Sample records for semi-insulating gaas doped

  1. Characterisation of semi-insulating GaAs

    NASA Technical Reports Server (NTRS)

    Walukiewicz, W.; Pawlowicz, L.; Lagowski, J.; Gatos, H. C.

    1982-01-01

    Hole and electron mobilities as functions of temperature and ionised impurity concentration are calculated for GaAs. It is shown that these calculations, when used to analyse electrical properties of semi-insulating GaAs, enable an assessment of the Fermi energy position and ionised impurity concentration to be made. In contrast to previous work, the analysis does not require any phenomenological assumptions.

  2. Gettering of donor impurities by V in GaAs and the growth of semi-insulating crystals

    NASA Technical Reports Server (NTRS)

    Ko, K. Y.; Lagowski, J.; Gatos, H. C.

    1989-01-01

    Vanadium added to the GaAs melt getters shallow donor impurities (Si and S) and decreases their concentration in the grown crystals. This gettering is driven by chemical reactions in the melt rather than in the solid. Employing V gettering, reproducibly semi-insulating GaAs were grown by horizontal Bridgman and liquid-encapsulated Czochralski techniques, although V did not introduce any midgap energy levels. The compensation mechanism in these crystals was controlled by the balance between the native midgap donor EL2 and residual shallow acceptors. Vanadium gettering contributed to the reduction of the concentration of shallow donors below the concentration of acceptors. The present findings clarify the long-standing controversy on the role of V in achieving semi-insulating GaAs.

  3. Study on the high-power semi-insulating GaAs PCSS with quantum well structure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luan, Chongbiao; Wang, Bo; Huang, Yupeng

    A high-power semi-insulating GaAs photoconductive semiconductor switch (PCSS) with quantum well structure was fabricated. The AlGaAs layer was deposited on the surface of the GaAs material, and the reflecting film and the antireflection film have been made on the surface of the GaAs and AlGaAs, respectively. When the prepared PCSS worked at a bias voltage of 9.8 kV and triggered by a laser pulse with an incident optical energy of 5.4 mJ, a wavelength of 1064 nm and an optical pulse width of 25 ns, the on-state resistance of the AlGaAs/GaAs PCSS was only 0.45 Ω, and the longevity ofmore » the AlGaAs/GaAs PCSS was larger than 10{sup 6} shots. The results show that this structure reduces the on-state resistance and extends the longevity of the GaAs PCSS.« less

  4. First tests of Timepix detectors based on semi-insulating GaAs matrix of different pixel size

    NASA Astrophysics Data System (ADS)

    Zaťko, B.; Kubanda, D.; Žemlička, J.; Šagátová, A.; Zápražný, Z.; Boháček, P.; Nečas, V.; Mora, Y.; Pichotka, M.; Dudák, J.

    2018-02-01

    In this work, we have focused on Timepix detectors coupled with the semi-insulating GaAs material sensor. We used undoped bulk GaAs material with the thickness of 350 μm. We prepared and tested four pixelated detectors with 165 μm and 220 μm pixel size with two versions of technology preparation, without and with wet chemically etched trenches around each pixel. We have carried out adjustment of GaAs Timepix detectors to optimize their performance. The energy calibration of one GaAs Timepix detector in Time-over-threshold mode was performed with the use of 241Am and 133Ba radioisotopes. We were able to detect γ-photons with the energy up to 160 keV. The X-ray imaging quality of GaAs Timepix detector was tested with X-ray source using various samples. After flat field we obtained very promising imaging performance of tested GaAs Timepix detectors.

  5. n-Type Doping of Vapor-Liquid-Solid Grown GaAs Nanowires.

    PubMed

    Gutsche, Christoph; Lysov, Andrey; Regolin, Ingo; Blekker, Kai; Prost, Werner; Tegude, Franz-Josef

    2011-12-01

    In this letter, n-type doping of GaAs nanowires grown by metal-organic vapor phase epitaxy in the vapor-liquid-solid growth mode on (111)B GaAs substrates is reported. A low growth temperature of 400°C is adjusted in order to exclude shell growth. The impact of doping precursors on the morphology of GaAs nanowires was investigated. Tetraethyl tin as doping precursor enables heavily n-type doped GaAs nanowires in a relatively small process window while no doping effect could be found for ditertiarybutylsilane. Electrical measurements carried out on single nanowires reveal an axially non-uniform doping profile. Within a number of wires from the same run, the donor concentrations ND of GaAs nanowires are found to vary from 7 × 10(17) cm(-3) to 2 × 10(18) cm(-3). The n-type conductivity is proven by the transfer characteristics of fabricated nanowire metal-insulator-semiconductor field-effect transistor devices.

  6. Imaging performance of a Timepix detector based on semi-insulating GaAs

    NASA Astrophysics Data System (ADS)

    Zaťko, B.; Zápražný, Z.; Jakůbek, J.; Šagátová, A.; Boháček, P.; Sekáčová, M.; Korytár, D.; Nečas, V.; Žemlička, J.; Mora, Y.; Pichotka, M.

    2018-01-01

    This work focused on a Timepix chip [1] coupled with a bulk semi-insulating GaAs sensor. The sensor consisted of a matrix of 256 × 256 pixels with a pitch of 55 μm bump-bonded to a Timepix ASIC. The sensor was processed on a 350 μm-thick SI GaAs wafer. We carried out detector adjustment to optimize its performance. This included threshold equalization with setting up parameters of the Timepix chip, such as Ikrum, Pream, Vfbk, and so on. The energy calibration of the GaAs Timepix detector was realized using a 241Am radioisotope in two Timepix detector modes: time-over-threshold and threshold scan. An energy resolution of 4.4 keV in FWHM (Full Width at Half Maximum) was observed for 59.5 keV γ-photons using threshold scan mode. The X-ray imaging quality of the GaAs Timepix detector was tested using various samples irradiated by an X-ray source with a focal spot size smaller than 8 μm and accelerating voltage up to 80 kV. A 700 μm × 700 μm gold testing object (X-500-200-16Au with Siemens star) fabricated with high precision was used for the spatial resolution testing at different values of X-ray image magnification (up to 45). The measured spatial resolution of our X-ray imaging system was about 4 μm.

  7. Photoreflectance from GaAs and GaAs/GaAs interfaces

    NASA Astrophysics Data System (ADS)

    Sydor, Michael; Angelo, James; Wilson, Jerome J.; Mitchel, W. C.; Yen, M. Y.

    1989-10-01

    Photoreflectance from semi-insulating GaAs, and GaAs/GaAs interfaces, is discussed in terms of its behavior with temperature, doping, epilayer thickness, and laser intensity. Semi-insulating substrates show an exciton-related band-edge signal below 200 K and an impurity-related photoreflectance above 400 K. At intermediate temperatures the band-edge signal from thin GaAs epilayers contains a contribution from the epilayer-substrate interface. The interface effect depends on the epilayer's thickness, doping, and carrier mobility. The effect broadens the band-edge photoreflectance by 5-10 meV, and artifically lowers the estimates for the critical-point energy, ECP, obtained through the customary third-derivative functional fit to the data.

  8. Growth factor of Fe-doped semi-insulating InP by LP-MOCVD

    NASA Astrophysics Data System (ADS)

    Yan, Xuejin; Zhu, Hongliang; Wang, Wei; Xu, Guoyang; Zhou, Fan; Ma, Chaohua; Wang, Xiaojie; Tian, Huijiang; Zhang, Jingyuan; Wu, Rong Han; Wang, Qiming

    1998-08-01

    The semi-insulating InP has been grown using ferrocene as a dopant source by low pressure MOCVD. Fe doped semi-insulating InP material whose resistivity is equal to 2.0 X 108(Omega) *cm and the breakdown field is greater than 4.0 X 104Vcm-1 has been achieved. It is found that the magnitude of resistivity increases with growing pressure enhancement under keeping TMIn, PH3, ferrocene [Fe(C5H5)2] flow constant at 620 degrees Celsius growth temperature. Moreover, the experimental results which resistivity varies with ferrocene mole fraction are given. It is estimated that active Fe doping efficiency, (eta) , is equal to 8.7 X 10-4 at 20 mbar growth pressure and 620 degrees Celsius growth temperature by the comparison of calculated and experimental results.

  9. Effects of macroscopic inhomogeneities on electron mobility in semi-insulating GaAs

    NASA Technical Reports Server (NTRS)

    Walukiewicz, W.; Wang, L.; Pawlowicz, L. M.; Lagowski, J.; Gatos, H. C.

    1986-01-01

    It is shown that defect inhomogeneities of sizes larger than the electron mean free path are responsible for the low values and anomalous temperature dependence of the electron mobility in semi-insulating (SI) GaAs. The room-temperature electron mobility values below about 6000 sq cm/V s cannot be uniquely used for the determination of the concentration of ionized defects, since the contribution from inhomogeneities usually exceeds that from scattering by ionized impurities. The effects of the macroscopically inhomogeneous distribution of residual acceptors and the major deep donor EL2 diminish at elevated temperatures between 600 and 900 K, which offers a means for identification of inhomogeneities, and furthermore explains recently reported steplike mobility versus temperature behavior in SI-GaAs.

  10. A study of the nature of the emission centres and mechanisms of radiative recombination in semi-insulating GaAs crystals (in English)

    NASA Astrophysics Data System (ADS)

    Komarov, V. G.; Motsnyi, F. V.; Motsnyi, V. F.; Zinets, O. S.

    The low temperature photoluminescence spectra of semi-insulating GaAs crystals grown by Czochralski method at different technological conditions have been studied. One of the main background impurities in such materials is carbon. The traditional high temperature annealing of semi-insulating GaAs wafers significantly aggravates their structure perfection because near the surface the creation of conductive layers with the thickness of several microns takes place. The fine structure of the bands of 1.514 and 1.490 eV has been registered. This structure caused by a) polariton emission from upper and low polariton branches; b) radiative recombination of free holes on shallow neutral donors (D^0, h); c) radiative recombination of excitons bound to shallow neutral donors (D^0, X) and to shallow carbon acceptors (C^0_{As}, X); d) excitons bound to the point structure defects (d, X); e) electron transitions between the conduction band and shallow neutral carbon acceptor; f) the electron transitions between donor-acceptor pairs in which carbon and possibly zinc are acceptors in the ground 1S_{3/2} state. The lux-intensity dependencies of the polariton emission from upper polariton branch and photoluminescence of (D^0, h), (C^0_{As}, X), (d, X) complexes are in good agreement with the theory. It is shown that one of the best available semi-insulating GaAs materials is a new commercial AGCP-5V material which differs from others by considerable concentration of shallow donors and new acceptors alongside of the known shallow C^0_{As} acceptor centres.

  11. On the optical evaluation of the EL2 deep level concentration in semi-insulating GaAs

    NASA Technical Reports Server (NTRS)

    Walukiewicz, W.; Lagowski, J.; Gatos, H. C.

    1983-01-01

    A practical procedure for the evaluation of the Fermi energy in semi-insulating (SI)GaAs from electrical measurements is presented. This procedure makes it possible to reliably extend the determination of the major deep level (EL2) concentration, by near-infrared absorption measurements, to SIGaAs. Employing this procedure, it is shown that the EL2 concentration in Czochralski-grown GaAs increases monotonically with increasing As/Ga ratio (throughout the conversion from SI n type to semiconducting p-type crystals) rather than abruptly as previously proposed.

  12. Light controlled prebreakdown characteristics of a semi-insulating GaAs photoconductive switch

    NASA Astrophysics Data System (ADS)

    Xiangrong, Ma; Wei, Shi; Weili, Ji; Hong, Xue

    2011-12-01

    A 4 mm gap semi-insulating (SI) GaAs photoconductive switch (PCSS) was triggered by a pulse laser with a wavelength of 1064 nm and a pulse energy of 0.5 mJ. In the experiment, when the bias field was 4 kV, the switch did not induce self-maintained discharge but worked in nonlinear (lock-on) mode. The phenomenon is analyzed as follows: an exciton effect contributes to photoconduction in the generation and dissociation of excitons. Collision ionization, avalanche multiplication and the exciton effect can supply carrier concentration and energy when an outside light source was removed. Under the combined influence of these factors, the SI-GaAs PCSS develops into self-maintained discharge rather than just in the light-controlled prebreakdown status. The characteristics of the filament affect the degree of damage to the switch.

  13. The Growth of Expitaxial GaAs and GaAlAs on Silicon Substrates by OMVPE

    DTIC Science & Technology

    1988-08-01

    structures have been grown on semi-insulating gallium arsenide substrates, and on high-resistivity silicon substrates using a two stage growth technique...fully in Quarter 9. 2. MATERIALS GROWTH 2.1 DOPING OF GALLIUM ARSENIDE FOR FETs As reported in quarter 7, doping levels for GaAs/SI 4ere found to be a...FET structures on both GaAs and Si substrates. A number of FET layers have been grown to the GAT4 specification on semi-insulating gallium arsenide

  14. Radiation hardness study of semi-insulating GaAs detectors against 5 MeV electrons

    NASA Astrophysics Data System (ADS)

    Šagátová, A.; Zaťko, B.; Nečas, V.; Sedlačková, K.; Boháček, P.; Fülöp, M.; Pavlovič, M.

    2018-01-01

    A radiation hardness study of Semi-Insulating (SI) GaAs detectors against 5 MeV electrons is described in this paper. The influence of two parameters, the accumulative absorbed dose (from 1 to 200 kGy) and the applied dose rate (20, 40 or 80 kGy/h), on detector spectrometric properties were studied. The accumulative dose has influenced all evaluated spectrometric properties and also negatively affected the detector CCE (Charge Collection Efficiency). We have observed its systematic reduction from an initial 79% before irradiation down to about 51% at maximum dose of 200 kGy. Relative energy resolution was also influenced by electron irradiation. Its degradation was obvious in the range of doses from 24 up to a maximum dose of 200 kGy, where an increase from 19% up to 31% at 200 V reverse voltage was noticed. On the other hand, a global increase of detection efficiency with accumulative absorbed dose was observed for all samples. Concerning the actual detector degradation we can assume that the tested SI GaAs detectors will be able to operate up to a dose of 300 kGy at least, when irradiated by 5 MeV electrons. The second investigated parameter of irradiation, the dose rate of chosen ranges, did not greatly alter the spectrometric properties of studied detectors.

  15. Digital X-ray portable scanner based on monolithic semi-insulating GaAs detectors: General description and first “quantum” images

    NASA Astrophysics Data System (ADS)

    Dubecký, F.; Perd'ochová, A.; Ščepko, P.; Zat'ko, B.; Sekerka, V.; Nečas, V.; Sekáčová, M.; Hudec, M.; Boháček, P.; Huran, J.

    2005-07-01

    The present work describes a portable digital X-ray scanner based on bulk undoped semi-insulating (SI) GaAs monolithic strip line detectors. The scanner operates in "quantum" imaging mode ("single photon counting"), with potential improvement of the dynamic range in contrast of the observed X-ray images. The "heart" of the scanner (detection unit) is based on SI GaAs strip line detectors. The measured detection efficiency of the SI GaAs detector reached a value of over 60 % (compared to the theoretical one of ˜75 %) for the detection of 60 keV photons at a reverse bias of 200 V. The read-out electronics consists of 20 modules fabricated using a progressive SMD technology with automatic assembly of electronic devices. Signals from counters included in the digital parts of the modules are collected in a PC via a USB port and evaluated by custom developed software allowing X-ray image reconstruction. The collected data were used for the creation of the first X-ray "quantum" images of various test objects using the imaging software developed.

  16. Effect of H{sup +} implantation on the optical properties of semi-insulating GaAs crystals in the IR spectral region

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Klyui, N. I.; Lozinskii, V. B., E-mail: lvb@isp.kiev.ua; Liptuga, A. I.

    2017-03-15

    The optical properties of semi-insulating GaAs crystals subjected to multienergy hydrogen-ion implantation and treatment in a high-frequency electromagnetic field are studied in the infrared spectral region. It is established that such combined treatment provides a means for substantially increasing the transmittance of GaAs crystals to values characteristic of crystals of high optical quality. On the basis of analysis of the infrared transmittance and reflectance data, Raman spectroscopy data, and atomic-force microscopy data on the surface morphology of the crystals, a physical model is proposed to interpret the effects experimentally observed in the crystals. The model takes into account the interactionmore » of radiation defects with the initial structural defects in the crystals as well as the effect of compensation of defect centers by hydrogen during high-frequency treatment.« less

  17. EL2 deep-level transient study in semi-insulating GaAs using positron-lifetime spectroscopy

    NASA Astrophysics Data System (ADS)

    Shan, Y. Y.; Ling, C. C.; Deng, A. H.; Panda, B. K.; Beling, C. D.; Fung, S.

    1997-03-01

    Positron lifetime measurements performed on Au/GaAs samples at room temperature with an applied square-wave ac bias show a frequency dependent interface related lifetime intensity that peaks around 0.4 Hz. The observation is explained by the ionization of the deep-donor level EL2 to EL2+ in the GaAs region adjacent to the Au/GaAs interface, causing a transient electric field to be experienced by positrons drifting towards the interface. Without resorting to temperature scanning or any Arrhenius plot the EL2 donor level is found to be located 0.80+/-0.01+/-0.05 eV below the conduction-band minimum, where the first error estimate is statistical and the second systematic. The result suggests positron annihilation may, in some instances, act as an alternative to capacitance transient spectroscopies in characterizing deep levels in both semiconductors and semi-insulators.

  18. Dielectric properties of semi-insulating Fe-doped InP in the terahertz spectral region.

    PubMed

    Alyabyeva, L N; Zhukova, E S; Belkin, M A; Gorshunov, B P

    2017-08-04

    We report the values and the spectral dependence of the real and imaginary parts of the dielectric permittivity of semi-insulating Fe-doped InP crystalline wafers in the 2-700 cm -1 (0.06-21 THz) spectral region at room temperature. The data shows a number of absorption bands that are assigned to one- and two-phonon and impurity-related absorption processes. Unlike the previous studies of undoped or low-doped InP material, our data unveil the dielectric properties of InP that are not screened by strong free-carrier absorption and will be useful for designing a wide variety of InP-based electronic and photonic devices operating in the terahertz spectral range.

  19. Doping assessment in GaAs nanowires.

    PubMed

    Goktas, N Isik; Fiordaliso, E M; LaPierre, R R

    2018-06-08

    Semiconductor nanowires (NWs) are a candidate technology for future optoelectronic devices. One of the critical issues in NWs is the control of impurity doping for the formation of p-n junctions. In this study, beryllium (p-type dopant) and tellurium (n-type dopant) in self-assisted GaAs NWs was studied. The GaAs NWs were grown on (111) Si by molecular beam epitaxy using the self-assisted method. The dopant incorporation in the self-assisted GaAs NWs was investigated using Raman spectroscopy, photoluminescence, secondary ion mass spectrometry and electron holography. Be-doped NWs showed similar carrier concentration as compared to thin film (TF) standards. However, Te-doped NWs showed at least a one order of magnitude lower carrier concentration as compared to TF standards. Dopant incorporation mechanisms in NWs are discussed.

  20. Doping assessment in GaAs nanowires

    NASA Astrophysics Data System (ADS)

    Isik Goktas, N.; Fiordaliso, E. M.; LaPierre, R. R.

    2018-06-01

    Semiconductor nanowires (NWs) are a candidate technology for future optoelectronic devices. One of the critical issues in NWs is the control of impurity doping for the formation of p–n junctions. In this study, beryllium (p-type dopant) and tellurium (n-type dopant) in self-assisted GaAs NWs was studied. The GaAs NWs were grown on (111) Si by molecular beam epitaxy using the self-assisted method. The dopant incorporation in the self-assisted GaAs NWs was investigated using Raman spectroscopy, photoluminescence, secondary ion mass spectrometry and electron holography. Be-doped NWs showed similar carrier concentration as compared to thin film (TF) standards. However, Te-doped NWs showed at least a one order of magnitude lower carrier concentration as compared to TF standards. Dopant incorporation mechanisms in NWs are discussed.

  1. Excitation and De-Excitation Mechanisms of Er-Doped GaAs and A1GaAs.

    DTIC Science & Technology

    1992-12-01

    AD-A258 814 EXCITATION AND DE -EXCITATION MECHANISMS OF Er-DOPED GaAs AND A1GaAs DISSERTATION David W. Elsaesser, Captain, USAF DTICY. ft £ICTE’’ )AN...0 8 1993U -o Wo- .%Approved for public release; Distribution unlimited 93 1 04 022 AFIT/DS/ENP/92-5 EXCITATION AND DE -EXCITATION MECHANISMS OF Er...public release; Distribution unlimited AFIT/DS/ENP/92D-005 EXCITATION AND DE -EXCITATION MECHANISMS OF Er-DOPED GaAs AND A1GaAs 4 toFlor -- David W

  2. Electric-field distribution in Au-semi-insulating GaAs contact investigated by positron-lifetime technique

    NASA Astrophysics Data System (ADS)

    Ling, C. C.; Shek, Y. F.; Huang, A. P.; Fung, S.; Beling, C. D.

    1999-02-01

    Positron-lifetime spectroscopy has been used to investigate the electric-field distribution occurring at the Au-semi-insulating GaAs interface. Positrons implanted from a 22Na source and drifted back to the interface are detected through their characteristic lifetime at interface traps. The relative intensity of this fraction of interface-trapped positrons reveals that the field strength in the depletion region saturates at applied biases above 50 V, an observation that cannot be reconciled with a simple depletion approximation model. The data, are, however, shown to be fully consistent with recent direct electric-field measurements and the theoretical model proposed by McGregor et al. [J. Appl. Phys. 75, 7910 (1994)] of an enhanced EL2+ electron-capture cross section above a critical electric field that causes a dramatic reduction of the depletion region's net charge density. Two theoretically derived electric field profiles, together with an experimentally based profile, are used to estimate a positron mobility of ~95+/-35 cm2 V-1 s-1 under the saturation field. This value is higher than previous experiments would suggest, and reasons for this effect are discussed.

  3. Advanced BCD technology with vertical DMOS based on a semi-insulation structure

    NASA Astrophysics Data System (ADS)

    Kui, Ma; Xinghua, Fu; Jiexin, Lin; Fashun, Yang

    2016-07-01

    A new semi-insulation structure in which one isolated island is connected to the substrate was proposed. Based on this semi-insulation structure, an advanced BCD technology which can integrate a vertical device without extra internal interconnection structure was presented. The manufacturing of the new semi-insulation structure employed multi-epitaxy and selectively multi-doping. Isolated islands are insulated with the substrate by reverse-biased PN junctions. Adjacent isolated islands are insulated by isolation wall or deep dielectric trenches. The proposed semi-insulation structure and devices fixed in it were simulated through two-dimensional numerical computer simulators. Based on the new BCD technology, a smart power integrated circuit was designed and fabricated. The simulated and tested results of Vertical DMOS, MOSFETs, BJTs, resistors and diodes indicated that the proposed semi-insulation structure is reasonable and the advanced BCD technology is validated. Project supported by the National Natural Science Foundation of China (No. 61464002), the Science and Technology Fund of Guizhou Province (No. Qian Ke He J Zi [2014]2066), and the Dr. Fund of Guizhou University (No. Gui Da Ren Ji He Zi (2013)20Hao).

  4. Design and fabrication of GaAs OMIST photodetector

    NASA Astrophysics Data System (ADS)

    Kang, Xuejun; Lin, ShiMing; Liao, Qiwei; Gao, Junhua; Liu, Shi'an; Cheng, Peng; Wang, Hongjie; Zhang, Chunhui; Wang, Qiming

    1998-08-01

    We designed and fabricated GaAs OMIST (Optical-controlled Metal-Insulator-Semiconductor Thyristor) device. Using oxidation of AlAs layer that is grown by MBE forms the Ultra- Thin semi-Insulating layer (UTI) of the GAAS OMIST. The accurate control and formation of high quality semi-insulating layer (AlxOy) are the key processes for fabricating GaAs OMIST. The device exhibits a current-controlled negative resistance region in its I-V characteristics. When illuminated, the major effect of optical excitation is the reduction of the switching voltage. If the GaAs OMIST device is biased at a voltage below its dark switching voltage Vs, sufficient incident light can switch OMIST from high impedance low current 'off' state to low impedance high current 'on' state. The absorbing material of OMIST is GaAS, so if the wavelength of incident light within 600 to approximately 850 nm can be detected effectively. It is suitable to be used as photodetector for digital optical data process. The other attractive features of GaAs OMIST device include suitable conducted current, switching voltage and power levels for OEIC, high switch speed and high sensitivity to light or current injection.

  5. Growth and characteristics of p-type doped GaAs nanowire

    NASA Astrophysics Data System (ADS)

    Li, Bang; Yan, Xin; Zhang, Xia; Ren, Xiaomin

    2018-05-01

    The growth of p-type GaAs nanowires (NWs) on GaAs (111) B substrates by metal-organic chemical vapor deposition (MOCVD) has been systematically investigated as a function of diethyl zinc (DEZn) flow. The growth rate of GaAs NWs was slightly improved by Zn-doping and kink is observed under high DEZn flow. In addition, the I–V curves of GaAs NWs has been measured and the p-type dope concentration under the II/III ratio of 0.013 and 0.038 approximated to 1019–1020 cm‑3. Project supported by the National Natural Science Foundation of China (Nos. 61376019, 61504010, 61774021) and the Fund of State Key Laboratory of Information Photonics and Optical Communications (Beijing University of Posts and Telecommunications), China (Nos. IPOC2017ZT02, IPOC2017ZZ01).

  6. Heavily Sn-doped GaAs with abrupt doping profiles grown by migration-enhanced epitaxy at low temperatures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chavanapranee, Tosaporn; Horikoshi, Yoshiji

    The characteristics of heavily Sn-doped GaAs samples grown at 300 deg. C by a migration-enhanced epitaxy (MEE) technique are investigated in comparison with those of the samples grown by a conventional molecular-beam epitaxy (MBE) at 580 deg. C. While no discernible difference is observed in the low doping regime, the difference in doping characteristics between the MBE- and MEE-grown samples becomes apparent when the doping concentration exceeds 1x10{sup 19} cm{sup -3}. Sn atoms as high as 4x10{sup 21} cm{sup -3} can be incorporated into MEE-grown GaAs films, unlike the MBE-grown samples that have a maximum doping level limited around 1x10{supmore » 19} cm{sup -3}. Due to an effective suppression of Sn segregation in the MEE growth case, high quality GaAs films with abrupt high-concentration Sn-doping profiles are achieved with the doping concentrations of up to 2x10{sup 21} cm{sup -3}. It has been shown that even though a high concentration of Sn atoms is incorporated into the GaAs film, the electron concentration saturates at 6x10{sup 19} cm{sup -3} and then gradually decreases with Sn concentration. The uniform doping limitation, as well as the electron concentration saturation, is discussed by means of Hall-effect measurement, x-ray diffraction, and Raman scattering spectroscopy.« less

  7. Study and modeling of the transport mechanism in a semi insulating GaAs Schottky diode

    NASA Astrophysics Data System (ADS)

    Resfa, A.; Smahi, Bourzig Y.; Menezla, Brahimi. R.

    2012-09-01

    The current through a metal-semiconductor junction is mainly due to the majority carriers. Three distinctly different mechanisms exist in a Schottky diode: diffusion of carriers from the semiconductor into the metal, thermionic emission-diffusion (TED) of carriers across the Schottky barrier and quantum-mechanical tunneling through the barrier. The insulating layer converts the MS device in an MIS device and has a strong influence on its current-voltage (I-V) and the parameters of a Schottky barrier from 3.7 to 15 eV. There are several possible reasons for the error that causes a deviation of the ideal behavior of Schottky diodes with and without an interfacial insulator layer. These include the particular distribution of interface states, the series resistance, bias voltage and temperature. The GaAs and its large concentration values of trap centers will participate in an increase of the process of thermionic electrons and holes, which will in turn the IV characteristic of the diode, and an overflow maximum value [NT = 3 × 1020] is obtained. The I-V characteristics of Schottky diodes are in the hypothesis of a parabolic summit.

  8. Design of quantum efficiency measurement system for variable doping GaAs photocathode

    NASA Astrophysics Data System (ADS)

    Chen, Liang; Yang, Kai; Liu, HongLin; Chang, Benkang

    2008-03-01

    To achieve high quantum efficiency and good stability has been a main direction to develop GaAs photocathode recently. Through early research, we proved that variable doping structure is executable and practical, and has great potential. In order to optimize variable doping GaAs photocathode preparation techniques and study the variable doping theory deeply, a real-time quantum efficiency measurement system for GaAs Photocathode has been designed. The system uses FPGA (Field-programmable gate array) device, and high speed A/D converter to design a high signal noise ratio and high speed data acquisition card. ARM (Advanced RISC Machines) core processor s3c2410 and real-time embedded system are used to obtain and show measurement results. The measurement precision of photocurrent could reach 1nA, and measurement range of spectral response curve is within 400~1000nm. GaAs photocathode preparation process can be real-time monitored by using this system. This system could easily be added other functions to show the physic variation of photocathode during the preparation process more roundly in the future.

  9. Resonant electronic Raman scattering of below-gap states in molecular-beam epitaxy grown and liquid-encapsulated Czochralski grown GaAs

    NASA Astrophysics Data System (ADS)

    Fluegel, B.; Rice, A. D.; Mascarenhas, A.

    2018-05-01

    Resonant electronic Raman (ER) scattering is used to compare the below-gap excitations in molecular-beam epitaxially grown GaAs and in undoped semi-insulating GaAs substrates. The measurement geometry was designed to eliminate common measurement artifacts caused by the high optical transmission below the fundamental absorption edge. In epitaxial GaAs, ER is a clear Raman signal from the two-electron transitions of donors, eliminating an ambiguity encountered in previous results. In semi-insulating GaAs, ER occurs in a much broader dispersive band well below the bound exciton energies. The difference in the two materials may be due to the occupation of the substrate acceptor states in the presence of the midgap state EL2.

  10. Determination of doping effects on Si and GaAs bulk samples properties by photothermal investigations

    NASA Astrophysics Data System (ADS)

    Abroug, Sameh; Saadallah, Faycel; Yacoubi, Noureddine

    2007-11-01

    The knowledge of doping effects on optical and thermal properties of semiconductors is crucial for the development of opto-electronic compounds. The purpose of this work is to investigate these effects by mirage effect technique and spectroscopic ellipsometry SE. The near gap optical spectra are obtained from photothermal signal for differently doped Si and GaAs bulk samples. However, the above bandgap absorption is determined from SE. These spectra show that absorption in the near IR increases with dopant density and also the bandgap shifts toward low energies. This behavior is due to free carrier absorption which could be obtained by subtracting phonon-assisted absorption from the measured spectrum. This carrier absorption is related to the dopant density through a semi-empirical model. We have also used the photothermal signal phase to measure the influence of doping on thermal diffusivity.

  11. Sulfur doping of GaAs with (NH4)2Sx solution

    NASA Astrophysics Data System (ADS)

    Lee, Jong-Lam

    1999-01-01

    A novel technique for sulfur doping to GaAs was demonstrated. The surface of GaAs was treated with (NH4)2Sx solution, subsequent to annealing using either furnace or rapid thermal processing. Sulfur atoms adsorbed at the surface of GaAs during the (NH4)2Sx treatment diffuse into GaAs during the annealing. The diffusion profiles of sulfur in both types of annealing treatments show a concave shape from the GaAs surface. Diffusion constants of sulfur determined using the Boltzmann-Matano technique increase with the decrease of sulfur concentration via the depth from the surface of GaAs. This suggests that immobile sulfur donor SAs+ forms at the near surface interacts with a Ga divacancy, and results in the production of mobile As interstitials, IAs. The IAs moves fast toward the inside of GaAs and kickout the SAs+ donor, producing a fast diffusing species of interstitial S atoms. The diffusion coefficients of sulfur determined are 2.5×10-14 cm2/s at 840 °C and 5×10-12 cm2/s at 900 °C. The sulfur doping technique is applied to the fabrication of metal-semiconductor field-effect transistors (MESFETs). The MESFETs with 1.0 μm gate length exhibit transconductance of 190 mS/mm, demonstrating the applicability of this technique to the formation of active channel layer of MESFETs.

  12. Resonant electronic Raman scattering of below-gap states in molecular-beam epitaxy grown and liquid-encapsulated Czochralski grown GaAs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fluegel, B.; Rice, A. D.; Mascarenhas, A.

    Resonant electronic Raman (ER) scattering is used to compare the below-gap excitations in molecular-beam epitaxially grown GaAs and in undoped semi-insulating GaAs substrates. The measurement geometry was designed to eliminate common measurement artifacts caused by the high optical transmission below the fundamental absorption edge. In epitaxial GaAs, ER is a clear Raman signal from the two-electron transitions of donors, eliminating an ambiguity encountered in previous results. In semi-insulating GaAs, ER occurs in a much broader dispersive band well below the bound exciton energies. Furthermore, the difference in the two materials may be due to the occupation of the substrate acceptormore » states in the presence of the midgap state EL2.« less

  13. Photoluminescence Study of N-Type Thermal Conversion in Semi-Insulating GaAs.

    DTIC Science & Technology

    1982-12-01

    free electron to the crystal. For example, in GaAs, a tellurium atom on an arsenic site (TeAs) or a silicon atom on a gallium site (SiGa) are donor atoms...Photoconductivity Photoluminescenc Silicon, SiGa 5.81 6.80 Germanium, GeGa 6.08 Sulfur, SAs 6.10 Selenium, SeAs 5.89 6.10 Tellurium , TeAs When an electron...34 to the neutral donor or acceptor (Ref 16:15). The following excitonic com- plexes have been observed in GaAs: (i) exciton bound to a neutron donor at

  14. Study of subband electronic structure of Si δ-doped GaAs using magnetotransport measurements in tilted magnetic fields

    NASA Astrophysics Data System (ADS)

    Li, G.; Hauser, N.; Jagadish, C.; Antoszewski, J.; Xu, W.

    1996-06-01

    Si δ-doped GaAs grown by metal organic vapor phase epitaxy (MOVPE) is characterized using magnetotransport measurements in tilted magnetic fields. Angular dependence of the longitudinal magnetoresistance (Rxx) vs the magnetic field (B) traces in tilted magnetic fields is used to examine the existence of a quasi-two-dimensional electron gas. The subband electron densities (ni) are obtained applying fast Fourier transform (FFT) analysis to the Rxx vs B trace and using mobility spectrum (MS) analysis of the magnetic field dependent Hall data. Our results show that (1) the subband electron densities remain roughly constant when the tilted magnetic field with an angle <30° measured from the Si δ-doped plane normal is ramped up to 13 T; (2) FFT analysis of the Rxx vs B trace and MS analysis of the magnetic field dependent Hall data both give the comparable results on subband electron densities of Si δ-doped GaAs with low δ-doping concentration, however, for Si δ-doped GaAs with very high δ-doping concentration, the occupation of the lowest subbands cannot be well resolved in the MS analysis; (3) the highest subband electron mobility reported to date of 45 282 cm2/s V is observed in Si δ-doped GaAs at 77 K in the dark; and (4) the subband electron densities of Si δ-doped GaAs grown by MOVPE at 700 °C are comparable to those grown by MBE at temperatures below 600 °C. A detailed study of magnetotransport properties of Si δ-doped GaAs in the parallel magnetic fields is then carried out to further confirm the subband electronic structures revealed by FFT and MS analysis. Our results are compared to theoretical calculation previously reported in literature. In addition, influence of different cap layer structures on subband electronic structures of Si δ-doped GaAs is observed and also discussed.

  15. First results from GaAs double-sided detectors

    NASA Astrophysics Data System (ADS)

    Beaumont, S. P.; Bertin, R.; Booth, C. N.; Buttar, C.; Carraresi, L.; Cindolo, F.; Colocci, M.; Combley, F. H.; D'Auria, S.; del Papa, C.; Dogru, M.; Edwards, M.; Foster, F.; Francescato, A.; Gowdy, S.; Gray, R.; Hill, G.; Hou, Y.; Houston, P.; Hughes, G.; Jones, B. K.; Lynch, J. G.; Lisowski, B.; Matheson, J.; Nava, F.; Nuti, M.; O'Shea, V.; Pelfer, P. G.; Raine, C.; Santana, J.; Saunders, I. J.; Seller, P. H.; Shankar, K.; Sharp, P. H.; Skillicorn, I. O.; Sloan, T.; Smith, K. M.; ten Have, I.; Turnbull, R. M.; Vanni, U.; Zichichi, A.

    1994-09-01

    Preliminary results are presented on the performance of double-sided microstrip detectors using Schottky contacts on both sides of a semi-insulating (SI) GaAs substrate wafer, after exposure to 10 14 neutrons cm -2 at the ISIS facility. A qualitative explanation of the device behaviour is given.

  16. Poole-Frenkel effect and phonon-assisted tunneling in GaAs nanowires.

    PubMed

    Katzenmeyer, Aaron M; Léonard, François; Talin, A Alec; Wong, Ping-Show; Huffaker, Diana L

    2010-12-08

    We present electronic transport measurements of GaAs nanowires grown by catalyst-free metal-organic chemical vapor deposition. Despite the nanowires being doped with a relatively high concentration of substitutional impurities, we find them inordinately resistive. By measuring sufficiently high aspect ratio nanowires individually in situ, we decouple the role of the contacts and show that this semi-insulating electrical behavior is the result of trap-mediated carrier transport. We observe Poole-Frenkel transport that crosses over to phonon-assisted tunneling at higher fields, with a tunneling time found to depend predominantly on fundamental physical constants as predicted by theory. By using in situ electron beam irradiation of individual nanowires, we probe the nanowire electronic transport when free carriers are made available, thus revealing the nature of the contacts.

  17. Determination of n-Type Doping Level in Single GaAs Nanowires by Cathodoluminescence.

    PubMed

    Chen, Hung-Ling; Himwas, Chalermchai; Scaccabarozzi, Andrea; Rale, Pierre; Oehler, Fabrice; Lemaître, Aristide; Lombez, Laurent; Guillemoles, Jean-François; Tchernycheva, Maria; Harmand, Jean-Christophe; Cattoni, Andrea; Collin, Stéphane

    2017-11-08

    We present an effective method of determining the doping level in n-type III-V semiconductors at the nanoscale. Low-temperature and room-temperature cathodoluminescence (CL) measurements are carried out on single Si-doped GaAs nanowires. The spectral shift to higher energy (Burstein-Moss shift) and the broadening of luminescence spectra are signatures of increased electron densities. They are compared to the CL spectra of calibrated Si-doped GaAs layers, whose doping levels are determined by Hall measurements. We apply the generalized Planck's law to fit the whole spectra, taking into account the electron occupation in the conduction band, the bandgap narrowing, and band tails. The electron Fermi levels are used to determine the free electron concentrations, and we infer nanowire doping of 6 × 10 17 to 1 × 10 18  cm -3 . These results show that cathodoluminescence provides a robust way to probe carrier concentrations in semiconductors with the possibility of mapping spatial inhomogeneities at the nanoscale.

  18. Multiband corrections for the semi-classical simulation of interband tunneling in GaAs tunnel junctions

    NASA Astrophysics Data System (ADS)

    Louarn, K.; Claveau, Y.; Hapiuk, D.; Fontaine, C.; Arnoult, A.; Taliercio, T.; Licitra, C.; Piquemal, F.; Bounouh, A.; Cavassilas, N.; Almuneau, G.

    2017-09-01

    The aim of this study is to investigate the impact of multiband corrections on the current density in GaAs tunnel junctions (TJs) calculated with a refined yet simple semi-classical interband tunneling model (SCITM). The non-parabolicity of the considered bands and the spin-orbit effects are considered by using a recently revisited SCITM available in the literature. The model is confronted to experimental results from a series of molecular beam epitaxy grown GaAs TJs and to numerical results obtained with a full quantum model based on the non-equilibrium Green’s function formalism and a 6-band k.p Hamiltonian. We emphasize the importance of considering the non-parabolicity of the conduction band by two different measurements of the energy-dependent electron effective mass in N-doped GaAs. We also propose an innovative method to compute the non-uniform electric field in the TJ for the SCITM simulations, which is of prime importance for a successful operation of the model. We demonstrate that, when considering the multiband corrections and this new computation of the non-uniform electric field, the SCITM succeeds in predicting the electrical characteristics of GaAs TJs, and are also in agreement with the quantum model. Besides the fundamental study of the tunneling phenomenon in TJs, the main benefit of this SCITM is that it can be easily embedded into drift-diffusion software, which are the most widely-used simulation tools for electronic and opto-electronic devices such as multi-junction solar cells, tunnel field-effect transistors, or vertical-cavity surface-emitting lasers.

  19. Insulators obtained by electron cyclotron resonance plasmas on Si or GaAs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Diniz, J.A.; Doi, I.; Swart, J.W

    2003-03-15

    Silicon oxynitride (SiO{sub x}N{sub y}) and nitride (SiN{sub x}) insulators have been deposited or grown (with or without silane in the gas mixture, respectively) by electron cyclotron resonance (ECR) plasmas on Si and/or GaAs substrates at room temperature (20 deg. C) and low pressures (up to 10 mTorr). Chemical bonding characteristics of the SiO{sub x}N{sub y} and SiN{sub x} films were evaluated using Fourier transform infrared spectrometry (FTIR). The profile measurements determined the film thickness, the deposition (or oxidation) rate and the etch rates in buffered HF (BHF). The refractive indexes and the thicknesses were determined by ellipsometry. The effectivemore » interface charge densities were determined by capacitance-voltage (C-V) measurements. With these processes and analyses, different films were obtained and optimized. Suitable gate insulators for metal-insulator-semiconductor (MIS) devices with low interface charge densities were developed: (a) SiN{sub x} films deposited by ECR-chemical vapor deposition (ECR-PECVD) on GaAs substrates; (b) SiO{sub x}N{sub y} insulators obtained by low-energy molecular nitrogen ion ({sup 28}N{sub 2}{sup +}) implantation (energy of 5 keV and dose of 1x10{sup 15}/cm{sup 2}) in Si substrates prior to high-density O{sub 2} ECR plasma oxidation; and (c) SiO{sub x}N{sub y} insulators grown (without silane in the gas mixture) by O{sub 2}/N{sub 2}/Ar ECR plasma 'oxynitridation'. Furthermore, some SiN{sub x} films also present very good masking characteristics for local oxidation of silicon process.« less

  20. Photovoltaic Properties of p-Doped GaAs Nanowire Arrays Grown on n-Type GaAs(111)B Substrate

    PubMed Central

    2010-01-01

    We report on the molecular beam epitaxy growth of Au-assisted GaAs p-type-doped NW arrays on the n-type GaAs(111)B substrate and their photovoltaic properties. The samples are grown at different substrate temperature within the range from 520 to 580 °C. It is shown that the dependence of conversion efficiency on the substrate temperature has a maximum at the substrate temperature of 550 °C. For the best sample, the conversion efficiency of 1.65% and the fill factor of 25% are obtained. PMID:20672038

  1. Intrinsic Spin-Hall Effect in n-Doped Bulk GaAs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bernevig, B.Andrei; Zhang, Shou-Cheng; /Stanford U., Phys. Dept.

    2010-01-15

    We show that the bulk Dresselhauss (k{sup 3}) spin-orbit coupling term leads to an intrinsic spin-Hall effect in n-doped bulk GaAs, but without the appearance of uniform magnetization. The spin-Hall effect in strained and unstrained bulk GaAs has been recently observed experimentally by Kato et. al. [1]. We show that the experimental result is quantitatively consistent with the intrinsic spin-Hall effect due to the Dresselhauss term, when lifetime broadening is taken into account. On the other hand, extrinsic contribution to the spin-Hall effect is several orders of magnitude smaller than the observed effect.

  2. Ab initio study of (Fe, Ni) doped GaAs: Magnetic, electronic properties and Faraday rotation

    NASA Astrophysics Data System (ADS)

    Sbai, Y.; Ait Raiss, A.; Bahmad, L.; Benyoussef, A.

    2017-06-01

    The interesting diluted magnetic semiconductor (DMS), Gallium Arsenide (GaAs), was doped with the transition metals magnetic impurities: iron (Fe) and Nickel (Ni), in one hand to study the magnetic and magneto-optical properties of the material Ga(Fe, Ni) As, in the other hand to investigate the effect of the doping on the properties of this material, the calculations were performed within the spin polarized density functional theory (DFT) and generalized gradient approximation (GGA) with AKAI KKR-CPA method, the density of states (DOS) for different doping concentrations were calculated, giving the electronical properties, as well as the magnetic state and magnetic states energy, also the effect of these magnetic impurities on the Faraday rotation as magneto-optical property. Furthermore, we found the stable magnetic state for our doped material GaAs.

  3. OM-VPE growth of Mg-doped GaAs. [OrganoMetallic-Vapor Phase Epitaxy

    NASA Technical Reports Server (NTRS)

    Lewis, C. R.; Dietze, W. T.; Ludowise, M. J.

    1982-01-01

    The epitaxial growth of Mg-doped GaAs by the organometallic vapor phase epitaxial process (OM-VPE) has been achieved for the first time. The doping is controllable over a wide range of input fluxes of bis (cyclopentadienyl) magnesium, (C5H5)2Mg, the organometallic precursor to Mg.

  4. Germanium- and tellurium-doped GaAs for non-alloyed p-type and n-type ohmic contacts

    NASA Astrophysics Data System (ADS)

    Park, Joongseo; Barnes, Peter A.; Lovejoy, Michael L.

    1995-08-01

    Epitaxial ohmic contacts to GaAs were grown by liquid phase epitaxy. Heavily Ge-doped GaAs was grown to prepare ohmic contacts to p-GaAs while Te was used for the n-type contacts. Hall measurements were carried out for the samples grown from melts in which the mole fraction of Ge was varied between 1.55 atomic % and 52.2 atomic %, while the Te mole fractions varied between 0.03% and 0.5%. Specific contact resistance, rc, as low as rcp=2.9×10-6 ohm-cm 2 for Ge doping of p=(Na-Nd)=6.0×1019 holes/cm3 was measured for p-contacts and rcn=9.6×10-5 ohm-cm2 was measured for Te doping of n=(Nd-Na)=8.9×1018 electrons/cm3 for GaAs metallized with non-alloyed contacts of Ti/Al.

  5. Carbon doping in molecular beam epitaxy of GaAs from a heated graphite filament

    NASA Technical Reports Server (NTRS)

    Malik, R. J.; Nottenberg, R. N.; Schubert, E. F.; Walker, J. F.; Ryan, R. W.

    1988-01-01

    Carbon doping of GaAs grown by molecular beam epitaxy has been obtained for the first time by use of a heated graphite filament. Controlled carbon acceptor concentrations over the range of 10 to the 17th-10 to the 20th/cu cm were achieved by resistively heating a graphite filament with a direct current power supply. Capacitance-voltage, p/n junction and secondary-ion mass spectrometry measurements indicate that there is negligible diffusion of carbon during growth and with postgrowth rapid thermal annealing. Carbon was used for p-type doping in the base of Npn AlGaAs/GaAs heterojunction bipolar transistors. Current gains greater than 100 and near-ideal emitter heterojunctions were obtained in transistors with a carbon base doping of 1 x 10 to the 19th/cu cm. These preliminary results indicate that carbon doping from a solid graphite source may be an attractive substitute for beryllium, which is known to have a relatively high diffusion coefficient in GaAs.

  6. A Solution-Doped Polymer Semiconductor:Insulator Blend for Thermoelectrics.

    PubMed

    Kiefer, David; Yu, Liyang; Fransson, Erik; Gómez, Andrés; Primetzhofer, Daniel; Amassian, Aram; Campoy-Quiles, Mariano; Müller, Christian

    2017-01-01

    Poly(ethylene oxide) is demonstrated to be a suitable matrix polymer for the solution-doped conjugated polymer poly(3-hexylthiophene). The polarity of the insulator combined with carefully chosen processing conditions permits the fabrication of tens of micrometer-thick films that feature a fine distribution of the F4TCNQ dopant:semiconductor complex. Changes in electrical conductivity from 0.1 to 0.3 S cm -1 and Seebeck coefficient from 100 to 60 μV K -1 upon addition of the insulator correlate with an increase in doping efficiency from 20% to 40% for heavily doped ternary blends. An invariant bulk thermal conductivity of about 0.3 W m -1 K -1 gives rise to a thermoelectric Figure of merit ZT ∼ 10 -4 that remains unaltered for an insulator content of more than 60 wt%. Free-standing, mechanically robust tapes illustrate the versatility of the developed dopant:semiconductor:insulator ternary blends.

  7. A Solution‐Doped Polymer Semiconductor:Insulator Blend for Thermoelectrics

    PubMed Central

    Kiefer, David; Yu, Liyang; Fransson, Erik; Gómez, Andrés; Primetzhofer, Daniel; Amassian, Aram; Campoy‐Quiles, Mariano

    2016-01-01

    Poly(ethylene oxide) is demonstrated to be a suitable matrix polymer for the solution‐doped conjugated polymer poly(3‐hexylthiophene). The polarity of the insulator combined with carefully chosen processing conditions permits the fabrication of tens of micrometer‐thick films that feature a fine distribution of the F4TCNQ dopant:semiconductor complex. Changes in electrical conductivity from 0.1 to 0.3 S cm−1 and Seebeck coefficient from 100 to 60 μV K−1 upon addition of the insulator correlate with an increase in doping efficiency from 20% to 40% for heavily doped ternary blends. An invariant bulk thermal conductivity of about 0.3 W m−1 K−1 gives rise to a thermoelectric Figure of merit ZT ∼ 10−4 that remains unaltered for an insulator content of more than 60 wt%. Free‐standing, mechanically robust tapes illustrate the versatility of the developed dopant:semiconductor:insulator ternary blends. PMID:28105396

  8. Silicon incorporation in GaAs: From delta-doping to monolayer insertion

    NASA Astrophysics Data System (ADS)

    Wagner, J.; Newman, R. C.; Roberts, C.

    1995-08-01

    Raman spectroscopy was used to study the incorporation of Si into doping layers in GaAs, grown by molecular beam epitaxy at a temperature of 400 °C, for Si concentrations ranging from the δ-doping level to a ML coverage. The strength of the scattering by local vibrational modes of substitutional Si was almost constant for Si areal concentration [Si]A in the range 5×1012<[Si]A<5×1013 cm-2 but then decreased, dropping below the detection limit for [Si]A≳3×1014 cm-2. At these concentrations a new vibrational band emerged at a frequency close to 470 cm-1 and developed into the optic zone center phonon of a coherently strained epitaxial layer of Si embedded in GaAs when a coverage of ≊1.5 ML (9.3×1014 cm-2) was reached. These findings strongly indicate that the observed saturation and the eventual decrease of the concentration of substitutional silicon is caused by an increasing incorporation of deposited Si into two-dimensional islands of covalently bonded Si.

  9. Oxygen in GaAs - Direct and indirect effects

    NASA Technical Reports Server (NTRS)

    Gatos, H. C.; Skowronski, M.; Pawlowicz, L.; Lagowski, J.

    1984-01-01

    Oxygen has profound effects on the key electronic properties and point defects of GaAs crystals. Thus, when added in the growth system, it decreases the free electron concentration and enhances the concentration of deep donors in the resulting crystals. Both of these effects are highly beneficial for achieving semi-insulating material and have been utilized for that purpose. They have been attributed to the tendency of oxygen to getter silicon impurities during crystal growth. Only recently, it has been found that oxygen in GaAs introduces also a midgap level, ELO, with essentially the same activation energy as EL2 but with four times greater electron capture cross section. The present report reassesses the electrical and optical properties of the midgap levels in GaAs crystals grown by the horizontal Bridgman (HB) and the Czochralski-LEC techniques. Emphasis is placed on the identification of the specific effects of ELO.

  10. Valence-band-edge shift due to doping in p + GaAs

    NASA Astrophysics Data System (ADS)

    Silberman, J. A.; de Lyon, T. J.; Woodall, J. M.

    1991-05-01

    Accurate knowledge of the shifts in valence- and conduction-band edges due to heavy doping effects is crucial in modeling GaAs device structures that utilize heavily doped layers. X-ray photoemission spectroscopy was used to deduce the shift in the valence-band-edge induced by carbon (p type) doping to a carrier density of 1×1020 cm-3 based on a determination of the bulk binding energy of the Ga and As core levels in this material. Analysis of the data indicates that the shift of the valence-band maximum into the gap and the penetration of the Fermi level into the valence bands exactly compensate at this degenerate carrier concentration, to give ΔEv =0.12±0.05 eV.

  11. Mott metal-insulator transition in the doped Hubbard-Holstein model

    NASA Astrophysics Data System (ADS)

    Kurdestany, Jamshid Moradi; Satpathy, S.

    2017-08-01

    Motivated by the current interest in the understanding of the Mott insulators away from half-filling, observed in many perovskite oxides, we study the Mott metal-insulator transition in the doped Hubbard-Holstein model using the Hartree-Fock mean field theory. The Hubbard-Holstein model is the simplest model containing both the Coulomb and the electron-lattice interactions, which are important ingredients in the physics of the perovskite oxides. In contrast to the half-filled Hubbard model, which always results in a single phase (either metallic or insulating), our results show that away from half-filling, a mixed phase of metallic and insulating regions occurs. As the dopant concentration is increased, the metallic part progressively grows in volume, until it exceeds the percolation threshold, leading to percolative conduction. This happens above a critical dopant concentration δc, which, depending on the strength of the electron-lattice interaction, can be a significant fraction of unity. This means that the material could be insulating even for a substantial amount of doping, in contrast to the expectation that doped holes would destroy the insulating behavior of the half-filled Hubbard model. While effects of fluctuation beyond the mean field remain an open question, our results provide a starting point for the understanding of the density-driven metal-insulator transition observed in many complex oxides.

  12. EBIC spectroscopy - A new approach to microscale characterization of deep levels in semi-insulating GaAs

    NASA Technical Reports Server (NTRS)

    Li, C.-J.; Sun, Q.; Lagowski, J.; Gatos, H. C.

    1985-01-01

    The microscale characterization of electronic defects in (SI) GaAs has been a challenging issue in connection with materials problems encountered in GaAs IC technology. The main obstacle which limits the applicability of high resolution electron beam methods such as Electron Beam-Induced Current (EBIC) and cathodoluminescence (CL) is the low concentration of free carriers in semiinsulating (SI) GaAs. The present paper provides a new photo-EBIC characterization approach which combines the spectroscopic advantages of optical methods with the high spatial resolution and scanning capability of EBIC. A scanning electron microscope modified for electronic characterization studies is shown schematically. The instrument can operate in the standard SEM mode, in the EBIC modes (including photo-EBIC and thermally stimulated EBIC /TS-EBIC/), and in the cathodo-luminescence (CL) and scanning modes. Attention is given to the use of CL, Photo-EBIC, and TS-EBIC techniques.

  13. Fermi level pinning at epitaxial Si on GaAs(100) interfaces

    NASA Astrophysics Data System (ADS)

    Silberman, J. A.; de Lyon, T. J.; Woodall, J. M.

    1991-12-01

    GaAs Schottky barrier contacts and metal-insulator-semiconductor structures that include thin epitaxial Si interfacial layers operate in a manner consistent with an unpinned Fermi level at the GaAs interface. These findings raise the question of whether this effect is an intrinsic property of the epitaxial GaAs(100)-Si interface. We have used x-ray photoemission spectroscopy to monitor the Fermi level position during in situ growth of thin epitaxial Si layers. In particular, films formed on heavily doped n- and p-type substrates were compared so as to use the large depletion layer fields available with high impurity concentration as a field-effect probe of the interface state density. The results demonstrate that epitaxial bonding at the interface alone is insufficient to eliminate Fermi level pinning, indicating that other mechanisms affect the interfacial charge balance in the devices that utilize Si interlayers.

  14. Semi-insulating 4H-SiC layers formed by the implantation of high-energy (53 MeV) argon ions into n-type epitaxial films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ivanov, P. A., E-mail: Pavel.Ivanov@mail.ioffe.ru; Kudoyarov, M. F.; Kozlovski, M. A.

    It is shown that 9-μm-thick semi-insulating surface layers can be formed in moderately doped n-type silicon carbide (donor concentration 2 × 10{sup 16} cm{sup –3}) via the comparatively low-dose (7 × 10{sup 11} cm{sup –2}) implantation of high-energy (53 MeV) argon ions. The free-carrier removal rate is estimated at ~10{sup 4} cm{sup –1}. The resistivity of the semi-insulator is no less than 7 × 10{sup 12} Ω cm. Analysis of the monopolar current of electron injection into the semi-insulator shows that the impurity-conductivity compensation is due to radiation induced defects pinning the equilibrium Fermi level at a depth of 1.16more » eV below the conduction-band bottom. The density of defect states at the Fermi level is 2.7 × 10{sup 16} cm{sup 2} eV{sup –1}.« less

  15. Plasma Deposited SiO2 for Planar Self-Aligned Gate Metal-Insulator-Semiconductor Field Effect Transistors on Semi-Insulating InP

    NASA Technical Reports Server (NTRS)

    Tabory, Charles N.; Young, Paul G.; Smith, Edwyn D.; Alterovitz, Samuel A.

    1994-01-01

    Metal-insulator-semiconductor (MIS) field effect transistors were fabricated on InP substrates using a planar self-aligned gate process. A 700-1000 A gate insulator of Si02 doped with phosphorus was deposited by a direct plasma enhanced chemical vapor deposition at 400 mTorr, 275 C, 5 W, and power density of 8.5 MW/sq cm. High frequency capacitance-voltage measurements were taken on MIS capacitors which have been subjected to a 700 C anneal and an interface state density of lxl0(exp 11)/eV/cq cm was found. Current-voltage measurements of the capacitors show a breakdown voltage of 107 V/cm and a insulator resistivity of 10(exp 14) omega cm. Transistors were fabricated on semi-insulating InP using a standard planar self-aligned gate process in which the gate insulator was subjected to an ion implantation activation anneal of 700 C. MIS field effect transistors gave a maximum extrinsic transconductance of 23 mS/mm for a gate length of 3 microns. The drain current drift saturated at 87.5% of the initial current, while reaching to within 1% of the saturated value after only 1x10(exp 3). This is the first reported viable planar InP self-aligned gate transistor process reported to date.

  16. Metal-Insulator Transition in W-doped VO2 Nanowires

    NASA Astrophysics Data System (ADS)

    Long, Gen; Parry, James; Whittaker, Luisa; Banerjee, Sarbajit; Zeng, Hao

    2010-03-01

    We report a systematic study of the metal-insulator transition in W-doped VO2 nanowires. Magnetic susceptibility were measured for a bulk amount of VO2 nanowire powder. The susceptibility shows a sharp drop with decreasing temperature corresponding to the metal-insulator transition. The transition shows large temperature hysteresis for cooling and heating. With increasing doping concentration, the transition temperatures decreases systematically from 320 K to 275K. Charge transport measurements on the same nanowires showed similar behavior. XRD and TEM measurements were taken to further determine the structure of the materials in study.

  17. Electrical isolation, thermal stability and rf loss in a multilayer GaAs planar doped barrier diode structure bombarded by H+ and Fe+ ions

    NASA Astrophysics Data System (ADS)

    Vo, V. T.; Koon, K. L.; Hu, Z. R.; Dharmasiri, C. N.; Subramaniam, S. C.; Rezazadeh, A. A.

    2004-04-01

    Electrical isolation in multilayer GaAs planar doped barrier (PDB) diode structures produced by H+ and Fe+ ion implantation were investigated. For an H+ bombardment with a dose of 1×1015cm-2, a sheet resistivity as high as 3×108 Ω/sq and thermal stability up to 400 °C has been achieved. For samples bombarded by Fe+ ions, a similar high sheet resistivity has also been achieved although a longer annealing time (15 min) and a higher annealing temperature (550 °C) were needed. The rf dissipation losses of coplanar waveguide (CPW) "thru" lines fabricated on bombarded multilayer PDBD structure samples were also examined. The measured rf losses were 1.65 dB/cm at 10 GHz and 3 dB/cm at 40 GHz, similar to the values that a CPW line exhibits on a semi-isolating GaAs substrate.

  18. Preparation of Large-Diameter GaAs Crystals.

    DTIC Science & Technology

    1981-09-18

    ionized impurity content for 40 n-type semi-insulating GaAs. Figure 17 Analysis (in wt %) of impurities in B203 after crystal growth 41 from PBN and quartz...encapsulant to the generation of defect clusters in LEC InP. (15 ) Statistics relative to the incidence of twinning for growth with dry ( ppm wt OH...and wet (> 1000 ppm wt OH) B203 are given in Fig. 5 for growths from fused-SiO 2 and PBN crucibles. A crystal is defined as having twinned if it

  19. Divacancy complexes induced by Cu diffusion in Zn-doped GaAs

    NASA Astrophysics Data System (ADS)

    Elsayed, M.; Krause-Rehberg, R.; Korff, B.; Ratschinski, I.; Leipner, H. S.

    2013-08-01

    Positron annihilation spectroscopy was applied to investigate the nature and thermal behavior of defects induced by Cu diffusion in Zn-doped p-type GaAs crystals. Cu atoms were intentionally introduced in the GaAs lattice through thermally activated diffusion from a thin Cu capping layer at 1100 °C under defined arsenic vapor pressure. During isochronal annealing of the obtained Cu-diffused GaAs in the temperature range of 450-850 K, vacancy clusters were found to form, grow and finally disappear. We found that annealing at 650 K triggers the formation of divacancies, whereas further increasing in the annealing temperature up to 750 K leads to the formation of divacancy-copper complexes. The observations suggest that the formation of these vacancy-like defects in GaAs is related to the out-diffusion of Cu. Two kinds of acceptors are detected with a concentration of about 1016 - 1017 cm-3, negative ions and arsenic vacancy copper complexes. Transmission electron microscopy showed the presence of voids and Cu precipitates which are not observed by positron measurements. The positron binding energy to shallow traps is estimated using the positron trapping model. Coincidence Doppler broadening spectroscopy showed the presence of Cu in the immediate vicinity of the detected vacancies. Theoretical calculations suggested that the detected defect is VGaVAs-2CuGa.

  20. Effects of doping impurity and growth orientation on dislocation generation in GaAs crystals grown from the melt: A qualitative finite-element study

    NASA Astrophysics Data System (ADS)

    Zhu, X. A.; Tsai, C. T.

    2000-09-01

    Dislocations in gallium arsenide (GaAs) crystals are generated by excessive thermal stresses induced during the crystal growth process. The presence of dislocations has adverse effects on the performance and reliability of the GaAs-based devices. It is well known that dislocation density can be significantly reduced by doping impurity atoms into a GaAs crystal during its growth process. A viscoplastic constitutive equation that couples the microscopic dislocation density with the macroscopic plastic deformation is employed in a crystallographic finite element model for calculating the dislocation density generated in the GaAs crystal during its growth process. The dislocation density is considered as an internal state variable and the drag stress caused by doping impurity is included in this constitutive equation. A GaAs crystal grown by the vertical Bridgman process is adopted as an example to study the influences of doping impurity and growth orientation on dislocation generation. The calculated results show that doping impurity can significantly reduce the dislocation density generated in the crystal. The level of reduction is also influenced by the growth orientation during the crystal growth process.

  1. In-plane InSb nanowires grown by selective area molecular beam epitaxy on semi-insulating substrate.

    PubMed

    Desplanque, L; Bucamp, A; Troadec, D; Patriarche, G; Wallart, X

    2018-07-27

    In-plane InSb nanostructures are grown on a semi-insulating GaAs substrate using an AlGaSb buffer layer covered with a patterned SiO 2 mask and selective area molecular beam epitaxy. The shape of these nanostructures is defined by the aperture in the silicon dioxide layer used as a selective mask thanks to the use of an atomic hydrogen flux during the growth. Transmission electron microscopy reveals that the mismatch accommodation between InSb and GaAs is obtained in two steps via the formation of an array of misfit dislocations both at the AlGaSb buffer layer/GaAs and at the InSb nanostructures/AlGaSb interfaces. Several micron long in-plane nanowires (NWs) can be achieved as well as more complex nanostructures such as branched NWs. The electrical properties of the material are investigated by the characterization of an InSb NW MOSFET down to 77 K. The resulting room temperature field effect mobility values are comparable with those reported on back-gated MOSFETs based on InSb NWs obtained by vapor liquid solid growth or electrodeposition. This growth method paves the way to the fabrication of complex InSb-based nanostructures.

  2. Conference on Semi-Insulating III-V Materials (2nd), held 19-21 Apr 82, Evian (France),

    DTIC Science & Technology

    1983-02-28

    Dist Special 19. KEY WORDS (Continue on reverse side If neceary mud Identity by block numb ) Semiconductor devices Field effect transitors Integrated...doped GaAs sub- 4 strates. The results showed no The catalog of defects includes statistically significant differ- vacancies, interstitials, anti...orientation also had high level profiles of GaAs active transconductance. In addition,the statistical scatter-uni-layers and their correlation to o m

  3. The presence of isolated hydrogen donors in heavily carbon-doped GaAs

    NASA Astrophysics Data System (ADS)

    Fushimi, Hiroshi; Wada, Kazumi

    1994-12-01

    The deactivation mechanism of carbon acceptors in GaAs has systematically been studied by measuring the annealing behavior and depth profiles of the carrier concentration. It is found that hydrogen impurities dominate carbon deactivation. Their deactivation undergoes two different ways: Hydrogen donors isolated from carbon acceptors compensate carbon and hydrogen impurities neutralize the carbon by forming neutral carbon-hydrogen complexes. The compensating hydrogen donors diffuse out extremely fast at relatively low temperatures. This is, to the best of our knowledge, the first report on the presence of isolated hydrogen donors in heavily carbon-doped GaAs. The dissociation of carbon-hydrogen complexes is much slower than reported. The mechanism is discussed in terms of a hydrogen retrapping effect by carbon.

  4. Effects of gold diffusion on n-type doping of GaAs nanowires.

    PubMed

    Tambe, Michael J; Ren, Shenqiang; Gradecak, Silvija

    2010-11-10

    The deposition of n-GaAs shells is explored as a method of n-type doping in GaAs nanowires grown by the Au-mediated metal-organic chemical vapor deposition. Core-shell GaAs/n-GaAs nanowires exhibit an unintended rectifying behavior that is attributed to the Au diffusion during the shell deposition based on studies using energy dispersive X-ray spectroscopy, current-voltage, capacitance-voltage, and Kelvin probe force measurements. Removing the gold prior to n-type shell deposition results in the realization of n-type GaAs nanowires without rectification. We directly correlate the presence of gold impurities to nanowire electrical properties and provide an insight into the role of seed particles on the properties of nanowires and nanowire heterostructures.

  5. Simultaneous Magnetic and Charge Doping of Topological Insulators with Carbon

    NASA Astrophysics Data System (ADS)

    Shen, Lei; Zeng, Minggang; Lu, Yunhao; Yang, Ming; Feng, Yuan Ping

    2013-12-01

    A two-step doping process, magnetic followed by charge or vice versa, is required to produce massive topological surface states (TSS) in topological insulators for many physics and device applications. Here, we demonstrate simultaneous magnetic and hole doping achieved with a single dopant, carbon, in Bi2Se3 by first-principles calculations. Carbon substitution for Se (CSe) results in an opening of a sizable surface Dirac gap (up to 82 meV), while the Fermi level remains inside the bulk gap and close to the Dirac point at moderate doping concentrations. The strong localization of 2p states of CSe favors spontaneous spin polarization via a p-p interaction and formation of ordered magnetic moments mediated by surface states. Meanwhile, holes are introduced into the system by CSe. This dual function of carbon doping suggests a simple way to realize insulating massive TSS.

  6. Electronic reconstruction of doped Mott insulator heterojunctions

    NASA Astrophysics Data System (ADS)

    Charlebois, M.; Hassan, S. R.; Karan, R.; Dion, M.; Senechal, D.; Tremblay, A.-M. S.

    2012-02-01

    Correlated electron heterostructures became a possible alternative when thin-film deposition techniques achieved structures with a sharp interface transition [1]. Soon thereafter, Okamoto & Millis introduced the concept of ``electronic reconstruction'' [2]. We study here the electronic reconstruction of doped Mott insulator heterostructures based on a Cluster Dynamical Mean Field Theory (CDMFT) calculations of the Hubbard model in the limit where electrostatic energy dominates over the kinetic energy associated with transport across layers. The grand potential of individual layers is first computed within CDMFT and then the electrostatic potential energy is taken into account in the Hartree approximation. The charge reconstruction in an ensemble of stacked planes of different nature can lead to a distribution of electron charge and to transport properties that are unique to doped-Mott insulators.[4pt] [1] J. Mannhart, D. G. Schlom, Science 327, 1607 (2010).[0pt] [2] S. Okamoto and A. J. Millis, Nature 428, 630 (2004).

  7. Germanium diffusion with vapor-phase GeAs and oxygen co-incorporation in GaAs

    NASA Astrophysics Data System (ADS)

    Wang, Wei-Fu; Cheng, Kai-Yuan; Hsieh, Kuang-Chien

    2018-01-01

    Vapor-phase germanium diffusion has been demonstrated in Zn-doped and semi-insulating GaAs in sealed ampoules with GeAs powders and excess arsenic. Secondary-ion-mass spectroscopy (SIMS) profiles indicate the presence of unintentional co-incorporation of oxygen in high densities (>1017/cm3) along with diffused germanium donors whose concentration (>>1018/cm3) determined by electro-chemical capacitance-voltage (ECV) profiler shows significant compensation near the surface. The source of oxygen mainly originates from the GeAs powder which contains Ge-O surface oxides. Variable-temperature photoluminescence (PL) shows that in GeAs-diffused samples, a broad peak ranging from 0.86-1.38 eV with the peak position around 1.1 eV predominates at low temperatures while the near band-edge luminescence quenches. The broad band is attributed to the GeGa-VGa self-activated (SA) centers possibly associated with nearby oxygen-related defect complex, and its luminescence persists up to 400 K. The configurational-coordinate modeling finds that the SA defect complex has a thermal activation energy of 150-180 meV and a vibrational energy 26.8 meV. The presence of oxygen does not much affect the SA emission intensity but may have influenced the peak position, vibration frequency and activation energy as compared to other common donor-VGa defects in GaAs.

  8. On the use of doped polyethylene as an insulating material for HVDC cables

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khalil, M.S.

    1996-12-31

    The merits of HVDC cables with polymeric insulation are well recognized. However, the development of such cables is still hampered due to the problems resulting from the complicated dependence of the electrical conductivity of the polymer on the temperature and the dc electric field and the effects of space charge accumulation in this material. Different methods have been suggested to solve these problems yet none of these methods seem to give a conclusive solution. The present report provides, firstly a critical review of the previous works reported in the literature concerning the development of HVDC cables with polymeric insulation. Differentmore » aspects of those works are examined and discussed. Secondly, an account is given on an investigation using low density polyethylene (LDPE) doped with an inorganic additive as a candidate insulating material for HVDC cables. Preliminary results from measurements of dc breakdown strength and insulation resistivity of both the undoped and the doped materials are presented. It is shown that the incorporation of an inorganic additive into LDPE has improved the performance of the doped material under polarity reversal dc conditions at room temperature. Moreover, the dependency of the insulation resistivity on temperature for the doped material appears to be beneficially modified.« less

  9. Effect of dopant density on contact potential difference across n-type GaAs homojunctions using Kelvin Probe Force Microscopy

    NASA Astrophysics Data System (ADS)

    Boumenou, C. Kameni; Urgessa, Z. N.; Djiokap, S. R. Tankio; Botha, J. R.; Nel, J.

    2018-04-01

    In this study, cross-sectional surface potential imaging of n+/semi-insulating GaAs junctions is investigated by using amplitude mode kelvin probe force microscopy. The measurements have shown two different potential profiles, related to the difference in surface potential between the semi-insulating (SI) substrate and the epilayers. It is shown that the contact potential difference (CPD) between the tip and the sample is higher on the semi-insulating substrate side than on the n-type epilayer side. This change in CPD across the interface has been explained by means of energy band diagrams indicating the relative Fermi level positions. In addition, it has also been found that the CPD values across the interface are much smaller than the calculated values (on average about 25% of the theoretical values) and increase with the electron density. Therefore, the results presented in study are only in qualitative agreement with the theory.

  10. GaAs monolayer: Excellent SHG responses and semi metallic to metallic transition modulated by vacancy effect

    NASA Astrophysics Data System (ADS)

    Rozahun, Ilmira; Bahti, Tohtiaji; He, Guijie; Ghupur, Yasenjan; Ablat, Abduleziz; Mamat, Mamatrishat

    2018-05-01

    Monolayer materials are considered as a promising candidate for novel applications due to their attractive magnetic, electronic and optical properties. Investigation on nonlinear optical (NLO) properties and effect of vacancy on monolayer materials are vital to property modulations of monolayers and extending their applications. In this work, with the aid of first-principles calculations, the crystal structure, electronic, magnetic, and optical properties of GaAs monolayers with the vacancy were investigated. The result shows gallium arsenic (GaAs) monolayer produces a strong second harmonic generation (SHG) response. Meanwhile, the vacancy strongly affects structural, electronic, magnetic and optical properties of GaAs monolayers. Furthermore, arsenic vacancy (VAs) brings semi metallic to metallic transition, while gallium vacancy (VGa) causes nonmagnetic to magnetic conversion. Our result reveals that GaAs monolayer possesses application potentials in Nano-amplifying modulator and Nano-optoelectronic devices, and may provide useful guidance in designing new generation of Nano-electronic devices.

  11. High-density Two-Dimensional Small Polaron Gas in a Delta-Doped Mott Insulator

    PubMed Central

    Ouellette, Daniel G.; Moetakef, Pouya; Cain, Tyler A.; Zhang, Jack Y.; Stemmer, Susanne; Emin, David; Allen, S. James

    2013-01-01

    Heterointerfaces in complex oxide systems open new arenas in which to test models of strongly correlated material, explore the role of dimensionality in metal-insulator-transitions (MITs) and small polaron formation. Close to the quantum critical point Mott MITs depend on band filling controlled by random disordered substitutional doping. Delta-doped Mott insulators are potentially free of random disorder and introduce a new arena in which to explore the effect of electron correlations and dimensionality. Epitaxial films of the prototypical Mott insulator GdTiO3 are delta-doped by substituting a single (GdO)+1 plane with a monolayer of charge neutral SrO to produce a two-dimensional system with high planar doping density. Unlike metallic SrTiO3 quantum wells in GdTiO3 the single SrO delta-doped layer exhibits thermally activated DC and optical conductivity that agree in a quantitative manner with predictions of small polaron transport but with an extremely high two-dimensional density of polarons, ~7 × 1014 cm−2. PMID:24257578

  12. Influence of magnetism and correlation on the spectral properties of doped Mott insulators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Yao; Moritz, Brian; Chen, Cheng-Chien

    Unraveling the nature of the doping-induced transition between a Mott insulator and a weakly correlated metal is crucial to understanding novel emergent phases in strongly correlated materials. Here, for this purpose, we study the evolution of spectral properties upon doping Mott insulating states by utilizing the cluster perturbation theory on the Hubbard and t – J -like models. Specifically, a quasifree dispersion crossing the Fermi level develops with small doping, and it eventually evolves into the most dominant feature at high doping levels. Although this dispersion is related to the free-electron hopping, our study shows that this spectral feature is,more » in fact, influenced inherently by both electron-electron correlation and spin-exchange interaction: the correlation destroys coherence, while the coupling between spin and mobile charge restores it in the photoemission spectrum. Due to the persistent impact of correlations and spin physics, the onset of gaps or the high-energy anomaly in the spectral functions can be expected in doped Mott insulators.« less

  13. Influence of magnetism and correlation on the spectral properties of doped Mott insulators

    DOE PAGES

    Wang, Yao; Moritz, Brian; Chen, Cheng-Chien; ...

    2018-03-01

    Unraveling the nature of the doping-induced transition between a Mott insulator and a weakly correlated metal is crucial to understanding novel emergent phases in strongly correlated materials. Here, for this purpose, we study the evolution of spectral properties upon doping Mott insulating states by utilizing the cluster perturbation theory on the Hubbard and t – J -like models. Specifically, a quasifree dispersion crossing the Fermi level develops with small doping, and it eventually evolves into the most dominant feature at high doping levels. Although this dispersion is related to the free-electron hopping, our study shows that this spectral feature is,more » in fact, influenced inherently by both electron-electron correlation and spin-exchange interaction: the correlation destroys coherence, while the coupling between spin and mobile charge restores it in the photoemission spectrum. Due to the persistent impact of correlations and spin physics, the onset of gaps or the high-energy anomaly in the spectral functions can be expected in doped Mott insulators.« less

  14. Design Issues of GaAs and AlGaAs Delta-Doped p-i-n Quantum-Well APD's

    NASA Technical Reports Server (NTRS)

    Wang, Yang

    1994-01-01

    We examine the basic design issues in the optimization of GaAs delta-doped and AlGAs delta-doped quantum-well avalanche photodiode (APD) structures using a theoretical analysis based on an ensemble Monte Carlo simulation. The devices are variations of the p-i-n doped quantum-well structure previously described in the literature. They have the same low-noise, high-gain and high-bandwidth features as the p-i-n doped quantum-well device. However, the use of delta doping provides far greater control or the doping concentrations within each stage possibly enhancing the extent to which the device can be depleted. As a result, it is expected that the proposed devices will operate at higher gain levels (at very low noise) than devices previously developed.

  15. High pressure induced crossover between metal and insulator conductivity type in low dimensionality electron systems

    NASA Astrophysics Data System (ADS)

    Dizhur, E.; Voronovskii, A.; Kostyleva, I.; Kotel'nikov, I.; Zaitsev-Zotov, S.

    2011-12-01

    We report the results of our recent experimental studies concerned with electron systems of lower dimensionality the conductivity of which may be toggled between metallic and insulating regime appliing high pressure. The objects under present study include: a) tunneling through Shottky barrier into two-dimension (2D) electron system formed in the δ-doped layer in GaAs under hydrostatic pressure up to 3 GPa in a cylinder-piston cell; b) quasi-one-dimension (1D) `insulator' crystals NbS3 which obtain metallic conductivity type at pressures above 5.5 GPa in `toroid' anvils.

  16. Structural and optical properties of GaAs(100) with a thin surface layer doped with chromium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seredin, P. V., E-mail: paul@phys.vsu.ru; Fedyukin, A. V.; Arsentyev, I. N.

    The aim of this study is to explore the structural and optical properties of single-crystal GaAs(100) doped with Cr atoms by burning them into the substrate at high temperatures. The diffusion of chromium into single-crystal GaAs(100) substrates brings about the formation of a thin (~20–40 μm) GaAs:Cr transition layer. In this case, chromium atoms are incorporated into the gallium-arsenide crystal lattice and occupy the regular atomic sites of the metal sublattice. As the chromium diffusion time is increased, such behavior of the dopant impurity yields changes in the energy structure of GaAs, a decrease in the absorption at free chargemore » carriers, and a lowering of the surface recombination rate. As a result, the photoluminescence signal from the sample is significantly enhanced.« less

  17. Metal-insulator transition properties of sputtered silicon-doped and un-doped vanadium dioxide films at terahertz range

    NASA Astrophysics Data System (ADS)

    Zhang, Huafu; Wu, Zhiming; Niu, Ruihua; Wu, Xuefei; he, Qiong; Jiang, Yadong

    2015-03-01

    Silicon-doped and un-doped vanadium dioxide (VO2) films were synthesized on high-purity single-crystal silicon substrates by means of reactive direct current magnetron sputtering followed by thermal annealing. The structure, morphology and metal-insulator transition properties of silicon-doped VO2 films at terahertz range were measured and compared to those of un-doped VO2 films. X-ray diffraction and scanning electron microscopy indicated that doping the films with silicon significantly affects the preferred crystallographic orientation and surface morphologies (grain size, pores and characteristics of grain boundaries). The temperature dependence of terahertz transmission shows that the transition temperature, hysteresis width and transition sharpness greatly depend on the silicon contents while the transition amplitude was relatively insensitive to the silicon contents. Interestingly, the VO2 film doped with a silicon content of 4.6 at.% shows excellent terahertz switching characteristics, namely a small hysteresis width of 4.5 °C, a giant transmission modulation ratio of about 82% and a relatively low transition temperature of 56.1 °C upon heating. This work experimentally indicates that silicon doping can effectively control not only the surface morphology but also the metal-insulator transition characteristics of VO2 films at terahertz range.

  18. Growth studies of erbium-doped GaAs deposited by metalorganic vapor phase epitaxy using noval cyclopentadienyl-based erbium sources

    NASA Technical Reports Server (NTRS)

    Redwing, J. M.; Kuech, T. F.; Gordon, D. C.; Vaartstra, B. A.; Lau, S. S.

    1994-01-01

    Erbium-doped GaAS layers were grown by metalorganic vapor phase epitaxy using two new sources, bis(i-propylcyclopentadienyl)cyclopentadienyl erbium and tris(t-butylcyclopentadienyl) erbium. Controlled Er doping in the range of 10(exp 17) - 10(exp 18)/cu cm was achieved using a relatively low source temperature of 90 C. The doping exhibits a second-order dependence on inlet source partial pressure, similar to behavior obtained with cyclopentadienyl Mg dopant sources. Equivalent amounts of oxygen and Er are present in 'as-grown' films indicating that the majority of Er dopants probably exist as Er-O complexes in the material. Er(+3) luminescence at 1.54 micrometers was measured from the as-grown films, but ion implantation of additional oxygen decreases the emission intensity. Electrical compensation of n-type GaAs layers codoped with Er and Si is directly correlated to the Er concentration is proposed to arise from the deep centers associated with Er which are responsible for a broad emission band near 0.90 micrometers present in the photoluminescence spectra of GaAs:Si, Er films.

  19. Excitation and doping dependence of hole-spin relaxation in bulk GaAs

    NASA Astrophysics Data System (ADS)

    Krauss, Michael; Hilton, David; Schneider, Hans Christian

    2009-03-01

    We present theoretical and experimental results on ultrafast hole-spin dynamics in bulk GaAs. By combining a sufficiently realistic bandstructure at the level of an 8x8 k .p theory and a dynamical treatment of the relevant scattering mechanisms [1], we obtain quantitative agreement between the microscopic theoretical results and differential transmission measurements [2] for different excitation conditions. In particular, we examine the dependence of the hole-spin relaxation time on the optically excited carrier density, lattice temperature, and doping concentration. Although the spin relaxation is rather insensitive to changes in the optically excited density and temperature, strong p-doping causes a significantly faster relaxation. [1] M. Krauss, M. Aeschlimann, and H. C. Schneider, Phys.Rev.Lett. 100, 256601 (2008)[2] D. J. Hilton and C. L. Tang, Phys. Rev. Lett. 89, 146601 (2002)

  20. Monolithic high voltage nonlinear transmission line fabrication process

    DOEpatents

    Cooper, Gregory A.

    1994-01-01

    A process for fabricating sequential inductors and varactor diodes of a monolithic, high voltage, nonlinear, transmission line in GaAs is disclosed. An epitaxially grown laminate is produced by applying a low doped active n-type GaAs layer to an n-plus type GaAs substrate. A heavily doped p-type GaAs layer is applied to the active n-type layer and a heavily doped n-type GaAs layer is applied to the p-type layer. Ohmic contacts are applied to the heavily doped n-type layer where diodes are desired. Multiple layers are then either etched away or Oxygen ion implanted to isolate individual varactor diodes. An insulator is applied between the diodes and a conductive/inductive layer is thereafter applied on top of the insulator layer to complete the process.

  1. Photoinduced Chern insulating states in semi-Dirac materials

    NASA Astrophysics Data System (ADS)

    Saha, Kush

    2016-08-01

    Two-dimensional (2D) semi-Dirac materials are characterized by a quadratic dispersion in one direction and a linear dispersion along the orthogonal direction. We study the topological phase transition in such 2D systems in the presence of an electromagnetic field. We show that a Chern insulating state emerges in a semi-Dirac system with two gapless Dirac nodes in the presence of light. In particular, we show that the intensity of a circularly polarized light can be used as a knob to generate topological states with nonzero Chern number. In addition, for fixed intensity and frequency of the light, a semi-Dirac system with two gapped Dirac nodes with trivial band topology can reveal the topological transition as a function of polarization of the light.

  2. n-type doping and morphology of GaAs nanowires in Aerotaxy

    DOE PAGES

    Metaferia, Wondwosen; Sivakumar, Sudhakar; Persson, Axel R.; ...

    2018-05-10

    Controlled doping in semiconductor nanowires modifies their electrical and optical properties, which are important for high efficiency optoelectronic devices. We have grown n-type (Sn) doped GaAs nanowires in Aerotaxy, a new continuous gas phase mass production technique. The morphology of Sn doped nanowires is found to be a strong function of dopant, tetraethyltin to trimethylgallium flow ratio, Au-Ga-Sn alloying, and nanowire growth temperatures. High temperature and high flow ratios result in low morphological quality nanowires and in parasitic growth on the wire base and surface. Alloying and growth temperatures of 400 and 530 degrees C, respectively, resulted in good morphologicalmore » quality nanowires for a flow ratio of TESn to TMGa up to 2.25 x 10 -3. The wires are pure Zinc-blende for all investigated growth conditions, whereas nanowires grown by MOVPE with the same growth conditions are usually mainly Wurtzite. The growth rate of the doped wires is found to be dependent more on the TESn flow fraction than on alloying and nanowire growth temperatures. Our photoluminescence measurements, supported by four-point probe resistivity measurements, reveal that the carrier concentration in the doped wires varies only slightly (1- 3) x 10 19 cm -3 with TESn flow fraction and both alloying and growth temperatures, indicating that good morphological quality wires with high carrier density can be grown with low TESn flow. Carrier concentrations lower than 1019 cm-3 can be grown by further reducing the flow fraction of TESn, which may give better morphology wires.« less

  3. n-type doping and morphology of GaAs nanowires in Aerotaxy

    NASA Astrophysics Data System (ADS)

    Metaferia, Wondwosen; Sivakumar, Sudhakar; Persson, Axel R.; Geijselaers, Irene; Reine Wallenberg, L.; Deppert, Knut; Samuelson, Lars; Magnusson, Martin H.

    2018-07-01

    Controlled doping in semiconductor nanowires modifies their electrical and optical properties, which are important for high efficiency optoelectronic devices. We have grown n-type (Sn) doped GaAs nanowires in Aerotaxy, a new continuous gas phase mass production technique. The morphology of Sn doped nanowires is found to be a strong function of dopant, tetraethyltin to trimethylgallium flow ratio, Au–Ga–Sn alloying, and nanowire growth temperatures. High temperature and high flow ratios result in low morphological quality nanowires and in parasitic growth on the wire base and surface. Alloying and growth temperatures of 400 °C and 530 °C, respectively, resulted in good morphological quality nanowires for a flow ratio of TESn to TMGa up to 2.25 × 10‑3. The wires are pure zinc-blende for all investigated growth conditions, whereas nanowires grown by metal-organic vapor phase epitaxy with the same growth conditions are usually mainly Wurtzite. The growth rate of the doped wires is found to be dependent more on the TESn flow fraction than on alloying and nanowire growth temperatures. Our photoluminescence measurements, supported by four-point probe resistivity measurements, reveal that the carrier concentration in the doped wires varies only slightly (1–3) × 1019 cm‑3 with TESn flow fraction and both alloying and growth temperatures, indicating that good morphological quality wires with high carrier density can be grown with low TESn flow. Carrier concentrations lower than 1019 cm‑3 can be grown by further reducing the flow fraction of TESn, which may give better morphology wires.

  4. n-type doping and morphology of GaAs nanowires in Aerotaxy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Metaferia, Wondwosen; sivakumar, sudhakar; R. Persson, Axel

    2018-04-17

    Controlled doping in semiconductor nanowires modifies their electrical and optical properties, which are important for high efficiency optoelectronic devices. We have grown n-type (Sn) doped GaAs nanowires in Aerotaxy, a new continuous gas phase mass production technique. The morphology of Sn doped nanowires is found to be a strong function of dopant, tetraethyltin to trimethylgallium flow ratio, Au-Ga-Sn alloying, and nanowire growth temperatures. High temperature and high flow ratios result in low morphological quality nanowires and in parasitic growth on the wire base and surface. Alloying and growth temperatures of 400 and 530 degrees C, respectively, resulted in good morphologicalmore » quality nanowires for a flow ratio of TESn to TMGa up to 2.25 x 10-3. The wires are pure Zinc-blende for all investigated growth conditions, whereas nanowires grown by MOVPE with the same growth conditions are usually mainly Wurtzite. The growth rate of the doped wires is found to be dependent more on the TESn flow fraction than on alloying and nanowire growth temperatures. Our photoluminescence measurements, supported by four-point probe resistivity measurements, reveal that the carrier concentration in the doped wires varies only slightly (1- 3) x 1019 cm-3 with TESn flow fraction and both alloying and growth temperatures, indicating that good morphological quality wires with high carrier density can be grown with low TESn flow. Carrier concentrations lower than 1019 cm-3 can be grown by further reducing the flow fraction of TESn, which may give better morphology wires.« less

  5. n-type doping and morphology of GaAs nanowires in Aerotaxy.

    PubMed

    Metaferia, Wondwosen; Sivakumar, Sudhakar; Persson, Axel R; Geijselaers, Irene; Wallenberg, L Reine; Deppert, Knut; Samuelson, Lars; Magnusson, Martin H

    2018-04-17

    Controlled doping in semiconductor nanowires modifies their electrical and optical properties, which are important for high efficiency optoelectronic devices. We have grown n-type (Sn) doped GaAs nanowires in Aerotaxy, a new continuous gas phase mass production technique. The morphology of Sn doped nanowires is found to be a strong function of dopant, tetraethyltin to trimethylgallium flow ratio, Au-Ga-Sn alloying, and nanowire growth temperatures. High temperature and high flow ratios result in low morphological quality nanowires and in parasitic growth on the wire base and surface. Alloying and growth temperatures of 400 °C and 530 °C, respectively, resulted in good morphological quality nanowires for a flow ratio of TESn to TMGa up to 2.25 × 10 -3 . The wires are pure zinc-blende for all investigated growth conditions, whereas nanowires grown by metal-organic vapor phase epitaxy with the same growth conditions are usually mainly Wurtzite. The growth rate of the doped wires is found to be dependent more on the TESn flow fraction than on alloying and nanowire growth temperatures. Our photoluminescence measurements, supported by four-point probe resistivity measurements, reveal that the carrier concentration in the doped wires varies only slightly (1-3) × 10 19 cm -3 with TESn flow fraction and both alloying and growth temperatures, indicating that good morphological quality wires with high carrier density can be grown with low TESn flow. Carrier concentrations lower than 10 19 cm -3 can be grown by further reducing the flow fraction of TESn, which may give better morphology wires.

  6. n-type doping and morphology of GaAs nanowires in Aerotaxy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Metaferia, Wondwosen; Sivakumar, Sudhakar; Persson, Axel R.

    Controlled doping in semiconductor nanowires modifies their electrical and optical properties, which are important for high efficiency optoelectronic devices. We have grown n-type (Sn) doped GaAs nanowires in Aerotaxy, a new continuous gas phase mass production technique. The morphology of Sn doped nanowires is found to be a strong function of dopant, tetraethyltin to trimethylgallium flow ratio, Au-Ga-Sn alloying, and nanowire growth temperatures. High temperature and high flow ratios result in low morphological quality nanowires and in parasitic growth on the wire base and surface. Alloying and growth temperatures of 400 and 530 degrees C, respectively, resulted in good morphologicalmore » quality nanowires for a flow ratio of TESn to TMGa up to 2.25 x 10 -3. The wires are pure Zinc-blende for all investigated growth conditions, whereas nanowires grown by MOVPE with the same growth conditions are usually mainly Wurtzite. The growth rate of the doped wires is found to be dependent more on the TESn flow fraction than on alloying and nanowire growth temperatures. Our photoluminescence measurements, supported by four-point probe resistivity measurements, reveal that the carrier concentration in the doped wires varies only slightly (1- 3) x 10 19 cm -3 with TESn flow fraction and both alloying and growth temperatures, indicating that good morphological quality wires with high carrier density can be grown with low TESn flow. Carrier concentrations lower than 1019 cm-3 can be grown by further reducing the flow fraction of TESn, which may give better morphology wires.« less

  7. Microscopic effects of Dy doping in the topological insulator Bi2Te3

    NASA Astrophysics Data System (ADS)

    Duffy, L. B.; Steinke, N.-J.; Krieger, J. A.; Figueroa, A. I.; Kummer, K.; Lancaster, T.; Giblin, S. R.; Pratt, F. L.; Blundell, S. J.; Prokscha, T.; Suter, A.; Langridge, S.; Strocov, V. N.; Salman, Z.; van der Laan, G.; Hesjedal, T.

    2018-05-01

    Magnetic doping with transition metal ions is the most widely used approach to break time-reversal symmetry in a topological insulator (TI)—a prerequisite for unlocking the TI's exotic potential. Recently, we reported the doping of Bi2Te3 thin films with rare-earth ions, which, owing to their large magnetic moments, promise commensurately large magnetic gap openings in the topological surface states. However, only when doping with Dy has a sizable gap been observed in angle-resolved photoemission spectroscopy, which persists up to room temperature. Although disorder alone could be ruled out as a cause of the topological phase transition, a fundamental understanding of the magnetic and electronic properties of Dy-doped Bi2Te3 remained elusive. Here, we present an x-ray magnetic circular dichroism, polarized neutron reflectometry, muon-spin rotation, and resonant photoemission study of the microscopic magnetic and electronic properties. We find that the films are not simply paramagnetic but that instead the observed behavior can be well explained by the assumption of slowly fluctuating, inhomogeneous, magnetic patches with increasing volume fraction as the temperature decreases. At liquid helium temperatures, a large effective magnetization can be easily introduced by the application of moderate magnetic fields, implying that this material is very suitable for proximity coupling to an underlying ferromagnetic insulator or in a heterostructure with transition-metal-doped layers. However, the introduction of some charge carriers by the Dy dopants cannot be excluded at least in these highly doped samples. Nevertheless, we find that the magnetic order is not mediated via the conduction channel in these samples and therefore magnetic order and carrier concentration are expected to be independently controllable. This is not generally the case for transition-metal-doped topological insulators, and Dy doping should thus allow for improved TI quantum devices.

  8. Monolithic high voltage nonlinear transmission line fabrication process

    DOEpatents

    Cooper, G.A.

    1994-10-04

    A process for fabricating sequential inductors and varistor diodes of a monolithic, high voltage, nonlinear, transmission line in GaAs is disclosed. An epitaxially grown laminate is produced by applying a low doped active n-type GaAs layer to an n-plus type GaAs substrate. A heavily doped p-type GaAs layer is applied to the active n-type layer and a heavily doped n-type GaAs layer is applied to the p-type layer. Ohmic contacts are applied to the heavily doped n-type layer where diodes are desired. Multiple layers are then either etched away or Oxygen ion implanted to isolate individual varistor diodes. An insulator is applied between the diodes and a conductive/inductive layer is thereafter applied on top of the insulator layer to complete the process. 6 figs.

  9. Robust antiferromagnetic spin waves across the metal-insulator transition in hole-doped BaMn2As2

    NASA Astrophysics Data System (ADS)

    Ramazanoglu, M.; Sapkota, A.; Pandey, Abhishek; Lamsal, J.; Abernathy, D. L.; Niedziela, J. L.; Stone, M. B.; Kreyssig, A.; Goldman, A. I.; Johnston, D. C.; McQueeney, R. J.

    2017-06-01

    BaMn2As2 is an antiferromagnetic insulator where a metal-insulator transition occurs with hole doping via the substitution of Ba with K. The metal-insulator transition causes only a small suppression of the Néel temperature (TN) and the ordered moment, suggesting that doped holes interact weakly with the Mn spin system. Powder inelastic neutron scattering measurements were performed on three different samples of Ba1 -xKxMn2As2 with x =0 , 0.125, and 0.25 to study the effect of hole doping and metallization on the spin dynamics. We compare the neutron intensities to a linear spin-wave theory approximation to the J1-J2-Jc Heisenberg model. Hole doping is found to introduce only minor modifications to the exchange energies and spin gap. The changes observed in the exchange constants are consistent with the small drop of TN with doping.

  10. B-doped diamond field-effect transistor with ferroelectric vinylidene fluoride-trifluoroethylene gate insulator

    NASA Astrophysics Data System (ADS)

    Karaya, Ryota; Baba, Ikki; Mori, Yosuke; Matsumoto, Tsubasa; Nakajima, Takashi; Tokuda, Norio; Kawae, Takeshi

    2017-10-01

    A B-doped diamond field-effect transistor (FET) with a ferroelectric vinylidene fluoride-trifluoroethylene (VDF-TrFE) copolymer gate insulator was fabricated. The VDF-TrFE film deposited on the B-doped diamond showed good insulating and ferroelectric properties. Also, a Pt/VDF-TrFE/B-doped diamond layered structure showed ideal behavior as a metal-ferroelectric-semiconductor (MFS) capacitor, and the memory window width was 11 V, when the gate voltage was swept from 20 to -20 V. The fabricated MFS-type FET structure showed the typical properties of a depletion-type p-channel FET and a maximum drain current density of 0.87 mA/mm at room temperature. The drain current versus gate voltage curves of the proposed FET showed a clockwise hysteresis loop owing to the ferroelectricity of the VDF-TrFE gate insulator. In addition, we demonstrated the logic inverter with the MFS-type diamond FET coupled with a load resistor, and obtained the inversion behavior of the input signal and a maximum gain of 18.4 for the present circuit.

  11. Metal to insulator transition in Sb doped SnO2 monocrystalline nanowires thin films

    NASA Astrophysics Data System (ADS)

    Costa, I. M.; Bernardo, E. P.; Marangoni, B. S.; Leite, E. R.; Chiquito, A. J.

    2016-12-01

    We report on the growth and transport properties of single crystalline Sb doped SnO2 wires grown from chemical vapour deposition. While undoped samples presented semiconducting behaviour, doped ones clearly undergo a transition from an insulating state ( d R /d T <0 ) to a metallic one ( d R /d T >0 ) around 130 -150 K depending on the doping level. Data analysis in the framework of the metal-to-insulator transition theories allowed us to investigate the underlying physics: electron-electron and electron-phonon interactions were identified as the scattering mechanisms present in the metallic phase, while the conduction mechanism of the semiconducting phase (undoped sample) was characterized by thermal activation and variable range hopping mechanisms.

  12. Robust antiferromagnetic spin waves across the metal-insulator transition in hole-doped BaMn 2 As 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ramazanoglu, M.; Sapkota, A.; Pandey, Abhishek

    BaMn 2 As 2 is an antiferromagnetic insulator where a metal-insulator transition occurs with hole doping via the substitution of Ba with K. The metal-insulator transition causes only a small suppression of the Néel temperature (T N) and the ordered moment, suggesting that doped holes interact weakly with the Mn spin system. Powder inelastic neutron scattering measurements were performed on three different samples of Ba 1 - xK xMn 2 As 2 with x = 0 , 0.125, and 0.25 to study the effect of hole doping and metallization on the spin dynamics. We compare the neutron intensities to amore » linear spin-wave theory approximation to the J 1 $-$ J 2 $-$ J c Heisenberg model. Hole doping is found to introduce only minor modifications to the exchange energies and spin gap. Lastly, the changes observed in the exchange constants are consistent with the small drop of T N with doping.« less

  13. Robust antiferromagnetic spin waves across the metal-insulator transition in hole-doped BaMn 2 As 2

    DOE PAGES

    Ramazanoglu, M.; Sapkota, A.; Pandey, Abhishek; ...

    2017-06-01

    BaMn 2 As 2 is an antiferromagnetic insulator where a metal-insulator transition occurs with hole doping via the substitution of Ba with K. The metal-insulator transition causes only a small suppression of the Néel temperature (T N) and the ordered moment, suggesting that doped holes interact weakly with the Mn spin system. Powder inelastic neutron scattering measurements were performed on three different samples of Ba 1 - xK xMn 2 As 2 with x = 0 , 0.125, and 0.25 to study the effect of hole doping and metallization on the spin dynamics. We compare the neutron intensities to amore » linear spin-wave theory approximation to the J 1 $-$ J 2 $-$ J c Heisenberg model. Hole doping is found to introduce only minor modifications to the exchange energies and spin gap. Lastly, the changes observed in the exchange constants are consistent with the small drop of T N with doping.« less

  14. New Passivation Methods of GaAs.

    DTIC Science & Technology

    1980-01-01

    Fabrication of Thin Nitride Layers on GaAs 33 - 35 CHAPTER 7 Passivation of InGaAsP 36 - 37 CHAPTER 8 Emulsions on GaAs Surfaces 38 - 42 APPENDIX...not yet given any useful results. The deposition of SiO2 by using emulsions is pursued and first results on the possibility of GaAs doping are...glycol-tartaric acid based aqueous solution was used in order to anodically oxidise the gate notch after the source and drain ohmic contacts were formed

  15. Monte Carlo Study on Carbon-Gradient-Doped Silica Aerogel Insulation.

    PubMed

    Zhao, Y; Tang, G H

    2015-04-01

    Silica aerogel is almost transparent for wavelengths below 8 µm where significant energy is transferred by thermal radiation. The radiative heat transfer can be restricted at high temperature if doped with carbon powder in silica aerogel. However, different particle sizes of carbon powder doping have different spectral extinction coefficients and the doped carbon powder will increase the solid conduction of silica aerogel. This paper presents a theoretical method for determining the optimal carbon doping in silica aerogel to minimize the energy transfer. Firstly we determine the optimal particle size by combining the spectral extinction coefficient with blackbody radiation and then evaluate the optimal doping amount between heat conduction and radiation. Secondly we develop the Monte Carlo numerical method to study radiative properties of carbon-gradient-doped silica aerogel to decrease the radiative heat transfer further. The results indicate that the carbon powder is able to block infrared radiation and thus improve the thermal insulating performance of silica aerogel effectively.

  16. Optical properties of beryllium-doped GaSb epilayers grown on GaAs substrate

    NASA Astrophysics Data System (ADS)

    Deng, Zhuo; Chen, Baile; Chen, Xiren; Shao, Jun; Gong, Qian; Liu, Huiyun; Wu, Jiang

    2018-05-01

    In this work, the effects of p-type beryllium (Be) doping on the optical properties of GaSb epilayers grown on GaAs substrate by Molecular Beam Epitaxy (MBE) have been studied. Temperature- and excitation power-dependent photoluminescence (PL) measurements were performed on both nominally undoped and intentionally Be-doped GaSb layers. Clear PL emissions are observable even at the temperature of 270 K from both layers, indicating the high material quality. In the Be-doped GaSb layer, the transition energies of main PL features exhibit red-shift up to ∼7 meV, and the peak widths characterized by Full-Width-at-Half-Maximum (FWHM) also decrease. In addition, analysis on the PL integrated intensity in the Be-doped sample reveals a gain of emission signal, as well as a larger carrier thermal activation energy. These distinctive PL behaviors identified in the Be-doped GaSb layer suggest that the residual compressive strain is effectively relaxed in the epilayer, due possibly to the reduction of dislocation density in the GaSb layer with the intentional incorporation of Be dopants. Our results confirm the role of Be as a promising dopant in the improvement of crystalline quality in GaSb, which is a crucial factor for growth and fabrication of high quality strain-free GaSb-based devices on foreign substrates.

  17. The effect of doping on low temperature growth of high quality GaAs nanowires on polycrystalline films

    PubMed Central

    DeJarld, Matt; Teran, Alan; Luengo-Kovac, Marta; Yan, Lifan; Moon, Eun Seong; Beck, Sara; Guillen, Cristina; Sih, Vanessa; Phillips, Jamie; Milunchick, Joanna Mirecki

    2016-01-01

    The increasing demand for miniature autonomous sensors requires low cost integration methods, but to date, material limitations have prevented the direct growth of optically active III-V materials on CMOS devices. We report on the deposition of GaAs nanowires on polycrystalline conductive films to allow for direct integration of optoelectronic devices on dissimilar materials. Undoped, Si-doped, and Be-doped nanowires were grown at Ts=400°C on oxide (indium tin oxide) and metallic (platinum and titanium) films. Be-doping is shown to significantly reduce the nanowire diameter and improve the nanowire aspect ratio to 50:1. Photoluminescence measurements of Be-doped nanowires are 1–2 orders of magnitude stronger than undoped and Si-doped nanowires and have a thermal activation energy of 14meV, which is comparable to nanowires grown on crystalline substrates. Electrical measurements confirm that the metal-semiconductor junction is Ohmic. These results demonstrate the feasibility of integrating nanowire-based optoelectronic devices directly on CMOS chips. PMID:27834310

  18. EL2 and related defects in GaAs - Challenges and pitfalls

    NASA Technical Reports Server (NTRS)

    Gatos, H. C.; Lagowski, J.

    1985-01-01

    The incorporation process of nonequilibrium vacancies in melt-grown GaAs is strongly complicated by deviations from stoichiometry, and the presence of two sublattices. Many of the microdefects originating in these vacancies and their interactions introduce energy levels (shallow and deep) within the energy gap. The direct identification of the chemical or structural signature of these defects and its direct correlation to their electronic behavior is not generally possible. It is therefore necessary to rely on indirect methods and phenomenological models and be confronted with the associated pitfalls. EL2, a microdefect introducing a deep donor level, has been in the limelight in recent years because it is believed to be responsible for the semi-insulating behavior of undoped GaAs. Although much progress has been made towards understanding its origin and nature, some relevant questions remain unanswered. An attempt is made to assess the present status of understanding of EL2 in the light of the most recent results.

  19. Semi-insulating GaAs and Au Schottky barrier photodetectors for near-infrared detection (1280 nm)

    NASA Astrophysics Data System (ADS)

    Nusir, A. I.; Makableh, Y. F.; Manasreh, O.

    2015-08-01

    Schottky barriers formed between metal (Au) and semiconductor (GaAs) can be used to detect photons with energy lower than the bandgap of the semiconductor. In this study, photodetectors based on Schottky barriers were fabricated and characterized for the detection of light at wavelength of 1280 nm. The device structure consists of three gold fingers with 1.75 mm long and separated by 0.95 mm, creating an E shape while the middle finger is disconnected from the outer frame. When the device is biased, electric field is stretched between the middle finger and the two outermost electrodes. The device was characterized by measuring the current-voltage (I-V) curve at room temperature. This showed low dark current on the order of 10-10 A, while the photocurrent was higher than the dark current by four orders of magnitude. The detectivity of the device at room temperature was extracted from the I-V curve and estimated to be on the order of 5.3x1010 cm.Hz0.5/W at 5 V. The step response of the device was measured from time-resolved photocurrent curve at 5 V bias with multiple on/off cycles. From which the average recovery time was estimated to be 0.63 second when the photocurrent decreases by four orders of magnitude, and the average rise time was measured to be 0.897 second. Furthermore, the spectral response spectrum of the device exhibits a strong peak close to the optical communication wavelength (~1.3 μm), which is attributed to the internal photoemission of electrons above the Schottky barrier formed between Au and GaAs.

  20. Spatial modulation of the Fermi level by coherent illumination of undoped GaAs

    NASA Astrophysics Data System (ADS)

    Nolte, D. D.; Olson, D. H.; Glass, A. M.

    1989-11-01

    The Fermi level in undoped GaAs has been modulated spatially by optically quenching EL2 defects. The spatial gradient of the Fermi level produces internal electric fields that are much larger than fields generated by thermal diffusion alone. The resulting band structure is equivalent to a periodic modulation-doped p-i-p structure of alternating insulating and p-type layers. The internal fields are detected via the electro-optic effect by the diffraction of a probe laser in a four-wave mixing geometry. The direct control of the Fermi level distinguishes this phenomenon from normal photorefractive behavior and introduces a novel nonlinear optical process.

  1. Rare-Earth Doping and Co-Doping of GaN for Magnetic and Luminescent Applications

    DTIC Science & Technology

    2010-08-16

    The main focus of this project is the study of Gadolinium doped Gallium Nitride. Calculations were carried out to elucidate the origin of the reported...Ga vacancies in the triple negative charge state, which is the most likely charge state in semi-insulating samples, 1. REPORT DATE (DD-MM-YYYY) 4...applications Report Title ABSTRACT The main focus of this project is the study of Gadolinium doped Gallium Nitride. Calculations were carried out to

  2. Electron-spin dynamics in Mn-doped GaAs using time-resolved magneto-optical techniques

    NASA Astrophysics Data System (ADS)

    Akimov, I. A.; Dzhioev, R. I.; Korenev, V. L.; Kusrayev, Yu. G.; Zhukov, E. A.; Yakovlev, D. R.; Bayer, M.

    2009-08-01

    We study the electron-spin dynamics in p -type GaAs doped with magnetic Mn acceptors by means of time-resolved pump-probe and photoluminescence techniques. Measurements in transverse magnetic fields show a long spin-relaxation time of 20 ns that can be uniquely related to electrons. Application of weak longitudinal magnetic fields above 100 mT extends the spin-relaxation times up to microseconds which is explained by suppression of the Bir-Aronov-Pikus spin relaxation for the electron on the Mn acceptor.

  3. Self-energy behavior away from the Fermi surface in doped Mott insulators.

    PubMed

    Merino, J; Gunnarsson, O; Kotliar, G

    2016-02-03

    We analyze self-energies of electrons away from the Fermi surface in doped Mott insulators using the dynamical cluster approximation to the Hubbard model. For large onsite repulsion, U, and hole doping, the magnitude of the self-energy for imaginary frequencies at the top of the band ([Formula: see text]) is enhanced with respect to the self-energy magnitude at the bottom of the band ([Formula: see text]). The self-energy behavior at these two [Formula: see text]-points is switched for electron doping. Although the hybridization is much larger for (0, 0) than for [Formula: see text], we demonstrate that this is not the origin of this difference. Isolated clusters under a downward shift of the chemical potential, [Formula: see text], at half-filling reproduce the overall self-energy behavior at (0, 0) and [Formula: see text] found in low hole doped embedded clusters. This happens although there is no change in the electronic structure of the isolated clusters. Our analysis shows that a downward shift of the chemical potential which weakly hole dopes the Mott insulator can lead to a large enhancement of the [Formula: see text] self-energy for imaginary frequencies which is not associated with electronic correlation effects, even in embedded clusters. Interpretations of the strength of electronic correlations based on self-energies for imaginary frequencies are, in general, misleading for states away from the Fermi surface.

  4. Doping Effect of Graphene Nanoplatelets on Electrical Insulation Properties of Polyethylene: From Macroscopic to Molecular Scale

    PubMed Central

    Jing, Ziang; Li, Changming; Zhao, Hong; Zhang, Guiling; Han, Baozhong

    2016-01-01

    The doping effect of graphene nanoplatelets (GNPs) on electrical insulation properties of polyethylene (PE) was studied by combining experimental and theoretical methods. The electric conduction properties and trap characteristics were tested for pure PE and PE/GNPs composites by using a direct measurement method and a thermal stimulated current (TSC) method. It was found that doping smaller GNPs is more beneficial to decrease the conductivity of PE/GNPs. The PE/GNPs composite with smaller size GNPs mainly introduces deep energy traps, while with increasing GNPs size, besides deep energy traps, shallow energy traps are also introduced. These results were also confirmed by density functional theory (DFT) and the non-equilibrium Green’s function (NEGF) method calculations. Therefore, doping small size GNPs is favorable for trapping charge carriers and enhancing insulation ability, which is suggested as an effective strategy in exploring powerful insulation materials. PMID:28773802

  5. First Principles Electronic Structure of Mn doped GaAs, GaP, and GaN Semiconductors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schulthess, Thomas C; Temmerman, Walter M; Szotek, Zdzislawa

    We present first-principles electronic structure calculations of Mn doped III-V semiconductors based on the local spin-density approximation (LSDA) as well as the self-interaction corrected local spin density method (SIC-LSD). We find that it is crucial to use a self-interaction free approach to properly describe the electronic ground state. The SIC-LSD calculations predict the proper electronic ground state configuration for Mn in GaAs, GaP, and GaN. Excellent quantitative agreement with experiment is found for magnetic moment and p-d exchange in (GaMn)As. These results allow us to validate commonly used models for magnetic semiconductors. Furthermore, we discuss the delicate problem of extractingmore » binding energies of localized levels from density functional theory calculations. We propose three approaches to take into account final state effects to estimate the binding energies of the Mn-d levels in GaAs. We find good agreement between computed values and estimates from photoemisison experiments.« less

  6. Strongly enhanced thermal transport in a lightly doped Mott insulator at low temperature.

    PubMed

    Zlatić, V; Freericks, J K

    2012-12-28

    We show how a lightly doped Mott insulator has hugely enhanced electronic thermal transport at low temperature. It displays universal behavior independent of the interaction strength when the carriers can be treated as nondegenerate fermions and a nonuniversal "crossover" region where the Lorenz number grows to large values, while still maintaining a large thermoelectric figure of merit. The electron dynamics are described by the Falicov-Kimball model which is solved for arbitrary large on-site correlation with a dynamical mean-field theory algorithm on a Bethe lattice. We show how these results are generic for lightly doped Mott insulators as long as the renormalized Fermi liquid scale is pushed to very low temperature and the system is not magnetically ordered.

  7. Electron emission from deep level defects EL2 and EL6 in semi-insulating GaAs observed by positron drift velocity transient measurements

    NASA Astrophysics Data System (ADS)

    Tsia, J. M.; Ling, C. C.; Beling, C. D.; Fung, S.

    2002-09-01

    A plus-or-minus100 V square wave applied to a Au/semi-insulating SI-GaAs interface was used to bring about electron emission from and capture into deep level defects in the region adjacent to the interface. The electric field transient resulting from deep level emission was studied by monitoring the positron drift velocity in the region. A deep level transient spectrum was obtained by computing the trap emission rate as a function of temperature and two peaks corresponding to EL2 (Ea=0.81plus-or-minus0.15 eV) and EL6 (Ea=0.30plus-or-minus0.12 eV) have been identified.

  8. Electrical characterisation of deep level defects in Be-doped AlGaAs grown on (100) and (311)A GaAs substrates by MBE

    PubMed Central

    2011-01-01

    The growth of high mobility two-dimensional hole gases (2DHGs) using GaAs-GaAlAs heterostructures has been the subject of many investigations. However, despite many efforts hole mobilities in Be-doped structures grown on (100) GaAs substrate remained considerably lower than those obtained by growing on (311)A oriented surface using silicon as p-type dopant. In this study we will report on the properties of hole traps in a set of p-type Be-doped Al0.29Ga0.71As samples grown by molecular beam epitaxy on (100) and (311)A GaAs substrates using deep level transient spectroscopy (DLTS) technique. In addition, the effect of the level of Be-doping concentration on the hole deep traps is investigated. It was observed that with increasing the Be-doping concentration from 1 × 1016 to 1 × 1017 cm-3 the number of detected electrically active defects decreases for samples grown on (311)A substrate, whereas, it increases for (100) orientated samples. The DLTS measurements also reveal that the activation energies of traps detected in (311)A are lower than those in (100). From these findings it is expected that mobilities of 2DHGs in Be-doped GaAs-GaAlAs devices grown on (311)A should be higher than those on (100). PMID:21711687

  9. LEC GaAs for integrated circuit applications

    NASA Technical Reports Server (NTRS)

    Kirkpatrick, C. G.; Chen, R. T.; Homes, D. E.; Asbeck, P. M.; Elliott, K. R.; Fairman, R. D.; Oliver, J. D.

    1984-01-01

    Recent developments in liquid encapsulated Czochralski techniques for the growth of semiinsulating GaAs for integrated circuit applications have resulted in significant improvements in the quality and quantity of GaAs material suitable for device processing. The emergence of high performance GaAs integrated circuit technologies has accelerated the demand for high quality, large diameter semiinsulating GaAs substrates. The new device technologies, including digital integrated circuits, monolithic microwave integrated circuits and charge coupled devices have largely adopted direct ion implantation for the formation of doped layers. Ion implantation lends itself to good uniformity and reproducibility, high yield and low cost; however, this technique also places stringent demands on the quality of the semiinsulating GaAs substrates. Although significant progress was made in developing a viable planar ion implantation technology, the variability and poor quality of GaAs substrates have hindered progress in process development.

  10. Quantum spin liquids and the metal-insulator transition in doped semiconductors.

    PubMed

    Potter, Andrew C; Barkeshli, Maissam; McGreevy, John; Senthil, T

    2012-08-17

    We describe a new possible route to the metal-insulator transition in doped semiconductors such as Si:P or Si:B. We explore the possibility that the loss of metallic transport occurs through Mott localization of electrons into a quantum spin liquid state with diffusive charge neutral "spinon" excitations. Such a quantum spin liquid state can appear as an intermediate phase between the metal and the Anderson-Mott insulator. An immediate testable consequence is the presence of metallic thermal conductivity at low temperature in the electrical insulator near the metal-insulator transition. Further, we show that though the transition is second order, the zero temperature residual electrical conductivity will jump as the transition is approached from the metallic side. However, the electrical conductivity will have a nonmonotonic temperature dependence that may complicate the extrapolation to zero temperature. Signatures in other experiments and some comparisons with existing data are made.

  11. Mott insulator-to-metal transition in yttrium-doped CaIrO₃.

    PubMed

    Gunasekera, J; Chen, Y; Kremenak, J W; Miceli, P F; Singh, D K

    2015-02-11

    We report on the study of insulator-to-metal transition in post-perovskite compound CaIrO3. It is discovered that a gradual chemical substitution of calcium by yttrium leads to the onset of strong metallic behavior in this compound. This observation is in stark contrast to BaIrO3, which preserves its Mott insulating behavior despite excess of the charge carriers due to yttrium doping. Magnetic measurements reveal that both compounds tend to exhibit magnetic character irrespective of the chemical substitution of Ca or Ba. We analyze these unusual observations in light of recent researches that suggest that CaIrO3 does not necessarily possess j = 1/2 ground state due to structural distortion. The insulator-to-metal transition in CaIrO3 will spur new researches to explore more exotic ground state, including superconductivity, in post-perovskite Mott insulators.

  12. Isoelectronic co-doping

    DOEpatents

    Mascarenhas, Angelo

    2004-11-09

    Isoelectronic co-doping of semiconductor compounds and alloys with deep acceptors and deep donors is used to decrease bandgap, to increase concentration of the dopant constituents in the resulting alloys, and to increase carrier mobilities lifetimes. Group III-V compounds and alloys, such as GaAs and GaP, are isoelectronically co-doped with, for example, N and Bi, to customize solar cells, thermal voltaic cells, light emitting diodes, photodetectors, and lasers on GaP, InP, GaAs, Ge, and Si substrates. Isoelectronically co-doped Group II-VI compounds and alloys are also included.

  13. Carbon reactivation kinetics in GaAs: Its dependence on dopant precursor, doping level, and layer thickness

    NASA Astrophysics Data System (ADS)

    Mimila-Arroyo, J.; Bland, S.; Barbé, M.

    2002-05-01

    The reactivation kinetics of the acceptor behavior of carbon, its dependence on dopant precursors, doping level, layer thickness, and annealing temperature, as well as the behavior of carbon-hydrogen complexes in GaAs grown by metalorganic chemical vapor deposition are studied. Independent of the carbon source, in the "as grown" material, systematically carbon hydrogen complexes are present and the hole concentration is lower than the corresponding carbon concentration. The carbon reactivation kinetics was achieved by ex situ rapid thermal annealing through a series of multistage annealing experiments and assessed at each annealing stage by infrared absorption, hydrogen secondary ion mass spectroscopy profiling, and hole concentration measurements. Carbon reactivation occurs solely by the debonding of hydrogen from the isolated carbon acceptor and its out-diffusion from the sample. The carbon reactivation kinetics can be treated as a first order one with an activation energy, Ea=1.42±0.01 eV, independent of doping precursors, doping level, and layer thickness. The reactivation constant results to decrease as doping level and layer thickness increase. An empirical formula has been obtained that allows one to calculate the reactivation constant as a function of the carbon doping, layer thickness, and annealing temperature, allowing one to determine the optimal carbon reactivation conditions for any C:GaAs layer.

  14. Bound-to-bound midinfrared intersubband absorption in carbon-doped GaAs /AlGaAs quantum wells

    NASA Astrophysics Data System (ADS)

    Malis, Oana; Pfeiffer, Loren N.; West, Kenneth W.; Sergent, A. Michael; Gmachl, Claire

    2005-08-01

    Bound-to-bound intersubband absorption in the valence band of modulation-doped GaAs quantum wells with digitally alloyed AlGaAs barriers was studied in the midinfrared wavelength range. A high-purity solid carbon source was used for the p-type doping. Strong narrow absorption peaks due to heavy-to-heavy hole transitions are observed with out-of-plane polarized light, and weaker broader features with in-plane polarized light. The heavy-to-heavy hole transition energy spans the spectral range between 206 to 126 meV as the quantum well width is increased from 25 to 45 Å. The experimental results are found to be in agreement with calculations of a six-band k •p model taking into account the full band structure of the digital alloy.

  15. Alternatives to Arsine: The Atmospheric Pressure Organometallic Chemical Vapor Deposition Growth of GaAs Using Triethylarsenic.

    DTIC Science & Technology

    1987-08-15

    SUPPLEMENTARY NOTATION 17. COSATI CODES 18 SUBJECT TERMS (Corinue on reverse if necessary and identify by block number) FIELD GROUP SUB-GROUP Epitaxy GaAs 9...Zr leiK m I141’ FIGURES 1 . Effect of Growth Parameters on Residual Doping Type ................... 7 2. Photoluminescence Spectrum of a GaAs Epilayer... 1 3 Successful homoepitaxial growth of high purity, unintentionally doped GaAs epilayers by organometallic chemical vapor deposition (OMCVD) has

  16. Fabrication of (NH4)2S passivated GaAs metal-insulator-semiconductor devices using low-frequency plasma-enhanced chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Jaouad, A.; Aimez, V.; Aktik, Ç.; Bellatreche, K.; Souifi, A.

    2004-05-01

    Metal-insulator-semiconductor (MIS) capacitors were fabricated on n-GaAs(100) substrate using (NH4)2S surface passivation and low-frequency plasma-enhanced chemical vapor deposited silicon nitride as gate insulators. The electrical properties of the fabricated MIS capacitors were analyzed using high-frequency capacitance-voltage and conductance-voltage measurements. The high concentration of hydrogen present during low-frequency plasma deposition of silicon nitride enhances the passivation of GaAs surface, leading to the unpinning of the Fermi level and to a good modulation of the surface potential by gate voltage. The electrical properties of the insulator-semiconductor interface are improved after annealing at 450 °C for 60 s, as a significant reduction of the interface fixed charges and of the interface states density is put into evidence. The minimum interface states density was found to be about 3×1011 cm-2 eV-1, as estimated by the Terman method. .

  17. Doping-enhanced radiative efficiency enables lasing in unpassivated GaAs nanowires

    PubMed Central

    Burgess, Tim; Saxena, Dhruv; Mokkapati, Sudha; Li, Zhe; Hall, Christopher R.; Davis, Jeffrey A.; Wang, Yuda; Smith, Leigh M.; Fu, Lan; Caroff, Philippe; Tan, Hark Hoe; Jagadish, Chennupati

    2016-01-01

    Nanolasers hold promise for applications including integrated photonics, on-chip optical interconnects and optical sensing. Key to the realization of current cavity designs is the use of nanomaterials combining high gain with high radiative efficiency. Until now, efforts to enhance the performance of semiconductor nanomaterials have focused on reducing the rate of non-radiative recombination through improvements to material quality and complex passivation schemes. Here we employ controlled impurity doping to increase the rate of radiative recombination. This unique approach enables us to improve the radiative efficiency of unpassivated GaAs nanowires by a factor of several hundred times while also increasing differential gain and reducing the transparency carrier density. In this way, we demonstrate lasing from a nanomaterial that combines high radiative efficiency with a picosecond carrier lifetime ready for high speed applications. PMID:27311597

  18. GaAs core--shell nanowires for photovoltaic applications.

    PubMed

    Czaban, Josef A; Thompson, David A; LaPierre, Ray R

    2009-01-01

    We report the use of Te as an n-type dopant in GaAs core-shell p-n junction nanowires for use in photovoltaic devices. Te produced significant change in the morphology of GaAs nanowires grown by the vapor-liquid-solid process in a molecular beam epitaxy system. The increase in radial growth of nanowires due to the surfactant effect of Te had a significant impact on the operating characteristics of photovoltaic devices. A decrease in solar cell efficiency occurred when the Te-doped GaAs growth duration was increased.

  19. Failure Mechanisms of GaAs Transistors - A Literature Survey

    DTIC Science & Technology

    1990-03-01

    doping profile cannot be as sharp as with epitaxial methods. This is the result of the statistics of the implantation and the general diffusion that...Speed GaAs Logic Gates 5.1 GaAs PLANAR TRANSITOR STRUCTURES USED IN IC’S Some planar transistor structures used in IC’s with examples of the

  20. Transient transition from free carrier metallic state to exciton insulating state in GaAs by ultrafast photoexcitation

    NASA Astrophysics Data System (ADS)

    Nie, X. C.; Song, Hai-Ying; Zhang, Xiu; Gu, Peng; Liu, Shi-Bing; Li, Fan; Meng, Jian-Qiao; Duan, Yu-Xia; Liu, H. Y.

    2018-03-01

    We present systematic studies of the transient dynamics of GaAs by ultrafast time-resolved reflectivity. In photoexcited non-equilibrium states, we found a sign reverse in reflectivity change ΔR/R, from positive around room temperature to negative at cryogenic temperatures. The former corresponds to a free carrier metallic state, while the latter is attributed to an exciton insulating state, in which the transient electronic properties is mostly dominated by excitons, resulting in a transient metal–insulator transition (MIT). Two transition temperatures (T 1 and T 2) are well identified by analyzing the intensity change of the transient reflectivity. We found that photoexcited MIT starts emerging at T 1 as high as ∼ 230 K, in terms of a dip feature at 0.4 ps, and becomes stabilized below T 2 that is up to ∼ 180 K, associated with a negative constant after 40 ps. Our results address a phase diagram that provides a framework for the inducing of MIT through temperature and photoexcitation, and may shed light on the understanding of light-semiconductor interaction and exciton physics.

  1. Amorphous silicon Schottky barrier solar cells incorporating a thin insulating layer and a thin doped layer

    DOEpatents

    Carlson, David E.

    1980-01-01

    Amorphous silicon Schottky barrier solar cells which incorporate a thin insulating layer and a thin doped layer adjacent to the junction forming metal layer exhibit increased open circuit voltages compared to standard rectifying junction metal devices, i.e., Schottky barrier devices, and rectifying junction metal insulating silicon devices, i.e., MIS devices.

  2. Ion-beam doping of GaAs with low-energy (100 eV) C + using combined ion-beam and molecular-beam epitaxy

    NASA Astrophysics Data System (ADS)

    Iida, Tsutomu; Makita, Yunosuke; Kimura, Shinji; Winter, Stefan; Yamada, Akimasa; Fons, Paul; Uekusa, Shin-ichiro

    1995-01-01

    A combined ion-beam and molecular-beam-epitaxy (CIBMBE) system has been developed. This system consists of an ion implanter capable of producing ions in the energy range of 30 eV-30 keV and conventional solid-source MBE. As a successful application of CIBMBE, low-energy (100 eV) carbon ion (C+) irradiation during MBE growth of GaAs was carried out at substrate temperatures Tg between 500 and 590 °C. C+-doped layers were characterized by low-temperature (2 K) photoluminescence (PL), Raman scattering, and van der Pauw measurements. PL spectra of undoped GaAs grown by CIBMBE revealed that unintentional impurity incorporation into the epilayer is extremely small and precise doping effects are observable. CAs acceptor-related emissions such as ``g,'' [g-g], and [g-g]β are observed and their spectra are significantly changed with increasing C+ beam current density Ic. PL measurements showed that C atoms were efficiently incorporated during MBE growth by CIBMBE and were optically well activated as an acceptor in the as-grown condition even for Tg as low as 500 °C. Raman measurement showed negligible lattice damage of the epilayer bombarded with 100 eV C+ with no subsequent heat treatment. These results indicate that contamination- and damage-free impurity doping without postgrowth annealing can be achieved by the CIBMBE method.

  3. Ion-beam doping of GaAs with low-energy (100 eV) C(+) using combined ion-beam and molecular-beam epitaxy

    NASA Astrophysics Data System (ADS)

    Lida, Tsutomu; Makita, Yunosuke; Kimura, Shinji; Winter, Stefan; Yamada, Akimasa; Fons, Paul; Uekusa, Shin-Ichiro

    1995-01-01

    A combined ion-beam and molecular-beam-epitaxy (CIBMBE) system has been developed. This system consists of an ion implanter capable of producing ions in the energy range of 30 eV - 30 keV and conventional solid-source MBE. As a successful application of CIBMBE, low-energy (100 eV) carbon ion (C(+)) irradiation during MBE growth of GaAs was carried out at substrate temperatures T(sub g) between 500 and 590 C. C(+)-doped layers were characterized by low-temperature (2 K) photoluminescence (PL), Raman scattering, and van der Pauw measurements. PL spectra of undoped GaAs grown by CIBMBE revealed that unintentional impurity incorporation into the epilayer is extremely small and precise doping effects are observable. C(sub As) acceptor-related emissions such as 'g', (g-g), and (g-g)(sub beta) are observed and their spectra are significantly changed with increasing C(+) beam current density I(sub c). PL measurements showed that C atoms were efficiently incorporated during MBE growth by CIBMBE and were optically well activated as an acceptor in the as-grown condition even for T(sub g) as low as 500 C. Raman measurement showed negligible lattice damage of the epilayer bombarded with 100 eV C(+) with no subsequent heat treatment. These results indicate that contamination- and damage-free impurity doping without postgrowth annealing can be achieved by the CIBMBE method.

  4. Scanning microwave microscopy applied to semiconducting GaAs structures

    NASA Astrophysics Data System (ADS)

    Buchter, Arne; Hoffmann, Johannes; Delvallée, Alexandra; Brinciotti, Enrico; Hapiuk, Dimitri; Licitra, Christophe; Louarn, Kevin; Arnoult, Alexandre; Almuneau, Guilhem; Piquemal, François; Zeier, Markus; Kienberger, Ferry

    2018-02-01

    A calibration algorithm based on one-port vector network analyzer (VNA) calibration for scanning microwave microscopes (SMMs) is presented and used to extract quantitative carrier densities from a semiconducting n-doped GaAs multilayer sample. This robust and versatile algorithm is instrument and frequency independent, as we demonstrate by analyzing experimental data from two different, cantilever- and tuning fork-based, microscope setups operating in a wide frequency range up to 27.5 GHz. To benchmark the SMM results, comparison with secondary ion mass spectrometry is undertaken. Furthermore, we show SMM data on a GaAs p-n junction distinguishing p- and n-doped layers.

  5. Effects of doping and interchain interactions on the metal-insulator transition in trans-polyacetylene

    NASA Astrophysics Data System (ADS)

    Paulsson, Magnus; Stafström, Sven

    1999-09-01

    Using a tight-binding Hamiltonian the metal-insulator phase diagram for trans-polyacetylene was calculated as a function of doping concentration and interchain interaction strength. The phase boundary for the periodic system coincides with the gap closing, which occurs for certain combinations of critical values for the doping concentration and the interchain interaction strength. The values found are in good agreement with the experimentally observed increase in the Pauli susceptibility. To simulate disorder in the polymer, the effect of finite chain lengths was studied. This type of disorder pushes the metal/insulator phase boundary towards the metallic side of the phase diagram. An increase in the doping concentration and/or interchain interaction is shown to reduce the localizing effects of disorder effectively. For realistic values of the interchain interaction strength the number of chain breaks needed to localize the states at the Fermi energy is quite small, of the order of a few percent. The localization length is found to be substantially longer than the conjugation length of the polymer.

  6. Breakdown of Strong Coupling Expansions for doped Mott Insulators

    NASA Astrophysics Data System (ADS)

    Phillips, Philip; Galanakis, Dimitrios; Stanescu, Tudor

    2005-03-01

    We show that doped Mott insulators, such as the copper-oxide superconductors, are asymptotically slaved in that the quasiparticle weight, Z, near half-filling depends critically on the existence of the high energy scale set by the upper Hubbard band. In particular, near half filling, the following dichotomy arises: Z0 when the high energy scale is integrated out but Z=0 in the thermodynamic limit when it is retained. Slavery to the high energy scale arises from quantum interference between electronic excitations across the Mott gap.

  7. Doped Sc2C(OH)2 MXene: new type s-pd band inversion topological insulator.

    PubMed

    Balcı, Erdem; Akkuş, Ünal Özden; Berber, Savas

    2018-04-18

    The electronic structures of Si and Ge substitutionally doped Sc 2 C(OH) 2 MXene monolayers are investigated in density functional theory. The doped systems exhibit band inversion, and are found to be topological invariants in Z 2 theory. The inclusion of spin orbit coupling results in band gap openings. Our results point out that the Si and Ge doped Sc 2 C(OH) 2 MXene monolayers are topological insulators. The band inversion is observed to have a new mechanism that involves s and pd states.

  8. Doped Sc2C(OH)2 MXene: new type s-pd band inversion topological insulator

    NASA Astrophysics Data System (ADS)

    Balcı, Erdem; Özden Akkuş, Ünal; Berber, Savas

    2018-04-01

    The electronic structures of Si and Ge substitutionally doped Sc2C(OH)2 MXene monolayers are investigated in density functional theory. The doped systems exhibit band inversion, and are found to be topological invariants in Z 2 theory. The inclusion of spin orbit coupling results in band gap openings. Our results point out that the Si and Ge doped Sc2C(OH)2 MXene monolayers are topological insulators. The band inversion is observed to have a new mechanism that involves s and pd states.

  9. Electrodeposition of Metal on GaAs Nanowires

    NASA Astrophysics Data System (ADS)

    Liu, Chao; Einabad, Omid; Watkins, Simon; Kavanagh, Karen

    2010-10-01

    Copper (Cu) electrical contacts to freestanding gallium arsenide (GaAs) nanowires have been fabricated via electrodeposition. The nanowires are zincblende (111) oriented grown epitaxially on n-type Si-doped GaAs (111)B substrates by gold-catalyzed Vapor Liquid Solid (VLS) growth in a metal organic vapour phase epitaxy (MOVPE) reactor. The epitaxial electrodeposition process, based on previous work with bulk GaAs substrates, consists of a substrate oxide pre-etch in dilute ammonium-hydroxide carried out prior to galvanostatic electrodeposition in a pure Cu sulphate aqueous electrolyte at 20-60^oC. For GaAs nanowires, we find that Cu or Fe has a preference for growth on the gold catalyst avoiding the sidewalls. After removing gold, both metals still prefer to grow only on top of the nanowire, which has the largest potential field.

  10. Wafer-scale layer transfer of GaAs and Ge onto Si wafers using patterned epitaxial lift-off

    NASA Astrophysics Data System (ADS)

    Mieda, Eiko; Maeda, Tatsuro; Miyata, Noriyuki; Yasuda, Tetsuji; Kurashima, Yuichi; Maeda, Atsuhiko; Takagi, Hideki; Aoki, Takeshi; Yamamoto, Taketsugu; Ichikawa, Osamu; Osada, Takenori; Hata, Masahiko; Ogawa, Arito; Kikuchi, Toshiyuki; Kunii, Yasuo

    2015-03-01

    We have developed a wafer-scale layer-transfer technique for transferring GaAs and Ge onto Si wafers of up to 300 mm in diameter. Lattice-matched GaAs or Ge layers were epitaxially grown on GaAs wafers using an AlAs release layer, which can subsequently be transferred onto a Si handle wafer via direct wafer bonding and patterned epitaxial lift-off (ELO). The crystal properties of the transferred GaAs layers were characterized by X-ray diffraction (XRD), photoluminescence, and the quality of the transferred Ge layers was characterized using Raman spectroscopy. We find that, after bonding and the wet ELO processes, the quality of the transferred GaAs and Ge layers remained the same compared to that of the as-grown epitaxial layers. Furthermore, we realized Ge-on-insulator and GaAs-on-insulator wafers by wafer-scale pattern ELO technique.

  11. High-efficiency, radiation-resistant GaAs space cells

    NASA Technical Reports Server (NTRS)

    Bertness, K. A.; Ristow, M. Ladle; Grounner, M.; Kuryla, M. S.; Werthen, J. G.

    1991-01-01

    Although many GaAs solar cells are intended for space applicatons, few measurements of cell degradation after radiation are available, particularly for cells with efficiencies exceeding 20 percent (one-sun, AMO). Often the cell performance is optimized for the highest beginning-of-life (BOL) efficiency, despite the unknown effect of such design on end-of-life (EOL) efficiencies. The results of a study of the radiation effects on p-n GaAs cells are presented. The EOL efficiency of GaAs space cell can be increased by adjusting materials growth parameters, resulting in a demonstration of 16 percent EOL efficiency at one-sun, AMO. Reducing base doping levels to below 3 x 10(exp 17)/cu m and decreasing emitter thickness to 0.3 to 0.5 micron for p-n cells led to significant improvements in radiation hardness as measured by EOL/BOL efficiency ratios for irradiation of 10(exp -15)/sq cm electrons at 1 MeV. BOL efficiency was not affected by changes in emitter thickness but did improve with lower base doping.

  12. EL2 and related defects in GaAs - Challenges and pitfalls. [microdefect introducing a deep donor level

    NASA Technical Reports Server (NTRS)

    Gatos, H. C.; Lagowski, J.

    1985-01-01

    The incorporation process of nonequilibrium vacancies in melt-grown GaAs is strongly complicated by deviations from stoichiometry and the presence of two sublattices. Many of the microdefects originating in these vacancies and their interactions introduce energy levels (shallow and deep) within the energy gap. The direct identification of the chemical or structural signature of these defects and its direct correlation to their electronic behavior is not generally possible. It is necessary, therefore, to rely on indirect methods and phenomenological models and deal with the associated pitfalls. EL2, a microdefect introducing a deep donor level, has been in the limelight in recent years because it is believed to be responsible for the semi-insulating behavior of undoped GaAs. Although much progress has been made towards understanding its origin and nature, some relevant questions remain unanswered. An attempt is made to assess the present status of understanding of EL2 in the light of most recent results.

  13. Size-dependent single electron transfer and semi-metal-to-insulator transitions in molecular metal oxide electronics

    NASA Astrophysics Data System (ADS)

    Balliou, Angelika; Bouroushian, Mirtat; Douvas, Antonios M.; Skoulatakis, George; Kennou, Stella; Glezos, Nikos

    2018-07-01

    All-inorganic self-arranged molecular transition metal oxide hyperstructures based on polyoxometalate molecules (POMs) are fabricated and tested as electronically tunable components in emerging electronic devices. POM hyperstructures reveal great potential as charging nodes of tunable charging level for molecular memories and as enhancers of interfacial electron/hole injection for photovoltaic stacks. STM, UPS, UV–vis spectroscopy and AFM measurements show that this functionality stems from the films’ ability to structurally tune their HOMO–LUMO levels and electron localization length at room temperature. By adapting POM nanocluster size in solution, self-doping and current modulation of four orders of magnitude is monitored on a single nanocluster on SiO2 at voltages as low as 3 Volt. Structurally driven insulator-to-semi-metal transitions and size-dependent current regulation through single electron tunneling are demonstrated and examined with respect to the stereochemical and electronic structure of the molecular entities. This extends the value of self-assembly as a tool for correlation length and electronic properties tuning and demonstrate POM hyperstructures’ plausibility for on-chip molecular electronics operative at room temperature.

  14. Size-dependent single electron transfer and semi-metal-to-insulator transitions in molecular metal oxide electronics.

    PubMed

    Balliou, Angelika; Bouroushian, Mirtat; Douvas, Antonios M; Skoulatakis, George; Kennou, Stella; Glezos, Nikos

    2018-07-06

    All-inorganic self-arranged molecular transition metal oxide hyperstructures based on polyoxometalate molecules (POMs) are fabricated and tested as electronically tunable components in emerging electronic devices. POM hyperstructures reveal great potential as charging nodes of tunable charging level for molecular memories and as enhancers of interfacial electron/hole injection for photovoltaic stacks. STM, UPS, UV-vis spectroscopy and AFM measurements show that this functionality stems from the films' ability to structurally tune their HOMO-LUMO levels and electron localization length at room temperature. By adapting POM nanocluster size in solution, self-doping and current modulation of four orders of magnitude is monitored on a single nanocluster on SiO 2 at voltages as low as 3 Volt. Structurally driven insulator-to-semi-metal transitions and size-dependent current regulation through single electron tunneling are demonstrated and examined with respect to the stereochemical and electronic structure of the molecular entities. This extends the value of self-assembly as a tool for correlation length and electronic properties tuning and demonstrate POM hyperstructures' plausibility for on-chip molecular electronics operative at room temperature.

  15. Sidewall GaAs tunnel junctions fabricated using molecular layer epitaxy

    PubMed Central

    Ohno, Takeo; Oyama, Yutaka

    2012-01-01

    In this article we review the fundamental properties and applications of sidewall GaAs tunnel junctions. Heavily impurity-doped GaAs epitaxial layers were prepared using molecular layer epitaxy (MLE), in which intermittent injections of precursors in ultrahigh vacuum were applied, and sidewall tunnel junctions were fabricated using a combination of device mesa wet etching of the GaAs MLE layer and low-temperature area-selective regrowth. The fabricated tunnel junctions on the GaAs sidewall with normal mesa orientation showed a record peak current density of 35 000 A cm-2. They can potentially be used as terahertz devices such as a tunnel injection transit time effect diode or an ideal static induction transistor. PMID:27877466

  16. Effect of low and staggered gap quantum wells inserted in GaAs tunnel junctions

    NASA Astrophysics Data System (ADS)

    Louarn, K.; Claveau, Y.; Marigo-Lombart, L.; Fontaine, C.; Arnoult, A.; Piquemal, F.; Bounouh, A.; Cavassilas, N.; Almuneau, G.

    2018-04-01

    In this article, we investigate the impact of the insertion of either a type I InGaAs or a type II InGaAs/GaAsSb quantum well on the performances of MBE-grown GaAs tunnel junctions (TJs). The devices are designed and simulated using a quantum transport model based on the non-equilibrium Green’s function formalism and a 6-band k.p Hamiltonian. We experimentally observe significant improvements of the peak tunneling current density on both heterostructures with a 460-fold increase for a moderately doped GaAs TJ when the InGaAs QW is inserted at the junction interface, and a 3-fold improvement on a highly doped GaAs TJ integrating a type II InGaAs/GaAsSb QW. Thus, the simple insertion of staggered band lineup heterostructures enables us to reach a tunneling current well above the kA cm‑2 range, equivalent to the best achieved results for Si-doped GaAs TJs, implying very interesting potential for TJ-based components, such as multi-junction solar cells, vertical cavity surface emitting lasers and tunnel-field effect transistors.

  17. Axially engineered metal-insulator phase transition by graded doping VO2 nanowires.

    PubMed

    Lee, Sangwook; Cheng, Chun; Guo, Hua; Hippalgaonkar, Kedar; Wang, Kevin; Suh, Joonki; Liu, Kai; Wu, Junqiao

    2013-03-27

    The abrupt first-order metal-insulator phase transition in single-crystal vanadium dioxide nanowires (NWs) is engineered to be a gradual transition by axially grading the doping level of tungsten. We also demonstrate the potential of these NWs for thermal sensing and actuation applications. At room temperature, the graded-doped NWs show metal phase on the tips and insulator phase near the center of the NW, and the metal phase grows progressively toward the center when the temperature rises. As such, each individual NW acts as a microthermometer that can be simply read out with an optical microscope. The NW resistance decreases gradually with the temperature rise, eventually reaching 2 orders of magnitude drop, in stark contrast to the abrupt resistance change in undoped VO2 wires. This novel phase transition yields an extremely high temperature coefficient of resistivity ~10%/K, simultaneously with a very low resistivity down to 0.001 Ω·cm, making these NWs promising infrared sensing materials for uncooled microbolometers. Lastly, they form bimorph thermal actuators that bend with an unusually high curvature, ~900 m(-1)·K(-1) over a wide temperature range (35-80 °C), significantly broadening the response temperature range of previous VO2 bimorph actuators. Given that the phase transition responds to a diverse range of stimuli-heat, electric current, strain, focused light, and electric field-the graded-doped NWs may find wide applications in thermo-opto-electro-mechanical sensing and energy conversion.

  18. Origin and enhancement of the 1.3 μm luminescence from GaAs treated by ion-implantation and flash lamp annealing

    NASA Astrophysics Data System (ADS)

    Gao, Kun; Prucnal, S.; Skorupa, W.; Helm, M.; Zhou, Shengqiang

    2013-09-01

    GaAs and GaAs based materials have outstanding optoelectronic properties and are widely used as light emitting media in devices. Many approaches have been applied to GaAs to generate luminescence at 0.88, 1.30, and 1.55 μm which are transmission windows of optical fibers. In this paper, we present the photoluminescence at 1.30 μm from deep level defects in GaAs treated by ion-implantation and flash lamp annealing (FLA). Such emission, which exhibits superior temperature stability, can be obtained from FLA treated virgin GaAs as well as doped GaAs. Indium-doping in GaAs can greatly enhance the luminescence. By photoluminescence, Raman measurements, and positron annihilation spectroscopy, we conclude that the origin of the 1.30 μm emission is from transitions between the VAs-donor and X-acceptor pairs.

  19. Scaling of terahertz conductivity at the metal-insulator transition in doped manganites

    NASA Astrophysics Data System (ADS)

    Pimenov, A.; Biberacher, M.; Ivannikov, D.; Loidl, A.; Mukhin, A. A.; Goncharov, Yu. G.; Balbashov, A. M.

    2006-06-01

    Magnetic field and temperature dependence of the terahertz conductivity and permittivity of the colossal magnetoresistance manganite Pr0.65Ca0.28Sr0.07MnO3 (PCSMO) is investigated approaching the metal-to-insulator transition (MIT) from the insulating side. In the charge-ordered state of PCSMO both conductivity and dielectric permittivity increase as a function of magnetic field and temperature. Universal scaling relationships Δɛ∝Δσ are observed in a broad range of temperatures and magnetic fields. Similar scaling is also seen in La1-xSrxMnO3 for different doping levels. The observed proportionality points towards the importance of pure ac-conductivity and phononic energy scale at MIT in manganites.

  20. Realization of a Hole-Doped Mott Insulator on a Triangular Silicon Lattice

    NASA Astrophysics Data System (ADS)

    Ming, Fangfei; Johnston, Steve; Mulugeta, Daniel; Smith, Tyler S.; Vilmercati, Paolo; Lee, Geunseop; Maier, Thomas A.; Snijders, Paul C.; Weitering, Hanno H.

    2017-12-01

    The physics of doped Mott insulators is at the heart of some of the most exotic physical phenomena in materials research including insulator-metal transitions, colossal magnetoresistance, and high-temperature superconductivity in layered perovskite compounds. Advances in this field would greatly benefit from the availability of new material systems with a similar richness of physical phenomena but with fewer chemical and structural complications in comparison to oxides. Using scanning tunneling microscopy and spectroscopy, we show that such a system can be realized on a silicon platform. The adsorption of one-third monolayer of Sn atoms on a Si(111) surface produces a triangular surface lattice with half filled dangling bond orbitals. Modulation hole doping of these dangling bonds unveils clear hallmarks of Mott physics, such as spectral weight transfer and the formation of quasiparticle states at the Fermi level, well-defined Fermi contour segments, and a sharp singularity in the density of states. These observations are remarkably similar to those made in complex oxide materials, including high-temperature superconductors, but highly extraordinary within the realm of conventional s p -bonded semiconductor materials. It suggests that exotic quantum matter phases can be realized and engineered on silicon-based materials platforms.

  1. Hallmarks of the Mott-metal crossover in the hole-doped pseudospin-1/2 Mott insulator Sr 2IrO 4

    DOE PAGES

    Cao, Yue; Wang, Qiang; Waugh, Justin A.; ...

    2016-04-22

    The physics of doped Mott insulators remains controversial after decades of active research, hindered by the interplay among competing orders and fluctuations. It is thus highly desired to distinguish the intrinsic characters of the Mott-metal crossover from those of other origins. Here we investigate the evolution of electronic structure and dynamics of the hole-doped pseudospin-1/2 Mott insulator Sr 2 IrO 4 . The effective hole doping is achieved by replacing Ir with Rh atoms, with the chemical potential immediately jumping to or near the top of the lower Hubbard band. The doped iridates exhibit multiple iconic low-energy features previously observedmore » in doped cuprates - pseudogaps, Fermi arcs and marginal-Fermi-liquid-like electronic scattering rates. We suggest these signatures are most likely an integral part of the material's proximity to the Mott state, rather than from many of the most claimed mechanisms, including preformed electron pairing, quantum criticality or density-wave formation.« less

  2. Ultrahigh sensitivity of anomalous Hall effect sensor based on Cr-doped Bi 2Te 3 topological insulator thin films

    DOE PAGES

    Ni, Y.; Zhang, Z.; Nlebedim, I. C.; ...

    2016-07-01

    Anomalous Hall effect (AHE) was recently discovered in magnetic element-doped topological insulators (TIs), which promises low power consumption and high efficiency spintronics and electronics. This discovery broadens the family of Hall sensors. In this paper, AHE sensors based on Cr-doped Bi 2Te 3 topological insulator thin films are studied with two thicknesses (15 and 65 nm). It is found, in both cases, that ultrahigh Hall sensitivity can be obtained in Cr-doped Bi 2Te 3. Hall sensitivity reaches 1666 Ω/T in the sensor with the 15 nm TI thin film, which is higher than that of the conventional semiconductor HE sensor.more » The AHE of 65 nm sensors is even stronger, which causes the sensitivity increasing to 2620 Ω/T. Furthermore, after comparing Cr-doped Bi 2Te 3 with the previously studied Mn-doped Bi 2Te 3 TI Hall sensor, the sensitivity of the present AHE sensor shows about 60 times higher in 65 nm sensors. Furthermore, the implementation of AHE sensors based on a magnetic-doped TI thin film indicates that the TIs are good candidates for ultrasensitive AHE sensors.« less

  3. Fully gapped superconductivity in In-doped topological crystalline insulator Pb 0.5Sn 0.5Te

    DOE PAGES

    Du, Guan; Gu, G. D.; Du, Zengyi; ...

    2015-07-27

    In this study, superconductors derived from topological insulators and topological crystalline insulators by chemical doping have long been considered to be candidates as topological superconductors. Pb 0.5Sn 0.5Te is a topological crystalline insulator with mirror symmetry protected surface states on (001)-, (011)-, and (111)-oriented surfaces. The superconductor (Pb 0.5Sn 0.5) 0.7In 0.3Te is produced by In doping in Pb 0.5Sn 0.5Te, and is thought to be a topological superconductor. Here we report scanning tunneling spectroscopy measurements of the superconducting state as well as the superconducting energy gap in (Pb 0.5Sn 0.5) 0.7In 0.3Te on a (001)-oriented surface. The spectrum canmore » be well fitted by an anisotropic s-wave gap function of Δ = 0.72 + 0.18cos4θ meV using Dynes model. The results show that the superconductor seems to be a fully gapped one without any in-gap states, in contradiction with the expectation of a topological superconductor.« less

  4. Modelling of OPNMR phenomena using photon energy-dependent 〈Sz〉 in GaAs and InP.

    PubMed

    Wheeler, Dustin D; Willmering, Matthew M; Sesti, Erika L; Pan, Xingyuan; Saha, Dipta; Stanton, Christopher J; Hayes, Sophia E

    2016-12-01

    We have modified the model for optically-pumped NMR (OPNMR) to incorporate a revised expression for the expectation value of the z-projection of the electron spin, 〈S z 〉 and apply this model to both bulk GaAs and a new material, InP. This expression includes the photon energy dependence of the electron polarization when optically pumping direct-gap semiconductors in excess of the bandgap energy, E g . Rather than using a fixed value arising from coefficients (the matrix elements) for the optical transitions at the k=0 bandedge, we define a new parameter, S opt (E ph ). Incorporating this revised element into the expression for 〈S z 〉, we have simulated the photon energy dependence of the OPNMR signals from bulk semi-insulating GaAs and semi-insulating InP. In earlier work, we matched calculations of electron spin polarization (alone) to features in a plot of OPNMR signal intensity versus photon energy for optical pumping (Ramaswamy et al., 2010). By incorporating an electron spin polarization which varies with pump wavelength into the penetration depth model of OPNMR signal, we are able to model features in both III-V semiconductors. The agreement between the OPNMR data and the corresponding model demonstrates that fluctuations in the OPNMR intensity have particular sensitivity to light hole-to-conduction band transitions in bulk systems. We provide detailed plots of the theoretical predictions for optical pumping transition probabilities with circularly-polarized light for both helicities of light, broken down into illustrative plots of optical magnetoabsorption and spin polarization, shown separately for heavy-hole and light-hole transitions. These plots serve as an effective roadmap of transitions, which are helpful to other researchers investigating optical pumping effects. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Modelling of OPNMR phenomena using photon energy-dependent 〈Sz〉 in GaAs and InP

    NASA Astrophysics Data System (ADS)

    Wheeler, Dustin D.; Willmering, Matthew M.; Sesti, Erika L.; Pan, Xingyuan; Saha, Dipta; Stanton, Christopher J.; Hayes, Sophia E.

    2016-12-01

    We have modified the model for optically-pumped NMR (OPNMR) to incorporate a revised expression for the expectation value of the z-projection of the electron spin, 〈Sz 〉 and apply this model to both bulk GaAs and a new material, InP. This expression includes the photon energy dependence of the electron polarization when optically pumping direct-gap semiconductors in excess of the bandgap energy, Eg . Rather than using a fixed value arising from coefficients (the matrix elements) for the optical transitions at the k = 0 bandedge, we define a new parameter, Sopt (Eph) . Incorporating this revised element into the expression for 〈Sz 〉 , we have simulated the photon energy dependence of the OPNMR signals from bulk semi-insulating GaAs and semi-insulating InP. In earlier work, we matched calculations of electron spin polarization (alone) to features in a plot of OPNMR signal intensity versus photon energy for optical pumping (Ramaswamy et al., 2010). By incorporating an electron spin polarization which varies with pump wavelength into the penetration depth model of OPNMR signal, we are able to model features in both III-V semiconductors. The agreement between the OPNMR data and the corresponding model demonstrates that fluctuations in the OPNMR intensity have particular sensitivity to light hole-to-conduction band transitions in bulk systems. We provide detailed plots of the theoretical predictions for optical pumping transition probabilities with circularly-polarized light for both helicities of light, broken down into illustrative plots of optical magnetoabsorption and spin polarization, shown separately for heavy-hole and light-hole transitions. These plots serve as an effective roadmap of transitions, which are helpful to other researchers investigating optical pumping effects.

  6. GaAs High Breakdown Voltage Front and Back Side Processed Schottky Detectors for X-Ray Detection

    DTIC Science & Technology

    2007-11-01

    front and back side processed, unintentionally doped bulk gallium -arsenic (GaAs) Schottky detectors and determined that GaAs detectors with a large...a few materials that fulfill these requirements are gallium -arsenic (GaAs) and cadmium-zinc-tellurium (CdZnTe or CZT). They are viable alternative...Whitehill, C.; Pospíšil, S.; Wilhem, I.; Doležal, Z.; Juergensen, H.; Heuken, M. Development of low-pressure vapour -phase epitaxial GaAs for medical imaging

  7. Current oscillations in semi-insulating GaAs associated with field-enhanced capture of electrons by the major deep donor EL2

    NASA Technical Reports Server (NTRS)

    Kaminska, M.; Parsey, J. M.; Lagowski, J.; Gatos, H. C.

    1982-01-01

    Current oscillations thermally activated by the release of electrons from deep levels in undoped semiinsulating GaAs were observed for the first time. They were attributed to electric field-enhanced capture of electrons by the dominant deep donor EL2 (antisite AsGa defect). This enhanced capture is due to the configurational energy barrier of EL2, which is readily penetrated by hot electrons.

  8. Carrier-induced ferromagnetism in the insulating Mn-doped III-V semiconductor InP

    NASA Astrophysics Data System (ADS)

    Bouzerar, Richard; May, Daniel; Löw, Ute; Machon, Denis; Melinon, Patrice; Zhou, Shengqiang; Bouzerar, Georges

    2016-09-01

    Although InP and GaAs have very similar band structure their magnetic properties appear to drastically differ. Critical temperatures in (In,Mn)P are much smaller than those of (Ga,Mn)As and scale linearly with Mn concentration. This is in contrast to the square-root behavior found in (Ga,Mn)As. Moreover the magnetization curve exhibits an unconventional shape in (In,Mn)P contrasting with the conventional one of well-annealed (Ga,Mn)As. By combining several theoretical approaches, the nature of ferromagnetism in Mn-doped InP is investigated. It appears that the magnetic properties are essentially controlled by the position of the Mn acceptor level. Our calculations are in excellent agreement with recent measurements for both critical temperatures and magnetizations. The results are only consistent with a Fermi level lying in an impurity band, ruling out the possibility to understand the physical properties of Mn-doped InP within the valence band scenario. The quantitative success found here reveals a predictive tool of choice that should open interesting pathways to address magnetic properties in other compounds.

  9. Low-temperature photoluminescence study of thin epitaxial GaAs films on Ge substrates

    NASA Astrophysics Data System (ADS)

    Brammertz, Guy; Mols, Yves; Degroote, Stefan; Motsnyi, Vasyl; Leys, Maarten; Borghs, Gustaaf; Caymax, Matty

    2006-05-01

    Thin epitaxial GaAs films, with thickness varying from 140 to 1000 nm and different Si doping levels, were grown at 650 °C by organometallic vapor phase epitaxy on Ge substrates and analyzed by low-temperature photoluminescence (PL) spectroscopy. All spectra of thin GaAs on Ge show two different structures, one narrow band-to-band (B2B) structure at an energy of ~1.5 eV and a broad inner-band-gap (IB) structure at an energy of ~1.1 eV. Small strain in the thin GaAs films causes the B2B structure to be separated into a light-hole and a heavy-hole peak. At 2.5 K the good structural quality of the thin GaAs films on Ge can be observed from the narrow excitonic peaks. Peak widths of less than 1 meV are measured. GaAs films with thickness smaller than 200 nm show B2B PL spectra with characteristics of an n-type doping level of approximately 1018 at./cm3. This is caused by heavy Ge diffusion from the substrate into the GaAs at the heterointerface between the two materials. The IB structure observed in all films consists of two Gaussian peaks with energies of 1.04 and 1.17 eV. These deep trapping states arise from Ge-based complexes formed within the GaAs at the Ge-GaAs heterointerface, due to strong diffusion of Ge atoms into the GaAs. Because of similarities with Si-based complexes, the peak at 1.04 eV was identified to be due to a GeGa-GeAs complex, whereas the peak at 1.17 eV was attributed to the GeGa-VGa complex. The intensity of the IB structure decreases strongly as the GaAs film thickness is increased. PL intensity of undoped GaAs films containing antiphase domains (APDs) is four orders of magnitude lower than for similar films without APDs. This reduction in intensity is due to the electrically active Ga-Ga and As-As bonds at the boundaries between the different APDs. When the Si doping level is increased, the PL intensity of the APD-containing films is increased again as well. A film containing APDs with a Si doping level of ~1018 at./cm3 has only a factor 10

  10. Increased sensitivity of spin noise spectroscopy using homodyne detection in n -doped GaAs

    NASA Astrophysics Data System (ADS)

    Petrov, M. Yu.; Kamenskii, A. N.; Zapasskii, V. S.; Bayer, M.; Greilich, A.

    2018-03-01

    We implement the homodyne detection scheme for an increase in the polarimetric sensitivity in spin noise spectroscopy. Controlling the laser intensity of the local oscillator, which is guided around the sample and does not perturb the measured spin system, we are able to improve the signal-to-noise ratio. The opportunity for additional amplification of the measured signal strength allows us to reduce the probe laser intensity incident on the sample and therefore to approach the nonperturbative regime. The efficiency of this scheme with signal enhancement by more than a factor of 3 at low probe powers is demonstrated on bulk n -doped GaAs, where the reduced electron-spin relaxation rate is shown experimentally. Additionally, the control of the optical phase provides us with the possibility to switch between measuring Faraday rotation and ellipticity without changes in the optical setup.

  11. Interface demarcation in GaAs by current pulsing

    NASA Technical Reports Server (NTRS)

    Matthiesen, D. H.; Kafalas, J. A.; Duchene, G. A.; Bellows, A. H.

    1990-01-01

    GTE Laboratories is currently conducting a program to investigate the effect of convection in the melt on the properties of bulk grown gallium arsenide (GaAs). In addition to extensive ground based experimentation, a Get Away Special growth system has been developed to grow two GaAs crystals aboard the Space Shuttle, each with a one inch diameter. In order to perform a complete segregation analysis of the crystals grown in space, it is necessary to measure the interface shape and growth rate as well as the spatial distribution of the selenium dopant. The techniques for interface demarcation in selenium doped GaAs by current pulsing have been developed at GTE Laboratories and successful interface demarcation has been achieved for current pulses ranging from 20 to 90 amps, in both single crystal and polycrystalline regions.

  12. Ferromagnetic ordering in Mn-doped quantum wells GaAs-AlGaAs resulting from the virtual Anderson transition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Agrinskaya, N. V.; Berezovets, V. A.; Bouravlev, A.

    We present our results obtained for Mn-doped GaAs quantum wells where the evidences of the ferromagnetic transition at relatively high temperatures were found at unusually small Mn concentrations. The observed values of hopping resistance at small temperatures evidenced that the samples are deep in the insulating regime. Thus the corresponding estimates of the overlapping integrals can hardly explain the large values of Curie temperatures T{sub c} ≃ 100 K. We develop a theoretical model qualitatively explaining the experimental results basing on the concept of virtual Anderson transition.

  13. Tailoring Materials for Mottronics: Excess Oxygen Doping of a Prototypical Mott Insulator.

    PubMed

    Scheiderer, Philipp; Schmitt, Matthias; Gabel, Judith; Zapf, Michael; Stübinger, Martin; Schütz, Philipp; Dudy, Lenart; Schlueter, Christoph; Lee, Tien-Lin; Sing, Michael; Claessen, Ralph

    2018-05-07

    The Mott transistor is a paradigm for a new class of electronic devices-often referred to by the term Mottronics-which are based on charge correlations between the electrons. Since correlation-induced insulating phases of most oxide compounds are usually very robust, new methods have to be developed to push such materials right to the boundary to the metallic phase in order to enable the metal-insulator transition to be switched by electric gating. Here, it is demonstrated that thin films of the prototypical Mott insulator LaTiO 3 grown by pulsed laser deposition under oxygen atmosphere are readily tuned by excess oxygen doping across the line of the band-filling controlled Mott transition in the electronic phase diagram. The detected insulator to metal transition is characterized by a strong change in resistivity of several orders of magnitude. The use of suitable substrates and capping layers to inhibit oxygen diffusion facilitates full control of the oxygen content and renders the films stable against exposure to ambient conditions. These achievements represent a significant advancement in control and tuning of the electronic properties of LaTiO 3+ x thin films making it a promising channel material in future Mottronic devices. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Nuclear spin warm up in bulk n -GaAs

    NASA Astrophysics Data System (ADS)

    Kotur, M.; Dzhioev, R. I.; Vladimirova, M.; Jouault, B.; Korenev, V. L.; Kavokin, K. V.

    2016-08-01

    We show that the spin-lattice relaxation in n -type insulating GaAs is dramatically accelerated at low magnetic fields. The origin of this effect, which cannot be explained in terms of well-known diffusion-limited hyperfine relaxation, is found in the quadrupole relaxation, induced by fluctuating donor charges. Therefore, quadrupole relaxation, which governs low field nuclear spin relaxation in semiconductor quantum dots, but was so far supposed to be harmless to bulk nuclei spins in the absence of optical pumping, can be studied and harnessed in the much simpler model environment of n -GaAs bulk crystal.

  15. Low temperature growth and electrical characterization of insulators for GaAs MISFETS

    NASA Technical Reports Server (NTRS)

    Borrego, J. M.; Ghandhi, S. K.

    1981-01-01

    Progress in the low temperature growth of oxides and layers on GaAs and the detailed electrical characterization of these oxides is reported. A plasma anodization system was designed, assembled, and put into operation. A measurement system was assembled for determining capacitance and conductance as a function of gate voltage for frequencies in the range from 1 Hz to 1 MHz. Initial measurements were carried out in Si-SiO2 capacitors in order to test the system and in GaAs MIS capacitors abricated using liquid anodization.

  16. Interface structure and composition of MoO3/GaAs(0 0 1)

    NASA Astrophysics Data System (ADS)

    Sarkar, Anirban; Ashraf, Tanveer; Grafeneder, Wolfgang; Koch, Reinhold

    2018-04-01

    We studied growth, structure, stress, oxidation state as well as surface and interface structure and composition of thermally-evaporated thin MoO3 films on the technologically important III/V-semiconductor substrate GaAs(0 0 1). The MoO3 films grow with Mo in the 6+  oxidation state. The electrical resistance is tunable by the oxygen partial pressure during deposition from transparent insulating to semi-transparant halfmetallic. In the investigated growth temperature range (room temperature to 200 °C) no diffraction spots are detected by x-ray diffraction. However, high resolution transmission electron microscopy reveals the formation of MoO3 nanocrystal grains with diameters of 5–8 nm. At the interface a  ≈3 nm-thick intermediate layer has formed, where the single-crystal lattice of GaAs gradually transforms to the nanocrystalline MoO3 structure. This interpretation is corroborated by our in situ and real-time stress measurements evidencing a two-stage growth process as well as by elemental interface analysis revealing coexistance of Ga, As, Mo, and oxygen in a intermediate layer of 3–4 nm.

  17. Fabrication of Ohmic contact on semi-insulating 4H-SiC substrate by laser thermal annealing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheng, Yue; Lu, Wu-yue; Wang, Tao

    The Ni contact layer was deposited on semi-insulating 4H-SiC substrate by magnetron sputtering. The as-deposited samples were treated by rapid thermal annealing (RTA) and KrF excimer laser thermal annealing (LTA), respectively. The RTA annealed sample is rectifying while the LTA sample is Ohmic. The specific contact resistance (ρ{sub c}) is 1.97 × 10{sup −3} Ω·cm{sup 2}, which was determined by the circular transmission line model. High resolution transmission electron microscopy morphologies and selected area electron diffraction patterns demonstrate that the 3C-SiC transition zone is formed in the near-interface region of the SiC after the as-deposited sample is treated by LTA,more » which is responsible for the Ohmic contact formation in the semi-insulating 4H-SiC.« less

  18. Andreev Reflection Spectroscopy of Nb-doped Bi2Se3 Topological Insulator

    NASA Astrophysics Data System (ADS)

    Kurter, C.; Finck, A. D. K.; Qiu, Y.; Huemiller, E.; Weis, A.; Atkinson, J.; Medvedeva, J.; Hor, Y. S.; van Harlingen, D. J.

    2015-03-01

    Doped topological insulators are speculated to realize p-wave superconductivity with unusual low energy quasiparticles, such as surface Andreev bound states. We present point contact spectroscopy of thin exfoliated flakes of Nb-doped Bi2Se3 where superconductivity persists up to ~ 1 K, compared to 3.2 K in bulk crystals. The critical magnetic field is strongly anisotropic, consistent with quasi-2D behavior. Andreev reflection measurements of devices with low resistance contacts result in prominent BTK-like behavior with an enhanced conductance plateau at low bias. For high resistance contacts, we observe a split zero bias conductance anomaly and additional features at the superconducting gap. Our results suggest that this material is a promising platform for studying topological superconductivity. We acknowledge support from Microsoft Project Q.

  19. Effect of thermal annealing on the photoluminescence of structures with InGaAs/GaAs quantum wells and a low-temperature GaAs layer δ-doped with Mn

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kalentyeva, I. L.; Vikhrova, O. V., E-mail: istery@rambler.ru; Danilov, Yu. A.

    2016-11-15

    The effects of isochronal thermal annealing (at 325–725°C) on the radiative properties of InGaAs/GaAs nanoheterostructures containing a low-temperature GaAs layer δ-doped with Mn grown by laser deposition are studied. A decrease in the photoluminescence intensity and increase in the ground transition energy are observed upon thermal impact for quantum wells located near the low-temperature GaAs layer. The distribution of Mn atoms in the initial and annealed structures is obtained by secondary-ion mass spectrometry. A qualitative model of the observed effects of thermal annealing on the radiative properties of the structures is discussed; this model takes into account two main processes:more » diffusion of point defects (primarily gallium vacancies) from the GaAs coating layer deep into the structure and Mn diffusion in both directions by the dissociation mechanism. Magnetization studies show that, as a result of thermal annealing, an increase in the proportion of the ferromagnetic phase at room temperature (presumably, MnAs clusters) in the low-temperature GaAs coating layer takes place.« less

  20. Enhancement of pairing interaction and magnetic fluctuations toward a band insulator in an electron-doped Li(x)ZrNCl Superconductor.

    PubMed

    Kasahara, Yuichi; Kishiume, Tsukasa; Takano, Takumi; Kobayashi, Katsuki; Matsuoka, Eiichi; Onodera, Hideya; Kuroki, Kazuhiko; Taguchi, Yasujiro; Iwasa, Yoshihiro

    2009-08-14

    The doping dependence of specific heat and magnetic susceptibility has been investigated for Li(x)ZrNCl superconductors derived from a band insulator. As the carrier concentration is decreased, the anisotropy of superconducting gap changes from highly anisotropic to almost isotropic. It was also found that, upon reducing carrier density, the superconducting coupling strength and the magnetic susceptibility are concomitantly enhanced in parallel with T(c), while the density of states at the Fermi level is kept almost constant. Theoretical calculations taking into account the on-site Coulomb interaction reproduced the experimental results, suggesting a possible pairing mediated by magnetic fluctuations, even in the doped band insulators.

  1. Doping induced carrier and band-gap modulation in bulk versus nano for topological insulators: A test case of Stibnite

    NASA Astrophysics Data System (ADS)

    Maji, Tuhin Kumar; Pal, Samir Kumar; Karmakar, Debjani

    2018-04-01

    We aim at comparing the electronic properties of topological insulator Sb2S3 in bulk and Nanorod using density-functional scheme and investigating the effects of Se-doping at chalcogen-site. While going from bulk to nano, there is a drastic change in the band gap due to surface-induced strain. However, the trend of band gap modulation with increased Se doping is more prominent in bulk. Interestingly, Se-doping introduces different type of carriers in bulk and nano.

  2. Spin-on doping of germanium-on-insulator wafers for monolithic light sources on silicon

    NASA Astrophysics Data System (ADS)

    Al-Attili, Abdelrahman Z.; Kako, Satoshi; Husain, Muhammad K.; Gardes, Frederic Y.; Arimoto, Hideo; Higashitarumizu, Naoki; Iwamoto, Satoshi; Arakawa, Yasuhiko; Ishikawa, Yasuhiko; Saito, Shinichi

    2015-05-01

    High electron doping of germanium (Ge) is considered to be an important process to convert Ge into an optical gain material and realize a monolithic light source integrated on a silicon chip. Spin-on doping is a method that offers the potential to achieve high doping concentrations without affecting crystalline qualities over other methods such as ion implantation and in-situ doping during material growth. However, a standard spin-on doping recipe satisfying these requirements is not yet available. In this paper we examine spin-on doping of Ge-on-insulator (GOI) wafers. Several issues were identified during the spin-on doping process and specifically the adhesion between Ge and the oxide, surface oxidation during activation, and the stress created in the layers due to annealing. In order to mitigate these problems, Ge disks were first patterned by dry etching followed by spin-on doping. Even by using this method to reduce the stress, local peeling of Ge could still be identified by optical microscope imaging. Nevertheless, most of the Ge disks remained after the removal of the glass. According to the Raman data, we could not identify broadening of the lineshape which shows a good crystalline quality, while the stress is slightly relaxed. We also determined the linear increase of the photoluminescence intensity by increasing the optical pumping power for the doped sample, which implies a direct population and recombination at the gamma valley.

  3. Resistivity dependence on Zn concentration in semi-insulating (Cd,Zn)Te

    NASA Astrophysics Data System (ADS)

    Fiederle, Michael; Fauler, Alex; Babentsov, Vladimir N.; Franc, Jan; Benz, Klaus Werner

    2003-01-01

    The resistivity dependence on Zn concentration had been investigated in semi-insulating (Cd,Zn)Te crystals grown by the vertical Bridgman method. A coorelation between the zinc concentration and the resistivity distribution could be found. The obtained resistivity was in the interval of 2 ×109-1010 Ω cm as expected from the model of compensation. The main deep compensating levels detected by Photo Induced Current Transient Spectroscopy (PICTS) were at 0.64 +/- 0.02 eV and close the middle of the band gap at 0.80 +/- 0.02 eV.

  4. Effect of variations in the doping profiles on the properties of doped multiple quantum well avalanche photodiodes

    NASA Technical Reports Server (NTRS)

    Menkara, H. M.; Wagner, B. K.; Summers, C. J.

    1996-01-01

    The purpose of this study is to use both theoretical and experimental evidence to determine the impact of doping imbalance and symmetry on the physical and electrical characteristics of doped multiple quantum well avalanche photodiodes (APD). Theoretical models have been developed to calculate the electric field valence and conduction bands, capacitance-voltage (CV), and carrier concentration versus depletion depth profiles. The models showed a strong correlation between the p- and n-doping balance inside the GaAs wells and the number of depleted stages and breakdown voltage of the APD. A periodic doping imbalance in the wells has been shown to result in a gradual increase (or decrease) in the electric field profile throughout the device which gave rise to partially depleted devices at low bias. The MQW APD structures that we modeled consisted of a 1 micron top p(+)-doped (3 x 10(exp 18) cm(exp -3)) GaAs layer followed by a 1 micron region of alternating layers of GaAs (500 A) and Al(0.42)Ga(0.58)As (500 A), and a 1 micron n(+) back layer (3 x 10(exp 18) cm(exp -3)). The GaAs wells were doped with p-i-n layers placed at the center of each well. The simulation results showed that in an APD with nine doped wells, and where the 50 A p-doped layer is off by 10% (p = 1.65 x 10(exp 18) cm(exp -3), n = 1.5 x 10(exp 18) cm(exp -3)), almost half of the MQW stages were shown to be undepleted at low bias which was a result of a reduction in the electric field near the p(+) cap layer by over 50% from its value in the balanced structure. Experimental CV and IV data on similar MBE grown MQW structures have shown very similar depletion and breakdown characteristics. The models have enabled us to better interpret our experimental data and to determine both the extent of the doping imbalances in the devices as well as the overall p- or n-type doping characteristics of the structures.

  5. ALD Al2O3 passivation of Lg = 100 nm metamorphic InAlAs/InGaAs HEMTs with Si-doped Schottky layers on GaAs substrates

    NASA Astrophysics Data System (ADS)

    Sun, Bing; Chang, Hudong; Wang, Shengkai; Niu, Jiebin; Liu, Honggang

    2017-12-01

    In0.52Al0.48As/In0.7Ga0.3As metamorphic high-electron-mobility transistors (mHEMTs) on GaAs substrates have been demonstrated. The devices feature an epitaxial structure with Si-doped InP/In0.52Al0.48As Schottky layers, together with an atomic layer deposition (ALD) Al2O3 passivation process. In comparison to the GaAs mHEMTs with plasma enhanced chemical vapor deposition (PECVD) SiN passivation, the devices with ALD Al2O3 passivation exhibit more than one order of magnitude lower gate leakage current (Jg) and much lower contact resistance (RC) and specific contact resistivity (ρC). 100-nm gate length (Lg) In0.52Al0.48As/In0.7Ga0.3As mHEMTs with Si-doped InP/In0.52Al0.48As Schottky layers and ALD Al2O3 passivation exhibit excellent DC and RF characteristics, such as a maximum oscillation frequency (fmax) of 388.2 GHz.

  6. Dopant diffusion and segregation in semiconductor heterostructures: Part III, diffusion of Si into GaAs

    NASA Astrophysics Data System (ADS)

    Chen, C.-H.; Gösele, U. M.; Tan, T. Y.

    We have mentioned previously that in the third part of the present series of papers, a variety of n-doping associated phenomena will be treated. Instead, we have decided that this paper, in which the subject treated is diffusion of Si into GaAs, shall be the third paper of the series. This choice is arrived at because this subject is a most relevent heterostructure problem, and also because of space and timing considerations. The main n-type dopant Si in GaAs is amphoteric which may be incorporated as shallow donor species SiGa+ and as shallow acceptor species SiAs-. The solubility of SiAs- is much lower than that of SiGa+ except at very high Si concentration levels. Hence, a severe electrical self-compensation occurs at very high Si concentrations. In this study we have modeled the Si distribution process in GaAs by assuming that the diffusing species is SiGa+ which will convert into SiAs- in accordance with their solubilities and that the point defect species governing the diffusion of SiGa+ are triply-negatively-charged Ga vacancies VGa3-. The outstanding features of the Si indiffusion profiles near the Si/GaAs interface have been quantitatively explained for the first time. Deposited on the GaAs crystal surface, the Si source material is a polycrystalline Si layer which may be undoped or n+-doped using As or P. Without the use of an As vapor phase in the ambient, the As- and P-doped source materials effectively render the GaAs crystals into an As-rich composition, which leads to a much more efficient Si indiffusion process than for the case of using undoped source materials which maintains the GaAs crystals in a relatively As-poor condition. The source material and the GaAs crystal together form a heterostructure with its junction influencing the electron distribution in the region, which, in turn, affects the Si indiffusion process prominently.

  7. Investigation of pentacene growth on SiO2 gate insulator after photolithography for nitrogen-doped LaB6 bottom-contact electrode formation

    NASA Astrophysics Data System (ADS)

    Maeda, Yasutaka; Hiroki, Mizuha; Ohmi, Shun-ichiro

    2018-04-01

    Nitrogen-doped (N-doped) LaB6 is a candidate material for the bottom-contact electrode of n-type organic field-effect transistors (OFETs). However, the formation of a N-doped LaB6 electrode affects the surface morphology of a pentacene film. In this study, the effects of surface treatments and a N-doped LaB6 interfacial layer (IL) were investigated to improve the pentacene film quality after N-doped LaB6 electrode patterning with diluted HNO3, followed by resist stripping with acetone and methanol. It was found that the sputtering damage during N-doped LaB6 deposition on a SiO2 gate insulator degraded the crystallinity of pentacene. The H2SO4 and H2O2 (SPM) and diluted HF treatments removed the damaged layer on the SiO2 gate insulator surface. Furthermore, the N-doped LaB6 IL improved the crystallinity of pentacene and realized dendritic grain growth. Owing to these surface treatments, the hole mobility improved from 2.8 × 10-3 to 0.11 cm2/(V·s), and a steep subthreshold swing of 78 mV/dec for the OFET with top-contact configuration was realized in air even after bottom-contact electrode patterning.

  8. GaAs laser diode pumped Nd:YAG laser

    NASA Technical Reports Server (NTRS)

    Conant, L. C.; Reno, C. W.

    1974-01-01

    A 1.5-mm by 3-cm neodymium-ion doped YAG laser rod has been side pumped using a GaAs laser diode array tuned to the 8680-A absorption line, achieving a multimode average output power of 120 mW for a total input power of 20 W to the final-stage laser diode drivers. The pumped arrangement was designed to take advantage of the high brightness of a conventional GaAs array as a linear source by introducing the pump light through a slit into a close-wrapped gold coated pump cavity. This cavity forms an integrating chamber for the pump light.

  9. Novel δ-doped partially insulated junctionless transistor for mixed signal integrated circuits

    NASA Astrophysics Data System (ADS)

    Patil, Ganesh C.; Bonge, Vijaysinh H.; Malode, Mayur M.; Jain, Rahul G.

    2016-02-01

    In this paper, δ-doped partially insulated junctionless transistor (δ-Pi-OXJLT) has been proposed which shows that, employing highly doped δ-region below the channel not only reduces the off-state leakage current (IOFF) and short channel effects (SCEs) but also reduce the requirements of scaling channel thickness of junctionless transistor (JLT). The comparative analysis of digital and analog circuit performance of proposed δ-Pi-OXJLT, bulk planar (BP) JLT and silicon-on-insulator (SOI) JLT has also been carried out. The digital parameters analyzed in this work are, on-state drive current (ION), IOFF, ION/IOFF ratio, static power dissipation (PSTAT) whereas the analog parameters analyzed includes, transconductance (GM), transconductance generation factor (GM/IDS), intrinsic gain (GMRO) and cut-off frequency (fT) of the devices. In addition, scaling behavior of the devices is studied for various channel lengths by using the parameters such as drain induced barrier lowering (DIBL) and sub-threshold swing (SS). It has been found that, the proposed δ-Pi-OXJLT shows significant reduction in IOFF, DIBL and SS over BPJLT and SOIJLT devices. Further, ION and ION/IOFF ratio in the case of proposed δ-Pi-OXJLT also improves over the BPJLT device. Furthermore, the improvement in analog figures of merit, GM, GM/IDS, GMRO and fT in the case of proposed δ-Pi-OXJLT clearly shows that the proposed δ-Pi-OXJLT is the promising device for mixed signal integrated circuits.

  10. Comparative investigation of surface transfer doping of hydrogen terminated diamond by high electron affinity insulators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Verona, C.; Marinelli, Marco; Verona-Rinati, G.

    We report on a comparative study of transfer doping of hydrogenated single crystal diamond surface by insulators featured by high electron affinity, such as Nb{sub 2}O{sub 5}, WO{sub 3}, V{sub 2}O{sub 5}, and MoO{sub 3}. The low electron affinity Al{sub 2}O{sub 3} was also investigated for comparison. Hole transport properties were evaluated in the passivated hydrogenated diamond films by Hall effect measurements, and were compared to un-passivated diamond films (air-induced doping). A drastic improvement was observed in passivated samples in terms of conductivity, stability with time, and resistance to high temperatures. The efficiency of the investigated insulators, as electron acceptingmore » materials in hydrogenated diamond surface, is consistent with their electronic structure. These surface acceptor materials generate a higher hole sheet concentration, up to 6.5 × 10{sup 13} cm{sup −2}, and a lower sheet resistance, down to 2.6 kΩ/sq, in comparison to the atmosphere-induced values of about 1 × 10{sup 13} cm{sup −2} and 10 kΩ/sq, respectively. On the other hand, hole mobilities were reduced by using high electron affinity insulator dopants. Hole mobility as a function of hole concentration in a hydrogenated diamond layer was also investigated, showing a well-defined monotonically decreasing trend.« less

  11. Influence of arsenic flow on the crystal structure of epitaxial GaAs grown at low temperatures on GaAs (100) and (111)A substrates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Galiev, G. B.; Klimov, E. A.; Vasiliev, A. L.

    The influence of arsenic flow in a growth chamber on the crystal structure of GaAs grown by molecular-beam epitaxy at a temperature of 240°C on GaAs (100) and (111)A substrates has been investigated. The flow ratio γ of arsenic As4 and gallium was varied in the range from 16 to 50. GaAs films were either undoped, or homogeneously doped with silicon, or contained three equidistantly spaced silicon δ-layers. The structural quality of the annealed samples has been investigated by transmission electron microscopy. It is established for the first time that silicon δ-layers in “low-temperature” GaAs serve as formation centers ofmore » arsenic precipitates. Their average size, concentration, and spatial distribution are estimated. The dependence of the film structural quality on γ is analyzed. Regions 100–150 nm in size have been revealed in some samples and identified (by X-ray microanalysis) as pores. It is found that, in the entire range of γ under consideration, GaAs films on (111)A substrates have a poorer structural quality and become polycrystalline beginning with a thickness of 150–200 nm.« less

  12. Luminescence and Electroluminescence of Nd, Tm and Yb Doped GaAs and some II-Vi Compounds

    DTIC Science & Technology

    1994-02-28

    from the bandgap discontinuity (as was proposed in my publications [1,2]). Also, by using superlattice structure A1GaAs / GaAs: Er / AlGaAs, we could...n ipact ightemiting evic 10 3. The AlGaAs/GaAs: Er/A1GaAs superlattice structure. For the first time we designed the unipolar n’ - superlattice - n...structure as shown in Figure 5. The GaAs: Er/Alo.45Gao.55As superlattice was grown by MBE on an n’ GaAs: Si substrate. It consisted of 60 periods of

  13. Electronic and optical properties of HEMT heterostructures with δ-Si doped GaAs/AlGaAs quantum rings — quantum well system

    NASA Astrophysics Data System (ADS)

    Sibirmovsky, Y. D.; Vasil'evskii, I. S.; Vinichenko, A. N.; Zhigunov, D. M.; Eremin, I. S.; Kolentsova, O. S.; Safonov, D. A.; Kargin, N. I.

    2017-11-01

    Samples of δ-Si doped AlGaAs/GaAs/AlGaAs HEMT heterostructures with GaAs quantum rings (QRs) on top of the quantum well (QW) were grown by molecular beam epitaxy and their properties were compared to the reference samples without QRs. The thickness of the QW was 6 - 10 nm for the samples with QRs and 20 nm for the reference samples. Photoluminescence measurements at low temperatures for all samples show at least two distinct lines in addition to the bulk GaAs line. The Hall effect and low temperature magnetotransport measurements at 4 - 320 K show that conductivity with and without illumination decreases significantly with QRs introduction, however the relative photoconductivity increases. Samples with 6 nm QW are insulating, which could be caused by the strong localization of the charge carriers in the QRs.

  14. Charge ordering in the metal-insulator transition of V-doped CrO2 in the rutile structure.

    PubMed

    Biswas, Sarajit

    2018-04-17

    Electronic, magnetic, and structural properties of pure and V-doped CrO 2 were extensively investigated utilizing density functional theory. Usually, pure CrO 2 is a half-metallic ferromagnet with conductive spin majority species and insulating spin minority species. This system remains in its half-metallic ferromagnetic phase even at 50% V-substitution for Cr within the crystal. The V-substituted compound Cr 0.5 V 0.5 O 2 encounters metal-insulator transition upon the application of on-site Coulomb repulsion U = 7 eV preserving its ferromagnetism in the insulating phase. It is revealed in this study that Cr 3+ -V 5+ charge ordering accompanied by the transfer of the single V-3d electron to the Cr-3dt 2g orbitals triggers metal-insulator transition in Cr 0.5 V 0.5 O 2 . The ferromagnetism of Cr 0.5 V 0.5 O 2 in the insulating phase arises predominantly due to strong Hund's coupling between the occupied electrons in the Cr-t 2g states. Besides this, the ferromagnetic Curie temperature (T c ) decreases significantly due to V-substitution. Interestingly, a structural distortion is observed due to tilting of CrO 6 or VO 6 octahedra across the metal-insulator transition of Cr 0.5 V 0.5 O 2 . Graphical abstract The V-doped compound Cr 0.5 V 0.5 O 2 is found a half-metallic ferromagnet (HMF) in the absence of on-site Coulomb interaction (U). This HMF behavor maintains up to U = 6 eV. Eventually, this system encounters metal-insulator transition (MIT) upon the application of U = 7 eV with a band gap of E g ~ 0.31 eV. Nevertheless, applications of higher U widen the band gaps. In this figure, calculated total (black), Cr-3d (red), V-3d (violet), and O-2p (blue) DOS of Cr 0.5 V 0.5 O 2 for U = 8 eV are illustrated. The system is insulating with a band gap of E g ~ 0.7 eV.

  15. Effect of potassium doping on electronic structure and thermoelectric properties of topological crystalline insulator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roychowdhury, Subhajit; Biswas, Kanishka, E-mail: kanishka@jncasr.ac.in; Sandhya Shenoy, U.

    2016-05-09

    Topological crystalline insulator (TCI), Pb{sub 0.6}Sn{sub 0.4}Te, exhibits metallic surface states protected by crystal mirror symmetry with negligibly small band gap. Enhancement of its thermoelectric performances needs tuning of its electronic structure particularly through engineering of its band gap. While physical perturbations tune the electronic structure of TCI by breaking of the crystal mirror symmetry, chemical means such as doping have been more attractive recently as they result in better thermoelectric performance in TCIs. Here, we demonstrate that K doping in TCI, Pb{sub 0.6}Sn{sub 0.4}Te, breaks the crystal mirror symmetry locally and widens electronic band gap, which is confirmed bymore » direct electronic absorption spectroscopy and electronic structure calculations. K doping in Pb{sub 0.6}Sn{sub 0.4}Te increases p-type carrier concentration and suppresses the bipolar conduction via widening a band gap, which collectively boosts the thermoelectric figure of merit (ZT) to 1 at 708 K.« less

  16. Epitaxial lateral overgrowth of GaAs: effect of doping on LPE growth behaviour

    NASA Astrophysics Data System (ADS)

    Zytkiewicz, Z. R.; Dobosz, D.; Pawlowska, M.

    1999-05-01

    Results of epitaxial lateral overgrowth (ELO) of GaAs on (001) GaAs substrates by liquid phase epitaxy are reported. We show that by introducing Si, Sn or Te impurities to the Ga-As solution the vertical growth rate is reduced while the lateral growth rate is significantly enhanced, which leads to a growth habit modification. Furthermore, the impurity incorporation into the growing layer is different on the upper and side surfaces of the ELO, reflecting the fundamental differences between the lateral and vertical growth modes. This phenomenon can be applied for studying the temporal development of ELO layers.

  17. Surface-state-dominated transport in crystals of the topological crystalline insulator In-doped Pb 1-xSn xTe

    DOE PAGES

    Zhong, Ruidan; He, Xugang; Schneeloch, J. A.; ...

    2015-05-29

    Three-dimensional topological insulators and topological crystalline insulators represent new quantum states of matter, which are predicted to have insulating bulk states and spin-momentum-locked gapless surface states. Experimentally, it has proven difficult to achieve the high bulk resistivity that would allow surface states to dominate the transport properties over a substantial temperature range. Here we report a series of indium-doped Pb 1-xSn xTe compounds that manifest huge bulk resistivities together with evidence consistent with the topological character of the surface states for x ≳ 0.35, based on thickness-dependent transport studies and magnetoresistance measurements. For these bulk-insulating materials, the surface states determinemore » the resistivity for temperatures beyond 20 K.« less

  18. Two-band analysis of hole mobility and Hall factor for heavily carbon-doped p-type GaAs

    NASA Astrophysics Data System (ADS)

    Kim, B. W.; Majerfeld, A.

    1996-02-01

    We solve a pair of Boltzmann transport equations based on an interacting two-isotropic-band model in a general way first to get transport parameters corresponding to the relaxation time. We present a simple method to calculate effective relaxation times, separately for each band, which compensate for the inherent deficiencies in using the relaxation time concept for polar optical-phonon scattering. Formulas for calculating momentum relaxation times in the two-band model are presented for all the major scattering mechanisms of p-type GaAs for simple, practical mobility calculations. In the newly proposed theoretical framework, first-principles calculations for the Hall mobility and Hall factor of p-type GaAs at room temperature are carried out with no adjustable parameters in order to obtain direct comparisons between the theory and recently available experimental results. In the calculations, the light-hole-band nonparabolicity is taken into account on the average by the use of energy-dependent effective mass obtained from the kṡp method and valence-band anisotropy is taken partly into account by the use the Wiley's overlap function.. The calculated Hall mobilities show a good agreement with our experimental data for carbon-doped p-GaAs samples in the range of degenerate hole densities. The calculated Hall factors show rH=1.25-1.75 over hole densities of 2×1017-1×1020 cm-3.

  19. Magnesium doping of efficient GaAs and Ga(0.75)In(0.25)As solar cells grown by metalorganic chemical vapor deposition

    NASA Technical Reports Server (NTRS)

    Lewis, C. R.; Ford, C. W.; Werthen, J. G.

    1984-01-01

    Magnesium has been substituted for zinc in GaAs and Ga(0.75)In(0.25)As solar cells grown by metalorganic chemical vapor deposition (MOCVD). Bis(cyclopentadienyl)magnesium (Cp2Mg) is used as the MOCVD transport agent for Mg. Full retention of excellent material quality and efficient cell performance results. The substitution of Mg for Zn would enhance the abruptness and reproducibility of doping profiles, and facilitate high temperature processing and operation, due to the much lower diffusion coefficient of Mg, relative to Zn, in these materials.

  20. From antiferromagnetic insulator to correlated metal in pressurized and doped LaMnPO.

    PubMed

    Simonson, J W; Yin, Z P; Pezzoli, M; Guo, J; Liu, J; Post, K; Efimenko, A; Hollmann, N; Hu, Z; Lin, H-J; Chen, C-T; Marques, C; Leyva, V; Smith, G; Lynn, J W; Sun, L L; Kotliar, G; Basov, D N; Tjeng, L H; Aronson, M C

    2012-07-03

    Widespread adoption of superconducting technologies awaits the discovery of new materials with enhanced properties, especially higher superconducting transition temperatures T(c). The unexpected discovery of high T(c) superconductivity in cuprates suggests that the highest T(c)s occur when pressure or doping transform the localized and moment-bearing electrons in antiferromagnetic insulators into itinerant carriers in a metal, where magnetism is preserved in the form of strong correlations. The absence of this transition in Fe-based superconductors may limit their T(c)s, but even larger T(c)s may be possible in their isostructural Mn analogs, which are antiferromagnetic insulators like the cuprates. It is generally believed that prohibitively large pressures would be required to suppress the effects of the strong Hund's rule coupling in these Mn-based compounds, collapsing the insulating gap and enabling superconductivity. Indeed, no Mn-based compounds are known to be superconductors. The electronic structure calculations and X-ray diffraction measurements presented here challenge these long held beliefs, finding that only modest pressures are required to transform LaMnPO, isostructural to superconducting host LaFeAsO, from an antiferromagnetic insulator to a metallic antiferromagnet, where the Mn moment vanishes in a second pressure-driven transition. Proximity to these charge and moment delocalization transitions in LaMnPO results in a highly correlated metallic state, the familiar breeding ground of superconductivity.

  1. Temperature effect on the coupling between coherent longitudinal phonons and plasmons in n -type and p -type GaAs

    NASA Astrophysics Data System (ADS)

    Hu, Jianbo; Zhang, Hang; Sun, Yi; Misochko, Oleg V.; Nakamura, Kazutaka G.

    2018-04-01

    The coupling between longitudinal optical (LO) phonons and plasmons plays a fundamental role in determining the performance of doped semiconductor devices. In this work, we report a comparative investigation into the dependence of the coupling on temperature and doping in n - and p -type GaAs by using ultrafast coherent phonon spectroscopy. A suppression of coherent oscillations has been observed in p -type GaAs at lower temperature, strikingly different from n -type GaAs and other materials in which coherent oscillations are strongly enhanced by cooling. We attribute this unexpected observation to a cooling-induced elongation of the depth of the depletion layer which effectively increases the screening time of the surface field due to a slow diffusion of photoexcited carriers in p -type GaAs. Such an increase breaks the requirement for the generation of coherent LO phonons and, in turn, LO phonon-plasmon coupled modes because of their delayed formation in time.

  2. High spin state driven magnetism and thermoelectricity in Mn doped topological insulator Bi2Se3

    NASA Astrophysics Data System (ADS)

    Maurya, V. K.; Dong, C. L.; Chen, C. L.; Asokan, K.; Patnaik, S.

    2018-06-01

    We report on the synthesis, and structural - magnetic characterizations of Mn doped Bi2Se3 towards achieving a magnetically doped topological insulator. High quality single crystals of MnxBi2-xSe3 (x = 0, 0.03, 0.05, 0.1) are grown and analysed by X-ray diffraction (XRD), Low Energy Electron Diffraction (LEED), Scanning electron microscopy (SEM), and X-ray absorption near-edge structure spectroscopy (XANES). Magnetic properties of these samples under ZFC-FC protocol and isothermal magnetization confirm ferromagnetic correlation above x = 0.03 value. XANES measurements confirm that the dopant Mn is in Mn2+ state. This is further reconfirmed to be in high spin state by fitting magnetic data with Brillouin function for J = 5/2. Both Hall and Seebeck measurements indicate a sign change of charge carriers above x = 0.03 value of Mn doping. We propose Mn doped Bi2Se3 to be a potential candidate for electromagnetic and thermoelectric device applications involving topological surface states.

  3. Mg-doped VO2 nanoparticles: hydrothermal synthesis, enhanced visible transmittance and decreased metal-insulator transition temperature.

    PubMed

    Zhou, Jiadong; Gao, Yanfeng; Liu, Xinling; Chen, Zhang; Dai, Lei; Cao, Chuanxiang; Luo, Hongjie; Kanahira, Minoru; Sun, Chao; Yan, Liuming

    2013-05-28

    This paper reports the successful preparation of Mg-doped VO2 nanoparticles via hydrothermal synthesis. The metal-insulator transition temperature (T(c)) decreased by approximately 2 K per at% Mg. The Tc decreased to 54 °C with 7.0 at% dopant. The composite foils made from Mg-doped VO2 particles displayed excellent visible transmittance (up to 54.2%) and solar modulation ability (up to 10.6%). In addition, the absorption edge blue-shifted from 490 nm to 440 nm at a Mg content of 3.8 at%, representing a widened optical band gap from 2.0 eV for pure VO2 to 2.4 eV at 3.8 at% doping. As a result, the colour of the Mg-doped films was modified to increase their brightness and lighten the yellow colour over that of the undoped-VO2 film. A first principle calculation was conducted to understand how dopants affect the optical, Mott phase transition and structural properties of VO2.

  4. Magnesium acceptor in gallium nitride. I. Photoluminescence from Mg-doped GaN

    NASA Astrophysics Data System (ADS)

    Reshchikov, M. A.; Ghimire, P.; Demchenko, D. O.

    2018-05-01

    Defect-related photoluminescence (PL) is analyzed in detail for n -type, p -type, and semi-insulating Mg-doped GaN grown by different techniques. The ultraviolet luminescence (UVL) band is the dominant PL band in conductive n -type and p -type GaN:Mg samples grown by hydride vapor phase epitaxy (HVPE) and molecular beam epitaxy. The UVL band in undoped and Mg-doped GaN samples is attributed to the shallow M gGa acceptor with the ionization energy of 223 meV. In semi-insulating GaN:Mg samples, very large shifts of the UVL band (up to 0.6 eV) are observed with variation of temperature or excitation intensity. The shifts are attributed to diagonal transitions, likely due to potential fluctuations or near-surface band bending. The blue luminescence (B LMg ) band is observed only in GaN:Mg samples grown by HVPE or metalorganic chemical vapor deposition when the concentration of Mg exceeds 1019c m-3 . The B LMg band is attributed to electron transitions from an unknown deep donor to the shallow M gGa acceptor. Basic properties of the observed PL are explained with a phenomenological model.

  5. Unraveling Metal-insulator Transition Mechanism of VO2 Triggered by Tungsten Doping

    PubMed Central

    Tan, Xiaogang; Yao, Tao; Long, Ran; Sun, Zhihu; Feng, Yajuan; Cheng, Hao; Yuan, Xun; Zhang, Wenqing; Liu, Qinghua; Wu, Changzheng; Xie, Yi; Wei, Shiqiang

    2012-01-01

    Understanding the mechanism of W-doping induced reduction of critical temperature (TC) for VO2 metal-insulator transition (MIT) is crucial for both fundamental study and technological application. Here, using synchrotron radiation X-ray absorption spectroscopy combined with first-principles calculations, we unveil the atomic structure evolutions of W dopant and its role in tailoring the TC of VO2 MIT. We find that the local structure around W atom is intrinsically symmetric with a tetragonal-like structure, exhibiting a concentration-dependent evolution involving the initial distortion, further repulsion, and final stabilization due to the strong interaction between doped W atoms and VO2 lattices across the MIT. These results directly give the experimental evidence that the symmetric W core drives the detwisting of the nearby asymmetric monoclinic VO2 lattice to form rutile-like VO2 nuclei, and the propagations of these W-encampassed nuclei through the matrix lower the thermal energy barrier for phase transition. PMID:22737402

  6. Ferromagnetic GaAs structures with single Mn delta-layer fabricated using laser deposition.

    PubMed

    Danilov, Yuri A; Vikhrova, Olga V; Kudrin, Alexey V; Zvonkov, Boris N

    2012-06-01

    The new technique combining metal-organic chemical vapor epitaxy with laser ablation of solid targets was used for fabrication of ferromagnetic GaAs structures with single Mn delta-doped layer. The structures demonstrated anomalous Hall effect, planar Hall effect, negative and anisotropic magnetoresistance in temperature range of 10-35 K. In GaAs structures with only single Mn delta-layer (without additional 2D hole gas channel or quantum well) ferromagnetism was observed for the first time.

  7. 808-nm diode-pumped dual-wavelength passively Q-switched Nd:LuLiF4 laser with Bi-doped GaAs

    NASA Astrophysics Data System (ADS)

    Li, S. X.; Li, T.; Li, D. C.; Zhao, S. Z.; Li, G. Q.; Hang, Y.; Zhang, P. X.; Li, X. Y.; Qiao, H.

    2015-09-01

    Diode-pumped CW and passively Q-switched Nd:LuLiF4 lasers with stable, synchronous dual-wavelength operations near 1047 and 1053 nm were demonstrated for the first time. The maximal CW output power of 821 mW was obtained at an incident pump power of 6.52 W. Employing high quality Bi-doped GaAs as saturable absorber, stable dual-wavelength Q-switched operation was realized. Under 6.52 W incident pump power, the minimal pulse duration of 1.5 ns, the largest single pulse energy of 11.32 μJ, and the highest peak power of 7.25 kW were achieved.

  8. Current-induced spin polarization in InGaAs and GaAs epilayers with varying doping densities

    NASA Astrophysics Data System (ADS)

    Luengo-Kovac, M.; Huang, S.; Del Gaudio, D.; Occena, J.; Goldman, R. S.; Raimondi, R.; Sih, V.

    2017-11-01

    The current-induced spin polarization and momentum-dependent spin-orbit field were measured in InxGa1 -xAs epilayers with varying indium concentrations and silicon doping densities. Samples with higher indium concentrations and carrier concentrations and lower mobilities were found to have larger electrical spin generation efficiencies. Furthermore, current-induced spin polarization was detected in GaAs epilayers despite the absence of measurable spin-orbit fields, indicating that the extrinsic contributions to the spin-polarization mechanism must be considered. Theoretical calculations based on a model that includes extrinsic contributions to the spin dephasing and the spin Hall effect, in addition to the intrinsic Rashba and Dresselhaus spin-orbit coupling, are found to reproduce the experimental finding that the crystal direction with the smaller net spin-orbit field has larger electrical spin generation efficiency and are used to predict how sample parameters affect the magnitude of the current-induced spin polarization.

  9. Comparison of OARE Accelerometer Data with Dopant Distribution in Se-Doped GaAs Crystals Grown During USML-1

    NASA Technical Reports Server (NTRS)

    Moskowitz, Milton E.; Bly, Jennifer M.; Matthiesen, David H.

    1997-01-01

    Experiments were conducted in the crystal growth furnace (CGF) during the first United States Microgravity Laboratory (USML-1), the STS-50 flight of the Space Shuttle Columbia, to determine the segregation behavior of selenium in bulk GaAs in a microgravity environment. After the flight, the selenium-doped GaAs crystals were sectioned, polished, and analyzed to determine the free carrier concentration as a function of position, One of the two crystals initially exhibited an axial concentration profile indicative of diffusion controlled growth, but this profile then changed to that predicted for a complete mixing type growth. An analytical model, proposed by Naumann [R.J. Naumann, J. Crystal Growth 142 (1994) 253], was utilized to predict the maximum allowable microgravity disturbances transverse to the growth direction during the two different translation rates used for each of the experiments. The predicted allowable acceleration levels were 4.86 microgram for the 2.5 micrometers/s furnace translation rate and 38.9 microgram for the 5.0 micrometers/s rate. These predicted values were compared to the Orbital Acceleration Research Experiment (OARE) accelerometer data recorded during the crystal growth periods for these experiments. Based on the analysis of the OARE acceleration data and utilizing the predictions from the analytical model, it is concluded that the change in segregation behavior was not caused by any acceleration events in the microgravity environment.

  10. Disorder-driven metal-insulator-transition assisted by interband Coulomb repulsion in a surface transfer doped electron system

    NASA Astrophysics Data System (ADS)

    Francisco Sánchez-Royo, Juan

    2012-12-01

    The two-dimensional conducting properties of the Si(111) \\sqrt {3} \\times \\sqrt {3} surface doped by the charge surface transfer mechanism have been calculated in the frame of a semiclassical Drude-Boltzmann model considering donor scattering mechanisms. To perform these calculations, the required values of the carrier effective mass were extracted from reported angle-resolved photoemission results. The calculated doping dependence of the surface conductance reproduces experimental results reported and reveals an intricate metallization process driven by disorder and assisted by interband interactions. The system should behave as an insulator even at relatively low doping due to disorder. However, when doping increases, the system achieves to attenuate the inherent localization effects introduced by disorder and to conduct by percolation. The mechanism found by the system to conduct appears to be connected with the increasing of the carrier effective mass observed with doping, which seems to be caused by interband interactions involving the conducting band and deeper ones. This mass enhancement reduces the donor Bohr radius and, consequently, promotes the screening ability of the donor potential by the electron gas.

  11. Blueish green photoluminescence from nitrided GaAs(100) surfaces

    NASA Astrophysics Data System (ADS)

    Shimaoka, Goro; Udagawa, Takashi

    1999-04-01

    Optical and structural studies were made on the Si-doped (100)GaAs surfaces nitrided at a temperature between 650° and 750°C for 15 min in the flowing NH 3 gas. The wavelength of photoluminescence (PL) spectra were observed to be shortened from 820 nm of the GaAs nitrided at 650°C with increasing nitridation temperature. Blueish green PL with wavelengths of approx. 490 nm and 470 nm were emitted from the nitrided surfaces at 700° and 750°C, respectively. Results of AES and SIMS indicated that the surfaces are nitrided as GaAs 1- xN x, (0< x≤1) alloy layer, and the nitrided region also tended to increase as the temperature raised. High-resolution transmission electron microscopic (HRTEM), transmission electron diffraction (TED) and energy dispersive X-ray (EDX) results showed that films peeled off from the nitrided surfaces consisted mainly of hexagonal, wurtzite-type gallium nitride (GaN) with stacking faults and microtwins.

  12. Determination of carrier concentration and compensation microprofiles in GaAs

    NASA Technical Reports Server (NTRS)

    Jastrzebski, L.; Lagowski, J.; Walukiewicz, W.; Gatos, H. C.

    1980-01-01

    Simultaneous microprofiling of semiconductor free carrier, donor, and acceptor concentrations was achieved for the first time from the absolute value of the free carrier absorption coefficient and its wavelength dependence determined by IR absorption in a scanning mode. Employing Ge- and Si-doped melt-grown GaAs, striking differences were found between the variations of electron concentration and those of ionized impurity concentrations. These results showed clearly that the electronic characteristics of this material are controlled by amphoteric doping and deviations from stoichiometry rather than by impurity segregation.

  13. Mode-locked ytterbium-doped fiber laser based on topological insulator: Bi₂Se₃.

    PubMed

    Dou, Zhiyuan; Song, Yanrong; Tian, Jinrong; Liu, Jinghui; Yu, Zhenhua; Fang, Xiaohui

    2014-10-06

    We demonstrated an all-normal-dispersion Yb-doped mode-locked fiber laser based on Bi₂Se₃ topological insulator (TI). Different from previous TI-mode-locked fiber lasers in which TIs were mixed with film-forming agent, we used a special way to paste a well-proportioned pure TI on a fiber end-facet. In this way, the effect of the film-forming agent could be removed, thus the heat deposition was relieved and damage threshold could be improved. The modulation depth of the Bi₂Se₃ film was measured to be 5.2%. When we used the Bi₂Se₃ film in the Yb-doped fiber laser, the mode locked pulses with pulse energy of 0.756 nJ, pulse width of 46 ps and the repetition rate of 44.6 MHz were obtained. The maximum average output power was 33.7 mW. When the pump power exceeded 270 mW, the laser can operate in multiple pulse state that six-pulse regime can be realized. This contribution indicates that Bi₂Se₃ has an attractive optoelectronic property at 1μm waveband.

  14. Improved model of activation energy absorption for different electrical breakdowns in semi-crystalline insulating polymers

    NASA Astrophysics Data System (ADS)

    Sima, Wenxia; Jiang, Xiongwei; Peng, Qingjun; Sun, Potao

    2018-05-01

    Electrical breakdown is an important physical phenomenon in electrical equipment and electronic devices. Many related models and theories of electrical breakdown have been proposed. However, a widely recognized understanding on the following phenomenon is still lacking: impulse breakdown strength which varies with waveform parameters, decrease in the breakdown strength of AC voltage with increasing frequency, and higher impulse breakdown strength than that of AC. In this work, an improved model of activation energy absorption for different electrical breakdowns in semi-crystalline insulating polymers is proposed based on the Harmonic oscillator model. Simulation and experimental results show that, the energy of trapped charges obtained from AC stress is higher than that of impulse voltage, and the absorbed activation energy increases with the increase in the electric field frequency. Meanwhile, the frequency-dependent relative dielectric constant ε r and dielectric loss tanδ also affect the absorption of activation energy. The absorbed activation energy and modified trap level synergistically determine the breakdown strength. The mechanism analysis of breakdown strength under various voltage waveforms is consistent with the experimental results. Therefore, the proposed model of activation energy absorption in the present work may provide a new possible method for analyzing and explaining the breakdown phenomenon in semi-crystalline insulating polymers.

  15. Spin Hall Effect in Doped Semiconductor Structures

    NASA Astrophysics Data System (ADS)

    Tse, Wang-Kong; Das Sarma, Sankar

    2006-03-01

    We present a microscopic theory of the extrinsic spin Hall effect based on the diagrammatic perturbation theory. Side-jump (SJ) and skew-scattering (SS) contributions are explicitly taken into account to calculate the spin Hall conductivity, and we show their effects scale as σxy^SJ/σxy^SS ˜(/τ)/ɛF, where τ being the transport relaxation time. Motivated by recent experimental work we apply our theory to n-doped and p-doped 3D and 2D GaAs structures, obtaining analytical formulas for the SJ and SS contributions. Moreover, the ratio of the spin Hall conductivity to longitudinal conductivity is found as σs/σc˜10-3-10-4, in reasonable agreement with the recent experimental results of Kato et al. [Science 306, 1910 (2004)] in n-doped 3D GaAs system.

  16. Current-induced spin polarization in InGaAs and GaAs epilayers with varying doping densities

    DOE PAGES

    Luengo-Kovac, Marta; Huang, Simon; Del Gaudio, Davide; ...

    2017-11-16

    Here, the current-induced spin polarization and momentum-dependent spin-orbit field were measured in In xGa 1-xAs epilayers with varying indium concentrations and silicon doping densities. Samples with higher indium concentrations and carrier concentrations and lower mobilities were found to have larger electrical spin generation efficiencies. Furthermore, current-induced spin polarization was detected in GaAs epilayers despite the absence of measurable spin-orbit fields, indicating that the extrinsic contributions to the spin-polarization mechanism must be considered. Theoretical calculations based on a model that includes extrinsic contributions to the spin dephasing and the spin Hall effect, in addition to the intrinsic Rashba and Dresselhaus spin-orbitmore » coupling, are found to reproduce the experimental finding that the crystal direction with the smaller net spin-orbit field has larger electrical spin generation efficiency and are used to predict how sample parameters affect the magnitude of the current-induced spin polarization.« less

  17. Current-induced spin polarization in InGaAs and GaAs epilayers with varying doping densities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luengo-Kovac, Marta; Huang, Simon; Del Gaudio, Davide

    Here, the current-induced spin polarization and momentum-dependent spin-orbit field were measured in In xGa 1-xAs epilayers with varying indium concentrations and silicon doping densities. Samples with higher indium concentrations and carrier concentrations and lower mobilities were found to have larger electrical spin generation efficiencies. Furthermore, current-induced spin polarization was detected in GaAs epilayers despite the absence of measurable spin-orbit fields, indicating that the extrinsic contributions to the spin-polarization mechanism must be considered. Theoretical calculations based on a model that includes extrinsic contributions to the spin dephasing and the spin Hall effect, in addition to the intrinsic Rashba and Dresselhaus spin-orbitmore » coupling, are found to reproduce the experimental finding that the crystal direction with the smaller net spin-orbit field has larger electrical spin generation efficiency and are used to predict how sample parameters affect the magnitude of the current-induced spin polarization.« less

  18. Fine structure of metal-insulator transition in EuO resolved by doping engineering.

    PubMed

    Averyanov, Dmitry V; Parfenov, Oleg E; Tokmachev, Andrey M; Karateev, Igor A; Kondratev, Oleg A; Taldenkov, Alexander N; Platunov, Mikhail S; Wilhelm, Fabrice; Rogalev, Andrei; Storchak, Vyacheslav G

    2018-05-11

    Metal-insulator transitions (MITs) offer new functionalities for nanoelectronics. However, ongoing attempts to control the resistivity by external stimuli are hindered by strong coupling of spin, charge, orbital and lattice degrees of freedom. This difficulty presents a quest for materials which exhibit MIT caused by a single degree of freedom. In the archetypal ferromagnetic semiconductor EuO, magnetic orders dominate the MIT. Here we report a new approach to take doping under control in this material on the nanoscale: formation of oxygen vacancies is strongly suppressed to exhibit the highest MIT resistivity jump and magnetoresistance among thin films. The nature of the MIT is revealed in Gd doped films. The critical doping is determined to be more than an order of magnitude lower than in all previous studies. In lightly doped films, a remarkable thermal hysteresis in resistivity is discovered. It extends over 100 K in the paramagnetic phase reaching 3 orders of magnitude. In the warming mode, the MIT is shown to be a two-step process. The resistivity patterns are consistent with an active role of magnetic polarons-formation of a narrow band and its thermal destruction. High-temperature magnetic polaron effects include large negative magnetoresistance and ferromagnetic droplets revealed by x-ray magnetic circular dichroism. Our findings have wide-range implications for the understanding of strongly correlated oxides and establish fundamental benchmarks to guide theoretical models of the MIT.

  19. Fine structure of metal–insulator transition in EuO resolved by doping engineering

    NASA Astrophysics Data System (ADS)

    Averyanov, Dmitry V.; Parfenov, Oleg E.; Tokmachev, Andrey M.; Karateev, Igor A.; Kondratev, Oleg A.; Taldenkov, Alexander N.; Platunov, Mikhail S.; Wilhelm, Fabrice; Rogalev, Andrei; Storchak, Vyacheslav G.

    2018-05-01

    Metal–insulator transitions (MITs) offer new functionalities for nanoelectronics. However, ongoing attempts to control the resistivity by external stimuli are hindered by strong coupling of spin, charge, orbital and lattice degrees of freedom. This difficulty presents a quest for materials which exhibit MIT caused by a single degree of freedom. In the archetypal ferromagnetic semiconductor EuO, magnetic orders dominate the MIT. Here we report a new approach to take doping under control in this material on the nanoscale: formation of oxygen vacancies is strongly suppressed to exhibit the highest MIT resistivity jump and magnetoresistance among thin films. The nature of the MIT is revealed in Gd doped films. The critical doping is determined to be more than an order of magnitude lower than in all previous studies. In lightly doped films, a remarkable thermal hysteresis in resistivity is discovered. It extends over 100 K in the paramagnetic phase reaching 3 orders of magnitude. In the warming mode, the MIT is shown to be a two-step process. The resistivity patterns are consistent with an active role of magnetic polarons—formation of a narrow band and its thermal destruction. High-temperature magnetic polaron effects include large negative magnetoresistance and ferromagnetic droplets revealed by x-ray magnetic circular dichroism. Our findings have wide-range implications for the understanding of strongly correlated oxides and establish fundamental benchmarks to guide theoretical models of the MIT.

  20. Decoupling of the antiferromagnetic and insulating states in Tb-doped Sr 2IrO 4

    DOE PAGES

    Wang, J. C.; Aswartham, S.; Ye, Feng; ...

    2015-12-08

    Sr 2IrO 4 is a spin-orbit coupled insulator with an antiferromagnetic (AFM) transition at T N = 240 K. We report results of a comprehensive study of single-crystal Sr 2Ir 1-xTb xO 4 (0≤x≤0.03). This study found that mere 3% (x=0.03) tetravalent Tb 4+(4f 7) substituting for Ir 4+ (rather than Sr 2+) completely suppresses the long-range collinear AFM transition but retains the insulating state, leading to a phase diagram featuring a decoupling of magnetic interactions and charge gap. The insulating state at x = 0.03 is characterized by an unusually large specific heat at low temperatures and an incommensuratemore » magnetic state having magnetic peaks at (0.95, 0, 0) and (0, 0.95, 0) in the neutron diffraction, suggesting a spiral or spin density wave order. It is apparent that Tb doping effectively changes the relative strength of the SOI and the tetragonal CEF and enhances the Hund’s rule coupling that competes with the SOI, and destabilizes the AFM state. However, the disappearance of the AFM accompanies no metallic state chiefly because an energy level mismatch for the Ir and Tb sites weakens charge carrier hopping and renders a persistent insulating state. Furthermore, this work highlights an unconventional correlation between the AFM and insulating states in which the magnetic transition plays no critical role in the formation of the charge gap in the iridate.« less

  1. Analysis of Deep and Shallow Traps in Semi-Insulating CdZnTe

    DOE PAGES

    Kim, Kihyun; Yoon, Yongsu; James, Ralph B.

    2018-03-13

    Trap levels which are deep or shallow play an important role in the electrical and the optical properties of a semiconductor; thus, a trap level analysis is very important in most semiconductor devices. Deep-level defects in CdZnTe are essential in Fermi level pinning at the middle of the bandgap and are responsible for incomplete charge collection and polarization effects. However, a deep level analysis in semi-insulating CdZnTe (CZT) is very difficult. Theoretical capacitance calculation for a metal/insulator/CZT (MIS) device with deep-level defects exhibits inflection points when the donor/acceptor level crosses the Fermi level in the surface-charge layer (SCL). Three CZTmore » samples with different resistivities, 2 × 10 4 (n-type), 2 × 10 6 (p-type), and 2 × 10 10 (p-type) Ω·cm, were used in fabricating the MIS devices. These devices showed several peaks in their capacitance measurements due to upward/downward band bending that depend on the surface potential. In conclusion, theoretical and experimental capacitance measurements were in agreement, except in the fully compensated case.« less

  2. Analysis of Deep and Shallow Traps in Semi-Insulating CdZnTe

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Kihyun; Yoon, Yongsu; James, Ralph B.

    Trap levels which are deep or shallow play an important role in the electrical and the optical properties of a semiconductor; thus, a trap level analysis is very important in most semiconductor devices. Deep-level defects in CdZnTe are essential in Fermi level pinning at the middle of the bandgap and are responsible for incomplete charge collection and polarization effects. However, a deep level analysis in semi-insulating CdZnTe (CZT) is very difficult. Theoretical capacitance calculation for a metal/insulator/CZT (MIS) device with deep-level defects exhibits inflection points when the donor/acceptor level crosses the Fermi level in the surface-charge layer (SCL). Three CZTmore » samples with different resistivities, 2 × 10 4 (n-type), 2 × 10 6 (p-type), and 2 × 10 10 (p-type) Ω·cm, were used in fabricating the MIS devices. These devices showed several peaks in their capacitance measurements due to upward/downward band bending that depend on the surface potential. In conclusion, theoretical and experimental capacitance measurements were in agreement, except in the fully compensated case.« less

  3. High Bandwidth-Efficiency Resonant Cavity Enhanced Schottky Photodiodes for 800-850 nm Wavelength Operation

    DTIC Science & Technology

    1998-05-25

    at least 50 nm wide centered around 830 nm wavelength. The layers are grown by molecular beam epitaxy on a semi- insulating GaAs substrate. The...limited by the material properties. With the advent of GaAs vertical-cavity surface-emitting lasers ~ VCSEL !,2 the 800–850 nm wavelength range has recently

  4. Evaluation of modulating field of photoreflectance of surface-intrinsic-n+ type doped GaAs by using photoinduced voltage

    NASA Astrophysics Data System (ADS)

    Lee, W. Y.; Chien, J. Y.; Wang, D. P.; Huang, K. F.; Huang, T. C.

    2002-04-01

    Photoreflectance (PR) of surface-intrinsic-n+ type doped GaAs has been measured for various power densities of pump laser. The spectra exhibited many Franz-Keldysh oscillations, whereby the strength of electric field F in the undoped layer can be determined. The thus obtained Fs are subject to photovoltaic effect and are less than built-in field Fbi. In the previous work we have obtained the relation F≈Fbi-δF/2 when δF≪Fbi by using electroreflectance to simulate PR, where δF is the modulating field of the pump beam. In this work a method was devised to evaluate δF by using photoinduced voltages Vs and, hence, the relation can be verified by PR itself. The δFs obtained by Vs are also consistent with those of using imaginary part of fast Fourier transform of PR spectra.

  5. Fabrication of 4H-SiC lateral double implanted MOSFET on an on-axis semi-insulating substrate without using epi-layer

    NASA Astrophysics Data System (ADS)

    Kim, Hyoung Woo; Seok, Ogyun; Moon, Jeong Hyun; Bahng, Wook; Jo, Jungyol

    2017-12-01

    4H-SiC lateral double implanted metal-oxide-semiconductor field effect transistors (LDIMOSFET) were fabricated on on-axis semi-insulating SiC substrates without using an epi-layer. The LDIMOSFET adopted a current path layer (CPL), which was formed by ion-implantation. The CPL works as a drift region between gate and drain. By using on-axis semi-insulating substrate and optimized CPL parameters, breakdown voltage (BV) of 1093 V and specific on-resistance (R on,sp) of 89.8 mΩ·cm2 were obtained in devices with 20 µm long CPL. Experimentally extracted field-effect channel mobility was 21.7 cm2·V-1·s-1 and the figure-of-merit (BV2/R on,sp) was 13.3 MW/cm2.

  6. Superconductivity, pairing symmetry, and disorder in the doped topological insulator Sn1 -xInxTe for x ≥0.10

    NASA Astrophysics Data System (ADS)

    Smylie, M. P.; Claus, H.; Kwok, W.-K.; Louden, E. R.; Eskildsen, M. R.; Sefat, A. S.; Zhong, R. D.; Schneeloch, J.; Gu, G. D.; Bokari, E.; Niraula, P. M.; Kayani, A.; Dewhurst, C. D.; Snezhko, A.; Welp, U.

    2018-01-01

    The temperature dependence of the London penetration depth Δ λ (T ) in the superconducting doped topological crystalline insulator Sn1 -xInxTe was measured down to 450 mK for two different doping levels, x ≈0.45 (optimally doped) and x ≈0.10 (underdoped), bookending the range of cubic phase in the compound. The results indicate no deviation from fully gapped BCS-like behavior, eliminating several candidate unconventional gap structures. Critical field values below 1 K and other superconducting parameters are also presented. The introduction of disorder by repeated particle irradiation with 5 MeV protons does not enhance Tc, indicating that ferroelectric interactions do not compete with superconductivity.

  7. Identification of oxygen-related midgap level in GaAs

    NASA Technical Reports Server (NTRS)

    Lagowski, J.; Lin, D. G.; Gatos, H. C.; Aoyama, T.

    1984-01-01

    An oxygen-related deep level ELO was identified in GaAs employing Bridgman-grown crystals with controlled oxygen doping. The activation energy of ELO is almost the same as that of the dominant midgap level: EL2. This fact impedes the identification of ELO by standard deep level transient spectroscopy. However, it was found that the electron capture cross section of ELO is about four times greater than that of EL2. This characteristic served as the basis for the separation and quantitative investigation of ELO employing detailed capacitance transient measurements in conjunction with reference measurements on crystals grown without oxygen doping and containing only EL2.

  8. High-efficiency thin-film GaAs solar cells

    NASA Technical Reports Server (NTRS)

    Stirn, R. J.

    1979-01-01

    GaAs chemical vapor deposition (CVD) growth on single-crystal GaAs substrates was investigated over a temperature range of 600 to 750 C, As/GA mole-ratio range of 3 to 11, and gas molefraction range 5 x 10 to the minus 9th power to 7x 10 to the minus 7th power for H2S doping. GasAs CVD growth on recrystallized Ge films was investigated for a temperature range of 550 to 700 C, an As/GA mole ratio of 5, and for various H2S mole fraction. The highest efficiency cell observed on these films with 2 mm dots was 4.8% (8% when AR-coated). Improvements in fill factor and opencircuit voltage by about 40% each are required in order to obtain efficiencies of 15% or greater.

  9. Biexciton emission from single isoelectronic traps formed by nitrogen-nitrogen pairs in GaAs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Takamiya, Kengo; Fukushima, Toshiyuki; Yagi, Shuhei

    2013-12-04

    We have studied photoluminescence (PL) from individual isoelectronic traps formed by nitrogen-nitrogen (NN) pairs in GaAs. Sharp emission lines due to exciton and biexciton were observed from individual isoelectronic traps in nitrogen atomic-layer doped (ALD) GaAs. The binding energy of biexciton bound to individual isoelectronic traps was approximately 8 meV. Both the exciton and biexciton luminescence lines show completely random polarization and no fine-structure splitting. These results are desirable to the application to the quantum cryptography used in the field of quantum information technology.

  10. An increase in Tc under hydrostatic pressure in the superconducting doped topological insulator Nb0.25Bi2Se3

    NASA Astrophysics Data System (ADS)

    Smylie, M. P.; Willa, K.; Ryan, K.; Claus, H.; Kwok, W.-K.; Qiu, Y.; Hor, Y. S.; Welp, U.

    2017-12-01

    We report a positive hydrostatic pressure derivative of the superconducting transition temperature in the doped topological insulator Nb0.25Bi2Se3 via dc SQUID magnetometry in pressures up to 0.6 GPa. This result is contrary to reports on the homologues CuxBi2Se3 and SrxBi2Se3 where smooth suppression of Tc is observed. This difference may be attributable to an electronic structure composed of multiple bands whereas the other materials in the superconducting doped Bi2Se3 family are believed to be single-band.

  11. Optical characterization of semi-insulating GaAs - Determination of the Fermi energy, the concentraion of the midgap EL2 level and its occupancy

    NASA Technical Reports Server (NTRS)

    Lagowski, J.; Bugajski, M.; Matsui, M.; Gatos, H. C.

    1987-01-01

    The key electronic characteristics of semiinsulating GaAs, i.e., the Fermi energy, concentration, and occupancy of the midgap donor EL2, and the net concentration of ionized acceptors can all be determined from high-resolution measurements of the EL2 intracenter absorption. The procedure is based on the measurement of zero-phonon line intensity before and after the complete transfer of EL2 to its metastable state followed by thermal recovery. The procedure is quantitative, involves no fitting parameters, and unlike existing methods, is applicable even when a significant part of the EL2 is ionized.

  12. Carbon Doping of Compound Semiconductor Epitaxial Layers Grown by Metalorganic Chemical Vapor Deposition Using Carbon Tetrachloride.

    NASA Astrophysics Data System (ADS)

    Cunningham, Brian Thomas

    1990-01-01

    A dilute mixture of CCl_4 in high purity H_2 has been used as a carbon dopant source for rm Al_ {x}Ga_{1-x}As grown by low pressure metalorganic chemical vapor deposition (MOCVD). To understand the mechanism for carbon incorporation from CCl_4 doping and to provide experimental parameters for the growth of carbon doped device structures, the effects of various crystal growth parameters on CCl _4 doping have been studied, including growth temperature, growth rate, V/III ratio, Al composition, and CCl_4 flow rate. Although CCl _4 is an effective p-type dopant for MOCVD rm Al_{x}Ga_ {1-x}As, injection of CCl_4 into the reactor during growth of InP resulted in no change in the carrier concentration or carbon concentration. Abrupt, heavy carbon doping spikes in GaAs have been obtained using CCl_4 without a dopant memory effect. By annealing samples with carbon doping spikes grown within undoped, n-type, and p-type GaAs, the carbon diffusion coefficient in GaAs at 825 ^circC has been estimated and has been found to depend strongly on the GaAs background doping. Heavily carbon doped rm Al_{x}Ga _{1-x}As/GaAs superlattices have been found to be more stable against impurity induced layer disordering (IILD) than Mg or Zn doped superlattices, indicating that the low carbon diffusion coefficient limits the IILD process. Carbon doping has been used in the base region on an Npn AlGaAs/GaAs heterojunction bipolar transistor (HBT). Transistors with 3 x 10 μm self-aligned emitter fingers have been fabricated which exhibit a current gain cutoff frequency of f_ {rm t} = 26 GHz.

  13. Surface segregation and the Al problem in GaAs quantum wells

    NASA Astrophysics Data System (ADS)

    Chung, Yoon Jang; Baldwin, K. W.; West, K. W.; Shayegan, M.; Pfeiffer, L. N.

    2018-03-01

    Low-defect two-dimensional electron systems (2DESs) are essential for studies of fragile many-body interactions that only emerge in nearly-ideal systems. As a result, numerous efforts have been made to improve the quality of modulation-doped AlxGa1 -xAs /GaAs quantum wells (QWs), with an emphasis on purifying the source material of the QW itself or achieving better vacuum in the deposition chamber. However, this approach overlooks another crucial component that comprises such QWs, the AlxGa1 -xAs barrier. Here we show that having a clean Al source and hence a clean barrier is instrumental to obtain a high-quality GaAs 2DES in a QW. We observe that the mobility of the 2DES in GaAs QWs declines as the thickness or Al content of the AlxGa1 -xAs barrier beneath the QW is increased, which we attribute to the surface segregation of oxygen atoms that originate from the Al source. This conjecture is supported by the improved mobility in the GaAs QWs as the Al cell is cleaned out by baking.

  14. Absence of Asymptotic Freedom in Doped Mott Insulators: Breakdown of Strong Coupling Expansions

    NASA Astrophysics Data System (ADS)

    Phillips, Philip; Galanakis, Dimitrios; Stanescu, Tudor D.

    2004-12-01

    We show that doped Mott insulators such as the copper-oxide superconductors are asymptotically slaved in that the quasiparticle weight Z near half-filling depends critically on the existence of the high-energy scale set by the upper Hubbard band. In particular, near half-filling, the following dichotomy arises: Z≠0 when the high-energy scale is integrated out but Z=0 in the thermodynamic limit when it is retained. Slavery to the high-energy scale arises from quantum interference between electronic excitations across the Mott gap. Broad spectral features seen in photoemission in the normal state of the cuprates are argued to arise from high-energy slavery.

  15. Microscopic signature of insulator-to-metal transition in highly doped semicrystalline conducting polymers in ionic-liquid-gated transistors

    NASA Astrophysics Data System (ADS)

    Tanaka, Hisaaki; Nishio, Satoshi; Ito, Hiroshi; Kuroda, Shin-ichi

    2015-12-01

    Electronic state of charge carriers, in particular, in highly doped regions, in thin-film transistors of a semicrystalline conducting polymer poly(2,5-bis(3-alkylthiophene-2-yl)thieno[3,2-b]thiophene), has been studied by using field-induced electron spin resonance (ESR) spectroscopy. By adopting an ionic-liquid gate insulator, a gate-controlled reversible electrochemical hole-doping of the polymer backbone is achieved, as confirmed from the change of the optical absorption spectra. The edge-on molecular orientation in the pristine film is maintained even after the electrochemical doping, which is clarified from the angular dependence of the g value. As the doping level increases, spin 1/2 polarons transform into spinless bipolarons, which is demonstrated from the spin-charge relation showing a spin concentration peak around 1%, contrasting to the monotonic increase in the charge concentration. At high doping levels, a drastic change in the linewidth anisotropy due to the generation of conduction electrons is observed, indicating the onset of metallic state, which is also supported by the temperature dependence of the spin susceptibility and the ESR linewidth. Our results suggest that semicrystalline conducting polymers become metallic with retaining their molecular orientational order, when appropriate doping methods are chosen.

  16. Electronic passivation of n- and p-type GaAs using chemical vapor deposited GaS

    NASA Technical Reports Server (NTRS)

    Tabib-Azar, Massood; Kang, Soon; Macinnes, Andrew N.; Power, Michael B.; Barron, Andrew R.; Jenkins, Phillip P.; Hepp, Aloysius F.

    1993-01-01

    We report on the electronic passivation of n- and p-type GaAs using CVD cubic GaS. Au/GaS/GaAs-fabricated metal-insulator-semiconductor (MIS) structures exhibit classical high-frequency capacitor vs voltage (C-V) behavior with well-defined accumulation and inversion regions. Using high- and low-frequency C-V, the interface trap densities of about 10 exp 11/eV per sq cm on both n- and p-type GaAs are determined. The electronic condition of GaS/GaAs interface did not show any deterioration after a six week time period.

  17. Superconductivity, Pairing Symmetry, and Disorder in the Doped Topological Insulator Sn 1-xIn xTe for x >= 0.10.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smylie, M. P.; Claus, H.; Kwok, W. -K.

    The temperature dependence of the London penetration depth Delta lambda(T) in the superconducting doped topological crystalline insulator Sn1-xInxTe was measured down to 450 mK for two different doping levels, x approximate to 0.45 (optimally doped) and x approximate to 0.10 (underdoped), bookending the range of cubic phase in the compound. The results indicate no deviation from fully gapped BCS-like behavior, eliminating several candidate unconventional gap structures. Critical field values below 1 K and other superconducting parameters are also presented. The introduction of disorder by repeated particle irradiation with 5 MeV protons does not enhance T-c, indicating that ferroelectric interactions domore » not compete with superconductivity.« less

  18. Diamond anvil cells using boron-doped diamond electrodes covered with undoped diamond insulating layer

    NASA Astrophysics Data System (ADS)

    Matsumoto, Ryo; Yamashita, Aichi; Hara, Hiroshi; Irifune, Tetsuo; Adachi, Shintaro; Takeya, Hiroyuki; Takano, Yoshihiko

    2018-05-01

    Diamond anvil cells using boron-doped metallic diamond electrodes covered with undoped diamond insulating layers have been developed for electrical transport measurements under high pressure. These designed diamonds were grown on a bottom diamond anvil via a nanofabrication process combining microwave plasma-assisted chemical vapor deposition and electron beam lithography. The resistance measurements of a high-quality FeSe superconducting single crystal under high pressure were successfully demonstrated by just putting the sample and gasket on the bottom diamond anvil directly. The superconducting transition temperature of the FeSe single crystal was increased to up to 43 K by applying uniaxial-like pressure.

  19. Superconductivity, pairing symmetry, and disorder in the doped topological insulator Sn 1 - x In x Te for x ≥ 0.10

    DOE PAGES

    Smylie, M. P.; Claus, H.; Kwok, W. -K.; ...

    2018-01-19

    The temperature dependence of the London penetration depth Δλ(T) in the superconducting doped topological crystalline insulator Sn 1-xIn x Te was measured down to 450 mK for two different doping levels, x ≈ 0.45 (optimally doped) and x ≈ 0.10 (underdoped), bookending the range of cubic phase in the compound. The results indicate no deviation from fully gapped BCS-like behavior, eliminating several candidate unconventional gap structures. Critical field values below 1 K and other superconducting parameters are also presented. The introduction of disorder by repeated particle irradiation with 5 MeV protons does not enhance T c, indicating that ferroelectric interactionsmore » do not compete with superconductivity.« less

  20. Superconductivity, pairing symmetry, and disorder in the doped topological insulator Sn 1 - x In x Te for x ≥ 0.10

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smylie, M. P.; Claus, H.; Kwok, W. -K.

    The temperature dependence of the London penetration depth Δλ(T) in the superconducting doped topological crystalline insulator Sn 1-xIn x Te was measured down to 450 mK for two different doping levels, x ≈ 0.45 (optimally doped) and x ≈ 0.10 (underdoped), bookending the range of cubic phase in the compound. The results indicate no deviation from fully gapped BCS-like behavior, eliminating several candidate unconventional gap structures. Critical field values below 1 K and other superconducting parameters are also presented. The introduction of disorder by repeated particle irradiation with 5 MeV protons does not enhance T c, indicating that ferroelectric interactionsmore » do not compete with superconductivity.« less

  1. Nanoscale determination of the mass enhancement factor in the lightly doped bulk insulator lead selenide.

    PubMed

    Zeljkovic, Ilija; Scipioni, Kane L; Walkup, Daniel; Okada, Yoshinori; Zhou, Wenwen; Sankar, R; Chang, Guoqing; Wang, Yung Jui; Lin, Hsin; Bansil, Arun; Chou, Fangcheng; Wang, Ziqiang; Madhavan, Vidya

    2015-03-27

    Bismuth chalcogenides and lead telluride/selenide alloys exhibit exceptional thermoelectric properties that could be harnessed for power generation and device applications. Since phonons play a significant role in achieving these desired properties, quantifying the interaction between phonons and electrons, which is encoded in the Eliashberg function of a material, is of immense importance. However, its precise extraction has in part been limited due to the lack of local experimental probes. Here we construct a method to directly extract the Eliashberg function using Landau level spectroscopy, and demonstrate its applicability to lightly doped thermoelectric bulk insulator PbSe. In addition to its high energy resolution only limited by thermal broadening, this novel experimental method could be used to detect variations in mass enhancement factor at the nanoscale level. This opens up a new pathway for investigating the local effects of doping and strain on the mass enhancement factor.

  2. Superconducting thin films of (100) and (111) oriented indium doped topological crystalline insulator SnTe

    DOE PAGES

    Si, W.; Zhang, C.; Wu, L.; ...

    2015-09-01

    Recent discovery of the topological crystalline insulator SnTe has triggered a search for topological superconductors, which have potential application to topological quantum computing. The present work reports on the superconducting properties of indium doped SnTe thin films. The (100) and (111) oriented thin films were epitaxially grown by pulsed-laser deposition on (100) and (111) BaF2 crystalline substrates respectively. The onset superconducting transition temperatures are about 3.8 K for (100) and 3.6 K for (111) orientations, slightly lower than that of the bulk. Magneto-resistive measurements indicate that these thin films may have upper critical fields higher than that of the bulk.more » With large surface-to-bulk ratio, superconducting indium doped SnTe thin films provide a rich platform for the study of topological superconductivity and potential device applications based on topological superconductors.« less

  3. Superconducting thin films of (100) and (111) oriented indium doped topological crystalline insulator SnTe

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Si, Weidong, E-mail: wds@bnl.gov, E-mail: qiangli@bnl.gov; Zhang, Cheng; Wu, Lijun

    2015-08-31

    Recent discovery of the topological crystalline insulator SnTe has triggered a search for topological superconductors, which have potential application to topological quantum computing. The present work reports on the superconducting properties of indium doped SnTe thin films. The (100) and (111) oriented thin films were epitaxially grown by pulsed-laser deposition on (100) and (111) BaF{sub 2} crystalline substrates, respectively. The onset superconducting transition temperatures are about 3.8 K for (100) and 3.6 K for (111) orientations, slightly lower than that of the bulk. Magneto-resistive measurements indicate that these thin films may have upper critical fields higher than that of the bulk. Withmore » large surface-to-bulk ratio, superconducting indium doped SnTe thin films provide a rich platform for the study of topological superconductivity and potential device applications based on topological superconductors.« less

  4. Sn-doped Bi 1.1Sb 0.9Te 2S bulk crystal topological insulator with excellent properties

    DOE PAGES

    S. K. Kushwaha; Pletikosic, I.; Liang, T.; ...

    2016-04-27

    A long-standing issue in topological insulator research has been to find a bulk single crystal material that provides a high quality platform for characterizing topological surface states without interference from bulk electronic states. This material would ideally be a bulk insulator, have a surface state Dirac point energy well isolated from the bulk valence and conduction bands, display quantum oscillations from the surface state electrons, and be growable as large, high quality bulk single crystals. Here we show that this materials obstacle is overcome by bulk crystals of lightly Sn-doped Bi 1.1Sb 0.9Te 2S grown by the Vertical Bridgeman method.more » We characterize Sn-BSTS via angle-resolved photoemission spectroscopy, scanning tunneling microscopy, transport studies, X-ray diffraction, and Raman scattering. We present this material as a high quality topological insulator that can be reliably grown as bulk single crystals and thus studied by many researchers interested in topological surface states.« less

  5. An increase in Tc under hydrostatic pressure in the superconducting doped topological insulator Nb 0.25Bi 2Se 3

    DOE PAGES

    Smylie, M. P.; Willa, K.; Ryan, K.; ...

    2017-10-26

    Here, we report a positive hydrostatic pressure derivative of the superconducting transition temperature in the doped topological insulator Nb 0.25Bi 2Se 3 via dc SQUID magnetometry in pressures up to 0.6 GPa. This result is contrary to reports on the homologues Cu xBi 2Se 3 and Sr xBi 2Se 3 where smooth suppression of T c is observed. This difference may be attributable to an electronic structure composed of multiple bands whereas the other materials in the superconducting doped Bi 2Se 3 family are believed to be single-band.

  6. Processing of insulators and semiconductors

    DOEpatents

    Quick, Nathaniel R.; Joshi, Pooran C.; Duty, Chad Edward; Jellison, Jr., Gerald Earle; Angelini, Joseph Attilio

    2015-06-16

    A method is disclosed for processing an insulator material or a semiconductor material. The method includes pulsing a plasma lamp onto the material to diffuse a doping substance into the material, to activate the doping substance in the material or to metallize a large area region of the material. The method may further include pulsing a laser onto a selected region of the material to diffuse a doping substance into the material, to activate the doping substance in the material or to metallize a selected region of the material.

  7. Fingerprints of spin-orbital polarons and of their disorder in the photoemission spectra of doped Mott insulators with orbital degeneracy

    NASA Astrophysics Data System (ADS)

    Avella, Adolfo; Oleś, Andrzej M.; Horsch, Peter

    2018-04-01

    We explore the effects of disordered charged defects on the electronic excitations observed in the photoemission spectra of doped transition metal oxides in the Mott insulating regime by the example of the R1 -xCaxVO3 perovskites, where R = La, ⋯, Lu. A fundamental characteristic of these vanadium d2 compounds with partly filled t2 g valence orbitals is the persistence of spin and orbital order up to high doping, in contrast to the loss of magnetic order in high-Tc cuprates at low defect concentration. We study the disordered electronic structure of such doped Mott-Hubbard insulators within the unrestricted Hartree-Fock approximation and, as a result, manage to explain the spectral features that occur in photoemission and inverse photoemission. In particular, (i) the atomic multiplet excitations in the inverse photoemission spectra and the various defect-related states and satellites are qualitatively well reproduced, (ii) a robust Mott gap survives up to large doping, and (iii) we show that the defect states inside the Mott gap develop a soft gap at the Fermi energy. The soft defect-states gap, which separates the highest occupied from the lowest unoccupied states, can be characterized by a shape and a scale parameter extracted from a Weibull statistical sampling of the density of states near the chemical potential. These parameters provide a criterion and a comprehensive schematization for the insulator-metal transition in disordered systems. Our results provide clear indications that doped holes are bound to charged defects and form small spin-orbital polarons whose internal kinetic energy is responsible for the opening of the soft defect-states gap. We show that this kinetic gap survives disorder fluctuations of defects and is amplified by the long-range electron-electron interactions, whereas we observe a Coulomb singularity in the atomic limit. The small size of spin-orbital polarons is inferred by an analysis of the inverse participation ratio and by

  8. Fabrication and characterization of physically defined quantum dots on a boron-doped silicon-on-insulator substrate

    NASA Astrophysics Data System (ADS)

    Mizoguchi, Seiya; Shimatani, Naoki; Kobayashi, Mizuki; Makino, Takaomi; Yamaoka, Yu; Kodera, Tetsuo

    2018-04-01

    We study hole transport properties in physically defined p-type silicon quantum dots (QDs) on a heavily doped silicon-on-insulator (SOI) substrate. We observe Coulomb diamonds using single QDs and estimate the charging energy as ∼1.6 meV. We obtain the charge stability diagram of double QDs using single QDs as a charge sensor. This is the first demonstration of charge sensing in p-type heavily doped silicon QDs. For future time-resolved measurements, we apply radio-frequency reflectometry using impedance matching of LC circuits to the device. We observe the resonance and estimate the capacitance as ∼0.12 pF from the resonant frequency. This value is smaller than that of the devices with top gates on nondoped SOI substrate. This indicates that high-frequency signals can be applied efficiently to p-type silicon QDs without top gates.

  9. 20-nm enhancement-mode metamorphic GaAs HEMT with highly doped InGaAs source/drain regions for high-frequency applications

    NASA Astrophysics Data System (ADS)

    Ajayan, J.; Nirmal, D.

    2017-03-01

    In this article, the DC and RF performance of a SiN passivated 20-nm gate length metamorphic high electron mobility transistor (MHEMT) on GaAs substrate with highly doped InGaAs source/drain (S/D) regions have investigated using the Synopsys TCAD tool. The 20-nm enhancement-mode (E-mode) MHEMT device also features δ-doped sheets on either side of the In0.53Ga0.47As/InAs/In0.53Ga0.47As channel which exhibits a transconductance of 3100 mS/mm, cut-off frequency (fT) of 740 GHz and a maximum oscillation frequency (fmax) of 1040 GHz. The threshold voltage of the device is found to be 0.07 V. The room temperature Hall mobilities of the 2-dimensional sheet charge density are measured to be over 12,600 cm2/Vs with a sheet charge density larger than 3.6 × 1012 cm-2. These high-performance E-mode MHEMTs are attractive candidates for sub-millimetre wave applications such as high-resolution radars for space research, remote atmospheric sensing, imaging systems and also for low noise wide bandwidth amplifier for future communication systems.

  10. Impurity and Defect Interactions in GaAs.

    DTIC Science & Technology

    1984-02-29

    3 VPE a X X ASW 3 vIE 33 34 35 36"M-cVO Wawwmba (CM - Z TS 32 -~ - .35T 2II i I MS . 34 35 3 , b Wovor%~~e (€cm -) X3 FiS.l Characteristic donor peaks ...2). Far infrared photoconductivity measurements on Si doped GaAs grown by molecular beam epitaxy (MBE) indicated that the impurity peak previously...difference is donor species dependent, each hydrogenic transition in a photothermal ionization spectrum contains several closely spaced peaks . Each peak cor

  11. GaAs nanowire array solar cells with axial p-i-n junctions.

    PubMed

    Yao, Maoqing; Huang, Ningfeng; Cong, Sen; Chi, Chun-Yung; Seyedi, M Ashkan; Lin, Yen-Ting; Cao, Yu; Povinelli, Michelle L; Dapkus, P Daniel; Zhou, Chongwu

    2014-06-11

    Because of unique structural, optical, and electrical properties, solar cells based on semiconductor nanowires are a rapidly evolving scientific enterprise. Various approaches employing III-V nanowires have emerged, among which GaAs, especially, is under intense research and development. Most reported GaAs nanowire solar cells form p-n junctions in the radial direction; however, nanowires using axial junction may enable the attainment of high open circuit voltage (Voc) and integration into multijunction solar cells. Here, we report GaAs nanowire solar cells with axial p-i-n junctions that achieve 7.58% efficiency. Simulations show that axial junctions are more tolerant to doping variation than radial junctions and lead to higher Voc under certain conditions. We further study the effect of wire diameter and junction depth using electrical characterization and cathodoluminescence. The results show that large diameter and shallow junctions are essential for a high extraction efficiency. Our approach opens up great opportunity for future low-cost, high-efficiency photovoltaics.

  12. On the possibility of many-body localization in a doped Mott insulator

    PubMed Central

    He, Rong-Qiang; Weng, Zheng-Yu

    2016-01-01

    Many-body localization (MBL) is currently a hot issue of interacting systems, in which quantum mechanics overcomes thermalization of statistical mechanics. Like Anderson localization of non-interacting electrons, disorders are usually crucial in engineering the quantum interference in MBL. For translation invariant systems, however, the breakdown of eigenstate thermalization hypothesis due to a pure many-body quantum effect is still unclear. Here we demonstrate a possible MBL phenomenon without disorder, which emerges in a lightly doped Hubbard model with very strong interaction. By means of density matrix renormalization group numerical calculation on a two-leg ladder, we show that whereas a single hole can induce a very heavy Nagaoka polaron, two or more holes will form bound pair/droplets which are all localized excitations with flat bands at low energy densities. Consequently, MBL eigenstates of finite energy density can be constructed as composed of these localized droplets spatially separated. We further identify the underlying mechanism for this MBL as due to a novel ‘Berry phase’ of the doped Mott insulator, and show that by turning off this Berry phase either by increasing the anisotropy of the model or by hand, an eigenstate transition from the MBL to a conventional quasiparticle phase can be realized. PMID:27752064

  13. Nanoscale determination of the mass enhancement factor in the lightly doped bulk insulator lead selenide

    DOE PAGES

    Zeljkovic, Ilija; Scipioni, Kane L.; Walkup, Daniel; ...

    2015-03-27

    Bismuth chalcogenides and lead telluride/selenide alloys exhibit exceptional thermoelectric properties that could be harnessed for power generation and device applications. Since phonons play a significant role in achieving these desired properties, quantifying the interaction between phonons and electrons, which is encoded in the Eliashberg function of a material, is of immense importance. However, its precise extraction has in part been limited due to the lack of local experimental probes. Here we construct a method to directly extract the Eliashberg function using Landau level spectroscopy, and demonstrate its applicability to lightly doped thermoelectric bulk insulator PbSe. In addition to its highmore » energy resolution only limited by thermal broadening, this novel experimental method could be used to detect variations in mass enhancement factor at the nanoscale level. Finally, this opens up a new pathway for investigating the local effects of doping and strain on the mass enhancement factor.« less

  14. Prospect of quantum anomalous Hall and quantum spin Hall effect in doped kagome lattice Mott insulators.

    PubMed

    Guterding, Daniel; Jeschke, Harald O; Valentí, Roser

    2016-05-17

    Electronic states with non-trivial topology host a number of novel phenomena with potential for revolutionizing information technology. The quantum anomalous Hall effect provides spin-polarized dissipation-free transport of electrons, while the quantum spin Hall effect in combination with superconductivity has been proposed as the basis for realizing decoherence-free quantum computing. We introduce a new strategy for realizing these effects, namely by hole and electron doping kagome lattice Mott insulators through, for instance, chemical substitution. As an example, we apply this new approach to the natural mineral herbertsmithite. We prove the feasibility of the proposed modifications by performing ab-initio density functional theory calculations and demonstrate the occurrence of the predicted effects using realistic models. Our results herald a new family of quantum anomalous Hall and quantum spin Hall insulators at affordable energy/temperature scales based on kagome lattices of transition metal ions.

  15. Superconductivity, pairing symmetry, and disorder in the doped topological insulator Sn 1 - x In x Te for x ≥ 0.10

    DOE PAGES

    Smylie, M. P.; Claus, H.; Kwok, W. -K.; ...

    2018-01-19

    In this paper, the temperature dependence of the London penetration depth Δλ(T) in the superconducting doped topological crystalline insulator Sn 1-xIn xTe was measured down to 450 mK for two different doping levels, x ≈ 0.45 (optimally doped) and x ≈ 0.10 (underdoped), bookending the range of cubic phase in the compound. The results indicate no deviation from fully gapped BCS-like behavior, eliminating several candidate unconventional gap structures. Critical field values below 1 K and other superconducting parameters are also presented. Finally, the introduction of disorder by repeated particle irradiation with 5 MeV protons does not enhance T c, indicatingmore » that ferroelectric interactions do not compete with superconductivity.« less

  16. Superconductivity, pairing symmetry, and disorder in the doped topological insulator Sn 1 - x In x Te for x ≥ 0.10

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smylie, M. P.; Claus, H.; Kwok, W. -K.

    In this paper, the temperature dependence of the London penetration depth Δλ(T) in the superconducting doped topological crystalline insulator Sn 1-xIn xTe was measured down to 450 mK for two different doping levels, x ≈ 0.45 (optimally doped) and x ≈ 0.10 (underdoped), bookending the range of cubic phase in the compound. The results indicate no deviation from fully gapped BCS-like behavior, eliminating several candidate unconventional gap structures. Critical field values below 1 K and other superconducting parameters are also presented. Finally, the introduction of disorder by repeated particle irradiation with 5 MeV protons does not enhance T c, indicatingmore » that ferroelectric interactions do not compete with superconductivity.« less

  17. Robust odd-parity superconductivity in the doped topological insulator NbxBi2Se3

    NASA Astrophysics Data System (ADS)

    Smylie, M. P.; Willa, K.; Claus, H.; Snezhko, A.; Martin, I.; Kwok, W.-K.; Qiu, Y.; Hor, Y. S.; Bokari, E.; Niraula, P.; Kayani, A.; Mishra, V.; Welp, U.

    2017-09-01

    We present resistivity and magnetization measurements on proton-irradiated crystals demonstrating that the superconducting state in the doped topological insulator NbxBi2Se3 (x =0.25 ) is surprisingly robust against disorder-induced electron scattering. The superconducting transition temperature Tc decreases without indication of saturation with increasing defect concentration, and the corresponding scattering rates far surpass expectations based on conventional theory. The low-temperature variation of the London penetration depth Δ λ (T ) follows a power law [Δ λ (T ) ˜T2] indicating the presence of symmetry-protected point nodes. Our results are consistent with the proposed robust nematic Eu pairing state in this material.

  18. Photoelectrochemical Water Oxidation by GaAs Nanowire Arrays Protected with Atomic Layer Deposited NiO x Electrocatalysts

    NASA Astrophysics Data System (ADS)

    Zeng, Joy; Xu, Xiaoqing; Parameshwaran, Vijay; Baker, Jon; Bent, Stacey; Wong, H.-S. Philip; Clemens, Bruce

    2018-02-01

    Photoelectrochemical (PEC) hydrogen production makes possible the direct conversion of solar energy into chemical fuel. In this work, PEC photoanodes consisting of GaAs nanowire (NW) arrays were fabricated, characterized, and then demonstrated for the oxygen evolution reaction (OER). Uniform and periodic GaAs nanowire arrays were grown on a heavily n-doped GaAs substrates by metal-organic chemical vapor deposition selective area growth. The nanowire arrays were characterized using cyclic voltammetry and impedance spectroscopy in a non-aqueous electrochemical system using ferrocene/ferrocenium (Fc/Fc+) as a redox couple, and a maximum oxidation photocurrent of 11.1 mA/cm2 was measured. GaAs NW arrays with a 36 nm layer of nickel oxide (NiO x ) synthesized by atomic layer deposition were then used as photoanodes to drive the OER. In addition to acting as an electrocatalyst, the NiO x layer served to protect the GaAs NWs from oxidative corrosion. Using this strategy, GaAs NW photoanodes were successfully used for the oxygen evolution reaction. This is the first demonstration of GaAs NW arrays for effective OER, and the fabrication and protection strategy developed in this work can be extended to study any other nanostructured semiconductor materials systems for electrochemical solar energy conversion.

  19. Dielectric properties of highly resistive GaN crystals grown by ammonothermal method at microwave frequencies

    NASA Astrophysics Data System (ADS)

    Krupka, Jerzy; Zajåc, Marcin; Kucharski, Robert; Gryglewski, Daniel

    2016-03-01

    Permittivity, the dielectric loss tangent and conductivity of semi-insulating Gallium Nitride crystals have been measured as functions of frequency from 10 GHz to 50 GHz and temperature from 295 to 560 K employing quasi TE0np mode dielectric resonator technique. Crystals were grown using ammonothermal method. Two kinds of doping were used to obtain high resistivity crystals; one with deep acceptors in form of transition metal ions, and the other with shallow Mg acceptors. The sample compensated with transition metal ions exhibited semi-insulating behavior in the whole temperature range. The sample doped with Mg acceptors remained semi-insulating up to 390 K. At temperatures exceeding 390 K the conductivity term in the total dielectric loss tangent of Mg compensated sample becomes dominant and it increases exponentially with activation energy of 1.14 eV. It has been proved that ammonothermal method with appropriate doping allows growth of high quality, temperature stable semi-insulating GaN crystals.

  20. Sn nanothreads in GaAs: experiment and simulation

    NASA Astrophysics Data System (ADS)

    Semenikhin, I.; Vyurkov, V.; Bugaev, A.; Khabibullin, R.; Ponomarev, D.; Yachmenev, A.; Maltsev, P.; Ryzhii, M.; Otsuji, T.; Ryzhii, V.

    2016-12-01

    The gated GaAs structures like the field-effect transistor with the array of the Sn nanothreads was fabricated via delta-doping of vicinal GaAs surface by Sn atoms with a subsequent regrowth. That results in the formation of the chains of Sn atoms at the terrace edges. Two device models were developed. The quantum model accounts for the quantization of the electron energy spectrum in the self-consistent two-dimensional electric potential, herewith the electron density distribution in nanothread arrays for different gate voltages is calculated. The classical model ignores the quantization and electrons are distributed in space according to 3D density of states and Fermi-Dirac statistics. It turned out that qualitatively both models demonstrate similar behavior, nevertheless, the classical one is in better quantitative agreement with experimental data. Plausibly, the quantization could be ignored because Sn atoms are randomly placed along the thread axis. The terahertz hot-electron bolometers (HEBs) could be based on the structure under consideration.

  1. Structural properties of pressure-induced structural phase transition of Si-doped GaAs by angular-dispersive X-ray diffraction

    NASA Astrophysics Data System (ADS)

    Lin, Kung-Liang; Lin, Chih-Ming; Lin, Yu-Sheng; Jian, Sheng-Rui; Liao, Yen-Fa; Chuang, Yu-Chun; Wang, Chuan-Sheng; Juang, Jenh-Yih

    2016-02-01

    Pressure-induced phase transitions in n-type silicon-doped gallium arsenide (GaAs:Si ) at ambient temperature were investigated by using angular-dispersive X-ray diffraction (ADXRD) under high pressure up to around 18.6 (1) GPa, with a 4:1 (in volume ratio) methanol-ethanol mixture as the pressure-transmitting medium. In situ ADXRD measurements revealed that n-type GaAs:Si starts to transform from zinc- blende structure to an orthorhombic structure [GaAs-II phase], space group Pmm2, at 16.4 (1) GPa. In contrast to previous studies of pure GaAs under pressure, our results show no evidence of structural transition to Fmmm or Cmcm phase. The fitting of volume compression data to the third-order Birch-Murnaghan equation of state yielded that the zero-pressure isothermal bulk moduli and the first-pressure derivatives were 75 (3) GPa and 6.4 (9) for the B3 phase, respectively. After decompressing to the ambient pressure, the GaAs:Si appears to revert to the B3 phase completely. By fitting to the empirical relations, the Knoop microhardness numbers are between H PK = 6.21 and H A = 5.85, respectively, which are substantially smaller than the values of 7-7.5 for pure GaAs reported previously. A discontinuous drop in the pressure-dependent lattice parameter, N- N distances, and V/ V 0 was observed at a pressure of 11.5 (1) GPa, which was tentatively attributed to the pressure-induced dislocation activities in the crystal grown by vertical gradient freeze method.

  2. On effective holographic Mott insulators

    NASA Astrophysics Data System (ADS)

    Baggioli, Matteo; Pujolàs, Oriol

    2016-12-01

    We present a class of holographic models that behave effectively as prototypes of Mott insulators — materials where electron-electron interactions dominate transport phenomena. The main ingredient in the gravity dual is that the gauge-field dynamics contains self-interactions by way of a particular type of non-linear electrodynamics. The electrical response in these models exhibits typical features of Mott-like states: i) the low-temperature DC conductivity is unboundedly low; ii) metal-insulator transitions appear by varying various parameters; iii) for large enough self-interaction strength, the conductivity can even decrease with increasing doping (density of carriers) — which appears as a sharp manifestation of `traffic-jam'-like behaviour; iv) the insulating state becomes very unstable towards superconductivity at large enough doping. We exhibit some of the properties of the resulting insulator-superconductor transition, which is sensitive to the momentum dissipation rate in a specific way. These models imply a clear and generic correlation between Mott behaviour and significant effects in the nonlinear electrical response. We compute the nonlinear current-voltage curve in our model and find that indeed at large voltage the conductivity is largely reduced.

  3. The influence of Mg doping on the formation of Ga vacancies and negative ions in GaN bulk crystals

    NASA Astrophysics Data System (ADS)

    Saarinen, K.; Nissilä, J.; Hautojärvi, P.; Likonen, J.; Suski, T.; Grzegory, I.; Lucznik, B.; Porowski, S.

    1999-10-01

    Gallium vacancies and negative ions are observed in GaN bulk crystals by applying positron lifetime spectroscopy. The concentration of Ga vacancies decreases with increasing Mg doping, as expected from the behavior of the VGa formation energy as a function of the Fermi level. The concentration of negative ions correlates with that of Mg impurities determined by secondary ion mass spectrometry. We thus attribute the negative ions to MgGa-. The negative charge of Mg suggests that Mg doping converts n-type GaN to semi-insulating mainly due to the electrical compensation of ON+ donors by MgGa- acceptors.

  4. Hg-Based Epitaxial Materials for Topological Insulators

    DTIC Science & Technology

    2014-07-01

    Research Laboratory for investigation of properties. 15. SUBJECT TERMS EOARD, topological insulator , diluted magnetic ...topological superconductors and spintronics to quantum computation (e.g. see C.L.Kane and J.E.Moore "Topological Insulators " Physics World (2011) 24...tetradymite semiconductors Bi2Te3, Bi2Se3, and Sb2Te3 which form magnetically ordered insulators when doped with transition metal elements Cr or Fe (Rui Yu et

  5. Spin Hall Effect in Doped Semiconductor Structures

    NASA Astrophysics Data System (ADS)

    Tse, Wang-Kong; Das Sarma, S.

    2006-02-01

    In this Letter we present a microscopic theory of the extrinsic spin Hall effect based on the diagrammatic perturbation theory. Side-jump and skew-scattering contributions are explicitly taken into account to calculate the spin Hall conductivity, and we show that their effects scale as σxySJ/σxySS˜(ℏ/τ)/ɛF, with τ being the transport relaxation time. Motivated by recent experimental work we apply our theory to n- and p-doped 3D and 2D GaAs structures, obtaining σs/σc˜10-3-10-4, where σs(c) is the spin Hall (charge) conductivity, which is in reasonable agreement with the recent experimental results of Kato et al. [Science 306, 1910 (2004)]SCIEAS0036-807510.1126/science.1105514 in n-doped 3D GaAs system.

  6. Sn-doped Bi1.1Sb0.9Te2S: An ideal bulk topological insulator

    NASA Astrophysics Data System (ADS)

    Kushwaha, Sk; Pletikosic, I.; Liang, T.; Gyenis, A.; Lapidus, Sh; Tian, Y.; Zhao, H.; Burch, Ks; Lin, J.; Wang, W.; Ji, H.; Fedorov, Av; Yazdani, A.; Ong, Np; Valla, T.; Cava, Rj

    In the recent decade the topological insulators have been of significant importance for the condensed matter community. However, so far no real materials could fulfill all the requirements. Here, we present the Bridgman growth of slightly Sn-doped Bi1.1Sb0.9Te2S (with bulk band gap of 350) single crystals and characterization by electronic transport, STM and ARPES. The results on the crystals exhibit an intrinsic semiconducting behavior with the Fermi level and Dirac energies lie in bulk gap and high quality 2D surface states are detangled from the bulk states, and it fulfils all the requirements to be an ideal topological insulator. ARO MURI W911NF-12-1-0461; ARO W911NF-12-1-0461; MRSEC NSF-DMR-1420541; LBNL & BNL DE-AC02-05CH11231 & DE-SC0012704; DOE Office of Science DE-AC02-06CH11357; NSF DMR-1410846.

  7. A semi-empirical model for the complete orientation dependence of the growth rate for vapor phase epitaxy - Chloride VPE of GaAs

    NASA Technical Reports Server (NTRS)

    Seidel-Salinas, L. K.; Jones, S. H.; Duva, J. M.

    1992-01-01

    A semi-empirical model has been developed to determine the complete crystallographic orientation dependence of the growth rate for vapor phase epitaxy (VPE). Previous researchers have been able to determine this dependence for a limited range of orientations; however, our model yields relative growth rate information for any orientation. This model for diamond and zincblende structure materials is based on experimental growth rate data, gas phase diffusion, and surface reactions. Data for GaAs chloride VPE is used to illustrate the model. The resulting growth rate polar diagrams are used in conjunction with Wulff constructions to simulate epitaxial layer shapes as grown on patterned substrates. In general, this model can be applied to a variety of materials and vapor phase epitaxy systems.

  8. Doping dependence of ordered phases and emergent quasiparticles in the doped Hubbard-Holstein model

    DOE PAGES

    Mendl, C. B.; Nowadnick, E. A.; Huang, E. W.; ...

    2017-11-15

    Here, we present determinant quantum Monte Carlo simulations of the hole-doped single-band Hubbard-Holstein model on a square lattice, to investigate how quasiparticles emerge when doping a Mott insulator (MI) or a Peierls insulator (PI). The MI regime at large Hubbard interaction U and small relative e-ph coupling strength λ is quickly suppressed upon doping, by drawing spectral weight from the upper Hubbard band and shifting the lower Hubbard band towards the Fermi level, leading to a metallic state with emergent quasiparticles at the Fermi level. On the other hand, the PI regime at large λ and small U persists outmore » to relatively high doping levels. We study the evolution of the d-wave superconducting susceptibility with doping, and find that it increases with lowering temperature in a regime of intermediate values of U and λ.« less

  9. Doping dependence of ordered phases and emergent quasiparticles in the doped Hubbard-Holstein model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mendl, C. B.; Nowadnick, E. A.; Huang, E. W.

    Here, we present determinant quantum Monte Carlo simulations of the hole-doped single-band Hubbard-Holstein model on a square lattice, to investigate how quasiparticles emerge when doping a Mott insulator (MI) or a Peierls insulator (PI). The MI regime at large Hubbard interaction U and small relative e-ph coupling strength λ is quickly suppressed upon doping, by drawing spectral weight from the upper Hubbard band and shifting the lower Hubbard band towards the Fermi level, leading to a metallic state with emergent quasiparticles at the Fermi level. On the other hand, the PI regime at large λ and small U persists outmore » to relatively high doping levels. We study the evolution of the d-wave superconducting susceptibility with doping, and find that it increases with lowering temperature in a regime of intermediate values of U and λ.« less

  10. Imposing long-range ferromagnetic order in rare-earth-doped magnetic topological-insulator heterostructures

    NASA Astrophysics Data System (ADS)

    Duffy, L. B.; Frisk, A.; Burn, D. M.; Steinke, N.-J.; Herrero-Martin, J.; Ernst, A.; van der Laan, G.; Hesjedal, T.

    2018-05-01

    The combination of topological properties and magnetic order can lead to new quantum states and exotic physical phenomena, such as the quantum anomalous Hall (QAH) effect. The size of the magnetic gap in the topological surface states, key for the robust observation of the QAH state, scales with the magnetic moment of the doped three-dimensional topological insulator (TI). The pioneering transition-metal doped (Sb,Bi ) 2(Se,Te ) 3 thin films only allow for the observation of the QAH effect up to some 100 mK, despite the much higher magnetic ordering temperatures. On the other hand, high magnetic moment materials, such as rare-earth-doped (Sb,Bi ) 2(Se,Te ) 3 thin films, show large moments but no long-range magnetic order. Proximity coupling and interfacial effects, multiplied in artificial heterostructures, allow for the engineering of the electronic and magnetic properties. Here, we show the successful growth of high-quality Dy:Bi2Te3 /Cr:Sb2Te3 thin film heterostructures. Using x-ray magnetic spectroscopy we demonstrate that high transition temperature Cr:Sb2Te3 can introduce long-range magnetic order in high-moment Dy:Bi2Te3 —up to a temperature of 17 K—in excellent agreement with first-principles calculations, which reveal the origin of the long-range magnetic order in a strong antiferromagnetic coupling between Dy and Cr magnetic moments at the interface extending over several layers. Engineered magnetic TI heterostructures may be an ideal materials platform for observing the QAH effect at liquid He temperatures and above.

  11. Thermal process induced change of conductivity in As-doped ZnO

    NASA Astrophysics Data System (ADS)

    Su, S. C.; Fan, J. C.; Ling, C. C.

    2012-02-01

    Arsenic-doped ZnO films were fabricated by radio frequency magnetron sputtering method with different substrate temperature TS. Growing with the low substrate temperature of TS=200°C yielded n-type semi-insulating sample. Increasing the substrate temperature would yield p-type ZnO film and reproducible p-type film could be produced at TS~450°C. Post-growth annealing of the n-type As-doped ZnO sample grown at the low substrate temperature (TS=200°C) in air at 500°C also converted the film to p-type conductivity. Further increasing the post-growth annealing temperature would convert the p-type sample back to n-type. With the results obtained from the studies of positron annihilation spectroscopy (PAS), photoluminescence (PL), cathodoluminescence (CL), X-ray photoelectron spectroscopy (XPS), secondary ion mass spectroscopy (SIMS) and nuclear reaction analysis (NRA), we have proposed mechanisms to explain for the thermal process induced conduction type conversion as observed in the As-doped ZnO films.

  12. High-Performance GaAs Nanowire Solar Cells for Flexible and Transparent Photovoltaics.

    PubMed

    Han, Ning; Yang, Zai-xing; Wang, Fengyun; Dong, Guofa; Yip, SenPo; Liang, Xiaoguang; Hung, Tak Fu; Chen, Yunfa; Ho, Johnny C

    2015-09-16

    Among many available photovoltaic technologies at present, gallium arsenide (GaAs) is one of the recognized leaders for performance and reliability; however, it is still a great challenge to achieve cost-effective GaAs solar cells for smart systems such as transparent and flexible photovoltaics. In this study, highly crystalline long GaAs nanowires (NWs) with minimal crystal defects are synthesized economically by chemical vapor deposition and configured into novel Schottky photovoltaic structures by simply using asymmetric Au-Al contacts. Without any doping profiles such as p-n junction and complicated coaxial junction structures, the single NW Schottky device shows a record high apparent energy conversion efficiency of 16% under air mass 1.5 global illumination by normalizing to the projection area of the NW. The corresponding photovoltaic output can be further enhanced by connecting individual cells in series and in parallel as well as by fabricating NW array solar cells via contact printing showing an overall efficiency of 1.6%. Importantly, these Schottky cells can be easily integrated on the glass and plastic substrates for transparent and flexible photovoltaics, which explicitly demonstrate the outstanding versatility and promising perspective of these GaAs NW Schottky photovoltaics for next-generation smart solar energy harvesting devices.

  13. Ultrafast energy- and momentum-resolved dynamics of magnetic correlations in the photo-doped Mott insulator Sr2IrO4.

    PubMed

    Dean, M P M; Cao, Y; Liu, X; Wall, S; Zhu, D; Mankowsky, R; Thampy, V; Chen, X M; Vale, J G; Casa, D; Kim, Jungho; Said, A H; Juhas, P; Alonso-Mori, R; Glownia, J M; Robert, A; Robinson, J; Sikorski, M; Song, S; Kozina, M; Lemke, H; Patthey, L; Owada, S; Katayama, T; Yabashi, M; Tanaka, Yoshikazu; Togashi, T; Liu, J; Rayan Serrao, C; Kim, B J; Huber, L; Chang, C-L; McMorrow, D F; Först, M; Hill, J P

    2016-06-01

    Measuring how the magnetic correlations evolve in doped Mott insulators has greatly improved our understanding of the pseudogap, non-Fermi liquids and high-temperature superconductivity. Recently, photo-excitation has been used to induce similarly exotic states transiently. However, the lack of available probes of magnetic correlations in the time domain hinders our understanding of these photo-induced states and how they could be controlled. Here, we implement magnetic resonant inelastic X-ray scattering at a free-electron laser to directly determine the magnetic dynamics after photo-doping the Mott insulator Sr2IrO4. We find that the non-equilibrium state, 2 ps after the excitation, exhibits strongly suppressed long-range magnetic order, but hosts photo-carriers that induce strong, non-thermal magnetic correlations. These two-dimensional (2D) in-plane Néel correlations recover within a few picoseconds, whereas the three-dimensional (3D) long-range magnetic order restores on a fluence-dependent timescale of a few hundred picoseconds. The marked difference in these two timescales implies that the dimensionality of magnetic correlations is vital for our understanding of ultrafast magnetic dynamics.

  14. Ultrafast energy- and momentum-resolved dynamics of magnetic correlations in the photo-doped Mott insulator Sr 2IrO 4

    DOE PAGES

    Dean, M. P. M.; Cao, Y.; Liu, X.; ...

    2016-05-09

    Measuring how the magnetic correlations evolve in doped Mott insulators has greatly improved our understanding of the pseudogap, non-Fermi liquids and high-temperature superconductivity 1, 2, 3, 4. Recently, photo-excitation has been used to induce similarly exotic states transiently 5, 6, 7. However, the lack of available probes of magnetic correlations in the time domain hinders our understanding of these photo-induced states and how they could be controlled. Here, we implement magnetic resonant inelastic X-ray scattering at a free-electron laser to directly determine the magnetic dynamics after photo-doping the Mott insulator Sr 2IrO 4. We find that the non-equilibrium state, 2more » ps after the excitation, exhibits strongly suppressed long-range magnetic order, but hosts photo-carriers that induce strong, non-thermal magnetic correlations. These two-dimensional (2D) in-plane Néel correlations recover within a few picoseconds, whereas the three-dimensional (3D) long-range magnetic order restores on a fluence-dependent timescale of a few hundred picoseconds. In conclusion, the marked difference in these two timescales implies that the dimensionality of magnetic correlations is vital for our understanding of ultrafast magnetic dynamics.« less

  15. Direct Observation of Surface Potential Distribution in Insulation Resistance Degraded Acceptor-Doped BaTiO3 Multilayered Ceramic Capacitors

    NASA Astrophysics Data System (ADS)

    Hong, Kootak; Lee, Tae Hyung; Suh, Jun Min; Park, Jae-Sung; Kwon, Hyung-Soon; Choi, Jaeho; Jang, Ho Won

    2018-05-01

    Insulation resistance (IR) degradation in BaTiO3 is a key issue for developing miniaturized multilayer ceramic capacitors (MLCCs) with high capacity. Despite rapid progress in BaTiO3-based MLCCs, the mechanism of IR degradation is still controversial. In this study, we demonstrate the Al doping effect on IR degradation behavior of BaTiO3 MLCCs by electrical measurements and scanning Kelvin probe microscopy (SKPM). As the Al doping concentration in BaTiO3 increases, IR degradation of MLCCs seems to be suppressed from electrical characterization results. However, SKPM results reveal that the conductive regions near the cathode become lager with Al doping after IR degradation. The formation of conducting regions is attributed to the migration of oxygen vacancies, which is the origin of IR degradation in BaTiO3, in dielectric layers. These results imply that acceptor doping in BaTiO3 solely cannot suppress the IR degradation in MLCC even though less asymmetric IR characteristics and IR degradation in MLCCs with higher Al doping concentration are observed from electrical characterization. Our results strongly suggest that observing the surface potential distribution in IR degraded dielectric layers using SKPM is an effective method to unravel the mechanism of IR degradation in MLCCs.

  16. Effect of doping on the forward current-transport mechanisms in a metal-insulator-semiconductor contact to INP:ZN grown by metal organic vapor phase epitaxy

    NASA Astrophysics Data System (ADS)

    Cova, P.; Singh, A.; Medina, A.; Masut, R. A.

    1998-04-01

    A detailed study of the effect of doping density on current transport was undertaken in Au metal-insulator-semiconductor (MIS) contacts fabricated on Zn-doped InP layers grown by metal organic vapor phase epitaxy. A recently developed method was used for the simultaneous analysis of the current-voltage ( I- V) and capacitance-voltage ( C- V) characteristics in an epitaxial MIS diode which brings out the contributions of different current-transport mechanisms to the total current. I- V and high-frequency C- V measurements were performed on two MIS diodes at different temperatures in the range 220-395 K. The barrier height at zero bias of Au/InP:Zn MIS diodes, φ0 (1.06 V±10%), was independent both of the Zn-doping density and of the surface preparation. The interface state density distribution Nss as well as the thickness of the oxide layer (2.2±15% nm) unintentionally grown before Au deposition were independent of the Zn-doping concentration in the range 10 16< NA<10 17 cm -3; not so the effective potential barrier χ of the insulator layer and the density of the mid-gap traps. χ was much lower for the highly-doped sample. Our results indicate that at high temperatures, independent of the Zn-doping concentration, the interfacial layer-thermionic (ITE) and interfacial layer-diffusion (ID) mechanisms compete with each other to control the current transport. At intermediate temperatures, however, ITE and ID will no longer be the only dominant mechanisms in the MIS diode fabricated on the highly-doped sample. In this case, the assumption of a generation-recombination current permits a better fit to the experimental data. Analysis of the data suggests that the generation-recombination current, observed only in the highly-doped sample, is associated with an increase in the Zn-doping density. From the forward I- V data for this diode we obtained the energy level (0.60 eV from the conduction band) for the most effective recombination centers.

  17. Design and implementation of GaAs HBT circuits with ACME

    NASA Technical Reports Server (NTRS)

    Hutchings, Brad L.; Carter, Tony M.

    1993-01-01

    GaAs HBT circuits offer high performance (5-20 GHz) and radiation hardness (500 Mrad) that is attractive for space applications. ACME is a CAD tool specifically developed for HBT circuits. ACME implements a novel physical schematic-capture design technique where designers simultaneously view the structure and physical organization of a circuit. ACME's design interface is similar to schematic capture; however, unlike conventional schematic capture, designers can directly control the physical placement of both function and interconnect at the schematic level. In addition, ACME provides design-time parasitic extraction, complex wire models, and extensions to Multi-Chip Modules (MCM's). A GaAs HBT gate-array and semi-custom circuits have been developed with ACME; several circuits have been fabricated and found to be fully functional .

  18. Robust odd-parity superconductivity in the doped topological insulator Nb x Bi 2 Se 3

    DOE PAGES

    Smylie, M. P.; Willa, K.; Claus, H.; ...

    2017-09-15

    We present resistivity and magnetization measurements on proton-irradiated crystals demonstrating that the superconducting state in the doped topological insulator Nb xBi 2Se 3 (x = 0.25) is surprisingly robust against disorder-induced electron scattering. The superconducting transition temperature Tc decreases without indication of saturation with increasing defect concentration, and the corresponding scattering rates far surpass expectations based on conventional theory. The low-temperature variation of the London penetration depth Δλ(T) follows a power law [Δλ(T)~T 2] indicating the presence of symmetry-protected point nodes. Lastly, our results are consistent with the proposed robust nematic E u pairing state in this material.

  19. The electrical behavior of GaAs-insulator interfaces - A discrete energy interface state model

    NASA Technical Reports Server (NTRS)

    Kazior, T. E.; Lagowski, J.; Gatos, H. C.

    1983-01-01

    The relationship between the electrical behavior of GaAs Metal Insulator Semiconductor (MIS) structures and the high density discrete energy interface states (0.7 and 0.9 eV below the conduction band) was investigated utilizing photo- and thermal emission from the interface states in conjunction with capacitance measurements. It was found that all essential features of the anomalous behavior of GaAs MIS structures, such as the frequency dispersion and the C-V hysteresis, can be explained on the basis of nonequilibrium charging and discharging of the high density discrete energy interface states.

  20. Colossal magnetoresistance in a Mott insulator via magnetic field-driven insulator-metal transition

    DOE PAGES

    Zhu, M.; Peng, J.; Zou, T.; ...

    2016-05-25

    Here, we present a new type of colossal magnetoresistance (CMR) arising from an anomalous collapse of the Mott insulating state via a modest magnetic field in a bilayer ruthenate, Ti-doped Ca 3Ru 2O 7. Such an insulator-metal transition is accompanied by changes in both lattice and magnetic structures. Our findings have important implications because a magnetic field usually stabilizes the insulating ground state in a Mott-Hubbard system, thus calling for a deeper theoretical study to reexamine the magnetic field tuning of Mott systems with magnetic and electronic instabilities and spin-lattice-charge coupling. This study further provides a model approach to searchmore » for CMR systems other than manganites, such as Mott insulators in the vicinity of the boundary between competing phases.« less

  1. Spin-rotation symmetry breaking and triplet superconducting state in doped topological insulator CuxBi2Se3

    NASA Astrophysics Data System (ADS)

    Zheng, Guo-Qing

    Spontaneous symmetry breaking is an important concept for understanding physics ranging from the elementary particles to states of matter. For example, the superconducting state breaks global gauge symmetry, and unconventional superconductors can break additional symmetries. In particular, spin rotational symmetry is expected to be broken in spin-triplet superconductors. However, experimental evidence for such symmetry breaking has not been obtained so far in any candidate compounds. We report 77Se nuclear magnetic resonance measurements which showed that spin rotation symmetry is spontaneously broken in the hexagonal plane of the electron-doped topological insulator Cu0.3Bi2Se3 below the superconducting transition temperature Tc =3.4 K. Our results not only establish spin-triplet (odd parity) superconductivity in this compound, but also serve to lay a foundation for the research of topological superconductivity (Ref.). We will also report the doping mechanism and superconductivity in Sn1-xInxTe.

  2. Reentrant metal-insulator transition in the Cu-doped manganites La1-x Pbx MnO3 (x˜0.14) single crystals

    NASA Astrophysics Data System (ADS)

    Zhao, B. C.; Song, W. H.; Ma, Y. Q.; Ang, R.; Zhang, S. B.; Sun, Y. P.

    2005-10-01

    Single crystals of La1-x Pbx Mn1-y-z Cuy O3 ( x˜0.14 ; y=0 ,0.01,0.02,0.04,0.06; z=0.02 ,0.08,0.11,0.17,0.20) are grown by the flux growth technique. The effect of Cu doping at the Mn-site on magnetic and transport properties is studied. All studied samples undergo a paramagnetic-ferromagnetic transition. The Curie temperature TC decreases and the transition becomes broader with increasing Cu-doping level. The high-temperature insulator-metal (I-M) transition moves to lower temperature with increasing Cu-doping level. A reentrant M-I transition at the low temperature T* is observed for samples with y⩾0.02 . In addition, T* increases with increasing Cu-doping level and is not affected by applied magnetic fields. Accompanying the appearance of T* , there exists a large, almost constant magnetoresistance (MR) below T* except for a large MR peak near TC . This reentrant M-I transition is ascribed to charge carrier localization due to lattice distortion caused by the Cu doping at Mn sites.

  3. Material growth and characterization for solid state devices

    NASA Technical Reports Server (NTRS)

    Stefanakos, E. K.; Collis, W. J.; Abul-Fadl, A.; Iyer, S.

    1984-01-01

    Manganese was used as the dopant for p-type InGaAs layers grown on semi-insulating (Fe-doped) and n-type (Sn-doped) InP substrates. Optical, electrical (Hall) and SIMS measurements were used to characterize the layers. Mn-diffusion into the substrate (during the growth of In GaAs) was observed only when Fe-doped substrates were used. Quaternary layers of two compositions corresponding to wavelengths (energy gaps) of approximated 1.52 micrometers were successfully grown at a constant temperature of 640 C and InP was grown in the temperature range of 640 C to 655 C. A study of the effect of pulses on the growth velocity of InP indicated no significant change as long as the average applied current was kept constant. A system for depositing films of Al2O3 by the pyrolysis of aluminum isopropoxide was designed and built. Deposited layers on Si were characterized with an ellipsometer and exhibited indices of refraction between 1.582 and 1.622 for films on the order of 3000 A thick. Undoped and p-type (Mn-doped) InGaAs epitaxial layers were also grown on Fe-doped InP substrates through windows in sputtered SiO2 (3200 A thick) layers.

  4. Planar doped barrier subharmonic mixers

    NASA Technical Reports Server (NTRS)

    Lee, T. H.; East, J. R.; Haddad, G. I.

    1992-01-01

    The Planar Doped Barrier (PDB) diode is a device consisting of a p(+) doping spike between two intrinsic layers and n(+) ohmic contacts. This device has the advantages of controllable barrier height, diode capacitance and forward to reverse current ratio. A symmetrically designed PDB has an anti-symmetric current vs. voltage characteristic and is ideal for use as millimeter wave subharmonic mixers. We have fabricated such devices with barrier heights of 0.3, 0.5 and 0.7 volts from GaAs and InGaAs using a multijunction honeycomb structure with junction diameters between one and ten microns. Initial RF measurements are encouraging. The 0.7 volt barrier height 4 micron GaAs devices were tested as subharmonic mixers at 202 GHz with an IF frequency of 1 GHz and had 18 dB of conversion loss. The estimated mismatch loss was 7 dB and was due to higher diode capacitance. The LO frequency was 100.5 GHz and the pump power was 8 mW.

  5. Rhodium doped InGaAs: A superior ultrafast photoconductor

    NASA Astrophysics Data System (ADS)

    Kohlhaas, R. B.; Globisch, B.; Nellen, S.; Liebermeister, L.; Schell, M.; Richter, P.; Koch, M.; Semtsiv, M. P.; Masselink, W. T.

    2018-03-01

    The properties of rhodium (Rh) as a deep-level dopant in InGaAs lattice matched to InP grown by molecular beam epitaxy are investigated. When InGaAs:Rh is used as an ultrafast photoconductor, carrier lifetimes as short as 100 fs for optically excited electrons are measured. Rh doping compensates free carriers so that a near intrinsic carrier concentration can be achieved. At the same time, InGaAs:Rh exhibits a large electron mobility of 1000 cm2/V s. Therefore, this material is a very promising candidate for application as a semi-insulating layer, THz antenna, or semiconductor saturable absorber mirror.

  6. Precision calibration of the silicon doping level in gallium arsenide epitaxial layers

    NASA Astrophysics Data System (ADS)

    Mokhov, D. V.; Berezovskaya, T. N.; Kuzmenkov, A. G.; Maleev, N. A.; Timoshnev, S. N.; Ustinov, V. M.

    2017-10-01

    An approach to precision calibration of the silicon doping level in gallium arsenide epitaxial layers is discussed that is based on studying the dependence of the carrier density in the test GaAs layer on the silicon- source temperature using the Hall-effect and CV profiling techniques. The parameters are measured by standard or certified measuring techniques and approved measuring instruments. It is demonstrated that the use of CV profiling for controlling the carrier density in the test GaAs layer at the thorough optimization of the measuring procedure ensures the highest accuracy and reliability of doping level calibration in the epitaxial layers with a relative error of no larger than 2.5%.

  7. Semi-flexible gas-insulated transmission line using electric field stress shields

    DOEpatents

    Cookson, A.H.; Dale, S.J.; Bolin, P.C.

    1982-12-28

    A gas-insulated transmission line includes an outer sheath, an inner conductor, an insulating gas electrically insulating the inner conductor from the outer sheath, and insulating supports insulatably supporting the inner conductor within the outer sheath. The inner conductor is provided with flexibility by use of main conductor sections which are joined together through a conductor hub section and flexible flexing elements. Stress shields are provided to control the electric field at the locations of the conductor hub sections where the insulating supports are contacting the inner conductor. The flexing elements and the stress shields may also be utilized in connection with a plug and socket arrangement for providing electrical connection between main conductor sections. 10 figs.

  8. Semi-flexible gas-insulated transmission line using electric field stress shields

    DOEpatents

    Cookson, Alan H.; Dale, Steinar J.; Bolin, Philip C.

    1982-12-28

    A gas-insulated transmission line includes an outer sheath, an inner conductor, an insulating gas electrically insulating the inner conductor from the outer sheath, and insulating supports insulatably supporting the inner conductor within the outer sheath. The inner conductor is provided with flexibility by use of main conductor sections which are joined together through a conductor hub section and flexible flexing elements. Stress shields are provided to control the electric field at the locations of the conductor hub sections where the insulating supports are contacting the inner conductor. The flexing elements and the stress shields may also be utilized in connection with a plug and socket arrangement for providing electrical connection between main conductor sections.

  9. Nonradiative recombination centers in GaAs:N δ-doped superlattice revealed by two-wavelength-excited photoluminescence

    NASA Astrophysics Data System (ADS)

    Dulal Haque, Md.; Kamata, Norihiko; Fukuda, Takeshi; Honda, Zentaro; Yagi, Shuhei; Yaguchi, Hiroyuki; Okada, Yoshitaka

    2018-04-01

    We use two-wavelength-excited photoluminescence (PL) to investigate nonradiative recombination (NRR) centers in GaAs:N δ-doped superlattice (SL) structures grown by molecular beam epitaxy. The change in photoluminescence (PL) intensity due to the superposition of below-gap excitation at energies of 0.75, 0.80, 0.92, and 0.95 eV and above-gap excitation at energies of 1.69 or 1.45 eV into the GaAs conduction band and the E- band implies the presence of NRR centers inside the GaAs:N δ-doped SL and/or GaAs layers. The change in PL intensity as a function of the photon number density of below-gap excitation is examined for both bands, which enables us to determine the distribution of NRR centers inside the GaAs:N δ-doped SL and GaAs layers. We propose recombination models to explain the experimental results. Defect-related parameters that give a qualitative insight into the samples are investigated systematically by fitting the rate equations to the experimental data.

  10. Microinhomogeneities in Semi-Insulating Cd(Zn)Te

    DOE PAGES

    Fochuk, P.; Nykoniuk, Y.; Zakharuk, Z.; ...

    2017-09-04

    Here, we investigated the temperature dependences (TDs) in the range of 290-423 K for the Hall constant R H and the Hall carrier mobility μn (σ R H) in semi-insulating Cd 0.9 Zn 0.1 Te:In (CZT) crystals. As-grown, CZT material has nonequilibrium distributions of native and impurity-related defects. Thus, before taking any measurements, the samples were kept inside the test chamber in the dark at 423 K to reach an equilibrium state at T <; 423 K. For all the tested samples, the R H TD could be described by two activation energies. At the transitional point, the TD ofmore » the carrier mobility also changes from “normal” at high temperatures to “exponential” at low temperatures. The latter is a result of the collective effect of drift barriers due to microinhomogeneity. Therefore, only the high-temperature activation energies can be assigned to the ionization energies of the compensated deep donors (ε D). For different samples, the values for ε D 0 (at absolute zero) were found to be in the range of 0.50-0.78 eV, and the degree of donor compensation [D +]/[D] is between 0.3 and 0.98. The low-temperature region, where there are strong effects of crystal microinhomogeneities, cannot be used to characterize the ionization energy of donors. Therefore, we describe the activation energy as ε 1 = ε D - αε b, where ε b is the drift barrier height found from the TD of the carrier mobility and α takes a value close to unity. Values of ε b for our studied samples lie within (0.05-0.35) eV.« less

  11. Breakover mechanism of GaAs photoconductive switch triggering spark gap for high power applications

    NASA Astrophysics Data System (ADS)

    Tian, Liqiang; Shi, Wei; Feng, Qingqing

    2011-11-01

    A spark gap (SG) triggered by a semi-insulating GaAs photoconductive semiconductor switch (PCSS) is presented. Currents as high as 5.6 kA have been generated using the combined switch, which is excited by a laser pulse with energy of 1.8 mJ and under a bias of 4 kV. Based on the transferred-electron effect and gas streamer theory, the breakover characteristics of the combined switch are analyzed. The photoexcited carrier density in the PCSS is calculated. The calculation and analysis indicate that the PCSS breakover is caused by nucleation of the photoactivated avalanching charge domain. It is shown that the high output current is generated by the discharge of a high-energy gas streamer induced by the strong local electric field distortion or by overvoltage of the SG resulting from quenching of the avalanching domain, and periodic oscillation of the current is caused by interaction between the gas streamer and the charge domain. The cycle of the current oscillation is determined by the rise time of the triggering electric pulse generated by the PCSS, the pulse transmission time between the PCSS and the SG, and the streamer transit time in the SG.

  12. Defects in GaAs films grown by MOMBE

    NASA Astrophysics Data System (ADS)

    Werner, K.; Heinecke, H.; Weyers, M.; Lüth, H.; Balk, P.

    1987-02-01

    The nature and densities of the defects obtained in MOMBE GaAs films have been studied. In addition to particulate matter deposited on the surface, imperfections in the substrate will lead to defect generation. Furthermore, the rate of generation is strongly affected by the ratio of the pressures of the group III alkyl and the group V hydride in the molecular beams and by the growth temperature, also on defect-free substrates. Doping has no effect on the defect structure of the surface. By proper choice of experimental conditions defect densities below 100 cm -2 may be consistently obtained.

  13. Self-Aligned ALD AlOx T-gate Insulator for Gate Leakage Current Suppression in SiNx-Passivated AlGaN/GaN HEMTs

    DTIC Science & Technology

    2010-01-01

    Heterostructure epitaxial material growth was performed by RF plasma-assisted molecular - beam epitaxy (MBE) on a 2-in. semi- insulating 4H SiC wafer. From... beam epitaxy of beryllium-doped GaN buffer layers for AlGaN/GaN HEMTs . J Cryst Growth 2003;251:481–6. [25] Storm DF, Katzer DS, Binari SC, Glaser ER...Shanabrook BV, Roussos JA. Reduction of buffer layer conduction near plasma-assisted molecular - beam epitaxy grown GaN/AlN interfaces by beryllium

  14. Electro-plasmonic 2 × 2 channel-routing switch arranged on a thin-Si-doped metal/insulator/semiconductor/metal structure.

    PubMed

    Moazzam, Mostafa Keshavarz; Kaatuzian, Hassan

    2016-01-20

    Plasmonics as a new field of chip-scale technology is the interesting substrate of this study to propose and numerically investigate a metal/insulator/semiconductor/metal (MISM)-structure 2×2 plasmonic routing switch. As a planar subwavelength arrangement, the presented design has two npn-doped side-coupled dual waveguides whose duty is to route the propagating surface plasmon polaritons through the device. Relying on the MISM structure, which has a MOS-like thin-film arrangement of typically 45 nm doped silicon covered by a layer of 8 nm thick HfO(2) gate insulator, the routing configuration is electrically addressed based on the carrier-induced plasma dispersion effects as an external electro-plasmonic switching control. Finite-element-method-conducted electromagnetic simulations are employed to evaluate the switch optical response at telecom wavelength of λ=1550  nm, due to which the balanced operation measure of extinction ratios larger than 10 dB and insertion losses of around -1.8  dB are obtained for both channels of CROSS and STRAIGHT. Compared with other photonic and plasmonic switching counterparts, this configuration, besides its potential for CMOS compatibility, can be utilized as a high-speed compact building block to sustain higher-speed, more miniaturized, and less consuming electro-optic routing/switching protocols toward complicated optical integrated circuits and systems.

  15. Towards Mott design by δ-doping of strongly correlated titanates

    NASA Astrophysics Data System (ADS)

    Lechermann, Frank; Obermeyer, Michael

    2015-04-01

    Doping the distorted-perovskite Mott insulators LaTiO3 and GdTiO3 with a single SrO layer along the [001] direction gives rise to a rich correlated electronic structure. A realistic superlattice study by means of the charge self-consistent combination of density functional theory with dynamical mean-field theory reveals layer- and temperature-dependent multi-orbital metal-insulator transitions. An orbital-selective metallic layer at the interface dissolves via an orbital-polarized doped-Mott state into an orbital-ordered insulating regime beyond the two conducting TiO2 layers. We find large differences in the scattering behavior within the latter. Breaking the spin symmetry in δ-doped GdTiO3 results in blocks of ferromagnetic itinerant and ferromagnetic Mott-insulating layers that are coupled antiferromagnetically.

  16. Effect of the magnetic field on the nonlinear optical rectification and second and third harmonic generation in double δ-doped GaAs quantum wells

    NASA Astrophysics Data System (ADS)

    Martínez-Orozco, J. C.; Rojas-Briseño, J. G.; Rodríguez-Magdaleno, K. A.; Rodríguez-Vargas, I.; Mora-Ramos, M. E.; Restrepo, R. L.; Ungan, F.; Kasapoglu, E.; Duque, C. A.

    2017-11-01

    In this paper we are reporting the computation for the Nonlinear Optical Rectification (NOR) and the Second and Third Harmonic Generation (SHG and THG) related with electronic states of asymmetric double Si-δ-doped quantum well in a GaAs matrix when this is subjected to an in-plane (x-oriented) constant magnetic field effect. The work is performed in the effective mass and parabolic band approximations in order to compute the electronic structure for the system by a diagonalization procedure. The expressions for the nonlinear optical susceptibilities, χ0(2), χ2ω(2), and χ3ω(3), are those arising from the compact matrix density formulation and stand for the NOR, SHG, and THG, respectively. This asymmetric double δ-doped quantum well potential profile actually exhibits nonzero NOR, SHG, and THG responses which can be easily controlled by the in-plane (x-direction) externally applied magnetic field. In particular we find that for the chosen configuration the harmonic generation is in the far-infrared/THz region, thus and becoming suitable building blocks for photodetectors in this range of the electromagnetic spectra.

  17. Homojunction GaAs solar cells grown by close space vapor transport

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boucher, Jason W.; Ritenour, Andrew J.; Greenaway, Ann L.

    2014-06-08

    We report on the first pn junction solar cells grown by homoepitaxy of GaAs using close space vapor transport (CSVT). Cells were grown both on commercial wafer substrates and on a CSVT absorber film, and had efficiencies reaching 8.1%, open circuit voltages reaching 909 mV, and internal quantum efficiency of 90%. The performance of these cells is partly limited by the electron diffusion lengths in the wafer substrates, as evidenced by the improved peak internal quantum efficiency in devices fabricated on a CSVT absorber film. Unoptimized highly-doped n-type emitters also limit the photocurrent, indicating that thinner emitters with reduced doping,more » and ultimately wider band gap window or surface passivation layers, are required to increase the efficiency.« less

  18. Tunneling Spectroscopy of Chemically Treated Surfaces of GaAs(001)

    NASA Astrophysics Data System (ADS)

    Fan, Jia-Fa; Tokumoto, Hiroshi

    1996-03-01

    Effect of surface chemical treatment on the surface electronic properties of GaAs(001) was studied by tunneling spectroscopy. Samples of highly-Si-doped GaAs were first cleaned and etched using conventional processes, then soaked in aqueous solutions of (NH_4)_2Sx and/or NH_4F for few hours, and finally rinsed in ethanol. The constant separation spectroscopy was done under pure N2 ambient at room temperature (295K) with our scanning tunneling microscope (STM). As a result, the sulfide treament lead to electron tunnelings starting typically at the sample voltages of -0.50 V and 0.90 V at initial settings of 1.50 V and 0.20 nA. For etched-only surface, however, the starting voltages were -0.70 V and 0.70 V. Effects of heating, laser-irradiation, and the fluoride treatment will be presented. Also, the mechanism of the shift of the surface Fermi level will be discussed.

  19. A graphene/single GaAs nanowire Schottky junction photovoltaic device.

    PubMed

    Luo, Yanbin; Yan, Xin; Zhang, Jinnan; Li, Bang; Wu, Yao; Lu, Qichao; Jin, Chenxiaoshuai; Zhang, Xia; Ren, Xiaomin

    2018-05-17

    A graphene/nanowire Schottky junction is a promising structure for low-cost high-performance optoelectronic devices. Here we demonstrate a graphene/single GaAs nanowire Schottky junction photovoltaic device. The Schottky junction is fabricated by covering a single layer graphene onto an n-doped GaAs nanowire. Under 532 nm laser excitation, the device exhibits a high responsivity of 231 mA W-1 and a short response/recover time of 85/118 μs at zero bias. Under AM 1.5 G solar illumination, the device has an open-circuit voltage of 75.0 mV and a short-circuit current density of 425 mA cm-2, yielding a remarkable conversion efficiency of 8.8%. The excellent photovoltaic performance of the device is attributed to the strong built-in electric field in the Schottky junction as well as the transparent property of graphene. The device is promising for self-powered high-speed photodetectors and low-cost high-efficiency solar cells.

  20. High quality of InAsSb epilayer with cutoff wavelength longer than 10 μm grown on GaAs by the modified LPE technique

    NASA Astrophysics Data System (ADS)

    Hu, S. H.; Sun, C. H.; Sun, Y.; Ge, J.; Wang, R.; Wu, J.; Wang, Q. W.; Dai, N.

    2009-04-01

    The InAsSb epilayers with a cutoff wavelength of 11.5 μm were successfully grown on highly lattice-mismatched semi-insulating (1 0 0) GaAs substrate by the modified liquid phase epitaxy (LPE) technique. Fourier transform infrared (FTIR) transmission spectrum revealed a strong band gap narrowing for this alloy. The electrical properties were investigated by the Van der Pauw measurements at 300 and 77 K. InAsSb epilayers showed high Hall mobilities being 11,800 cm 2/V s at room temperature (RT). After an annealing treament for 10 h, the electron mobility at 77 K were improved from 1730 cm 2/V s (prior to annealing) to 13,470 cm 2/V s. Wet etching was used to display the surface etch pits prior to and after annealing treatment, showing that the mobility improvement was due to the reduction of the etch pits density.

  1. Near-thermal limit gating in heavily doped III-V semiconductor nanowires using polymer electrolytes

    NASA Astrophysics Data System (ADS)

    Ullah, A. R.; Carrad, D. J.; Krogstrup, P.; Nygârd, J.; Micolich, A. P.

    2018-02-01

    Doping is a common route to reducing nanowire transistor on-resistance but it has limits. A high doping level gives significant loss in gate performance and ultimately complete gate failure. We show that electrolyte gating remains effective even when the Be doping in our GaAs nanowires is so high that traditional metal-oxide gates fail. In this regime we obtain a combination of subthreshold swing and contact resistance that surpasses the best existing p -type nanowire metal-oxide semiconductor field-effect transistors (MOSFETs). Our subthreshold swing of 75 mV/dec is within 25 % of the room-temperature thermal limit and comparable with n -InP and n -GaAs nanowire MOSFETs. Our results open a new path to extending the performance and application of nanowire transistors, and motivate further work on improved solid electrolytes for nanoscale device applications.

  2. The effects of the magnitude of the modulation field on electroreflectance spectroscopy of undoped-n+ type doped GaAs

    NASA Astrophysics Data System (ADS)

    Wang, D. P.; Huang, K. M.; Shen, T. L.; Huang, K. F.; Huang, T. C.

    1998-01-01

    The electroreflectance (ER) spectra of an undoped-n+ type doped GaAs has been measured at various amplitudes of modulating fields (δF). Many Franz-Keldysh oscillations were observed above the band gap energy, thus enabling the electric field (F) in the undoped layer to be determined. The F is obtained by applying fast Fourier transformation to the ER spectra. When δF is small, the power spectrum can be clearly resolved into two peaks, which corresponds to heavy- and light-hole transitions. When δF is less than ˜1/8 of the built-in field (Fbi˜77 420 V/cm), the F deduced from the ER is almost independent of δF. However, when larger than this, F is increased with δF. Also, when δF is increased to larger than ˜1/8 of Fbi, a shoulder appears on the right side of the heavy-hole peak of the power spectrum. The separation between the main peak and the shoulder of the heavy-hole peak becomes wider as δF becomes larger.

  3. Metal-insulator transition in NiS2-xSex

    NASA Astrophysics Data System (ADS)

    Kuneš, J.; Baldassarre, L.; Schächner, B.; Rabia, K.; Kuntscher, C. A.; Korotin, Dm. M.; Anisimov, V. I.; McLeod, J. A.; Kurmaev, E. Z.; Moewes, A.

    2010-01-01

    The origin of the gap in NiS2 as well as the pressure- and doping-induced metal-insulator transition in the NiS2-xSex solid solutions are investigated both theoretically using the first-principles band structures combined with the dynamical mean-field approximation for the electronic correlations and experimentally by means of infrared and x-ray absorption spectroscopies. The bonding-antibonding splitting in the S-S (Se-Se) dimer is identified as the main parameter controlling the size of the charge gap. The implications for the metal-insulator transition driven by pressure and Se doping are discussed.

  4. Nonlinear THz Plamonic Disk Resonators

    NASA Astrophysics Data System (ADS)

    Seren, Huseyin; Zhang, Jingdi; Keiser, George; Maddox, Scott; Fan, Kebin; Cao, Lingyue; Bank, Seth; Zhang, Xin; Averitt, Richard

    2013-03-01

    Particle surface plasmons (PPSs) at visible wavelengths continue to be actively investigated with the goal of nanoscale control of light. In contrast, terahertz (THz) surface plasmon experiments are at a nascent stage of investigation. Doped semiconductors with proper carrier density and mobility support THz PSPs. One approach is to utilize thick doped films etched into subwavelength disks. Given the ease of tuning the semiconductor carrier density, THz PSPs are tunable and exhibit interesting nonlinear THz plasmonic effects. We created THz PSP structures using MBE grown 2um thick InAs films with a doping concentration of 1e17cm-3 on 500um thick semi-insulating GaAs substrate. We patterned 40um diameter disks with a 60um period by reactive ion etching. Our THz time-domain measurements reveal a resonance at 1.1THz which agrees well with simulation results using a Drude model. A nonlinear response occurs at high THz electric field strengths (>50kV/cm). In particular, we observed a redshift and quenching of the resonance due to impact ionization which resulted in changes in the carrier density and effective mass due to inter-valley scattering.

  5. Ion beam modification of topological insulator bismuth selenide

    DOE PAGES

    Sharma, Peter Anand; Sharma, A. L. Lima; Hekmaty, Michelle A.; ...

    2014-12-17

    In this study, we demonstrate chemical doping of a topological insulator Bi 2Se 3 using ion implantation. Ion beam-induced structural damage was characterized using grazing incidence X-ray diffraction and transmission electron microscopy. Ion damage was reversed using a simple thermal annealing step. Carrier-type conversion was achieved using ion implantation followed by an activation anneal in Bi 2Se 3 thin films. These two sets of experiments establish the feasibility of ion implantation for chemical modification of Bi 2Se 3, a prototypical topological insulator. Ion implantation can, in principle, be used for any topological insulator. The direct implantation of dopants should allowmore » better control over carrier concentrations for the purposes of achieving low bulk conductivity. Ion implantation also enables the fabrication of inhomogeneously doped structures, which in turn should make possible new types of device designs.« less

  6. MBE growth of Topological Isolators based on strained semi-metallic HgCdTe layers

    NASA Astrophysics Data System (ADS)

    Grendysa, J.; Tomaka, G.; Sliz, P.; Becker, C. R.; Trzyna, M.; Wojnarowska-Nowak, R.; Bobko, E.; Sheregii, E. M.

    2017-12-01

    Particularities of Molecular Beam Epitaxial (MBE) technology for the growth of Topological Insulators (TI) based on the semi-metal Hg1-xCdx Te are presented. A series of strained layers grown on GaAs substrates with a composition close to the 3D Dirac point were studied. The composition of the layers was verified by means of the position of the E1 maximum in optical reflectivity in the visible region. The surface morphology was determined via atomic force and electron microscopy. Magneto-transport measurements show quantized Hall resistance curves and Shubnikov de Hass oscillations (up to 50 K). It has been demonstrated that a well-developed MBE technology enables one to grow strained Hg1-xCdx Te layers on GaAs/CdTe substrates with a well-defined composition near the 3D Dirac point and consequently allows one to produce a 3D topological Dirac semimetal - 3D analogy of graphene - for future applications.

  7. Emergence of superconductivity from the dynamically heterogeneous insulating state in La(2-x)Sr(x)CuO4.

    PubMed

    Shi, Xiaoyan; Logvenov, G; Bollinger, A T; Božović, I; Panagopoulos, C; Popović, Dragana

    2013-01-01

    A central issue for copper oxides is the nature of the insulating ground state at low carrier densities and the emergence of high-temperature superconductivity from that state with doping. Even though this superconductor-insulator transition (SIT) is a zero-temperature transition, measurements are not usually carried out at low temperatures. Here we use magnetoresistance to probe both the insulating state at very low temperatures and the presence of superconducting fluctuations in La(2-x)Sr(x)CuO(4) films, for doping levels that range from the insulator to the superconductor (x  =  0.03-0.08). We observe that the charge glass behaviour, characteristic of the insulating state, is suppressed with doping, but it coexists with superconducting fluctuations that emerge already on the insulating side of the SIT. The unexpected quenching of the superconducting fluctuations by the competing charge order at low temperatures provides a new perspective on the mechanism for the SIT.

  8. p-type zinc-blende GaN on GaAs substrates

    NASA Astrophysics Data System (ADS)

    Lin, M. E.; Xue, G.; Zhou, G. L.; Greene, J. E.; Morkoç, H.

    1993-08-01

    We report p-type cubic GaN. The Mg-doped layers were grown on vicinal (100) GaAs substrates by plasma-enhanced molecular beam epitaxy. Thermally sublimed Mg was, with N2 carrier gas, fed into an electron-cyclotron resonance source. p-type zinc-blende-structure GaN films were achieved with hole mobilities as high as 39 cm2/V s at room temperature. The cubic nature of the films were confirmed by x-ray diffractometry. The depth profile of Mg was investigated by secondary ions mass spectroscopy.

  9. First-principles many-body investigation of δ-doped titanates

    NASA Astrophysics Data System (ADS)

    Lechermann, Frank; Obermeyer, Michael

    2015-03-01

    Studying oxide heterostructures provides the possibility for exploring novel composite materials beyond nature's original conception. In this respect, the doping of Mott-insulating distorted-perovskite titanates such as LaTiO3 and GdTiO3 with a single SrO layer gives rise to a very rich correlated electronic structure. A realistic superlattice survey by means of the charge self-consistent combination of density functional theory (DFT) with dynamical mean-field theory (DMFT) reveals layer- and temperature-dependent multi-orbital metal-insulator transitions. In [001] stacking, an orbital-selective metallic layer at the interface dissolves via an orbital-polarized doped-Mott state into an orbital-ordered insulating regime beyond the two conducting TiO2 layers. We find large differences in the scattering behavior within the latter. Breaking the spin symmetry in δ-doped GdTiO3 results in blocks of ferromagnetic itinerant and ferromagnetic Mott-insulating layers which are coupled antiferromagnetically. Support from the DFG-FOR1346 is acknowledged.

  10. Dephasing of LO-phonon-plasmon hybrid modes in n-type GaAs

    NASA Astrophysics Data System (ADS)

    Vallée, F.; Ganikhanov, F.; Bogani, F.

    1997-11-01

    The relaxation dynamics of coherent phononlike LO-phonon-plasmon hybrid modes is investigated in n-doped GaAs using an infrared time-resolved coherent anti-Stokes Raman scattering technique. Measurements performed for different crystal temperatures in the range 10-300 K as a function of the electron density injected by doping show a large reduction of the hybrid mode dephasing time compared to the bare LO-phonon one for densities larger than 1016 cm-3. The results are interpreted in terms of coherent decay of the LO-phonon-plasmon mixed mode in the weak-coupling regime and yield information on the plasmon and electron relaxation. The estimated average electron momentum relaxation times are smaller than those deduced from Hall mobility measurements, as expected from our theoretical model.

  11. Observation of linear I-V curves on vertical GaAs nanowires with atomic force microscope

    NASA Astrophysics Data System (ADS)

    Geydt, P.; Alekseev, P. A.; Dunaevskiy, M.; Lähderanta, E.; Haggrén, T.; Kakko, J.-P.; Lipsanen, H.

    2015-12-01

    In this work we demonstrate the possibility of studying the current-voltage characteristics for single vertically standing semiconductor nanowires on standard AFM equipped by current measuring module in PeakForce Tapping mode. On the basis of research of eight different samples of p-doped GaAs nanowires grown on different GaAs substrates, peculiar electrical effects were revealed. It was found how covering of substrate surface by SiOx layer increases the current, as well as phosphorous passivation of the grown nanowires. Elimination of the Schottky barrier between golden cap and the top parts of nanowires was observed. It was additionally studied that charge accumulation on the shell of single nanowires affects its resistivity and causes the hysteresis loops on I-V curves.

  12. Nanoscale Semiconductor Electronics

    DTIC Science & Technology

    2015-02-25

    GaAs into Ga2O3 . Compared with LHO along the Al0.98Ga0.02As layer, however, the vertical oxidation into the GaAs capping is very slow. Its rate is...Then, NH4NO3 reacts with GaAs and results in Ga2O3 and As2O3. The oxidation rate is critically affected by pH and temperature. A high oxidation rate...shrinkage 500 nm Al0.98Ga0.02As Semi-insulating GaAs(001) 100 nm n+-GaAs Al2O3 100 nm SiO2 Ga2O3 n+-GaAs stripe ~20‐25 m LHO condition Temperature

  13. Proximity Effects of Beryllium-Doped GaN Buffer Layers on the Electronic Properties of Epitaxial AlGaN/GaN Heterostructures

    DTIC Science & Technology

    2010-05-17

    arranged by Prof. A. Zaslavsky Keywords: Gallium nitride High electron mobility transistor Molecular beam epitaxy Homoepitaxy Doping a b s t r a c t AlGaN...GaN/Be:GaN heterostructures have been grown by rf-plasma molecular beam epitaxy on free- standing semi-insulating GaN substrates, employing...hydride vapor phase epitaxy (HVPE) grown GaN sub- strates has enabled the growth by molecular beam epitaxy (MBE) of AlGaN/GaNHEMTswith significantly

  14. Charge partitioning and anomalous hole doping in Rh-doped Sr 2 IrO 4

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chikara, S.; Fabbris, G.; Terzic, J.

    2017-02-01

    The simultaneous presence of sizable spin-orbit interactions and electron correlations in iridium oxides has led to predictions of novel ground states including Dirac semimetals, Kitaev spin liquids, and superconductivity. Electron and hole doping studies of spin-orbit assisted Mott insulator Sr2IrO4 are being intensively pursued due to extensive parallels with the La2CuO4 parent compound of cuprate superconductors. In particular, the mechanism of charge doping associated with replacement of Ir with Rh ions remains controversial with profound consequences for the interpretation of electronic structure and transport data. Using x-ray absorption near edge structure measurements at the Rh L, K, and Ir Lmore » edges we observe anomalous evolution of charge partitioning between Rh and Ir with Rh doping. The partitioning of charge between Rh and Ir sites progresses in a way that holes are initially doped into the J(eff) = 1/2 band at low x only to be removed from it at higher x values. This anomalous hole doping naturally explains the reentrant insulating phase in the phase diagram of Sr2Ir1-x Rh-x O-4 and ought to be considered when searching for superconductivity and other emergent phenomena in iridates doped with 4d elements.« less

  15. Charge partitioning and anomalous hole doping in Rh-doped Sr2IrO4

    NASA Astrophysics Data System (ADS)

    Chikara, S.; Fabbris, G.; Terzic, J.; Cao, G.; Khomskii, D.; Haskel, D.

    2017-02-01

    The simultaneous presence of sizable spin-orbit interactions and electron correlations in iridium oxides has led to predictions of novel ground states including Dirac semimetals, Kitaev spin liquids, and superconductivity. Electron and hole doping studies of spin-orbit assisted Mott insulator Sr2Ir O4 are being intensively pursued due to extensive parallels with the La2CuO4 parent compound of cuprate superconductors. In particular, the mechanism of charge doping associated with replacement of Ir with Rh ions remains controversial with profound consequences for the interpretation of electronic structure and transport data. Using x-ray absorption near edge structure measurements at the Rh L, K, and Ir L edges we observe anomalous evolution of charge partitioning between Rh and Ir with Rh doping. The partitioning of charge between Rh and Ir sites progresses in a way that holes are initially doped into the Jeff=1 /2 band at low x only to be removed from it at higher x values. This anomalous hole doping naturally explains the reentrant insulating phase in the phase diagram of Sr2Ir1 -xRhxO4 and ought to be considered when searching for superconductivity and other emergent phenomena in iridates doped with 4 d elements.

  16. Bulk superconducting phase with a full energy gap in the doped topological insulator Cu(x)Bi₂Se₃.

    PubMed

    Kriener, M; Segawa, Kouji; Ren, Zhi; Sasaki, Satoshi; Ando, Yoichi

    2011-03-25

    The superconductivity recently found in the doped topological insulator Cu(x)Bi₂Se₃ offers a great opportunity to search for a topological superconductor. We have successfully prepared a single-crystal sample with a large shielding fraction and measured the specific-heat anomaly associated with the superconductivity. The temperature dependence of the specific heat suggests a fully gapped, strong-coupling superconducting state, but the BCS theory is not in full agreement with the data, which hints at a possible unconventional pairing in Cu(x)Bi₂Se₃. Also, the evaluated effective mass of 2.6m(e) (m(e) is the free electron mass) points to a large mass enhancement in this material.

  17. Design Optimization of Ge/GaAs-Based Heterojunction Gate-All-Around (GAA) Arch-Shaped Tunneling Field-Effect Transistor (A-TFET).

    PubMed

    Seo, Jae Hwa; Yoon, Young Jun; Kang, In Man

    2018-09-01

    The Ge/GaAs-based heterojunction gate-all-around (GAA) arch-shaped tunneling field-effect transistor (A-TFET) have been designed and optimized using technology computer-aided design (TCAD) simulations. In our previous work, the silicon-based A-TFET was designed and demonstrated. However, to progress the electrical characteristics of A-TFET, the III-V compound heterojunction structures which has enhanced electrical properties must be adopted. Thus, the germanium with gallium arsenide (Ge/GaAs) is considered as key materials of A-TFET. The proposed device has a Ge-based p-doped source, GaAs-based i-doped channel and GaAs-based n-doped drain. Due to the critical issues of device performances, the doping concentration of source and channel region (Dsource, Dchannel), height of source region (Hsource) and epitaxially grown thickness of channel (tepi) was selected as design optimization variables of Ge/GaAs-based GAA A-TFET. The DC characteristics such as on-state current (ion), off-state current (ioff), subthreshold-swing (S) were of extracted and analyzed. Finally, the proposed device has a gate length (LG) of 90 nm, Dsource 5 × 1019 cm-3, Dchannel of 1018 cm-3, tepi of 4 nm, Hsource of 90 nm, R of 10 nm and demonstrate an ion of 2 mA/μm, S of 12.9 mV/dec.

  18. RVB states in doped band insulators from Coulomb forces: theory and a case study of superconductivity in BiS2 layers

    NASA Astrophysics Data System (ADS)

    Baskaran, G.

    2016-12-01

    Doped band insulators, HfNCl, WO3, diamond, Bi2Se3, BiS2 families, STO/LAO interface, gate doped SrTiO3, MoS2 and so on are unusual superconductors. With an aim to build a general theory for superconductivity in doped band insulators, we focus on the BiS2 family which was discovered by Mizuguchi et al in 2012. While maximum Tc is only ˜11 K in {{LaO}}1-{{x}}{{{F}}}{{x}}{{BiS}}2, a number of experimental results are puzzling and anomalous in the sense that they resemble high T c and unconventional superconductors. Using a two orbital model of Usui, Suzuki and Kuroki, we show that the uniform low density free Fermi sea in {{LaO}}{0,5}{{{F}}}0.5{{BiS}}2 is unstable towards formation of the next nearest neighbor Bi-S-Bi diagonal valence bond (charged -2e Cooper pair) and their Wigner crystallization. Instability to this novel state of matter is caused by unscreened nearest neighbor coulomb repulsions (V ˜ 1 eV) and a hopping pattern with sulfur mediated diagonal next nearest neighbor Bi-S-Bi hopping t’ ˜ 0.88 eV, as well as larger than nearest neighbor Bi-Bi hopping, t ˜ 0.16 eV. Wigner crystals of Cooper pairs quantum melt for doping around x = 0.5 and stabilize certain resonating valence bond states and superconductivity. We study a few variational RVB states and suggest that BiS2 family members are latent high Tc superconductors, but challenged by competing orders and the fragile nature of many body states sustained by unscreened Coulomb forces. One of our superconducting states has d XY symmetry and a gap. We also predict a 2d Bose metal or vortex liquid normal state, as charged -2e valence bonds survive in the normal state.

  19. Microprocessor design for GaAs technology

    NASA Astrophysics Data System (ADS)

    Milutinovic, Veljko M.

    Recent advances in the design of GaAs microprocessor chips are examined in chapters contributed by leading experts; the work is intended as reading material for a graduate engineering course or as a practical R&D reference. Topics addressed include the methodology used for the architecture, organization, and design of GaAs processors; GaAs device physics and circuit design; design concepts for microprocessor-based GaAs systems; a 32-bit GaAs microprocessor; a 32-bit processor implemented in GaAs JFET; and a direct coupled-FET-logic E/D-MESFET experimental RISC machine. Drawings, micrographs, and extensive circuit diagrams are provided.

  20. Electrostatic analysis of n-doped SrTiO{sub 3} metal-insulator-semiconductor systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kamerbeek, A. M., E-mail: a.m.kamerbeek@rug.nl; Banerjee, T.; Hueting, R. J. E.

    2015-12-14

    Electron doped SrTiO{sub 3}, a complex-oxide semiconductor, possesses novel electronic properties due to its strong temperature and electric-field dependent permittivity. Due to the high permittivity, metal/n-SrTiO{sub 3} systems show reasonably strong rectification even when SrTiO{sub 3} is degenerately doped. Our experiments show that the insertion of a sub nanometer layer of AlO{sub x} in between the metal and n-SrTiO{sub 3} interface leads to a dramatic reduction of the Schottky barrier height (from around 0.90 V to 0.25 V). This reduces the interface resistivity by 4 orders of magnitude. The derived electrostatic analysis of the metal-insulator-semiconductor (n-SrTiO{sub 3}) system is consistent with thismore » trend. When compared with a Si based MIS system, the change is much larger and mainly governed by the high permittivity of SrTiO{sub 3}. The non-linear permittivity of n-SrTiO{sub 3} leads to unconventional properties such as a temperature dependent surface potential non-existent for semiconductors with linear permittivity such as Si. This allows tuning of the interfacial band alignment, and consequently the Schottky barrier height, in a much more drastic way than in conventional semiconductors.« less

  1. I-V curve hysteresis induced by gate-free charging of GaAs nanowires' surface oxide

    NASA Astrophysics Data System (ADS)

    Alekseev, P. A.; Geydt, P.; Dunaevskiy, M. S.; Lähderanta, E.; Haggrén, T.; Kakko, J.-P.; Lipsanen, H.

    2017-09-01

    The control of nanowire-based device performance requires knowledge about the transport of charge carriers and its limiting factors. We present the experimental and modeled results of a study of electrical properties of GaAs nanowires (NWs), considering their native oxide cover. Measurements of individual vertical NWs were performed by conductive atomic force microscopy (C-AFM). Experimental C-AFM observations with numerical simulations revealed the complex resistive behavior of NWs. A hysteresis of current-voltage characteristics of the p-doped NWs as-grown on substrates with different types of doping was registered. The emergence of hysteresis was explained by the trapping of majority carriers in the surface oxide layer near the reverse-biased barriers under the source-drain current. It was found that the accumulation of charge increases the current for highly doped p+-NWs on n+-substrates, while for moderately doped p-NWs on p+-substrates, charge accumulation decreases the current due to blocking of the conductive channel of NWs.

  2. Optimization of GaAs Nanowire Pin Junction Array Solar Cells by Using AlGaAs/GaAs Heterojunctions

    NASA Astrophysics Data System (ADS)

    Wu, Yao; Yan, Xin; Wei, Wei; Zhang, Jinnan; Zhang, Xia; Ren, Xiaomin

    2018-04-01

    We optimized the performance of GaAs nanowire pin junction array solar cells by introducing AlGaAs/GaAs heterejunctions. AlGaAs is used for the p type top segment for axial junctions and the p type outer shell for radial junctions. The AlGaAs not only serves as passivation layers for GaAs nanowires but also confines the optical generation in the active regions, reducing the recombination loss in heavily doped regions and the minority carrier recombination at the top contact. The results show that the conversion efficiency of GaAs nanowires can be greatly enhanced by using AlGaAs for the p segment instead of GaAs. A maximum efficiency enhancement of 8.42% has been achieved in this study. And for axial nanowire, by using AlGaAs for the top p segment, a relatively long top segment can be employed without degenerating device performance, which could facilitate the fabrication and contacting of nanowire array solar cells. While for radial nanowires, AlGaAs/GaAs nanowires show better tolerance to p-shell thickness and surface condition.

  3. Optimization of GaAs Nanowire Pin Junction Array Solar Cells by Using AlGaAs/GaAs Heterojunctions.

    PubMed

    Wu, Yao; Yan, Xin; Wei, Wei; Zhang, Jinnan; Zhang, Xia; Ren, Xiaomin

    2018-04-25

    We optimized the performance of GaAs nanowire pin junction array solar cells by introducing AlGaAs/GaAs heterejunctions. AlGaAs is used for the p type top segment for axial junctions and the p type outer shell for radial junctions. The AlGaAs not only serves as passivation layers for GaAs nanowires but also confines the optical generation in the active regions, reducing the recombination loss in heavily doped regions and the minority carrier recombination at the top contact. The results show that the conversion efficiency of GaAs nanowires can be greatly enhanced by using AlGaAs for the p segment instead of GaAs. A maximum efficiency enhancement of 8.42% has been achieved in this study. And for axial nanowire, by using AlGaAs for the top p segment, a relatively long top segment can be employed without degenerating device performance, which could facilitate the fabrication and contacting of nanowire array solar cells. While for radial nanowires, AlGaAs/GaAs nanowires show better tolerance to p-shell thickness and surface condition.

  4. Mechanisms of the passage of dark currents through Cd(Zn)Te semi-insulating crystals

    NASA Astrophysics Data System (ADS)

    Sklyarchuk, V.; Fochuk, P.; Rarenko, I.; Zakharuk, Z.; Sklyarchuk, O.; Nykoniuk, Ye.; Rybka, A.; Kutny, V.; Bolotnikov, A. E.; James, R. B.

    2014-09-01

    We investigated the passage of dark currents through semi-insulating crystals of Cd(Zn)Te with weak n-type conductivity that are used widely as detectors of ionizing radiation. The crystals were grown from a tellurium solution melt at 800 оС by the zone-melting method, in which a polycrystalline rod in a quartz ampoule was moved through a zone heater at a rate of 2 mm per day. The synthesis of the rod was carried out at ~1150 оС. We determined the important electro-physical parameters of this semiconductor, using techniques based on a parallel study of the temperature dependence of current-voltage characteristics in both the ohmic and the space-charge-limited current regions. We established in these crystals the relationship between the energy levels and the concentrations of deep-level impurity states, responsible for dark conductivity and their usefulness as detectors.

  5. Charge partitioning and anomalous hole doping in Rh-doped Sr 2 IrO 4

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chikara, Shalinee; Fabbris, G.; Terzic, J.

    2017-02-15

    The simultaneous presence of sizable spin-orbit interactions and electron correlations in iridium oxides has led to predictions of novel ground states including Dirac semimetals, Kitaev spin liquids, and superconductivity. Electron and hole doping studies of spin-orbit assisted Mott insulator Sr 2IrO 4 are being intensively pursued due to extensive parallels with the La 2CuO 4 parent compound of cuprate superconductors. In particular, the mechanism of charge doping associated with replacement of Ir with Rh ions remains controversial with profound consequences for the interpretation of electronic structure and transport data. Using x-ray absorption near edge structure measurements at the Rh L,more » K, and Ir L edges we observe anomalous evolution of charge partitioning between Rh and Ir with Rh doping. The partitioning of charge between Rh and Ir sites progresses in a way that holes are initially doped into the J eff = 1/2 band at low x only to be removed from it at higher x values. Furthermore, this anomalous hole doping naturally explains the reentrant insulating phase in the phase diagram of Sr 2Ir 1–xRh xO 4 and ought to be considered when searching for superconductivity and other emergent phenomena in iridates doped with 4d elements.« less

  6. Photodetectors based on carbon nanotubes deposited by using a spray technique on semi-insulating gallium arsenide

    PubMed Central

    Nitti, Maria Angela; Valentini, Marco; Valentini, Antonio; Ligonzo, Teresa; De Pascali, Giuseppe; Ambrico, Marianna

    2014-01-01

    Summary In this paper, a spray technique is used to perform low temperature deposition of multi-wall carbon nanotubes on semi-insulating gallium arsenide in order to obtain photodectors. A dispersion of nanotube powder in non-polar 1,2-dichloroethane is used as starting material. The morphological properties of the deposited films has been analysed by means of electron microscopy, in scanning and transmission mode. Detectors with different layouts have been prepared and current–voltage characteristics have been recorded in the dark and under irradiation with light in the range from ultraviolet to near infrared. The device spectral efficiency obtained from the electrical characterization is finally reported and an improvement of the photodetector behavior due to the nanotubes is presented and discussed. PMID:25383309

  7. Superconductivity and ferromagnetism in topological insulators

    NASA Astrophysics Data System (ADS)

    Zhang, Duming

    Topological insulators, a new state of matter discovered recently, have attracted great interest due to their novel properties. They are insulating inside the bulk, but conducting at the surface or edges. This peculiar behavior is characterized by an insulating bulk energy gap and gapless surface or edge states, which originate from strong spin-orbit coupling and time-reversal symmetry. The spin and momentum locked surface states not only provide a model system to study fundamental physics, but can also lead to applications in spintronics and dissipationless electronics. While topological insulators are interesting by themselves, more exotic behaviors are predicted when an energy gap is induced at the surface. This dissertation explores two types of surface state gap in topological insulators, a superconducting gap induced by proximity effect and a magnetic gap induced by chemical doping. The first three chapters provide introductory theory and experimental details of my research. Chapter 1 provides a brief introduction to the theoretical background of topological insulators. Chapter 2 is dedicated to material synthesis principles and techniques. I will focus on two major synthesis methods: molecular beam epitaxy for the growth of Bi2Se3 thin films and chemical vapor deposition for the growth of Bi2Se3 nanoribbons and nanowires. Material characterization is discussed in Chapter 3. I will describe structural, morphological, magnetic, electrical, and electronic characterization techniques used to study topological insulators. Chapter 4 discusses the experiments on proximity-induced superconductivity in topological insulator (Bi2Se3) nanoribbons. This work is motivated by the search for the elusive Majorana fermions, which act as their own antiparticles. They were proposed by Ettore Majorara in 1937, but have remained undiscovered. Recently, Majorana's concept has been revived in condensed matter physics: a condensed matter analog of Majorana fermions is predicted to

  8. 2 p -insulator heterointerfaces: Creation of half-metallicity and anionogenic ferromagnetism via double exchange

    NASA Astrophysics Data System (ADS)

    Zhang, Baomin; Cao, Chonglong; Li, Guowei; Li, Feng; Ji, Weixiao; Zhang, Shufeng; Ren, Miaojuan; Zhang, Haikun; Zhang, Rui-Qin; Zhong, Zhicheng; Yuan, Zhe; Yuan, Shengjun; Blake, Graeme R.

    2018-04-01

    We use first-principles calculations to predict the occurrence of half-metallicity and anionogenic ferromagnetism at the heterointerface between two 2p insulators, taking the KO2/BaO2 (001) interface as an example. Whereas a sharp heterointerface is semiconducting, a heterointerface with a moderate concentration of swapped K and Ba atoms is half-metallic and ferromagnetic at ambient pressure due to the double exchange mechanism. The K-Ba swap renders the interfacial K-O and Ba-O atomic layers electron-doped and hole-doped, respectively. Our findings pave the way to realize metallicity and ferromagnetism at the interface between two 2 p insulators, and such systems can constitute a new family of heterostructures with novel properties, expanding studies on heterointerfaces from 3 d insulators to 2 p insulators.

  9. GaAs Computer Technology

    DTIC Science & Technology

    1992-01-07

    AD-A259 259 FASTC-ID FOREIGN AEROSPACE SCIENCE AND TECHNOLOGY CENTER GaAs COMPUTER TECHNOLOGY (1) by Wang Qiao-yu 93-00999 Distrir bution t,,,Nm ted...FASTC- ID(RS)T-0310-92 HUMAN TRANSLATION FASTC-ID(RS)T-0310-92 7 January 1993 GaAs COMPUTER TECHNOLOGY (1) By: Wang Qiao-yu English pages: 6 Source...the best quality copy available. j C] " ------ GaAs Computer Technology (1) Wang Qiao-yu (Li-Shan Microelectronics Institute) Abstract: The paper

  10. High Growth Rate Metal-Organic Molecular Beam Epitaxy for the Fabrication of GaAs Space Solar Cells

    NASA Technical Reports Server (NTRS)

    Freundlich, A.; Newman, F.; Monier, C.; Street, S.; Dargan, P.; Levy, M.

    2005-01-01

    In this work it is shown that high quality GaAs photovoltaic devices can be produced by Molecular Beam Epitaxy (MBE) with growth rates comparable to metal-organic chemical vapor deposition (MOCVD) through the subsitution of group III solid sources by metal-organic compounds. The influence the III/V flux-ratio and growth temperatures in maintaining a two dimensional layer by layer growth mode and achieving high growth rates with low residual background impurities is investigated. Finally subsequent to the study of the optimization of n- and p doping of such high growth rate epilayers, results from a preliminary attempt in the fabrication of GaAs photovoltaic devices such as tunnel diodes and solar cells using the proposed high growth rate approach are reported.

  11. GaAs shallow-homojunction solar cells

    NASA Technical Reports Server (NTRS)

    Fan, J. C. C.

    1981-01-01

    The feasibility of fabricating space resistant, high efficiency, light weight, low cost GaAs shallow homojunction solar cells for space application is investigated. The material preparation of ultrathin GaAs single crystal layers, and the fabrication of efficient GaAs solar cells on bulk GaAs substrates are discussed. Considerable progress was made in both areas, and conversion efficiency about 16% AMO was obtained using anodic oxide as a single layer antireflection coating. A computer design shows that even better cells can be obtained with double layer antireflection coating. Ultrathin, high efficiency solar cells were obtained from GaAs films prepared by the CLEFT process, with conversion efficiency as high as 17% at AMI from a 10 micrometers thick GaAs film. A organometallic CVD was designed and constructed.

  12. Doping and electronic properties of GaAs grown by close-spaced vapor transport from powder sources for scalable III–V photovoltaics

    DOE PAGES

    Ritenour, Andrew J.; Boucher, Jason W.; DeLancey, Robert; ...

    2014-09-01

    The high balance-of-system costs of photovoltaic (PV) installations indicate that reductions in cell $/W costs alone are likely insufficient for PV electricity to reach grid parity unless energy conversion efficiency is also increased. Technologies which yield both high-efficiency cells (>25%) and maintain low costs are needed. GaAs and related III-V semiconductors are used in the highest-efficiency single- and multi-junction photovoltaics, but the technology is too expensive for non-concentrated terrestrial applications. This is due in part to the difficulty of scaling the metal-organic chemical vapor deposition (MOCVD) process, which relies on expensive reactors and employs toxic and pyrophoric gas-phase precursors suchmore » as arsine and trimethyl gallium, respectively. In this study, we describe GaAs films made by an alternative close-spaced vapor transport (CSVT) technique which is carried out at atmospheric pressure and requires only bulk GaAs, water vapor, and a temperature gradient in order to deposit crystalline films with similar electronic properties to that of GaAs deposited by MOCVD. CSVT is similar to the vapor transport process used to deposit CdTe thin films and is thus a potentially scalable low-cost route to GaAs thin films.« less

  13. Deep levels in osmium doped p-type GaAs grown by metal organic chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Iqbal, M. Zafar; Majid, A.; Dadgar, A.; Bimberg, D.

    2005-06-01

    Results of a preliminary study on deep level transient spectroscopy (DLTS) investigations of osmium (Os) impurity in p-type GaAs, introduced in situ during MOCVD crystal growth, are reported for the first time. Os is clearly shown to introduce two prominent deep levels in the lower half-bandgap of GaAs at energy positions Ev + 0.42 eV (OsA) and Ev + 0.72 eV (OsB). A minority-carrier emitting defect feature observed in the upper half-bandgap is shown to consist of a band of Os-related deep levels with a concentration significantly higher than that of the majority carrier emitting deep levels. Detailed data on the emission rate signatures and related parameters of the Os-related deep levels are reported.

  14. Signatures of in-plane and out-of-plane magnetization generated by synchrotron radiation in magnetically doped and pristine topological insulators

    NASA Astrophysics Data System (ADS)

    Shikin, A. M.; Rybkina, A. A.; Estyunin, D. A.; Sostina, D. M.; Voroshnin, V. Yu.; Klimovskikh, I. I.; Rybkin, A. G.; Surnin, Yu. A.; Kokh, K. A.; Tereshchenko, O. E.; Petaccia, L.; Di Santo, G.; Skirdkov, P. N.; Zvezdin, K. A.; Zvezdin, A. K.; Kimura, A.; Chulkov, E. V.; Krasovskii, E. E.

    2018-06-01

    Possibility of in-plane and out-of-plane magnetization generated by synchrotron radiation (SR) in magnetically doped and pristine topological insulators (TIs) is demonstrated and studied by angle-resolved photoemission spectroscopy. We show experimentally and by ab initio calculations how nonequal depopulation of the Dirac cone (DC) states with opposite momenta in V-doped and pristine TIs generated by linearly polarized SR leads to the hole-generated uncompensated spin accumulation followed by the SR-induced magnetization via spin-torque effect. Moreover, the photoexcitation of the DC is asymmetric, and it varies with the photon energy. We find a relation between the photoexcitation asymmetry, the generated spin accumulation, and the induced in-plane and out-of-plane magnetic field. Experimentally the SR-generated in-plane and out-of-plane magnetization is confirmed by the k∥ shift of the DC position and by the gap opening at the Dirac point even above the Curie temperature. Theoretical predictions and estimations of the measurable physical quantities substantiate the experimental results.

  15. Semi-flexible gas-insulated transmission line using sandwiched discs for intermittent flexing joints

    DOEpatents

    Kommineni, P.R.

    1983-02-15

    A gas-insulated transmission line includes an outer sheath, an inner conductor, an insulating gas electrically insulating the inner conductor from the outer sheath, and insulating supports insulatably supporting the inner conductor within the outer sheath. The inner conductor is provided with flexibility by the use of main conductor sections which are joined together through a conductor hub section and flexible flexing elements. Stress shields are provided to control the electric field at the locations of the conductor hub sections where the insulating supports are contacting the inner conductor. The flexing elements are formed by sandwiching together, by fusing, a pair of thin hollow discs which are fixedly secured to both the main conductor sections and the conductor hub section. 4 figs.

  16. Electron doped layered nickelates: Spanning the phase diagram of the cuprates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Botana, Antia S.; Pardo, Victor; Norman, Michael R.

    2017-07-01

    Pr4Ni3O8 is an overdoped analog of hole-doped layered cuprates. Here we show via ab initio calculations that Ce-doped Pr4Ni3O8 (Pr3CeNi3O8) has the same electronic structure as the antiferromagnetic insulating phase of parent cuprates.We find that substantial Ce doping should be thermodynamically stable and that other 4+ cations would yield a similar antiferromagnetic insulating state, arguing this configuration is robust for layered nickelates of low-enough valence. The analogies with cuprates at different d fillings suggest that intermediate Ce-doping concentrations near 1/8 should be an appropriate place to search for superconductivity in these low-valence Ni oxides.

  17. Disappearance of nodal gap across the insulator-superconductor transition in a copper-oxide superconductor.

    PubMed

    Peng, Yingying; Meng, Jianqiao; Mou, Daixiang; He, Junfeng; Zhao, Lin; Wu, Yue; Liu, Guodong; Dong, Xiaoli; He, Shaolong; Zhang, Jun; Wang, Xiaoyang; Peng, Qinjun; Wang, Zhimin; Zhang, Shenjin; Yang, Feng; Chen, Chuangtian; Xu, Zuyan; Lee, T K; Zhou, X J

    2013-01-01

    The parent compound of the copper-oxide high-temperature superconductors is a Mott insulator. Superconductivity is realized by doping an appropriate amount of charge carriers. How a Mott insulator transforms into a superconductor is crucial in understanding the unusual physical properties of high-temperature superconductors and the superconductivity mechanism. Here we report high-resolution angle-resolved photoemission measurement on heavily underdoped Bi₂Sr₂-xLaxCuO(₆+δ) system. The electronic structure of the lightly doped samples exhibit a number of characteristics: existence of an energy gap along the nodal direction, d-wave-like anisotropic energy gap along the underlying Fermi surface, and coexistence of a coherence peak and a broad hump in the photoemission spectra. Our results reveal a clear insulator-superconductor transition at a critical doping level of ~0.10 where the nodal energy gap approaches zero, the three-dimensional antiferromagnetic order disappears, and superconductivity starts to emerge. These observations clearly signal a close connection between the nodal gap, antiferromagnetism and superconductivity.

  18. Electronic evidence of an insulator-superconductor crossover in single-layer FeSe/SrTiO3 films.

    PubMed

    He, Junfeng; Liu, Xu; Zhang, Wenhao; Zhao, Lin; Liu, Defa; He, Shaolong; Mou, Daixiang; Li, Fangsen; Tang, Chenjia; Li, Zhi; Wang, Lili; Peng, Yingying; Liu, Yan; Chen, Chaoyu; Yu, Li; Liu, Guodong; Dong, Xiaoli; Zhang, Jun; Chen, Chuangtian; Xu, Zuyan; Chen, Xi; Ma, Xucun; Xue, Qikun; Zhou, X J

    2014-12-30

    In high-temperature cuprate superconductors, it is now generally agreed that superconductivity is realized by doping an antiferromagnetic Mott (charge transfer) insulator. The doping-induced insulator-to-superconductor transition has been widely observed in cuprates, which provides important information for understanding the superconductivity mechanism. In the iron-based superconductors, however, the parent compound is mostly antiferromagnetic bad metal, raising a debate on whether an appropriate starting point should go with an itinerant picture or a localized picture. No evidence of doping-induced insulator-superconductor transition (or crossover) has been reported in the iron-based compounds so far. Here, we report an electronic evidence of an insulator-superconductor crossover observed in the single-layer FeSe film grown on a SrTiO3 substrate. By taking angle-resolved photoemission measurements on the electronic structure and energy gap, we have identified a clear evolution of an insulator to a superconductor with increasing carrier concentration. In particular, the insulator-superconductor crossover in FeSe/SrTiO3 film exhibits similar behaviors to that observed in the cuprate superconductors. Our results suggest that the observed insulator-superconductor crossover may be associated with the two-dimensionality that enhances electron localization or correlation. The reduced dimensionality and the interfacial effect provide a new pathway in searching for new phenomena and novel superconductors with a high transition temperature.

  19. Electric double-layer transistor using layered iron selenide Mott insulator TlFe1.6Se2

    PubMed Central

    Katase, Takayoshi; Hiramatsu, Hidenori; Kamiya, Toshio; Hosono, Hideo

    2014-01-01

    A1–xFe2–ySe2 (A = K, Cs, Rb, Tl) are recently discovered iron-based superconductors with critical temperatures (Tc) ranging up to 32 K. Their parent phases have unique properties compared with other iron-based superconductors; e.g., their crystal structures include ordered Fe vacancies, their normal states are antiferromagnetic (AFM) insulating phases, and they have extremely high Néel transition temperatures. However, control of carrier doping into the parent AFM insulators has been difficult due to their intrinsic phase separation. Here, we fabricated an Fe-vacancy-ordered TlFe1.6Se2 insulating epitaxial film with an atomically flat surface and examined its electrostatic carrier doping using an electric double-layer transistor (EDLT) structure with an ionic liquid gate. The positive gate voltage gave a conductance modulation of three orders of magnitude at 25 K, and further induced and manipulated a phase transition; i.e., delocalized carrier generation by electrostatic doping is the origin of the phase transition. This is the first demonstration, to the authors' knowledge, of an EDLT using a Mott insulator iron selenide channel and opens a way to explore high Tc superconductivity in iron-based layered materials, where carrier doping by conventional chemical means is difficult. PMID:24591598

  20. Rapid thermal anneal in InP, GaAs and GaAs/GaAlAs

    NASA Astrophysics Data System (ADS)

    Descouts, B.; Duhamel, N.; Godefroy, S.; Krauz, P.

    Ion implantation in semiconductors provides a doping technique with several advantages over more conventional doping methods and is now extensively used for device applications, e.g. field effect transistors (MESFET GaAs, MIS (InP), GaAs/GaAlAs heterojunction bipolar transistors (HBT). Because of the lattice disorder produced by the implantation, the dopant must be made electrically active by a postimplant anneal. As the device performances are very dependent on its electrical characteristics, the anneal is a very important stage of the process. Rapid anneal is known to provide less exodiffusion and less induffusion of impurities compared to conventional furnace anneal, so this technique has been used in this work to activate an n-type dopant (Si) in InP and a p-type dopant (Mg) in GaAs and GaAs/GaAIAs. These two ions have been chosen to realize implanted MIS InP and the base contacts for GaAs/GaAlAs HBTs. The experimental conditions to obtain the maximum electrical activity in these two cases will be detailed. For example, although we have not been able to obtain a flat profile in Mg + implanted GaAs/GaAlAs heterostructure by conventional thermal anneal, rapid thermal anneal gives a flat hole profile over a depth of 0.5 μm with a concentration of 1 x 10 19 cm -3.

  1. Electron gas at the interface between two antiferromagnetic insulating manganites

    NASA Astrophysics Data System (ADS)

    Calderón, M. J.; Salafranca, J.; Brey, L.

    2008-07-01

    We study theoretically the magnetic and electric properties of the interface between two antiferromagnetic and insulating manganites: La0.5Ca0.5MnO3 , a strong correlated insulator, and CaMnO3 , a band insulator. We find that a ferromagnetic and metallic electron gas is formed at the interface between the two layers. We confirm the metallic character of the interface by calculating the in-plane conductance. The possibility of increasing the electron-gas density by selective doping is also discussed.

  2. Mode-locked Er-doped fiber laser based on liquid phase exfoliated Sb2Te3 topological insulator

    NASA Astrophysics Data System (ADS)

    Boguslawski, J.; Sotor, J.; Sobon, G.; Tarka, J.; Jagiello, J.; Macherzynski, W.; Lipinska, L.; Abramski, K. M.

    2014-10-01

    In this paper, femtosecond pulse generation in an Er-doped fiber laser is reported. The laser is passively mode-locked by an antimony telluride (Sb2Te3) topological insulator (TI) saturable absorber (SA) placed on a side-polished fiber. The Sb2Te3/chitosan suspension used to prepare the SA was obtained via liquid phase exfoliation from bulk Sb2Te3.Ultra-short 449 fs soliton pulses were generated due to the interaction between the evanescent field propagated in the fiber cladding and the Sb2Te3 layers. The optical spectrum is centered at 1556 nm with 6 nm of full-width at half maximum bandwidth. The presented method benefits from a much better repeatability compared to mechanical exfoliation.

  3. Field-Theoretical Studies of a doped Mott Insulator

    NASA Astrophysics Data System (ADS)

    Juricic, Vladimir

    2006-06-01

    In this thesis, the magnetic and the transport properties of La(2-x)Sr(x)CuO(4) in the undoped and lightly doped regime are investigated. In Chapter 2, we consider the role of the Dzyaloshinskii-Moriya (DM) and the pseudodipolar (XY) interactions in determining the magnetic properties of the undoped material, La(2)CuO(4), motivated by recent experiments, which show a complete anisotropy in the magnetic susceptibility response. We start with the microscopic spin model, which, besides the Heisenberg superexchange interaction, contains the anisotropic DM and the XY interactions. We map this microscopic model into a corresponding field theory, which turns out to be a generalized nonlinear sigma model. The effect of the anisotropies is to introduce gaps for the spin excitations, which are responsible for the ground-state properties of the material. When a magnetic field is applied, the DM anisotropy leads to an unexpected linear coupling of the staggered magnetization to the magnetic field, which is responsible for a completely anisotropic magnetic susceptibility, in agreement with experiments. In Chapter 3, we investigate the effect of the DM and the XY anisotropies on the magnetism when Sr doping is introduced in La(2)CuO(4). Our starting point is the nonlinear sigma model, which includes these anisotropies, and also the dopant holes, represented via an effective dipole field which couples to the background magnetization current. In the antiferromagnetic phase, x<2%, the dipole-magnetization current coupling leads to a decrease of the spin gaps, in good agreement with recent experiments. The DM gap gives rise to the stability of the antiferromagnetic state up to the doping level x=2%, at which the dipole field acquires a nonzero expectation value, causing a change in the magnetic ground state of the system. Beyond this doping concentration, the spins rearrange to form an incommensurate helicoidal state, which gives rise to two incommensurate peaks in the spin

  4. Proximity-driven enhanced magnetic order at ferromagnetic-insulator-magnetic-topological-insulator interface

    DOE PAGES

    Li, Mingda; Zhu, Yimei; Chang, Cui -Zu; ...

    2015-08-17

    Magnetic exchange driven proximity effect at a magnetic-insulator–topological-insulator (MI-TI) interface provides a rich playground for novel phenomena as well as a way to realize low energy dissipation quantum devices. In this study, we report a dramatic enhancement of proximity exchange coupling in the MI/magnetic-TI EuS/Sb 2–xV xTe 3 hybrid heterostructure, where V doping is used to drive the TI (Sb 2Te 3) magnetic. We observe an artificial antiferromagneticlike structure near the MI-TI interface, which may account for the enhanced proximity coupling. The interplay between the proximity effect and doping in a hybrid heterostructure provides insights into the engineering of magneticmore » ordering.« less

  5. Manufacturable Tri-Stack AlSb/InAs HEMT Low-Noise Amplifiers Using Wafer-Level-Packaging Technology for Light-Weight and Ultralow-Power Applications

    DTIC Science & Technology

    2009-05-01

    shown in Fig. 1 was grown by molecular - beam epitaxy (MBE) on 3-inch semi-insulating GaAs substrates. AlGaSb was used as a buffer. AlSb was used as... beam epitaxy for low-power applications,” J. Vac. Sci. Technol. B. 24, pp. 2581-2585, 2006. [12] Y. C. Chou, L. J. Lee, J. M. Yang, M. D. Lange, P...passivation AlGaSb buffer Figure 1: Cross section of an AlSb/InAs HEMT device on a 3-inch GaAs substrate. The interface region between the

  6. Modeling and Simulation of Capacitance-Voltage Characteristics of a Nitride GaAs Schottky Diode

    NASA Astrophysics Data System (ADS)

    Ziane, Abderrezzaq; Amrani, Mohammed; Benamara, Zineb; Rabehi, Abdelaziz

    2018-06-01

    A nitride GaAs Schottky diode has been fabricated by the nitridation of GaAs substrates using a radio frequency discharge nitrogen plasma source with a layer thickness of approximately 0.7 nm of GaN. The capacitance-voltage (C-V) characteristics of the Au/GaN/GaAs structure were investigated at room temperature for different frequencies, ranging from 1 kHz to 1 MHz. The C-V measurements for the Au/GaN/GaAs Schottky diode were found to be strongly dependent on the bias voltage and the frequency. The capacitance curves depict an anomalous peak and a negative capacitance phenomenon, indicating the presence of continuous interface state density behavior. A numerical drift-diffusion model based on the Scharfetter-Gummel algorithm was elaborated to solve a system composed of the Poisson and continuities equations. In this model, we take into account the continuous interface state density, and we have considered exponential and Gaussian distributions of trap states in the band gap. The effects of the GaAs doping concentration and the trap state density are discussed. We deduce the shape and values of the trap states, then we validate the developed model by fitting the computed C-V curves with experimental measurements at low frequency.

  7. Metal-insulator transition in tin doped indium oxide (ITO) thin films: Quantum correction to the electrical conductivity

    NASA Astrophysics Data System (ADS)

    Kaushik, Deepak Kumar; Kumar, K. Uday; Subrahmanyam, A.

    2017-01-01

    Tin doped indium oxide (ITO) thin films are being used extensively as transparent conductors in several applications. In the present communication, we report the electrical transport in DC magnetron sputtered ITO thin films (prepared at 300 K and subsequently annealed at 673 K in vacuum for 60 minutes) in low temperatures (25-300 K). The low temperature Hall effect and resistivity measurements reveal that the ITO thin films are moderately dis-ordered (kFl˜1; kF is the Fermi wave vector and l is the electron mean free path) and degenerate semiconductors. The transport of charge carriers (electrons) in these disordered ITO thin films takes place via the de-localized states. The disorder effects lead to the well-known `metal-insulator transition' (MIT) which is observed at 110 K in these ITO thin films. The MIT in ITO thin films is explained by the quantum correction to the conductivity (QCC); this approach is based on the inclusion of quantum-mechanical interference effects in Boltzmann's expression of the conductivity of the disordered systems. The insulating behaviour observed in ITO thin films below the MIT temperature is attributed to the combined effect of the weak localization and the electron-electron interactions.

  8. Raman Scattering Signature of a Localized-to-Delocalized Transition at the Inception of a Dilute Abnormal GaAs1-xNx Alloy

    NASA Astrophysics Data System (ADS)

    Mialitsin, Aleksej V.; Mascarenhas, Angelo

    2013-05-01

    We identify the signature of a localized-to-delocalized transition in the resonant Raman scattering spectra from GaAs1-xNx. Our measurements in the ultradilute nitrogen doping concentrations demonstrate an energy shift in the line width resonance of the LO phonon. With decreasing nitrogen concentration, the EW line width resonance energy reduces abruptly by ca. 47 meV at x≈0.35%. This value corresponds to the concentration at which GaAs1-xNx has been recently shown to transition from an impurity regime to an alloy regime. Our study elucidates the evolution of dilute abnormal alloys and their Raman response.

  9. Detecting Fermi-level shifts by Auger electron spectroscopy in Si and GaAs

    NASA Astrophysics Data System (ADS)

    Debehets, J.; Homm, P.; Menghini, M.; Chambers, S. A.; Marchiori, C.; Heyns, M.; Locquet, J. P.; Seo, J. W.

    2018-05-01

    In this paper, changes in surface Fermi-level of Si and GaAs, caused by doping and cleaning, are investigated by Auger electron spectroscopy. Based on the Auger voltage contrast, we compared the Auger transition peak energy but with higher accuracy by using a more accurate analyzer and an improved peak position determination method. For silicon, a peak shift as large as 0.46 eV was detected when comparing a cleaned p-type and n-type wafer, which corresponds rather well with the theoretical difference in Fermi-levels. If no cleaning was applied, the peak position did not differ significantly for both wafer types, indicating Fermi-level pinning in the band gap. For GaAs, peak shifts were detected after cleaning with HF and (NH4)2S-solutions in an inert atmosphere (N2-gas). Although the (NH4)2S-cleaning in N2 is very efficient in removing the oxygen from the surface, the observed Ga- and As-peak shifts are smaller than those obtained after the HF-cleaning. It is shown that the magnitude of the shift is related to the surface composition. After Si-deposition on the (NH4)2S-cleaned surface, the Fermi-level shifts back to a similar position as observed for an as-received wafer, indicating that this combination is not successful in unpinning the Fermi-level of GaAs.

  10. Electronic structure and x-ray magnetic circular dichroism in Mn-doped topological insulators Bi2Se3 and Bi2Te3

    NASA Astrophysics Data System (ADS)

    Antonov, V. N.; Bekenov, L. V.; Uba, S.; Ernst, A.

    2017-12-01

    We studied the structural, electronic, and magnetic properties of Mn-doped topological insulators Bi2Se3 and Bi2Te3 within the density-functional theory (DFT) using the generalized gradient approximation (GGA) in the framework of the fully relativistic spin-polarized Dirac linear muffin-tin orbital band-structure method. The x-ray absorption spectra (XAS) and x-ray magnetic circular dichroism at the Mn K and L2 ,3 edges were investigated theoretically from first principles. The calculated results are in good agreement with experimental data. The complex fine structure of the Mn L2 ,3 XAS in Mn-doped Bi2Se3 and Bi2Te3 was found to be not compatible with a pure Mn3 + valency state. Its interpretation demands mixed valent states. The theoretically calculated x-ray emission spectra at the Mn K and L2 ,3 edges are also presented and analyzed.

  11. GaAs Substrates for High-Power Diode Lasers

    NASA Astrophysics Data System (ADS)

    Mueller, Georg; Berwian, Patrick; Buhrig, Eberhard; Weinert, Berndt

    GaAs substrate crystals with low dislocation density (Etch-Pit Density (EPD) < 500,^-2) and Si-doping ( ~10^18,^-3) are required for the epitaxial production of high-power diode-lasers. Large-size wafers (= 3 mathrm{in} -> >=3,) are needed for reducing the manufacturing costs. These requirements can be fulfilled by the Vertical Bridgman (VB) and Vertical Gradient Freeze (VGF) techniques. For that purpose we have developed proper VB/VGF furnaces and optimized the thermal as well as the physico-chemical process conditions. This was strongly supported by extensive numerical process simulation. The modeling of the VGF furnaces and processes was made by using a new computer code called CrysVUN++, which was recently developed in the Crystal Growth Laboratory in Erlangen.GaAs crystals with diameters of 2 and 3in were grown in pyrolytic Boron Nitride (pBN) crucibles having a small-diameter seed section and a conical part. Boric oxide was used to fully encapsulate the crystal and the melt. An initial silicon content in the GaAs melt of c (melt) = 3 x10^19,^-3 has to be used in order to achieve a carrier concentration of n = (0.8- 2) x10^18,^-3, which is the substrate specification of the device manufacturer of the diode-laser. The EPD could be reduced to values between 500,^-2 and 50,^-2 with a Si-doping level of 8 x10^17 to 1 x10^18,^-3. Even the 3in wafers have rather large dislocation-free areas. The lowest EPDs ( <100,^-2) are achieved for long seed wells of the crucible.

  12. Insulating and metallic spin glass in Ni-doped K x Fe 2 - y Se 2 single crystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ryu, Hyejin; Abeykoon, Milinda; Wang, Kefeng

    2015-05-01

    Here in this paper, we report electron doping effects by Ni in K xFe 2- δ-y Ni ySe 2 (0.06 ≤ y ≤ 1.44) single-crystal alloys. A rich ground-state phase diagram is observed. A small amount of Ni (~4 %) suppressed superconductivity below 1.8 K, inducing insulating spin-glass magnetic ground state for higher Ni content. With further Ni substitution, metallic resistivity is restored. For high Ni concentration in the lattice the unit cell symmetry is high symmetry I4/mmm with no phase separation whereas both I4 / m + I4/mmm space groups were detected in the phase separated crystals when concentrationmore » of Ni< Fe. The absence of superconductivity coincides with the absence of crystalline Fe vacancy order.« less

  13. Cl-doping of Te-rich CdTe: Complex formation, self-compensation and self-purification from first principles

    NASA Astrophysics Data System (ADS)

    Lindström, A.; Klintenberg, M.; Sanyal, B.; Mirbt, S.

    2015-08-01

    The coexistence in Te-rich CdTe of substitutional Cl-dopants, ClTe, which act as donors, and Cd vacancies, VC d - 1 , which act as electron traps, was studied from first principles utilising the HSE06 hybrid functional. We find ClTe to preferably bind to VC d - 1 and to form an acceptor complex, (ClTe-VCd)-1. The complex has a (0,-1) charge transfer level close to the valence band and shows no trap state (deep level) in the band gap. During the complex formation, the defect state of VCd-1 is annihilated and leaves the Cl-doped CdTe bandgap without any trap states (self-purification). We calculate Cl-doped CdTe to be semi-insulating with a Fermi energy close to midgap. We calculate the formation energy of the complex to be sufficiently low to allow for spontanous defect formation upon Cl-doping (self-compensation). In addition, we quantitatively analyse the geometries, DOS, binding energies and formation energies of the (ClTe-VCd) complexes.

  14. Theoretical investigation of structural, mechanical and electronic properties of GaAs1-xNx alloys under ambient and high pressure

    NASA Astrophysics Data System (ADS)

    Li, Jian; Han, Xiuxun; Dong, Chen; Fan, Changzeng

    2017-12-01

    Using first-principles total energy calculations, we have studied the structural, mechanical and electronic properties of GaAs1-xNx ternary semiconductor alloys with the zinc-blende crystal structure over the whole nitrogen concentration range (with x from 0 to 1) within density functional theory (DFT) framework. To obtain the ideal band gap, we employ the semi-empirical approach called local density approximation plus the multi-orbital mean-field Hubbard model (LDA+U). The calculated results illustrate the varying lattice constants and band gap in GaAs1-xNx alloys as functions of the nitrogen concentration x. According to the pressure dependence of the lattice constants and volume, the higher N concentration alloy exhibits the better anti-compressibility. In addition, an increasing band gap is predicted under 20 GPa pressure for GaAs1-xNx alloys.

  15. Phase diagrams for understanding gold-seeded growth of GaAs and InAs nanowires

    NASA Astrophysics Data System (ADS)

    Ghasemi, Masoomeh; Johansson, Jonas

    2017-04-01

    Phase diagrams are useful tools to study the phase equilibria of nanowire materials systems because the growth of nanowires is accompanied by phase formation and phase transition. We have modeled the phase equilibria of the As-Au-Ga ternary system by means of the CALPHAD method. This method is a well-established semi-empirical technique for thermodynamic modeling in which Gibbs energy functions with free parameters are defined for all phases in a system followed by adjusting these parameters to the experimental data. Using the resulting As-Au-Ga thermodynamic database, four vertical cuts of this ternary system are calculated and all show good agreement with experiments. This ternary system is particularly useful for predicting the state of the Au seed alloys when growing GaAs nanowires and we discuss such predictions. Similar calculations are performed for Au-seeded InAs nanowires. We show that the vapor-liquid-solid (VLS) growth fails for InAs nanowires, while GaAs nanowires can grow from a liquid particle. Our calculations are in agreement with experimental data on the growth of Au-seeded GaAs and InAs nanowires.

  16. Fermi Level Manipulation through Native Doping in the Topological Insulator Bi2Se3.

    PubMed

    Walsh, Lee A; Green, Avery J; Addou, Rafik; Nolting, Westly; Cormier, Christopher R; Barton, Adam T; Mowll, Tyler R; Yue, Ruoyu; Lu, Ning; Kim, Jiyoung; Kim, Moon J; LaBella, Vincent P; Ventrice, Carl A; McDonnell, Stephen; Vandenberghe, William G; Wallace, Robert M; Diebold, Alain; Hinkle, Christopher L

    2018-06-08

    The topologically protected surface states of three-dimensional (3D) topological insulators have the potential to be transformative for high-performance logic and memory devices by exploiting their specific properties such as spin-polarized current transport and defect tolerance due to suppressed backscattering. However, topological insulator based devices have been underwhelming to date primarily due to the presence of parasitic issues. An important example is the challenge of suppressing bulk conduction in Bi 2 Se 3 and achieving Fermi levels ( E F ) that reside in between the bulk valence and conduction bands so that the topologically protected surface states dominate the transport. The overwhelming majority of the Bi 2 Se 3 studies in the literature report strongly n-type materials with E F in the bulk conduction band due to the presence of a high concentration of selenium vacancies. In contrast, here we report the growth of near-intrinsic Bi 2 Se 3 with a minimal Se vacancy concentration providing a Fermi level near midgap with no extrinsic counter-doping required. We also demonstrate the crucial ability to tune E F from below midgap into the upper half of the gap near the conduction band edge by controlling the Se vacancy concentration using post-growth anneals. Additionally, we demonstrate the ability to maintain this Fermi level control following the careful, low-temperature removal of a protective Se cap, which allows samples to be transported in air for device fabrication. Thus, we provide detailed guidance for E F control that will finally enable researchers to fabricate high-performance devices that take advantage of transport through the topologically protected surface states of Bi 2 Se 3 .

  17. Boron, bismuth co-doping of gallium arsenide and other compounds for photonic and heterojunction bipolar transistor devices

    DOEpatents

    Mascarenhas, Angelo

    2015-07-07

    Isoelectronic co-doping of semiconductor compounds and alloys with acceptors and deep donors is sued to decrease bandgap, to increase concentration of the dopant constituents in the resulting alloys, and to increase carrier mobilities lifetimes. For example, Group III-V compounds and alloys, such as GaAs and GaP, are isoelectronically co-doped with, for example, B and Bi, to customize solar cells, and other semiconductor devices. Isoelectronically co-doped Group II-VI compounds and alloys are also included.

  18. High Performance 0.1 μm GaAs Pseudomorphic High Electron Mobility Transistors with Si Pulse-Doped Cap Layer for 77 GHz Car Radar Applications

    NASA Astrophysics Data System (ADS)

    Kim, Sungwon; Noh, Hunhee; Jang, Kyoungchul; Lee, JaeHak; Seo, Kwangseok

    2005-04-01

    In this study, 0.1 μm double-recessed T-gate GaAs pseudomorphic high electron mobility transistors (PHEMT’s), in which an InGaAs layer and a Si pulse-doped layer in the cap structure are inserted, have been successfully fabricated. This cap structure improves ohmic contact. The ohmic contact resistance is as small as 0.07 Ωmm, consequently the source resistance is reduced by about 20% compared to that of a conventional cap structure. This device shows good DC and microwave performance such as an extrinsic transconductance of 620 mS/mm, a maximum saturated drain current of 780 mA/mm, a cut-off frequency fT of 140 GHz and a maximum oscillation frequency of 260 GHz. The reverse breakdown is 5.7 V at a gate current density of 1 mA/mm. The maximum available gain is about 7 dB at 77 GHz. It is well suited for car radar monolithic microwave integrated circuits (MMICs).

  19. GaAs MOEMS Technology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    SPAHN, OLGA B.; GROSSETETE, GRANT D.; CICH, MICHAEL J.

    2003-03-01

    Many MEMS-based components require optical monitoring techniques using optoelectronic devices for converting mechanical position information into useful electronic signals. While the constituent piece-parts of such hybrid opto-MEMS components can be separately optimized, the resulting component performance, size, ruggedness and cost are substantially compromised due to assembly and packaging limitations. GaAs MOEMS offers the possibility of monolithically integrating high-performance optoelectronics with simple mechanical structures built in very low-stress epitaxial layers with a resulting component performance determined only by GaAs microfabrication technology limitations. GaAs MOEMS implicitly integrates the capability for radiation-hardened optical communications into the MEMS sensor or actuator component, a vitalmore » step towards rugged integrated autonomous microsystems that sense, act, and communicate. This project establishes a new foundational technology that monolithically combines GaAs optoelectronics with simple mechanics. Critical process issues addressed include selectivity, electrochemical characteristics, and anisotropy of the release chemistry, and post-release drying and coating processes. Several types of devices incorporating this novel technology are demonstrated.« less

  20. Characteristic measurement for femtosecond laser pulses using a GaAs PIN photodiode as a two-photon photovoltaic receiver

    NASA Astrophysics Data System (ADS)

    Chen, Junbao; Xia, Wei; Wang, Ming

    2017-06-01

    Photodiodes that exhibit a two-photon absorption effect within the spectral communication band region can be useful for building an ultra-compact autocorrelator for the characteristic inspection of optical pulses. In this work, we develop an autocorrelator for measuring the temporal profile of pulses at 1550 nm from an erbium-doped fiber laser based on the two-photon photovoltaic (TPP) effect in a GaAs PIN photodiode. The temporal envelope of the autocorrelation function contains two symmetrical temporal side lobes due to the third order dispersion of the laser pulses. Moreover, the joint time-frequency distribution of the dispersive pulses and the dissimilar two-photon response spectrum of GaAs and Si result in different delays for the appearance of the temporal side lobes. Compared with Si, GaAs displays a greater sensitivity for pulse shape reconstruction at 1550 nm, benefiting from the higher signal-to-noise ratio of the side lobes and the more centralized waveform of the autocorrelation trace. We also measure the pulse width using the GaAs PIN photodiode, and the resolution of the measured full width at half maximum of the TPP autocorrelation trace is 0.89 fs, which is consistent with a conventional second-harmonic generation crystal autocorrelator. The GaAs PIN photodiode is shown to be highly suitable for real-time second-order autocorrelation measurements of femtosecond optical pulses. It is used both for the generation and detection of the autocorrelation signal, allowing the construction of a compact and inexpensive intensity autocorrelator.

  1. Semi-flexible gas-insulated transmission line using protection tube in conductor plug-in joint

    DOEpatents

    Kommineni, P.R.

    1983-01-25

    A gas-insulated transmission line includes an outer sheath, an inner conductor, an insulating gas electrically insulating the inner conductor from the outer sheath, and insulating supports insulatably supporting the inner conductor within the outer sheath. The inner conductor is provided with flexibility by main conductor sections which are joined together through a conductor hub section and flexible flexing elements. Stress shields are provided to control the electric field at the locations of the conductor hub sections where the insulating supports are contacting the inner conductor. A plug and socket arrangement is utilized for joining adjacent sections of the inner conductor, and a protection tube is utilized inside the hollow plug to maintain proper alignment of the joint when the transmission line is bent. 3 figs.

  2. Semi-flexible gas-insulated transmission line using protection tube in conductor plug-in joint

    DOEpatents

    Kommineni, Prasad R.

    1983-01-25

    A gas-insulated transmission line includes an outer sheath, an inner conductor, an insulating gas electrically insulating the inner conductor from the outer sheath, and insulating supports insulatably supporting the inner conductor within the outer sheath. The inner conductor is provided with flexibility by main conductor sections which are joined together through a conductor hub section and flexible flexing elements. Stress shields are provided to control the electric field at the locations of the conductor hub sections where the insulating supports are contacting the inner conductor. A plug and socket arrangement is utilized for joining adjacent sections of the inner conductor, and a protection tube is utilized inside the hollow plug to maintain proper alignment of the joint when the transmission line is bent.

  3. Local sensor based on nanowire field effect transistor from inhomogeneously doped silicon on insulator

    NASA Astrophysics Data System (ADS)

    Presnov, Denis E.; Bozhev, Ivan V.; Miakonkikh, Andrew V.; Simakin, Sergey G.; Trifonov, Artem S.; Krupenin, Vladimir A.

    2018-02-01

    We present the original method for fabricating a sensitive field/charge sensor based on field effect transistor (FET) with a nanowire channel that uses CMOS-compatible processes only. A FET with a kink-like silicon nanowire channel was fabricated from the inhomogeneously doped silicon on insulator wafer very close (˜100 nm) to the extremely sharp corner of a silicon chip forming local probe. The single e-beam lithographic process with a shadow deposition technique, followed by separate two reactive ion etching processes, was used to define the narrow semiconductor nanowire channel. The sensors charge sensitivity was evaluated to be in the range of 0.1-0.2 e /√{Hz } from the analysis of their transport and noise characteristics. The proposed method provides a good opportunity for the relatively simple manufacture of a local field sensor for measuring the electrical field distribution, potential profiles, and charge dynamics for a wide range of mesoscopic objects. Diagnostic systems and devices based on such sensors can be used in various fields of physics, chemistry, material science, biology, electronics, medicine, etc.

  4. Large power factor and anomalous Hall effect and their correlation with observed linear magneto resistance in Co-doped Bi2Se3 3D topological insulator

    NASA Astrophysics Data System (ADS)

    Singh, Rahul; Shukla, K. K.; Kumar, A.; Okram, G. S.; Singh, D.; Ganeshan, V.; Lakhani, Archana; Ghosh, A. K.; Chatterjee, Sandip

    2016-09-01

    Magnetoresistance (MR), thermo power, magnetization and Hall effect measurements have been performed on Co-doped Bi2Se3 topological insulators. The undoped sample shows that the maximum MR as a destructive interference due to a π-Berry phase leads to a decrease of MR. As the Co is doped, the linearity in MR is increased. The observed MR of Bi2Se3 can be explained with the classical model. The low temperature MR behavior of Co doped samples cannot be explained with the same model, but can be explained with the quantum linear MR model. Magnetization behavior indicates the establishment of ferromagnetic ordering with Co doping. Hall effect data also supports the establishment of ferromagnetic ordering in Co-doped Bi2Se3 samples by showing the anomalous Hall effect. Furthermore, when spectral weight suppression is insignificant, Bi2Se3 behaves as a dilute magnetic semiconductor. Moreover, the maximum power factor is observed when time reversal symmetry (TRS) is maintained. As the TRS is broken the power factor value is decreased, which indicates that with the rise of Dirac cone above the Fermi level the anomalous Hall effect and linearity in MR increase and the power factor decreases.

  5. Angle-resolved photoemission spectroscopy studies of the Mott insulator to superconductor evolution in calcium-sodium-copper-chloride

    NASA Astrophysics Data System (ADS)

    Shen, Kyle Michael

    The parent compounds of the high-temperature cuprate superconductors are antiferromagnetic Mott insulators. To explain the microscopic mechanism behind high-temperature superconductivity, it is first necessary to understand how the electronic states evolve from the parent Mott insulator into the superconducting compounds. This dissertation presents angle-resolved photoemission spectroscopy (ARPES) studies of one particular family of the cuprate superconductors, Ca 2-xNaxCuO 2Cl2, to investigate how the single-electron excitations develop throughout momentum space as the system is hole doped from the Mott insulator into a superconductor with a transition temperature of 22 K. These measurements indicate that, due to very strong electron-boson interactions, the quasiparticle residue, Z, approaches zero in the parent Mott insulator due to the formation of small lattice polarons. As a result, many fundamental quantities such as the chemical potential, quasiparticle excitations, and the Fermi surface evolve in manners wholly unexpected from conventional weakly-interacting theories. In addition, highly anisotropic interactions have been observed in momentum space where quasiparticle-like excitations persist to low doping levels along the nodal direction of the d-wave super-conducting gap, in contrast to the unusual excitations near the d-wave antinode. This anisotropy may reflect the propensity of the lightly doped cuprates towards forming a competing, charge-ordered state. These results provide a novel and logically consistent explanation of the hole doping evolution of the lineshape, spectral weight, chemical potential, quasiparticle dispersion, and Fermi surface as Ca2- xNaxCuO2Cl2 evolves from the parent Mott insulator into a high-temperature superconductor.

  6. Semi-insulating GaN Substrates for High-frequency Device Fabrication

    DTIC Science & Technology

    2008-06-18

    of the undoped and iron-doped samples were probed by X-ray diffraction (XRD) measurements using a Philips X’pert MRD triple axis diffracted beam system...diode laser. The light emitted by the samples was dispersed by a Princeton/Acton Trivista 557 triple spectrometer fit with an LN2 cool OMA V InGaAs... point out that the relative intensity of all these bands decreases with increasing of the iron doping. This observation is consistent with the change in

  7. Ultrafast properties of femtosecond-laser-ablated GaAs and its application to terahertz optoelectronics.

    PubMed

    Madéo, Julien; Margiolakis, Athanasios; Zhao, Zhen-Yu; Hale, Peter J; Man, Michael K L; Zhao, Quan-Zhong; Peng, Wei; Shi, Wang-Zhou; Dani, Keshav M

    2015-07-15

    We report on the first terahertz (THz) emitter based on femtosecond-laser-ablated gallium arsenide (GaAs), demonstrating a 65% enhancement in THz emission at high optical power compared to the nonablated device. Counter-intuitively, the ablated device shows significantly lower photocurrent and carrier mobility. We understand this behavior in terms of n-doping, shorter carrier lifetime, and enhanced photoabsorption arising from the ablation process. Our results show that laser ablation allows for efficient and cost-effective optoelectronic THz devices via the manipulation of fundamental properties of materials.

  8. Design optimization of GaAs betavoltaic batteries

    NASA Astrophysics Data System (ADS)

    Chen, Haiyanag; Jiang, Lan; Chen, Xuyuan

    2011-06-01

    GaAs junctions are designed and fabricated for betavoltaic batteries. The design is optimized according to the characteristics of GaAs interface states and the diffusion length in the depletion region of GaAs carriers. Under an illumination of 10 mCi cm-2 63Ni, the open circuit voltage of the optimized batteries is about ~0.3 V. It is found that the GaAs interface states induce depletion layers on P-type GaAs surfaces. The depletion layer along the P+PN+ junction edge isolates the perimeter surface from the bulk junction, which tends to significantly reduce the battery dark current and leads to a high open circuit voltage. The short circuit current density of the optimized junction is about 28 nA cm-2, which indicates a carrier diffusion length of less than 1 µm. The overall results show that multi-layer P+PN+ junctions are the preferred structures for GaAs betavoltaic battery design.

  9. Phase-field model of insulator-to-metal transition in VO2 under an electric field

    NASA Astrophysics Data System (ADS)

    Shi, Yin; Chen, Long-Qing

    2018-05-01

    The roles of an electric field and electronic doping in insulator-to-metal transitions are still not well understood. Here we formulated a phase-field model of insulator-to-metal transitions by taking into account both structural and electronic instabilities as well as free electrons and holes in VO2, a strongly correlated transition-metal oxide. Our phase-field simulations demonstrate that in a VO2 slab under a uniform electric field, an abrupt universal resistive transition occurs inside the supercooling region, in sharp contrast to the conventional Landau-Zener smooth electric breakdown. We also show that hole doping may decouple the structural and electronic phase transitions in VO2, leading to a metastable metallic monoclinic phase which could be stabilized through a geometrical confinement and the size effect. This work provides a general mesoscale thermodynamic framework for understanding the influences of electric field, electronic doping, and stress and strain on insulator-to-metal transitions and the corresponding mesoscale domain structure evolution in VO2 and related strongly correlated systems.

  10. Ground state of underdoped cuprates in vicinity of superconductor-to-insulator transition

    DOE PAGES

    Wu, Jie; Bollinger, Anthony T.; Sun, Yujie; ...

    2016-08-15

    When an insulating underdoped cuprate is doped beyond a critical concentration (x c), high-temperature superconductivity emerges. We have synthesized a series of La 2–xSr xCuO 4 (LSCO) samples using the combinatorial spread technique that allows us to traverse the superconductor-to-insulator transition (SIT) in extremely fine doping steps, Δx≈0.00008. We have measured the Hall resistivity (ρ H) as a function of temperature down to 300 mK in magnetic fields up to 9 T. At very low temperatures, ρ H shows an erratic behavior, jumps and fluctuations exceeding 100%, hysteresis, and memory effects, indicating that the insulating ground state is a charge-clustermore » glass (CCG). Furthermore, based on the phase diagram depicted in our experiment, we propose a unified picture to account for the anomalous electric transport in the vicinity of the SIT, suggesting that the CCG is in fact a disordered and glassy version of the charge density wave.« less

  11. Patterned radial GaAs nanopillar solar cells.

    PubMed

    Mariani, Giacomo; Wong, Ping-Show; Katzenmeyer, Aaron M; Léonard, Francois; Shapiro, Joshua; Huffaker, Diana L

    2011-06-08

    Photovoltaic devices using GaAs nanopillar radial p-n junctions are demonstrated by means of catalyst-free selective-area metal-organic chemical vapor deposition. Dense, large-area, lithographically defined vertical arrays of nanowires with uniform spacing and dimensions allow for power conversion efficiencies for this material system of 2.54% (AM 1.5 G) and high rectification ratio of 213 (at ±1 V). The absence of metal catalyst contamination results in leakage currents of ∼236 nA at -1 V. High-resolution scanning photocurrent microscopy measurements reveal the independent functioning of each nanowire in the array with an individual peak photocurrent of ∼1 nA at 544 nm. External quantum efficiency shows that the photocarrier extraction highly depends on the degenerately doped transparent contact oxide. Two different top electrode schemes are adopted and characterized in terms of Hall, sheet resistance, and optical transmittance measurements.

  12. Surface plasmon enhanced SWIR absorption at the ultra n-doped substrate/PbSe nanostructure layer interface

    NASA Astrophysics Data System (ADS)

    Wittenberg, Vladimir; Rosenblit, Michael; Sarusi, Gabby

    2017-08-01

    This work presents simulation results of the plasmon enhanced absorption that can be achieved in the short wavelength infrared (SWIR - 1200 nm to 1800 nm) spectral range at the interface between ultra-heavily doped substrates and a PbSe nanostructure non-epitaxial growth absorbing layer. The absorption enhancement simulated in this study is due to surface plasmon polariton (SPP) excitation at the interface between these ultra-heavily n-doped GaAs or GaN substrates, which are nearly semimetals to SWIR light, and an absorption layer made of PbSe nano-spheres or nano-columns. The ultra-heavily doped GaAs or GaN substrates are simulated as examples, based on the Drude-Lorentz permittivity model. In the simulation, the substrates and the absorption layer were patterned jointly to forma blazed lattice, and then were back-illuminated using SWIR with a central wavelength of 1500 nm. The maximal field enhancement achieved was 17.4 with a penetration depth of 40 nm. Thus, such architecture of an ultra-heavily doped semiconductor and infrared absorbing layer can further increase the absorption due to the plasmonic enhanced absorption effect in the SWIR spectral band without the need to use a metallic layer as in the case of visible light.

  13. GaAs Monolithic Microwave Subsystem Technology Base

    DTIC Science & Technology

    1980-01-01

    To provide a captive source of reliable, high-quality GaAs substrates, a new crystal growth and substrate preparation facility which utilizes a high...Symp. GaAs and Related Compounds, Inst. Phys. Conf. Ser. 24, 6. 20. Wood, Woodcock and Harris (1978) GaAs and Related Compounds, Inst. Phys. Conf

  14. Chromium-induced ferromagnetism with perpendicular anisotropy in topological crystalline insulator SnTe (111) thin films

    NASA Astrophysics Data System (ADS)

    Wang, Fei; Zhang, Hongrui; Jiang, Jue; Zhao, Yi-Fan; Yu, Jia; Liu, Wei; Li, Da; Chan, Moses H. W.; Sun, Jirong; Zhang, Zhidong; Chang, Cui-Zu

    2018-03-01

    Topological crystalline insulator is a recently discovered topological phase of matter. It possesses multiple Dirac surface states, which are protected by the crystal symmetry. This is in contrast to the time-reversal symmetry that is operative in the well-known topological insulators. In the presence of a Zeeman field and/or strain, the multiple Dirac surface states are gapped. The high-Chern-number quantum anomalous Hall (QAH) state is predicted to emerge if the chemical potential resides in all the Zeeman gaps. Here, we use molecular-beam epitaxy to grow 12 double-layer (DL) pure and Cr-doped SnTe (111) thin film on heat-treated SrTi O3 (111) substrate using a quintuple layer of insulating (Bi0.2Sb0.8 ) 2T e3 topological insulator as a buffer film. The Hall traces of Cr-doped SnTe film at low temperatures display square hysteresis loops indicating long-range ferromagnetic order with perpendicular anisotropy. The Curie temperature of the 12 DL S n0.9C r0.1Te film is ˜110 K. Due to the chemical potential crossing the bulk valence bands, the anomalous Hall resistance of 12 DL S n0.9C r0.1Te film is substantially lower than the predicted quantized value (˜1 /4 h /e2 ). It is possible that with systematic tuning the chemical potential via chemical doping and electrical gating, the high-Chern-number QAH state can be realized in the Cr-doped SnTe (111) thin film.

  15. Gallium Arsenide Monolithic Optoelectronic Circuits

    NASA Astrophysics Data System (ADS)

    Bar-Chaim, N.; Katz, J.; Margalit, S.; Ury, I.; Wilt, D.; Yariv, A.

    1981-07-01

    The optical properties of GaAs make it a very useful material for the fabrication of optical emitters and detectors. GaAs also possesses electronic properties which allow the fabrication of high speed electronic devices which are superior to conventional silicon devices. Monolithic optoelectronic circuits are formed by the integration of optical and electronic devices on a single GaAs substrate. Integration of many devices is most easily accomplished on a semi-insulating (SI) sub-strate. Several laser structures have been fabricated on SI GaAs substrates. Some of these lasers have been integrated with Gunn diodes and with metal semiconductor field effect transistors (MESFETs). An integrated optical repeater has been demonstrated in which MESFETs are used for optical detection and electronic amplification, and a laser is used to regenerate the optical signal. Monolithic optoelectronic circuits have also been constructed on conducting substrates. A heterojunction bipolar transistor driver has been integrated with a laser on an n-type GaAs substrate.

  16. Efficient Photothermoelectric Conversion in Lateral Topological Insulator Heterojunctions.

    PubMed

    Mashhadi, Soudabeh; Duong, Dinh Loc; Burghard, Marko; Kern, Klaus

    2017-01-11

    Tuning the electron and phonon transport properties of thermoelectric materials by nanostructuring has enabled improving their thermopower figure of merit. Three-dimensional topological insulators, including many bismuth chalcogenides, attract increasing attention for this purpose, as their topologically protected surface states are promising to further enhance the thermoelectric performance. While individual bismuth chalcogenide nanostructures have been studied with respect to their photothermoelectric properties, nanostructured p-n junctions of these compounds have not yet been explored. Here, we experimentally investigate the room temperature thermoelectric conversion capability of lateral heterostructures consisting of two different three-dimensional topological insulators, namely, the n-type doped Bi 2 Te 2 Se and the p-type doped Sb 2 Te 3 . Scanning photocurrent microscopy of the nanoplatelets reveals efficient thermoelectric conversion at the p-n heterojunction, exploiting hot carriers of opposite sign in the two materials. From the photocurrent data, a Seebeck coefficient difference of ΔS = 200 μV/K was extracted, in accordance with the best values reported for the corresponding bulk materials. Furthermore, it is in very good agreement with the value of ΔS = 185 μV/K obtained by DFT calculation taking into account the specific doping levels of the two nanostructured components.

  17. Impact of Silicon Doping on Low-Frequency Charge Noise and Conductance Drift in GaAs/AlxGa1 -xAs Nanostructures

    NASA Astrophysics Data System (ADS)

    Fallahi, S.; Nakamura, J. R.; Gardner, G. C.; Yannell, M. M.; Manfra, M. J.

    2018-03-01

    We present measurements of low-frequency charge noise and conductance drift in modulation-doped GaAs /AlxGa1 -xAs heterostructures grown by molecular beam epitaxy in which the silicon doping density is varied from 2.4 ×1018 (critically doped) to 6.0 ×1018 cm-3 (overdoped). Quantum point contacts are used to detect charge fluctuations. A clear reduction of both short-time-scale telegraphic noise and long-time-scale conductance drift with decreased doping density is observed. These measurements indicate that the neutral doping region plays a significant role in charge noise and conductance drift.

  18. Subgap time of flight: A spectroscopic study of deep levels in semi-insulating CdTe:Cl

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pousset, J.; Farella, I.; Cola, A., E-mail: adriano.cola@le.imm.cnr.it

    2016-03-14

    We report on a study of deep levels in semi-insulating CdTe:Cl by means of a time-of-flight spectral approach. By varying the wavelength of a pulsed optical source within the CdTe energy gap, transitions to/from localized levels generate free carriers which are analysed through the induced photocurrent transients. Both acceptor-like centers, related to the A-center, and a midgap level, 0.725 eV from the valence band, have been detected. The midgap level is close to the Fermi level and is possibly a recombination center responsible for the compensation mechanism. When the irradiance is varied, either linear or quadratic dependence of the electron andmore » hole collected charge are observed, depending on the dominant optical transitions. The analysis discloses the potentiality of such a novel approach exploitable in the field of photorefractive materials as well as for deep levels spectroscopy.« less

  19. Inhibition of unintentional extra carriers by Mn valence change for high insulating devices

    PubMed Central

    Guo, Daoyou; Li, Peigang; Wu, Zhenping; Cui, Wei; Zhao, Xiaolong; Lei, Ming; Li, Linghong; Tang, Weihua

    2016-01-01

    For intrinsic oxide semiconductors, oxygen vacancies served as the electron donors have long been, and inevitably still are, attributed as the primary cause of conductivity, making oxide semiconductors seem hard to act as high insulating materials. Meanwhile, the presence of oxygen vacancies often leads to a persistent photoconductivity phenomenon which is not conducive to the practical use in the fast photoelectric response devices. Herein, we propose a possible way to reduce the influence of oxygen vacancies by introducing a valence change doping in the monoclinic β-Ga2O3 epitaxial thin film. The unintentional extra electrons induced by oxygen vacancies can be strongly suppressed by the change valence of the doped Mn ions from +3 to +2. The resistance for the Mn-doped Ga2O3 increases two orders of magnitude in compared with the pure Ga2O3. As a result, photodetector based on Mn-doped Ga2O3 thin films takes on a lower dark current, a higher sensitivity, and a faster photoresponse time, exhibiting a promising candidate using in high performance solar-blind photodetector. The study presents that the intentional doping of Mn may provide a convenient and reliable method of obtaining high insulating thin film in oxide semiconductor for the application of specific device. PMID:27068227

  20. Narrow energy band gap gallium arsenide nitride semi-conductors and an ion-cut-synthesis method for producing the same

    DOEpatents

    Weng, Xiaojun; Goldman, Rachel S.

    2006-06-06

    A method for forming a semi-conductor material is provided that comprises forming a donor substrate constructed of GaAs, providing a receiver substrate, implanting nitrogen into the donor substrate to form an implanted layer comprising GaAs and nitrogen. The implanted layer is bonded to the receiver substrate and annealed to form GaAsN and nitrogen micro-blisters in the implanted layer. The micro-blisters allow the implanted layer to be cleaved from the donor substrate.

  1. Hole-Impeded-Doping-Superlattice LWIR Detectors

    NASA Technical Reports Server (NTRS)

    Maserjian, Joseph

    1991-01-01

    Hole-Impeded-Doping-Superlattice (HIDS) InAs devices proposed for use as photoconductive or photovoltaic detectors of radiation in long-wavelength infrared (LWIR) range of 8 to 17 micrometers. Array of HIDS devices fabricated on substrates GaAs or Si. Radiation incident on black surface, metal contacts for picture elements serve as reactors, effectively doubling optical path and thereby increasing absorption of photons. Photoconductive detector offers advantages of high gain and high impedance; photovoltaic detector offers lower noise and better interface to multiplexer readouts.

  2. Dyakonov-Perel Effect on Spin Dephasing in n-Type GaAs

    NASA Technical Reports Server (NTRS)

    Ning, C. Z.; Wu, M. W.

    2003-01-01

    A paper presents a study of the contribution of the Dyakonov-Perel (DP) effect to spin dephasing in electron-donor-doped bulk GaAs in the presence of an applied steady, moderate magnetic field perpendicular to the growth axis of the GaAs crystal. (The DP effect is an electron-wave-vector-dependent spin-state splitting of the conduction band, caused by a spin/orbit interaction in a crystal without an inversion center.) The applicable Bloch equations of kinetics were constructed to include terms accounting for longitudinal optical and acoustic phonon scattering as well as impurity scattering. The contributions of the aforementioned scattering mechanisms to spin-dephasing time in the presence of DP effect were examined by solving the equations numerically. Spin-dephasing time was obtained from the temporal evolution of the incoherently summed spin coherence. Effects of temperature, impurity level, magnetic field, and electron density on spin-dephasing time were investigated. Spin-dephasing time was found to increase with increasing magnetic field. Contrary to predictions of previous simplified treatments of the DP effect, spin-dephasing time was found to increase with temperature in the presence of impurity scattering. These results were found to agree qualitatively with results of recent experiments.

  3. Adding GaAs Monolayers to InAs Quantum-Dot Lasers on (001) InP

    NASA Technical Reports Server (NTRS)

    Qiu, Yueming; Chacon, Rebecca; Uhl, David; Yang, Rui

    2005-01-01

    In a modification of the basic configuration of InAs quantum-dot semiconductor lasers on (001)lnP substrate, a thin layer (typically 1 to 2 monolayer thick) of GaAs is incorporated into the active region. This modification enhances laser performance: In particular, whereas it has been necessary to cool the unmodified devices to temperatures of about 80 K in order to obtain lasing at long wavelengths, the modified devices can lase at wavelengths of about 1.7 microns or more near room temperature. InAs quantum dots self-assemble, as a consequence of the lattice mismatch, during epitaxial deposition of InAs on ln0.53Ga0.47As/lnP. In the unmodified devices, the quantum dots as thus formed are typically nonuniform in size. Strainenergy relaxation in very large quantum dots can lead to poor laser performance, especially at wavelengths near 2 microns, for which large quantum dots are needed. In the modified devices, the thin layers of GaAs added to the active regions constitute potential-energy barriers that electrons can only penetrate by quantum tunneling and thus reduce the hot carrier effects. Also, the insertion of thin GaAs layer is shown to reduce the degree of nonuniformity of sizes of the quantum dots. In the fabrication of a batch of modified InAs quantum-dot lasers, the thin additional layer of GaAs is deposited as an interfacial layer in an InGaAs quantum well on (001) InP substrate. The device as described thus far is sandwiched between InGaAsPy waveguide layers, then further sandwiched between InP cladding layers, then further sandwiched between heavily Zn-doped (p-type) InGaAs contact layer.

  4. Defect levels of semi-insulating CdMnTe:In crystals

    NASA Astrophysics Data System (ADS)

    Kim, K. H.; Bolotinikov, A. E.; Camarda, G. S.; Hossain, A.; Gul, R.; Yang, G.; Cui, Y.; Prochazka, J.; Franc, J.; Hong, J.; James, R. B.

    2011-06-01

    Using photoluminescence (PL) and current deep-level transient spectroscopy (I-DLTS), we investigated the electronic defects of indium-doped detector-grade CdMnTe:In (CMT:In) crystals grown by the vertical Bridgman method. We similarly analyzed CdZnTe:In (CZT:In) and undoped CdMnTe (CMT) crystals grown under the amount of same level of excess Te and/or indium doping level to detail the fundamental properties of the electronic defect structure more readily. Extended defects, existing in all the samples, were revealed by synchrotron white beam x-ray diffraction topography and scanning electron microscopy. The electronic structure of CMT is very similar to that of CZT, with shallow traps, A-centers, Cd vacancies, deep levels, and Te antisites. The 1.1-eV deep level, revealed by PL in earlier studies of CZT and CdTe, were attributed to dislocation-induced defects. In our I-DLTS measurements, the 1.1-eV traps showed different activation energies with applied bias voltage and an exponential dependence on the trap-filling time, which are typical characteristics of dislocation-induced defects. We propose a new defect-trap model for indium-doped CMT crystals.

  5. Si and GaAs photocapacitive MIS infrared detectors

    NASA Technical Reports Server (NTRS)

    Sher, A.; Tsuo, Y. H.; Moriarty, J. A.; Miller, W. E.; Crouch, R. K.

    1980-01-01

    Improvement of the previously reported photocapacitive MIS infrared detectors has led to the development of exceptional room-temperature devices. Unoptimized peak detectivities on the order of 10 to the 13th cm sq rt Hz/W, a value which exceeds the best obtainable from existing solid-state detectors, have now been consistently obtained in Si and GaAs devices using high-capacitance LaF3 or composite LaF3/native-oxide insulating layers. The measured spectral response of representative samples is presented and discussed in detail together with a simple theory which accounts for the observed behavior. The response of an ideal MIS photocapacitor is also contrasted with that of both a conventional photoconductor and a p-i-n photodiode, and reasons for the superior performance of the MIS detectors are given. Finally, fundamental studies on the electrical, optical, and noise characteristics of the MIS structures are analyzed and discussed in the context of infrared-detector applications.

  6. Effect of doping on room temperature carrier escape mechanisms in InAs/GaAs quantum dot p-i-n junction photovoltaic cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sellers, D. G.; Chen, E. Y.; Doty, M. F.

    2016-05-21

    We investigate the effect of doping on the mechanisms of carrier escape from intermediate states in delta-doped InAs/GaAs intermediate band solar cells. The intermediate states arise from InAs quantum dots embedded in a GaAs p-i-n junction cell. We find that doping the sample increases the number of excited-state carriers participating in a cycle of trapping and carrier escape via thermal, optical, and tunneling mechanisms. However, we find that the efficiency of the optically-driven carrier escape mechanism is independent of doping and remains small.

  7. Comment on ''Reassessment of space-change and central-cell scattering contributions to GaAs electron mobility''

    NASA Astrophysics Data System (ADS)

    Stringfellow, G. B.

    1982-07-01

    Walukiewicz et al.1 have recently stated that previously reported contributions to the electron mobility of GaAs from space-charge and/or central-cell scattering are in fact insignificant, and that reports of a T-1/2 term in the mobility2,3 are artifacts due to the assumption of Mathiessen's rule. This conclusion is an overstatement of their results and in fact demonstrably incorrect. First, an analysis of the data reported by Stringfellow2 and Stringfellow and Kuenzel3 as well as others has already been performed by Chattopadhyay et al.4 without assuming Mathiessen's rule. Their conclusion is that central-cell scattering is indeed significant. Second, the particular data analyzed by Walukiewicz et al. are in fact acknowledged in Ref. 2 to have very little T-1/2 scattering. The magnitude of the scattering cross section for T-1/2 scattering, SCA, for other samples is more than an order of magnitude larger, too large to be ascribed to errors inherent in using Mathiessen's rule. Experimental data convincingly demonstrate this. The mobility versus temperature curves are lower, especially at higher temperatures, for C as opposed to Zn- or Ge-doped samples where all have the same values of ND+NA (see Fig. 2 of Ref. 3). In addition, recently published data5 for MBE GaAs grown with different C doping levels show that for constant ND+NA, SCA is three times larger for the more highly C doped samples. This could not be due to errors inherent in the use of Mathiessen's rule. For these samples C clearly introduces an increase in the T-1/2 scattering which is not observed for other acceptors. ufc15xr 1W. Walukiewicz, J. Lagowski, and H. C. Gatos, J. Appl. Phys. 52, 5853 (1981). 2G. B. Stringfellow, J. Appl. Phys. 50, 4178 (1979). 3G. B. Stringfellow and H. Kuenzel, J. Appl. Phys. 51, 3254 (1980). 4D. Chattopadhyay, H. J. Queisser, and G. B. Stringfellow, J. Phys. Soc. Jpn. 49, Suppl. A, 293 (1980). 5G. B. Stringfellow, R. Stall, and W. Koschel, Appl. Phys. Lett. 38, 156 (1981

  8. Hybrid Quantum Cascade Lasers on Silicon-on-Sapphire

    DTIC Science & Technology

    2016-11-23

    on-SOS devices mounted on a copper heat sink. The liquid crystal thermal absorber is attached to block mid-IR emission from any sections of the laser...directions. 2. Statement of the problem studied Short-wavelength infrared (SWIR, ~1-3 m) photonics systems based on silicon-on- insulator (SOI...Table 1. Layer type Layer thickness and doping Thickness (nm) Doping (cm-3) InP substrate 350000 Semi- insulating InP buffer layer 2000 2.00E

  9. Prospect of Thermal Insulation by Silica Aerogel: A Brief Review

    NASA Astrophysics Data System (ADS)

    Hasan, Mohammed Adnan; Sangashetty, Rashmi; Esther, A. Carmel Mary; Patil, Sharanabasappa B.; Sherikar, Baburao N.; Dey, Arjun

    2017-10-01

    Silica aerogel is a unique ultra light weight nano porous material which offers superior thermal insulation property as compared to the conventional thermal insulating materials. It can be applied not only for ground and aerospace applications but also in low and high temperatures and pressure regimes. Aerogel granules and monolith are synthesized by the sol-gel route while aerogel based composites are fabricated by the reinforcement of fibers, particle and opacifiers. Due to the characteristic brittleness (i.e., poor mechanical properties) of monolith or bulk aerogel, it is restricted in several applications. To improve the mechanical integrity and flexibility, usually different fibers are reinforced with aerogel and hence it can be used as flexible thermal insulation blankets. Further, to achieve effective thermal insulation behaviour particularly at high temperature, often opacifiers are doped with silica aerogel. In the present brief review, the prospects of bulk aerogel and aerogel based composites are discussed for the application of thermal insulation and thermal stability.

  10. Phosphine Functionalization GaAs(111)A Surfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Traub, M.; Biteen, J; Michalak, D

    Phosphorus-functionalized GaAs surfaces have been prepared by exposure of Cl-terminated GaAs(111)A surfaces to triethylphosphine (PEt3) or trichlorophosphine (PCl3), or by the direct functionalization of the native-oxide terminated GaAs(111)A surface with PCl3. The presence of phosphorus on each functionalized surface was confirmed by X-ray photoelectron spectroscopy. High-resolution, soft X-ray photoelectron spectroscopy was used to evaluate the As and Ga 3d regions of such surfaces. On PEt3 treated surfaces, the Ga 3d spectra exhibited a bulk Ga peak as well as peaks that were shifted to 0.35, 0.92 and 1.86 eV higher binding energy. These peaks were assigned to residual Cl-terminated Gamore » surface sites, surficial Ga2O and surficial Ga2O3, respectively. For PCl3-treated surfaces, the Ga 3d spectra displayed peaks ascribable to bulk Ga(As), Ga2O, and Ga2O3, as well as a peak shifted 0.30 eV to higher binding energy relative to the bulk signal. A peak corresponding to Ga(OH)3, observed on the Cl-terminated surface, was absent from all of the phosphine-functionalized surfaces. After reaction of the Cl-terminated GaAs(111)A surface with PCl3 or PEt3, the As 3d spectral region was free of As oxides and As0. Although native oxide-terminated GaAs surfaces were free of As oxides after reaction with PCl3, such surfaces contained detectable amounts of As0. Photoluminescence measurements indicted that phosphine-functionalized surfaces prepared from Cl-terminated GaAs(111)A surfaces had better electrical properties than the native-oxide capped GaAs(111)A surface, while the native-oxide covered surface treated with PCl3 showed no enhancement in PL intensity.« less

  11. Chromium–niobium co-doped vanadium dioxide films: Large temperature coefficient of resistance and practically no thermal hysteresis of the metal–insulator transition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miyazaki, Kenichi, E-mail: kenichi-miyazaki@denso.co.jp, E-mail: k.shibuya@aist.go.jp; University of Tsukuba, Tsukuba 305-8571; Shibuya, Keisuke, E-mail: kenichi-miyazaki@denso.co.jp, E-mail: k.shibuya@aist.go.jp

    We investigated the effects of chromium (Cr) and niobium (Nb) co-doping on the temperature coefficient of resistance (TCR) and the thermal hysteresis of the metal–insulator transition of vanadium dioxide (VO{sub 2}) films. We determined the TCR and thermal-hysteresis-width diagram of the V{sub 1−x−y}Cr{sub x}Nb{sub y}O{sub 2} films by electrical-transport measurements and we found that the doping conditions x ≳ y and x + y ≥ 0.1 are appropriate for simultaneously realizing a large TCR value and an absence of thermal hysteresis in the films. By using these findings, we developed a V{sub 0.90}Cr{sub 0.06}Nb{sub 0.04}O{sub 2} film grown on amore » TiO{sub 2}-buffered SiO{sub 2}/Si substrate that showed practically no thermal hysteresis while retaining a large TCR of 11.9%/K. This study has potential applications in the development of VO{sub 2}-based uncooled bolometers.« less

  12. Nitridation of porous GaAs by an ECR ammonia plasma

    NASA Astrophysics Data System (ADS)

    Naddaf, M.; Hullavarad, S. S.; Ganesan, V.; Bhoraskar, S. V.

    2006-02-01

    The effect of surface porosity of GaAs on the nature of growth of GaN, by use of plasma nitridation of GaAs, has been investigated. Porous GaAs samples were prepared by anodic etching of n-type (110) GaAs wafers in HCl solution. Nitridation of porous GaAs samples were carried out by using an electron-cyclotron resonance-induced ammonia plasma. The formation of mixed phases of GaN was investigated using the grazing angle x-ray diffraction method. A remarkable improvement in the intensity of photoluminescence (PL) compared with that of GaN synthesized by direct nitriding of GaAs surface has been observed. The PL intensity of nitrided porous GaAs at the temperature of 380 °C was found to be about two orders of magnitude higher as compared with the directly nitrided GaAs at the temperature of 500 °C. The changes in the morphology of nitrided porous GaAs have been investigated using both scanning electron microscopy and atomic force microscopy.

  13. Response of the Lattice across the Filling-Controlled Mott Metal-Insulator Transition of a Rare Earth Titanate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Honggyu; Marshall, Patrick B.; Ahadi, Kaveh

    The lattice response of a prototype Mott insulator, SmTiO 3, to hole doping is investigated with atomic-scale spatial resolution. SmTiO 3 films are doped with Sr on the Sm site with concentrations that span the insulating and metallic sides of the filling-controlled Mott metal-insulator transition (MIT). The GdFeO 3-type distortions are investigated using an atomic resolution scanning transmission electron microscopy technique that can resolve small lattice distortions with picometer precision. We show that these distortions are gradually and uniformly reduced as the Sr concentration is increased without any phase separation. Significant distortions persist into the metallic state. In conclusion, themore » results present a new picture of the physics of this prototype filling-controlled MIT, which is discussed.« less

  14. Response of the Lattice across the Filling-Controlled Mott Metal-Insulator Transition of a Rare Earth Titanate

    DOE PAGES

    Kim, Honggyu; Marshall, Patrick B.; Ahadi, Kaveh; ...

    2017-11-02

    The lattice response of a prototype Mott insulator, SmTiO 3, to hole doping is investigated with atomic-scale spatial resolution. SmTiO 3 films are doped with Sr on the Sm site with concentrations that span the insulating and metallic sides of the filling-controlled Mott metal-insulator transition (MIT). The GdFeO 3-type distortions are investigated using an atomic resolution scanning transmission electron microscopy technique that can resolve small lattice distortions with picometer precision. We show that these distortions are gradually and uniformly reduced as the Sr concentration is increased without any phase separation. Significant distortions persist into the metallic state. In conclusion, themore » results present a new picture of the physics of this prototype filling-controlled MIT, which is discussed.« less

  15. Charge dynamics of the antiferromagnetically ordered Mott insulator

    NASA Astrophysics Data System (ADS)

    Han, Xing-Jie; Liu, Yu; Liu, Zhi-Yuan; Li, Xin; Chen, Jing; Liao, Hai-Jun; Xie, Zhi-Yuan; Normand, B.; Xiang, Tao

    2016-10-01

    We introduce a slave-fermion formulation in which to study the charge dynamics of the half-filled Hubbard model on the square lattice. In this description, the charge degrees of freedom are represented by fermionic holons and doublons and the Mott-insulating characteristics of the ground state are the consequence of holon-doublon bound-state formation. The bosonic spin degrees of freedom are described by the antiferromagnetic Heisenberg model, yielding long-ranged (Néel) magnetic order at zero temperature. Within this framework and in the self-consistent Born approximation, we perform systematic calculations of the average double occupancy, the electronic density of states, the spectral function and the optical conductivity. Qualitatively, our method reproduces the lower and upper Hubbard bands, the spectral-weight transfer into a coherent quasiparticle band at their lower edges and the renormalisation of the Mott gap, which is associated with holon-doublon binding, due to the interactions of both quasiparticle species with the magnons. The zeros of the Green function at the chemical potential give the Luttinger volume, the poles of the self-energy reflect the underlying quasiparticle dispersion with a spin-renormalised hopping parameter and the optical gap is directly related to the Mott gap. Quantitatively, the square-lattice Hubbard model is one of the best-characterised problems in correlated condensed matter and many numerical calculations, all with different strengths and weaknesses, exist with which to benchmark our approach. From the semi-quantitative accuracy of our results for all but the weakest interaction strengths, we conclude that a self-consistent treatment of the spin-fluctuation effects on the charge degrees of freedom captures all the essential physics of the antiferromagnetic Mott-Hubbard insulator. We remark in addition that an analytical approximation with these properties serves a vital function in developing a full understanding of the

  16. Enhancement of Thermoelectric Performances in a Topological Crystal Insulator Pb0.7Sn0.3Se via Weak Perturbation of the Topological State and Chemical Potential Tuning by Chlorine Doping.

    PubMed

    Lin, Chan-Chieh; Kim, Gareoung; Ginting, Dianta; Ahn, Kyunghan; Rhyee, Jong-Soo

    2018-04-04

    Topological insulators generally share commonalities with good thermoelectric (TE) materials because of their narrow band gaps and heavy constituent elements. Here, we propose that a topological crystalline insulator (TCI) could exhibit a high TE performance by breaking its crystalline symmetry and tuning the chemical potential by elemental doping. As a candidate material, we investigate the TE properties of the Cl-doped TCI Pb 0.7 Sn 0.3 Se. The infrared absorption spectra reveal that the band gap is increased from 0.055 eV for Pb 0.7 Sn 0.3 Se to 0.075 eV for Pb 0.7 Sn 0.3 Se 0.99 Cl 0.01 , confirming that the Cl doping can break the crystalline mirror symmetry of a TCI Pb 0.7 Sn 0.3 Se and thereby enlarge its bulk electronic band gap. The topological band inversion is confirmed by the extended X-ray absorption fine structure spectroscopy, which shows that the TCI state is weakened in a chlorine x = 0.05-doped compound. The small gap opening and partial linear band dispersion with massless and massive bands may have a high power factor (PF) for high electrical conductivity with an enhancement of the Seebeck coefficient. As a result, Pb 0.7 Sn 0.3 Se 0.99 Cl 0.01 shows a considerably enhanced ZT of 0.64 at 823 K, which is about 1200% enhancement in ZT compared with that of the undoped Pb 0.7 Sn 0.3 Se. This work demonstrates that the optimal n-type Cl doping tunes the chemical potential together with breaking the state of the TCI, suppresses the bipolar conduction at high temperatures, and thereby enables the Seebeck coefficient to increase up to 823 K, resulting in a significantly enhanced PF at high temperatures. In addition, the bipolar contribution to thermal conductivity is effectively suppressed for the Cl-doped samples of Pb 0.7 Sn 0.3 Se 1- x Cl x ( x ≥ 0.01). We propose that breaking the crystalline mirror symmetry in TCIs could be a new research direction for exploring high-performance TE materials.

  17. GaAs VLSI technology and circuit elements for DSP

    NASA Astrophysics Data System (ADS)

    Mikkelson, James M.

    1990-10-01

    Recent progress in digital GaAs circuit performance and complexity is presented to demonstrate the current capabilities of GaAs components. High density GaAs process technology and circuit design techniques are described and critical issues for achieving favorable complexity speed power and cost tradeoffs are reviewed. Some DSP building blocks are described to provide examples of what types of DSP systems could be implemented with present GaAs technology. DIGITAL GaAs CIRCUIT CAPABILITIES In the past few years the capabilities of digital GaAs circuits have dramatically increased to the VLSI level. Major gains in circuit complexity and power-delay products have been achieved by the use of silicon-like process technologies and simple circuit topologies. The very high speed and low power consumption of digital GaAs VLSI circuits have made GaAs a desirable alternative to high performance silicon in hardware intensive high speed system applications. An example of the performance and integration complexity available with GaAs VLSI circuits is the 64x64 crosspoint switch shown in figure 1. This switch which is the most complex GaAs circuit currently available is designed on a 30 gate GaAs gate array. It operates at 200 MHz and dissipates only 8 watts of power. The reasons for increasing the level of integration of GaAs circuits are similar to the reasons for the continued increase of silicon circuit complexity. The market factors driving GaAs VLSI are system design methodology system cost power and reliability. System designers are hesitant or unwilling to go backwards to previous design techniques and lower levels of integration. A more highly integrated system in a lower performance technology can often approach the performance of a system in a higher performance technology at a lower level of integration. Higher levels of integration also lower the system component count which reduces the system cost size and power consumption while improving the system reliability

  18. Visualization of carrier dynamics in p(n)-type GaAs by scanning ultrafast electron microscopy

    PubMed Central

    Cho, Jongweon; Hwang, Taek Yong; Zewail, Ahmed H.

    2014-01-01

    Four-dimensional scanning ultrafast electron microscopy is used to investigate doping- and carrier-concentration-dependent ultrafast carrier dynamics of the in situ cleaved single-crystalline GaAs(110) substrates. We observed marked changes in the measured time-resolved secondary electrons depending on the induced alterations in the electronic structure. The enhancement of secondary electrons at positive times, when the electron pulse follows the optical pulse, is primarily due to an energy gain involving the photoexcited charge carriers that are transiently populated in the conduction band and further promoted by the electron pulse, consistent with a band structure that is dependent on chemical doping and carrier concentration. When electrons undergo sufficient energy loss on their journey to the surface, dark contrast becomes dominant in the image. At negative times, however, when the electron pulse precedes the optical pulse (electron impact), the dynamical behavior of carriers manifests itself in a dark contrast which indicates the suppression of secondary electrons upon the arrival of the optical pulse. In this case, the loss of energy of material’s electrons is by collisions with the excited carriers. These results for carrier dynamics in GaAs(110) suggest strong carrier–carrier scatterings which are mirrored in the energy of material’s secondary electrons during their migration to the surface. The approach presented here provides a fundamental understanding of materials probed by four-dimensional scanning ultrafast electron microscopy, and offers possibilities for use of this imaging technique in the study of ultrafast charge carrier dynamics in heterogeneously patterned micro- and nanostructured material surfaces and interfaces. PMID:24469803

  19. Visualization of carrier dynamics in p(n)-type GaAs by scanning ultrafast electron microscopy.

    PubMed

    Cho, Jongweon; Hwang, Taek Yong; Zewail, Ahmed H

    2014-02-11

    Four-dimensional scanning ultrafast electron microscopy is used to investigate doping- and carrier-concentration-dependent ultrafast carrier dynamics of the in situ cleaved single-crystalline GaAs(110) substrates. We observed marked changes in the measured time-resolved secondary electrons depending on the induced alterations in the electronic structure. The enhancement of secondary electrons at positive times, when the electron pulse follows the optical pulse, is primarily due to an energy gain involving the photoexcited charge carriers that are transiently populated in the conduction band and further promoted by the electron pulse, consistent with a band structure that is dependent on chemical doping and carrier concentration. When electrons undergo sufficient energy loss on their journey to the surface, dark contrast becomes dominant in the image. At negative times, however, when the electron pulse precedes the optical pulse (electron impact), the dynamical behavior of carriers manifests itself in a dark contrast which indicates the suppression of secondary electrons upon the arrival of the optical pulse. In this case, the loss of energy of material's electrons is by collisions with the excited carriers. These results for carrier dynamics in GaAs(110) suggest strong carrier-carrier scatterings which are mirrored in the energy of material's secondary electrons during their migration to the surface. The approach presented here provides a fundamental understanding of materials probed by four-dimensional scanning ultrafast electron microscopy, and offers possibilities for use of this imaging technique in the study of ultrafast charge carrier dynamics in heterogeneously patterned micro- and nanostructured material surfaces and interfaces.

  20. Strain-induced high-temperature perovskite ferromagnetic insulator.

    PubMed

    Meng, Dechao; Guo, Hongli; Cui, Zhangzhang; Ma, Chao; Zhao, Jin; Lu, Jiangbo; Xu, Hui; Wang, Zhicheng; Hu, Xiang; Fu, Zhengping; Peng, Ranran; Guo, Jinghua; Zhai, Xiaofang; Brown, Gail J; Knize, Randy; Lu, Yalin

    2018-03-20

    Ferromagnetic insulators are required for many new magnetic devices, such as dissipationless quantum-spintronic devices, magnetic tunneling junctions, etc. Ferromagnetic insulators with a high Curie temperature and a high-symmetry structure are critical integration with common single-crystalline oxide films or substrates. So far, the commonly used ferromagnetic insulators mostly possess low-symmetry structures associated with a poor growth quality and widespread properties. The few known high-symmetry materials either have extremely low Curie temperatures (≤16 K), or require chemical doping of an otherwise antiferromagnetic matrix. Here we present compelling evidence that the LaCoO 3 single-crystalline thin film under tensile strain is a rare undoped perovskite ferromagnetic insulator with a remarkably high T C of up to 90 K. Both experiments and first-principles calculations demonstrate tensile-strain-induced ferromagnetism which does not exist in bulk LaCoO 3 The ferromagnetism is strongest within a nearly stoichiometric structure, disappearing when the Co 2+ defect concentration reaches about 10%. Significant impact of the research includes demonstration of a strain-induced high-temperature ferromagnetic insulator, successful elevation of the transition over the liquid-nitrogen temperature, and high potential for integration into large-area device fabrication processes. Copyright © 2018 the Author(s). Published by PNAS.

  1. Strain-induced high-temperature perovskite ferromagnetic insulator

    PubMed Central

    Meng, Dechao; Guo, Hongli; Cui, Zhangzhang; Ma, Chao; Zhao, Jin; Lu, Jiangbo; Xu, Hui; Wang, Zhicheng; Hu, Xiang; Fu, Zhengping; Peng, Ranran; Guo, Jinghua; Zhai, Xiaofang; Brown, Gail J.; Knize, Randy; Lu, Yalin

    2018-01-01

    Ferromagnetic insulators are required for many new magnetic devices, such as dissipationless quantum-spintronic devices, magnetic tunneling junctions, etc. Ferromagnetic insulators with a high Curie temperature and a high-symmetry structure are critical integration with common single-crystalline oxide films or substrates. So far, the commonly used ferromagnetic insulators mostly possess low-symmetry structures associated with a poor growth quality and widespread properties. The few known high-symmetry materials either have extremely low Curie temperatures (≤16 K), or require chemical doping of an otherwise antiferromagnetic matrix. Here we present compelling evidence that the LaCoO3 single-crystalline thin film under tensile strain is a rare undoped perovskite ferromagnetic insulator with a remarkably high TC of up to 90 K. Both experiments and first-principles calculations demonstrate tensile-strain–induced ferromagnetism which does not exist in bulk LaCoO3. The ferromagnetism is strongest within a nearly stoichiometric structure, disappearing when the Co2+ defect concentration reaches about 10%. Significant impact of the research includes demonstration of a strain-induced high-temperature ferromagnetic insulator, successful elevation of the transition over the liquid-nitrogen temperature, and high potential for integration into large-area device fabrication processes. PMID:29507211

  2. Weak localization effect in topological insulator micro flakes grown on insulating ferrimagnet BaFe12O19

    PubMed Central

    Zheng, Guolin; Wang, Ning; Yang, Jiyong; Wang, Weike; Du, Haifeng; Ning, Wei; Yang, Zhaorong; Lu, Hai-Zhou; Zhang, Yuheng; Tian, Mingliang

    2016-01-01

    Many exotic physics anticipated in topological insulators require a gap to be opened for their topological surface states by breaking time reversal symmetry. The gap opening has been achieved by doping magnetic impurities, which however inevitably create extra carriers and disorder that undermine the electronic transport. In contrast, the proximity to a ferromagnetic/ferrimagnetic insulator may improve the device quality, thus promises a better way to open the gap while minimizing the side-effects. Here, we grow thin single-crystal Sb1.9Bi0.1Te3 micro flakes on insulating ferrimagnet BaFe12O19 by using the van der Waals epitaxy technique. The micro flakes show a negative magnetoresistance in weak perpendicular fields below 50 K, which can be quenched by increasing temperature. The signature implies the weak localization effect as its origin, which is absent in intrinsic topological insulators, unless a surface state gap is opened. The surface state gap is estimated to be 10 meV by using the theory of the gap-induced weak localization effect. These results indicate that the magnetic proximity effect may open the gap for the topological surface attached to BaM insulating ferrimagnet. This heterostructure may pave the way for the realization of new physical effects as well as the potential applications of spintronics devices. PMID:26891682

  3. Three-dimensional lattice rotation in GaAs nanowire growth on hydrogen-silsesquioxane covered GaAs (001) using molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Tran, Dat Q.; Pham, Huyen T.; Higashimine, Koichi; Oshima, Yoshifumi; Akabori, Masashi

    2018-05-01

    We report on crystallographic behaviors of inclined GaAs nanowires (NWs) self-crystallized on GaAs (001) substrate. The NWs were grown on hydrogen-silsesquioxane (HSQ) covered substrates using molecular beam epitaxy (MBE). Commonly, the epitaxial growth of GaAs < 111>B (B-polar) NWs is prominently observed on GaAs (001); however, we yielded a remarkable number of epitaxially grown GaAs < 111>A (A-polar) NWs in addition to the majorly obtained B-polar NWs. Such NW orientations are always accompanied by a typical inclined angle of 35° from (001) plane. NWs with another inclined angle of 74° were additionally observed and attributed to be < 111>-oriented, not in direct epitaxial relation with the substrate. Such 74° NWs' existence is related to first-order three-dimensional (3D) lattice rotation taking place at the very beginning of the growth. It turns out that spatially 60° lattice rotation around < 111> directions at GaAs seeds is essentially in charge of A- and B-polar 74° NWs. Transmission electron microscope observations reveal a high density of twinning in the B-polar NWs and twin-free characteristic in the A-polar NWs.

  4. Light-induced metal-insulator transition in a switchable mirror.

    PubMed

    Hoekstra, A F; Roy, A S; Rosenbaum, T F; Griessen, R; Wijngaarden, R J; Koeman, N J

    2001-06-04

    Rare earth hydride films can be converted reversibly from metallic mirrors to insulating windows simply by changing the surrounding hydrogen gas pressure at room temperature. At low temperatures, in situ doping is not possible in this way as hydrogen cannot diffuse. However, our finding of persistent photoconductivity under ultraviolet illumination offers an attractive possibility to tune yttrium hydride through the T = 0 metal-insulator transition. Conductivity and Hall measurements are used to determine critical exponents. The unusually large value for the product of the static and dynamical critical exponents appears to signify the important role played by electron-electron interactions.

  5. Interface induced ferromagnetism in topological insulator above room temperature

    NASA Astrophysics Data System (ADS)

    Tang, Chi; Chang, Cui-Zu; Liu, Yawen; Chen, Tingyong; Moodera, Jagadeesh; Shi, Jing

    The quantum anomalous Hall effect (QAHE) observed in magnetic topological insulators (TI), an outcome of time reversal symmetry broken surface states, exhibits many exotic properties. However, a major obstacle towards high temperature QAHE is the low Curie temperature in the disordered magnetically doped TI systems. Here we report a study on heterostructures of TI and magnetic insulator in which the magnetic insulator, namely thulium iron garnet or TIG, has perpendicular magnetic anisotropy. At the TIG/TI interface, TIG magnetizes the surface states of the TI film by exchange coupling, as revealed by the anomalous Hall effect (AHE). We demonstrate that squared AHE hysteresis loops persist well above room temperature. The interface proximity induced high-temperature ferromagnetism in topological insulators opens up new possibilities for the realization of QAHE at high temperatures. This work was supported as part of the SHINES, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Basic Energy Sciences under Award # SC0012670.

  6. Bound States and the Third Harmonic Generation in an Electric Field Biased Semi-parabolic Quantum Well

    NASA Astrophysics Data System (ADS)

    Zhang, Li; Xie, Hong-Jing

    2003-11-01

    Within the framework of the compact density matrix approach, the third-harmonic generation (THG) in an electric-field-biased semi-parabolic quantum well (QW) has been deduced and investigated. Via variant of displacement harmonic oscillation, the exact electronic states in the semi-parabolic QW with an applied electric field have also been obtained and discussed. Numerical results on typical GaAs material reveal that, electric fields and confined potential frequency of semi-parabolic QW have obvious influences on the energy levels of electronic states and the THG in the semi-parabolic QW systems. The project supported in part by Guangdong Provincial Natural Science Foundation of China

  7. Differentiation of surface and bulk conductivities in topological insulator via four-probe spectroscopy

    DOE PAGES

    Zhang, Xiaoguang; McGuire, Michael A.; Chen, Yong P.; ...

    2016-03-08

    Topological insulators, with characteristic topological surface states, have emerged as a new state of matter with rich potentials for both fundamental physics and device applications. However, the experimental detection of the surface transport has been hampered by the unavoidable extrinsic conductivity associated with the bulk crystals. Here we show that a four-probe transport spectroscopy in a multi-probe scanning tunneling microscopy system can be used to differentiate conductivities from the surface states and the coexisting bulk states in topological insulators. We derive a scaling relation of measured resistance with respect to varying inter-probe spacing for two interconnected conduction channels, which allowsmore » quantitative determination of conductivities from both channels. Using this method, we demonstrate the separation of 2D and 3D conduction in topological insulators by comparing the conductance scaling of Bi 2Se 3, Bi 2Te 2Se, and Sb-doped Bi 2Se 3 with that of a pure 2D conductance of graphene on SiC substrate. We also report the 2D conductance enhancement due to the surface doping effect in topological insulators. This technique can be applied to reveal 2D to 3D crossover of conductance in other complex systems.« less

  8. First-order melting of a weak spin-orbit mott insulator into a correlated metal

    DOE PAGES

    Hogan, Tom; Yamani, Z.; Walkup, D.; ...

    2015-06-25

    Herein, the electronic phase diagram of the weak spin-orbit Mott insulator (Sr 1-xLa x) 3Ir 2O 7 is determined via an exhaustive experimental study. Upon doping electrons via La substitution, an immediate collapse in resistivity occurs along with a narrow regime of nanoscale phase separation comprised of antiferromagnetic, insulating regions and paramagnetic, metallic puddles persisting until x≈0.04. Continued electron doping results in an abrupt, first-order phase boundary where the Néel state is suppressed and a homogenous, correlated, metallic state appears with an enhanced spin susceptibility and local moments. In conclusion, as the metallic state is stabilized, a weak structural distortionmore » develops and suggests a competing instability with the parent spin-orbit Mott state.« less

  9. The electronic and optical properties of quaternary GaAs1-x-y N x Bi y alloy lattice-matched to GaAs: a first-principles study.

    PubMed

    Ma, Xiaoyang; Li, Dechun; Zhao, Shengzhi; Li, Guiqiu; Yang, Kejian

    2014-01-01

    First-principles calculations based on density functional theory have been performed for the quaternary GaAs1-x-y N x Bi y alloy lattice-matched to GaAs. Using the state-of-the-art computational method with the Heyd-Scuseria-Ernzerhof (HSE) hybrid functional, electronic, and optical properties were obtained, including band structures, density of states (DOSs), dielectric function, absorption coefficient, refractive index, energy loss function, and reflectivity. It is found that the lattice constant of GaAs1-x-y N x Bi y alloy with y/x =1.718 can match to GaAs. With the incorporation of N and Bi into GaAs, the band gap of GaAs1-x-y N x Bi y becomes small and remains direct. The calculated optical properties indicate that GaAs1-x-y N x Bi y has higher optical efficiency as it has less energy loss than GaAs. In addition, it is also found that the electronic and optical properties of GaAs1-x-y N x Bi y alloy can be further controlled by tuning the N and Bi compositions in this alloy. These results suggest promising applications of GaAs1-x-y N x Bi y quaternary alloys in optoelectronic devices.

  10. Analytical model of threshold voltage degradation due to localized charges in gate material engineered Schottky barrier cylindrical GAA MOSFETs

    NASA Astrophysics Data System (ADS)

    Kumar, Manoj; Haldar, Subhasis; Gupta, Mridula; Gupta, R. S.

    2016-10-01

    The threshold voltage degradation due to the hot carrier induced localized charges (LC) is a major reliability concern for nanoscale Schottky barrier (SB) cylindrical gate all around (GAA) metal-oxide-semiconductor field-effect transistors (MOSFETs). The degradation physics of gate material engineered (GME)-SB-GAA MOSFETs due to LC is still unexplored. An explicit threshold voltage degradation model for GME-SB-GAA-MOSFETs with the incorporation of localized charges (N it) is developed. To accurately model the threshold voltage the minimum channel carrier density has been taken into account. The model renders how +/- LC affects the device subthreshold performance. One-dimensional (1D) Poisson’s and 2D Laplace equations have been solved for two different regions (fresh and damaged) with two different gate metal work-functions. LCs are considered at the drain side with low gate metal work-function as N it is more vulnerable towards the drain. For the reduction of carrier mobility degradation, a lightly doped channel has been considered. The proposed model also includes the effect of barrier height lowering at the metal-semiconductor interface. The developed model results have been verified using numerical simulation data obtained by the ATLAS-3D device simulator and excellent agreement is observed between analytical and simulation results.

  11. Characteristics of GaAs with inverted thermal conversion

    NASA Technical Reports Server (NTRS)

    Kang, C. H.; Lagowski, J.; Gatos, H. C.

    1987-01-01

    GaAs crystals exhibiting inverted thermal conversion (ITC) of resistivity were investigated in conjunction with standard semiinsulating (SI) GaAs regarding characteristics important in device processing. It was established that dislocation density and Si implant activation are unaffected by transformation to the ITC state. However, in ITC GaAs the controlled increase of the EL2 (native midgap donor) concentration during annealing makes it possible to attain resistivities one order of magnitude greater (e.g., about 10 to the 9th ohm cm of 300 K) than those attained in standard SI GaAs (e.g., 10 to the 7th-10 to the 8th ohm cm).

  12. Hybrid functional study of band structures of GaAs1-xNx and GaSb1-xNx alloys

    NASA Astrophysics Data System (ADS)

    Virkkala, Ville; Havu, Ville; Tuomisto, Filip; Puska, Martti J.

    2012-02-01

    Band structures of GaAs1-xNx and GaSb1-xNx alloys are studied in the framework of the density functional theory within the hybrid functional scheme (HSE06). We find that the scheme gives a clear improvement over the traditional (semi)local functionals in describing, in a qualitative agreement with experiments, the bowing of electron energy band gap in GaAs1-xNx alloys. In the case of GaSb1-xNx alloys, the hybrid functional used makes the study of band structures possible ab initio without any empirical parameter fitting. We explain the trends in the band gap reductions in the two materials that result mainly from the positions of the nitrogen-induced states with respect to the bottoms of the bulk conduction bands.

  13. Terahertz-radiation generation and detection in low-temperature-grown GaAs epitaxial films on GaAs (100) and (111)A substrates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Galiev, G. B.; Pushkarev, S. S., E-mail: s-s-e-r-p@mail.ru; Buriakov, A. M.

    The efficiency of the generation and detection of terahertz radiation in the range up to 3 THz by LT-GaAs films containing equidistant Si doping δ layers and grown by molecular beam epitaxy on GaAs (100) and (111)Ga substrates is studied by terahertz spectroscopy. Microstrip photoconductive antennas are fabricated on the film surface. Terahertz radiation is generated by exposure of the antenna gap to femtosecond optical laser pulses. It is shown that the intensity of terahertz radiation from the photoconductive antenna on LT-GaAs/GaAs (111)Ga is twice as large as the intensity of a similar antenna on LT-GaAs/GaAs(100) and the sensitivity ofmore » the antenna on LT-GaAs/GaAs (111)Ga as a terahertz-radiation detector exceeds that of the antenna on LT-GaAs/GaAs(100) by a factor of 1.4.« less

  14. Visualizing ferromagnetic domains in magnetic topological insulators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Wenbo; Gu, G. D.; Yang, Fang

    2015-05-13

    We report a systematic study of ferromagnetic domains in both single-crystal and thin-film specimens of magnetic topological insulators Cr doped (Bi 0.1Sb 0.9) 2Te 3 using magnetic force microscopy (MFM). The temperature and field dependences of MFM and in situ resistance data are consistent with previous bulk transport and magnetic characterization. Bubble-like ferromagnetic domains were observed in both single crystals and thin films. Significantly, smaller domain size (~500 nm) with narrower domain wall (~150 – 300 nm) was observed in thin films of magnetic topological insulators, likely due to vertical confinement effect. As a result, these results suggest that thinmore » films are more promising for visualization of chiral edge states.« less

  15. Metal-insulator transitions

    NASA Astrophysics Data System (ADS)

    Imada, Masatoshi; Fujimori, Atsushi; Tokura, Yoshinori

    1998-10-01

    Metal-insulator transitions are accompanied by huge resistivity changes, even over tens of orders of magnitude, and are widely observed in condensed-matter systems. This article presents the observations and current understanding of the metal-insulator transition with a pedagogical introduction to the subject. Especially important are the transitions driven by correlation effects associated with the electron-electron interaction. The insulating phase caused by the correlation effects is categorized as the Mott Insulator. Near the transition point the metallic state shows fluctuations and orderings in the spin, charge, and orbital degrees of freedom. The properties of these metals are frequently quite different from those of ordinary metals, as measured by transport, optical, and magnetic probes. The review first describes theoretical approaches to the unusual metallic states and to the metal-insulator transition. The Fermi-liquid theory treats the correlations that can be adiabatically connected with the noninteracting picture. Strong-coupling models that do not require Fermi-liquid behavior have also been developed. Much work has also been done on the scaling theory of the transition. A central issue for this review is the evaluation of these approaches in simple theoretical systems such as the Hubbard model and t-J models. Another key issue is strong competition among various orderings as in the interplay of spin and orbital fluctuations. Experimentally, the unusual properties of the metallic state near the insulating transition have been most extensively studied in d-electron systems. In particular, there is revived interest in transition-metal oxides, motivated by the epoch-making findings of high-temperature superconductivity in cuprates and colossal magnetoresistance in manganites. The article reviews the rich phenomena of anomalous metallicity, taking as examples Ti, V, Cr, Mn, Fe, Co, Ni, Cu, and Ru compounds. The diverse phenomena include strong spin and

  16. Observation of non-Fermi liquid behavior in hole-doped Eu2Ir2O7

    NASA Astrophysics Data System (ADS)

    Banerjee, A.; Sannigrahi, J.; Giri, S.; Majumdar, S.

    2017-12-01

    The Weyl semimetallic compound Eu2Ir2O7 and its hole-doped derivatives (which are achieved by substituting trivalent Eu by divalent Sr) are investigated through transport, magnetic, and calorimetric studies. The metal-insulator transition (MIT) temperature is found to get substantially reduced with hole doping, and for 10% Sr doping the composition is metallic down to temperature as low as 5 K. These doped compositions are found to violate the Mott-Ioffe-Regel condition for minimum electrical conductivity and show a distinct signature of non-Fermi liquid behavior at low temperature. The MIT in the doped compounds does not correlate with the magnetic transition point, and Anderson-Mott-type disorder-induced localization may be attributed to the ground-state insulating phase. The observed non-Fermi liquid behavior can be understood on the basis of disorder-induced distribution of the spin-orbit-coupling parameter, which is markedly different in the case of Ir4 + and Ir5 + ions.

  17. GaAs Solar Cell Radiation Handbook

    NASA Technical Reports Server (NTRS)

    Anspaugh, B. E.

    1996-01-01

    The handbook discusses the history of GaAs solar cell development, presents equations useful for working with GaAs solar cells, describes commonly used instrumentation techniques for assessing radiation effects in solar cells and fundamental processes occurring in solar cells exposed to ionizing radiation, and explains why radiation decreases the electrical performance of solar cells. Three basic elements required to perform solar array degradation calculations: degradation data for GaAs solar cells after irradiation with 1 MeV electrons at normal incidence; relative damage coefficients for omnidirectional electron and proton exposure; and the definition of the space radiation environment for the orbit of interest, are developed and used to perform a solar array degradation calculation.

  18. Cathodoluminescence study of Mg activation in non-polar and semi-polar faces of undoped/Mg-doped GaN core-shell nanorods.

    PubMed

    Hortelano, V; Martínez, O; Cuscó, R; Artús, L; Jiménez, J

    2016-03-04

    Spectrally and spatially resolved cathodoluminescence (CL) measurements were carried out at 80 K on undoped/Mg-doped GaN core-shell nanorods grown by selective area growth metalorganic vapor phase epitaxy in order to investigate locally the optical activity of the Mg dopants. A study of the luminescence emission distribution over the different regions of the nanorods is presented. We have investigated the CL fingerprints of the Mg incorporation into the non-polar lateral prismatic facets and the semi-polar facets of the pyramidal tips. The amount of Mg incorporation/activation was varied by using several Mg/Ga flow ratios and post-growth annealing treatment. For lower Mg/Ga flow ratios, the annealed nanorods clearly display a donor-acceptor pair band emission peaking at 3.26-3.27 eV and up to 4 LO phonon replicas, which can be considered as a reliable indicator of effective p-type Mg doping in the nanorod shell. For higher Mg/Ga flow ratios, a substantial enhancement of the yellow luminescence emission as well as several emission subbands are observed, which suggests an increase of disorder and the presence of defects as a consequence of the excess Mg doping.

  19. Cathodoluminescence study of Mg activation in non-polar and semi-polar faces of undoped/Mg-doped GaN core-shell nanorods

    NASA Astrophysics Data System (ADS)

    Hortelano, V.; Martínez, O.; Cuscó, R.; Artús, L.; Jiménez, J.

    2016-03-01

    Spectrally and spatially resolved cathodoluminescence (CL) measurements were carried out at 80 K on undoped/Mg-doped GaN core-shell nanorods grown by selective area growth metalorganic vapor phase epitaxy in order to investigate locally the optical activity of the Mg dopants. A study of the luminescence emission distribution over the different regions of the nanorods is presented. We have investigated the CL fingerprints of the Mg incorporation into the non-polar lateral prismatic facets and the semi-polar facets of the pyramidal tips. The amount of Mg incorporation/activation was varied by using several Mg/Ga flow ratios and post-growth annealing treatment. For lower Mg/Ga flow ratios, the annealed nanorods clearly display a donor-acceptor pair band emission peaking at 3.26-3.27 eV and up to 4 LO phonon replicas, which can be considered as a reliable indicator of effective p-type Mg doping in the nanorod shell. For higher Mg/Ga flow ratios, a substantial enhancement of the yellow luminescence emission as well as several emission subbands are observed, which suggests an increase of disorder and the presence of defects as a consequence of the excess Mg doping.

  20. Crystal growth of device quality GaAs in space

    NASA Technical Reports Server (NTRS)

    Gatos, H. C.; Lagowski, J.

    1979-01-01

    The optimization of space processing of GaAs is described. The detailed compositional, structural, and electronic characterization of GaAs on a macro- and microscale and the relationships between growth parameters and the properties of GaAs are among the factors discussed. The key parameters limiting device performance are assessed.

  1. LPCVD homoepitaxy of Si doped β-Ga2O3 thin films on (010) and (001) substrates

    NASA Astrophysics Data System (ADS)

    Rafique, Subrina; Karim, Md Rezaul; Johnson, Jared M.; Hwang, Jinwoo; Zhao, Hongping

    2018-01-01

    This paper presents the homoepitaxy of Si-doped β-Ga2O3 thin films on semi-insulating (010) and (001) Ga2O3 substrates via low pressure chemical vapor deposition with a growth rate of ≥1 μm/h. Both high resolution scanning transmission electron microscopy and X-ray diffraction measurements demonstrated high crystalline quality homoepitaxial growth of these thin films. Atomic resolution STEM images of the as-grown β-Ga2O3 thin films on (010) and (001) substrates show high quality material without extended defects or dislocations. The charge carrier transport properties of the as-grown Si-doped β-Ga2O3 thin films were characterized by the temperature dependent Hall measurement using van der Pauw patterns. The room temperature carrier concentrations achieved for the (010) and (001) homoepitaxial thin films were ˜1.2 × 1018 cm-3 and ˜9.5 × 1017 cm-3 with mobilities of ˜72 cm2/V s and ˜42 cm2/V s, respectively.

  2. Unidirectional spin Hall magnetoresistance in topological insulator/ferromagnetic layer heterostructures

    NASA Astrophysics Data System (ADS)

    Kally, James; Lv, Yang; Zhang, Delin; Lee, Joon Sue; Samarth, Nitin; Wang, Jian-Ping; Department of Electrical; Computer Engineering, University of Minnesota, Minneapolis Collaboration; Department of Physics, Pennsylvania State University Collaboration

    The surface states of topological insulators offer a potentially very efficient way to generate spins and spin-orbit torques to magnetic moments in proximity. The switching by spin-orbit torque itself only requires two terminals so that a charge current can be applied. However, a third terminal with additional magnetic tunneling junction structure is needed to sense the magnetization state if such devices are used for memory and logic applications. The recent discovery of unidirectional spin Hall magnetoresistance in heavy metal/ferromagnetic and topological insulator/magnetically doped topological insulator systems offers an alternative way to sense magnetization while still keeping the number of terminals to minimal two. The unidirectional spin Hall magnetoresistance in topological insulator/strong ferromagnetic layer heterostructure system has yet not been reported. In this work, we report our experimental observations of such magnetoresistance. It is found to be present and comparable to the best result of the previous reported Ta/Co systems in terms of magnetoresistance per current density per total resistance.

  3. Carbon doped GaN buffer layer using propane for high electron mobility transistor applications: Growth and device results

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, X.; Nilsson, D.; Danielsson, Ö.

    2015-12-28

    The creation of a semi insulating (SI) buffer layer in AlGaN/GaN High Electron Mobility Transistor (HEMT) devices is crucial for preventing a current path beneath the two-dimensional electron gas (2DEG). In this investigation, we evaluate the use of a gaseous carbon gas precursor, propane, for creating a SI GaN buffer layer in a HEMT structure. The carbon doped profile, using propane gas, is a two stepped profile with a high carbon doping (1.5 × 10{sup 18 }cm{sup −3}) epitaxial layer closest to the substrate and a lower doped layer (3 × 10{sup 16 }cm{sup −3}) closest to the 2DEG channel. Secondary Ion Mass Spectrometry measurement showsmore » a uniform incorporation versus depth, and no memory effect from carbon doping can be seen. The high carbon doping (1.5 × 10{sup 18 }cm{sup −3}) does not influence the surface morphology, and a roughness root-mean-square value of 0.43 nm is obtained from Atomic Force Microscopy. High resolution X-ray diffraction measurements show very sharp peaks and no structural degradation can be seen related to the heavy carbon doped layer. HEMTs are fabricated and show an extremely low drain induced barrier lowering value of 0.1 mV/V, demonstrating an excellent buffer isolation. The carbon doped GaN buffer layer using propane gas is compared to samples using carbon from the trimethylgallium molecule, showing equally low leakage currents, demonstrating the capability of growing highly resistive buffer layers using a gaseous carbon source.« less

  4. Perspective. Extremely fine tuning of doping enabled by combinatorial molecular-beam epitaxy

    DOE PAGES

    Wu, J.; Bozovic, I.

    2015-04-06

    Chemical doping provides an effective method to control the electric properties of complex oxides. However, the state-of-art accuracy in controlling doping is limited to about 1%. This hampers elucidation of the precise doping dependences of physical properties and phenomena of interest, such as quantum phase transitions. Using the combinatorial molecular beam epitaxy, we improve the accuracy in tuning the doping level by two orders of magnitude. We illustrate this novel method by two examples: a systematic investigation of the doping dependence of interface superconductivity, and a study of the competing ground states in the vicinity of the insulator-to-superconductor transition.

  5. Low defect densities in molecular beam epitaxial GaAs achieved by isoelectronic In doping

    NASA Technical Reports Server (NTRS)

    Bhattacharya, P. K.; Dhar, S.; Berger, P.; Juang, F.-Y.

    1986-01-01

    A study has been made of the effects of adding small amounts of In (0.2-1.2 pct) to GaAs grown by molecular beam epitaxy. The density of four electron traps decreases in concentration by an order of magnitude, and the peak intensities of prominent emissions in the excitonic spectra are reduced with increase in In content. Based on the higher surface migration rate of In, compared to Ga, at the growth temperatures it is apparent that the traps and the excitonic transitions are related to point defects. This agrees with earlier observations by Briones and Collins (1982) and Skromme et al. (1985).

  6. Technology requirements for GaAs photovoltaic arrays

    NASA Technical Reports Server (NTRS)

    Scott-Monck, J.; Rockey, D.

    1981-01-01

    An analysis based on percent GaAs solar cell weight and cost is performed to assess the utility of this cell for future space missions. It is shown that the GaAs substrate cost and the end-of-life (EOL) advantage the cell can provide over the space qualified silicon solar cell are the dominant factors determining potential use. Examples are presented to show that system level advantages resulting from reduction in solar panel area may warrant the use of GaAs at its current weight and projected initial cost provided the EOL advantage over silicon is at least 20 percent.

  7. Crystal Growth of Device Quality Gaas in Space

    NASA Technical Reports Server (NTRS)

    Gatos, H. C.

    1985-01-01

    The GaAs research evolves about these key thrust areas. The overall program combines: (1) studies of crystal growth on novel approaches to engineering of semiconductor material (i.e., GaAs and related compounds); (2) investigation and correlation of materials properties and electronic characteristics on a macro- and microscale; and (3) investigation of electronic properties and phenomena controlling device applications and device performance. This effort is aimed at the essential ground-based program which would insure successful experimentation with and eventually processing of GaAs in near zero gravity environment. It is believed that this program addresses in a unique way materials engineering aspects which bear directly on the future exploitation of the potential of GaAs and related materials in device and systems applications.

  8. Ellipsometric and optical study of some uncommon insulator films on 3-5 semiconductors

    NASA Technical Reports Server (NTRS)

    Alterovitz, S. A.; Warner, J. D.; Liu, D. C.; Pouch, J. J.

    1985-01-01

    Optical properties of three types of insulating films that show promise in potential applications in the 3-4 semiconductor technology were evaluated, namely a-C:H, BN and CaF2. The plasma deposited a-C:H shows an amorphous behavior with optical energy gaps of approximately 2 to 2.4 eV. These a-C:H films have higher density and/or hardness, higher refractive index and lower optical energy gaps with increasing energy of the particles in the plasma, while the density of states remains unchanged. These results are in agreement, and give a fine-tuned positive confirmation to an existing conjecture on the nature of a-C:H films (1). Ion beam deposited BN films show amorphous behavior with energy gap of 5 eV. These films are nonstoichiometric (B/N approximately 2) and have refractive index, density and/or hardness which are dependent on the deposition conditions. The epitaxially grown CaF2 on GaAs films have optical parameters equal to bulk, but evidence of damage was found in the GaAs at the interface.

  9. Crystal growth of device quality GaAs in space

    NASA Technical Reports Server (NTRS)

    Gatos, H. C.; Lagowski, J.

    1984-01-01

    The crystal growth, device processing and device related properties and phenomena of GaAs are investigated. Our GaAs research evolves about these key thrust areas. The overall program combines: (1) studies of crystal growth on novel approaches to engineering of semiconductor materials (i.e., GaAs and related compounds); (2) investigation and correlation of materials properties and electronic characteristics on a macro- and microscale; (3) investigation of electronic properties and phenomena controlling device applications and device performance. The ground based program is developed which would insure successful experimentation with and eventually processing of GaAs in a near zero gravity environment.

  10. Electrical and magnetic properties of superconducting-insulating Pr-doped GdBa2Cu3O7-y

    NASA Astrophysics Data System (ADS)

    Yamani, Z.; Akhavan, M.

    1997-10-01

    An extensive study of magnetic, electrical transport, and structural properties of the normal and superconducting states of Gd1-xPrxBa2Cu3O7-y (GdPr-123) are presented. Ceramic compounds have been synthesized by the solid-state reaction technique, and characterized by x-ray-diffraction, scanning-electron-microscopy, thermogravimetric, and differential-thermal analyses. The superconducting transition temperature is reduced with increasing Pr content x in a nonlinear manner, in contrast to Abrikosov-Gor'kov pair-breaking theory. Magnetic susceptibility measurements show that the nominal Pr valence is 3.86+, independently of x. A metal-insulator transition is observed at xcr~0.45, similar to that in the oxygen-deficient RBa2Cu3O7-y (R-123) system. Based on this resemblance, we suggest that both Pr doping and oxygen deficiency act through the same mechanism. Hence, the environment surrounding the CuO2 layers is important to high-Tc superconductivity (HTSC). In this sense, HTSC cannot completely be a two-dimentional feature. A chain-plane-correlation effect is plausible.

  11. Strong correlation effects on surfaces of topological insulators via holography

    NASA Astrophysics Data System (ADS)

    Seo, Yunseok; Song, Geunho; Sin, Sang-Jin

    2017-07-01

    We investigate the effects of strong correlation on the surface state of a topological insulator (TI). We argue that electrons in the regime of crossover from weak antilocalization to weak localization are strongly correlated, and calculate the magnetotransport coefficients of TIs using the gauge-gravity principle. Then, we examine the magnetoconductivity (MC) formula and find excellent agreement with the data of chrome-doped Bi2Te3 in the crossover regime. We also find that the cusplike peak in MC at low doping is absent, which is natural since quasiparticles disappear due to the strong correlation.

  12. The sensing mechanism of N-doped SWCNTs toward SF6 decomposition products: A first-principle study

    NASA Astrophysics Data System (ADS)

    Gui, Yingang; Tang, Chao; Zhou, Qu; Xu, Lingna; Zhao, Zhongyong; Zhang, Xiaoxing

    2018-05-01

    In order to monitor the insulation status of SF6-insulated equipment on-line, SOF2 and SO2F2, two typical decomposition products of SF6 under electric discharge condition, are chosen as the target gases to evaluate the type and severity of discharge. In this work, single N atom doping method is adopted to improve the gas sensitivity of single wall carbon nanotubes to SOF2 and SO2F2. Single and double gas molecules adsorptions are considered to completely analyze the adsorption properties of N-doped single wall carbon nanotubes. Calculation results show that N atom doping enhances the surface activity of carbon nanotubes. When gas molecules physically adsorbed on N-doped single wall carbon nanotubes, the weak interaction between gas molecules and N-doped single wall carbon nanotubes nearly not changes the electrical property according to analysis of the density of states and molecular orbitals. While the chemisorption between gas molecules and N-doped single wall carbon nanotubes distinctly decreases the conductivity of adsorption system.

  13. Supernormal hardness increase of dilute Ga(As, N) thin films

    NASA Astrophysics Data System (ADS)

    Berggren, Jonas; Hanke, Michael; Luna, Esperanza; Trampert, Achim

    2017-03-01

    Hardness of epitaxial GaAs1-xNx films on GaAs(001) with different film thicknesses, varying from 80 to 700 nm, and nitrogen compositions x between zero (pure GaAs) and 0.031, were studied by means of nano-indentation. As a result, a disproportionate and monotonic increase by 17% in hardness was proved in the dilute range from GaAs to GaAs0.969N0.031. We are tracing this observation to solid solution strengthening, an extrinsic effect based on dislocation pinning due to interstitial nitrogen. On the other hand, intrinsic effects related to different electronegativities of As and N (i.e., altered bonding conditions) could be ruled out. Furthermore, in tensilely strained GaAs1-xNx layers, the appearance of cracks acts as the main strain relieving mechanism. A correlation between cracking and hardness reduction is investigated and discussed as a further relaxation pathway.

  14. Specific heat and magnetic susceptibility of CeNiSn doped with Rh.

    PubMed

    Slebarski, A; Maple, M B; Fijałkowski, M; Goraus, J

    2010-04-28

    CeNiSn is known as a semimetallic system with a small pseudogap at the Fermi energy. We investigate the effect of Rh doping on the Kondo insulator CeNiSn by means of measurements of ac magnetic susceptibility and specific heat. We show that the formation of the Kondo insulator narrow gap in CeNi(1 - x)Rh(x)Sn is associated with disorder-induced f-electron localization. For doped CeNiSn with x ≤ 0.06, the electrical resistivity data follow an activation and variable range hopping behaviour at low T, consistent with weak disorder and localization, while C/T is large, which is not a common feature of Kondo insulators. For x > 0.06, the system is metallic and exhibits non-Fermi liquid behaviour with magnetic susceptibility χ ∼ T( - n) with n ∼ 0.4 and electrical resistivity ρ ∼ T.

  15. Enhanced specific heat jump in electron-doped CaMnO3: Spin ordering driven by charge separation

    NASA Astrophysics Data System (ADS)

    Moritomo, Y.; Machida, A.; Nishibori, E.; Takata, M.; Sakata, M.

    2001-12-01

    Temperature variation of the magnetic susceptibility χ, resistivity ρ, specific heat C, and lattice constants has been investigated in electron-doped CaMnO3. The parent CaMnO3 is an antiferromagnetic band insulator, and shows an insulator-metal crossover with electron doping, together with an enhanced ferromagnetic component. We have found an enhancement of the specific heat jump ΔC at the spin-ordering temperature Tspin and interpreted the enhancement in terms of the intrinsic charge separation.

  16. Quantum anomalous Hall effect in magnetic topological insulators

    DOE PAGES

    Wang, Jing; Lian, Biao; Zhang, Shou -Cheng

    2015-08-25

    The search for topologically non-trivial states of matter has become an important goal for condensed matter physics. Here, we give a theoretical introduction to the quantum anomalous Hall (QAH) effect based on magnetic topological insulators in two-dimensions (2D) and three-dimensions (3D). In 2D topological insulators, magnetic order breaks the symmetry between the counter-propagating helical edge states, and as a result, the quantum spin Hall effect can evolve into the QAH effect. In 3D, magnetic order opens up a gap for the topological surface states, and chiral edge state has been predicted to exist on the magnetic domain walls. We presentmore » the phase diagram in thin films of a magnetic topological insulator and review the basic mechanism of ferromagnetic order in magnetically doped topological insulators. We also review the recent experimental observation of the QAH effect. Furthermore, we discuss more recent theoretical work on the coexistence of the helical and chiral edge states, multi-channel chiral edge states, the theory of the plateau transition, and the thickness dependence in the QAH effect.« less

  17. Stair-rod dislocation cores acting as one-dimensional charge channels in GaAs nanowires

    NASA Astrophysics Data System (ADS)

    Bologna, Nicolas; Agrawal, Piyush; Campanini, Marco; Knödler, Moritz; Rossell, Marta D.; Erni, Rolf; Passerone, Daniele

    2018-01-01

    Aberration-corrected scanning transmission electron microscopy and density-functional theory calculations have been used to investigate the atomic and electronic structure of stair-rod dislocations connected via stacking faults in GaAs nanowires. At the apexes, two distinct dislocation cores consisting of single-column pairs of either gallium or arsenic were identified. Ab initio calculations reveal an overall reduction in the energy gap with the development of two bands of filled and empty localized states at the edges of valence and conduction bands in the Ga core and in the As core, respectively. Our results suggest the behavior of stair-rod dislocations along the nanowire as one-dimensional charge channels, which could host free carriers upon appropriate doping.

  18. Local doping of two-dimensional materials

    DOEpatents

    Wong, Dillon; Velasco, Jr, Jairo; Ju, Long; Kahn, Salman; Lee, Juwon; Germany, Chad E.; Zettl, Alexander K.; Wang, Feng; Crommie, Michael F.

    2016-09-20

    This disclosure provides systems, methods, and apparatus related to locally doping two-dimensional (2D) materials. In one aspect, an assembly including a substrate, a first insulator disposed on the substrate, a second insulator disposed on the first insulator, and a 2D material disposed on the second insulator is formed. A first voltage is applied between the 2D material and the substrate. With the first voltage applied between the 2D material and the substrate, a second voltage is applied between the 2D material and a probe positioned proximate the 2D material. The second voltage between the 2D material and the probe is removed. The first voltage between the 2D material and the substrate is removed. A portion of the 2D material proximate the probe when the second voltage was applied has a different electron density compared to a remainder of the 2D material.

  19. Transient carrier dynamics in a Mott insulator with antiferromagnetic order

    NASA Astrophysics Data System (ADS)

    Iyoda, Eiki; Ishihara, Sumio

    2014-03-01

    We study transient dynamics of hole carriers injected into a Mott insulator with antiferromagnetic long-range order. This "dynamical hole doping" contrasts with chemical hole doping. The theoretical framework for the transient carrier dynamics is presented based on the two-dimensional t-J model. The time dependencies of the optical conductivity spectra, as well as the one-particle excitation spectra, are calculated based on the Keldysh Green's function formalism at zero temperature combined with the self-consistent Born approximation. In the early stage after dynamical hole doping, the Drude component appears, and then incoherent components originating from hole-magnon scattering start to grow. Fast oscillatory behavior owing to coherent magnon and slow relaxation dynamics are confirmed in the spectra. The time profiles are interpreted as doped bare holes being dressed by magnon clouds and relaxed into spin polaron quasiparticle states. The characteristic relaxation times for Drude and incoherent peaks strongly depend on the momentum of the dynamically doped hole and the exchange constant. Implications for recent pump-probe experiments are discussed.

  20. Analysis of tellurium as n-type dopant in GaInP: Doping, diffusion, memory effect and surfactant properties

    NASA Astrophysics Data System (ADS)

    García, I.; Rey-Stolle, I.; Galiana, B.; Algora, C.

    2007-01-01

    The use of tellurium as n-type dopant for GaAs and InP has several advantages, including a high incorporation efficiency, the very high doping levels achievable and a low diffusion coefficient. However, its use to dope Ga xIn 1-xP is not straightforward, since it shows several problems like a remarkable memory effect and an acute inertia of the material to become Te-doped, which gives rise to gradual doping profiles. In this paper, all these phenomena are studied and quantified using secondary ion mass spectroscopy (SIMS) and electrochemical CV profiling (ECV) measurements. Concerning the gradual doping profiles, their origin is linked to the interaction of Te and In in the gas phase and on the growth surface. A phenomenological explanation is given for this effect although the exact physical processes behind remain to be defined.

  1. Topological superconductivity in an ultrathin, magnetically-doped topological insulator proximity coupled to a conventional superconductor

    NASA Astrophysics Data System (ADS)

    Kim, Youngseok; Philip, Timothy M.; Park, Moon Jip; Gilbert, Matthew J.; University of Illinois at Urbana; Champaign Team

    As a promising candidate system to realize topological superconductivity (SC), 3D time-reversal invariant topological insulators (TI) proximity-coupled to s-wave superconductors have been intensively studied. Recent experiments on proximity-coupled TI have shown that superconductivity may be induced in ultrathin TI. One proposal to observe the topological SC in proximity-coupled ultrathin TI system is to add magnetic dopants to the TI. However, detailed study on the impact of the experimental parameters on possible topological phase is sparse. In this work, we investigate ultrathin, magnetically-doped, proximity-coupled TI in order to determine the experimentally relevant parameters needed to observe topological SC. We find that, due to the spin-momentum locked nature of the surface states in TI, the induced s-wave order parameter within the surface states persists even at large magnitudes of the Zeeman energy, allowing us to explore the system in parameter space. We elucidate the phase diagram as a function of: the hybridization gap, Zeeman energy, and chemical potential of the TI system. Our findings provide a useful guide in choosing relevant parameters to facilitate the observation of topological SC in thin film TI-superconductor hybrid systems. National Science Foundation (NSF) under Grant CAREER ECCS-1351871.

  2. Considerations for the Use of Exterior Insulation & Finish Systems (EIFS) on U.S. Army Facilities

    DTIC Science & Technology

    1991-11-01

    Typical kinds of insulation used in EIFS include molded expanded polystyrene (MEPS), extruded expanded polystyrene (XEPS), semi-rigid fiberglass, and...Extruded expanded polystyrene insulation, see XEPS 85 Finish coat 12-17, 20, 22-24, 26 degradation 32, 61, 68, 71, 78 Impact damage 28, 56, 83 resistance 15...lath 12, 15, 16, 20, 25, 74 Mildew 14, 78 Molded expanded polystyrene insulation, see MEPS Notched trowel application 19, 74 Portland cement 13, 15-17

  3. Compensation and persistent photocapacitance in homoepitaxial Sn-doped β-Ga2O3

    NASA Astrophysics Data System (ADS)

    Polyakov, A. Y.; Smirnov, N. B.; Shchemerov, I. V.; Gogova, D.; Tarelkin, S. A.; Pearton, S. J.

    2018-03-01

    The electrical properties of epitaxial β-Ga2O3 doped with Sn (1016-9 × 1018 cm-3) and grown by metalorganic chemical vapor deposition on semi-insulating β-Ga2O3 substrates are reported. Shallow donors attributable to Sn were observed only in a narrow region near the film/substrate interface and with a much lower concentration than the total Sn density. For heavily Sn doped films (Sn concentration, 9 × 1018 cm-3), the electrical properties in the top portion of the layer were determined by deep centers with a level at Ec-0.21 eV not described previously. In more lightly doped layers, the Ec-0.21 eV centers and deeper traps at Ec-0.8 eV were present, with the latter pinning the Fermi level. Low temperature photocapacitance and capacitance voltage measurements of illuminated samples indicated the presence of high densities (1017-1018 cm-3) of deep acceptors with an optical ionization threshold of 2.3 eV. Optical deep level transient spectroscopy (ODLTS) and photoinduced current transient spectroscopy (PICTS) detected electron traps at Ec-0.8 eV and Ec-1.1 eV. For lightly doped layers, the compensation of film conductivity was mostly provided by the Ec-2.3 eV acceptors. For heavily Sn doped films, deep acceptor centers possibly related to Ga vacancies were significant. The photocapacitance and the photocurrent caused by illumination at low temperatures were persistent, with an optical threshold of 1.9 eV and vanished only at temperatures of ˜400 K. The capture barrier for electrons causing the persistent photocapacitance effect was estimated from ODLTS and PICTS to be 0.25-0.35 eV.

  4. Comparative study on the roles of anisotropic epitaxial strain and chemical doping in inducing the antiferromagnetic insulator phase in manganite films

    NASA Astrophysics Data System (ADS)

    Jin, Feng; Feng, Qiyuan; Guo, Zhuang; Lan, Da; Wang, Lingfei; Gao, Guanyin; Xu, Haoran; Chen, Binbin; Chen, Feng; Lu, Qingyou; Wu, Wenbin

    2017-11-01

    Epitaxial strain and chemical doping are two different methods that are commonly used to tune the physical properties of epitaxial perovskite oxide films, but their cooperative effects are less addressed. Here we try to tune the phase separation (PS) in (La1-xP rx) 2 /3C a1 /3Mn O3 (0 ≤x ≤0.4 , LPCMO) films via cooperatively controlling the anisotropic epitaxial strain (AES) and the Pr doping. These films are grown simultaneously on NdGa O3(110 ) ,(LaAlO3) 0.3(SrAl0.5Ta0.5O3 ) 0.7(001 ) , and NdGa O3(001 ) substrates with progressively increased in-plane AES, and probed by x-ray diffraction, magnetotransport, and magnetic force microscopy (MFM) measurements. Although it is known that for x =0 the AES can enhance the orthorhombicity of the films yielding a phase diagram with the antiferromagnetic charge-ordered insulator (AF-COI) state induced, which is quite different from the bulk one, we illustrate that the Pr doping can further drive the films towards a more robust COI state. This cooperative effect is reflected by the increasing magnetic fields needed to melt the COI phase as a function of AES and the doping level. More strikingly, by directly imaging the phase competition morphology of the LPCMO /NdGa O3(001 ) films via MFM, we find that during COI melting the PS domain structure is subject to both AES and the quenched disorder. However, in the reverse process, as the magnetic field is decreased, the COI phase reappears and the AES dominates leaving a crystalline-orientation determined self-organized microstructure. This finding suggests that the PS states and the domain configurations can be selectively controlled by the AES and/or the quenched disorder, which may shed some light on the engineering of PS domains for device fabrications.

  5. Quantitative analysis of the effects of vertical magnetic fields on microsegregation in Te-doped LEC GaAs

    NASA Technical Reports Server (NTRS)

    Carlson, D. J.; Witt, A. F.

    1992-01-01

    Using near-IR transmission microscopy with computational absorption analysis, the effects of axial magnetic fields on micro- and macrosegregation during LP-LEC growth of GaAs were quantitatively investigated with a spatial resolution approaching 2 microns. Segregation inhomogeneities exceeding one order of magnitude are found to be related to fluid dynamics of the melt. The applicability of the BPS theory as well as the nonapplicability of the Cochran analysis are established.

  6. Modification of electrical properties of topological insulators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sharma, Peter Anand

    Ion implantation or deposition can be used to modify the bulk electrical properties of topological insulators. More particularly, ion implantation or deposition can be used to compensate for the non-zero bulk conductivity due to extrinsic charge carriers. The direct implantation of deposition/annealing of dopants allows better control over carrier concentrations for the purposes of achieving low bulk conductivity. Ion implantation or deposition enables the fabrication of inhomogeneously doped structures, enabling new types of device designs.

  7. Probing the excited subband dispersion of holes confined to GaAs wide quantum wells

    NASA Astrophysics Data System (ADS)

    Jo, Insun; Liu, Yang; Deng, H.; Shayegan, M.; Pfeiffer, L. N.; West, K. W.; Baldwin, K. W.; Winkler, R.

    Owing to the strong spin-orbit coupling and their large effective mass, the two-dimensional (2D) holes in modulation-doped GaAs quantum wells provide a fertile test bed to study the rich physics of low-dimensional systems. In a wide quantum well, even at moderate 2D densities, the holes start to occupy the excited subband, a subband whose dispersion is very unusual and has a non-monotonic dependence on the wave vector. Here, we study a 2D hole system confined to a 40-nm-thick (001) GaAs quantum well and demonstrate that, via the application of both front and back gates, the density can be tuned in a wide range, between ~1 and 2 ×1011 cm-2. Using Fourier analysis of the low-field Shubnikov-de Haas oscillations, we investigate the population of holes and the spin-orbit interaction induced spin-splitting in different subbands. We discuss the results in light of self-consistent quantum calculations of magneto-oscillations. Work support by the DOE BES (DE-FG02-00-ER45841), the NSF (Grants DMR-1305691 and MRSEC DMR-1420541), the Gordon and Betty Moore Foundation (Grant GBMF4420), and Keck Foundation for experiments, and the NSF Grant DMR-1310199 for calculations.

  8. GaAs photoconductive semiconductor switch

    DOEpatents

    Loubriel, Guillermo M.; Baca, Albert G.; Zutavern, Fred J.

    1998-01-01

    A high gain, optically triggered, photoconductive semiconductor switch (PCSS) implemented in GaAs as a reverse-biased pin structure with a passivation layer above the intrinsic GaAs substrate in the gap between the two electrodes of the device. The reverse-biased configuration in combination with the addition of the passivation layer greatly reduces surface current leakage that has been a problem for prior PCSS devices and enables employment of the much less expensive and more reliable DC charging systems instead of the pulsed charging systems that needed to be used with prior PCSS devices.

  9. Structure of high-index GaAs surfaces - the discovery of the stable GaAs(2511) surface

    NASA Astrophysics Data System (ADS)

    Jacobi, K.; Geelhaar, L.; Márquez, J.

    We present a brief overview of surface structures of high-index GaAs surfaces, putting emphasis on recent progress in our own laboratory. By adapting a commercial scanning tunneling microscope (STM) to our molecular beam epitaxy and ultra high vacuum analysis chamber system, we have been able to atomically resolve the GaAs( {1} {1} {3})B(8 ×1), (114)Aα2(2×1), (137), (3715), and (2511) surface structures. In cooperation with P. Kratzer and M. Scheffler from the Theory Department of the Fritz-Haber Institute we determined the structure of some of these surfaces by comparing total-energy calculations and STM image simulations with the atomically resolved STM images. We present the results for the {112}, {113}, and {114} surfaces. Then we describe what led us to proceed into the inner parts of the stereographic triangle and to discover the hitherto unknown stable GaAs(2511) surface.

  10. Electrode pattern design for GaAs betavoltaic batteries

    NASA Astrophysics Data System (ADS)

    Haiyang, Chen; Jianhua, Yin; Darang, Li

    2011-08-01

    The sensitivities of betavoltaic batteries and photovoltaic batteries to series and parallel resistance are studied. Based on the study, an electrode pattern design principle of GaAs betavoltaic batteries is proposed. GaAs PIN junctions with and without the proposed electrode pattern are fabricated and measured under the illumination of 63Ni. Results show that the proposed electrode can reduce the backscattering and shadowing for the beta particles from 63Ni to increase the GaAs betavoltaic battery short circuit currents effectively but has little impact on the fill factors and ideal factors.

  11. Pressure-induced topological insulator-to-metal transition and superconductivity in Sn-doped B i1.1S b0.9T e2S

    NASA Astrophysics Data System (ADS)

    An, Chao; Chen, Xuliang; Wu, Bin; Zhou, Yonghui; Zhou, Ying; Zhang, Ranran; Park, Changyong; Song, Fengqi; Yang, Zhaorong

    2018-05-01

    Tetradymite-type topological insulator Sn-doped B i1.1S b0.9T e2S (Sn-BSTS), with a surface state Dirac point energy well isolated from the bulk valence and conduction bands, is an ideal platform for studying the topological transport phenomena. Here, we present high-pressure transport studies on single-crystal Sn-BSTS, combined with Raman scattering and synchrotron x-ray diffraction measurements. Over the studied pressure range of 0.7-37.2 GPa, three critical pressure points can be observed: (i) At ˜9 GPa, a pressure-induced topological insulator-to-metal transition is revealed due to closure of the bulk band gap, which is accompanied by changes in slope of the Raman frequencies and a minimum in c /a within the pristine rhombohedral structure (R -3 m ); (ii) at ˜13 GPa, superconductivity is observed to emerge, along with the R -3 m to a C 2 /c (monoclinic) structural transition; (iii) at ˜24 GPa, the superconducting transition onset temperature TC reaches a maximum of ˜12 K , accompanied by a second structural transition from the C 2 /c to a body-centered cubic I m -3 m phase.

  12. Analysis of uniformity of as prepared and irradiated S.I. GaAs radiation detectors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nava, F.; Vanni, P.; Canali, C.

    1998-06-01

    SI (semi-insulating) LEC (Liquid Encapsulated Czochralsky) GaAs (gallium arsenide) Schottky barrier detectors have been irradiated with high energy protons (24 GeV/c, fluence up to 16.45 {times} 10{sup 13} p/cm{sup 2}). The detectors have been characterized in terms of I/V curves, charge collection efficiency (cce) for incident 5.48 MeV {alpha}-, 2 MeV proton and minimum ionizing {beta}-particles and of cce maps by microprobe technique IBIC (Ion Beam Induced Charge). At the highest fluence a significant degradation of the electron and hole collection efficiencies and a remarkable improvement of the Full Width Half Maximum (FWHM) energy resolution have been measured with {alpha}-more » and proton particles. Furthermore, the reduction in the cce is greater than the one measured with {beta}-particles and the energy resolution worsens with increasing the applied bias, V{sub a}, above the voltage V{sub d} necessary to extend the electric field al the way to the ohmic contact. On the contrary, in the unirradiated detectors the charge collection efficiencies with {alpha}-, {beta}- and proton particles are quite similar and the energy resolution improves with increasing V{sub a} > V{sub d}. IBIC spectra and IBIC space maps obtained by scanning a focused (8 {micro}m{sup 2}) 2 MeV proton microbeam on front (Schottky) and back (ohmic) contacts, support the observed electric field dependence of the energy resolution both in unirradiated and most irradiated detectors. The results obtained let them explain the effect of the electric field strength and the plasma on the collection of the charge carriers and the FWHM energy resolution.« less

  13. Understanding and Curing Structural Defects in Colloidal GaAs Nanocrystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Srivastava, Vishwas; Liu, Wenyong; Janke, Eric M.

    2017-02-22

    Nearly three decades since the first report on the synthesis of colloidal GaAs nanocrystals (NCs), the preparation and properties of this material remain highly controversial. Traditional synthetic routes either fail to produce the GaAs phase or result in materials that do not show expected optical properties such as excitonic transitions. In this work, we demonstrate a variety of synthetic routes toward crystalline GaAs NCs. By using a combination of Raman, EXAFS and transient absorption spectroscopies, we conclude that unusual optical properties of 2 colloidal GaAs NCs can be related to the presence of vacancies and lattice disorder. We introduce novelmore » molten salt based annealing approach to alleviate these structural defects and show the emergence of size-dependent excitonic transitions in colloidal GaAs quantum dots.« less

  14. Ferromagnetism of vanadium doped Bi2Se3 thin films

    NASA Astrophysics Data System (ADS)

    Zhang, Liguo; Zhao, Dapeng; Zang, Yunyi; Yuan, Yonghao; Jiang, Gaoyuan; He, Ke; Ma, Xucun; Xue, Qikun

    Bi2Se3 is a representative three-dimensional topological insulator with a bulk band gap of about 300 meV. The quantum anomalous Hall effect (QAHE) has never been realized in Bi2Se3-based magnetic topological insulators due to the difficulties in introducing ferromagnetism in them. With molecular beam epitaxy (MBE), we have grown vanadium-doped Bi2Se3 films with decent crystalline quality and homogeneous distribution of V impurities. The films are all electron-doped and show square-shaped hysteresis loops of Hall resistance with coercivity up to 0.2T at 2K, indicating ferromagnetism with perpendicular magnetic anisotropy in them. Both the ferromagnetism and anomalous Hall resistance are enhanced by decreasing electron density. We have systematically studied the magneto-transport properties of the films with varying V concentration, film thickness, and carrier density and discussed the mechanism of ferromagnetic coupling. The study demonstrates that V-doped Bi2Se3 films are candidate QAHE materials if their electron density can be further reduced. This work was supported by National Natural Science Foundation of China.

  15. GaAs homojunction solar cell development

    NASA Technical Reports Server (NTRS)

    Flood, D. J.; Swartz, C. K.; Hart, R. E., Jr.

    1980-01-01

    The Lincoln Laboratory n(+)/p/p(+) GaAs shallow homojunction cell structure was successfully demonstrated on 2 by 2 cm GaAs substrates. Air mass zero efficiencies of the seven cells produced to date range from 13.6 to 15.6 percent. Current voltage (I-V) characteristics, spectral response, and measurements were made on all seven cells. Preliminary analysis of 1 MeV electron radiation damage data indicate excellent radiation resistance for these cells.

  16. Suppression of electron spin relaxation in Mn-doped GaAs.

    PubMed

    Astakhov, G V; Dzhioev, R I; Kavokin, K V; Korenev, V L; Lazarev, M V; Tkachuk, M N; Kusrayev, Yu G; Kiessling, T; Ossau, W; Molenkamp, L W

    2008-08-15

    We report a surprisingly long spin relaxation time of electrons in Mn-doped p-GaAs. The spin relaxation time scales with the optical pumping and increases from 12 ns in the dark to 160 ns upon saturation. This behavior is associated with the difference in spin relaxation rates of electrons precessing in the fluctuating fields of ionized or neutral Mn acceptors, respectively. For the latter, the antiferromagnetic exchange interaction between a Mn ion and a bound hole results in a partial compensation of these fluctuating fields, leading to the enhanced spin memory.

  17. Suppression of Electron Spin Relaxation in Mn-Doped GaAs

    NASA Astrophysics Data System (ADS)

    Astakhov, G. V.; Dzhioev, R. I.; Kavokin, K. V.; Korenev, V. L.; Lazarev, M. V.; Tkachuk, M. N.; Kusrayev, Yu. G.; Kiessling, T.; Ossau, W.; Molenkamp, L. W.

    2008-08-01

    We report a surprisingly long spin relaxation time of electrons in Mn-doped p-GaAs. The spin relaxation time scales with the optical pumping and increases from 12 ns in the dark to 160 ns upon saturation. This behavior is associated with the difference in spin relaxation rates of electrons precessing in the fluctuating fields of ionized or neutral Mn acceptors, respectively. For the latter, the antiferromagnetic exchange interaction between a Mn ion and a bound hole results in a partial compensation of these fluctuating fields, leading to the enhanced spin memory.

  18. Material growth and characterization for solid state devices

    NASA Technical Reports Server (NTRS)

    Stefanakos, E. K.; Collis, W. J.; Abul-Fadl, A.; Iyer, S.

    1984-01-01

    During the reporting period, InGaAs was grown on Fe-doped (semi-insulating) (100) InP substrates by current controlled liquid phase epitaxy (CCLPE) at 640 C and current densities of 2.5A sq/cm to 5 A/sq cm for periods from 5 to 30 minutes. Special efforts were made to reduce the background carrier concentration in the grown layers as much as possible. The best layers exhibited carrier concentrations in the mid-10 to the 15th power/cu cm range and up to 10,900 sq cm/V-sec room temperature mobility. InGaAsP quaternary layers of energy gap corresponding to wavelengths of approximately 1.5 microns and 1.3 microns were grown on (100) InP substrates by CCLPE. In the device fabrication area, work was directed toward processing MISFET's using InGaAs. SiO2, Si3N4 and Al2O3 were deposited by ion beam sputtering, electron beam evaporation and chemical vapor reaction on Si, GaAs, and InGaAs substrates. SiO2 and Si3N4 sputtered layers were found to possess a high density of pinhole defects that precluded capacitance-voltage analysis. Chemical vapor deposited Al2O3 layers on Si, GaAs and InGaAs substrates also exhibited a large number of pinhole defects. This prevented achieving good MIS devices over most of the substrate surface area.

  19. Temperature-dependent thermal conductivity and diffusivity of a Mg-doped insulating β-Ga2O3 single crystal along [100], [010] and [001

    NASA Astrophysics Data System (ADS)

    Handwerg, M.; Mitdank, R.; Galazka, Z.; Fischer, S. F.

    2016-12-01

    The monoclinic crystal structure of β-{{Ga}}2{{{O}}}3 leads to significant anisotropy of the thermal properties. The 2ω-method is used to measure the thermal diffusivity D in [010] and [001] direction respectively and to determine the thermal conductivity values λ of the [100], [010] and [001] direction from the same insulating Mg-doped β-{{Ga}}2{{{O}}}3 single crystal. We detect a temperature independent anisotropy factor of both the thermal diffusivity and conductivity values of {D}[010]/{D}[001]={λ }[010]/{λ }[001]=1.4+/- 0.1. The temperature dependence is in accord with phonon-phonon-Umklapp-scattering processes from 300 K down to 150 K. Below 150 K point-defect-scattering lowers the estimated phonon-phonon-Umklapp-scattering values.

  20. Depth-Resolved Cathodoluminescence Study of Annealed Silicon Implanted Gallium Arsenide.

    DTIC Science & Technology

    1982-12-01

    samples were Cr doped semi-insulat- ing GaAs crystals grown using the horizontal Bridgman method. Nine samples were prepared for this study, four were...function of depth. Cathodoluminescence was the excitation method. The crystals studied were grown using the horizontal Bridgman method. Four samples were...achieved by taking spectral data and successively chemically etching the surface of the crystal in 250 R steps. No new peaks were observed in the

  1. Mesoscopic homogenization of semi-insulating GaAs by two-step post growth annealing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoffmann, B.; Jurisch, M.; Koehler, A.

    1996-12-31

    Mesoscopic homogenization of the electrical properties of s.i. LEC-GaAs is commonly realized by thermal treatment of the crystals including the steps of dissolution of arsenic precipitates, homogenization of excess As and re-precipitation by creating a controlled supersaturation. Caused by the inhomogeneous distribution of dislocations and the corresponding cellular structure along and across LEC-grown crystals a proper choice of the time-temperature program is necessary to minimize fluctuations of mesoscopic homogeneity. A modified two-step ingot annealing process is demonstrated to ensure the homogeneous distribution of mesoscopic homogeneity.

  2. Thermal equilibrium concentrations and effects of negatively charged Ga vacancies in n-type GaAs

    NASA Astrophysics Data System (ADS)

    Tan, T. Y.; You, H.-M.; Gösele, U. M.

    1993-03-01

    We have calculated the thermal equilibrium concentrations of the various negatively charged Ga vacancy species in GaAs. The triply-negatively-charged Ga vacancy, V {Ga/3-}, has been emphasized, since it dominates Ga self-diffusion and Ga-Al interdiffusion under intrinsic and n-doping conditions, as well as the diffusion of Si donor atoms occupying Ga sites. Under strong n-doping conditions, the thermal equilibrium V {Ga/3-}concentration, C_{V_{_{Ga} }^{3 - } }^{eq} (n), has been found to exhibit a temperature independence or a negative temperature dependence, i.e., the C_{V_{_{Ga} }^{3 - } }^{eq} (n) value is either unchanged or increases as the temperature is lowered. This is quite contrary to the normal point defect behavior for which the point defect thermal equilibrium concentration decreases as the temperature is lowered. This C_{V_{_{Ga} }^{3 - } }^{eq} (n) property provides explanations to a number of outstanding experimental results, either requiring the interpretation that V {Ga/3-}has attained its thermal equilibrium concentration at the onset of each experiment, or requiring mechanisms involving point defect non-equilibrium phenomena.

  3. Carbon acceptor incorporation in GaAs grown by metalorganic chemical vapor deposition: Arsine versus tertiarybutylarsine

    NASA Astrophysics Data System (ADS)

    Watkins, S. P.; Haacke, G.

    1991-10-01

    Undoped p-type GaAs epilayers were grown by low-pressure metalorganic chemical vapor deposition (MOCVD) at 650 °C and 76 Torr using either arsine or tertiarybutylarsine (TBA), and trimethylgallium (TMG). Extremely high-purity precursors were used in order to eliminate extrinsic doping effects. Carbon acceptors from the TMG were the dominant residual electrical impurities under all growth conditions. Temperature-dependent Hall measurements were used to make a quantitative comparison of the carbon acceptor concentrations for arsine- and TBA-grown epilayers over a range of As partial pressures. For a given group V partial pressure, we report a significant reduction in carbon acceptor incorporation using TBA compared with arsine under identical growth conditions.

  4. Electron doping a kagome spin liquid

    DOE PAGES

    Kelly, Z. A.; Gallagher, M. J.; McQueen, T. M.

    2016-10-13

    Herbertsmithite, ZnCu 3(OH) 6Cl 2, is a two-dimensional kagome lattice realization of a spin liquid, with evidence for fractionalized excitations and a gapped ground state. Such a quantum spin liquid has been proposed to underlie high-temperature superconductivity and is predicted to produce a wealth of new states, including a Dirac metal at 1/3 electron doping. Here, we report the topochemical synthesis of electron-doped ZnLi xCu 3(OH) 6Cl 2 from x=0 to x=1.8 (3/5 per Cu 2+). Contrary to expectations, no metallicity or superconductivity is induced. Instead, we find a systematic suppression of magnetic behavior across the phase diagram. Lastly, ourmore » results demonstrate that significant theoretical work is needed to understand and predict the role of doping in magnetically frustrated narrow band insulators, particularly the interplay between local structural disorder and tendency toward electron localization, and pave the way for future studies of doped spin liquids.« less

  5. Gate Drain Underlapped-PNIN-GAA-TFET for Comprehensively Upgraded Analog/RF Performance

    NASA Astrophysics Data System (ADS)

    Madan, Jaya; Chaujar, Rishu

    2017-02-01

    This work integrates the merits of gate-drain underlapping (GDU) and N+ source pocket on cylindrical gate all around tunnel FET (GAA-TFET) to form GDU-PNIN-GAA-TFET. It is analysed that the source pocket located at the source-channel junction narrows the tunneling barrier width at the tunneling junction and thereby enhances the ON-state current of GAA-TFET. Further, it is obtained that the GDU resists the extension of carrier density (built-up under the gated region) towards the drain side (under the underlapped length), thereby suppressing the ambipolar current and reducing the parasitic capacitances of GAA-TFET. Consequently, the amalgamated merits of both engineering schemes are obtained in GDU-PNIN-GAA-TFET that thus conquers the greatest challenges faced by TFET. Thus, GDU-PNIN-GAA-TFET results in an up-gradation in the overall performance of GAA-TFET. Moreover, it is realised that the RF figure of merits FOMs such as cut-off frequency (fT) and maximum oscillation frequency (fMAX) are also considerably improved with integration of source pocket on GAA-TFET. Thus, the improved analog and RF performance of GDU-PNIN-GAA-TFET makes it ideal for low power and high-speed applications.

  6. Dynamics of the metal-insulator transition of donor-doped SrTi O3

    NASA Astrophysics Data System (ADS)

    Meyer, René; Zurhelle, Alexander F.; De Souza, Roger A.; Waser, Rainer; Gunkel, Felix

    2016-09-01

    The electrical properties of donor-doped SrTi O3 (n -STO) are profoundly affected by an oxidation-induced metal-insulator transition (MIT). Here we employ dynamical numerical simulations to examine the high-temperature MIT of n -STO over a large range of time and length scales. The simulations are based on the Nernst-Planck equations, the continuity equations, and the Poisson equation, in combination with surface lattice disorder equilibria serving as time-dependent boundary conditions. The simulations reveal that n -STO, upon oxidation, develops a kinetic space charge region (SCR) in the near-surface region. The surface concentrations of the variously mobile defects (electrons, Sr vacancies, and O vacancies) are found to vary over time and to differ considerably from the values of the new equilibrium. The formation of the SCR in which electrons are strongly depleted occurs within nanoseconds, i.e., it yields a fast MIT in the near-surface region during the oxidation process. As a result of charge (over-)compensation by Sr vacancies incorporated at the surface of n -STO, this SCR is much more pronounced than conventionally expected. In addition, we find an anomalous increase of O vacancy concentration at the surface upon oxidation caused by the SCR. Our simulations show that the SCR fades in the long term as a result of the slow in-diffusion of Sr vacancies. We discuss implications for the electrical conductivity of n -STO crystals used as substrates for epitaxial oxide thin films, of n -STO thin films and interfaces, and of polycrystalline n -STO with various functionalities.

  7. Lateral epitaxial overgowth of GaAs by organometallic chemical vapor deposition

    NASA Technical Reports Server (NTRS)

    Gale, R. P.; Mcclelland, R. W.; Fan, J. C. C.; Bozler, C. O.

    1982-01-01

    Lateral epitaxial overgrowth of GaAs by organometallic chemical vapor deposition has been demonstrated. Pyrolytic decomposition of trimethylgallium and arsine, without the use of HCl, was used to deposit GaAs on substrates prepared by coating (110) GaAs wafers with SiO2, then using photolithography to open narrow stripes in the oxide. Lateral overgrowth was seeded by epitaxial deposits formed on the GaAs surfaces exposed by the stripe openings. The extent of lateral overgrowth was investigated as a function of stripe orientation and growth temperature. Ratios of lateral to vertical growth rates greater than five have been obtained. The lateral growth is due to surface-kinetic control for the two-dimensional growth geometry studied. A continuous epitaxial GaAs layer 3 microns thick has been grown over a patterned mask on a GaAs substrate and then cleaved from the substrate.

  8. GaAs photoconductive semiconductor switch

    DOEpatents

    Loubriel, G.M.; Baca, A.G.; Zutavern, F.J.

    1998-09-08

    A high gain, optically triggered, photoconductive semiconductor switch (PCSS) implemented in GaAs as a reverse-biased pin structure with a passivation layer above the intrinsic GaAs substrate in the gap between the two electrodes of the device is disclosed. The reverse-biased configuration in combination with the addition of the passivation layer greatly reduces surface current leakage that has been a problem for prior PCSS devices and enables employment of the much less expensive and more reliable DC charging systems instead of the pulsed charging systems that needed to be used with prior PCSS devices. 5 figs.

  9. The Role of Structural and Compositional Heterogeneities in the Insulator-to-Metal Transition in Hole-Doped APd3O4 (A = Ca, Sr).

    PubMed

    Lamontagne, Leo K; Laurita, Geneva; Knight, Michael; Yusuf, Huma; Hu, Jerry; Seshadri, Ram; Page, Katharine

    2017-05-01

    The cubic semiconducting compounds APd 3 O 4 (A = Ca, Sr) can be hole-doped by Na substitution on the A site and driven toward more conducting states. This process has been followed here by a number of experimental techniques to understand the evolution of electronic properties. While an insulator-to-metal transition is observed in Ca 1-x Na x Pd 3 O 4 for x ≥ 0.15, bulk metallic behavior is not observed for Sr 1-x Na x Pd 3 O 4 up to x = 0.20. Given the very similar crystal and (calculated) electronic structures of the two materials, the distinct behavior is a matter of interest. We present evidence of local disorder in the A = Sr materials through the analysis of the neutron pair distribution function, which is potentially at the heart of the distinct behavior. Solid-state 23 Na nuclear magnetic resonance studies additionally suggest a percolative insulator-to-metal transition mechanism, wherein presumably small regions with a signal resembling metallic NaPd 3 O 4 form almost immediately upon Na substitution, and this signal grows monotonically with substitution. Some signatures of increased local disorder and a propensity for Na clustering are seen in the A = Sr compounds.

  10. The Influence of Heat Treatment on the Electrical Characteristics of Semi-Insulating SiC Layers Obtained by Irradiating n-SiC with High-Energy Argon Ions

    NASA Astrophysics Data System (ADS)

    Ivanov, P. A.; Potapov, A. S.; Kudoyarov, M. F.; Kozlovskii, M. A.; Samsonova, T. P.

    2018-03-01

    Irradiation of crystalline n-type silicon carbide ( n-SiC) with high-energy (53-MeV) argon ions was used to create near-surface semi-insulating ( i-SiC) layers. The influence of subsequent heat treatment on the electrical characteristics of i-SiC layers has been studied. The most high-ohmic ion-irradiated i-SiC layers with room-temperature resistivity of no less than 1.6 × 1013 Ω cm were obtained upon the heat treatment at 600°C, whereas the resistivity of such layers heat-treated at 230°C was about 5 × 107 Ω cm.

  11. Metal-insulator transition in AlxGa1-xAs/GaAs heterostructures with large spacer width

    NASA Astrophysics Data System (ADS)

    Gold, A.

    1991-10-01

    Analytical results are presented for the mobility of a two-dimensional electron gas in a heterostructure with a thick spacer layer α. Due to multiple-scattering effects a metal-insulator transition occurs at a critical electron density Nc=N1/2i/(4π1/2α) (Ni is the impurity density). The transport mean free path l(t) (calculated in Born approximation) at the metal-insulator transition is l(t)c=2α. A localization criterion in terms of the renormalized single-particle mean free path l(sr) is presented: kFcl(sr)c=(1/2)1/2 (kFc is the Fermi wave number at the critical density). I compare the theoretical results with recent experimental results found in AlxGa1-xAs/GaAs heterostructures with large spacer width: 1200<α<2800 Å. Remote impurity doping and homogeneous background doping are considered. The only fitting parameter used for the theoretical results is the background doping density NB=6×1013 cm-3. My theory is in fair agreement with the experimental results.

  12. Panel fabrication utilizing GaAs solar cells

    NASA Technical Reports Server (NTRS)

    Mardesich, N.

    1984-01-01

    The development of the GaAs solar cells for space applications is described. The activities in the fabrication of GaAs solar panels are outlined. Panels were fabricated while introducing improved quality control, soldering laydown and testing procedures. These panels include LIPS II, San Marco Satellite, and a low concentration panel for Rockwells' evaluation. The panels and their present status are discussed.

  13. IR Window Studies

    DTIC Science & Technology

    1974-09-15

    molten gallium but still have a lew resistivity. Stabilized zirconia was used to remove and monitor oxygen. KC1 crystals with a-j« 5 m = lO...information that GaAs grown from Ga solutions at low temperatures can be made with higher purities than that grown at the melting point . The initial...goals were to grow thick films below the melting point which would be semi-insulating and to measure their absorption coefficients. This goal was to

  14. Josephson junctions of candidate topological crystalline insulator Pb1-xSnxTe

    NASA Astrophysics Data System (ADS)

    Snyder, Rodney; Trimble, Christie; Taylor, Patrick; Williams, James

    Incorporating superconducting ordering through proximity effects in topological states of matter offers potential routes to novel excitations with properties beyond that of simple electrons. Topological crystalline insulators TCI offer alternative routes to topological states of matter with surface states of distinct character to those in more common 3d topological insulators. We report on the fabrication Josephson junctions using MBE-grown candidate TCI material Pb-doped SnTe as weak links and characterize the departures from conventional junctions using combined DC and RF techniques. Opportunities to create junction weak links from materials possessing electronic interactions will be discussed.

  15. GaAs Photovoltaics on Polycrystalline Ge Substrates

    NASA Technical Reports Server (NTRS)

    Wilt, David M.; Pal, AnnaMaria T.; McNatt, Jeremiah S.; Wolford, David S.; Landis, Geoffrey A.; Smith, Mark A.; Scheiman, David; Jenkins, Phillip P.; McElroy Bruce

    2007-01-01

    High efficiency III-V multijunction solar cells deposited on metal foil or even polymer substrates can provide tremendous advantages in mass and stowage, particularly for planetary missions. As a first step towards that goal, poly-crystalline p/i/n GaAs solar cells are under development on polycrystalline Ge substrates. Organo Metallic Vapor Phase Epitaxy (OMVPE) parameters for pre-growth bake, nucleation and deposition have been examined. Single junction p/i/n GaAs photovoltaic devices, incorporating InGaP front and back window layers, have been grown and processed. Device performance has shown a dependence upon the thickness of a GaAs buffer layer deposited between the Ge substrate and the active device structure. A thick (2 m) GaAs buffer provides for both increased average device performance as well as reduced sensitivity to variations in grain size and orientation. Illumination under IR light (lambda > 1 micron), the cells showed a Voc, demonstrating the presence of an unintended photoactive junction at the GaAs/Ge interface. The presence of this junction limited the efficiency to approx.13% (estimated with an anti-refection coating) due to the current mismatch and lack of tunnel junction interconnect.

  16. Advanced 3-V semiconductor technology assessment

    NASA Technical Reports Server (NTRS)

    Nowogrodzki, M.

    1983-01-01

    Components required for extensions of currently planned space communications systems are discussed for large antennas, crosslink systems, single sideband systems, Aerostat systems, and digital signal processing. Systems using advanced modulation concepts and new concepts in communications satellites are included. The current status and trends in materials technology are examined with emphasis on bulk growth of semi-insulating GaAs and InP, epitaxial growth, and ion implantation. Microwave solid state discrete active devices, multigigabit rate GaAs digital integrated circuits, microwave integrated circuits, and the exploratory development of GaInAs devices, heterojunction devices, and quasi-ballistic devices is considered. Competing technologies such as RF power generation, filter structures, and microwave circuit fabrication are discussed. The fundamental limits of semiconductor devices and problems in implementation are explored.

  17. Electron spin dynamics and optical orientation of Mn2+ ions in GaAs

    NASA Astrophysics Data System (ADS)

    Akimov, I. A.; Dzhioev, R. I.; Korenev, V. L.; Kusrayev, Yu. G.; Sapega, V. F.; Yakovlev, D. R.; Bayer, M.

    2013-04-01

    We present an overview of spin-related phenomena in GaAs doped with low concentration of Mn-acceptors (below 1018 cm-3). We use the combination of different experimental techniques such as spin-flip Raman scattering and time-resolved photoluminescence. This allows to evaluate the time evolution of both electron and Mn spins. We show that optical orientation of Mn ions is possible under application of weak magnetic field, which is required to suppress the manganese spin relaxation. The optically oriented Mn2+ ions maintain the spin and return part of the polarization back to the electron spin system providing a long-lived electron spin memory. This leads to a bunch of spectacular effects such as non-exponential electron spin decay and spin precession in the effective exchange fields.

  18. Comparisons of single event vulnerability of GaAs SRAMS

    NASA Astrophysics Data System (ADS)

    Weatherford, T. R.; Hauser, J. R.; Diehl, S. E.

    1986-12-01

    A GaAs MESFET/JFET model incorporated into SPICE has been used to accurately describe C-EJFET, E/D MESFET and D MESFET/resistor GaAs memory technologies. These cells have been evaluated for critical charges due to gate-to-drain and drain-to-source charge collection. Low gate-to-drain critical charges limit conventional GaAs SRAM soft error rates to approximately 1E-6 errors/bit-day. SEU hardening approaches including decoupling resistors, diodes, and FETs have been investigated. Results predict GaAs RAM cell critical charges can be increased to over 0.1 pC. Soft error rates in such hardened memories may approach 1E-7 errors/bit-day without significantly reducing memory speed. Tradeoffs between hardening level, performance and fabrication complexity are discussed.

  19. Prediction of dislocation generation during Bridgman growth of GaAs crystals

    NASA Technical Reports Server (NTRS)

    Tsai, C. T.; Yao, M. W.; Chait, Arnon

    1992-01-01

    Dislocation densities are generated in GaAs single crystals due to the excessive thermal stresses induced by temperature variations during growth. A viscoplastic material model for GaAs, which takes into account the movement and multiplication of dislocations in the plastic deformation, is developed according to Haasen's theory. The dislocation density is expressed as an internal state variable in this dynamic viscoplastic model. The deformation process is a nonlinear function of stress, strain rate, dislocation density and temperature. The dislocation density in the GaAs crystal during vertical Bridgman growth is calculated using a nonlinear finite element model. The dislocation multiplication in GaAs crystals for several temperature fields obtained from thermal modeling of both the GTE GaAs experimental data and artificially designed data are investigated.

  20. Prediction of dislocation generation during Bridgman growth of GaAs crystals

    NASA Astrophysics Data System (ADS)

    Tsai, C. T.; Yao, M. W.; Chait, Arnon

    1992-11-01

    Dislocation densities are generated in GaAs single crystals due to the excessive thermal stresses induced by temperature variations during growth. A viscoplastic material model for GaAs, which takes into account the movement and multiplication of dislocations in the plastic deformation, is developed according to Haasen's theory. The dislocation density is expressed as an internal state variable in this dynamic viscoplastic model. The deformation process is a nonlinear function of stress, strain rate, dislocation density and temperature. The dislocation density in the GaAs crystal during vertical Bridgman growth is calculated using a nonlinear finite element model. The dislocation multiplication in GaAs crystals for several temperature fields obtained from thermal modeling of both the GTE GaAs experimental data and artificially designed data are investigated.

  1. Measured Attenuation of Coplanar Waveguide on 6H, p-type SiC and High Purity Semi-Insulating 4H SiC through 800 K

    NASA Technical Reports Server (NTRS)

    Ponchak, George E.; Schwartz, Zachary D.; Alterovitz, Samuel A.; Downey, Alan N.

    2004-01-01

    Wireless sensors for high temperature applications such as oil drilling and mining, automobiles, and jet engine performance monitoring require circuits built on wide bandgap semiconductors. In this paper, the characteristics of microwave transmission lines on 4H-High Purity Semi-Insulating SiC and 6H, p-type SiC is presented as a function of temperature and frequency. It is shown that the attenuation of 6H, p-type substrates is too high for microwave circuits, large leakage current will flow through the substrate, and that unusual attenuation characteristics are due to trapping in the SiC. The 4H-HPSI SiC is shown to have low attenuation and leakage currents over the entire temperature range.

  2. Analysis of high field effects on the steady-state current-voltage response of semi-insulating 4H-SiC for photoconductive switch applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tiskumara, R.; Joshi, R. P., E-mail: ravi.joshi@ttu.edu; Mauch, D.

    A model-based analysis of the steady-state, current-voltage response of semi-insulating 4H-SiC is carried out to probe the internal mechanisms, focusing on electric field driven effects. Relevant physical processes, such as multiple defects, repulsive potential barriers to electron trapping, band-to-trap impact ionization, and field-dependent detrapping, are comprehensively included. Results of our model match the available experimental data fairly well over orders of magnitude variation in the current density. A number of important parameters are also extracted in the process through comparisons with available data. Finally, based on our analysis, the possible presence of holes in the samples can be discounted upmore » to applied fields as high as ∼275 kV/cm.« less

  3. Topological superconductivity in an ultrathin, magnetically-doped topological insulator proximity coupled to a conventional superconductor

    NASA Astrophysics Data System (ADS)

    Kim, Youngseok; Philip, Timothy M.; Park, Moon Jip; Gilbert, Matthew J.

    2016-12-01

    As a promising candidate system to realize topological superconductivity, the system of a 3D topological insulator (TI) grown on top of the s -wave superconductor has been extensively studied. To access the topological superconductivity experimentally, the 3D TI sample must be thin enough to allow for Cooper pair tunneling to the exposed surface of TI. The use of magnetically ordered dopants to break time-reversal symmetry may allow the surface of a TI to host Majorana fermion, which are believed to be a signature of topological superconductivity. In this work, we study a magnetically-doped thin film TI-superconductor hybrid system. Considering the proximity induced order parameter in thin film of TI, we analyze the gap closing points of the Hamiltonian and draw the phase diagram as a function of relevant parameters: the hybridization gap, Zeeman energy, and chemical potential of the TI system. Our findings provide a useful guide in choosing relevant parameters to facilitate the observation of topological superconductivity in thin film TI-superconductor hybrid systems. In addition, we further perform numerical analysis on a TI proximity coupled to an s -wave superconductor and find that, due to the spin-momentum locked nature of the surface states in TI, the induced s -wave order parameter of the surface states persists even at large magnitude of the Zeeman energy.

  4. Noncontact Measurement of Doping Profile for Bare Silicon

    NASA Astrophysics Data System (ADS)

    Kohno, Motohiro; Matsubara, Hideaki; Okada, Hiroshi; Hirae, Sadao; Sakai, Takamasa

    1998-10-01

    In this study, we evaluate the doping concentrations of bare silicon wafers by noncontact capacitance voltage (C V) measurements. The metal-air-insulator-semiconductor (MAIS) method enables the measurement of C V characteristics of silicon wafers without oxidation and electrode preparation. This method has the advantage that a doping profile close to the wafer surface can be obtained. In our experiment, epitaxial silicon wafers were used to compare the MAIS method with the conventional MIS method. The experimental results obtained from the two methods showed good agreement. Then, doping profiles of boron-doped Czochralski (CZ) wafers were measured by the MAIS method. The result indicated a significant reduction of the doping concentration near the wafer surface. This observation is attributed to the well-known deactivation of boron with atomic hydrogen which permeated the silicon bulk during the polishing process. This deactivation was recovered by annealing in air at 180°C for 120 min.

  5. Engineering Topological Surface State of Cr-doped Bi2Se3 under external electric field

    NASA Astrophysics Data System (ADS)

    Zhang, Jian-Min; Lian, Ruqian; Yang, Yanmin; Xu, Guigui; Zhong, Kehua; Huang, Zhigao

    2017-03-01

    External electric field control of topological surface states (SSs) is significant for the next generation of condensed matter research and topological quantum devices. Here, we present a first-principles study of the SSs in the magnetic topological insulator (MTI) Cr-doped Bi2Se3 under external electric field. The charge transfer, electric potential, band structure and magnetism of the pure and Cr doped Bi2Se3 film have been investigated. It is found that the competition between charge transfer and spin-orbit coupling (SOC) will lead to an electrically tunable band gap in Bi2Se3 film under external electric field. As Cr atom doped, the charge transfer of Bi2Se3 film under external electric field obviously decreases. Remarkably, the band gap of Cr doped Bi2Se3 film can be greatly engineered by the external electric field due to its special band structure. Furthermore, magnetic coupling of Cr-doped Bi2Se3 could be even mediated via the control of electric field. It is demonstrated that external electric field plays an important role on the electronic and magnetic properties of Cr-doped Bi2Se3 film. Our results may promote the development of electronic and spintronic applications of magnetic topological insulator.

  6. Classification and characterization of topological insulators and superconductors

    NASA Astrophysics Data System (ADS)

    Mong, Roger

    surface spectrum can be computed from bulk quantities. Specifically, we present an analytic prescription for computing the edge dispersion E(k) of a tight-binding Dirac Hamiltonian terminated at an abrupt crystalline edge, based on the bulk Hamiltonian. The result is presented as a geometric formula, relating the existence of surface states as well as their energy dispersion to properties of the bulk Hamiltonian. We further prove the bulk-boundary correspondence for this specific class of systems, connecting the Chern number and the chiral edge modes for quantum Hall systems given in terms of Dirac Hamiltonians. In similar spirit, we examine the existence of Majorana zero modes in superconducting doped-TIs. We find that Majorana zero modes indeed appear but only if the doped Fermi energy is below a critical chemical potential. The critical doping is associated with a topological phase transition of vortex lines, which supports gapless excitations spanning their length. For weak pairing, the critical point is dependent on the non-abelian Berry phase of the bulk Fermi surface. Finally, we investigate the transport properties on the surfaces of TIs. While the surfaces of “strong topological insulators” - TIs with an odd number of Dirac cones in their surface spectrum - have been well studied in literature, studies of their counterpart “weak topological insulators” (WTIs) are meager, with conflicting claims. Because WTIs have an even number of Dirac cones in their surface spectrum, they are thought to be unstable to disorder, which leads to an insulating surface. Here we argue that the presence of disorder alone will not localize the surface states, rather, presence of a time-reversal symmetric mass term is required for localization. Through numerical simulations, we show that in the absence of the mass term the surface always flow to a stable metallic phase and the conductivity obeys a one-parameter scaling relation, just as in the

  7. Influence of GaAs surface termination on GaSb/GaAs quantum dot structure and band offsets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zech, E. S.; Chang, A. S.; Martin, A. J.

    2013-08-19

    We have investigated the influence of GaAs surface termination on the nanoscale structure and band offsets of GaSb/GaAs quantum dots (QDs) grown by molecular-beam epitaxy. Transmission electron microscopy reveals both coherent and semi-coherent clusters, as well as misfit dislocations, independent of surface termination. Cross-sectional scanning tunneling microscopy and spectroscopy reveal clustered GaSb QDs with type I band offsets at the GaSb/GaAs interfaces. We discuss the relative influences of strain and QD clustering on the band offsets at GaSb/GaAs interfaces.

  8. INTERNATIONAL CONFERENCE ON SEMICONDUCTOR INJECTION LASERS SELCO-87: Multilayer CrPtCr/NiAu ohmic contacts with p-type GaAs in heterojunction laser structures

    NASA Astrophysics Data System (ADS)

    Wójcik, I.; Stareev, G.; Barcz, A.; Domański, M.

    1988-11-01

    Multilayer CrPtCr/NiAu metallization was deposited by sputtering in a magnetron on the p-type side of GaAs in a pulsed laser heterostructure. Heat treatment at 490 °C for 3 min produced a reliable ohmic contact with a specific resistance of 10- 6-10- 5 Ω · cm2, depending on the substrate doping. Secondary-ion mass spectroscopy and Rutherford backscattering methods were used to study the mechanism of formation of a contact.

  9. Basic performance of a multilayer insulation system containing 20 to 160 layers. [thermal effectiveness of aluminized Mylar-silk net system

    NASA Technical Reports Server (NTRS)

    Stochl, R. J.

    1974-01-01

    An experimental investigation was conducted to determine the thermal effectiveness of an aluminized Mylar-silk net insulation system containing up to 160 layers. The experimentally measured heat flux was compared with results predicted by using (1) a previously developed semi-empirical equation and (2) an effective-thermal-conductivity value. All tests were conducted at a nominal hot-boundary temperature of 294 K (530 R) with liquid hydrogen as the heat sink. The experimental results show that the insulation performed as expected and that both the semi-empirical equation and effective thermal conductivity of a small number of layers were adequate in predicting the thermal performance of a large number of layers of insulation.

  10. High-pressure studies on Ba-doped cobalt perovskites by neutron diffraction

    NASA Astrophysics Data System (ADS)

    Cao, Huibo; Garlea, Vasile; Wang, Fangwei; Dos Santos, Antonio; Cheng, Zhaohua

    2012-02-01

    Cobalt perovskite possess rich structural, magnetic and electrical properties depending on the subtle balance of the interactions among the spin, charge, and orbital degrees of freedom. Divalent hole-doped cobalt perovskites LaA^2+CoO3 exhibit structural phase transitions, metal-insulator transitions, and multi-magnetic phase transitions. High-pressure measurement is believed to mimic the size effects of the doped ions. We performed neutron diffraction experiments on selected Ba-doped LaCoO3 under pressures up to 6.3 GPa at SNAP at Spallation Neutron Source of ORNL. This work focuses on the high-pressure effects of the selected Ba-doped samples and the change of the phase diagram with pressure.

  11. Crystal growth of device quality GaAs in space

    NASA Technical Reports Server (NTRS)

    Gatos, H. C.; Lagowski, J.

    1983-01-01

    GaAs device technology has recently reached a new phase of rapid advancement, made possible by the improvement of the quality of GaAs bulk crystals. At the same time, the transition to the next generation of GaAs integrated circuits and optoelectronic systems for commercial and government applications hinges on new quantum steps in three interrelated areas: crystal growth, device processing and device-related properties and phenomena. Special emphasis is placed on the establishment of quantitative relationships among crystal growth parameters-material properties-electronic properties and device applications. The overall program combines studies of crystal growth on novel approaches to engineering of semiconductor material (i.e., GaAs and related compounds); investigation and correlation of materials properties and electronic characteristics on a macro- and microscale; and investigation of electronic properties and phenomena controlling device applications and device performance.

  12. Localization of holes near charged defects in orbitally degenerate, doped Mott insulators

    NASA Astrophysics Data System (ADS)

    Avella, Adolfo; Oleś, Andrzej M.; Horsch, Peter

    2018-05-01

    We study the role of charged defects, disorder and electron-electron (e-e) interactions in a multiband model for t2g electrons in vanadium perovskites R1-xCaxVO3 (R = La,…,Y). By means of unrestricted Hartree-Fock calculations, we find that the atomic multiplet structure persists up to 50% Ca doping. Using the inverse participation number, we explore the degree of localization and its doping dependence for all electronic states. The observation of strongly localized wave functions is consistent with our conjecture that doped holes form spin-orbital polarons that are strongly bound to the charged Ca2+ defects. Interestingly, the long-range e-e interactions lead to a discontinuity in the wave function size across the chemical potential, where the electron removal states are more localized than the addition states.

  13. Effect of Split Gate Size on the Electrostatic Potential and 0.7 Anomaly within Quantum Wires on a Modulation-Doped GaAs /AlGaAs Heterostructure

    NASA Astrophysics Data System (ADS)

    Smith, L. W.; Al-Taie, H.; Lesage, A. A. J.; Thomas, K. J.; Sfigakis, F.; See, P.; Griffiths, J. P.; Farrer, I.; Jones, G. A. C.; Ritchie, D. A.; Kelly, M. J.; Smith, C. G.

    2016-04-01

    We study 95 split gates of different size on a single chip using a multiplexing technique. Each split gate defines a one-dimensional channel on a modulation-doped GaAs /AlGaAs heterostructure, through which the conductance is quantized. The yield of devices showing good quantization decreases rapidly as the length of the split gates increases. However, for the subset of devices showing good quantization, there is no correlation between the electrostatic length of the one-dimensional channel (estimated using a saddle-point model) and the gate length. The variation in electrostatic length and the one-dimensional subband spacing for devices of the same gate length exceeds the variation in the average values between devices of different lengths. There is a clear correlation between the curvature of the potential barrier in the transport direction and the strength of the "0.7 anomaly": the conductance value of the 0.7 anomaly reduces as the barrier curvature becomes shallower. These results highlight the key role of the electrostatic environment in one-dimensional systems. Even in devices with clean conductance plateaus, random fluctuations in the background potential are crucial in determining the potential landscape in the active device area such that nominally identical gate structures have different characteristics.

  14. Heteroepitaxial growth of GaAs on (100) Ge/Si using migration enhanced epitaxy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tanoto, H.; Loke, W. K.; Yoon, S. F.

    In this paper, heteroepitaxial growth of GaAs on nominal (100) Ge/Si substrate was investigated. The root-mean square surface roughness of the sample where the first few monolayers of the GaAs were nucleated by migration enhanced epitaxy (MEE) is four times smaller compared to the sample without such a process, indicating better surface planarity. From the (004) x-ray diffraction rocking curve measurement, the full width at half maximum of the GaAs layer nucleated by MEE is 40% lower compared to that of the GaAs layer without such a process, indicating better crystal quality. Furthermore, it was found that the sample wheremore » the GaAs layer was nucleated by MEE experienced early relaxation. As the MEE process promotes two-dimensional growth, the GaAs layer where nucleation was initiated by such a process has fewer islandlike formations. This leads to a pseudomorphically grown GaAs layer, which experiences higher strain compared to the GaAs layer with more islandlike formations, where most relaxation occurs on the free surface of the islands. Therefore, for the same layer thickness, the GaAs layer on (100) Ge/Si substrate where nucleation was initiated by MEE relaxed first.« less

  15. Ultrafast carrier dynamics in LT-GaAs doped with Si delta layers

    NASA Astrophysics Data System (ADS)

    Khusyainov, D. I.; Dekeyser, C.; Buryakov, A. M.; Mishina, E. D.; Galiev, G. B.; Klimov, E. A.; Pushkarev, S. S.; Klochkov, A. N.

    2017-10-01

    We characterized the ultrafast properties of LT-GaAs doped with silicon δ-layers and introduced delta-doping (δ-doping) as efficient method for enhancing the properties of GaAs-based structures which can be useful for terahertz (THz) antenna, ultrafast switches and other high frequency applications. Low temperature grown GaAs (LT-GaAs) became one of the most promising materials for ultrafast optical and THz devices due to its short carrier lifetime and high carrier mobility. Low temperature growth leads to a large number of point defects and an excess of arsenic. Annealing of LT-GaAs creates high resistivity through the formation of As-clusters, which appear due to the excess of arsenic. High resistivity is very important for THz antennas so that voltage can be applied without the risk of breakdown. With δ-Si doping, control of As-clusters is possible, since after annealing, clusters align in the plane where the δ-doping occurs. In this paper, we compare the properties of LT-GaAs-based planar structures with and without δ-Si doping and subsequent annealing. We used pump-probe transient reflectivity as a probe for ultrafast carrier dynamics in LT-GaAs. The results of the experiment were interpreted using the Ortiz model and show that the δ-Si doping increases deep donor and acceptor concentrations and decreases the photoinduced carrier lifetime as compared with LT-GaAs with same growth and annealing temperatures, but without doping.

  16. Electron Doping a Kagome Spin Liquid

    NASA Astrophysics Data System (ADS)

    Kelly, Zachary; Gallagher, Miranda; McQueen, Tyrel

    In 1987, Anderson proposed that charge doping a material with the resonating valance bond (RVB) state would yield a superconducting state. Ever since, there has been a search for these RVB containing spin liquid materials and their charge doped counterparts. Studies on the most promising spin liquid candidate, Herbertsmithite, ZnCu3(OH)6Cl2, a two dimensional kagomé lattice, show evidence of fractionalized excitations and a gapped ground state. In this work, we report the synthesis and characterization of a newly synthesized electron doped spin liquid, ZnLixCu3(OH)6Cl2 from x = 0 to x = 1.8 (3 / 5 th per Cu2+). Despite heavy doping, the series remains insulating and the magnetism is systematically suppressed. We have done extensive structural studies of the doped series to determine the effect of the intercalated atoms on the structure, and whether these structural differences induce strong localization effects that suppress the metallic and superconducting states. Other doped spin liquid candidates are also being explored to understand if this localization is system dependent or systemic to all doped spin liquid systems. NSF, Division of Materials Research (DMR), Solid State Chemistry (SSMC), CAREER Grant under Award No. DMR- 1253562, Institute for Quantum Matter under Grant No.DE-FG02- 08ER46544, and the David and Lucile Packard Foundation.

  17. Mn-Site Doped CaMnO 3: Creation of the CMR Effect

    NASA Astrophysics Data System (ADS)

    Raveau, B.; Zhao, Y. M.; Martin, C.; Hervieu, M.; Maignan, A.

    2000-01-01

    The doping of CaMnO3-δ at Mn sites with pentavalent and hexavalent d0 elements - Nb, Ta, W, Mo - modifies the resistivity behavior of this phase, extending the insulating domain and increasing significantly the resistivity at low temperature as the doping element content increases. The higher valency of the doping element introduces electrons; i.e., Mn3+ species are formed in the Mn4+ matrix. Double exchange phenomena then allow ferromagnetic interactions, by application of external magnetic fields which are similar to those observed for electron-doped manganites Ca1-xLnxMnO3 (x≤0.15), but with smaller magnetic moments. Consequently, this Mn site doping induces CMR properties with resistivity ratios considerably larger than those for CaMnO3-δ.

  18. Heat Transfer Modeling for Rigid High-Temperature Fibrous Insulation

    NASA Technical Reports Server (NTRS)

    Daryabeigi, Kamran; Cunnington, George R.; Knutson, Jeffrey R.

    2012-01-01

    Combined radiation and conduction heat transfer through a high-temperature, high-porosity, rigid multiple-fiber fibrous insulation was modeled using a thermal model previously used to model heat transfer in flexible single-fiber fibrous insulation. The rigid insulation studied was alumina enhanced thermal barrier (AETB) at densities between 130 and 260 kilograms per cubic meter. The model consists of using the diffusion approximation for radiation heat transfer, a semi-empirical solid conduction model, and a standard gas conduction model. The relevant parameters needed for the heat transfer model were estimated from steady-state thermal measurements in nitrogen gas at various temperatures and environmental pressures. The heat transfer modeling methodology was evaluated by comparison with standard thermal conductivity measurements, and steady-state thermal measurements in helium and carbon dioxide gases. The heat transfer model is applicable over the temperature range of 300 to 1360 K, pressure range of 0.133 to 101.3 x 10(exp 3) Pa, and over the insulation density range of 130 to 260 kilograms per cubic meter in various gaseous environments.

  19. Role of thermal heating on the voltage induced insulator-metal transition in VO2.

    PubMed

    Zimmers, A; Aigouy, L; Mortier, M; Sharoni, A; Wang, Siming; West, K G; Ramirez, J G; Schuller, Ivan K

    2013-02-01

    We show that the main mechanism for the dc voltage or dc current induced insulator-metal transition in vanadium dioxide VO(2) is due to local Joule heating and not a purely electronic effect. This "tour de force" experiment was accomplished by using the fluorescence spectra of rare-earth doped micron sized particles as local temperature sensors. As the insulator-metal transition is induced by a dc voltage or dc current, the local temperature reaches the transition temperature indicating that Joule heating plays a predominant role. This has critical implications for the understanding of the dc voltage or dc current induced insulator-metal transition and has a direct impact on applications which use dc voltage or dc current to externally drive the transition.

  20. Non-destructive reversible resistive switching in Cr doped Mott insulator Ca2RuO4: Interface vs bulk effects

    NASA Astrophysics Data System (ADS)

    Shen, Shida; Williamson, Morgan; Cao, Gang; Zhou, Jianshi; Goodenough, John; Tsoi, Maxim

    2017-12-01

    A non-destructive reversible resistive switching is demonstrated in single crystals of Cr-doped Mott insulator Ca2RuO4. An applied electrical bias was shown to reduce the DC resistance of the crystal by as much as 75%. The original resistance of the sample could be restored by applying an electrical bias of opposite polarity. We have studied this resistive switching as a function of the bias strength, applied magnetic field, and temperature. A combination of 2-, 3-, and 4-probe measurements provide a means to distinguish between bulk and interfacial contributions to the switching and suggests that the switching is mostly an interfacial effect. The switching was tentatively attributed to electric-field driven lattice distortions which accompany the impurity-induced Mott transition. This field effect was confirmed by temperature-dependent resistivity measurements which show that the activation energy of this material can be tuned by an applied DC electrical bias. The observed resistance switching can potentially be used for building non-volatile memory devices like resistive random access memory.

  1. High-voltage lateral double-implanted MOSFETs implemented on high-purity semi-insulating 4H-SiC substrates with gate field plates

    NASA Astrophysics Data System (ADS)

    Seok, Ogyun; Kim, Hyoung Woo; Moon, Jeong Hyun; Lee, Hyun-Su; Bahng, Wook

    2018-06-01

    Lateral double-implanted MOSFETs (LDIMOSFETs) fabricated on on-axis high-purity semi-insulating (HPSI) 4H-SiC substrates with gate field plates have been demonstrated for the enhancement of reverse blocking capability. The effects of gate field plate on LDIMOSFET were analyzed by simulation and experimental methods. The electric field concentration at the gate edge was successfully suppressed by a gate field plate. A high breakdown voltage of 934 V and a figure of merit of 14.6 MW/cm2 were achieved at L FP of 2 µm and L drift of 15 µm, while those of the conventional device without a gate field plate were 744 V and 13.3 MW/cm2, respectively. Also, the fabricated device shows stable blocking characteristics at a high temperature of 250 °C. The drain leakage was increased by only 22% at 250 °C compared with that at room temperature.

  2. Long-term radiation effects on GaAs solar cell characteristics

    NASA Technical Reports Server (NTRS)

    Heinbockel, J. H.; Doviak, M. J.

    1978-01-01

    This report investigates preliminary design considerations which should be considered for a space experiment involving Gallium Arsenide (GaAs) solar cells. The electron radiation effects on GaAs solar cells were conducted in a laboratory environment, and a statistical analysis of the data is presented. In order to augment the limited laboratory data, a theoretical investigation of the effect of radiation on GaAs solar cells is also developed. The results of this study are empirical prediction equations which can be used to estimate the actual damage of electrical characteristics in a space environment. The experimental and theoretical studies also indicate how GaAs solar cell parameters should be designed in order to withstand the effects of electron radiation damage.

  3. Lifshitz topological transitions, induced by doping and deformation in single-crystal bismuth wires

    NASA Astrophysics Data System (ADS)

    Nikolaeva, A. A.; Konopko, L. A.; Huber, T. E.; Kobylianskaya, A. K.; Para, Gh. I.

    2017-02-01

    The features associated with the manifestation of Lifshitz electron topological transitions (ETT) in glass-insulated bismuth wires upon qualitative changes to the topology of the Fermi surface are investigated. The variation of the energy spectrum parameters was implemented by doping Bi with an acceptor impurity Sn and using elastic strain of up to 2%, relative to the elongation in the weakly-doped p-type Bi wires. Pure and doped glass-insulated single-crystal bismuth with different diameters and (1011) orientations along the axis were prepared by the Ulitovsky liquid phase casting method. For the first time, ETT-induced anomalies are observed along the temperature dependences of the thermoemf α(T) as triple-changes of the α sign (given heavy doping of Bi wires with an acceptor impurity Sn). The concentration and energy position of the Σ-band given a high degree of bismuth doping with Sn was assessed using the Shubnikov-de Haas effect oscillations, which were detected both from L-electrons and from T-holes in magnetic fields of up to 14 T. It is shown that the Lifshitz electron-topological transitions with elastic deformation of weakly-doped p-type Bi wires are accompanied by anomalies along the deformation dependences of the thermoemf at low temperatures. The effect is interpreted in terms of the formation of a selective scattering channel of L-carriers into the T-band with a high density of states, which is in good agreement with existing theoretical ETT models.

  4. GaAs thin films and methods of making and using the same

    DOEpatents

    Boettcher, Shannon; Ritenour, Andrew; Boucher, Jason; Greenaway, Ann

    2016-06-14

    Disclosed herein are embodiments of methods for making GaAs thin films, such as photovoltaic GaAs thin films. The methods disclosed herein utilize sources, precursors, and reagents that do not produce (or require) toxic gas and that are readily available and relatively low in cost. In some embodiments, the methods are readily scalable for industrial applications and can provide GaAs thin films having properties that are at least comparable to or potentially superior to GaAs films obtained from conventional methods.

  5. Metal-to-insulator crossover in YBa2Cu3Oy probed by low-temperature quasiparticle heat transport.

    PubMed

    Sun, X F; Segawa, Kouji; Ando, Yoichi

    2004-09-03

    It was recently demonstrated that in La2-xSrxCuO4 the magnetic-field (H) dependence of the low-temperature thermal conductivity kappa up to 16 T reflects whether the normal state under high magnetic field is a metal or an insulator. We measure the H dependence of kappa in YBa(2)Cu(3)O(y) (YBCO) at subkelvin temperatures for a wide doping range, and find that at low doping the kappa(H) behavior signifies the change in the ground state in this system as well. Surprisingly, the critical doping is found to be located deeply inside the underdoped region, about the hole doping of 0.07 hole/Cu; this critical doping is apparently related to the stripe correlations as revealed by the in-plane resistivity anisotropy.

  6. High-efficiency thin-film GaAs solar cells, phase2

    NASA Technical Reports Server (NTRS)

    Yeh, Y. C. M.

    1981-01-01

    Thin GaAs epi-layers with good crystallographic quality were grown using a (100) Si-substrate on which a thin Ge epi-interlayer was grown by CVD from germane. Both antireflection-coated metal oxide semiconductor (AMOS) and n(+)/p homojunction structures were studied. The AMOS cells were fabricated on undoped-GaAs epi-layers deposited on bulk poly-Ge substrates using organo-metallic CVD film-growth, with the best achieved AM1 conversion efficiency being 9.1%. Both p-type and n(+)-type GaAs growth were optimized using 50 ppm dimethyl zinc and 1% hydrogen sulfide, respectively. A direct GaAs deposition method in fabricating ultra-thin top layer, epitaxial n(+)/p shallow homojunction solar cells on (100) GaAs substrates (without anodic thinning) was developed to produce large area (1 sq/cm) cells, with 19.4% AM1 conversion efficiency achieved. Additionally, an AM1 conversion efficiency of 18.4% (17.5% with 5% grid coverage) was achieved for a single crystal GaAs n(+)/p cell grown by OM-CVD on a Ge wafer.

  7. Detecting Fermi-level shifts by Auger electron spectroscopy in Si and GaAs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Debehets, J.; Homm, P.; Menghini, M.

    In this study, changes in surface Fermi-level of Si and GaAs, caused by doping and cleaning, are investigated by Auger electron spectroscopy. Based on the Auger voltage contrast, we compared the Auger transition peak energy but with higher accuracy by using a more accurate analyzer and an improved peak position determination method. For silicon, a peak shift as large as 0.46 eV was detected when comparing a cleaned p-type and n-type wafer, which corresponds rather well with the theoretical difference in Fermi-levels. If no cleaning was applied, the peak position did not differ significantly for both wafer types, indicating Fermi-levelmore » pinning in the band gap. For GaAs, peak shifts were detected after cleaning with HF and (NH 4) 2S-solutions in an inert atmosphere (N 2-gas). Although the (NH 4) 2S-cleaning in N 2 is very efficient in removing the oxygen from the surface, the observed Ga- and As-peak shifts are smaller than those obtained after the HF-cleaning. It is shown that the magnitude of the shift is related to the surface composition. After Si-deposition on the (NH 4) 2S-cleaned surface, the Fermi-level shifts back to a similar position as observed for an as-received wafer, indicating that this combination is not successful in unpinning the Fermi-level of GaAs.« less

  8. Detecting Fermi-level shifts by Auger electron spectroscopy in Si and GaAs

    DOE PAGES

    Debehets, J.; Homm, P.; Menghini, M.; ...

    2018-01-12

    In this study, changes in surface Fermi-level of Si and GaAs, caused by doping and cleaning, are investigated by Auger electron spectroscopy. Based on the Auger voltage contrast, we compared the Auger transition peak energy but with higher accuracy by using a more accurate analyzer and an improved peak position determination method. For silicon, a peak shift as large as 0.46 eV was detected when comparing a cleaned p-type and n-type wafer, which corresponds rather well with the theoretical difference in Fermi-levels. If no cleaning was applied, the peak position did not differ significantly for both wafer types, indicating Fermi-levelmore » pinning in the band gap. For GaAs, peak shifts were detected after cleaning with HF and (NH 4) 2S-solutions in an inert atmosphere (N 2-gas). Although the (NH 4) 2S-cleaning in N 2 is very efficient in removing the oxygen from the surface, the observed Ga- and As-peak shifts are smaller than those obtained after the HF-cleaning. It is shown that the magnitude of the shift is related to the surface composition. After Si-deposition on the (NH 4) 2S-cleaned surface, the Fermi-level shifts back to a similar position as observed for an as-received wafer, indicating that this combination is not successful in unpinning the Fermi-level of GaAs.« less

  9. Properties of TiO2 thin films and a study of the TiO2-GaAs interface

    NASA Technical Reports Server (NTRS)

    Chen, C. Y.; Littlejohn, M. A.

    1977-01-01

    Titanium dioxide (TiO2) films prepared by chemical vapor deposition were investigated in this study for the purpose of the application in the GaAs metal-insulator-semiconductor field-effect transistor. The degree of crystallization increases with the deposition temperature. The current-voltage study, utilizing an Al-TiO2-Al MIM structure, reveals that the d-c conduction through the TiO2 film is dominated by the bulk-limited Poole-Frenkel emission mechanism. The dependence of the resistivity of the TiO2 films on the deposition environment is also shown. The results of the capacitance-voltage study indicate that an inversion layer in an n-type substrate can be achieved in the MIS capacitor if the TiO2 films are deposited at a temperature higher than 275 C. A process of low temperature deposition followed by the pattern definition and a higher temperature annealing is suggested for device fabrications. A model, based on the assumption that the surface state densities are continuously distributed in energy within the forbidden band gap, is proposed to interpret the lack of an inversion layer in the Al-TiO2-GaAs MIS structure with the TiO2 films deposited at 200 C.

  10. High quality, giant crystalline-Ge stripes on insulating substrate by rapid-thermal-annealing of Sn-doped amorphous-Ge in solid-liquid coexisting region

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matsumura, Ryo; JSPS Research Fellow, 5-3-1 Kojimachi, Chiyoda-ku, Tokyo, 102-0083; Kai, Yuki

    Formation of large-grain (≥30 μm) Ge crystals on insulating substrates is strongly desired to achieve high-speed thin-film transistors. For this purpose, we propose the methods of Sn-doping into amorphous-Ge combined with rapid-thermal-annealing (RTA) in the solid-liquid coexisting temperature region for the Ge-Sn alloy system. The densities of micro-crystal-nuclei formed in this temperature region become low by tuning the RTA temperature close to the liquidus curve, which enhances the lateral growth of GeSn. Thanks to the very small segregation coefficient of Sn, almost all Sn atoms segregate toward edges of the stripes during growth. Agglomeration of GeSn degrades the surface morphologies;more » however, it is significantly improved by lowering the initial Sn concentration. As a result, pure Ge with large crystal grains (∼40 μm) with smooth surface are obtained by optimizing the initial Sn concentration as low as 3 ∼ 5%. Lateral growth lengths are further increased through decreasing the number of nuclei in stripes by narrowing stripe width. In this way, high-crystallinity giant Ge crystals (∼200 μm) are obtained for the stripe width of 3 μm. This “Si-seed free” technique for formation of large-grain pure Ge crystals is very useful to realize high-performance thin-film devices on insulator.« less

  11. Mott-metal transition in layered perovskite iridate thin films via field-effect doping

    NASA Astrophysics Data System (ADS)

    Cheema, Suraj; Turcaud, Jeremy; Nelson, Chris; Salahuddin, Sayeef; Ramesh, Ramamoorthy

    We report on electrostatic gating of spin-orbit coupled Mott insulator Sr2IrO4 (Sr214) via ferroelectric field effect doping. Field effect doping has been used to modulate electronic phenomena in emerging 2D systems and strongly correlated oxides, but 5 d systems with large spin-orbit coupling have yet to be explored. Upon switching the polarization field of ferroelectric Pb(Zr20Ti80)O3 (PZT) to the down-poled (electron-accumulation) state, temperature-dependent resistivity measurements indicate extremely metallic behavior in the ultrathin Sr214 channel. This work successfully closes the Mott gap in Sr214 in a ''clean'' doping environment free of chemical disorder, thereby strengthening the link to the isostrucutral high-Tc cuprates, as Sr214 has been predicted to host d-wave superconductivity upon electron doping the parent antiferromagnetic insulating phase. Furthermore, the metallic behavior in Sr214 persists for thickness beyond the expected screening length, suggestive of a collective carrier delocalization mechanism. Electrostatically doped carriers prove to be a useful method for tuning the competition between spin-orbit and Coulomb interactions in order to trigger novel phase transitions, such as the Mott-metal crossover. This work was supported by the Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy, under Contract No. DE-AC02-05CH11231.

  12. Quantum corrections crossover and ferromagnetism in magnetic topological insulators.

    PubMed

    Bao, Lihong; Wang, Weiyi; Meyer, Nicholas; Liu, Yanwen; Zhang, Cheng; Wang, Kai; Ai, Ping; Xiu, Faxian

    2013-01-01

    Revelation of emerging exotic states of topological insulators (TIs) for future quantum computing applications relies on breaking time-reversal symmetry and opening a surface energy gap. Here, we report on the transport response of Bi2Te3 TI thin films in the presence of varying Cr dopants. By tracking the magnetoconductance (MC) in a low doping regime we observed a progressive crossover from weak antilocalization (WAL) to weak localization (WL) as the Cr concentration increases. In a high doping regime, however, increasing Cr concentration yields a monotonically enhanced anomalous Hall effect (AHE) accompanied by an increasing carrier density. Our results demonstrate a possibility of manipulating bulk ferromagnetism and quantum transport in magnetic TI, thus providing an alternative way for experimentally realizing exotic quantum states required by spintronic applications.

  13. Evolution of structural and transport properties in Y-doped double perovskite Sr2FeIrO6

    NASA Astrophysics Data System (ADS)

    Kharkwal, K. C.; Pramanik, A. K.

    2018-05-01

    The structural and transport properties of Yttrium doped double perovskite Sr2FeIrO6 have been investigated. Structural properties have been investigated by means of x-ray diffraction measurement and Rietveld analysis. Structural transition has not been observed although lattice parameters evolve with the Yttrium doping. All samples have been found to be insulating over the whole temperature range where the resistivity increases with doping. This increase in resistivity with doping may be due to the change in charge state of transition metal.

  14. Relation between trinucleotide GAA repeat length and sensory neuropathy in Friedreich's ataxia.

    PubMed

    Santoro, L; De Michele, G; Perretti, A; Crisci, C; Cocozza, S; Cavalcanti, F; Ragno, M; Monticelli, A; Filla, A; Caruso, G

    1999-01-01

    To verify if GAA expansion size in Friedreich's ataxia could account for the severity of sensory neuropathy. Retrospective study of 56 patients with Friedreich's ataxia selected according to homozygosity for GAA expansion and availability of electrophysiological findings. Orthodromic sensory conduction velocity in the median nerve was available in all patients and that of the tibial nerve in 46 of them. Data of sural nerve biopsy and of a morphometric analysis were available in 12 of the selected patients. The sensory action potential amplitude at the wrist (wSAP) and at the medial malleolus (m mal SAP) and the percentage of myelinated fibres with diameter larger than 7, 9, and 11 microm in the sural nerve were correlated with disease duration and GAA expansion size on the shorter (GAA1) and larger (GAA2) expanded allele in each pair. Pearson's correlation test and stepwise multiple regression were used for statistical analysis. A significant inverse correlation between GAA1 size and wSAP, m mal SAP, and percentage of myelinated fibres was found. Stepwise multiple regression showed that GAA1 size significantly affects electrophysiological and morphometric data, whereas duration of disease has no effect. The data suggest that the severity of the sensory neuropathy is probably genetically determined and that it is not progressive.

  15. Spin-Orbital entangled 2DEG in the δ-doped interface LaδSr2IrO4: Density-Functional Studies and Transport Results from Boltzmann Equations

    NASA Astrophysics Data System (ADS)

    Bhandari, Churna; Popovic, Zoran; Satpathy, Sashi

    The strong spin-orbit coupled iridates are of considerable interest because of the Mottminsulating state,which is produced by the combined effect of a strong spin-orbit coupling (SOC) and Coulomb repulsion. In this work, using density-functional methods, we predict the existence of a spin-orbital entangled two dimensional electron gas (2DEG) in the delta-doped structure, where a single SrO layer is replaced by an LaO layer. In the bulk Sr2IrO4, a strong SOC splits the t2 g states into Jeff = 1 / 2 and 3 / 2 states. The Coulomb repulsion further splits the half-filled Jeff = 1 / 2 bands into a lower and an upper Hubbard band (UHB) producing a Mott insulator. In the δ-doped structure, La dopes electrons into the UHB, and our results show that the doped electrons are strongly localized in one or two Ir layers at the interface, reminiscent of the 2DEG in the well-studied LaAlO3/SrTiO3 interface. The UHB, consisting of spin-orbit entangled states, is partially filled, resulting in a spin-orbital entangled 2DEG. Transport properties of the 2DEG shows many interesting features, which we study by solving the semi-classical Boltzmann transport equation in the presence of the magnetic and electric fields.

  16. Comparison of photoemission characteristics between square and circular wire array GaAs photocathodes.

    PubMed

    Deng, Wenjuan; Peng, Xincun; Zou, Jijun; Wang, Weilu; Liu, Yun; Zhang, Tao; Zhang, Yijun; Zhang, Daoli

    2017-11-10

    Two types of negative electron affinity gallium arsenide (GaAs) wire array photocathodes were fabricated by reactive ion etching and inductively coupled plasma etching of bulk GaAs material. High density GaAs wire arrays with high periodicity and good morphology were verified using scanning electron microscopy, and photoluminescence spectra confirmed the wire arrays had good crystalline quality. Reflection spectra showed that circular GaAs wire arrays had superior light trapping compared with square ones. However, after Cs/O activation, the square GaAs wire array photocathodes showed enhanced spectral response. The integral sensitivity of the square wire array photocathodes was approximately 2.8 times that of the circular arrays.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bagraev, N. T., E-mail: Bagraev@mail.ioffe.ru; Chaikina, E. I.; Danilovskii, E. Yu.

    The sulfur passivation of the semi-insulating GaAs bulk (SI GaAs) grown in an excess phase of arsenic is used to observe the transition from the Coulomb blockade to the weak localization regime at room temperature. The I–V characteristics of the SI GaAs device reveal nonlinear behavior that appears to be evidence of the Coulomb blockade process as well as the Coulomb oscillations. The sulfur passivation of the SI GaAs device surface results in enormous transformation of the I–V characteristics that demonstrate the strong increase of the resistance and Coulomb blockade regime is replaced by the electron tunneling processes. The resultsmore » obtained are analyzed within frameworks of disordering SI GaAs surface that is caused by inhomogeneous distribution of the donor and acceptor anti-site defects which affects the conditions of quantum- mechanical tunneling. Weak localization processes caused by the preservation of the Fermi level pinning are demonstrated by measuring the negative magnetoresistance in weak magnetic fields at room temperature. Finally, the studies of the magnetoresistance at higher magnetic fields reveal the h/2e Aharonov–Altshuler–Spivak oscillations with the complicated behavior due to possible statistical mismatch of the interference paths in the presence of different microdefects.« less

  18. Thermal stability and dielectric properties of nano-SiO2-doped cellulose

    NASA Astrophysics Data System (ADS)

    Zhang, Song; Tang, Chao; Hao, Jian; Wang, Xiaobo

    2017-07-01

    We report the thermal stability and dielectric properties of nano-SiO2-doped cellulose. Molecular dynamics simulations were performed using an undoped cellulose model (C0), a nano-SiO2-doped cellulose model with untreated surface unsaturated bonds (C1), and a nano-SiO2-doped cellulose model for which surface unsaturated O atoms were treated with -H and surface unsaturated Si atoms were treated with -OH (C2). The simulation results showed that the mechanical properties of C1 and C2 were better than those of C0 and were optimal when the content of nano-SiO2 was 5%. The simulation results for C2 were more accurate than those for the other models, and thus, C2 provides theoretical support for the construction of a reasonable model of nano-SiO2 and cellulose in the future. The temperature at which the free volume fraction of C2 jumps was 50 K higher than that for C0, and the thermal stability of C2 was better than that of C0. Experimental results showed that the maximum tensile strength of the insulation paper was obtained when the content of nano-SiO2 was 5%. Moreover, at this content of nano-SiO2, the dielectric constant was lowest and closest to that of transformer insulation oil, which will improve the distribution of the electric field and thus the overall breakdown performance of oil-paper insulation systems.

  19. Ultra-thin GaAs single-junction solar cells integrated with a reflective back scattering layer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Weiquan; Becker, Jacob; Liu, Shi

    2014-05-28

    This paper reports the proposal, design, and demonstration of ultra-thin GaAs single-junction solar cells integrated with a reflective back scattering layer to optimize light management and minimize non-radiative recombination. According to our recently developed semi-analytical model, this design offers one of the highest potential achievable efficiencies for GaAs solar cells possessing typical non-radiative recombination rates found among commercially available III-V arsenide and phosphide materials. The structure of the demonstrated solar cells consists of an In{sub 0.49}Ga{sub 0.51}P/GaAs/In{sub 0.49}Ga{sub 0.51}P double-heterostructure PN junction with an ultra-thin 300 nm thick GaAs absorber, combined with a 5 μm thick Al{sub 0.52}In{sub 0.48}P layer with amore » textured as-grown surface coated with Au used as a reflective back scattering layer. The final devices were fabricated using a substrate-removal and flip-chip bonding process. Solar cells with a top metal contact coverage of 9.7%, and a MgF{sub 2}/ZnS anti-reflective coating demonstrated open-circuit voltages (V{sub oc}) up to 1.00 V, short-circuit current densities (J{sub sc}) up to 24.5 mA/cm{sup 2}, and power conversion efficiencies up to 19.1%; demonstrating the feasibility of this design approach. If a commonly used 2% metal grid coverage is assumed, the anticipated J{sub sc} and conversion efficiency of these devices are expected to reach 26.6 mA/cm{sup 2} and 20.7%, respectively.« less

  20. Spatial structure of single and interacting Mn acceptors in GaAs

    NASA Astrophysics Data System (ADS)

    Koenraad, Paul

    2005-03-01

    Ferromagnetic semiconductors such as Ga1-xMnxAs are receiving a lot of attention at the moment because of their application in spintronic devices. However, despite intense study of deep acceptors in III-V semiconductors such as MnGa, little information has been obtained on their electronic properties at the atomic scale. Yet the spatial shape of the Mn acceptor state will influence the hole-mediated Mn-Mn coupling and thus all of the magnetic properties of ferromagnetic semiconductors such as Ga1-xMnxAs. This study presents an experimental and theoretical description of the spatial symmetry of the Mn acceptor wave-function in GaAs. We present measurements of the spatial mapping of the anisotropic wavefunction of a hole localized at a Mn acceptor. To achieve this, we have used the STM tip not only to image the Mn acceptor but also to manipulate its charge state A^0/A^- at room temperature. Within an envelope function effective mass model (EFM) the anisotropy in the acceptor wave-function can be traced to the influence of the cubic symmetry of the GaAs crystal which selects specific d-states that mix into the ground state due to the spin-orbit interaction in the valence band. Comparison with calculations based on a tight-binding model (TBM) for the Mn acceptor structure supports this conclusion. Using the same experimental and theoretical approach we furthermore explored the interaction between Mn acceptors directly by analyzing close Mn-Mn pairs, which were separated by less than 2 nm. We will discuss some implications of these results for Mn delta-doped layers grown on differently oriented growth surfaces.