taylor series about the mean model, with summation rules such as E[Δ mjΔ mk] = σ j2δ jk, etc. Summation of the series to high orders is made possible because the nonlinear quantities (or their first derivatives with respect to a Gauss coefficient) used in paleomagnetism (inclination I, declination D, virtual geomagnetic pole (VGP) position θ p, φ p, etc.) can be expressed as the product of the linear quantities and nonlinear quantities such as the total intensity F. These nonlinear quantities can always be expressed as the square root of the sum of squared linear quantities (e.g., F = √ {X2+Y^2+Z^2}). Because of this property, the general form of the derivatives of nonlinear quantities can be written down in a form that is convenient for calculation using the computers. The assumption of

  9. CCS Site Optimization by Applying a Multi-objective Evolutionary Algorithm to Semi-Analytical Leakage Models

    NASA Astrophysics Data System (ADS)

    Cody, B. M.; Gonzalez-Nicolas, A.; Bau, D. A.

    2011-12-01

    Carbon capture and storage (CCS) has been proposed as a method of reducing global carbon dioxide (CO2) emissions. Although CCS has the potential to greatly retard greenhouse gas loading to the atmosphere while cleaner, more sustainable energy solutions are developed, there is a possibility that sequestered CO2 may leak and intrude into and adversely affect groundwater resources. It has been reported [1] that, while CO2 intrusion typically does not directly threaten underground drinking water resources, it may cause secondary effects, such as the mobilization of hazardous inorganic constituents present in aquifer minerals and changes in pH values. These risks must be fully understood and minimized before CCS project implementation. Combined management of project resources and leakage risk is crucial for the implementation of CCS. In this work, we present a method of: (a) minimizing the total CCS cost, the summation of major project costs with the cost associated with CO2 leakage; and (b) maximizing the mass of injected CO2, for a given proposed sequestration site. Optimization decision variables include the number of CO2 injection wells, injection rates, and injection well locations. The capital and operational costs of injection wells are directly related to injection well depth, location, injection flow rate, and injection duration. The cost of leakage is directly related to the mass of CO2 leaked through weak areas, such as abandoned oil wells, in the cap rock layers overlying the injected formation. Additional constraints on fluid overpressure caused by CO2 injection are imposed to maintain predefined effective stress levels that prevent cap rock fracturing. Here, both mass leakage and fluid overpressure are estimated using two semi-analytical models based upon work by [2,3]. A multi-objective evolutionary algorithm coupled with these semi-analytical leakage flow models is used to determine Pareto-optimal trade-off sets giving minimum total cost vs. maximum mass

  10. Semi-analytic models for the CANDELS survey: comparison of predictions for intrinsic galaxy properties

    SciTech Connect

    Lu, Yu; Wechsler, Risa H.; Somerville, Rachel S.; Croton, Darren; Porter, Lauren; Primack, Joel; Moody, Chris; Behroozi, Peter S.; Ferguson, Henry C.; Koo, David C.; Guo, Yicheng; Finlator, Kristian; Castellano, Marco; Sommariva, Veronica E-mail: rwechsler@stanford.edu

    2014-11-10

    We compare the predictions of three independently developed semi-analytic galaxy formation models (SAMs) that are being used to aid in the interpretation of results from the CANDELS survey. These models are each applied to the same set of halo merger trees extracted from the 'Bolshoi' high-resolution cosmological N-body simulation and are carefully tuned to match the local galaxy stellar mass function using the powerful method of Bayesian Inference coupled with Markov Chain Monte Carlo or by hand. The comparisons reveal that in spite of the significantly different parameterizations for star formation and feedback processes, the three models yield qualitatively similar predictions for the assembly histories of galaxy stellar mass and star formation over cosmic time. Comparing SAM predictions with existing estimates of the stellar mass function from z = 0-8, we show that the SAMs generally require strong outflows to suppress star formation in low-mass halos to match the present-day stellar mass function, as is the present common wisdom. However, all of the models considered produce predictions for the star formation rates (SFRs) and metallicities of low-mass galaxies that are inconsistent with existing data. The predictions for metallicity-stellar mass relations and their evolution clearly diverge between the models. We suggest that large differences in the metallicity relations and small differences in the stellar mass assembly histories of model galaxies stem from different assumptions for the outflow mass-loading factor produced by feedback. Importantly, while more accurate observational measurements for stellar mass, SFR and metallicity of galaxies at 1 < z < 5 will discriminate between models, the discrepancies between the constrained models and existing data of these observables have already revealed challenging problems in understanding star formation and its feedback in galaxy formation. The three sets of models are being used to construct catalogs of mock

  11. Gas cooling in semi-analytic models and smoothed particle hydrodynamics simulations: are results consistent?

    NASA Astrophysics Data System (ADS)

    Saro, A.; De Lucia, G.; Borgani, S.; Dolag, K.

    2010-08-01

    We present a detailed comparison between the galaxy populations within a massive cluster, as predicted by hydrodynamical smoothed particle hydrodynamics (SPH) simulations and by a semi-analytic model (SAM) of galaxy formation. Both models include gas cooling and a simple prescription of star formation, which consists in transforming instantaneously any cold gas available into stars, while neglecting any source of energy feedback. This simplified comparison is thus not meant to be compared with observational data, but is aimed at understanding the level of agreement, at the stripped-down level considered, between two techniques that are widely used to model galaxy formation in a cosmological framework and which present complementary advantages and disadvantages. We find that, in general, galaxy populations from SAMs and SPH have similar statistical properties, in agreement with previous studies. However, when comparing galaxies on an object-by-object basis, we find a number of interesting differences: (i) the star formation histories of the brightest cluster galaxies (BCGs) from SAM and SPH models differ significantly, with the SPH BCG exhibiting a lower level of star formation activity at low redshift, and a more intense and shorter initial burst of star formation with respect to its SAM counterpart; (ii) while all stars associated with the BCG were formed in its progenitors in the SAM used here, this holds true only for half of the final BCG stellar mass in the SPH simulation, the remaining half being contributed by tidal stripping of stars from the diffuse stellar component associated with galaxies accreted on the cluster halo; (iii) SPH satellites can lose up to 90 per cent of their stellar mass at the time of accretion, due to tidal stripping, a process not included in the SAM used in this paper; (iv) in the SPH simulation, significant cooling occurs on the most massive satellite galaxies and this lasts for up to 1 Gyr after accretion. This physical process is

  12. Method of assembling a thermal expansion compensator

    NASA Technical Reports Server (NTRS)

    Determan, William (Inventor); Matejczyk, Daniel Edward (Inventor)

    2012-01-01

    A thermal expansion compensator is provided and includes a first electrode structure having a first surface, a second electrode structure having a second surface facing the first surface and an elastic element bonded to the first and second surfaces and including a conductive element by which the first and second electrode structures electrically and/or thermally communicate, the conductive element having a length that is not substantially longer than a distance between the first and second surfaces.

  13. Series Expansion of Functions with He's Homotopy Perturbation Method

    ERIC Educational Resources Information Center

    Khattri, Sanjay Kumar

    2012-01-01

    Finding a series expansion, such as Taylor series, of functions is an important mathematical concept with many applications. Homotopy perturbation method (HPM) is a new, easy to use and effective tool for solving a variety of mathematical problems. In this study, we present how to apply HPM to obtain a series expansion of functions. Consequently,…

  14. Series Expansion of Functions with He's Homotopy Perturbation Method

    ERIC Educational Resources Information Center

    Khattri, Sanjay Kumar

    2012-01-01

    Finding a series expansion, such as Taylor series, of functions is an important mathematical concept with many applications. Homotopy perturbation method (HPM) is a new, easy to use and effective tool for solving a variety of mathematical problems. In this study, we present how to apply HPM to obtain a series expansion of functions. Consequently,…

  15. Effects of dynamic contact angle on liquid withdrawal from capillary tubes: (semi)-analytical solutions.

    PubMed

    Hilpert, Markus

    2010-07-15

    The displacement of a gas by a liquid in both horizontal and inclined capillary tubes where the tube inlet is connected to a liquid reservoir of constant pressure can be described by the Lucas-Washburn theory. One can also use the Lucas-Washburn theory to model the reverse flow, that is, liquid withdrawal, even though the latter case has received relatively little attention. In this paper, we derive analytical solutions for the travel time of the gas-liquid interface as a function of interface velocity. The interface position can be obtained by numerically integrating the numerically inverted interface velocity. Therefore we refer to these solutions as (semi)-analytical. We neglect inertial forces. However, we account for a dynamic contact angle where the nondimensional non-equilibrium Young force depends on the capillary number in the form of either a power law or a power series. We explore the entire nondimensional parameter space. The analytical solutions allow us to show that five different liquid withdrawal scenarios may occur that differ in the direction of flow and the sign of the acceleration of the gas-liquid interface: horizontal, upward, steady-state downward, accelerating downward, and decelerating downward flow. In the last case, the liquid is withdrawn from the tube either completely or partially. The (semi)-analytical solutions are also valid within the limit where the contact angle is constant.

  16. [Retrieve phycocyanin concentrations based on semi-analytical model in the Dianchi Lake, China].

    PubMed

    Yin, Bin; Lü, Heng; Li, Yun-Mei; Wu, Chuan-Qing; Zhu, Li; Wang, Yan-Fei

    2011-02-01

    Phycocyanin (PC) in the blue-green algae is usually used to detective the quantity of the blue-green algae, because of its special absorption at band 620 nm. A semi-analytical model retrieving phycocyanin concentrations is been built, based on a nested semi-empirical band ratio algorithm, using the data sets collected in September 19 and September 20, 2009 from Dianchi Lake. The empirical relationship between the specific absorption coefficient at band 620 nm [a(PC)* (620)] and the absorption coefficient at band 620 nm [a(PC) (620)] reduces the impact of the variability of a(PC)* (620) in the model built by Simis. The new semi-analytical model is proved well done in retrieving phycocyanin concentrations and has a mean relative error (MRE) 21.63% by the dataset collected on December 1, 2009 from Dianchi Lake. The model error analysis prove that the main reason of the error is caused by the component and concentrations of pigments changing seasonally in the blue-green algae.

  17. Semi-analytical model for multispecies contaminant transport subject to rate-limited sorption

    NASA Astrophysics Data System (ADS)

    Ho, Y. C.; Chen, J. S.

    2016-12-01

    Analytical models for multiple advection-dispersion equations coupled with first-order sequential decay reactions are fast and cost-effective tools for predicting the plume migration of the parent and daughter species of the decaying contaminants such as radionuclides, dissolved chlorinated solvents and nitrogen chain. However, only few analytical solutions that were solved for coupled multispecies transport equations are available in literature. For mathematical convenience, most analytical models currently used to simulate transport of the decaying contaminants assume instantaneous equilibrium between contaminant in the dissolved and sorbed phases. Research has demonstrated that rate-limited sorption can have a profound effect upon the solute transport in the subsurface environment. By making the instantaneous equilibrium sorption assumption, the potential effects of rate-limited sorption are not considered and cannot be examined. This study presents an semi-analytical model for decaying contaminant plume migration subject to rate-limited sorption. The derived semi-analytical model is applied to investigate the effects of the rate-limited sorption on the plume migration of decaying contaminants.

  18. A semi-analytical study of positive corona discharge in wire-plane electrode configuration

    NASA Astrophysics Data System (ADS)

    Yanallah, K.; Pontiga, F.; Chen, J. H.

    2013-08-01

    Wire-to-plane positive corona discharge in air has been studied using an analytical model of two species (electrons and positive ions). The spatial distributions of electric field and charged species are obtained by integrating Gauss's law and the continuity equations of species along the Laplacian field lines. The experimental values of corona current intensity and applied voltage, together with Warburg's law, have been used to formulate the boundary condition for the electron density on the corona wire. To test the accuracy of the model, the approximate electric field distribution has been compared with the exact numerical solution obtained from a finite element analysis. A parametrical study of wire-to-plane corona discharge has then been undertaken using the approximate semi-analytical solutions. Thus, the spatial distributions of electric field and charged particles have been computed for different values of the gas pressure, wire radius and electrode separation. Also, the two dimensional distribution of ozone density has been obtained using a simplified plasma chemistry model. The approximate semi-analytical solutions can be evaluated in a negligible computational time, yet provide precise estimates of corona discharge variables.

  19. SWIM: A Semi-Analytical Ocean Color Inversion Algorithm for Optically Shallow Waters

    NASA Technical Reports Server (NTRS)

    McKinna, Lachlan I. W.; Werdell, P. Jeremy; Fearns, Peter R. C. S.; Weeks, Scarla J.; Reichstetter, Martina; Franz, Bryan A.; Shea, Donald M.; Feldman, Gene C.

    2014-01-01

    Ocean color remote sensing provides synoptic-scale, near-daily observations of marine inherent optical properties (IOPs). Whilst contemporary ocean color algorithms are known to perform well in deep oceanic waters, they have difficulty operating in optically clear, shallow marine environments where light reflected from the seafloor contributes to the water-leaving radiance. The effect of benthic reflectance in optically shallow waters is known to adversely affect algorithms developed for optically deep waters [1, 2]. Whilst adapted versions of optically deep ocean color algorithms have been applied to optically shallow regions with reasonable success [3], there is presently no approach that directly corrects for bottom reflectance using existing knowledge of bathymetry and benthic albedo.To address the issue of optically shallow waters, we have developed a semi-analytical ocean color inversion algorithm: the Shallow Water Inversion Model (SWIM). SWIM uses existing bathymetry and a derived benthic albedo map to correct for bottom reflectance using the semi-analytical model of Lee et al [4]. The algorithm was incorporated into the NASA Ocean Biology Processing Groups L2GEN program and tested in optically shallow waters of the Great Barrier Reef, Australia. In-lieu of readily available in situ matchup data, we present a comparison between SWIM and two contemporary ocean color algorithms, the Generalized Inherent Optical Property Algorithm (GIOP) and the Quasi-Analytical Algorithm (QAA).

  20. Re-expansion method for circular waveguide discontinuities: Application to concentric expansion chambers

    PubMed Central

    Homentcovschi, Dorel; Miles, Ronald N.

    2012-01-01

    The paper applies the re-expansion method for analyzing planar discontinuities at the junction of two axi-symmetrical circular waveguides. The normal modes in the two waveguides are expanded at the junction plane into a system of functions accounting for velocity singularities at the corner points. As the new expansion has a high convergence order, only a few terms have to be considered for obtaining the solution of most practical problems. This paper gives the equivalent impedance accounting for nonplanar waves into a plane-wave analysis and also the scattering matrix describing the coupling of arbitrary modes at each side of the discontinuity valid in the case of many propagating modes in both sides of the duct. The last section applies the re-expansion technique to some concentric expansion chambers providing an explicit formula for the transmission loss coefficient. PMID:22352491

  1. IRP methods for Environmental Impact Statements of utility expansion plans

    SciTech Connect

    Cavallo, J.D.; Hemphill, R.C.; Veselka, T.D.

    1992-01-01

    Most large electric utilities and a growing number of gas utilities in the United States are using a planning method -- Integrated Resource Planning (IRP) - which incorporates demand-side management (DSM) programs whenever the marginal cost of the DSM programs are lower than the marginal cost of supply-side expansion options. Argonne National Laboratory has applied the IRP method in its socio-economic analysis of an Environmental Impact Statement (EIS) of power marketing for a system of electric utilities in the mountain and western regions of the United States. Applying the IRP methods provides valuable information to the participants in an EIS process involving capacity expansion of an electric or gas utility. The major challenges of applying the IRP method within an EIS are the time consuming and costly task of developing a least cost expansion path for each altemative, the detailed quantification of environmental damages associated with capacity expansion, and the explicit inclusion of societal-impacts to the region.

  2. IRP methods for Environmental Impact Statements of utility expansion plans

    SciTech Connect

    Cavallo, J.D.; Hemphill, R.C.; Veselka, T.D.

    1992-10-01

    Most large electric utilities and a growing number of gas utilities in the United States are using a planning method -- Integrated Resource Planning (IRP) - which incorporates demand-side management (DSM) programs whenever the marginal cost of the DSM programs are lower than the marginal cost of supply-side expansion options. Argonne National Laboratory has applied the IRP method in its socio-economic analysis of an Environmental Impact Statement (EIS) of power marketing for a system of electric utilities in the mountain and western regions of the United States. Applying the IRP methods provides valuable information to the participants in an EIS process involving capacity expansion of an electric or gas utility. The major challenges of applying the IRP method within an EIS are the time consuming and costly task of developing a least cost expansion path for each altemative, the detailed quantification of environmental damages associated with capacity expansion, and the explicit inclusion of societal-impacts to the region.

  3. Semi-analytical Satellite Orbit Calculation as Possible Alternative for Numerical Integration

    NASA Astrophysics Data System (ADS)

    Biskupek, L.; Mai, E.

    2016-12-01

    For space based geodesy (i.e. gravity field determination) relative orbits of satellites have to be tracked with very high precision. In the next years, the necessary experimental capabilities will increase by the use of laser interferometry and high precision space clocks. As a consequence, at the present technological level it has to be critically analyzed whether the usual post-Newtonian approximations are sufficient to fully exploit the instrumental capabilities. Today simulations of orbital arcs for satellites of gravity missions are often performed by making use of classical numerical integration techniques. Those results in essence only yield information on the very special case under consideration which prevents one from drawing universally valid conclusions. Numerous simulations had to be performed in order to gain insight into the various correlations between force field modeling, orbital configuration, and so on. Analytical orbit integration provides deeper insight into the physical causes of the orbit evolution than any special perturbation technique, because it operates directly in the spectral domain rather than in the time domain. Similar to a certain class of analytical perturbation techniques, Lie series can be used to numerically integrate satellite orbits. With that semi-analytical technique it is furthermore possible to investigate relativistic effects on orbits in cases, where analytical solutions are not available. Here we focus on the already existing approach for the Newtonian two-body problem, which is extended to the known Schwarzschild problem. The corresponding Hamiltonian for that static and spherically symmetric problem is given and a respective software package is implemented in Mathematica. Because of the complexity of the Lie series coefficients and the very time consuming calculation, the package is implemented using parallel computing. The semi-analytical results are compared with both numerical and analytical orbit integration to

  4. Analytical and semi-analytical inverse kinematics of SSRMS-type manipulators with single joint locked failure

    NASA Astrophysics Data System (ADS)

    Xu, Wenfu; She, Yu; Xu, Yangsheng

    2014-12-01

    Redundant space manipulators, including Space Station Remote Manipulator System (SSRMS), Special Purpose Dexterous Manipulator (SPDM) and European Robotic Arm (ERA), have been playing important roles in the construction and maintenance of International Space Station (ISS). They all have 7 revolute joints arranged in similar configurations, and are referred to as SSRMS-type manipulators. When a joint is locked in an arbitrary position due to some failures, a 7R manipulator degrades to a 6R manipulator. Without a spherical wrist or three consecutive parallel joints, the inverse kinematics of the 6R manipulator is very complex. In this paper, we propose effective methods to resolve the inverse kinematics for different cases of any joint locked in an arbitrary position. Firstly, configuration characteristics of the SSRMS-type redundant manipulators are analyzed. Then, an existing of closed-form inverse kinematics is discussed for locking different joints. Secondly, D-H frames and corresponding D-H parameters of the new 6-DOF manipulator formed by locking a joint in an arbitrary position are re-constructed. A unified table is then created to describe the kinematics for all possible cases of single joint locking failure. Thirdly, completely analytical and semi-analytical methods are presented to solve the inverse kinematics equations, and the former is used for locking joint 1, 2, 6 or 7 while the latter for locking joint 3, 4 or 5. Finally, typical cases for single joint locking are studied. The results verify the proposed methods.

  5. Analysis of MHD instabilities by asymptotic methods. WKB expansion

    NASA Astrophysics Data System (ADS)

    Tirozzi, Brunello; Tassi, Camillo; Buratti, Paolo

    2016-03-01

    The m = 1 resistive mode for a tokamak plasma with large aspect ratio is considered: the dynamic equations in a resistive layer are solved by means of an asymptotic expansion for values of the growth rate in a suitable range. The eigenvalues characterizing the perturbation are found by means of a series expansion and it is shown that the main contribution to the expression of the eigenvalues is given by the first and the second order of this expansion. This method is different from the one used in the paper [G. Ara et al., Ann. Phys. 112, 443 (1978)], and can be applied in more general situations.

  6. Exploring magnetized liner inertial fusion with a semi-analytic model

    SciTech Connect

    McBride, R. D.; Slutz, S. A.; Vesey, R. A.; Gomez, M. R.; Sefkow, A. B.; Hansen, S. B.; Knapp, P. F.; Schmit, P. F.; Geissel, M.; Harvey-Thompson, A. J.; Jennings, C. A.; Harding, E. C.; Awe, T. J.; Rovang, D. C.; Hahn, K. D.; Martin, M. R.; Cochrane, K. R.; Peterson, K. J.; Rochau, G. A.; Porter, J. L.; and others

    2016-01-15

    In this paper, we explore magnetized liner inertial fusion (MagLIF) [S. A. Slutz et al., Phys. Plasmas 17, 056303 (2010)] using a semi-analytic model [R. D. McBride and S. A. Slutz, Phys. Plasmas 22, 052708 (2015)]. Specifically, we present simulation results from this model that: (a) illustrate the parameter space, energetics, and overall system efficiencies of MagLIF; (b) demonstrate the dependence of radiative loss rates on the radial fraction of the fuel that is preheated; (c) explore some of the recent experimental results of the MagLIF program at Sandia National Laboratories [M. R. Gomez et al., Phys. Rev. Lett. 113, 155003 (2014)]; (d) highlight the experimental challenges presently facing the MagLIF program; and (e) demonstrate how increases to the preheat energy, fuel density, axial magnetic field, and drive current could affect future MagLIF performance.

  7. Galaxy Number Counts Applied to a Semi-Analytic Galaxy Model in the Millennium Run Simulation

    NASA Astrophysics Data System (ADS)

    Bucklein, Brian; Moody, J. W.; Hintz, E. G.

    2010-01-01

    The Millennium Run simulation used more than 10 billion particles to trace the evolution of the dark matter distribution in a ΛCDM cosmology in a cubic region of the Universe over 2 billion light-years on a side. This data was used by Croton et al. as the basis of a semi-analytic galaxy model, allowing the region to be populated with more than 9 million galaxies brighter than Mr = -17.4. We visually analyze this galaxy catalog searching for significant voids and then apply galaxy number count (GNC) analysis to the lines-of-sight to these voids. Using Wolf plots, we investigate whether GNC analysis would allow us to locate voids within the sample without the need to first find them visually.

  8. Constraining the last 7 billion years of galaxy evolution in semi-analytic models

    NASA Astrophysics Data System (ADS)

    Mutch, Simon J.; Poole, Gregory B.; Croton, Darren J.

    2013-01-01

    We investigate the ability of the Croton et al. semi-analytic model to reproduce the evolution of observed galaxies across the final 7 billion years of cosmic history. Using Monte Carlo Markov Chain techniques we explore the available parameter space to produce a model which attempts to achieve a statistically accurate fit to the observed stellar mass function at z = 0 and z ≈ 0.8, as well as the local black hole-bulge relation. We find that in order to be successful we are required to push supernova feedback efficiencies to extreme limits which are, in some cases, unjustified by current observations. This leads us to the conclusion that the current model may be incomplete. Using the posterior probability distributions provided by our fitting, as well as the qualitative details of our produced stellar mass functions, we suggest that any future model improvements must act to preferentially bolster star formation efficiency in the most massive haloes at high redshift.

  9. Sensitivity Analysis of Semi-Analytical Models of Diffuse Attenuation of Downwelling Irradiance in Lake Balaton

    NASA Astrophysics Data System (ADS)

    Van der Zande, D.; Blaas, M.; Nechad, B.

    2015-12-01

    A quantification of the available light in the water column is key to evaluate the water quality in lakes as it is one of the major factors determining primary production. The light environment in water is generally described in terms of the vertical attenuation coefficient (Kd) and euphotic depth (Ze) where the light is reduced to 1% of its (just below) surface value. Reliable models to estimate KdPAR (and Ze) from remote sensing measurements have been successfully demonstrated in marine applications using typical ocean colour missions such as MERIS-envisat (300m) and MODIS-AQUA (250-1000m). In this study, we present the adaptation of a semi-analytical model for Kd and Ze, developed for MERIS/MODIS, to the new and upcoming sensors bands for inland water cases.

  10. Semi-analytic model of plasma-jet-driven magneto-inertial fusion

    DOE PAGES

    Langendorf, Samuel J.; Hsu, Scott C.

    2017-03-01

    A semi-analytic model for plasma-jet-driven magneto-inertial fusion is presented here. Compressions of a magnetized plasma target by a spherically imploding plasma liner are calculated in one dimension (1D), accounting for compressible hydrodynamics and ionization of the liner material, energy losses due to conduction and radiation, fusion burn and alpha deposition, separate ion and electron temperatures in the target, magnetic pressure, and fuel burn-up. Results show 1D gains of 3–30 at spherical convergence ratio <15 and 20–40 MJ of liner energy, for cases in which the liner thickness is 1 cm and the initial radius of a preheated magnetized target ismore » 4 cm. Some exploration of parameter space and physics settings is presented. The yields observed suggest that there is a possibility of igniting additional dense fuel layers to reach high gain.« less

  11. Discontinuous model with semi analytical sheath interface for radio frequency plasma

    NASA Astrophysics Data System (ADS)

    Miyashita, Masaru

    2016-09-01

    Sumitomo Heavy Industries, Ltd. provide many products utilizing plasma. In this study, we focus on the Radio Frequency (RF) plasma source by interior antenna. The plasma source is expected to be high density and low metal contamination. However, the sputtering the antenna cover by high energy ion from sheath voltage still have been problematic. We have developed the new model which can calculate sheath voltage wave form in the RF plasma source for realistic calculation time. This model is discontinuous that electronic fluid equation in plasma connect to usual passion equation in antenna cover and chamber with semi analytical sheath interface. We estimate the sputtering distribution based on calculated sheath voltage waveform by this model, sputtering yield and ion energy distribution function (IEDF) model. The estimated sputtering distribution reproduce the tendency of experimental results.

  12. Simulation of reactive geochemical transport in groundwater using a semi-analytical screening model

    NASA Astrophysics Data System (ADS)

    McNab, Walt W.

    1997-10-01

    A reactive geochemical transport model, based on a semi-analytical solution to the advective-dispersive transport equation in two dimensions, is developed as a screening tool for evaluating the impact of reactive contaminants on aquifer hydrogeochemistry. Because the model utilizes an analytical solution to the transport equation, it is less computationally intensive than models based on numerical transport schemes, is faster, and it is not subject to numerical dispersion effects. Although the assumptions used to construct the model preclude consideration of reactions between the aqueous and solid phases, thermodynamic mineral saturation indices are calculated to provide qualitative insight into such reactions. Test problems involving acid mine drainage and hydrocarbon biodegradation signatures illustrate the utility of the model in simulating essential hydrogeochemical phenomena.

  13. Estimation of Secchi-disk Depth Semi-analytically from Landsat-8 Data

    NASA Astrophysics Data System (ADS)

    Lee, Z.; Shang, S.; Qi, L.; Yan, J.

    2016-02-01

    The newly developed analytical model [Lee et al., RSE, 2015] for Secchi disk depth (Zsd) is modified for application with Landsat-8 measurements. Also, to implement the quasi-analytical algorithm (QAA) for the derivation of absorption and backscattering coefficients from Landsat-8 data, which are key optical properties for the estimation of Zsd, the representative wavelengths of the Landsat-8 bands in the visible domain were determined; so were the absorption and backscattering coefficients of pure water at these bands. The semi-analytical scheme was further applied to a Landsat-8 image collected in an estuarine to obtain high-spatial resolution Zsd map, and the obtained results were found quite consistent with numerous visual perceptions. These results indicate the possibility to generate reliable high-resolution water clarity product of bays, estuaries, and lakes from Landsat measurements with a unified mechanistic system.

  14. Exploring magnetized liner inertial fusion with a semi-analytic model

    DOE PAGES

    McBride, Ryan D.; Slutz, Stephen A.; Vesey, Roger A.; ...

    2016-01-01

    In this study, we explore magnetized liner inertial fusion (MagLIF) [S. A. Slutz et al., Phys. Plasmas 17, 056303 (2010)] using a semi-analytic model [R. D. McBride and S. A. Slutz, Phys. Plasmas 22, 052708 (2015)]. Specifically, we present simulation results from this model that: (a) illustrate the parameter space, energetics, and overall system efficiencies of MagLIF; (b) demonstrate the dependence of radiative loss rates on the radial fraction of the fuel that is preheated; (c) explore some of the recent experimental results of the MagLIF program at Sandia National Laboratories [M. R. Gomez et al., Phys. Rev. Lett. 113,more » 155003 (2014)]; (d) highlight the experimental challenges presently facing the MagLIF program; and (e) demonstrate how increases to the preheat energy, fuel density, axial magnetic field, and drive current could affect future MagLIF performance.« less

  15. A semi-analytical, multizone model of droplet combustion with varying properties

    NASA Astrophysics Data System (ADS)

    Sisti, John; DesJardin, Paul E.

    2013-08-01

    A multizone droplet burn model is developed to account for changes in the thermal and transport properties as a function of droplet radius. The formulation is semi-analytical - allowing for accurate and computationally efficient estimates of flame structure and burn rates. Zonal thermal and transport properties are computed using the Cantera software, pre-tabulated for rapid evaluation during run-time. Model predictions are compared to experimental measurements of burning n-heptane, ethanol and methanol droplets. An adaptive zone refinement algorithm is developed that minimizes the number of zones required to provide accurate estimates of burn time without excess zones. A sensitivity study of burn rate and flame stand-off with far-field oxygen concentration is conducted with comparisons to experimental data. Overall agreement to data is encouraging with errors typically less than 20% for predictions of burn rates, stand-off ratio and flame temperature for the fuels considered.

  16. Orbit propagation using semi-analytical theory and its applications in space debris field

    NASA Astrophysics Data System (ADS)

    Dutt, Pooja; Anilkumar, A. K.

    2017-02-01

    Lifetime estimation of space objects is very important for space debris related studies including mitigation studies and manoeuvre designs. It is essential to have a fast and accurate lifetime prediction tool for studies related to long term evolution of space debris environment. This paper presents the details of the Orbit Prediction using Semi-Analytic Theory (OPSAT) used for lifetime estimation of space objects. It uses BFGS Quasi-Newton algorithm to minimize least square error on apogee and perigee altitudes of a given TLE set to estimate ballistic coefficient (BC). This BC is used for future orbit prediction. OPSAT is evaluated for long term and short term orbit prediction using TLE data. It has been used for identification of potential candidate for active debris removal (ADR) and future projection of space debris environment with ADR.

  17. Exploring magnetized liner inertial fusion with a semi-analytic model

    SciTech Connect

    McBride, Ryan D.; Slutz, Stephen A.; Vesey, Roger A.; Gomez, Matthew R.; Sefkow, Adam B.; Hansen, Stephanie B.; Knapp, Patrick F.; Schmit, Paul F.; Geissel, Matthias; Harvey-Thompson, Adam James; Jennings, Christopher Ashley; Harding, Eric C.; Awe, Thomas James; Rovang, Dean C.; Hahn, Kelly D.; Martin, Matthew R.; Cochrane, Kyle R.; Peterson, Kyle J.; Rochau, Gregory A.; Porter, John L.; Stygar, William A.; Campbell, Edward Michael; Nakhleh, Charles W.; Herrmann, Mark C.; Cuneo, Michael E.; Sinars, Daniel B.

    2016-01-01

    In this study, we explore magnetized liner inertial fusion (MagLIF) [S. A. Slutz et al., Phys. Plasmas 17, 056303 (2010)] using a semi-analytic model [R. D. McBride and S. A. Slutz, Phys. Plasmas 22, 052708 (2015)]. Specifically, we present simulation results from this model that: (a) illustrate the parameter space, energetics, and overall system efficiencies of MagLIF; (b) demonstrate the dependence of radiative loss rates on the radial fraction of the fuel that is preheated; (c) explore some of the recent experimental results of the MagLIF program at Sandia National Laboratories [M. R. Gomez et al., Phys. Rev. Lett. 113, 155003 (2014)]; (d) highlight the experimental challenges presently facing the MagLIF program; and (e) demonstrate how increases to the preheat energy, fuel density, axial magnetic field, and drive current could affect future MagLIF performance.

  18. Semi-analytic model of plasma-jet-driven magneto-inertial fusion

    NASA Astrophysics Data System (ADS)

    Langendorf, Samuel J.; Hsu, Scott C.

    2017-03-01

    A semi-analytic model for plasma-jet-driven magneto-inertial fusion is presented. Compressions of a magnetized plasma target by a spherically imploding plasma liner are calculated in one dimension (1D), accounting for compressible hydrodynamics and ionization of the liner material, energy losses due to conduction and radiation, fusion burn and alpha deposition, separate ion and electron temperatures in the target, magnetic pressure, and fuel burn-up. Results show 1D gains of 3-30 at spherical convergence ratio <15 and 20-40 MJ of liner energy, for cases in which the liner thickness is 1 cm and the initial radius of a preheated magnetized target is 4 cm. Some exploration of parameter space and physics settings is presented. The yields observed suggest that there is a possibility of igniting additional dense fuel layers to reach high gain.

  19. A three-dimensional semi-analytical solution for predicting drug release through the orifice of a spherical device.

    PubMed

    Simon, Laurent; Ospina, Juan

    2016-07-25

    Three-dimensional solute transport was investigated for a spherical device with a release hole. The governing equation was derived using the Fick's second law. A mixed Neumann-Dirichlet condition was imposed at the boundary to represent diffusion through a small region on the surface of the device. The cumulative percentage of drug released was calculated in the Laplace domain and represented by the first term of an infinite series of Legendre and modified Bessel functions of the first kind. Application of the Zakian algorithm yielded the time-domain closed-form expression. The first-order solution closely matched a numerical solution generated by Mathematica(®). The proposed method allowed computation of the characteristic time. A larger surface pore resulted in a smaller effective time constant. The agreement between the numerical solution and the semi-analytical method improved noticeably as the size of the orifice increased. It took four time constants for the device to release approximately ninety-eight of its drug content. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Semi-analytical modelling of guided waves generation on composite structures using circular piezoceramics

    NASA Astrophysics Data System (ADS)

    Ostiguy, Pierre-Claude; Quaegebeur, Nicolas; Bilodeau, Maxime; Masson, Patrice

    2015-03-01

    In Structural Health Monitoring (SHM), classical imaging techniques rely on the use of analytical formulations to predict the propagation and interaction of guided waves generated using piezoceramic (PZT) transducers. For the implementation of advanced imaging approaches on composites structures, analytical formulations need to consider (1) the dependency of phase velocity and damping as a function of angle (2) the steering effect on guided wave propagation caused by the anisotropy of the structure and (3) the full transducer dynamics. In this paper, the analytical modeling of guided waves generation by a circular PZT and propagation on composite structures is investigated. This work, based on previous work from the authors, is intended to extend a semi- analytical formulation from isotropic to transversely isotropic plate-like structures. The formulation considers the dependency of the interfacial shear stress under the PZT as a function of radius, angular frequency and orientation on the composite structure. Validation is conducted for a unidirectional transversely isotropic structure with a bonded circular PZT of 10 mm in diameter. Amplitude curves and time domain signals of the A0 and S0 modes obtained from the proposed formulation and the classical pin-force model are first compared to Finite Element Model simulations. Experimental validation is then conducted using a 3D laser Doppler vibrometer for a non- principal direction on the composite. The results show the interest of considering a semi-analytical formulation for which the transducer dynamics where the shear stress distribution under the transducer is considered in order to reproduce more precisely the generation of guided waves on composite structures.

  1. Fast radiative transfer of dust reprocessing in semi-analytic models with artificial neural networks

    NASA Astrophysics Data System (ADS)

    Silva, Laura; Fontanot, Fabio; Granato, Gian Luigi

    2012-06-01

    A serious concern for semi-analytical galaxy formation models, aiming to simulate multiwavelength surveys and to thoroughly explore the model parameter space, is the extremely time-consuming numerical solution of the radiative transfer of stellar radiation through dusty media. To overcome this problem, we have implemented an artificial neural network (ANN) algorithm in the radiative transfer code GRASIL, in order to significantly speed up the computation of the infrared (IR) spectral energy distribution (SED). The ANN we have implemented is of general use, in that its input neurons are defined as those quantities effectively determining the shape of the IR SED. Therefore, the training of the ANN can be performed with any model and then applied to other models. We made a blind test to check the algorithm, by applying a net trained with a standard chemical evolution model (i.e. CHE_EVO) to a mock catalogue extracted from the semi-analytic model MORGANA, and compared galaxy counts and evolution of the luminosity functions in several near-IR to sub-millimetre (sub-mm) bands, and also the spectral differences for a large subset of randomly extracted models. The ANN is able to excellently approximate the full computation, but with a gain in CPU time by ˜2 orders of magnitude. It is only advisable that the training covers reasonably well the range of values of the input neurons in the application. Indeed in the sub-mm at high redshift, a tiny fraction of models with some sensible input neurons out of the range of the trained net cause wrong answer by the ANN. These are extreme starbursting models with high optical depths, favourably selected by sub-mm observations, and are difficult to predict a priori.

  2. A semi-analytical radiobiological model may assist treatment planning in light ion radiotherapy.

    PubMed

    Kundrát, Pavel

    2007-12-07

    A semi-analytical model of light ions' Bragg peaks is presented and used in conjunction with a detailed probabilistic radiobiological module to predict the biological effectiveness of light ion irradiation for hadrontherapy applications. The physical Bragg peak model is based on energy-loss calculations with the SRIM code and phenomenological formulae for the energy-loss straggling. Effects of nuclear reactions are accounted for on the level of reducing the number of primary particles only. Reaction products are not followed at all and their contribution to dose deposition is neglected. Beam widening due to multiple scattering and calculations of spread-out Bragg peaks are briefly discussed. With this simple physical model, integral depth-dose distributions are calculated for protons, carbon, oxygen and neon ions. A good agreement with published experimental data is observed for protons and lower energy ions (with ranges in water up to approximately 15 cm), while less satisfactory results are obtained for higher energy ions due to the increased role of nuclear reaction products, neglected in this model. A detailed probabilistic radiobiological module is used to complement the simple physical model and to estimate biological effectiveness along the penetration depth of Bragg peak irradiation. Excellent agreement is found between model predictions and experimental data for carbon beams, indicating potential applications of the present scheme in treatment planning in light ion hadrontherapy. Due to the semi-analytical character of the model, leading to high computational speed, applications are foreseen in particular in the fully biological optimization of multiple irradiation fields and intensity-modulated beams.

  3. A Rapid Distortion Theory modified turbulence spectra for semi-analytical airfoil noise prediction

    NASA Astrophysics Data System (ADS)

    Santana, Leandro D.; Christophe, Julien; Schram, Christophe; Desmet, Wim

    2016-11-01

    This paper proposes an implementation of the Rapid Distortion Theory, for the prediction of the noise resulting from the interaction of an airfoil with incoming turbulence. In the framework of the semi-analytical modeling strategy known as Amiet's theory, this interaction mechanism is treated in a linearized form where the airfoil thickness, camber and angle of attack are assumed negligible, leading to a frozen turbulence description of the incident gust. Important semi-analytical developments have been proposed in the literature to improve the modeling of the gust-airfoil interaction accounting for parallel and skewed gusts, non-rectangular linearized airfoil shapes or blade tip effects. This work is rather focused on the investigation of the distortion of turbulence that occurs in the vicinity of the airfoil leading edge, compared with Rapid Distortion Theory, where main results are briefly reminded in this paper. The main contribution of this work is a detailed experimental investigation of the evolution of turbulent quantities relevant to noise production, performed in the close vicinity of the airfoil leading edge subjected to grid turbulence, by means of stereoscopic Particle Image Velocimetry measurements. The results indicate that the distortion effects are concentrated in a narrow region close to the stagnation point of the leading edge, with dimension of the order of its radius of curvature. Additionally, it is shown that the turbulence intensity grows significantly as the flow approaches the airfoil leading-edge. Based on those results, a modified turbulence spectrum is proposed to describe the incoming turbulence in Amiet's theory. The sound predictions show a significantly better match with acoustic measurements than using the original turbulence model.

  4. Comparison of the VIMOS-VLT Deep Survey with the Munich semi-analytical model. I. Magnitude counts, redshift distribution, colour bimodality, and galaxy clustering

    NASA Astrophysics Data System (ADS)

    de la Torre, S.; Meneux, B.; De Lucia, G.; Blaizot, J.; Le Fèvre, O.; Garilli, B.; Cucciati, O.; Mellier, Y.; Pollo, A.; Abbas, U.; Bottini, D.; Le Brun, V.; Maccagni, D.; Scodeggio, M.; Tresse, L.; Vettolani, G.; Zanichelli, A.; Adami, C.; Arnouts, S.; Bardelli, S.; Bolzonella, M.; Cappi, A.; Charlot, S.; Ciliegi, P.; Contini, T.; Foucaud, S.; Franzetti, P.; Gavignaud, I.; Guzzo, L.; Ilbert, O.; Iovino, A.; McCracken, H. J.; Marinoni, C.; Mazure, A.; Merighi, R.; Paltani, S.; Pelló, R.; Pozzetti, L.; Vergani, D.; Zamorani, G.; Zucca, E.

    2011-01-01

    Aims: This paper presents a detailed comparison between high-redshift observations from the VIMOS-VLT Deep Survey (VVDS) and predictions from the Munich semi-analytical model of galaxy formation. In particular, we focus this analysis on the magnitude, redshift, and colour distributions of galaxies, as well as their clustering properties. Methods: We constructed 100 quasi-independent mock catalogues, using the output of the semi-analytical model presented in De Lucia & Blaizot (2007, MNRAS, 375, 2). We then applied the same observational selection function of the VVDS-Deep survey, so as to carry out a fair comparison between models and observations. Results: We find that the semi-analytical model reproduces well the magnitude counts in the optical bands. It tends, however, to overpredict the abundance of faint red galaxies, in particular in the i' and z' bands. Model galaxies exhibit a colour bimodality that is only in qualitative agreement with the data. In particular, we find that the model tends to overpredict the number of red galaxies at low redshift and of blue galaxies at all redshifts probed by VVDS-Deep observations, although a large fraction of the bluest observed galaxies is absent from the model. In addition, the model overpredicts by about 14 per cent the number of galaxies observed at 0.2 < z < 1 with IAB < 24. When comparing the galaxy clustering properties, we find that model galaxies are more strongly clustered than observed ones at all redshift from z = 0.2 to z = 2, with the difference being less significant above z ≃ 1. When splitting the samples into red and blue galaxies, we find that the observed clustering of blue galaxies is well reproduced by the model, while red model galaxies are much more clustered than observed ones, being principally responsible for the strong global clustering found in the model. Conclusions: Our results show that the discrepancies between Munich semi-analytical model predictions and VVDS-Deep observations

  5. Semi-analytical approach for the study of linear static behaviour and buckling of shells with single constant curvature

    NASA Astrophysics Data System (ADS)

    de Leo, Andrea Matteo; Contento, Alessandro; Di Egidio, Angelo

    2015-09-01

    A model of linear, internally constrained shell with single, constant curvature is used to describe the behaviour of existing structures, such as barrel shells. A linear, elastic, isotropic material is considered. Observing that in the shell two families of mono-dimensional interacting beams can be recognized: straight longitudinal beams and transversal arches, a non-conventional semi-analytical approximate solution, which uses the method of separation of variables, is proposed. By using an integral procedure, reduced differential, ordinary equations, capable of describing the behaviour of the shell, are obtained. Both linear static behaviour and longitudinal buckling of the shell are investigated. The approximate solution proposed leads to results that match those of a finite element model and permits to give a description of shells similar to that of beams on elastic soil. With regard to the linear static behaviour of the shell, a "short" and a "long" characterization is proposed and original graphical abaci are obtained with the purpose of facilitating the classification. An extensive study is then performed in order to analyse the buckling of the shells.

  6. Steady-state groundwater recharge in trapezoidal-shaped aquifers: A semi-analytical approach based on variational calculus

    NASA Astrophysics Data System (ADS)

    Mahdavi, Ali; Seyyedian, Hamid

    2014-05-01

    This study presents a semi-analytical solution for steady groundwater flow in trapezoidal-shaped aquifers in response to an areal diffusive recharge. The aquifer is homogeneous, anisotropic and interacts with four surrounding streams of constant-head. Flow field in this laterally bounded aquifer-system is efficiently constructed by means of variational calculus. This is accomplished by minimizing a properly defined penalty function for the associated boundary value problem. Simple yet demonstrative scenarios are defined to investigate anisotropy effects on the water table variation. Qualitative examination of the resulting equipotential contour maps and velocity vector field illustrates the validity of the method, especially in the vicinity of boundary lines. Extension to the case of triangular-shaped aquifer with or without an impervious boundary line is also demonstrated through a hypothetical example problem. The present solution benefits from an extremely simple mathematical expression and exhibits strictly close agreement with the numerical results obtained from Modflow. Overall, the solution may be used to conduct sensitivity analysis on various hydrogeological parameters that affect water table variation in aquifers defined in trapezoidal or triangular-shaped domains.

  7. Semi-analytical integration of the Earth's precession-nutation based on the GCRS coordinates of the CIP unit vector

    NASA Astrophysics Data System (ADS)

    Capitaine, N.; Folgueira, M.

    2012-12-01

    In a previous paper (Capitaine et al. 2006), referred here as Paper I, we demonstrated the possibility of integrating the Earth's rotational motion in terms of the coordinates (X, Y ) of the celestial intermediate pole (CIP) unit vector in the Geocentric celestial reference system (GCRS). Here, we report on the approach that has been followed for solving the equations in the case of an axially symmetric rigid Earth and the semi-analytical (X, Y ) solution obtained from the expression of the external torque acting on the Earth derived from the most complete semi-analytical solutions for the Earth, Moon and planets.

  8. Thermal expansion method for lining tantalum alloy tubing with tungsten

    NASA Technical Reports Server (NTRS)

    Watson, G. K.; Whittenberger, J. D.; Mattson, W. F.

    1973-01-01

    A differential-thermal expansion method was developed to line T-111 (tantalum - 8 percent tungsten - 2 percent hafnium) tubing with a tungsten diffusion barrier as part of a fuel element fabrication study for a space power nuclear reactor concept. This method uses a steel mandrel, which has a larger thermal expansion than T-111, to force the tungsten against the inside of the T-111 tube. Variables investigated include lining temperature, initial assembly gas size, and tube length. Linear integrity increased with increasing lining temperature and decreasing gap size. The method should have more general applicability where cylinders must be lined with a thin layer of a second material.

  9. VizieR Online Data Catalog: Metal enrichment in semi-analytical model (Cousin+, 2016)

    NASA Astrophysics Data System (ADS)

    Cousin, M.; Buat, V.; Boissier, S.; Bethermin, M.; Roehlly, Y. Genois M.

    2016-04-01

    The repository contains outputs from the different models: - m1: Classical (only hot gas) isotropic accretion scenario + Standard Shmidt Kennicutt law - m2: Bimodal accretion (cold streams) + Standard Shmidt Kennicutt law - m3: Classical (only hot gas) isotropic accretion scenario + ad-hoc non-star forming gas reservoir - m4: Bimodal accretion (cold streams) + ad-hoc non-star forming gas reservoir For each model of these models dada are saved in eGalICS_m*.fits file. All these fits-formated files are compatible with the TOPCAT software available on: http://www.star.bris.ac.uk/~mbt/topcat/ We also provide, for each Initial Mass Function available, a set of two fits-formated files associated to the chemodynamical library presented in the paper. For these two files, data are available for all metallicity bins used. - masslossrates_IMF.fits: The instantaneous total ejecta rate associated to a SSP for the six different main-ISM elements. - SNratesIMF.fits: The total SN rate (SNII+SNIa [nb/Gyr]) associated to a SSP, individual contribution of SNII and SNIa are also given. These files are available for four different IMFs: Salpeter+55 (1955ApJ...121..161S), Chabrier+03 (2003PASP..115..763C), Kroupa+93 (2001MNRAS.322..231K) and Scalo+98 (1998ASPC..142..201S. Both ejecta rates and SN rates are computed for the complete list of stellar ages provided in the BC03 spectra library. They are saved in fits-formated files and structured with different extensions corresponding to the different initial stellar metallicity bins. We finally provide the median star formation history, the median gas accretion history and the metal enrichment histories associated to our MW-sisters sample: MWsistershistories.dat If you used data associated to eGalICS semi-analytic model, please cite the following paper: Cousin et al., 2015A&A...575A..33C, "Toward a new modelling of gas flows in a semi-analytical model of galaxy formation and evolution" (3 data files).

  10. A semi-analytic model of the turbulent multi-phase interstellar medium

    NASA Astrophysics Data System (ADS)

    Braun, H.; Schmidt, W.

    2012-04-01

    We present a semi-analytic model for the interstellar medium that considers local processes and structures of turbulent star-forming gas. A volume element of the interstellar medium is described as a multi-phase system, comprising a cold and a warm gas phase in effective (thermal plus turbulent) pressure equilibrium and a stellar component. The cooling instability of the warm gas feeds the cold phase, while various heating processes transfer cold gas to the warm phase. The cold phase consists of clumps embedded in diffuse warm gas, where only the molecular fraction of the cold gas may be converted into stars. The fraction of molecular gas is approximately calculated, using a Strömgren-like approach and the efficiency of star formation is determined by the state of the cold gas and the turbulent velocity dispersion on the clump length-scale. Gas can be heated by supernovae and ultraviolet emission of massive stars, according to the evolutionary stages of the stellar populations and the initial mass function. Since turbulence has a critical impact on the shape of the gaseous phases, on the production of molecular hydrogen and on the formation of stars, the consistent treatment of turbulent energy - the kinetic energy of unresolved motions - is an important new feature of our model. Besides turbulence production by supernovae and the cooling instability, we also take into account the forcing by large-scale motions. We formulate a set of ordinary differential equations, which statistically describes star formation and the exchange between the different budgets of mass and energy in a region of the interstellar medium with given mean density, size, metallicity and external turbulence forcing. By exploring the behaviour of the solutions, we find equilibrium states, in which the star formation efficiencies are consistent with observations. Kennicutt-Schmidt-like relations naturally arise from the equilibrium solutions, while conventional star formation models in

  11. A semi-analytical model for predicting water quality from an aquifer storage and recovery system

    NASA Astrophysics Data System (ADS)

    Sedighi, Ali; Klammler, Harald; Brown, Chris; Hatfield, Kirk

    2006-10-01

    SummaryAquifer storage and recovery (ASR) involves the injection of freshwater in an aquifer through wells for the purpose of creating a subsurface water supply that is recovered at a later time, often using the same wells, to meet seasonal, long-term, emergency, or other demands. In this paper a numerically efficient semi-analytical model is developed for predicting the quality of water recovered by an ASR system given data on the qualities of ambient and injected waters, hydraulic properties of the aquifer, ambient hydraulic gradient, and system operations. It is assumed the ASR well is installed in a stratified aquifer such that the semi-analytical ASR model (SASRM) simulates the fate of water injected under steady-state conditions into each stratum. It is also assumed that a sharp and mobile interface separates injected water from ambient groundwater such that in situ mixing of water within and between strata does not occur. SASRM assigns particles to define the location the interface in all strata and then follows the migration of these particles under ambient and induced flow conditions. During water recovery, the transient location of the interface is simulated in each stratum and this information is used to quantify the fractions of ambient and injected water extracted at the well-head and the quality of water recovered. To mimic the effects of dispersion, a Latin Hypercube sampling strategy is used to assign hydraulic conductivities according to a predefined probability distribution to the layers of a conceptually stratified aquifer. The volumetric fraction of water received or delivered from any given lithologic unit is assumed proportional to the transmissivity of the stratum normalized to the total aquifer transmissivity interrogated by the ASR well. SARSM is numerically verified against MT3DMS and then calibrated and validated using field data from an ASR system located in Boynton Beach, FL. The field demonstration shows SASRM is capable of predicting

  12. Stellarator expansion methods for MHD equilibrium and stability calculations

    SciTech Connect

    Lynch, V.E.; Charlton, L.A.; Hicks, H.R.; Holmes, J.A.; Carreras, B.A.; Hender, T.C.; Garcia, L.

    1986-03-01

    Two methods for performing stellarator expansion, or average method, MHD calculations are described. The first method includes the calculation of vacuum, equilibrium, and stability, using the Greene and Johnson stellarator expansion in which the equilibrium is reduced to a 2-D problem by averaging over the geometric toroidal angle in real space coordinates. In the second method, the average is performed in a system of vacuum magnetic coordinates. Both methods are implemented to utilize realistic vacuum field information, making them applicable to configuration studies and machine design, as well as to basic research. Illustrative examples are presented to detail the sensitivities of the calculations to physical parameters and to show numerical convergence and the comparison of these methods with each other and with other methods.

  13. Polynomial expansion nodal transport method in hexagonal geometry

    SciTech Connect

    Cho, Jin Young; Kim, Chang Hyo; Noh, Taewan

    1997-12-01

    Recently, the polynomial expansion nodal (PEN) method was developed as a new nodal diffusion scheme for hexagonal core analyses. Using the direct polynomial expansion for the node flux, the PEN method not only eliminates the complicated transverse integration procedures-especially in hexagonal geometry-which are frequently used in conventional nodal methods, but also provides a number of features such as the convenient energy group expendability and much enhanced accuracy with less computational effort. In this paper, we further develop the PEN method for the transport equation for the cases where the transport effects are important: highly heterogeneous, small (high-leakage), and fast reactors, etc. Here, we take the even-parity form of transport equation. The main reason is that the diffusion-like nature of the even-parity equation is adequate to establish the new nodal transport method (PEN-TR) using the earlier developed PEN method in diffusion theory.

  14. A SEMI-ANALYTICAL LINE TRANSFER MODEL TO INTERPRET THE SPECTRA OF GALAXY OUTFLOWS

    SciTech Connect

    Scarlata, C.; Panagia, N.

    2015-03-01

    We present a semi-analytical line transfer model, (SALT), to study the absorption and re-emission line profiles from expanding galactic envelopes. The envelopes are described as a superposition of shells with density and velocity varying with the distance from the center. We adopt the Sobolev approximation to describe the interaction between the photons escaping from each shell and the remainder of the envelope. We include the effect of multiple scatterings within each shell, properly accounting for the atomic structure of the scattering ions. We also account for the effect of a finite circular aperture on actual observations. For equal geometries and density distributions, our models reproduce the main features of the profiles generated with more complicated transfer codes. Also, our SALT line profiles nicely reproduce the typical asymmetric resonant absorption line profiles observed in starforming/starburst galaxies whereas these absorption profiles cannot be reproduced with thin shells moving at a fixed outflow velocity. We show that scattered resonant emission fills in the resonant absorption profiles, with a strength that is different for each transition. Observationally, the effect of resonant filling depends on both the outflow geometry and the size of the outflow relative to the spectroscopic aperture. Neglecting these effects will lead to incorrect values of gas covering fraction and column density. When a fluorescent channel is available, the resonant profiles alone cannot be used to infer the presence of scattered re-emission. Conversely, the presence of emission lines of fluorescent transitions reveals that emission filling cannot be neglected.

  15. SEMI-ANALYTIC GALAXY EVOLUTION (SAGE): MODEL CALIBRATION AND BASIC RESULTS

    SciTech Connect

    Croton, Darren J.; Stevens, Adam R. H.; Tonini, Chiara; Garel, Thibault; Bernyk, Maksym; Bibiano, Antonio; Hodkinson, Luke; Mutch, Simon J.; Poole, Gregory B.; Shattow, Genevieve M.

    2016-02-15

    This paper describes a new publicly available codebase for modeling galaxy formation in a cosmological context, the “Semi-Analytic Galaxy Evolution” model, or sage for short.{sup 5} sage is a significant update to the 2006 model of Croton et al. and has been rebuilt to be modular and customizable. The model will run on any N-body simulation whose trees are organized in a supported format and contain a minimum set of basic halo properties. In this work, we present the baryonic prescriptions implemented in sage to describe the formation and evolution of galaxies, and their calibration for three N-body simulations: Millennium, Bolshoi, and GiggleZ. Updated physics include the following: gas accretion, ejection due to feedback, and reincorporation via the galactic fountain; a new gas cooling–radio mode active galactic nucleus (AGN) heating cycle; AGN feedback in the quasar mode; a new treatment of gas in satellite galaxies; and galaxy mergers, disruption, and the build-up of intra-cluster stars. Throughout, we show the results of a common default parameterization on each simulation, with a focus on the local galaxy population.

  16. A Semi-Analytic Study of Feedback Processes and Metallicity Profiles in Disc Galaxies

    NASA Astrophysics Data System (ADS)

    Sandford, Nathan Ross; Lu, Yu

    2016-01-01

    The metallicity gradients of disc galaxies contain valuable information about the physics governing their formation and evolution. The observed metallicity profiles have negative gradients that are steeper at high redshifts, indicating an inside-out formation of disc galaxies. We improve on our semi-analytic galaxy formation model (Lu, Mo & Wechsler 2015) by incorporating the radial distribution of metals into the model. With the improved model, we explore how feedback scenarios affect metallicity gradients. The model features 3 feedback scenarios: An Ejective (EJ) model, which includes ejective supernova (SN) feedback, a PRe-Heating (PR) model, which assumes that the intergalactic medium is preheated, preventing it from collapsing onto galaxies, and a Re-Incorporation (RI) model, which also includes strong outflows but allows ejected gas to re-accrete onto the galaxies. We compare the models with observations from Ho et al. (2015) and find that while all models struggle to match the observed metallicity gradient-stellar mass relationship, the PR model predicts metallicity gradients that best match observations. We also find that the RI model predicts a flat gradient because its outflow and re-accretion replenish the disc uniformly with newly accreted enriched gas, erasing the mark of inside-out formation. Our findings suggest feedback plays a key role in shaping the metallicity gradients of disc galaxies and require more detailed theoretical modeling to understand them.

  17. Semi-Analytic Galaxy Evolution (SAGE): Model Calibration and Basic Results

    NASA Astrophysics Data System (ADS)

    Croton, Darren J.; Stevens, Adam R. H.; Tonini, Chiara; Garel, Thibault; Bernyk, Maksym; Bibiano, Antonio; Hodkinson, Luke; Mutch, Simon J.; Poole, Gregory B.; Shattow, Genevieve M.

    2016-02-01

    This paper describes a new publicly available codebase for modeling galaxy formation in a cosmological context, the “Semi-Analytic Galaxy Evolution” model, or sage for short.5 sage is a significant update to the 2006 model of Croton et al. and has been rebuilt to be modular and customizable. The model will run on any N-body simulation whose trees are organized in a supported format and contain a minimum set of basic halo properties. In this work, we present the baryonic prescriptions implemented in sage to describe the formation and evolution of galaxies, and their calibration for three N-body simulations: Millennium, Bolshoi, and GiggleZ. Updated physics include the following: gas accretion, ejection due to feedback, and reincorporation via the galactic fountain; a new gas cooling-radio mode active galactic nucleus (AGN) heating cycle; AGN feedback in the quasar mode; a new treatment of gas in satellite galaxies; and galaxy mergers, disruption, and the build-up of intra-cluster stars. Throughout, we show the results of a common default parameterization on each simulation, with a focus on the local galaxy population.

  18. A Semi-analytic Criterion for the Spontaneous Initiation of Carbon Detonations in White Dwarfs

    NASA Astrophysics Data System (ADS)

    Garg, Uma; Chang, Philip

    2017-02-01

    Despite over 40 years of active research, the nature of the white dwarf progenitors of SNe Ia remains unclear. However, in the last decade, various progenitor scenarios have highlighted the need for detonations to be the primary mechanism by which these white dwarfs are consumed, but it is unclear how these detonations are triggered. In this paper we study how detonations are spontaneously initiated due to temperature inhomogeneities, e.g., hotspots, in burning nuclear fuel in a simplified physical scenario. Following the earlier work by Zel’Dovich, we describe the physics of detonation initiation in terms of the comparison between the spontaneous wave speed and the Chapman–Jouguet speed. We develop an analytic expression for the spontaneous wave speed and utilize it to determine a semi-analytic criterion for the minimum size of a hotspot with a linear temperature gradient between a peak and base temperature for which detonations in burning carbon–oxygen material can occur. Our results suggest that spontaneous detonations may easily form under a diverse range of conditions, likely allowing a number of progenitor scenarios to initiate detonations that burn up the star.

  19. Building disc structure and galaxy properties through angular momentum: the DARK SAGE semi-analytic model

    NASA Astrophysics Data System (ADS)

    Stevens, Adam R. H.; Croton, Darren J.; Mutch, Simon J.

    2016-09-01

    We present the new semi-analytic model of galaxy evolution, DARK SAGE, a heavily modified version of the publicly available SAGE code. The model is designed for detailed evolution of galactic discs. We evolve discs in a series of annuli with fixed specific angular momentum, which allows us to make predictions for the radial and angular-momentum structure of galaxies. Most physical processes, including all channels of star formation and associated feedback, are performed in these annuli. We present the surface density profiles of our model spiral galaxies, both as a function of radius and specific angular momentum, and find that the discs naturally build a pseudo-bulge-like component. Our main results are focused on predictions relating to the integrated mass-specific angular momentum relation of stellar discs. The model produces a distinct sequence between these properties in remarkable agreement with recent observational literature. We investigate the impact Toomre disc instabilities have on shaping this sequence and find they are crucial for regulating both the mass and spin of discs. Without instabilities, high-mass discs would be systematically deficient in specific angular momentum by a factor of ˜2.5, with increased scatter. Instabilities also appear to drive the direction in which the mass-spin sequence of spiral galaxy discs evolves. With them, we find galaxies of fixed mass have higher specific angular momentum at later epochs.

  20. A semi-analytical beam model for the vibration of railway tracks

    NASA Astrophysics Data System (ADS)

    Kostovasilis, D.; Thompson, D. J.; Hussein, M. F. M.

    2017-04-01

    The high frequency dynamic behaviour of railway tracks, in both vertical and lateral directions, strongly affects the generation of rolling noise as well as other phenomena such as rail corrugation. An improved semi-analytical model of a beam on an elastic foundation is introduced that accounts for the coupling of the vertical and lateral vibration. The model includes the effects of cross-section asymmetry, shear deformation, rotational inertia and restrained warping. Consideration is given to the fact that the loads at the rail head, as well as those exerted by the railpads at the rail foot, may not act through the centroid of the section. The response is evaluated for a harmonic load and the solution is obtained in the wavenumber domain. Results are presented as dispersion curves for free and supported rails and are validated with the aid of a Finite Element (FE) and a waveguide finite element (WFE) model. Closed form expressions are derived for the forced response, and validated against the WFE model. Track mobilities and decay rates are presented to assess the potential implications for rolling noise and the influence of the various sources of vertical-lateral coupling. Comparison is also made with measured data. Overall, the model presented performs very well, especially for the lateral vibration, although it does not contain the high frequency cross-section deformation modes. The most significant effects on the response are shown to be the inclusion of torsion and foundation eccentricity, which mainly affect the lateral response.

  1. A semi-analytical solution for simulating contaminant transport subject to chain-decay reactions.

    PubMed

    Sudicky, Edward A; Hwang, Hyoun-Tae; Illman, Walter A; Wu, Yu-Shu; Kool, Jan B; Huyakorn, Peter

    2013-01-01

    We present a set of new, semi-analytical solutions to simulate three-dimensional contaminant transport subject to first-order chain-decay reactions. The aquifer is assumed to be areally semi-infinite, but finite in thickness. The analytical solution can treat the transformation of contaminants into daughter products, leading to decay chains consisting of multiple contaminant species and various reaction pathways. The solution in its current form is capable of accounting for up to seven species and four decay levels. The complex pathways are represented by means of first-order decay and production terms, while branching ratios account for decay stoichiometry. Besides advection, dispersion, bio-chemical or radioactive decay and daughter product formation, the model also accounts for sorption of contaminants on the aquifer solid phase with each species having a different retardation factor. First-type contaminant boundary conditions are utilized at the source (x=0 m) and can be either constant-in-time for each species, or the concentration can be allowed to undergo first-order decay. The solutions are obtained by exponential Fourier, Fourier cosine and Laplace transforms. Limiting forms of the solutions can be obtained in closed form, but we evaluate the general solutions by numerically inverting the analytical solutions in exponential Fourier and Laplace transform spaces. Various cases are generated and the solutions are verified against the HydroGeoSphere numerical model.

  2. Galaxy Formation At Extreme Redshifts: Semi-Analytic Model Predictions And Challenges For Observations

    NASA Astrophysics Data System (ADS)

    Yung, L. Y. Aaron; Somerville, Rachel S.

    2017-06-01

    The well-established Santa Cruz semi-analytic galaxy formation framework has been shown to be quite successful at explaining observations in the local Universe, as well as making predictions for low-redshift observations. Recently, metallicity-based gas partitioning and H2-based star formation recipes have been implemented in our model, replacing the legacy cold-gas based recipe. We then use our revised model to explore the high-redshift Universe and make predictions up to z = 15. Although our model is only calibrated to observations from the local universe, our predictions seem to match incredibly well with mid- to high-redshift observational constraints available-to-date, including rest-frame UV luminosity functions and the reionization history as constrained by CMB and IGM observations. We provide predictions for individual and statistical galaxy properties at a wide range of redshifts (z = 4 - 15), including objects that are too far or too faint to be detected with current facilities. And using our model predictions, we also provide forecasted luminosity functions and other observables for upcoming studies with JWST.

  3. Winds and radiation in unison: a new semi-analytic feedback model for cloud dissolution

    NASA Astrophysics Data System (ADS)

    Rahner, Daniel; Pellegrini, Eric W.; Glover, Simon C. O.; Klessen, Ralf S.

    2017-10-01

    Star clusters interact with the interstellar medium (ISM) in various ways, most importantly in the destruction of molecular star-forming clouds, resulting in inefficient star formation on galactic scales. On cloud scales, ionizing radiation creates H ii regions, while stellar winds and supernovae (SNe) drive the ISM into thin shells. These shells are accelerated by the combined effect of winds, radiation pressure, and SN explosions, and slowed down by gravity. Since radiative and mechanical feedback is highly interconnected, they must be taken into account in a self-consistent and combined manner, including the coupling of radiation and matter. We present a new semi-analytic 1D feedback model for isolated massive clouds (≥105 M⊙) to calculate shell dynamics and shell structure simultaneously. It allows us to scan a large range of physical parameters (gas density, star formation efficiency, and metallicity) and to estimate escape fractions of ionizing radiation fesc, i, the minimum star formation efficiency ɛmin required to drive an outflow, and recollapse time-scales for clouds that are not destroyed by feedback. Our results show that there is no simple answer to the question of what dominates cloud dynamics, and that each feedback process significantly influences the efficiency of the others. We find that variations in natal cloud density can very easily explain differences between dense-bound and diffuse-open star clusters. We also predict, as a consequence of feedback, a 4-6 Myr age difference for massive clusters with multiple generations.

  4. A semi-analytical decomposition analysis of surface plasmon generation and the optimal nanoledge plasmonic device

    PubMed Central

    Zeng, Zheng; Mendis, Madu N.; Waldeck, David H.; Wei, Jianjun

    2016-01-01

    Surface plasmon resonance (SPR) of nanostructured thin metal films (so-called nanoplasmonics) has attracted intense attention due to its versatility for optical sensing and chip-based device integration. Understanding the underlying physics and developing applications of nanoplasmonic devices with desirable optical properties, e.g. intensity of light scattering and high refractive index (RI) sensitivity at the perforated metal film, is crucial for practical uses in physics, biomedical detection, and environmental monitoring. This work presents a semi-analytical model that enables decomposition and quantitative analysis of surface plasmon generation at a new complex nanoledge aperture structure under plane-wave illumination, thus providing insight on how to optimize plasmonic devices for optimal plasmonic generation efficiencies and RI sensitivity. A factor analysis of parameters (geometric, dielectric-RI, and incident wavelength) relevant to surface plasmon generation is quantitatively investigated to predict the surface plasmon polariton (SPP) generation efficiency. In concert with the analytical treatment, a finite-difference time-domain (FDTD) simulation is used to model the optical transmission spectra and RI sensitivity as a function of the nanoledge device’s geometric parameters, and it shows good agreement with the analytical model. Further validation of the analytical approach is provided by fabricating subwavelength nanoledge devices and testing their optical transmission and RI sensitivity. PMID:26977289

  5. Confronting semi-analytic galaxy models with galaxy-matter correlations observed by CFHTLenS

    NASA Astrophysics Data System (ADS)

    Saghiha, Hananeh; Simon, Patrick; Schneider, Peter; Hilbert, Stefan

    2017-05-01

    Testing predictions of semi-analytic models of galaxy evolution against observations helps to understand the complex processes that shape galaxies. We compare predictions from the Garching and Durham models implemented on the Millennium Simulation (MS) with observations of galaxy-galaxy lensing (GGL) and galaxy-galaxy-galaxy lensing (G3L) for various galaxy samples with stellar masses in the range 0.5 ≤ M∗/ 1010M⊙ < 32 and photometric redshifts in the range 0.2 ≤ z < 0.6 in the Canada-France-Hawaii Telescope Lensing Survey (CFHTLenS). We find that the predicted GGL and G3L signals are in qualitative agreement with CFHTLenS data. Quantitatively, the models succeed in reproducing the observed signals in the highest stellar mass bin, 16 ≤ M∗/ 1010M⊙ < 32, but show different degrees of tension for the other stellar mass samples. The Durham models are strongly excluded by the observations at the 95% confidence level because they largely over-predict the amplitudes of the GGL and G3L signals, probably because they predict too many satellite galaxies in massive halos.

  6. The atomic gas in outer disks in semi-analytic models of galaxy formation†

    NASA Astrophysics Data System (ADS)

    Fu, Jian; Luo, Yu

    2017-03-01

    We use semi-analytic models of galaxy formation L-Galaxies based on ΛCDM cosmology to study the HI gas component in galaxy outskirts. We adopt the radially-resolved version of the models by Fu et al. (2013), which includes both atomic and molecular gas component in interstellar medium. This model has been recently updated by Luo et al. (2016) to include cold gas stripping in the outer disk regions of the satellite galaxies by ram pressure. In our models, we can perfectly reproduce the HI size-mass relation, which is discovered by Broeils & Rhee (1997) and confirmed by many subsequent observations. In our model, the reason for such tight correlation between HI size and mass is atomic-molecular phase conversion in high gas surface density regions while HI ionization in low gas surface density region, which leads to very narrow distribution of HI mean surface density. The models also reproduce the universal exponential HI radial profiles in galaxy outskirts found by Bluedisk (Wang et al. 2013), which arises from cold gas accretion onto the galaxy disks in exponentially profiles.

  7. A semi-analytical model for transient flow to a subsurface tile drain

    NASA Astrophysics Data System (ADS)

    Stillman, Jennifer S.; Haws, Nathan W.; Govindaraju, R. S.; Rao, P. Suresh C.

    2006-02-01

    The goal of this paper is to develop and test a semi-analytical model for event-based transient flow to a subsurface tile drain. A sharp-front theory was used to describe redistribution of infiltrated water in the vadose zone. New approximate analytical solutions in terms of Fourier series were sought for the Boussinesq equation describing subsurface saturated flow subject to time-dependent recharge. Both one and two-term solutions of the series approximation were compared with observed tile hydrograph data from the Purdue Water Quality Field Station (WQFS) in West Lafayette, Indiana. In general, the models were able to capture the peaks of the tile-drain hydrographs, as well as the times-to-peak and the times-of-initial-response to rainfall events. The models performed particularly well for rainfall events with single-burst hyetographs, and in the prediction of the first hydrograph peak from multiple-burst hyetographs, though subsequent peaks could not be captured as well. A further comparison of results from the one-term model with those from HYDRUS 2D suggested that the one-term model is adequate for estimating transient flow to a tile drain. The solution developed here holds promise for extension to larger watersheds where the hydrology is governed by tile drains.

  8. Making damped Lyman-α systems in semi-analytic models

    NASA Astrophysics Data System (ADS)

    Maller, Ariyeh H.; Somerville, Rachel S.; Prochaska, Jason X.; Primack, Joel R.

    1999-04-01

    The velocity profiles of weak metal absorption lines can be used to observationally probe the kinematic state of gas in damped Lyman-α systems. Prochaska and Wolfe [5] have argued that the flat distribution of velocity widths (Δv) combined with the asymmetric line profiles indicate that the DLAS are disks with large rotation velocities (~200 km/s). An alternative explanation has been proposed by Haehnelt, Steinmetz, and Rauch (HSR) [2], in which the observed large velocity widths and asymmetric profiles can be produced by lines of sight passing through two or more clumps each having relatively small internal velocity dispersions. We investigate the plausibility of this scenario in the context of semi-analytic models based on hierarchical merging trees and including simple treatments of gas dynamics, star formation, supernova feedback, and chemical evolution. We find that all the observed properties of the metal-line systems including the distribution of Δv and the asymmetric profiles, can be reproduced by lines of sight passing through sub-clumps that are bound within larger virialized dark matter halos. In order to produce enough multiple hits, we find that the cold gas must be considerably more extended than the optical radius of the proto-galaxies, perhaps even beyond the tidal radius of the sub-halo. This could occur due to tidal stripping or supernova-driven outflows.

  9. Evolution of Compact and Fossil Groups of Galaxies from Semi-analytical Models of Galaxy Formation

    NASA Astrophysics Data System (ADS)

    Farhang, Amin; Khosroshahi, Habib G.; Mamon, Gary A.; Dariush, Ali. A.; Raouf, Mojtaba

    2017-05-01

    We compare the mean mass assembly histories of compact and fossil galaxy groups in the Millennium Dark Matter Simulation and an associated semi-analytic galaxy formation model. Tracing the halo mass of compact groups (CGs) from z = 0 to z = 1 shows that, on average, 55% of the halo mass in CGs is assembled since z˜ 1, compared to 40% of the halo mass in fossil groups (FGs) on the same time interval, indicating that compared to FGs, CGs are relatively younger galaxy systems. At z = 0, for a given halo mass, FGs tend to have a larger concentration than CGs. Investigating the evolution of CG’s parameters reveals that they become more compact with time. CGs at z = 0.5 see their magnitude gaps increase exponentially, but it takes ˜10 Gyr for them to reach a magnitude gap of 2 mag. The slow growth of the magnitude gap leads to only a minority (˜41%) of CGs selected at z = 0.5 turning into a FG by z = 0. Also, while three-quarters of FGs go through a compact phase, most fail to meet the CG isolation criterion, leaving only ˜30% of FGs fully satisfying the CG selection criteria. Therefore, there is no strong link of CGs turning into FGs or FGs originating from CGs. The relation between CGs and FGs is thus more complex, and in most cases, FGs and CGs follow different evolutionary tracks.

  10. A Bayesian approach to the semi-analytic model of galaxy formation: methodology

    NASA Astrophysics Data System (ADS)

    Lu, Yu; Mo, H. J.; Weinberg, Martin D.; Katz, Neal

    2011-09-01

    We believe that a wide range of physical processes conspire to shape the observed galaxy population, but we remain unsure of their detailed interactions. The semi-analytic model (SAM) of galaxy formation uses multidimensional parametrizations of the physical processes of galaxy formation and provides a tool to constrain these underlying physical interactions. Because of the high dimensionality, the parametric problem of galaxy formation may be profitably tackled with a Bayesian-inference-based approach, which allows one to constrain theory with data in a statistically rigorous way. In this paper, we develop a SAM in the framework of Bayesian inference. We show that, with a parallel implementation of an advanced Markov chain Monte Carlo algorithm, it is now possible to rigorously sample the posterior distribution of the high-dimensional parameter space of typical SAMs. As an example, we characterize galaxy formation in the current Λ cold dark matter cosmology using the stellar mass function of galaxies as an observational constraint. We find that the posterior probability distribution is both topologically complex and degenerate in some important model parameters, suggesting that thorough explorations of the parameter space are needed to understand the models. We also demonstrate that because of the model degeneracy, adopting a narrow prior strongly restricts the model. Therefore, the inferences based on SAMs are conditional to the model adopted. Using synthetic data to mimic systematic errors in the stellar mass function, we demonstrate that an accurate observational error model is essential to meaningful inference.

  11. HI Gas in Disk and Dwarf Galaxies in the Semi-analytic Models of Galaxy Formation†

    NASA Astrophysics Data System (ADS)

    Fu, Jian; Wang, Jing; Luo, Yu

    We construct the radially-resolved semi-analytic models of galaxy formation based on the L-Galaxies model framework, which include both atomic and molecular gas phase in ISM. The models run on the halo outputs of ΛCDM cosmology N-body simulation. Our models can reproduce varies observations of HI gas in nearby galaxies, e.g. the HI mass function, the HI-to-star ratio vs stellar mass and stellar surface density, universal HI radial surface density profile in outer disks etc. We also give the physical origin of HI size-mass relation. Based on our model results for local dwarf galaxies, we show that the ``missing satellite problem'' also exists in the HI component, i.e., the models over-predict dwarf galaxies with low HI mass around the Milky Way. That is a shortcoming of current ΛCDM cosmology framework. Future survey for HI gas in local dwarf galaxies (e.g. MeerKAT, SKA & FAST) can help to verify the nature of dark matter (cold or warm).

  12. Semi-analytic models for HI gas in disk and local dwarf galaxies

    NASA Astrophysics Data System (ADS)

    Fu, Jian

    2015-08-01

    We construct the radially-resolved semi-analytic models of galaxy formation based on the L-Galaxies model framework, which include both atomic and molecular gas phase in ISM. The models adopt the ΛCDM cosmology simulation Millennium, Millennium II and Aquarius. Our models can reproduce varies properties of HI gas in nearby galaxies, e.g. the HI mass function, the HI-to-star ratio vs stellar mass and stellar surface density, universal HI radial surface density profile in outer disks etc. We can also give some physical origins of HI size mass relation in many observations.Based on our model results for local dwarf galaxies, we show that the "missing satellite problem" also exists in the HI component, i.e., the models over predict dwarf galaxies with low HI mass. That is a shortcoming of current ΛCDM cosmology framework. Future survey for HI gas in dwarf galaxies (e.g. SKA or FAST) in local group can help to verify the correctness of cold dark matter.

  13. Exploring magnetized liner inertial fusion with a semi-analytic model

    NASA Astrophysics Data System (ADS)

    McBride, R. D.; Slutz, S. A.; Sinars, D. B.; Vesey, R. A.; Gomez, M. R.; Sefkow, A. B.; Hansen, S. B.; Cochrane, K. R.; Schmit, P. F.; Knapp, P. F.; Geissel, M.; Harvey-Thompson, A. J.; Jennings, C. A.; Martin, M. R.; Awe, T. J.; Rovang, D. C.; Lamppa, D. C.; Peterson, K. J.; Rochau, G. A.; Porter, J. L.; Stygar, W. A.; Cuneo, M. E.

    2015-11-01

    In this presentation, we explore magnetized liner inertial fusion (MagLIF) using a semi-analytic model. Specifically, we present simulation results from this model that: (a) illustrate the parameter space, energetics, and overall system efficiencies of MagLIF; (b) demonstrate the dependence of radiative loss rates on the radial fraction of the fuel that is preheated; (c) explore some of the recent experimental results of the MagLIF program at Sandia National Laboratories; (d) highlight the experimental challenges presently facing the MagLIF program (as MagLIF is first being tested using the infrastructure presently available at the Z pulsed-power facility); and (e) demonstrate how these challenges could change as various system upgrades are made to the Z facility over the next three to five years and beyond. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  14. A New Semi-Analytical On-Hugoniot EOS of Materials with Known Shock Velocity Parameters

    NASA Astrophysics Data System (ADS)

    Sugita, Seiji; Kurosawa, Kosuke; Kadono, Toshihiko

    2011-06-01

    Accurate equation of state (EOS) is essential for understanding a variety of geologic processes associated with shock compression of materials. A number of highly sophisticated EOS's have been proposed (e.g., MANEOS and SESAME), covering a wide range of P-T conditions. However, they are complex and require many model parameters. Also, there are many occasions when only terminal thermodynamic variables after adiabatic decompression are needed. For example, when the terminal molecular composition of an impact-induced vapor is necessary, only the initial entropy gain and chemical reaction processes under low-P-T conditions need to be calculated. Then, only an on-Hugoniot EOS and a low-P-T EOS are necessary. To meet such demand, we derive a new semi-analytical on-Hugoniot EOS, which requires only the Hugoniot shock velocity parameters and specific heat. Comparison with experimental data indicates that this EOS can reproduce on-Hugoniot entropy and temperature of ice and quartz very well, despite of its small number of model parameters. Our new EOS will be useful for studying chemical reactions in shock-induced vapor plumes.

  15. A semi-analytical description of protein folding that incorporates detailed geometrical information.

    PubMed

    Suzuki, Yoko; Noel, Jeffrey K; Onuchic, José N

    2011-06-28

    Much has been done to study the interplay between geometric and energetic effects on the protein folding energy landscape. Numerical techniques such as molecular dynamics simulations are able to maintain a precise geometrical representation of the protein. Analytical approaches, however, often focus on the energetic aspects of folding, including geometrical information only in an average way. Here, we investigate a semi-analytical expression of folding that explicitly includes geometrical effects. We consider a Hamiltonian corresponding to a Gaussian filament with structure-based interactions. The model captures local features of protein folding often averaged over by mean-field theories, for example, loop contact formation and excluded volume. We explore the thermodynamics and folding mechanisms of beta-hairpin and alpha-helical structures as functions of temperature and Q, the fraction of native contacts formed. Excluded volume is shown to be an important component of a protein Hamiltonian, since it both dominates the cooperativity of the folding transition and alters folding mechanisms. Understanding geometrical effects in analytical formulae will help illuminate the consequences of the approximations required for the study of larger proteins.

  16. Experiences using DAKOTA stochastic expansion methods in computational simulations.

    SciTech Connect

    Templeton, Jeremy Alan; Ruthruff, Joseph R.

    2012-01-01

    Uncertainty quantification (UQ) methods bring rigorous statistical connections to the analysis of computational and experiment data, and provide a basis for probabilistically assessing margins associated with safety and reliability. The DAKOTA toolkit developed at Sandia National Laboratories implements a number of UQ methods, which are being increasingly adopted by modeling and simulation teams to facilitate these analyses. This report disseminates results as to the performance of DAKOTA's stochastic expansion methods for UQ on a representative application. Our results provide a number of insights that may be of interest to future users of these methods, including the behavior of the methods in estimating responses at varying probability levels, and the expansion levels for the methodologies that may be needed to achieve convergence.

  17. Semi-analytical formulation of modal dispersion parameter of an optical fiber with Kerr nonlinearity and using a novel fundamental modal field approximation

    NASA Astrophysics Data System (ADS)

    Choudhury, Raja Roy; Choudhury, Arundhati Roy; Ghose, Mrinal Kanti

    2013-09-01

    To characterize nonlinear optical fiber, a semi-analytical formulation using variational principle and the Nelder-Mead Simplex method for nonlinear unconstrained minimization is proposed. The number of optimizing parameters in order to optimize core parameter U has been increased to incorporate more flexibility in the formulation of an innovative form of fundamental modal field. This formulation provides accurate analytical expressions for modal dispersion parameter (g) of optical fiber with Kerr nonlinearity. The minimization of core parameter (U), which involves Kerr nonlinearity through the nonstationary expression of propagation constant, is carried out by the Nelder-Mead Simplex method of nonlinear unconstrained minimization, suitable for problems with nonsmooth functions as the method does not require any derivative information. This formulation has less computational burden for calculation of modal parameters than full numerical methods.

  18. Discriminant power analyses of non-linear dimension expansion methods

    NASA Astrophysics Data System (ADS)

    Woo, Seongyoun; Lee, Chulhee

    2016-05-01

    Most non-linear classification methods can be viewed as non-linear dimension expansion methods followed by a linear classifier. For example, the support vector machine (SVM) expands the dimensions of the original data using various kernels and classifies the data in the expanded data space using a linear SVM. In case of extreme learning machines or neural networks, the dimensions are expanded by hidden neurons and the final layer represents the linear classification. In this paper, we analyze the discriminant powers of various non-linear classifiers. Some analyses of the discriminating powers of non-linear dimension expansion methods are presented along with a suggestion of how to improve separability in non-linear classifiers.

  19. Semi-analytic model predictions of the galaxy population in protoclusters

    NASA Astrophysics Data System (ADS)

    Contini, E.; De Lucia, G.; Hatch, N.; Borgani, S.; Kang, X.

    2016-02-01

    We investigate the galaxy population in simulated protocluster regions using a semi-analytic model of galaxy formation, coupled to merger-trees extracted from N-body simulations. We select the most massive clusters at redshift z = 0 from our set of simulations, and follow their main progenitors back in time. The analysis shows that protocluster regions are dominated by central galaxies and their number decreases with time as many become satellites, clustering around the central object. In agreement with observations, we find an increasing velocity dispersion with cosmic time, the increase being faster for satellites. The analysis shows that protoclusters are very extended regions, ≳20 Mpc at z ≳ 1. The fraction of galaxies in protocluster regions that are not progenitor of cluster galaxies varies with redshift, stellar mass and area considered. It is about 20-30 per cent for galaxies with stellar mass ˜109 M⊙, while negligible for the most massive galaxies considered. Nevertheless, these objects have properties similar to those of progenitors. We investigate the building-up of the passive sequence in clusters, and find that their progenitors are on average always active at any redshift of interest of protoclusters. The main mechanism which quenches their star formation is the removal of the hot gas reservoir at the time of accretion. The later galaxies are accreted (become satellite), and the more the cold gas available, the longer the time spent as active. Central galaxies are active over all redshift range considered, although a non-negligible fraction of them become passive at redshift z < 1, due to strong feedback from active galactic nuclei.

  20. Comparing semi-analytic particle tagging and hydrodynamical simulations of the Milky Way's stellar halo

    NASA Astrophysics Data System (ADS)

    Cooper, Andrew P.; Cole, Shaun; Frenk, Carlos S.; Le Bret, Theo; Pontzen, Andrew

    2017-08-01

    Particle tagging is an efficient, but approximate, technique for using cosmological N-body simulations to model the phase-space evolution of the stellar populations predicted, for example, by a semi-analytic model of galaxy formation. We test the technique developed by Cooper et al. (which we call stings here) by comparing particle tags with stars in a smooth particle hydrodynamic (SPH) simulation. We focus on the spherically averaged density profile of stars accreted from satellite galaxies in a Milky Way (MW)-like system. The stellar profile in the SPH simulation can be recovered accurately by tagging dark matter (DM) particles in the same simulation according to a prescription based on the rank order of particle binding energy. Applying the same prescription to an N-body version of this simulation produces a density profile differing from that of the SPH simulation by ≲10 per cent on average between 1 and 200 kpc. This confirms that particle tagging can provide a faithful and robust approximation to a self-consistent hydrodynamical simulation in this regime (in contradiction to previous claims in the literature). We find only one systematic effect, likely due to the collisionless approximation, namely that massive satellites in the SPH simulation are disrupted somewhat earlier than their collisionless counterparts. In most cases, this makes remarkably little difference to the spherically averaged distribution of their stellar debris. We conclude that, for galaxy formation models that do not predict strong baryonic effects on the present-day DM distribution of MW-like galaxies or their satellites, differences in stellar halo predictions associated with the treatment of star formation and feedback are much more important than those associated with the dynamical limitations of collisionless particle tagging.

  1. Star formation in semi-analytic galaxy formation models with multiphase gas

    NASA Astrophysics Data System (ADS)

    Somerville, Rachel S.; Popping, Gergö; Trager, Scott C.

    2015-11-01

    We implement physically motivated recipes for partitioning cold gas into different phases (atomic, molecular, and ionized) in galaxies within semi-analytic models of galaxy formation based on cosmological merger trees. We then model the conversion of molecular gas into stars using empirical recipes motivated by recent observations. We explore the impact of these new recipes on the evolution of fundamental galaxy properties such as stellar mass, star formation rate (SFR), and gas and stellar phase metallicity. We present predictions for stellar mass functions, stellar mass versus SFR relations, and cold gas phase and stellar mass-metallicity relations for our fiducial models, from redshift z ˜ 6 to the present day. In addition we present predictions for the global SFR, mass assembly history, and cosmic enrichment history. We find that the predicted stellar properties of galaxies (stellar mass, SFR, metallicity) are remarkably insensitive to the details of the recipes used for partitioning gas into H I and H2. We see significant sensitivity to the recipes for H2 formation only in very low mass haloes (M_h ≲ 10^{10.5} M_{⊙}), which host galaxies with stellar masses m_* ≲ 10^8 M_{⊙}. The properties of low-mass galaxies are also quite insensitive to the details of the recipe used for converting H2 into stars, while the formation epoch of massive galaxies does depend on this significantly. We argue that this behaviour can be interpreted within the framework of a simple equilibrium model for galaxy evolution, in which the conversion of cold gas into stars is balanced on average by inflows and outflows.

  2. Galaxies in the EAGLE hydrodynamical simulation and in the Durham and Munich semi-analytical models

    NASA Astrophysics Data System (ADS)

    Guo, Quan; Gonzalez-Perez, Violeta; Guo, Qi; Schaller, Matthieu; Furlong, Michelle; Bower, Richard G.; Cole, Shaun; Crain, Robert A.; Frenk, Carlos S.; Helly, John C.; Lacey, Cedric G.; Lagos, Claudia del P.; Mitchell, Peter; Schaye, Joop; Theuns, Tom

    2016-10-01

    We compare global predictions from the EAGLE hydrodynamical simulation, and two semi-analytic (SA) models of galaxy formation, L-GALAXIES and GALFORM. All three models include the key physical processes for the formation and evolution of galaxies and their parameters are calibrated against a small number of observables at z ≈ 0. The two SA models have been applied to merger trees constructed from the EAGLE dark matter only simulation. We find that at z ≤ 2, both the galaxy stellar mass functions for stellar masses M* < 1010.5 M⊙ and the median specific star formation rates (sSFRs) in the three models agree to better than 0.4 dex. The evolution of the sSFR predicted by the three models closely follows the mass assembly history of dark matter haloes. In both EAGLE and L-GALAXIES there are more central passive galaxies with M* < 109.5 M⊙ than in GALFORM. This difference is related to galaxies that have entered and then left a larger halo and which are treated as satellites in GALFORM. In the range 0 < z < 1, the slope of the evolution of the star formation rate density in EAGLE is a factor of ≈1.5 steeper than for the two SA models. The median sizes for galaxies with M* > 109.5 M⊙ differ in some instances by an order of magnitude, while the stellar mass-size relation in EAGLE is a factor of ≈2 tighter than for the two SA models. Our results suggest the need for a revision of how SA models treat the effect of baryonic self-gravity on the underlying dark matter. The treatment of gas flows in the models needs to be revised based on detailed comparison with observations to understand in particular the evolution of the stellar mass-metallicity relation.

  3. Satellite galaxies in semi-analytic models of galaxy formation with sterile neutrino dark matter

    NASA Astrophysics Data System (ADS)

    Lovell, Mark R.; Bose, Sownak; Boyarsky, Alexey; Cole, Shaun; Frenk, Carlos S.; Gonzalez-Perez, Violeta; Kennedy, Rachel; Ruchayskiy, Oleg; Smith, Alex

    2016-09-01

    The sterile neutrino is a viable dark matter candidate that can be produced in the early Universe via non-equilibrium processes, and would therefore possess a highly non-thermal spectrum of primordial velocities. In this paper we analyse the process of structure formation with this class of dark matter particles. To this end we construct primordial dark matter power spectra as a function of the lepton asymmetry, L6, that is present in the primordial plasma and leads to resonant sterile neutrino production. We compare these power spectra with those of thermally produced dark matter particles and show that resonantly produced sterile neutrinos are much colder than their thermal relic counterparts. We also demonstrate that the shape of these power spectra is not determined by the free-streaming scale alone. We then use the power spectra as an input for semi-analytic models of galaxy formation in order to predict the number of luminous satellite galaxies in a Milky Way-like halo. By assuming that the mass of the Milky Way halo must be no more than 2 × 1012 M⊙ (the adopted upper bound based on current astronomical observations) we are able to constrain the value of L6 for Ms ≤ 8 keV. We also show that the range of L6 that is in best agreement with the 3.5 keV line (if produced by decays of 7 keV sterile neutrino) requires that the Milky Way halo has a mass no smaller than 1.5 × 1012 M⊙. Finally, we compare the power spectra obtained by direct integration of the Boltzmann equations for a non-resonantly produced sterile neutrino with the fitting formula of Viel et al. and find that the latter significantly underestimates the power amplitude on scales relevant to satellite galaxies.

  4. The dynamics of double slab subduction from numerical and semi-analytic models

    NASA Astrophysics Data System (ADS)

    Holt, A.; Royden, L.; Becker, T. W.

    2015-12-01

    Regional interactions between multiple subducting slabs have been proposed to explain enigmatic slab kinematics in a number of subduction zones, a pertinent example being the rapid pre-collisional plate convergence of India and Eurasia. However, dynamically consistent 3-D numerical models of double subduction have yet to be explored, and so the physics of such double slab systems remain poorly understood. Here we build on the comparison of a fully numerical finite element model (CitcomCU) and a time-dependent semi-analytic subduction models (FAST) presented for single subduction systems (Royden et. al., 2015 AGU Fall Abstract) to explore how subducting slab kinematics, particularly trench and plate motions, can be affected by the presence of an additional slab, with all of the possible slab dip direction permutations. A second subducting slab gives rise to a more complex dynamic pressure and mantle flow fields, and an additional slab pull force that is transmitted across the subduction zone interface. While the general relationships among plate velocity, trench velocity, asthenospheric pressure drop, and plate coupling modes are similar to those observed for the single slab case, we find that multiple subducting slabs can interact with each other and indeed induce slab kinematics that deviate significantly from those observed for the equivalent single slab models. References Jagoutz, O., Royden, L. H., Holt, A. F. & Becker, T. W., 2015, Nature Geo., 8, 10.1038/NGEO2418. Moresi, L. N. & Gurnis, M., 1996, Earth Planet. Sci. Lett., 138, 15-28. Royden, L. H. & Husson, L., 2006, Geophys. J. Int. 167, 881-905. Zhong, S., 2006, J. Geophys. Res., 111, doi: 10.1029/2005JB003972.

  5. A semi-analytical model for the prediction of underwater noise from offshore pile driving

    NASA Astrophysics Data System (ADS)

    Tsouvalas, A.; Metrikine, A. V.

    2013-06-01

    Underwater noise from offshore pile driving gained considerable attention in recent years mainly due to the large scale construction of offshore wind farms. The most common foundation type of a wind turbine is a monopile, upon which the wind tower rests. The pile is driven into place with the help of hydraulic hammers. During the hammering of the pile, high levels of noise are generated which are known to produce deleterious effects on both mammals and fish. In this work, a linear semi-analytical model is developed for predicting the levels of underwater noise for a wide range of system parameters. The model incorporates all major parts of the system. The hydraulic hammer is substituted by an external force, the pile is described as a thin circular cylindrical shell, the water is modelled as a compressible fluid and the water-saturated seabed is defined by distributed springs and dashpots in all directions. The solution of the coupled vibroacoustic problem is based on the representation of the response of the complete system on the modal basis of the in vacuo shell structure. The influence that the inter-modal coupling, the choice of the soil parameters and the acoustic impedance of the seabed have on the generated noise levels is studied in the frequency domain. Strong and weak points of the present model are discussed on the basis of a comparison with a set of available experimental data. The obtained results show the capability of the model to predict the underwater noise levels both qualitatively and quantitatively.

  6. Semi-analytical method of calculating the electrostatic interaction of colloidal solutions

    NASA Astrophysics Data System (ADS)

    Tian, Hongqing; Lian, Zengju

    2017-01-01

    Not Available Project supported by the National Natural Science Foundation of China (Grant No. 11304169), the Natural Science Foundation of Ningbo City, China (Grant No. 2012A610178), the Open Foundation of the Most Important Subjects of Zhejiang Province, China (Grant No. xkzwl1505), and K. C. Wong Magna Fund in Ningbo University of China.

  7. Quark-gluon plasma phase transition using cluster expansion method

    NASA Astrophysics Data System (ADS)

    Syam Kumar, A. M.; Prasanth, J. P.; Bannur, Vishnu M.

    2015-08-01

    This study investigates the phase transitions in QCD using Mayer's cluster expansion method. The inter quark potential is modified Cornell potential. The equation of state (EoS) is evaluated for a homogeneous system. The behaviour is studied by varying the temperature as well as the number of Charm Quarks. The results clearly show signs of phase transition from Hadrons to Quark-Gluon Plasma (QGP).

  8. Massive quiescent galaxies at z > 3 in the Millennium simulation populated by a semi-analytic galaxy formation model

    NASA Astrophysics Data System (ADS)

    Rong, Yu; Jing, Yingjie; Gao, Liang; Guo, Qi; Wang, Jie; Sun, Shuangpeng; Wang, Lin; Pan, Jun

    2017-10-01

    We take advantage of the statistical power of the large-volume dark-matter-only Millennium simulation, combined with a sophisticated semi-analytic galaxy formation model, to explore whether the recently reported $z=3.7$ quiescent galaxy ZF-COSMOS-20115 (ZF; Glazebrook et al. 2017) can be accommodated in current galaxy formation models. In our model, a population of quiescent galaxies (QGs) with stellar masses and star formation rates comparable to those of ZF naturally emerges at redshifts $z<4$. There are two and five ZF analogues at the redshift $3.86$ and $3.58$ in the Millennium simulation volume, respectively. We demonstrate that, while the $z>3.5$ massive QGs are rare (about 2\\% of the galaxies with the similar stellar masses), the existing AGN feedback model implemented in the semi-analytic galaxy formation model can successfully explain the formation of the high-redshift QGs as it does on their lower redshift counterparts.

  9. Semi-analytic modeling of FWM noise in dispersion-managed DWDM systems with DQPSK/DPSK/OOK channels

    NASA Astrophysics Data System (ADS)

    Du, Jianxin; Teng, Zhiyu; Shen, Ninghang

    2016-01-01

    Semi-analytic models are developed to deterministically calculate the variances of degenerate and non-degenerate four-wave-mixing (FWM) noises for dispersion-managed dense wavelength division multiplexing (DWDM) systems with pure and mixed differential quadrature-phase-shift keying (DQPSK)/differential phase-shift keying (DPSK)/on-off-keying (OOK) channels. The semi-analytic models include various important propagation effects for exact numerical results. The novel dispersion map used here for dispersion management is composed of effective-area-enlarged positive dispersion fiber (EE-PDF), dispersion slope and dispersion compensating fiber (SCDCF) and nonzero dispersion-shifted fiber (NZ-DSF). It is numerically validated with the new models that, under the condition that all channels have the same average launch powers and baud rates, the impact of FWM noise for mixed DQPSK/OOK channels are more severe than that for pure DQPSK and mixed DQPSK/DPSK channels. It is also shown that the FWM efficiency is strongly dependent on the peak power of launched optical pulse for a large number of channels, as can be mainly attributed to the quasi-linear evolution of pulse shapes in pump channels induced by cross-phase modulation (XPM). Compared with some commercial optical-fiber transmission simulators, massive time-consuming can be avoided by using the newly derived semi-analytic models when transmission performances of such DWDM systems are numerically optimized and evaluated.

  10. CALORIMETRY OF GRB 030329: SIMULTANEOUS MODEL FITTING TO THE BROADBAND RADIO AFTERGLOW AND THE OBSERVED IMAGE EXPANSION RATE

    SciTech Connect

    Mesler, Robert A.; Pihlstroem, Ylva M.

    2013-09-01

    We perform calorimetry on the bright gamma-ray burst GRB 030329 by fitting simultaneously the broadband radio afterglow and the observed afterglow image size to a semi-analytic MHD and afterglow emission model. Our semi-analytic method is valid in both the relativistic and non-relativistic regimes, and incorporates a model of the interstellar scintillation that substantially effects the broadband afterglow below 10 GHz. The model is fitted to archival measurements of the afterglow flux from 1 day to 8.3 yr after the burst. Values for the initial burst parameters are determined and the nature of the circumburst medium is explored. Additionally, direct measurements of the lateral expansion rate of the radio afterglow image size allow us to estimate the initial Lorentz factor of the jet.

  11. Galaxy formation in semi-analytic models and cosmological hydrodynamic zoom simulations

    NASA Astrophysics Data System (ADS)

    Hirschmann, Michaela; Naab, Thorsten; Somerville, Rachel S.; Burkert, Andreas; Oser, Ludwig

    2012-02-01

    We present a detailed comparison between numerical cosmological hydrodynamic zoom simulations and the semi-analytic model (SAM) of Somerville et al., run within merger trees extracted from the simulations. The high-resolution simulations represent 48 individual haloes with virial masses in the range ?. They include radiative H and He cooling, photoionization, star formation and thermal supernova (SN) feedback. We compare with different SAM versions including only this complement of physical processes, and also ones including SN-driven winds, metal cooling and feedback from active galactic nuclei (AGN). Our analysis is focused on the cosmic evolution of the baryon content in galaxies and its division into various components (stars, cold gas and hot gas), as well as how those galaxies acquired their gas and stellar mass. Both the SAMs and simulations are compared with observational relations between halo mass and stellar mass, and between stellar mass and star formation rate, at low and high redshifts. We find some points of agreement and some important disagreements. SAMs that include the same physical processes as the simulations reproduce the total baryon fraction in haloes and the fraction of cold gas plus stars in the central galaxy to better than 20 per cent. However, the simulations turn out to have much higher star formation efficiencies (by about a factor of 10) than the SAMs, despite nominally being both normalized to the same empirical Kennicutt relation at z= 0. Therefore the cold gas is consumed much more rapidly in the simulations, and stars form much earlier. Also, simulations show a transition from stellar mass growth that is dominated by in situ formation of stars to growth that is predominantly through accretion of stars formed in external galaxies. In SAMs, stellar growth is always dominated by in situ star formation, because they significantly underpredict the fraction of mass growth from accreted stars relative to the simulations. In addition

  12. Star formation and metallicity gradients in semi-analytic models of disc galaxy formation

    NASA Astrophysics Data System (ADS)

    Fu, Jian; Kauffmann, Guinevere; Huang, Mei-ling; Yates, Robert M.; Moran, Sean; Heckman, Timothy M.; Davé, Romeel; Guo, Qi; Henriques, Bruno M. B.

    2013-09-01

    We have updated our radially resolved semi-analytic models (SAMs) of galaxy formation, which track both the atomic and molecular gas phases of the interstellar medium. The models are adapted from those of Guo et al. using similar methodology as by Fu et al. and are run on halo merger trees from the Millennium and Millennium-II simulations with the following main changes. (1) We adopt a simple star formation law ΣSFR ∝ ΣH2. (2) We inject the heavy elements produced by supernovae directly into the halo hot gas, instead of first mixing them with the cold gas in the disc. (3) We include radial gas inflows in discs using a model of the form vinflow = αr. The models are used to study the radial profiles of star formation rate and gas-phase metallicity in present-day galaxies. The surface density profiles of molecular gas in L* galaxies place strong constraints on inflow velocities, favouring models where vinflow ˜ 7 km s-1 at a galactocentric radius of 10 kpc. Radial gas inflow has little influence on gas-phase and stellar metallicity gradients, which are affected much more strongly by the fraction of metals that are directly injected into the halo gas, rather than mixed with the cold gas. Metals ejected out of the galaxy in early epochs result in late infall of pre-enriched gas and flatter present-day gas-phase metallicity gradients. A prescription in which 80 per cent of the metals are injected into the halo gas results in good fits to the flat observed metallicity gradients in galaxies with stellar masses greater than 1010 M⊙, as well as the relations between gas-phase metallicity and specific star formation rate in the outer parts of galactic discs. We examine the correlation between the gas-phase metallicity gradient and global galaxy properties, finding that it is most strongly correlated with the bulge-to-total ratio of the galaxy. This is because gas is consumed when the bulge forms during galaxy mergers, and the gas-phase metallicity gradient is then set

  13. A semi-analytical calculation of the electrostatic pair interaction between nonuniformly charged colloidal spheres at an air-water interface.

    PubMed

    Lian, Zengju

    2016-07-07

    We study the electrostatic pair interaction between two nonuniformly like-charged colloidal spheres trapped in an air-water interface. Under the linear Poisson-Boltzmann approximation, a general form of the electrostatic potential for the system is shown in terms of multipole expansions. After combining the translation-rotation transform of the coordinates with the numerical multipoint collection, we give a semi-analytical result of the electrostatic pair interaction between the colloids. The pair interaction changes quantitatively or even qualitatively with different distributions of the surface charges on the particles. Because of the anisotropic distribution of the surface charge and the asymmetric dielectric medium, the dipole moment of the ion cloud associating with the particle orients diagonally to the air-water interface with an angle α. When the angle is large, the colloids interact repulsively, while they attract each other when the angle is small. The attractive colloids may be "Janus-like" charged and be arranged with some specific configurations. Whatever the repulsions or the attractions, they all decay asymptotically ∝1/d(3) (d is the center-center distance of the particles) which is consistent with our general acknowledge. The calculation results also provide an insight of the effect of the ion concentration, particle size, and the total charge of the particle on the pair interaction between the particles.

  14. A semi-analytical approach for calculating the equilibrium structure and radial breathing mode frequency of single-walled carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Gong, J.; Thompson, L.; Li, G.

    2016-12-01

    A semi-analytical model for determining the equilibrium configuration and the radial breathing mode (RBM) frequency of single-wall carbon nanotubes (CNTs) is presented. By taking advantage of the symmetry characteristics, a CNT structure is represented by five independent variables. A line search optimization procedure is employed to determine the equilibrium values of these variables by minimizing the potential energy. With the equilibrium configuration obtained, the semi-analytical model enables an efficient calculation of the RBM frequency of the CNTs. The radius and radial breathing mode frequency results obtained from the semi-analytical approach are compared with those from molecular dynamics (MD) and ab initio calculations. The results demonstrate that the semi-analytical approach offers an efficient and accurate way to determine the equilibrium structure and radial breathing mode frequency of CNTs.

  15. Three-body hyperspherical method with infinite angular expansions

    SciTech Connect

    Han Huili; Tang Liyan; Shi Tingyun

    2011-12-15

    The hyperspherical method based on infinite angular expansions is introduced. We approximate the cusp behavior of a wave function using B-spline techniques. Calculations for the ground-state energies of the atomic helium and the e{sup +}Li system are presented as two examples for testing this method. The computed ground-state energy of He is -2.903 724 a.u. with single particle orbitals l{sub max}=8. For the e{sup +}Li system, with l{sub max}=9, the ground-state energy is -0.250 83 a.u., which is better than the configuration interaction result of -0.250 107 82 a.u. with l{sub max}=30.

  16. The effect of inclined soil layers on surface vibration from underground railways using a semi-analytical approach

    NASA Astrophysics Data System (ADS)

    Jones, S.; Hunt, H.

    2009-08-01

    Ground vibration due to underground railways is a significant source of disturbance for people living or working near the subways. The numerical models used to predict vibration levels have inherent uncertainty which must be understood to give confidence in the predictions. A semi-analytical approach is developed herein to investigate the effect of soil layering on the surface vibration of a halfspace where both soil properties and layer inclination angles are varied. The study suggests that both material properties and inclination angle of the layers have significant effect (± 10dB) on the surface vibration response.

  17. Semi-analytical treatment of fracture/matrix flow in a dual-porosity simulator for unsaturated fractured rock masses

    SciTech Connect

    Zimmerman, R.W.; Bodvarsson, G.S.

    1992-04-01

    A semi-analytical dual-porosity simulator for unsaturated flow in fractured rock masses has been developed. Fluid flow between the fracture network and the matrix blocks is described by analytical expressions that have been derived from approximate solutions to the imbibition equation. These expressions have been programmed into the unsaturated flow simulator, TOUGH, as a source/sink term. Flow processes are then simulated using only fracture elements in the computational grid. The modified code is used to simulate flow along single fractures, and infiltration into pervasively fractured formations.

  18. GENERAL: (G'/G)-Expansion Method Equivalent to Extended Tanh Function Method

    NASA Astrophysics Data System (ADS)

    Liu, Chun-Ping

    2009-06-01

    In a recent article [Physics Letters A 372 (2008) 417], Wang et al. proposed a method, which is called the (G'/G)-expansion method, to look for travelling wave solutions of nonlinear evolution equations. The travelling wave solutions involving parameters of the KdV equation, the mKdV equation, the variant Boussinesq equations, and the Hirota-Satsuma equations are obtained by using this method. They think the (G'/G)-expansion method is a new method and more travelling wave solutions of many nonlinear evolution equations can be obtained. In this paper, we will show that the (G'/G)-expansion method is equivalent to the extended tanh function method.

  19. A wavefront interpretation of the singularity expansion method

    NASA Astrophysics Data System (ADS)

    Heyman, E.; Felsen, L. B.

    1985-07-01

    Felsen (1984) has shown that transient fields scattered by an object may be synthesized in terms of progressing waves (wavefronts) or oscillatory waves (resonances). The present paper is concerned with multiple interaction and resonance phenomena in a broad sense, taking into account the employment of ray terminology to identify wave transport and interaction trajectories. Along those trajectories, the time harmonic field may be expressed by the ray approximation and is then subject to the rules and constraints of the geometrical theory of diffraction (GTD). However, the field may be expressed more generally by a 'better' wave function, for example a ray integral spanning a spectrum of local plane waves whose stationary phase approximation yields GTD but which, when kept intact, is uniformly valid in transition regions where GTD fails. Attention is given to the singularity expansion method (SEM) formulation, the ray formulation, the flow graph representation, and the illustration of the presented concepts with the aid of an example.

  20. A collisionless plasma thruster plume expansion model

    NASA Astrophysics Data System (ADS)

    Merino, Mario; Cichocki, Filippo; Ahedo, Eduardo

    2015-06-01

    A two-fluid model of the unmagnetized, collisionless far region expansion of the plasma plume for gridded ion thrusters and Hall effect thrusters is presented. The model is integrated into two semi-analytical solutions valid in the hypersonic case. These solutions are discussed and compared against the results from the (exact) method of characteristics; the relative errors in density and velocity increase slowly axially and radially and are of the order of 10-2-10-3 in the cases studied. The plasma density, ion flux and ambipolar electric field are investigated. A sensitivity analysis of the problem parameters and initial conditions is carried out in order to characterize the far plume divergence angle in the range of interest for space electric propulsion. A qualitative discussion of the physics of the secondary plasma plume is also provided.

  1. A semi-analytic approach to the self-induced motion of vortex sheets

    NASA Technical Reports Server (NTRS)

    Schwartz, L. W.

    1981-01-01

    The rolling-up of the trailing vortex sheet produced by a wing of finite span is calculated as a series expansion in time. For a vorticity distribution corresponding to a wing with cusped tips, the shape of the sheet is found by summing the series using Pade approximants. The sheet remains analytic for some time but ultimately develops an exponential spiral at the tips. The centroid of vorticity is conserved to high accuracy.

  2. A semi-analytic approach to the self induced motion of vortex sheets

    NASA Technical Reports Server (NTRS)

    Schwartz, L. W.

    1980-01-01

    The rolling up of the trailing vortex sheet produced by a wing of finite span was calculated as a series expansion in time. For a vorticity distribution corresponding to a wing with cusped tips, the shape of the sheet was found by summing the series using Pade approximants. The sheet remains analytic for some time but ultimately develops an exponential spiral at the tips. The centroid of vorticity was conserved to high accuracy.

  3. Solitary wave solutions for time fractional third order modified KdV equation using two reliable techniques (G‧ / G) -expansion method and improved (G‧ / G) -expansion method

    NASA Astrophysics Data System (ADS)

    Sahoo, S.; Saha Ray, S.

    2016-04-01

    In the present paper, we construct the analytical exact solutions of a nonlinear evolution equation in mathematical physics; namely time fractional modified KdV equation by using (G‧ / G)-expansion method and improved (G‧ / G)-expansion method. As a result, new types of exact analytical solutions are obtained.

  4. Remote sensing of primary production—II. A semi-analytical algorithm based on pigments, temperature and light

    NASA Astrophysics Data System (ADS)

    Balch, W. M.; Eppley, R. W.; Abbott, M. R.

    1989-08-01

    A semi-analytical algorithm for estimating integrated primary production is described which uses pigment, temperature and light data. The algorithm was designed using 648 stations of data from the California Cooperative Fisheries Investigations and the Southern California Bight Study. Pigment and temperature values were used to describe maximum photosynthesis in the surface waters. A model for the vertical distribution of chlorophyll was devised which simplifies the estimation of those pigments too deep for the satellite to detect. Quantum yield, light utilization efficiency, and chlorophyll-specific light utilization efficiency were described and parameterized for inclusion in the algorithm. Variance in the photosynthetic yield term was typically the largest. Some of the variance could be partitioned as nutrient effects and inter-cruise variability. Algorithm performance could be increased considerably by using one or two stations as "calibration" stations for each area of about 300,000 km 2 (and deleting such stations from subsequent analysis). Using ship data as input, the uncalibrated algorithm explained about 35% of the variance in primary production whereas the calibrated algorithm accounted for 58% of the variance. Using satellite data as input, the uncalibrated and calibrated algorithm accounted for 35 and 48% of the variance in primary production, respectively. Of the algorithm examined in Parts I and II of this series, the semi-analytical algorithm described here explains the most variance and comes the closest to a 1:1 ratio of predicted to observed production.

  5. On the effects of clouds and hazes in the atmospheres of hot Jupiters: semi-analytical temperature-pressure profiles

    NASA Astrophysics Data System (ADS)

    Heng, Kevin; Hayek, Wolfgang; Pont, Frédéric; Sing, David K.

    2012-02-01

    Motivated by the work of Guillot, we present a semi-analytical formalism for calculating the temperature-pressure profiles in hot Jovian atmospheres which includes the effects of clouds/hazes and collision-induced absorption. Using the dual-band approximation, we assume that stellar irradiation and thermal emission from the hot Jupiter occur at distinct wavelengths ('shortwave' versus 'longwave'). For a purely absorbing cloud/haze, we demonstrate its dual effect of cooling and warming the upper and lower atmosphere, respectively, which modifies, in a non-trivial manner, the condition for whether a temperature inversion is present in the upper atmosphere. The warming effect becomes more pronounced as the cloud/haze deck resides at greater depths. If it sits below the shortwave photosphere, the warming effect becomes either more subdued or ceases altogether. If shortwave scattering is present, its dual effect is to warm and cool the upper and lower atmospheres, respectively, thus counteracting the effects of enhanced longwave absorption by the cloud/haze. We make a tentative comparison of a four-parameter model to the temperature-pressure data points inferred from the observations of HD 189733b and estimate that its Bond albedo is approximately 10 per cent. Besides their utility in developing physical intuition, our semi-analytical models are a guide for the parameter space exploration of hot Jovian atmospheres via three-dimensional simulations of atmospheric circulation.

  6. Comprehensive understanding of the active thickness in solid oxide fuel cell anodes using experimental, numerical and semi-analytical approach

    NASA Astrophysics Data System (ADS)

    Miyawaki, Kosuke; Kishimoto, Masashi; Iwai, Hiroshi; Saito, Motohiro; Yoshida, Hideo

    2014-12-01

    This paper reports the evaluation of the electrochemically active region in solid oxide fuel cell (SOFC) electrodes through experimental, numerical and semi-analytical approaches. In the experiment, anodes with several different thicknesses were fabricated and their performance was measured to find its dependence on the anode thickness, microstructure and operating conditions. The three-dimensional (3D) microstructure of the anodes was imaged using focused ion beam scanning electron microscopy (FIB-SEM) and the microstructural parameters were quantified. One-dimensional (1D) and 3D numerical simulations based on the actual 3D microstructures were carried out to investigate the active thickness in the anodes. The validity of the numerical models was confirmed by comparing the results with the experiment. The active thickness, i.e., the electrochemically active region within the anode, is discussed using the verified simulation models to find its dependence on various conditions. The active thickness was found to depend on the microstructure and the operating conditions. We then attempted to find a simple expression for the active thickness useful for practical applications with semi-analytical discussion. The developed descriptions expressed the quantitative dependence of the active thickness on the effective ionic conductivity, exchange current density and area-specific current density.

  7. A semi-analytic approximation of charge induction in monolithic pixelated CdZnTe radiation detectors

    NASA Astrophysics Data System (ADS)

    Bale, Derek S.

    2010-03-01

    A semi-analytic approximation to the weighting potential within monolithic pixelated CdZnTe radiation detectors is presented. The approximation is based on solving the multi-dimensional Laplace equation that results upon replacing rectangular pixels with equal-area circular pixels. Further, we utilize the simplicity of the resulting approximate weighting potential to extend the well-known Hecht equation, describing charge induction in a parallel plate detector, to that approximating the multi-dimensional charge induction within a pixelated detector. These newly found expressions for the weighting potential and charge induction in a pixelated detector are compared throughout to full 3D electrostatic and monte carlo simulations using eV DSIM ( eV Microelectronics Device SIMulator). The semi-analytic expressions derived in this paper can be evaluated quickly, and can therefore be used to efficiently reduce the size and dimensionality of the parameter space on which a detailed 3D numerical analysis is needed for pixelated detector design in a wide range of applications.

  8. A semi-analytical generalized Hvorslev formula for estimating riverbed hydraulic conductivity with an open-ended standpipe permeameter

    NASA Astrophysics Data System (ADS)

    Pozdniakov, Sergey P.; Wang, Ping; Lekhov, Mikhail V.

    2016-09-01

    The well-known Hvorslev (1951) formula was developed to estimate soil permeability using single-well slug tests and has been widely applied to determine riverbed hydraulic conductivity using in situ standpipe permeameter tests. Here, we further develop a general solution of the Hvorslev (1951) formula that accounts for flow in a bounded medium and assumes that the bottom of the river is a prescribed head boundary. The superposition of real and imaginary disk sources is used to obtain a semi-analytical expression of the total hydraulic resistance of the flow in and out of the pipe. As a result, we obtained a simple semi-analytical expression for the resistance, which represents a generalization of the Hvorslev (1951). The obtained expression is benchmarked against a finite-element numerical model of 2-D flow (in r-z coordinates) in an anisotropic medium. The results exhibit good agreement between the simulated and estimated riverbed hydraulic conductivity values. Furthermore, a set of simulations for layered, stochastically heterogeneous riverbed sediments was conducted and processed using the proposed expression to demonstrate the potential associated with measuring vertical heterogeneity in bottom sediments using a series of standpipe permeameter tests with different lengths of pipe inserted into the riverbed sediments.

  9. A Multipole Expansion Method for Analyzing Lightning Field Changes

    NASA Technical Reports Server (NTRS)

    Koshak, William J.; Krider, E. Philip; Murphy, Martin J.

    1999-01-01

    Changes in the surface electric field are frequently used to infer the locations and magnitudes of lightning-caused changes in thundercloud charge distributions. The traditional procedure is to assume that the charges that are effectively deposited by the flash can be modeled either as a single point charge (the Q model) or a point dipole (the P model). The Q model has four unknown parameters and provides a good description of many cloud-to-ground (CG) flashes. The P model has six unknown parameters and describes many intracloud (IC) discharges. In this paper we introduce a new analysis method that assumes that the change in the cloud charge can be described by a truncated multipole expansion, i.e., there are both monopole and dipole terms in the unknown source distribution, and both terms are applied simultaneously. This method can be used to analyze CG flashes that are accompanied by large changes in the cloud dipole moment and complex IC discharges. If there is enough information content in the measurements, the model can also be generalized to include quadrupole and higher order terms. The parameters of the charge moments are determined using a dme-dimensional grid search in combination with a linear inversion, and because of this, local minima in the error function and the associated solution ambiguities are avoided. The multipole method has been tested on computer-simulated sources and on natural lightning at the NASA Kennedy Space Center and U.S. Air Force Eastern Range.

  10. Breaking the link between environmental degradation and oil palm expansion: a method for enabling sustainable oil palm expansion.

    PubMed

    Harmen Smit, Hans; Meijaard, Erik; van der Laan, Carina; Mantel, Stephan; Budiman, Arif; Verweij, Pita

    2013-01-01

    Land degradation is a global concern. In tropical areas it primarily concerns the conversion of forest into non-forest lands and the associated losses of environmental services. Defining such degradation is not straightforward hampering effective reduction in degradation and use of already degraded lands for more productive purposes. To facilitate the processes of avoided degradation and land rehabilitation, we have developed a methodology in which we have used international environmental and social sustainability standards to determine the suitability of lands for sustainable agricultural expansion. The method was developed and tested in one of the frontiers of agricultural expansion, West Kalimantan province in Indonesia. The focus was on oil palm expansion, which is considered as a major driver for deforestation in tropical regions globally. The results suggest that substantial changes in current land-use planning are necessary for most new plantations to comply with international sustainability standards. Through visualizing options for sustainable expansion with our methodology, we demonstrate that the link between oil palm expansion and degradation can be broken. Application of the methodology with criteria and thresholds similar to ours could help the Indonesian government and the industry to achieve its pro-growth, pro-job, pro-poor and pro-environment development goals. For sustainable agricultural production, context specific guidance has to be developed in areas suitable for expansion. Our methodology can serve as a template for designing such commodity and country specific tools and deliver such guidance.

  11. Breaking the Link between Environmental Degradation and Oil Palm Expansion: A Method for Enabling Sustainable Oil Palm Expansion

    PubMed Central

    Smit, Hans Harmen; Meijaard, Erik; van der Laan, Carina; Mantel, Stephan; Budiman, Arif; Verweij, Pita

    2013-01-01

    Land degradation is a global concern. In tropical areas it primarily concerns the conversion of forest into non-forest lands and the associated losses of environmental services. Defining such degradation is not straightforward hampering effective reduction in degradation and use of already degraded lands for more productive purposes. To facilitate the processes of avoided degradation and land rehabilitation, we have developed a methodology in which we have used international environmental and social sustainability standards to determine the suitability of lands for sustainable agricultural expansion. The method was developed and tested in one of the frontiers of agricultural expansion, West Kalimantan province in Indonesia. The focus was on oil palm expansion, which is considered as a major driver for deforestation in tropical regions globally. The results suggest that substantial changes in current land-use planning are necessary for most new plantations to comply with international sustainability standards. Through visualizing options for sustainable expansion with our methodology, we demonstrate that the link between oil palm expansion and degradation can be broken. Application of the methodology with criteria and thresholds similar to ours could help the Indonesian government and the industry to achieve its pro-growth, pro-job, pro-poor and pro-environment development goals. For sustainable agricultural production, context specific guidance has to be developed in areas suitable for expansion. Our methodology can serve as a template for designing such commodity and country specific tools and deliver such guidance. PMID:24039700

  12. Shape recognition of acoustic scatterers using the singularity expansion method

    NASA Astrophysics Data System (ADS)

    Cao, Pei; Wu, Jiu Hui

    2017-03-01

    Acoustic target recognition for two-dimensional (2D) acoustic scatterers is investigated using the singularity expansion method (SEM). Based on the Watson transformation series of the scattering field, the SEM poles can be calculated and their physical interpretation given, along with the exact normal mode for any acoustic scattering problem. Typical oscillatory phenomena appear as a series of damped sinusoidal signals in the time domain and as a standing-wave distribution in the space. These external oscillation modes are associated with the SEM poles. We note that the positions of these poles in the complex frequency plane are uniquely determined by the shape and flexible characteristics of the target regardless of the waveforms and positions of the incident signals. We then infer that SEM poles can be used as the characteristic parameters for target shape recognition. The relationship between the positions of SEM poles and the geometrical characters of 2D scatterers has been established not only for cylinders but also for other general 2D scatterers. The new method and the related calculation results provide an effective way to perform shape recognition using an acoustic scattering field, with potential applications in non-destructive testing and acoustic imaging.

  13. Dynamic expansion points: an extension to Hadjidemetriou's mapping method

    NASA Astrophysics Data System (ADS)

    Lhotka, Christoph

    2009-06-01

    Series expansions are widely used objects in perturbation theory in Celestial Mechanics and Physics in general. Their application nevertheless is limited due to the fact of convergence problems of the series on the one hand and constricted to regions in phase space, where small (expansion) parameters remain small on the other hand. In the mapping case, to overcome the latter problem, e.g., different expansion points are used to cover the whole phase space, resulting in a set of dynamical mappings for one dynamical system. In addition, the accuracy of such expansions depend not only on the order of truncation but also on the definition of the grid of the expansion points in phase space. A simple modification of the usual approach allows to increase the accuracy of the expanded mappings and to cover the whole phase space, where the series converge. Convergence problems due to the nonintegrability of the system can never be ruled out of the system, but the convergence of the series expansions in mapping models, which are convergent can be improved. The underlying idea is based on dynamic expansion points, which are the main subject of this article. As I will show it is possible to derive unique linear mappings, based on dynamically expanded generating functions, for the 3:1 resonance and the coupled standard map, which are valid in their whole phase spaces.

  14. Extended operator expansion method for neutrinoless double beta decay

    NASA Astrophysics Data System (ADS)

    Hirsch, M.; Kadowaki, O.; Klapdor-Kleingrothaus, H. V.; Muto, K.; Oda, T.

    1995-03-01

    Reliable calculations of nuclear matrix elements are a prerequisite for the determination of the effective neutrino mass and other particle physics parameters from neutrinoless double beta decay. Here, the operator expansion method is improved by including Coulomb, tensor and central interactions simultaneously. Furthermore, the formalism of the OEM is extended to those matrix elements necessary to extract the right-handed parameters < λ > and < η > from 0 νββ decay. OEM includes the dependence of the nuclear matrix elements on the intermediate states implicitly and can therefore be understood as a step beyond the closure approximation. Numerical studies are carried out for the isotope76Ge combining the OEM expressions with ground-state wave functions calculated within a proton-neutron quasiparticle Random Phase Approximation (pn-QRPA) model. The influence and relative importance of central, tensor and Coulomb interactions is investigated. Within the OEM, contributions from the Coulomb force are found to be negligible in 0 νββ decay, while the tensor force leads to a moderate change of the results, of the order of (10 30)%, giving a better agreement between sets of calculations which employ different NN-interactions. Generally, results of the OEM+QRPA calculation are similar to previous calculations of 0 νββ decay matrix elements, indicating that 0 νββ decay is not sensitive to model approximations and might therefore be more accurately calculated than the strongly suppressed 2 νββ decay matrix elements.

  15. Exploring the Query Expansion Methods for Concept Based Representation

    DTIC Science & Technology

    2014-11-01

    documents from term based representation to concept based representation. We then utilized the Cases Database and UMLS relations to expand the key...same query expansion techniques to the term based representation. The results show that using the UMLS relation could help to improve performance. 2...www.casesdatabase.com/. Currently closed. Fig. 2. An example case report on Cases Database. 2.2 Query expansion with UMLS relationships Concepts are

  16. Semi-analytical Solution of One-dimensional Multispecies Reactive Transport in a Permeable Reactive Barrier-aquifer System

    NASA Astrophysics Data System (ADS)

    Mieles, J. M.; Zhan, H.

    2010-12-01

    Permeable reactive barriers (PRBs) have been accepted by the EPA as an effective groundwater remediation technology. Effective implementation of this in-situ technology requires accurate site characterization to identify the chemicals of concern (COCs) present, their interactions (if any), and their required residence time in the PRB to achieve regulatory concentrations at the point of compliance (POC). Therefore, minimizing performance uncertainties in the design phase is key. Among these uncertainties determining the required PRB thickness is the most important and has been examined in other studies. Less attention, however, has been devoted to developing a practical yet rigorous tool for modeling multi-species reactive transport in the barrier-aquifer system. In this study Park and Zhan’s [2009] mass conservative semi-analytical solution - developed to calculate the required PRB thickness based on the decay of one species - is expanded to four reactive species. For example, the expanded solution could be used to model the degradation pathway from tetrachloroethylene (PCE) to vinyl chloride (VC). The solution is presented in two forms: The steady-state solution programmed into Excel can quickly assist designers in determining the required PRB thickness so that all COCs involved in the degradation pathway achieve regulatory limits at the POC. The second form is the transient solution which is solved by numerically inverting the Laplace transform. The semi-analytical solution presented in this study has several advantages over prior solutions. For example, the influent and effluent boundary conditions of the PRB are mass conservative and both dispersion and decay rate differences between the PRB and aquifer are considered. In addition, the transient solution allows for different retardation factors to be considered in both transport media and for each species.

  17. Luminosity dependence of the spatial and velocity distributions of galaxies: semi-analytic models versus the Sloan Digital Sky Survey

    NASA Astrophysics Data System (ADS)

    Li, Cheng; Jing, Y. P.; Kauffmann, Guinevere; Börner, Gerhard; Kang, Xi; Wang, Lan

    2007-04-01

    By comparing semi-analytic galaxy catalogues with data from the Sloan Digital Sky Survey (SDSS), we show that current galaxy formation models reproduce qualitatively the dependence of galaxy clustering and pairwise peculiar velocities on luminosity, but some subtle discrepancies with the data still remain. The comparisons are carried out by constructing a large set of mock galaxy redshift surveys that have the same selection function as the SDSS Data Release Four (DR4). The mock surveys are based on two sets of semi-analytic catalogues presented by Croton et al. and Kang et al. From the mock catalogues, we measure the redshift-space projected two-point correlation function wp(rp), the power spectrum P(k) and the pairwise velocity dispersion (PVD) in Fourier space σ12(k) and in configuration space σ12(rp), for galaxies in different luminosity intervals. We then compare these theoretical predictions with the measurements derived from the SDSS DR4. On large scales and for galaxies brighter than L*, both sets of mock catalogues agree well with the data. For fainter galaxies, however, both models predict stronger clustering and higher pairwise velocities than observed. We demonstrate that this problem can be resolved if the fraction of faint satellite galaxies in massive haloes is reduced by ~30 per cent compared to the model predictions. A direct look into the model galaxy catalogues reveals that a significant fraction (15 per cent) of faint galaxies (-18 < M0.1r - 5 log10h < -17) reside in haloes with Mvir > 1013 Msolar, and this population is predominantly red in colour. These faint red galaxies are responsible for the high PVD values of low-luminosity galaxies on small scales.

  18. A Semi-Analytical Solution to Time Dependent Groundwater Flow Equation Incorporating Stream-Wetland-Aquifer Interactions

    NASA Astrophysics Data System (ADS)

    Boyraz, Uǧur; Melek Kazezyılmaz-Alhan, Cevza

    2017-04-01

    Groundwater is a vital element of hydrologic cycle and the analytical & numerical solutions of different forms of groundwater flow equations play an important role in understanding the hydrological behavior of subsurface water. The interaction between groundwater and surface water bodies can be determined using these solutions. In this study, new hypothetical approaches are implemented to groundwater flow system in order to contribute to the studies on surface water/groundwater interactions. A time dependent problem is considered in a 2-dimensional stream-wetland-aquifer system. The sloped stream boundary is used to represent the interaction between stream and aquifer. The rest of the aquifer boundaries are assumed as no-flux boundary. In addition, a wetland is considered as a surface water body which lies over the whole aquifer. The effect of the interaction between the wetland and the aquifer is taken into account with a source/sink term in the groundwater flow equation and the interaction flow is calculated by using Darcy's approach. A semi-analytical solution is developed for the 2-dimensional groundwater flow equation in 5 steps. First, Laplace and Fourier cosine transforms are employed to obtain the general solution in Fourier and Laplace domain. Then, the initial and boundary conditions are applied to obtain the particular solution. Finally, inverse Fourier transform is carried out analytically and inverse Laplace transform is carried out numerically to obtain the final solution in space and time domain, respectively. In order to verify the semi-analytical solution, an explicit finite difference algorithm is developed and analytical and numerical solutions are compared for synthetic examples. The comparison of the analytical and numerical solutions shows that the analytical solution gives accurate results.

  19. Lidar returns from multiply scattering media in multiple-field-of-view and CCD lidars with polarization devices: comparison of semi-analytical solution and Monte Carlo data.

    PubMed

    Chaikovskaya, Ludmila I; Zege, Eleonora P; Katsev, Iosif L; Hirschberger, Markus; Oppel, Ulrich G

    2009-01-20

    Quite recently, a semi-analytical approach to the sounding of multiply scattering media (clouds, seawaters) using multiple-field-of-view and CCD lidars with polarization devices was developed. The angular distributions of polarized components of the lidar returns from multiply scattering media computed on the basis of this theory using the small-angle approximation are presented and discussed. The semi-analytical nature of the solution makes the computation procedure faster. The obtained data are compared with results provided by the most advanced Monte Carlo algorithms for simulation of modern lidar performance. The good agreement between data provided by the semi-analytical approach and Monte Carlo computations assures one that these approaches can serve as a reliable theoretical base for interpretation and inversion of cloud lidar sounding data obtained with polarized lidars, including polarized multiple-field-of-view and CCD lidars.

  20. The effect of Dzyaloshinskii-Moriya interaction on field-driven domain wall dynamics analysed by a semi-analytical approach

    NASA Astrophysics Data System (ADS)

    Vandermeulen, J.; Nasseri, S. A.; Van de Wiele, B.; Durin, G.; Van Waeyenberge, B.; Dupré, L.

    2016-11-01

    Fast domain wall (DW) propagation through perpendicularly magnetized nanostrips with a Dzyaloshinskii-Moriya interaction (DMI) offers promising opportunities for the development of magnetic memory and logic devices. However, as the DW speed increases, the DW magnetization is also progressively affected which ultimately leads to an unstable DW and a drop in the velocity, i.e. the Walker breakdown. In this paper, we introduce a semi-analytical approach to describe and quantify changes to the internal degrees of freedom of the DW. By spatially averaging the Landau-Lifshitz-Gilbert equation, we derive equations of motion and identify seven DW variables in addition to the DW position. This contrasts analytical models where such variables are introduced in an ansatz for the DW shape. We apply this to a field driven DW motion and we study the effect of DMI in detail. Our method helps characterize the opposing and reinforcing effects of the different interactions involved, contributing to our understanding of the Walker breakdown.

  1. Determination of immersion factors for radiance sensors in marine and inland waters: a semi-analytical approach using refractive index approximation

    NASA Astrophysics Data System (ADS)

    Dev, Pravin J.; Shanmugam, P.

    2016-05-01

    Underwater radiometers are generally calibrated in air using a standard source. The immersion factors are required for these radiometers to account for the change in the in-water measurements with respect to in-air due to the different refractive index of the medium. The immersion factors previously determined for RAMSES series of commercial radiometers manufactured by TriOS are applicable to clear oceanic waters. In typical inland and turbid productive coastal waters, these experimentally determined immersion factors yield significantly large errors in water-leaving radiances (Lw) and hence remote sensing reflectances (Rrs). To overcome this limitation, a semi-analytical method with based on the refractive index approximation is proposed in this study, with the aim of obtaining reliable Lw and Rrs from RAMSES radiometers for turbid and productive waters within coastal and inland water environments. We also briefly show the variation of pure water immersion factors (Ifw) and newly derived If on Lw and Rrs for clear and turbid waters. The remnant problems other than the immersion factor coefficients such as transmission, air-water and water-air Fresnel's reflectances are also discussed.

  2. Method of joining metals of significantly different expansion rates

    NASA Technical Reports Server (NTRS)

    Caler, W.; La Salle, F.; Traylor, J.

    1971-01-01

    To join a refractory metal to a dissimilar high-temperature metal, braze a section of high elasticity, high ductility metal /such as columbium or columbium alloy/ between the metals to be joined, using a fork-type joint to hold the braze and transition member in place during expansion.

  3. An Economical Semi-Analytical Orbit Theory for Retarded Satellite Motion About an Oblate Planet

    NASA Technical Reports Server (NTRS)

    Gordon, R. A.

    1980-01-01

    Brouwer and Brouwer-Lyddanes' use of the Von Zeipel-Delaunay method is employed to develop an efficient analytical orbit theory suitable for microcomputers. A succinctly simple pseudo-phenomenologically conceptualized algorithm is introduced which accurately and economically synthesizes modeling of drag effects. The method epitomizes and manifests effortless efficient computer mechanization. Simulated trajectory data is employed to illustrate the theory's ability to accurately accommodate oblateness and drag effects for microcomputer ground based or onboard predicted orbital representation. Real tracking data is used to demonstrate that the theory's orbit determination and orbit prediction capabilities are favorably adaptable to and are comparable with results obtained utilizing complex definitive Cowell method solutions on satellites experiencing significant drag effects.

  4. An innovative dosimetric model for formulating a semi-analytical solution for the activity-volume relationship in prostate implants

    SciTech Connect

    Lee, Plato C.; Parks, Eric K.; Moran, Brian J

    2003-12-31

    An innovative (and yet simple) dosimetric model is proposed that provides a semi-analytical solution to the total activity-volume relationship in ultrasound-guided transperineal prostate implant. This dosimetric model is based on 4 simple assumptions. First, the prostate target volume is approximated as a sphere. Second, the urethra is presumed to transverse through the center of the prostate target volume. Third, peripheral loading is applied as the seed-loading technique. Fourth, as the major innovation of the proposed model, the radial dose function of the Iodine-125 {sup 125}I seed is forced to fit a simple power function of the distance r. Pursuant to the third assumption, the peripherally-loaded seeds also define a spherical volume defined as the loading volume w. Also pursuant to the fourth assumption, the radial dose function is expressed as 1.139*r{sup -0.474} for r = 1.5 to 2.5 cm. Thereafter, a simple analytical power-law equation, A = 1.630* w{sup 0.825}, for the relationship between the total activity A in mCi and the loading volume w in cc is derived for {sup 125}I monotherapy. Isodose plans for loading volumes corresponding to r = 1.5, 1.8, 2.2, and 2.5 cm were performed. The maximal isodose coverage volume {sub max}V100 was calculated for each case and was found to be on the average 65% larger than the loading volume w. Matching prostate target volume V to the loading volume w therefore yields a generous implant (with a margin of approximately 3.3 mm). Conversely, matching the prostate target volume V to the {sub max}V100 yields a tight implant (with 0.0 mm or no margin). Matching the prostate target volume V to a midpoint between the loading volume w and {sub max}V100 yields a moderate implant (with approximately 1- to 2-mm margin). Three individual equations are derived for each type of implants: A = 1.630* V{sup 0.825}, A = 1.288* V{sup 0.825}, or A = 1.078 V{sup 0.825} for generous, tight, or moderate implants, respectively. Patient data at the

  5. A semi-analytical model for the flow behavior of naturally fractured formations with multi-scale fracture networks

    NASA Astrophysics Data System (ADS)

    Jia, Pin; Cheng, Linsong; Huang, Shijun; Wu, Yonghui

    2016-06-01

    This paper presents a semi-analytical model for the flow behavior of naturally fractured formations with multi-scale fracture networks. The model dynamically couples an analytical dual-porosity model with a numerical discrete fracture model. The small-scale fractures with the matrix are idealized as a dual-porosity continuum and an analytical flow solution is derived based on source functions in Laplace domain. The large-scale fractures are represented explicitly as the major fluid conduits and the flow is numerically modeled, also in Laplace domain. This approach allows us to include finer details of the fracture network characteristics while keeping the computational work manageable. For example, the large-scale fracture network may have complex geometry and varying conductivity, and the computations can be done at predetermined, discrete times, without any grids in the dual-porosity continuum. The validation of the semi-analytical model is demonstrated in comparison to the solution of ECLIPSE reservoir simulator. The simulation is fast, gridless and enables rapid model setup. On the basis of the model, we provide detailed analysis of the flow behavior of a horizontal production well in fractured reservoir with multi-scale fracture networks. The study has shown that the system may exhibit six flow regimes: large-scale fracture network linear flow, bilinear flow, small-scale fracture network linear flow, pseudosteady-state flow, interporosity flow and pseudoradial flow. During the first four flow periods, the large-scale fracture network behaves as if it only drains in the small-scale fracture network; that is, the effect of the matrix is negligibly small. The characteristics of the bilinear flow and the small-scale fracture network linear flow are predominantly determined by the dimensionless large-scale fracture conductivity. And low dimensionless fracture conductivity will generate large pressure drops in the large-scale fractures surrounding the wellbore. With

  6. Semi-Analytical Models of CO2 Injection into Deep Saline Aquifers: Evaluation of the Area of Review and Leakage through Abandoned Wells

    EPA Science Inventory

    This presentation will provide a conceptual preview of an Area of Review (AoR) tool being developed by EPA’s Office of Research and Development that applies analytic and semi-analytical mathematical solutions to elucidate potential risks associated with geologic sequestration of ...

  7. Semi-Analytical Models of CO2 Injection into Deep Saline Aquifers: Evaluation of the Area of Review and Leakage through Abandoned Wells

    EPA Science Inventory

    This presentation will provide a conceptual preview of an Area of Review (AoR) tool being developed by EPA’s Office of Research and Development that applies analytic and semi-analytical mathematical solutions to elucidate potential risks associated with geologic sequestration of ...

  8. The “2T” ion-electron semi-analytic shock solution for code-comparison with xRAGE: A report for FY16

    SciTech Connect

    Ferguson, Jim Michael

    2016-10-05

    This report documents an effort to generate the semi-analytic "2T" ion-electron shock solution developed in the paper by Masser, Wohlbier, and Lowrie, and the initial attempts to understand how to use this solution as a code-verification tool for one of LANL's ASC codes, xRAGE. Most of the work so far has gone into generating the semi-analytic solution. Considerable effort will go into understanding how to write the xRAGE input deck that both matches the boundary conditions imposed by the solution, and also what physics models must be implemented within the semi-analytic solution itself to match the model assumptions inherit within xRAGE. Therefore, most of this report focuses on deriving the equations for the semi-analytic 1D-planar time-independent "2T" ion-electron shock solution, and is written in a style that is intended to provide clear guidance for anyone writing their own solver.

  9. Semi-analytic approach to analyze single well tracer tests TR-44

    SciTech Connect

    Antunez, E.U.

    1984-08-01

    Residual oil saturation is one of the most important parameters to be considered when analyzing a prospective field for enhanced oil recovery. Traditionally, residual oil saturation has been estimated from cores or well logs. These methods have a small radius of investigation, evaluating saturations in a region close to the wellbore. This region is often affected by injection or production operations. Single well tracer tests have proven to be a better alternative to estimate residual oil saturation since they cover a substantially larger volume of the reservoir, and thus measure a more representative residual oil saturation of the target formation. The method consists of the injection of a reactive tracer that is soluble in oil and water. This tracer slowly hydrolyzes forming a secondary tracer as a product of an irreversible chemical reaction. After injection, the well is shut in to allow the formation of a detectable amount of secondary tracer, which is soluble only in water. When the well is open to production, each tracer arrives to the well at different times. From the separation between the concentration peaks, residual oil saturation is estimated. However, the determination of the residual oil saturation through the analysis of single well tracer test production data, in the past, has required: 1) the use of finite difference simulators, 2) five fitting parameters and 3) considerable man-computer interaction time. In addition finite difference simulators give results that are affected by numerical dispersion. This, and the fitting parameters, add uncertainty to the uniqueness of the solution. In this work, a new approach is presented. The test is analyzed. 28 references, 70 figures, 7 tables.

  10. A semi-analytical solver for the Grad-Shafranov equation

    SciTech Connect

    Ciro, D. Caldas, I. L.

    2014-11-15

    In toroidally confined plasmas, the Grad-Shafranov equation, in general, a non-linear partial differential equation, describes the hydromagnetic equilibrium of the system. This equation becomes linear when the kinetic pressure is proportional to the poloidal magnetic flux and the squared poloidal current is a quadratic function of it. In this work, the eigenvalue of the associated homogeneous equation is related with the safety factor on the magnetic axis, the plasma beta, and the Shafranov shift; then, the adjustable parameters of the particular solution are bounded through physical constrains. The poloidal magnetic flux becomes a linear superposition of independent solutions and its parameters are adjusted with a non-linear fitting algorithm. This method is used to find hydromagnetic equilibria with normal and reversed magnetic shear and defined values of the elongation, triangularity, aspect-ratio, and X-point(s). The resultant toroidal and poloidal beta, the safety factor at the 95% flux surface, and the plasma current are in agreement with usual experimental values for high beta discharges and the model can be used locally to describe reversed magnetic shear equilibria.

  11. A semi-analytical emission model for diffusion flame, rich/lean and premixed lean combustors

    SciTech Connect

    Rizk, N.K.; Mongia, H.C.

    1995-04-01

    To enhanced gas turbine combustor performance and emissions characteristics, better design methods need to be developed. In the present investigation, an emission model that simulates a detailed chemical kinetic scheme has been developed to provide the rate of reactions of the parent fuel, an intermediate hydrocarbon compound, CO, and H{sub 2}. The intermediate fuel has variable carbon and hydrogen contents depending on operating conditions, that were selected in the development effort to simulate actual operating conditions, that were selected in the development effort to simulate actual operation of rich/lean, diffusion flame, and lean combustor concepts. The developed reaction rate expressions address also the limited reaction rates that may occur in the near-wall regions of the combustor due to the admittance of radial air jets and cooling air in these regions. The validation effort included the application of the developed model to a combustor simulated by a multiple-reactor arrangement. The results indicate the accurate duplication of the calculations obtained from the detailed kinetic scheme using the developed model. This illustrates the great potential of using such a unified approach to guide the design of various types of combustor to meet the more stringent emissions and performance requirements of next-generation gas turbine engines.

  12. A semi-analytical study on helical springs made of shape memory polymer

    NASA Astrophysics Data System (ADS)

    Baghani, M.; Naghdabadi, R.; Arghavani, J.

    2012-04-01

    In this paper, the responses of shape memory polymer (SMP) helical springs under axial force are studied both analytically and numerically. In the analytical solution, we first derive the response of a cylindrical tube under torsional loadings. This solution can be used for helical springs in which both the curvature and pitch effects are negligible. This is the case for helical springs with large ratios of the mean coil radius to the cross sectional radius (spring index) and also small pitch angles. Making use of this solution simplifies the analysis of the helical springs to that of the torsion of a straight bar with circular cross section. The 3D phenomenological constitutive model recently proposed for SMPs is also reduced to the 1D shear case. Thus, an analytical solution for the torsional response of SMP tubes in a full cycle of stress-free strain recovery is derived. In addition, the curvature effect is added to the formulation and the SMP helical spring is analyzed using the exact solution presented for torsion of curved SMP tubes. In this modified solution, the effect of the direct shear force is also considered. In the numerical analysis, the 3D constitutive equations are implemented in a finite element program and a full cycle of stress-free strain recovery of an SMP (extension or compression) helical spring is simulated. Analytical and numerical results are compared and it is shown that the analytical solution gives accurate stress distributions in the cross section of the helical SMP spring besides the global load-deflection response. Some case studies are presented to show the validity of the presented analytical method.

  13. Combined semi-analytical and numerical vibro-acoustic design approach for anisotropic fibre-reinforced composite structures

    NASA Astrophysics Data System (ADS)

    Dannemann, Martin; Täger, Olaf; Modler, Niels

    2017-09-01

    In many applications, lightweight structures need to combine outstanding component properties and low weight. Here, fibre-reinforced polymers offer particular advantages, as their material-inherent anisotropic material damping behaviour facilitates the design of lightweight structures with both low sound radiation levels and low mass. At the same time, composite structures often have to fulfil a high level of stiffness and strength. These manifold requirements result in a complex design process with optimisation scenarios often involving contrary objectives in terms of weight, stiffness and sound radiation. Those objectives are in turn accompanied by many different design variables. The aim of the work presented in this paper was therefore to develop a material-specific design strategy for scenarios of this type. The authors developed semi-analytical models for the calculation of structural dynamics and sound radiation in composite structures before combining them with optimisation algorithms in order to perform effective sensitivity analyses. Parametric studies were used to define material-specific input parameters for physical characteristics, which in turn provided a basis for the detailed numerical simulation of the vibro-acoustic behaviour of complex geometries. This paper uses a trough-shaped structure as an application-oriented example of the optimisation of vibro-acoustic behaviour with the aid of the numerical model developed by the authors.

  14. Calculating water saturation from passive temperature measurements in near-surface sediments: Development of a semi-analytical model

    NASA Astrophysics Data System (ADS)

    Halloran, Landon J. S.; Roshan, Hamid; Rau, Gabriel C.; Andersen, Martin S.

    2016-03-01

    A novel semi-analytical model for the calculation of water saturation levels in the near subsurface using passive temperature measurements is derived. The amplitude and phase of dominant natural diel temperature variations are exploited, although the solution is general so that a cyclical temperature signal of any period could be used. The model is based on the first-principles advection-conduction-dispersion equation, which is fully general for porous media. It requires a single independent soil moisture estimate, but directly considers the spatially variable saturation dependency of thermal conductivity which has been avoided in previous studies. An established empirical model for the thermal conductivity of variably saturated porous media is incorporated and two solutions for saturation are derived. Using data from numerical models, a spatially sequential implementation of one of these solutions is shown to predict the vertical saturation profile to within 2% for a hydraulically stable case and to within the saturation range observed over a single day for percolation rates up to 10 cm/day. The developed model and methodology can aid in the analysis of archived temperature data from the vadose zone and will serve as a powerful tool in future heat-tracing experiments in variably saturated conditions.

  15. Evaluation of evaporation coefficient for micro-droplets exposed to low pressure: A semi-analytical approach

    NASA Astrophysics Data System (ADS)

    Chakraborty, Prodyut R.; Hiremath, Kirankumar R.; Sharma, Manvendra

    2017-02-01

    Evaporation rate of water is strongly influenced by energy barrier due to molecular collision and heat transfer limitations. The evaporation coefficient, defined as the ratio of experimentally measured evaporation rate to that maximum possible theoretical limit, varies over a conflicting three orders of magnitude. In the present work, a semi-analytical transient heat diffusion model of droplet evaporation is developed considering the effect of change in droplet size due to evaporation from its surface, when the droplet is injected into vacuum. Negligible effect of droplet size reduction due to evaporation on cooling rate is found to be true. However, the evaporation coefficient is found to approach theoretical limit of unity, when the droplet radius is less than that of mean free path of vapor molecules on droplet surface contrary to the reported theoretical predictions. Evaporation coefficient was found to reduce rapidly when the droplet under consideration has a radius larger than the mean free path of evaporating molecules, confirming the molecular collision barrier to evaporation rate. The trend of change in evaporation coefficient with increasing droplet size predicted by the proposed model will facilitate obtaining functional relation of evaporation coefficient with droplet size, and can be used for benchmarking the interaction between multiple droplets during evaporation in vacuum.

  16. Magnetic levitation-based electromagnetic energy harvesting: a semi-analytical non-linear model for energy transduction.

    PubMed

    Soares Dos Santos, Marco P; Ferreira, Jorge A F; Simões, José A O; Pascoal, Ricardo; Torrão, João; Xue, Xiaozheng; Furlani, Edward P

    2016-01-04

    Magnetic levitation has been used to implement low-cost and maintenance-free electromagnetic energy harvesting. The ability of levitation-based harvesting systems to operate autonomously for long periods of time makes them well-suited for self-powering a broad range of technologies. In this paper, a combined theoretical and experimental study is presented of a harvester configuration that utilizes the motion of a levitated hard-magnetic element to generate electrical power. A semi-analytical, non-linear model is introduced that enables accurate and efficient analysis of energy transduction. The model predicts the transient and steady-state response of the harvester a function of its motion (amplitude and frequency) and load impedance. Very good agreement is obtained between simulation and experiment with energy errors lower than 14.15% (mean absolute percentage error of 6.02%) and cross-correlations higher than 86%. The model provides unique insight into fundamental mechanisms of energy transduction and enables the geometric optimization of harvesters prior to fabrication and the rational design of intelligent energy harvesters.

  17. A semi-analytic power balance model for low (L) to high (H) mode transition power threshold

    SciTech Connect

    Singh, R.; Jhang, Hogun; Kaw, P. K.; Diamond, P. H.; Nordman, H.; Bourdelle, C.

    2014-06-15

    We present a semi-analytic model for low (L) to high (H) mode transition power threshold (P{sub th}). Two main assumptions are made in our study. First, high poloidal mode number drift resistive ballooning modes (high-m DRBM) are assumed to be the dominant turbulence driver in a narrow edge region near to last closed flux surface. Second, the pre-transition edge profile and turbulent diffusivity at the narrow edge region pertain to turbulent equipartition. An edge power balance relation is derived by calculating the dissipated power flux through both turbulent conduction and convection, and radiation in the edge region. P{sub th} is obtained by imposing the turbulence quench rule due to sheared E × B rotation. Evaluation of P{sub th} shows a good agreement with experimental results in existing machines. Increase of P{sub th} at low density (i.e., the existence of roll-over density in P{sub th} vs. density) is shown to originate from the longer scale length of the density profile than that of the temperature profile.

  18. A semi-analytical model of a time reversal cavity for high-amplitude focused ultrasound applications

    NASA Astrophysics Data System (ADS)

    Robin, J.; Tanter, M.; Pernot, M.

    2017-09-01

    Time reversal cavities (TRC) have been proposed as an efficient approach for 3D ultrasound therapy. They allow the precise spatio-temporal focusing of high-power ultrasound pulses within a large region of interest with a low number of transducers. Leaky TRCs are usually built by placing a multiple scattering medium, such as a random rod forest, in a reverberating cavity, and the final peak pressure gain of the device only depends on the temporal length of its impulse response. Such multiple scattering in a reverberating cavity is a complex phenomenon, and optimisation of the device’s gain is usually a cumbersome process, mostly empirical, and requiring numerical simulations with extremely long computation times. In this paper, we present a semi-analytical model for the fast optimisation of a TRC. This model decouples ultrasound propagation in an empty cavity and multiple scattering in a multiple scattering medium. It was validated numerically and experimentally using a 2D-TRC and numerically using a 3D-TRC. Finally, the model was used to determine rapidly the optimal parameters of the 3D-TRC which had been confirmed by numerical simulations.

  19. Magnetic levitation-based electromagnetic energy harvesting: a semi-analytical non-linear model for energy transduction

    PubMed Central

    Soares dos Santos, Marco P.; Ferreira, Jorge A. F.; Simões, José A. O.; Pascoal, Ricardo; Torrão, João; Xue, Xiaozheng; Furlani, Edward P.

    2016-01-01

    Magnetic levitation has been used to implement low-cost and maintenance-free electromagnetic energy harvesting. The ability of levitation-based harvesting systems to operate autonomously for long periods of time makes them well-suited for self-powering a broad range of technologies. In this paper, a combined theoretical and experimental study is presented of a harvester configuration that utilizes the motion of a levitated hard-magnetic element to generate electrical power. A semi-analytical, non-linear model is introduced that enables accurate and efficient analysis of energy transduction. The model predicts the transient and steady-state response of the harvester a function of its motion (amplitude and frequency) and load impedance. Very good agreement is obtained between simulation and experiment with energy errors lower than 14.15% (mean absolute percentage error of 6.02%) and cross-correlations higher than 86%. The model provides unique insight into fundamental mechanisms of energy transduction and enables the geometric optimization of harvesters prior to fabrication and the rational design of intelligent energy harvesters. PMID:26725842

  20. Semi-analytical solar radiation pressure modeling for QZS-1 orbit-normal and yaw-steering attitude

    NASA Astrophysics Data System (ADS)

    Montenbruck, Oliver; Steigenberger, Peter; Darugna, Francesco

    2017-04-01

    Solar radiation pressure (SRP) is the dominant non-gravitational perturbation of global navigation satellite system (GNSS) satellites. In the absence of detailed surface models, empirical SRP models, such as the Empirical CODE Orbit Model (ECOM), are widely used in practice for GNSS orbit determination but may require an undue number of parameters to properly describe the actual motion. Building up on previous research for spacecraft in yaw-steering (YS) attitude, analytical expressions for the SRP acceleration in orbit-normal (ON) attitude are established based on a generic box-wing model, and related to the corresponding parameters of the ECOM. The results are used to obtain an a priori SRP model for the QZS-1 satellite of the Quasi Zenith Satellite System (QZSS), which achieves a modeling accuracy of about 1 nm/s2 using as little as 6 parameters. To compensate remaining modeling deficiencies, we combine the analytical a priori model with a complementary set of five empirical parameters based on an ECOM-type formulation. QZS-1 orbits based on the resulting ;semi-analytical; SRP model exhibit a better than 10 cm RMS consistency with satellite laser ranging measurements for both YS and ON attitude modes, which marks a 2-4 times improvement over legacy orbit products without a priori model.

  1. Semi-analytical model for output factor calculations in proton beam therapy with consideration for the collimator aperture edge.

    PubMed

    Kase, Yuki; Yamashita, Haruo; Sakama, Makoto; Mizota, Manabu; Maeda, Yoshikazu; Tameshige, Yuji; Murayama, Shigeyuki

    2015-08-07

    In the development of an external radiotherapy treatment planning system, the output factor (OPF) is an important value for the monitor unit calculations. We developed a proton OPF calculation model with consideration for the collimator aperture edge to account for the dependence of the OPF on the collimator aperture and distance in proton beam therapy. Five parameters in the model were obtained by fitting with OPFs measured by a pinpoint chamber with the circular radiation fields of various field radii and collimator distances. The OPF model calculation using the fitted model parameters could explain the measurement results to within 1.6% error in typical proton treatment beams with 6- and 12 cm SOBP widths through a range shifter and a circular aperture more than 10.6 mm in radius. The calibration depth dependences of the model parameters were approximated by linear or quadratic functions. The semi-analytical OPF model calculation was tested with various MLC aperture shapes that included circles of various sizes as well as a rectangle, parallelogram, and L-shape for an intermediate proton treatment beam condition. The pre-calculated OPFs agreed well with the measured values, to within 2.7% error up to 620 mm in the collimator distance, though the maximum difference was 5.1% in the case of the largest collimator distance of 740 mm. The OPF calculation model would allow more accurate monitor unit calculations for therapeutic proton beams within the expected range of collimator conditions in clinical use.

  2. Semi-analytic derivation of the threshold mass for prompt collapse in binary neutron-star mergers

    NASA Astrophysics Data System (ADS)

    Bauswein, Andreas; Stergioulas, Nikolaos

    2017-11-01

    The threshold mass for prompt collapse in binary neutron-star (NS) mergers was empirically found to depend on the stellar properties of the maximum-mass non-rotating NS model. Here, we present a semi-analytic derivation of this empirical relation, which suggests that it is rather insensitive to thermal effects, to deviations from axisymmetry and to the exact rotation law in merger remnants. We utilize axisymmetric, cold equilibrium models with differential rotation and determine the threshold mass for collapse from the comparison between an empirical relation that describes the angular momentum in the remnant for a given total binary mass and the sequence of rotating equilibrium models at the threshold to collapse (the latter assumed to be near the turning point of fixed-angular-momentum sequences). In spite of the various simplifying assumptions, the empirical relation for prompt collapse is reproduced with good accuracy, which demonstrates its robustness. We discuss implications of our methodology and results for understanding other empirical relations satisfied by NS merger remnants that have been discovered by numerical simulations and that play a key role in constraining the high-density equation of state through gravitational-wave observations.

  3. Magnetic levitation-based electromagnetic energy harvesting: a semi-analytical non-linear model for energy transduction

    NASA Astrophysics Data System (ADS)

    Soares Dos Santos, Marco P.; Ferreira, Jorge A. F.; Simões, José A. O.; Pascoal, Ricardo; Torrão, João; Xue, Xiaozheng; Furlani, Edward P.

    2016-01-01

    Magnetic levitation has been used to implement low-cost and maintenance-free electromagnetic energy harvesting. The ability of levitation-based harvesting systems to operate autonomously for long periods of time makes them well-suited for self-powering a broad range of technologies. In this paper, a combined theoretical and experimental study is presented of a harvester configuration that utilizes the motion of a levitated hard-magnetic element to generate electrical power. A semi-analytical, non-linear model is introduced that enables accurate and efficient analysis of energy transduction. The model predicts the transient and steady-state response of the harvester a function of its motion (amplitude and frequency) and load impedance. Very good agreement is obtained between simulation and experiment with energy errors lower than 14.15% (mean absolute percentage error of 6.02%) and cross-correlations higher than 86%. The model provides unique insight into fundamental mechanisms of energy transduction and enables the geometric optimization of harvesters prior to fabrication and the rational design of intelligent energy harvesters.

  4. Mechanical performance of physical-contact, multi-fiber optical connectors: Finite element analysis and semi-analytical model

    NASA Astrophysics Data System (ADS)

    Marin, Esteban B.; Tran, Hieu V.; Kobyakov, Andrey

    2016-07-01

    Three-dimensional finite element analysis of physical-contact, multi-fiber optical connector was used to characterize fiber-to-fiber contact and support the development and validation of a semi-analytical model (SAM) for the contact force. This contact behavior is determined by the elastic deformation of the system components (ferrule, fibers, and bonding adhesive) and the classical Hertzian contact at the fiber tips - effects that ultimately define the axial compliance of the system. Two 3-D finite element models for a 12-fiber connector are constructed to study the contact of two connectors, and the specific numerical simulations are carried out to generate input data to SAM, confirm the main assumptions made in its development, and numerically validate the predictions for the contact force. These simulations mainly consider non-uniform fiber height profiles and different end-face fiber tip geometries characterized by their radius of curvature. The numerically validated SAM is then used to study some performance aspects of multi-fiber connectors as related to the required contact force, namely, finding fiber height profiles that require minimum contact force and evaluating the throughput of polishing processes assuming a target contact force. Predictions are supported by Monte Carlo simulations and associated with current profile geometry metrics.

  5. Generalized semi-analytical solutions to multispecies transport equation coupled with sequential first-order reaction network with spatially or temporally variable transport and decay coefficients

    NASA Astrophysics Data System (ADS)

    Suk, Heejun

    2016-08-01

    This paper presents a semi-analytical procedure for solving coupled the multispecies reactive solute transport equations, with a sequential first-order reaction network on spatially or temporally varying flow velocities and dispersion coefficients involving distinct retardation factors. This proposed approach was developed to overcome the limitation reported by Suk (2013) regarding the identical retardation values for all reactive species, while maintaining the extensive capability of the previous Suk method involving spatially variable or temporally variable coefficients of transport, general initial conditions, and arbitrary temporal variable inlet concentration. The proposed approach sequentially calculates the concentration distributions of each species by employing only the generalized integral transform technique (GITT). Because the proposed solutions for each species' concentration distributions have separable forms in space and time, the solution for subsequent species (daughter species) can be obtained using only the GITT without the decomposition by change-of-variables method imposing the limitation of identical retardation values for all the reactive species by directly substituting solutions for the preceding species (parent species) into the transport equation of subsequent species (daughter species). The proposed solutions were compared with previously published analytical solutions or numerical solutions of the numerical code of the Two-Dimensional Subsurface Flow, Fate and Transport of Microbes and Chemicals (2DFATMIC) in three verification examples. In these examples, the proposed solutions were well matched with previous analytical solutions and the numerical solutions obtained by 2DFATMIC model. A hypothetical single-well push-pull test example and a scale-dependent dispersion example were designed to demonstrate the practical application of the proposed solution to a real field problem.

  6. A double expansion method for the frequency response of finite-length beams with periodic parameters

    NASA Astrophysics Data System (ADS)

    Ying, Z. G.; Ni, Y. Q.

    2017-03-01

    A double expansion method for the frequency response of finite-length beams with periodic distribution parameters is proposed. The vibration response of the beam with spatial periodic parameters under harmonic excitations is studied. The frequency response of the periodic beam is the function of parametric period and then can be expressed by the series with the product of periodic and non-periodic functions. The procedure of the double expansion method includes the following two main steps: first, the frequency response function and periodic parameters are expanded by using identical periodic functions based on the extension of the Floquet-Bloch theorem, and the period-parametric differential equation for the frequency response is converted into a series of linear differential equations with constant coefficients; second, the solutions to the linear differential equations are expanded by using modal functions which satisfy the boundary conditions, and the linear differential equations are converted into algebraic equations according to the Galerkin method. The expansion coefficients are obtained by solving the algebraic equations and then the frequency response function is finally determined. The proposed double expansion method can uncouple the effects of the periodic expansion and modal expansion so that the expansion terms are determined respectively. The modal number considered in the second expansion can be reduced remarkably in comparison with the direct expansion method. The proposed double expansion method can be extended and applied to the other structures with periodic distribution parameters for dynamics analysis. Numerical results on the frequency response of the finite-length periodic beam with various parametric wave numbers and wave amplitude ratios are given to illustrate the effective application of the proposed method and the new frequency response characteristics, including the parameter-excited modal resonance, doubling-peak frequency response

  7. Power series expansion method in tensor-optimized antisymmetrized molecular dynamics beyond the Jastrow correlation method

    NASA Astrophysics Data System (ADS)

    Myo, Takayuki; Toki, Hiroshi; Ikeda, Kiyomi; Horiuchi, Hisashi; Suhara, Tadahiro

    2017-09-01

    We developed a new variational method for tensor-optimized antisymmetrized molecular dynamics (TOAMD) for nuclei. In TOAMD, the correlation functions for the tensor force and the short-range repulsion are introduced and used in the power series form of the wave function, which is different from the Jastrow method. Here, nucleon pairs are correlated in multisteps with different forms, while they are correlated only once including all pairs in the Jastrow correlation method. Each correlation function in every term is independently optimized in the variation of total energy in TOAMD. For s -shell nuclei using the nucleon-nucleon interaction, the energies in TOAMD are better than those in the variational Monte Carlo method with the Jastrow correlation function. This means that the power series expansion using the correlation functions in TOAMD describes the nuclei better than the Jastrow correlation method.

  8. The New Numerical Galaxy Catalog (ν2GC): An updated semi-analytic model of galaxy and active galactic nucleus formation with large cosmological N-body simulations

    NASA Astrophysics Data System (ADS)

    Makiya, Ryu; Enoki, Motohiro; Ishiyama, Tomoaki; Kobayashi, Masakazu A. R.; Nagashima, Masahiro; Okamoto, Takashi; Okoshi, Katsuya; Oogi, Taira; Shirakata, Hikari

    2016-04-01

    We present a new cosmological galaxy formation model, ν2GC, as an updated version of our previous model νGC. We adopt the so-called "semi-analytic" approach, in which the formation history of dark matter halos is computed by N-body simulations, while the baryon physics such as gas cooling, star formation, and supernova feedback are simply modeled by phenomenological equations. Major updates of the model are as follows: (1) the merger trees of dark matter halos are constructed in state-of-the-art N-body simulations, (2) we introduce the formation and evolution process of supermassive black holes and the suppression of gas cooling due to active galactic nucleus (AGN) activity, (3) we include heating of the intergalactic gas by the cosmic UV background, and (4) we tune some free parameters related to the astrophysical processes using a Markov chain Monte Carlo method. Our N-body simulations of dark matter halos have unprecedented box size and mass resolution (the largest simulation contains 550 billion particles in a 1.12 Gpc h-1 box), enabling the study of much smaller and rarer objects. The model was tuned to fit the luminosity functions of local galaxies and mass function of neutral hydrogen. Local observations, such as the Tully-Fisher relation, the size-magnitude relation of spiral galaxies, and the scaling relation between the bulge mass and black hole mass were well reproduced by the model. Moreover, the model also reproduced well the cosmic star formation history and redshift evolution of rest-frame K-band luminosity functions. The numerical catalog of the simulated galaxies and AGNs is publicly available on the web.

  9. Generalized semi-analytical solutions to multispecies transport equation coupled with sequential first-order reaction network in arbitrary heterogenious medium using GITT

    NASA Astrophysics Data System (ADS)

    Suk, Heejun

    2017-04-01

    This paper presents a semi-analytical procedure for solving coupled the multispecies reactive solute transport equations, with a sequential first-order reaction network in arbitrary heterogeneous media using General Integral Transformation Tecgnique(GITT).This proposed approach was developed to describe behavior of reactive multicpecise transport on spatially or temporally varying flow velocities and dispersion coefficients with distinct retardation factors, which might be function of space and time. This proposed approach deals with general initial conditions, and arbitrary temporal variable inlet concentration as well as arbitrary heterogenous media. The proposed approach sequentially calculates the concentration distributions of each species by employing only the generalized integral transform technique (GITT). Because the proposed solutions for each species' concentration distributions have separable forms in space and time, the solution for subsequent species (daughter species) can be obtained using only the GITT without the decomposition by change-of-variables method imposing the limitation of identical retarda- tion values for all the reactive species by directly substituting solutions for the preceding species (parent species) into the transport equation of subsequent species (daughter species). The proposed solutions were compared with previously published analytical solutions or numerical solutions of the numerical code of the Two-Dimensional Subsurface Flow, Fate and Transport of Microbes and Chemicals (2DFATMIC) in all verification examples. In these examples, the proposed solutions were well matched with previous analytical solutions and the numerical solutions obtained by 2DFATMIC model. A hypothetical single-well push-pull test example and a scale-dependent dispersion example were designed to demonstrate the practical application of the proposed solution to a real field problem.

  10. High-order Taylor series expansion methods for error propagation in geographic information systems

    NASA Astrophysics Data System (ADS)

    Xue, Jie; Leung, Yee; Ma, Jiang-Hong

    2015-04-01

    The quality of modeling results in GIS operations depends on how well we can track error propagating from inputs to outputs. Monte Carlo simulation, moment design and Taylor series expansion have been employed to study error propagation over the years. Among them, first-order Taylor series expansion is popular because error propagation can be analytically studied. Because most operations in GIS are nonlinear, first-order Taylor series expansion generally cannot meet practical needs, and higher-order approximation is thus necessary. In this paper, we employ Taylor series expansion methods of different orders to investigate error propagation when the random error vectors are normally and independently or dependently distributed. We also extend these methods to situations involving multi-dimensional output vectors. We employ these methods to examine length measurement of linear segments, perimeter of polygons and intersections of two line segments basic in GIS operations. Simulation experiments indicate that the fifth-order Taylor series expansion method is most accurate compared with the first-order and third-order method. Compared with the third-order expansion; however, it can only slightly improve the accuracy, but on the expense of substantially increasing the number of partial derivatives that need to be calculated. Striking a balance between accuracy and complexity, the third-order Taylor series expansion method appears to be a more appropriate choice for practical applications.

  11. What is the right way to quench star formation in semi-analytic models of galaxy formation?

    NASA Astrophysics Data System (ADS)

    Luo, Yu; Kang, Xi

    2017-02-01

    Semi-analytic models of galaxy formation are powerful tools to study the evolution of a galaxy population in a cosmological context. However, most models overpredict the number of low-mass galaxies at high redshifts and the colors of model galaxies are not right in the sense that low-mass satellite galaxies are too red and centrals are too blue. The recent version of the L-Galaxies model by Henriques et al. (H15) is a step forward to solve these problems by reproducing the evolution of stellar mass function and the overall fraction of red galaxies. In this paper we compare the two model predictions of L-Galaxies (the other is Guo et al., G13) to SDSS data in detail. We find that in the H15 model the red fraction of central galaxies now agrees with the data due to their implementation of strong AGN feedback, but the stellar mass of centrals in massive halos is now slightly lower than what is indicated by the data. For satellite galaxies, the red fraction of low-mass galaxies (log M*/Mȯ < 10) also agrees with the data, but the color of massive satellites (10 < log M*/Mȯ < 11) is slightly bluer. The correct color of centrals and the bluer color of massive satellites indicate that quenching in massive satellites is not strong enough. We also find that there are too many red spirals and less bulge-dominated galaxies in both H15 and G13 models. Our results suggest that additional mechanisms, such as more minor mergers or disk instability, are needed to slightly increase the stellar mass of the central galaxy in massive galaxies, mainly in the bulge component, and bulge dominated galaxies will be quenched not only by minor mergers, but also by some other mechanisms

  12. The relationship between star formation activity and galaxy structural properties in CANDELS and a semi-analytic model

    NASA Astrophysics Data System (ADS)

    Brennan, Ryan; Pandya, Viraj; Somerville, Rachel S.; Barro, Guillermo; Bluck, Asa F. L.; Taylor, Edward N.; Wuyts, Stijn; Bell, Eric F.; Dekel, Avishai; Faber, Sandra; Ferguson, Henry C.; Koekemoer, Anton M.; Kurczynski, Peter; McIntosh, Daniel H.; Newman, Jeffrey A.; Primack, Joel

    2017-02-01

    We study the correlation of galaxy structural properties with their location relative to the SFR-M* correlation, also known as the star formation `star-forming main sequence' (SFMS), in the Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey and Galaxy and Mass Assembly Survey and in a semi-analytic model (SAM) of galaxy formation. We first study the distribution of median Sérsic index, effective radius, star formation rate (SFR) density and stellar mass density in the SFR-M* plane. We then define a redshift-dependent main sequence and examine the medians of these quantities as a function of distance from this main sequence, both above (higher SFRs) and below (lower SFRs). Finally, we examine the distributions of distance from the main sequence in bins of these quantities. We find strong correlations between all of these galaxy structural properties and the distance from the SFMS, such that as we move from galaxies above the SFMS to those below it, we see a nearly monotonic trend towards higher median Sérsic index, smaller radius, lower SFR density, and higher stellar density. In the SAM, bulge growth is driven by mergers and disc instabilities, and is accompanied by the growth of a supermassive black hole which can regulate or quench star formation via active galactic nucleus feedback. We find that our model qualitatively reproduces the trends described above, supporting a picture in which black holes and bulges co-evolve, and active galactic nucleus feedback plays a critical role in moving galaxies off of the SFMS.

  13. A semi-analytic model for the co-evolution of galaxies, black holes and active galactic nuclei

    NASA Astrophysics Data System (ADS)

    Somerville, Rachel S.; Hopkins, Philip F.; Cox, Thomas J.; Robertson, Brant E.; Hernquist, Lars

    2008-12-01

    We present a new semi-analytic model that self-consistently traces the growth of supermassive black holes (BH) and their host galaxies within the context of the Lambda cold dark matter (ΛCDM) cosmological framework. In our model, the energy emitted by accreting black holes regulates the growth of the black holes themselves, drives galactic scale winds that can remove cold gas from galaxies, and produces powerful jets that heat the hot gas atmospheres surrounding groups and clusters. We present a comprehensive comparison of our model predictions with observational measurements of key physical properties of low-redshift galaxies, such as cold gas fractions, stellar metallicities and ages, and specific star formation rates. We find that our new models successfully reproduce the exponential cut-off in the stellar mass function and the stellar and cold gas mass densities at z ~ 0, and predict that star formation should be largely, but not entirely, quenched in massive galaxies at the present day. We also find that our model of self-regulated BH growth naturally reproduces the observed relation between BH mass and bulge mass. We explore the global formation history of galaxies and black holes in our models, presenting predictions for the cosmic histories of star formation, stellar mass assembly, cold gas and metals. We find that models assuming the `concordance' ΛCDM cosmology overproduce star formation and stellar mass at high redshift (z >~ 2). A model with less small-scale power predicts less star formation at high redshift, and excellent agreement with the observed stellar mass assembly history, but may have difficulty accounting for the cold gas in quasar absorption systems at high redshift (z ~ 3-4).

  14. Modeling laser beam diffraction and propagation by the mode-expansion method.

    PubMed

    Snyder, James J

    2007-08-01

    In the mode-expansion method for modeling propagation of a diffracted beam, the beam at the aperture can be expanded as a weighted set of orthogonal modes. The parameters of the expansion modes are chosen to maximize the weighting coefficient of the lowest-order mode. As the beam propagates, its field distribution can be reconstructed from the set of weighting coefficients and the Gouy phase of the lowest-order mode. We have developed a simple procedure to implement the mode-expansion method for propagation through an arbitrary ABCD matrix, and we have demonstrated that it is accurate in comparison with direct calculations of diffraction integrals and much faster.

  15. Comparison of the Unified Perturbation Method with the two-scale expansion

    NASA Technical Reports Server (NTRS)

    Kim, Yunjin; Rodriguez, Ernesto

    1992-01-01

    The Unified Perturbation Method (UPM) converges faster over a wider domain of surface roughness than other perturbations, such as the small perturbation method, the phase perturbation method, the Kirchhoff approximation, and the momentum transfer expansion. It can be shown that UPM intrinsically possess characteristics similar to the two-scale expansion without requiring a free parameter. This paper considers whether the UPM can be improved by applying the two-scale concept to the method. In order to do so, the unknown source current is expanded in a two-scale manner starting from the extinction theorem. Several two-scale expansions are derived and are compared with the conventional two-scale approximation. It is shown that the UPM performs best without two-scale expansions.

  16. Numerical simulation of stratified shear flow using a higher order Taylor series expansion method

    SciTech Connect

    Iwashige, Kengo; Ikeda, Takashi

    1995-09-01

    A higher order Taylor series expansion method is applied to two-dimensional numerical simulation of stratified shear flow. In the present study, central difference scheme-like method is adopted for an even expansion order, and upwind difference scheme-like method is adopted for an odd order, and the expansion order is variable. To evaluate the effects of expansion order upon the numerical results, a stratified shear flow test in a rectangular channel (Reynolds number = 1.7x10{sup 4}) is carried out, and the numerical velocity and temperature fields are compared with experimental results measured by laser Doppler velocimetry thermocouples. The results confirm that the higher and odd order methods can simulate mean velocity distributions, root-mean-square velocity fluctuations, Reynolds stress, temperature distributions, and root-mean-square temperature fluctuations.

  17. Use of a combined expansion scheme to analyze microstrip antennas with the method of moments

    NASA Astrophysics Data System (ADS)

    Vandenbosch, G. A. E.; van de Capelle, A. R.

    1992-12-01

    A new expansion scheme is introduced to solve the integral equations describing a microstrip antenna with the method of moments. The scheme offers both flexibility and a low number of expansion functions and thus an acceptable calculation time. The basic idea consists of constructing secondary entire domain expansion functions as fixed combinations of primary expansion functions. This special concept allows the solution of several problems concerning rapid variations of the currents on the patches in an efficient way without having to deal with an unacceptable number of expansion functions to describe the mutual coupling between the patches. The efficiency of the combined scheme is illustrated by a comparison of measured and calculated results for a linear eight-element microstrip array antenna.

  18. An Efficient Method for Performing Partial Fraction Expansion.

    DTIC Science & Technology

    1980-02-01

    Henrici . A numerical example is provided. DD I Fhim3 1473 EDITIONO 01NOVSS1 OBSOLETE Unclassified /)’/, , SECURITY CLASSIFICATION OF THIS PAGE (*?Ion Data...the method of Henrici . A numerical example is provided. MAS (MOS) subject classificatiom (1970). Primary 65F99. Vi I A Introduction. At times it is...efficient relative to the number of arithmetic operations required. It compares favorably in this regard with the method of Henrici [2]. The

  19. The theory of transmission spectra revisited: a semi-analytical method for interpreting WFC3 data and an unresolved challenge

    NASA Astrophysics Data System (ADS)

    Heng, Kevin; Kitzmann, Daniel

    2017-09-01

    The computation of transmission spectra is a central ingredient in the study of exoplanetary atmospheres. First, we revisit the theory of transmission spectra, unifying ideas from several workers in the literature. Transmission spectra lack an absolute normalization due to the a priori unknown value of a reference transit radius, which is tied to an unknown reference pressure. We show that there is a degeneracy between the uncertainty in the transit radius, the assumed value of the reference pressure (typically set to 10 bar) and the inferred value of the water abundance when interpreting a Wide-Field Camera 3 (WFC3) transmission spectrum. Secondly, we show that the transmission spectra of isothermal atmospheres are nearly isobaric. We validate the isothermal, isobaric analytical formula for the transmission spectrum against full numerical calculations and show that the typical errors are ∼0.1 per cent (∼10 ppm) within the WFC3 range of wavelengths for temperatures of 1500 K (or higher). Thirdly, we generalize the previous expression for the transit radius to include a small temperature gradient. Finally, we analyse the measured WFC3 transmission spectrum of WASP-12b and demonstrate that we obtain consistent results with the retrieval approach of Kreidberg et al., if the reference transit radius and reference pressure are fixed to assumed values. The unknown functional relationship between the reference transit radius and reference pressure implies that it is the product of the water abundance and reference pressure that is being retrieved from the data, and not just the water abundance alone. This degeneracy leads to a limitation on how accurately we may extract molecular abundances from transmission spectra using WFC3 data alone. We suggest an approximate expression for this relationship. Finally, we compare our study to that of Griffith and discuss why the degeneracy was missed in previous retrieval studies.

  20. A zero-one implicit enumeration method for optimizing investments in transmission expansion planning

    SciTech Connect

    Romero, R.; Monticelli, A. )

    1994-08-01

    This paper presents a zero-one implicit enumeration method applied to an integer programming subproblem which has to be solved as part of a more general process of obtaining an optimal solution for a transmission expansion planning problem by hierarchical Benders decomposition. The proposed algorithm has been successfully implemented and tested in a real-life system. The reasons why the implicit enumeration approach is particularly suited for the static expansion planning problem is fully discussed in the paper.

  1. Predicting low-thermal-conductivity Si-Ge nanowires with a modified cluster expansion method

    NASA Astrophysics Data System (ADS)

    Kristensen, Jesper; Zabaras, Nicholas J.

    2015-02-01

    We introduce the cluster-expansion ghost-lattice method, which extends the applicability of existing cluster-expansion software, to cluster expand structures of arbitrary finite and infinite geometries in a fast, unique, and transferable way. The ghost site that is introduced zeroes the cluster function of any cluster which includes it. This enables the use of bulk clusters grouped by bulk symmetries in nonbulk systems and distinguishes the cluster-expansion ghost-lattice method from a regular ternary cluster expansion with an inactive vacuum atom type. Even though the method does not treat surface terms, it can be used as an efficient way to obtain the bulk term in D. Lerch et al. [Modell. Simul. Mater. Sci. Eng. 17, 055003 (2009), 10.1088/0965-0393/17/5/055003]. We use the method to learn the thermal conductivity of Si-Ge nanowires, oriented along the [111] direction on a diamond lattice, versus their configuration of Si and Ge atoms. Once learned, the ghost-lattice cluster-expansion method is shown to be able to predict the lowest-thermal-conductivity nanowire configuration, in agreement with the configuration found in M. Chan et al. [Phys. Rev. B 81, 174303 (2010), 10.1103/PhysRevB.81.174303].

  2. Brillouin corrosion expansion sensors for steel reinforced concrete structures using a fiber optic coil winding method.

    PubMed

    Zhao, Xuefeng; Gong, Peng; Qiao, Guofu; Lu, Jie; Lv, Xingjun; Ou, Jinping

    2011-01-01

    In this paper, a novel kind of method to monitor corrosion expansion of steel rebars in steel reinforced concrete structures named fiber optic coil winding method is proposed, discussed and tested. It is based on the fiber optical Brillouin sensing technique. Firstly, a strain calibration experiment is designed and conducted to obtain the strain coefficient of single mode fiber optics. Results have shown that there is a good linear relationship between Brillouin frequency and applied strain. Then, three kinds of novel fiber optical Brillouin corrosion expansion sensors with different fiber optic coil winding packaging schemes are designed. Sensors were embedded into concrete specimens to monitor expansion strain caused by steel rebar corrosion, and their performance was studied in a designed electrochemical corrosion acceleration experiment. Experimental results have shown that expansion strain along the fiber optic coil winding area can be detected and measured by the three kinds of sensors with different measurement range during development the corrosion. With the assumption of uniform corrosion, diameters of corrosion steel rebars were obtained using calculated average strains. A maximum expansion strain of 6,738 με was monitored. Furthermore, the uniform corrosion analysis model was established and the evaluation formula to evaluate mass loss rate of steel rebar under a given corrosion rust expansion rate was derived. The research has shown that three kinds of Brillouin sensors can be used to monitor the steel rebar corrosion expansion of reinforced concrete structures with good sensitivity, accuracy and monitoring range, and can be applied to monitor different levels of corrosion. By means of this kind of monitoring technique, quantitative corrosion expansion monitoring can be carried out, with the virtues of long durability, real-time monitoring and quasi-distribution monitoring.

  3. Brillouin Corrosion Expansion Sensors for Steel Reinforced Concrete Structures Using a Fiber Optic Coil Winding Method

    PubMed Central

    Zhao, Xuefeng; Gong, Peng; Qiao, Guofu; Lu, Jie; Lv, Xingjun; Ou, Jinping

    2011-01-01

    In this paper, a novel kind of method to monitor corrosion expansion of steel rebars in steel reinforced concrete structures named fiber optic coil winding method is proposed, discussed and tested. It is based on the fiber optical Brillouin sensing technique. Firstly, a strain calibration experiment is designed and conducted to obtain the strain coefficient of single mode fiber optics. Results have shown that there is a good linear relationship between Brillouin frequency and applied strain. Then, three kinds of novel fiber optical Brillouin corrosion expansion sensors with different fiber optic coil winding packaging schemes are designed. Sensors were embedded into concrete specimens to monitor expansion strain caused by steel rebar corrosion, and their performance was studied in a designed electrochemical corrosion acceleration experiment. Experimental results have shown that expansion strain along the fiber optic coil winding area can be detected and measured by the three kinds of sensors with different measurement range during development the corrosion. With the assumption of uniform corrosion, diameters of corrosion steel rebars were obtained using calculated average strains. A maximum expansion strain of 6,738 με was monitored. Furthermore, the uniform corrosion analysis model was established and the evaluation formula to evaluate mass loss rate of steel rebar under a given corrosion rust expansion rate was derived. The research has shown that three kinds of Brillouin sensors can be used to monitor the steel rebar corrosion expansion of reinforced concrete structures with good sensitivity, accuracy and monitoring range, and can be applied to monitor different levels of corrosion. By means of this kind of monitoring technique, quantitative corrosion expansion monitoring can be carried out, with the virtues of long durability, real-time monitoring and quasi-distribution monitoring. PMID:22346672

  4. A study on the multicolour evolution of red-sequence galaxy populations: insights from hydrodynamical simulations and semi-analytical models

    NASA Astrophysics Data System (ADS)

    Romeo, A. D.; Kang, Xi; Contini, E.; Sommer-Larsen, J.; Fassbender, R.; Napolitano, N. R.; Antonuccio-Delogu, V.; Gavignaud, I.

    2015-09-01

    Context. By means of our own cosmological-hydrodynamical simulation (SIM) and semi-analytical model (SAM), we studied galaxy population properties in clusters and groups, spanning over ten different bands from the ultraviolet to the near-infrared (NIR), and their evolution since redshift z = 2. Aims: We compare our results in terms of red/blue galaxy fractions and of the luminous-to-faint ratio (LFR) on the red sequence (RS) with recent observational data reaching beyond z = 1.5. Methods: Different selection criteria were tested to retrieve the galaxies that effectively belong to the RS: either by their quiescence degree measured from their specific star formation rate (sSFR; the so-called "dead sequence"), or by their position in a colour-colour plane, which is also a function of sSFR. In both cases, the colour cut and the lower limit magnitude thresholds were let to evolve with redshift so that they would follow the natural shift of the characteristic luminosity in the luminosity function (LF). Results: We find that the Butcher-Oemler effect is wavelength-dependent, with the fraction of blue galaxies increasing more steeply in optical-optical than in NIR-optical colours. Moreover, a steep trend in the blue fraction can only be reproduced when an optically fixed luminosity-selected sample is chosen, while the trend flattens when selecting samples by stellar mass or by an evolving magnitude limit. We also find that the RS-LFR behaviour, highly debated in the literature, is strongly dependent on the galaxy selection function: in particular, the very mild evolution that is recovered when using a mass-selected galaxy sample agrees with values reported for some of the highest redshift-confirmed (proto)clusters. For differences that are attributable to environments, we find that normal groups and (to a lesser extent) cluster outskirts present the highest values of both the star-forming fraction and LFR at low z, while fossil groups and cluster cores have the lowest

  5. Vibrations of micro-beams actuated by an electric field via Parameter Expansion Method

    NASA Astrophysics Data System (ADS)

    Sedighi, Hamid M.; Shirazi, Kourosh H.

    2013-04-01

    This paper presents a new asymptotic procedure to predict the nonlinear vibrational behavior of micro-beams pre-deformed by an electric field. The nonlinear equation of motion includes both even and odd nonlinearities. A powerful analytical method called Parameter Expansion Method (PEM) is employed to obtain the approximated solution and frequency-amplitude relationship. It is demonstrated that the first two terms in series expansions are sufficient to produce an acceptable solution of mentioned system. The obtained results from numerical methods verify the soundness of the analytical procedure. Finally, the influences of basic parameters on pull-in instability and natural frequency are investigated.

  6. A second-order shock-expansion method applicable to bodies of revolution near zero lift

    NASA Technical Reports Server (NTRS)

    1957-01-01

    A second-order shock-expansion method applicable to bodies of revolution is developed by the use of the predictions of the generalized shock-expansion method in combination with characteristics theory. Equations defining the zero-lift pressure distributions and the normal-force and pitching-moment derivatives are derived. Comparisons with experimental results show that the method is applicable at values of the similarity parameter, the ratio of free-stream Mach number to nose fineness ratio, from about 0.4 to 2.

  7. Computation of determinant expansion coefficients within the graphically contracted function method.

    PubMed

    Gidofalvi, Gergely; Shepard, Ron

    2009-11-30

    Most electronic structure methods express the wavefunction as an expansion of N-electron basis functions that are chosen to be either Slater determinants or configuration state functions. Although the expansion coefficient of a single determinant may be readily computed from configuration state function coefficients for small wavefunction expansions, traditional algorithms are impractical for systems with a large number of electrons and spatial orbitals. In this work, we describe an efficient algorithm for the evaluation of a single determinant expansion coefficient for wavefunctions expanded as a linear combination of graphically contracted functions. Each graphically contracted function has significant multiconfigurational character and depends on a relatively small number of variational parameters called arc factors. Because the graphically contracted function approach expresses the configuration state function coefficients as products of arc factors, a determinant expansion coefficient may be computed recursively more efficiently than with traditional configuration interaction methods. Although the cost of computing determinant coefficients scales exponentially with the number of spatial orbitals for traditional methods, the algorithm presented here exploits two levels of recursion and scales polynomially with system size. Hence, as demonstrated through applications to systems with hundreds of electrons and orbitals, it may readily be applied to very large systems.

  8. A new version of the generalized F-expansion method and its applications

    NASA Astrophysics Data System (ADS)

    Pandir, Yusuf; Turhan, Nail

    2017-01-01

    In this study, a new version of the generalized F-expansion method is suggested to search exact solutions of nonlinear partial differential equations. We find many new and interesting results for Korteweg-de Vries(KdV) equation by use of the proposed method. The solutions acquired from the proposed method are single and combined non-degenerate Jacobi elliptic function solutions. The new method allows a more systematic, easiness use of the solution process of nonlinear equations.

  9. Semi-analytical models of CO2 Injection into Deep Saline Aquifers: evaluation of the area of review and leakage through abandoned wells

    NASA Astrophysics Data System (ADS)

    Kraemer, S.; Digiulio, D.; Levine, A.

    2008-12-01

    This presentation will provide a conceptual preview of an Area of Review (AoR) tool being developed by EPA's Office of Research and Development that applies analytic and semi-analytical mathematical solutions to elucidate potential risks associated with geologic sequestration of carbon dioxide into deep saline subsurface formations. These solutions can be applied to commercial scale injections of supercritical CO2 and enable the zone of influence and potential endangerment to be mapped, thereby helping to delineate the AoR. We anticipate implementing the semi-analytical solutions into an open source computer modeling framework. The major risks to be evaluated by the AoR tool include: induced subsurface pressures that may force native saline waters into an underground source of drinking water (USDW), and the potential transport of CO2 away from the injection center and out of the receiving zone. Both of these phenomena are influenced by leakage and compromises of the sealing layers, such as presented by abandoned wells or other subsurface penetrations. The semi-analytical solutions will be tested against numerical solutions (TOUGH2/ECO2N) and field data associated with the Kimberlina test injection site near Bakersfield, CA. The AoR tool will be used to simulate a hypothetical commercial scale injection and to evaluate if existing or potential USDW aquifers may be adversely impacted by short-term or long-term geologic sequestration activities. The AoR tool will be useful for permit applicants and regulators evaluating potential exposure and risks associated with geoequestration under the Underground Injection Control (UIC) program. This project will benefit from partnerships with Lawrence Berkeley National Laboratory and Princeton University.

  10. Semi-analytical modeling of the coupled strain and low-temperature dependence of the normal-state resistivity in Nb3Sn

    NASA Astrophysics Data System (ADS)

    Yang, Lin; Ding, He; Zhang, Xin; Qiao, Li

    2017-03-01

    A semi-analytical modeling framework on the microscopic basis is proposed in this paper to predict the low-temperature transport properties of strained Nb3Sn superconductors. The theoretical predictions agree well with experimental observations, which indicate that the competitions between the strain state-dependent variations in the phonon spectrum and the electron density of states (DOS) are an important consideration in interpreting the coupled low temperature-strain sensitivity of resistivity in superconducting Nb3Sn. The model is helpful for identifying the scaling law describing the anomalies in the strain dependence of superconducting critical properties of Nb3Sn conductors.

  11. Tests of a Semi-Analytical Case 1 and Gelbstoff Case 2 SeaWiFS Algorithm with a Global Data Set

    NASA Technical Reports Server (NTRS)

    Carder, Kendall L.; Hawes, Steve K.; Lee, Zhongping

    1997-01-01

    A semi-analytical algorithm was tested with a total of 733 points of either unpackaged or packaged-pigment data, with corresponding algorithm parameters for each data type. The 'unpackaged' type consisted of data sets that were generally consistent with the Case 1 CZCS algorithm and other well calibrated data sets. The 'packaged' type consisted of data sets apparently containing somewhat more packaged pigments, requiring modification of the absorption parameters of the model consistent with the CalCOFI study area. This resulted in two equally divided data sets. A more thorough scrutiny of these and other data sets using a semianalytical model requires improved knowledge of the phytoplankton and gelbstoff of the specific environment studied. Since the semi-analytical algorithm is dependent upon 4 spectral channels including the 412 nm channel, while most other algorithms are not, a means of testing data sets for consistency was sought. A numerical filter was developed to classify data sets into the above classes. The filter uses reflectance ratios, which can be determined from space. The sensitivity of such numerical filters to measurement resulting from atmospheric correction and sensor noise errors requires further study. The semi-analytical algorithm performed superbly on each of the data sets after classification, resulting in RMS1 errors of 0.107 and 0.121, respectively, for the unpackaged and packaged data-set classes, with little bias and slopes near 1.0. In combination, the RMS1 performance was 0.114. While these numbers appear rather sterling, one must bear in mind what mis-classification does to the results. Using an average or compromise parameterization on the modified global data set yielded an RMS1 error of 0.171, while using the unpackaged parameterization on the global evaluation data set yielded an RMS1 error of 0.284. So, without classification, the algorithm performs better globally using the average parameters than it does using the unpackaged

  12. Optimal Query Expansion (QE) Processing Methods with Semantically Encoded Structured Thesauri Terminology.

    ERIC Educational Resources Information Center

    Greenberg, Jane

    2001-01-01

    Explores what might be the optimal query expansion (QE) processing method with semantically coded thesauri. Examines whether QE via semantically coded thesauri terminology is more effective in the "automatic" or "interactive" processing environment. Results revealed that synonyms and partial synonyms and narrower terms are…

  13. Exact solutions of some fractional differential equations by various expansion methods

    NASA Astrophysics Data System (ADS)

    Topsakal, Muammer; Guner, Ozkan; Bekir, Ahmet; Unsal, Omer

    2016-10-01

    In this paper, we construct the exact solutions of some nonlinear spacetime fractional differential equations involving modified Riemann-Liouville derivative in mathematical physics and applied mathematics; namely the fractional modified Benjamin-Bona- Mahony (mBBM) and Kawahara equations by using G'/G and (G'/G, 1/G)-expansion methods.

  14. The new semi-analytic code GalICS 2.0 - reproducing the galaxy stellar mass function and the Tully-Fisher relation simultaneously

    NASA Astrophysics Data System (ADS)

    Cattaneo, A.; Blaizot, J.; Devriendt, J. E. G.; Mamon, G. A.; Tollet, E.; Dekel, A.; Guiderdoni, B.; Kucukbas, M.; Thob, A. C. R.

    2017-10-01

    GalICS 2.0 is a new semi-analytic code to model the formation and evolution of galaxies in a cosmological context. N-body simulations based on a Planck cosmology are used to construct halo merger trees, track subhaloes, compute spins and measure concentrations. The accretion of gas on to galaxies and the morphological evolution of galaxies are modelled with prescriptions derived from hydrodynamic simulations. Star formation and stellar feedback are described with phenomenological models (as in other semi-analytic codes). GalICS 2.0 computes rotation speeds from the gravitational potential of the dark matter, the disc and the central bulge. As the rotation speed depends not only on the virial velocity but also on the ratio of baryons to dark matter within a galaxy, our calculation predicts a different Tully-Fisher relation from models in which vrot ∝ vvir. This is why, GalICS 2.0 is able to reproduce the galaxy stellar mass function and the Tully-Fisher relation simultaneously. Our results are also in agreement with halo masses from weak lensing and satellite kinematics, gas fractions, the relation between star formation rate (SFR) and stellar mass, the evolution of the cosmic SFR density, bulge-to-disc ratios, disc sizes and the Faber-Jackson relation.

  15. Bridging the gap between global models and full fluid models: a fast 1D semi-analytical fluid model for electronegative plasmas

    NASA Astrophysics Data System (ADS)

    Hurlbatt, A.; O'Connell, D.; Gans, T.

    2016-08-01

    Analytical and numerical models allow investigation of complicated discharge phenomena and the interplay that makes plasmas such a complex environment. Global models are quick to implement and can have almost negligible computation cost, but provide only bulk or spatially averaged values. Full fluid models take longer to develop, and can take days to solve, but provide accurate spatio-temporal profiles of the whole plasma. The work presented here details a different type of model, analytically similar to fluid models, but computationally closer to a global model, and able to give spatially resolved solutions for the challenging environment of electronegative plasmas. Included are non-isothermal electrons, gas heating, and coupled neutral dynamics. Solutions are reached in seconds to minutes, and spatial profiles are given for densities, fluxes, and temperatures. This allows the semi-analytical model to fill the gap that exists between global and full fluid models, extending the tools available to researchers. The semi-analytical model can perform broad parameter sweeps that are not practical with more computationally expensive models, as well as exposing non-trivial trends that global models cannot capture. Examples are given for a low pressure oxygen CCP. Excellent agreement is shown with a full fluid model, and comparisons are drawn with the corresponding global model.

  16. PROBING THE ROLE OF DYNAMICAL FRICTION IN SHAPING THE BSS RADIAL DISTRIBUTION. I. SEMI-ANALYTICAL MODELS AND PRELIMINARY N-BODY SIMULATIONS

    SciTech Connect

    Miocchi, P.; Lanzoni, B.; Ferraro, F. R.; Dalessandro, E.; Alessandrini, E.; Vesperini, E.

    2015-01-20

    We present semi-analytical models and simplified N-body simulations with 10{sup 4} particles aimed at probing the role of dynamical friction (DF) in determining the radial distribution of blue straggler stars (BSSs) in globular clusters. The semi-analytical models show that DF (which is the only evolutionary mechanism at work) is responsible for the formation of a bimodal distribution with a dip progressively moving toward the external regions of the cluster. However, these models fail to reproduce the formation of the long-lived central peak observed in all dynamically evolved clusters. The results of N-body simulations confirm the formation of a sharp central peak, which remains as a stable feature over time regardless of the initial concentration of the system. In spite of noisy behavior, a bimodal distribution forms in many cases, with the size of the dip increasing as a function of time. In the most advanced stages, the distribution becomes monotonic. These results are in agreement with the observations. Also, the shape of the peak and the location of the minimum (which, in most of cases, is within 10 core radii) turn out to be consistent with observational results. For a more detailed and close comparison with observations, including a proper calibration of the timescales of the dynamical processes driving the evolution of the BSS spatial distribution, more realistic simulations will be necessary.

  17. The (G'/G)-expansion method for the nonlinear time fractional differential equations

    NASA Astrophysics Data System (ADS)

    Unsal, Omer; Guner, Ozkan; Bekir, Ahmet; Cevikel, Adem C.

    2017-01-01

    In this paper, we obtain exact solutions of two time fractional differential equations using Jumarie's modified Riemann-Liouville derivative which is encountered in mathematical physics and applied mathematics; namely (3 + 1)-dimensional time fractional KdV-ZK equation and time fractional ADR equation by using fractional complex transform and (G/'G )-expansion method. It is shown that the considered transform and method are very useful in solving nonlinear fractional differential equations.

  18. Analytical solutions with the improved (G’/G)-expansion method for nonlinear evolution equations

    NASA Astrophysics Data System (ADS)

    Kaplan, Melike; Bekir, Ahmet; Akbulut, Arzu

    2016-10-01

    To seek the exact solutions of nonlinear partial differential equations (NPDEs), the improved (G'/G)-expansion method is proposed in the present work. With the aid of symbolic computation, this effective method is applied to construct exact solutions of the (1+1)-dimensional nonlinear dispersive modified Benjamin-Bona-Mahony equation and (3+1)- dimensional Kudryashov-Sinelshchikov equation. As a result, new types of exact solutions are obtained.

  19. A general method for the detection of large CAG repeat expansions by fluorescent PCR.

    PubMed Central

    Warner, J P; Barron, L H; Goudie, D; Kelly, K; Dow, D; Fitzpatrick, D R; Brock, D J

    1996-01-01

    The expansion of a tandemly repeated trinucleotide sequence, CAG, is the mutational mechanism for several human genetic diseases. We present a generally applicable PCR amplification method using a fluorescently labelled locus specific primer flanking the CAG repeat together with paired primers amplifying from multiple priming sites within the CAG repeat. Triplet repeat primed PCR (TP PCR) gives a characteristic ladder on the fluorescence trace enabling the rapid identification of large pathogenetic CAG repeats that cannot be amplified using flanking primers. We used our method to test a cohort of 183 people from myotonic dystrophy families including unaffected subjects and spouses. Eighty five clinically affected subjects with expanded alleles on Southern blot analysis were all correctly identified by TP PCR. This method is applicable for any human diseases involving CAG repeat expansions. Images PMID:9004136

  20. Fast convolution method and its application in mask optimization for intensity calculation using basis expansion.

    PubMed

    Sun, Yaping; Zhang, Jinyu; Wang, Yan; Yu, Zhiping

    2014-12-01

    Finer grid representation is required for a more accurate description of mask patterns in inverse lithography techniques, thus resulting in a large-size mask representation and heavy computational cost. To mitigate the computation problem caused by intensive convolutions in mask optimization, a new method called convolution using basis expansion (CBE) is discussed in this paper. Matrices defined in fine grid are projected on coarse gird under a base matrix set. The new matrices formed by the expansion coefficients are used to perform convolution on the coarse grid. The convolution on fine grid can be approximated by the sum of a few convolutions on coarse grid following an interpolation procedure. The CBE is verified by random matrix convolutions and intensity calculation in lithography simulation. Results show that the use of the CBE method results in similar image quality with significant running speed enhancement compared with traditional convolution method.

  1. A robust and efficient stepwise regression method for building sparse polynomial chaos expansions

    NASA Astrophysics Data System (ADS)

    Abraham, Simon; Raisee, Mehrdad; Ghorbaniasl, Ghader; Contino, Francesco; Lacor, Chris

    2017-03-01

    Polynomial Chaos (PC) expansions are widely used in various engineering fields for quantifying uncertainties arising from uncertain parameters. The computational cost of classical PC solution schemes is unaffordable as the number of deterministic simulations to be calculated grows dramatically with the number of stochastic dimension. This considerably restricts the practical use of PC at the industrial level. A common approach to address such problems is to make use of sparse PC expansions. This paper presents a non-intrusive regression-based method for building sparse PC expansions. The most important PC contributions are detected sequentially through an automatic search procedure. The variable selection criterion is based on efficient tools relevant to probabilistic method. Two benchmark analytical functions are used to validate the proposed algorithm. The computational efficiency of the method is then illustrated by a more realistic CFD application, consisting of the non-deterministic flow around a transonic airfoil subject to geometrical uncertainties. To assess the performance of the developed methodology, a detailed comparison is made with the well established LAR-based selection technique. The results show that the developed sparse regression technique is able to identify the most significant PC contributions describing the problem. Moreover, the most important stochastic features are captured at a reduced computational cost compared to the LAR method. The results also demonstrate the superior robustness of the method by repeating the analyses using random experimental designs.

  2. ZFITTER: a semi-analytical program for fermion pair production in ee annihilation, from version 6.21 to version 6.42

    NASA Astrophysics Data System (ADS)

    Arbuzov, A. B.; Awramik, M.; Czakon, M.; Freitas, A.; Grünewald, M. W.; Mönig, K.; Riemann, S.; Riemann, T.

    2006-05-01

    ZFITTER is a Fortran program for the calculation of fermion pair production and radiative corrections at high energy ee colliders; it is also suitable for other applications where electroweak radiative corrections appear. ZFITTER is based on a semi-analytical approach to the calculation of radiative corrections in the Standard Model. We present a summary of new features of the ZFITTER program version 6.42 compared to version 6.21. The most important additions are: (i) some higher-order QED corrections to fermion pair production, (ii) electroweak one-loop corrections to atomic parity violation, (iii) electroweak one-loop corrections to νν production, (iv) electroweak two-loop corrections to the W boson mass and the effective weak mixing angle. Program summaryTitle of program:ZFITTER version 6.42 (18 May 2005) Catalogue identifier:ADMJ_v2_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADMJ_v2_0 Authors of original program: D. Bardin, P. Christova, M. Jack, L. Kalinovskaya, A. Olshevski, S. Riemann, T. Riemann Program obtainable from: CPC Program Library, Queen's University of Belfast, N. Ireland Reference for ZFITTER version 6.21: D. Bardin et al., Comput. Phys. Comm. 133 (2001) 229-395 Operating system:UNIX/LINUX, program tested under, e.g., HP-UX and PC/Linux Programming language used:FORTRAN 77 High speed storage required: <2 MB No. of lines in distributed program, including test data, etc.:29 164 No. of bytes in distributed program, including test data, etc.:185 824 Distribution format:tar.gz Does the new version supersede the previous version:Yes Nature of the physical problem: Fermion pair production is an important reaction for precision tests of the Standard Model, at LEP/SLC and future linear colliders at higher energies. For this purpose, QED, electroweak and QCD radiative corrections have to be calculated with high precision, including higher order effects. Multi parameter fits used to extract model parameters from experimental measurements

  3. Comparison of Two Different PCR-based Methods for Detection of GAA Expansions in Frataxin Gene.

    PubMed

    Entezam, Mona; Amirfiroozi, Akbar; Togha, Mansoureh; Keramatipour, Mohammad

    2017-02-01

    Expansion of GAA trinucleotide repeats is the molecular basis of Friedreich's ataxia (FRDA). Precise detection of the GAA expansion repeat in frataxin gene has always been a challenge. Different molecular methods have been suggested for detection of GAA expansion, including; short-PCR, long-PCR, Triplet repeat primed-PCR (TP-PCR) and southern blotting. The aim of study was to evaluate two PCR-based methods, TP-PCR and long-PCR, and to explore the use of TP-PCR accompanying with long-PCR for accurate genotyping of FRDA patients. Blood samples were collected from six Iranian patients suspected to FRDA, who referred to the Department of Medical Genetics at Tehran University of Medical Sciences during the year 2014. For one of these patients' four asymptomatic members of the family were also recruited for the analysis. DNA extraction was performed by two different methods. TP-PCR and long-PCR were carried out in all samples. The type of this study is assessment / investigation of methods. Using a combination of the above methods, the genotypes of all samples were confirmed as five homozygous mutants (expanded GAA repeats), two heterozygous and three homozygous normal (normal repeat size). The results obtained by TP-PCR are consistent with long-PCR results. The presence or absence of expanded alleles can be identified correctly by TP-PCR. Performing long-PCR and Fluorescent-long-PCR enables accurate genotyping in all samples. This approach is highly reliable. It could be successfully used for detection of GAA expansion repeats.

  4. Applicability of the polynomial chaos expansion method for personalization of a cardiovascular pulse wave propagation model.

    PubMed

    Huberts, W; Donders, W P; Delhaas, T; van de Vosse, F N

    2014-12-01

    Patient-specific modeling requires model personalization, which can be achieved in an efficient manner by parameter fixing and parameter prioritization. An efficient variance-based method is using generalized polynomial chaos expansion (gPCE), but it has not been applied in the context of model personalization, nor has it ever been compared with standard variance-based methods for models with many parameters. In this work, we apply the gPCE method to a previously reported pulse wave propagation model and compare the conclusions for model personalization with that of a reference analysis performed with Saltelli's efficient Monte Carlo method. We furthermore differentiate two approaches for obtaining the expansion coefficients: one based on spectral projection (gPCE-P) and one based on least squares regression (gPCE-R). It was found that in general the gPCE yields similar conclusions as the reference analysis but at much lower cost, as long as the polynomial metamodel does not contain unnecessary high order terms. Furthermore, the gPCE-R approach generally yielded better results than gPCE-P. The weak performance of the gPCE-P can be attributed to the assessment of the expansion coefficients using the Smolyak algorithm, which might be hampered by the high number of model parameters and/or by possible non-smoothness in the output space.

  5. Evaluation of the Fokker-Planck probability by Asymptotic Taylor Expansion Method

    NASA Astrophysics Data System (ADS)

    Firat, Kenan; Ozer, Okan

    2017-02-01

    The one-dimensional Fokker-Planck equation is solved by the Asymptotic Taylor Expansion Method for the time-dependent probability density of a particle. Using an ansatz wave function, one obtains the series expansion of the solution for the Schrödinger and it allows one to find out the eigen functions and eigen energies of the states to the evaluation of the probability. The eigen energies of some certain kind of Bistable potentials are calculated for some certain potential parameters. The probability function is determined and graphed for potential parameters. The numerical results are compared with existing literature, and a conclusion about the advantages and disadvantages on the method is given.

  6. Development of Generation-Transmission Expansion Planning Method Based on a Hierarchical Model

    NASA Astrophysics Data System (ADS)

    Fukutome, Suguru; Azuma, Hitoshi; Honjou, Nobuyuki; Chen, Luonan

    Generation expansion planning and transmission planning are strongly related. It is increasingly demanded in power industry to optimize such a generation-transmission planning so that whole power system can be operated in a more economic and reliable manner. So far most of existing methods are to either solve generation expansion planning or transmission planning due to the computational burdens, in particular for a large-scale system, and also there are no commercial packages available to solve such a problem directly. In this paper, we propose a bi-level model that divides the original problem into a master problem and two sub-problems. Optimization for such bi-level model is facilitated by using the long-term nodal marginal costs, which is acted as economic signals for the master problem and the sub-problems. To demonstrate the proposed method, we adopt several test systems, which verify the effectiveness of the proposed algorithm.

  7. Application of the (G'/G)-expansion method to nonlinear blood flow in large vessels

    NASA Astrophysics Data System (ADS)

    Kol, Guy Richard; Bertrand Tabi, Conrad

    2011-04-01

    As is widely known today, Navier-Stokes equations are used to describe blood flow in large vessels. In the past several decades, and even in very recent works, these equations have been reduced to Korteweg-de Vries (KdV), modified KdV or Boussinesq equations. In this paper, we avoid such simplifications and investigate the analytical traveling wave solutions of the one-dimensional generic Navier-Stokes equations, through the (G ' /G)-expansion method. These traveling wave solutions include hyperbolic functions, trigonometric functions and rational functions. Since some of them are not yet explored in the study of blood flow, we pay attention to hyperbolic function solutions and we show that the (G ' /G)-expansion method presents a wider applicability that allows us to bring out the widely known blood flow behaviors. The biological implications of the found solutions are discussed accordingly.

  8. Summability Methods for Divergent Integrals and Their Applications to Singular Sturm-Liouville Expansions.

    DTIC Science & Technology

    1982-02-26

    Arsenin , V.Y., Solutions of Ill - Posed Problems , V.H. Winston & Sons, Washington, D.C., 1977 . 9. Raphael, L.A., The Stieltjes Summability Method and Summing... Solutions of Ill - Posed Problems , V.H. Winston & Sons, Washington, D.C., 1977 . 14. E.C. Titchmarsh, Eigenfunction Expansions, Part II, Oxford, 1958. 15. V. Ja...national Conference on Ill Posed Problems , to appear. [3] Krukovskii, N.M., On the Tikhonov -Stable

  9. Many-body expansion of the Fock matrix in the fragment molecular orbital method.

    PubMed

    Fedorov, Dmitri G; Kitaura, Kazuo

    2017-09-14

    A many-body expansion of the Fock matrix in the fragment molecular orbital method is derived up to three-body terms for restricted Hartree-Fock and density functional theory in the atomic orbital basis and compared to the expansion in the basis of fragment molecular orbitals (MOs). The physical nature of many-body corrections is revealed in terms of charge transfer terms. An improvement of the fragment MO expansion is proposed by adding exchange to the embedding. The accuracy of all developed methods is demonstrated in comparison to unfragmented results for polyalanines, a water cluster, Trp-cage (PDB: 1L2Y) and crambin (PDB: 1CRN) proteins, a zeolite cluster, a Si nano-wire, and a boron nitride ribbon. The physical nature of metallicity is discussed, and it is shown what kinds of metallic systems can be treated by fragment-based methods. The density of states is calculated for a fully closed and a partially open nano-ring of boron nitride with a diameter of 105 nm.

  10. Many-body expansion of the Fock matrix in the fragment molecular orbital method

    NASA Astrophysics Data System (ADS)

    Fedorov, Dmitri G.; Kitaura, Kazuo

    2017-09-01

    A many-body expansion of the Fock matrix in the fragment molecular orbital method is derived up to three-body terms for restricted Hartree-Fock and density functional theory in the atomic orbital basis and compared to the expansion in the basis of fragment molecular orbitals (MOs). The physical nature of many-body corrections is revealed in terms of charge transfer terms. An improvement of the fragment MO expansion is proposed by adding exchange to the embedding. The accuracy of all developed methods is demonstrated in comparison to unfragmented results for polyalanines, a water cluster, Trp-cage (PDB: 1L2Y) and crambin (PDB: 1CRN) proteins, a zeolite cluster, a Si nano-wire, and a boron nitride ribbon. The physical nature of metallicity is discussed, and it is shown what kinds of metallic systems can be treated by fragment-based methods. The density of states is calculated for a fully closed and a partially open nano-ring of boron nitride with a diameter of 105 nm.

  11. Digital image correlation method for calculating coefficients of Williams expansion in compact tension specimen

    NASA Astrophysics Data System (ADS)

    Ayatollahi, Majid R.; Moazzami, Mostafa

    2017-03-01

    The digital image correlation (DIC) method is used to obtain the coefficients of higher-order terms in the Williams expansion in a compact tension (CT) specimens made of polymethyl methacrylate (PMMA). The displacement field is determined by the correlation between reference image (i.e., before deformation) and deformed image. The part of displacements resulting from rigid body motion and rotation is eliminated from the displacement field. For a large number of points in the vicinity of the crack tip, an over-determined set of simultaneous linear equations is collected, and by using the fundamental concepts of the least-squares method, the coefficients of the Williams expansion are calculated for pure mode I conditions. The experimental results are then compared with the numerical results calculated by finite element method (FEM). Very good agreement is shown to exist between the DIC and FE results confirming the effectiveness of the DIC technique in obtaining the coefficients of higher order terms of Williams series expansion from the displacement field around the crack tip.

  12. A generalized (GG)-expansion method for the mKdV equation with variable coefficients

    NASA Astrophysics Data System (ADS)

    Zhang, Sheng; Tong, Jing-Lin; Wang, Wei

    2008-03-01

    In this Letter, a generalized (G/G)-expansion method is proposed to seek exact solutions of nonlinear evolution equations. Being concise and straightforward, this method is applied to the mKdV equation with variable coefficients. As a result, hyperbolic function solution, trigonometric function solution and rational solution with parameters are obtained. When the parameters are taken as special values, two known kink-type solitary wave solutions are derived from the hyperbolic function solution. It is shown that the proposed method is direct, effective and can be used for many other nonlinear evolution equations in mathematical physics.

  13. New Generalized (G‧/G)-expansion Method to the Zhiber-Shabat Equation and Liouville Equations

    NASA Astrophysics Data System (ADS)

    Naher, Hasibun; Aini Abdullah, Farah

    2017-09-01

    This paper presents the implementation of the new extended -expansion method to the Zhiber-Shabat equation and the Liouville equation. Using this method, a variety of explicit travelling wave solutions has been generated. Results also show that the obtained solutions are exclusively new and, the implemented scheme has significant improvement against other methods. Finally, the work presents here the profound implications for future studies of nonlinear evolution equations in visualizing the dynamics of the equations and may help to describe physical phenomena in mathematical physics.

  14. An improved method for design of expansion-chamber mufflers with application to an operational helicopter

    NASA Technical Reports Server (NTRS)

    Parrott, T. L.

    1973-01-01

    An improved method for the design of expansion-chamber mufflers is described and applied to the task of reducing exhaust noise generated by a helicopter. The method is an improvement of standard transmission-line theory in that it accounts for the effect of the mean exhaust-gas flow on the acoustic-transmission properties of a muffler system, including the termination boundary condition. The method has been computerized, and the computer program includes an optimization procedure that adjusts muffler component lengths to achieve a minimum specified desired transmission loss over a specified frequency range. A printout of the program is included together with a user-oriented description.

  15. A corrected particle method with high-order Taylor expansion for solving the viscoelastic fluid flow

    NASA Astrophysics Data System (ADS)

    Jiang, T.; Ren, J. L.; Lu, W. G.; Xu, B.

    2016-12-01

    In this paper, a corrected particle method based on the smoothed particle hydrodynamics (SPH) method with high-order Taylor expansion (CSPH-HT) for solving the viscoelastic flow is proposed and investigated. The validity and merits of the CSPH-HT method are first tested by solving the nonlinear high order Kuramoto-Sivishinsky equation and simulating the drop stretching, respectively. Then the flow behaviors behind two stationary tangential cylinders of polymer melt, which have been received little attention, are investigated by the CSPH-HT method. Finally, the CSPH-HT method is extended to the simulation of the filling process of the viscoelastic fluid. The numerical results show that the CSPH-HT method possesses higher accuracy and stability than other corrected SPH methods and is more reliable than other corrected SPH methods.

  16. A corrected particle method with high-order Taylor expansion for solving the viscoelastic fluid flow

    NASA Astrophysics Data System (ADS)

    Jiang, T.; Ren, J. L.; Lu, W. G.; Xu, B.

    2017-02-01

    In this paper, a corrected particle method based on the smoothed particle hydrodynamics (SPH) method with high-order Taylor expansion (CSPH-HT) for solving the viscoelastic flow is proposed and investigated. The validity and merits of the CSPH-HT method are first tested by solving the nonlinear high order Kuramoto-Sivishinsky equation and simulating the drop stretching, respectively. Then the flow behaviors behind two stationary tangential cylinders of polymer melt, which have been received little attention, are investigated by the CSPH-HT method. Finally, the CSPH-HT method is extended to the simulation of the filling process of the viscoelastic fluid. The numerical results show that the CSPH-HT method possesses higher accuracy and stability than other corrected SPH methods and is more reliable than other corrected SPH methods.

  17. Three-dimensional benchmark for variable-density flow and transport simulation: matching semi-analytic stability modes for steady unstable convection in an inclined porous box

    USGS Publications Warehouse

    Voss, Clifford I.; Simmons, Craig T.; Robinson, Neville I.

    2010-01-01

    This benchmark for three-dimensional (3D) numerical simulators of variable-density groundwater flow and solute or energy transport consists of matching simulation results with the semi-analytical solution for the transition from one steady-state convective mode to another in a porous box. Previous experimental and analytical studies of natural convective flow in an inclined porous layer have shown that there are a variety of convective modes possible depending on system parameters, geometry and inclination. In particular, there is a well-defined transition from the helicoidal mode consisting of downslope longitudinal rolls superimposed upon an upslope unicellular roll to a mode consisting of purely an upslope unicellular roll. Three-dimensional benchmarks for variable-density simulators are currently (2009) lacking and comparison of simulation results with this transition locus provides an unambiguous means to test the ability of such simulators to represent steady-state unstable 3D variable-density physics.

  18. ZFITTER: A Semi-analytical program for fermion pair production in e+ e- annihilation, from version 6.21 to version 6.42

    SciTech Connect

    Arbuzov, A.B.; Awramik, M.; Czakon, M.; Freitas, A.; Grunewald, M.W.; Monig, K.; Riemann, S.; Riemann, T.; /Dubna, JINR /DESY, Zeuthen /Cracow, INP /Wurzburg U. /Silesia U. /Fermilab /University Coll., Dublin

    2005-07-01

    ZFITTER is a Fortran program for the calculation of fermion pair production and radiative corrections at high energy e{sup +}e{sup -} colliders; it is also suitable for other applications where electroweak radiative corrections appear. ZFITTER is based on a semi-analytical approach to the calculation of radiative corrections in the Standard Model. They present a summary of new features of the ZFITTER program version 6.42 compared to version 6.21. The most important additions are: (1) some higher-order QED corrections to fermion pair production, (2) electroweak one-loop corrections to atomic parity violation, (3) electroweak one-loop corrections to {bar {nu}}{sub e}{nu}{sub e} production, (4) electroweak two-loop corrections to the W boson mass and the effective weak mixing angle.

  19. GWSCREEN: A semi-analytical model for assessment of the groundwater pathway from surface or buried contamination: Theory and user`s manual

    SciTech Connect

    Rood, A.S.

    1992-03-01

    GWSCREEN was developed for assessment of the groundwater pathway from leaching of radioactive and non radioactive substances from surface or buried sources. The code was designed for implementation in the Track 1 and Track 2 assessment of Comprehensive Environmental Response, Compensation and Liability Act (CERCLA) sites identified as low probability hazard at the Idaho National Engineering Laboratory (DOE, 1991). The code calculates the limiting soil concentration such that regulatory contaminant levels in groundwater are not exceeded. The code uses a mass conservation approach to model three processes: Contaminant release from a source volume, contaminant transport in the unsaturated zone, and contaminant transport in the saturated zone. The source model considers the sorptive properties and solubility of the contaminant. Transport in the unsaturated zone is described by a plug flow model. Transport in the saturated zone is calculated with a semi-analytical solution to the advection dispersion equation for transient mass flux input.

  20. GWSCREEN: A semi-analytical model for assessment of the groundwater pathway from surface or buried contamination: Theory and user's manual

    SciTech Connect

    Rood, A.S.

    1992-03-01

    GWSCREEN was developed for assessment of the groundwater pathway from leaching of radioactive and non radioactive substances from surface or buried sources. The code was designed for implementation in the Track 1 and Track 2 assessment of Comprehensive Environmental Response, Compensation and Liability Act (CERCLA) sites identified as low probability hazard at the Idaho National Engineering Laboratory (DOE, 1991). The code calculates the limiting soil concentration such that regulatory contaminant levels in groundwater are not exceeded. The code uses a mass conservation approach to model three processes: Contaminant release from a source volume, contaminant transport in the unsaturated zone, and contaminant transport in the saturated zone. The source model considers the sorptive properties and solubility of the contaminant. Transport in the unsaturated zone is described by a plug flow model. Transport in the saturated zone is calculated with a semi-analytical solution to the advection dispersion equation for transient mass flux input.

  1. Developing a semi-analytical algorithm to estimate particulate organic carbon (POC) levels in inland eutrophic turbid water based on MERIS images: A case study of Lake Taihu

    NASA Astrophysics Data System (ADS)

    Lyu, Heng; Wang, Yannan; Jin, Qi; Shi, Lei; Li, Yunmei; Wang, Qiao

    2017-10-01

    Particulate organic carbon (POC) plays an important role in the carbon cycle in water due to its biological pump process. In the open ocean, algorithms can accurately estimate the surface POC concentration. However, no suitable POC-estimation algorithm based on MERIS bands is available for inland turbid eutrophic water. A total of 228 field samples were collected from Lake Taihu in different seasons between 2013 and 2015. At each site, the optical parameters and water quality were analyzed. Using in situ data, it was found that POC-estimation algorithms developed for the open ocean and coastal waters using remote sensing reflectance were not suitable for inland turbid eutrophic water. The organic suspended matter (OSM) concentration was found to be the best indicator of the POC concentration, and POC has an exponential relationship with the OSM concentration. Through an analysis of the POC concentration and optical parameters, it was found that the absorption peak of total suspended matter (TSM) at 665 nm was the optimum parameter to estimate POC. As a result, MERIS band 7, MERIS band 10 and MERIS band 12 were used to derive the absorption coefficient of TSM at 665 nm, and then, a semi-analytical algorithm was used to estimate the POC concentration for inland turbid eutrophic water. An accuracy assessment showed that the developed semi-analytical algorithm could be successfully applied with a MAPE of 31.82% and RMSE of 2.68 mg/L. The developed algorithm was successfully applied to a MERIS image, and two full-resolution MERIS images, acquired on August 13, 2010, and December 7, 2010, were used to map the POC spatial distribution in Lake Taihu in summer and winter.

  2. A Semi-Analytical Solution for Large-Scale Injection-Induced PressurePerturbation and Leakage in a Laterally Bounded Aquifer-AquitardSystem

    SciTech Connect

    Zhou, Quanlin; Birkholzer, Jens T.; Tsang, Chin-Fu

    2008-07-15

    A number of (semi-)analytical solutions are available to drawdown analysis and leakage estimation of shallow aquifer-aquitard systems. These solutions assume that the systems are laterally infinite. When a large-scale pumping from (or injection into) an aquifer-aquitard system of lower specific storativity occurs, induced pressure perturbation (or hydraulic head drawdown/rise) may reach the lateral boundary of the aquifer. We developed semi-analytical solutions to address the induced pressure perturbation and vertical leakage in a 'laterally bounded' system consisting of an aquifer and an overlying/underlying aquitard. A one-dimensional radial flow equation for the aquifer was coupled with a one-dimensional vertical flow equation for the aquitard, with a no-flow condition imposed on the outer radial boundary. Analytical solutions were obtained for (1) the Laplace-transform hydraulic head drawdown/rise in the aquifer and in the aquitard, (2) the Laplace-transform rate and volume of leakage through the aquifer-aquitard interface integrated up to an arbitrary radial distance, (3) the transformed total leakage rate and volume for the entire interface, and (4) the transformed horizontal flux at any radius. The total leakage rate and volume depend only on the hydrogeologic properties and thicknesses of the aquifer and aquitard, as well as the duration of pumping or injection. It was proven that the total leakage rate and volume are independent of the aquifer's radial extent and wellbore radius. The derived analytical solutions for bounded systems are the generalized solutions of infinite systems. Laplace-transform solutions were numerically inverted to obtain the hydraulic head drawdown/rise, leakage rate, leakage volume, and horizontal flux for given hydrogeologic and geometric conditions of the aquifer-aquitard system, as well as injection/pumping scenarios. Application to a large-scale injection-and-storage problem in a bounded system was demonstrated.

  3. A Synthesis of Light Absorption Properties of the Arctic Ocean: Application to Semi-analytical Estimates of Dissolved Organic Carbon Concentrations from Space

    NASA Technical Reports Server (NTRS)

    Matsuoka, A.; Babin, M.; Doxaran, D.; Hooker, S. B.; Mitchell, B. G.; Belanger, S.; Bricaud, A.

    2014-01-01

    The light absorption coefficients of particulate and dissolved materials are the main factors determining the light propagation of the visible part of the spectrum and are, thus, important for developing ocean color algorithms. While these absorption properties have recently been documented by a few studies for the Arctic Ocean [e.g., Matsuoka et al., 2007, 2011; Ben Mustapha et al., 2012], the datasets used in the literature were sparse and individually insufficient to draw a general view of the basin-wide spatial and temporal variations in absorption. To achieve such a task, we built a large absorption database at the pan-Arctic scale by pooling the majority of published datasets and merging new datasets. Our results showed that the total non-water absorption coefficients measured in the Eastern Arctic Ocean (EAO; Siberian side) are significantly higher 74 than in the Western Arctic Ocean (WAO; North American side). This higher absorption is explained 75 by higher concentration of colored dissolved organic matter (CDOM) in watersheds on the Siberian 76 side, which contains a large amount of dissolved organic carbon (DOC) compared to waters off 77 North America. In contrast, the relationship between the phytoplankton absorption (a()) and chlorophyll a (chl a) concentration in the EAO was not significantly different from that in the WAO. Because our semi-analytical CDOM absorption algorithm is based on chl a-specific a() values [Matsuoka et al., 2013], this result indirectly suggests that CDOM absorption can be appropriately erived not only for the WAO but also for the EAO using ocean color data. Derived CDOM absorption values were reasonable compared to in situ measurements. By combining this algorithm with empirical DOC versus CDOM relationships, a semi-analytical algorithm for estimating DOC concentrations for coastal waters at the Pan-Arctic scale is presented and applied to satellite ocean color data.

  4. Babich's expansion and the fast Huygens sweeping method for the Helmholtz wave equation at high frequencies

    NASA Astrophysics Data System (ADS)

    Lu, Wangtao; Qian, Jianliang; Burridge, Robert

    2016-05-01

    In some applications, it is reasonable to assume that geodesics (rays) have a consistent orientation so that the Helmholtz equation can be viewed as an evolution equation in one of the spatial directions. With such applications in mind, starting from Babich's expansion, we develop a new high-order asymptotic method, which we dub the fast Huygens sweeping method, for solving point-source Helmholtz equations in inhomogeneous media in the high-frequency regime and in the presence of caustics. The first novelty of this method is that we develop a new Eulerian approach to compute the asymptotics, i.e. the traveltime function and amplitude coefficients that arise in Babich's expansion, yielding a locally valid solution, which is accurate close enough to the source. The second novelty is that we utilize the Huygens-Kirchhoff integral to integrate many locally valid wavefields to construct globally valid wavefields. This automatically treats caustics and yields uniformly accurate solutions both near the source and remote from it. The third novelty is that the butterfly algorithm is adapted to accelerate the Huygens-Kirchhoff summation, achieving nearly optimal complexity O (Nlog ⁡ N), where N is the number of mesh points; the complexity prefactor depends on the desired accuracy and is independent of the frequency. To reduce the storage of the resulting tables of asymptotics in Babich's expansion, we use the multivariable Chebyshev series expansion to compress each table by encoding the information into a small number of coefficients. The new method enjoys the following desired features. First, it precomputes the asymptotics in Babich's expansion, such as traveltime and amplitudes. Second, it takes care of caustics automatically. Third, it can compute the point-source Helmholtz solution for many different sources at many frequencies simultaneously. Fourth, for a specified number of points per wavelength, it can construct the wavefield in nearly optimal complexity in terms

  5. Stochastic approach to the generalized Schrödinger equation: A method of eigenfunction expansion.

    PubMed

    Tsuchida, Satoshi; Kuratsuji, Hiroshi

    2015-05-01

    Using a method of eigenfunction expansion, a stochastic equation is developed for the generalized Schrödinger equation with random fluctuations. The wave field ψ is expanded in terms of eigenfunctions: ψ=∑(n)a(n)(t)ϕ(n)(x), with ϕ(n) being the eigenfunction that satisfies the eigenvalue equation H(0)ϕ(n)=λ(n)ϕ(n), where H(0) is the reference "Hamiltonian" conventionally called the "unperturbed" Hamiltonian. The Langevin equation is derived for the expansion coefficient a(n)(t), and it is converted to the Fokker-Planck (FP) equation for a set {a(n)} under the assumption of Gaussian white noise for the fluctuation. This procedure is carried out by a functional integral, in which the functional Jacobian plays a crucial role in determining the form of the FP equation. The analyses are given for the FP equation by adopting several approximate schemes.

  6. An Improved ((G'/G))-expansion Method for Solving Nonlinear PDEs in Mathematical Physics

    SciTech Connect

    Zayed, Elsayed M. E.; Al-Joudi, Shorog

    2010-09-30

    In the present article, we construct the traveling wave solutions of the (1+1)-dimensional coupled Hirota-Satsuma-KdV equations and the (1+1)-dimensional variant coupled Boussinesq system of equations by using an improved ((G'/G))-expansion method, where G satisfies the second order linear ordinary differential equation. As a result, hyperbolic, trigonometric and rational function solutions with parameters are obtained. It is shown that the proposed method is direct, effective and can be used for many other nonlinear evolution equations in mathematical physics.

  7. A nodal expansion method for the neutron diffusion equation in cylindrical geometry

    SciTech Connect

    Komlev, O.G.; Suslov, I.R.

    1995-12-31

    A polynomial nodal expansion method (NEM) is applied to solve multigroup diffusion equations in cylindrical R-Z geometry, Fourth-order polynomials are used to approximate one dimensional (1D) transverse integrated fluxes. The special set of the basis functions is used in R-direction. The transverse integrated leakages are approximated by both constant and quadratic polynomials. Preliminary efficiency evaluation of the NEM is carried out for a fast breeder reactor (FBR) model problem. Results indicate computational efficiency of NEM in comparison with finite-difference method (FDM).

  8. A review of recent advances in the spherical harmonics expansion method for semiconductor device simulation.

    PubMed

    Rupp, K; Jungemann, C; Hong, S-M; Bina, M; Grasser, T; Jüngel, A

    The Boltzmann transport equation is commonly considered to be the best semi-classical description of carrier transport in semiconductors, providing precise information about the distribution of carriers with respect to time (one dimension), location (three dimensions), and momentum (three dimensions). However, numerical solutions for the seven-dimensional carrier distribution functions are very demanding. The most common solution approach is the stochastic Monte Carlo method, because the gigabytes of memory requirements of deterministic direct solution approaches has not been available until recently. As a remedy, the higher accuracy provided by solutions of the Boltzmann transport equation is often exchanged for lower computational expense by using simpler models based on macroscopic quantities such as carrier density and mean carrier velocity. Recent developments for the deterministic spherical harmonics expansion method have reduced the computational cost for solving the Boltzmann transport equation, enabling the computation of carrier distribution functions even for spatially three-dimensional device simulations within minutes to hours. We summarize recent progress for the spherical harmonics expansion method and show that small currents, reasonable execution times, and rare events such as low-frequency noise, which are all hard or even impossible to simulate with the established Monte Carlo method, can be handled in a straight-forward manner. The applicability of the method for important practical applications is demonstrated for noise simulation, small-signal analysis, hot-carrier degradation, and avalanche breakdown.

  9. Application of wavelet scaling function expansion continuous-energy resonance calculation method to MOX fuel problem

    SciTech Connect

    Yang, W.; Wu, H.; Cao, L.

    2012-07-01

    More and more MOX fuels are used in all over the world in the past several decades. Compared with UO{sub 2} fuel, it contains some new features. For example, the neutron spectrum is harder and more resonance interference effects within the resonance energy range are introduced because of more resonant nuclides contained in the MOX fuel. In this paper, the wavelets scaling function expansion method is applied to study the resonance behavior of plutonium isotopes within MOX fuel. Wavelets scaling function expansion continuous-energy self-shielding method is developed recently. It has been validated and verified by comparison to Monte Carlo calculations. In this method, the continuous-energy cross-sections are utilized within resonance energy, which means that it's capable to solve problems with serious resonance interference effects without iteration calculations. Therefore, this method adapts to treat the MOX fuel resonance calculation problem natively. Furthermore, plutonium isotopes have fierce oscillations of total cross-section within thermal energy range, especially for {sup 240}Pu and {sup 242}Pu. To take thermal resonance effect of plutonium isotopes into consideration the wavelet scaling function expansion continuous-energy resonance calculation code WAVERESON is enhanced by applying the free gas scattering kernel to obtain the continuous-energy scattering source within thermal energy range (2.1 eV to 4.0 eV) contrasting against the resonance energy range in which the elastic scattering kernel is utilized. Finally, all of the calculation results of WAVERESON are compared with MCNP calculation. (authors)

  10. A comparison of numerical methods for non-Newtonian fluid flows in a sudden expansion

    NASA Astrophysics Data System (ADS)

    Ilio, G. Di; Chiappini, D.; Bella, G.

    2016-06-01

    A numerical study on incompressible laminar flow in symmetric channel with sudden expansion is conducted. In this work, Newtonian and non-Newtonian fluids are considered, where non-Newtonian fluids are described by the power-law model. Three different computational methods are employed, namely a semi-implicit Chorin projection method (SICPM), an explicit algorithm based on fourth-order Runge-Kutta method (ERKM) and a Lattice Boltzmann method (LBM). The aim of the work is to investigate on the capabilities of the LBM for the solution of complex flows through the comparison with traditional computational methods. In the range of Reynolds number investigated, excellent agreement with the literature results is found. In particular, the LBM is found to be accurate in the prediction of the fluid flow behavior for the problem under consideration.

  11. Chasing Exotic Binary Alloy Compounds: The Necessary Synergy of Cluster Expansion and High-Throughput Methods

    NASA Astrophysics Data System (ADS)

    Curtarolo, Stefano; Hart, Gus L. W.; Levy, Ohad

    2010-03-01

    Predicting the stable crystal structures of alloys from their components is a major challenge of current materials research. Ab initio methods explore the phase stability landscape of binary alloys by calculating the formation enthalpies of a large number of structures, and identifying the minima at various component concentrations. Major methods of this type are cluster expansion (CE) and high-throughput ab initio calculations (HT). The CE explores structures on specific types of lattices while the HT method explores experimentally-known structures representing all crystal systems. The CE may find derivative superstructures missed by the HT but is not applicable off-lattice. Combining and reciprocally informing both methods resolve their respective drawbacks. We demonstrate this in a several technologically important Hf, Rh alloy systems. These results emphasize the complementary strengths of the CE and HT methods and the need for using both in searching for new stable compounds in metallic systems.

  12. Midpalatal suture maturation: Classification method for individual assessment before rapid maxillary expansion

    PubMed Central

    Angelieri, Fernanda; Cevidanes, Lucia H. S.; Franchi, Lorenzo; Gonçalves, João R.; Benavides, Erika; McNamara, James A.

    2014-01-01

    Introduction In this study, we present a novel classification method for individual assessment of midpalatal suture morphology. Methods Cone-beam computed tomography images from 140 subjects (ages, 5.6-58.4 years) were examined to define the radiographic stages of midpalatal suture maturation. Five stages of maturation of the midpalatal suture were identified and defined: stage A, straight high-density sutural line, with no or little interdigitation; stage B, scalloped appearance of the high-density sutural line; stage C, 2 parallel, scalloped, high-density lines that were close to each other, separated in some areas by small low-density spaces; stage D, fusion completed in the palatine bone, with no evidence of a suture; and stage E, fusion anteriorly in the maxilla. Intraexaminer and interexaminer agreements were evaluated by weighted kappa tests. Results Stages A and B typically were observed up to 13 years of age, whereas stage C was noted primarily from 11 to 17 years but occasionally in younger and older age groups. Fusion of the palatine (stage D) and maxillary (stage E) regions of the midpalatal suture was completed after 11 years only in girls. From 14 to 17 years, 3 of 13 (23%) boys showed fusion only in the palatine bone (stage D). Conclusions This new classification method has the potential to avoid the side effects of rapid maxillary expansion failure or unnecessary surgically assisted rapid maxillary expansion for late adolescents and young adults. PMID:24182592

  13. On the choice of expansion functions in the Helmholtz equation least-squares method.

    PubMed

    Semenova, Tatiana; Wu, Sean F

    2005-02-01

    This paper examines the performance of Helmholtz equation least-squares (HELS) method in reconstructing acoustic radiation from an arbitrary source by using three different expansions, namely, localized spherical waves (LSW), distributed spherical waves (DSW), and distributed point sources (DPS), under the same set of measurements. The reconstructed acoustic pressures are validated against the benchmark data measured at the same locations as reconstruction points for frequencies up to 3275 Hz. Reconstruction is obtained by using Tikhonov regularization or its modification with the regularization parameter selected by error-free parameter-choice methods. The impact of the number of measurement points on the resultant reconstruction accuracy under different expansion functions is investigated. Results demonstrate that DSW leads to a better-conditioned transfer matrix, yields more accurate reconstruction than both LSW and DPS, and is not affected as much by the change in measurement points. Also, it is possible to obtain optimal locations of the auxiliary sources for DSW, LSW, and DPS by taking an independent layer of measurements. Use of these auxiliary sources and an optimal combination of regularization and error-free parameter choice methods can yield a satisfactory reconstruction of acoustic quantities on the source surfaces as well as in the field in the most cost-effective manner.

  14. Method for fabricating an ultra-low expansion mask blank having a crystalline silicon layer

    DOEpatents

    Cardinale, Gregory F.

    2002-01-01

    A method for fabricating masks for extreme ultraviolet lithography (EUVL) using Ultra-Low Expansion (ULE) substrates and crystalline silicon. ULE substrates are required for the necessary thermal management in EUVL mask blanks, and defect detection and classification have been obtained using crystalline silicon substrate materials. Thus, this method provides the advantages for both the ULE substrate and the crystalline silicon in an Extreme Ultra-Violet (EUV) mask blank. The method is carried out by bonding a crystalline silicon wafer or member to a ULE wafer or substrate and thinning the silicon to produce a 5-10 .mu.m thick crystalline silicon layer on the surface of the ULE substrate. The thinning of the crystalline silicon may be carried out, for example, by chemical mechanical polishing and if necessary or desired, oxidizing the silicon followed by etching to the desired thickness of the silicon.

  15. A spectral element method for fluid dynamics - Laminar flow in a channel expansion

    NASA Technical Reports Server (NTRS)

    Patera, A. T.

    1984-01-01

    A spectral element method that combines the generality of the finite element method with the accuracy of spectral techniques is proposed for the numerical solution of the incompressible Navier-Stokes equations. In the spectral element discretization, the computational domain is broken into a series of elements, and the velocity in each element is represented as a high-order Lagrangian interpolant through Chebyshev collocation points. The hyperbolic piece of the governing equations is then treated with an explicit collocation scheme, while the pressure and viscous contributions are treated implicitly with a projection operator derived from a variational principle. The implementation of the technique is demonstrated on a one-dimensional inflow-outflow advection-diffusion equation, and the method is then applied to laminar two-dimensional (separated) flow in a channel expansion. Comparisons are made with experiment and previous numerical work.

  16. Time-domain incident-field extrapolation technique based on the singularity-expansion method

    SciTech Connect

    Klaasen, J.J.

    1991-05-01

    In this report, a method presented to extrapolate measurements from Nuclear Electromagnetic Pulse (NEMP) assessments directly in the time domain. This method is based on a time-domain extrapolation function which is obtained from the Singularity Expansion Method representation of the measured incident field of the NEMP simulator. Once the time-domain extrapolation function is determined, the responses recorded during an assessment can be extrapolated simply by convolving them with the time domain extrapolation function. It is found that to obtain useful extrapolated responses, the incident field measurements needs to be made minimum phase; otherwise unbounded results can be obtained. Results obtained with this technique are presented, using data from actual assessments.

  17. Two theoretical methods for calculating time-dependent saturation ratio in an expansion cloud chamber

    NASA Astrophysics Data System (ADS)

    Moteki, N.; Kondo, Y.

    2012-12-01

    The expansion cloud chamber is a widely used experimental apparatus among cloud physists. Accurate determination of saturation ratio S in the chamber is necessary for investigating dynamics of cloud droplet growth. We present two rigorous theoretical methods, the differential equation (DE) method and the virtual path (VP) method, for calculating time-dependent S value as a function of accurately measureable time-dependent parameters (i.e., total gas pressure, droplet size). These methods assume the number concentration of condensation nuclei is known a priori. In DE method, the time-dependent S is directly calculated by the numerical integration of the differential equation for S. In VP method, the S value at each timing is estimated from a virtual thermodynamic path on the Skew-T/logP diagram, based on the instantaneous pressure and droplet size. Mathematical formulation (and numerical code) can be simpler in DE method, whereas physical interpretation is much easier in VP method. Confirming numerical agreement between results of the DE and VP methods is a useful way to validate the time-dependent S calculation.

  18. SU-E-J-221: A Novel Expansion Method for MRI Based Target Delineation in Prostate Radiotherapy

    SciTech Connect

    Ruiz, B; Feng, Y; Shores, R; Fung, C

    2015-06-15

    Purpose: To compare a novel bladder/rectum carveout expansion method on MRI delineated prostate to standard CT and expansion based methods for maintaining prostate coverage while providing superior bladder and rectal sparing. Methods: Ten prostate cases were planned to include four trials: MRI vs CT delineated prostate/proximal seminal vesicles, and each image modality compared to both standard expansions (8mm 3D expansion and 5mm posterior, i.e. ∼8mm) and carveout method expansions (5mm 3D expansion, 4mm posterior for GTV-CTV excluding expansion into bladder/rectum followed by additional 5mm 3D expansion to PTV, i.e. ∼1cm). All trials were planned to total dose 7920 cGy via IMRT. Evaluation and comparison was made using the following criteria: QUANTEC constraints for bladder/rectum including analysis of low dose regions, changes in PTV volume, total control points, and maximum hot spot. Results: ∼8mm MRI expansion consistently produced the most optimal plan with lowest total control points and best bladder/rectum sparing. However, this scheme had the smallest prostate (average 22.9% reduction) and subsequent PTV volume, consistent with prior literature. ∼1cm MRI had an average PTV volume comparable to ∼8mm CT at 3.79% difference. Bladder QUANTEC constraints were on average less for the ∼1cm MRI as compared to the ∼8mm CT and observed as statistically significant with 2.64% reduction in V65. Rectal constraints appeared to follow the same trend. Case-by-case analysis showed variation in rectal V30 with MRI delineated prostate being most favorable regardless of expansion type. ∼1cm MRI and ∼8mm CT had comparable plan quality. Conclusion: MRI delineated prostate with standard expansions had the smallest PTV leading to margins that may be too tight. Bladder/rectum carveout expansion method on MRI delineated prostate was found to be superior to standard CT based methods in terms of bladder and rectal sparing while maintaining prostate coverage

  19. A semi-analytical solution for flow due to streambed recharge to an unconfined aquifer with considering unsaturated flow

    NASA Astrophysics Data System (ADS)

    Chia-Hao, C.; Yeh, H. D.

    2016-12-01

    Previous models for groundwater recharge or infiltration problems considered either saturated flow or unsaturated flow in unconfined aquifers. However, it is expected that the recharge /infiltration has substantial effects on the hydraulic head in unsaturated zones and saturated aquifers in reality. This study develops a mathematical model to depict unsaturated and saturated flows induced by stream recharge from the streambed to the unsaturated zone above an unconfined aquifer of infinitely horizontal extent. The model consists of Richards' equation for flow in the unsaturated zone and groundwater flow equation for the saturated aquifer. The Gardner model is employed to describe the water content and relative permeability related to an unsaturated exponent. The model is nonlinear due to Richards' equation and the moving water table on the top of the unconfined aquifer. It is therefore linearized based on the perturbation theory. The solution of the linearized model is derived by the methods of Laplace transform and Fourier cosine transform. With the solution, the effects of hydraulic parameters on the flows are investigated. The present solution has good efficiency in calculations and is a useful tool to provide predictions of spatiotemporal head distributions in groundwater recharge problems for engineering applications.

  20. A semi-analytical model for the acoustic impedance of finite length circular holes with mean flow

    NASA Astrophysics Data System (ADS)

    Yang, Dong; Morgans, Aimee S.

    2016-12-01

    The acoustic response of a circular hole with mean flow passing through it is highly relevant to Helmholtz resonators, fuel injectors, perforated plates, screens, liners and many other engineering applications. A widely used analytical model [M.S. Howe. "Onthe theory of unsteady high Reynolds number flow through a circular aperture", Proc. of the Royal Soc. A. 366, 1725 (1979), 205-223] which assumes an infinitesimally short hole was recently shown to be insufficient for predicting the impedance of holes with a finite length. In the present work, an analytical model based on Green's function method is developed to take the hole length into consideration for "short" holes. The importance of capturing the modified vortex noise accurately is shown. The vortices shed at the hole inlet edge are convected to the hole outlet and further downstream to form a vortex sheet. This couples with the acoustic waves and this coupling has the potential to generate as well as absorb acoustic energy in the low frequency region. The impedance predicted by this model shows the importance of capturing the path of the shed vortex. When the vortex path is captured accurately, the impedance predictions agree well with previous experimental and CFD results, for example predicting the potential for generation of acoustic energy at higher frequencies. For "long" holes, a simplified model which combines Howe's model with plane acoustic waves within the hole is developed. It is shown that the most important effect in this case is the acoustic non-compactness of the hole.

  1. Pole positions and residues from pion photoproduction using the Laurent-Pietarinen expansion method

    NASA Astrophysics Data System (ADS)

    Švarc, Alfred; Hadžimehmedović, Mirza; Osmanović, Hedim; Stahov, Jugoslav; Tiator, Lothar; Workman, Ron L.

    2014-06-01

    We applied a new approach to determine the pole positions and residues from pion photoproduction multipoles. The method is based on a Laurent expansion of the partial-wave T matrices, with a Pietarinen series representing the regular part of energy-dependent and single-energy photoproduction solutions. The method is applied to multipole fits generated by the MAID and George Washington University SAID (GWU-SAID) groups. We show that the number and properties of poles extracted from photoproduction data correspond very well to results from πN elastic data and values cited by the Particle Data Group (PDG). The photoproduction residues provide new information for the electromagnetic current at the pole position, which are independent of background parametrizations, which is not the case for the Breit-Wigner representation. Finally, we present the photodecay amplitudes from the current MAID and SAID solutions at the pole for all four-star nucleon resonances below W =2 GeV.

  2. Validation of the activity expansion method with ultrahigh pressure shock equations of state

    NASA Astrophysics Data System (ADS)

    Rogers, Forrest J.; Young, David A.

    1997-11-01

    Laser shock experiments have recently been used to measure the equation of state (EOS) of matter in the ultrahigh pressure region between condensed matter and a weakly coupled plasma. Some ultrahigh pressure data from nuclear-generated shocks are also available. Matter at these conditions has proven very difficult to treat theoretically. The many-body activity expansion method (ACTEX) has been used for some time to calculate EOS and opacity data in this region, for use in modeling inertial confinement fusion and stellar interior plasmas. In the present work, we carry out a detailed comparison with the available experimental data in order to validate the method. The agreement is good, showing that ACTEX adequately describes strongly shocked matter.

  3. Methods for computing weighting tables based on local power expansion for tristimulus values computations.

    PubMed

    Li, Changjun; Oleari, Claudio; Melgosa, Manuel; Xu, Yang

    2011-11-01

    In this paper, two types of weighting tables are derived by applying the local power expansion method proposed by Oleari [Color Res. Appl. 25, 176 (2000)]. Both tables at two different levels consider the deconvolution of the spectrophotometric data for monochromator triangular transmittance. The first one, named zero-order weighting table, is similar to weighting table 5 of American Society for Testing and Materials (ASTM) used with the measured spectral reflectance factors (SRFs) corrected by the Stearns and Stearns formula. The second one, named second-order weighting table, is similar to weighting table 6 of ASTM and must be used with the undeconvoluted SRFs. It is hoped that the results of this paper will aid the International Commission on Illumination TC 1-71 on tristimulus integration in focusing on ongoing methods, testing, and recommendations.

  4. Coherent State Variational Methods for Large N Gauge Theories: Numerical Calculations and Strong Coupling Expansions

    NASA Astrophysics Data System (ADS)

    Brown, Frank R.

    Coherent state techniques have proved a useful formal tool for obtaining the N = infty limit of a variety of quantum mechanical systems, in part because they allow one to explicitly construct the classical Hamiltonian and classical phase space that define the dynamics of the large N system. This construction is sufficiently concrete that it naturally suggests methods for carrying out practical calculations. We discuss two such methods, one numerical and the other a classical strong coupling expansion, for calculating the mass spectrum of pure U (infty) Hamiltonian lattice gauge theory. Both involve calculating coherent state expectation values of the quantum Hamiltonian to obtain a classical Hamiltonian as a function on the space of coherent states, and solving for the coherent state (the point in classical configuration space) that minimizes this classical Hamiltonian. Finally the frequencies of classical small oscillations about this minimum give the large N limit of the quantum mechanical excitation spectrum.

  5. A semi-analytical model of expected areal-average infiltration under spatial heterogeneity of rainfall and soil saturated hydraulic conductivity

    NASA Astrophysics Data System (ADS)

    Govindaraju, Rao S.; Corradini, Corrado; Morbidelli, Renato

    2006-01-01

    A semi-analytical model for the estimate of expected areal-average infiltration rate at hillslope scale is presented. It accounts for spatial heterogeneity of the saturated hydraulic conductivity, Ks, and rainfall rate, r. The Ks field is characterized by a lognormal probability density function while the rainfall rate r is represented by a uniform distribution between two extreme values. The model formulation relies upon the use of cumulative infiltration as the independent variable which is then expressed as a function of an expected time for use in practical applications. The solution is applicable for those ranges of r and Ks that allow for neglecting the infiltration of surface water running downslope into pervious soils (run-on process). The model was tested by comparisons with Monte Carlo simulations carried out for a variety of coefficients of variation of r and Ks over a clay loam soil and a sandy loam soil. The model was found to be very reliable both with coupled spatial variability of r and Ks and when only one variable is characterized by spatial heterogeneity while the other is uniform.

  6. GWSCREEN: A semi-analytical model for assessment of the groundwater pathway from surface or buried contamination: Version 2.0 theory and user`s manual

    SciTech Connect

    Rood, A.S.

    1993-06-01

    GWSCREEN was developed for assessment of the groundwater pathway from leaching of radioactive and non radioactive substances from surface or buried sources. The code was designed for implementation in the Track I and Track II assessment of CERCLA (Comprehensive Environmental Response, Compensation and Liability Act) sites identified as low probability hazard at the Idaho National Engineering Laboratory (DOE, 1992). The code calculates the limiting soil concentration such that, after leaching and transport to the aquifer, regulatory contaminant levels in groundwater are not exceeded. The code uses a mass conservation approach to model three processes: contaminant release from a source volume, contaminant transport in the unsaturated zone, and contaminant transport in the saturated zone. The source model considers the sorptive properties and solubility of the contaminant. Transport in the unsaturated zone is described by a plug flow model. Transport in the saturated zone is calculated with a semi-analytical solution to the advection dispersion equation in groundwater. In Version 2.0, GWSCREEN has incorporated an additional source model to calculate the impacts to groundwater resulting from the release to percolation ponds. In addition, transport of radioactive progeny has also been incorporated. GWSCREEN has shown comparable results when compared against other codes using similar algorithms and techniques. This code was designed for assessment and screening of the groundwater pathway when field data is limited. It was not intended to be a predictive tool.

  7. Semi analytical model for the effective grain size profile in the mantle of the Earth: partitioning between diffusion and dislocation creep through the Earth's history

    NASA Astrophysics Data System (ADS)

    Rozel, A. B.; Golabek, G.; Thielmann, M.; Tackley, P.

    2015-12-01

    We present a semi analytical model of mantle convection able to predict the grain size profile of the present day Earth. Grain size evolution has been studied with increasing interest over the last decades but its behavior in both mantle and lithosphere remains largely misunderstood due to its non-linearity. Several recent studies suggest that it might play a fundamental role in localization of deformation in the lithosphere but we focus here on the mantle in which we also observe important processes.We propose a 1D compressible thermal convection model based on the equality of advective heat flux and the integral of viscous dissipation in the whole domain. Imposing mass conservation, our model is able to predict all rheological parameters able to produce both present day average surface velocity and lower mantle viscosity. Composite rheologies involving dislocation creep and grain size dependent diffusion creep are considered. The effect of phase transitions on the grain size is also explicitely taken into account. We present the family of solutions for the activation volume and the viscosity jump at the 660 discontinuity according to any initial choice of activation energy. The scaling laws for rheological parameters obtained are compared to self-consistent evolutionary simulations of mantle convection in 2D spherical annulus geometry considering composite rheologies. The transition between diffusion and dislocation creep due to the cooling of the Earth is illustrated in a set of numerical simulations starting from the physical conditions of the Archean.

  8. Variations of the stellar initial mass function in semi-analytical models: implications for the mass assembly and the chemical enrichment of galaxies in the GAEA model

    NASA Astrophysics Data System (ADS)

    Fontanot, Fabio; De Lucia, Gabriella; Hirschmann, Michaela; Bruzual, Gustavo; Charlot, Stéphane; Zibetti, Stefano

    2017-02-01

    In this paper, we investigate the implications of the integrated galaxy-wide stellar initial mass function (IGIMF) approach in the framework of the semi-analytical model GAEA (GAlaxy Evolution and Assembly), which features a detailed treatment of chemical enrichment and stellar feedback. The IGIMF provides an analytic description of the dependence of the stellar IMF shape on the rate of star formation in galaxies. We find that our model with a universal IMF predicts a rather flat [α/Fe]-stellar mass relation. The model assuming the IGIMF, instead, is able to reproduce the observed increase of α-enhancement with stellar mass, in agreement with previous studies. This is mainly due to the fact that massive galaxies are characterized by larger star formation rates at high redshift, leading to stronger α-enhancement with respect to low-mass galaxies. At the same time, the IGIMF hypothesis does not affect significantly the trend for shorter star formation time-scales for more massive galaxies. We argue that in the IGIMF scenario the [α/Fe] ratios are good tracers of the highest star formation events. The final stellar masses and mass-to-light ratio of our model massive galaxies are larger than those estimated from the synthetic photometry assuming a universal IMF, providing a self-consistent interpretation of similar recent results, based on dynamical analysis of local early-type galaxies.

  9. Semi-Analytical Solution for Stresses and Displacements in a Tunnel Excavated in Transversely Isotropic Formation with Non-Linear Behavior

    NASA Astrophysics Data System (ADS)

    Vu, The Manh; Sulem, Jean; Subrin, Didier; Monin, Nathalie

    2013-03-01

    A semi-analytical solution based on the transfer matrix technique is proposed to analyze the stresses and displacements in a two-dimensional circular opening excavated in transversely isotropic formation with non-linear behavior. A non-isotropic far field can be accounted for and the process of excavation is simulated by progressive reduction of the internal radial stress. A hyperbolic stress-strain law is proposed to take into account the non-linear behavior of the rock. The model contains seven independent parameters corresponding to the five elastic constants of an elastic material with transverse isotropy and to the friction coefficient and cohesion along the parallel joints (weakness planes). This approach is based on the discretization of the space into concentric rings. It requires the establishment of elementary solutions corresponding to the stress and displacement fields inside each ring for given conditions at its boundaries. These solutions, based on complex variable theory, are obtained in the form of infinite series. The appropriate number of terms to be kept for acceptable approximation is discussed. This non-linear model is applied to back analyze the convergence measurements of Saint-Martin-la-Porte access gallery. Short-term and long-term ground parameters are evaluated.

  10. Methods of ex vivo expansion of human cord blood cells: challenges, successes and clinical implications.

    PubMed

    Baron, Frédéric; Ruggeri, Annalisa; Nagler, Arnon

    2016-03-01

    More than 40,000 unrelated cord blood transplantations (UCBT) have been performed worldwide as treatment for patients with malignant or non-malignant life threatening hematologic disorders. However, low absolute numbers of hematopoietic stem and progenitor cells (HSPCs) within a single cord blood unit has remained a limiting factor for this transplantation modality, particularly in adult recipients. Further, because UCB contains low numbers of mostly naïve T cells, immune recovery after UCBT is slow, predisposing patients to severe infections. Other causes of UCBT failure has included graft-versus-host disease (GVHD) and relapse of the underlying disease. In this article, we first review the current landscape of cord blood engineering aimed at improving engraftment. This includes approaches of UCB-HSPCs expansion and methods aimed at improving UCB-HSCPs homing. We then discuss recent approaches of cord blood engineering developed to prevent infection [generation of multivirus-specific cytotoxic T cells (VSTs) from UCB], relapse [transduction of UCB-T cells with tumor-specific chimeric receptor antigens (CARs)] and GVHD (expansion of regulatory T cells from UCB). Although many of these techniques of UCB engineering remain currently technically challenging and expensive, they are likely to revolutionize the field of UCBT in the next decades.

  11. Metal enrichment in a semi-analytical model, fundamental scaling relations, and the case of Milky Way galaxies

    NASA Astrophysics Data System (ADS)

    Cousin, M.; Buat, V.; Boissier, S.; Bethermin, M.; Roehlly, Y.; Génois, M.

    2016-05-01

    Context. Gas flows play a fundamental role in galaxy formation and evolution, providing the fuel for the star formation process. These mechanisms leave an imprint in the amount of heavy elements that enrich the interstellar medium. Thus, the analysis of this metallicity signature provides additional constraint on the galaxy formation scenario. Aims: We aim to discriminate between four different galaxy formation models based on two accretion scenarios and two different star formation recipes. We address the impact of a bimodal accretion scenario and a strongly regulated star formation recipe on the metal enrichment process of galaxies. Methods: We present a new extension of the eGalICS model, which allows us to track the metal enrichment process in both stellar populations and in the gas phase. Based on stellar metallicity bins from 0 to 2.5 Z⊙, our new chemodynamical model is applicable for situations ranging from metal-free primordial accretion to very enriched interstellar gas contents. We use this new tool to predict the metallicity evolution of both the stellar populations and gas phase. We compare these predictions with recent observational measurements. We also address the evolution of the gas metallicity with the star formation rate (SFR). We then focus on a sub-sample of Milky Way-like galaxies. We compare both the cosmic stellar mass assembly and the metal enrichment process of such galaxies with observations and detailed chemical evolution models. Results: Our models, based on a strong star formation regulation, allow us to reproduce well the stellar mass to gas-phase metallicity relation observed in the local Universe. The shape of our average stellar mass to stellar metallicity relations is in good agreement with observations. However, we observe a systematic shift towards high masses. Our M⋆ - Zg -SFR relation is in good agreement with recent measurements: our best model predicts a clear dependence with the SFR. Both SFR and metal enrichment

  12. Fixed versus Removable Appliance for Palatal Expansion; A 3D Analysis Using the Finite Element Method

    PubMed Central

    Geramy, Allahyar; Shahroudi, Atefe Saffar

    2014-01-01

    Objective: Several appliances have been used for palatal expansion for treatment of posterior cross bite. The purpose of this study was to evaluate the stress induced in the apical and crestal alveolar bone and the pattern of tooth displacement following expansion via removable expansion plates or fixed-banded palatal expander using the finite element method (FEM) analysis. Materials and Methods: Two 3D FEM models were designed from a mesio-distal slice of the maxilla containing the upper first molars, their periodontium and alveolar bone. Two palatal expanders (removable and fixed) were modeled. The models were designed in SolidWorks 2006 and then transferred to ANSYS Workbench. The appliance halves were displaced 0.1 mm laterally. The von Mises stress in the apical, crestal, and PDL areas and also the vertical displacement of the cusps (palatal and buccal) was were evaluated. Results: The total PDL stress was 0.40003 MPa in the removable appliance (RA) model and 4.88e-2 MPa in the fixed appliance (FA) model and the apical stress was 9.9e-2 and 1.17e-2 MPa, respectively. The crestal stress was 2.99e-1 MPa in RA and 7.62e-2 MPa in the FA. The stress in the cortical bone crest was 0.30327 and 7.9244e-2 MPa for RA and FA, respectively and 3.7271 and 7.4373e-2 MPa in crestal area of spongy bone, respectively. The vertical displacement of the buccal cusp and palatal cusp was 1.64e-2 and 5.90e-2 mm in RA and 1.05e-4 and 1.7e-4 mm in FA, respectively. Conclusion: The overall stress as well as apical and crestal stress in periodontium of anchor teeth was higher in RA than FA; RA elicited higher stress in both cortical and spongy bone. The vertical displacement of molar cusps was more in removable than fixed palatal expander model. PMID:24910679

  13. Electronic speckle pattern interferometry for fracture expansion in nuclear graphite based on PDE image processing methods

    NASA Astrophysics Data System (ADS)

    Tang, Chen; Zhang, Junjiang; Sun, Chen; Su, Yonggang; Su, Kai Leung

    2015-05-01

    Nuclear graphite has been widely used as moderating and reflecting materials. However, due to severe neutron irradiation under high temperature, nuclear graphite is prone to deteriorate, resulting in massive microscopic flaws and even cracks under large stress in the later period of its service life. It is indispensable, therefore, to understand the fracture behavior of nuclear graphite to provide reference to structural integrity and safety analysis of nuclear graphite members in reactors. In this paper, we investigated the fracture expansion in nuclear graphite based on PDE image processing methods. We used the second-order oriented partial differential equations filtering model (SOOPDE) to denoise speckle noise, then used the oriented gradient vector fields for to obtain skeletons. The full-field displacement of fractured nuclear graphite and the location of the crack tip were lastly measured under various loading conditions.

  14. a Normal Mode Expansion Method for the Undamped Forced Vibration of Linear Piezoelectric Solid

    NASA Astrophysics Data System (ADS)

    LIU, D.-C.

    2000-06-01

    A normal mode expansion method for the vibrational responses of non-homogeneous linear piezoelectric materials without damping is presented. It can be applied directly to arbitrary piezoelectric composites, which are widely used in vibrational and acoustic sensor/actuator/transmitter applications. In the present article it is shown that if the normal modes are given, the displacement field can be expanded as the linear superposition of normal modes, while the modal coefficients can be represented in terms of surface and volume integrals directly over the six types of distributed excitations without solving the quasi-static solution explicitly. The present treatment is a modification of an earlier work by Liu [11] using a different definition of the so-called quasi-static solution, and the damping effect has been neglected for simplicity. A simple example is given to exemplify the application of the present formulation.

  15. Numerical solution of DGLAP equations using Laguerre polynomials expansion and Monte Carlo method.

    PubMed

    Ghasempour Nesheli, A; Mirjalili, A; Yazdanpanah, M M

    2016-01-01

    We investigate the numerical solutions of the DGLAP evolution equations at the LO and NLO approximations, using the Laguerre polynomials expansion. The theoretical framework is based on Furmanski et al.'s articles. What makes the content of this paper different from other works, is that all calculations in the whole stages to extract the evolved parton distributions, are done numerically. The employed techniques to do the numerical solutions, based on Monte Carlo method, has this feature that all the results are obtained in a proper wall clock time by computer. The algorithms are implemented in FORTRAN and the employed coding ideas can be used in other numerical computations as well. Our results for the evolved parton densities are in good agreement with some phenomenological models. They also indicate better behavior with respect to the results of similar numerical calculations.

  16. High order spatial expansion for the method of characteristics applied to 3-D geometries

    SciTech Connect

    Naymeh, L.; Masiello, E.; Sanchez, R.

    2013-07-01

    The method of characteristics is an efficient and flexible technique to solve the neutron transport equation and has been extensively used in two-dimensional calculations because it permits to deal with complex geometries. However, because of a very fast increase in storage requirements and number of floating operations, its direct application to three-dimensional routine transport calculations it is not still possible. In this work we introduce and analyze several modifications aimed to reduce memory requirements and to diminish the computing burden. We explore high-order spatial approximation, the use of intermediary trajectory-dependent flux expansions and the possibility of dynamic trajectory reconstruction from local tracking for typed subdomains. (authors)

  17. A direct method to transform between expansions in the configuration state function and Slater determinant bases.

    PubMed

    Olsen, Jeppe

    2014-07-21

    A novel algorithm is introduced for the transformation of wave functions between the bases of Slater determinants (SD) and configuration state functions (CSF) in the genealogical coupling scheme. By modifying the expansion coefficients as each electron is spin-coupled, rather than performing a single many-electron transformation, the large transformation matrix that plagues previous approaches is avoided and the required number of operations is drastically reduced. As an example of the efficiency of the algorithm, the transformation for a configuration with 30 unpaired electrons and singlet spin is discussed. For this case, the 10 × 10(6) coefficients in the CSF basis is obtained from the 150 × 10(6) coefficients in the SD basis in 1 min, which should be compared with the seven years that the previously employed method is estimated to require.

  18. Application of renormalization group corrected coupling parameter expansion method to square well fluids

    NASA Astrophysics Data System (ADS)

    Sai Venkata Ramana, A.

    2016-01-01

    In this paper, we have applied the seventh order version of coupling parameter expansion (CPE) method combined with global renormalization group theory (GRGT) to square well fluids of various ranges and have performed the following studies. Firstly, the convergence of the GRGT iteration scheme has been studied. It is observed that the point-wise convergence is non-uniform and slow in the coexistence region away from the critical point. However, the point-wise convergence improved as the critical temperature is approached. Secondly, we have obtained the liquid-vapor phase diagrams (LVPDs) for the square well fluids. The LVPDs obtained using GRGT corrected seventh order CPE are significantly accurate over those obtained from GRGT corrected 1-order thermodynamic perturbation theory (TPT). Also, excessive flatness of LVPDs close to the critical region as observed in GRGT corrected 1-order TPT has not been seen in the LVPDs of present method. Thirdly, the critical exponents have been obtained using present method. The exponents are seen to be of Ising universality class and follow the Rushbrooke and Griffiths equalities qualitatively. Finally, a study of Yang-Yang anomaly has been done using our method. It has been observed that the method predicts the existence of the anomaly but the predictions of the strength of anomaly differed from those of simulations. The reasons for the differences are analyzed.

  19. Solitary wave solutions of the fourth order Boussinesq equation through the exp(-Ф(η))-expansion method.

    PubMed

    Akbar, M Ali; Hj Mohd Ali, Norhashidah

    2014-01-01

    The exp(-Ф(η))-expansion method is an ascending method for obtaining exact and solitary wave solutions for nonlinear evolution equations. In this article, we implement the exp(-Ф(η))-expansion method to build solitary wave solutions to the fourth order Boussinesq equation. The procedure is simple, direct and useful with the help of computer algebra. By using this method, we obtain solitary wave solutions in terms of the hyperbolic functions, the trigonometric functions and elementary functions. The results show that the exp(-Ф(η))-expansion method is straightforward and effective mathematical tool for the treatment of nonlinear evolution equations in mathematical physics and engineering. 35C07; 35C08; 35P99.

  20. Elastic wave propagation in bars of arbitrary cross section: a generalized Fourier expansion collocation method.

    PubMed

    Lesage, Jonathan C; Bond, Jill V; Sinclair, Anthony N

    2014-09-01

    The problem of elastic wave propagation in an infinite bar of arbitrary cross section is studied via a generalized version of the Fourier expansion collocation method. In the current formulation, the exact three dimensional solution to Navier's equation in cylindrical coordinates is used to obtain the boundary traction vector as a periodic, piecewise continuous/differentiable function of the angular coordinate. Traction free conditions are then met by setting the Fourier coefficients of the boundary traction vector to zero without approximating the bounding surface by multi-sided polygons as in the method presented by Nagaya. The method is derived for a general cross section with no axial planes of symmetry. Using the general formulation it is shown that the symmetric and asymmetric modes decouple for cross sections having one axial plane of symmetry. An efficient algorithm for computing dispersion curves based on the current method is presented and used to obtain the fundamental longitudinal and flexural wave speeds for a bar of elliptical cross section. The results are compared to those obtained by previous researchers using exact and approximate treatments.

  1. Mode selection of modal expansion method estimating vibration field of washing machine

    NASA Astrophysics Data System (ADS)

    Jung, B. K.; Jeong, W. B.

    2015-03-01

    This paper is about a study estimating the vibration and radiated noise of a washing machine by using a mode selection-applied modal expansion method (MEM). MEM is a technique that identifies the vibration field from a portion of eigenvectors (or mode shapes) of a structure, and thus, the selection of the eigenvectors has a big impact on the vibration results identified. However, there have been few studies about selecting the eigenvectors with respect to the structural vibration and radiated noise estimation. Accordingly, this paper proposes the use of a new mode selection method to identify the vibration based on the MEM and then calculate radiated noise of a washing machine. The results gained from the experiment were also compared. The vibration and noise results of numerical analysis using the proposed selection method are in line with the measured results. The selection method proposed in this paper corresponds well with the MEM and this process seems to be applicable to the estimation of various structure vibrations and radiated noise.

  2. Three-Body Coulomb Functions in the Hyperspherical Adiabatic Expansion Method

    NASA Astrophysics Data System (ADS)

    Garrido, E.; Kievsky, A.; Viviani, M.

    2016-12-01

    In this work we describe a numerical method devised to compute continuum three-body wave functions. The method is implemented using the hyperspherical adiabatic expansion for the three-body wave function imposing a box boundary condition. The continuum energy spectrum results discretized and, for specific quantum number values, all the possible incoming and outgoing channels are simultaneously computed. For a given energy, the hyperradial continuum functions form a matrix whose ij-term refers to specific incoming and outgoing channels. When applied to three-body systems interacting only through the Coulomb potential, this method provides the adiabatic representation of the regular three-body Coulomb wave function. The computation of the irregular Coulomb wave function representation is also discussed. These regular and irregular Coulomb functions can be used to extract the S-matrix for those reactions where, together with some short-range potential, the Coulomb interaction is also present. The method is illustrated in the case of the 3→ 3 process of three alpha particles.

  3. Comparing regression methods for the two-stage clonal expansion model of carcinogenesis.

    PubMed

    Kaiser, J C; Heidenreich, W F

    2004-11-15

    In the statistical analysis of cohort data with risk estimation models, both Poisson and individual likelihood regressions are widely used methods of parameter estimation. In this paper, their performance has been tested with the biologically motivated two-stage clonal expansion (TSCE) model of carcinogenesis. To exclude inevitable uncertainties of existing data, cohorts with simple individual exposure history have been created by Monte Carlo simulation. To generate some similar properties of atomic bomb survivors and radon-exposed mine workers, both acute and protracted exposure patterns have been generated. Then the capacity of the two regression methods has been compared to retrieve a priori known model parameters from the simulated cohort data. For simple models with smooth hazard functions, the parameter estimates from both methods come close to their true values. However, for models with strongly discontinuous functions which are generated by the cell mutation process of transformation, the Poisson regression method fails to produce reliable estimates. This behaviour is explained by the construction of class averages during data stratification. Thereby, some indispensable information on the individual exposure history was destroyed. It could not be repaired by countermeasures such as the refinement of Poisson classes or a more adequate choice of Poisson groups. Although this choice might still exist we were unable to discover it. In contrast to this, the individual likelihood regression technique was found to work reliably for all considered versions of the TSCE model. 2004 John Wiley & Sons, Ltd.

  4. Analytical method for estimating the thermal expansion coefficient of metals at high temperature

    NASA Astrophysics Data System (ADS)

    Takamoto, S.; Izumi, S.; Nakata, T.; Sakai, S.; Oinuma, S.; Nakatani, Y.

    2015-01-01

    In this paper, we propose an analytical method for estimating the thermal expansion coefficient (TEC) of metals at high-temperature ranges. Although the conventional method based on quasiharmonic approximation (QHA) shows good results at low temperatures, anharmonic effects caused by large-amplitude thermal vibrations reduces its accuracy at high temperatures. Molecular dynamics (MD) naturally includes the anharmonic effect. However, since the computational cost of MD is relatively high, in order to make an interatomic potential capable of reproducing TEC, an analytical method is essential. In our method, analytical formulation of the radial distribution function (RDF) at finite temperature realizes the estimation of the TEC. Each peak of the RDF is approximated by the Gaussian distribution. The average and variance of the Gaussian distribution are formulated by decomposing the fluctuation of interatomic distance into independent elastic waves. We incorporated two significant anharmonic effects into the method. One is the increase in the averaged interatomic distance caused by large amplitude vibration. The second is the variation in the frequency of elastic waves. As a result, the TECs of fcc and bcc crystals estimated by our method show good agreement with those of MD. Our method enables us to make an interatomic potential that reproduces the TEC at high temperature. We developed the GEAM potential for nickel. The TEC of the fitted potential showed good agreement with experimental data from room temperature to 1000 K. As compared with the original potential, it was found that the third derivative of the wide-range curve was modified, while the zeroth, first and second derivatives were unchanged. This result supports the conventional theory of solid state physics. We believe our analytical method and developed interatomic potential will contribute to future high-temperature material development.

  5. Critical node treatment in the analytic function expansion method for Pin Power Reconstruction

    SciTech Connect

    Gao, Z.; Xu, Y.; Downar, T.

    2013-07-01

    Pin Power Reconstruction (PPR) was implemented in PARCS using the eight term analytic function expansion method (AFEN). This method has been demonstrated to be both accurate and efficient. However, similar to all the methods involving analytic functions, such as the analytic node method (ANM) and AFEN for nodal solution, the use of AFEN for PPR also has potential numerical issue with critical nodes. The conventional analytic functions are trigonometric or hyperbolic sine or cosine functions with an angular frequency proportional to buckling. For a critic al node the buckling is zero and the sine functions becomes zero, and the cosine function become unity. In this case, the eight terms of the analytic functions are no longer distinguishable from ea ch other which makes their corresponding coefficients can no longer be determined uniquely. The mode flux distribution of critical node can be linear while the conventional analytic functions can only express a uniform distribution. If there is critical or near critical node in a plane, the reconstructed pin power distribution is often be shown negative or very large values using the conventional method. In this paper, we propose a new method to avoid the numerical problem wit h critical nodes which uses modified trigonometric or hyperbolic sine functions which are the ratio of trigonometric or hyperbolic sine and its angular frequency. If there are no critical or near critical nodes present, the new pin power reconstruction method with modified analytic functions are equivalent to the conventional analytic functions. The new method is demonstrated using the L336C5 benchmark problem. (authors)

  6. A Local Incident Flux Response Expansion Transport Method for Coupling to the Diffusion Method in Cylindrical Geometry

    SciTech Connect

    Dingkang Zhang; Farzad Rahnema; Abderrafi M. Ougouag

    2013-09-01

    A local incident flux response expansion transport method is developed to generate transport solutions for coupling to diffusion theory codes regardless of their solution method (e.g., fine mesh, nodal, response based, finite element, etc.) for reactor core calculations in both two-dimensional (2-D) and three-dimensional (3-D) cylindrical geometries. In this approach, a Monte Carlo method is first used to precompute the local transport solution (i.e., response function library) for each unique transport coarse node, in which diffusion theory is not valid due to strong transport effects. The response function library is then used to iteratively determine the albedo coefficients on the diffusion-transport interfaces, which are then used as the coupling parameters within the diffusion code. This interface coupling technique allows a seamless integration of the transport and diffusion methods. The new method retains the detailed heterogeneity of the transport nodes and naturally constructs any local solution within them by a simple superposition of local responses to all incoming fluxes from the contiguous coarse nodes. A new technique is also developed for coupling to fine-mesh diffusion methods/codes. The local transport method/module is tested in 2-D and 3-D pebble-bed reactor benchmark problems consisting of an inner reflector, an annular fuel region, and a controlled outer reflector. It is found that the results predicted by the transport module agree very well with the reference fluxes calculated directly by MCNP in both benchmark problems.

  7. Fixed versus Removable Appliance for Palatal Expansion; A 3D Analysis Using the Finite Element Method.

    PubMed

    Geramy, Allahyar; Shahroudi, Atefe Saffar

    2014-01-01

    Several appliances have been used for palatal expansion for treatment of posterior cross bite. The purpose of this study was to evaluate the stress induced in the apical and crestal alveolar bone and the pattern of tooth displacement following expansion via removable expansion plates or fixed-banded palatal expander using the finite element method (FEM) analysis. Two 3D FEM models were designed from a mesio-distal slice of the maxilla containing the upper first molars, their periodontium and alveolar bone. Two palatal expanders (removable and fixed) were modeled. The models were designed in SolidWorks 2006 and then transferred to ANSYS Workbench. The appliance halves were displaced 0.1 mm laterally. The von Mises stress in the apical, crestal, and PDL areas and also the vertical displacement of the cusps (palatal and buccal) was were evaluated. The total PDL stress was 0.40003 MPa in the removable appliance (RA) model and 4.88e-2 MPa in the fixed appliance (FA) model and the apical stress was 9.9e-2 and 1.17e-2 MPa, respectively. The crestal stress was 2.99e-1 MPa in RA and 7.62e-2 MPa in the FA. The stress in the cortical bone crest was 0.30327 and 7.9244e-2 MPa for RA and FA, respectively and 3.7271 and 7.4373e-2 MPa in crestal area of spongy bone, respectively. The vertical displacement of the buccal cusp and palatal cusp was 1.64e-2 and 5.90e-2 mm in RA and 1.05e-4 and 1.7e-4 mm in FA, respectively. The overall stress as well as apical and crestal stress in periodontium of anchor teeth was higher in RA than FA; RA elicited higher stress in both cortical and spongy bone. The vertical displacement of molar cusps was more in removable than fixed palatal expander model.

  8. Selection bias in dynamically measured supermassive black hole samples: scaling relations and correlations between residuals in semi-analytic galaxy formation models

    NASA Astrophysics Data System (ADS)

    Barausse, Enrico; Shankar, Francesco; Bernardi, Mariangela; Dubois, Yohan; Sheth, Ravi K.

    2017-07-01

    Recent work has confirmed that the scaling relations between the masses of supermassive black holes and host-galaxy properties such as stellar masses and velocity dispersions may be biased high. Much of this may be caused by the requirement that the black hole sphere of influence must be resolved for the black hole mass to be reliably estimated. We revisit this issue with a comprehensive galaxy evolution semi-analytic model. Once tuned to reproduce the (mean) correlation of black hole mass with velocity dispersion, the model cannot account for the correlation with stellar mass. This is independent of the model's parameters, thus suggesting an internal inconsistency in the data. The predicted distributions, especially at the low-mass end, are also much broader than observed. However, if selection effects are included, the model's predictions tend to align with the observations. We also demonstrate that the correlations between the residuals of the scaling relations are more effective than the relations themselves at constraining models for the feedback of active galactic nuclei (AGNs). In fact, we find that our model, while in apparent broad agreement with the scaling relations when accounting for selection biases, yields very weak correlations between their residuals at fixed stellar mass, in stark contrast with observations. This problem persists when changing the AGN feedback strength, and is also present in the hydrodynamic cosmological simulation Horizon-AGN, which includes state-of-the-art treatments of AGN feedback. This suggests that current AGN feedback models are too weak or simply not capturing the effect of the black hole on the stellar velocity dispersion.

  9. A SEMI-ANALYTICAL MODEL OF VISIBLE-WAVELENGTH PHASE CURVES OF EXOPLANETS AND APPLICATIONS TO KEPLER- 7 B AND KEPLER- 10 B

    SciTech Connect

    Hu, Renyu; Demory, Brice-Olivier; Seager, Sara; Lewis, Nikole; Showman, Adam P.

    2015-03-20

    Kepler has detected numerous exoplanet transits by measuring stellar light in a single visible-wavelength band. In addition to detection, the precise photometry provides phase curves of exoplanets, which can be used to study the dynamic processes on these planets. However, the interpretation of these observations can be complicated by the fact that visible-wavelength phase curves can represent both thermal emission and scattering from the planets. Here we present a semi-analytical model framework that can be applied to study Kepler and future visible-wavelength phase curve observations of exoplanets. The model efficiently computes reflection and thermal emission components for both rocky and gaseous planets, considering both homogeneous and inhomogeneous surfaces or atmospheres. We analyze the phase curves of the gaseous planet Kepler- 7 b and the rocky planet Kepler- 10 b using the model. In general, we find that a hot exoplanet’s visible-wavelength phase curve having a significant phase offset can usually be explained by two classes of solutions: one class requires a thermal hot spot shifted to one side of the substellar point, and the other class requires reflective clouds concentrated on the same side of the substellar point. Particularly for Kepler- 7 b, reflective clouds located on the west side of the substellar point can best explain its phase curve. The reflectivity of the clear part of the atmosphere should be less than 7% and that of the cloudy part should be greater than 80%, and the cloud boundary should be located at 11° ± 3° to the west of the substellar point. We suggest single-band photometry surveys could yield valuable information on exoplanet atmospheres and surfaces.

  10. Characterization of acoustic black hole effect using a one-dimensional fully-coupled and wavelet-decomposed semi-analytical model

    NASA Astrophysics Data System (ADS)

    Tang, Liling; Cheng, Li; Ji, Hongli; Qiu, Jinhao

    2016-07-01

    Acoustics Black Hole (ABH) effect shows promising features for potential vibration control and energy harvesting applications. The phenomenon occurs in a structure with diminishing thickness which gradually reduces the phase velocity of flexural waves. The coupling between the tailored ABH structure and the damping layer used to compensate for the adverse effect of the unavoidable truncation is critical and has not been well apprehended by the existing models. This paper presents a semi-analytical model to analyze an Euler-Bernoulli beam with embedded ABH feature and its full coupling with the damping layers coated over its surface. By decomposing the transverse displacement field of the beam over the basis of a set of Mexican hat wavelets, the extremalization of the Hamiltonian via Lagrange's equation yields a set of linear equations, which can be solved for structural responses. Highly consistent with the FEM and experimental results, numerical simulations demonstrate that the proposed wavelet-based model is particularly suitable to characterize the ABH-induced drastic wavelength fluctuation phenomenon. The ABH feature as well as the effect of the wedge truncation and that of the damping layers on the vibration response of the beam is analyzed. It is shown that the mass of the damping layers needs particular attention when their thickness is comparable to that of the ABH wedge around the tip area. Due to its modular and energy-based feature, the proposed framework offers a general platform allowing embodiment of other control or energy harvesting elements into the model to guide ABH structural design for various applications.

  11. Plane wave expansion method used to engineer photonic crystal sensors with high efficiency.

    PubMed

    Antos, Roman; Vozda, Vojtech; Veis, Martin

    2014-02-10

    A photonic crystal waveguide (PhC-WG) was reported to be usable as an optical sensor highly sensitive to various material parameters, which can be detected via changes in transmission through the PhC-WG caused by small changes of the refractive index of the medium filling its holes. To monitor these changes accurately, a precise optical model is required, for which the plane wave expansion (PWE) method is convenient. We here demonstrate the revision of the PWE method by employing the complex Fourier factorization approach, which enables the calculation of dispersion diagrams with fast convergence, i.e., with high precision in relatively short time. The PhC-WG is proposed as a line defect in a hexagonal array of cylindrical holes periodically arranged in bulk silicon, filled with a variable medium. The method of monitoring the refractive index changes is based on observing cutoff wavelengths in the PhC-WG dispersion diagrams. The PWE results are also compared with finite-difference time-domain calculations of transmittance carried out on a PhC-WG with finite dimensions.

  12. Comparison of FDTD numerical computations and analytical multipole expansion method for plasmonics-active nanosphere dimers.

    PubMed

    Dhawan, Anuj; Norton, Stephen J; Gerhold, Michael D; Vo-Dinh, Tuan

    2009-06-08

    This paper describes a comparative study of finite-difference time-domain (FDTD) and analytical evaluations of electromagnetic fields in the vicinity of dimers of metallic nanospheres of plasmonics-active metals. The results of these two computational methods, to determine electromagnetic field enhancement in the region often referred to as "hot spots" between the two nanospheres forming the dimer, were compared and a strong correlation observed for gold dimers. The analytical evaluation involved the use of the spherical-harmonic addition theorem to relate the multipole expansion coefficients between the two nanospheres. In these evaluations, the spacing between two nanospheres forming the dimer was varied to obtain the effect of nanoparticle spacing on the electromagnetic fields in the regions between the nanostructures. Gold and silver were the metals investigated in our work as they exhibit substantial plasmon resonance properties in the ultraviolet, visible, and near-infrared spectral regimes. The results indicate excellent correlation between the two computational methods, especially for gold nanosphere dimers with only a 5-10% difference between the two methods. The effect of varying the diameters of the nanospheres forming the dimer, on the electromagnetic field enhancement, was also studied.

  13. Use of advanced particle methods in modeling space propulsion and its supersonic expansions

    NASA Astrophysics Data System (ADS)

    Borner, Arnaud

    This research discusses the use of advanced kinetic particle methods such as Molecular Dynamics (MD) and direct simulation Monte Carlo (DSMC) to model space propulsion systems such as electrospray thrusters and their supersonic expansions. MD simulations are performed to model an electrospray thruster for the ionic liquid (IL) EMIM--BF4 using coarse-grained (CG) potentials. The model is initially featuring a constant electric field applied in the longitudinal direction. Two coarse-grained potentials are compared, and the effective-force CG (EFCG) potential is found to predict the formation of the Taylor cone, the cone-jet, and other extrusion modes for similar electric fields and mass flow rates observed in experiments of a IL fed capillary-tip-extractor system better than the simple CG potential. Later, one-dimensional and fully transient three-dimensional electric fields, the latter solving Poisson's equation to take into account the electric field due to space charge at each timestep, are computed by coupling the MD model to a Poisson solver. It is found that the inhomogeneous electric field as well as that of the IL space-charge improve agreement between modeling and experiment. The boundary conditions (BCs) are found to have a substantial impact on the potential and electric field, and the tip BC is introduced and compared to the two previous BCs, named plate and needle, showing good improvement by reducing unrealistically high radial electric fields generated in the vicinity of the capillary tip. The influence of the different boundary condition models on charged species currents as a function of the mass flow rate is studied, and it is found that a constant electric field model gives similar agreement to the more rigorous and computationally expensive tip boundary condition at lower flow rates. However, at higher mass flow rates the MD simulations with the constant electric field produces extruded particles with higher Coulomb energy per ion, consistent with

  14. Excellence of numerical differentiation method in calculating the coefficients of high temperature series expansion of the free energy and convergence problem of the expansion

    NASA Astrophysics Data System (ADS)

    Zhou, S.; Solana, J. R.

    2014-12-01

    In this paper, it is shown that the numerical differentiation method in performing the coupling parameter series expansion [S. Zhou, J. Chem. Phys. 125, 144518 (2006); AIP Adv. 1, 040703 (2011)] excels at calculating the coefficients ai of hard sphere high temperature series expansion (HS-HTSE) of the free energy. Both canonical ensemble and isothermal-isobaric ensemble Monte Carlo simulations for fluid interacting through a hard sphere attractive Yukawa (HSAY) potential with extremely short ranges and at very low temperatures are performed, and the resulting two sets of data of thermodynamic properties are in excellent agreement with each other, and well qualified to be used for assessing convergence of the HS-HTSE for the HSAY fluid. Results of valuation are that (i) by referring to the results of a hard sphere square well fluid [S. Zhou, J. Chem. Phys. 139, 124111 (2013)], it is found that existence of partial sum limit of the high temperature series expansion series and consistency between the limit value and the true solution depend on both the potential shapes and temperatures considered. (ii) For the extremely short range HSAY potential, the HS-HTSE coefficients ai falls rapidly with the order i, and the HS-HTSE converges from fourth order; however, it does not converge exactly to the true solution at reduced temperatures lower than 0.5, wherein difference between the partial sum limit of the HS-HTSE series and the simulation result tends to become more evident. Something worth mentioning is that before the convergence order is reached, the preceding truncation is always improved by the succeeding one, and the fourth- and higher-order truncations give the most dependable and qualitatively always correct thermodynamic results for the HSAY fluid even at low reduced temperatures to 0.25.

  15. Excellence of numerical differentiation method in calculating the coefficients of high temperature series expansion of the free energy and convergence problem of the expansion

    SciTech Connect

    Zhou, S.; Solana, J. R.

    2014-12-28

    In this paper, it is shown that the numerical differentiation method in performing the coupling parameter series expansion [S. Zhou, J. Chem. Phys. 125, 144518 (2006); AIP Adv. 1, 040703 (2011)] excels at calculating the coefficients a{sub i} of hard sphere high temperature series expansion (HS-HTSE) of the free energy. Both canonical ensemble and isothermal-isobaric ensemble Monte Carlo simulations for fluid interacting through a hard sphere attractive Yukawa (HSAY) potential with extremely short ranges and at very low temperatures are performed, and the resulting two sets of data of thermodynamic properties are in excellent agreement with each other, and well qualified to be used for assessing convergence of the HS-HTSE for the HSAY fluid. Results of valuation are that (i) by referring to the results of a hard sphere square well fluid [S. Zhou, J. Chem. Phys. 139, 124111 (2013)], it is found that existence of partial sum limit of the high temperature series expansion series and consistency between the limit value and the true solution depend on both the potential shapes and temperatures considered. (ii) For the extremely short range HSAY potential, the HS-HTSE coefficients a{sub i} falls rapidly with the order i, and the HS-HTSE converges from fourth order; however, it does not converge exactly to the true solution at reduced temperatures lower than 0.5, wherein difference between the partial sum limit of the HS-HTSE series and the simulation result tends to become more evident. Something worth mentioning is that before the convergence order is reached, the preceding truncation is always improved by the succeeding one, and the fourth- and higher-order truncations give the most dependable and qualitatively always correct thermodynamic results for the HSAY fluid even at low reduced temperatures to 0.25.

  16. Numerical divergence effects of equivalence theory in the nodal expansion method

    SciTech Connect

    Zika, M.R.; Downar, T.J. )

    1993-11-01

    Accurate solutions of the advanced nodal equations require the use of discontinuity factors (DFs) to account for the homogenization errors that are inherent in all coarse-mesh nodal methods. During the last several years, nodal equivalence theory (NET) has successfully been implemented for the Cartesian geometry and has received widespread acceptance in the light water reactor industry. The extension of NET to other reactor types has had limited success. Recent efforts to implement NET within the framework of the nodal expansion method have successfully been applied to the fast breeder reactor. However, attempts to apply the same methods to thermal reactors such as the Modular High-Temperature Gas Reactor (MHTGR) have led to numerical divergence problems that can be attributed directly to the magnitude of the DFs. In the work performed here, it was found that the numerical problems occur in the inner and upscatter iterations of the solution algorithm. These iterations use a Gauss-Seidel iterative technique that is always convergent for problems with unity DFs. However, for an MHTGR model that requires large DFs, both the inner and upscatter iterations were divergent. Initial investigations into methods for bounding the DFs have proven unsatisfactory as a means of remedying the convergence problems. Although the DFs could be bounded to yield a convergent solution, several cases were encountered where the resulting flux solution was less accurate than the solution without DFs. For the specific case of problems without upscattering, an alternate numerical method for the inner iteration, an LU decomposition, was identified and shown to be feasible.

  17. Adding method of delta-four-stream spherical harmonic expansion approximation for infrared radiative transfer parameterization

    NASA Astrophysics Data System (ADS)

    Wu, Kun; Zhang, Feng; Min, Jinzhong; Yu, Qiu-Run; Wang, Xin-Yue; Ma, Leiming

    2016-09-01

    The adding method, which could calculate the infrared radiative transfer (IRT) in inhomogeneous atmosphere with multiple layers, has been applied to δ -four-stream discrete-ordinates method (DOM). This scheme is referred as δ -4DDA. However, there is a lack of application for adding method of δ -four-stream spherical harmonic expansion approximation (SHM) to solve infrared radiative transfer through multiple layers. In this paper, the adding method for δ -four-stream SHM (δ -4SDA) will be obtained and the accuracy of it will be evaluated as well. The result of δ -4SDA in an idealized medium with homogeneous optical property is significantly more accurate than that of the adding method for δ -two-stream DOM (δ -2DDA). The relative errors of δ -2DDA can be over 15% in thin optical depths for downward emissivity, while errors of δ -4SDA are bounded by 2%. However, the result of δ -4SDA is slightly less accurate than that of δ -4DDA. In a radiation model with realistic atmospheric profile considering gaseous transmission, the accuracy for heating rate of δ -4SDA is significantly superior than that of δ -2DDA, especially for the cloudy sky. The accuracy for heating rate of δ -4SDA is slightly less accurate than that of δ -4DDA under water cloud conditions, while it is superior than that of δ -4DDA in ice cloud cases. Beside, the computational efficiency of δ -4SDA is higher than that of δ -4DDA.

  18. Plasmonics of 3-D Nanoshell Dimers Using Multipole Expansion and Finite Element Method

    PubMed Central

    Khoury, Christopher G.; Norton, Stephen J.

    2013-01-01

    The spatial and spectral responses of the plasmonic fields induced in the gap of 3-D Nanoshell Dimers of gold and silver are comprehensively investigated and compared via theory and simulation, using the Multipole Expansion (ME) and the Finite Element Method (FEM) in COMSOL, respectively. The E-field in the dimer gap was evaluated and compared as a function of shell thickness, inter-particle distance, and size. The E-field increased with decreasing shell thickness, decreasing interparticle distance, and increasing size, with the error between the two methods ranging from 1 to 10%, depending on the specific combination of these three variables. This error increases several fold with increasing dimer size, as the quasi-static approximation breaks down. A consistent overestimation of the plasmon’s FWHM and red-shifting of the plasmon peak occurs with FEM, relative to ME, and it increases with decreasing shell thickness and inter-particle distance. The size-effect that arises from surface scattering of electrons is addressed and shown to be especially prominent for thin shells, for which significant damping, broadening and shifting of the plasmon band is observed; the size-effect also affects large nanoshell dimers, depending on their relative shell thickness, but to a lesser extent. This study demonstrates that COMSOL is a promising simulation environment to quantitatively investigate nanoscale electromagnetics for the modeling and designing of Surface Enhanced Raman Scattering (SERS) substrates. PMID:19678677

  19. Systematic synthesis of CCCCTA-based T-T filters using NAM expansion method

    NASA Astrophysics Data System (ADS)

    Li, Yongan; Cao, Rui

    2016-06-01

    In the light of nullor-mirror models for current-controlled current conveyor trans-conductance amplifier (CCCCTA), initiating the admittance matrices of the Tow-Thomas (T-T) filter, three different types of the T-T filter are synthesised by means of the nodal admittance matrix (NAM) expansion method. The type A filter, which employ one CCCCTA, one grounded resistor and two grounded capacitors, has eight different forms, the type B filter, which employ one CCCCTA, two grounded capacitors and a second-generation current-controlled conveyor (CCCII) or an second-generation inverting current-controlled conveyor (ICCCII) or an operational trans-conductance amplifier (OTA), has 64 different forms and the type C filter employing one CCCCTA and two grounded capacitors has eight different forms. In all, 80 voltage-mode/current-mode T-T filter circuits are obtained. Because of using canonic number components, the circuits are highly desirable from the viewpoint of IC fabrication and their parameters can be electronically tuned through tuning bias currents of CCCCTAs. The hand analysis and computer simulation results have been provided to support the synthesis method.

  20. [A novel biological pathway expansion method based on the knowledge of protein-protein interactions].

    PubMed

    Zhao, Xiaolei; Zuo, Xiaoyu; Qin, Jiheng; Liang, Yan; Zhang, Naizun; Luan, Yizhao; Rao, Shaoqi

    2014-04-01

    Biological pathways have been widely used in gene function studies; however, the current knowledge for biological pathways is per se incomplete and has to be further expanded. Bioinformatics prediction provides us a cheap but effective way for pathway expansion. Here, we proposed a novel method for biological pathway prediction, by intergrating prior knowledge of protein?protein interactions and Gene Ontology (GO) database. First, the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways to which the interacting neighbors of a targe gene (at the level of protein?protein interaction) belong were chosen as the candidate pathways. Then, the pathways to which the target gene belong were determined by testing whether the genes in the candidate pathways were enriched in the GO terms to which the target gene were annotated. The protein?protein interaction data obtained from the Human Protein Reference Database (HPRD) and Biological General Repository for Interaction Datasets (BioGRID) were respectively used to predict the pathway attribution(s) of the target gene. The results demanstrated that both the average accuracy (the ratio of the correctly predicted pathways to the totally pathways to which all the target genes were annotated) and the relative accuracy (of the genes with at least one annotated pathway being successful predicted, the percentage of the genes with all the annotated pathways being correctly predicted) for pathway predictions were increased with the number of the interacting neighbours. When the number of interacting neighbours reached 22, the average accuracy was 96.2% (HPRD) and 96.3% (BioGRID), respectively, and the relative accuracy was 93.3% (HPRD) and 84.1% (BioGRID), respectively. Further validation analysis of 89 genes whose pathway knowledge was updated in a new database release indicated that 50 genes were correctly predicted for at least one updated pathway, and 43 genes were accurately predicted for all the updated pathways, giving an

  1. A Generalized (G'/G)-Expansion Method for the Nonlinear Schrödinger Equation with Variable Coefficients

    NASA Astrophysics Data System (ADS)

    Zhang, Sheng; Ba, Jin-Mei; Sun, Ying-Na; Dong, Ling

    2009-11-01

    In this paper, a generalized (G'/G)-expansion method, combined with suitable transformations, is used to construct exact solutions of the nonlinear Schrödinger equation with variable coefficients. As a result, hyperbolic function solutions, trigonometric function solutions, and rational solutions with parameters are obtained. When the parameters are taken as special values, some solutions including the known kink-type solitary wave solution and the singular travelling wave solution are derived from these obtained solutions. It is shown that the generalized (G'/G)-expansion method is direct, effective, and can be used for many other nonlinear evolution equations with variable coefficients in mathematical physics.

  2. Cluster Expansion Method for Evolving Weighted Networks Having Vector-Like Nodes

    NASA Astrophysics Data System (ADS)

    Ausloos, M.; Gligor, M.

    2008-09-01

    The cluster variation method known in statistical mechanics and condensed matter is revived for weighted bipartite networks. The decomposition (or expansion) of a Hamiltonian through a finite number of components, whence serving to define variable clusters, is recalled. As an illustration the network built from data representing correlations between (4) macroeconomic features, i.e. the so-called vector components, of 15 EU countries, as (function) nodes, is discussed. We show that statistical physics principles, like the maximum entropy criterion points to clusters, here in a (4) variable phase space: Gross Domestic Product, Final Consumption Expenditure, Gross Capital Formation and Net Exports. It is observed that the maximum entropy corresponds to a cluster which does not explicitly include the Gross Domestic Product but only the other (3) "axes", i.e. consumption, investment and trade components. On the other hand, the minimal entropy clustering scheme is obtained from a coupling necessarily including Gross Domestic Product and Final Consumption Expenditure. The results confirm intuitive economic theory and practice expectations at least as regards geographical connexions. The technique can of course be applied to many other cases in the physics of socio-economy networks.

  3. Uncovering compounds by synergy of cluster expansion and high-throughput methods.

    PubMed

    Levy, Ohad; Hart, Gus L W; Curtarolo, Stefano

    2010-04-07

    Predicting from first-principles calculations whether mixed metallic elements phase-separate or form ordered structures is a major challenge of current materials research. It can be partially addressed in cases where experiments suggest the underlying lattice is conserved, using cluster expansion (CE) and a variety of exhaustive evaluation or genetic search algorithms. Evolutionary algorithms have been recently introduced to search for stable off-lattice structures at fixed mixture compositions. The general off-lattice problem is still unsolved. We present an integrated approach of CE and high-throughput ab initio calculations (HT) applicable to the full range of compositions in binary systems where the constituent elements or the intermediate ordered structures have different lattice types. The HT method replaces the search algorithms by direct calculation of a moderate number of naturally occurring prototypes representing all crystal systems and guides CE calculations of derivative structures. This synergy achieves the precision of the CE and the guiding strengths of the HT. Its application to poorly characterized binary Hf systems, believed to be phase-separating, defines three classes of alloys where CE and HT complement each other to uncover new ordered structures.

  4. Cycle-expansion method for the Lyapunov exponent, susceptibility, and higher moments

    NASA Astrophysics Data System (ADS)

    Charbonneau, Patrick; Li, Yue Cathy; Pfister, Henry D.; Yaida, Sho

    2017-09-01

    Lyapunov exponents characterize the chaotic nature of dynamical systems by quantifying the growth rate of uncertainty associated with the imperfect measurement of initial conditions. Finite-time estimates of the exponent, however, experience fluctuations due to both the initial condition and the stochastic nature of the dynamical path. The scale of these fluctuations is governed by the Lyapunov susceptibility, the finiteness of which typically provides a sufficient condition for the law of large numbers to apply. Here, we obtain a formally exact expression for this susceptibility in terms of the Ruelle dynamical ζ function for one-dimensional systems. We further show that, for systems governed by sequences of random matrices, the cycle expansion of the ζ function enables systematic computations of the Lyapunov susceptibility and of its higher-moment generalizations. The method is here applied to a class of dynamical models that maps to static disordered spin chains with interactions stretching over a varying distance and is tested against Monte Carlo simulations.

  5. Extended proton-neutron quasiparticle random-phase approximation in a boson expansion method

    NASA Astrophysics Data System (ADS)

    Civitarese, O.; Montani, F.; Reboiro, M.

    1999-08-01

    The proton-neutron quasiparticle random phase approximation (pn-QRPA) is extended to include next to leading order terms of the QRPA harmonic expansion. The procedure is tested for the case of a separable Hamiltonian in the SO(5) symmetry representation. The pn-QRPA equation of motion is solved by using a boson expansion technique adapted to the treatment of proton-neutron correlations. The resulting wave functions are used to calculate the matrix elements of double-Fermi transitions.

  6. A semi-analytical model for computation of capillary entry pressures and fluid configurations in uniformly-wet pore spaces from 2D rock images

    NASA Astrophysics Data System (ADS)

    Frette, O. I.; Helland, J. O.

    2010-08-01

    A novel semi-analytical model for computation of capillary entry pressures and associated fluid configurations in arbitrary, potentially non-convex, 2D pore space geometries at uniform wettability is developed. The model computes all possible centre positions of circular arcs, and physically sound criteria are implemented to determine the set of these arcs that correspond to geometrically allowed interfaces. Interfaces and pore boundary segments are connected to form closed boundaries of identified geometrical regions. These regions are classified as either oil regions, located in the wider parts of the pore space, or as water regions located in pore space constrictions. All possible region combinations are identified and evaluated for each radius value in an iterative procedure to determine the favourable entry radius and corresponding configuration based on minimisation of free energy. The model has been validated by comparison with known analytical solutions in idealised pore geometries. In cases where different analytical solutions are geometrically possible, the model generates several oil and water regions, and the valid solution is determined by the region combination that corresponds to the most favourable entry pressure, consistent with the analytical solution. Entry pressure radii and configurations are computed in strongly non-convex pore spaces extracted from an image of Bentheimer sandstone, which demonstrates that the model captures successfully well-known characteristics of capillary behaviour at different wetting conditions. The computations also demonstrate the importance of selecting the fluid configuration of minimum change in free energy. In some cases, a merged region formed by a combination of oil and water regions corresponds to the favourable entry configuration of oil, whereas in other cases, an individual oil region may correspond to the favourable oil entry configuration. It is also demonstrated that oil entry configurations may

  7. GWSCREEN: A Semi-analytical Model for Assessment of the Groundwater Pathway from Surface or Buried Contamination, Theory and User's Manual, Version 2.5

    SciTech Connect

    Rood, Arthur South

    1998-08-01

    GWSCREEN was developed for assessment of the groundwater pathway from leaching of radioactive and non-radioactive substances from surface or buried sources. The code was designed for implementation in the Track I and Track II assessment of Comprehensive Environmental Response, Compensation, and Liability Act sites identified as low probability hazard at the Idaho National Engineering Laboratory. The code calculates 1) the limiting soil concentration such that, after leaching and transport to the aquifer regulatory contaminant levels in groundwater are not exceeded, 2) peak aquifer concentration and associated human health impacts, and 3) aquifer concentrations and associated human health impacts as a function of time and space. The code uses a mass conservation approach to model three processes: contaminant release from a source volume, vertical contaminant transport in the unsaturated zone, and 2D or 3D contaminant transport in the saturated zone. The source model considers the sorptive properties and solubility of the contaminant. In Version 2.5, transport in the unsaturated zone is described by a plug flow or dispersive solution model. Transport in the saturated zone is calculated with a semi-analytical solution to the advection dispersion equation in groundwater. Three source models are included; leaching from a surface or buried source, infiltration pond, or user-defined arbitrary release. Dispersion in the aquifer may be described by fixed dispersivity values or three, spatial-variable dispersivity functions. Version 2.5 also includes a Monte Carlo sampling routine for uncertainty/sensitivity analysis and a preprocessor to allow multiple input files and multiple contaminants to be run in a single simulation. GWSCREEN has been validated against other codes using similar algorithms and techniques. The code was originally designed for assessment and screening of the groundwater pathway when field data are limited. It was intended to simulate relatively simple

  8. Exponential Monte Carlo Convergence on a Homogeneous Right Parallelepiped Using the Reduced Source Method with Legendre Expansion

    SciTech Connect

    Favorite, J.A.

    1999-09-01

    In previous work, exponential convergence of Monte Carlo solutions using the reduced source method with Legendre expansion has been achieved only in one-dimensional rod and slab geometries. In this paper, the method is applied to three-dimensional (right parallelepiped) problems, with resulting evidence suggesting success. As implemented in this paper, the method approximates an angular integral of the flux with a discrete-ordinates numerical quadrature. It is possible that this approximation introduces an inconsistency that must be addressed.

  9. The application of the matched-asymptotic-expansion method to two-dimensional laminar flows with finite separated regions

    NASA Astrophysics Data System (ADS)

    Herwig, H.

    Theoretical investigations of stationary incompressible two-dimensional laminar flows with finite regions of catastrophic separation, applying the method of matched asymptotic expansions, are presented. The difficulties associated with the Goldstein singularity are attacked in two ways, corresponding to the limiting values of a complex parameter kappa. Each case is applied to a unified model geometry using triple-deck equations. The flow model of Batchelor (1955) is shown not to fulfill the asymptotic-expansion assumptions; the model of Kirchhoff (1869), actually a degenerate version of the Batchelor model for the case omega-0 = 0, is found to be the uniquely valid one under these conditions.

  10. Apparatus and method for measuring the expansion properties of a cement composition

    DOEpatents

    Spangle, Lloyd B.

    1983-01-01

    An apparatus is disclosed which is useful for measuring the expansion properties of semi-solid materials which expand to a solid phase, upon curing, such as cement compositions. The apparatus includes a sleeve, preferably cylindrical, which has a vertical slit on one side, to allow the sleeve to expand. Mounted on the outside of the sleeve are several sets of pins, consisting of two pins each. The two pins in each set are located on opposite sides of the slit. In the test procedure, the sleeve is filled with wet cement, which is then cured to a solid. As the cement cures it causes the sleeve to expand. The actual expansion of the sleeve represents an expansion factor for the cement. This factor is calculated by measuring the distance across the pins of each set, when the sleeve is empty, and again after the cured cement expands the sleeve.

  11. A re-expansion method for determining the acoustical impedance and the scattering matrix for the waveguide discontinuity problem

    PubMed Central

    Homentcovschi, Dorel; Miles, Ronald N.

    2010-01-01

    The paper gives a new method for analyzing planar discontinuities in rectangular waveguides. The method consists of a re-expansion of the normal modes in the two ducts at the junction plane into a system of functions accounting for the velocity singularities at the corner points. As the new expansion has an exponential convergence, only a few terms have to be considered for obtaining the solution of most practical problems. To see how the method works some closed form solutions, obtained by the conformal mapping method, are used to discuss the convergence of the re-expanded series when the number of retained terms increases. The equivalent impedance accounting for nonplanar waves into a plane-wave analysis is determined. Finally, the paper yields the scattering matrix which describes the coupling of arbitrary modes at each side of the discontinuity valid in the case of many propagating modes in both parts of the duct. PMID:20707432

  12. A Laguerre expansion method for the field particle portion in the linearized Coulomb collision operator

    SciTech Connect

    Nishimura, Shin

    2015-12-15

    The spherical coordinates expressions of the Rosenbluth potentials are applied to the field particle portion in the linearized Coulomb collision operator. The Sonine (generalized Laguerre) polynomial expansion formulas for this operator allowing general field particles' velocity distributions are derived. An important application area of these formulas is the study of flows of thermalized particles in NBI-heated or burning plasmas since the energy space structure of the fast ions' slowing down velocity distribution cannot be expressed by usual orthogonal polynomial expansions, and since the Galilean invariant property and the momentum conservation of the collision must be distinguished there.

  13. A New Method for Accurate Treatment of Flow Equations in Cylindrical Coordinates Using Series Expansions

    NASA Technical Reports Server (NTRS)

    Constantinescu, G.S.; Lele, S. K.

    2000-01-01

    using these schemes is especially sensitive to the type of equation treatment at the singularity axis. The objective of this work is to develop a generally applicable numerical method for treating the singularities present at the polar axis, which is particularly suitable for highly accurate finite-differences schemes (e.g., Pade schemes) on non-staggered grids. The main idea is to reinterpret the regularity conditions developed in the context of pseudo-spectral methods. A set of exact equations at the singularity axis is derived using the appropriate series expansions for the variables in the original set of equations. The present treatment of the equations preserves the same level of accuracy as for the interior scheme. We also want to point out the wider utility of the method, proposed here in the context of compressible flow equations, as its extension for incompressible flows or for any other set of equations that are solved on a non-staggered mesh in cylindrical coordinates with finite-differences schemes of various level of accuracy is straightforward. The robustness and accuracy of the proposed technique is assessed by comparing results from simulations of laminar forced-jets and turbulent compressible jets using LES with similar calculations in which the equations are solved in Cartesian coordinates at the polar axis, or in which the singularity is removed by employing a staggered mesh in the radial direction without a mesh point at r = 0.

  14. A New Method for Accurate Treatment of Flow Equations in Cylindrical Coordinates Using Series Expansions

    NASA Technical Reports Server (NTRS)

    Constantinescu, G.S.; Lele, S. K.

    2000-01-01

    using these schemes is especially sensitive to the type of equation treatment at the singularity axis. The objective of this work is to develop a generally applicable numerical method for treating the singularities present at the polar axis, which is particularly suitable for highly accurate finite-differences schemes (e.g., Pade schemes) on non-staggered grids. The main idea is to reinterpret the regularity conditions developed in the context of pseudo-spectral methods. A set of exact equations at the singularity axis is derived using the appropriate series expansions for the variables in the original set of equations. The present treatment of the equations preserves the same level of accuracy as for the interior scheme. We also want to point out the wider utility of the method, proposed here in the context of compressible flow equations, as its extension for incompressible flows or for any other set of equations that are solved on a non-staggered mesh in cylindrical coordinates with finite-differences schemes of various level of accuracy is straightforward. The robustness and accuracy of the proposed technique is assessed by comparing results from simulations of laminar forced-jets and turbulent compressible jets using LES with similar calculations in which the equations are solved in Cartesian coordinates at the polar axis, or in which the singularity is removed by employing a staggered mesh in the radial direction without a mesh point at r = 0.

  15. Application of the mode-shape expansion based on model order reduction methods to a composite structure

    NASA Astrophysics Data System (ADS)

    Fuentes, Humberto Peredo

    2017-09-01

    The application of different mode-shape expansion (MSE) methods to a CFRP based on model order reduction (MOR) and component mode synthesis (CMS) methods is evaluated combining the updated stiffness parameters of the full FE model obtained with a mix-numerical experimental technique (MNET) in a previous work. The eigenvectors and eigenfrequencies of the different MSE methods obtained are compared with respect to the experimental measurements and with a full FE model solutions using the modal assurance criteria (MAC). Furthermore, the stiffness and mass weighted coefficients (K-MAC and M-MAC respectively) are calculated and compared to observe the influence of the different subspace based expansion methods applying the MAC criteria. The K-MAC and M-MAC are basically the MAC coefficients weighted by a partition of the global stiffness and mass matrices respectively. The best K-MAC and M-MAC results per paired mode-sensor are observed in the subspace based expansion MODAL/SEREP and MDRE-WE methods using the updated stiffness parameters. A strong influence of the subspace based on MOR using MSE methods is observed in the K-MAC and M-MAC criteria implemented in SDTools evaluating the stiffness parameters in a contrieved example.

  16. A note on improved F-expansion method combined with Riccati equation applied to nonlinear evolution equations

    PubMed Central

    Islam, Md. Shafiqul; Khan, Kamruzzaman; Akbar, M. Ali; Mastroberardino, Antonio

    2014-01-01

    The purpose of this article is to present an analytical method, namely the improved F-expansion method combined with the Riccati equation, for finding exact solutions of nonlinear evolution equations. The present method is capable of calculating all branches of solutions simultaneously, even if multiple solutions are very close and thus difficult to distinguish with numerical techniques. To verify the computational efficiency, we consider the modified Benjamin–Bona–Mahony equation and the modified Korteweg-de Vries equation. Our results reveal that the method is a very effective and straightforward way of formulating the exact travelling wave solutions of nonlinear wave equations arising in mathematical physics and engineering. PMID:26064530

  17. F-Expansion Method and New Exact Solutions of the Schrödinger-KdV Equation

    PubMed Central

    Filiz, Ali; Ekici, Mehmet; Sonmezoglu, Abdullah

    2014-01-01

    F-expansion method is proposed to seek exact solutions of nonlinear evolution equations. With the aid of symbolic computation, we choose the Schrödinger-KdV equation with a source to illustrate the validity and advantages of the proposed method. A number of Jacobi-elliptic function solutions are obtained including the Weierstrass-elliptic function solutions. When the modulus m of Jacobi-elliptic function approaches to 1 and 0, soliton-like solutions and trigonometric-function solutions are also obtained, respectively. The proposed method is a straightforward, short, promising, and powerful method for the nonlinear evolution equations in mathematical physics. PMID:24672327

  18. F-expansion method and new exact solutions of the Schrödinger-KdV equation.

    PubMed

    Filiz, Ali; Ekici, Mehmet; Sonmezoglu, Abdullah

    2014-01-01

    F-expansion method is proposed to seek exact solutions of nonlinear evolution equations. With the aid of symbolic computation, we choose the Schrödinger-KdV equation with a source to illustrate the validity and advantages of the proposed method. A number of Jacobi-elliptic function solutions are obtained including the Weierstrass-elliptic function solutions. When the modulus m of Jacobi-elliptic function approaches to 1 and 0, soliton-like solutions and trigonometric-function solutions are also obtained, respectively. The proposed method is a straightforward, short, promising, and powerful method for the nonlinear evolution equations in mathematical physics.

  19. Demographic inference using spectral methods on SNP data, with an analysis of the human out-of-Africa expansion.

    PubMed

    Lukic, Sergio; Hey, Jody

    2012-10-01

    We present an implementation of a recently introduced method for estimating the allele-frequency spectrum under the diffusion approximation. For single-nucleotide polymorphism (SNP) frequency data from multiple populations, the method computes numerical solutions to the allele-frequency spectrum (AFS) under a complex model that includes population splitting events, migration, population expansion, and admixture. The solution to the diffusion partial differential equation (PDE) that mimics the evolutionary process is found by means of truncated polynomial expansions. In the absence of gene flow, our computation of frequency spectra yields exact results. The results are compared to those that use a finite-difference method and to forward diffusion simulations. In general, all the methods yield comparable results, although the polynomial-based approach is the most accurate in the weak-migration limit. Also, the economical use of memory attained by the polynomial expansions makes the study of models with four populations possible for the first time. The method was applied to a four-population model of the human expansion out of Africa and the peopling of the Americas, using the Environmental Genome Project (EGP) SNP database. Although our confidence intervals largely overlapped previous analyses of these data, some were significantly different. In particular, estimates of migration among African, European, and Asian populations were considerably lower than those in a previous study and the estimated time of migration out of Africa was earlier. The estimated time of founding of a human population outside of Africa was 52,000 years (95% confidence interval: 36,000-80,800 years).

  20. Demographic Inference Using Spectral Methods on SNP Data, with an Analysis of the Human Out-of-Africa Expansion

    PubMed Central

    Lukić, Sergio; Hey, Jody

    2012-01-01

    We present an implementation of a recently introduced method for estimating the allele-frequency spectrum under the diffusion approximation. For single-nucleotide polymorphism (SNP) frequency data from multiple populations, the method computes numerical solutions to the allele-frequency spectrum (AFS) under a complex model that includes population splitting events, migration, population expansion, and admixture. The solution to the diffusion partial differential equation (PDE) that mimics the evolutionary process is found by means of truncated polynomial expansions. In the absence of gene flow, our computation of frequency spectra yields exact results. The results are compared to those that use a finite-difference method and to forward diffusion simulations. In general, all the methods yield comparable results, although the polynomial-based approach is the most accurate in the weak-migration limit. Also, the economical use of memory attained by the polynomial expansions makes the study of models with four populations possible for the first time. The method was applied to a four-population model of the human expansion out of Africa and the peopling of the Americas, using the Environmental Genome Project (EGP) SNP database. Although our confidence intervals largely overlapped previous analyses of these data, some were significantly different. In particular, estimates of migration among African, European, and Asian populations were considerably lower than those in a previous study and the estimated time of migration out of Africa was earlier. The estimated time of founding of a human population outside of Africa was 52,000 years (95% confidence interval: 36,000–80,800 years). PMID:22865734

  1. Marriage of exact enumeration and 1/d expansion methods: Lattice model of dilute polymers

    NASA Astrophysics Data System (ADS)

    Nemirovsky, A. M.; Freed, Karl F.; Ishinabe, Takao; Douglas, Jack F.

    1992-06-01

    We consider the properties of a self-avoiding polymer chain with nearestneighbor contact energy ɛ on a d-dimensional hypercubic lattice. General theoretical arguments enable us to prescribe the exact analytic form of the n-segment chain partition function C n ,and unknown coefficients for chains of up to 11 segments are determined using exact enumeration data in d=2-6. This exact form provides the main ingredient to produce a large- n expansion in d -1of the chain free energy through fifth order with the full dependence on the contact energy retained. The ɛ-dependent chain connectivity constant and free energy amplitude are evaluated within the d -1expansion to O(d -5). Our general formulation includes for the first time self-avoiding walks, neighboravoiding walks, theta, and collapsed chains as particular limiting cases.

  2. Controlled Expansion of Supercritical Solution: A Robust Method to Produce Pure Drug Nanoparticles With Narrow Size-Distribution.

    PubMed

    Pessi, Jenni; Lassila, Ilkka; Meriläinen, Antti; Räikkönen, Heikki; Hæggström, Edward; Yliruusi, Jouko

    2016-08-01

    We introduce a robust, stable, and reproducible method to produce nanoparticles based on expansion of supercritical solutions using carbon dioxide as a solvent. The method, controlled expansion of supercritical solution (CESS), uses controlled mass transfer, flow, pressure reduction, and particle collection in dry ice. CESS offers control over the crystallization process as the pressure in the system is reduced according to a specific profile. Particle formation takes place before the exit nozzle, and condensation is the main mechanism for postnucleation particle growth. A 2-step gradient pressure reduction is used to prevent Mach disk formation and particle growth by coagulation. Controlled particle growth keeps the production process stable. With CESS, we produced piroxicam nanoparticles, 60 mg/h, featuring narrow size distribution (176 ± 53 nm). Copyright © 2016 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  3. DNA aptamer generation by ExSELEX using genetic alphabet expansion with a mini-hairpin DNA stabilization method.

    PubMed

    Hirao, Ichiro; Kimoto, Michiko; Lee, Kyung Hyun

    2017-09-13

    A novel aptamer generation method to greatly augment the affinity and stability of DNA aptamers was developed by genetic alphabet expansion combined with mini-hairpin DNA technology. The genetic alphabet expansion increases the physicochemical and structural diversities of DNA aptamers by introducing extra components, unnatural bases, as a fifth base, allowing for the enhancement of DNA aptamer affinities. Furthermore, the mini-hairpin DNA technology stabilizes DNA aptamers against nuclease digestion and thermal denaturation, by introducing an extraordinarily stable mini-hairpin DNA containing a GCGAAGC sequence. This novel method provides stabilized high-affinity DNA aptamers for diagnostic and therapeutic applications. Copyright © 2017 Elsevier B.V. and Société Française de Biochimie et Biologie Moléculaire (SFBBM). All rights reserved.

  4. Solution of Linearized Drift Kinetic Equations in Neoclassical Transport Theory by the Method of Matched Asymptotic Expansions

    NASA Astrophysics Data System (ADS)

    Wong, S. K.; Chan, V. S.; Hinton, F. L.

    2001-10-01

    The classic solution of the linearized drift kinetic equations in neoclassical transport theory for large-aspect-ratio tokamak flux-surfaces relies on the variational principle and the choice of ``localized" distribution functions as trialfunctions.(M.N. Rosenbluth, et al., Phys. Fluids 15) (1972) 116. Somewhat unclear in this approach are the nature and the origin of the ``localization" and whether the results obtained represent the exact leading terms in an asymptotic expansion int he inverse aspect ratio. Using the method of matched asymptotic expansions, we were able to derive the leading approximations to the distribution functions and demonstrated the asymptotic exactness of the existing results. The method is also applied to the calculation of angular momentum transport(M.N. Rosenbluth, et al., Plasma Phys. and Contr. Nucl. Fusion Research, 1970, Vol. 1 (IAEA, Vienna, 1971) p. 495.) and the current driven by electron cyclotron waves.

  5. Solution of the five-body η4He problem with separable pole expansion method

    NASA Astrophysics Data System (ADS)

    Fix, A.; Kolesnikov, O.

    2017-09-01

    The Alt-Grassberger-Sandhas equations for the five-body η - 4 N problem are solved for the case of the driving ηN and NN potentials limited to s-waves. Separable expansion of the transition amplitudes in all different subsystems is employed to convert the five-body equations into the effective two-body form. Numerical results are presented for the η4 He scattering length.

  6. On the Singularity Expansion Method for the Solution of Electromagnetic Interaction Problems

    DTIC Science & Technology

    1971-12-11

    course in the treatment of the interaution of electromagnetic fields with bodies located in free space or in other simple media, including the effects of...wire models of aircraft atrvctiuxex. Then in more Jetailed calculations of "fatter" structures one can use( the thin wire results to help locate all...the singu- larity expansion. For example take a perfectly conducting ob- ject of finite size located between two infinite parallel per- fectly

  7. Modeling environmental impacts of urban expansion: a systematic method for dealing with uncertainties.

    PubMed

    Liu, Yi; Yang, Sheng; Chen, Jining

    2012-08-07

    In a rapidly transitioning China, urban land use has changed dramatically, both spatially and in terms of magnitude; these changes have significantly affected the natural environment. This paper reports the development of an Integrated Environmental Assessment of Urban Land Use Change (IEA-ULUC) model, which combines cellular automata, scenario analysis, and stochastic spatial sampling with the goal of exploring urban land-use change, related environmental impacts, and various uncertainties. By applying the IEA-ULUC model to a new urban development area in Dalian in northeastern China, the evolution of spatial patterns from 1986 to 2005 was examined to identify key driving forces affecting the changing trajectories of local land use. Using these results, future urban land use in the period 2005-2020 was projected for four scenarios of economic development and land-use planning regulation. A stochastic sampling process was implemented to generate industrial land distributions for each land expansion scenario. Finally, domestic and industrial water pollution loads to the ocean were estimated, and the environmental impacts of each scenario are discussed. The results showed that the four urban expansion scenarios could lead to considerable differences in environmental responses. In principle, urban expansion scenarios along the intercity transportation rail/roadways could have higher negative environmental impacts than cluster-developing scenarios, while faster economic growth could more intensely aggravate the environment than in the moderate growth scenarios.

  8. Variable-coefficient discrete (GG)-expansion method for nonlinear differential-difference equations

    NASA Astrophysics Data System (ADS)

    Tang, Bo; He, Yinnian; Wei, Leilei; Wang, Shaoli

    2011-09-01

    In this Letter, a variable-coefficient discrete (GG)-expansion method is proposed to seek new and more general exact solutions of nonlinear differential-difference equations. Being concise and straightforward, this method is applied to the (2+1)-dimension Toda equation. As a result, many new and more general exact solutions are obtained including hyperbolic function solutions, trigonometric function solutions and rational solutions. It is shown that the proposed method provides a very effective and powerful mathematical tool for solving a great many nonlinear differential-difference equations in mathematical physics.

  9. Unified cluster expansion method applied to the configurational thermodynamics of cubic Ti1-xAlxN

    NASA Astrophysics Data System (ADS)

    Alling, Björn; Ruban, Andrei; Karimi, Ayat; Hultman, Lars; Abrikosov, Igor

    2012-02-01

    We study the thermodynamics of cubic Ti1-xAlxN using a unified cluster expansion approach for the alloy problem [1]. The purely configurational part of the alloy Hamiltonian is expanded in terms of concentration and volume-dependent effective cluster interactions. By separate expansions of the chemical fixed lattice, and local lattice relaxation terms of the ordering energies, we demonstrate how the screened generalized perturbation method can be fruitfully combined with a concentration-dependent Connolly-Williams cluster expansion method, getting the best out of both two schemes that are traditionally used separately. Utilizing the obtained Hamiltonian in Monte Carlo simulations we access the free energy of Ti1-xAlxN alloys and construct the isostructural phase diagram. The results show striking similarities with the previously obtained mean-field results: The metastable c-TiAlN is subject to coherent spinodal decomposition over a large part of the concentration range, e.g., from x 0.33 at 2000 K. [4pt] [1] B. Alling, A. V. Ruban, A. Karimi, L. Hultman, and I. A. Abrikosov, PHYSICAL REVIEW B 83, 104203 (2011)

  10. Solving singular perturbation problem of second order ordinary differential equation using the method of matched asymptotic expansion (MMAE)

    NASA Astrophysics Data System (ADS)

    Mohamed, Firdawati binti; Karim, Mohamad Faisal bin Abd

    2015-10-01

    Modelling physical problems in mathematical form yields the governing equations that may be linear or nonlinear for known and unknown boundaries. The exact solution for those equations may or may not be obtained easily. Hence we seek an analytical approximation solution in terms of asymptotic expansion. In this study, we focus on a singular perturbation in second order ordinary differential equations. Solutions to several perturbed ordinary differential equations are obtained in terms of asymptotic expansion. The aim of this work is to find an approximate analytical solution using the classical method of matched asymptotic expansion (MMAE). The Mathematica computer algebra system is used to perform the algebraic computations. The details procedures will be discussed and the underlying concepts and principles of the MMAE will be clarified. Perturbation problem for linear equation that occurs at one boundary and two boundary layers are discussed. Approximate analytical solution obtained for both cases are illustrated by graph using selected parameter by showing the outer, inner and composite solution separately. Then, the composite solution will be compare to the exact solution to show their accuracy by graph. By comparison, MMAE is found to be one of the best methods to solve singular perturbation problems in second order ordinary differential equation since the results obtained are very close to the exact solution.

  11. Method of preloading superconducting coils by using materials with different thermal expansion coefficients

    DOEpatents

    Heim, J.R.

    1993-02-23

    The invention provides a high magnetic field coil. The invention provides a preloaded compressive force to the coil maintain the integrity of the coil. The compressive force is obtained by reinforcing the coil with two materials of different thermal expansion rates and then heating the coil to 700 C to obtain the desired compression. The embodiment of the invention uses Nb[sub 3]Sn as the conducting wire, since Nb[sub 3]Sn must be heated to 700 C to cause a reaction which makes Nb[sub 3]Sn superconducting.

  12. Method of preloading superconducting coils by using materials with different thermal expansion coefficients

    DOEpatents

    Heim, Joseph R.

    1993-01-01

    The invention provides a high magnetic field coil. The invention provides a preloaded compressive force to the coil maintain the integrity of the coil. The compressive force is obtained by reinforcing the coil with two materials of different thermal expansion rates and then heating the coil to 700.degree. C. to obtain the desired compression. The embodiment of the invention uses Nb.sub.3 Sn as the conducting wire, since Nb.sub.3 Sn must be heated to 700.degree. C. to cause a reaction which makes Nb.sub.3 Sn superconducting.

  13. A convergence study for the Laguerre expansion in the moment equation method for neoclassical transport in general toroidal plasmas

    SciTech Connect

    Nishimura, S.; Sugama, H.; Maassberg, H.; Beidler, C. D.; Murakami, S.; Nakamura, Y.; Hirooka, S.

    2010-08-15

    The dependence of neoclassical parallel flow calculations on the maximum order of Laguerre polynomial expansions is investigated in a magnetic configuration of the Large Helical Device [S. Murakami, A. Wakasa, H. Maassberg, et al., Nucl. Fusion 42, L19 (2002)] using the monoenergetic coefficient database obtained by an international collaboration. On the basis of a previous generalization (the so-called Sugama-Nishimura method [H. Sugama and S. Nishimura, Phys. Plasmas 15, 042502 (2008)]) to an arbitrary order of the expansion, the 13 M, 21 M, and 29 M approximations are compared. In a previous comparison, only the ion distribution function in the banana collisionality regime of single-ion-species plasmas in tokamak configurations was investigated. In this paper, the dependence of the problems including electrons and impurities in the general collisionality regime in an actual nonsymmetric toroidal configuration is reported. In particular, qualities of approximations for the electron distribution function are investigated in detail.

  14. A forward-advancing wave expansion method for numerical solution of large-scale sound propagation problems

    NASA Astrophysics Data System (ADS)

    Rolla, L. Barrera; Rice, H. J.

    2006-09-01

    In this paper a "forward-advancing" field discretization method suitable for solving the Helmholtz equation in large-scale problems is proposed. The forward wave expansion method (FWEM) is derived from a highly efficient discretization procedure based on interpolation of wave functions known as the wave expansion method (WEM). The FWEM computes the propagated sound field by means of an exclusively forward advancing solution, neglecting the backscattered field. It is thus analogous to methods such as the (one way) parabolic equation method (PEM) (usually discretized using standard finite difference or finite element methods). These techniques do not require the inversion of large system matrices and thus enable the solution of large-scale acoustic problems where backscatter is not of interest. Calculations using FWEM are presented for two propagation problems and comparisons to data computed with analytical and theoretical solutions and show this forward approximation to be highly accurate. Examples of sound propagation over a screen in upwind and downwind refracting atmospheric conditions at low nodal spacings (0.2 per wavelength in the propagation direction) are also included to demonstrate the flexibility and efficiency of the method.

  15. A New Ex Vivo Method for Effective Expansion and Activation of Human Natural Killer Cells for Anti-Tumor Immunotherapy.

    PubMed

    Yang, Hui; Tang, Ruihua; Li, Jing; Liu, Yaxiong; Ye, Linjie; Shao, Dongyan; Jin, Mingliang; Huang, Qingsheng; Shi, Junling

    2015-12-01

    Preserving the activities of natural killer (NK) cells in human peripheral blood mononuclear cells (PBMCs) after ex vivo expansion and activation is critical for NK cell-based therapy. Collected from human PBMCs, the NK cells were expanded and activated. The expressions of surface receptors, cytotoxicity against tumor cells, and antibody-dependent cell-mediated cytotoxicity (ADCC) of the NK cells before and after expansion and activation were, respectively, compared. After expansion, the ADCC activity of healthy human NK cells was improved by 32 %, and the cytotoxicity against four types of tumor cells was increased by 19, 29, 26, and 28 %, respectively. The positive expression rates for the activating receptors NKG2D, CD94, NKp46, NKp30, and NKp44 of healthy human NK cells expanded ex vivo were increased by 60, 40, 20, 40, and 63 %, respectively, whereas those for the inhibitory receptors CD158b, NKB1, and NKAT showed no significant changes. The addition of an immunologically active peptide, "TKD," during cell expansion further increased NK cytotoxicity by approximately 10 %. The expanded and activated NK cells from cancer patients achieved average purity which was greater than 90 %, and the cytotoxicity against K562 cells was increased by more than 17 %. Compared with resting NK cells, NK cells both from healthy volunteers and cancer patients expanded and activated ex vivo using our method were significantly more active and demonstrated significantly increased anti-tumor activity. This method could be therefore used as a new and effective approach to meet requirements for anti-tumor immunotherapy.

  16. Conclusions about niche expansion in introduced Impatiens walleriana populations depend on method of analysis.

    PubMed

    Mandle, Lisa; Warren, Dan L; Hoffmann, Matthias H; Peterson, A Townsend; Schmitt, Johanna; von Wettberg, Eric J

    2010-12-29

    Determining the degree to which climate niches are conserved across plant species' native and introduced ranges is valuable to developing successful strategies to limit the introduction and spread of invasive plants, and also has important ecological and evolutionary implications. Here, we test whether climate niches differ between native and introduced populations of Impatiens walleriana, globally one of the most popular horticultural species. We use approaches based on both raw climate data associated with occurrence points and ecological niche models (ENMs) developed with Maxent. We include comparisons of climate niche breadth in both geographic and environmental spaces, taking into account differences in available habitats between the distributional areas. We find significant differences in climate envelopes between native and introduced populations when comparing raw climate variables, with introduced populations appearing to expand into wetter and cooler climates. However, analyses controlling for differences in available habitat in each region do not indicate expansion of climate niches. We therefore cannot reject the hypothesis that observed differences in climate envelopes reflect only the limited environments available within the species' native range in East Africa. Our results suggest that models built from only native range occurrence data will not provide an accurate prediction of the potential for invasiveness if applied to areas containing a greater range of environmental combinations, and that tests of niche expansion may overestimate shifts in climate niches if they do not control carefully for environmental differences between distributional areas.

  17. Conclusions about Niche Expansion in Introduced Impatiens walleriana Populations Depend on Method of Analysis

    PubMed Central

    Mandle, Lisa; Warren, Dan L.; Hoffmann, Matthias H.; Peterson, A. Townsend; Schmitt, Johanna; von Wettberg, Eric J.

    2010-01-01

    Determining the degree to which climate niches are conserved across plant species' native and introduced ranges is valuable to developing successful strategies to limit the introduction and spread of invasive plants, and also has important ecological and evolutionary implications. Here, we test whether climate niches differ between native and introduced populations of Impatiens walleriana, globally one of the most popular horticultural species. We use approaches based on both raw climate data associated with occurrence points and ecological niche models (ENMs) developed with Maxent. We include comparisons of climate niche breadth in both geographic and environmental spaces, taking into account differences in available habitats between the distributional areas. We find significant differences in climate envelopes between native and introduced populations when comparing raw climate variables, with introduced populations appearing to expand into wetter and cooler climates. However, analyses controlling for differences in available habitat in each region do not indicate expansion of climate niches. We therefore cannot reject the hypothesis that observed differences in climate envelopes reflect only the limited environments available within the species' native range in East Africa. Our results suggest that models built from only native range occurrence data will not provide an accurate prediction of the potential for invasiveness if applied to areas containing a greater range of environmental combinations, and that tests of niche expansion may overestimate shifts in climate niches if they do not control carefully for environmental differences between distributional areas. PMID:21206912

  18. Generalized and improved (G'/G)-expansion method for (3+1)-dimensional modified KdV-Zakharov-Kuznetsev equation.

    PubMed

    Naher, Hasibun; Abdullah, Farah Aini; Akbar, M Ali

    2013-01-01

    The generalized and improved (G'/G)-expansion method is a powerful and advantageous mathematical tool for establishing abundant new traveling wave solutions of nonlinear partial differential equations. In this article, we investigate the higher dimensional nonlinear evolution equation, namely, the (3+1)-dimensional modified KdV-Zakharov-Kuznetsev equation via this powerful method. The solutions are found in hyperbolic, trigonometric and rational function form involving more parameters and some of our constructed solutions are identical with results obtained by other authors if certain parameters take special values and some are new. The numerical results described in the figures were obtained with the aid of commercial software Maple.

  19. Generalized and Improved (G′/G)-Expansion Method for (3+1)-Dimensional Modified KdV-Zakharov-Kuznetsev Equation

    PubMed Central

    Naher, Hasibun; Abdullah, Farah Aini; Akbar, M. Ali

    2013-01-01

    The generalized and improved -expansion method is a powerful and advantageous mathematical tool for establishing abundant new traveling wave solutions of nonlinear partial differential equations. In this article, we investigate the higher dimensional nonlinear evolution equation, namely, the (3+1)-dimensional modified KdV-Zakharov-Kuznetsev equation via this powerful method. The solutions are found in hyperbolic, trigonometric and rational function form involving more parameters and some of our constructed solutions are identical with results obtained by other authors if certain parameters take special values and some are new. The numerical results described in the figures were obtained with the aid of commercial software Maple. PMID:23741355

  20. Exact Solutions for The Generalized Zakharov-Kuznetsov Equation with Variable Coefficients Using The Generalized (G'/G)-expansion Method

    NASA Astrophysics Data System (ADS)

    Zayed, Elsayed M. E.; Abdelaziz, Mahmoud A. M.

    2010-09-01

    In this article, the generalized G'/G-expansion method using a generalized wave transformation is applied to find exact traveling wave solutions of the generalized Zakharov-Kuznetsov equation with variable coefficients. As a result, hyperbolic, trigonometric and rational function solutions with parameters are obtained. When these parameters are taken special values, the solitary wave solutions are derived from the hyperbolic function solution. It is shown that the proposed method is direct, effective and can be applied to many other nonlinear evolution equations in mathematical physics.

  1. A fixed mass method for the Kramers-Moyal expansion--application to time series with outliers.

    PubMed

    Petelczyc, M; Żebrowski, J J; Orłowska-Baranowska, E

    2015-03-01

    Extraction of stochastic and deterministic components from empirical data-necessary for the reconstruction of the dynamics of the system-is discussed. We determine both components using the Kramers-Moyal expansion. In our earlier papers, we obtained large fluctuations in the magnitude of both terms for rare or extreme valued events in the data. Calculations for such events are burdened by an unsatisfactory quality of the statistics. In general, the method is sensitive to the binning procedure applied for the construction of histograms. Instead of the commonly used constant width of bins, we use here a constant number of counts for each bin. This approach-the fixed mass method-allows to include in the calculation events, which do not yield satisfactory statistics in the fixed bin width method. The method developed is general. To demonstrate its properties, here, we present the modified Kramers-Moyal expansion method and discuss its properties by the application of the fixed mass method to four representative heart rate variability recordings with different numbers of ectopic beats. These beats may be rare events as well as outlying, i.e., very small or very large heart cycle lengths. The properties of ectopic beats are important not only for medical diagnostic purposes but the occurrence of ectopic beats is a general example of the kind of variability that occurs in a signal with outliers. To show that the method is general, we also present results for two examples of data from very different areas of science: daily temperatures at a large European city and recordings of traffics on a highway. Using the fixed mass method, to assess the dynamics leading to the outlying events we studied the occurrence of higher order terms of the Kramers-Moyal expansion in the recordings. We found that the higher order terms of the Kramers-Moyal expansion are negligible for heart rate variability. This finding opens the possibility of the application of the Langevin equation to the

  2. Multimodal method for scattering of sound at a sudden area expansion in a duct with subsonic flow

    NASA Astrophysics Data System (ADS)

    Kooijman, G.; Testud, P.; Aurégan, Y.; Hirschberg, A.

    2008-03-01

    The scattering of sound at a sudden area expansion in a duct with subsonic mean flow has been modelled with a multimodal method. Technological applications are for instance internal combustion engine exhaust silencers and silencers in industrial duct systems. Both two-dimensional (2D) rectangular and 2D cylindrical geometry and uniform mean flow as well as non-uniform mean flow profiles are considered. Model results for the scattering of plane waves in case of uniform flow, in which case an infinitely thin shear layer is formed downstream of the area expansion, are compared to results obtained by other models in literature. Generally good agreement is found. Furthermore, model results for the scattering are compared to experimental data found in literature. Also here fairly good correspondence is observed. When employing a turbulent pipe flow profile in the model, instead of a uniform flow profile, the prediction for the downstream transmission- and upstream reflection coefficient is improved. However, worse agreement is observed for the upstream transmission and downstream reflection coefficient. On the contrary, employing a non-uniform jet flow profile, which represents a typical shear layer flow downstream of the expansion, gives worse agreement for the downstream transmission- and the upstream reflection coefficient, whereas prediction for the upstream transmission and downstream reflection coefficient improves.

  3. Assemblies and methods for mitigating effects of reactor pressure vessel expansion

    DOEpatents

    Challberg, R.C.; Gou, P.F.; Chu, C.L.; Oliver, R.P.

    1999-07-27

    Support assemblies for allowing RPV radial expansion while simultaneously limiting horizontal, vertical, and azimuthal movement of the RPV within a nuclear reactor are described. In one embodiment, the support assembly includes a support block and a guide block. The support block includes a first portion and a second portion, and the first portion is rigidly coupled to the RPV adjacent the first portion. The guide block is rigidly coupled to a reactor pressure vessel support structure and includes a channel sized to receive the second portion of the support block. The second portion of the support block is positioned in the guide block channel to movably couple the guide block to the support block. 6 figs.

  4. Assemblies and methods for mitigating effects of reactor pressure vessel expansion

    DOEpatents

    Challberg, Roy C.; Gou, Perng-Fei; Chu, Cherk Lam; Oliver, Robert P.

    1999-01-01

    Support assemblies for allowing RPV radial expansion while simultaneously limiting horizontal, vertical, and azimuthal movement of the RPV within a nuclear reactor are described. In one embodiment, the support assembly includes a support block and a guide block. The support block includes a first portion and a second portion, and the first portion is rigidly coupled to the RPV adjacent the first portion. The guide block is rigidly coupled to a reactor pressure vessel support structure and includes a channel sized to receive the second portion of the support block. The second portion of the support block is positioned in the guide block channel to movably couple the guide block to the support block.

  5. Efficient Calculation of Configurational Entropy from Molecular Simulations by Combining the Mutual-Information Expansion and Nearest-Neighbor Methods

    PubMed Central

    Hnizdo, Vladimir; Tan, Jun; Killian, Benjamin J.; Gilson, Michael K.

    2008-01-01

    Changes in the configurational entropies of molecules make important contributions to free energies of reaction for processes such as protein-folding, noncovalent association, and conformational change. However, obtaining entropy from molecular simulations represents a long-standing computational challenge. Here, two recently introduced approaches, the nearest-neighbor (NN) method and the mutual-information expansion (MIE), are combined to furnish an efficient and accurate method of extracting the configurational entropy from a molecular simulation to a given order of correlations among the internal degrees of freedom. The resulting method takes advantage of the strengths of each approach. The NN method is entirely nonparametric (i.e., it makes no assumptions about the underlying probability distribution), its estimates are asymptotically unbiased and consistent, and it makes optimum use of a limited number of available data samples. The MIE, a systematic expansion of entropy in mutual information terms of increasing order, provides a well-characterized approximation for lowering the dimensionality of the numerical problem of calculating the entropy of a high-dimensional system. The combination of these two methods enables obtaining well-converged estimations of the configurational entropy that capture many-body correlations of higher order than is possible with the simple histogramming that was used in the MIE method originally. The combined method is tested here on two simple systems: an idealized system represented by an analytical distribution of 6 circular variables, where the full joint entropy and all the MIE terms are exactly known; and the R,S stereoisomer of tartaric acid, a molecule with 7 internal-rotation degrees of freedom for which the full entropy of internal rotation has been already estimated by the NN method. For these two systems, all the expansion terms of the full MIE of the entropy are estimated by the NN method and, for comparison, the MIE

  6. An adiabatic linearized path integral approach for quantum time-correlation functions II: a cumulant expansion method for improving convergence.

    PubMed

    Causo, Maria Serena; Ciccotti, Giovanni; Bonella, Sara; Vuilleumier, Rodolphe

    2006-08-17

    Linearized mixed quantum-classical simulations are a promising approach for calculating time-correlation functions. At the moment, however, they suffer from some numerical problems that may compromise their efficiency and reliability in applications to realistic condensed-phase systems. In this paper, we present a method that improves upon the convergence properties of the standard algorithm for linearized calculations by implementing a cumulant expansion of the relevant averages. The effectiveness of the new approach is tested by applying it to the challenging computation of the diffusion of an excess electron in a metal-molten salt solution.

  7. Mode-expansion method for predicting radar signature above rough ocean surfaces at low-grazing angle

    NASA Technical Reports Server (NTRS)

    Zhang, Y.

    2005-01-01

    The Mode-Expansion Method (MEM) is introduced to calculate the electromagnetic (EM) waves scattered by 2-D rough water surfaces at low-grazing angles. The Electric Field Integral Equation (EFIE) is used in defining the problem and is simplified by using the Impedance Boundary Condition (IBC). The surface currents are expressed as the sum of modes expanded as the Fourier series with incident wave as the dominant mode. It is shown that, by the MEM and for the geometry with transmitting and receiving waves at low-grazing angles, very few modes are needed in solving the forward scattering field with reasonable accuracy.

  8. A Semi-Analytical Model for Heat and Mass Transfer in Geothermal Reservoirs to Estimate Fracture Surface-Area-to-Volume Ratios and Thermal Breakthrough using Thermally-Decaying and Diffusing Tracers

    NASA Astrophysics Data System (ADS)

    Reimus, P. W.

    2010-12-01

    A semi-analytical model was developed to conduct rapid scoping calculations of responses of thermally degrading and diffusing tracers in multi-well tracer tests in enhanced geothermal systems (EGS). The model is based on an existing Laplace transform inversion model for solute transport in dual-porosity media. The heat- and mass-transfer calculations are decoupled and conducted sequentially, taking advantage of the fact that heat transfer between fractures and the rock matrix is much more rapid than mass transfer and therefore mass transfer will effectively occur in a locally isothermal system (although the system will be nonisothermal along fracture flow pathways, which is accounted for by discretizing the flow pathways into multiple segments that have different temperature histories). The model takes advantage of the analogies between heat and mass transfer, solving the same governing equations with km/(ρCp)w being substituted for Dm in the equation for fracture transport and km/(ρCp)m being substituting for phi*Dm in the equation for matrix transport; where k = thermal conductivity (cal/cm-s-K), ρ = density (g/cm3), Cp = heat capacity (at constant pressure) (cal/g-K), phi = matrix porosity, and D = tracer diffusion coefficient (cm2/s), with the subscripts w and m referring to water and matrix, respectively. A significant advantage of the model is that it executes in a fraction of second on a single-CPU personal computer, making it very amenable for parameter estimation algorithms that involve repeated runs to find global minima. The combined thermal-mass transport model was used to evaluate the ability to estimate when thermal breakthrough would occur in a multi-well EGS configuration using thermally degrading tracers. Calculations were conducted to evaluate the range of values of Arrhenius parameters, A and Ea (pre-exponential factor, 1/s, and activation energy, cal/mol) required to obtain interpretable responses of thermally-degrading tracers that decay

  9. A semi-analytical model for heat and mass transfer in geothermal reservoirs to estimate fracture surface-are-to-volume ratios and thermal breakthrough using thermally-decaying and diffusing tracers

    SciTech Connect

    Reimus, Paul W

    2010-12-08

    A semi-analytical model was developed to conduct rapid scoping calculations of responses of thermally degrading and diffusing tracers in multi-well tracer tests in enhanced geothermal systems (EGS). The model is based on an existing Laplace transform inversion model for solute transport in dual-porosity media. The heat- and mass-transfer calculations are decoupled and conducted sequentially, taking advantage of the fact that heat transfer between fractures and the rock matrix is much more rapid than mass transfer and therefore mass transfer will effectively occur in a locally isothermal system (although the system will be nonisothermal along fracture flow pathways, which is accounted for by discretizing the flow pathways into multiple segments that have different temperature histories). The model takes advantage of the analogies between heat and mass transfer, solving the same governing equations with k{sub m}/({rho}C{sub p}){sub w} being substituted for {phi}D{sub m} in the equation for fracture transport and k{sub m}/({rho}C{sub p}){sub m} being subsituted for D{sub m} in the equation for matrix transport; where k = thermal conductivity (cal/cm-s-K), {rho} = density (g/cm{sup 3}), C{sub p} = heat capacity (at constant pressure) (cal/g-K), {phi} = matrix porosity, and D = tracer diffusion coefficient (cm{sup 2}/s), with the subscripts w and m referring to water and matrix, respectively. A significant advantage of the model is that it executes in a fraction of second on a single-CPU personal computer, making it very amenable for parameter estimation algorithms that involve repeated runs to find global minima. The combined thermal-mass transport model was used to evaluate the ability to estimate when thermal breakthrough would occur in a multi-well EGS configuration using thermally degrading tracers. Calculations were conducted to evaluate the range of values of Arrhenius parameters, A and E{sub {alpha}} (pre-exponential factor, 1/s, and activation energy, cal

  10. Inferring Population Decline and Expansion From Microsatellite Data: A Simulation-Based Evaluation of the Msvar Method

    PubMed Central

    Girod, Christophe; Vitalis, Renaud; Leblois, Raphaël; Fréville, Hélène

    2011-01-01

    Reconstructing the demographic history of populations is a central issue in evolutionary biology. Using likelihood-based methods coupled with Monte Carlo simulations, it is now possible to reconstruct past changes in population size from genetic data. Using simulated data sets under various demographic scenarios, we evaluate the statistical performance of Msvar, a full-likelihood Bayesian method that infers past demographic change from microsatellite data. Our simulation tests show that Msvar is very efficient at detecting population declines and expansions, provided the event is neither too weak nor too recent. We further show that Msvar outperforms two moment-based methods (the M-ratio test and Bottleneck) for detecting population size changes, whatever the time and the severity of the event. The same trend emerges from a compilation of empirical studies. The latest version of Msvar provides estimates of the current and the ancestral population size and the time since the population started changing in size. We show that, in the absence of prior knowledge, Msvar provides little information on the mutation rate, which results in biased estimates and/or wide credibility intervals for each of the demographic parameters. However, scaling the population size parameters with the mutation rate and scaling the time with current population size, as coalescent theory requires, significantly improves the quality of the estimates for contraction but not for expansion scenarios. Finally, our results suggest that Msvar is robust to moderate departures from a strict stepwise mutation model. PMID:21385729

  11. Assessment of the further improved (G'/G)-expansion method and the extended tanh-method in probing exact solutions of nonlinear PDEs.

    PubMed

    Akbar, M Ali; Ali, Norhashidah Hj Mohd; Mohyud-Din, Syed Tauseef

    2013-01-01

    The (G'/G)-expansion method is one of the most direct and effective method for obtaining exact solutions of nonlinear partial differential equations (PDEs). In the present article, we construct the exact traveling wave solutions of nonlinear evolution equations in mathematical physics via the (2 + 1)-dimensional breaking soliton equation by using two methods: namely, a further improved (G'/G)-expansion method, where G(ξ) satisfies the auxiliary ordinary differential equation (ODE) [G'(ξ)](2) = p G (2)(ξ) + q G (4)(ξ) + r G (6)(ξ); p, q and r are constants and the well known extended tanh-function method. We demonstrate, nevertheless some of the exact solutions bring out by these two methods are analogous, but they are not one and the same. It is worth mentioning that the first method has not been exercised anybody previously which gives further exact solutions than the second one. PACS numbers 02.30.Jr, 05.45.Yv, 02.30.Ik.

  12. COMET-PE: an incident fluence response expansion transport method for radiotherapy calculations.

    PubMed

    Hayward, Robert M; Rahnema, Farzad

    2013-05-21

    Accurate dose calculation is a central component of radiotherapy treatment planning. A new method of dose calculation has been developed based on transport theory and validated by comparison to Monte Carlo methods. The coarse mesh transport method has been extended to allow coupled photon-electron transport in 3D. The method combines stochastic pre-computation with a deterministic solver to achieve high accuracy and precision. To enhance the method for radiotherapy calculations, a new angular basis was derived, and an analytical source treatment was developed. Validation was performed by comparison to DOSXYZnrc using a heterogeneous interface phantom composed of water, aluminum, and lung. Calculations of both kinetic energy released per unit mass and dose were compared. Good agreement was found with a maximum error and root mean square relative error of less than 1.5% for all cases. The results show that the new method achieves an accuracy comparable to Monte Carlo.

  13. The Truncated Polynomial Expansion Monte Carlo Method for Fermion Systems Coupled to Classical Fields: A Model Independent Implementation

    SciTech Connect

    Alvarez, Gonzalo; Sen, Cengiz; Furukawa, N.; Motome, Y.; Dagotto, Elbio R

    2005-01-01

    A software library is presented for the polynomial expansion method (PEM) of the density of states (DOS) introduced in. The library provides all necessary functions for the use of the PEM and its truncated version (TPEM) in a model independent way. The PEM/TPEM replaces the exact diagonalization of the one electron sector in models for fermions coupled to classical fields. The computational cost of the algorithm is O(N)-with N the number of lattice sites-for the TPEM which should be contrasted with the computational cost of the diagonalization technique that scales as O(N4). The method is applied for the first time to a double exchange model with finite Hund coupling and also to diluted spin-fermion models.

  14. New nonlinear iterative scheme for the analytic function expansion nodal method

    SciTech Connect

    Moon, Kap Suk; Noh, Jae Man; Cho, Nam Zin

    1997-12-01

    The nonlinear scheme has turned out to be very effective computing time, and in minimizing memory requirements, computing time, and implementing effort associated with higher order nodal methods. This scheme solves the modified finite difference method (FDM) current equation given for the interface of nodes n and n + 1 with side-length h.

  15. A generalized method for the inversion of cohesive energy curves from isotropic and anisotropic lattice expansions.

    PubMed

    Schmidt, Kevin M; Vasquez, Victor R

    2015-09-28

    Cohesive energy curves contain important information about energetics of atomic interactions in crystalline materials, and these are more often obtained using ab initio methods such as density functional theory. Decomposing these curves into the different interatomic contributions is of great value to evaluate and characterize the energetics of specific types of atom-atom interactions. In this work, we present and discuss a generalized method for the inversion of cohesive energy curves of crystalline materials for pairwise interatomic potentials extraction using detailed geometrical descriptions of the atomic interactions to construct a list of atomic displacements and degeneracies, which is modified using a Gaussian elimination process to isolate the pairwise interactions. The proposed method provides a more general framework for cohesive energy inversions that is robust and accurate for systems well-described by pairwise potential interactions. Results show very good reproduction of cohesive energies with the same or better accuracy than current approaches with the advantage that the method has broader applications.

  16. Framework for the Data-Driven Geographical Expansion of Rapid Ecological Assessment Methods

    DTIC Science & Technology

    2014-12-01

    G.A. de Leo, I. Ferrari. 2004. A critical review of representative wetland rapid assessment methods in North America. Aquatic Conservation: Marine... Wetlands Regulatory Assistance Program ERDC TN-WRAP-14-1 December 2014 Approved for public release; distribution is unlimited. Framework for the...The current study outlines guidance for expanding the geographic extent of existing wetland and stream rapid ecological assessment methods beyond

  17. Using Finite Element and Eigenmode Expansion Methods to Investigate the Periodic and Spectral Characteristic of Superstructure Fiber Bragg Gratings

    PubMed Central

    He, Yue-Jing; Hung, Wei-Chih; Lai, Zhe-Ping

    2016-01-01

    In this study, a numerical simulation method was employed to investigate and analyze superstructure fiber Bragg gratings (SFBGs) with five duty cycles (50%, 33.33%, 14.28%, 12.5%, and 10%). This study focuses on demonstrating the relevance between design period and spectral characteristics of SFBGs (in the form of graphics) for SFBGs of all duty cycles. Compared with complicated and hard-to-learn conventional coupled-mode theory, the result of the present study may assist beginner and expert designers in understanding the basic application aspects, optical characteristics, and design techniques of SFBGs, thereby indirectly lowering the physical concepts and mathematical skills required for entering the design field. To effectively improve the accuracy of overall computational performance and numerical calculations and to shorten the gap between simulation results and actual production, this study integrated a perfectly matched layer (PML), perfectly reflecting boundary (PRB), object meshing method (OMM), and boundary meshing method (BMM) into the finite element method (FEM) and eigenmode expansion method (EEM). The integrated method enables designers to easily and flexibly design optical fiber communication systems that conform to the specific spectral characteristic by using the simulation data in this paper, which includes bandwidth, number of channels, and band gap size. PMID:26861322

  18. A ghost cell expansion method for reducing communications in solving PDE problems

    SciTech Connect

    Ding, Chris H.Q.; He, Yun

    2001-05-01

    In solving Partial Differential Equations, such as the Barotropic equations in ocean models, on Distributed Memory Computers, finite difference methods are commonly used. Most often, processor subdomain boundaries must be updated at each time step. This boundary update process involves many messages of small sizes, therefore large communication overhead. Here we propose a new approach which expands the ghost cell layers and thus updates boundaries much less frequently ---reducing total message volume and grouping small messages into bigger ones. Together with a technique for eliminating diagonal communications, the method speedup communication substantially, up to 170%. We explain the method and implementation in details, provide systematic timing results and performance analysis on Cray T3E and IBM SP.

  19. A ghost cell expansion method for reducing communications in solving PDE problems

    SciTech Connect

    Ding, Chris H.Q.; He, Yun

    2001-05-01

    In solving Partial Differential Equations, such as the Barotropic equations in ocean models, on Distributed Memory Computers, finite difference methods are commonly used. Most often, processor subdomain boundaries must be updated at each time step. This boundary update process involves many messages of small sizes, therefore large communication overhead. Here we propose a new approach which expands the ghost cell layers and thus updates boundaries much less frequently ---reducing total message volume and grouping small messages into bigger ones. Together with a technique for eliminating diagonal communications, the method speedup communication substantially, up to 170%. We explain the method and implementation in details, provide systematic timing results and performance analysis on Cray T3E and IBM SP.

  20. Expansion of Binomials and Factorisation of Quadratic Expressions: Exploring a Vedic Method

    ERIC Educational Resources Information Center

    Nataraj, Mala Saraswathy; Thomas, Michael O. J.

    2006-01-01

    Many students have traditionally found the processes of algebraic manipulation, especially factorisation, difficult to learn. This study investigated the value of introducing students to a Vedic method of multiplication of arithmetic numbers to algebra that is very visual in its application. This research considered a possible role of the…

  1. Action First--Understanding Follows: An Expansion of Skills-Based Training Using Action Method.

    ERIC Educational Resources Information Center

    Martin, Colin

    1988-01-01

    This paper discusses the concept of training trainers in the skills they need to perform competently as trainers and how they follow their skills mastery with discussion on their new theoretical insight. Moreno's action method (psychodrama, sociodrama, sociometry, and role training) is the model used. (JOW)

  2. Action First--Understanding Follows: An Expansion of Skills-Based Training Using Action Method.

    ERIC Educational Resources Information Center

    Martin, Colin

    1988-01-01

    This paper discusses the concept of training trainers in the skills they need to perform competently as trainers and how they follow their skills mastery with discussion on their new theoretical insight. Moreno's action method (psychodrama, sociodrama, sociometry, and role training) is the model used. (JOW)

  3. A modal radar cross section of thin-wire targets via the singularity expansion method

    NASA Technical Reports Server (NTRS)

    Richards, M. A.; Shumpert, T. H.; Riggs, L. S.

    1992-01-01

    A modal radar cross section (RCS) of arbitrary wire scatterers is constructed in terms of SEM parameters. Numerical results are presented for both straight and L-shaped wire targets and are compared to computations performed in the frequency domain using the method of moments.

  4. Calculation of Dynamical and Many-Body Observables with the Polynomial Expansion Method for Spin-Fermion Models

    SciTech Connect

    Alvarez, Gonzalo; Schulthess, Thomas C

    2006-01-01

    The calculation of two- and four-particle observables is addressed within the framework of the truncated polynomial expansion method (TPEM). The TPEM replaces the exact diagonalization of the one-electron sector in models for fermions coupled to classical fields such as those used in manganites and diluted magnetic semiconductors. The computational cost of the algorithm is O(N) - with N the number of lattice sites - for the TPEM, which should be contrasted with the computational cost of the diagonalization technique that scales as O(N{sup 4}). By means of the TPEM, the density of states, spectral function, and optical conductivity of a double-exchange model for manganites are calculated on large lattices and compared to previous results and experimental measurements. The ferromagnetic metal becomes an insulator by increasing the direct exchange coupling that competes with the double-exchange mechanism. This metal-insulator transition is investigated in three dimensions.

  5. Investigation of the Negative Thermal Expansion Mechanism of Zeolite Chabazite Using the Pair Distribution Function Method

    SciTech Connect

    Martinez-Inesta, Maria M.; Lobo, Raul F.

    2008-06-18

    We have used the pair distribution function (PDF) method to gain insight into the mechanism of contraction of zeolite chabazite. Using this method we followed how the interatomic distances of the local structure changed with temperature. By optimization of the structure by free energy minimization and using the Reverse Monte Carlo technique we were able to find structural models at low and at high temperatures that agreed quantitatively with our experimental PDFs. From these models we conclude that the mechanism of contraction with temperature cannot involve rocking of the tetrahedra as rigid unit modes as there are distortions of the tetrahedra with temperature (indicating internal vibrations) and also that the mechanism of contraction probably involves a mode that translates along the Si-O3-Si-O4-Si linkages inside of the D6R of zeolite chabazite.

  6. Isolation of human dermis derived mesenchymal stem cells using explants culture method: expansion and phenotypical characterization.

    PubMed

    Park, Jeong-Ran; Kim, Eunjeong; Yang, Jungwon; Lee, Hanbyeol; Hong, Seok-Ho; Woo, Heung-Myong; Park, Sung-Min; Na, Sunghun; Yang, Se-Ran

    2015-06-01

    Recent studies have reported that stem cells can be isolated from a wide range of tissues including bone marrow, fatty tissue, adipose tissue and placenta. Moreover, several studies also suggest that skin dermis could serve as a source of stem cells, but are of unclear phenotype. Therefore, we isolated and investigated to determine the potential of stem cell within human skin dermis. We isolated cells from human dermis, termed here as human dermis-derived mesenchymal stem cells (hDMSCs) which is able to be isolated by using explants culture method. Our method has an advantage over the enzymatic method as it is easier, less expensive and less cell damage. hDMSCs were maintained in basal culture media and proliferation potential was measured. hDMSCs were highly proliferative and successfully expanded with no additional growth factor. In addition, hDMSCs revealed normal karyotype and expressed high levels of CD90, CD73 and CD105 while did not express the surface markers for CD34, CD45 and HLA-DR. Also, we confirmed that hDMSCs possess the capacity to differentiate into multiple lineage including adipocyte, osteocyte, chondrocyte and precursor of hepatocyte lineage. Considering these results, we suggest that hDMSCs might be a valuable source of stem cells and could potentially be a useful source of clinical application.

  7. X-ray crystal analysis method of determining the anisotropy of thermal expansion of petroleum cokes

    SciTech Connect

    Vakhitov, R.R.; Biktimirova, T.G.; Novoselov, V.F.

    1985-06-01

    This paper presents a simple and sensitive method to evaluate indirectly the anisotropy of the CTE of cokes. It is based on the change of intensity of the reflection from the plane with changing temperature. At high temperatures the mean amplitudes of the thermal oscillations of the atoms are consderable, the nature of the oscillations is anharmonic. In consequence of this, the atoms are displaced relative to their mean positions, and the x-ray beams scattered by them do not coincide in phase. The new characteristic is correlated with the structure of the cokes, and it makes it possible to classify them for further industrial application.

  8. Method of Producing Controlled Thermal Expansion Coat for Thermal Barrier Coatings

    NASA Technical Reports Server (NTRS)

    Brindley, William J. (Inventor); Miller, Robert A. (Inventor); Aikin, Beverly J. M. (Inventor)

    2000-01-01

    An improved thermal barrier coating and method for producing and applying such is disclosed herein. The thermal barrier coatings includes a high temperature substrate, a first bond coat layer applied to the substrate of MCrAlX and a second bond coat layer of MCrAlX with particles of a particulate dispersed throughout the MCrAlX and the preferred particulate is Al2O3. The particles of the particulate dispersed throughout the second bond coat layer preferably have a diameter of less then the height of the peaks of the second bond coat layer or a diameter of less than 5 micron. The method of producing the second bond coat layer may either include the steps of mechanical alloying of particles throughout the second bond coat layer, attrition milling the particles of the particulate throughout the second bond coat layer, or using electrophoresis to disperse the particles throughout the second bond coat layer. In the preferred embodiment of the invention the first bond coat layer is applied to the substrate. and then the second bond coat layer is thermally sprayed onto the first bond coat layer. Further, in a preferred embodiment of the invention a ceramic insulating layer covers the second bond coat layer.

  9. A maximal chromatic expansion method of mapping multichannel imagery into color space. [North Dakota

    NASA Technical Reports Server (NTRS)

    Juday, R. D.; Abotteen, R. A. (Principal Investigator)

    1978-01-01

    The author has identified the following significant results. A color film generation method that maximally expands the chromaticity and aligns Kauth brightness with the gray axis was presented. In comparison with the current LACIE film product, the new color film product has more contrast and more colors and appears to be brighter. The field boundaries in the new product were more pronounced than in the current LACIE product. The speckle effect was one problem in the new product. The yellowness speckle can be treated using an equation. This equation can be used to eliminate any speckle introduced by the greenness. This product leads logically toward another that will employ quantitative colorimetry which will account for some of the eye's perception of color stimuli.

  10. Numerical modeling of the expansion phase of steam explosions. Part 1, Method and validation

    SciTech Connect

    Hyder, M.L.; Farawila, Y.M.; Abdel-Khalik, S.I.; Halvorson, P.J.

    1992-05-01

    In the development of the Severe Accident Analysis Program for the Savannah River production reactors, it was recognized that certain accidents have -the potential for causing damaging steam explosions. Steam explosions can occur when metals, such as the aluminum-based fuel used at Savannah River, are melted and come into contact with water. This condition is unstable, and local turbulence can lead to the generation of great quantities of steam within a few milliseconds. This phenomenon has been observed in several reactor incidents and experiments (BORAX, SPERT-1, SL-1, probably Chernobyl) where it caused damage to the reactor and associated structures. The massive SRS reactor buildings are likely to withstand any imaginable steam explosion. However, reactor components and building structures including hatches, ventilation ducts, etc., could be at risk if such an explosion occurred. The goal for this study was to develop a computer code that could be used parametrically to predict the effects of various steam explosions on their surroundings. This would be able to predict whether a steam explosion of a given magnitude would be likely to fail a particular structure. This would require, of course, that the magnitude of the explosion be specified through some combination of judgment and calculation. The requested code, identified as the K-FIX(GT) code, was developed and delivered by the contractor, along with extensive documentation. The several individual reports that constitute the documentation are each being issued as a separate WSRC report. Documentation includes several model calculations, and. representation of these in graphic form. This report incorporates Report GTRSR-006, which gives an overview of the methods used in the development of K-FIX(GT), and the results of a comparison with experiments in the literature. The authors conclude that the results of the comparison calculation are in reasonable agreement with observations.

  11. General method for the detection and in vitro expansion of equine cytolytic T lymphocytes.

    PubMed

    Hammond, S A; Issel, C J; Montelaro, R C

    1998-04-01

    Equine immunological research is hindered by the lack of a simple yet reliable general protocol by which to assay CTL activity specific for viral or parasitic antigens. We present here the first comprehensive analysis of the parameters necessary to reliably culture equine T cells and to analyze the antigen specific cytolytic activity of T lymphocytes utilizing the equine infectious anemia virus (EIAV) infection of outbred ponies as a source for in vivo primed T lymphocytes. Effective long-term in vitro culture of equine T cells was determined to require minimally 200 U/ml of recombinant human IL-2. We demonstrated that pokeweed mitogen (PWM) stimulated PBMC generated large quantities of MHC class I and MHC class II expressing autologous lymphoblasts that were used initially to activate and expand antigen specific T lymphocytes and later to serve as a source of target cells in standard chromium release assays. The source of antigen expressed by the PWM lymphoblasts was a recombinant vaccinia virus vector which carried sequences encoding various antigens of interest, but most specifically, the envelope glycoprotein of EIAV. Secondary in vitro stimulation of the T lymphocytes by autologous PWM lymphoblasts expressing EIAV envelope glycoprotein was maximal using a ratio of 10 T cells to one stimulator cell. After antigen stimulation, responding T lymphocytes had antigen specific cytolytic activity and were of both the CD4 and CD8 lineage. The methodology presented here should provide an effective and reliable means by which to analyze the cytolytic activity of equine T lymphocytes to other foreign antigens. Furthermore, we suggest that this method derived for the equine animal model should be applicable to other mammalian and avian model systems that currently lack an effective means by which to analyze antigen specific CTL activity.

  12. Accompanying coordinate expansion and recurrence relation method using a transfer relation scheme for electron repulsion integrals with high angular momenta and long contractions

    SciTech Connect

    Hayami, Masao; Seino, Junji; Nakai, Hiromi

    2015-05-28

    An efficient algorithm for the rapid evaluation of electron repulsion integrals is proposed. The present method, denoted by accompanying coordinate expansion and transferred recurrence relation (ACE-TRR), is constructed using a transfer relation scheme based on the accompanying coordinate expansion and recurrence relation method. Furthermore, the ACE-TRR algorithm is extended for the general-contraction basis sets. Numerical assessments clarify the efficiency of the ACE-TRR method for the systems including heavy elements, whose orbitals have long contractions and high angular momenta, such as f- and g-orbitals.

  13. A new algorithm for surface currents inversion with HF over-the-horizon radars 2D Fourier expansion method

    NASA Astrophysics Data System (ADS)

    Miao, L.; Wu, X.; Zhang, L.; Yue, X.; Li, C.

    2016-12-01

    Near-surface ocean current is one of the key parameters in physical oceanography. Among those, High-frequency over-the-horizon radar (HF OTHR) is a powerful technique measuring currents with high spatial and temporal resolution covering an area of several 10,000 km2. Conventionally, radial surface current is inverted from Doppler offset of 1st order sea backscattered spectra from Bragg frequency calculated by using a simplified analysis formula. A better estimation of real fBand from echoes of HF radar should improve the inversion accuracy of sea surface currents, especially at the near shore area. A new algorithm is developed in this paper to estimate the ocean surface current velocities from the echoes of HF OTHR. It builds a current inversion model based on 2D Fourier expansion (CIMFE), which regards the first-order fB and Δf as bivariate functions of group distance cell and azimuth angle θ. fB and Δf are then expended with a set of cosine and sine functions of r and θ. By using all the 1storder sea backscattered spectra points, linear equations about expansion coefficients of fB and Δf at each range and direction are established. This matrix equation is overdetermined and can be resolved by using the least square fitting method. The current at each grid is then estimated after fB and Δf being obtained. The feasibility of CIMFE method is verified first by simulations performed at different sea states. This method is then used to inversion sea surface currents from the echoes of hybrid radar networking system by using Wuhan University's ocean state measuring and analyzing radars (OSMAR). The estimated currents are compared with two in situ buoys located 12 and 73 km far away from the radar receiving station, respectively. The RMS differences between the CIMFE results and in situ measurements are 9.81 and 9.84 cm/s in 12 and 73 km distance locations, respectively. Meanwhile, the RMS differences between the estimated current of conventional method and the in

  14. Analyzing the propagating waves in the two-dimensional photonic crystal by the decoupled internal-field expansion method

    NASA Astrophysics Data System (ADS)

    Pei, Ting-Hang; Huang, Yang-Tung

    2012-03-01

    We propose the decoupled internal-field expansion (IFE) method to discuss refractions in the photonic crystal (PhC). This method decouples the full wave in the PhC and classifies them into two categories including the forward-propagating and backward-propagating waves denoted by the index n. A triangular-PhC case is demonstrated and both positive and negative refractions are discussed by this method. The incident angle of 10° results in the positive refracted wave with the refracted angle about 8°, which approximately corresponds to the forward wave of n=0 order. The negative refracted waves, which exist in the left and right edge regions, propagate almost parallel to the interfaces between the PhC and outside media. Meanwhile, due to the interaction between the negative refracted wave and the nearest few rows of air cylinders, the reflected wave and another weaker negative refracted wave are created. Finally, the weaker negative refracted waves from both edge regions interfere with each other in the middle region. It is found out that the negative refracted waves in edge regions as well as the interfered wave in the middle region can be constructed by two n=-1 forward and backward waves. On the other hand, the positive refracted wave is composed of the n=0 forward wave dressed other n≠0 forward waves, the propagation angle is affected by these dressed waves, especially near the edge region. Finally, another case proves this point of view explicitly.

  15. Universal Expansion.

    ERIC Educational Resources Information Center

    McArdle, Heather K.

    1997-01-01

    Describes a week-long activity for general to honors-level students that addresses Hubble's law and the universal expansion theory. Uses a discrepant event-type activity to lead up to the abstract principles of the universal expansion theory. (JRH)

  16. Universal Expansion.

    ERIC Educational Resources Information Center

    McArdle, Heather K.

    1997-01-01

    Describes a week-long activity for general to honors-level students that addresses Hubble's law and the universal expansion theory. Uses a discrepant event-type activity to lead up to the abstract principles of the universal expansion theory. (JRH)

  17. The modified alternative (G'/G)-expansion method to nonlinear evolution equation: application to the (1+1)-dimensional Drinfel'd-Sokolov-Wilson equation.

    PubMed

    Akbar, M Ali; Mohd Ali, Norhashidah Hj; Mohyud-Din, Syed Tauseef

    2013-01-01

    Over the years, (G'/G)-expansion method is employed to generate traveling wave solutions to various wave equations in mathematical physics. In the present paper, the alternative (G'/G)-expansion method has been further modified by introducing the generalized Riccati equation to construct new exact solutions. In order to illustrate the novelty and advantages of this approach, the (1+1)-dimensional Drinfel'd-Sokolov-Wilson (DSW) equation is considered and abundant new exact traveling wave solutions are obtained in a uniform way. These solutions may be imperative and significant for the explanation of some practical physical phenomena. It is shown that the modified alternative (G'/G)-expansion method an efficient and advance mathematical tool for solving nonlinear partial differential equations in mathematical physics.

  18. Uncloned expanded CAG/CTG repeat sequences in autosomal dominant cerebellar ataxia (ADCA) detected by the repeat expansion detection (RED) method.

    PubMed Central

    Pujana, M A; Volpini, V; Gratacós, M; Corral, J; Banchs, I; Sánchez, A; Genís, D; Cervera, C; Estivill, X

    1998-01-01

    In some neurodegenerative diseases, genetic anticipation correlates with expansions of the CAG/CTG repeat sequence above the normal range through the generations of a pedigree. Among these neurodegenerative diseases are late onset autosomal dominant cerebellar ataxias (ADCA). ADCA are genetically heterogeneous disorders with different cloned genes for spinocerebellar ataxia type 1 (SCA1), type 2 (SCA2), type 3 or Machado-Joseph disease (SCA3/MJD), and type 6 (SCA6). Another related dominant ataxia, dentatorubral-pallidoluysian atrophy (DRPLA), also shows CAG/CTG repeat expansions. Genetic anticipation has been reported for all of them except for the recently cloned SCA6 gene. Other, as yet undetected SCA genes may show the same features. We have used the repeat expansion detection (RED) method to detect repeat expansions directly in DNA samples from ADCA patients not resulting from known genes. Our sample consists of 19 affected index cases, corresponding to 52.8% of our ADCA families without CAG/CTG repeat expansions in the SCA1, SCA2, SCA3/MJD, SCA6, or DRPLA genes. Eighty-nine percent of the index cases had expansions of a CAG/CTG sequence greater than 40 repeats by RED, while these were observed in only 26.9% of 78 healthy subjects from the general population (p < 0.0001). The distribution of RED fragments in controls and ADCA patients also shows significant differences with the Mann-Whitney U test (U = 376.5, p = 0.0007). Moreover, there was a significant inverse correlation between the size of expansion and the age of onset (r = -0.54, p = 0.018). These results show CAG/CTG repeat expansions of over 40 repeats in our sample of ADCA families not resulting from known SCA genes. Images PMID:9507387

  19. A Semi-Analytical Solution for the Thickness-Vibration of Centrally Partially-Electroded Circular AT-Cut Quartz Resonators

    PubMed Central

    Wang, Bin; Dai, Xiaoyun; Zhao, Xintao; Qian, Zhenghua

    2017-01-01

    Vibration frequencies and modes for the thickness-shear vibrations of infinite partially-electroded circular AT-cut quartz plates are obtained by solving the two-dimensional (2D) scalar differential equation derived by Tiersten and Smythe. The Mathieu and modified Mathieu equations are derived from the governing equation using the coordinate transform and the collocation method is used to deal with the boundary conditions. Solutions of the resonant frequencies and trapped modes are validated by those results obtained from COMSOL software. The current study provides a theoretical way for figuring out the vibration analysis of circular quartz resonators. PMID:28783124

  20. A Semi-Analytical Solution for the Thickness-Vibration of Centrally Partially-Electroded Circular AT-Cut Quartz Resonators.

    PubMed

    Wang, Bin; Dai, Xiaoyun; Zhao, Xintao; Qian, Zhenghua

    2017-08-07

    Vibration frequencies and modes for the thickness-shear vibrations of infinite partially-electroded circular AT-cut quartz plates are obtained by solving the two-dimensional (2D) scalar differential equation derived by Tiersten and Smythe. The Mathieu and modified Mathieu equations are derived from the governing equation using the coordinate transform and the collocation method is used to deal with the boundary conditions. Solutions of the resonant frequencies and trapped modes are validated by those results obtained from COMSOL software. The current study provides a theoretical way for figuring out the vibration analysis of circular quartz resonators.

  1. Research on the effect of cathode plasma expansion on x-band relativistic backward wave oscillator using moving-boundary conformal PIC method

    NASA Astrophysics Data System (ADS)

    Chen, Zaigao; Wang, Jianguo; Wang, Yue

    2016-09-01

    The cathode plasma expansion has been widely investigated and is recognized as impedance collapse in a relativistic backward wave oscillator (RBWO). However, the process of formation and expansion of cathode plasma is very complicated, and the thickness of plasma is only several millimeters, so the simulation of cathode plasma requires high temporal and spatial resolutions. Only the scaled-down diode model and the thin gas layer model are considered in the previous hybrid simulation, and there are few numerical studies on the effect of cathode plasma expansion on the RBWO. In this paper, the moving-boundary conformal particle-in-cell method is proposed; the cathode plasma front is treated in this novel method as the actual cathode surface, and the explosive electron emission boundary moves as the expansion of cathode plasma. Moreover, in order to accurately simulate the electromagnetic field near the cathode surface, the conformal finite-difference time-domain method based on the enlarged cell technique is adopted. The numerical simulation indicates that the diode voltage decreases and the beam current increases as cathode plasma expands; when the cathode plasma velocity is 10 cm/μs, the pulse duration of the generated microwave decreases from 30 ns to 10 ns, the working frequency decreases from 9.83 GHz to 9.64 GHz, and the output power decreases 30% in the course of cathode plasma expansion.

  2. Exact traveling wave solutions of the KP-BBM equation by using the new approach of generalized (G'/G)-expansion method.

    PubMed

    Alam, Md Nur; Akbar, M Ali

    2013-01-01

    The new approach of the generalized (G'/G)-expansion method is an effective and powerful mathematical tool in finding exact traveling wave solutions of nonlinear evolution equations (NLEEs) in science, engineering and mathematical physics. In this article, the new approach of the generalized (G'/G)-expansion method is applied to construct traveling wave solutions of the Kadomtsev-Petviashvili-Benjamin-Bona-Mahony (KP-BBM) equation. The solutions are expressed in terms of the hyperbolic functions, the trigonometric functions and the rational functions. By means of this scheme, we found some new traveling wave solutions of the above mentioned equation.

  3. Semi-analytical and Numerical Studies on the Flattened Brazilian Splitting Test Used for Measuring the Indirect Tensile Strength of Rocks

    NASA Astrophysics Data System (ADS)

    Huang, Y. G.; Wang, L. G.; Lu, Y. L.; Chen, J. R.; Zhang, J. H.

    2015-09-01

    Based on the two-dimensional elasticity theory, this study established a mechanical model under chordally opposing distributed compressive loads, in order to perfect the theoretical foundation of the flattened Brazilian splitting test used for measuring the indirect tensile strength of rocks. The stress superposition method was used to obtain the approximate analytic solutions of stress components inside the flattened Brazilian disk. These analytic solutions were then verified through a comparison with the numerical results of the finite element method (FEM). Based on the theoretical derivation, this research carried out a contrastive study on the effect of the flattened loading angles on the stress value and stress concentration degree inside the disk. The results showed that the stress concentration degree near the loading point and the ratio of compressive/tensile stress inside the disk dramatically decreased as the flattened loading angle increased, avoiding the crushing failure near-loading point of Brazilian disk specimens. However, only the tensile stress value and the tensile region were slightly reduced with the increase of the flattened loading angle. Furthermore, this study found that the optimal flattened loading angle was 20°-30°; flattened load angles that were too large or too small made it difficult to guarantee the central tensile splitting failure principle of the Brazilian splitting test. According to the Griffith strength failure criterion, the calculative formula of the indirect tensile strength of rocks was derived theoretically. This study obtained a theoretical indirect tensile strength that closely coincided with existing and experimental results. Finally, this paper simulated the fracture evolution process of rocks under different loading angles through the use of the finite element numerical software ANSYS. The modeling results showed that the Flattened Brazilian Splitting Test using the optimal loading angle could guarantee the tensile

  4. Rapid and semi-analytical design and simulation of a toroidal magnet made with YBCO and MgB2 superconductors

    DOE PAGES

    Dimitrov, I. K.; Zhang, X.; Solovyov, V. F.; ...

    2015-07-07

    Recent advances in second-generation (YBCO) high-temperature superconducting wire could potentially enable the design of super high performance energy storage devices that combine the high energy density of chemical storage with the high power of superconducting magnetic storage. However, the high aspect ratio and the considerable filament size of these wires require the concomitant development of dedicated optimization methods that account for the critical current density in type-II superconductors. In this study, we report on the novel application and results of a CPU-efficient semianalytical computer code based on the Radia 3-D magnetostatics software package. Our algorithm is used to simulate andmore » optimize the energy density of a superconducting magnetic energy storage device model, based on design constraints, such as overall size and number of coils. The rapid performance of the code is pivoted on analytical calculations of the magnetic field based on an efficient implementation of the Biot-Savart law for a large variety of 3-D “base” geometries in the Radia package. The significantly reduced CPU time and simple data input in conjunction with the consideration of realistic input variables, such as material-specific, temperature, and magnetic-field-dependent critical current densities, have enabled the Radia-based algorithm to outperform finite-element approaches in CPU time at the same accuracy levels. Comparative simulations of MgB2 and YBCO-based devices are performed at 4.2 K, in order to ascertain the realistic efficiency of the design configurations.« less

  5. Rapid and semi-analytical design and simulation of a toroidal magnet made with YBCO and MgB2 superconductors

    SciTech Connect

    Dimitrov, I. K.; Zhang, X.; Solovyov, V. F.; Chubar, O.; Li, Qiang

    2015-07-07

    Recent advances in second-generation (YBCO) high-temperature superconducting wire could potentially enable the design of super high performance energy storage devices that combine the high energy density of chemical storage with the high power of superconducting magnetic storage. However, the high aspect ratio and the considerable filament size of these wires require the concomitant development of dedicated optimization methods that account for the critical current density in type-II superconductors. In this study, we report on the novel application and results of a CPU-efficient semianalytical computer code based on the Radia 3-D magnetostatics software package. Our algorithm is used to simulate and optimize the energy density of a superconducting magnetic energy storage device model, based on design constraints, such as overall size and number of coils. The rapid performance of the code is pivoted on analytical calculations of the magnetic field based on an efficient implementation of the Biot-Savart law for a large variety of 3-D “base” geometries in the Radia package. The significantly reduced CPU time and simple data input in conjunction with the consideration of realistic input variables, such as material-specific, temperature, and magnetic-field-dependent critical current densities, have enabled the Radia-based algorithm to outperform finite-element approaches in CPU time at the same accuracy levels. Comparative simulations of MgB2 and YBCO-based devices are performed at 4.2 K, in order to ascertain the realistic efficiency of the design configurations.

  6. Polynomial Chaos Expansion method as a tool to evaluate and quantify field homogeneities of a novel waveguide RF Wien filter

    NASA Astrophysics Data System (ADS)

    Slim, J.; Rathmann, F.; Nass, A.; Soltner, H.; Gebel, R.; Pretz, J.; Heberling, D.

    2017-07-01

    For the measurement of the electric dipole moment of protons and deuterons, a novel waveguide RF Wien filter has been designed and will soon be integrated at the COoler SYnchrotron at Jülich. The device operates at the harmonic frequencies of the spin motion. It is based on a waveguide structure that is capable of fulfilling the Wien filter condition (E → ⊥ B →) by design. The full-wave calculations demonstrated that the waveguide RF Wien filter is able to generate high-quality RF electric and magnetic fields. In reality, mechanical tolerances and misalignments decrease the simulated field quality, and it is therefore important to consider them in the simulations. In particular, for the electric dipole moment measurement, it is important to quantify the field errors systematically. Since Monte-Carlo simulations are computationally very expensive, we discuss here an efficient surrogate modeling scheme based on the Polynomial Chaos Expansion method to compute the field quality in the presence of tolerances and misalignments and subsequently to perform the sensitivity analysis at zero additional computational cost.

  7. Aspects of cosmological expansion in F(R) gravity models

    SciTech Connect

    Appleby, Stephen A; Battye, Richard A E-mail: rbattye@jb.man.ac.uk

    2008-05-15

    We study cosmological expansion in F(R) gravity using the trace of the field equations. High frequency oscillations in the Ricci scalar, whose amplitude increases as one evolves backward in time, have been predicted in recent works. We show that the approximations used to derive this result very quickly break down in any realistic model due to the non-linear nature of the underlying problem. Using a combination of numerical and semi-analytic techniques, we study a range of models which are otherwise devoid of known pathologies. We find that high frequency asymmetric oscillations and a singularity at finite time appear to be present for a wide range of initial conditions. We show that this singularity can be avoided with a certain range of initial conditions, which we find by evolving the models forwards in time. In addition we show that the oscillations in the Ricci scalar are highly suppressed in the Hubble parameter and scale factor.

  8. Factorized cumulant expansion approximation method for turbulence with reacting and mixing chemical elements of type A + B → Product

    NASA Astrophysics Data System (ADS)

    Meshram, M. C.

    2013-07-01

    The Lewis-Kraichnan space-time version of Hopf functional formalism is considered for the investigation of turbulence with reacting and mixing chemical elements of type A + B → Product. The equations of motion are written in Fourier space. We first define the characteristic functional (or the moments generating functional) for the joint probability distribution of the velocity vector of the flow field and the reactants’ concentration scalar fields and translate the equations of motion in terms of the differential equations for the characteristic functional. These differential equations for the characteristic functional are further written in terms of the second characteristic functional (or the cumulant generating functional). This helps us in obtaining the equations for various order cumulants. We note from these equations for cumulants the characteristic difficulty of the theory of turbulence that the (n + 1)th order cumulant C(n+1) occurs in the equation for the dynamics of nth order cumulant Cn. We use the factorized cumulant expansion approximation method for the present investigation. Under this approximation an arbitrary nth order cumulant Cn is expressed in terms of the lower-order cumulants C(2), C(3) and C(n-1) and thus we obtain a closed but untruncated system of equations for the cumulants. On using the factorized fourth-cumulant approximation method a closed set of equations for the reactants’ energy spectrum functions and the reactants’ energy transfer functions are derived. These equations are solved numerically and the similarity laws of the solutions are derived analytically. The statistical quantities such as the reactants’ energy, the reactants’ enstrophy, the reactants’ scale of segregations and so on are calculated numerically and the statistical laws of these quantities are discussed. Also, the scope of this tool for investigation of turbulent phenomena not covered in the present study is discussed.

  9. The amplitude reduction factor and the cumulant expansion method: crucial factors in the structural analysis of alkoxide precursors in solution.

    PubMed

    Bauer, Matthias; Bertagnolli, Helmut

    2007-12-13

    The transition-metal alkoxide yttrium 2-methoxyethoxide Y(OEtOMe)(3) in solution is studied as a model system of the large class of alkoxide precursors used in the sol-gel process by means of EXAFS spectroscopy. The discussion is focused on the amplitude reduction factor S (2)(0) and the cumulant expansion method. If asymmetry is present in the radial distribution function, the determination of the correct structural model can only be achieved by balancing multiple Gaussian shell fits against only one shell fit with a third cumulant C3. A method to identify the best model, based on statistical parameters of the EXAFS fit, is proposed and checked with two well-known reference compounds, Y(5)O(O(i)Pr)(13) and Y(acac)(3).3H(2)O, and applied to the structurally unknown solution of Y(OEtOMe)(3) in 2-methoxyethanol. The two references are also used to discuss the transferability of S(2)(0) values, determined from reference compounds to unknown samples. A model-free procedure to identify the correct amplitude reduction factor S(2)(0) by making use of fits with different k-weighting schemes is critically investigated. This procedure, which does not require any crystallographic data, is used for the case of Y(OEtOMe)(3) in solution, where significant differences of the amplitude reducing factor of both the oxygen and yttrium shell in comparison to the reference Y(5)O(O(i)Pr)(13) were found. With such a detailed analysis of EXAFS data, a reliable characterization of Y(OEtOMe)3 in 2-methoxyethanol by means of EXAFS spectroscopy is possible. The decameric structure unit found in solid Y(OEtOMe)(3) is not preserved, but rather, a pentameric framework similar to that in Y5O(O(i)Pr)(13) is formed.

  10. Expansion: A Plan for Success.

    ERIC Educational Resources Information Center

    Callahan, A.P.

    This report provides selling brokers' guidelines for the successful expansion of their operations outlining a basic method of preparing an expansion plan. Topic headings are: The Pitfalls of Expansion (The Language of Business, Timely Financial Reporting, Regulatory Agencies of Government, Preoccupation with the Facade of Business, A Business Is a…

  11. Expansion: A Plan for Success.

    ERIC Educational Resources Information Center

    Callahan, A.P.

    This report provides selling brokers' guidelines for the successful expansion of their operations outlining a basic method of preparing an expansion plan. Topic headings are: The Pitfalls of Expansion (The Language of Business, Timely Financial Reporting, Regulatory Agencies of Government, Preoccupation with the Facade of Business, A Business Is a…

  12. Semi-Analytical Benchmarks for MCNP6

    SciTech Connect

    Grechanuk, Pavel Aleksandrovi

    2016-11-07

    Code verification is an extremely important process that involves proving or disproving the validity of code algorithms by comparing them against analytical results of the underlying physics or mathematical theory on which the code is based. Monte Carlo codes such as MCNP6 must undergo verification and testing upon every release to ensure that the codes are properly simulating nature. Specifically, MCNP6 has multiple sets of problems with known analytic solutions that are used for code verification. Monte Carlo codes primarily specify either current boundary sources or a volumetric fixed source, either of which can be very complicated functions of space, energy, direction and time. Thus, most of the challenges with modeling analytic benchmark problems in Monte Carlo codes come from identifying the correct source definition to properly simulate the correct boundary conditions. The problems included in this suite all deal with mono-energetic neutron transport without energy loss, in a homogeneous material. The variables that differ between the problems are source type (isotropic/beam), medium dimensionality (infinite/semi-infinite), etc.

  13. Norm-conserving diffusion Monte Carlo method and diagrammatic expansion of interacting drude oscillators: Application to solid xenon

    NASA Astrophysics Data System (ADS)

    Jones, Andrew; Thompson, Andrew; Crain, Jason; Müser, Martin H.; Martyna, Glenn J.

    2009-04-01

    The quantum Drude oscillator (QDO) model, which allows many-body polarization and dispersion to be treated both on an equal footing and beyond the dipole limit, is investigated using two approaches to the linear scaling diffusion Monte Carlo (DMC) technique. The first is a general purpose norm-conserving DMC (NC-DMC) method wherein the number of walkers, N , remains strictly constant thereby avoiding the sudden death or explosive growth of walker populations with an error that vanishes as O(N-1) in the absence of weights. As NC-DMC satisfies detailed balance, a phase space can be defined that permits both an exact trajectory weighting and a fast mean-field trajectory weighting technique to be constructed which can eliminate or reduce the population bias, respectively. The second is a many-body diagrammatic expansion for trial wave functions in systems dominated by strong on-site harmonic coupling and a dense matrix of bilinear coupling constants such as the QDO in the dipole limit; an approximate trial function is introduced to treat two-body interactions outside the dipole limit. Using these approaches, high accuracy is achieved in studies of the fcc-solid phase of the highly polarizable atom, xenon, within the QDO model. It is found that 200 walkers suffice to generate converged results for systems as large as 500 atoms. The quality of QDO predictions compared to experiment and the ability to generate these predictions efficiently demonstrate the feasibility of employing the QDO approach to model long-range forces.

  14. Extracting distribution and expansion of rubber plantations from Landsat imagery using the C5.0 decision tree method

    NASA Astrophysics Data System (ADS)

    Sun, Zhongchang; Leinenkugel, Patrick; Guo, Huadong; Huang, Chong; Kuenzer, Claudia

    2017-04-01

    Natural tropical rainforests in China's Xishuangbanna region have undergone dramatic conversion to rubber plantations in recent decades, resulting in altering the region's environment and ecological systems. Therefore, it is of great importance for local environmental and ecological protection agencies to research the distribution and expansion of rubber plantations. The objective of this paper is to monitor dynamic changes of rubber plantations in China's Xishuangbanna region based on multitemporal Landsat images (acquired in 1989, 2000, and 2013) using a C5.0-based decision-tree method. A practical and semiautomatic data processing procedure for mapping rubber plantations was proposed. Especially, haze removal and deshadowing were proposed to perform atmospheric and topographic correction and reduce the effects of haze, shadow, and terrain. Our results showed that the atmospheric and topographic correction could improve the extraction accuracy of rubber plantations, especially in mountainous areas. The overall classification accuracies were 84.2%, 83.9%, and 86.5% for the Landsat images acquired in 1989, 2000, and 2013, respectively. This study also found that the Landsat-8 images could provide significant improvement in the ability to identify rubber plantations. The extracted maps showed the selected study area underwent rapid conversion of natural and seminatural forest to a rubber plantations from 1989 to 2013. The rubber plantation area increased from 2.8% in 1989 to 17.8% in 2013, while the forest/woodland area decreased from 75.6% in 1989 to 44.8% in 2013. The proposed data processing procedure is a promising approach to mapping the spatial distribution and temporal dynamics of rubber plantations on a regional scale.

  15. Advanced Methods for Incorporating Solar Energy Technologies into Electric Sector Capacity-Expansion Models: Literature Review and Analysis

    SciTech Connect

    Sullivan, P.; Eurek, K.; Margolis, R.

    2014-07-01

    Because solar power is a rapidly growing component of the electricity system, robust representations of solar technologies should be included in capacity-expansion models. This is a challenge because modeling the electricity system--and, in particular, modeling solar integration within that system--is a complex endeavor. This report highlights the major challenges of incorporating solar technologies into capacity-expansion models and shows examples of how specific models address those challenges. These challenges include modeling non-dispatchable technologies, determining which solar technologies to model, choosing a spatial resolution, incorporating a solar resource assessment, and accounting for solar generation variability and uncertainty.

  16. Exact solutions of the nonlinear differential—difference equations associated with the nonlinear electrical transmission line through a variable-coefficient discrete (G'/G)-expansion method

    NASA Astrophysics Data System (ADS)

    Saïdou, Abdoulkary; Alidou, Mohamadou; Ousmanou, Dafounansou; Serge Yamigno, Doka

    2014-12-01

    We investigated exact traveling soliton solutions for the nonlinear electrical transmission line. By applying a concise and straightforward method, the variable-coefficient discrete (G'/G)-expansion method, we solve the nonlinear differential—difference equations associated with the network. We obtain some exact traveling wave solutions which include hyperbolic function solution, trigonometric function solution, rational solutions with arbitrary function, bright as well as dark solutions.

  17. Expansive open-door laminoplasty secured with titanium miniplates is a good surgical method for multiple-level cervical stenosis

    PubMed Central

    2014-01-01

    Background Laminoplasty is an effective procedure for treating cervical spondylotic myelopathy (CSM). Little information is available regarding the surgical outcomes of expansive open-door laminoplasty (EOLP) when securing with titanium miniplates without bone grafting. This study is aimed to elucidate the efficacy of and problems associated with EOLP secured with titanium miniplates without bone grafting, thereby enhancing future surgical outcomes. Methods This is a retrospective study. The study participants comprised 104 patients who underwent cervical EOLP secured with titanium miniplates without bone graft for CSM treatment between August 2005 and March 2011. The clinical results were evaluated based on the Japanese Orthopedic Association (JOA) and Nurick scores. The radiographic outcomes were determined based on plain film and magnetic resonance imaging findings, which were assessed and compared. Results Lateral cervical spine X-rays exhibited improvement in the Pavlov ratio of the spinal canal at 1 day postoperation, and this ratio did not change at 1 year postoperation. The mean cervical curvature from C2 to C7 decreased 0.21° ± 10.09° and the mean cervical range of motion was deteriorated by 35% at 12 months (P < 0.05). The Nurick score improved from 3.19 ± 1.06 to 0.92 ± 1.32 (P < 0.05). The mean JOA recovery rate was 75% ± 21.1% at 1 year. The mean level of postoperative neck pain at 3 months was 3.09 ± 2.31, as determined using the visual analogue scale (VAS). Increased age, concomitant thoracolumbar stenosis, depression disorder, and preexisting myelomalacia negatively affected the JOA recovery rate (P < 0.05). A decreased preoperative Nurick score and superior sensory function in the upper extremities were powerful predictors of an enhanced JOA recovery rate. The postoperative complications involved hematoma formation 0.9%, reversible C5 nerve palsy 2.8%, and moderate to severe neck pain (VAS ≥ 4) 42%. No

  18. Extrusion-formed uranium-2.4 wt. % article with decreased linear thermal expansion and method for making the same

    DOEpatents

    Anderson, Robert C.; Jones, Jack M.; Kollie, Thomas G.

    1982-01-01

    The present invention is directed to the fabrication of an article of uranium-2.4 wt. % niobium alloy in which the linear thermal expansion in the direction transverse to the extrusion direction is less than about 0.98% between 22.degree. C. and 600.degree. C. which corresponds to a value greater than the 1.04% provided by previous extrusion operations over the same temperature range. The article with the improved thermal expansion possesses a yield strength at 0.2% offset of at least 400 MPa, an ultimate tensile strength of 1050 MPa, a compressive yield strength of at least 0.2% offset of at least 675 MPa, and an elongation of at least 25% over 25.4 mm/sec. To provide this article with the improved thermal expansion, the uranium alloy billet is heated to 630.degree. C. and extruded in the alpha phase through a die with a reduction ratio of at least 8.4:1 at a ram speed no greater than 6.8 mm/sec. These critical extrusion parameters provide the article with the desired decrease in the linear thermal expansion while maintaining the selected mechanical properties without encountering crystal disruption in the article.

  19. Cryopreservation method affects DNA fragmentation in trophectoderm and the speed of re-expansion in bovine blastocysts.

    PubMed

    Inaba, Yasushi; Miyashita, Satoshi; Somfai, Tamás; Geshi, Masaya; Matoba, Satoko; Dochi, Osamu; Nagai, Takashi

    2016-04-01

    This study investigated re-expansion dynamics during culture of bovine blastocysts cryopreserved either by slow-freezing or vitrification. Also, the extent and localization of membrane damage and DNA fragmentation in re-expanded embryos were studied. Frozen-thawed embryos showed a significantly lower re-expansion rate during 24 h of post-thawing culture compared to vitrified embryos. Vitrified embryos reached the maximum level of re-expansion rate by 12 h of culture whereas frozen embryos showed a gradual increase in re-expansion rate by 24 h of culture. When assayed by Hoechst/propidium iodide staining there was no difference in the numbers and ratio of membrane damaged cells between re-expanded frozen and vitrified embryos; however, the extent of membrane damage in blastomeres was significantly higher in both groups compared with non-cryopreserved embryos (control). TUNEL assay combined with differential ICM and TE staining revealed a significantly higher number and ratio of TE cells showing DNA-fragmentation in frozen-thawed re-expanded blastocysts compared to vitrified ones; however, vitrification also resulted in an increased extent of DNA fragmentation in TE cells compared with control blastocysts. In frozen-thawed blastocysts increased extent of DNA fragmentation was associated with reduced numbers and proportion of TE cells compared with vitrified and control embryos. The number and ratio of ICM cells and the extent of DNA fragmentation in ICM did not differ among control, frozen and vitrified groups. In conclusion, compared with vitrified embryos, blastocysts preserved by slow-freezing showed a delayed timing of re-expansion which was associated with an increased frequency of DNA fragmentation in TE cells. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Hierarchical expansion of the kinetic energy operator in curvilinear coordinates for the vibrational self-consistent field method.

    PubMed

    Strobusch, D; Scheurer, Ch

    2011-09-28

    A new hierarchical expansion of the kinetic energy operator in curvilinear coordinates is presented and modified vibrational self-consistent field (VSCF) equations are derived including all kinematic effects within the mean field approximation. The new concept for the kinetic energy operator is based on many-body expansions for all G matrix elements and its determinant. As a test application VSCF computations were performed on the H(2)O(2) molecule using an analytic potential (PCPSDE) and different hierarchical approximations for the kinetic energy operator. The results indicate that coordinate-dependent reduced masses account for the largest part of the kinetic energy. Neither kinematic couplings nor derivatives of the G matrix nor its determinant had significant effects on the VSCF energies. Only the zero-point value of the pseudopotential yields an offset to absolute energies which, however, is irrelevant for spectroscopic problems.

  1. ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS: Double Symplectic Eigenfunction Expansion Method of Free Vibration of Rectangular Thin Plates

    NASA Astrophysics Data System (ADS)

    Wang, Hua; Alatancang; Huang, Jun-Jie

    2009-12-01

    The free vibration problem of rectangular thin plates is rewritten as a new upper triangular matrix differential system. For the associated operator matrix, we find that the two diagonal block operators are Hamiltonian. Moreover, the existence and completeness of normed symplectic orthogonal eigenfunction systems of these two block operators are demonstrated. Based on the completeness, the general solution of the free vibration of rectangular thin plates is given by double symplectic eigenfunction expansion method.

  2. A cGMP-applicable expansion method for aggregates of human neural stem and progenitor cells derived from pluripotent stem cells or fetal brain tissue.

    PubMed

    Shelley, Brandon C; Gowing, Geneviève; Svendsen, Clive N

    2014-06-15

    A cell expansion technique to amass large numbers of cells from a single specimen for research experiments and clinical trials would greatly benefit the stem cell community. Many current expansion methods are laborious and costly, and those involving complete dissociation may cause several stem and progenitor cell types to undergo differentiation or early senescence. To overcome these problems, we have developed an automated mechanical passaging method referred to as "chopping" that is simple and inexpensive. This technique avoids chemical or enzymatic dissociation into single cells and instead allows for the large-scale expansion of suspended, spheroid cultures that maintain constant cell/cell contact. The chopping method has primarily been used for fetal brain-derived neural progenitor cells or neurospheres, and has recently been published for use with neural stem cells derived from embryonic and induced pluripotent stem cells. The procedure involves seeding neurospheres onto a tissue culture Petri dish and subsequently passing a sharp, sterile blade through the cells effectively automating the tedious process of manually mechanically dissociating each sphere. Suspending cells in culture provides a favorable surface area-to-volume ratio; as over 500,000 cells can be grown within a single neurosphere of less than 0.5 mm in diameter. In one T175 flask, over 50 million cells can grow in suspension cultures compared to only 15 million in adherent cultures. Importantly, the chopping procedure has been used under current good manufacturing practice (cGMP), permitting mass quantity production of clinical-grade cell products.

  3. A reproducible method for the isolation and expansion of ovine mesenchymal stromal cells from bone marrow for use in regenerative medicine preclinical studies.

    PubMed

    Caminal, Marta; Vélez, Roberto; Rabanal, Rosa Maria; Vivas, Daniel; Batlle-Morera, Laura; Aguirre, Màrius; Barquinero, Jordi; García, Joan; Vives, Joaquim

    2016-11-18

    The use of multipotent mesenchymal stromal cells (MSCs) as candidate medicines for treating a variety of pathologies is based on their qualities as either progenitors for the regeneration of damaged tissue or producers of a number of molecules with pharmacological properties. Preclinical product development programmes include the use of well characterized cell populations for proof of efficacy and safety studies before testing in humans. In the field of orthopaedics, an increasing number of translational studies use sheep as an in vivo test system because of the similarities with humans in size and musculoskeletal architecture. However, robust and reproducible methods for the isolation, expansion, manipulation and characterization of ovine MSCs have not yet been standardised. The present study describes a method for isolation and expansion of fibroblastic-like, adherent ovine MSCs that express CD44, CD90, CD140a, CD105 and CD166, and display trilineage differentiation potential. The 3-week bioprocess proposed here typically yielded cell densities of 1.4 × 10(4) MSCs/cm(2) at passage 2, with an expansion factor of 37.8 and approximately eight cumulative population doublings. The osteogenic potential of MSCs derived following this methodology was further evaluated in vivo in a translational model of osteonecrosis of the femoral head, in which the persistence of grafted cells in the host tissue and their lineage commitment into osteoblasts and osteocytes was demonstrated by tracking enhanced green fluorescent protein-labelled cells. Copyright © 2016 John Wiley & Sons, Ltd.

  4. A small concentration expansion for the effective heat conductivity of a random disperse two-component material; an assessment of Batchelor's renormalization method

    NASA Astrophysics Data System (ADS)

    Vanbeek, P.

    1987-11-01

    The difficulty in the expansion of the effective properties of random disperse media in powers of the volume concentration c of the disperse phase presented by the divergence of certain integrals that perform averaging of two-particle approximations is considered. The random heat conduction problem analyzed by Jeffrey (1974) is treated using Batchelor's (1974) renormalization method. Batchelor's two-particle equation is extended to a hierarchical set of n-particle equations for arbitrary n. The solution of the hierarchy is seen to consist of a sequence of two, three, and more particle terms. The two and three-particle terms are calculated. It is proved that all i-particle terms (i greater than or = 2) can be averaged convergently showing that the hierarchical approach yields a well-defined expansion in integer powers of c of the effective conductivity. It follows that Jeffrey's expression for the effective conductivity is 0(c sq) - accurate.

  5. Comparison of Conjugate Gradient Density Matrix Search and Chebyshev Expansion Methods for Avoiding Diagonalization in Large-Scale Electronic Structure Calculations

    NASA Technical Reports Server (NTRS)

    Bates, Kevin R.; Daniels, Andrew D.; Scuseria, Gustavo E.

    1998-01-01

    We report a comparison of two linear-scaling methods which avoid the diagonalization bottleneck of traditional electronic structure algorithms. The Chebyshev expansion method (CEM) is implemented for carbon tight-binding calculations of large systems and its memory and timing requirements compared to those of our previously implemented conjugate gradient density matrix search (CG-DMS). Benchmark calculations are carried out on icosahedral fullerenes from C60 to C8640 and the linear scaling memory and CPU requirements of the CEM demonstrated. We show that the CPU requisites of the CEM and CG-DMS are similar for calculations with comparable accuracy.

  6. A new generalized expansion method and its application in finding explicit exact solutions for a generalized variable coefficients KdV equation

    NASA Astrophysics Data System (ADS)

    Sabry, R.; Zahran, M. A.; Fan, Engui

    2004-05-01

    A generalized expansion method is proposed to uniformly construct a series of exact solutions for general variable coefficients non-linear evolution equations. The new approach admits the following types of solutions (a) polynomial solutions, (b) exponential solutions, (c) rational solutions, (d) triangular periodic wave solutions, (e) hyperbolic and solitary wave solutions and (f) Jacobi and Weierstrass doubly periodic wave solutions. The efficiency of the method has been demonstrated by applying it to a generalized variable coefficients KdV equation. Then, new and rich variety of exact explicit solutions have been found.

  7. Travelling Wave Solutions for the Burgers Equation and the Korteweg-de Vries Equation with Variable Coefficients Using the Generalized (Ǵ/G)-Expansion Method

    NASA Astrophysics Data System (ADS)

    Zayed, Elsayed M. E.; Abdelaziz, Mahmoud A. M.

    2010-12-01

    In this article, a generalized (Ǵ/G)-expansion method is used to find exact travelling wave solutions of the Burgers equation and the Korteweg-de Vries (KdV) equation with variable coefficients. As a result, hyperbolic, trigonometric, and rational function solutions with parameters are obtained. When these parameters are taking special values, the solitary wave solutions are derived from the hyperbolic function solution. It is shown that the proposed method is direct, effective, and can be applied to many other nonlinear evolution equations in mathematical physics.

  8. Comparison of Conjugate Gradient Density Matrix Search and Chebyshev Expansion Methods for Avoiding Diagonalization in Large-Scale Electronic Structure Calculations

    NASA Technical Reports Server (NTRS)

    Bates, Kevin R.; Daniels, Andrew D.; Scuseria, Gustavo E.

    1998-01-01

    We report a comparison of two linear-scaling methods which avoid the diagonalization bottleneck of traditional electronic structure algorithms. The Chebyshev expansion method (CEM) is implemented for carbon tight-binding calculations of large systems and its memory and timing requirements compared to those of our previously implemented conjugate gradient density matrix search (CG-DMS). Benchmark calculations are carried out on icosahedral fullerenes from C60 to C8640 and the linear scaling memory and CPU requirements of the CEM demonstrated. We show that the CPU requisites of the CEM and CG-DMS are similar for calculations with comparable accuracy.

  9. Solving Faddeev equations for a bound state and a continuous spectrum of a three-nucleon system by the method of K-harmonic expansions

    SciTech Connect

    Kovalchuk, V. I.; Kozlovsky, I. V.; Tartakovsky, V. K.

    2011-05-15

    A method for solving Faddeev equations in configuration space for a bound state and a continuous spectrum of the system of three nucleons was developed on the basis of expansions in K harmonics. Coulomb interaction and particle spins were not taken into account in this study. The method in question was used to describe the triton bound state and differential cross sections for neutron-deuteron scattering at subthreshold incident-neutron energies. The Volkov, Malfliet-Tjon, and Eikemeier-Hackenbroich local nucleon-nucleon potentials were employed in the present calculations.

  10. Expansion Microscopy

    PubMed Central

    Chen, Fei; Tillberg, Paul W.; Boyden, Edward S.

    2014-01-01

    In optical microscopy, fine structural details are resolved by using refraction to magnify images of a specimen. Here we report the discovery that, by synthesizing a swellable polymer network within a specimen, it can be physically expanded, resulting in physical magnification. By covalently anchoring specific labels located within the specimen directly to the polymer network, labels spaced closer than the optical diffraction limit can be isotropically separated and optically resolved, a process we call expansion microscopy (ExM). Thus, this process can be used to perform scalable super-resolution microscopy with diffraction-limited microscopes. We demonstrate ExM with effective ~70 nm lateral resolution in both cultured cells and brain tissue, performing three-color super-resolution imaging of ~107 μm3 of the mouse hippocampus with a conventional confocal microscope. PMID:25592419

  11. Accelerating the loop expansion

    SciTech Connect

    Ingermanson, R.

    1986-07-29

    This thesis introduces a new non-perturbative technique into quantum field theory. To illustrate the method, I analyze the much-studied phi/sup 4/ theory in two dimensions. As a prelude, I first show that the Hartree approximation is easy to obtain from the calculation of the one-loop effective potential by a simple modification of the propagator that does not affect the perturbative renormalization procedure. A further modification then susggests itself, which has the same nice property, and which automatically yields a convex effective potential. I then show that both of these modifications extend naturally to higher orders in the derivative expansion of the effective action and to higher orders in the loop-expansion. The net effect is to re-sum the perturbation series for the effective action as a systematic ''accelerated'' non-perturbative expansion. Each term in the accelerated expansion corresponds to an infinite number of terms in the original series. Each term can be computed explicitly, albeit numerically. Many numerical graphs of the various approximations to the first two terms in the derivative expansion are given. I discuss the reliability of the results and the problem of spontaneous symmetry-breaking, as well as some potential applications to more interesting field theories. 40 refs.

  12. Measurement method of compressibility and thermal expansion coefficients for density standard liquid at 2329 kg/m3 based on hydrostatic suspension principle

    NASA Astrophysics Data System (ADS)

    Wang, Jintao; Liu, Ziyong; Xu, Changhong; Li, Zhanhong

    2014-07-01

    The accurate measurement on the compressibility and thermal expansion coefficients of density standard liquid at 2329kg/m3 (DSL-2329) plays an important role in the quality control for silicon single crystal manufacturing. A new method is developed based on hydrostatic suspension principle in order to determine the two coefficients with high measurement accuracy. Two silicon single crystal samples with known density are immersed into a sealed vessel full of DSL-2329. The density of liquid is adjusted with varying liquid temperature and static pressure, so that the hydrostatic suspension of two silicon single crystal samples is achieved. The compression and thermal expansion coefficients are then calculated by using the data of temperature and static pressure at the suspension state. One silicon single crystal sample can be suspended at different state, as long as the liquid temperature and static pressure function linearly according to a certain mathematical relationship. A hydrostatic suspension experimental system is devised with the maximal temperature control error ±50 μK; Silicon single crystal samples can be suspended by adapting the pressure following the PID method. By using the method based on hydrostatic suspension principle, the two key coefficients can be measured at the same time, and measurement precision can be improved due to avoiding the influence of liquid surface tension. This method was further validated experimentally, where the mixture of 1, 2, 3-tribromopropane and 1,2-dibromoethane is used as DSL-2329. The compressibility and thermal expansion coefficients were measured, as 8.5×10-4 K-1 and 5.4×1010 Pa-1, respectively.

  13. Investigation of Solitary wave solutions for Vakhnenko-Parkes equation via exp-function and Exp(-ϕ(ξ))-expansion method.

    PubMed

    Roshid, Harun-Or; Kabir, Md Rashed; Bhowmik, Rajandra Chadra; Datta, Bimal Kumar

    2014-01-01

    In this paper, we have described two dreadfully important methods to solve nonlinear partial differential equations which are known as exp-function and the exp(-ϕ(ξ)) -expansion method. Recently, there are several methods to use for finding analytical solutions of the nonlinear partial differential equations. The methods are diverse and useful for solving the nonlinear evolution equations. With the help of these methods, we are investigated the exact travelling wave solutions of the Vakhnenko- Parkes equation. The obtaining soliton solutions of this equation are described many physical phenomena for weakly nonlinear surface and internal waves in a rotating ocean. Further, three-dimensional plots of the solutions such as solitons, singular solitons, bell type solitary wave i.e. non-topological solitons solutions and periodic solutions are also given to visualize the dynamics of the equation.

  14. A novel method using blinatumomab for efficient, clinical-grade expansion of polyclonal T cells for adoptive immunotherapy.

    PubMed

    Golay, Josée; D'Amico, Anna; Borleri, Gianmaria; Bonzi, Michela; Valgardsdottir, Rut; Alzani, Rachele; Cribioli, Sabrina; Albanese, Clara; Pesenti, Enrico; Finazzi, Maria Chiara; Quaresmini, Giulia; Nagorsen, Dirk; Introna, Martino; Rambaldi, Alessandro

    2014-11-01

    Current treatment of chronic lymphocytic leukemia (CLL) patients often results in life-threatening immunosuppression. Furthermore, CLL is still an incurable disease due to the persistence of residual leukemic cells. These patients may therefore benefit from immunotherapy approaches aimed at immunoreconstitution and/or the elimination of residual disease following chemotherapy. For these purposes, we designed a simple GMP-compliant protocol for ex vivo expansion of normal T cells from CLL patients' peripheral blood for adoptive therapy, using bispecific Ab blinatumomab (CD3 × CD19), acting both as T cell stimulator and CLL depletion agent, and human rIL-2. Starting from only 10 ml CLL peripheral blood, a mean 515 × 10(6) CD3(+) T cells were expanded in 3 wk. The resulting blinatumomab-expanded T cells (BET) were polyclonal CD4(+) and CD8(+) and mostly effector and central memory cells. The Th1 subset was slightly prevalent over Th2, whereas Th17 and T regulatory cells were <1%. CMV-specific clones were detected in equivalent proportion before and after expansion. Interestingly, BET cells had normalized expression of the synapse inhibitors CD272 and CD279 compared with starting T cells and were cytotoxic against CD19(+) targets in presence of blinatumomab in vitro. In support of their functional capacity, we observed that BET, in combination with blinatumomab, had significant therapeutic activity in a systemic human diffuse large B lymphoma model in NOD-SCID mice. We propose BET as a therapeutic tool for immunoreconstitution of heavily immunosuppressed CLL patients and, in combination with bispecific Ab, as antitumor immunotherapy.

  15. Single-particle spectral density of the unitary Fermi gas: Novel approach based on the operator product expansion, sum rules and the maximum entropy method

    SciTech Connect

    Gubler, Philipp; Yamamoto, Naoki; Hatsuda, Tetsuo; Nishida, Yusuke

    2015-05-15

    Making use of the operator product expansion, we derive a general class of sum rules for the imaginary part of the single-particle self-energy of the unitary Fermi gas. The sum rules are analyzed numerically with the help of the maximum entropy method, which allows us to extract the single-particle spectral density as a function of both energy and momentum. These spectral densities contain basic information on the properties of the unitary Fermi gas, such as the dispersion relation and the superfluid pairing gap, for which we obtain reasonable agreement with the available results based on quantum Monte-Carlo simulations.

  16. Multipotent Mesenchymal Stromal Stem Cell Expansion by Plating Whole Bone Marrow at a Low Cellular Density: A More Advantageous Method for Clinical Use

    PubMed Central

    Mareschi, Katia; Rustichelli, Deborah; Calabrese, Roberto; Gunetti, Monica; Sanavio, Fiorella; Castiglia, Sara; Risso, Alessandra; Ferrero, Ivana; Tarella, Corrado; Fagioli, Franca

    2012-01-01

    Mesenchymal stem cells (MSCs) are a promising source for cell therapy due to their pluripotency and immunomodulant proprieties. As the identification of “optimal” conditions is important to identify a standard procedure for clinical use. Percoll, Ficoll and whole bone marrow directly plated were tested from the same sample as separation methods. The cells were seeded at the following densities: 100 000, 10 000, 1000, 100, 10 cells/cm2. After reaching confluence, the cells were detached, pooled and re-plated at 1000, 500, 100, and 10 cells/cm2. Statistical analyses were performed. Cumulative Population Doublings (PD) did not show significant differences for the separation methods and seeding densities but only for the plating density. Some small quantity samples plated in T25 flasks at plating densities of 10 and 100 cells/cm2 did not produce any expansion. However, directly plated whole bone marrow resulted in a more advantageous method in terms of CFU-F number, cellular growth and minimal manipulation. No differences were observed in terms of gross morphology, differentiation potential or immunophenotype. These data suggest that plating whole bone marrow at a low cellular density may represent a good procedure for MSC expansion for clinical use. PMID:23715383

  17. Thermal Expansion

    NASA Astrophysics Data System (ADS)

    Ventura, Guglielmo; Perfetti, Mauro

    All solid materials, when cooled to low temperatures experience a change in physical dimensions which called "thermal contraction" and is typically lower than 1 % in volume in the 4-300 K temperature range. Although the effect is small, it can have a heavy impact on the design of cryogenic devices. The thermal contraction of different materials may vary by as much as an order of magnitude: since cryogenic devices are constructed at room temperature with a lot of different materials, one of the major concerns is the effect of the different thermal contraction and the resulting thermal stress that may occur when two dissimilar materials are bonded together. In this chapter, theory of thermal contraction is reported in Sect. 1.2 . Section 1.3 is devoted to the phenomenon of negative thermal expansion and its applications.

  18. 1D Current Source Density (CSD) Estimation in Inverse Theory: A Unified Framework for Higher-Order Spectral Regularization of Quadrature and Expansion-Type CSD Methods.

    PubMed

    Kropf, Pascal; Shmuel, Amir

    2016-07-01

    Estimation of current source density (CSD) from the low-frequency part of extracellular electric potential recordings is an unstable linear inverse problem. To make the estimation possible in an experimental setting where recordings are contaminated with noise, it is necessary to stabilize the inversion. Here we present a unified framework for zero- and higher-order singular-value-decomposition (SVD)-based spectral regularization of 1D (linear) CSD estimation from local field potentials. The framework is based on two general approaches commonly employed for solving inverse problems: quadrature and basis function expansion. We first show that both inverse CSD (iCSD) and kernel CSD (kCSD) fall into the category of basis function expansion methods. We then use these general categories to introduce two new estimation methods, quadrature CSD (qCSD), based on discretizing the CSD integral equation with a chosen quadrature rule, and representer CSD (rCSD), an even-determined basis function expansion method that uses the problem's data kernels (representers) as basis functions. To determine the best candidate methods to use in the analysis of experimental data, we compared the different methods on simulations under three regularization schemes (Tikhonov, tSVD, and dSVD), three regularization parameter selection methods (NCP, L-curve, and GCV), and seven different a priori spatial smoothness constraints on the CSD distribution. This resulted in a comparison of 531 estimation schemes. We evaluated the estimation schemes according to their source reconstruction accuracy by testing them using different simulated noise levels, lateral source diameters, and CSD depth profiles. We found that ranking schemes according to the average error over all tested conditions results in a reproducible ranking, where the top schemes are found to perform well in the majority of tested conditions. However, there is no single best estimation scheme that outperforms all others under all tested

  19. Envelope periodic solutions for a discrete network with the Jacobi elliptic functions and the alternative (G'/G)-expansion method including the generalized Riccati equation

    NASA Astrophysics Data System (ADS)

    Tala-Tebue, E.; Tsobgni-Fozap, D. C.; Kenfack-Jiotsa, A.; Kofane, T. C.

    2014-06-01

    Using the Jacobi elliptic functions and the alternative ( G'/ G-expansion method including the generalized Riccati equation, we derive exact soliton solutions for a discrete nonlinear electrical transmission line in (2+1) dimension. More precisely, these methods are general as they lead us to diverse solutions that have not been previously obtained for the nonlinear electrical transmission lines. This study seeks to show that it is not often necessary to transform the equation of the network into a well-known differential equation before finding its solutions. The solutions obtained by the current methods are generalized periodic solutions of nonlinear equations. The shape of solutions can be well controlled by adjusting the parameters of the network. These exact solutions may have significant applications in telecommunication systems where solitons are used to codify or for the transmission of data.

  20. Effects of biaxial strain on the improper multiferroicity in h–LuFeO3 films studied using the restrained thermal expansion method

    DOE PAGES

    Sinha, Kishan; Zhang, Yubo; Jiang, Xuanyuan; ...

    2017-03-14

    Elastic strain is potentially an important approach in tuning the properties of the improperly multiferroic hexagonal ferrites, the details of which have however been elusive due to the experimental difficulties. Employing the method of restrained thermal expansion, we have studied the effect of isothermal biaxial strain in the basal plane of h-LuFeO3 (001) films. The results indicate that a compressive biaxial strain significantly enhances the K3 structural distortion (the order parameter of the improper ferroelectricity), and the effect is larger at higher temperatures. The compressive biaxial strain and the enhanced K3 structural distortion together, cause an increase in the electricmore » polarization and a reduction in the canting of the weak ferromagnetic moments in h-LuFeO3, according to our first principle calculations. These findings are important for understanding the strain effect as well as the coupling between the lattice and the improper multiferroicity in h-LuFeO3. Finally, the experimental elucidation of the strain effect in h-LuFeO3 films also suggests that the restrained thermal expansion can be a viable method to unravel the strain effect in many other thin film materials.« less

  1. Effects of biaxial strain on the improper multiferroicity in h -LuFe O3 films studied using the restrained thermal expansion method

    NASA Astrophysics Data System (ADS)

    Sinha, Kishan; Zhang, Yubo; Jiang, Xuanyuan; Wang, Hongwei; Wang, Xiao; Zhang, Xiaozhe; Ryan, Philip J.; Kim, Jong-Woo; Bowlan, John; Yarotski, Dmitry A.; Li, Yuelin; DiChiara, Anthony D.; Cheng, Xuemei; Wu, Xifan; Xu, Xiaoshan

    2017-03-01

    Elastic strain is potentially an important approach in tuning the properties of the improperly multiferroic hexagonal ferrites, the details of which, however, have been elusive due to experimental difficulties. Employing the method of restrained thermal expansion, we have studied the effect of isothermal biaxial strain in the basal plane of h -LuFe O3 (001) films. The results indicate that a compressive biaxial strain significantly enhances the K3 structural distortion (the order parameter of the improper ferroelectricity), and the effect is larger at higher temperatures. The compressive biaxial strain and the enhanced K3 structural distortion together cause an increase in the electric polarization and a reduction in the canting of the weak ferromagnetic moments in h -LuFe O3 , according to our first principles calculations. These findings are important for understanding the strain effect as well as the coupling between the lattice and the improper multiferroicity in h -LuFe O3 . The experimental elucidation of the strain effect in h -LuFe O3 films also suggests that the restrained thermal expansion can be a viable method to unravel the strain effect in many other thin film materials.

  2. Method and Apparatus for Determining Changes in Intracranial Pressure Utilizing Measurement of the Circumferential Expansion or Contraction of a Patient's Skull

    NASA Technical Reports Server (NTRS)

    Yos, William T. (Inventor); Cantrell, John H., Jr. (Inventor)

    2004-01-01

    A method and apparatus for measuring changes in intracranial pressure (ICP) utilizing the variation of the surface wave propagation parameters of the patient's skull to determine the change in ICP. In one embodiment, the method comprises the steps of transmitting an ultrasonic bulk compressional wave onto the surface of the skull at a predetermined angle with respect to the skull so as to produce a surface wave, receiving the surface wave at an angle with respect tn the skull which is substantially the same as the predetermined angle and at a location that is a predetermined distance from where the ultrasonic bulk compressional wave was transmitted upon the skull, determining the retardation or advancement in phase of the received surface wave with respect to a reference phase, and processing the determined retardation or advancement in phase to determine circumferential expansion or contraction of the skull and utilizing the determined circumferential change to determine the change in intracranial pressure.

  3. Analytical solutions of the planar cyclic voltammetry process for two soluble species with equal diffusivities and fast electron transfer using the method of eigenfunction expansions

    SciTech Connect

    Samin, Adib; Lahti, Erik; Zhang, Jinsuo

    2015-08-15

    Cyclic voltammetry is a powerful tool that is used for characterizing electrochemical processes. Models of cyclic voltammetry take into account the mass transport of species and the kinetics at the electrode surface. Analytical solutions of these models are not well-known due to the complexity of the boundary conditions. In this study we present closed form analytical solutions of the planar voltammetry model for two soluble species with fast electron transfer and equal diffusivities using the eigenfunction expansion method. Our solution methodology does not incorporate Laplace transforms and yields good agreement with the numerical solution. This solution method can be extended to cases that are more general and may be useful for benchmarking purposes.

  4. The Singularity Expansion Method and Complex Singularities of Exterior Scalar and Vector Scattering in Acoustics and Electromagnetic Theory

    DTIC Science & Technology

    1979-01-01

    22. Reed, M. and Simon, B., Methods of Mathematical Physics , Vol. 1, p. 201, Academic Press, N.Y., N.Y., 1972 - 36 - -3 U- 23. Schmidt, "Spectral and...states and poles of the scattering matrix for perturbations of -A, .J. Math. Anal. and Ap . 37, 467 (1972). 17. M. Reed and B. Sirmon (1972), Methods of Mathematical Physics , Academic

  5. Isotropic Negative Thermal Expansion Metamaterials.

    PubMed

    Wu, Lingling; Li, Bo; Zhou, Ji

    2016-07-13

    Negative thermal expansion materials are important and desirable in science and engineering applications. However, natural materials with isotropic negative thermal expansion are rare and usually unsatisfied in performance. Here, we propose a novel method to achieve two- and three-dimensional negative thermal expansion metamaterials via antichiral structures. The two-dimensional metamaterial is constructed with unit cells that combine bimaterial strips and antichiral structures, while the three-dimensional metamaterial is fabricated by a multimaterial 3D printing process. Both experimental and simulation results display isotropic negative thermal expansion property of the samples. The effective coefficient of negative thermal expansion of the proposed models is demonstrated to be dependent on the difference between the thermal expansion coefficient of the component materials, as well as on the circular node radius and the ligament length in the antichiral structures. The measured value of the linear negative thermal expansion coefficient of the three-dimensional sample is among the largest achieved in experiments to date. Our findings provide an easy and practical approach to obtaining materials with tunable negative thermal expansion on any scale.

  6. An optimal implicit staggered-grid finite-difference scheme based on the modified Taylor-series expansion with minimax approximation method for elastic modeling

    NASA Astrophysics Data System (ADS)

    Yang, Lei; Yan, Hongyong; Liu, Hong

    2017-03-01

    Implicit staggered-grid finite-difference (ISFD) scheme is competitive for its great accuracy and stability, whereas its coefficients are conventionally determined by the Taylor-series expansion (TE) method, leading to a loss in numerical precision. In this paper, we modify the TE method using the minimax approximation (MA), and propose a new optimal ISFD scheme based on the modified TE (MTE) with MA method. The new ISFD scheme takes the advantage of the TE method that guarantees great accuracy at small wavenumbers, and keeps the property of the MA method that keeps the numerical errors within a limited bound at the same time. Thus, it leads to great accuracy for numerical solution of the wave equations. We derive the optimal ISFD coefficients by applying the new method to the construction of the objective function, and using a Remez algorithm to minimize its maximum. Numerical analysis is made in comparison with the conventional TE-based ISFD scheme, indicating that the MTE-based ISFD scheme with appropriate parameters can widen the wavenumber range with high accuracy, and achieve greater precision than the conventional ISFD scheme. The numerical modeling results also demonstrate that the MTE-based ISFD scheme performs well in elastic wave simulation, and is more efficient than the conventional ISFD scheme for elastic modeling.

  7. Exact Analytical Solution for 3D Time-Dependent Heat Conduction in a Multilayer Sphere with Heat Sources Using Eigenfunction Expansion Method.

    PubMed

    Dalir, Nemat

    2014-01-01

    An exact analytical solution is obtained for the problem of three-dimensional transient heat conduction in the multilayered sphere. The sphere has multiple layers in the radial direction and, in each layer, time-dependent and spatially nonuniform volumetric internal heat sources are considered. To obtain the temperature distribution, the eigenfunction expansion method is used. An arbitrary combination of homogenous boundary condition of the first or second kind can be applied in the angular and azimuthal directions. Nevertheless, solution is valid for nonhomogeneous boundary conditions of the third kind (convection) in the radial direction. A case study problem for the three-layer quarter-spherical region is solved and the results are discussed.

  8. Exact Analytical Solution for 3D Time-Dependent Heat Conduction in a Multilayer Sphere with Heat Sources Using Eigenfunction Expansion Method

    PubMed Central

    Dalir, Nemat

    2014-01-01

    An exact analytical solution is obtained for the problem of three-dimensional transient heat conduction in the multilayered sphere. The sphere has multiple layers in the radial direction and, in each layer, time-dependent and spatially nonuniform volumetric internal heat sources are considered. To obtain the temperature distribution, the eigenfunction expansion method is used. An arbitrary combination of homogenous boundary condition of the first or second kind can be applied in the angular and azimuthal directions. Nevertheless, solution is valid for nonhomogeneous boundary conditions of the third kind (convection) in the radial direction. A case study problem for the three-layer quarter-spherical region is solved and the results are discussed. PMID:27433511

  9. Methods to investigate the interaction of 16 μm laser radiation with uranium hexafluoride in a supersonic expansion

    NASA Astrophysics Data System (ADS)

    Human, Hendrik G. C.

    1997-01-01

    Selective dissociation of UF6 using three wavelength IR irradiation did not yield the desired results initially. Various spectroscopic methods such as UV and IR absorption of UF6, fluorescence of UF6 and Time-of-Flight Mass Spectrometry of the products of irradiation, were implemented to investigate the nature of the interaction. These techniques identified the source of the problem as the presence of condensates in the flow-cooled gas, and were used to select conditions to minimise this effect.

  10. Standard test method for expansion or contraction of coal by the sole-heated oven. ASTM standard

    SciTech Connect

    1998-05-01

    This test method is under the jurisdiction of ASTM Committee D-5 on Coal and Coke and is the direct responsibility of Subcommittee D05.15 on Metallurgical Properties of Coal and Coke. The current edition was approved on April 10, 1997, and published May 1998. It was originally published as D 2014-62. The last previous edition was D 2014-96a.

  11. Three-body expansion of the fragment molecular orbital method combined with density-functional tight-binding.

    PubMed

    Nishimoto, Yoshio; Fedorov, Dmitri G

    2017-03-15

    The three-body fragment molecular orbital (FMO3) method is formulated for density-functional tight-binding (DFTB). The energy, analytic gradient, and Hessian are derived in the gas phase, and the energy and analytic gradient are also derived for polarizable continuum model. The accuracy of FMO3-DFTB is evaluated for five proteins, sodium cation in explicit solvent, and three isomers of polyalanine. It is shown that FMO3-DFTB is considerably more accurate than FMO2-DFTB. Molecular dynamics simulations for sodium cation in water are performed for 100 ps, yielding radial distribution functions and coordination numbers. © 2017 Wiley Periodicals, Inc.

  12. Time-dependent density-functional tight-binding method with the third-order expansion of electron density

    SciTech Connect

    Nishimoto, Yoshio

    2015-09-07

    We develop a formalism for the calculation of excitation energies and excited state gradients for the self-consistent-charge density-functional tight-binding method with the third-order contributions of a Taylor series of the density functional theory energy with respect to the fluctuation of electron density (time-dependent density-functional tight-binding (TD-DFTB3)). The formulation of the excitation energy is based on the existing time-dependent density functional theory and the older TD-DFTB2 formulae. The analytical gradient is computed by solving Z-vector equations, and it requires one to calculate the third-order derivative of the total energy with respect to density matrix elements due to the inclusion of the third-order contributions. The comparison of adiabatic excitation energies for selected small and medium-size molecules using the TD-DFTB2 and TD-DFTB3 methods shows that the inclusion of the third-order contributions does not affect excitation energies significantly. A different set of parameters, which are optimized for DFTB3, slightly improves the prediction of adiabatic excitation energies statistically. The application of TD-DFTB for the prediction of absorption and fluorescence energies of cresyl violet demonstrates that TD-DFTB3 reproduced the experimental fluorescence energy quite well.

  13. Isolation, characterization, and expansion methods for defined primary renal cell populations from rodent, canine, and human normal and diseased kidneys.

    PubMed

    Presnell, Sharon C; Bruce, Andrew T; Wallace, Shay M; Choudhury, Sumana; Genheimer, Christopher W; Cox, Bryan; Guthrie, Kelly; Werdin, Eric S; Tatsumi-Ficht, Patricia; Ilagan, Roger M; Kelley, Russell W; Rivera, Elias A; Ludlow, John W; Wagner, Belinda J; Jayo, Manuel J; Bertram, Timothy A

    2011-03-01

    Chronic kidney disease (CKD) is a global health problem; the growing gap between the number of patients awaiting transplant and organs actually transplanted highlights the need for new treatments to restore renal function. Regenerative medicine is a promising approach from which treatments for organ-level disorders (e.g., neurogenic bladder) have emerged and translated to clinics. Regenerative templates, composed of biodegradable material and autologous cells, isolated and expanded ex vivo, stimulate native-like organ tissue regeneration after implantation. A critical step for extending this strategy from bladder to kidney is the ability to isolate, characterize, and expand functional renal cells with therapeutic potential from diseased tissue. In this study, we developed methods that yield distinct subpopulations of primary kidney cells that are compatible with process development and scale-up. These methods were translated to rodent, large mammal, and human kidneys, and then to rodent and human tissues with advanced CKD. Comparative in vitro studies demonstrated that phenotype and key functional attributes were retained consistently in ex vivo cultures regardless of species or disease state, suggesting that autologous sourcing of cells that contribute to in situ kidney regeneration after injury is feasible, even with biopsies from patients with advanced CKD.

  14. Subtleties in the calculation of the pressure and pressure tensor of anisotropic particles from volume-perturbation methods and the apparent asymmetry of the compressive and expansive contributions

    NASA Astrophysics Data System (ADS)

    Brumby, Paul E.; Haslam, Andrew J.; de Miguel, Enrique; Jackson, George

    2011-01-01

    An efficient and versatile method to calculate the components of the pressure tensor for hard-body fluids of generic shape from the perspective of molecular simulation is presented. After due consideration of all the possible repulsive contributions exerted by molecules upon their surroundings during an anisotropic system expansion, it is observed that such a volume change can, for non-spherical molecules, give rise to configurations where overlaps occur. This feature of anisotropic molecules has to be taken into account rigorously as it can lead to discrepancies in the calculation of tensorial contributions to the pressure. Using the condition of detailed balance as a basis, a perturbation method developed for spherical molecules has been extended so that it is applicable to non-spherical and non-convex molecules. From a series of 'ghost' anisotropic volume perturbations the residual contribution to the components of the pressure tensor may be accurately calculated. Comparisons are made with prior methods and, where relevant, results are evaluated against existing data. For inhomogeneous systems this method provides a particularly convenient route to the calculation of the interfacial tension (surface free energy) from molecular simulations.

  15. Microcapillary culture method: a novel tool for in vitro expansion of stem cells from scarce sources.

    PubMed

    Allahverdiyev, Adil M; Baydar, Serap Yesilkir; Bagirova, Melahat; Findikli, Necati

    2012-08-01

    Although increasing numbers of studies report the derivation of stem cells from a variety of different tissues, derivation efficiencies greatly vary among different studies even for the same tissue source. Hence, a consistent and efficient isolation protocol has not yet been established to date. Several factors have so far been documented that influence and limit mesenchymal stem cell (MSC) isolation and cultivation, including the age and gender of the tissue donor, origin of the tissue, amount of sampled tissue material and cell culture characteristics including the choice of basal media, serum, gas composition, etc. The aim of the study was to investigate the microcapillary culture method (MCM) to establish an efficient and consistent isolation as well as cultivation protocol by comparing the results with other classic culture systems (flasks, center wells). MSCs isolated from adipose tissue of different donors were observed comparatively under different culture systems (flasks, center wells, microcapillary tubes) and their proliferation and differentiation were investigated. Flow cytometry was used for immunophenotypic characterization of derived cells and histochemical staining (Oil Red O and Alizarin Red S) was applied for determining their differentiation capacity. It has been shown for the first time that AD-MSCs can consistently and efficiently be derived from a scarce amount of adipose tissue by MCM. Further and similar studies should be performed to determine whether this methodology can also be applicable for other MSC sources. Copyright © 2012 IMSS. Published by Elsevier Inc. All rights reserved.

  16. NESTLE: Few-group neutron diffusion equation solver utilizing the nodal expansion method for eigenvalue, adjoint, fixed-source steady-state and transient problems

    SciTech Connect

    Turinsky, P.J.; Al-Chalabi, R.M.K.; Engrand, P.; Sarsour, H.N.; Faure, F.X.; Guo, W.

    1994-06-01

    NESTLE is a FORTRAN77 code that solves the few-group neutron diffusion equation utilizing the Nodal Expansion Method (NEM). NESTLE can solve the eigenvalue (criticality); eigenvalue adjoint; external fixed-source steady-state; or external fixed-source. or eigenvalue initiated transient problems. The code name NESTLE originates from the multi-problem solution capability, abbreviating Nodal Eigenvalue, Steady-state, Transient, Le core Evaluator. The eigenvalue problem allows criticality searches to be completed, and the external fixed-source steady-state problem can search to achieve a specified power level. Transient problems model delayed neutrons via precursor groups. Several core properties can be input as time dependent. Two or four energy groups can be utilized, with all energy groups being thermal groups (i.e. upscatter exits) if desired. Core geometries modelled include Cartesian and Hexagonal. Three, two and one dimensional models can be utilized with various symmetries. The non-linear iterative strategy associated with the NEM method is employed. An advantage of the non-linear iterative strategy is that NSTLE can be utilized to solve either the nodal or Finite Difference Method representation of the few-group neutron diffusion equation.

  17. Expansion method of the three-dimensional viewing freedom of autostereoscopic 3D display with dynamic merged viewing zone (MVZ) under eye tracking

    NASA Astrophysics Data System (ADS)

    Yoon, Ki-Hyuk; Kim, Sung-Kyu

    2017-05-01

    We studied expansion method of the three-dimensional viewing freedom of autostereoscopic 3D display with dynamic MVZ under tracking of viewer's eye. The dynamic MVZ technique can provide three dimensional images with minimized crosstalk when observer move at optimal viewing distance (OVD). In order to be extended to movement in the depth direction of the observer of this technology, it is provided a new pixel mapping method of the left eye and the right eye images at the time of the depth direction movement of the observer. When this pixel mapping method is applied to common autostereoscopic 3D display, the image of the 3D display as viewed from the observer position has the nonuniformed brightness distribution of a constant period in the horizontal direction depending on depth direction distance from OVD. It makes it difficult to provide a three-dimensional image of good quality to the observer who deviates from OVD. In this study, it is simulated brightness distribution formed by the proposed pixel mapping when it is moved in the depth direction away OVD and confirmed the characteristics with the captured photos of two cameras on observer position to simulated two eyes of viewer using a developed 3D display system. As a result, we found that observer can perceive 3D images of same quality as OVD position even when he moves away from it in the developed 3D display system.

  18. Thrust expansion engine

    NASA Astrophysics Data System (ADS)

    Zovko, Carl T.

    1993-03-01

    Break-up activity of water by injection of hot propellant gas into channels of a thrust expansion engine is suppressed to prevent rapid cooling of the gas utilizing one or more methods including injection of a secondary inflow of the propellant gas and/or the water under lower pressures into the channels, injection of a viscosity enhancer and/or surfactant into the inflow stream of the water, and restricting outflow of the water from the channels by means of convergent nozzles.

  19. Thermal Expansion of Polyurethane Foam

    NASA Technical Reports Server (NTRS)

    Lerch, Bradley A.; Sullivan, Roy M.

    2006-01-01

    expansion tests and the response of the microstructure. A novel optical method is described which is appropriate for measuring thermal expansion at high temperatures without influencing the thermal expansion measurement. Detailed microstructural investigations will also be described which show cell expansion as a function of temperature. Finally, a phenomenological model on thermal expansion will be described.

  20. Micromechanics of expansive mechanisms in expansive cement concretes

    NASA Astrophysics Data System (ADS)

    Cohen, M. D.

    The kinetics of hydration were studied by monitoring the presence of various compounds by X-ray diffractometer, a chemical extraction method, and scanning electron microscope. These studies indicated that the rates of depletion of the expanding particles and sulfates are higher in the finer blends, which is why expansion stops earlier in these blends. It is shown that the double curvature phenomenon (strength-drop and sudden increase in the rate of expansion) is caused by mechanical failure (e.g., microcracking) of the matrix surrounding the expanding particles that are producing ettringite crystals. The theory of protective and partial protective coating is reviewed. A hypothesis is introduced which assumes that monosulfate is not formed immediately when ettringite stops forming but is preceded by an intermediate phase. Shrinkage studies show that expansive cements shrink more than portland cements. The results of these studies were used to develop a modified model of the expansive process. It was shown theoretically that the time of expansion is inversely proportional to the surface area of the expansive clinker and directly proportional to the amount of sulfate used.