Science.gov

Sample records for semi-permeable membrane devices

  1. Development of bioassay techniques with extracts from semi-permeable membrane devices (SPMDs)

    SciTech Connect

    Metcalfe, T.L.; White, P.; Mackay, D.; Metcalfe, C.

    1995-12-31

    Semi-permeable membrane devices (SPMDs), consisting of polyethylene bags filled with triolein, have been used to monitor for lipophilic organic contaminants in water. Although extracts from SPMDs have most often been analyzed for concentrations of organic contaminants, there is also the potential to monitor the toxicity of these extracts using in vitro and in vivo bioassays. SPMDs were deployed for four weeks at several sites along a corridor extending from Peche Island in the Detroit River to Pelee Island in western Lake Erie to monitor the distribution of toxic organic contaminants in the water. Analysis of the extracts from the SPMDs for concentrations of PCBs and other organochlorine compounds, and polynuclear aromatic hydrocarbons (PAHs) indicated that the regions in the Detroit River within the Trenton Channel and near Zug Island were the most highly contaminated. Bioassays conducted with extracts from the SPMDs included the in vitro SOS Chromotest for genotoxic activity, an acute lethality test with Daphnia magna, and a fish embryotoxicity test with embryos of Japanese medaka (Oryzias latipes). These bioassay data generally indicated that the toxicity and concentrations of organic contaminants in the SPMD extracts were correlated. This study indicates that there is potential to use short-term bioassays of extracts from SPMDs to monitor for in situ contamination in the aquatic environment.

  2. USE OF SEMI-PERMEABLE MEMBRANE DEVICES TO MONITOR POLLUTANTS IN WATER AND ASSESS THEIR EFFECTS: A LABORATORY TEST AND FIELD VERIFICATION. (U915464)

    EPA Science Inventory

    Uptake of eight pesticides of different classes (organochlorines, synthetic pyrethroids, dinitroanilines, amides) by semi-permeable membrane devices (SPMDs) was studied in a laboratory continuous-flow system. After 20 days of exposure, membrane concentration factors were in th...

  3. USE OF SEMI-PERMEABLE MEMBRANE DEVICES TO MONITOR POLLUTANTS IN WATER AND ASSESS THEIR EFFECTS: A LABORATORY TEST AND FIELD VERIFICATION. (U915464)

    EPA Science Inventory

    Uptake of eight pesticides of different classes (organochlorines, synthetic pyrethroids, dinitroanilines, amides) by semi-permeable membrane devices (SPMDs) was studied in a laboratory continuous-flow system. After 20 days of exposure, membrane concentration factors were in th...

  4. An analysis of using semi-permeable membrane devices to assess persistent organic pollutants in ambient air of Alaska

    NASA Astrophysics Data System (ADS)

    Wu, Ted Hsin-Yeh

    A region of concern for persistent organic pollutants (POPS) contamination is the Arctic, because of POPs' ability to migrate long distances through the atmosphere toward cold regions, condense out of the atmosphere in those region, deposit in sensitive arctic ecosystems and bioaccumulate in Arctic species. Thus, monitoring of POP concentrations in the Arctic is necessary. However, traditional active air monitoring techniques for POPs may not be feasible in the Arctic, because of logistics and cost. While these issues may be overcome using passive air sampling devices, questions arise about the interpretation of the contaminant concentrations detected using the passive air samplers. In this dissertation semi-permeable membrane devices (SPMDs) containing triolein were characterized and evaluated for use in sampling the ambient air of Alaska for three classes of POPS (organochlorines [OCs], polychlorinated biphenyls [PCBs] and polyaromatic hydrocarbons [PAHs]). In addition, a SPMD-based sampling campaign for POPS was conducted simultaneously at five sites in Alaska during a one-year period. The POP concentrations obtained from the SPMDs were examined to determine the spatial and seasonal variability at the locations. POP concentrations detected in SPMDs were influenced by exposure to sunlight, concentrations of particulate-bound contaminants and changes in temperature. PAH concentrations in a SPMD mounted in a sunlight-blocking deployment unit were higher than in a SPMD exposed to sunlight (P = 0.007). PCB concentrations in SPMD exposed to filtered and non-filtered air were significantly different (P < 0.0001). Derived PAH air concentrations measured using SPMD were within a factor of approximately 7 of those obtained from an air sampler in Barrow, Alaska. The field study showed three distinct groups of samples. Barrow was separated from the sub-Arctic samples and a Homer sample (September-December) was distinct from the sub-Arctic samples. The separations suggest

  5. A comparison of polycyclic aromatic hydrocarbon and petroleum hydrocarbon uptake by mussels (Perna viridis) and semi-permeable membrane devices (SPMDs) in Hong Kong coastal waters.

    PubMed

    Richardson, Bruce J; Zheng, Gene J; Tse, Edmund S C; De Luca-Abbott, Sharon B; Siu, Stanley Y M; Lam, Paul K S

    2003-01-01

    The ability of mussels (Perna viridis) and semi-permeable membrane devices (SPMDs) to accumulate polycyclic aromatic hydrocarbons (PAHs) and petroleum hydrocarbons (PHCs) from five sites in Hong Kong's coastal waters was compared. Mussels consistently had higher levels of contaminants, but their utility was limited at one highly polluted site due to mortality. Mussels and SPMDs ranked sites differently in terms of individual contaminant levels. Although SPMDs overcome many of the disadvantages of using living organisms to measure contaminants in marine waters, they cannot be used as "mimics" due to different PAH and PHC accumulation patterns.

  6. Brown mussels (Perna perna) and semi-permeable membrane devices (SPMDs) as indicators of organic pollutants in the South African marine environment.

    PubMed

    Degger, N; Wepener, V; Richardson, B J; Wu, R S S

    2011-01-01

    A distinct lack of historical and current data on the status of organic pollutant contaminants within the South African marine environment is evident. This has highlighted the need for more current organic pollutant assessments. Reference mussels and SPMDs were transplanted at five South African harbour sites to assess organic bioaccumulation in brown mussels (Perna perna) and semi-permeable membrane devices (SPMDs). Spatial patterns of PAH and PCB contaminants were determined by GC-MS and GC-ECD after appropriate sample preparation. Significant (p<0.05) spatial differences were observed between the sites. Results indicate no correlations between the passive device and the transplanted mussels; however the SPMDs provided complementary information on the presence of dioxin-like PCBs within the environment not detected by the mussel. The results indicate that information provided by both the mussels and SPMDs allow for a more in depth scrutiny of environmental conditions as a result of anthropogenic influence.

  7. Using semi-permeable membrane devices and stable nitrogen isotopes to detect anthropogenic influences on the Truckee River, USA

    USGS Publications Warehouse

    Saito, L.; Rosen, Michael R.; Chandra, S.; Fritsen, C.H.; Arufe, J.A.; Redd, C.

    2008-01-01

    Stable nitrogen isotopes (??15N) and semipermeable membrane devices (SPMDs) were used together to provide evidence of potential anthropogenic connections to aquatic organisms in the Truckee River, which flows through the Reno/Sparks metropolitan area in Nevada. Crayfish, snail, and periphyton ??15N values, and SPMD toxicity data collected during high and low flow periods at seven primary sites on the river were used with water quality and flow data for the assessment. All biota showed an increase of ??15N on both dates at sites downstream of inflows of a water-quality impaired tributary and urban drain relative to upstream. In addition, most of the lowest ??15N values on each date occurred at the most downstream site on the river. SPMDs sample lipophilic organic contaminants and can be used to assess organic contaminant toxicity to aquatic organisms because they use a membrane that mimics organic contaminant uptake by fish. In this study, results from a fluoroscan test [pyrene index (PI)] of SPMD extracts that responds to higher molecular weight polycyclic aromatic hydrocarbons (PAHs) showed patterns similar to stable isotope data, although observed peaks in PI values occurred in the urban area upstream of where peak ??15N values occurred. The CYP1A biomarker test, which responds to PAHs, certain polychlorinated biphenyls (PCBs), and organochlorines, showed peak toxic equivalents (TEQ) values farther downstream of the urban area. Thus, it is likely that PAHs were contributing to toxicity in the urban area, whereas other nonurban sources of organic carbon may have been present farther downstream. The combined use of stable isotope measurements and SPMDs provided a means of simultaneously examining whether aquatic biota are incorporating constituents from potential food sources (via stable isotopes) or exposure through water (via SPMDs). ?? Mary Ann Liebert, Inc. 2008.

  8. Ultrasound assisted dialysis of semi-permeable membrane devices for the simultaneous analysis of a wide number of persistent organic pollutants.

    PubMed

    Bustamante, Julen; Navarro, Patricia; Arana, Gorka; de Diego, Alberto; Madariaga, Juan Manuel

    2013-09-30

    A new procedure based on ultrasound assisted dialysis (UAD) for the simultaneous and quantitative extraction of a wide number of persistent organic pollutants (POPs) such as polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs) or some other organochlorinated pesticides (OCPs) contained in semi-permeable membrane devices (SPMDs) has been developed. This extraction technique combines the advantages of the organic solvent dialysis (OSD) and the speed of the ultrasound assisted extraction. The extraction was performed in an ultrasound bath for 32 min placing the SPMD in a glass flask covered with 80 mL of hexane. This set-up is able to extract simultaneously up to 8 samples. The proposed method entails good repeatabilities (RSD 2-13%) and recoveries (around 100% for almost every analyte). Limits of detection were at ng SPMD(-1) level and enough for the determination of the target analytes in a slightly polluted aquatic environment, as it was tested by successfully comparing the OSD to the proposed methodology. Therefore, the results obtained show that the UAD can be a good alternative for the extraction of POPs in SPMDs as it requires short extraction times and solvent volumes, and provides a cleaner extract for the subsequent clean-up step. Moreover, it fits better than the OSD to the general requirements of Green Chemistry.

  9. PAH assessment in the main Brazilian offshore oil and gas production area using semi-permeable membrane devices (SPMD) and transplanted bivalves

    NASA Astrophysics Data System (ADS)

    André Lourenço, Rafael; Francisco de Oliveira, Fábio; Haddad Nudi, Adriana; Rebello Wagener, Ângela de Luca; Guadalupe Meniconi, Maria de Fátima; Francioni, Eleine

    2015-06-01

    The Campos Basin is Brazil's main oil and gas production area. In 2013, more than 50 million cubic meters of produced water (PW) was discharged into these offshore waters. Despite the large volumes of PW that are discharged in the Campos Basin each day, the ecological concern of the chemicals in the PW are not completely understood. Polycyclic aromatic hydrocarbons (PAH) are the most important contributors to the ecological hazards that are posed by discharged PW. This study aimed to evaluate the potential bioaccumulation of PAH using transplanted bivalves (Nodipecten nodosus) and semi-permeable membrane devices (SPMD). The study was conducted in two platforms that discharge PW (P19 and P40). Another platform that does not discharge PW (P25) was investigated for comparison with the obtained results. Time-integrated hydrocarbon concentrations using SPMD and transplanted bivalves were estimated from the seawater near the three platforms. The bioaccumulation of the PAH in the transplanted bivalves at platforms P19 and P40 were up to fivefold greater than the bioaccumulation of the PAH at platform P25. The lowest PAH concentrations were estimated for platform P25 (4.3-6.2 ng L-1), and the highest PAH concentrations were estimated for platform P19 (9.2-37.3 ng L-1). Both techniques were effective for determining the bioavailability of the PAH and for providing time-integrated hydrocarbon concentrations regarding oil and gas production activities.

  10. Electrostatic interaction of neutral semi-permeable membranes

    NASA Astrophysics Data System (ADS)

    Vinogradova, Olga I.; Bocquet, Lyderic; Bogdanov, Artem N.; Tsekov, Roumen; Lobaskin, Vladimir

    2012-01-01

    We consider an osmotic equilibrium between bulk solutions of polyelectrolyte bounded by semi-permeable membranes and separated by a thin film of salt-free liquid. Although the membranes are neutral, the counter-ions of the polyelectrolyte molecules permeate into the gap and lead to a steric charge separation. This gives rise to a distance-dependent membrane potential, which translates into a repulsive electrostatic disjoining pressure. From the solution of the nonlinear Poisson-Boltzmann equation, we obtain the distribution of the potential and of ions. We then derive an explicit formula for the pressure exerted on the membranes and show that it deviates from the classical van't Hoff expression for the osmotic pressure. This difference is interpreted in terms of a repulsive electrostatic disjoining pressure originating from the overlap of counterion clouds inside the gap. We also develop a simplified theory based on a linearized Poisson-Boltzmann approach. A comparison with simulation of a primitive model for the electrolyte is provided and does confirm the validity of the theoretical predictions. Beyond the fundamental result that the neutral surfaces can repel, this mechanism not only helps to control the adhesion and long-range interactions of living cells, bacteria, and vesicles, but also allows us to argue that electrostatic interactions should play enormous role in determining behavior and functions of systems bounded by semi-permeable membranes.

  11. Algae Bioreactor Using Submerged Enclosures with Semi-Permeable Membranes

    NASA Technical Reports Server (NTRS)

    Trent, Jonathan D (Inventor); Gormly, Sherwin J (Inventor); Embaye, Tsegereda N (Inventor); Delzeit, Lance D (Inventor); Flynn, Michael T (Inventor); Liggett, Travis A (Inventor); Buckwalter, Patrick W (Inventor); Baertsch, Robert (Inventor)

    2013-01-01

    Methods for producing hydrocarbons, including oil, by processing algae and/or other micro-organisms in an aquatic environment. Flexible bags (e.g., plastic) with CO.sub.2/O.sub.2 exchange membranes, suspended at a controllable depth in a first liquid (e.g., seawater), receive a second liquid (e.g., liquid effluent from a "dead zone") containing seeds for algae growth. The algae are cultivated and harvested in the bags, after most of the second liquid is removed by forward osmosis through liquid exchange membranes. The algae are removed and processed, and the bags are cleaned and reused.

  12. Influence of the semi-permeable membrane on the performance of dynamic field gradient focusing

    PubMed Central

    Burke, Jeffrey M.; Ivory, Cornelius F.

    2010-01-01

    This paper is part of our continued effort to understand the underlying principles of dynamic field gradient focusing. In this investigation, we examined three problems associated with the use of a semi-permeable membrane. First, the influence of steric and ionic exclusion of current carrying ions through the membrane was examined. It was found that resistance to the transport of ions across the membrane resulted in a shallowing of the electric field profile and an increase in the size of the defocusing zone, which is where the slope of the electric field is reversed so that it disperses rather than concentrates solutes. These problems could be reduced by using a membrane with large pores relative to the size of the buffering ions and completely void of fixed charges. Next, a numerical simulation was used to investigate concentration polarization of protein onto the surface of the membrane. Due to the presence of a transverse electric field, species were pulled toward the membrane. If the membrane is restrictive to those species, a concentrated, polarized layer will form on the surface. The simulation showed that by decreasing the channel to a depth of 20 μm, the concentrated region next to the membrane could be reduced. Finally, it was found that changes in column volume due to loss of membrane structural integrity could be mitigated by including a porous ceramic support. The variation in peak elution times was decreased from greater than 20% to less than 3%. PMID:20191552

  13. Positive zeta potential of a negatively charged semi-permeable plasma membrane

    NASA Astrophysics Data System (ADS)

    Sinha, Shayandev; Jing, Haoyuan; Das, Siddhartha

    2017-08-01

    The negative charge of the plasma membrane (PM) severely affects the nature of moieties that may enter or leave the cells and controls a large number of ion-interaction-mediated intracellular and extracellular events. In this letter, we report our discovery of a most fascinating scenario, where one interface (e.g., membrane-cytosol interface) of the negatively charged PM shows a positive surface (or ζ) potential, while the other interface (e.g., membrane-electrolyte interface) still shows a negative ζ potential. Therefore, we encounter a completely unexpected situation where an interface (e.g., membrane-cytosol interface) that has a negative surface charge density demonstrates a positive ζ potential. We establish that the attainment of such a property by the membrane can be ascribed to an interplay of the nature of the membrane semi-permeability and the electrostatics of the electric double layer established on either side of the charged membrane. We anticipate that such a membrane property can lead to such capabilities of the cell (in terms of accepting or releasing certain kinds of moieties as well regulating cellular signaling) that was hitherto inconceivable.

  14. Seasonal Assessment of Biomass and Fatty Acid Productivity by Tetraselmis sp. in the Ocean Using Semi-Permeable Membrane Photobioreactors.

    PubMed

    Kim, Z-Hun; Park, Hanwool; Lee, Choul-Gyun

    2016-06-28

    A green microalga, Tetraselmis sp., was cultivated in the coastal seawater of Young-Heung Island using semi-permeable membrane photobioreactors (SPM-PBRs) in different seasons. The microalgae in the SPM-PBRs were able to grow on nutrients diffused into the PBRs from the surrounding seawater through SPMs. The biomass productivity varied depending on the ion permeabilities of the SPMs and environmental conditions, whereas the quality and quantity of fatty acids were constant. The temperature of seawater had a greater influence than solar radiation did on productivity of Tetraselmis sp. in SPM-PBRs. SPM-PBRs could provide technologies for concurrent algal biomass and fatty acids production, and eutrophication reduction in the ocean.

  15. Semi-Permeable Membrane Retention of Synovial Fluid Lubricants Hyaluronan and Proteoglycan 4 for a Biomimetic Bioreactor

    PubMed Central

    Blewis, Megan E.; Lao, Brian J.; Jadin, Kyle D.; McCarty, William J.; Bugbee, William D.; Firestein, Gary S.

    2010-01-01

    Synovial fluid (SF) contains lubricant macromolecules, hyaluronan (HA), and proteoglycan 4 (PRG4). The synovium not only contributes lubricants to SF through secretion by synoviocyte lining cells, but also concentrates lubricants in SF due to its semi-permeable nature. A membrane that recapitulates these synovium functions may be useful in a bioreactor system for generating a bioengineered fluid (BF) similar to native SF. The objectives were to analyze expanded polytetrafluoroethylene membranes with pore sizes of 50 nm, 90 nm, 170 nm, and 3 μm in terms of (1) HA and PRG4 secretion rates by adherent synoviocytes, and (2) the extent of HA and PRG4 retention with or without synoviocytes adherent on the membrane. Experiment 1: Synoviocytes were cultured on tissue culture (TC) plastic or membranes ± IL-1β + TGF-β1 + TNF-α, a cytokine combination that stimulates lubricant synthesis. HA and PRG4 secretion rates were assessed by analysis of medium. Experiment 2: Bioreactors were fabricated to provide a BF compartment enclosed by membranes ± adherent synoviocytes, and an external compartment of nutrient fluid (NF). A solution with HA (1 mg/mL, MW ranging from 30 to 4,000 kDa) or PRG4 (50 μg/mL) was added to the BF compartment, and HA and PRG4 loss into the NF compartment after 2, 8, and 24 h was determined. Lubricant loss kinetics were analyzed to estimate membrane permeability. Experiment 1: Cytokine-regulated HA and PRG4 secretion rates on membranes were comparable to those on TC plastic. Experiment 2: Transport of HA and PRG4 across membranes was lowest with 50 nm membranes and highest with 3 μm membranes, and transport of high MW HA was decreased by adherent synoviocytes (for 50 and 90 nm membranes). The permeability to HA mixtures for 50 nm membranes was ~20 × 10−8 cm/s (− cells) and ~5 × 10−8 cm/s (+ cells), for 90 nm membranes was ~35 × 10−8 cm/s (− cells) and ~ 19 × 10−8 cm/s (+ cells), for 170 nm membranes was ~74 × 10−8 cm/s (± cells

  16. Semi-permeable membrane retention of synovial fluid lubricants hyaluronan and proteoglycan 4 for a biomimetic bioreactor.

    PubMed

    Blewis, Megan E; Lao, Brian J; Jadin, Kyle D; McCarty, William J; Bugbee, William D; Firestein, Gary S; Sah, Robert L

    2010-05-01

    Synovial fluid (SF) contains lubricant macromolecules, hyaluronan (HA), and proteoglycan 4 (PRG4). The synovium not only contributes lubricants to SF through secretion by synoviocyte lining cells, but also concentrates lubricants in SF due to its semi-permeable nature. A membrane that recapitulates these synovium functions may be useful in a bioreactor system for generating a bioengineered fluid (BF) similar to native SF. The objectives were to analyze expanded polytetrafluoroethylene membranes with pore sizes of 50 nm, 90 nm, 170 nm, and 3 microm in terms of (1) HA and PRG4 secretion rates by adherent synoviocytes, and (2) the extent of HA and PRG4 retention with or without synoviocytes adherent on the membrane. Experiment 1: Synoviocytes were cultured on tissue culture (TC) plastic or membranes +/- IL-1beta + TGF-beta1 + TNF-alpha, a cytokine combination that stimulates lubricant synthesis. HA and PRG4 secretion rates were assessed by analysis of medium. Experiment 2: Bioreactors were fabricated to provide a BF compartment enclosed by membranes +/- adherent synoviocytes, and an external compartment of nutrient fluid (NF). A solution with HA (1 mg/mL, MW ranging from 30 to 4,000 kDa) or PRG4 (50 microg/mL) was added to the BF compartment, and HA and PRG4 loss into the NF compartment after 2, 8, and 24 h was determined. Lubricant loss kinetics were analyzed to estimate membrane permeability. Experiment 1: Cytokine-regulated HA and PRG4 secretion rates on membranes were comparable to those on TC plastic. Experiment 2: Transport of HA and PRG4 across membranes was lowest with 50 nm membranes and highest with 3 microm membranes, and transport of high MW HA was decreased by adherent synoviocytes (for 50 and 90 nm membranes). The permeability to HA mixtures for 50 nm membranes was approximately 20 x 10(-8) cm/s (- cells) and approximately 5 x 10(-8) cm/s (+ cells), for 90 nm membranes was approximately 35 x 10(-8) cm/s (- cells) and approximately 19 x 10(-8) cm

  17. The casting of semi-permeable membranes in a microgravity environment

    NASA Technical Reports Server (NTRS)

    Vera, I.

    1986-01-01

    The experiment is to study polymeric membranes. Presently, semipermeable membranes are being manufactured from several different kinds of polymers all over the world and specific applications have been identified in fluid separation processes such as reverse osmosis, ultrafiltration and electrodialysis. Although, the ultrastructure of asymmetric and composite membranes have been under intensive study, still there are many questions about the factors affecting this structure and their degree of correlation. Nevertheless, there is indication that the entire morphological structure of polymeric membranes could be affected by the difference in specific gravity between the cast solution and the coagulation liquid normally used in the membranes preparation process. The casting of semipermeable membranes in space might help to identify the effect of gravity upon the structure of these membranes. It is important to recognize that the casting process involves changes of state and that in a microgravity environment, there will be a reduction on buoyancy-driven natural convection and density gradients.

  18. The casting of semi-permeable membranes in a microgravity environment

    NASA Technical Reports Server (NTRS)

    Vera, I.

    1986-01-01

    The experiment is to study polymeric membranes. Presently, semipermeable membranes are being manufactured from several different kinds of polymers all over the world and specific applications have been identified in fluid separation processes such as reverse osmosis, ultrafiltration and electrodialysis. Although, the ultrastructure of asymmetric and composite membranes have been under intensive study, still there are many questions about the factors affecting this structure and their degree of correlation. Nevertheless, there is indication that the entire morphological structure of polymeric membranes could be affected by the difference in specific gravity between the cast solution and the coagulation liquid normally used in the membranes preparation process. The casting of semipermeable membranes in space might help to identify the effect of gravity upon the structure of these membranes. It is important to recognize that the casting process involves changes of state and that in a microgravity environment, there will be a reduction on buoyancy-driven natural convection and density gradients.

  19. Organochlorine contaminants in double-crested cormorants from Green Bay, WI: I. Large-scale extraction and isolation from eggs using semi-permeable membrane dialysis

    USGS Publications Warehouse

    Meadows, J.C.; Tillitt, D.E.; Schwartz, T.R.; Schroeder, D.J.; Echols, K.R.; Gale, R.W.; Powell, D.C.; Bursian, S.J.

    1996-01-01

    A 41.3-kg sample of double-crested cormorant (Phalacrocorax auritus) egg contents was extracted, yielding over 2 L of egg lipid. The double-crested cormorant (DCC) egg extract, after clean-up and concentration, was intended for use in egg injection studies to determine the embryotoxicity of the organic contaminants found within the eggs. Large-scale dialysis was used as a preliminary treatment to separate the extracted contaminants from the co-extracted sample lipids. The lipid was dialyzed in 80×5 cm semi-permeable membrane devices (SPMDs) in 50-ml aliquants. After the removal of 87 g of cholesterol by freeze-fractionation, the remaining lipid carryover (56 g) was removed by 100 routine gel permeation chromatography (GPC) operations. A 41,293-g sample was thus extracted and purified to the extent that it could easily be placed at a volume of 5 ml, the volume calculated to be necessary for the egg injection study. Analyses were performed comparing contaminant concentrations in the final purified extract to those present in the original egg material, in the extract after dialysis and cholesterol removal, and in the excluded materials. Recoveries of organochlorine pesticides through dialysis and cholesterol ranged from 96% to 135%. Total polychlorinated biphenyls in the final extract were 96% of those measured in the original egg material. Analysis of excluded lipid and cholesterol indicated that 92% of the polychlorinated dibenzo-dioxins and-furans were separated into the final extract.

  20. Modulation of depth-dependent properties in tissue-engineered cartilage with a semi-permeable membrane and perfusion: a continuum model of matrix metabolism and transport.

    PubMed

    Klein, T J; Sah, R L

    2007-01-01

    The functional properties of cartilaginous tissues are determined predominantly by the content, distribution, and organization of proteoglycan and collagen in the extracellular matrix. Extracellular matrix accumulates in tissue-engineered cartilage constructs by metabolism and transport of matrix molecules, processes that are modulated by physical and chemical factors. Constructs incubated under free-swelling conditions with freely permeable or highly permeable membranes exhibit symmetric surface regions of soft tissue. The variation in tissue properties with depth from the surfaces suggests the hypothesis that the transport processes mediated by the boundary conditions govern the distribution of proteoglycan in such constructs. A continuum model (DiMicco and Sah in Transport Porus Med 50:57-73, 2003) was extended to test the effects of membrane permeability and perfusion on proteoglycan accumulation in tissue- engineered cartilage. The concentrations of soluble, bound, and degraded proteoglycan were analyzed as functions of time, space, and non-dimensional parameters for several experimental configurations. The results of the model suggest that the boundary condition at the membrane surface and the rate of perfusion, described by non-dimensional parameters, are important determinants of the pattern of proteoglycan accumulation. With perfusion, the proteoglycan profile is skewed, and decreases or increases in magnitude depending on the level of flow-based stimulation. Utilization of a semi-permeable membrane with or without unidirectional flow may lead to tissues with depth-increasing proteoglycan content, resembling native articular cartilage.

  1. “Breakthrough” osmosis and unusually high power densities in Pressure-Retarded Osmosis in non-ideally semi-permeable supported membranes

    NASA Astrophysics Data System (ADS)

    Yaroshchuk, Andriy

    2017-03-01

    Osmosis is the movement of solvent across a membrane induced by a solute-concentration gradient. It is very important for cell biology. Recently, it has started finding technological applications in the emerging processes of Forward Osmosis and Pressure-Retarded Osmosis. They use ultrathin and dense membranes supported mechanically by much thicker porous layers. Until now, these processes have been modelled by assuming the membrane to be ideally-semipermeable. We show theoretically that allowing for even minor deviations from ideal semipermeability to solvent can give rise to a previously overlooked mode of “breakthrough” osmosis. Here the rate of osmosis is very large (compared to the conventional mode) and practically unaffected by the so-called Internal Concentration Polarization. In Pressure-Retarded Osmosis, the power densities can easily exceed the conventional mode by one order of magnitude. Much more robust support layers can be used, which is an important technical advantage (reduced membrane damage) in Pressure-Retarded Osmosis.

  2. "Breakthrough" osmosis and unusually high power densities in Pressure-Retarded Osmosis in non-ideally semi-permeable supported membranes.

    PubMed

    Yaroshchuk, Andriy

    2017-03-23

    Osmosis is the movement of solvent across a membrane induced by a solute-concentration gradient. It is very important for cell biology. Recently, it has started finding technological applications in the emerging processes of Forward Osmosis and Pressure-Retarded Osmosis. They use ultrathin and dense membranes supported mechanically by much thicker porous layers. Until now, these processes have been modelled by assuming the membrane to be ideally-semipermeable. We show theoretically that allowing for even minor deviations from ideal semipermeability to solvent can give rise to a previously overlooked mode of "breakthrough" osmosis. Here the rate of osmosis is very large (compared to the conventional mode) and practically unaffected by the so-called Internal Concentration Polarization. In Pressure-Retarded Osmosis, the power densities can easily exceed the conventional mode by one order of magnitude. Much more robust support layers can be used, which is an important technical advantage (reduced membrane damage) in Pressure-Retarded Osmosis.

  3. “Breakthrough” osmosis and unusually high power densities in Pressure-Retarded Osmosis in non-ideally semi-permeable supported membranes

    PubMed Central

    Yaroshchuk, Andriy

    2017-01-01

    Osmosis is the movement of solvent across a membrane induced by a solute-concentration gradient. It is very important for cell biology. Recently, it has started finding technological applications in the emerging processes of Forward Osmosis and Pressure-Retarded Osmosis. They use ultrathin and dense membranes supported mechanically by much thicker porous layers. Until now, these processes have been modelled by assuming the membrane to be ideally-semipermeable. We show theoretically that allowing for even minor deviations from ideal semipermeability to solvent can give rise to a previously overlooked mode of “breakthrough” osmosis. Here the rate of osmosis is very large (compared to the conventional mode) and practically unaffected by the so-called Internal Concentration Polarization. In Pressure-Retarded Osmosis, the power densities can easily exceed the conventional mode by one order of magnitude. Much more robust support layers can be used, which is an important technical advantage (reduced membrane damage) in Pressure-Retarded Osmosis. PMID:28332607

  4. Evaporative Cooling Membrane Device

    NASA Technical Reports Server (NTRS)

    Lomax, Curtis (Inventor); Moskito, John (Inventor)

    1999-01-01

    An evaporative cooling membrane device is disclosed having a flat or pleated plate housing with an enclosed bottom and an exposed top that is covered with at least one sheet of hydrophobic porous material having a thin thickness so as to serve as a membrane. The hydrophobic porous material has pores with predetermined dimensions so as to resist any fluid in its liquid state from passing therethrough but to allow passage of the fluid in its vapor state, thereby, causing the evaporation of the fluid and the cooling of the remaining fluid. The fluid has a predetermined flow rate. The evaporative cooling membrane device has a channel which is sized in cooperation with the predetermined flow rate of the fluid so as to produce laminar flow therein. The evaporative cooling membrane device provides for the convenient control of the evaporation rates of the circulating fluid by adjusting the flow rates of the laminar flowing fluid.

  5. Relationship of air sampling rates of semipermeable membrane devices with the properties of organochlorine pesticides.

    PubMed

    Zhu, Xiuhua; Ding, Guanghui; Levy, Walkiria; Jakobi, Gert; Schramm, Karl-Werner

    2011-06-01

    The organochlorine pesticides (OCP) in Eastern-Barvaria at Haidel 1160 m a.s.l. were monitored with a low volume active air sampler and semi-permeable membrane devices (SPMD). The air sampling rates (Rair) of SPMD for OCP were calculated. Quantitative structure-property relationship (QSPR) models of Rair of SPMD were developed for OCP with partial least square (PLS) regression. Quantum chemical descriptors computed by semi-empirical PM6 method were used as predictor variables. The cumulative variance of the dependent variable explained by the PLS components and determined by cross-validation (Q(2)cum), for the optimal models, is 0.637, indicating that the model has good predictive ability and robustness, and could be used to estimate Rair values of OCP. The main factors governing Rair of OCP are intermolecular interactions and the energy required for cave-forming in dissolution of OCP into triolein of SPMD.

  6. A framework for understanding semi-permeable barrier effects on migratory ungulates

    USGS Publications Warehouse

    Sawyer, Hall; Kauffman, Matthew J.; Middleton, Arthur D.; Morrison, Thomas A.; Nielson, Ryan M.; Wyckoff, Teal B.

    2013-01-01

    1. Impermeable barriers to migration can greatly constrain the set of possible routes and ranges used by migrating animals. For ungulates, however, many forms of development are semi-permeable, and making informed management decisions about their potential impacts to the persistence of migration routes is difficult because our knowledge of how semi-permeable barriers affect migratory behaviour and function is limited. 2. Here, we propose a general framework to advance the understanding of barrier effects on ungulate migration by emphasizing the need to (i) quantify potential barriers in terms that allow behavioural thresholds to be considered, (ii) identify and measure behavioural responses to semi-permeable barriers and (iii) consider the functional attributes of the migratory landscape (e.g. stopovers) and how the benefits of migration might be reduced by behavioural changes. 3. We used global position system (GPS) data collected from two subpopulations of mule deer Odocoileus hemionus to evaluate how different levels of gas development influenced migratory behaviour, including movement rates and stopover use at the individual level, and intensity of use and width of migration route at the population level. We then characterized the functional landscape of migration routes as either stopover habitat or movement corridors and examined how the observed behavioural changes affected the functionality of the migration route in terms of stopover use. 4. We found migratory behaviour to vary with development intensity. Our results suggest that mule deer can migrate through moderate levels of development without any noticeable effects on migratory behaviour. However, in areas with more intensive development, animals often detoured from established routes, increased their rate of movement and reduced stopover use, while the overall use and width of migration routes decreased. 5. Synthesis and applications. In contrast to impermeable barriers that impede animal movement

  7. [Membrane separation technology in medical devices].

    PubMed

    Hu, Xianghua; Dang, Xiyun; Wu, Minyu

    2014-01-01

    Membrane separation technology is a major branch in modern separation technology, which is widely applied in chemical, pharmaceutical and other industries. The purpose of this paper is to introduce principle and the application example of the membrane separation technology in medical devices, to analyse the problems existing in the current application, and to discuss the future development direction.

  8. Membrane device and process for mass exchange, separation, and filtration

    DOEpatents

    Liu, Wei; Canfield, Nathan L.

    2016-11-15

    A membrane device and processes for fabrication and for using are disclosed. The membrane device may include a number of porous metal membranes that provide a high membrane surface area per unit volume. The membrane device provides various operation modes that enhance throughput and selectivity for mass exchange, mass transfer, separation, and/or filtration applications between feed flow streams and permeate flow streams.

  9. A Preliminary Research into Clinical Semi-permeability Tolerance in the Field of Dental Rehabilitation

    PubMed Central

    Xia, H; Xiong, F

    2015-01-01

    ABSTRACT Objective: To study clinical semi-permeability tolerance level in the field of dental restoration. Method: Vita 95 enamel porcelain powder was adopted and 6.0% used as the control transmissivity. Discoid porcelain plates with different transmissivity, namely increasing transmissivity (0.25%, 0.5%, 1.0%, 1.5%, 2%, 2.5%, 3%, 3.5%, 4% and 4.5%) and decreasing transmissivity (-0.25%, −0.5%, −1.0%, −1.5%, −2%, −2.5%, −3% and −3.5%) were made. Forty observers judged these according to six grades: same, similar, slightly different, visibly different, recognizable and significantly different, and under the observation conditions of a neutral grey background and 45°/0° lighting. The judgment results were analysed statistically. Results: When the transmissivity of the control porcelain plates was 6.032%, and the transmissivity of test porcelain plates decreased by 1% or increased by 3%, observers could find slight differences between the test samples and the control samples. When transmissivity of test samples decreased by 2.5% or increased by 4.5%, observers thought that the two porcelain plates belonged to different orders of magnitude. Conclusions: Under the experimental conditions, the upper and lower limits of clinical semi-permeability tolerance were 3% and 1%, respectively. PMID:27400057

  10. Effectiveness of semi-permeable dressings to treat radiation-induced skin reactions. A systematic review.

    PubMed

    Fernández-Castro, M; Martín-Gil, B; Peña-García, I; López-Vallecillo, M; García-Puig, M E

    2017-04-18

    The aim of this systematic review is to assess the available evidence concerning the effectiveness of semi-permeable dressings, on the full range of skin reactions, related to radiation therapy in cancer patients, from local erythema to moist desquamation, including subjective symptoms such as pain, discomfort, itchiness, burning and the effect on daily life activities. The bibliographic search was carried out looking for Randomised Clinical Trials (RCTs) indexed in PubMed, Cinhal, Cochrane plus and Biblioteca Nacional de Salud, published in the English and Spanish language, between 2010 and 2015. Data extraction and evaluation of study quality was undertaken by peer reviewers using the Critical Appraisal Skills Programme (CASP). Of 181 studies, nine full texts were assessed. Finally, six RCT were included in the final synthesis: three analysed the application of Mepilex(®) Lite in breast cancer and head & neck cancer; one evaluated the application of Mepitel(®) Film in breast cancer; and two assessed the use of silver nylon dressings in breast cancer and in patients with lower gastrointestinal cancer. The results show that semi-permeable dressings are beneficial in the management of skin toxicity related to radiation therapy. However, rigorous trials showing stronger evidence are needed. © 2017 John Wiley & Sons Ltd.

  11. Semi-permeable coatings fabricated from comb-polymers efficiently protect proteins in vivo

    NASA Astrophysics Data System (ADS)

    Liu, Mi; Johansen, Pål; Zabel, Franziska; Leroux, Jean-Christophe; Gauthier, Marc A.

    2014-11-01

    In comparison to neutral linear polymers, functional and architecturally complex (that is, non-linear) polymers offer distinct opportunities for enhancing the properties and performance of therapeutic proteins. However, understanding how to harness these parameters is challenging, and studies that capitalize on them in vivo are scarce. Here we present an in vivo demonstration that modification of a protein with a polymer of appropriate architecture can impart low immunogenicity, with a commensurably low loss of therapeutic activity. These combined properties are inaccessible by conventional strategies using linear polymers. For the model protein L-asparaginase, a comb-polymer bio-conjugate significantly outperformed the linear polymer control in terms of lower immune response and more sustained bioactivity. The semi-permeability characteristics of the coatings are consistent with the phase diagram of the polymer, which will facilitate the application of this strategy to other proteins and with other therapeutic models.

  12. Design of a new membrane stretching device

    NASA Astrophysics Data System (ADS)

    Shao, Yiran

    Cell stretching device has been applied into the lab use for many years to help researchers study about the behavior of cells during the stretching process. Because the cell responses to the different mechanical stimuli, especially in the case of disease, the cell stretching device is a necessary tool to study the cell behavior in a controlled environment. However existing devices have limitations, such as too big to fit the culture chamber, unable to be observed during the stretching process and too expensive to fabricate. In this thesis, a new cell stretcher is designed to resolve these limitations. Many typical cell stretching devices only work under simple conditions. For instance they can only apply the strain on the cell in uniaxial or equibiaxial directions. On the other hand the environment of cells' survival is varying. Many new cell stretchers have been developed, which have the same property that cells can be stretched via the radical deformation of the elastomeric membrane. The aim of this new design is to create a cell stretching device that fits in general lab conditions. This device is designed to fit on a microscope to observe, as well as in the incubator. In addition, two small step motors are used to control the strain, adjust the frequency, and maintain the stability precisely. Problems such as the culture media leakage and the membrane breakage are solved by the usage of multiple materials for both the cell stretcher and the membrane. Based on the experimental results, this device can satisfy the requirements of target users with a reduced manufacturing cost. In the future, an auto-focus tracking function will be developed to allow real time observation of the cells' behavior.

  13. On the Two Species Asymmetric Exclusion Process with Semi-Permeable Boundaries

    NASA Astrophysics Data System (ADS)

    Ayyer, Arvind; Lebowitz, Joel L.; Speer, Eugene R.

    2009-06-01

    We investigate the structure of the nonequilibrium stationary state (NESS) of a system of first and second class particles, as well as vacancies (holes), on L sites of a one-dimensional lattice in contact with first class particle reservoirs at the boundary sites; these particles can enter at site 1, when it is vacant, with rate α, and exit from site L with rate β. Second class particles can neither enter nor leave the system, so the boundaries are semi-permeable. The internal dynamics are described by the usual totally asymmetric exclusion process (TASEP) with second class particles. An exact solution of the NESS was found by Arita. Here we describe two consequences of the fact that the flux of second class particles is zero. First, there exist (pinned and unpinned) fat shocks which determine the general structure of the phase diagram and of the local measures; the latter describe the microscopic structure of the system at different macroscopic points (in the limit L→∞) in terms of superpositions of extremal measures of the infinite system. Second, the distribution of second class particles is given by an equilibrium ensemble in fixed volume, or equivalently but more simply by a pressure ensemble, in which the pair potential between neighboring particles grows logarithmically with distance. We also point out an unexpected feature in the microscopic structure of the NESS for finite L: if there are n second class particles in the system then the distribution of first class particles (respectively holes) on the first (respectively last) n sites is exchangeable.

  14. Tensioning device for a stretched membrane collector

    DOEpatents

    Murphy, L.M.

    1984-01-01

    Disclosed is a solar concentrating collector comprising an elestic membrane member for concentrating sunlight, a frame for holding the membrane member in plane and in tension, and a tensioning means for varying the tension of the membrane member. The tensioning means is disposed at the frame and is adapted to releasably attach the membrane member thereto. The tensioning means is also adapted to uniformly and symmetrically subject the membrane member to stretching forces such that membrane stresses produced thereby are distributed uniformly over a thickness of the membrane member and reciprocal twisting moments are substantially prevented from acting about said frame.

  15. Tensioning device for a stretched membrane collector

    DOEpatents

    Murphy, Lawrence M.

    1984-01-01

    Disclosed is a solar concentrating collector comprising an elastic membrane member for concentrating sunlight, a frame for holding the membrane member in plane and in tension, and a tensioning means for varying the tension of the membrane member. The tensioning means is disposed at the frame and is adapted to releasably attach the membrane member thereto. The tensioning means is also adapted to uniformly and symmetrically subject the membrane member to stretching forces such that membrane stresses produced thereby are distributed uniformly over a thickness of the membrane member and reciprocal twisting moments are substantially prevented from acting about said frame.

  16. Ultradeformable lipid vesicles can penetrate the skin and other semi-permeable barriers unfragmented. Evidence from double label CLSM experiments and direct size measurements.

    PubMed

    Cevc, Gregor; Schätzlein, Andreas; Richardsen, Holger

    2002-08-19

    The stability of various aggregates in the form of lipid bilayer vesicles was tested by three different methods before and after crossing different semi-permeable barriers. First, polymer membranes with pores significantly smaller than the average aggregate diameter were used as the skin barrier model; dynamic light scattering was employed to monitor vesicle size changes after barrier passage for several lipid mixtures with different bilayer elasticities. This revealed that vesicles must adapt their size and/or shape, dependent on bilayer stability and elasto-mechanics, to overcome an otherwise confining pore. For the mixed lipid aggregates with highly flexible bilayers (Transfersomes), the change is transient and only involves vesicle shape and volume adaptation. The constancy of ultradeformable vesicle size before and after pores penetration proves this. This is remarkable in light of the very strong aggregate deformation during an enforced barrier passage. Simple phosphatidylcholine vesicles, with less flexible bilayers, lack such capability and stability. Conventional liposomes are therefore fractured during transport through a semi-permeable barrier; as reported by other researchers, liposomes are fragmented to the size of a narrow pore if sufficient pressure is applied across the barrier; otherwise, liposomes clog the pores. The precise outcome depends on trans-barrier flux and/or on relative vesicle vs. pore size. Lipid vesicles applied on the skin behave accordingly. Mixed lipid vesicles penetrate the skin if they are sufficiently deformable. If this is the case, they cross inter-cellular constrictions in the organ without significant composition or size modification. To prove this, we labelled vesicles with two different fluorescent markers and applied the suspension on intact murine skin without occlusion. The confocal laser scanning microscopy (CLSM) of the skin then revealed a practically indistinguishable distribution of both labels in the stratum

  17. Semi-permeable species boundaries in Iberian barbels (Barbus and Luciobarbus, Cyprinidae).

    PubMed

    Gante, Hugo F; Doadrio, Ignacio; Alves, Maria Judite; Dowling, Thomas E

    2015-06-12

    The evolution of species boundaries and the relative impact of selection and gene flow on genomic divergence are best studied in populations and species pairs exhibiting various levels of divergence along the speciation continuum. We studied species boundaries in Iberian barbels, Barbus and Luciobarbus, a system of populations and species spanning a wide degree of genetic relatedness, as well as geographic distribution and range overlap. We jointly analyze multiple types of molecular markers and morphological traits to gain a comprehensive perspective on the nature of species boundaries in these cyprinid fishes. Intraspecific molecular and morphological differentiation is visible among many populations. Genomes of all sympatric species studied are porous to gene flow, even if they are not sister species. Compared to their allopatric counterparts, sympatric representatives of different species share alleles and show an increase in all measures of nucleotide polymorphism (S, Hd, K, π and θ). High molecular diversity is particularly striking in L. steindachneri from the Tejo and Guadiana rivers, which co-varies with other sympatric species. Interestingly, different nuclear markers introgress across species boundaries at various levels, with distinct impacts on population trees. As such, some loci exhibit limited introgression and population trees resemble the presumed species tree, while alleles at other loci introgress more freely and population trees reflect geographic affinities and interspecific gene flow. Additionally, extent of introgression decreases with increasing genetic divergence in hybridizing species pairs. We show that reproductive isolation in Iberian Barbus and Luciobarbus is not complete and species boundaries are semi-permeable to (some) gene flow, as different species (including non-sister) are exchanging genes in areas of sympatry. Our results support a speciation-with-gene-flow scenario with heterogeneous barriers to gene flow across the genome

  18. Semipermeable membrane devices link site-specific contaminants to effects: Part 1 - Induction of CYP1A in rainbow trout from contaminants in Prince William Sound, Alaska.

    PubMed

    Springman, Kathrine R; Short, Jeffrey W; Lindeberg, Mandy R; Maselko, Jacek M; Khan, Colin; Hodson, Peter V; Rice, Stanley D

    2008-12-01

    Extracts from semi-permeable membrane devices (SPMDs) deployed on beaches in Prince William Sound (PWS), Alaska, were used to evaluate if complex contaminant mixtures from different sources can be distinguished by the resulting cytochrome P450 1A (CYP1A) activity in exposed test animals. Deployment sites included canneries, salmon hatcheries, and beaches where lingering oil remains from discharges during the 1964 earthquake or the 1989 Exxon Valdez oil spill. Other sites were selected at random to evaluate region-wide contaminant inputs or were located in salmon streams to evaluate contaminants carried and released by migrating salmon carcasses following reproduction. Following standard deployments of approximately 28 d, an aliquot of the accumulated contaminants was intraperitoneally injected without cleanup into juvenile rainbow trout (Oncorhynchus mykiss). After 2 d and 7 d, the activity of CYP1A was measured by the ethoxyresorufin-o-deethylase (EROD) assay. Exposure to extracts from the oiled sites and one hatchery site with numerous creosote pilings elicited strong EROD responses, whereas fish exposed to salmon stream extracts elicited weak but significant responses during late summer compared to late spring. Responses from the other sites were not significant, indicating contaminants from these sources are unlikely to cause CYP1A induction in resident biota. Rather than simply assessing extant contaminants, this method evaluates the potency of the different sites for bringing about aryl hydrocarbon receptor responses in resident biota.

  19. Use of semipermeable membrane devices (SPMDs) in petroleum polluted waters

    USGS Publications Warehouse

    Alvarez, David A.

    2010-01-01

    Passive samplers, in particular semipermeable membrane devices (SPMDs), can be used in monitoring petroleum spills. This document is intended to provide a brief discussion of issues surrounding the use and capabilities of the SPMD.

  20. A SURVEY OF INDOOR AIR CONTAMINATES USING SEMIPERMEABLE MEMBRANE DEVICES

    EPA Science Inventory

    Semipermeable membrane devices (SPMDs) were deployed in indoor areas in approximately 50 residences along the border between Arizona and Mexico to measure airborne contaminants. The results of the primary analyses and gas chromatographic/mass spectrometric confirmation for org...

  1. A SURVEY OF INDOOR AIR CONTAMINATES USING SEMIPERMEABLE MEMBRANE DEVICES

    EPA Science Inventory

    Semipermeable membrane devices (SPMDs) were deployed in indoor areas in approximately 50 residences along the border between Arizona and Mexico to measure airborne contaminants. The results of the primary analyses and gas chromatographic/mass spectrometric confirmation for org...

  2. Development of active-transport membrane devices

    SciTech Connect

    Laciak, D.V.

    1994-07-01

    This report introduces the concept of Air Products` AT membranes for the separation of NH{sub 3} and CO{sub 2} from process gas streams and presents results from the first year fabrication concept development studies.

  3. Stress-sensor device based on flexoelectric liquid crystalline membranes.

    PubMed

    Rey, Alejandro D; Servio, Phillip; Herrera Valencia, Edtson Emilio

    2014-05-19

    Membrane flexoelectricity is an electromechanical coupling process that describes membrane bending and membrane electrical polarization caused by bending under electric fields. In this paper we propose, formulate, and characterize a stress-sensor device for mechanically loaded solids, consisting of a soft flexoelectric thin membrane attached to the loaded deformed solid. Because the curvature of the deformed solid is transferred to the attached flexoelectric membrane, the electromechanical transduction of the latter produces a charge that is proportional to the stress of the solid. The model of the stress-sensor device is based on the integration of the thermodynamics of polarizable membranes with isotropic solid elasticity, leading to a transfer function that identifies the elastic, electromechanical, and geometrical parameters involved in electrical-signal generation. The model is applied to representative normal bending and then to more complex off-axis bending of elastic bars. In all cases, a common transfer function shows the generic material and its geometric contributions. The sensor sensitivity increases linearly with flexoelectricity and the membrane-solid interface, and the sensitivity decreases with increasing membrane thickness and Young's modulus of the solid. The theoretical results contribute to ongoing experimental efforts towards the development of anisotropic soft-matter-based stress-sensor devices through solid-membrane interactions and electromechanical transduction.

  4. A novel acoustic coupling device using permeable membranes

    NASA Astrophysics Data System (ADS)

    Buynak, C. F.; Crane, R. L.

    This paper describes a new type of acoustic coupling device which possesses the advantages of a fluid couplant and is simple yet inexpensive enough to be utilized in most field level applications. Briefly, the device consists of a water column which is supported by and allowed to leak slowly through a permeable membrane. This allows a small amount of water to wet the surface between the membrane and the part to provide an ultrasonic couplant. Since the membrane has an acoustic impedance very close to that of water, there is practically no reflection of acoustic energy from the membrane, thereby, permitting detection of near surface flaws. The small amount of fluid required for the coupling practically eliminates problems associated with storing, dispensing, and clean-up of extraneous amounts of couplant. The device is quite simple in design and inexpensive enough to be disposable.

  5. Gas Transfer in Cellularized Collagen-Membrane Gas Exchange Devices.

    PubMed

    Lo, Justin H; Bassett, Erik K; Penson, Elliot J N; Hoganson, David M; Vacanti, Joseph P

    2015-08-01

    Chronic lower respiratory disease is highly prevalent in the United States, and there remains a need for alternatives to lung transplant for patients who progress to end-stage lung disease. Portable or implantable gas oxygenators based on microfluidic technologies can address this need, provided they operate both efficiently and biocompatibly. Incorporating biomimetic materials into such devices can help replicate native gas exchange function and additionally support cellular components. In this work, we have developed microfluidic devices that enable blood gas exchange across ultra-thin collagen membranes (as thin as 2 μm). Endothelial, stromal, and parenchymal cells readily adhere to these membranes, and long-term culture with cellular components results in remodeling, reflected by reduced membrane thickness. Functionally, acellular collagen-membrane lung devices can mediate effective gas exchange up to ∼288 mL/min/m(2) of oxygen and ∼685 mL/min/m(2) of carbon dioxide, approaching the gas exchange efficiency noted in the native lung. Testing several configurations of lung devices to explore various physical parameters of the device design, we concluded that thinner membranes and longer gas exchange distances result in improved hemoglobin saturation and increases in pO2. However, in the design space tested, these effects are relatively small compared to the improvement in overall oxygen and carbon dioxide transfer by increasing the blood flow rate. Finally, devices cultured with endothelial and parenchymal cells achieved similar gas exchange rates compared with acellular devices. Biomimetic blood oxygenator design opens the possibility of creating portable or implantable microfluidic devices that achieve efficient gas transfer while also maintaining physiologic conditions.

  6. Gas Transfer in Cellularized Collagen-Membrane Gas Exchange Devices

    PubMed Central

    Lo, Justin H.; Bassett, Erik K.; Penson, Elliot J. N.; Hoganson, David M.

    2015-01-01

    Chronic lower respiratory disease is highly prevalent in the United States, and there remains a need for alternatives to lung transplant for patients who progress to end-stage lung disease. Portable or implantable gas oxygenators based on microfluidic technologies can address this need, provided they operate both efficiently and biocompatibly. Incorporating biomimetic materials into such devices can help replicate native gas exchange function and additionally support cellular components. In this work, we have developed microfluidic devices that enable blood gas exchange across ultra-thin collagen membranes (as thin as 2 μm). Endothelial, stromal, and parenchymal cells readily adhere to these membranes, and long-term culture with cellular components results in remodeling, reflected by reduced membrane thickness. Functionally, acellular collagen-membrane lung devices can mediate effective gas exchange up to ∼288 mL/min/m2 of oxygen and ∼685 mL/min/m2 of carbon dioxide, approaching the gas exchange efficiency noted in the native lung. Testing several configurations of lung devices to explore various physical parameters of the device design, we concluded that thinner membranes and longer gas exchange distances result in improved hemoglobin saturation and increases in pO2. However, in the design space tested, these effects are relatively small compared to the improvement in overall oxygen and carbon dioxide transfer by increasing the blood flow rate. Finally, devices cultured with endothelial and parenchymal cells achieved similar gas exchange rates compared with acellular devices. Biomimetic blood oxygenator design opens the possibility of creating portable or implantable microfluidic devices that achieve efficient gas transfer while also maintaining physiologic conditions. PMID:26020102

  7. Nanocapillary Membrane Devices: A Study in Electrokinetic Transport Phenomena

    NASA Astrophysics Data System (ADS)

    Schiffbauer, Jarrod

    There is considerable interest in developing micro-total analysis systems, also known as lab-on-a-chip devices, for applications in chemical and biological analysis. These devices often employ electrokinetic transport phenomena to move, mix, concentrate and separate dissolved species. The details of these phenomena in micro- and nanometer scale geometries are not fully understood; consequently, the basic principles of device operation are often unclear. For example, nanocapillary membranes (NCM) and other nanometer-sized passages can exhibit charge-selectivity and rectification effects similar to those observed in biological membranes. This dissertation addresses several issues related to ion transport in these membranes. Leading-order 1D steady-state models for diffusion-layer modulated transport through non-ideal membranes are used to study ionic rectification in geometrically asymmetric devices. These models provide qualitative explanations of the operation of a variety of fluidic rectifiers and experimentally observed hysteresis effects. By taking the first steps in the full boundary-layer analysis of the model, it is shown that non-ideal membranes do not maintain local electro-neutrality under passage of electric current. This is in contrast to the usual assumption of membrane local electro-neutrality, but is compatible with the existence of the non-equilibrium macroscopic space charge known to appear in the flanking electrolyte and the requirement of overall charge conservation. Lastly, the problem of electrokinetic instability due to non-equilibrium electro-osmotic slip is considered for the case of an electrolyte-membrane interface inside a 2D channel.

  8. Application of semipermeable membrane devices (SPMDs) as passive air samplers

    USGS Publications Warehouse

    Petty, Jimmie D.; Huckins, James N.; Zajicek, James L.

    1993-01-01

    The semipermeable membrane device (SPMD), consisting of a neutral lipid (triolein) enclosed in polyethylene layflat tubing, is demonstrated to be a highly efficient passive air sampler. These devices readily sequester lipophilic organic contaminants from the vapor phase. Specifically, the SPMDs are shown to concentrate polychlorinated biphenyl (PCB) residues from a laboratory atmosphere in a linear manner through 28 days. Under the conditions of this study, a three device composite (1.4 g triolein) extracted PCB residues from ≈ 7 m3 of air per day.

  9. APPLICATION OF SEMIPERMEABLE MEMBRANE DEVICES TO INDOOR AIR SAMPLING

    EPA Science Inventory

    Semipermeable membrane devices (SPMDs) are a relatively new passive sampling technique for nonpolar organic compounds that have been extensively used for surface water sampling. A small body of literature indicates that SPMDs are also useful for air sampling. Because SPMDs ha...

  10. APPLICATION OF SEMIPERMEABLE MEMBRANE DEVICES TO INDOOR AIR SAMPLING

    EPA Science Inventory

    Semipermeable membrane devices (SPMDs) are a relatively new passive sampling technique for nonpolar organic compounds that have been extensively used for surface water sampling. A small body of literature indicates that SPMDs are also useful for air sampling. Because SPMDs ha...

  11. Semipermeable membrane devices used to estimate bioconcentration of polychlorinated biphenyls

    USGS Publications Warehouse

    Chambers, D.B.

    1999-01-01

    Aquatic organisms passively accumulate hydrophobic organic compounds, such as polychlorinated biphenyls, even when ambient water concentrations of the contaminant are below analytical detection limits. However, contaminant concentrations in tissue samples are subject to an inherently high level of variability due to differences in species, life stage, and gender bioconcentration potentials. Semipermeable membrane devices (SPMDs) were used to sample Aroclor 1254, a mixture of readily bioconcentrated polychlorinated biphenyls (PCBs), in a contaminated wetland near Flat Top, WV. The devices consisted of triolein, a lipid found in fish, enclosed in a polyethylene membrane. SPMDs were deployed in the water column and in direct contact with wetland sediments along a previously identified concentration gradient of PCBs. The devices were retrieved after a 25-day exposure period. Analytes were recovered by dialyzing the devices in nanograde hexane. Hexane dialysates were condensed and analyzed by gas chromatography. All deployed devices sequestered quantifiable amounts of Aroclor 1254. Water-column SPMDs accumulated PCBs far in excess of ambient water concentrations. The devices contacting sediments accumulated PCBs at all sites, though accumulated concentrations did not exceed concentrations in sediment. Patterns of PCB concentration in the devices corresponded to the identified gradient at the site. Results from the water-column SPMDs were used to estimate the concentration of the dissolved, bioavailable fraction of PCBs present in the water column. These concentrations ranged from 0.01 to 0.09 ??g/L of bioavailable Aroclor 1254.

  12. Mathematical modeling of a flat-membrane-controlled release device

    SciTech Connect

    Ramraj, R.; Farrell, S.; Loney, N.W.

    1999-08-01

    The closed form solution to a mathematical model of a flat membrane device successfully predicts the release profile of benzoic acid. Physically, the device consists of a given concentration of benzoic acid in octanol (reservoir) bounded by a microporous flat film (Cellgard 2400) with water-filled pores. The prediction shows excellent agreement with the experimentally derived release profile (maximum difference < 10%). Predicted results are obtained from the use of the steady state plus the first term of the transient solution (infinite series) and with the use of the first nonzero eigenvalue.

  13. Particle sorting using a porous membrane in a microfluidic device.

    PubMed

    Wei, Huibin; Chueh, Bor-han; Wu, Huiling; Hall, Eric W; Li, Cheuk-wing; Schirhagl, Romana; Lin, Jin-Ming; Zare, Richard N

    2011-01-21

    Porous membranes have been fabricated based on the development of the perforated membrane mold [Y. Luo and R. N. Zare, Lab Chip, 2008, 8, 1688-1694] to create a single filter that contains multiple pore sizes ranging from 6.4 to 16.6 µm inside a monolithic three-dimensional poly(dimethylsiloxane) microfluidic structure. By overlapping two filters we are able to achieve smaller pore size openings (2.5 to 3.3 µm). This filter operates without any detectable irreversible clogging, which is achieved using a cross-flow placed in front of each filtration section. The utility of a particle-sorting device that contains this filter is demonstrated by separating polystyrene beads of different diameters with an efficiency greater than 99.9%. Additionally, we demonstrate the effectiveness of this particle-sorting device by separating whole blood samples into white blood cells and red blood cells with platelets.

  14. Upscaling of a living membrane for bioartificial kidney device.

    PubMed

    Chevtchik, Natalia Vladimirovna; Fedecostante, Michele; Jansen, Jitske; Mihajlovic, Milos; Wilmer, Martijn; Rüth, Marieke; Masereeuw, Rosalinde; Stamatialis, Dimitrios

    2016-11-05

    The limited removal of metabolic waste products in dialyzed kidney patients leads to high morbidity and mortality. One powerful solution for a more complete removal of those metabolites might be offered by a bioartificial kidney device (BAK), which contains a hybrid "living membrane" with functional proximal tubule epithelial cells (PTEC). These cells are supported by an artificial functionalized hollow fiber membrane (HFM) and are able to actively remove the waste products. In our earlier studies, conditionally immortalized human PTEC (ciPTEC) showed to express functional organic cationic transporter 2 (OCT2) when seeded on small size flat or hollow fiber polyethersulfone (PES) membranes. Here, an upscaled "living membrane" is presented. We developed and assessed the functionality of modules containing three commercially available MicroPES HFM supporting ciPTEC. The HFM were optimally coated with L-Dopa and collagen IV to support a uniform and tight monolayer formation of matured ciPTEC under static culturing conditions. Both abundant expression of zonula occludens-1 (ZO-1) protein and limited diffusion of FITC-inulin confirm a clear barrier function of the monolayer. Furthermore, the uptake of 4-(4-(dimethylamino)styryl)-N-methylpyridinium iodide (ASP(+)), a fluorescent OCT2 substrate, was studied in absence and presence of known OCT inhibitors, such as cimetidine and a cationic uremic solutes mixture. The ASP(+) uptake by the living upscaled membrane was decreased by 60% in the presence of either inhibitor, proving the active function of OCT2. In conclusion, this study presents a successful upscaling of a living membrane with active organic cation transport as a support for BAK device. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Semi-Permeable Paleochannels as Conduits for Submarine Groundwater Discharge to the Coast in Barataria Bay, Louisiana

    NASA Astrophysics Data System (ADS)

    Breaux, A.; Kolker, A.; Telfeyan, K.; Kim, J.; Johannesson, K. H.; Cable, J. E.

    2014-12-01

    Many studies have focused on hydrological and geochemical fluxes to the ocean from land to the ocean via submarine groundwater discharge (SGD), however few have assessed these contributions of SGD in deltaic settings. The Mississippi River delta is the largest delta in North America, and the magnitude of groundwater that discharges from the river into its delta is relatively unknown. Hydrological budgets indicate that there is a large magnitude of surface water lost in the Mississippi's delta as the river flows into the Gulf of Mexico. Recent evidence in our study indicates that paleochannels, or semi-permeable buried sandy bodies that were former distributaries of the river, allow for water to discharge out of the Mississippi's main channel and into its delta driven by a difference in hydraulic head between the river and the lower lying coastal embayments. Our study uses geophysical data, including sonar and resistivity methods, to detect the location of these paleochannels in Barataria Bay, a coastal bay located in the Mississippi Delta. High resolution CHIRP sonar data shows that these paleochannel features are ubiquitous in the Mississippi Delta, whereas resistivity data indicates that lower salinity water is found during high river flow in bays proximate to the river. Sediment core analysis is also used to characterize the area of study, as well as further understand the regional geology of the Mississippi Delta and estimate values of permeability and hydraulic conductivity of sediments taken from two locations in Barataria Bay. The geophysical and sediment core data will likewise be used to contextualize geochemical data collected in the field, which includes an assessment of major cations and anions, as well as in situ Rn-222 activities, a method that has been proven to be useful as a tracer of groundwater movement. The results may be useful in understanding the potential global magnitude of hydrological and geochemical fluxes of other large rivers with

  16. Nanoscale pressure sensors realized from suspended graphene membrane devices

    SciTech Connect

    Aguilera-Servin, Juan; Miao, Tengfei; Bockrath, Marc

    2015-02-23

    We study the transport properties of graphene layers placed over ∼200 nm triangular holes via attached electrodes under applied pressure. We find that the injected current division between counter electrodes depends on pressure and can be used to realize a nanoscale pressure sensor. Estimating various potential contributions to the resistivity change of the deflected graphene membrane including piezoresistivity, changing gate capacitance, and the valley Hall effect due to the pressure-induced synthetic magnetic field, we find that the valley Hall effect yields the largest expected contribution to the longitudinal resistivity modulation for accessible device parameters. Such devices in the ballistic transport regime may enable the realization of tunable valley polarized electron sources.

  17. Nanoscale pressure sensors realized from suspended graphene membrane devices

    NASA Astrophysics Data System (ADS)

    Aguilera-Servin, Juan; Miao, Tengfei; Bockrath, Marc

    2015-02-01

    We study the transport properties of graphene layers placed over ˜200 nm triangular holes via attached electrodes under applied pressure. We find that the injected current division between counter electrodes depends on pressure and can be used to realize a nanoscale pressure sensor. Estimating various potential contributions to the resistivity change of the deflected graphene membrane including piezoresistivity, changing gate capacitance, and the valley Hall effect due to the pressure-induced synthetic magnetic field, we find that the valley Hall effect yields the largest expected contribution to the longitudinal resistivity modulation for accessible device parameters. Such devices in the ballistic transport regime may enable the realization of tunable valley polarized electron sources.

  18. A parallel diffusion-based microfluidic device for bacterial chemotaxis analysis.

    PubMed

    Si, Guangwei; Yang, Wei; Bi, Shuangyu; Luo, Chunxiong; Ouyang, Qi

    2012-04-07

    We developed a multiple-channel microfluidic device for bacterial chemotaxis detection. Some characteristics such as easy operation, parallel sample adding design and fast result readout make this device convenient for most biology labs. The characteristic feature of the design is the agarose gel channels, which serve as a semi-permeable membrane. They can stop the fluid flow and prevent bacteria getting across, but permit the diffusion of small molecules. In the device fabrication process a novel thermal-based method was used to control the shape of agarose gel in the microfluidic channel. The chemical gradient is established by diffusion which can be precisely controlled and measured. Combined with an 8-channel pipette, different attractants, repellent chemicals or different bacteria were analyzed by a two step operation with a readout time of one hour. This device may be useful in the high throughput detection of chemotaxis related molecules and genes.

  19. Pilot Scale Water Gas Shift - Membrane Device for Hydrogen from Coal

    SciTech Connect

    Barton, Tom

    2013-06-30

    The objectives of the project were to build pilot scale hydrogen separation systems for use in a gasification product stream. This device would demonstrate fabrication and manufacturing techniques for producing commercially ready facilities. The design was a 2 lb/day hydrogen device which included composite hydrogen separation membranes, a water gas shift monolith catalyst, and stainless steel structural components. Synkera Technologies was to prepare hydrogen separation membranes with metallic rims, and to adjust the alloy composition in their membranes to a palladium-gold composition which is sulfur resistant. Chart was to confirm their brazing technology for bonding the metallic rims of the composite membranes to their structural components and design and build the 2 lbs/day device incorporating membranes and catalysts. WRI prepared the catalysts and completed the testing of the membranes and devices on coal derived syngas. The reactor incorporated eighteen 2'' by 7'' composite palladium alloy membranes. These membranes were assembled with three stacks of three paired membranes. Initial vacuum testing and visual inspection indicated that some membranes were cracked, either in transportation or in testing. During replacement of the failed membranes, while pulling a vacuum on the back side of the membranes, folds were formed in the flexible composite membranes. In some instances these folds led to cracks, primarily at the interface between the alumina and the aluminum rim. The design of the 2 lb/day device was compromised by the lack of any membrane isolation. A leak in any membrane failed the entire device. A large number of tests were undertaken to bring the full 2 lb per day hydrogen capacity on line, but no single test lasted more than 48 hours. Subsequent tests to replace the mechanical seals with brazing have been promising, but the technology remains promising but not proven.

  20. Device and method for the measurement of gas permeability through membranes

    DOEpatents

    Agarwal, Pradeep K.; Ackerman, John; Borgialli, Ron; Hamann, Jerry; Muknahalliptna, Suresh

    2006-08-08

    A device for the measuring membrane permeability in electrical/electrochemical/photo-electrochemical fields is provided. The device is a permeation cell and a tube mounted within the cell. An electrode is mounted at one end of the tube. A membrane is mounted within the cell wherein a corona is discharged from the electrode in a general direction toward the membrane thereby generating heated hydrogen atoms adjacent the membrane. A method for measuring the effects of temperature and pressure on membrane permeability and selectivity is also provided.

  1. Purification of triolein for use in semipermeable membrane devices (SPMDs)

    USGS Publications Warehouse

    Lebo, J.A.; Almeida, F.V.; Cranor, W.L.; Petty, J.D.; Huckins, J.N.; Rastall, A.; Alvarez, D.A.; Mogensen, B.B.; Johnson, B. Thomas

    2004-01-01

    Analyses of triolein-containing semipermeable membrane devices (SPMDs) have sometimes been impeded by interferences caused by impurities endemic to triolein that codialyze with the analytes. Oleic acid and methyl oleate have been the most troublesome of these impurities because of their relatively high concentrations in triolein and because significant residues of both can persist even after size exclusion chromatographic (SEC) fractionation. These residues have also been blamed for false-positive signals during bioindicator testing of SPMD dialysates. To prevent these problems, a simple, cost-effective procedure was developed for purifying triolein destined for use in SPMDs: the bulk triolein is repeatedly (6×) partitioned against methanol. Tests of the procedure show that 14C-oleic acid is completely removed from the triolein. After SEC fractionation, dialysates of standard-size SPMDs made with the purified triolein contain less than 5 μg of methyl oleate as compared to sometimes more than 500 μg for dialysates (also after SEC) of SPMDs made with unpurified triolein. Gas chromatographic analyses with flame ionization and electron capture detection show that the purification treatment also greatly reduces the number and size of peaks caused by unidentified contaminants in the triolein. Microtox basic assay of dialysates of SPMDs shows that those made with the purified triolein have lower acute toxicities than dialysates of SPMDs made with unpurified triolein. Yeast estrogen screen (YES) testing of SPMDs fabricated with unpurified and purified triolein demonstrates that the purification process removes all background estrogenic activity.

  2. Advanced membrane devices. Interim report for October 1996--September 1997

    SciTech Connect

    Laciak, D.V.; Langsam, M.; Lewnard, J.J.; Reichart, G.C.

    1997-12-31

    Under this Cooperative Agreement, Air Products and Chemicals, Inc. has continued to investigate and develop improved membrane technology for removal of carbon dioxide from natural gas. The task schedule for this reporting period included a detailed assessment of the market opportunity (Chapter 2), continued development and evaluation of membranes and membrane polymers (Chapter 3) and a detailed economic analysis comparing the potential of Air Products membranes to that of established acid gas removal processes (Chapter 4).

  3. Right ventricular assist device with membrane oxygenator support for right ventricular failure following implantable left ventricular assist device placement.

    PubMed

    Leidenfrost, Jeremy; Prasad, Sunil; Itoh, Akinobu; Lawrance, Christopher P; Bell, Jennifer M; Silvestry, Scott C

    2016-01-01

    Cardiogenic shock from refractory right ventricular (RV) failure during left ventricular assist device placement is associated with high morbidity and mortality. The addition of extracorporeal membrane oxygenation to RV mechanical assistance may help RV recovery and lead to improved outcomes. We retrospectively reviewed all implanted continuous-flow left ventricular assist devices from April 2009 to June 2013. RV mechanical support was utilized for RV failure defined as haemodynamic instability despite vasopressors, pulmonary vascular dilators and inotropic therapy. RV assist devices were utilized with and without in-line membrane oxygenation. During the study period, 267 continuous-flow left ventricular assist devices were implanted. RV mechanical support was utilized in 27 (10%) patients; 12 (46%) had the addition of in-line extracorporeal membrane oxygenation. The mean age of patients with a right ventricular assist device with membrane oxygenation was lower than that in patients with a right ventricular assist device alone (45.6 ± 15.9 vs 64.6 ± 6.5, P = 0.001). Support was weaned in 66% (10 of 15) of patients with right ventricular assist device (RVAD) alone vs 83% (10 of 12) of those with RVAD with membrane oxygenation (P = 0.42). The RVAD was removed after 10.4 ± 9.4 vs 5 ± 2.99 days for patients with a RVAD with membrane oxygenation (P = 0.1). Patients with RVAD with membrane oxygenation had a 30-day mortality rate of 8 vs 47% for those with RVAD alone (P = 0.04). The survival rate after discharge was 86, 63 and 54% at 3, 6 and 12 months for both groups combined. Patients with a RVAD with membrane oxygenation support for acute RV failure after continuous-flow left ventricular assist device implantation had a lower 30-day mortality than those with a RVAD alone. Patients who survive to discharge have a reasonable 1-year survival. Combining membrane oxygenation with RVAD support appears to offer a short-term survival benefit in patients with RV failure

  4. NOVEL CERAMIC MEMBRANE FOR HIGH TEMPERATURE CARBON DIOXIDE SEPARATION

    SciTech Connect

    Jun-ichi Ida; Zhaohui Yang; Jerry Y.S. Lin

    2002-10-01

    A new CO{sub 2} semi-permeable dense inorganic membrane consisting of a porous metal phase and molten carbonate was proposed. A simple direct infiltration method was used to synthesize the metal-carbonate dual-phase membrane. Hermetic (gas-tight) dual phase membrane was successfully obtained. Permeation data showed that nitrogen or helium is not permeable through the membrane (only CO{sub 2}, with O{sub 2} can permeate through the membrane based on transport mechanism).

  5. Delayed spontaneous perforation of polyvinyl alcohol membrane-Covered atrial septal defect closure devices.

    PubMed

    Labombarda, Fabien; Roule, Vincent; Beygui, Farzin

    2017-03-01

    Percutaneous device closure has become the first choice for secundum atrial septal defect (ASD) closure when feasible in case of favorable anatomy. The Ultrasept II ASD occluder® device (Cardia Inc, Eagan, MN) is made of two nitinol disc frames covered with polyvinyl alcohol membranes, a synthetic polymer with a large application in the biomedical field. Four relatively early malfunctions of the polyvinyl alcohol membrane were observed in a series of six consecutive patients treated with ASD Ultrasept II closure device in our institution. Operators have to be aware of this apparently rare complication that is likely to be underestimated, associated with such devices. © 2016 Wiley Periodicals, Inc.

  6. Hollow Fiber Membrane Dehumidification Device for Air Conditioning System.

    PubMed

    Zhao, Baiwang; Peng, Na; Liang, Canzeng; Yong, Wai Fen; Chung, Tai-Shung

    2015-11-16

    In order to provide a comfortable living and working environment indoors in tropical countries, the outdoor air often needs to be cooled and dehumidified before it enters the rooms. Membrane separation is an emerging technology for air dehumidification and it is based on the solution diffusion mechanism. Water molecules are preferentially permeating through the membranes due to its smaller kinetic diameter and higher condensability than the other gases. Compared to other dehumidification technologies such as direct cooling or desiccation, there is no phase transition involved in membrane dehumidification, neither the contact between the fresh air stream and the desiccants. Hence, membrane dehumidification would not only require less energy consumption but also avoid cross-contamination problems. A pilot scale air dehumidification system is built in this study which comprises nine pieces of one-inch PAN/PDMS hollow fiber membrane modules. A 150 h long-term test shows that the membrane modules has good water vapor transport properties by using a low vacuum force of only 0.78 bar absolute pressure at the lumen side. The water vapor concentration of the feed humid air decreases dramatically from a range of 18-22 g/m³ to a range of 13.5-18.3 g/m³. Most importantly, the total energy saving is up to 26.2% compared with the conventional air conditioning process.

  7. Hollow Fiber Membrane Dehumidification Device for Air Conditioning System

    PubMed Central

    Zhao, Baiwang; Peng, Na; Liang, Canzeng; Yong, Wai Fen; Chung, Tai-Shung

    2015-01-01

    In order to provide a comfortable living and working environment indoors in tropical countries, the outdoor air often needs to be cooled and dehumidified before it enters the rooms. Membrane separation is an emerging technology for air dehumidification and it is based on the solution diffusion mechanism. Water molecules are preferentially permeating through the membranes due to its smaller kinetic diameter and higher condensability than the other gases. Compared to other dehumidification technologies such as direct cooling or desiccation, there is no phase transition involved in membrane dehumidification, neither the contact between the fresh air stream and the desiccants. Hence, membrane dehumidification would not only require less energy consumption but also avoid cross-contamination problems. A pilot scale air dehumidification system is built in this study which comprises nine pieces of one-inch PAN/PDMS hollow fiber membrane modules. A 150 h long-term test shows that the membrane modules has good water vapor transport properties by using a low vacuum force of only 0.78 bar absolute pressure at the lumen side. The water vapor concentration of the feed humid air decreases dramatically from a range of 18–22 g/m3 to a range of 13.5–18.3 g/m3. Most importantly, the total energy saving is up to 26.2% compared with the conventional air conditioning process. PMID:26580660

  8. SCREENING FOR TOXIC INDUSTRIAL CHEMICALS USING SEMIPERMEABLE MEMBRANE DEVICES WITH RAPID TOXICITY ASSAYS

    EPA Science Inventory

    A time-integrated sampling device interfaced with two toxicity-based assays is reported for monitoring volatile toxic industrial chemicals (TICs). Semipermeable membrane devices (SPMDs) using dimethylsulfoxide (DMSO) as the fill solvent accumulated each of 17 TICs from the vapor...

  9. SCREENING FOR TOXIC INDUSTRIAL CHEMICALS USING SEMIPERMEABLE MEMBRANE DEVICES WITH RAPID TOXICITY ASSAYS

    EPA Science Inventory

    A time-integrated sampling device interfaced with two toxicity-based assays is reported for monitoring volatile toxic industrial chemicals (TICs). Semipermeable membrane devices (SPMDs) using dimethylsulfoxide (DMSO) as the fill solvent accumulated each of 17 TICs from the vapor...

  10. Berlin Heart EXCOR Ventricular Assist Device: Multilayer Membrane Rupture in a Pediatric Patient.

    PubMed

    Di Molfetta, Arianna; Filippelli, Sergio; Ferrari, Gianfranco; Secinaro, Aurelio; Zielinski, Krystzof; Amodeo, Antonio

    2016-08-01

    A 2-year-old child was implanted with an Berlin Heart EXCOR Ventricular Assist Device (Berlin Heart, Berlin, Germany) as a bridge to heart transplantation for idiopathic dilated cardiomyopathy. At postoperative day 296, a significant reduction of membrane movement was observed. The device was explanted and tested on a hydronumerical circulation simulator. Findings suggested that the integrity of the multilayered membrane had been compromised. This was confirmed by a computed tomography scan of the device. The computed tomography evidenced a detachment of the 3-layered membrane, with a thinner, convex layer on the side of the air chamber and an opposite convexity of the remaining membranes. These showed an additional air space within the layers.

  11. Sol-Gel Based Polybenzimidazole Membranes for Hydrogen Pumping Devices

    SciTech Connect

    Benicewicz, Brian

    2014-02-26

    Electrochemical hydrogen pumping using a high temperature (>100°C) PBI membrane was demonstrated under non-humidified and humidified conditions at ambient pressures. Relatively low voltages were required to operate the pump over a wide range of hydrogen flow rates. The advantages of the high temperature capability were shown by operating the pump on reformate feed gas mixtures containing various amounts of CO and CO{sub 2}. Gas purity measurements on the cathode gas product were conducted and significant reductions in gas impurities were detected. The applicability of the PBI membrane for electrochemical hydrogen pumping and its durability under typical operating conditions was established with tests that lasted for nearly 4000 hours.

  12. Silicon Nitride Membranes for Filtration and Separation

    SciTech Connect

    Galambos, Paul; Zavadil, Kevin; Shul, Randy; Willison, Christi Gober; Miller, Sam

    1999-07-19

    Semi-Permeable silicon nitride membranes have been developed using a Bosch etch process followed by a reactive ion etch (NE) process. These membranes were observed to allow air but not water to pass through them into surface micromachined, silicon nitride microfluidic channels. Membranes with this property have potential use in microfluidic systems as gas bubble traps and vents, filters to remove particles and gas partitioning membranes. Membrane permeation was measured as 1.6 x 10{sup {minus}8} mol/m{sup 2}Pa s of helium for inline membranes at the entrance and exit of the silicon nitride microfluidic channels.

  13. Nanowire-integrated microporous silicon membrane for continuous fluid transport in micro cooling device

    NASA Astrophysics Data System (ADS)

    So, Hongyun; Cheng, Jim C.; Pisano, Albert P.

    2013-10-01

    We report an efficient passive micro pump system combining the physical properties of nanowires and micropores. This nanowire-integrated microporous silicon membrane was created to feed coolant continuously onto the surface of the wick in a micro cooling device to ensure it remains hydrated and in case of dryout, allow for regeneration of the system. The membrane was fabricated by photoelectrochemical etching to form micropores followed by hydrothermal growth of nanowires. This study shows a promising approach to address thermal management challenges for next generation electronic devices with absence of external power.

  14. Nanowire-integrated microporous silicon membrane for continuous fluid transport in micro cooling device

    SciTech Connect

    So, Hongyun; Pisano, Albert P.; Cheng, Jim C.

    2013-10-14

    We report an efficient passive micro pump system combining the physical properties of nanowires and micropores. This nanowire-integrated microporous silicon membrane was created to feed coolant continuously onto the surface of the wick in a micro cooling device to ensure it remains hydrated and in case of dryout, allow for regeneration of the system. The membrane was fabricated by photoelectrochemical etching to form micropores followed by hydrothermal growth of nanowires. This study shows a promising approach to address thermal management challenges for next generation electronic devices with absence of external power.

  15. Membrane filtration device for studying compression of fouling layers in membrane bioreactors

    PubMed Central

    Bugge, Thomas Vistisen; Larsen, Poul; Nielsen, Per Halkjær; Christensen, Morten Lykkegaard

    2017-01-01

    A filtration devise was developed to assess compressibility of fouling layers in membrane bioreactors. The system consists of a flat sheet membrane with air scouring operated at constant transmembrane pressure to assess the influence of pressure on resistance of fouling layers. By fitting a mathematical model, three model parameters were obtained; a back transport parameter describing the kinetics of fouling layer formation, a specific fouling layer resistance, and a compressibility parameter. This stands out from other on-site filterability tests as model parameters to simulate filtration performance are obtained together with a characterization of compressibility. Tests on membrane bioreactor sludge showed high reproducibility. The methodology’s ability to assess compressibility was tested by filtrations of sludges from membrane bioreactors and conventional activated sludge wastewater treatment plants from three different sites. These proved that membrane bioreactor sludge showed higher compressibility than conventional activated sludge. In addition, detailed information on the underlying mechanisms of the difference in fouling propensity were obtained, as conventional activated sludge showed slower fouling formation, lower specific resistance and lower compressibility of fouling layers, which is explained by a higher degree of flocculation. PMID:28749990

  16. Membrane filtration device for studying compression of fouling layers in membrane bioreactors.

    PubMed

    Jørgensen, Mads Koustrup; Bugge, Thomas Vistisen; Larsen, Poul; Nielsen, Per Halkjær; Christensen, Morten Lykkegaard

    2017-01-01

    A filtration devise was developed to assess compressibility of fouling layers in membrane bioreactors. The system consists of a flat sheet membrane with air scouring operated at constant transmembrane pressure to assess the influence of pressure on resistance of fouling layers. By fitting a mathematical model, three model parameters were obtained; a back transport parameter describing the kinetics of fouling layer formation, a specific fouling layer resistance, and a compressibility parameter. This stands out from other on-site filterability tests as model parameters to simulate filtration performance are obtained together with a characterization of compressibility. Tests on membrane bioreactor sludge showed high reproducibility. The methodology's ability to assess compressibility was tested by filtrations of sludges from membrane bioreactors and conventional activated sludge wastewater treatment plants from three different sites. These proved that membrane bioreactor sludge showed higher compressibility than conventional activated sludge. In addition, detailed information on the underlying mechanisms of the difference in fouling propensity were obtained, as conventional activated sludge showed slower fouling formation, lower specific resistance and lower compressibility of fouling layers, which is explained by a higher degree of flocculation.

  17. Develpment of Higher Temperature Membrane and Electrode Assembly (MEA) for Proton Exchange Membrane Fuel Cell Devices

    SciTech Connect

    Susan Agro, Anthony DeCarmine, Shari Williams

    2005-12-30

    Our work will fucus on developing higher temperature MEAs based on SPEKK polymer blends. Thse MEAs will be designed to operatre at 120 degrees C Higher temperatures, up to 200 degrees C will also be explored. This project will develop Nafion-free MEAs using only SPEKK blends in both membrane and catalytic layers.

  18. Microfabrication of membrane-based devices by deep-reactive ion etching (DRIE) of silicon

    SciTech Connect

    Manginell, R.P.; Frye-Mason, G.C.; Schubert, W.K.; Shul, R.J.; Willison, C.G.

    1998-08-01

    Deep reactive ion etching (DRIE) of silicon was utilized to fabricate dielectric membrane-based devices such as microhotplates, valves and flexural plate wave (FPW) devices. Through-wafer DRIE is characterized by fast etch rates ({approximately} 3 {micro}m/min), crystal orientation independence, vertical sidewall profiles and CMOS compatibility. Low-stress silicon nitride, a popular membrane material, has an appreciable DRIE etch rate. To overcome this limitations DRIE can be accompanied by a brief wet chemical etch. This approach has been demonstrated using KOH or HF/Nitric/Acetic etchants, both of which have significantly lower etch rates on silicon nitride than does DRIE. The DRIE etch properties of composite membranes consisting of silicon dioxide and silicon nitride layers are also under evaluation due to the higher DRIE selectivity to silicon dioxide.

  19. Cell membrane-inspired phospholipid polymers for developing medical devices with excellent biointerfaces

    PubMed Central

    Iwasaki, Yasuhiko; Ishihara, Kazuhiko

    2012-01-01

    This review article describes fundamental aspects of cell membrane-inspired phospholipid polymers and their usefulness in the development of medical devices. Since the early 1990s, polymers composed of 2-methacryloyloxyethyl phosphorylcholine (MPC) units have been considered in the preparation of biomaterials. MPC polymers can provide an artificial cell membrane structure at the surface and serve as excellent biointerfaces between artificial and biological systems. They have also been applied in the surface modification of some medical devices including long-term implantable artificial organs. An MPC polymer biointerface can suppress unfavorable biological reactions such as protein adsorption and cell adhesion – in other words, specific biomolecules immobilized on an MPC polymer surface retain their original functions. MPC polymers are also being increasingly used for creating biointerfaces with artificial cell membrane structures. PMID:27877525

  20. A survey of results for passive air and water sampling via semipermeable membrane devices

    SciTech Connect

    Prest, H.F.; Jacobson, L.; Hodgins, M.; Huckins, J.N.; Petty, J.D.; Richardson, B.; Wilson, M.; Martin, M.

    1994-12-31

    Passive sampling techniques have progressed and are providing new possibilities for measuring trace contaminants in environmental compartments. One such device, the semipermeable membrane device (SPMD) developed by Huckins, et al in Columbia, MO. is especially promising. The authors present an overview of results for sampling in air and water with semipermeable membrane devices (SPMDS) for organochlorines and polynuclear aromatic hydrocarbons (PAHs) and comment on possible future applications and potential. Differences in organohalogen profiles for SPMDs and green-lipped mussels deployed along transacts of Corio Bay, Australia show marked differences in sequestering ``windows``. An illustration of the application of SPMDs to the measurement of the half-life of chemicals is presented using PAH data from SPMD deployments in an irrigation canal in New Mexico. Results for simultaneous sampling of water and coastal air in Northern California illustrate the promise of SPMDs as global monitors.

  1. Crack-Photolithography for Membrane-Free Diffusion-Based Micro/Nanofluidic Devices.

    PubMed

    Kim, Minseok; Kim, Taesung

    2015-11-17

    Recent advances in controlling the cracking phenomena established a novel unconventional fabrication technique to generate mixed-scale patterns/structures with resolution and accuracy comparable to conventional nanofabrication techniques. Here, we adapt our previous cracking-assisted nanofabrication technique (called "crack-photolithography") relying on only the standard photolithography to develop micro/nanofluidic devices with greatly reduced time and cost. The crack-photolithography makes it possible not only to simultaneously produce micropatterns and nanopatterns with various dimensions but also to replicate both of the mixed-scale patterns in a high-throughput manner. Therefore, a microfluidic channel network can easily be fabricated with a nanochannel array that can function as a nanoporous membrane wherever necessary, which basically plays a key role in diffusion-allowed but convection-suppressed microfluidic devices. In addition, the nanochannel array can manipulate the transport of small molecules by adjusting its dimension and/or number at will, so that nanochannel-array-integrated micro/nanofluidic devices prove even more robust and accurate in diffusion control than conventional membrane-integrated microfluidic devices. As an application of such micro/nanofluidic devices, we employed synthetic bacterial cells and found that their genetic induction and expression are dominated by extracellular diffusive microenvironments that were completely engineered using the nanochannel array. Hence, the crack-photolithography could provide innovative fabrication techniques for unprecedented micro/nanofluidic devices that show substantial potential for a wide range of biological and chemical applications.

  2. Engineered Asymmetric Heterogeneous Membrane: A Concentration-Gradient-Driven Energy Harvesting Device.

    PubMed

    Zhang, Zhen; Kong, Xiang-Yu; Xiao, Kai; Liu, Qian; Xie, Ganhua; Li, Pei; Ma, Jie; Tian, Ye; Wen, Liping; Jiang, Lei

    2015-11-25

    Engineered asymmetric membranes for intelligent molecular and ionic transport control at the nanoscale have gained significant attention and offer prospects for broad application in nanofluidics, energy conversion, and biosensors. Therefore, it is desirable to construct a high-performance heterogeneous membrane capable of coordinating highly selective and rectified ionic transport with a simple, versatile, engineered method to mimic the delicate functionality of biological channels. Here, we demonstrate an engineered asymmetric heterogeneous membrane by combining a porous block copolymer (BCP) membrane, polystyrene-b-poly(4-vinylpyridine) (PS48400-b-P4VP21300), with a track-etched asymmetric porous polyethylene terephthalate membrane. The introduction of chemical, geometrical, and electrostatic heterostructures provides our heterogeneous membrane with excellent anion selectivity and ultrahigh ionic rectification with a ratio of ca. 1075, which is considerably higher than that of existing ionic rectifying systems. This anion-selective heterogeneous membrane was further developed into an energy conversion device to harvest the energy stored in an electrochemical concentration gradient. The concentration polarization phenomenon that commonly exists in traditional reverse electrodialysis can be eliminated with an asymmetric bipolar structure, which considerably increases the output power density. This work presents an important paradigm for the use of versatile BCPs in nanofluidic systems and opens new and promising routes to various breakthroughs in the fields of chemistry, materials science, bioscience, and nanotechnology.

  3. High-resolution, preparative purification of PEGylated protein using a laterally-fed membrane chromatography device.

    PubMed

    Madadkar, Pedram; Nino, Sergio Luna; Ghosh, Raja

    2016-11-01

    We discuss the use of a laterally-fed membrane chromatography (or LFMC) device for single-step purification of mono-PEGylated lysozyme. Recent studies have shown such LFMC devices to be suitable for high-resolution, multi-component separation of proteins in the bind-and-elute mode. The device used in this study contained a stack of rectangular cation-exchange membranes having 9.25mL bed volume. PEGylation of lysozyme was carried out in batch mode using 5kDa methoxy-polyethyleneglycol propionaldehyde (or m-PEG propionaldehyde) in the presence of sodium cyanoborohydride as reducing agent. Membrane chromatographic separation was carried out at 1.62 membrane bed volumes per minute flow rate, in the bind-and-elute mode. When a salt gradient was applied, the higher PEGylated forms of lysozyme (i.e. the byproducts) eluted earlier than mono-PEGylated lysozyme (the target product), while lysozyme eluted last. Under elution conditions optimized for resolution and speed, the separation could be carried out in less than 15 membrane bed volumes. High purity and recovery of mono-PEGylated lysozyme was obtained. The resolution of separation of mono-PEGylated lysozyme obtained under the above condition was comparable to that reported in the literature for equivalent cation-exchange resin columns while the flow rate expressed in bed volumes/min was 21.7 times higher. Also, the number of theoretical plates per meter was significantly higher with the LFMC device. Therefore the LFMC based purification process discussed in this paper combined high-productivity with high-resolution. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Production of Fluconazole-Loaded Polymeric Micelles Using Membrane and Microfluidic Dispersion Devices

    PubMed Central

    Lu, Yu; Chowdhury, Danial; Vladisavljević, Goran T.; Koutroumanis, Konstantinos; Georgiadou, Stella

    2016-01-01

    Polymeric micelles with a controlled size in the range between 41 and 80 nm were prepared by injecting the organic phase through a microengineered nickel membrane or a tapered-end glass capillary into an aqueous phase. The organic phase was composed of 1 mg·mL−1 of PEG-b-PCL diblock copolymers with variable molecular weights, dissolved in tetrahydrofuran (THF) or acetone. The pore size of the membrane was 20 μm and the aqueous/organic phase volumetric flow rate ratio ranged from 1.5 to 10. Block copolymers were successfully synthesized with Mn ranging from ~9700 to 16,000 g·mol−1 and polymeric micelles were successfully produced from both devices. Micelles produced from the membrane device were smaller than those produced from the microfluidic device, due to the much smaller pore size compared with the orifice size in a co-flow device. The micelles were found to be relatively stable in terms of their size with an initial decrease in size attributed to evaporation of residual solvent rather than their structural disintegration. Fluconazole was loaded into the cores of micelles by injecting the organic phase composed of 0.5–2.5 mg·mL−1 fluconazole and 1.5 mg·mL−1 copolymer. The size of the drug-loaded micelles was found to be significantly larger than the size of empty micelles. PMID:27231945

  5. A thin permeable-membrane device for single-molecule manipulation

    NASA Astrophysics Data System (ADS)

    Park, Chang-Young; Jacobson, David R.; Nguyen, Dan T.; Willardson, Sam; Saleh, Omar A.

    2016-01-01

    Single-molecule manipulation instruments have unparalleled abilities to interrogate the structure and elasticity of single biomolecules. Key insights are derived by measuring the system response in varying solution conditions; yet, typical solution control strategies require imposing a direct fluid flow on the measured biomolecule that perturbs the high-sensitivity measurement and/or removes interacting molecules by advection. An alternate approach is to fabricate devices that permit solution changes by diffusion of the introduced species through permeable membranes, rather than by direct solution flow through the sensing region. Prior implementations of permeable-membrane devices are relatively thick, disallowing their use in apparatus that require the simultaneous close approach of external instrumentation from two sides, as occurs in single-molecule manipulation devices like the magnetic tweezer. Here, we describe the construction and use of a thin microfluidic device appropriate for single-molecule studies. We create a flow cell of only ˜500 μm total thickness by sandwiching glass coverslips around a thin plastic gasket and then create permeable walls between laterally separated channels in situ through photo-induced cross-linking of poly(ethylene glycol) diacrylate hydrogels. We show that these membranes permit passage of ions and small molecules (thus permitting solution equilibration in the absence of direct flow), but the membranes block the passage of larger biomolecules (thus retaining precious samples). Finally, we demonstrate the suitability of the device for high-resolution magnetic-tweezer experiments by measuring the salt-dependent folding of a single RNA hairpin under force.

  6. Modelling heat and mass transfer in a membrane-based air-to-air enthalpy exchanger

    NASA Astrophysics Data System (ADS)

    Dugaria, S.; Moro, L.; Del, D., Col

    2015-11-01

    The diffusion of total energy recovery systems could lead to a significant reduction in the energy demand for building air-conditioning. With these devices, sensible heat and humidity can be recovered in winter from the exhaust airstream, while, in summer, the incoming air stream can be cooled and dehumidified by transferring the excess heat and moisture to the exhaust air stream. Membrane based enthalpy exchangers are composed by different channels separated by semi-permeable membranes. The membrane allows moisture transfer under vapour pressure difference, or water concentration difference, between the two sides and, at the same time, it is ideally impermeable to air and other contaminants present in exhaust air. Heat transfer between the airstreams occurs through the membrane due to the temperature gradient. The aim of this work is to develop a detailed model of the coupled heat and mass transfer mechanisms through the membrane between the two airstreams. After a review of the most relevant models published in the scientific literature, the governing equations are presented and some simplifying assumptions are analysed and discussed. As a result, a steady-state, two-dimensional finite difference numerical model is setup. The developed model is able to predict temperature and humidity evolution inside the channels. Sensible and latent heat transfer rate, as well as moisture transfer rate, are determined. A sensitive analysis is conducted in order to determine the more influential parameters on the thermal and vapour transfer.

  7. Molecular devices: Caroviologens as an approach to molecular wires—synthesis and incorporation into vesicle membranes

    PubMed Central

    Arrhenius, Thomas S.; Blanchard-Desce, Mireille; Dvolaitzky, Maya; Lehn, Jean-Marie; Malthete, Jacques

    1986-01-01

    Molecular wires, which would allow electron flow to take place between different components, are important elements in the design of molecular devices. An approach to such species would be molecules possessing an electron-conducting conjugated chain, terminal electroactive polar groups, and a length sufficient to span a lipid membrane. To this end, bispyridinium polyenes of different lengths have been synthesized and their incorporation into the bilayer membrane of sodium dihexadecyl phosphate vesicles has been studied. Since they combine the features of carotenoids and of viologens, they may be termed caroviologens. Vesicles containing the caroviologen whose length approximately corresponds to the thickness of the sodium dihexadecyl phosphate bilayer display temperature-dependent changes of its absorption spectrum reflecting the gel → liquid-crystal phase transition of the membrane. The data agree with a structural model in which the caroviologens of sufficient length span the bilayer membrane, the pyridinium sites being close to the negatively charged outer and inner surfaces of the sodium dihexadecyl phosphate vesicles and the polyene chain crossing the lipidic interior of the membrane. These membranes may now be tested in processes in which the caroviologen would function as a continuous, transmembrane electron channel—i.e., as a molecular wire. Various further developments may be envisaged along these lines. PMID:16593731

  8. A nanopore membrane regulator device for laser modulated flow after glaucoma surgery.

    PubMed

    Olson, Jeffrey L; Bhandari, Ramanath; Groman-Lupa, Sergio; Velez-Montoya, Raul

    2015-10-01

    Glaucoma, the second most common cause of blindness in the world, is a multifactorial disease with several risk factors, of which intraocular pressure (IOP) is a primary contributing factor. Filtration surgery is one of the most effective means to significantly lower IOP compared to medical or laser treatments, and it is typically reserved for advanced disease. However, there are high rates of postoperative complications associated with the procedure, often from over- or under-filtration. To address these problems, the glaucoma drainage device regulator (GDDR) implant was developed to allow post-operative control of aqueous flow and IOP. The device, a tube with a nanopore membrane, is placed beneath the scleral flap. Postoperatively, the membrane surface can be ruptured with a laser to augment flow through the system. This feature allows adjustable control of aqueous flow and diminishes the risk of hypotony in the early postoperative period.

  9. A novel membrane device for the removal of water vapor and water droplets from air

    NASA Technical Reports Server (NTRS)

    Ray, Rod; Newbold, David D.; Mccray, Scott B.; Friesen, Dwayne T.; Kliss, Mark

    1992-01-01

    One of the key challenges facing NASA engineers is the development of systems for separating liquids and gases in microgravity environments. In this paper, a novel membrane-based phase separator is described. This device, known as a water recovery heat exchanger (WRHEX), overcomes the inherent deficiencies of current phase-separation technology. Specifically, the WRHEX cools and removes water vapor or water droplets from feed-air streams without the use of a vacuum or centrifugal force. As is shown in this paper, only a low-power air blower and a small stream of recirculated cool water is required for WRHEX operation. This paper presents the results of tests using this novel membrane device over a wide range of operating conditions. The data show that the WRHEX produces a dry air stream containing no entrained or liquid water - even when the feed air contains water droplets or mist. An analysis of the operation of the WRHEX is presented.

  10. Detection of persistent organic pollutants in the Mississippi Delta using semipermeable membrane devices

    USGS Publications Warehouse

    Zimmerman, L.R.; Thurman, E.M.; Bastian, K.C.

    2000-01-01

    From semipermeable membrane devices (SPMDs) placed in five Mississippi Delta streams in 1996 and 1997, the persistent organic pollutants (POPs) aldrin, chlordane, DCPA, DDT, dieldrin, endrin, heptachlor, mirex, nonachlor, and toxaphene were detected. In addition, the insecticides chlorpyriphos, endosulfan, and hexachlorocyclohexanes were detected. Two low-solubility herbicides not detected commonly in surface water, pendimethalin and trifluralin, were also detected. Copyright (C) 2000 Elsevier Science B.V.

  11. Biological Fuel Cells and Membranes

    PubMed Central

    Ghassemi, Zahra; Slaughter, Gymama

    2017-01-01

    Biofuel cells have been widely used to generate bioelectricity. Early biofuel cells employ a semi-permeable membrane to separate the anodic and cathodic compartments. The impact of different membrane materials and compositions has also been explored. Some membrane materials are employed strictly as membrane separators, while some have gained significant attention in the immobilization of enzymes or microorganisms within or behind the membrane at the electrode surface. The membrane material affects the transfer rate of the chemical species (e.g., fuel, oxygen molecules, and products) involved in the chemical reaction, which in turn has an impact on the performance of the biofuel cell. For enzymatic biofuel cells, Nafion, modified Nafion, and chitosan membranes have been used widely and continue to hold great promise in the long-term stability of enzymes and microorganisms encapsulated within them. This article provides a review of the most widely used membrane materials in the development of enzymatic and microbial biofuel cells. PMID:28106711

  12. Biological Fuel Cells and Membranes.

    PubMed

    Ghassemi, Zahra; Slaughter, Gymama

    2017-01-17

    Biofuel cells have been widely used to generate bioelectricity. Early biofuel cells employ a semi-permeable membrane to separate the anodic and cathodic compartments. The impact of different membrane materials and compositions has also been explored. Some membrane materials are employed strictly as membrane separators, while some have gained significant attention in the immobilization of enzymes or microorganisms within or behind the membrane at the electrode surface. The membrane material affects the transfer rate of the chemical species (e.g., fuel, oxygen molecules, and products) involved in the chemical reaction, which in turn has an impact on the performance of the biofuel cell. For enzymatic biofuel cells, Nafion, modified Nafion, and chitosan membranes have been used widely and continue to hold great promise in the long-term stability of enzymes and microorganisms encapsulated within them. This article provides a review of the most widely used membrane materials in the development of enzymatic and microbial biofuel cells.

  13. Electrochemical Device Comprising an Electrically-Conductive, Selectively-Permeable Membrane

    NASA Technical Reports Server (NTRS)

    Mittelsteadt, Cortney K. (Inventor); Laicer, Castro S. T. (Inventor); Harrison, Katherine E. (Inventor); McPheeters, Bryn M. (Inventor)

    2017-01-01

    An electrochemical device, such as a fuel cell or an electrolyzer. In one embodiment, the electrochemical device includes a membrane electrode assembly (MEA), an anodic gas diffusion medium in contact with the anode of the MEA, a cathodic gas diffusion medium in contact with the cathode, a first bipolar plate in contact with the anodic gas diffusion medium, and a second bipolar plate in contact with the cathodic gas diffusion medium. Each of the bipolar plates includes an electrically-conductive, non-porous, liquid-permeable, substantially gas-impermeable membrane in contact with its respective gas diffusion medium, the membrane including a solid polymer electrolyte and a non-particulate, electrically-conductive material, such as carbon nanotubes, carbon nanofibers, and/or metal nanowires. In addition, each bipolar plate also includes an electrically-conductive fluid chamber in contact with the electrically-conductive, selectively-permeable membrane and further includes a non-porous and electrically-conductive plate in contact with the fluid chamber.

  14. Effect of oscillatory flow on the performance of a novel cross-flow affinity membrane device

    SciTech Connect

    Najarian, S.; Bellhouse, B.J.

    1997-01-01

    This paper presents the results of an investigation into the effect of oscillatory flow in a membrane-based affinity contactor. This device was designed to accommodate a tubular affinity membrane, and the flow direction of working fluid was tangential to the surface of the membrane. Cibacron Blue F3G-A was utilized as the capturing ligand and bovine serum albumin as the target molecule. The dye molecules were immobilized covalently via spaced molecules (polyethylenimine) onto the pores of a microfiltration membrane with a pore size rating of 0.45{mu}m. Bovine serum albumin was pumped through the annular space between the concentric screw-threaded insert and the tubular membrane in oscillatory flow with a mean flow component. The effects of pulsation frequency and stroke length were investigated. It was found that, as a result of the pulsatile flow, the protein recovery was increased by a factor of 2. To make the interpretation of the results easier, various dimensionless groups were defined specifically for this system and the experimental data were reported in terms of these groups. 25 refs., 5 figs.

  15. A Potential Nanofiber Membrane Device for Filling Surgical Residual Cavity to Prevent Glioma Recurrence and Improve Local Neural Tissue Reconstruction

    PubMed Central

    Huang, Daoxiang; Lin, Chao; Wen, Xuejun; Gu, Shuying; Zhao, Peng

    2016-01-01

    This study aims to develop a novel device with nanofiber membrane capable of sustained release of temozolomide (TMZ) and neuron growth factor (NGF). An improved bio-availability of TMZ and NGF in surroundings proximal to the device was expected to be attained for a prolonged period of time. The device was developed by integrating TMZ-doped polycaprolactone (PCL) nanofiber (TP) membrane and NGF-coated PCL (NGFP) membrane using sodium alginate hydrogel. TP was prepared by direct electrospinning of TMZ/PCL. NGFP membrane was developed by layer-by-layer assembling technology. The incorporation of TMZ-doped nanofiber and NGFP nanofiber in the device was confirmed by scanning electron microscopy. The number of NGF layer in NGF-coated PCL membrane could be readily measured with energy spectrum analysis. The in vitro release study showed that TP-NGFP-TP membrane could efficiently liberate TMZ to inhibit the growth of C6 glioma cells, and sufficient NGF to induce the differentiation of PC12 neuron cells over four weeks. Such TP-NGFP-TP membrane device can be employed as a tampon to fill up surgical residual cavity and afford residual glioma removal, structural support, hemostasis, and local neural tissue reconstruction in the surgical treatment of glioma. The study opens a horizon to develop multifunctional biomaterial device for maximized glioma treatment efficacy. PMID:27548322

  16. A Potential Nanofiber Membrane Device for Filling Surgical Residual Cavity to Prevent Glioma Recurrence and Improve Local Neural Tissue Reconstruction.

    PubMed

    Huang, Daoxiang; Lin, Chao; Wen, Xuejun; Gu, Shuying; Zhao, Peng

    2016-01-01

    This study aims to develop a novel device with nanofiber membrane capable of sustained release of temozolomide (TMZ) and neuron growth factor (NGF). An improved bio-availability of TMZ and NGF in surroundings proximal to the device was expected to be attained for a prolonged period of time. The device was developed by integrating TMZ-doped polycaprolactone (PCL) nanofiber (TP) membrane and NGF-coated PCL (NGFP) membrane using sodium alginate hydrogel. TP was prepared by direct electrospinning of TMZ/PCL. NGFP membrane was developed by layer-by-layer assembling technology. The incorporation of TMZ-doped nanofiber and NGFP nanofiber in the device was confirmed by scanning electron microscopy. The number of NGF layer in NGF-coated PCL membrane could be readily measured with energy spectrum analysis. The in vitro release study showed that TP-NGFP-TP membrane could efficiently liberate TMZ to inhibit the growth of C6 glioma cells, and sufficient NGF to induce the differentiation of PC12 neuron cells over four weeks. Such TP-NGFP-TP membrane device can be employed as a tampon to fill up surgical residual cavity and afford residual glioma removal, structural support, hemostasis, and local neural tissue reconstruction in the surgical treatment of glioma. The study opens a horizon to develop multifunctional biomaterial device for maximized glioma treatment efficacy.

  17. Sensor-actuator coupled device for active tracheal tube using solid polymer electrolyte membrane

    NASA Astrophysics Data System (ADS)

    Ihara, Tadashi; Nakamura, Taro; Mukai, Toshiharu; Asaka, Kinji

    2007-04-01

    A sensor-actuator coupled device was developed using solid polymer electrolyte membrane (SPM) as an active tracheal tube for ventilator. Active tracheal tube is a novel type of tube for ventilator that removes patient's phlegm automatically upon sensing the narrowing of trachea by phlegm. This type of active tube is extremely useful in clinical settings as currently the sole measure to remove phlegm from patient's tube is to do it manually by a nurse every few hours. As SPM works both as a sensor and an actuator, an effective compact device was developed. SPM based sensor-actuator coupled device was fabricated with modified gold plating method. Prepared SPM was fixed as an array on a plastic pipe of diameter 22 mm and was connected to a ventilator circuit and driven by a ventilator with a volume control ventilation (VCV) mode. SPM was connected both to a sensing unit and an actuation unit. Generated voltage developed by the membrane with the setting of the maximum pressure from 5 cmH IIO to 20 cmH IIO was in order of several hundred μV. SPM sensor demonstrated a biphasic response to the ventilator flow. The sensor data showed nearly linearly proportional voltage development to the intra-tracheal pressure. The sensed signal was filtered and digitized with an A/D converting unit on a PC board. A real time operating program was used to detect the sensed signal that indicates the narrowing of trachea. The program then activated a driving signal to control the actuation of the membrane. The signal was sent to a D/A converting unit. The output of the D/A unit was sent to an amplifier and the galvanostat unit which drives the membrane with constant current regardless of the change in the load. It was demonstrated that the sensor-actuator unit detects the narrowing of trachea within several hundreds milli-seconds and responds by actuating the same membrane with the driving voltage of 3-4 V and driving current of several hundred milli-ampere for each membrane. SPM array

  18. Bridge to transplant with extracorporeal membrane oxygenation followed by HeartWare ventricular assist device in a child.

    PubMed

    Crews, Kelly A; Kaiser, Samantha L; Walczak, Richard J; Jaquiss, Robert D B; Lodge, Andrew J

    2013-05-01

    A 10-year-old boy was admitted with dilated cardiomyopathy. Before scheduled implantation of a HeartWare ventricular assist device, he experienced a cardiac arrest and required extracorporeal membrane oxygenation for both cardiac and pulmonary support. After 4 days of extracorporeal membrane oxygenation and 126 days of support on the HeartWare ventricular assist device, he underwent successful cardiac transplantation. He is doing well 6 months after transplantation.

  19. Microfabrication of membrane-based devices by HARSE and combined HARSE/wet etching

    SciTech Connect

    Manginell, R.P.; Frye-Mason, G.C.; Schubert, W.K.; Shul, R.J.; Willison, C.G.

    1998-08-01

    Deep-reactive ion etching (DRIE) of silicon, also known as high-aspect-ratio silicon etching (HARSE), is distinguished by fast etch rates ({approximately}3 {micro}m/min), crystal orientation independence, anisotropy, vertical sidewall profiles and CMOS compatibility. By using through-wafer HARSE and stopping on a dielectric film placed on the opposite side of the wafer, freestanding dielectric membranes were produced. Dielectric membrane-based sensors and actuators fabricated in this way include microhotplates, flow sensors, valves and magnetically-actuated flexural plate wave (FPW) devices. Unfortunately, low-stress silicon nitride, a common membrane material, has an appreciable DRI etch rate. To overcome this problem HARSE can be followed by a brief wet chemical etch. This approach has been demonstrated using KOH or HF/Nitric/Acetic etchants, both of which have significantly smaller etch rates on silicon nitride than does DRIE. Composite membranes consisting of silicon dioxide and silicon nitride layers are also under evaluation due to the higher DRIE selectivity to silicon dioxide.

  20. A reusable device for electrochemical applications of hydrogel supported black lipid membranes.

    PubMed

    Mech-Dorosz, Agnieszka; Heiskanen, Arto; Bäckström, Sania; Perry, Mark; Muhammad, Haseena B; Hélix-Nielsen, Claus; Emnéus, Jenny

    2015-02-01

    Black lipid membranes (BLMs) are significant in studies of membrane transport, incorporated proteins/ion transporters, and hence in construction of biosensor devices. Although BLMs provide an accepted mimic of cellular membranes, they are inherently fragile. Techniques are developed to stabilize them, such as hydrogel supports. In this paper, we present a reusable device for studies on hydrogel supported (hs) BLMs. These are formed across an ethylene tetrafluoroethylene (ETFE) aperture array supported by the hydrogel, which is during in situ polymerization covalently "sandwiched" between the ETFE substrate and a gold electrode microchip, thus allowing direct electrochemical studies with the integrated working electrodes. Using electrochemical impedance spectroscopy (EIS), X-ray photoelectron spectroscopy and contact angle measurements, we demonstrate the optimized chemical modifications of the gold electrode microchips and plasma modification of the ETFE aperture arrays facilitating covalent "sandwiching" of the hydrogel. Both fluorescence microscopy and EIS were used to demonstrate the induced spontaneous thinning of a deposited lipid solution, leading to formation of stabilized hsBLMs on average in 10 min. The determined specific membrane capacitance and resistance were shown to vary in the range 0.31-0.49 μF/cm(2) and 45-65 kΩ cm(2), respectively, corresponding to partially solvent containing BLMs with an average life time of 60-80 min. The characterized hsBLM formation and devised equivalent circuit models lead to a schematic model to illustrate lipid molecule distribution in hydrogel-supported apertures. The functionality of stabilized hsBLMs and detection sensitivity of the platform were verified by monitoring the effect of the ion transporter valinomycin.

  1. Extracorporeal Membrane Oxygenation, Pulmonary Embolectomy, and Right Ventricular Assist Device for Massive Pulmonary Embolism.

    PubMed

    Lodewyks, Carly L; Bednarczyk, Joseph M; Mooney, Owen T; Arora, Rakesh C; Singal, Rohit K

    2017-07-01

    Consensus regarding the management of massive pulmonary embolism (PE) and persistent shock after thrombolysis is lacking. A 30-year-old man collapsed with massive PE 3 days after an exploratory laparotomy for penetrating trauma, and he remained hypoxic and hypotensive despite thrombolytic therapy. Extracorporeal membrane oxygenation (ECMO) was instituted as a bridge to surgical embolectomy, and placement of a right ventricular assist device (RVAD) was used to facilitate separation from cardiopulmonary bypass. After 48 hours, the RVAD was removed, and the patient survived to discharge. ECMO and temporary RVAD to support surgical embolectomy are lifesaving therapeutic considerations. Copyright © 2017 Canadian Cardiovascular Society. Published by Elsevier Inc. All rights reserved.

  2. HPLC-PFD determination of priority pollutant PAHs in water, sediment, and semipermeable membrane devices

    USGS Publications Warehouse

    Williamson, K.S.; Petty, J.D.; Huckins, J.N.; Lebo, J.A.; Kaiser, E.M.

    2002-01-01

    High performance liquid chromatography coupled with programmable fluorescence detection was employed for the determination of 15 priority pollutant polycyclic aromatic hydrocarbons (PPPAHs) in water, sediment, and semipermeable membrane devices (SPMDs). Chromatographic separation using this analytical method facilitates selectivity, sensitivity (ppt levels), and can serve as a non-destructive technique for subsequent analysis by other chromatographic and spectroscopic techniques. Extraction and sample cleanup procedures were also developed for water, sediment, and SPMDs using various chromatographic and wet chemical methods. The focus of this publication is to examine the enrichment techniques and the analytical methodologies used in the isolation, characterization, and quantitation of 15 PPPAHs in different sample matrices.

  3. A porous media theory for characterization of membrane blood oxygenation devices

    NASA Astrophysics Data System (ADS)

    Sano, Yoshihiko; Adachi, Jun; Nakayama, Akira

    2013-07-01

    A porous media theory has been proposed to characterize oxygen transport processes associated with membrane blood oxygenation devices. For the first time, a rigorous mathematical procedure based a volume averaging procedure has been presented to derive a complete set of the governing equations for the blood flow field and oxygen concentration field. As a first step towards a complete three-dimensional numerical analysis, one-dimensional steady case is considered to model typical membrane blood oxygenator scenarios, and to validate the derived equations. The relative magnitudes of oxygen transport terms are made clear, introducing a dimensionless parameter which measures the distance the oxygen gas travels to dissolve in the blood as compared with the blood dispersion length. This dimensionless number is found so large that the oxygen diffusion term can be neglected in most cases. A simple linear relationship between the blood flow rate and total oxygen transfer rate is found for oxygenators with sufficiently large membrane surface areas. Comparison of the one-dimensional analytic results and available experimental data reveals the soundness of the present analysis.

  4. Effect of shell-side flows on hollow-fiber membrane device performance

    SciTech Connect

    Lemanski, J.; Lipscomb, G.G.

    1995-10-01

    Membrane-based separation processes are the preferred choice to accomplish many industrial separations. Among the numerous applications are filtration, dialysis, reverse osmosis, and gas separations. Modules utilizing hollow-fiber membranes are efficient contractors. For design purposes, analyses of how these devices perform require knowledge of the membrane mass-transfer properties and the nature of the flow in both the lumen and shell. Such analyses typically assume that all fibers possess the same size and mass-transfer characteristics. Additionally, most analyses assume that the shell and lumen flows are concurrent, countercurrent, or cross-current to one another. No work exists that addresses fluid distribution across the fiber bundle. The authors present a theoretical analysis of shell-side flows and their influence on mass transfer. The general problem is computationally quite complex. They consider only the simplest, nontrivial effects here, but within a framework that is readily modified to allow examination of other issues associated with shell-side flows.

  5. Monitoring of organotin compounds in seawater using semipermeable membrane devices (SPMDs)--tentative results.

    PubMed

    Følsvik, N; Brevik, E M; Berge, J A

    2000-08-01

    The impact of anthropogenic pollutants on the marine ecosystem is related to the concentrations experienced by the biota in the seawater and the resulting concentration in the organism. Results from monitoring of pollutants in water samples provide snapshots that can be high or low depending on a wide range of variables. To provide more integrated information, semipermeable membrane devices, SPMDs, have been used to monitor different organic pollutants. In this survey, SPMDs were used to monitor organotin compounds in the marine environment. Time-integrated sampling using SPMDs and direct water sampling was carried out at six stations in the inner Oslofjord, Norway. The sample work-up procedure for both water and SPMDs was based on direct derivatisation using NaBEt4 and simultaneous extraction with an organic solvent. Analysis was performed using a gas chromatograph equipped with an atomic emission detector. The results show that SPMDs do accumulate organotin compounds from the water phase. Both tributyl- (TBT) and dibutyltin were detected in all of the analysed membranes while no monobutyltin was found. Levels found in SPMDs range from < 1 to 220 ng Sn SPMD(-1). Water concentrations range from 0.4 to 10 ng Sn L(-1). An investigation of relative levels of TBT showed a similar concentration gradient in the inner Oslofjord using either direct water sampling or passive sampling by SPMDs. As the membranes are able to accumulate the organotins from the water it will be possible to locate lower concentrations than with direct analyses of water samples.

  6. Glass microfluidic devices with thin membrane voltage junctions for electrospray mass spectrometry.

    PubMed

    Yue, Guihua Eileen; Roper, Michael G; Jeffery, Erin D; Easley, Christopher J; Balchunas, Catherine; Landers, James P; Ferrance, Jerome P

    2005-06-01

    In this study a novel glass membrane was prepared for conducting high voltage (HV) to solution in the channel of a microfabricated device for generation of liquid electrospray. Taylor cone formation and mass spectra obtained from this microdevice confirmed the utility of the glass membrane, but voltage conduction through the membrane could not be successfully explained based solely on the conductivity of the glass itself. This novel method for developing a high-voltage interface for microdevices avoids direct metal/liquid contact eliminating bubble formation in the channel due to water hydrolysis on the surface of the metal. Further, this arrangement produces no dead volume as is often found with traditional liquid junctions. At the same time, preliminary investigations into the outlet design of glass microdevices for interfacing with electrospray mass spectrometry, was explored. Both the exit shape and the use of hydrophobic coatings at the channel exit of the microdevice electrospray interface were evaluated using standard proteins with results indicating the utility of this type of design after further optimization.

  7. A membrane-based microfluidic device for controlling the flux of platelet agonists into flowing blood†

    PubMed Central

    Neeves, Keith B.; Diamond, Scott L.

    2008-01-01

    The flux of platelet agonists into flowing blood is a critical event in thrombosis and hemostasis. However, few in vitro methods exist for examining and controlling the role of platelet agonists on clot formation and stability under hemodynamic conditions. In this paper, we describe a membrane-based method for introducing a solute into flowing blood at a defined flux. The device consisted of a track-etched polycarbonate membrane reversibly sealed between two microfluidic channels; one channel contained blood flowing at a physiologically relevant shear rate, and the other channel contained the agonist(s). An analytical model described the solute flux as a function of the membrane permeability and transmembrane pressure. The model was validated using luciferase as a model solute for transmembrane pressures of 50–400 Pa. As a proof-of-concept, the weak platelet agonist ADP was introduced into whole blood flowing at 250 s−1 at three fluxes (1.5, 2.4, and 4.4 × 10−18 mol μm−2 s−1). Platelet aggregation was monitored by fluorescence microscopy during the experiment and the morphology of aggregates was determined by post hoc confocal and electron microscopy. At the lowest flux (1.5 × 10−18 mol μm−2 s−1), we observed little to no aggregation. At the higher fluxes, we observed monolayer (2.4 × 10−18 mol μm−2 s−1) and multilayer (4.4 × 10−18 mol μm−2 s−1) aggregates of platelets and found that the platelet density within an aggregate increased with increasing ADP flux. We expect this device to be a useful tool in unraveling the role of platelet agonists on clot formation and stability. PMID:18432339

  8. Three-compartment model for contaminant accumulation by semipermeable membrane devices

    USGS Publications Warehouse

    Gale, Robert W.

    1998-01-01

    Passive sampling of dissolved hydrophobic contaminants with lipid (triolein)-containing semipermeable membrane devices (SPMDs) has been gaining acceptance for environmental monitoring. Understanding of the accumulation process has employed a simple polymer film-control model of uptake by the polymer-enclosed lipid, while aqueous film control has been only briefly discussed. A more complete three-compartment model incorporating both aqueous film (turbulent-diffusive) and polymer film (diffusive) mass transfer is developed here and is fit to data from accumulation studies conducted in constant-concentration, flow-through dilutors. This model predicts aqueous film control of the whole device for moderate to high Kow compounds, rather than polymer film control. Uptake rates for phenanthrene and 2,2‘,5,5‘-tetrachlorobiphenyl were about 4.8 and 4.2 L/day/standard SPMD, respectively. Maximum 28 day SPMD concentration factors of 30 000 are predicted for solutes with log Kow values of >5.5. Effects of varying aqueous and polymer film thicknesses and solute diffusivities in the polymer film are modeled, and overall accumulation by the whole device is predicted to remain under aqueous film control, although accumulation in the triolein may be subject to polymer film control. The predicted half-life and integrative response of SPMDs to pulsed concentration events is proportional to log KSPMD.

  9. Dense chitosan surgical membranes produced by a coincident compression-dehydration process

    PubMed Central

    Dooley, Thomas P.; Ellis, April L.; Belousova, Maria; Petersen, Don; DeCarlo, Arthur A.

    2012-01-01

    High density chitosan membranes were produced via a novel manufacturing process for use as implantable resorbable surgical membranes. The innovative method utilizes the following three sequential steps: (1) casting an acidic chitosan solution within a silicon mold, followed by freezing; (2) neutralizing the frozen acidic chitosan solution in alkaline solution to facilitate polymerization; and (3) applying coincident compression-dehydration under a vacuum. Resulting membranes of 0.2 – 0.5 mm thickness have densities as high as 1.6 g/cm3. Inclusion of glycerol prior to the compression-dehydration step provides additional physical and clinical handling benefits. The biomaterials exhibit tensile strength with a maximum load as high as 10.9 N at ~ 2.5 mm width and clinically-relevant resistance to suture pull-out with a maximum load as high as 2.2 N. These physical properties were superior to those of a commercial reconstituted collagen membrane. The dense chitosan membranes have excellent clinical handling characteristics, such as pliability and “memory” when wet. They are semi-permeable to small molecules, biodegradable in vitro in lysozyme solution, and the rates of degradation are inversely correlated to the degree of deacetylation. Furthermore, the dense chitosan membranes are biocompatible and resorbable in vivo as demonstrated in a rat oral wound healing model. The unique combination of physical, in vitro, in vivo, and clinical handling properties demonstrate the high utility of dense chitosan membranes produced by this new method. The materials may be useful as surgical barrier membranes, scaffolds for tissue engineering, wound dressings, and as delivery devices for active ingredients. PMID:23565872

  10. A low-cost thin layer coulometric microfluidic device based on an ion-selective membrane for calcium determination.

    PubMed

    Dorokhin, Denis; Crespo, Gastón A; Afshar, Majid Ghahraman; Bakker, Eric

    2014-01-07

    A prototype of a low-cost and easy-to-use thin layer coulometric microfluidic device based on an ion-selective membrane for calcium detection is described. The microfluidic device was fabricated and consequently assembled with inexpensive materials without using sophisticated and centralized fabrication laboratory facilities. The linear range of the device is found to be 10-100 μM for a 60 s current integration time. Preliminary validations showed that the microfluidic device is suitable for the quantification of calcium in mineral water.

  11. Membrane-tube-type glaucoma shunt device for refractory glaucoma surgery.

    PubMed

    Han, Jong Chul; Hwang, Young Hoon; Ahn, Byung Heon

    2017-01-01

    To evaluate the safety and efficacy of a novel membrane-tube (MT)-type glaucoma shunt device for refractory glaucoma surgery. The device consists of an expanded polytetrafluoroethylene membranous reservoir, as well as a silicone tube (300-μm external and 200-μm internal diameter) with an intraluminal stent. We named the device "Finetube MT". The Finetube MT was implanted into 44 glaucomatous eyes that had insufficient intraocular pressure (IOP) control despite medical treatment or previous trabeculectomy. The membranous reservoir was placed underneath the Tenon's capsule, with each end located below the recti muscles; the tube was placed in the anterior chamber through a partial-thickness scleral track. We investigated the baseline and post-operative IOP values, the number of IOP-lowering medications used, and complications. The mean age of the subjects was 51.6 ± 17.2 years, and the mean follow-up duration was 22.5 ± 12.0 months. One year after the surgery, the mean IOP had decreased from 32.8 ± 12.2 mmHg to 16.9 ± 6.4 mmHg (48.5 % reduction; p < 0.01), and the mean number of IOP-lowering medications used had decreased from 2.5 ± 0.8 to 1.1 ± 0.9 (p < 0.01). We considered the surgery as a success when the IOP was between 6 and 21 mmHg, and had been reduced by ≥ 20 % from baseline; by this standard, the success rate was 92.4 % after 1 year, and 85.0 % after 3 years. Neither postoperative ocular hypotony-related complications nor tube exposure occurred in any case. The Finetube MT showed promising surgical outcomes as a treatment for refractory glaucoma, with minimal risk of postoperative ocular hypotony or tube-related complications.

  12. A Pharmacokinetic Study of GC-1 Delivery Using a Nanochannel Membrane Device.

    PubMed

    Filgueira, Carly S; Ballerini, Andrea; Nicolov, Eugenia; Chua, Corrine Ying Xuan; Jain, Priya; Smith, Zachary W; Gilbert, April L; Scaglione, Francesco; Grattoni, Alessandro

    2017-03-01

    This study demonstrated a nanochannel membrane device (NMD) for controlled and sustained release of GC-1 in rats, in the context of the treatment of metabolic syndrome. Release profiles were established in vitro both with and without 5% labrasol for over 2 months. In vivo pharmacokinetic evaluation showed effective GC-1 plasma concentrations, which resulted in significant reductions in body weight after just one week of treatment when compared to the NMD releasing vehicle only (PBS). We also provided evidence that rats treated with NMD-GC-1 present sub-active thyroids and clear differences in the morphology of the epithelium and follicles as compared to the controls, while the heart showed changes in weight. Moreover, body temperatures remained stable throughout treatment, and glucose, pancreatic islet size, and liver histology appeared similar between the treated and control groups. Prolonged constant administration of GC-1 from the NMD proved to be a valid strategy to facilitate weight loss.

  13. Validity of using semipermeable membrane devices for determining aqueous concentrations of freely dissolved PAHs

    USGS Publications Warehouse

    Prest, Harry; Petty, J.D.; Huckins, J.N.

    1998-01-01

    An in-depth review of the recent contribution to this journal by Gustafson and Dickhut [1] prompts us to share our concerns regarding some of their conclusions. The paper presents data comparing three techniques for determining aqueous concentrations of freely dissolved polycyclic aromatic hydrocarbons (PAHs) gas sparging, lipid-containing semipermeable membrane devices (SPMDs) of the U.S. Geological Survey (USGS) design, and filtration followed by sorption using XAD-2 resin. Space limitations force us to limit our comments to problems resulting from an apparent lack of understanding of how SPMDs function. Several recent publications [2–13] have described the theoretical and practical considerations of SPMD usage. Gustafson and Dickhut fail to cite any papers describing SPMDs published after 1992, even though some 18 papers have been published in American and European journals since then and several SPMD studies have been presented at many major meetings.

  14. Use of semipermeable membrane devices for in situ monitoring of polycyclic aromatic hydrocarbons in aquatic environments

    USGS Publications Warehouse

    Lebo, Jon A.; Zajicek, James L.; Huckins, James N.; Petty, Jimmie D.; Peterman, Paul H.

    1992-01-01

    A method is given for the recovery, cleanup, and analysis of polycyclic aromatic hydrocarbons (PAHs) that have been sequestered in SPMDs (semipermeable membrane devices). SPMDs are polymeric membranes enclosing lipids, and mimic the bioconcentration process of aquatic animals. SPMDs are used as passive, in situ monitors of contamination by organic pollutants of aquatic environments. The method reported here includes dialytic recovery of the PAHs, cleanup of the dialysates using size exclusion, adsorption, and argentation chromatographic modules in tandem, then analysis by gas chromatography with photoionization or mass spectrometric detection. The method is demonstrated to overcome the presence of a variety of environmental co-contaminants and other potential interferents in the dialysates. A field application is also demonstrated in which SPMDs are used to monitor PAH contamination in an urban creek. Approaches to the use of SPMD data to calculate aqueous concentrations of PAHs are discussed. The use of SPMDs in combination with the complementary, PAH-specific cleanup procedure provides a unique approach to the analysis of PAH residues in the aquatic environment.

  15. Stabilized liquid membrane device (SLMD) for the passive, integrative sampling of labile metals in water

    USGS Publications Warehouse

    Brumbaugh, W.G.; Petty, J.D.; Huckins, J.N.; Manahan, S.E.

    2002-01-01

    A stabilized liquid membrane device (SLMD) is described for potential use as an in situ, passive, integrative sampler for cadmium (Cd), cobalt (Co), copper (Cu), nickel (Ni), lead (Pb), and zinc (Zn) in natural waters. The SLMD (patent pending) consists of a 2.5-cm-wide by 15-cm-long strip of low-density polyethylene (LDPE) layflat tubing containing 1 mL of an equal mixture (v/v) of oleic acid (cis-9-octadecenoic acid) and EMO-8Q (7-[4-ethyl-1-methyloctyl]-8-quinolinol). The reagent mixture continuously diffuses to the exterior surface of the LDPE membrane, and provides for sequestration of several divalent metals for up to several weeks. Depending on sampler configuration, concentration factors of several thousand can be realized for these metal ions after just a few days. In addition to in situ deployment, the SLMD may be useful for laboratory determination of labile metal species in grab samples. Methods for minimizing the effects of water flow on the sampling rate are currently under investigation.

  16. (13) C Breath Tests Are Feasible in Patients With Extracorporeal Membrane Oxygenation Devices.

    PubMed

    Bednarsch, Jan; Menk, Mario; Malinowski, Maciej; Weber-Carstens, Steffen; Pratschke, Johann; Stockmann, Martin

    2016-07-01

    Temporary extracorporeal membrane oxygenation (ECMO) has been established as an essential part of therapy in patients with pulmonary or cardiac failure. As physiological gaseous exchange is artificially altered in this patient group, it is debatable whether a (13) C-breath test can be carried out. In this proof of technical feasibility report, we assess the viability of the (13) C-breath test LiMAx (maximum liver function capacity) in patients on ECMO therapy. All breath probes for the test device were obtained directly via the membrane oxygenator. Data of four patients receiving liver function assessment with the (13) C-breath test LiMAx while having ECMO therapy were analyzed. All results were compared with validated scenarios of the testing procedures. The LiMAx test could successfully be carried out in every case without changing ECMO settings. Clinical course of the patients ranging from multiorgan failure to no sign of liver insufficiency was in accordance with the results of the LiMAx liver function test. The (13) C-breath test is technically feasible in the context of ECMO. Further evaluation of (13) C-breath test in general would be worthwhile. The LiMAx test as a (13) C-breath test accessing liver function might be of particular predictive interest if patients with ECMO therapy develop multiorgan failure.

  17. North American neonatal extracorporeal membrane oxygenation (ECMO) devices: 2002 survey results.

    PubMed

    Lawson, D Scott; Walczak, Rich; Lawson, Andrea F; Shearer, Ian R; Ing, Richard; Schulman, Scott; Kern, Frank; Jaggers, James

    2004-03-01

    In mid 2002, surveys of active extracorporeal membrane oxygenation (ECMO) centers in the United States and Canada were conducted via E-mail regarding neonatal equipment and personnel. Seventy-four out of 99 (75%) North American ECMO centers listed in the Extracorporeal Life Support Organization (ELSO) directory responded to the survey. Of the responding centers, 95% use roller pumps, and the remaining 5% use centrifugal pumps. Silicone membrane oxygenators were used by 97% of the respondents, while 3% used hollow fiber oxygenators. Of the silicone membrane oxygenator users, 82% used the Medtronic ECMOtherm heat exchanger, 15% used a Gish heat exchanger, and 3% used the Dideco D720 heat exchanger. Sixty-one percent of the responding centers used some form of in-line blood gas monitoring. Five percent of the centers used a bubble trap in the arterial line, and 12% used an arterial line filter. A bladder was used by 92% of the centers, and 29% used a mechanical bladder box for servo regulation, the remaining 71% used pressure servo regulation. An air bubble detector was used by 65% of the responding centers, although 81% had the device available. Heparin coating was used by 5% of the centers on all their neonatal ECMO patients. The average low range ACT was 183 seconds, and the average high range ACT was 216 seconds. At 49% of the responding centers, perfusionists were involved with the ECMO program, registered nurses were involved at 84% of the centers, and respiratory therapists were involved at 61% of the centers, perfusion assistants were involved at one center (1%), and biomedical engineers were involved at one of the centers. When compared to a 1990 survey, a shift away from using bladder boxes and toward using air bubble detectors is apparent. But other than those two shifts, ECMO is done in much the same manner as it was done 12 years ago.

  18. A Novel Teflon-membrane Gas Tension Device for Denitrification-studies in Oxygen Minimum Zones

    NASA Astrophysics Data System (ADS)

    Reed, A. C.; McNeil, C. L.; D'Asaro, E. A.; Altabet, M. A.; Johnson, B.; Bourbonnais, A.

    2014-12-01

    Oxygen Minimum Zones (OMZs) are global hotspots for the biogeochemical transformation of biologically-available forms of nitrogen to unusable nitrogen-gas. We present a new Teflon-membrane based Gas Tension Device (GTD) for measuring the excess N2 signal generated by denitrification and anammox in OMZs, with a hydrostatic pressure-independent response and a depth range from 0 - 550 m, a significant advancement from previous GTD models. The GTD consists of a 4/1000" thick by 2" diameter Teflon-membrane with a water-side plenum connected to SeaBird 5T pump. Dissolved gases in the water equilibrate across the membrane with a low-dead-volume housing connected to a high-precision quart pressure sensor. Laboratory data characterizing the GTD will be presented. The e-folding (response) time ranges from 14 min at continuous (100%) pumping to 28 min at pulse (10%) pumping. We also demonstrate the pressure dependence of the partial pressures from Henry's Law in the laboratory for pure nitrogen, pure oxygen, and standard atmospheric ratios of gases. GTD's were field tested on two floats deployed in the Eastern Tropical North Pacific (ETNP) OMZ for 15 days that targeted a productive mesoscale surface eddy originating from the Mexican coast. We anticipated that high organic carbon export should stimulate denitrification within the OMZ below. The floats profiled between the surface and 400 m depth and concurrently measured T, S, PAR, O2 (SBE 43 and Optode), and nitrate (SUNA). The N2-profiles from the GTDs are validated against independently measured N2/Ar ratio data collected during the deployment.

  19. Stable chemical bonding of porous membranes and poly(dimethylsiloxane) devices for long-term cell culture

    PubMed Central

    Sip, Christopher G.; Folch, A.

    2014-01-01

    We have investigated the bonding stability of various silane treatments for the integration of track-etched membranes with poly(dimethylsiloxane) (PDMS) microfluidic devices. We compare various treatments using trialkoxysilanes or dipodal silanes to determine the effect of the organofunctional group, cross-link density, reaction solvent, and catalyst on the bond stability. We find that devices made using existing silane methods delaminated after one day when immersed in cell culture medium at 37 °C. In contrast, the dipodal silane, bis[3-(trimethoxysilyl)propyl]amine, is shown to yield stable and functional integration of membranes with PDMS that is suitable for long-term cell culture. To demonstrate application of the technique, we fabricated an open-surface device in which cells cultured on a track-etched membrane can be stimulated at their basal side via embedded microfluidic channels. C2C12 mouse myoblasts were differentiated into myotubes over the course of two weeks on these devices to demonstrate biocompatibility. Finally, devices were imaged during the basal-side delivery of a fluorescent stain to validate the membrane operation and long-term stability of the bonding technique. PMID:25379080

  20. Stable chemical bonding of porous membranes and poly(dimethylsiloxane) devices for long-term cell culture.

    PubMed

    Sip, Christopher G; Folch, A

    2014-05-01

    We have investigated the bonding stability of various silane treatments for the integration of track-etched membranes with poly(dimethylsiloxane) (PDMS) microfluidic devices. We compare various treatments using trialkoxysilanes or dipodal silanes to determine the effect of the organofunctional group, cross-link density, reaction solvent, and catalyst on the bond stability. We find that devices made using existing silane methods delaminated after one day when immersed in cell culture medium at 37 °C. In contrast, the dipodal silane, bis[3-(trimethoxysilyl)propyl]amine, is shown to yield stable and functional integration of membranes with PDMS that is suitable for long-term cell culture. To demonstrate application of the technique, we fabricated an open-surface device in which cells cultured on a track-etched membrane can be stimulated at their basal side via embedded microfluidic channels. C2C12 mouse myoblasts were differentiated into myotubes over the course of two weeks on these devices to demonstrate biocompatibility. Finally, devices were imaged during the basal-side delivery of a fluorescent stain to validate the membrane operation and long-term stability of the bonding technique.

  1. A do-it-yourself membrane-activated auditory feedback device for weight bearing and gait training: a case report.

    PubMed

    Batavia, M; Gianutsos, J G; Vaccaro, A; Gold, J T

    2001-04-01

    An augmented auditory feedback device comprised of a thin membrane switch mini-buzzer, and battery is described as a modification of a previously described feedback device. The membrane switch can be customized for the patient and is designed to fit inside a patient's shoe without altering the heel height. Its appeal lies in its simplicity of construction, low cost, and ease of implementation during a patient's training for weight bearing and gait. An ever-present source of information, it provides performance-relevant cues to both patient and clinician about the occurrence, duration, and location of a force component of motor performance. The report includes suggested applications of the device, instructions to construct it, and a case report in which the device was used to improve weight bearing and gait in a cognitively healthy person with spina bifida.

  2. Considerations involved with the use of semipermeable membrane devices for monitoring environmental contaminants

    USGS Publications Warehouse

    Petty, J.D.; Orazio, C.E.; Huckins, J.N.; Gale, R.W.; Lebo, J.A.; Meadows, J.C.; Echols, K.R.; Cranor, W.L.

    2000-01-01

    Semipermeable membrane devices (SPMDs) are used with increasing frequency, and throughout the world as samplers of organic contaminants. The devices can be used to detect a variety of lipophilic chemicals in water, sediment/soil, and air. SPMDs are designed to sample nonpolar, hydrophobic chemicals. The maximum concentration factor achievable for a particular chemical is proportional to its octanol–water partition coefficient. Techniques used for cleanup of SPMD extracts for targeted analytes and for general screening by full-scan mass spectrometry do not differ greatly from techniques used for extracts of other matrices. However, SPMD extracts contain potential interferences that are specific to the membrane–lipid matrix. Procedures have been developed or modified to alleviate these potential interferences. The SPMD approach has been demonstrated to be applicable to sequestering and analyzing a wide array of environmental contaminants including organochlorine pesticides, polychlorinated biphenyls, polycyclic aromatic hydrocarbons, polychlorinated dioxins and dibenzofurans, selected organophosphate pesticides and pyrethroid insecticides, and other nonpolar organic chemicals. We present herein an overview of effective procedural steps for analyzing exposed SPMDs for trace to ultra-trace levels of contaminants sequestered from environmental matrices.

  3. Semipermeable membrane devices (SPMDs) as universal environmental monitors for trace contaminants

    SciTech Connect

    Prest, H.F.; Hodgins, M.M.; Jacobson, L.A.; Huckins, J.N.; Petty, J.D.; Brown, J.; Wilson, M.

    1995-12-31

    The vast majority of data complied on trace contaminants in water has been acquired through biomonitoring; using organisms as bioconcentrators of trace substances. A particularly successful and widely applied approach utilizes bivalves in local, national, and international mussel watch programs. Attractive features of this approach are the widespread occurrence of bivalves, their high tolerance and viability, ease of analysis, and high bioconcentration factors for a wide range of compounds. However, uncertainties about uptake, deputation and biotransformation of contaminants convolute the data and make quantitative statements about water concentrations difficult. Recent developments demonstrate semipermeable membrane devices (SPMDs) are a promising new tool for biomonitoring. SPMDs are inexpensive, tolerant of extreme conditions, and concentrations of analytes sequestered by SPMDs can be used to infer bioconcentration potential and average ambient concentrations. The authors present data from freshwater systems such as the San Juan River comparing spatial trends in PAH metabolites in fish bile and PAHs sequestered by SPMDs, and marine environments such as PAHs in SPMDs deployed in Cook Inlet, Alaska. These data support the case for SPMDs as universal monitoring devices or pseudo-organisms that will provide a standardized approach to measuring and monitoring trace contaminants on both local and global scales.

  4. Dialysis membrane for separation on microchips

    DOEpatents

    Singh, Anup K.; Kirby, Brian J.; Shepodd, Timothy J.

    2010-07-13

    Laser-induced phase-separation polymerization of a porous acrylate polymer is used for in-situ fabrication of dialysis membranes inside glass microchannels. A shaped 355 nm laser beam is used to produce a porous polymer membrane with a thickness of about 15 .mu.m, which bonds to the glass microchannel and forms a semi-permeable membrane. Differential permeation through a membrane formed with pentaerythritol triacrylate was observed and quantified by comparing the response of the membrane to fluorescein and fluorescently tagging 200 nm latex microspheres. Differential permeation was observed and quantified by comparing the response to rhodamine 560 and lactalbumin protein in a membrane formed with SPE-methylene bisacrylamide. The porous membranes illustrate the capability for the present technique to integrate sample cleanup into chip-based analysis systems.

  5. Topographically-patterned porous membranes in a microfluidic device as an in vitro model of renal reabsorptive barriers

    PubMed Central

    Frohlich, Else M.; Alonso, José Luis; Borenstein, Jeffrey T.; Zhang, Xin; Arnaout, M. Amin

    2015-01-01

    Models of reabsorptive barriers require both a means to provide realistic physiologic cues to and quantify transport across a layer of cells forming the barrier. Here we have topographically-patterned porous membranes with several user-defined pattern types. To demonstrate the utility of the patterned membranes, we selected one type of pattern and applied it to a membrane to serve as a cell culture support in a microfluidic model of a renal reabsorptive barrier. The topographic cues in the model resemble physiological cues found in vivo while the porous structure allows quantification of transport across the cell layer. Sub-micron surface topography generated via hot-embossing onto a track-etched polycarbonate membrane, fully replicated topographical features and preserved porous architecture. Pore size and shape were analyzed with SEM and image analysis to determine the effect of hot embossing on pore morphology. The membrane was assembled into a bilayer microfluidic device and a human kidney proximal tubule epithelial cell line (HK-2) and primary renal proximal tubule epithelial cells (RPTEC) were cultured to confluency on the membrane. Immunofluorescent staining of both cell types revealed protein expression indicative of the formation of a reabsorptive barrier responsive to mechanical stimulation: ZO-1 (tight junction), paxillin (focal adhesions) and acetylated α-tubulin (primary cilia). HK-2 and RPTEC aligned in the direction of ridge/groove topography of the membrane in the device, evidence that the device has mechanical control over cell response. This topographically-patterned porous membrane provides an in vitro platform on which to model reabsorptive barriers with meaningful applications for understanding biological transport phenomenon, underlying disease mechanisms, and drug toxicity. PMID:23636129

  6. Topographically-patterned porous membranes in a microfluidic device as an in vitro model of renal reabsorptive barriers.

    PubMed

    Frohlich, Else M; Alonso, José Luis; Borenstein, Jeffrey T; Zhang, Xin; Arnaout, M Amin; Charest, Joseph L

    2013-06-21

    Models of reabsorptive barriers require both a means to provide realistic physiologic cues to and quantify transport across a layer of cells forming the barrier. Here we have topographically-patterned porous membranes with several user-defined pattern types. To demonstrate the utility of the patterned membranes, we selected one type of pattern and applied it to a membrane to serve as a cell culture support in a microfluidic model of a renal reabsorptive barrier. The topographic cues in the model resemble physiological cues found in vivo while the porous structure allows quantification of transport across the cell layer. Sub-micron surface topography generated via hot-embossing onto a track-etched polycarbonate membrane, fully replicated topographical features and preserved porous architecture. Pore size and shape were analyzed with SEM and image analysis to determine the effect of hot embossing on pore morphology. The membrane was assembled into a bilayer microfluidic device and a human kidney proximal tubule epithelial cell line (HK-2) and primary renal proximal tubule epithelial cells (RPTEC) were cultured to confluency on the membrane. Immunofluorescent staining of both cell types revealed protein expression indicative of the formation of a reabsorptive barrier responsive to mechanical stimulation: ZO-1 (tight junction), paxillin (focal adhesions) and acetylated α-tubulin (primary cilia). HK-2 and RPTEC aligned in the direction of ridge/groove topography of the membrane in the device, evidence that the device has mechanical control over cell response. This topographically-patterned porous membrane provides an in vitro platform on which to model reabsorptive barriers with meaningful applications for understanding biological transport phenomenon, underlying disease mechanisms, and drug toxicity.

  7. An intravascular bioartificial pancreas device (iBAP) with silicon nanopore membranes (SNM) for islet encapsulation under convective mass transport.

    PubMed

    Song, Shang; Blaha, Charles; Moses, Willieford; Park, Jaehyun; Wright, Nathan; Groszek, Joey; Fissell, William; Vartanian, Shant; Posselt, Andrew M; Roy, Shuvo

    2017-05-16

    Diffusion-based bioartificial pancreas (BAP) devices are limited by poor islet viability and functionality due to inadequate mass transfer resulting in islet hypoxia and delayed glucose-insulin kinetics. While intravascular ultrafiltration-based BAP devices possess enhanced glucose-insulin kinetics, the polymer membranes used in these devices provide inadequate ultrafiltrate flow rates and result in excessive thrombosis. Here, we report the silicon nanopore membrane (SNM), which exhibits a greater hydraulic permeability and a superior pore size selectivity compared to polymer membranes for use in BAP applications. Specifically, we demonstrate that the SNM-based intravascular BAP with ∼10 and ∼40 nm pore sized membranes support high islet viability (>60%) and functionality (<15 minute insulin response to glucose stimulation) at clinically relevant islet densities (5700 and 11 400 IE per cm(2)) under convection in vitro. In vivo studies with ∼10 nm pore sized SNM in a porcine model showed high islet viability (>85%) at clinically relevant islet density (5700 IE per cm(2)), c-peptide concentration of 144 pM in the outflow ultrafiltrate, and hemocompatibility under convection. These promising findings offer insights on the development of next generation of full-scale intravascular devices to treat T1D patients in the future.

  8. SCREENING BIOAVAILABLE HYDROPHOBIC TOXICANTS IN SURFACE WATERS WITH SEMIPERMEABLE MEMBRANE DEVICES: ROLE OF INHERENT OLEIC ACID IN TOXICITY EVALUATIONS

    EPA Science Inventory

    Semipermeable membrane devices (SPMDs) were deployed for 4 weeks in two rivers in Lithuania, The SPMD dialysates were tested in the Microtox assay and, surprisingly, the sample from the relatively clean (U) over bar la River exhibited three times more toxicity than the sample fro...

  9. [Development of the MITO-porter, a nano device for mitochondrial drug delivery via membrane fusion].

    PubMed

    Yamada, Yuma

    2014-01-01

    Many human diseases have been reported to be associated with mitochondrial dysfunction. Therefore, mitochondrial therapy would be expected to be useful and productive in the treatment of various diseases. To achieve such an innovative therapy, it will be necessary to deliver therapeutic agents into mitochondria. However, only a limited number of methods are available for accomplishing this. We previously developed the MITO-Porter, a liposome-based carrier that permits macromolecular cargos to be transported into mitochondria via membrane fusion. Intracellular observations using the green fluorescence protein as a model macromolecule confirmed the mitochondrial delivery of a macromolecule by the MITO-Porter. Moreover, when we attempted the mitochondrial delivery of bongkrekic acid (BKA), an antiapoptosis agent, the MITO-Porter enhanced the antiapoptosis effect compared with naked BKA. To construct a device with enhanced performance, the MITO-Porter was coated with cell membrane-fusogenic outer envelopes to produce the dual function (DF)-MITO-Porter. Intracellular observations indicated that the DF-MITO-Porter was more effective in delivering exogenous macromolecules into mitochondria than the conventional MITO-Porter. Furthermore, when biomacromolecules were delivered using the DF-MITO-Porter to estimate the mitochondrial gene targeting of the carrier, the results confirmed that the MITO-Porter system has the potential for use in therapies aimed at mitochondrial DNA. This paper sumarizes our findings on mitochondrial drug delivery systems that are directed toward mitochondrial medicine development and mitochondrial gene therapy. It is expected that the MITO-Porter system will open new research areas in mitochondrial drug delivery systems and have a significant impact on the medical and life sciences.

  10. Semipermeable-membrane devices as an in situ and laboratory testing chamber

    SciTech Connect

    Gardiner, W.W.; Word, J.Q.

    1995-12-31

    The use of semipermeable-membrane devices (SPMDs) to measure the bioavailability of dissolved (< 10{angstrom}) hydrophobic-organic-compounds has recently been established. These low-density polyethylene bags are effective and relatively easy in situ devices for evaluating bioaccumulation potentials of polyaromatic hydrocarbons, pesticides, polychlorinated biphenyls, and dioxins. The authors believe SPMDs may also be effective in situ and laboratory testing chambers for evaluating dissolved contaminant effects on sensitive life stages of freshwater/marine fish and invertebrates. Applications may include dissolved contaminant toxicity of effluents, porewater, water-column, and surface microlayer. In laboratory tests, the applicability of SPMD-testing chambers was explored with marine bivalve larvae (Mytilus galloprovincialis). Test solutions were filtered seawater, dissolved copper, ammonia, and an elutriate preparation that included both organic and inorganic contaminants. SPMDs were filled with seawater, immersed in test solutions for 24-h, then spiked with fertilized M. galloprovincialis embryos. Following 48-h exposures, >90% survival and normal development was observed in the controls, indicating that incubation in the SPMDs did not adversely affect larval development. Incubation in test treatments resulted in slight, but not significantly different, reductions in normal development, relative to the controls. The authors believe longer SPMD immersion prior to testing will likely be required to allow SPMD contents to reach equilibrium with test solutions before eliciting a significant toxicological response. While this may limit the application of SPMDs for short term in situ exposures, they may be used for field/laboratory exposures of a week or more or for collecting equilibrated field samples for laboratory testing.

  11. Membrane Protein Incorporation into Nano-Bioelectronics: An insight into Rhodopsin Controlled SiNW-FET Devices

    NASA Astrophysics Data System (ADS)

    Tunuguntla, Ramya

    Biological systems use different energy sources to interact with their environments by creating ion gradients, membrane electric potentials, or a proton motive force to accomplish strikingly complex tasks on the nanometer length scale, such as energy harvesting, and whole organism replication. Most of this activity involves a vast arsenal of active and passive ion channels, membrane receptors and ion pumps that mediate complex and precise transport across biological membranes. Despite the remarkable rate of progress exhibited by modern microelectronic devices, they still cannot compete with the efficiency and precision of biological systems on the component level. At the same time, the sophistication of these molecular machines provides an excellent opportunity to use them in hybrid bioelectronic devices where such a combination could deliver enhanced electronic functionality and enable seamless bi-directional interfaces between man-made and biological assemblies. Artificial membrane systems allow researchers to study the structure and function of membrane proteins in a matrix that approximates their natural environment and to integrate these proteins in ex-vivo devices such as electronic biosensors, thin-film protein arrays, or bio-fuel cells. Since most membrane proteins have vectorial functions, both functional studies and applications require effective control over protein orientation within a lipid bilayer. In our work, we have explored the role of the bilayer surface charge in determining transmembrane protein orientation and functionality during formation of proteoliposomes. We reconstituted a model vectorial ion pump, proteorhodopsin, in liposomes of opposite charges and varying charge densities and determined the resultant protein orientation. Antibody-binding assay and proteolysis of proteoliposomes showed physical evidence of preferential orientation, and functional assays verified vectorial nature of ion transport in this system. Our results indicate

  12. Development of Novel active transport membrane devices. Phase I. Final report, 31 October 1988--31 January 1994

    SciTech Connect

    Laciak, D.V.; Quinn, R.; Choe, G.S.; Cook, P.J.; Tsai, Fu-Jya

    1994-08-01

    The main objective of this program was to identify and develop a technique for fabricating Active Transport Materials (ATM) into lab-scale membrane devices. Air Products met this objective by applying thin film, multilayer fabrication techniques to support the AT material on a substrate membrane. In Phase IA, spiral-wound hollow fiber membrane modules were fabricated and evaluated. These nonoptimized devices were used to demonstrate the AT-based separation of carbon dioxide from methane, hydrogen sulfide from methane, and ammonia from hydrogen. It was determined that a need exists for a more cost efficient and less energy intensive process for upgrading subquality natural gas. Air Products estimated the effectiveness of ATM for this application and concluded that an optimized ATM system could compete effectively with both conventional acid gas scrubbing technology and current membrane technology. In addition, the optimized ATM system would have lower methane loss and consume less energy than current alternative processes. Air Products made significant progress toward the ultimate goal of commercializing an advanced membrane for upgrading subquality natural gas. The laboratory program focused on developing a high performance hollow fiber substrate and fabricating and evaluating ATM-coated lab-scale hollow fiber membrane modules. Selection criteria for hollow fiber composite membrane supports were developed and used to evaluate candidate polymer compositions. A poly(amide-imide), PAI, was identified for further study. Conditions were identified which produced microporous PAI support membrane with tunable surface porosity in the range 100-1000{Angstrom}. The support fibers exhibited good hydrocarbon resistance and acceptable tensile strength though a higher elongation may ultimately be desirable. ATM materials were coated onto commercial and PAI substrate fiber. Modules containing 1-50 fibers were evaluated for permselectivity, pressure stability, and lifetime.

  13. Sequestration of priority pollutant PAHs from sediment pore water employing semipermeable membrane devices

    USGS Publications Warehouse

    Williamson, K.S.; Petty, J.D.; Huckins, J.N.; Lebo, J.A.; Kaiser, E.M.

    2002-01-01

    Semipermeable membrane devices (SPMDs) were employed to sample sediment pore water in static exposure studies under controlled laboratory conditions using (control pond and formulated) sediments fortified with 15 priority pollutant polycyclic aromatic hydrocarbons (PPPAHs). The sediment fortification level of 750 ng/g was selected on the basis of what might be detected in a sediment sample from a contaminated area. The sampling interval consisted of 0, 4, 7, 14, and 28 days for each study. The analytical methodologies, as well as the extraction and sample cleanup procedures used in the isolation, characterization, and quantitation of 15 PPPAHs at different fortification levels in SPMDs, water, and sediment were reported previously (Williamson, M.S. Thesis, University of Missouri - Columbia, USA; Williamson et al., Chemosphere (This issue - PII: S0045-6535(02)00394-6)) and used for this project. Average (mean) extraction recoveries for each PPPAH congener in each matrix are reported and discussed. No procedural blank extracts (controls) were found to contain any PPPAH residues above the method quantitation limit, therefore, no matrix interferences were detected. The focus of this publication is to demonstrate the ability to sequester environmental contaminants, specifically PPPAHs, from sediment pore water using SPMDs and two different types of fortified sediment.

  14. Calibrating the uptake kinetics of semipermeable membrane devices using exposure standards

    SciTech Connect

    Booij, K.; Sleiderink, H.M.; Smedes, F.

    1998-07-01

    The water phase is an important compartment in the modeling of the fate of organic contaminants in the aquatic environment. Organic contaminant exchange kinetics between semipermeable membrane devices (SPMDs) and water were studied in two suspensions of estuarine and marine sediments under conditions of high and low turbulence over a period of 56 d. Prior to exposure, the SPMDs were spiked with a number of exposure standards not occurring in the environment. The release rate of these compounds was used as an independent measure of the exchange kinetics between the SPMD and water. The uptake rates of chlorobenzenes, polychlorinated biphenyls, (PCBs) and polycyclic aromatic hydrocarbons (PAHs) were lower by a factor of three under conditions of low turbulence. For compounds with a log octanol-water partition coefficient (K{sub ow}) > 5.5 the uptake rate was constant during the entire period. Within each compound class, uptake rate constants correlated well with log K{sub ow}. The uptake rate constants of PAHs were lower than those of PCBs and chlorobenzenes by a factor of 10, but these estimates probably are artificially low due to an overestimation of the aqueous PAH concentrations. Release rate constants of the exposure standards fell within the range of the uptake rate constants of chlorobenzenes and PCBs, although with poor precision. Suggestions for improving the measurement of exchange rate constants of exposure standards are presented. The role of triolein in the exchange kinetics is shown to be minor.

  15. Evaluation of persistent hydrophobic organic compounds in the Columbia River Basin using semipermeable-membrane devices

    USGS Publications Warehouse

    McCarthy, K.A.; Gale, R.W.

    2001-01-01

    Persistent hydrophobic organic compounds are of concern in the Columbia River because they have been correlated with adverse effects on wildlife. We analysed samples from nine main-stem and six tributary sites throughout the Columbia River Basin (Washington and Oregon) for polychlorinated dibenzo-p-dioxins, dibenzofurans, polychlorinated biphenyls, organochlorine pesticides, and priority-pollutant polycyclic aromatic hydrocarbons. Because these compounds may have important biological consequences at aqueous concentrations well below the detection limits associated with conventional sampling methods, we used semipermeable-membrane devices to sample water and achieved parts-per-quintillion detection limits. All of these compound classes were prevalent within the basin, but concentrations of many analytes were highest in the vicinity of Portland-Vancouver, indicating that the Willamette subbasin-and perhaps the urban area in particular-is an important source of these compounds. Data collected during basin low-flow conditions in 1997 and again during basin high-flow conditions in 1998 indicate that in-stream processes such as dilution by relatively clean inflow, and flow through island hyporheic zones may be important mechanisms for attenuating dissolved concentrations of hydrophobic compounds.

  16. Uptake rate constants and partition coefficients for vapor phase organic chemicals using semipermeable membrane devices (SPMDs)

    USGS Publications Warehouse

    Cranor, W.L.; Alvarez, D.A.; Huckins, J.N.; Petty, J.D.

    2009-01-01

    To fully utilize semipermeable membrane devices (SPMDs) as passive samplers in air monitoring, data are required to accurately estimate airborne concentrations of environmental contaminants. Limited uptake rate constants (kua) and no SPMD air partitioning coefficient (Ksa) existed for vapor-phase contaminants. This research was conducted to expand the existing body of kinetic data for SPMD air sampling by determining kua and Ksa for a number of airborne contaminants including the chemical classes: polycyclic aromatic hydrocarbons, organochlorine pesticides, brominated diphenyl ethers, phthalate esters, synthetic pyrethroids, and organophosphate/organosulfur pesticides. The kuas were obtained for 48 of 50 chemicals investigated and ranged from 0.03 to 3.07??m3??g-1??d-1. In cases where uptake was approaching equilibrium, Ksas were approximated. Ksa values (no units) were determined or estimated for 48 of the chemicals investigated and ranging from 3.84E+5 to 7.34E+7. This research utilized a test system (United States Patent 6,877,724 B1) which afforded the capability to generate and maintain constant concentrations of vapor-phase chemical mixtures. The test system and experimental design employed gave reproducible results during experimental runs spanning more than two years. This reproducibility was shown by obtaining mean kua values (n??=??3) of anthracene and p,p???-DDE at 0.96 and 1.57??m3??g-1??d-1 with relative standard deviations of 8.4% and 8.6% respectively.

  17. A survey of recent results in passive sampling of water and air by semipermeable membrane devices

    USGS Publications Warehouse

    Prest, Harry F.; Huckins, James N.; Petty, Jimmie D.; Herve, Sirpa; Paasivirta, Jaakko; Heinonen, Pertti

    1995-01-01

    A survey is presented of some recent results for passive sampling of water and air for trace organic contaminants using lipid-filled semipermeable membrane devices (SPMDs). Results of water sampling for trace organochlorine compounds using simultaneously exposed SPMDs and the most universally applied biomonitor (bivalves) are discussed. In general, the total amounts of accumulated analytes available for analysis in bivalves and SPMDs were comparable. However, SPMD controls typically had negligible levels of contamination, which was not always the case for transplanted bivalves, even after prolonged depuration prior to exposure. In surveys of the spatial trends of organochlorines at a series of sites, data from bivalves and SPMDs provided the same picture of contaminant distribution and severity. An exception was ionizable contaminants such as the chlorinated phenolic compounds and their transformation products found in pulp mill effluents. In these cases the two monitoring approaches compliment each other, i.e. what is not found in bivalves appears in SPMDs and vice versa. SPMDs have also been applied in environments where biomonitoring is not feasible. SPMDs have shown their utility in studies of trace levels of polyaromatic hydrocarbons by locating and characterizing point sources. An example is given of their application to the calculation of contaminant half-lives from aqueous SPMD residues, a direct measurement of the persistence of contaminants in an environmental compartment. Similarly, results of air sampling with SPMDs in a relatively pristine coastal location are cited which reveal a tremendous enhancement in p,p′-DDE relative to open ocean values.

  18. An approach for assessment of water quality using semipermeable membrane devices (SPMDs) and bioindicator tests

    USGS Publications Warehouse

    Petty, J.D.; Jones, S.B.; Huckins, J.N.; Cranor, W.L.; Parris, J.T.; McTague, T.B.; Boyle, T.P.

    2000-01-01

    As an integral part of our continued development of water quality assessment approaches, we combined integrative sampling, instrumental analysis of widely occurring anthropogenic contaminants, and the application of a suite of bioindicator tests as a specific part of a broader survey of ecological conditions, species diversity, and habitat quality in the Santa Cruz River in Arizona, USA. Lipid-containing semipermeable membrane devices (SPMDs) were employed to sequester waterborne hydrophobic chemicals. Instrumental analysis and a suite of bioindicator tests were used to determine the presence and potential toxicological relevance of mixtures of bioavailable chemicals in two major water sources of the Santa Cruz River. The SPMDs were deployed at two sites; the effluent weir of the International Wastewater Treatment Plant (IWWTP) and the Nogales Wash. Both of these systems empty into the Santa Cruz River and the IWWTP effluent is a potential source of water for a constructed wetland complex. Analysis of the SPMD sample extracts revealed the presence of organochlorine pesticides (OCs), polychlorinated biphenyls (PCBs), and polycyclic aromatic hydrocarbons (PAHs). The bioindicator tests demonstrated increased liver enzyme activity, perturbation of neurotransmitter systems and potential endocrine disrupting effects (vitellogenin induction) in fish exposed to the extracts. With increasing global demands on limited water resources, the approach described herein provides an assessment paradigm applicable to determining the quality of water in a broad range of aquatic systems.

  19. On chip porous polymer membranes for integration of gastrointestinal tract epithelium with microfluidic 'body-on-a-chip' devices.

    PubMed

    Esch, Mandy Brigitte; Sung, Jong Hwan; Yang, Jennifer; Yu, Changhao; Yu, Jiajie; March, John C; Shuler, Michael Louis

    2012-10-01

    We describe a novel fabrication method that creates microporous, polymeric membranes that are either flat or contain controllable 3-dimensional shapes that, when populated with Caco-2 cells, mimic key aspects of the intestinal epithelium such as intestinal villi and tight junctions. The developed membranes can be integrated with microfluidic, multi-organ cell culture systems, providing access to both sides, apical and basolateral, of the 3D epithelial cell culture. Partial exposure of photoresist (SU-8) spun on silicon substrates creates flat membranes with micrometer-sized pores (0.5-4.0 μm) that--supported by posts--span across 50 μm deep microfluidic chambers that are 8 mm wide and 10 long. To create three-dimensional shapes the membranes were air dried over silicon pillars with aspect ratios of up to 4:1. Space that provides access to the underside of the shaped membranes can be created by isotropically etching the sacrificial silicon pillars with xenon difluoride. Depending on the size of the supporting posts and the pore sizes the overall porosity of the membranes ranged from 4.4 % to 25.3 %. The microfabricated membranes can be used for integrating barrier tissues such as the gastrointestinal tract epithelium, the lung epithelium, or other barrier tissues with multi-organ "body-on-a-chip" devices.

  20. Membrane perforation in sinus floor elevation - piezoelectric device versus conventional rotary instruments for osteotomy: an experimental study.

    PubMed

    Seoane, Juan; López-Niño, Javier; García-Caballero, Lucía; Seoane-Romero, Juan Manuel; Tomás, Inmaculada; Varela-Centelles, Pablo

    2013-12-01

    Sinus membrane perforation is the most common intraoperative complication of maxillary sinus floor elevation (MSFE) procedures and frequently causes postoperative problems. Piezoelectric devices have been claimed to reduce the frequency of membrane perforations although no clear evidence supports this view. Ten surgeons with different expertise levels performed 80 MSFEs in selected lamb heads, with rotary and piezoelectric instruments following standard protocols. After the procedures, specimens were coded and perforations or tears determined through a microscope. No significant differences in terms of thickness either of the sinus lateral wall (xi -xj  = 73.2; 95% confidence interval [CI] = 45.3-191.8) or the membrane (xi -xj  = 24.2; 95% CI = -29.4 to 77.9) were identified between the specimens allocated to each group. Nine membrane perforations (11.2%) occurred during the study, all within the lower expertise group. Membrane elevation by hand instruments caused five perforations (40%) in the rotary instrument group and one in the piezoelectric group. Expert surgeons produced no membrane perforations, the size of the antrostomy that was smaller in the piezoelectric group being the only significant difference between the rotary and piezoelectric groups. The use of piezoelectric material for MSFE reduces the frequency of membrane perforation among surgeons with a limited experience. © 2012 Wiley Periodicals, Inc.

  1. Low-temperature bonding process for the fabrication of hybrid glass-membrane organ-on-a-chip devices

    NASA Astrophysics Data System (ADS)

    Pocock, Kyall J.; Gao, Xiaofang; Wang, Chenxi; Priest, Craig; Prestidge, Clive A.; Mawatari, Kazuma; Kitamori, Takehiko; Thierry, Benjamin

    2016-10-01

    The integration of microfluidics with living biological systems has paved the way to the exciting concept of "organs-on-a-chip," which aims at the development of advanced in vitro models that replicate the key features of human organs. Glass-based devices have long been utilized in the field of microfluidics but the integration of alternative functional elements within multilayered glass microdevices, such as polymeric membranes, remains a challenge. To this end, we have extended a previously reported approach for the low-temperature bonding of glass devices that enables the integration of a functional polycarbonate porous membrane. The process was initially developed and optimized on specialty low-temperature bonding equipment (μTAS2001, Bondtech, Japan) and subsequently adapted to more widely accessible hot embosser units (EVG520HE Hot Embosser, EVG, Austria). The key aspect of this method is the use of low temperatures compatible with polymeric membranes. Compared to borosilicate glass bonding (650°C) and quartz/fused silica bonding (1050°C) processes, this method maintains the integrity and functionality of the membrane (Tg 150°C for polycarbonate). Leak tests performed showed no damage or loss of integrity of the membrane for up to 150 h, indicating sufficient bond strength for long-term cell culture. A feasibility study confirmed the growth of dense and functional monolayers of Caco-2 cells within 5 days.

  2. Low-temperature bonded glass-membrane microfluidic device for in vitro organ-on-a-chip cell culture models

    NASA Astrophysics Data System (ADS)

    Pocock, Kyall J.; Gao, Xiaofang; Wang, Chenxi; Priest, Craig; Prestidge, Clive A.; Mawatari, Kazuma; Kitamori, Takehiko; Thierry, Benjamin

    2015-12-01

    The integration of microfluidics with living biological systems has paved the way to the exciting concept of "organson- a-chip", which aims at the development of advanced in vitro models that replicate the key features of human organs. Glass based devices have long been utilised in the field of microfluidics but the integration of alternative functional elements within multi-layered glass microdevices, such as polymeric membranes, remains a challenge. To this end, we have extended a previously reported approach for the low-temperature bonding of glass devices that enables the integration of a functional polycarbonate porous membrane. The process was initially developed and optimised on specialty low-temperature bonding equipment (μTAS2001, Bondtech, Japan) and subsequently adapted to more widely accessible hot embosser units (EVG520HE Hot Embosser, EVG, Austria). The key aspect of this method is the use of low temperatures compatible with polymeric membranes. Compared to borosilicate glass bonding (650 °C) and quartz/fused silica bonding (1050 °C) processes, this method maintains the integrity and functionality of the membrane (Tg 150 °C for polycarbonate). Leak tests performed showed no damage or loss of integrity of the membrane for up to 150 hours, indicating sufficient bond strength for long term cell culture. A feasibility study confirmed the growth of dense and functional monolayers of Caco-2 cells within 5 days.

  3. Comparing the Accumulation of PCBs by Passive Samplers and Mussels from the Water Column at a Contaminated Sediment Site

    EPA Science Inventory

    Passive samplers, including semi-permeable membrane devices (SPMDs), solid phase microextraction (SPME) and polyethylene devices (PEDs), provide innovative tools for measuring hydrophobic organic contaminants (HOCs) originating from contaminated waters and sediments. Because the...

  4. Evaluating PCB Bioavailability Using Passive Samplers and Mussles at a Contaminated Sediment Site

    EPA Science Inventory

    Passive samplers, including semi-permeable membrane devices (SPMDs), solid phase microextraction (SPME) and polyethylene devices (PEDs), provide innovative tools for measuring hydrophobic organic contaminants (HOCs) originating from contaminated waters and sediments. Because the...

  5. Comparing the Accumulation of PCBs by Passive Samplers and Mussels from the Water Column at a Contaminated Sediment Site

    EPA Science Inventory

    Passive samplers, including semi-permeable membrane devices (SPMDs), solid phase microextraction (SPME) and polyethylene devices (PEDs), provide innovative tools for measuring hydrophobic organic contaminants (HOCs) originating from contaminated waters and sediments. Because the...

  6. Evaluating PCB Bioavailability Using Passive Samplers and Mussles at a Contaminated Sediment Site

    EPA Science Inventory

    Passive samplers, including semi-permeable membrane devices (SPMDs), solid phase microextraction (SPME) and polyethylene devices (PEDs), provide innovative tools for measuring hydrophobic organic contaminants (HOCs) originating from contaminated waters and sediments. Because the...

  7. Use of semipermeable membrane devices (SPMDS) to determine bioavailable organochlorine pesticide residues in streams receiving irrigation drainwater

    USGS Publications Warehouse

    Petty, Jimmie D.; Huckins, James N.; Martin, D.B.; Adornato, T.G.

    1995-01-01

    The semipermeable membrane device (SPMD), consisting of a neutral lipid (triolein) enclosed in polyethylene layflat tubing, is very effective in sequestering bioavailable organochlorine (OC) pesticides in the environment. We used SPMDs to sequester OC pesticide residues in streams receiving irrigation drainwater and found toxaphene, the DDT complex, dieldrin, and endrin. Ambient water concentrations of the OC pesticides were calculated using an algorithm developed previously. Toxaphene residues were estimated to range from 300 to 7,000 ng/L.

  8. Quantification of the specific membrane capacitance of single cells using a microfluidic device and impedance spectroscopy measurement

    PubMed Central

    Tan, Qingyuan; Ferrier, Graham A.; Chen, Brandon K.; Wang, Chen; Sun, Yu

    2012-01-01

    The specific membrane capacitance (SMC) is an electrical parameter that correlates with both the electrical activity and morphology of the plasma membrane, which are physiological markers for cellular phenotype and health. We have developed a microfluidic device that enables impedance spectroscopy measurements of the SMC of single biological cells. Impedance spectra induced by single cells aspirated into the device are captured over a moderate frequency range (5 kHz–1 MHz). Maximum impedance sensitivity is achieved using a tapered microfluidic channel, which effectively routes electric fields across the cell membranes. The SMC is extracted by curve-fitting impedance spectra to an equivalent circuit model. From our measurement, acute myeloid leukemia (AML) cells are found to exhibit larger SMC values in hypertonic solutions as compared with those in isotonic solutions. In addition, AML cell phenotypes (AML2 and NB4) exhibiting varying metastatic potential yield distinct SMC values (AML2: 16.9 ± 1.9 mF/m2 (n = 23); NB4: 22.5 ± 4.7 mF/m2 (n = 23)). Three-dimensional finite element simulations of the microfluidic device confirm the feasibility of this approach. PMID:23940502

  9. Lab-on-a-Membrane Foldable Devices for Duplex Drop-Volume Electrochemical Biosensing Using Quantum Dot Tags.

    PubMed

    Kokkinos, Christos; Angelopoulou, Michailia; Economou, Anastasios; Prodromidis, Mamas; Florou, Ageliki; Haasnoot, Willem; Petrou, Panagiota; Kakabakos, Sotirios

    2016-07-05

    This work describes a new type of integrated lab-on-a-membrane foldable device suitable for on-site duplex electrochemical biosensing using drop-size sample volumes. The devices are fabricated entirely by screen-printing on a nylon membrane and feature two assay zones which are located symmetrically on either side of a three-electrode voltammetric cell with a bismuth citrate-loaded graphite working electrode. After the completion of two spatially separated drop-volume competitive immunoassays on the assay zones using biotinylated antibodies labeled with streptavidin-conjugated Pb- and Cd-based quantum dots (QDs), respectively, the QD labels are dissolved releasing Pb(II) and Cd(II) in the assay zones. Then, the two assay zones are folded over, and they are brought in contact with the voltammetric cell for simultaneous anodic stripping voltammetric (ASV) determination of Pb(II) and Cd(II) at the bismuth nanostructured layer formed on the working electrode by reduction of the bismuth citrate during the preconcentration step. The fabrication of the devices is discussed in detail, and their operational characteristics are exhaustively studied. In order to demonstrate their applicability to the analysis in complex matrices, duplex ASV-QDs-based determination of bovine casein and bovine immunoglobulin G is carried out in milk samples yielding limits of detection of 0.04 μg mL(-1) and 0.02 μg mL(-1), respectively. The potential of the devices to detect milk adulteration is further demonstrated. These new membrane devices enable duplex biosensing with distinct advantages over existing approaches in terms of cost, fabrication, and operational simplicity and rapidity, portability, sample size, disposability, sensitivity, and suitability for field analysis.

  10. A viable circulating tumor cell isolation device with high retrieval efficiency using a reversibly deformable membrane barrier

    NASA Astrophysics Data System (ADS)

    Kim, Yoonji; Bu, Jiyoon; Cho, Young-Ho; Son, Il Tae; Kang, Sung-Bum

    2017-02-01

    Circulating tumor cells (CTCs) contain prognostic information of the tumor, since they shed from the primary tumor and invade into the bloodstream. Therefore, the viable isolation is necessary for a consequent analysis of CTCs. Here, we present a device for the viable isolation and efficient retrieval of CTCs using slanted slot filters, formed by a reversibly deformable membrane barrier. Conventional filters have difficulties in retrieving captured cells, since they easily clog the slots. Moreover, large stress concentration at the sharp edges of squared slots, causes cell lysis. In contrast, the present device shows over 94% of high retrieval efficiency, since the slots can be opened simply by relieving the pressure. Furthermore, the inflated membrane barrier naturally forms the slanted slots, thus reducing the cell damage. By using cancer cell lines, we verified that the present device successfully isolate targeted cells, even at an extremely low concentrations (~10 cells/0.1 ml). In the clinical study, 85.7% of patients initially showed CTC positive while the numbers generally decreased after the surgery. We have also proved that the number of CTCs were highly correlated with tumour invasiveness. Therefore, the present device has potential for use in cancer diagnosis, surgical validation, and invasiveness analysis.

  11. One-Step Fabrication of a Microfluidic Device with an Integrated Membrane and Embedded Reagents by Multimaterial 3D Printing.

    PubMed

    Li, Feng; Smejkal, Petr; Macdonald, Niall P; Guijt, Rosanne M; Breadmore, Michael C

    2017-04-18

    One of the largest impediments in the development of microfluidic-based smart sensing systems is the manufacturability of integrated, complex devices. Here we propose multimaterial 3D printing for the fabrication of such devices in a single step. A microfluidic device containing an integrated porous membrane and embedded liquid reagents was made by 3D printing and applied for the analysis of nitrate in soil. The manufacture of the integrated, sealed device was realized as a single print within 30 min. The body of the device was printed in transparent acrylonitrile butadiene styrene (ABS) and contained a 400 μm wide structure printed from a commercially available composite filament. The composite filament can be turned into a porous material through dissolution of a water-soluble material. Liquid reagents were integrated by briefly pausing the printing before resuming for sealing the device. The devices were evaluated by the determination of nitrate in a soil slurry containing zinc particles for the reduction of nitrate to nitrite using the Griess reagent. Using a consumer digital camera, the linear range of the detector response ranged from 0 to 60 ppm, covering the normal range of nitrate in soil. To ensure that the sealing of the reagent chamber is maintained, aqueous reagents should be avoided. When using the nonaqueous reagent, the multimaterial device containing the Griess reagent could be stored for over 4 days but increased the detection range to 100-500 ppm. Multimaterial 3D printing is a potentially new approach for the manufacture of microfluidic devices with multiple integrated functional components.

  12. A new device for continuous monitoring the CO2 dissolved in water

    NASA Astrophysics Data System (ADS)

    de Gregorio, S.; Camarda, M.; Cappuzzo, S.; Giudice, G.; Gurrieri, S.; Longo, M.

    2009-04-01

    The measurements of dissolved CO2 in water are common elements of industrial processes and scientific research. In order to perform gas dissolved measurements is required to separate the dissolved gaseous phase from water. We developed a new device able to separate the gases phase directly in situ and well suitable for continuous measuring the CO2 dissolved in water. The device is made by a probe of a polytetrafluorethylene (PTFE) tube connected to an I.R. spectrophotometer (I.R.) and a pump. The PTFE is a polymeric semi-permeable membrane and allows the permeation of gas in the system. Hence, this part of the device is dipped in water in order to equilibrate the probe headspace with the dissolved gases. The partial pressure of the gas i in the headspace at equilibrium (Pi) follows the Henry's law: Pi=Hi•Ci, where Hi is the Henry's constant and Ci is the dissolved concentration of gas i. After the equilibrium is achieved, the partial pressure of CO2 inside the tube is equal to the partial pressure of dissolved CO2. The concentration of CO2 is measured by the I.R. connected to the tube. The gas is moved from the tube headspace to the I.R. by using the pump. In order to test the device and assess the best operating condition, several experimental were performed in laboratory. All the test were executed in a special apparatus where was feasible to create controlled atmospheres. Afterward the device has been placed in a draining tunnel sited in the Mt. Etna Volcano edifice (Italy). The monitored groundwater intercepts the Pernicana Fault, along which degassing phenomena are often observed. The values recorded by the station result in agreement with monthly directly measurements of dissolved CO2 partial pressure.

  13. Effect of growth solution, membrane size and array connection on microbial fuel cell power supply for medical devices.

    PubMed

    Roxby, Daniel N; Nham Tran; Pak-Lam Yu; Nguyen, Hung T

    2016-08-01

    Implanted biomedical devices typically last a number of years before their batteries are depleted and a surgery is required to replace them. A Microbial Fuel Cell (MFC) is a device which by using bacteria, directly breaks down sugars to generate electricity. Conceptually there is potential to continually power implanted medical devices for the lifetime of a patient. To investigate the practical potential of this technology, H-Cell Dual Chamber MFCs were evaluated with two different growth solutions and measurements recorded for maximum power output both of individual MFCs and connected MFCs. Using Luria-Bertani media and connecting MFCs in a hybrid series and parallel arrangement with larger membrane sizes showed the highest power output and the greatest potential for replacing implanted batteries.

  14. Field uptake rates of hydrophobic organic contaminants by semipermeable membrane devices: environmental monitoring considerations.

    PubMed

    Sanchez-Hernandez, Juan C; Borghini, F; Corral, A; Grimalt, J O

    2004-11-01

    The uptake rates of selected hydrophobic organic contaminants (HOCs) by semipermeable membrane devices (SPMDs)--a polyethylene layflat containing the lipid triolein--were investigated under natural conditions. SPMDs were exposed in three sampling sites (industrial, urban, and agricultural areas) in the Tajo River (Toledo, Spain) for 5, 11 and 20 d. The organochlorine compounds 4,4'-DDT, 4,4'-DDE, alpha-HCH, gamma-HCH, pentachlorobenzene, hexachlorobenzene, and polychlorinated biphenyls (PCBs), and the 16 priority pollutant polycyclic aromatic hydrocarbons (PAHs) were detected in the SPMDs deployed in the three sampling sites. A linear uptake rate was found for DDTs and for 4-Cl- and 5-Cl-substituted PCB congeners in all sampling sites. Concentrations of HCHs (80.3 ng g(-1) SPMD for alpha-HCH and 109 ng g(-1) SPMD for gamma-HCH after 20 d of exposure) increased according to a linear uptake rate in the SPMDs deployed in the sampling site located in the agricultural area. Likewise, a marked increase of total PAH concentration (up to 300 ng g(-1) SPMD after 20 d of exposure) was solely found in the sampling site situated near a thermoelectric power station. Examination of individual PAHs revealed that PAHs with log K(OW) between 4.2 and 5.7 displayed a linear uptake rate over the 20 d of exposure. Water concentrations (ng L(-1)) of HCB (0.80-2.48), lindane (1.30-11.5), 4,4'-DDT (0.61-2.02), 4,4'-DDE (6.89-11.6) and total PAHs (12.0-26.7) estimated by a linear uptake kinetic model were found to be high in comparison with other polluted aquatic systems, and similar to concentrations in other Spanish rivers. Our results suggest that SPMD kinetic uptake studies in the natural environment are recommended for identifying point-pollution sources, and that shorter times of SPMD exposure (approximately 1 week) are desirable to minimize one of the main problems of field SPMD deployment, i.e., the biofouling, which negatively affects the estimation of the dissolved HOC

  15. Membrane microdomains: from seeing to understanding

    PubMed Central

    Truong-Quang, Binh-An; Lenne, Pierre-François

    2014-01-01

    The plasma membrane is a composite material, which forms a semi-permeable barrier and an interface for communication between the intracellular and extracellular environments. While the existence of membrane microdomains with nanoscale organization has been proved by the application of numerous biochemical and physical methods, direct observation of these heterogeneities using optical microscopy has remained challenging for decades, partly due to the optical diffraction limit, which restricts the resolution to ~200 nm. During the past years, new optical methods which circumvent this fundamental limit have emerged. Not only do these techniques allow direct visualization, but also quantitative characterization of nanoscopic structures. We discuss how these emerging optical methods have refined our knowledge of membrane microdomains and how they may shed light on the basic principles of the mesoscopic membrane organization. PMID:24600455

  16. Method for dialysis on microchips using thin porous polymer membrane

    DOEpatents

    Singh, Anup K.; Kirby, Brian J.; Shepodd, Timothy J.

    2009-05-19

    Laser-induced phase-separation polymerization of a porous acrylate polymer is used for in-situ fabrication of dialysis membranes inside glass microchannels. A shaped 355 nm laser beam is used to produce a porous polymer membrane with a thickness of about 15 .mu.m, which bonds to the glass microchannel and forms a semi-permeable membrane. Differential permeation through a membrane formed with pentaerythritol triacrylate was observed and quantified by comparing the response of the membrane to fluorescein and fluorescently tagging 200 nm latex microspheres. Differential permeation was observed and quantified by comparing the response to rhodamine 560 and lactalbumin protein in a membrane formed with SPE-methylene bisacrylamide. The porous membranes illustrate the capability for the present technique to integrate sample cleanup into chip-based analysis systems.

  17. Dialysis on microchips using thin porous polymer membranes

    DOEpatents

    Singh, Anup K.; Kirby, Brian J.; Shepodd, Timothy J.

    2007-09-04

    Laser-induced phase-separation polymerization of a porous acrylate polymer is used for in-situ fabrication of dialysis membranes inside glass microchannels. A shaped 355 nm laser beam is used to produce a porous polymer membrane with a thickness of about 15 .mu.m, which bonds to the glass microchannel and form a semi-permeable membrane. Differential permeation through a membrane formed with pentaerythritol triacrylate was observed and quantified by comparing the response of the membrane to fluorescein and fluorescently tagging 200 nm latex microspheres. Differential permeation was observed and quantified by comparing the response to rhodamine 560 and lactalbumin protein in a membrane formed with SPE-methylene bisacrylamide. The porous membranes illustrate the capability for the present technique to integrate sample cleanup into chip-based analysis systems.

  18. Use of mussels and semipermeable membrane devices to assess bioavailability of residual polynuclear aromatic hydrocarbons three years after the Exxon Valdez oil spill

    SciTech Connect

    Shigenaka, G.; Henry, C.B. Jr.

    1995-12-31

    Mussels (Mytilus cf. trossulus) were transplanted to a heavily oiled and extensively treated site on Smith Island, Prince William Sound, Alaska, in 1992. A new monitoring and assessment tool, the semipermeable membrane device, was also deployed to compare hydrocarbon uptake with mussels and to evaluate the route of exposure to mussels. Both mussels and semipermeable membrane devices accumulated polynuclear aromatic hydrocarbons during 14- and 52-day deployments, particularly at the oiled site. Accumulation levels were similar between mussels and the semipermeable membrane devices, but the distribution of individual hydrocarbons differed. The results permit some inference about route of exposure to mussels. Sheens leaching from subsurface deposits of residual oil, and particulate material with adsorbed hydrocarbons were apparently more important exposure pathways than dissolved hydrocarbons in water. Semipermeable membrane devices show promise as monitoring tools and to provide insights into exposure pathways for biota. 20 refs., 7 figs., 4 tabs.

  19. Performance of able-bodied subjects on a text-typing task using a head-operated device and expanded membrane cursor keys.

    PubMed

    Capilouto, Gilson J; McClenaghan, Bruce; Williams, Harriet G; Dickerson, John; Hussey, James R

    2004-02-01

    Children and adults with disabilities frequently rely on computers to complete written tasks. Those with significant motor limitations typically use alternative computer-input devices since the traditional keyboard and mouse are insufficient to accommodate their abilities. For persons unable to isolate their fingers, input devices controlled by movements of the head or whole hand or arm movements may be among the options considered. This study investigated the performance of a head-operated device and expanded membrane cursor keys for text entry. Data from 24 young adults indicated the head-operated device performed significantly faster given reduced cognitive demands for device operation, increased stimulus-response compatibility, and simplicity of movement. Use of the expanded membrane cursor keys resulted in significantly lower error rates. No significant differences in comfort or ease of use were reported for the two devices. The relative performance of device options for users sharing similar motor challenges provides rehabilitation specialists with important clinical information.

  20. Solid-phase extraction and purification of membrane proteins using a UV-modified PMMA microfluidic bioaffinity μSPE device.

    PubMed

    Battle, Katrina N; Jackson, Joshua M; Witek, Małgorzata A; Hupert, Mateusz L; Hunsucker, Sally A; Armistead, Paul M; Soper, Steven A

    2014-03-21

    We present a novel microfluidic solid-phase extraction (μSPE) device for the affinity enrichment of biotinylated membrane proteins from whole cell lysates. The device offers features that address challenges currently associated with the extraction and purification of membrane proteins from whole cell lysates, including the ability to release the enriched membrane protein fraction from the extraction surface so that they are available for downstream processing. The extraction bed was fabricated in PMMA using hot embossing and was comprised of 3600 micropillars. Activation of the PMMA micropillars by UV/O3 treatment permitted generation of surface-confined carboxylic acid groups and the covalent attachment of NeutrAvidin onto the μSPE device surfaces, which was used to affinity select biotinylated MCF-7 membrane proteins directly from whole cell lysates. The inclusion of a disulfide linker within the biotin moiety permitted release of the isolated membrane proteins via DTT incubation. Very low levels (∼20 fmol) of membrane proteins could be isolated and recovered with ∼89% efficiency with a bed capacity of 1.7 pmol. Western blotting indicated no traces of cytosolic proteins in the membrane protein fraction as compared to significant contamination using a commercial detergent-based method. We highlight future avenues for enhanced extraction efficiency and increased dynamic range of the μSPE device using computational simulations of different micropillar geometries to guide future device designs.

  1. Blood Cell Separation Device Using Serially Connected Membrane Filters for Adapting to Blood Flow Properties

    NASA Astrophysics Data System (ADS)

    Kobayashi, Taizo; Kato, Daiki; Koga, Hiroyuki; Morimoto, Kenichi; Fukuda, Makoto; Kinoshita, Yoshiharu; Yoshida, Hiroshi; Konishi, Satoshi

    This paper proposes a cooperative operation of serially connected membrane filters toward adaptive blood cell separation system in order to overcome a restriction of a single membrane filter. Serially connected membrane filters allow that downstream filters extract blood plasma from residual blood at upstream filters. Consequently, it becomes possible to adapt filtering characteristics to changing properties of blood. We focus on trans-membrane pressure difference in order to prevent hemolysis. Our strategy can be realized as a miniaturized PDMS fluidic chip. Our laboratory experiment using a prototype shows that plasma extraction efficiency is improved from 34% to 75%. Toward an integrated system, this paper also demonstrates multiple filters are successfully integrated into a PDMS fluidic chip.

  2. Organic-inorganic hybrid anion exchange hollow fiber membranes: a novel device for drug delivery.

    PubMed

    Wang, Na; Wu, Cuiming; Cheng, Yiyun; Xu, Tongwen

    2011-04-15

    The clinical use of nonsteroidal anti-inflammatory drugs (NSAIDs) (such as sodium salicylate (NaSA)) for the treatment of chronic arthritis is limited due to the adverse effects and patient non-compliance. In order to solve these problems, anion exchange hollow fiber membranes (AEHFMs) are proposed for the first time here as potential drug carriers. Brominated poly(2,6-dimethyl-1,4-phenylene oxide) (BPPO) is used as the starting membrane material. In-situ sol-gel process of γ-methacryloxypropyl trimethoxysilane (γ-MPS) in BPPO matrix is operated so as to enhance the membranes' thermal and dimensional stability. The performances of the membranes in controlled release of the drug (NaSA as the model drug) are improved accordingly. Loading and release experiments illustrate that the hybrid AEHFM can bind salicylate (SA⁻) at a high loading efficiency (28.4%), and the retention of the drug on the membrane matrix is significantly prolonged (drug released in 7 days under physiological condition: 51.9%, neglecting the drug bound by protein). Meanwhile, the membrane is biocompatible and can support the adherence, growth, and survival of human cells. Overall, the prepared AEHFM is a promising scaffolding material for drug delivery and tissue engineering.

  3. Device for sampling and enriching impurities in hydrogen comprising hydrogen-permeable membrane

    DOEpatents

    Ahmed, Shabbir; Papadias, Dionissios D.; Lee, Sheldon D. H.; Kumar, Romesh

    2017-01-31

    Provided herein are methods and devices to enrich trace quantities of impurities in gaseous mixtures, such as hydrogen fuel. The methods and devices rely on concentration of impurities so as to allow the detection of the impurities using commonly-available detection methods.

  4. 78 FR 1158 - Anesthesiology Devices; Reclassification of Membrane Lung for Long-Term Pulmonary Support...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-08

    ... the device, resulting in a tendency toward increased bleeding. Hemolysis. Red blood cells may be... physiologic gas exchange of a patient's blood when an acute (reversible) condition prevents the patient's own... multiple device types, including, but ] not limited to, an oxygenator, blood pump, cannulae, heat exchanger...

  5. UV-Induced Radical Photo-Polymerization: A Smart Tool for Preparing Polymer Electrolyte Membranes for Energy Storage Devices.

    PubMed

    Nair, Jijeesh R; Chiappone, Annalisa; Destro, Matteo; Jabbour, Lara; Meligrana, Giuseppina; Gerbaldi, Claudio

    2012-10-17

    In the present work, the preparation and characterization of quasi-solid polymer electrolyte membranes based on methacrylic monomers and oligomers, with the addition of organic plasticizers and lithium salt, are described. Noticeable improvements in the mechanical properties by reinforcement with natural cellulose hand-sheets or nanoscale microfibrillated cellulose fibers are also demonstrated. The ionic conductivity of the various prepared membranes is very high, with average values approaching 10-3 S cm-1 at ambient temperature. The electrochemical stability window is wide (anodic breakdown voltages > 4.5 V vs. Li in all the cases) along with good cyclability in lithium cells at ambient temperature. The galvanostatic cycling tests are conducted by constructing laboratory-scale lithium cells using LiFePO4 as cathode and lithium metal as anode with the selected polymer electrolyte membrane as the electrolyte separator. The results obtained demonstrate that UV induced radical photo-polymerization is a well suited method for an easy and rapid preparation of easy tunable quasi-solid polymer electrolyte membranes for energy storage devices.

  6. UV-Induced Radical Photo-Polymerization: A Smart Tool for Preparing Polymer Electrolyte Membranes for Energy Storage Devices.

    PubMed

    Nair, Jijeesh R; Chiappone, Annalisa; Destro, Matteo; Jabbour, Lara; Zeng, Juqin; Di Lupo, Francesca; Garino, Nadia; Meligrana, Giuseppina; Francia, Carlotta; Gerbaldi, Claudio

    2012-06-19

    In the present work, the preparation and characterization of quasi-solid polymer electrolyte membranes based on methacrylic monomers and oligomers, with the addition of organic plasticizers and lithium salt, are described. Noticeable improvements in the mechanical properties by reinforcement with natural cellulose hand-sheets or nanoscale microfibrillated cellulose fibers are also demonstrated. The ionic conductivity of the various prepared membranes is very high, with average values approaching 10-3 S cm-1 at ambient temperature. The electrochemical stability window is wide (anodic breakdown voltages > 4.5 V vs. Li in all the cases) along with good cyclability in lithium cells at ambient temperature. The galvanostatic cycling tests are conducted by constructing laboratory-scale lithium cells using LiFePO4 as cathode and lithium metal as anode with the selected polymer electrolyte membrane as the electrolyte separator. The results obtained demonstrate that UV induced radical photo-polymerization is a well suited method for an easy and rapid preparation of easy tunable quasi-solid polymer electrolyte membranes for energy storage devices.

  7. UV-Induced Radical Photo-Polymerization: A Smart Tool for Preparing Polymer Electrolyte Membranes for Energy Storage Devices

    PubMed Central

    Nair, Jijeesh R.; Chiappone, Annalisa; Destro, Matteo; Jabbour, Lara; Zeng, Juqin; Lupo, Francesca Di; Garino, Nadia; Meligrana, Giuseppina; Francia, Carlotta; Gerbaldi, Claudio

    2012-01-01

    In the present work, the preparation and characterization of quasi-solid polymer electrolyte membranes based on methacrylic monomers and oligomers, with the addition of organic plasticizers and lithium salt, are described. Noticeable improvements in the mechanical properties by reinforcement with natural cellulose hand-sheets or nanoscale microfibrillated cellulose fibers are also demonstrated. The ionic conductivity of the various prepared membranes is very high, with average values approaching 10−3 S cm−1 at ambient temperature. The electrochemical stability window is wide (anodic breakdown voltages > 4.5 V vs. Li in all the cases) along with good cyclability in lithium cells at ambient temperature. The galvanostatic cycling tests are conducted by constructing laboratory-scale lithium cells using LiFePO4 as cathode and lithium metal as anode with the selected polymer electrolyte membrane as the electrolyte separator. The results obtained demonstrate that UV induced radical photo-polymerization is a well suited method for an easy and rapid preparation of easy tunable quasi-solid polymer electrolyte membranes for energy storage devices. PMID:24958178

  8. UV-Induced Radical Photo-Polymerization: A Smart Tool for Preparing Polymer Electrolyte Membranes for Energy Storage Devices

    PubMed Central

    Nair, Jijeesh R.; Chiappone, Annalisa; Destro, Matteo; Jabbour, Lara; Meligrana, Giuseppina; Gerbaldi, Claudio

    2012-01-01

    In the present work, the preparation and characterization of quasi-solid polymer electrolyte membranes based on methacrylic monomers and oligomers, with the addition of organic plasticizers and lithium salt, are described. Noticeable improvements in the mechanical properties by reinforcement with natural cellulose hand-sheets or nanoscale microfibrillated cellulose fibers are also demonstrated. The ionic conductivity of the various prepared membranes is very high, with average values approaching 10-3 S cm-1 at ambient temperature. The electrochemical stability window is wide (anodic breakdown voltages > 4.5 V vs. Li in all the cases) along with good cyclability in lithium cells at ambient temperature. The galvanostatic cycling tests are conducted by constructing laboratory-scale lithium cells using LiFePO4 as cathode and lithium metal as anode with the selected polymer electrolyte membrane as the electrolyte separator. The results obtained demonstrate that UV induced radical photo-polymerization is a well suited method for an easy and rapid preparation of easy tunable quasi-solid polymer electrolyte membranes for energy storage devices. PMID:24958425

  9. Development of the permeability/performance reference compound approach for in situ calibration of semipermeable membrane devices

    USGS Publications Warehouse

    Huckins, J.N.; Petty, J.D.; Lebo, J.A.; Almeida, F.V.; Booij, K.; Alvarez, D.A.; Cranor, W.L.; Clark, R.C.; Mogensen, B.B.

    2002-01-01

    Permeability/performance reference compounds (PRCs) are analytically noninterfering organic compounds with moderate to high fugacity from semipermeable membrane devices (SPMDs) that are added to the lipid prior to membrane enclosure. Assuming that isotropic exchange kinetics (IEK) apply and that SPMD-water partition coefficients are known, measurement of PRC dissipation rate constants during SPMD field exposures and laboratory calibration studies permits the calculation of an exposure adjustment factor (EAF). In theory, PRC-derived EAF ratios reflect changes in SPMD sampling rates (relative to laboratory data) due to differences in exposure temperature, membrane biofouling, and flow velocity-turbulence at the membrane surface. Thus, the PRC approach should allow for more accurate estimates of target solute/vapor concentrations in an exposure medium. Under some exposure conditions, the impact of environmental variables on SPMD sampling rates may approach an order of magnitude. The results of this study suggest that most of the effects of temperature, facial velocity-turbulence, and biofouling on the uptake rates of analytes with a wide range of hydrophobicities can be deduced from PRCs with a much narrower range of hydrophobicities. Finally, our findings indicate that the use of PRCs permits prediction of in situ SPMD sampling rates within 2-fold of directly measured values.

  10. Membrane-based microchannel device for continuous quantitative extraction of dissolved free sulfide from water and from oil.

    PubMed

    Toda, Kei; Ebisu, Yuki; Hirota, Kazutoshi; Ohira, Shin-Ichi

    2012-09-05

    Underground fluids are important natural sources of drinking water, geothermal energy, and oil-based fuels. To facilitate the surveying of such underground fluids, a novel microchannel extraction device was investigated for in-line continuous analysis and flow injection analysis of sulfide levels in water and in oil. Of the four designs investigated, the honeycomb-patterned microchannel extraction (HMCE) device was found to offer the most effective liquid-liquid extraction. In the HMCE device, a thin silicone membrane was sandwiched between two polydimethylsiloxane plates in which honeycomb-patterned microchannels had been fabricated. The identical patterns on the two plates were accurately aligned. The extracted sulfide was detected by quenching monitoring of fluorescein mercuric acetate (FMA). The sulfide extraction efficiencies from water and oil samples of the HMCE device and of three other designs (two annular and one rectangular channel) were examined theoretically and experimentally. The best performance was obtained with the HMCE device because of its thin sample layer (small diffusion distance) and large interface area. Quantitative extraction from both water and oil could be obtained using the HMCE device. The estimated limit of detection for continuous monitoring was 0.05 μM, and sulfide concentrations in the range of 0.15-10 μM could be determined when the acceptor was 5 μM FMA alkaline solution. The method was applied to natural water analysis using flow injection mode, and the data agreed with those obtained using headspace gas chromatography-flame photometric detection. The analysis of hydrogen sulfide levels in prepared oil samples was also performed. The proposed device is expected to be used for real time survey of oil wells and groundwater wells. Copyright © 2012 Elsevier B.V. All rights reserved.

  11. Membrane stabilizer

    DOEpatents

    Mingenbach, William A.

    1988-01-01

    A device is provided for stabilizing a flexible membrane secured within a frame, wherein a plurality of elongated arms are disposed radially from a central hub which penetrates the membrane, said arms imposing alternately against opposite sides of the membrane, thus warping and tensioning the membrane into a condition of improved stability. The membrane may be an opaque or translucent sheet or other material.

  12. Investigation of the distribution of organochlorine and polycyclic aromatic hydrocarbon compounds in the lower Columbia River using semipermeable membrane devices

    SciTech Connect

    McCarthy, K.A.; Gale, R.W.

    1999-01-01

    The authors used semipermeable membrane devices (SPMDs) to sample water, and achieved sub-parts-per-quintillion detection limits. They deployed SPMDs during 1997 low-flow conditions and 1998 high-flow conditions at nine main-stem sites and seven tributary sites, spanning approximately 700 miles of the Columbia River. They also collected streambed sediment from three sites. SPMD extracts and sediments were analyzed for polychlorinated dibenzo-p-dioxins, polychlorinated dibenzo-furans, polychlorinated biphenyls, organochlorine pesticides and related transformation products, and polycyclic aromatic hydrocarbons.

  13. A more efficient device for preparing model-membrane liposomes by the rapid solvent exchange method

    NASA Astrophysics Data System (ADS)

    Buboltz, Jeffrey T.

    2009-12-01

    We modified the original design for a rapid solvent exchange (RSE) device with the intent of making the RSE method (i) more efficient and (ii) easier to adopt and implement. Our modifications improved solvent-removal kinetics by a factor of 2, while reducing sample-prep time by a factor of 3. In this paper, we develop the kinetic model that informed the device revision and we address several RSE parameters that have not yet been discussed in the literature. We also provide detailed mechanical drawings and present solvent-removal efficiency data that confirm the improved performance of our device.

  14. USING 'GLASS FISH' SPMDS TO MEASURE PAH BIOAVAILABILITY

    EPA Science Inventory

    Measuring contaminant bioavailablity represents a major challenge to environmental toxicologists and chemists. For a decade, semi-permeable membrane devices (SPMDs) have been used to quantify the bioavailability of a variety of organic pollutants to aquatic organisms in the fiel...

  15. Assessment of mitochondrial membrane potential using an on-chip microelectrode in a microfluidic device.

    PubMed

    Lim, Tae-Sun; Dávila, Antonio; Wallace, Douglas C; Burke, Peter

    2010-07-07

    The mitochondrial membrane potential is used to generate and regulate energy in living systems, driving the conversion of ADP to ATP, regulating ion homeostasis, and controlling apoptosis, all central to human health and disease. Therefore, there is a need for tools to study its regulation in a controlled environment for potential clinical and scientific applications. For this aim, an on-chip tetraphenylphosphonium (TPP(+)) selective microelectrode sensor was constructed in a microfluidic environment. The concentration of isolated mitochondria (Heb7A) used in a membrane potential measurement was 0.3 ng microL(-1), four orders of magnitude smaller than the concentration used in conventional assays (3 microg microL(-1)). In addition, the volume of the chamber (85 microL) is 2 orders of magnitude smaller than traditional experiments. As a demonstration, changes in the membrane potential are clearly measured in response to a barrage of well-known substrates and inhibitors of the electron transport chain. This general approach, which to date has not been demonstrated for study of mitochondrial function and bio-energetics in generally, can be instrumental in advancing the field of mitochondrial research and clinical applications by allowing high throughput studies of the regulation, dynamics, and statistical properties of the mitochondrial membrane potential in response to inhibitors and inducers of apoptosis in a controlled (microfluidic) chemical environment.

  16. Integrated multilayer microfluidic device with a nanoporous membrane interconnect for online coupling of solid-phase extraction to microchip electrophoresis.

    PubMed

    Long, Zhicheng; Shen, Zheng; Wu, Dapeng; Qin, Jianhua; Lin, Bingcheng

    2007-12-01

    An integrated microfluidic device was developed for online coupling of solid-phase extraction to microchip electrophoresis (chip SPE-CE). With a nanoporous membrane sandwiched between two PDMS substrates, SPE preconcentration and electrophoretic separation can be carried out in upper and lower fluidic layers, separately and sequentially. During the SPE process, the thin membrane can act as a fluid isolator to prevent intermixing between two fluidic channels. However, when a pulse voltage is applied, the membrane becomes a gateable interconnect so that a small plug of concentrated analytes can be online injected into the lower channel for subsequent separations. This multilayer design provides a universal solution to online SPE-CE hyphenation. Both electroosmotic flow and hydrodynamic pumps have been adopted for SPE operation. SPE was performed on a 2.5 mm long microcolumn, with two weirs on both sides to retain the C(18)-coated silica beads. Rhodamine 123 and FITC-labelled ephedrine were used to test the operational performance of the hyphenation system. High separation efficiency and thousand-fold signal enhancement were achieved.

  17. Controlled electroporation of the plasma membrane in microfluidic devices for single cell analysis

    PubMed Central

    Shah, Duoaud; Steffen, Milan; Lilge, Lothar

    2012-01-01

    Chemical cytometry on a single cell level is of interest to various biological fields ranging from cancer to stem cell research. The impact chemical cytometry can exert in these fields depends on the dimensionality of the retrievable analytes content. To this point, the number of different analytes identifiable and additionally their subcellular localization is of interest. To address this, we present an electroporation based approach for selective lysis of only the plasma membrane, which permits analysis of the dissolved cytoplasm, while reducing contributions from the nucleus and membrane bound fractions of the cell analytes. The use of 100 μs long pulse and a well defined DC electric field gradient of ∼4.5 kV·cm−1 generated by 3D electrodes initiates release of a cytoplasm marker in ≪1 s, while retaining nuclear fluorescence markers. PMID:22435083

  18. Poly(amidoamine) dendronized hollow fiber membranes: synthesis, characterization, and preliminary applications as drug delivery devices.

    PubMed

    Zhang, Qian; Wang, Na; Xu, Tongwen; Cheng, Yiyun

    2012-03-01

    Poly(amidoamine) (PAMAM) dendrons were prepared from hollow fiber membranes (HFM) consisting of bromomethylated poly(2,6-dimethyl-1,4-phenylene oxide) (BPPO) in a stepwise manner. The prepared HFM were characterized by Fourier transform infrared spectroscopy, elemental analysis, and scanning electron microscopy. The drug loading efficiency and release behavior of the PAMAM dendronized HFM were evaluated using sodium salicylate, sodium methotrexate, and Congo red as model drugs. The results suggest that PAMAM dendronized HFM can be effectively loaded with a variety of drugs and prolong the release of these drugs. The drug loading and release characteristics of the HFM depend on the generation of PAMAM dendrons grafted on the membranes. The prepared PAMAM dendronized BPPO HFM are promising scaffolds in drug delivery and tissue engineering.

  19. New Membrane Preconcentration Devices for Trace Vapor Detection Systems Phase I.

    DTIC Science & Technology

    1985-01-01

    of the coating solution used and the nature of the microporous support film . The method of applying the coating solution is also important. C. Module...C Variable spe motor-driven take-up Thin film applicator ( Figure 6. Schematic of thin film coating apparatus used to coat the microporous support... microporous ultrafiltration membrane to form a * smooth, finely porous surface which can then be coated with an ultrathin layer of silicone rubber. The

  20. Membrane treatment of liquid wastes from radiological decontamination operations.

    PubMed

    Svittsov, A A; Khubetsov, S B; Volchek, K

    2011-01-01

    The paper focuses on the evaluation of membrane filtration for the treatment of liquid radioactive streams generated in area decontamination operations. In this work, semi-permeable membranes were demonstrated to be effective reducing the volume of wastewater containing cesium and cobalt by two orders of a magnitude. The efficiency of membrane separation was enhanced by employing additives that enlarged the size of target radionuclide species and improved their rejection by the membranes. This was achieved by chelation with synthetic water-soluble polymers and by adsorption on micro particles of adsorbent coupled with micelle formation. The effect of wastewater composition and that of the radionuclide-binding additives on the volume reduction was investigated. Membrane treatment is expected to help simplify further processing and decrease disposal costs.

  1. Clinical implications of Mycobacterium chimaera detection in thermoregulatory devices used for extracorporeal membrane oxygenation (ECMO), Germany, 2015 to 2016.

    PubMed

    Trudzinski, Franziska C; Schlotthauer, Uwe; Kamp, Annegret; Hennemann, Kai; Muellenbach, Ralf M; Reischl, Udo; Gärtner, Barbara; Wilkens, Heinrike; Bals, Robert; Herrmann, Mathias; Lepper, Philipp M; Becker, Sören L

    2016-11-17

    Mycobacterium chimaera, a non-tuberculous mycobacterium, was recently identified as causative agent of deep-seated infections in patients who had previously undergone open-chest cardiac surgery. Outbreak investigations suggested an aerosol-borne pathogen transmission originating from water contained in heater-cooler units (HCUs) used during cardiac surgery. Similar thermoregulatory devices are used for extracorporeal membrane oxygenation (ECMO) and M. chimaera might also be detectable in ECMO treatment settings. We performed a prospective microbiological study investigating the occurrence of M. chimaera in water from ECMO systems and in environmental samples, and a retrospective clinical review of possible ECMO-related mycobacterial infections among patients in a pneumological intensive care unit. We detected M. chimaera in 9 of 18 water samples from 10 different thermoregulatory ECMO devices; no mycobacteria were found in the nine room air samples and other environmental samples. Among 118 ECMO patients, 76 had bronchial specimens analysed for mycobacteria and M. chimaera was found in three individuals without signs of mycobacterial infection at the time of sampling. We conclude that M. chimaera can be detected in water samples from ECMO-associated thermoregulatory devices and might potentially pose patients at risk of infection. Further research is warranted to elucidate the clinical significance of M. chimaera in ECMO treatment settings. This article is copyright of The Authors, 2016.

  2. Design and Evaluation of a Water Recirculation Loop Maintenance Device for the Advanced Spacesuit Water Membrane Evaporator

    NASA Technical Reports Server (NTRS)

    Steele, John W.; Rector, Tony; Bue, Grant C.; Campbell, Colin; Makinen, Janice

    2012-01-01

    A dual-bed device to maintain the water quality of the Advanced Spacesuit Water Membrane Evaporation (SWME) water recirculation loop has been designed and is undergoing testing. The SWME is a heat rejection device under development at the NASA Johnson Space Center to perform thermal control for advanced spacesuits. One advantage to this technology is the potential for a significantly greater degree of tolerance to contamination when compared to the existing sublimator technology. The driver for the development of a water recirculation maintenance device is to further enhance this advantage through the leveraging of fluid loop management lessons learned from the International Space Station (ISS). A bed design that was developed for a Hamilton Sundstrand military application, and considered for a potential ISS application with the Urine Processor Assembly, provides a low pressure drop means for water maintenance in a recirculation loop. The bed design is coupled with high-capacity ion exchange resins, organic adsorbents, and a cyclic methodology developed for the Extravehicular Mobility Unit Transport Water Loop. The bed design further leverages a sorbent developed for the ISS that introduces a biocide in a microgravity-compatible manner for the Internal Active Thermal Control System. The leveraging of these water maintenance technologies to the SWME recirculation loop is a unique demonstration of applying the valuable lessons learned on the ISS to the next generation of crewed spaceflight Environmental Control and Life Support System hardware.

  3. Design and Evaluation of a Water Recirculation Loop Maintenance Device for the Advanced Spacesuit Water Membrane Evaporator

    NASA Technical Reports Server (NTRS)

    Steele, John W.; Rector, Tony; Bue, Grant C.; Campbell, Colin; Makinen, Janice

    2011-01-01

    A dual-bed device to maintain the water quality of the Advanced Spacesuit Water Membrane Evaporation (SWME) water recirculation loop has been designed and is undergoing testing. The SWME is a heat rejection device under development at the NASA Johnson Space Center to perform thermal control for advanced spacesuits. One advantage to this technology is the potential for a significantly greater degree of tolerance to contamination when compared to the existing Sublimator technology. The driver for the development of a water recirculation maintenance device is to further enhance this advantage through the leveraging of fluid loop management lessons-learned from the International Space Station (ISS). A bed design that was developed for a Hamilton Sundstrand military application, and considered for a potential ISS application with the Urine Processor Assembly, provides a low pressure drop means for water maintenance in a recirculation loop. The bed design is coupled with high capacity ion exchange resins, organic adsorbents, and a cyclic methodology developed for the Extravehicular Mobility Unit (EMU) Transport Water loop. The bed design further leverages a sorbent developed for ISS that introduces a biocide in a microgravity-compatible manner for the Internal Active Thermal Control System (IATCS). The leveraging of these water maintenance technologies to the SWME recirculation loop is a clear demonstration of applying the valuable lessons learned on the ISS to the next generation of manned spaceflight Environmental Control and Life Support System (ECLSS) hardware.

  4. Performance of a Water Recirculation Loop Maintenance Device and Process for the Advanced Spacesuit Water Membrane Evaporator

    NASA Technical Reports Server (NTRS)

    Rector, Tony; Steele, John W.; Bue, Grant C.; Campbell, Colin; Makinen, Janice

    2012-01-01

    A water loop maintenance device and process to maintain the water quality of the Advanced Spacesuit Water Membrane Evaporation (SWME) water recirculation loop has been undergoing a performance evaluation. The SWME is a heat rejection device under development at the NASA Johnson Space Center to perform thermal control for advanced spacesuits. One advantage to this technology is the potential for a significantly greater degree of tolerance to contamination when compared to the existing Sublimator technology. The driver for the water recirculation maintenance device and process is to further enhance this advantage through the leveraging of fluid loop management lessons-learned from the International Space Station (ISS). A bed design that was developed for a Hamilton Sundstrand military application, and considered for a potential ISS application with the Urine Processor Assembly, provides a low pressure drop means for water maintenance in a recirculation loop. The bed design is coupled with high capacity ion exchange resins, organic adsorbents, and a cyclic methodology developed for the Extravehicular Mobility Unit (EMU) Transport Water loop. The maintenance process further leverages a sorbent developed for ISS that introduces a biocide in a microgravity-compatible manner for the Internal Active Thermal Control System (IATCS). The leveraging of these water maintenance technologies to the SWME recirculation loop is a unique demonstration of applying the valuable lessons learned on the ISS to the next generation of manned spaceflight Environmental Control and Life Support System (ECLSS) hardware. This

  5. Performance of a Water Recirculation Loop Maintenance Device and Process for the Advanced Spacesuit Water Membrane Evaporator

    NASA Technical Reports Server (NTRS)

    Steele, John W.; Rector, Tony; Bue, Grant C.; Campbell, Colin; Makinen, Janice

    2013-01-01

    A dual-bed device to maintain the water quality of the Advanced Spacesuit Water Membrane Evaporation (SWME) water recirculation loop has been designed and is undergoing testing. The SWME is a heat rejection device under development at the NASA Johnson Space Center to perform thermal control for advanced spacesuits. One advantage to this technology is the potential for a significantly greater degree of tolerance to contamination when compared to the existing Sublimator technology. The driver for the development of a water recirculation maintenance device is to further enhance this advantage through the leveraging of fluid loop management lessons-learned from the International Space Station (ISS). A bed design that was developed for a Hamilton Sundstrand military application, and considered for a potential ISS application with the Urine Processor Assembly, provides a low pressure drop means for water maintenance in a recirculation loop. The bed design is coupled with high capacity ion exchange resins, organic adsorbents, and a cyclic methodology developed for the Extravehicular Mobility Unit (EMU) Transport Water loop. The bed design further leverages a sorbent developed for ISS that introduces a biocide in a microgravity-compatible manner for the Internal Active Thermal Control System (IATCS). The leveraging of these water maintenance technologies to the SWME recirculation loop is a unique demonstration of applying the valuable lessons learned on the ISS to the next generation of manned spaceflight Environmental Control and Life Support System (ECLSS) hardware.

  6. Clinical implications of Mycobacterium chimaera detection in thermoregulatory devices used for extracorporeal membrane oxygenation (ECMO), Germany, 2015 to 2016

    PubMed Central

    Trudzinski, Franziska C.; Schlotthauer, Uwe; Kamp, Annegret; Hennemann, Kai; Muellenbach, Ralf M.; Reischl, Udo; Gärtner, Barbara; Wilkens, Heinrike; Bals, Robert; Herrmann, Mathias; Lepper, Philipp M.; Becker, Sören L.

    2016-01-01

    Mycobacterium chimaera, a non-tuberculous mycobacterium, was recently identified as causative agent of deep-seated infections in patients who had previously undergone open-chest cardiac surgery. Outbreak investigations suggested an aerosol-borne pathogen transmission originating from water contained in heater-cooler units (HCUs) used during cardiac surgery. Similar thermoregulatory devices are used for extracorporeal membrane oxygenation (ECMO) and M. chimaera might also be detectable in ECMO treatment settings. We performed a prospective microbiological study investigating the occurrence of M. chimaera in water from ECMO systems and in environmental samples, and a retrospective clinical review of possible ECMO-related mycobacterial infections among patients in a pneumological intensive care unit. We detected M. chimaera in 9 of 18 water samples from 10 different thermoregulatory ECMO devices; no mycobacteria were found in the nine room air samples and other environmental samples. Among 118 ECMO patients, 76 had bronchial specimens analysed for mycobacteria and M. chimaera was found in three individuals without signs of mycobacterial infection at the time of sampling. We conclude that M. chimaera can be detected in water samples from ECMO-associated thermoregulatory devices and might potentially pose patients at risk of infection. Further research is warranted to elucidate the clinical significance of M. chimaera in ECMO treatment settings. PMID:27918254

  7. Device Strategies for Patients in INTERMACS Profiles 1 and 2 Cardiogenic Shock: Double Bridge With Extracorporeal Membrane Oxygenation and Initial Implant of More Durable Devices.

    PubMed

    Cheng, Richard; Ramzy, Danny; Azarbal, Babak; Arabia, Francisco A; Esmailian, Fardad; Czer, Lawrence S; Kobashigawa, Jon A; Moriguchi, Jaime D

    2017-03-01

    For Interagency Registry for Mechanically Assisted Circulatory Support profiles 1 and 2 cardiogenic shock patients initially placed on extracorporeal membrane oxygenation (ECMO), whether crossover to more durable devices is associated with increased survival, and its optimal timing, are not established. Profiles 1 and 2 patients placed on mechanical support were prospectively registered. Survival and successful hospital discharge were compared between patients placed on ECMO only, ECMO with early crossover, and ECMO with delayed crossover. Survival of patients directly implanted with non-ECMO devices was also reported. One-hundred and sixty-two patients were included. Mean age was 52.2 ± 13.8 years. Seventy-three of 162 (45.1%) were initiated on ECMO. Of these, 43 were supported with ECMO only, 11 were crossed-over early <4 days, and 19 were crossed-over in a delayed fashion. Survival was different across groups (Log-rank P < 0.002). In multivariate analysis, early crossover was associated with decreased mortality as compared with no crossover (hazard ratio [HR] 0.201, 95% confidence interval [95%CI] 0.058-0.697, P = 0.011) or with delayed crossover (HR 0.255, 95%CI 0.073-0.894, P = 0.033). Mortality was not different between delayed crossover and no crossover (P = 0.473). In patients with early crossover there were no deaths at 30 days, and 60-day survival was 90.0 ± 9.5%. Survival to hospital discharge was 72.8%. For patients directly implanted with non-ECMO devices, 30-day and 60-day survival was 90.9 ± 3.1% and 87.3 ± 3.8%, respectively, and survival to hospital discharge was 78.7%. Both initial implant of durable devices and double bridge strategy was associated with improved outcomes. If the double bridge strategy is chosen, early crossover is associated with improved survival and successful hospital discharge.

  8. A Feasibility Study of Pressure Retarded Osmosis Power Generation System based on Measuring Permeation Volume using Reverse Osmosis Membrane

    NASA Astrophysics Data System (ADS)

    Enomoto, Hiroshi; Fujitsuka, Masashi; Hasegawa, Tomoyasu; Kuwada, Masatoshi; Tanioka, Akihiko; Minagawa, Mie

    Pressure Retarded Osmosis (PRO) power generation system is a hydroelectric power system which utilize permeation flow through a semi-permeable membrane. Permeation flow is generated by potential energy of salinity difference between sea water and fresh water. As membrane cost is expensive, permeation performance of membrane must be higher to realize PRO system. We have investigated Reverse Osmosis (RO) membrane products as semi-permeable membrane and measured permeation volume of a few products. Generation power by membrane area calculated from permeation volume is about 0.62W/m2. But by our improvements (more salt water volume, spacer of fresh water channel with a function of discharging concentrated salinity, extra low pressure type of membrane, washing support layer of membrane when generation power reduces to half), generation power may be 2.43W/m2. Then power system cost is about 4.1 million yen/kW. In addition, if support layer of membrane makes thinner and PRO system is applied to the equipment that pumping power on another purpose is avairable (wastewater treatment plant located at the seaside, thermal and nuclear power plant or sea water desalination plant), generation power may be more. By these improvements PRO system may be able to realize at the cost close to photovoltaic power system.

  9. Evaluation of lipid-containing semipermeable membrane devices for monitoring organochlorine contaminants in the Upper Mississippi river

    USGS Publications Warehouse

    Ellis, Geoffrey S.; Rostad, Colleen E.; Huckins, James N.; Schmitt, Christopher J.; MacCarthy, Patrick

    1995-01-01

    Organochlorine contaminants sequestered in lipid-containing semipermeable membrane devices (SPMDs) were compared to those found in tangential-flow ultrafilter permeates as part of a pilot study at 10 sites in the Upper Mississippi River system. Caged and feral fish from three primary sites were also analyzed for comparison. Concentrated organochlorine (OC) compounds were readily extracted from the SPMDs by dialysis into hexane, and samples were analyzed by gas chromatography-negative chemical ionization-mass spectrometry. Fish and water samples were processed by conventional methods. Reasonable agreement was found between analyte SPMD-derived water concentrations and measured values of ultrafilter permeates; however, concentrations of the same analytes in caged fish did not appear to be proportional to water concentrations derived from SPMDs and ultrafilter permeates. The greatest number of OC compounds was detected in SPMDs; fewer were detected in caged fish and feral fish.

  10. Evaluation of lipid-containing semipermeable membrane devices for monitoring organochlorine contaminants in the upper Mississippi River

    SciTech Connect

    Ellis, G.S.; Rostad, C.E.; Huckins, J.N.; Schmitt, C.J.; Petty, J.D.; MacCarthy, P.

    1995-11-01

    Organochlorine contaminants sequestered in lipid-containing semipermeable membrane devices (SPMDs) were compared to those found in tangential-flow ultrafilter permeates as part of a pilot study at 10 sites in the Upper Mississippi River system. Caged and feral fish from three primary sites were also analyzed for comparison. Concentrated organochlorine (OC) compounds were readily extracted from the SPMDs by dialysis into hexane, and samples were analyzed by gas chromatography-negative chemical ionization-mass spectrometry. Fish and water samples were processed by conventional methods. Reasonable agreement was found between analyte SPMD-derived water concentrations and measured values of ultrafilter permeates; however, concentrations of the same analytes in caged fish did not appear to be proportional to water concentrations derived from SPMDs and ultrafilter permeates. The greatest number of OC compounds was detected in SPMDs; fewer were detected in caged fish and feral fish.

  11. Use of the semipermeable membrane device (SPMD) to sample polycyclic aromatic hydrocarbon pollution in a lotic system

    USGS Publications Warehouse

    Lebo, Jon A.; Zajicek, James L.; Orazio, Carl E.; Petty, Jimmie D.; Huckins, James; Douglas, Ernest H.

    1996-01-01

    Relative concentrations of aqueous polycyclic aromatic hydrocarbons (PAH) were investigated in an urban creek. Samples were obtained at five sites within a 600-m segment of the creek that is critical habitat for an endangered species of fish. The sampling technique entailed immersion of semipermeable membrane devices (SPMDs) in the water for intervals as long as 64 d. SPMDs are passive, in situ, integrative samplers of bioavailable (truly dissolved) PAH and other hydrophobic organic contaminants. Two point sources of PAH to the 600-m segment of the creek were differentiated. Aqueous concentrations were found to wane dramatically over the relatively short section of the creek between the point sources. All samples were almost devoid of alkyl-substituted PAH, indicating that the ultimate sources were probably of pyrogenic nature.

  12. Membrane-electrode structures for molecular catalysts for use in fuel cells and other electrochemical devices

    DOEpatents

    Kerr, John B.; Zhu, Xiaobing; Hwang, Gi Suk; Martin, Zulima; He, Qinggang; Driscoll, Peter; Weber, Adam; Clark, Kyle

    2016-09-27

    Water soluble catalysts, (M)meso-tetra(N-Methyl-4-Pyridyl)Porphinepentachloride (M=Fe, Co, Mn & Cu), have been incorporated into the polymer binder of oxygen reduction cathodes in membrane electrode assemblies used in PEM fuel cells and found to support encouragingly high current densities. The voltages achieved are low compared to commercial platinum catalysts but entirely consistent with the behavior observed in electroanalytical measurements of the homogeneous catalysts. A model of the dynamics of the electrode action has been developed and validated and this allows the MEA electrodes to be optimized for any chemistry that has been demonstrated in solution. It has been shown that improvements to the performance will come from modifications to the structure of the catalyst combined with optimization of the electrode structure and a well-founded pathway to practical non-platinum group metal catalysts exists.

  13. Potential Usage of Thermoelectric Devices in a High-Temperature Polymer Electrolyte Membrane (PEM) Fuel Cell System: Two Case Studies

    NASA Astrophysics Data System (ADS)

    Gao, Xin; Chen, Min; Andreasen, Søren Juhl; Kær, Søren Knudsen

    2012-06-01

    Methanol-fueled, high-temperature polymer electrolyte membrane fuel cell (HTPEMFC) power systems are promising as the next generation of vehicle engines, efficient and environmentally friendly. Currently, their performance still needs to be improved, and they still rely on a large Li-ion battery for system startup. In this article, to handle these two issues, the potential of thermoelectric (TE) devices applied in a HTPEMFC power system has been preliminarily evaluated. First, right after the fuel cell stack or the methanol reformer, thermoelectric generators (TEGs) are embedded inside a gas-liquid heat exchanger to form a heat recovery subsystem jointly for electricity production. It is calculated that the recovered power can increase the system efficiency and mitigate the dependence on Li-ion battery during system startup. To improve the TEG subsystem performance, a finite-difference model is then employed and two main parameters are identified. Second, TE coolers are integrated into the methanol steam reformer to regulate heat fluxes herein and improve the system dynamic performance. Similar modification is also done on the evaporator to improve its dynamic performance as well as to reduce the heat loss during system startup. The results demonstrate that the TE-assisted heat flux regulation and heat-loss reduction can also effectively help solve the abovementioned two issues. The preliminary analysis in this article shows that a TE device application inside HTPEMFC power systems is of great value and worthy of further study.

  14. Using semipermeable membrane devices (SPMDs) to assess the toxicity and teratogenicity of aquatic amphibian habitats

    USGS Publications Warehouse

    Bridges, C.M.; Little, E.E.; Linder, Gregory L.; Krest, S.; Sparling, Don; Little, Edward

    2003-01-01

    Environmental contamination has been suspected of being partially responsible for recent declines in amphibian populations. It is often not feasible to identify all of the compounds in an environment, nor the concentrations in which they are present. SPMDs are passive sampling devices that uptake lipophilic compounds from the environment in a manner similar to aquatic organisms. The extracts from the SPMDs, therefore, contain a composite sample of the compounds that are present in the environment. In this paper, we outline the methods from studies in which we have used extracts from SPMDs in toxicity tests on amphibian larvae. Using SPMD extracts makes it possible to establish potential links between amphibian deformities and declines and environmental contamination by lipophilic compounds.

  15. Bioacceptable and calcification-resistant membranes and interfaces for implantable sensors and devices

    NASA Astrophysics Data System (ADS)

    Galeska, Izabela Ewa

    The rational design and characterization of biocompatible, semipermeable and calcification resistant materials to serve as an outer membrane for implantable glucose biosensors, was the primary focus of this research. Multilayered films of polyanions (i.e. Nafion(TM), a perfluorinated ionomer, and Humic Acids (HAs), naturally occurring biopolymers), fabricated by layer-by-layer self-assembly with oppositely charged ferric ions were investigated as potential membranes. Spectroscopic ellipsometry and quartz crystal microbalance studies point towards a stepwise film growth, with growth rates of 47 and 24.3 nm per layer (for Nafion and HAs respectively) that can be altered depending on the pH and ionic strength of the polyanion solution. Nafion/Fe3+ assembled films exhibited an order of magnitude lower calcification as compared to dip-coated Nafion films and did not require annealing to impart insolubility. Similarly the HAs/Fe3+ films were also devoid of calcification, even after four-week immersion in DMEM cell culture media. Significantly, in vivo studies on the HAs/Fe3 films point to their biocompatibility as demonstrated by mild tissue reaction. These results, along with controllable glucose permeability, could prove vital in prolonging the lifetime of implantable biosensors. Additionally in effort to minimize tissue trauma upon implantation, novel poly(lactic-co-glycolic acid) (PLGA) microsphere/poly(vinyl alcohol) (PVA) hydrogel composites were investigated for dexamethasone delivery. A release rate of 25 to 40% over one month, following a zero order profile, was achieved by preferential adsorption of surface active polyacids (poly(acrylic acid), Nafion and HAs) on the hydrogel dispersed microspheres. Environmental scanning electron microscopy investigation on the degradation mechanism of the microspheres pointed towards their slow homogeneous degradation in the PVA hydrogels that was significantly surface-accelerated in the presence of polyacids. The physico

  16. Membrane stabilizer

    DOEpatents

    Mingenbach, W.A.

    1988-02-09

    A device is provided for stabilizing a flexible membrane secured within a frame, wherein a plurality of elongated arms are disposed radially from a central hub which penetrates the membrane, said arms imposing alternately against opposite sides of the membrane, thus warping and tensioning the membrane into a condition of improved stability. The membrane may be an opaque or translucent sheet or other material. 10 figs.

  17. Comparing polychlorinated biphenyl concentrations and patterns in the Saginaw River using sediment, caged fish, and semipermeable membrane devices

    USGS Publications Warehouse

    Echols, K.R.; Gale, R.W.; Schwartz, T.R.; Huckins, J.N.; Williams, L.L.; Meadows, J.C.; Morse, D.; Petty, J.D.; Orazio, C.E.; Tillitt, D.E.

    2000-01-01

    Three techniques of assessing bioavailable polychlorinated biphenyls (PCBs) in the Saginaw River, MI, were compared: sediments, caged fish, and semipermeable membrane devices (SPMDs). SPMDs and caged fish were placed in the river for 28 days at five sites where sediments were also sampled. The samples were analyzed for PCB congeners to determine concentrations and patterns. Total PCB concentrations ranged from 33 to 280 ng/g (dry weight) in sediments, 46 to 290 ng/g (wet weight) in caged fish, and 77 to 790 ng/g in SPMDs. Previously reported rates of PCB accumulation by SPMDs were used to estimate aqueous concentrations from the PCB concentrations detected in the SPMDs. Sediment-water partition coefficients were used to estimate aqueous PCB concentrations from sediment. Steady-state bioconcentration factors and depuration rate constants were used to estimate dissolved PCB concentrations from caged channel catfish. Relative PCB patterns from the SPMDs, caged fish, and sediment were compared using principal components analysis. SPMD and sediment samples provide complementary information. Sediments reflect long-term accumulation and weathering, while SPMDs integrate water concentrations only during the sampling period. Because of higher water solubilities of lower-chlorinated PCBs these predominate in the SPMDs as compared to in the fish and sediments. Contaminant profile differences between caged fish and SPMDs are likely due to metabolism and depuration of certain PCB congeners by fish.Three techniques of assessing bioavailable polychlorinated biphenyls (PCBs) in the Saginaw River, Ml, were compared: sediments, caged fish, and semipermeable membrane devices (SPMDs). SPMDs and caged fish were placed in the river for 28 days at five sites where sediments were also sampled. The samples were analyzed for PCB congeners to determine concentrations and patterns. Total PCB concentrations ranged from 33 to 280 ng/g (dry weight) in sediments, 46 to 290 ng/g (wet weight) in

  18. Comparison of organic contaminant accumulation by semipermeable membrane devices (SPMDs) and the caged mussel species Mytilus edulis

    SciTech Connect

    Hofelt, C.; Shea, D.

    1995-12-31

    The accumulation of anthropogenic contaminants by sentinel species such as the blue mussel, Mytilus edulis, is common in many monitoring programs such as the National Status and Trends Mussel Watch Program. Bivalves are used because they are filter-feeding organisms with a high lipid content and therefore accumulate pollutants readily, and they do not appear to metabolize contaminants to a large extent. There are difficulties associated with this approach however, such as mortality, changing lipid mass and respiration rates, and interspecies differences; therefore the use of a non-living substrate may be more practical. The semipermeable membrane device (SPMD) consists of a length of thin-walled polyethylene tubing with a film of high molecular weight neutral lipid (triolein) sealed inside. The SPMD, when suspended in the water column, will concentrate lipophilic organic contaminants from the surrounding environment. The authors deployed SPMDs and caged Mytilus edulis side-by-side at five sites near New Bedford Harbor, MA; an area highly contaminated with polychlorinated biphenyls (PCBs). A good correlation was observed between the SPMDs and the caged blue mussels, with R{sup 2} ranging from 0.57 to 0.85 (N = 16) for chlorinated pesticides and from 0.81 to 0.96 (N = 20) for PCBs. Bioconcentration factors (BCF) based on water column concentrations were also calculated and a good correlation was obtained between the SPMD BCFs and corresponding octanol-water partition coefficients. Unlike previous investigations, the authors found good agreement even with the highest chlorinated PCBs suggesting that there was no steric hindrance of uptake through the SPMD membrane.

  19. The use of semipermeable membrane devices (SPMDs) to concentrate inducers of fish hepatic mixed function oxygenase (MFO): Chapter 12

    USGS Publications Warehouse

    Parrott, Joanne L.; Tillitt, Donald E.

    1997-01-01

    Semipermeable membrane devices (SPMDs) are sampling and concentrating devices comprised of a thin polyethylene membrane containing a small quantity of triolein. They have previously been used to sample air, water and sediments and have concentrated fish tainting compounds from pulp mill effluents. The ability to induce mixed function oxygenases (MFOs) is a property of a variety of organic effluents, but the compound(s) responsible for induction have not been identified. We wanted to see if SPMDs would accumulate the MFO-inducing chemical(s) from pulp mill effluents and oil refinery effluents. Dialysates of effluent-exposed SPMDs induced ethoxyresorufin-O-deethylase (EROD) activity in a fish (Poeciliopsis lucida) hepatoma cell line, PLHC-1. In pulp mill effluents and oil sands mining and refining wastewaters, potencies varied greatly, from a few to thousands of pg TCDD-EQ/g SPMD. Low levels of inducers were seen in four pulp mills on the Athabasca R., and higher levels at one New Brunswick bleached sulphite and two Ontario bleached kraft pulp mills. The highest levels of MFO inducers were in SPMDs deployed for 14 days in wastewater from an oil sands upgrading facility, as well as SPMDs deployed at two sites on Athabasca River tributaries in the oil sands area. This suggests that natural erosion and weathering, as well as industrial processing of the oil sands, can release potent MFO inducers. Background (reference) induction by SPMD extracts ranged from non-detectable (<1) to 20 pg TCDD-EQ/g SPMD. Reactive clean-up of one of the bleached kraft mill effluent-exposed SPMD extracts on a sulfuric acid/silica gel column resulted in loss of the inducer(s), which suggested a polyaromatic hydrocarbon-type of inducing chemical(s), rather than a dioxin or furan inducer. SPMD deployments proved useful in the detection of inducers within the pulp mill process streams as extracts of SPMDs exposed to untreated bleached sulphite effluent were ten to twenty times as potent as those

  20. Predictors for quality of life of patients with a portable out-of-centre-implanted extracorporeal membrane oxygenation device.

    PubMed

    Rückert, Florian; Steinke, Thomas; Flöther, Lilit; Bucher, Michael; Metz, Dietrich; Frantz, Stefan; Charitos, Efstratios I; Treede, Hendrik; Raspé, Christoph

    2017-04-01

    Despite progress in the treatment of cardiopulmonary organ failure, the mortality rate for patients with acute respiratory distress syndrome (ARDS) and cardiogenic shock remains high. Extracorporeal membrane oxygenation (ECMO) is a promising treatment option, but long-term outcomes and health-related quality of life (HRQOL) are unknown. Detailed information related to pre- and post-device data and outcomes from a consecutive sample of 71 patients treated with ECMO was analysed. Long-term survivors were given a detailed follow-up examination after a median time of 31 months that included multiple scoring systems for HRQOL assessment. Seventy-one patients received a portable out-of-centre-implanted ECMO system. The survival rate at hospital discharge was 48%. Median HRQOL scores were 80% on the Karnofsky index (normal ≥80%), 80% on the Euroqol-5D (normal ≥75%) and 73.1% on the quality-of-life index (normal ≥70%). Mental scores were 96.7% on the Mini-Mental State Examination (normal ≥90.0%), 77.8% on the DemTect (normal ≥72.0%), 87.0% on the test for early detection of dementia with depression demarcation (TFDD; normal ≥74.0%) and confirmed good mental state and HRQOL for patients at follow-up. Univariate analysis for in-hospital mortality indicated that ventilation time before device implantation, higher Acute Physiology and Chronic Health Evaluation (APACHE) II score, higher lactate level at the time of ECMO implantation and female gender were associated with adverse outcomes. In our cohort of patients, survivors of out-of-hospital ECMO implantation demonstrated good mental and quality-of-life conditions with well-recovered cardiopulmonary function during long-term follow-up. The indicators for adverse outcomes, pre-implantation lactate levels, pre-ventilation time and APACHE II score, should be considered before implantation of an ECMO device. This study is registered at DRKS (Deutsches Register Klinischer Studien) under the code DRKS

  1. Assessment of the usefulness of semipermeable membrane devices for long-term watershed monitoring in an urban slough system

    USGS Publications Warehouse

    McCarthy, K.

    2006-01-01

    Semipermeable membrane devices (SPMDs) were deployed at eight sites within the Buffalo Slough, near Portland, Oregon, to (1) measure the spatial and seasonal distribution of dissolved polycyclic aromatic hydrocarbon (PAH) and organochlorine (OC) compounds in the slough, (2) assess the usefulness of SPMDs as a tool for investigating and monitoring hydrophobic compounds throughout the Columbia Slough system, and (3) evaluate the utility of SPMDs as a tool for measuring the long-term effects of watershed improvement activities. Data from the SPMDs revealed clear spatial and seasonal differences in water quality within the slough and indicate that for hydrophobic compounds, this time-integrated passive-sampling technique is a useful tool for long-term watershed monitoring. In addition, the data suggest that a spiking rate of 2-5 ??g/SPMD of permeability/performance reference compounds, including at least one compound that is not susceptible to photodegradation, may be optimum for the conditions encountered here. ?? Springer Science + Business Media, Inc. 2006.

  2. Caged mussels and semipermeable membrane devices as indicators of organic contaminant uptake in Dorchester and Duxbury Bays, Massachusetts

    SciTech Connect

    Peven, C.S.; Uhler, A.D.; Querzoli, F.J.

    1996-02-01

    An experiment to measure organic contaminant depuration by the blue mussel (Mytilus edulis) was carried out by transplanting mussels in stainless steel cages from a known contaminated site in Dorchester Bay, Massachusetts to a documented clean site in Duxbury Bay, Massachusetts approximately 30 nmi south of the original collection site. A parallel contaminant uptake experiment was performed in which mussels from Duxbury Bay were collected and deployed in similar cages in Dorchester Bay. The bivalves were collected from each transplant site at set intervals over a period of 95 days to monitor the rates and selectivity of depuration and uptake, respectively, of polynuclear atomic hydrocarbons (PAH), polychlorinated biphenyls (PCB), and chlorinated pesticides. In a related study, semipermeable membrane devices (SPMD: polyethylene bags) containing the lipid material triolein were deployed in Dorchester Bay and collected at the same frequency as the caged mussels to evaluate their effectiveness as models for estimating bioconcentration of target organic contaminants. At the Duxbury site, results suggest that the caged mussels depurated contaminants within 68 days to levels found in native animals at the site. At the Dorchester site, bivalves concentrated the contaminants to a level similar to the native M. edulis. PCB and DDT uptake rates were found to be similar between caged mussels and SPMDs; PAH uptake by the SPMDs was initially lower than by transplanted bivalves. PCB and PAH assemblages were noticeably different between bivalves and SPMDs deployed at the same site.

  3. Darcy Permeability of Hollow Fiber Membrane Bundles Made from Membrana Polymethylpentene Fibers Used in Respiratory Assist Devices.

    PubMed

    Madhani, Shalv P; D'Aloiso, Brandon D; Frankowski, Brian; Federspiel, William J

    2016-01-01

    Hollow fiber membranes (HFMs) are used in blood oxygenators for cardiopulmonary bypass or in next generation artificial lungs. Flow analyses of these devices is typically done using computational fluid dynamics (CFD) modeling HFM bundles as porous media, using a Darcy permeability coefficient estimated from the Blake-Kozeny (BK) equation to account for viscous drag from fibers. We recently published how well this approach can predict Darcy permeability for fiber bundles made from polypropylene HFMs, showing the prediction can be significantly improved using an experimentally derived correlation between the BK constant (A) and bundle porosity (ε). In this study, we assessed how well our correlation for A worked for predicting the Darcy permeability of fiber bundles made from Membrana polymethylpentene (PMP) HFMs, which are increasingly being used clinically. Swatches in the porosity range of 0.4 to 0.8 were assessed in which sheets of fiber were stacked in parallel, perpendicular, and angled configurations. Our previously published correlation predicted Darcy within ±8%. A new correlation based on current and past measured permeability was determined: A = 497ε - 103; using this correlation measured Darcy permeability was within ±6%. This correlation varied from 8% to -3.5% of our prior correlation over the tested porosity range.

  4. Darcy permeability of hollow fiber membrane bundles made from Membrana® Polymethylpentene (PMP) fibers used in respiratory assist devices

    PubMed Central

    Madhani, Shalv. P.; D’Aloiso, Brandon. D.; Frankowski, Brian.; Federspiel, William. J.

    2016-01-01

    Hollow fiber membranes (HFMs) are used in blood oxygenators for cardiopulmonary bypass or in next generation artificial lungs. Flow analyses of these devices is typically done using computational fluid dynamics (CFD) modeling HFM bundles as porous media, using a Darcy permeability coefficient estimated from the Blake – Kozeny (BK) equation to account for viscous drag from fibers. We recently published how well this approach can predict Darcy permeability for fiber bundles made from polypropylene HFMs, showing the prediction can be significantly improved using an experimentally derived correlation between the BK constant (A) and bundle porosity (ε). In this study, we assessed how well our correlation for A worked for predicting the Darcy permeability of fiber bundles made from Membrana® polymethylpentene (PMP) HFMs, which are increasingly being used clinically. Swatches in the porosity range of 0.4 to 0.8 were assessed in which sheets of fiber were stacked in parallel, perpendicular and angled configurations. Our previously published correlation predicted Darcy within ±8%. A new correlation based on current and past measured permeability was determined: A=497ε-103; using this correlation measured Darcy permeability was within ±6%. This correlation varied from 8% to −3.5% of our prior correlation over the tested porosity range. PMID:26809086

  5. Numerical study of a novel micro-diaphragm flow channel with piezoelectric device for proton exchange membrane fuel cells

    NASA Astrophysics Data System (ADS)

    Ma, H. K.; Huang, S. H.; Chen, B. R.; Cheng, L. W.

    Previous studies have shown that the amplitude of the vibration of a piezoelectric (PZT) device produces an oscillating flow that changes the chamber volume along with a curvature variation of the diaphragm. In this study, an actuating micro-diaphragm with piezoelectric effects is utilized as an air-flow channel in proton exchange membrane fuel cell (PEMFC) systems, called PZT-PEMFC. This newly designed gas pump, with a piezoelectric actuation structure, can feed air into the system of an air-breathing PEMFC. When the actuator moves outward to increase the cathode channel volume, the air is sucked into the chamber; moving inward decreases the channel's volume and thereby compresses air into the catalyst layer and enhancing the chemical reaction. The air-standard PZT-PEMFC cycle is proposed to describe an air-breathing PZT-PEMFC. A novel design for PZT-PEMFCs has been proposed and a three-dimensional, transitional model has been successfully built to account for its major phenomena and performance. Moreover, at high frequencies, PZT actuation leads to a more stable current output, more drained water, higher sucked air, higher hydrogen consumption, and also overcomes concentration losses.

  6. Toxicological and chemical screening of Antarctica sediments: Use of whole sediment toxicity tests, microtox, mutatox and semipermeable membrane devices (SPMDs)

    USGS Publications Warehouse

    Cleveland, Laverne; Little, Edward E.; Petty, Jimmie D.; Johnson, B. Thomas; Lebo, Jon A.; Orazio, Carl E.; Dionne, Jane

    1997-01-01

    Eight whole sediment samples from Antarctica (four from Winter Quarters Bay and four from McMurdo Sound) were toxicologically and chemically evaluated. Also, the influence of ultraviolet radiation on the toxicity and bioavailability of contaminants associated with the sediment samples was assessed. The evaluations were accomplished by use of a 10-day whole sediment test with Leptocheirus plumulosus, Microtox®, Mutatox® and semipermeable membrane devices (SPMDs). Winter Quarters Bay sediments contained about 250 ng g−1 (dry weight) total PCBs and 20 μg g−1 total PAHs. These sediments elicited toxicity in the Microtox test and avoidance and inhibited burrowing in the L. plumulosus test. The McMurdo Sound sediment samples contained only trace amounts of PCBs and no PAHs, and were less toxic in both the L. plumulosus and Microtox tests compared to the Winter Quarters Bay sediments. The sediments from McMurdo Sound apparently contained some unidentified substance which was photolytically modified to a more toxic form. The photolytic modification of sediment-associated contaminants, coupled with the polar ozone hole and increased incidence of ultraviolet radiation could significantly increase hazards to Antarctic marine life.

  7. Simple Host—Guest Chemistry To Modulate the Process of Concentration and Crystallization of Membrane Proteins by Detergent Capture in a Microfluidic Device

    PubMed Central

    Li, Liang; Nachtergaele, Sigrid; Seddon, Annela M.; Tereshko, Valentina; Ponomarenko, Nina; Ismagilov, Rustem F.

    2008-01-01

    This paper utilizes cyclodextrin-based host—guest chemistry in a microfluidic device to modulate the crystallization of membrane proteins and the process of concentration of membrane protein samples. Methyl-β-cyclodextrin (MBCD) can efficiently capture a wide variety of detergents commonly used for the stabilization of membrane proteins by sequestering detergent monomers. Reaction Center (RC) from Blastochloris viridis was used here as a model system. In the process of concentrating membrane protein samples, MBCD was shown to break up free detergent micelles and prevent them from being concentrated. The addition of an optimal amount of MBCD to the RC sample captured loosely bound detergent from the protein-detergent complex and improved sample homogeneity, as characterized by dynamic light scattering. Using plug-based microfluidics, RC crystals were grown in the presence of MBCD, giving a different morphology and space group than crystals grown without MBCD. The crystal structure of RC crystallized in the presence of MBCD was consistent with the changes in packing and crystal contacts hypothesized for removal of loosely bound detergent. The incorporation of MBCD into a plug-based microfluidic crystallization method allows efficient use of limited membrane protein sample by reducing the amount of protein required and combining sparse matrix screening and optimization in one experiment. The use of MBCD for detergent capture can be expanded to develop cyclodextrin-derived molecules for fine-tuned detergent capture and thus modulate membrane protein crystallization in an even more controllable way. PMID:18831551

  8. Simple Host−Guest Chemistry To Modulate the Process of Concentration and Crystallization of Membrane Proteins by Detergent Capture in a Microfluidic Device

    SciTech Connect

    Li, Liang; Nachtergaele, Sigrid; Seddon, Annela M.; Tereshko, Valentina; Ponomarenko, Nina; Ismagilov, Rustem F.

    2009-01-15

    This paper utilizes cyclodextrin-based host-guest chemistry in a microfluidic device to modulate the crystallization of membrane proteins and the process of concentration of membrane protein samples. Methyl-{beta}-cyclodextrin (MBCD) can efficiently capture a wide variety of detergents commonly used for the stabilization of membrane proteins by sequestering detergent monomers. Reaction Center (RC) from Blastochloris viridis was used here as a model system. In the process of concentrating membrane protein samples, MBCD was shown to break up free detergent micelles and prevent them from being concentrated. The addition of an optimal amount of MBCD to the RC sample captured loosely bound detergent from the protein-detergent complex and improved sample homogeneity, as characterized by dynamic light scattering. Using plug-based microfluidics, RC crystals were grown in the presence of MBCD, giving a different morphology and space group than crystals grown without MBCD. The crystal structure of RC crystallized in the presence of MBCD was consistent with the changes in packing and crystal contacts hypothesized for removal of loosely bound detergent. The incorporation of MBCD into a plug-based microfluidic crystallization method allows efficient use of limited membrane protein sample by reducing the amount of protein required and combining sparse matrix screening and optimization in one experiment. The use of MBCD for detergent capture can be expanded to develop cyclodextrin-derived molecules for fine-tuned detergent capture and thus modulate membrane protein crystallization in an even more controllable way.

  9. Light-Addressed Electrodeposition of Enzyme-Entrapped Chitosan Membranes for Multiplexed Enzyme-Based Bioassays Using a Digital Micromirror Device

    PubMed Central

    Huang, Shih-Hao; Wei, Lu-Shiuan; Chu, Hsiao-Tzu; Jiang, Yeu-Long

    2013-01-01

    This paper describes a light-addressed electrolytic system used to perform an electrodeposition of enzyme-entrapped chitosan membranes for multiplexed enzyme-based bioassays using a digital micromirror device (DMD). In this system, a patterned light illumination is projected onto a photoconductive substrate serving as a photo-cathode to electrolytically produce hydroxide ions, which leads to an increased pH gradient. The high pH generated at the cathode can cause a local gelation of chitosan through sol-gel transition. By controlling the illumination pattern on the DMD, a light-addressed electrodeposition of chitosan membranes with different shapes and sizes, as well as multiplexed micropatterning, was performed. The effect of the illumination time of the light pattern on the dimensional resolution of chitosan membrane formation was examined experimentally. Moreover, multiplexed enzyme-based bioassay of enzyme-entrapped chitosan membranes was also successfully demonstrated through the electrodeposition of the chitosan membranes with various shapes/sizes and entrapping different enzymes. As a model experiment, glucose and ethanol were simultaneously detected in a single detection chamber without cross-talk using shape-coded chitosan membranes entrapped with glucose oxidase (GOX), peroxidase (POD), and Amplex Red (AmR) or alcohol oxidase (AOX), POD, and AmR by using same fluorescence indicator (AmR). PMID:23959236

  10. Light-addressed electrodeposition of enzyme-entrapped chitosan membranes for multiplexed enzyme-based bioassays using a digital micromirror device.

    PubMed

    Huang, Shih-Hao; Wei, Lu-Shiuan; Chu, Hsiao-Tzu; Jiang, Yeu-Long

    2013-08-16

    This paper describes a light-addressed electrolytic system used to perform an electrodeposition of enzyme-entrapped chitosan membranes for multiplexed enzyme-based bioassays using a digital micromirror device (DMD). In this system, a patterned light illumination is projected onto a photoconductive substrate serving as a photo-cathode to electrolytically produce hydroxide ions, which leads to an increased pH gradient. The high pH generated at the cathode can cause a local gelation of chitosan through sol-gel transition. By controlling the illumination pattern on the DMD, a light-addressed electrodeposition of chitosan membranes with different shapes and sizes, as well as multiplexed micropatterning, was performed. The effect of the illumination time of the light pattern on the dimensional resolution of chitosan membrane formation was examined experimentally. Moreover, multiplexed enzyme-based bioassay of enzyme-entrapped chitosan membranes was also successfully demonstrated through the electrodeposition of the chitosan membranes with various shapes/sizes and entrapping different enzymes. As a model experiment, glucose and ethanol were simultaneously detected in a single detection chamber without cross-talk using shape-coded chitosan membranes entrapped with glucose oxidase (GOX), peroxidase (POD), and Amplex Red (AmR) or alcohol oxidase (AOX), POD, and AmR by using same fluorescence indicator (AmR).

  11. How useful are the "other" semipermeable membrane devices (SPMDs); the mini-unit (15.2 cm long)?

    USGS Publications Warehouse

    Goodbred, Steven L.; Bryant, Wade L.; Rosen, Michael R.; Alvarez, David; Spencer, Terri

    2009-01-01

    Mini (15.2 cm) semipermeable membrane devices (SPMDs) were used successfully in 169 streams from six metropolitan areas of the US to sequester hydrophobic organic compounds (HOCs) that are indicative of urbanization. A microscale assay the P450RGS, which responds to compounds that bind to the aryl hydrocarbon receptor (AhR), and the Fluoroscan, a chemical screen for polycyclic aromatic hydrocarbons (PAHs), were performed on each mini SPMD extract. Results show both tests were sensitive enough to respond in streams with low urbanization and responded exponentially in a predictable way to a gradient of urbanization. Mini SPMDs had sufficient sampling rates to detect HOCs using gas chromatography with mass spectrometric detection (GC/MS) in streams with low levels of urbanization. The total number of HOCs in streams had a linear response to a gradient of urbanization, where 73 of 140 targeted compounds were detected. A diverse group of compounds was found in urban streams including, PAHs, insecticides, herbicides, musk fragrances, waste water treatment compounds and flame retardants. Pentachloroanisole (PCA), a breakdown product of pentachlorophenol (wood preservative), was the most ubiquitous HOC, and was detected in 71% of streams. An evaluation of mini SPMD performance showed they can detect concentrations in water below toxicity benchmarks for many HOCs with the exception of 2,3,7,8 tetrachlorodibenzo-p-dioxin. A comparison of mini SPMDs with full sized (91.4 cm) SPMDs showed they have several distinct advantages. The most notable advantages are their low cost, small size, and reduced chance of vandalism. The greatest limitation is the inability to detect compounds at low concentrations (pg/L). Mini SPMDs perform quite well in a wide array of environmental settings and applications and should be considered as an option in environmental studies.

  12. How useful are the "other" semipermeable membrane devices (SPMDs); the mini-unit (15.2 cm long)?

    PubMed

    Goodbred, Steven L; Bryant, Wade L; Rosen, Michael R; Alvarez, David; Spencer, Terri

    2009-06-15

    Mini (15.2 cm) semipermeable membrane devices (SPMDs) were used successfully in 169 streams from six metropolitan areas of the US to sequester hydrophobic organic compounds (HOCs) that are indicative of urbanization. A microscale assay the P450RGS, which responds to compounds that bind to the aryl hydrocarbon receptor (AhR), and the Fluoroscan, a chemical screen for polycyclic aromatic hydrocarbons (PAHs), were performed on each mini SPMD extract. Results show both tests were sensitive enough to respond in streams with low urbanization and responded exponentially in a predictable way to a gradient of urbanization. Mini SPMDs had sufficient sampling rates to detect HOCs using gas chromatography with mass spectrometric detection (GC/MS) in streams with low levels of urbanization. The total number of HOCs in streams had a linear response to a gradient of urbanization, where 73 of 140 targeted compounds were detected. A diverse group of compounds was found in urban streams including, PAHs, insecticides, herbicides, musk fragrances, waste water treatment compounds and flame retardants. Pentachloroanisole (PCA), a breakdown product of pentachlorophenol (wood preservative), was the most ubiquitous HOC, and was detected in 71% of streams. An evaluation of mini SPMD performance showed they can detect concentrations in water below toxicity benchmarks for many HOCs with the exception of 2,3,7,8 tetrachlorodibenzo-p-dioxin. A comparison of mini SPMDs with full sized (91.4 cm) SPMDs showed they have several distinct advantages. The most notable advantages are their low cost, small size, and reduced chance of vandalism. The greatest limitation is the inability to detect compounds at low concentrations (pg/L). Mini SPMDs perform quite well in a wide array of environmental settings and applications and should be considered as an option in environmental studies.

  13. Overview and comparison of lipid-containing semipermeable membrane devices and oysters (Crassostrea gigas) for assessing organic chemical exposure

    USGS Publications Warehouse

    Huckins, J.N.; Prest, H.F.; Petty, J.D.; Lebo, J.A.; Hodgins, M.M.; Clark, R.C.; Alvarez, D.A.; Gala, W.R.; Steen, A.; Gale, R.; Ingersoll, C.G.

    2004-01-01

    We performed 20-d, flow-through exposures of lipid-containing semipermeable membrane devices (SPMDs) and Pacific oysters (Crassostrea gigas) to three concentrations (nominally 10, 100, and 250 ng/L) of a diverse mixture of polycyclic aromatic hydrocarbons (PAHs). Exposure water was seawater free of particulates larger than 0.1 μm. The results of these controlled laboratory studies demonstrated that SPMDs and oysters concentrate the same chemicals but that the relative amounts accumulated are different. For oysters, the 20-d mean (across treatments) concentration factors (CFs) of test compounds with log Kow ≤ 4.8 were much lower (4.0- to 20-fold lower) than those of the same compounds in SPMDs. In contrast, the 20-d CFs of PAHs with log Kow ≥ 5.6 in oysters from the low-level treatment were higher than the corresponding CFs for SPMDs. The CFs of these compounds in oysters from the low-level treatment ranged from approximately 3.0- to 13-fold higher than those in oysters from the high-level treatment. This physiologically mediated difference in oyster CFs appears to be linked to active feeding in the low-level treatment and to apparent toxicity-induced cessation of feeding (i.e., valve closure) in the high-level treatment. Because CFs for these compounds in oysters were not independent of exposure concentrations, it follows that tissue levels were not proportional to exposure concentration. However, both sampling approaches have advantages and disadvantages, and the appropriateness of their use depends on the goals of a given study.

  14. Polycyclic aromatic hydrocarbons (PAHs) determined by pine needles and semipermeable membrane devices along an altitude profile in Taurus Mountains, Turkey.

    PubMed

    Turgut, Cafer; Mazmanci, Mehmet Ali; Mazmanci, Birgül; Yalçın, Melis; Karakuş, PerihanBinnur Kurt; Atatanir, Levent; Keski, Menekşe; Henkelmann, Bernhard; Pfister, Gerd; Schramm, Karl-Werner

    2017-03-01

    Polycyclic aromatic hydrocarbons (PAHs) were analyzed at different altitudes of Taurus Mountains in semipermeable membrane devices (SPMD) and in half-, one-and-a-half-, and two-and-a-half-year-old pine needles. SPMDs were deployed for three different exposure periods: March to September (Summer), September to March (Winter), and March to March (whole year) at eight sites where needle samples were collected. The values of PAHs in needles were between 4.4 to 6066 pg g/fw in half-year-old, 7.2 to 111,115 pg g/fw in 1.5-year-old, and 9.7 to 85,335 pg g/fw in 2.5-year-old needles. Mass of PAHs collected by SPMDs varied from

  15. Tight control of light trapping in surface addressable photonic crystal membranes: application to spectrally and spatially selective optical devices (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Letartre, Xavier; Blanchard, Cédric; Grillet, Christian; Jamois, Cécile; Leclercq, Jean-Louis; Viktorovitch, Pierre

    2016-04-01

    Surface addressable Photonic Crystal Membranes (PCM) are 1D or 2D photonic crystals formed in a slab waveguides where Bloch modes located above the light line are exploited. These modes are responsible for resonances in the reflection spectrum whose bandwidth can be adjusted at will. These resonances result from the coupling between a guided mode of the membrane and a free-space mode through the pattern of the photonic crystal. If broadband, these structures represent an ideal mirror to form compact vertical microcavity with 3D confinement of photons and polarization selectivity. Among numerous devices, low threshold VCSELs with remarkable and tunable modal properties have been demonstrated. Narrow band PCMs (or high Q resonators) have also been extensively used for surface addressable optoelectronic devices where an active material is embedded into the membrane, leading to the demonstration of low threshold surface emitting lasers, nonlinear bistables, optical traps... In this presentation, we will describe the main physical rules which govern the lifetime of photons in these resonant modes. More specifically, it will be emphasized that the Q factor of the PCM is determined, to the first order, by the integral overlap between the electromagnetic field distributions of the guided and free space modes and of the dielectric periodic perturbation which is applied to the homogeneous membrane to get the photonic crystal. It turns out that the symmetries of these distributions are of prime importance for the strength of the resonance. It will be shown that, by molding in-plane or vertical symmetries of Bloch modes, spectrally and spatially selective light absorbers or emitters can be designed. First proof of concept devices will be also presented.

  16. Acute tamponade of the left paracorporeal pump house due to membrane defect in a patient with a Berlin Heart EXCOR biventricular assist device.

    PubMed

    Völz, Sebastian; Holmberg, Michael; Redfors, Bengt; Dellgren, Göran

    2014-10-01

    We report a case of acute tamponade of the left paracorporeal pump house in a patient supported by a Berlin Heart EXCOR biventricular assist device (BiVAD) caused by mechanical defect in the membrane of the arterial chamber. A 36-year old male was admitted for composite graft surgery due to a large aortic regurgitation and consecutive heart failure, decompensated postoperatively and was rescued by with an extracorporeal membrane oxygenation (ECMO) device. He was accepted for heart transplantation, and a BiVAD (Berlin Heart EXCOR) was implanted as bridge-to-transplantation. Two months after discharge, he experienced dyspnoea and received error signals from his BiVAD. Relatives released him from his BiVAD companion driver, connected him to the hand pump and transported him to our institution. On arrival, he was in cardiogenic shock and was stabilized by ECMO. Inspection of the arterial chamber revealed a wear hole and delamination of the diaphragm, which had led to a tamponade by air insufflation into the three-layer membrane. New BiVAD paracorporeal pumps were connected, and the patient was subsequently successfully transplanted. The case depicts the difficulty of diagnosis in this specific patient setting. Despite transparent design of the BiVAD chambers, the development of a chamber tamponade remained undetected until explantation of the system.

  17. [Evaluation of non-invasive hemoglobin measurements using the Masimo Rainbow Radical-7® device in a patient with extracorporeal membrane oxygenation].

    PubMed

    Moreno, I; Artieda, O; Vicente, R; Zarragoikoetxea, I; Vicente, J L; Barberá, M

    2014-01-01

    Circulatory assist devices such as extracorporeal membrane oxygenation are indicated in cases of cardiogenic shock refractory to optimal conventional treatment. Bleeding is a serious complication of such systems, mainly due to coagulation disorders caused by continuous administration of heparin, as well as platelet dysfunction. Serial coagulation and hemoglobin (Hb) measurements are essential. Hb measurements can be performed through repeated arterial blood gasometry, and more recently with a new spectrophotometric sensor, Masimo Rainbow Radical-7® device, which gives Hb values continuously and non-invasively. We report a case of a patient undergoing cardiac surgery who required extracorporeal membrane oxygenation for severe cardiogenic shock immediately after surgery. We compare the correlation and the level of agreement with Hb levels measured by 2 existing systems in clinical practice. Our results indicate that the Masimo® spectrophotometric monitor showed statistically comparable Hb values, in the correlation (r=.85; P<.01) and in agreement with those obtained by serial blood gas analyzer, ABL800 FLEX® (wavelength). In view of these results we consider the Masimo® device as a valid alternative for the continuous follow-up of the Hb and control of bleeding in these patients. Copyright © 2013 Sociedad Española de Anestesiología, Reanimación y Terapéutica del Dolor. Published by Elsevier España. All rights reserved.

  18. Surface Characterization of Asymmetric Bi-Soft Segment Poly(ester urethane urea) Membranes for Blood-Oxygenation Medical Devices

    PubMed Central

    Faria, Mónica; Geraldes, Vítor; de Pinho, Maria Norberta

    2012-01-01

    Asymmetric bi-soft segment poly(ester urethane urea) (PEUU) membranes containing polycaprolactone (PCL) as a second soft segment are synthesized with PCL-diol ranging from 0% to 15% (w/w). Bulk and surface characteristics of the PEUU membranes were investigated by scanning electron microscopy (SEM), static water contact angles, and surface streaming potentials and were correlated to hemocompatibility properties, namely, hemolysis and thrombosis degrees. SEM analysis reveals PEUU membranes with asymmetric cross-sections and top dense surfaces with distinct morphologies. The increase in PCL-diol content yields PEUU membranes with blood-contacting surfaces that are smoother, more hydrophilic, and with higher maximum zeta potentials. The results obtained in this work give no evidence of a correlation between hydrophilicity/zeta potentials and the hemolysis/thrombosis degree of blood-contacting surfaces of the PEUU membranes. In contrast, other hemocompatibility aspects reveal that the more hydrophilic membranes are associated with lower platelet deposition and inhibition of extreme states of platelet activation. PMID:22164163

  19. Development and evaluation of an artificial membrane for determination of drug availability.

    PubMed

    Loftsson, Thorsteinn; Konrádsdóttir, Fífa; Másson, Már

    2006-12-01

    Various artificial membranes (e.g. PAMPA) and cellular-based membranes (e.g. Caco-2) are used for screening during early stages of drug discovery. However, these methods are not well suited for evaluation of pharmaceutical formulations and the effects of various excipients on drug availability. When drug molecules permeate biological membranes they encounter two types of permeation resistance, a membrane resistance in the lipophilic membrane and diffusion resistance in the unstirred water layers adjacent to both surfaces of the lipophilic membrane. We have developed an artificial membrane that is cheap and simple to prepare. The unstirred water layer consists of a hydrated semi-permeable cellophane membrane with a molecular weight cutoff (MWCO) of 12,000-14,000 Da and a lipophilic membrane of pure n-octanol in a nitrocellulose matrix. In the diffusion cell the hydrated cellophane membrane (thickness 210-230 microm) is on the donor side and the lipophilic octanol membrane (thickness about 120 microm) on the receptor side. Permeation of ionizable lipophilic drug molecules was diffusion-controlled when the drug was unionized but lipophilic membrane controlled when the drug was ionized. Drug permeation patterns from cyclodextrin containing formulations through the membrane were similar to those previously observed for biological membranes such as hairless mouse skin and the eye cornea.

  20. Magnetic Membrane System

    DOEpatents

    McElfresh, Michael W.; ; Lucas, Matthew S.

    2004-12-30

    The present invention provides a membrane with magnetic particles. In one embodiment the membrane is created by mixing particles in a non-magnetic base. The membrane may act as an actuator, a sensor, a pump, a valve, or other device. A magnet is operatively connected to the membrane. The magnet acts on and changes the shape of the membrane.

  1. The identification of readily bioavailable pollutants in Lake Shkodra/Skadar using semipermeable membrane devices (SPMDs), bioassays and chemical analysis.

    PubMed

    Rastall, Andrew C; Neziri, Anila; Vukovic, Zeljko; Jung, Christine; Mijovic, Slavoljub; Hollert, Henner; Nikcevic, Svetlana; Erdinger, Lothar

    2004-01-01

    Lake Shkodra/Skadar is the largest lake in the Balkans region and located on the border between Albania to the south and Montenegro to the north. Because of the wide range of endemic, rare or endangered plant and animal species it supports, Lake Shkodra/Skadar and its extensive associated wetlands are internationally recognised as a site of significance and importance (Ramsar site). In recent years, social and economic changes in both Albania and Montenegro have lead to unprecedented levels of urban and industrial effluent entering the lake. Of particular concern is the increasing input of toxic hydrophobic organic pollutants (HOPs) into the lake and the degree to which these compounds are available for uptake by aquatic biota. Semipermeable membrane devices (SPMDs) have been shown to sample the readily bioavailable fraction (dissolved phase) of waterborne HOPs and in doing so provide relevant data for exposure assessment. The aim of the current study was to use SPMD-based sampling in conjunction with appropriate bioassays and chemical analysis to identify readily bioavailable HOPs in the lake. SPMDs were constructed and deployed at three sites in the Albanian sector and three sites in the Montenegrin sector of Lake Skadar/Shkodra for 21 days. Following the dialytic recovery of target analytes and size exclusion chromatographic clean-up, aliquots of SPMD samples were subjected to GC-MS scan analysis for major components, GC-MS SIM analysis for 16 priority pollutant polycyclic aromatic hydrocarbons (PP-PAHs) and assayed for EROD-inducing, estrogenic and mutagenic potential using rainbow trout liver cells (RTL-W1), the yeast estrogen screen (YES) and the Ames Test, respectively. A total of 39 compounds were tentatively identified in SPMD samples from the six sampling sites. Alkylated PAHs were the most abundant and ubiquitous compounds present along with various sterols and sterol derivatives. Numerous other compounds remain unidentified. 15 of the 16 targeted PP

  2. Electrokinetic measurements of dielectric properties of membrane for apoptotic HL-60 cells on chip-based device.

    PubMed

    Huang, Chengjun; Chen, Ailiang; Wang, Lei; Guo, Min; Yu, Jun

    2007-06-01

    The specific membrane capacitance and conductance of mammalian cells reflect the surface morphological complexities and barrier functions of cell membrane, respectively, and could potentially respond to cell physiological and pathological changes in a measurable manner. In this study, an electrokinetic system was developed by using negative dielectrophoretic force (nDEP force) assisted positioning and electroroation (ROT) measurement. Numerical simulations regarding the geometric model of the electrode were performed primarily for the electric field analysis. The dielectric responses of membrane for apoptotic HL-60 cells induced by bufalin were detected. The membrane capacitance of the cells was found to fall from an initial value of 15.6 +/- 0.9 mF/cm(2) to 6.4 +/- 0.6 mF/cm(2) after a 48 h treatment with 10 nM bufalin. However, the membrane conductance remained almost constant at (2.25 +/- 1.1) x 10(3) S/m(2) during the first 12 h of bufalin treatment and then increased distinctly to (4.2 +/- 1.3) x 10(3) S/m(2) thereafter. Scan electron microscopy (SEM) studies of the cells revealed a decreased complexity in cell membrane morphology following bufalin treatments, suggesting that the observed changes in the membrane capacitance was dominated by the alterations of cell surface structures. The results demonstrate that the ROT technique gives a quantitative analysis of the toxic damage by chemicals to cells and can be exploited in the testing and development of new pharmaceuticals and active cell agents.

  3. Occurrence of polycyclic aromatic hydrocarbons in urban streams as assessed using semipermeable membrane devices, Dallas-Fort Worth metropolitan area, Texas

    USGS Publications Warehouse

    Moring, J. Bruce

    1996-01-01

    The objectives of this fact sheet are to summarize the occurrence of water-borne PAHs in three urban streams in the Dallas- Fort Worth metropolitan area and to assess the use of semipermeable membrane devices (SPMDs) as PAH samplers. One site on each of three streams was selected for monitoring the occurrence of PAHs (fig. 1). The sites were chosen to reflect varied urban land uses and the influences of point- and nonpointsource pollution. The monitoring was done using SPMDs during a 30-day period in late May and June 1994.

  4. Concerted sampling of water for trace organic contaminants by bivalves and semipermeable membrane devices in south San Francisco Bay and Elkhorn Slough

    SciTech Connect

    Hodgins, M.M.; Jacobson, L.A.; Prest, H.F.

    1995-12-31

    Bivalves have been widely applied as biomonitors in detecting organic contaminants in aquatic environments. Recently semipermeable membrane devices (SPMDS) have been shown to be effective pre-concentrators of trace levels of organic compounds in water and air. This study compares accumulation of trace organic compounds in oysters (Crassotrea gigas) and mussels (Mytilus califorianus) to those in SPMDs in south San Francisco Bay and Elkhorn Slough. The authors report concentration levels and trends in the profiles for organochlorine pesticides, polychlorinated biphenyls and polyaromatic hydrocarbons in SPMDs and bivalves from a series of locations in both areas.

  5. Water-quality data from semipermeable-membrane devices and polar organic chemical integrative samplers deployed in the McKenzie River basin, Oregon

    USGS Publications Warehouse

    McCarthy, Kathleen A.; Alvarez, David A.

    2012-01-01

    Two types of passive samplers—the semipermeable membrane device (SPMD) and the polar organic chemical integrative sampler (POCIS)—are being used to collect data from the McKenzie River, Oregon. The McKenzie River is the source of drinking water for the City of Eugene, Oregon, and passive-sampler data are part of an ongoing monitoring effort designed to help understand and protect the drinking water source. Data from the passive samplers are reported here. This data report is dynamic and will be appended with additional data as they become available.

  6. In vivo performance of chitosan/soy-based membranes as wound-dressing devices for acute skin wounds.

    PubMed

    Santos, Tírcia C; Höring, Bernhard; Reise, Kathrin; Marques, Alexandra P; Silva, Simone S; Oliveira, Joaquim M; Mano, João F; Castro, António G; Reis, Rui L; van Griensven, Martijn

    2013-04-01

    Wound management represents a major clinical challenge on what concerns healing enhancement and pain control. The selection of an appropriate dressing plays an important role in both recovery and esthetic appearance of the regenerated tissue. Despite the wide range of available dressings, the progress in the wound care market relies on the increasing interest in using natural-based biomedical products. Herein, a rat wound-dressing model of partial-thickness skin wounds was used to study newly developed chitosan/soy (cht/soy)-based membranes as wound-dressing materials. Healing and repair of nondressed, cht/soy membrane-dressed, and Epigard(®)-dressed wounds were followed macroscopically and histologically for 1 and 2 weeks. cht/soy membranes performed better than the controls, promoting a faster wound repair. Re-epithelialization, observed 1 week after wounding, was followed by cornification of the outermost epidermal layer at the second week of dressing, indicating repair of the wounded tissue. The use of this rodent model, although in impaired healing conditions, may enclose some drawbacks regarding the inevitable wound contraction. Moreover, being the main purpose the evaluation of cht/soy-based membranes' performance in the absence of growth factors, the choice of a clinically relevant positive control was limited to a polymeric mesh, without any growth factor influencing skin healing/repair, Epigard. These new cht/soy membranes possess the desired features regarding healing/repair stimulation, ease of handling, and final esthetic appearance-thus, valuable properties for wound dressings.

  7. Solid-state electrochromic devices composed of Prussian blue, WO/sub 3/, and poly(ethylene oxide)-polysiloxane hybrid-type ionic conducting membrane

    SciTech Connect

    Honda, K.; Ohgaki, K.; Fujito, M.; Ishida, H.; Yamamoto, R.

    1988-12-01

    The preparation of a new type of poly(ethylene oxide)-polysiloxane hybrid (PEOS) with its application to the construction of solid-state electrochromic devices was studied. The PEOS was given as a colorless and elastic membrane by condensation of a bis(silylpropyl) ether of oligo(ethylene oxide) and a polyalkoxysilane in the presence of LiClO/sub 4/ (2-5 mole percent). The ionic conductivity reached 10/sup -3/ S cm/sup -1/ when PEOS was swollen with propylene carbonate by 160% in weight. A transparent-type solid-state electrochromic device composed of Prussian blue- and WO/sub 3/-coated electrodes with PEOS was prepared, switching of which was slower by a factor of 1.5-2.0 as a function of half-time of coloration and bleaching compared with the corresponding liquid-type cell.

  8. Carbon membranes for efficient water-ethanol separation

    NASA Astrophysics Data System (ADS)

    Gravelle, Simon; Yoshida, Hiroaki; Joly, Laurent; Ybert, Christophe; Bocquet, Lydéric

    2016-09-01

    We demonstrate, on the basis of molecular dynamics simulations, the possibility of an efficient water-ethanol separation using nanoporous carbon membranes, namely, carbon nanotube membranes, nanoporous graphene sheets, and multilayer graphene membranes. While these carbon membranes are in general permeable to both pure liquids, they exhibit a counter-intuitive "self-semi-permeability" to water in the presence of water-ethanol mixtures. This originates in a preferred ethanol adsorption in nanoconfinement that prevents water molecules from entering the carbon nanopores. An osmotic pressure is accordingly expressed across the carbon membranes for the water-ethanol mixture, which agrees with the classic van't Hoff type expression. This suggests a robust and versatile membrane-based separation, built on a pressure-driven reverse-osmosis process across these carbon-based membranes. In particular, the recent development of large-scale "graphene-oxide" like membranes then opens an avenue for a versatile and efficient ethanol dehydration using this separation process, with possible application for bio-ethanol fabrication.

  9. Carbon membranes for efficient water-ethanol separation.

    PubMed

    Gravelle, Simon; Yoshida, Hiroaki; Joly, Laurent; Ybert, Christophe; Bocquet, Lydéric

    2016-09-28

    We demonstrate, on the basis of molecular dynamics simulations, the possibility of an efficient water-ethanol separation using nanoporous carbon membranes, namely, carbon nanotube membranes, nanoporous graphene sheets, and multilayer graphene membranes. While these carbon membranes are in general permeable to both pure liquids, they exhibit a counter-intuitive "self-semi-permeability" to water in the presence of water-ethanol mixtures. This originates in a preferred ethanol adsorption in nanoconfinement that prevents water molecules from entering the carbon nanopores. An osmotic pressure is accordingly expressed across the carbon membranes for the water-ethanol mixture, which agrees with the classic van't Hoff type expression. This suggests a robust and versatile membrane-based separation, built on a pressure-driven reverse-osmosis process across these carbon-based membranes. In particular, the recent development of large-scale "graphene-oxide" like membranes then opens an avenue for a versatile and efficient ethanol dehydration using this separation process, with possible application for bio-ethanol fabrication.

  10. In-line sample concentration by evaporation through porous hollow fibers and micromachined membranes embedded in microfluidic devices.

    PubMed

    Zhang, Hainan; Tiggelaar, Roald M; Schlautmann, Stefan; Bart, Jacob; Gardeniers, Han

    2016-02-01

    Two types of microfluidic systems, a porous hollow fiber and a thin supported membrane with an array of micromachined holes, are investigated for concentrating mass-limited analyte samples. Water evaporation is driven by the partial pressure difference across the hydrophobic membrane, induced by dry sweeping gas on the permeate side. An analytical model permitting clarification of the contribution of design and process parameters on acquisition of concentrated solution and prediction of achievable concentration factors is presented. Concentrating an exemplary solution utilizing the two systems has been studied at different experimental conditions to validate the model. The results show that the hollow fiber gives controllable concentration factors of more than 10. For the micromachined membrane concentrator concentration factors of 6-8 were achieved, at much lower flow rates than predicted by the model. Because of the asymptotic dependence of concentration factor on flow rate, accurate control of the liquid feed is extremely critical in the flow rate range where high concentration factors are obtained, and the smallest variations in liquid flow rate may easily lead to supersaturation and deposition of solutes in the pores. This changes membrane porosity in an unpredictable way and limits the maximum attainable concentration factor. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. In Vivo Performance of Chitosan/Soy-Based Membranes as Wound-Dressing Devices for Acute Skin Wounds

    PubMed Central

    Santos, Tírcia C.; Höring, Bernhard; Reise, Kathrin; Marques, Alexandra P.; Silva, Simone S.; Oliveira, Joaquim M.; Mano, João F.; Castro, António G.; van Griensven, Martijn

    2013-01-01

    Wound management represents a major clinical challenge on what concerns healing enhancement and pain control. The selection of an appropriate dressing plays an important role in both recovery and esthetic appearance of the regenerated tissue. Despite the wide range of available dressings, the progress in the wound care market relies on the increasing interest in using natural-based biomedical products. Herein, a rat wound-dressing model of partial-thickness skin wounds was used to study newly developed chitosan/soy (cht/soy)-based membranes as wound-dressing materials. Healing and repair of nondressed, cht/soy membrane-dressed, and Epigard®-dressed wounds were followed macroscopically and histologically for 1 and 2 weeks. cht/soy membranes performed better than the controls, promoting a faster wound repair. Re-epithelialization, observed 1 week after wounding, was followed by cornification of the outermost epidermal layer at the second week of dressing, indicating repair of the wounded tissue. The use of this rodent model, although in impaired healing conditions, may enclose some drawbacks regarding the inevitable wound contraction. Moreover, being the main purpose the evaluation of cht/soy-based membranes' performance in the absence of growth factors, the choice of a clinically relevant positive control was limited to a polymeric mesh, without any growth factor influencing skin healing/repair, Epigard. These new cht/soy membranes possess the desired features regarding healing/repair stimulation, ease of handling, and final esthetic appearance—thus, valuable properties for wound dressings. PMID:23083058

  12. Induced- and alternating-current electro-osmotic control of the diffusion layer growth in a microchannel-membrane interface device

    NASA Astrophysics Data System (ADS)

    Park, Sinwook; Yossifon, Gilad

    2014-11-01

    The passage of an electric current through an ionic permselective medium under an applied electric field is characterized by the formation of ionic concentration gradients, which result in regions of depleted and enriched ionic concentration at opposite ends of the medium. Induced-current electro-osmosis (ICEO) and alternating-current-electro-osmosis (ACEO) are shown to control the growth of the diffusion layer (DL) which, in turn, controls the diffusion limited ion transport through the microchannel-membrane system. We fabricated and tested devices made of a Nafion membrane connecting two opposite PDMS microchannels. An interdigitated electrode array was embedded within the microchannel with various distances from the microchannel-membrane interface. The induced ICEO (floating electrodes) / ACEO (active electrodes) vortices formed at the electrode array stir the fluid and thereby suppress the growth of the DL. The intensity of the ACEO vortices is controlled by either varying the voltage amplitude or the frequency, each having its own unique effect. Enhancement of the limiting current by on-demand control of the diffusion length is of importance in on-chip electro-dialysis, desalination and preconcentration of analytes.

  13. Visualizing Macular Structures During Membrane Peeling Surgery With an Intraoperative Spectral-Domain Optical Coherence Tomography Device.

    PubMed

    Leisser, Christoph; Hackl, Christoph; Hirnschall, Nino; Luft, Nikolaus; Döller, Birgit; Draschl, Petra; Rigal, Karl; Findl, Oliver

    2016-04-01

    The aim of this study was to examine the quality of intraoperative visualization of the posterior hyaloid, epiretinal membrane (ERM), inner limiting membrane (ILM), and hyporeflective subfoveal zone with a commercially available, microscope-integrated spectral-domain OCT setup (mi-SD-OCT) (Rescan 700; Carl Zeiss Meditec AG, Germany). Twenty patients prospectively scheduled for pars plana vitrectomy with membrane peeling due to an idiopathic ERM were included. Standard 23-gauge, three-port pars plana vitrectomy with membrane peeling and staining of the ERM with a trypan blue-based chromovitrectomy dye was performed in all cases. Intraoperative SD-OCT was performed before and after peeling and visualization of the posterior hyaloid, ERM, ILM, and presence of subfoveal hyporeflective zones were examined. OCT follow-ups were performed 2 days and 3 months after surgery. The study was approved by the local ethics committee of the city of Vienna. Successful intraoperative visualization of ERM by mi-SD-OCT was possible in all cases. The posterior hyaloid and ILM could not be seen in the mi-SD-OCT scans, whereas an intraoperative subfoveal hyporeflective zone presented in 35% of cases. In 12.5% an independent subfoveal hyporeflective zone presented postoperatively. Visual acuity improved in 93.8% of patients after surgery. mi-SD-OCT appears to be a valuable tool for intraoperative visualization of the ERM and offers immediate visualization of retinal anatomy during peeling. Therefore, it adds to the understanding of intraoperative traumatic changes due to the peeling procedure. Copyright 2016, SLACK Incorporated.

  14. North American neonatal extracorporeal membrane oxygenation (ECMO) devices and team roles: 2008 survey results of Extracorporeal Life Support Organization (ELSO) centers.

    PubMed

    Lawson, D Scott; Lawson, Andrea F; Walczak, Rich; McRobb, Craig; McDermott, Patty; Shearer, Ian R; Lodge, Andrew; Jaggers, James

    2008-09-01

    In early 2008, surveys of active extracorporeal membrane oxygenation (ECMO) centers in North America were conducted by electronic mail regarding neonatal ECMO equipment and professional staff. Eighty of 103 (78%) North American ECMO centers listed in the Extracorporeal Life Support Organization directory as neonatal centers responded to the survey. Of the responding centers, 82.5% routinely used roller pumps for neonatal ECMO, and the remaining 17.5% used centrifugal pumps. Silicone membrane oxygenators were used by 67% of the respondents, whereas 19% used micro-porous hollow fiber oxygenators, and 14% used polymethylpentene hollow fiber oxygenators. Of the silicone membrane oxygenator users, 86% used the Medtronic Ecmotherm heat exchanger, 10% used the Gish HE-4 heat exchanger, and 4% used the Terumo Conducer device. Sixty-four percent of the responding centers used some form of in-line blood gas monitoring. Six percent of the centers used a bubble trap in the arterial line, and 5% used an arterial line filter. A bladder was used by 85% of the centers, and 4% of these used a mechanical bladder box for servo regulation; the remaining 96% used pressure servo regulation. An air bubble detector was used by 88% of the responding centers. A surface coating was used by 44% of the centers on all their neonatal ECMO patients. Thirty-one percent of the centers use an activated clotting time of 180-220 seconds. At 54% of the responding centers, perfusionists were involved with the ECMO program, registered nurses were involved at 70% of the centers, and respiratory therapists were involved at 46% of the centers. Compared with a 2002 survey, silicone membrane use is declining, and the use of centrifugal blood pumps and coated ECMO circuits is becoming more apparent. ECMO teams are still multidisciplinary, made up of combinations of registered nurses, respiratory therapists, and perfusionists.

  15. Effect of membranes on oxygen transfer rate and consumption within a newly developed three-compartment bioartificial liver device: Advanced experimental and theoretical studies.

    PubMed

    Hilal-Alnaqbi, Ali; Mourad, Abdel-Hamid I; Yousef, Basem F

    2014-01-01

    A mathematical model is developed to predict oxygen transfer in the fiber-in-fiber (FIF) bioartificial liver device. The model parameters are taken from the constructed and tested FIF modules. We extended the Krogh cylinder model by including one more zone for oxygen transfer. Cellular oxygen uptake was based on Michaelis-Menten kinetics. The effect of varying a number of important model parameters is investigated, including (1) oxygen partial pressure at the inlet, (2) the hydraulic permeability of compartment B (cell region), (3) the hydraulic permeability of the inner membrane, and (4) the oxygen diffusivity of the outer membrane. The mathematical model is validated by comparing its output against the experimentally acquired values of an oxygen transfer rate and the hydrostatic pressure drop. Three governing simultaneous linear differential equations are derived to predict and validate the experimental measurements, e.g., the flow rate and the hydrostatic pressure drop. The model output simulated the experimental measurements to a high degree of accuracy. The model predictions show that the cells in the annulus can be oxygenated well even at high cell density or at a low level of gas phase PG if the value of the oxygen diffusion coefficient Dm is 16 × 10(-5) . The mathematical model also shows that the performance of the FIF improves by increasing the permeability of polypropylene membrane (inner fiber). Moreover, the model predicted that 60% of plasma has access to the cells in the annulus within the first 10% of the FIF bioreactor axial length for a specific polypropylene membrane permeability and can reach 95% within the first 30% of its axial length. © 2013 International Union of Biochemistry and Molecular Biology, Inc.

  16. North American Neonatal Extracorporeal Membrane Oxygenation (ECMO) Devices and Team Roles: 2008 Survey Results of Extracorporeal Life Support Organization (ELSO) Centers

    PubMed Central

    Lawson, D. Scott; Lawson, Andrea F.; Walczak, Rich; McRobb, Craig; McDermott, Patty; Shearer, Ian R.; Lodge, Andrew; Jaggers, James

    2008-01-01

    Abstract: In early 2008, surveys of active extracorporeal membrane oxygenation (ECMO) centers in North America were conducted by electronic mail regarding neonatal ECMO equipment and professional staff. Eighty of 103 (78%) North American ECMO centers listed in the Extracorporeal Life Support Organization directory as neonatal centers responded to the survey. Of the responding centers, 82.5% routinely used roller pumps for neonatal ECMO, and the remaining 17.5% used centrifugal pumps. Silicone membrane oxygenators were used by 67% of the respondents, whereas 19% used micro-porous hollow fiber oxygenators, and 14% used polymethylpentene hollow fiber oxygenators. Of the silicone membrane oxygenator users, 86% used the Medtronic Ecmotherm heat exchanger, 10% used the Gish HE-4 heat exchanger, and 4% used the Terumo Conducer device. Sixty-four percent of the responding centers used some form of in-line blood gas monitoring. Six percent of the centers used a bubble trap in the arterial line, and 5% used an arterial line filter. A bladder was used by 85% of the centers, and 4% of these used a mechanical bladder box for servo regulation; the remaining 96% used pressure servo regulation. An air bubble detector was used by 88% of the responding centers. A surface coating was used by 44% of the centers on all their neonatal ECMO patients. Thirty-one percent of the centers use an activated clotting time of 180–220 seconds. At 54% of the responding centers, perfusionists were involved with the ECMO program, registered nurses were involved at 70% of the centers, and respiratory therapists were involved at 46% of the centers. Compared with a 2002 survey, silicone membrane use is declining, and the use of centrifugal blood pumps and coated ECMO circuits is becoming more apparent. ECMO teams are still multidisciplinary, made up of combinations of registered nurses, respiratory therapists, and perfusionists. PMID:18853828

  17. Separation and identification of peptides from gel-isolated membrane proteins using a microfabricated device for combined capillary electrophoresis/nanoelectrospray mass spectrometry.

    PubMed

    Li, J; Kelly, J F; Chernushevich, I; Harrison, D J; Thibault, P

    2000-02-01

    The coupling of microfabricated devices to nanoelectrospray mass spectrometers using both a triple quadrupole and a quadrupole time-of-flight mass spectrometer (QqTOF MS) is presented for the analysis of trace-level membrane proteins. Short disposable nanoelectrospray emitters were directly coupled to the chip device via a low dead volume connection. The analytical performance of this integrated device in terms of sensitivity and reproducibility was evaluated for standard peptide mixtures. A concentration detection limit ranging from 3.2 to 43.5 nM for different peptides was achieved in selected ion monitoring, thus representing a 10-fold improvement in sensitivity compared to that of microelectrospray using the same chip/mass spectrometer. Replicate injections indicated that reproducibility of migration time was typically less than 3.1% RSD whereas RSD values of 6-13% were observed on peak areas. Although complete resolution of individual components is not typically achieved for complex digests, the present chip capillary electrophoresis (chip-CE) device enabled proper sample cleanup and partial separation of multicomponent samples prior to mass spectral identification. Analyses of protein digests were typically achieved in less than 1.5 min with peak widths of 1.8-2.5 s (half-height definition) as indicated from individual reconstructed ion electropherograms. The application of this chip-CE/QqTOF MS system is further demonstrated for the identification of membrane proteins which form a subset of the Haemophilus influenzae proteome. Bands first separated by 1D-gel electrophoresis were excised and digested, and extracted tryptic peptides were loaded on the chip without any further sample cleanup or on-line adsorption preconcentration. Accurate molecular mass determination (< 5 ppm) in peptide-mapping experiments was obtained by introducing an internal standard via a postseparation channel. The analytical potential of this integrated device for the identification of

  18. An ion diffusion model in semi-permeable clay materials.

    PubMed

    Liu, Chongxuan

    2007-08-01

    Clay materials typically contain negative surface charges that induce electrostatic fields (or diffuse double layers) in electrolytes. During ion diffusion in a porous medium of clay materials, ions dynamically interact with the electrostatic fields associated with individual clay grains by depressing or expanding the electrostatic double layers, which subsequently affects ionic fluxes. Current theory of ion transport in porous media, however, cannot explicitly account for the dynamic interactions. Here we proposed a model by coupling electrodynamics and nonequilibrium thermodynamics (EDNT) to describe ion diffusion in clay materials as a complex function of factors including clay surface charge density, tortuosity, porosity, chemicoosmotic coefficient, and ion self-diffusivity. The model was validated by comparing the calculated and measured apparent ion diffusion coefficients in clay materials as a function of ionic strength. At transitional states, ion diffusive fluxes are dynamically related to the electrostatic fields, which shrink or expand as ion diffusion occurs. At steady states, the electrostatic fields are time-invariant and ion diffusive fluxes conform to flux and concentration gradient relationships; and apparent diffusivity can be approximated by the ion diffusivity in bulk electrolytes corrected by a tortuosity factor and macroscopic concentration discontinuities at the interfaces between clay materials and bulk solutions.

  19. Improving the Performance and Antifouling Properties of Thin-Film Composite Membranes for Water Separation Technologies

    NASA Astrophysics Data System (ADS)

    Tiraferri, Alberto

    Membrane-based water separation processes utilize semi-permeable membranes to retain dissolved solids and contaminants. Deployment of these technologies for desalination and wastewater reuse has the potential to sustainably increase the supply of potable, agricultural, and industrial water. Despite considerable development of semi-permeable membranes in the last decades, several design obstacles hampering their progress have yet to be overcome. Specifically, major membrane improvements are currently sought with respect to their performance and productivity, as well as their resistance to fouling. This dissertation research aims at the advancement of semi-permeable membranes by rational optimization of their design to: (i) understand and improve their transport properties and (ii) reduce fouling by organic molecules and delay biofouling by microorganisms. In particular, thin-film composite polyamide membranes for both reverse osmosis and forward osmosis processes are the main target of the investigation. The structural and physicochemical properties of thin-film composite membranes are both characterized and tailored through implementation of original techniques and novel functionalization protocols. The membrane structure and morphology are rationally modified to enhance the mass transport within the support layer. The influence of fabrication conditions on support layer formation and on its final structure is elucidated. The intricate interrelationship among the performance of the different layers of the composite membrane is highlighted and a new protocol is developed to characterize the transport properties of membranes deployed in forward osmosis processes. Novel approaches to impart targeted properties to the active surface of thin-film composite membranes are also proposed. The functionalization is achieved by exploiting the inherent moieties of the polyamide layer to irreversibly bind nanomaterials with desired properties. An experimental method to determine

  20. Occurrence and concentrations of polycyclic aromatic hydrocarbons in semipermeable membrane devices and clams in three urban streams of the Dallas-Fort Worth Metropolitan Area, Texas

    USGS Publications Warehouse

    Moring, J.B.; Rose, D.R.

    1997-01-01

    Semipermeable membrane devices (SPMDs) and Asiatic clams, Corbicula fluminea (MuLLER), were deployed at stream sites in the Dallas-Fort Worth Metropolitan Area to assess the presence of bioavailable, dissolved polycyclic aromatic hydrocarbons (PAHs). Twenty-four PAHs were detected in SPMDs, 20 of which occurred at all sites. Only three PAHs were detected in the co-deployed clams. Throughout all sites, non-alkylated PAHs were found at greater levels in SPMDs than alkylated forms. Nine of 16 Priority Pollutant PAHs were detected in SPMDs. Estimated concentrations of PAHs in water were generally two to three orders of magnitude less than standard minimum analytical reporting levels; however, for bent (a) anthracene, benzo (a) pyrene, and chrysene, estimated concentrations in water exceeded the U.S. Environmental Protection Agency's human health criteria for these carcinogens in water and aquatic organisms.

  1. Offshore Membrane Enclosures for Growing Algae (OMEGA: A System for Biofuel Production, Wastewater Treatment, and CO2 Sequestration

    NASA Technical Reports Server (NTRS)

    Trent, Jonathan; Embaye, Tsegereda; Buckwalter, Patrick; Richardson, Tra-My; Kagawa, Hiromi; Reinsch, Sigrid; Martis, Mary

    2010-01-01

    We are developing Offshore Membrane Enclosures for Growing Algae (OMEGA). OMEGAs are closed photo-bioreactors constructed of flexible, inexpensive, and durable plastic with small sections of semi-permeable membranes for gas exchange and forward osmosis (FO). Each OMEGA modules is filled with municipal wastewater and provided with CO2 from coastal CO2 sources. The OMEGA modules float just below the surface, and the surrounding seawater provides structural support, temperature control, and mixing for the freshwater algae cultures inside. The salinit7 gradient from inside to outside drives forward osmosis through the patches of FO membranes. This concentrates nutrients in the wastewater, which enhances algal growth, and slowly dewaters the algae, which facilitates harvesting. Thy concentrated algal biomass is harvested for producing biofuels and fertilizer. OMEGA system cleans the wastewater released into the surrounding coastal waters and functions as a carbon sequestration system.

  2. Offshore Membrane Enclosure for Growing Algai (Omega) System for Biofuel Production, Wastewater Treatment, and CO2 Sequestration

    NASA Technical Reports Server (NTRS)

    Trent, Jonathan; Embaye, Tsegereda; Buckwalter, Patrick; Richardson, Tra-My; Kagawa, Hiromi; Reinsch, Sigrid

    2010-01-01

    We are developing Offshore Membrane Enclosures for Growing Algae (OMEGA). OMEGAs are closed photo-bioreactors constructed of flexible, inexpensive, and durable plastic with small sections of semi-permeable membranes for gas exchange and forward osmosis (FO). Each OMEGA modules is filled with municipal wastewater and provided with CO2 from coastal CO2 sources. The OMEGA modules float just below the surface, and the surrounding seawater provides structural support, temperature control, and mixing for the freshwater algae cultures inside. The salinity gradient from inside to outside drives forward osmosis through the patches of FO membranes. This concentrates nutrients in the wastewater, which enhances algal growth, and slowly dewaters the algae, which facilitates harvesting. The concentrated algal biomass is harvested for producing biofuels and fertilizer. OMEGA system cleans the wastewater released into the surrounding coastal waters and functions as a carbon sequestration system.

  3. Ultrathin transparent membranes for cellular barrier and co-culture models.

    PubMed

    Carter, Robert N; Casillo, Stephanie M; Mazzocchi, Andrea R; DesOrmeaux, Jon-Paul S; Roussie, James A; Gaborski, Thomas R

    2017-02-14

    Typical in vitro barrier and co-culture models rely upon thick semi-permeable polymeric membranes that physically separate two compartments. Polymeric track-etched membranes, while permeable to small molecules, are far from physiological with respect to physical interactions with co-cultured cells and are not compatible with high-resolution imaging due to light scattering and autofluorescence. Here we report on an optically transparent ultrathin membrane with porosity exceeding 20%. We optimize deposition and annealing conditions to create a tensile and robust porous silicon dioxide membrane that is comparable in thickness to the vascular basement membrane (100-300 nm). We demonstrate that human umbilical vein endothelial cells (HUVECs) spread and proliferate on these membranes similarly to control substrates. Additionally, HUVECs are able to transfer cytoplasmic cargo to adipose-derived stem cells when they are co-cultured on opposite sides of the membrane, demonstrating its thickness supports physiologically relevant cellular interactions. Lastly, we confirm that these porous glass membranes are compatible with lift-off processes yielding membrane sheets with an active area of many square centimeters. We believe that these membranes will enable new in vitro barrier and co-culture models while offering dramatically improved visualization compared to conventional alternatives.

  4. Assessment of the significance of direct and indirect pollution inputs to a major salmon-producing river using polyethylene membrane devices.

    PubMed

    Moles, Adam; Holland, Larry; Andersson, Ole

    2006-08-01

    Conventional passive sampling devices for monitoring pollution input often prove to be cost-prohibitive when assessing large spatial and temporal scales. The Kenai River, a major salmon-producing river in Alaska (USA), served as the perfect laboratory to test the utility of polyethylene membrane devices for assessing chronic nonpoint-source inputs to a large riverine watershed. Comparison of the relative levels of polycyclic aromatic hydrocarbons (PAHs) at a large number of locations over time allowed us to assess the significance and potential source of these compounds in the river. Concentrations of PAH were greatest near urban areas and peaked during the late winter, when streams flows and dilution were low. Vessel activity and PAH levels peaked in July and were heaviest in the lower 16 km of the river, where fishing activity was concentrated. Nearly one-third of the vessels observed on the river were powered by two-stroke engines, which release a higher proportion of unburned fuel into the water than the cleaner burning four-stroke engines. The low concentrations of hydrocarbons upriver of the boat traffic suggest very little remote delivery of these contaminants to the watershed. Polyethylene strips proved to be an excellent, low-cost tool for determining the PAH patterns in a large watershed.

  5. Membrane protected conductive polymer as micro-SPE device for the determination of triazine herbicides in aquatic media.

    PubMed

    Bagheri, Habib; Khalilian, Faezeh; Naderi, Mehrnoush; Babanezhad, Esmaeil

    2010-04-01

    A micro-SPE technique was developed by fabricating a rather small package including a polypropylene membrane shield containing the appropriate sorbent. The package was used for the extraction of some triazine herbicides from aqueous samples. Solvent desorption was subsequently performed in a microvial and an aliquot of extractant was injected into GC-MS. Various sorbents including aniline-ortho-phenylene diamine copolymer, newly synthesized, polypyrrole, multiwall carbon nanotube, C18 and charcoal were examined as extracting media. Among them, conductive polymers exhibited better performance. Influential parameters including extraction and desorption time, desorption solvent and the ionic strength were optimized. The developed method proved to be rather convenient and offers sufficient sensitivity and good reproducibility. The detection limits of the method under optimized conditions were in the range of 0.01-0.04 ng/mL. The RSDs at a concentration level of 0.1 ng/mL were obtained between 4.5 and 9.3% (n=5). The calibration curves of analytes showed linearity in the range of 0.05-10 ng/mL. The developed method was successfully applied to the extraction of selected triazines from real water samples. The whole procedure showed to be conveniently applicable and quite easy to manipulate.

  6. A safe procedure for connecting a continuous renal replacement therapy device into an extracorporeal membrane oxygenation circuit.

    PubMed

    Suga, Natsumi; Matsumura, Yosuke; Abe, Ryuzo; Hattori, Noriyuki; Nakada, Taka-Aki; Oda, Shigeto

    2017-03-24

    Patients receiving extracorporeal membrane oxygenation (ECMO) often require continuous renal replacement therapy (CRRT). The intra-circuit pressure of adult ECMO usually deviates from the physiological range. We investigated the use of CRRT connected to an ECMO circuit with physiological intra-circuit pressures (0-150 mmHg, defined as the "safety range") using an in vitro experiment involving a water-filled ECMO circuit. The intra-circuit pressure pre-pump, post-pump, and post-oxygenator were measured while varying the height of the pump or ECMO flow. The bypass conduit pressure and distance from the post-oxygenator port were measured to find the "safety point", where the bypass pressure remained within the safety range. Both drainage and return limbs of the CRRT machine were connected to the safety point and the inlet and outlet pressures of the hemofilter were recorded while varying the ECMO and CRRT flow. The pre-pump pressure only remained within the safety range for heights >75 cm (ECMO flow = 4 L/min) or ECMO flow <3.5 L min (height = 50 cm). The post-pump and post-oxygenator pressure was generally outside of the safety range. The bypass pressure decreased according to the distance from the post-oxygenator port and the safety point was found at 60 or 75 cm (in a 90-cm length conduit) regardless of ECMO flow. The hemofilter inlet and outlet pressures remained within the safety range for all conditions of ECMO and CRRT flow, findings validated in clinical cases. The bypass conduit within an ECMO circuit can be connected to a CRRT machine safely under physiological pressures in adult patients receiving ECMO.

  7. Development of a membrane-less dynamic field gradient focusing device for the separation of low-molecular-weight molecules

    PubMed Central

    Burke, Jeffrey M.; Smith, Colin D.; Ivory, Cornelius F.

    2010-01-01

    Dynamic field gradient focusing uses an electric field gradient generated by controlling the voltage profile of an electrode array to separate and concentrate charged analytes according to their individual electrophoretic mobilities. This study describes a new instrument in which the electrodes have been placed within the separation channel. The major challenge faced with this device is that when applied voltages to the electrodes are larger than the redox potential of water, electrolysis will occur, producing hydrogen ions (H+) plus oxygen gas on the anodes and hydroxide (OH−) plus hydrogen gas on the cathodes. The resulting gas bubbles and pH excursions can cause problems with system performance and reproducibility. An on-column, degassing system that can remove gas bubbles “on-the-fly” is described. In addition, the use of a high capacity, low-conductivity buffer to address the problem of the pH shift that occurs due to the production of H+ on the anodes is illustrated. Finally, the successful separation of three, low-molecular-weight dyes (amaranth, bromophenol blue and methyl red) is described. PMID:20191553

  8. Promotion of progressive mobility activities with ventricular assist and extracorporeal membrane oxygenation devices in a cardiothoracic intensive care unit.

    PubMed

    Chavez, Jennifer; Bortolotto, Shannon Johnson; Paulson, Martha; Huntley, Nicole; Sullivan, Breandan; Babu, Ashok

    2015-01-01

    Progressive mobility (PM) is a clinical intervention that influences complications experienced throughout critical illness. Early PM is a relevant topic in critical care practice literature and was principle to introducing a PM care guideline in an acute cardiothoracic/cardiovascular intensive care unit. A noted challenge in the cardiothoracic/cardiovascular intensive care unit is caring for acute cardiac and pulmonary failure. Often, these patients require prolonged mechanical circulatory support via extracorporeal mechanical oxygenation or a ventricular assist device. This article describes safe and effective progressive mobilization for patients experiencing MCS in a case study format. This article also highlights how a multidisciplinary clinical team supports mobility practice in specific critical care roles. Post-intensive care syndrome is composed of various health implications that occur following critical illness. Recent data suggest improved care outcomes when critically ill patients are awake and participate in active physical rehabilitation as early as clinically possible. The case studies presented indicate that mobility, to the point of ambulation, is a feasible clinical expectation when patients present with substantial acute respiratory and cardiac failure and are managed with MCS. Development of a PM guideline uses a critical appraisal of practice evidence, highlights multidisciplinary collaboration, and increases progression to ambulation. Mobility for complex patients is attainable, as demonstrated in the postguideline outcomes. The PM guideline provides structure to primary caregivers and promotes safe practices. The PM guideline facilitates an advanced level of care, promotes safe practices, champions holistic recovery, and encourages active patient involvement, goals satisfying to both patients and staff.

  9. Development of a membrane-less dynamic field gradient focusing device for the separation of low-molecular-weight molecules.

    PubMed

    Burke, Jeffrey M; Smith, Colin D; Ivory, Cornelius F

    2010-03-01

    Dynamic field gradient focusing uses an electric field gradient generated by controlling the voltage profile of an electrode array to separate and concentrate charged analytes according to their individual electrophoretic mobilities. This study describes a new instrument in which the electrodes have been placed within the separation channel. The major challenge faced with this device is that when applied voltages to the electrodes are larger than the redox potential of water, electrolysis will occur, producing hydrogen ions (H+) plus oxygen gas on the anodes and hydroxide (OH(-)) plus hydrogen gas on the cathodes. The resulting gas bubbles and pH excursions can cause problems with system performance and reproducibility. An on-column, degassing system that can remove gas bubbles "on-the-fly" is described. In addition, the use of a high capacity, low-conductivity buffer to address the problem of the pH shift that occurs due to the production of H+ on the anodes is illustrated. Finally, the successful separation of three, low-molecular-weight dyes (amaranth, bromophenol blue and methyl red) is described.

  10. Final report on proposal to develop and test a membrane sampling module for the extraction of volatile organic compounds from water

    SciTech Connect

    Cooks, R.G.

    1993-06-29

    A new technique is describe for the direct detection of volatile organic compounds in aqueous solutions at levels in the parts per trillion range. The sample is enriched in analyte in two consecutive stages, one utilizes a semi-permeable membrane interface and the other a jet separator. The analyte solution is sampled as it flows coaxially over a semi-permeable capillary membrane, the interior of which is continuously purged by helium. The permeate is pneumatically transported to the mass spectrometer via a jet separator, which is used to remove excess helium and water from the analyte vapor stream. Data are reported for an ion trap mass spectrometer used in conjunction with a conventional fixed-gap quartz jet separator. Typical analyte response times are 2-5 minutes and flow injection methods are used for sample delivery. Detection limits in the range 30 to parts per billion are observed for selected volatile organic compounds and the response is linear over 3 orders of magnitude. Details of the construction of the interface are provided.

  11. Determination of uptake kinetics (sampling rates) by lipid-containing semipermeable membrane devices (SPMDs) for polycyclic aromatic hydrocarbons (PAHs) in water

    USGS Publications Warehouse

    Huckins, J.N.; Petty, J.D.; Orazio, C.E.; Lebo, J.A.; Clark, R.C.; Gibson, V.L.; Gala, W.R.; Echols, K.R.

    1999-01-01

    The use of lipid-containing semipermeable membrane devices (SPMDs) is becoming commonplace, but very little sampling rate data are available for the estimation of ambient contaminant concentrations from analyte levels in exposed SPMDs. We determined the aqueous sampling rates (R(s)s; expressed as effective volumes of water extracted daily) of the standard (commercially available design) 1-g triolein SPMD for 15 of the priority pollutant (PP) polycyclic aromatic hydrocarbons (PAHs) at multiple temperatures and concentrations. Under the experimental conditions of this study, recovery- corrected R(s) values for PP PAHs ranged from ???1.0 to 8.0 L/d. These values would be expected to be influenced by significant changes (relative to this study) in water temperature, degree of biofouling, and current velocity- turbulence. Included in this paper is a discussion of the effects of temperature and octanol-water partition coefficient (K(ow)); the impacts of biofouling and hydrodynamics are reported separately. Overall, SPMDs responded proportionally to aqueous PAH concentrations; i.e., SPMD R(s) values and SPMD-water concentration factors were independent of aqueous concentrations. Temperature effects (10, 18, and 26 ??C) on Rs values appeared to be complex but were relatively small.The use of lipid-containing semipermeable membrane devices (SPMDs) is becoming commonplace, but very little sampling rate data are available for the estimation of ambient contaminant concentrations from analyte levels in exposed SPMDs. We determined the aqueous sampling rates (Rss; expressed as effective volumes of water extracted daily) of the standard (commercially available design) 1-g triolein SPMD for 15 of the priority pollutant (PP) polycyclic aromatic hydrocarbons (PAHs) at multiple temperatures and concentrations. Under the experimental conditions of this study, recovery-corrected Rs values for PP PAHs ranged from ???1.0 to 8.0 L/d. These values would be expected to be influenced by

  12. Semipermeable membrane device (SPMD) for monitoring PCDD and PCDF levels from a paper mill effluent in the Androscoggin River, Maine, USA.

    PubMed

    Charlestra, Lucner; Courtemanch, David L; Amirbahman, Aria; Patterson, Howard

    2008-07-01

    Paper mill effluents may contain polychlorinated dibenzo-p-dioxins (PCDDs) and polychlorinated dibenzofurans (PCDFs) that are normally generated due to chlorinated bleaching of pulp and paper. We used the semipermeable membrane device (SPMD) to monitor PCDD/F levels upstream and downstream of a paper mill on the Androscoggin River, in Jay (ME). Following the 36 day deployment, SPMD dialysis and cleanup, the samples were analyzed by HRGC/HRMS. Total concentrations of PCDD/Fs in SPMDs (sum of all tetra-through octachlorinated congeners) ranged from 4.71 pg g(-1) to 26.26 pg g(-1). Five out of the targeted 17 toxic congeners were detected, including: 2,3,7,8-TCDF; 1,2,3,7,8-PeCDF; 2,3,4,7,8-PeCDF; 1,2,3,4,6,7,8-HpCDD and OCDD. Permeability reference compounds (PRCs) were used for in situ calibration of the SPMD sampling rate (Rs). In all sites, water concentrations were the highest for OCDD (0.081-0.103 pg l(-1)), and the lowest for 1,2,3,7,8-PeCDF (0.005-0.009 pg l(-1)). There was not a consistent pattern of upstream-downstream gradient in the PCDD/F levels. This suggested that processes other than the mill in Jay (multiple sources, river dynamics) governed the flux of PCDD/Fs in the sampling locations. The SPMD results were validated by comparison to other studies on the Androscoggin River and elsewhere, confirming the potential of the device as a useful monitoring technique for PCDD/Fs in large river systems.

  13. Membrane with supported internal passages

    NASA Technical Reports Server (NTRS)

    Gonzalez-Martin, Anuncia (Inventor); Salinas, Carlos E. (Inventor); Cisar, Alan J. (Inventor); Hitchens, G. Duncan (Inventor); Murphy, Oliver J. (Inventor)

    2000-01-01

    The invention provides an improved proton exchange membrane for use in electrochemical cells having internal passages parallel to the membrane surface comprising permanent tubes preferably placed at the ends of the fluid passages. The invention also provides an apparatus and process for making the membrane, membrane and electrode assemblies fabricated using the membrane, and the application of the membrane and electrode assemblies to a variety of devices, both electrochemical and otherwise. The passages in the membrane extend from one edge of the membrane to another and allow fluid flow through the membrane and give access directly to the membrane.

  14. Nickel (II) Preconcentration and Speciation Analysis During Transport from Aqueous Solutions Using a Hollow-fiber Permeation Liquid Membrane (HFPLM) Device.

    PubMed

    Bautista-Flores, Ana Nelly; De San Miguel, Eduardo Rodríguez; Gyves, Josefina de; Jönsson, Jan Åke

    2011-08-18

    Nickel (II) preconcentration and speciation analysis using a hollow fiber supported liquid membrane (HFSLM) device was studied. A counterflow of protons coupled to complexation with formate provided the driving force of the process, while Kelex 100 was employed as carrier. The influence of variables related to module configuration (acceptor pH and carrier concentration) and to the sample properties (donor pH) on the preconcentration factor, E, was simultaneously studied and optimized using a 3 factor Doehlert matrix response surface methodology. The effect of metal concentration was studied as well. Preconcentration factors as high as 4240 were observed  depending on the values of the different variables. The effects of the presence of inorganic anions (NO2-, SO42-, Cl-, NO3-, CO32-, CN-) and dissolved organic matter (DOM) in the form of humic acids were additionally considered in order to carry out a speciation analysis study. Nickel preconcentration was observed to be independent of both effects, except when cyanide was present in the donor phase. A characterization of the transport regime was performed through the analysis of the dependence of E on the temperature. E increases with the increase in temperature according to the equation E(K) = -8617.3 + 30.5T with an activation energy of 56.7 kJ mol-1 suggesting a kinetic-controlled regime. Sample depletion ranged from 12 to 1.2% depending on the volume of the donor phase (100 to 1000 mL, respectively).

  15. Use of the semipermeable membrane device as an in situ sampler of waterborne bioavailable PCDD and PCDF residues at sub-parts-per-quadrillion concentrations

    USGS Publications Warehouse

    Lebo, Jon A.; Gale, Robert W.; Petty, Jimmie D.; Tillitt, Donald E.; Huckins, James N.; Meadows, John C.; Orazio, Carl E.; Echols, Kathy R.; Schroeder, Dennis J.; Inmon, Lloyd E.

    1995-01-01

    Semipermeable membrane devices (SPMDs) were used to passively sample aqueous polychlorinated dibenzo-p-dioxins (PCDDs) and polychlorinated dibenzofurans (PCDFs) in Bayou Meto, AR. The two sites were upstream and downstream from the confluence with a tributary that delivers PCDDs and PCDFs to the Bayou. Following dialysis, cleanup, and fractionation, four replicate 17-9 SPMD samples from each site were analyzed by GUMS, and four were evaluated by H411E bioassay. Traces of only OCDD and HpCDDs were detected in samples from the upstream site. The four samples from below the tributary contained averages of 1550 ± 80 pg of 2,3,7,8-TCDD, 1640 ± 80 pg of 2,3,7,8-TCDF, and lesser quantities of other congeners. The TCDD equivalents obtained by bioassay of replicate SPMD samples agreed well with results obtained by GC/MS. The quantities of 2,3,7,8- TCDD and 2,3,7,8-TCDF sequestered by SPMDs at the downstream site were used to estimate the aqueous concentrations for both compounds as 2 pg/L.

  16. Determination of uptake kinetics (sampling rates) by lipid-containing semipermeable membrane devices (SPMDs) for polycyclic aromatic hydrocarbons (PAHs) in water

    SciTech Connect

    Huckins, J.N.; Petty, J.D.; Orazio, C.E.; Lebo, J.A.; Clark, R.C.; Gibson, V.L.; Gala, W.R.; Echols, K.R.

    1999-11-01

    The use of lipid-containing semipermeable membrane devices (SPMDs) is becoming commonplace, but very little sampling rate data are available for the estimation of ambient contaminant concentrations from analyze levels in exposed SPMDs. The authors determined the aqueous sampling rates (R{sub s}s; expressed as effective volumes of water extracted daily) of the standard (commercially available design) 1-g triolein SPMD for 15 of the priority pollutant (PP) polycyclic aromatic hydrocarbons (PAHs) at multiple temperatures and concentrations. Under the experimental conditions of this study, recovery-corrected R{sub s} values for PP PAHs ranged from {approximately}1.0 to 8.0 L/d. These values would be expected to be influenced by significant changes (relative to this study) in water temperature, degree of biofouling, and current velocity-turbulence. Included in this paper is a discussion of the effects of temperature and octanol-water partition coefficient (K{sub ow}); the impacts of biofouling and hydrodynamics are reported separately. Overall, SPMDs responded proportionally to aqueous PAH concentrations; i.e., SPMD R{sub s} values and SPMD-water concentration factors were independent of aqueous concentrations. Temperature effects on R{sub s} values appeared to be complex but were relatively small.

  17. Accumulation of polycyclic aromatic hydrocarbons in semipermeable membrane devices and caged mussels (Mytilus edulis L.) in relation to water column phase distribution

    SciTech Connect

    Axelman, J.; Naes, K.; Naef, C.; Broman, D.

    1999-11-01

    Semipermeable membrane devices (SPMDs) and blue mussels (Mytilus edulis L.) were deployed at a site contaminated by discharges of polycyclic aromatic hydrocarbons (PAHs) from an aluminium reduction plant, and at a reference site. The accumulation of PAHs in SPMDs versus mussels, along with the ability of the two matrices to predict contaminant concentrations in the ambient environment, were evaluated through concurrent measurements of particulate, dissolved, and colloidal PAHs in the water column. Analysis of the results showed that blue mussels were more efficient at sequestering PAHs than were SPMDs. The PAH profile (i.e,, the relative abundance of individual PAHs) in the two matrices were similar, but differed significantly from the profile in the dissolved phase. Further, back-calculation of the ambient dissolved concentrations from SPMDs indicated systematic overtrapping with increasing hydrophobicity. Calculation of in situ bioconcentration factors (BCFs) for the blue mussels at the smelter site indicated that uptake via particles or from colloids dominated over direct uptake from the dissolved phase, as opposed to the reference site. The in situ BCFs differed markedly from literature values, which implies that the use of mussels to predict ambient concentrations would require that site-specific BCFs be applied.

  18. A device for the measurement of residual chemical shift anisotropy and residual dipolar coupling in soluble and membrane-associated proteins

    PubMed Central

    Liu, Yizhou

    2010-01-01

    Residual dipolar coupling (RDC) and residual chemical shift anisotropy (RCSA) report on orientational properties of a dipolar bond vector and a chemical shift anisotropy principal axis system, respectively. They can be highly complementary in the analysis of backbone structure and dynamics in proteins as RCSAs generally include a report on vectors out of a peptide plane while RDCs usually report on in-plane vectors. Both RDC and RCSA average to zero in isotropic solutions and require partial orientation in a magnetic field to become observable. While the alignment and measurement of RDC has become routine, that of RCSA is less common. This is partly due to difficulties in providing a suitable isotopic reference spectrum for the measurement of the small chemical shift offsets coming from RCSA. Here we introduce a device (modified NMR tube) specifically designed for accurate measurement of reference and aligned spectra for RCSA measurements, but with a capacity for RDC measurements as well. Applications to both soluble and membrane anchored proteins are illustrated. PMID:20506033

  19. Comparison of the uptake of dioxin-like compounds by caged channel catfish and semipermeable membrane devices in the Saginaw River, Michigan

    USGS Publications Warehouse

    Gale, Robert W.; Huckins, James N.; Petty, Jimmie D.; Peterman, Paul H.; Williams, Lisa L.; Morse, Douglas; Schwartz, Ted R.; Tillitt, Donald E.

    1996-01-01

    Elevated concentrations of planar, halogenated hydrocarbons have been linked to reproductive problems in a variety of fish-eating birds and mammals in the Great Lakes and in particular Saginaw Bay. Currently, there are no accurate procedures to assess bioavailability of these contaminants. Polychlorinated dibenzo-p-dioxins and dibenzofurans and mono- and non-ortho-chloro-substituted biphenyls in water at the femtogram to picogram per liter range were passively concentrated in semipermeable membrane devices (SPMDs), and these data were compared to the bioconcentration in co-exposed (caged) channel catfish. Sediment-derived water concentration estimates, calculated from a steady-state partitioning model, did not correlate well to those derived from either fish or SPMDs. The use of SPMDs demonstrated the utility of in-situ passive sampling over inference of water concentrations from accumulation in biota or partitioning with sediment. Residues ac cumulated by SPMDs have been shown to be proportional to analyte water concentration, whereas this does not appear to be the case for fish tissues. The greater amounts of 3,3‘,4,4‘-tetrachlorobiphenyl and 2,3,7,8-tetrachlorodibenzofuran accumulated in SPMDs than in exposed channel catfish indicated those non-passive aspects of bioconcentration in organisms, such as biotransformation and elimination, introduced 50−500% error in the assumed degree of exposure.

  20. Identification of methyl triclosan and halogenated analogues in male common carp (Cyprinus carpio) from Las Vegas Bay and semipermeable membrane devices from Las Vegas Wash, Nevada.

    PubMed

    Leiker, Thomas J; Abney, Sonja R; Goodbred, Steven L; Rosen, Michael R

    2009-03-01

    Methyl triclosan and four halogenated analogues have been identified in extracts of individual whole-body male carp (Cyprinus carpio) tissue that were collected from Las Vegas Bay, Nevada, and Semipermeable Membrane Devices (SPMD) that were deployed in Las Vegas Wash, Nevada. Methyl triclosan is believed to be the microbially methylated product of the antibacterial agent triclosan (2, 4, 4'-trichloro-4-hydroxydiphenyl ether, Chemical Abstract Service Registry Number 3380-34-5, Irgasan DP300). The presence of methyl triclosan and four halogenated analogues was confirmed in SPMD extracts by comparing low- and high-resolution mass spectral data and Kovats retention indices of methyl triclosan with commercially obtained triclosan that was derivatized to the methyl ether with ethereal diazomethane. The four halogenated analogues of methyl triclosan detected in both whole-body tissue and SPMD extracts were tentatively identified by high resolution mass spectrometry. Methyl triclosan was detected in all 29 male common carp from Las Vegas Bay with a mean concentration of 596 microg kg(-1) wet weight (ww) which is more than an order of magnitude higher than previously reported concentrations in the literature. The halogenated analogs were detected less frequently (21%-76%) and at much lower concentrations (<51 microg kg(-1) ww). None of these compounds were detected in common carp from a Lake Mead reference site in Overton Arm, Nevada.

  1. Reconstructing source polybrominated diphenyl ether congener patterns from semipermeable membrane devices in the Fraser River, British Columbia, Canada: comparison to commercial mixtures.

    PubMed

    Rayne, Sierra; Ikonomou, Michael G

    2002-11-01

    Semipermeable membrane devices (SPMDs) were placed in the Fraser River near Vancouver, British Columbia, Canada, between August 6 and September 30, 1996. This location is near a large urban and industrial region (population 2,000,000) and is expected to be representative of other large, modern cities. After exposure to the ambient water column, SPMD samples were analyzed for a suite of 36 polybrominated diphenyl ether (PBDE) congeners plus all homologue groups from mono- through hexa-brominated. Observed congener patterns differed significantly from that of the commercial penta- and octa-BDE mixtures. A reconstruction approach was developed based on an aquatic transport model and utilizing published octanol-water partition coefficients, calculated SPMD uptake rates, and predicted water concentrations by using the EcoFate multimedia mass balance aquatic simulation model for the 13 major PBDE congeners. In combination, composite technical mixtures were created by combining commercial penta-BDE mixtures (Bromkal 70-SDE and Great Lakes Chemicals DE-71) with commercial octa-BDE mixtures (Bromkal 79-8DE and Great Lakes Chemicals DE-79) in their relative 2000 North American production volumes. The reconstructed SPMD patterns more closely approximated the composite technical mixtures and suggest that PBDEs in such an industrial region arise primarily from penta- and octa-BDE source mixtures.

  2. Identification of methyl triclosan and halogenated analogues in male common carp (Cyprinus carpio) from Las Vegas Bay and semipermeable membrane devices from Las Vegas Wash, Nevada

    USGS Publications Warehouse

    Leiker, T.J.; Abney, S.R.; Goodbred, S.L.; Rosen, Michael R.

    2009-01-01

    Methyl triclosan and four halogenated analogues have been identified in extracts of individual whole-body male carp (Cyprinus carpio) tissue that were collected from Las Vegas Bay, Nevada, and Semipermeable Membrane Devices (SPMD) that were deployed in Las Vegas Wash, Nevada. Methyl triclosan is believed to be the microbially methylated product of the antibacterial agent triclosan (2, 4, 4'-trichloro-4-hydroxydiphenyl ether, Chemical Abstract Service Registry Number 3380-34-5, Irgasan DP300). The presence of methyl triclosan and four halogenated analogues was confirmed in SPMD extracts by comparing low- and high-resolution mass spectral data and Kovats retention indices of methyl triclosan with commercially obtained triclosan that was derivatized to the methyl ether with ethereal diazomethane. The four halogenated analogues of methyl triclosan detected in both whole-body tissue and SPMD extracts were tentatively identified by high resolution mass spectrometry. Methyl triclosan was detected in all 29 male common carp from Las Vegas Bay with a mean concentration of 596????g kg- 1 wet weight (ww) which is more than an order of magnitude higher than previously reported concentrations in the literature. The halogenated analogs were detected less frequently (21%-76%) and at much lower concentrations (< 51????g kg- 1 ww). None of these compounds were detected in common carp from a Lake Mead reference site in Overton Arm, Nevada.

  3. An Electrochromic Bipolar Membrane Diode.

    PubMed

    Malti, Abdellah; Gabrielsson, Erik O; Crispin, Xavier; Berggren, Magnus

    2015-07-08

    Conducting polymers with bipolar membranes (a complementary stack of selective membranes) may be used to rectify current. Integrating a bipolar membrane into a polymer electrochromic display obviates the need for an addressing backplane while increasing the device's bistability. Such devices can be made from solution-processable materials. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Metamaterial membranes

    NASA Astrophysics Data System (ADS)

    Restrepo-Flórez, Juan Manuel; Maldovan, Martin

    2017-01-01

    We introduce a new class of metamaterial device to achieve separation of compounds by using coordinate transformations and metamaterial theory. By rationally designing the spatial anisotropy for mass diffusion, we simultaneously concentrate different compounds in different spatial locations, leading to separation of mixtures across a metamaterial membrane. The separation of mixtures into their constituent compounds is critically important in biophysics, biomedical, and chemical applications. We present a practical case where a mixture of oxygen and nitrogen diffusing through a polymeric planar matrix is separated. This work opens doors to new paradigms in membrane separations via coordinate transformations and metamaterials by introducing novel properties and unconventional mass diffusion phenomena.

  5. Internal Concentration Polarization in Asymmetric Membrane in Forward Osmosis System

    NASA Astrophysics Data System (ADS)

    Gadelha, Gabriela; Gadelha, Hermes; Hankins, Nick

    2013-11-01

    There has been a re-emerging interest in the study of the osmotic-driving desalination process known as Forward Osmosis (FO), due to its potential for significantly lower energy demand. However, the employed asymmetric semi-permeable membranes are notorious for the formation of unstirred boundary layers. These boundary layers may be dilutive or concentrative, causing an undesired decline on the osmotic flux. To date, although several models have been proposed in the literature to describe various applications in membrane separation processes, the fundamental theoretical basis has remained unchanged. Here, we detail an alternative formulation for the solute concentration profile and the water flux decline in terms of the osmotic Peclet number and the dimensionless solute permeability. Our analysis shows that the osmotic potential efficiency and the resulting water flux are inversely related, preventing any simultaneous optimization of the system, i.e. the larger the water flux is, the less osmotically efficient it becomes. We equally investigated the effect of distinct flat-sheet membrane configurations on the water flux. In this case, when the active layer faces the solution of low concentration (feed solution), under normal operations conditions, the water flux can be 60% lower than its counter configuration, when the active layer faces the solution of high concentration (draw solution). Finally, we contrast the theoretical formulation with experiments using inorganic ions and micelle as draw solutions.

  6. Guidelines for the use of the semipermeable membrane device (SPMD) and the polar organic chemical integrative sampler (POCIS) in environmental monitoring studies

    USGS Publications Warehouse

    Alvarez, David A.

    2010-01-01

    the semipermeable membrane device (SPMD) and the polar organic chemical integrative sampler (POCIS). The tips given in this document focus on these two samplers but are applicable to most types of passive sampling devices. The information in this guide is heavily weighted towards the sampling of water; however, information specific to the use of SPMDs for air sampling will also be covered.

  7. Guidelines for the use of the semipermeable membrane device (SPMD) and the polar organic chemical integrative sampler (POCIS) in environmental monitoring studies

    USGS Publications Warehouse

    Alvarez, David A.

    2010-01-01

    the semipermeable membrane device (SPMD) and the polar organic chemical integrative sampler (POCIS). The tips given in this document focus on these two samplers but are applicable to most types of passive sampling devices. The information in this guide is heavily weighted towards the sampling of water; however, information specific to the use of SPMDs for air sampling will also be covered.

  8. Nickel (II) Preconcentration and Speciation Analysis During Transport from Aqueous Solutions Using a Hollow-fiber Permeation Liquid Membrane (HFPLM) Device

    PubMed Central

    Bautista-Flores, Ana Nelly; de San Miguel, Eduardo Rodríguez; de Gyves, Josefina; Jönsson, Jan Åke

    2011-01-01

    Nickel (II) preconcentration and speciation analysis using a hollow fiber supported liquid membrane (HFSLM) device was studied. A counterflow of protons coupled to complexation with formate provided the driving force of the process, while Kelex 100 was employed as carrier. The influence of variables related to module configuration (acceptor pH and carrier concentration) and to the sample properties (donor pH) on the preconcentration factor, E, was simultaneously studied and optimized using a 3 factor Doehlert matrix response surface methodology. The effect of metal concentration was studied as well. Preconcentration factors as high as 4240 were observed depending on the values of the different variables. The effects of the presence of inorganic anions (NO2−, SO42−, Cl−, NO3−, CO32−, CN−) and dissolved organic matter (DOM) in the form of humic acids were additionally considered in order to carry out a speciation analysis study. Nickel preconcentration was observed to be independent of both effects, except when cyanide was present in the donor phase. A characterization of the transport regime was performed through the analysis of the dependence of E on the temperature. E increases with the increase in temperature according to the equation E(K) = −8617.3 + 30.5T with an activation energy of 56.7 kJ mol−1 suggesting a kinetic-controlled regime. Sample depletion ranged from 12 to 1.2% depending on the volume of the donor phase (100 to 1000 mL, respectively). PMID:24957733

  9. Type IV collagen degradation in the myocardial basement membrane after unloading of the failing heart by a left ventricular assist device.

    PubMed

    Bruggink, Annette H; van Oosterhout, Matthijs F M; de Jonge, Nicolaas; Cleutjens, Jack P M; van Wichen, Dick F; van Kuik, Joyce; Tilanus, Marcel G J; Gmelig-Meyling, Frits H J; van den Tweel, Jan G; de Weger, Roel A

    2007-11-01

    After left ventricular assist device (LVAD) support in patients with end-stage cardiomyopathy, cardiomyocytes decrease in size. We hypothesized that during this process, known as reverse remodeling, the basement membrane (BM), which is closely connected to, and forms the interface between the cardiomyocytes and the extracellular matrix, will be severely affected. Therefore, the changes in the myocardial BM in patients with end-stage heart failure before and after LVAD support were studied. The role of MMP-2 in this process was also investigated. Transmission electron microscopy showed that the BM thickness decreased post-LVAD compared to pre-LVAD. Immunohistochemistry indicated a reduced immunoreactivity for type IV collagen in the BM after LVAD support. Quantitative PCR showed a similar mRNA expression for type IV collagen pre- and post-LVAD. MMP-2 mRNA almost doubled post-LVAD (P<0.01). In addition, active MMP-2 protein as identified by gelatin zymography and confirmed by Western blot analysis was detected after LVAD support and in controls, but not before LVAD support. Active MMP was localized in the BM of the cardiomyocyte, as detected by type IV collagen in situ zymography. Furthermore, in situ hybridization/immunohistochemical double staining showed that MMP-2 mRNA was expressed in cardiomyocytes, macrophages, T-cells and endothelial cells. Taken together, these findings show reduced type IV collagen content in the BM of cardiomyocytes after LVAD support. This reduction is at least in part the result of increased MMP-2 activity and not due to reduced synthesis of type IV collagen.

  10. Comparison of the uptake of polycyclic aromatic hydrocarbons and organochlorine pesticides by semipermeable membrane devices and caged fish (Carassius carassius) in Taihu Lake, China

    USGS Publications Warehouse

    Ke, R.; Xu, Y.; Huang, S.; Wang, Z.; Huckins, J.N.

    2007-01-01

    Uptake of polycyclic aromatic hydrocarbons (PAHs) and organochlorine pesticides (OCPs) by triolein-containing semipermeable membrane devices (SPMDs) and by crucian carp (Carassius carassius) was studied in Taihu Lake, a shallow, freshwater lake in China. Crucian carp and SPMDs were deployed side by side for 32 d. The first-order uptake rate constants of individual PAHs and OCPs for the two matrices were calculated and compared to relate the amounts of chemicals accumulated by the matrices to dissolved water concentrations. On a wet-weight basis, total concentrations of PAHs and OCPs in crucian carp fillets averaged 49.5 and 13.6 ng/g, respectively, after the 32-d exposure, whereas concentrations in whole SPMDs averaged 716.9 and 62.3 ng/g, respectively. The uptake rate constants of PAHs and OCPs by SPMDs averaged seven- and fivefold higher, respectively, than those for crucian carp; however, the patterns of uptake rate constants derived from test chemical concentrations in the crucian carp and SPMDs were similar. Although equilibrium was not reached for some PAHs and OCPs during the 32-d exposure period, a reasonably good correlation between the concentration factors (CFs) and octanol/water partition coefficient (K ow) values of PAHs and OCPs in SPMDs (r = 0.86, p < 0.001) was observed when potential sorption to dissolved organic carbon was taken into account. Similar efforts to correlate the CFs and Kow values of PAHs and OCPs in crucian carp (r = 0.75, p < 0.001) were less successful, likely because of PAH metabolism by finfish. Overall, the present results suggest that SPMDs may serve as a surrogate for contaminant monitoring with fish in freshwater lake environments. ?? 2007 SETAC.

  11. Investigation of the distribution of organochlorine and polycyclic aromatic hydrocarbon compounds in the Lower Columbia River using semipermeable-membrane devices

    USGS Publications Warehouse

    McCarthy, Kathleen A.; Gale, Robert W.

    1999-01-01

    Organochlorine and polycyclic aromatic hydrocarbon compounds are of concern in the Columbia River Basin because of their adverse effects on fish and wildlife. Because these compounds can have important biological consequences at concentrations well below the detection limits associated with conventional water-sampling techniques, we used semipermeable membrane devices (SPMDs) to sample water, and achieved sub-parts-per-quintillion detection limits. We deployed SPMDs during 1997 low-flow conditions and 1998 high-flow conditions at nine main-stem sites and seven tributary sites, spanning approximately 700 miles of the Columbia River. We also collected streambed sediment from three sites. SPMD extracts and sediments were analyzed for polychlorinated dibenzo-p-dioxins, polychlorinated dibenzofurans, polychlorinated biphenyls, organochlorine pesticides and related transformation products, and polycyclic aromatic hydrocarbons. Our data indicate that (1) in the absence of additional sources, mechanisms such as volatilization, dilution, and settling of suspended particles can act to significantly reduce concentrations of contaminants along the river's flow path, (2) elevated concentrations of contaminants in the Portland-Vancouver area are primarily from local rather than upstream sources, (3) elevated concentrations of many compounds tend to be diluted during periods of high discharge, (4) much higher discharge in the main stem considerably dilutes elevated concentrations entering from tributaries, (5) the distribution of hydrophobic organic compounds in streambed sediment is not necessarily indicative of their distribution in the dissolved-phase, and (6) SPMDs can reveal patterns of contaminant occurrence at environmentally relevant concentrations that are undetectable by conventional water-sampling techniques.

  12. Application of enzyme-linked immunosorbent assay for measurement of polychlorinated biphenyls from hydrophobic solutions: Extracts of fish and dialysates of semipermeable membrane devices: Chapter 26

    USGS Publications Warehouse

    Zajicek, James L.; Tillitt, Donald E.; Huckins, James N.; Petty, Jimmie D.; Potts, Michael E.; Nardone, David A.

    1996-01-01

    Determination of PCBs in biological tissue extracts by enzyme-linked immunosorbent assays (ELISAs) can be problematic, since the hydrophobic solvents used for their extraction and isolation from interfering biochemicals have limited compatibility with the polar solvents (e.g. methanol/water) and the immunochemical reagents used in ELISA. Our studies of these solvent effects indicate that significant errors can occur when microliter volumes of PCB containing extracts, in hydrophobic solvents, are diluted directly into methanol/water diluents. Errors include low recovery and excess variability among sub-samples taken from the same sample dilution. These errors are associated with inhomogeneity of the dilution, which is readily visualized by the use of a hydrophobic dye, Solvent Blue 35. Solvent Blue 35 is also used to visualize the evaporative removal of hydrophobic solvent and the dissolution of the resulting PCB/dye residue by pure methanol and 50% (v/v) methanol/water, typical ELISA diluents. Evaporative removal of isooctane by an ambient temperature nitrogen purge with subsequent dissolution in 100% methanol gives near quantitative recovery of model PCB congeners. We also compare concentrations of total PCBs from ELISA (ePCB) to their corresponding concentrations determined from capillary gas chromatography (GC) in selected fish sample extracts and dialysates of semipermeable membrane device (SPMD) passive samplers using an optimized solvent exchange procedure. Based on Aroclor 1254 calibrations, ePCBs (ng/mL) determined in fish extracts are positively correlated with total PCB concentrations (ng/mL) determined by GC: ePCB = 1.16 * total-cPCB - 5.92. Measured ePCBs (ng/3 SPMDs) were also positively correlated (r2 = 0.999) with PCB totals (ng/3 SPMDs) measured by GC for dialysates of SPMDs: ePCB = 1.52 * total PCB - 212. Therefore, this ELISA system for PCBs can be a rapid alternative to traditional GC analyses for determination of PCBs in extracts of biota or in

  13. TOXICOLOGICAL STUDIES IN TROPICAL ECOSYSTEMS: AN ECOTOXICOLOGICAL RISK ASSESSMENT OF PESTICIDE RUNOFF IN SOUTH FLORIDA ESTUARINE ECOSYSTEMS

    EPA Science Inventory

    A multi-year study in the C-111 canal and associated sites in Florida Bay was undertaken in order to determine the potential contaminant risk that exists in South Florida. After examining extensive surface water data, as well as sediment, tissue, and semi-permeable membrane devic...

  14. TOXICOLOGICAL STUDIES IN TROPICAL ECOSYSTEMS: AN ECOTOXICOLOGICAL RISK ASSESSMENT OF PESTICIDE RUNOFF IN SOUTH FLORIDA ESTUARINE ECOSYSTEMS

    EPA Science Inventory

    A multi-year study in the C-111 canal and associated sites in Florida Bay was undertaken in order to determine the potential contaminant risk that exists in South Florida. After examining extensive surface water data, as well as sediment, tissue, and semi-permeable membrane devic...

  15. Implanting permanent left ventricular assist devices in patients on veno-arterial extracorporeal membrane oxygenation support: do we really need a cardiopulmonary bypass machine?

    PubMed

    Abdeen, Muhammad S K M; Albert, Alexander; Maxhera, Bujar; Hoffmann, Till; Petrov, Georgi; Sixt, Stephan; Roussel, Elisabeth; Westenfeld, Ralf; Lichtenberg, Artur; Saeed, Diyar

    2016-09-01

    Selected patients who failed to be weaned off temporary veno-arterial extracorporeal membrane oxygenation (VA-ECMO) support may be considered for long-term left ventricular assist devices (LVADs). Activation of the systemic inflammatory response due to the cardiopulmonary bypass (CPB) machine and its associated deleterious effects on the coagulation system have been well documented. The aim of the study was to compare the outcome of patients receiving VAD on VA-ECMO with patients who were converted to CPB at the time of VAD implantation. Data of patients undergoing LVAD implantation between January 2010 and September 2015 were retrospectively reviewed. Inclusion criteria were patients with prior VA-ECMO. Perioperative characteristics and postoperative outcome of patients who received LVAD after VA-ECMO with (CPB group) or without CPB (no-CPB group) were compared. A total of 110 permanent VADs were implanted during this time frame. Forty patients had VA-ECMO prior to VAD implantation and met the inclusion criteria. The CPB was used in 23 patients and 17 patients received VAD on VA-ECMO without using CPB. The preoperative characteristics of the patients were comparable except for lower body mass index, higher international normalized ratio (INR) and higher rate of preoperative intra-aortic balloon pump usage in the CPB group (P = 0.035, 0.008 and 0.003, respectively). The incidence of postoperative right VAD implantation and survival rate was comparable between both groups. However, the chest tube blood loss and amount of blood product usage was higher in the CPB group. The total blood loss in the first 24 h after surgery (2469 ± 2067 vs 1080 ± 941 ml, P= 0.05) and number of units of intraoperative fresh frozen plasma administered (4 ± 3 vs 1 ± 2, P= 0.02) remained higher in the CPB group even after adjustment for differences in preoperative INR value by propensity score matching. This study demonstrates that the CPB machine can be safely omitted when a long

  16. Evaluation of a hollow fiber supported liquid membrane device as a chemical surrogate for the measurements of zinc (II) bioavailability using two microalgae strains as biological references.

    PubMed

    Rodríguez-Morales, Erik A; Rodríguez de San Miguel, Eduardo; de Gyves, Josefina

    2017-03-01

    The environmental bioavailability of zinc (II), i.e., the uptake of the element by an organism, was determined using two microalgae species, Scenedesmus acutus and Pseudokirchneriella subcapitata, and estimated using hollow fiber supported liquid membrane (HF-SLM) device as the chemical surrogate. Several experimental conditions were studied including the presence of organic matter, inorganic anions and concomitant cations and pH. The results show strong positive correlation coefficients between the responses given by the HF-SLM and the microalgae species (r = 0.900 for S. acutus and r = 0.876 for P. subcapitata) in multivariate environments (changes in pH, calcium, humic and citrate concentrations). The maximum amount of zinc (II) retained by the HF-SLM (4.7 × 10(-8) mol/cm(2)) was higher than those for P. subcapitata and S. acutus (9.4 × 10(-11) mol/cm(2) and 6.2 × 10(-11) mol/cm(2), respectively). The variation in pH (pH 5.5-9) was the variable with the greatest effect on zinc internalization in all systems, increasing approximately 2.5 times for P. subcapitata and 5.5 times for S. acutus respect to pH = 5.5, while the presence of humic acids did not affect the response. The species' concentration analysis of the experimental design at pH = 5.5 indicated that the amount of internalized zinc (II) by the HF-SLM and both microalgae species is strongly dependent on the free zinc concentration (r = 0.910 for the HF-SLM, r = 0.922 for S. acutus and r = 0.954 for P. subcapitata); however, at pH = 9.0, the amount of internalized zinc (II) is strongly dependent on the sum of free zinc and labile species (r = 0.912 for the HF-SLM, r = 0.947 for S. acutus and r = 0.900 for P. subcapitata). The presence of inorganic ligands (chloride, sulfate, phosphate, carbonate, and nitrate) and metal ions (cobalt (II), copper (II), nickel (II), chromium (VI), lead (II) and cadmium (II)) produced different behaviors both in the chemical surrogate and the

  17. Structures of Bordered Pits Potentially Contributing to Isolation of a Refilled Vessel from Negative Xylem Pressure in Stems of Morus australis Poir.: Testing of the Pit Membrane Osmosis and Pit Valve Hypotheses.

    PubMed

    Ooeda, Hiroki; Terashima, Ichiro; Taneda, Haruhiko

    2017-02-01

    Two hypotheses have been proposed to explain the mechanism preventing the refilling vessel water from being drained to the neighboring functional vessels under negative pressure. The pit membrane osmosis hypothesis proposes that the xylem parenchyma cells release polysaccharides that are impermeable to the intervessel pit membranes into the refilling vessel; this osmotically counteracts the negative pressure, thereby allowing the vessel to refill. The pit valve hypothesis proposes that gas trapped within intervessel bordered pits isolates the refilling vessel water from the surrounding functional vessels. Here, using the single-vessel method, we assessed these hypotheses in shoots of mulberry (Morus australis Poir.). First, we confirmed the occurrence of xylem refilling under negative pressure in the potted mulberry saplings. To examine the pit membrane osmosis hypothesis, we estimated the semi-permeability of pit membranes for molecules of various sizes and found that the pit membranes were not semi-permeable to polyethylene glycol of molecular mass <20,000. For the pit valve hypothesis, we formed pit valves in the intervessel pits in the short stem segments and measured the maximum liquid pressure up to which gases in bordered pits were retained. The threshold pressure ranged from 0.025 to 0.10 MPa. These values matched the theoretical value calculated from the geometry of the pit chamber (0.0692-0.101 MPa). Our results suggest that gas in the pits is retained by surface tension, even under substantial positive pressure to resolve gases in the refilling vessel, whereas the molecule size required for the pit membrane osmosis mechanism in mulberry would be unrealistically large. © The Author 2016. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  18. Kawasaki Disease With Giant Coronary Aneurysms Requiring a Ventricular Assist Device to Separate From Extracorporeal Membrane Oxygenation: Coronary Issues Can Be a Pediatric Problem Too!

    PubMed

    Adler, Adam C; Kodavatiganti, Ramesh

    2016-08-15

    Kawasaki disease, although common in children, may rarely affect the coronary arteries, leading to aneurysm formation and potential for coronary thrombus formation. Extremely rarely, coronary aneurysms from Kawasaki disease can thrombose, resulting in ischemic myocardium. We present a case of a 31-month-old patient requiring a left ventricular assist device after thrombosis of giant coronary aneurysms led to ischemic cardiomyopathy. At the termination of the surgical procedure, we encountered 2 periods of ventricular assist device dropout requiring intervention. With the increase in the number of pediatric patients with assist devices, we review the basic care for a patient requiring emergent surgery.

  19. Evaluation of the measurement of Cu(II) bioavailability in complex aqueous media using a hollow-fiber supported liquid membrane device (HFSLM) and two microalgae species (Pseudokirchneriella subcapitata and Scenedesmus acutus).

    PubMed

    Rodríguez-Morales, Erik A; Rodríguez de San Miguel, Eduardo; de Gyves, Josefina

    2015-11-01

    The environmental bioavailability of copper was determined using a hollow-fiber supported liquid membrane (HFSLM) device as a chemical surrogate and two microalgae species (Scenedesmus acutus and Pseudokirchneriella subcapitata). Several experimental conditions were studied: pH, the presence of organic matter, inorganic anions, and concomitant cations. The results indicated a strong relationship between the response given by the HFSLM and the microalgae species with free copper concentrations measured by an ion selective electrode (ISE), in accordance with the free-ion activity model (FIAM). A significant positive correlation was evident when comparing the bioavailability results measured by the HFSLM and the S. acutus microalga species, showing that the synthetic device may emulate biological uptake and, consequently, be used as a chemical test for bioavailability measurements using this alga as a biological reference.

  20. Spontaneous structuration in coacervate-based protocells by polyoxometalate-mediated membrane assembly.

    PubMed

    Williams, David S; Patil, Avinash J; Mann, Stephen

    2014-05-14

    Molecularly crowded, polyelectrolyte/ribonucleotide-enriched membrane-free coacervate droplets are transformed into membrane-bounded sub-divided vesicles by using a polyoxometalate-mediated surface-templating procedure. The coacervate to vesicle transition results in reconstruction of the coacervate micro-droplets into novel three-tiered micro-compartments comprising a semi-permeable negatively charged polyoxometalate/polyelectrolyte outer membrane, a sub-membrane coacervate shell, and an internal aqueous lumen. We demonstrate that organic dyes, ssDNA, magnetic nanoparticles and enzymes can be concentrated into the interior of the micro-compartments by sequestration into the coacervate micro-droplets prior to vesicle formation. The vesicle-encapsulated proteins are inaccessible to proteases in the external medium, and can be exploited for the spatial localization and coupling of two-enzyme cascade reactions within single or between multiple populations of hybrid vesicles dispersed in aqueous media. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Membrane Technology: A Search for Membranes for Submarine Atmosphere Control

    DTIC Science & Technology

    1992-01-01

    dimethyl silicone (25%) rubber membranes exhibit the highest permeability for carbon dioxide, while cellulose acetate exhibits the highest separation...factor (10.9) of carbon dioxide to oxygen. However, an immobilized film membrane (IFM) device constructed of a cellulose acetate membrane impregnated

  2. Hydrogel microfluidic co-culture device for photothermal therapy and cancer migration.

    PubMed

    Lee, Jong Min; Seo, Hye In; Bae, Jun Hyuk; Chung, Bong Geun

    2017-02-07

    We developed the photo-crosslinkable hydrogel microfluidic co-culture device to study photothermal therapy and cancer cell migration. To culture MCF7 human breast carcinoma cells and metastatic U87MG human glioblastoma in the microfluidic device, we used 10 w/v% gelatin methacrylate (GelMA) hydrogels as a semi-permeable physical barrier. We demonstrated the effect of gold nanorod on photothermal therapy of cancer cells in the microfluidic co-culture device. Interestingly, we observed that metastatic U87MG human glioblastoma largely migrated toward vascular endothelial growth factor (VEGF)-treated GelMA hydrogel-embedding microchannels. The main advantage of this hydrogel microfluidic co-culture device is to simultaneously analyze the physiological migration behaviors of two cancer cells with different physiochemical motilities and study gold nanorod-mediated photothermal therapy effect. Therefore, this hydrogel microfluidic co-culture device could be a potentially powerful tool for photothermal therapy and cancer cell migration applications. This article is protected by copyright. All rights reserved.

  3. Development of Multi-Membrane Near-Infrared Diode Mass Spectrometer for Field Analysis of Aromatic Hydrocarbons

    NASA Astrophysics Data System (ADS)

    Mach, Phillip M.; Wright, Kenneth C.; Verbeck, Guido F.

    2015-02-01

    Membrane Inlet Mass Spectrometry (MIMS) is a technique that incorporates a semi-permeable membrane selective for differing organic molecules and chemistries. This eliminates the need for time-consuming sample preparation and facilitates near instantaneous analysis. This study will examine how the front end of MIMS incorporates three dual inlet ports, allowing for differing MIMS materials and selectivity for specific environments. Polydimethylsiloxane (PDMS) membranes have proven to be selective of benzene, toluene, and xylene (BTX) as well as aromatic hydrocarbons that are common in petroleum products while remaining selective against the aliphatic chains. PDMS has proven to be a successful choice of membrane with high permeability in atmospheric environments. In addition, polycyclic aromatic hydrocarbons (PAHs) such as acenaphthene, acenapthylene, naphthalene, and fluorene have recently been detected to the 5 ppb level in a nitrogen atmosphere with our current configuration. This preliminary work provides proof of concept using near-infrared laser diodes that act upon the membrane to increase its permeability and provide higher sensitivity of aromatic samples.

  4. Sensitive and non-invasive method for the in vivo analysis of membrane permeability in small animals.

    PubMed

    Fernandez-Carrera, Andrea; Vigo, Eva; Regueiro-Rodríguez, Carla; González-Fernández, África; Olivieri, David; Aroeira, Luiz S

    2017-09-01

    Tissue membranes are boundaries that isolate organs or cavities in the body. These semi-permeable membranes are responsible for passive protection that acts through the regulation of nutrient absorption, secretion and filtration of small molecules. These functions could be altered as a consequence of inflammation or trauma, which in turn could lead to changes in permeability, allowing the entrance of toxins, antigens, proteins or facilitating the spread of tumors. Membrane permeability therefore plays an important role in numerous diseases. However, current experimental techniques that are available to quantify membrane permeability in small animals have limited precision and temporal specificity. Improvements in such measurements would lead to a deeper understanding of disease pathogenesis and this may accelerate the development of specific therapies. The study reported here concerns the efficacy of a novel, non-invasive imaging analysis-based measurement method that significantly improves the quantification of tissue membrane permeability in small animals, while at the same time mitigating the adverse effects experienced by the animals under study.

  5. Graphene Trans-Electrode Membranes

    NASA Astrophysics Data System (ADS)

    Kuan, Aaron; Bo, Lu; Rollings, Ryan; Dressen, Don; Branton, Daniel; Golovchenko, Jene

    2014-03-01

    We report an electrical study of suspended single-layer graphene membranes separating reservoirs of electrolyte solution. Because the opposing reservoirs are separated only by an atomically thin membrane, the trans-conductance (ionic current response to a voltage across the membrane) is extremely sensitive to nanoscale defects in the membrane. This sensitivity allows the precise examination and characterization of intrinsic defects in graphene membranes, as well as engineered defects for devices. We will discuss methods for creating single nanopores or distributed defects in our graphene membranes, with the applications of nanopore DNA sequencing and water desalination in mind.

  6. Neonatal extracorporeal membrane oxygenation devices, techniques and team roles: 2011 survey results of the United States' Extracorporeal Life Support Organization centers.

    PubMed

    Lawson, Scott; Ellis, Cory; Butler, Katie; McRobb, Craig; Mejak, Brian

    2011-12-01

    In early 2011, surveys of active Extracorporeal Life Support Organization (ELSO) centers within the United States were conducted by electronic mail regarding neonatal Extracorporeal Membrane Oxygenation (ECMO) equipment and professional staff. Seventy-four of 111 (67%) U.S. centers listed in the ELSO directory as neonatal centers responded to the survey. Of the responding centers, 53% routinely used roller pumps for neonatal ECMO, 15% reported using centrifugal pumps and 32% reported using a combination of both. Of the centers using centrifugal pumps, 51% reported that they do not use a compliance bladder in the circuit. The majority (95%) of roller pump users reported using a compliance bladder and 97% reported using Tygon" S-97-E tubing in the raceway of their ECMO circuits. Silicone membrane oxygenators were reportedly used by 25% of the respondents, 5% reported using micro-porous hollow fiber oxygenators (MPHF), 70% reported using polymethylpentene (PMP) hollow fiber oxygenators and 5% reported using a combination of the different types. Some form of in-line blood monitoring was used by 88% of the responding centers and 63% of responding centers reported using a circuit surface coating. Anticoagulation monitoring via the activated clotting time (ACT) was reported by 100% of the reporting centers. The use of extracorporeal cardiopulmonary resuscitation (ECPR) was reported by 53% of the responding centers with 82% of those centers using a crystalloid primed circuit to initiate ECPR. A cooling protocol was used by 77% of the centers which have an ECPR program. When these data are compared with surveys from 2002 and 2008 it shows that the use of silicone membrane oxygenators continues to decline, the use of centrifugal pumps continues to increase and ECMO personnel continues to be comprised of multidisciplinary groups of dedicated allied health care professionals.

  7. Electrophoresis device

    NASA Technical Reports Server (NTRS)

    Rhodes, P. H.; Snyder, R. S. (Inventor)

    1982-01-01

    A device for separating cellular particles of a sample substance into fractionated streams of different cellular species includes a casing having a distribution chamber, a separation chamber, and a collection chamber. The electrode chambers are separated from the separation chamber interior by means of passages such that flow variations and membrane variations around the slotted portion of the electrode chamber do not enduce flow perturbations into the laminar buffer curtain flowing in the separation chamber. The cellular particles of the sample are separated under the influence of the electrical field and the separation chamber into streams of different cellular species. The streams of separated cells enter a partition array in the collection chamber where they are fractionated and collected.

  8. Supported ionic liquid membrane in membrane reactor

    NASA Astrophysics Data System (ADS)

    Makertihartha, I. G. B. N.; Zunita, M.; Dharmawijaya, P. T.; Wenten, I. G.

    2017-01-01

    Membrane reactor is a device that integrates membrane based separation and (catalytic) chemical reaction vessel in a single device. Ionic liquids, considered to be a relatively recent magical chemical due to their unique properties, have a large variety of applications in all areas of chemical industries. Moreover, the ionic liquid can be used as membrane separation layer and/or catalytically active site. This paper will review utilization of ionic liquid in membrane reactor related applications especially Fischer-Tropsch, hydrogenation, and dehydrogenation reaction. This paper also reviews about the capability of ionic liquid in equilibrium reaction that produces CO2 product so that the reaction will move towards the product. Water gas shift reaction in ammonia production also direct Dimethyl Ether (DME) synthesis that produces CO2 product will be discussed. Based on a review of numerous articles on supported ionic liquid membrane (SILM) indicate that ionic liquids have the potential to support the process of chemical reaction and separation in a membrane reactor.

  9. Microfluidic Cell Culture Device

    NASA Technical Reports Server (NTRS)

    Takayama, Shuichi (Inventor); Cabrera, Lourdes Marcella (Inventor); Heo, Yun Seok (Inventor); Smith, Gary Daniel (Inventor)

    2014-01-01

    Microfluidic devices for cell culturing and methods for using the same are disclosed. One device includes a substrate and membrane. The substrate includes a reservoir in fluid communication with a passage. A bio-compatible fluid may be added to the reservoir and passage. The reservoir is configured to receive and retain at least a portion of a cell mass. The membrane acts as a barrier to evaporation of the bio-compatible fluid from the passage. A cover fluid may be added to cover the bio-compatible fluid to prevent evaporation of the bio-compatible fluid.

  10. Advanced underwater lift device

    NASA Technical Reports Server (NTRS)

    Flanagan, David T.; Hopkins, Robert C.

    1993-01-01

    Flexible underwater lift devices ('lift bags') are used in underwater operations to provide buoyancy to submerged objects. Commercially available designs are heavy, bulky, and awkward to handle, and thus are limited in size and useful lifting capacity. An underwater lift device having less than 20 percent of the bulk and less than 10 percent of the weight of commercially available models was developed. The design features a dual membrane envelope, a nearly homogeneous envelope membrane stress distribution, and a minimum surface-to-volume ratio. A proof-of-concept model of 50 kg capacity was built and tested. Originally designed to provide buoyancy to mock-ups submerged in NASA's weightlessness simulators, the device may have application to water-landed spacecraft which must deploy flotation upon impact, and where launch weight and volume penalties are significant. The device may also be useful for the automated recovery of ocean floor probes or in marine salvage applications.

  11. Comparison of semipermeable membrane device (SPMD) and large-volume solid-phase extraction techniques to measure water concentrations of 4,4'-DDT, 4,4'-DDE, and 4,4'-DDD in Lake Chelan, Washington.

    PubMed

    Ellis, Steven G; Booij, Kees; Kaputa, Mike

    2008-07-01

    Semipermeable membrane devices (SPMDs) spiked with the performance reference compound PCB29 were deployed 6.1 m above the sediments of Lake Chelan, Washington, for a period of 27 d, to estimate the dissolved concentrations of 4,4'-DDT, 4,4'-DDE, and 4,4'-DDD. Water concentrations were estimated using methods proposed in 2002 and newer equations published in 2006 to determine how the application of the newer equations affects historical SPMD data that used the older method. The estimated concentrations of DDD, DDE, and DDD calculated using the older method were 1.5-2.9 times higher than the newer method. SPMD estimates from both methods were also compared to dissolved and particulate DDT concentrations measured directly by processing large volumes of water through a large-volume solid-phase extraction device (Infiltrex 300). SPMD estimates of DDD+DDE+DDT (SigmaDDT) using the older and newer methods were lower than Infiltrex concentrations by factors of 1.1 and 2.3, respectively. All measurements of DDT were below the Washington State water quality standards for the protection of human health (0.59 ng l(-1)) and aquatic life (1.0 ng l(-1)).

  12. Membrane Based Thermal Control Development

    NASA Technical Reports Server (NTRS)

    Murdoch, Karen

    1997-01-01

    The investigation of the feasibility of using a membrane device as a water boiler for thermal control is reported. The membrane device permits water vapor to escape to the vacuum of space but prevents the loss of liquid water. The vaporization of the water provides cooling to the water loop. This type of cooling device would have application for various types of short duration cooling needs where expenditure of water is allowed and a low pressure source is available such as in space or on a planet's surface. A variety of membrane samples, both hydrophilic and hydrophobic, were purchased to test for this thermal control application. An initial screening test determined if the membrane could pose a sufficient barrier to maintain water against vacuum. Further testing compared the heat transfer performance of those membranes that passed the screening test.

  13. Validated RP-HPLC/DAD Method for the Quantification of Insect Repellent Ethyl 2-Aminobenzoate in Membrane-Moderated Matrix Type Monolithic Polymeric Device.

    PubMed

    Islam, Johirul; Zaman, Kamaruz; Chakrabarti, Srijita; Sharma Bora, Nilutpal; Mandal, Santa; Pratim Pathak, Manash; Srinivas Raju, Pakalapati; Chattopadhyay, Pronobesh

    2017-07-01

    A simple, accurate and sensitive reversed-phase high-performance liquid chromatographic (RP-HPLC) method has been developed for the estimation of ethyl 2-aminobenzoate (EAB) in a matrix type monolithic polymeric device and validated as per the International Conference on Harmonization guidelines. The analysis was performed isocratically on a ZORBAX Eclipse plus C18 analytical column (250 × 4.4 mm, 5 μm) and a diode array detector (DAD) using acetonitrile and water (75:25 v/v) as the mobile phase by keeping the flow-rate constant at 1.0 mL/min. Determination of EAB was not interfered in the presence of excipients. Inter- and intra-day relative standard deviations were not higher than 2%. Mean recovery was between 98.7 and 101.3%. Calibration curve was linear in the concentration range of 0.5-10 µg/mL. Limits of detection and quantification were 0.19 and 0.60 µg/mL, respectively. Thus, the present report put forward a novel method for the estimation of EAB, an emerging insect repellent, by using RP-HPLC technique. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  14. In-situ thermal annealing of on-membrane silicon-on-insulator semiconductor-based devices after high gamma dose irradiation.

    PubMed

    Amor, S; André, N; Kilchytska, V; Tounsi, F; Mezghani, B; Gérard, P; Ali, Z; Udrea, F; Flandre, D; Francis, L A

    2017-05-05

    In this paper, we investigate the recovery of some semiconductor-based components, such as N/P-type field-effect transistors (FETs) and a complementary metal-oxide-semiconductor (CMOS) inverter, after being exposed to a high total dose of gamma ray radiation. The employed method consists mainly of a rapid, low power and in situ annealing mitigation technique by silicon-on-insulator micro-hotplates. Due to the ionizing effect of the gamma irradiation, the threshold voltages showed an average shift of -580 mV for N-channel transistors, and -360 mV for P-MOSFETs. A 4 min double-cycle annealing of components with a heater temperature up to 465 °C, corresponding to a maximum power of 38 mW, ensured partial recovery but was not sufficient for full recovery. The degradation was completely recovered after the use of a built-in high temperature annealing process, up to 975 °C for 8 min corresponding to a maximum power of 112 mW, which restored the normal operating characteristics for all devices after their irradiation.

  15. In-situ thermal annealing of on-membrane silicon-on-insulator semiconductor-based devices after high gamma dose irradiation

    NASA Astrophysics Data System (ADS)

    Amor, S.; André, N.; Kilchytska, V.; Tounsi, F.; Mezghani, B.; Gérard, P.; Ali, Z.; Udrea, F.; Flandre, D.; Francis, L. A.

    2017-05-01

    In this paper, we investigate the recovery of some semiconductor-based components, such as N/P-type field-effect transistors (FETs) and a complementary metal-oxide-semiconductor (CMOS) inverter, after being exposed to a high total dose of gamma ray radiation. The employed method consists mainly of a rapid, low power and in situ annealing mitigation technique by silicon-on-insulator micro-hotplates. Due to the ionizing effect of the gamma irradiation, the threshold voltages showed an average shift of -580 mV for N-channel transistors, and -360 mV for P-MOSFETs. A 4 min double-cycle annealing of components with a heater temperature up to 465 °C, corresponding to a maximum power of 38 mW, ensured partial recovery but was not sufficient for full recovery. The degradation was completely recovered after the use of a built-in high temperature annealing process, up to 975 °C for 8 min corresponding to a maximum power of 112 mW, which restored the normal operating characteristics for all devices after their irradiation.

  16. Multijunction Capillary Isoelectric Focusing Device Combined with Online Membrane-Assisted Buffer Exchanger Enables Isoelectric Point Fractionation of Intact Human Plasma Proteins for Biomarker Discovery.

    PubMed

    Pirmoradian, Mohammad; Astorga-Wells, Juan; Zubarev, Roman A

    2015-12-01

    Prefractionation of proteins is often employed to improve analysis specificity in proteomics. Prefractionation based on the isoelectric point (pI) is particularly attractive because pI is a well-defined parameter and it is orthogonal to hydrophobicity on which reversed-phase chromatography is based. However, direct capillary electrophoresis of blood proteins is challenging due to its high content of salts and charged small molecules. Here, we couple an online desalinator device to our multijunction capillary isoelectric focusing (MJ-CIEF) instrument and perform direct isoelectric separation of human blood plasma. In a proof-of-principle experiment, pooled samples of patients with progressive mild cognitive impairment and corresponding healthy controls were investigated. Injection of 3 μL of plasma containing over 100 μg of proteins into the desalinator was followed by pI fractionation with MJ-CIEF in less than 1 h. Shotgun proteomics of 12 collected fractions from each of the 5 replicates of pooled samples resulted in the identification and accurate quantification (median CV between the replicates is <4%) of nearly 365 protein groups from 4030 unique peptides (with <1% FDR for both peptides and proteins). The obtained results include several proteins previously reported as AD markers. The isoelectric point of each quantified protein was calculated using a set of 7 synthetic peptides spiked into the samples. Several proteins with a significant pI shift between their isoforms in the patient and control samples were identified. The presented method is straightforward, robust, and scalable; therefore, it can be used in both biological and clinical applications.

  17. Bacteria/virus filter membrane

    NASA Technical Reports Server (NTRS)

    Lysaght, M. S.; Goodwin, F.; Roebelen, G.

    1977-01-01

    Hollow acrylate fiber membrane that filters bacterial and viral organisms can be used with closed-cycle life-support systems for underwater habitations or laboratories. Membrane also has applications in fields of medicine, gnotobiotics, pharmaceutical production, and industries and research facilities that require sterile water. Device eliminates need for strong chemicals or sterilizing agents, thereby reducing costs.

  18. Bacteria/virus filter membrane

    NASA Technical Reports Server (NTRS)

    Lysaght, M. S.; Goodwin, F.; Roebelen, G.

    1977-01-01

    Hollow acrylate fiber membrane that filters bacterial and viral organisms can be used with closed-cycle life-support systems for underwater habitations or laboratories. Membrane also has applications in fields of medicine, gnotobiotics, pharmaceutical production, and industries and research facilities that require sterile water. Device eliminates need for strong chemicals or sterilizing agents, thereby reducing costs.

  19. Modeling flow in nanoporous, membrane reservoirs and interpretation of coupled fluxes

    NASA Astrophysics Data System (ADS)

    Geren, Filiz

    The average pore size in unconventional, tight-oil reservoirs is estimated to be less than 100 nm. At this pore size, Darcy flow is no longer the dominating flow mechanism and a combination of diffusive flows determines the flow characteristics. Concentration driven self-diffusion has been well known and included in the flow and transport models in porous media. However, when the sizes of the pores and pore-throats decrease down to the size of the hydrocarbon molecules, the porous medium acts like a semi-permeable membrane, and the size of the pore openings dictates the direction of transport between adjacent pores. Accordingly, characterization of flow and transport in tight unconventional plays requires understanding of their membrane properties. This Master of Science thesis first highlights the membrane properties of nanoporous, unconventional reservoirs and then discusses how filtration effects can be incorporated into the models of transport in nanoporous media within the coupled flux concept. The effect of filtration on fluid composition and its impact on black-oil fluid properties like bubble point pressure is also demonstrated. To define filtration and filtration pressure in unconventional, tight-oil reservoirs, analogy to chemical osmosis is applied two pore systems connected with a pore throat, which shows membrane properties. Because the pore throat selectivity permits the passage of fluid molecules by their sizes, given a filtration pressure difference between the two pore systems, the concentration difference between the systems is determined by flash calculations. The results are expressed in the form of filtration (membrane) efficiency, which is essential parameter to define coupled fluxes for porous media flow.

  20. Proton-sensing transistor systems for detecting ion leakage from plasma membranes under chemical stimuli.

    PubMed

    Imaizumi, Yuki; Goda, Tatsuro; Schaffhauser, Daniel F; Okada, Jun-Ichi; Matsumoto, Akira; Miyahara, Yuji

    2017-03-01

    The membrane integrity of live cells is routinely evaluated for cytotoxicity induced by chemical or physical stimuli. Recent progress in bioengineering means that high-quality toxicity validation is required. Here, we report a pH-sensitive transistor system developed for the continuous monitoring of ion leakage from cell membranes upon challenge by toxic compounds. Temporal changes in pH were generated with high reproducibility via periodic flushing of HepG2 cells on a gate insulator of a proton-sensitive field-effect transistor with isotonic buffer solutions with/without NH4Cl. The pH transients at the point of NH4Cl addition/withdrawal originated from the free permeation of NH3 across the semi-permeable plasma membranes, and the proton sponge effect produced by the ammonia equilibrium. Irreversible attenuation of the pH transient was observed when the cells were subjected to a membrane-toxic reagent. Experiments and simulations proved that the decrease in the pH transient was proportional to the area of the ion-permeable pores on the damaged plasma membranes. The pH signal was correlated with the degree of hemolysis produced by the model reagents. The pH assay was sensitive to the formation of molecularly sized pores that were otherwise not measurable via detection of the leakage of hemoglobin, because the hydrodynamic radius of hemoglobin was greater than 3.1nm in the hemolysis assay. The pH transient was not disturbed by inherent ion-transporter activity. The ISFET assay was applied to a wide variety of cell types. The system presented here is fast, sensitive, practical and scalable, and will be useful for validating cytotoxins and nanomaterials.

  1. Nanoengineered field induced charge separation membranes manufacture thereof

    DOEpatents

    O'Brien, Kevin C.; Haslam, Jeffery J.; Bourcier, William L.; Floyd, III, William Clary

    2016-08-02

    A device according to one embodiment includes a porous membrane having a surface charge and pore configuration characterized by a double layer overlap effect being present in pores of the membrane, where the porous membrane includes functional groups that preferentially interact with either cations or anions. A device according to another embodiment includes a porous membrane having a surface charge in pores thereof sufficient to impart anion or cation selectivity in the pores. Additional devices, systems and methods are also presented.

  2. Evolution of Barrier Membranes in Periodontal Regeneration-“Are the third Generation Membranes really here?"

    PubMed Central

    Pillai, Baiju Radhamoni Madhavan

    2014-01-01

    In the last decades, Guide Tissue Regeneration (GTR) technique has been applied for the treatment of various periodontal defects such as intrabony defects, furcation involvements and localized gingival recession defects. From early days of using membranes with the simple aim of minimizing toxic response in the host, membranes have come a long way. Third generation membranes not only act as barriers but also as delivery devices to release specific agents. Many clinical trials have focused on using membranes as delivery devices for antibiotics and growth factors. In this article we take a brief look at the evolution of barrier membranes and future avenues with regard to third generation membranes. PMID:25654055

  3. Semipermeable membrane devices link site-specific contaminants to effects: PART II - A comparison of lingering Exxon Valdez oil with other potential sources of CYP1A inducers in Prince William Sound, Alaska.

    PubMed

    Short, Jeffrey W; Springman, Kathrine R; Lindeberg, Mandy R; Holland, Larry G; Larsen, Marie L; Sloan, Catherine A; Khan, Colin; Hodson, Peter V; Rice, Stanley D

    2008-12-01

    We deployed semipermeable membrane devices (SPMDs) on beaches for 28 days at 53 sites in Prince William Sound (PWS), Alaska, to evaluate the induction potential from suspected sources of cytochrome P450 1A (CYP1A)-inducing contaminants. Sites were selected to assess known point sources, or were chosen randomly to evaluate the region-wide sources. After deployment, SPMD extracts were analyzed chemically for persistent organic pollutants (POPs) and polycyclic aromatic hydrocarbons (PAH). These results were compared with hepatic CYP1A enzyme activity of juvenile rainbow trout injected with the same extracts prior to clean-up for the chemical analyses. Increased CYP1A activity was strongly associated with PAH concentrations in extracts, especially chrysene homologues but was not associated with POPs. The only apparent sources of chrysene homologues were lingering oil from Exxon Valdez, asphalt and bunker fuels released from storage tanks during the 1964 Alaska earthquake, creosote leaching from numerous pilings at one site, and PAH-contaminated sediments at Cordova Harbor. Our results indicate that PWS is remarkably free of pollution from PAH when nearby sources are absent as well as from pesticides and PCBs generally.

  4. In-membrane micro fuel cell

    DOEpatents

    Omosebi, Ayokunle; Besser, Ronald

    2016-09-06

    An in-membrane micro fuel cell comprises an electrically-insulating membrane that is permissive to the flow of cations, such as protons, and a pair of electrodes deposited on channels formed in the membrane. The channels are arranged as conduits for fluids, and define a membrane ridge between the channels. The electrodes are porous and include catalysts for promoting the liberation of a proton and an electron from a chemical species and/or or the recombination of a proton and an electron with a chemical specie. The fuel cell may be provided a biosensor, an electrochemical sensor, a microfluidic device, or other microscale devices fabricated in the fuel cell membrane.

  5. Microreactor Array Device

    NASA Astrophysics Data System (ADS)

    Wiktor, Peter; Brunner, Al; Kahn, Peter; Qiu, Ji; Magee, Mitch; Bian, Xiaofang; Karthikeyan, Kailash; Labaer, Joshua

    2015-03-01

    We report a device to fill an array of small chemical reaction chambers (microreactors) with reagent and then seal them using pressurized viscous liquid acting through a flexible membrane. The device enables multiple, independent chemical reactions involving free floating intermediate molecules without interference from neighboring reactions or external environments. The device is validated by protein expressed in situ directly from DNA in a microarray of ~10,000 spots with no diffusion during three hours incubation. Using the device to probe for an autoantibody cancer biomarker in blood serum sample gave five times higher signal to background ratio compared to standard protein microarray expressed on a flat microscope slide. Physical design principles to effectively fill the array of microreactors with reagent and experimental results of alternate methods for sealing the microreactors are presented.

  6. Microreactor Array Device

    PubMed Central

    Wiktor, Peter; Brunner, Al; Kahn, Peter; Qiu, Ji; Magee, Mitch; Bian, Xiaofang; Karthikeyan, Kailash; LaBaer, Joshua

    2015-01-01

    We report a device to fill an array of small chemical reaction chambers (microreactors) with reagent and then seal them using pressurized viscous liquid acting through a flexible membrane. The device enables multiple, independent chemical reactions involving free floating intermediate molecules without interference from neighboring reactions or external environments. The device is validated by protein expressed in situ directly from DNA in a microarray of ~10,000 spots with no diffusion during three hours incubation. Using the device to probe for an autoantibody cancer biomarker in blood serum sample gave five times higher signal to background ratio compared to standard protein microarray expressed on a flat microscope slide. Physical design principles to effectively fill the array of microreactors with reagent and experimental results of alternate methods for sealing the microreactors are presented. PMID:25736721

  7. Ionization suppression effects with condensed phase membrane introduction mass spectrometry: methods to increase the linear dynamic range and sensitivity.

    PubMed

    Duncan, Kyle D; Vandergrift, Gregory W; Krogh, Erik T; Gill, Chris G

    2015-03-01

    Condensed phase membrane introduction mass spectrometry (CP-MIMS) is an online analytical method that allows for the direct, trace level measurement of a wide range of analytes in complex samples. The technique employs a semi-permeable membrane that transfers analytes from a sample into a flowing acceptor solvent, which is directly infused to an atmospheric pressure ionization source, such as electrospray or atmospheric pressure chemical ionization. While CP-MIMS and variants of the technique have been in the literature for nearly a decade, much of the work has focused on instrument development. Few studies have thoroughly addressed quantitative methods related to detection limits, ionization suppression, or linear dynamic range. We examine ionization suppression in the direct rapid quantitation of analytes by CP-MIMS and introduce several analytical strategies to mitigate these effects, including the novel implementation of a continuously infused internal standard in the acceptor phase solvent, and modulation of acceptor phase flow rate. Several representative analytes were used to evaluate this approach with spiked, complex sample matrices, including primary wastewater effluent and artificial urine. Also reported are improved measured detection limits in the low part-per-trillion range, using a 'stopped-flow' acceptor mode.

  8. Baseline aquatic contamination and endocrine status in a resident fish of Biscayne National Park

    USGS Publications Warehouse

    Bargar, Timothy A.; Whelan, Kevin; Alvarez, David A.; Echols, Kathy R.; Peterman, Paul H.

    2016-01-01

    This is a collection of data on the contamination of water, fish, and sediments in Biscayne National Park and in canals that discharge into the national park. The water data are estimations of their concentrations in water based on sampling with passive water samplers (semi-permeable membrane devices and polar organic chemical integrative samplers). Also in this data set are estrogen equivalencies for the chemical mixtures in the polar organic chemical integrative samplers.

  9. 21 CFR 874.3930 - Tympanostomy tube with semipermeable membrane.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... SERVICES (CONTINUED) MEDICAL DEVICES EAR, NOSE, AND THROAT DEVICES Prosthetic Devices § 874.3930... membrane is a device intended to be implanted for ventilation or drainage of the middle ear and for preventing fluids from entering the middle ear cavity. The device is inserted through the tympanic...

  10. 21 CFR 874.3930 - Tympanostomy tube with semipermeable membrane.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... SERVICES (CONTINUED) MEDICAL DEVICES EAR, NOSE, AND THROAT DEVICES Prosthetic Devices § 874.3930... membrane is a device intended to be implanted for ventilation or drainage of the middle ear and for preventing fluids from entering the middle ear cavity. The device is inserted through the tympanic...

  11. Littoral Hydrodynamics and Sediment Transport Around a Semi-Permeable Breakwater

    DTIC Science & Technology

    2015-09-18

    CA (9410692) and La Jolla, CA (9410230), and also from the offshore NDBC Buoy 46047 (http://www.ndbc.noaa.gov, accessed 27 May 2015). Local wind ...the coastal stations, the offshore wind is much stronger. While the wind direction at La Jolla is characterized by the diurnal cycle of the sea...NOAA’s La Jolla Gage, 9410230, and an offshore buoy, 46047 Surface boundary forcing for CMS-Flow Sea breeze signal Wind direction: 0° North, 90

  12. Method of retrieving a liquid sample, a suction lysimeter, a portable suction lysimeter, a lysimeter system, and a deep lysimeter

    DOEpatents

    Hubbell, Joel M.; Sisson, James B.

    2003-08-26

    A method of retrieving a liquid sample comprises providing a portable lysimeter including a semi-permeable membrane and a chamber in fluid communication with the semi-permeable membrane; making a hole at a site from which a liquid sample is desired; evacuating the chamber by applying a vacuum to the chamber; lowering the portable lysimeter into the hole; obtaining a sample in the chamber; and retrieving the lysimeter from the bore; wherein it is not necessary to backfill the bore. A portable lysimeter includes a semi-permeable member and a chamber in fluid communication with the semi-permeable membrane.

  13. Osmotic water permeability of plasma and vacuolar membranes in protoplasts II: theoretical basis.

    PubMed

    Kuwagata, Tsuneo; Murai-Hatano, Mari

    2007-03-01

    Water permeability of the plasma membrane (PM) and the vacuolar membrane (VM) is important for intracellular and transcellular water movement in plants, because mature plant cells have large central vacuoles. We have developed a new method for measuring the osmotic water permeability of the PM and VM (P ( f1) and P ( f2), respectively) in individual plant cells. Here, the theoretical basis and procedure of the method are discussed. Protoplasts isolated from higher plant tissues are used to measure P ( f1) and P ( f2). Because of the semi-permeability (selective permeability) of cellular membranes, protoplasts swell or shrink under hypotonic or hypertonic conditions. A theoretical three-compartment model is presented for simulating time-dependent volume changes in the vacuolar and cytoplasmic spaces in a protoplast during osmotic excursions. The model describes the theoretical relationships between P ( f1), P ( f2) and the bulk osmotic water permeability of protoplasts (P ( f(bulk))). The procedure for measuring the osmotic water permeability is: (1) P ( f(bulk)) is calculated from the time when half of the total change in protoplast volume is completed, by assuming that the protoplast has a single barrier to water movement across it (two-compartment model); (2) P ( f2) of vacuoles isolated from protoplasts is obtained in the same manner; and (3) P ( f1) is determined from P ( f(bulk)) and P ( f2) according to the three-compartment model. The theoretical relationship between P ( fl ) (m s(-1)) and L ( Pl ) (hydraulic conductivity, l=1, 2) (m s(-1) Pa(-1)) is also discussed.

  14. Photovoltaic device

    DOEpatents

    Reese, Jason A.; Keenihan, James R.; Gaston, Ryan S.; Kauffmann, Keith L.; Langmaid, Joseph A.; Lopez, Leonardo C.; Maak, Kevin D.; Mills, Michael E.; Ramesh, Narayan; Teli, Samar R.

    2015-06-02

    The present invention is premised upon an improved photovoltaic device ("PV device"), more particularly to an improved photovoltaic device with a multilayered photovoltaic cell assembly and a body portion joined at an interface region and including an intermediate layer, at least one interconnecting structural member, relieving feature, unique component geometry, or any combination thereof.

  15. Photovoltaic device

    DOEpatents

    Reese, Jason A; Keenihan, James R; Gaston, Ryan S; Kauffmann, Keith L; Langmaid, Joseph A; Lopez, Leonardo; Maak, Kevin D; Mills, Michael E; Ramesh, Narayan; Teli, Samar R

    2017-03-21

    The present invention is premised upon an improved photovoltaic device ("PV device"), more particularly to an improved photovoltaic device with a multilayered photovoltaic cell assembly and a body portion joined at an interface region and including an intermediate layer, at least one interconnecting structural member, relieving feature, unique component geometry, or any combination thereof.

  16. Photovoltaic device

    DOEpatents

    Reese, Jason A.; Keenihan, James R.; Gaston, Ryan S.; Kauffmann, Keith L.; Langmaid, Joseph A.; Lopez, Leonardo C.; Maak, Kevin D.; Mills, Michael E.; Ramesh, Narayan; Teli, Samar R.

    2015-09-01

    The present invention is premised upon an improved photovoltaic device ("PV device"), more particularly to an improved photovoltaic device (10) with a multilayered photovoltaic cell assembly (100) and a body portion (200) joined at an interface region (410) and including an intermediate layer (500), at least one interconnecting structural member (1500), relieving feature (2500), unique component geometry, or any combination thereof.

  17. Multicomponent membranes

    DOEpatents

    Kulprathipanja, Santi; Kulkarni, Sudhir S.; Funk, Edward W.

    1988-01-01

    A multicomponent membrane which may be used for separating various components which are present in a fluid feed mixture comprises a mixture of a plasticizer such as a glycol and an organic polymer cast upon a porous organic polymer support. The membrane may be prepared by casting an emulsion or a solution of the plasticizer and polymer on the porous support, evaporating the solvent and recovering the membrane after curing.

  18. 21 CFR 868.5610 - Membrane lung for long-term pulmonary support.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Membrane lung for long-term pulmonary support. 868... SERVICES (CONTINUED) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5610 Membrane lung for long-term pulmonary support. (a) Identification. A membrane lung for long-term pulmonary...

  19. 21 CFR 868.5610 - Membrane lung for long-term pulmonary support.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Membrane lung for long-term pulmonary support. 868... SERVICES (CONTINUED) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5610 Membrane lung for long-term pulmonary support. (a) Identification. A membrane lung for long-term pulmonary...

  20. 21 CFR 868.5610 - Membrane lung for long-term pulmonary support.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Membrane lung for long-term pulmonary support. 868... SERVICES (CONTINUED) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5610 Membrane lung for long-term pulmonary support. (a) Identification. A membrane lung for long-term pulmonary...

  1. 21 CFR 868.5610 - Membrane lung for long-term pulmonary support.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Membrane lung for long-term pulmonary support. 868... SERVICES (CONTINUED) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5610 Membrane lung for long-term pulmonary support. (a) Identification. A membrane lung for long-term pulmonary...

  2. 21 CFR 868.5610 - Membrane lung for long-term pulmonary support.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Membrane lung for long-term pulmonary support. 868... SERVICES (CONTINUED) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5610 Membrane lung for long-term pulmonary support. (a) Identification. A membrane lung for long-term pulmonary...

  3. Membrane filters and membrane-filtration processes for health care.

    PubMed

    Eudailey, W A

    1983-11-01

    The development of membrane-filtration processes is reviewed, and current types and uses of membrane filtration in health care is discussed. Development of adequate support structures for filters and of disposable filtration devices has facilitated development of filtration processes for pharmaceutical industry, manufacturing in hospital pharmacies, and direct patient care. Hydrophobic filters have also been developed; aqueous solutions cannot wet the pore structures of these filters and therefore cannot pass. Sterility-testing systems have also been developed. There are two types of filters: depth (constructed of compacted fibers) and membrane (which have a homogeneous internal structure). Depth filters retain only a portion of particles in a particular size range and are generally not acceptable for use in health care. Membrane filters retain all particles of a given size. Types of membrane filters are selected for specific uses based on needed flow rates, particulate load, and retention capability. Membrane filters may be validated using bacterial-passage, bubble-point, and diffusion tests. Most membrane filters used in health care are microporous filters that retain particles in the 0.1-10-micron size range. Applications are currently being developed for ultrafilters, which retain both particles and substances with large molecular structures such as proteins, and reverse-osmosis filter membranes, which allow only water or water-miscible solvents of very low molecular weights to pass. Experience in engineering designs, quality assurance, and test procedures has led to the development of many safe, reliable, and effective membrane products for health care.

  4. Memcomputing with membrane memcapacitive systems

    NASA Astrophysics Data System (ADS)

    Pershin, Y. V.; Traversa, F. L.; Di Ventra, M.

    2015-06-01

    We show theoretically that networks of membrane memcapacitive systems—capacitors with memory made out of membrane materials—can be used to perform a complete set of logic gates in a massively parallel way by simply changing the external input amplitudes, but not the topology of the network. This polymorphism is an important characteristic of memcomputing (computing with memories) that closely reproduces one of the main features of the brain. A practical realization of these membrane memcapacitive systems, using, e.g., graphene or other 2D materials, would be a step forward towards a solid-state realization of memcomputing with passive devices.

  5. Development of a passive sampler based on a polymer inclusion membrane for total ammonia monitoring in freshwaters.

    PubMed

    Almeida, M Inês G S; Silva, Adélia M L; Coleman, Rhys A; Pettigrove, Vincent J; Cattrall, Robert W; Kolev, Spas D

    2016-05-01

    A passive sampler for determining the time-weighted average total ammonia (i.e. molecular ammonia and the ammonium cation) concentration (C TWA) in freshwaters, which incorporated a polymer inclusion membrane (PIM) as a semi-permeable barrier separating the aqueous source solution from the receiving solution (i.e. 0.8 mol L(-1) HCl), was developed for the first time. The PIM was composed of dinonylnaphthalene sulfonic acid (DNNS) as a carrier, poly (vinyl chloride) (PVC) as a base polymer and 1-tetradecanol as a modifier. Its optimal composition was found to be 35 wt% commercial DNNS, 55 wt% PVC and 10 wt% 1-tetradecanol. The effect of environmental variables such as the water matrix, pH and temperature were also studied using synthetic freshwaters. The passive sampler was calibrated under laboratory conditions using synthetic freshwaters and exhibited a linear response within the concentration range 0.59-2.8 mg L(-1) NH4(+) (0.46-2.1 mg N L(-1)) at 20 °C. The performance of the sampler was further investigated under field conditions over 7 days. A strong correlation between spot sampling and passive sampling was achieved, thus providing a proof-of-concept for the passive sampler for reliably measuring the C(TWA) of total ammonia in freshwaters, which can be used as an indicator in tracking sources of faecal contamination in stormwater drains.

  6. Identification and characterization of two chitin-binding proteins from the peritrophic membrane of the silkworm, Bombyx mori L.

    PubMed

    Yang, Hua-Jun; Zhou, Fang; Malik, Firdose Ahmad; Bhaskar, Roy; Li, Xing-Hua; Hu, Jia-Biao; Sun, Chun-Guang; Miao, Yun-Gen

    2010-12-01

    The peritrophic membrane (PM) is a semi-permeable lining of the insect midgut, broadly analogous to the mucous lining of vertebrate gut. The PM proteins are important achievements for the function of the PM. In this study, two chitin-binding proteins (BmPM-P43 and BmPM-P41) from the PM of the silkworm, Bombyx mori, were identified and cloned. These proteins showed the molecular mass of 43 and 41 kDa, respectively. The deduced amino acid sequences codes for a protein of 381 amino acid residues and 364 amino acid residues, containing 12 and 14 cysteine residues followed by similar domain, both of them have 5 cysteine residues in similar position in the C-terminal. The confirmation of these proteins was performed by western blot analysis of recombinant BmPM-P43 and BmPM-P41. The chitin-binding activity analysis showed that the BmPM-P43 and BmPM-P41 could bind to chitin strongly. It is concluded that BmPM-P43 and BmPM-P41 contains a polysaccharide deacetylase domain instead of peritrophin domain, indicated that these two proteins may belong to a new chitin-binding protein family.

  7. Microfluidic Device

    NASA Technical Reports Server (NTRS)

    Tai, Yu-Chong (Inventor); Zheng, Siyang (Inventor); Lin, Jeffrey Chun-Hui (Inventor); Kasdan, Harvey L. (Inventor)

    2017-01-01

    Described herein are particular embodiments relating to a microfluidic device that may be utilized for cell sensing, counting, and/or sorting. Particular aspects relate to a microfabricated device that is capable of differentiating single cell types from dense cell populations. One particular embodiment relates a device and methods of using the same for sensing, counting, and/or sorting leukocytes from whole, undiluted blood samples.

  8. Sealing device

    SciTech Connect

    Garcia-Crespo, Andres Jose

    2013-12-10

    A sealing device for sealing a gap between a dovetail of a bucket assembly and a rotor wheel is disclosed. The sealing device includes a cover plate configured to cover the gap and a retention member protruding from the cover plate and configured to engage the dovetail. The sealing device provides a seal against the gap when the bucket assemply is subjected to a centrifugal force.

  9. Microfluidic Device

    NASA Technical Reports Server (NTRS)

    Tai, Yu-Chong (Inventor); Zheng, Siyang (Inventor); Lin, Jeffrey Chun-Hui (Inventor); Kasdan, Harvey (Inventor)

    2015-01-01

    Described herein are particular embodiments relating to a microfluidic device that may be utilized for cell sensing, counting, and/or sorting. Particular aspects relate to a microfabricated device that is capable of differentiating single cell types from dense cell populations. One particular embodiment relates a device and methods of using the same for sensing, counting, and/or sorting leukocytes from whole, undiluted blood samples.

  10. Microfluidic Device

    NASA Technical Reports Server (NTRS)

    Tai, Yu-Chong (Inventor); Zheng, Siyang (Inventor); Lin, Jeffrey Chun-Hui (Inventor); Kasdan, Harvey L. (Inventor)

    2016-01-01

    Described herein are particular embodiments relating to a microfluidic device that may be utilized for cell sensing, counting, and/or sorting. Particular aspects relate to a microfabricated device that is capable of differentiating single cell types from dense cell populations. One particular embodiment relates a device and methods of using the same for sensing, counting, and/or sorting leukocytes from whole, undiluted blood samples.

  11. Microfluidic Device

    NASA Technical Reports Server (NTRS)

    Tai, Yu-Chong (Inventor); Zheng, Siyang (Inventor); Lin, Jeffrey Chun-Hui (Inventor); Kasdan, Harvey L. (Inventor)

    2017-01-01

    Described herein are particular embodiments relating to a microfluidic device that may be utilized for cell sensing, counting, and/or sorting. Particular aspects relate to a microfabricated device that is capable of differentiating single cell types from dense cell populations. One particular embodiment relates a device and methods of using the same for sensing, counting, and/or sorting leukocytes from whole, undiluted blood samples.

  12. [Epiretinal membranes].

    PubMed

    Dupas, B; Tadayoni, R; Gaudric, A

    2015-11-01

    Idiopathic epiretinal membranes represent a common condition, and are present in approximately 10% of people over the age of 70 years. They are idiopathic in 80% of cases, or may be secondary to various conditions such as a prior retinal detachment, or vascular or inflammatory retinal diseases. The main symptoms are visual loss and metamorphopsia. The diagnosis of epiretinal membrane is currently facilitated by OCT, which provides prognostic and therapeutic decision-making assistance. Surgery for epiretinal membranes is currently well codified through sutureless vitrectomy and dyes. Dissection of the membrane (with or without associated peeling of the internal limiting membrane) ensures good anatomical and functional results, while being relatively minimally invasive. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  13. Scaling from discs to pleated devices.

    PubMed

    Giglia, Sal; Yavorsky, David

    2007-01-01

    Membrane discs offer a convenient format for evaluating membrane performance in normal flow filtration. However, while pleated devices of different sizes tend to scale in close proportion to their contained areas, they do not necessarily scale in direct proportion from flat discs. The objectives of this study are to quantify differences in performance among sterilizing-grade membrane devices as a function of device type and size, to develop an understanding of the factors that affect device scalability, and to develop a mathematical model to predict a cartridge-to-disc scalability factor based on membrane properties and porous support properties and dimensions. Measured and predicted normalized water permeability scalability factors for seven types of pleated cartridges, including 0.1-micro and 0.2-micro rated PES, and 0.2-micro rated polyvinylidene fluoride (PVDF) sterilizing-grade filters in nominal 1-inch to 5-inch lengths, were determined. The results of this study indicate that pleated cartridge performance can be closely predicted based on 47-mm disc performance provided that a number of measured device parameters are properly accounted for, most importantly parasitic pressure losses in the filter device and plumbing connections, intrinsic membrane variability, true effective device filtration area, and the hydraulic properties of all porous support materials. Throughput scalability factors (discs to devices) tend to converge towards unity, especially for highly plugging streams. As the membrane fouls, the resistance through the membrane dominates other resistances, so the flux scales more linearly with membrane area and the overall scaling factor becomes close to one. The results of throughput tests on seven different cartridge types and five different challenge streams (with widely varying fouling characteristics) show that most of the throughput scaling factors were within +/-10% of 1.0. As part of this study, the effects of pressure and temperature were

  14. Immobilized fluid membranes for gas separation

    DOEpatents

    Liu, Wei; Canfield, Nathan L; Zhang, Jian; Li, Xiaohong Shari; Zhang, Jiguang

    2014-03-18

    Provided herein are immobilized liquid membranes for gas separation, methods of preparing such membranes and uses thereof. In one example, the immobilized membrane includes a porous metallic host matrix and an immobilized liquid fluid (such as a silicone oil) that is immobilized within one or more pores included within the porous metallic host matrix. The immobilized liquid membrane is capable of selective permeation of one type of molecule (such as oxygen) over another type of molecule (such as water). In some examples, the selective membrane is incorporated into a device to supply oxygen from ambient air to the device for electrochemical reactions, and at the same time, to block water penetration and electrolyte loss from the device.

  15. Boundary layer control device for duct silencers

    NASA Technical Reports Server (NTRS)

    Schmitz, Fredric H. (Inventor); Soderman, Paul T. (Inventor)

    1993-01-01

    A boundary layer control device includes a porous cover plate, an acoustic absorber disposed under the porous cover plate, and a porous flow resistive membrane interposed between the porous cover plate and the acoustic absorber. The porous flow resistive membrane has a flow resistance low enough to permit sound to enter the acoustic absorber and high enough to damp unsteady flow oscillations.

  16. BRAKE DEVICE

    DOEpatents

    O'Donnell, T.J.

    1959-03-10

    A brake device is described for utilization in connection with a control rod. The device comprises a pair of parallelogram link mechanisms, a control rod moveable rectilinearly therebetween in opposite directions, and shoes resiliently supported by the mechanism for frictional engagement with the control rod.

  17. Josephson Devices

    NASA Astrophysics Data System (ADS)

    Barone, Antonio; Pagano, Sergio

    In this chapter we briefly review the main applications of Josephson effect together with the most successful devices realized. We will give an overview of the various devices, providing also some basic concepts of the underlying physical mechanisms involved, and the associated limit performances. Some considerations on the concrete possibilities of successful "market ready" implementation will also be given.

  18. Optoelectronic devices

    NASA Astrophysics Data System (ADS)

    Sperling, Leslie H.; Murphy, Clarence J.; Rosen, Warren A.; Jain, Himanshu

    1990-07-01

    This invention relates to acrylic polymers and more specifically to polyacrylamides and polyacrylates such as poly(2-((N-2-methyl-5-nitrophenylamino) ethyl acrylate)) and poly((N-2-methyl-4-nitrophenyl)acrylamide). These acrylic polymers are particularly useful as nonlinear optical components in various electrical devices for processing optical signals including interferometors, optical switches, optical amplifiers, generators, computational devices and the like.

  19. Electrochromic devices

    DOEpatents

    Allemand, Pierre M.; Grimes, Randall F.; Ingle, Andrew R.; Cronin, John P.; Kennedy, Steve R.; Agrawal, Anoop; Boulton, Jonathan M.

    2001-01-01

    An electrochromic device is disclosed having a selective ion transport layer which separates an electrochemically active material from an electrolyte containing a redox active material. The devices are particularly useful as large area architectural and automotive glazings due to there reduced back reaction.

  20. Superconducting devices

    SciTech Connect

    Ruggiero, S.T. . Dept. of Physics); Rudman, D.A. . Dept. of Materials Science and Engineering)

    1990-01-01

    This book presents a discussion of the theory, fabrication, and qualification of superconducting device elements and integrated circuitry. A look at issues key to the development of practical superconducting devices and systems is presented. Integrated systems, including the fabrication and application of SQUIDs, Josephson arrays, microwave detectors, digital signal processors and computers, and analog signal processors are discussed.

  1. Crystalline Membranes

    NASA Technical Reports Server (NTRS)

    Tsapatsis, Michael (Inventor); Lai, Zhiping (Inventor)

    2008-01-01

    In certain aspects, the invention features methods for forming crystalline membranes (e.g., a membrane of a framework material, such as a zeolite) by inducing secondary growth in a layer of oriented seed crystals. The rate of growth of the seed crystals in the plane of the substrate is controlled to be comparable to the rate of growth out of the plane. As a result, a crystalline membrane can form a substantially continuous layer including grains of uniform crystallographic orientation that extend through the depth of the layer.

  2. PLASMA DEVICE

    DOEpatents

    Gow, J.D.; Wilcox, J.M.

    1961-12-26

    A device is designed for producing and confining highenergy plasma from which neutrons are generated in copious quantities. A rotating sheath of electrons is established in a radial electric field and axial magnetic field produced within the device. The electron sheath serves as a strong ionizing medium to gas introdueed thereto and also functions as an extremely effective heating mechanism to the resulting plasma. In addition, improved confinement of the plasma is obtained by ring magnetic mirror fields produced at the ends of the device. Such ring mirror fields are defined by the magnetic field lines at the ends of the device diverging radially outward from the axis of the device and thereafter converging at spatial annular surfaces disposed concentrically thereabout. (AFC)

  3. Zwitterionic materials for antifouling membrane surface construction.

    PubMed

    He, Mingrui; Gao, Kang; Zhou, Linjie; Jiao, Zhiwei; Wu, Mengyuan; Cao, Jialin; You, Xinda; Cai, Ziyi; Su, Yanlei; Jiang, Zhongyi

    2016-08-01

    Membrane separation processes are often perplexed by severe and ubiquitous membrane fouling. Zwitterionic materials, keeping electric neutrality with equivalent positive and negative charged groups, are well known for their superior antifouling properties and have been broadly utilized to construct antifouling surfaces for medical devices, biosensors and marine coatings applications. In recent years, zwitterionic materials have been more and more frequently utilized for constructing antifouling membrane surfaces. In this review, the antifouling mechanisms of zwitterionic materials as well as their biomimetic prototypes in cell membranes will be discussed, followed by the survey of common approaches to incorporate zwitterionic materials onto membrane surfaces including surface grafting, surface segregation, biomimetic adhesion, surface coating and so on. The potential applications of these antifouling membranes are also embedded. Finally, we will present a brief perspective on the future development of zwitterionic materials modified antifouling membranes. Membrane fouling is a severe problem hampering the application of membrane separation technology. The properties of membrane surfaces play a critical role in membrane fouling and antifouling behavior/performance. Antifouling membrane surface construction has evolved as a hot research issue for the development of membrane processes. Zwitterionic modification of membrane surfaces has been recognized as an effective strategy to resist membrane fouling. This review summarizes the antifouling mechanisms of zwitterionic materials inspired by cell membranes as well as the popular approaches to incorporate them onto membrane surfaces. It can help form a comprehensive knowledge about the principles and methods of modifying membrane surfaces with zwitterionic materials. Finally, we propose the possible future research directions of zwitterionic materials modified antifouling membranes. Copyright © 2016 Acta Materialia Inc

  4. Biological membranes

    PubMed Central

    Watson, Helen

    2015-01-01

    Biological membranes allow life as we know it to exist. They form cells and enable separation between the inside and outside of an organism, controlling by means of their selective permeability which substances enter and leave. By allowing gradients of ions to be created across them, membranes also enable living organisms to generate energy. In addition, they control the flow of messages between cells by sending, receiving and processing information in the form of chemical and electrical signals. This essay summarizes the structure and function of membranes and the proteins within them, and describes their role in trafficking and transport, and their involvement in health and disease. Techniques for studying membranes are also discussed. PMID:26504250

  5. Excitonic devices

    NASA Astrophysics Data System (ADS)

    Butov, L. V.

    2017-08-01

    Indirect excitons can be controlled by voltage, can travel over large distances before recombination, and can cool down close to the temperature of semiconductor crystal lattice and below the temperature of quantum degeneracy. These properties form the basis for the development of excitonic devices with indirect excitons. In this contribution, we overview our studies of excitonic devices. We present traps, lattices, conveyers, and ramps for studying basic properties of cold indirect excitons - cold bosons in semiconductor materials. We also present proof-of-principle demonstration for excitonic signal processing devices.

  6. Cleaning devices

    NASA Technical Reports Server (NTRS)

    Schneider, Horst W. (Inventor)

    1980-01-01

    Cleaning devices are described which include a vacuum cleaner wherein electrostatically charged brushes that brush dirt off a floor, are electrically grounded to remove charges that could tend to hold dirt to the brushes.

  7. Device Performance

    SciTech Connect

    Not Available

    2006-06-01

    In the Device Performance group, within the National Center for Photovoltaic's Measurements and Characterization Division, we measure the performance of PV cells and modules with respect to standard reporting conditions--defined as a reference temperature (25 C), total irradiance (1000 Wm-2), and spectral irradiance distribution (IEC standard 60904-3). Typically, these are ''global'' reference conditions, but we can measure with respect to any reference set. To determine device performance, we conduct two general categories of measurements: spectral responsivity (SR) and current versus voltage (I-V). We usually perform these measurements using standard procedures, but we develop new procedures when required by new technologies. We also serve as an independent facility for verifying device performance for the entire PV community. We help the PV community solve its special measurement problems, giving advice on solar simulation, instrumentation for I-V measurements, reference cells, measurement procedures, and anomalous results. And we collaborate with researchers to analyze devices and materials.

  8. Device Demonstration

    DTIC Science & Technology

    2006-12-31

    effecting change in the electrical properties of the material. Due to the heating requirement in setting the state, stray radiation does not affect the...device as in traditional binary RAM, thus giving the device radiation-hard properties . Uniformity of the heater elements at a small size below 100 nm is...Molybdenum was chosen for the cathode tube material because it has a low sputtering coefficient, and it’s high temperature properties .. The tubes are

  9. Microchannel devices

    SciTech Connect

    Alman, David E.; Wilson, Rick D.

    2001-09-01

    The fabrication of stainless steel microchannel heat exchangers was examined through microlamination, the process of diffusion bonding precision machined metallic foils. The influence of diffusion bonding parameters, as well as the device geometry on the strength of the bond between the foils and embedded channel integrity, was investigated. During diffusion bonding, high temperatures and/or pressures result in well bonded foils, but these conditions cause the embedded channels to deform, which will degrade the efficiency of fluid flow through the channels. Alternatively, low temperatures and/or pressures result in undeformed channels but weakly bonded foils. This causes failure of the device due to fluid leakage. Thus, a processing envelope exists for producing a sound device with no fluid leakage and no degradation of fluid flow properties. The theoretical limit on aspect ratio within two-fluid counter-flow microchannel heat exchangers was also investigated. A counter-flow device is comprised of alternating layers of microchannels, which allow the two fluids to flow in opposite directions separated by fins. A theoretical model for interpreting the span of the fin as a function of the fin thickness was established. The model was verified experimentally by fabricating specimens to simulate the counter-flow device. The results of these investigations were used to aid in the design and processing of prototype microchannel devices.

  10. Electronic polymers in lipid membranes

    PubMed Central

    Johansson, Patrik K.; Jullesson, David; Elfwing, Anders; Liin, Sara I.; Musumeci, Chiara; Zeglio, Erica; Elinder, Fredrik; Solin, Niclas; Inganäs, Olle

    2015-01-01

    Electrical interfaces between biological cells and man-made electrical devices exist in many forms, but it remains a challenge to bridge the different mechanical and chemical environments of electronic conductors (metals, semiconductors) and biosystems. Here we demonstrate soft electrical interfaces, by integrating the metallic polymer PEDOT-S into lipid membranes. By preparing complexes between alkyl-ammonium salts and PEDOT-S we were able to integrate PEDOT-S into both liposomes and in lipid bilayers on solid surfaces. This is a step towards efficient electronic conduction within lipid membranes. We also demonstrate that the PEDOT-S@alkyl-ammonium:lipid hybrid structures created in this work affect ion channels in the membrane of Xenopus oocytes, which shows the possibility to access and control cell membrane structures with conductive polyelectrolytes. PMID:26059023

  11. Electronic polymers in lipid membranes.

    PubMed

    Johansson, Patrik K; Jullesson, David; Elfwing, Anders; Liin, Sara I; Musumeci, Chiara; Zeglio, Erica; Elinder, Fredrik; Solin, Niclas; Inganäs, Olle

    2015-06-10

    Electrical interfaces between biological cells and man-made electrical devices exist in many forms, but it remains a challenge to bridge the different mechanical and chemical environments of electronic conductors (metals, semiconductors) and biosystems. Here we demonstrate soft electrical interfaces, by integrating the metallic polymer PEDOT-S into lipid membranes. By preparing complexes between alkyl-ammonium salts and PEDOT-S we were able to integrate PEDOT-S into both liposomes and in lipid bilayers on solid surfaces. This is a step towards efficient electronic conduction within lipid membranes. We also demonstrate that the PEDOT-S@alkyl-ammonium:lipid hybrid structures created in this work affect ion channels in the membrane of Xenopus oocytes, which shows the possibility to access and control cell membrane structures with conductive polyelectrolytes.

  12. Membrane with internal passages to permit fluid flow and an electrochemical cell containing the same

    NASA Technical Reports Server (NTRS)

    Cisar, Alan J. (Inventor); Gonzalez-Martin, Anuncia (Inventor); Hitchens, G. Duncan (Inventor); Murphy, Oliver J. (Inventor)

    1997-01-01

    The invention provides an improved proton exchange membrane for use in electrochemical cells having internal passages parallel to the membrane surface, an apparatus and process for making the membrane, membrane and electrode assemblies fabricated using the membrane, and the application of the membrane and electrode assemblies to a variety of devices, both electrochemical and otherwise. The passages in the membrane extend from one edge of the membrane to another and allow fluid flow through the membrane and give access directly to the membrane for purposes of hydration.

  13. Ion transport membrane module and vessel system

    DOEpatents

    Stein, VanEric Edward [Allentown, PA; Carolan, Michael Francis [Allentown, PA; Chen, Christopher M [Allentown, PA; Armstrong, Phillip Andrew [Orefield, PA; Wahle, Harold W [North Canton, OH; Ohrn, Theodore R [Alliance, OH; Kneidel, Kurt E [Alliance, OH; Rackers, Keith Gerard [Louisville, OH; Blake, James Erik [Uniontown, OH; Nataraj, Shankar [Allentown, PA; van Doorn, Rene Hendrik Elias; Wilson, Merrill Anderson [West Jordan, UT

    2008-02-26

    An ion transport membrane system comprising (a) a pressure vessel having an interior, an exterior, an inlet, and an outlet; (b) a plurality of planar ion transport membrane modules disposed in the interior of the pressure vessel and arranged in series, each membrane module comprising mixed metal oxide ceramic material and having an interior region and an exterior region, wherein any inlet and any outlet of the pressure vessel are in flow communication with exterior regions of the membrane modules; and (c) one or more gas manifolds in flow communication with interior regions of the membrane modules and with the exterior of the pressure vessel.The ion transport membrane system may be utilized in a gas separation device to recover oxygen from an oxygen-containing gas or as an oxidation reactor to oxidize compounds in a feed gas stream by oxygen permeated through the mixed metal oxide ceramic material of the membrane modules.

  14. Ion transport membrane module and vessel system

    DOEpatents

    Stein, VanEric Edward [Allentown, PA; Carolan, Michael Francis [Allentown, PA; Chen, Christopher M [Allentown, PA; Armstrong, Phillip Andrew [Orefield, PA; Wahle, Harold W [North Canton, OH; Ohrn, Theodore R [Alliance, OH; Kneidel, Kurt E [Alliance, OH; Rackers, Keith Gerard [Louisville, OH; Blake, James Erik [Uniontown, OH; Nataraj, Shankar [Allentown, PA; Van Doorn, Rene Hendrik Elias; Wilson, Merrill Anderson [West Jordan, UT

    2012-02-14

    An ion transport membrane system comprising (a) a pressure vessel having an interior, an exterior, an inlet, and an outlet; (b) a plurality of planar ion transport membrane modules disposed in the interior of the pressure vessel and arranged in series, each membrane module comprising mixed metal oxide ceramic material and having an interior region and an exterior region, wherein any inlet and any outlet of the pressure vessel are in flow communication with exterior regions of the membrane modules; and (c) one or more gas manifolds in flow communication with interior regions of the membrane modules and with the exterior of the pressure vessel. The ion transport membrane system may be utilized in a gas separation device to recover oxygen from an oxygen-containing gas or as an oxidation reactor to oxidize compounds in a feed gas stream by oxygen permeated through the mixed metal oxide ceramic material of the membrane modules.

  15. Ion transport membrane module and vessel system

    DOEpatents

    Stein, VanEric Edward; Carolan, Michael Francis; Chen, Christopher M.; Armstrong, Phillip Andrew; Wahle, Harold W.; Ohrn, Theodore R.; Kneidel, Kurt E.; Rackers, Keith Gerard; Blake, James Erik; Nataraj, Shankar; van Doorn, Rene Hendrik Elias; Wilson, Merrill Anderson

    2007-02-20

    An ion transport membrane system comprising (a) a pressure vessel having an interior, an exterior, an inlet, and an outlet; (b) a plurality of planar ion transport membrane modules disposed in the interior of the pressure vessel and arranged in series, each membrane module comprising mixed metal oxide ceramic material and having an interior region and an exterior region, wherein any inlet and any outlet of the pressure vessel are in flow communication with exterior regions of the membrane modules; and (c) one or more gas manifolds in flow communication with interior regions of the membrane modules and with the exterior of the pressure vessel. The ion transport membrane system may be utilized in a gas separation device to recover oxygen from an oxygen-containing gas or as an oxidation reactor to oxidize compounds in a feed gas stream by oxygen permeated through the mixed metal oxide ceramic material of the membrane modules.

  16. Ion transport membrane module and vessel system

    DOEpatents

    Stein, VanEric Edward; Carolan, Michael Francis; Chen, Christopher M.; Armstrong, Phillip Andrew; Wahle, Harold W.; Ohrn, Theodore R.; Kneidel, Kurt E.; Rackers, Keith Gerard; Blake, James Erik; Nataraj, Shankar; van Doorn, Rene Hendrik Elias; Wilson, Merrill Anderson

    2008-02-26

    An ion transport membrane system comprising (a) a pressure vessel having an interior, an exterior, an inlet, and an outlet; (b) a plurality of planar ion transport membrane modules disposed in the interior of the pressure vessel and arranged in series, each membrane module comprising mixed metal oxide ceramic material and having an interior region and an exterior region, wherein any inlet and any outlet of the pressure vessel are in flow communication with exterior regions of the membrane modules; and (c) one or more gas manifolds in flow communication with interior regions of the membrane modules and with the exterior of the pressure vessel.The ion transport membrane system may be utilized in a gas separation device to recover oxygen from an oxygen-containing gas or as an oxidation reactor to oxidize compounds in a feed gas stream by oxygen permeated through the mixed metal oxide ceramic material of the membrane modules.

  17. PLASMA DEVICE

    DOEpatents

    Baker, W.R.; Brathenahl, A.; Furth, H.P.

    1962-04-10

    A device for producing a confined high temperature plasma is described. In the device the concave inner surface of an outer annular electrode is disposed concentrically about and facing the convex outer face of an inner annular electrode across which electrodes a high potential is applied to produce an electric field there between. Means is provided to create a magnetic field perpendicular to the electric field and a gas is supplied at reduced pressure in the area therebetween. Upon application of the high potential, the gas between the electrodes is ionized, heated, and under the influence of the electric and magnetic fields there is produced a rotating annular plasma disk. The ionized plasma has high dielectric constant properties. The device is useful as a fast discharge rate capacitor, in controlled thermonuclear research, and other high temperature gas applications. (AEC)

  18. Ventricular assist devices in pediatrics

    PubMed Central

    Fuchs, A; Netz, H

    2001-01-01

    The implantation of a mechanical circulatory device for end-stage ventricular failure is a possible therapeutic approach in adult and pediatric cardiac surgery and cardiology. The aim of this article is to present mechanical circulatory assist devices used in infants and children with special emphasis on extracorporeal membrane oxygenation, Berlin Heart assist device, centrifugal pump and Medos assist device. The success of long-term support with implantable ventricular assist devices in adults and children has led to their increasing use as a bridge to transplantation in patients with otherwise non-treatable left ventricular failure, by transforming a terminal phase heart condition into a treatable cardiopathy. Such therapy allows rehabilitation of patients before elective cardiac transplantation (by removing contraindications to transplantation mainly represented by organ impairment) or acting as a bridge to recovery of the native left ventricular function (depending on underlying cardiac disease). Treatment may also involve permanent device implantation when cardiac transplantation is contraindicated. Indications for the implantation of assisted circulation include all states of cardiac failure that are reversible within a variable period of time or that require heart transplantation. This article will address the current status of ventricular assist devices by examining historical aspects of its development, current technical issues and clinical features of pediatric ventricular assist devices, including indications and contraindications for support. PMID:22368605

  19. Analytical Device

    NASA Technical Reports Server (NTRS)

    1983-01-01

    In the mid 60s under contract with NASA, Dr. Benjamin W. Grunbaum was responsible for the development of an automated electrophoresis device that would work in the weightless environment of space. The device was never used in space but was revived during the mid 70s as a technology utilization project aimed at an automated system for use on Earth. The advanced system became known as the Grunbaum System for electrophoresis. It is a versatile, economical assembly for rapid separation of specific blood proteins in very small quantities, permitting their subsequent identification and quantification.

  20. Membrane magic

    SciTech Connect

    Buecker, B.

    2005-09-01

    The Kansas Power and Light Co.'s La Cyne generating station has found success with membrane filtration water pretreatment technology. The article recounts the process followed in late 2004 to install a Pall Aria 4 microfilter in Unit 1 makeup water system at the plant to produce cleaner water for reverse osmosis feed. 2 figs., 2 photos.

  1. Infrared microthermography of microfabricated devices

    SciTech Connect

    Furstenberg, Robert; Kendziora, C. A.; Stepnowski, Stanley V.; McGill, R. Andrew

    2007-06-15

    We report a new experimental apparatus for infrared microthermography applicable to a wide class of samples including semitransparent ones and perforated devices. This setup is particularly well suited for the thermography of microfabricated devices. Traditionally, temperature calibration is performed using calibration hot plates, but this is not applicable to transmissive samples. In this work a custom designed miniature calibration oven in conjunction with spatial filtering is used to obtain accurate static and transient temperature maps of actively heated devices. The procedure does not require prior knowledge of the emissivity. Calibration and image processing algorithms are discussed and analyzed. We show that relatively inexpensive uncooled bolometer arrays can be a suitable detector choice in certain radiometric applications. As an example, we apply this method in the analysis of temperature profiles of an actively heated microfabricated preconcentrator device that incorporates a perforated membrane and is used in trace detection of illicit substances.

  2. Infrared microthermography of microfabricated devices

    NASA Astrophysics Data System (ADS)

    Furstenberg, Robert; Kendziora, C. A.; Stepnowski, Stanley V.; McGill, R. Andrew

    2007-06-01

    We report a new experimental apparatus for infrared microthermography applicable to a wide class of samples including semitransparent ones and perforated devices. This setup is particularly well suited for the thermography of microfabricated devices. Traditionally, temperature calibration is performed using calibration hot plates, but this is not applicable to transmissive samples. In this work a custom designed miniature calibration oven in conjunction with spatial filtering is used to obtain accurate static and transient temperature maps of actively heated devices. The procedure does not require prior knowledge of the emissivity. Calibration and image processing algorithms are discussed and analyzed. We show that relatively inexpensive uncooled bolometer arrays can be a suitable detector choice in certain radiometric applications. As an example, we apply this method in the analysis of temperature profiles of an actively heated microfabricated preconcentrator device that incorporates a perforated membrane and is used in trace detection of illicit substances.

  3. Catalytic Membrane Sensors

    SciTech Connect

    Boyle, T.J.; Brinker, C.J.; Gardner, T.J.; Hughes, R.C.; Sault, A.G.

    1998-12-01

    The proposed "catalytic membrane sensor" (CMS) was developed to generate a device which would selectively identify a specific reagent in a complex mixture of gases. This was to be accomplished by modifying an existing Hz sensor with a series of thin films. Through selectively sieving the desired component from a complex mixture and identifying it by decomposing it into Hz (and other by-products), a Hz sensor could then be used to detect the presence of the select component. The proposed "sandwich-type" modifications involved the deposition of a catalyst layered between two size selective sol-gel layers on a Pd/Ni resistive Hz sensor. The role of the catalyst was to convert organic materials to Hz and organic by-products. The role of the membraneo was to impart both chemical specificity by molecukir sieving of the analyte and converted product streams, as well as controlling access to the underlying Pd/Ni sensor. Ultimately, an array of these CMS elements encompassing different catalysts and membranes were to be developed which would enable improved selectivity and specificity from a compiex mixture of organic gases via pattern recognition methodologies. We have successfully generated a CMS device by a series of spin-coat deposited methods; however, it was determined that the high temperature required to activate the catalyst, destroys the sensor.

  4. Use of chemical analysis and assays of semipermeable membrane devices extracts to assess the response of bioavailable organic pollutants in streams to urbanization in six metropolitan areas of the United States

    USGS Publications Warehouse

    Bryant, Wade L.; Goodbred, Steve L.; Leiker, Thomas L.; Inouye, Laura; Johnson, B. Thomas

    2007-01-01

    Studies to assess the effects of urbanization on stream ecosystems are being conducted as part of the U.S. Geological Survey’s National Water-Quality Assessment (NAWQA) Program. The overall objectives of these studies are to (1) determine how hydrologic, geomorphic, water quality, habitat, and biological characteristics respond to land-use changes associated with urbanization in specific environmental settings, and (2) compare these responses across environmental settings. As part of an integrated assessment, semipermeable membrane devices (SPMDs) were deployed in streams along a gradient of urban land-use intensity in and around Atlanta, Georgia; Raleigh-Durham, North Carolina; and Denver-Fort Collins, Colorado, in 2003; and Dallas-Fort Worth, Texas; Milwaukee-Green Bay, Wisconsin; and Portland, Oregon, in 2004. Sites were selected to avoid point-source discharge and to minimize natural variability within each of the six metropolitan areas. In addition to standard chemical analysis for hydrophobic organic contaminants, three assays were used to address mixtures and potential toxicity: (1) Fluoroscan provides an estimate of the total concentration of polycyclic aromatic hydrocarbons (PAHs); (2) the P450RGS assay indicates the presence and levels of aryl hydrocarbon receptor agonists; and (3) Microtox® measures toxicological effects on photo-luminescent bacteria.Of the 140 compounds targeted or identified by gas chromatography/mass spectrometry analysis in this study, 67 were not detected. In terms of numbers and types of compounds, the following were detected: 2 wood preservatives, 6 insecticides (parent compounds), 5 herbicides, 22 polycyclic aromatic hydrocarbons, 2 dibenzofurans, 4 polychlorinated biphenyls, 7 compounds associated with fragrances or personal care products, 4 steroids associated with wastewater, 5 polydibromated diphenyl ethers (flame retardants), 3 plasticizers, 3 antimicrobials/disinfectants, and 3 detergent metabolites.Of the 73

  5. Cleaning devices

    NASA Technical Reports Server (NTRS)

    Schneider, Horst W. (Inventor)

    1981-01-01

    Cleaning devices are described which include a vacuum cleaner nozzle with a sharp rim for directing incoming air down against the floor; a vacuum cleaner wherein electrostatically charged brushes that brush dirt off a floor, are electrically grounded to remove charges that could tend to hold dirt to the brushes; a vacuum cleaner head having slots that form a pair of counter-rotating vortices, and that includes an outlet that blows a stream of air at the floor region which lies between the vortices; a cleaning device that sweeps a group of brushes against the ground along a first direction, and then sweeps them along the same ground area but in a second direction angled from the first by an amount such as 90.degree., to sweep up particles lying in crevices extending along any direction; a device that gently cleans a surface to remove bacteria for analysis, including an inclined wall along which cleaning fluid flows onto the surface, a vacuum chamber for drawing in the cleaning fluid, and a dividing wall spaced slightly from the surface to separate the fluid source from the vacuum cleaner chamber; and a device for providing pulses of pressured air including a chamber to which pressured air is supplied, a ball that circulates around the chamber to repeatedly close an outlet, and an air source that directs air circumferentially to move the ball around the chamber.

  6. Detection device

    DOEpatents

    Smith, Jay E.

    1984-01-01

    The present invention is directed to a detection device comprising: (1) an entrance chamber, (2) a central chamber, and (3) an exit chamber. The central chamber includes an ionizing gas, anode, and means for connecting the anode with an external power supply and pulse counter.

  7. Detection device

    DOEpatents

    Smith, J.E.

    1981-02-27

    The present invention is directed to a detection device comprising: (1) an entrance chamber; (2) a central chamber; and (3) an exit chamber. The central chamber includes an ionizing gas, anode, and means for connecting the anode with an external power supply and pulse counter.

  8. Electrochemical device

    DOEpatents

    Grimes, Patrick G.; Einstein, Harry; Bellows, Richard J.

    1988-01-12

    A tunnel protected electrochemical device features channels fluidically communicating between manifold, tunnels and cells. The channels are designed to provide the most efficient use of auxiliary power. The channels have a greater hydraulic pressure drop and electrical resistance than the manifold. This will provide a design with the optimum auxiliary energy requirements.

  9. [Intrauterine devices].

    PubMed

    Delavest, P; Engelmann, P

    1980-12-11

    Medicated IUDs such as copper IUDs and progesterone-releasing IUDs represent a new development in this form of contraception. All IUDs act by causing an inflammatory reaction at the endometrial level. Techniques of insertion vary from one model to the other; insertion always requires an experienced practitioner, and postabortion or midmenstruation insertions are to be preferred. Pregnancy with IUD in situ is a rare occurrence; the IUD must then be immediately removed. Ectopic pregnancies are about 5-10% of all pregnancies with the device in situ. IUD complications are uterine perforation, mostly done at time of insertion, and pelvic infection which, if untreated, can cause infertility; this is the reason why an IUD is never recommended to a nullipara. Pain and bleeding are the most common side effects. When the strings of the device are not visible, translocation of the device inside the uterine cavity must be suspected. The choice of the wrong type of IUD or a bad insertion can cause spontaneous expulsion of the device. IUD wearers must be regularly seen by a doctor; there is no correlation between IUD use and cervical or endometrial carcinoma.

  10. Metallization of bacterial cellulose for electrical and electronic device manufacture

    DOEpatents

    Evans, Barbara R.; O'Neill, Hugh M.; Jansen, Valerie Malyvanh; Woodward, Jonathan

    2006-01-17

    The employment of metallized bacterial cellulose in the construction of fuel cells and other electronic devices is disclosed. The fuel cell includes an electrolyte membrane comprising a membrane support structure comprising bacterial cellulose, an anode disposed on one side of the electrolyte membrane, and a cathode disposed on an opposite side of the electrolyte membrane. At least one of the anode and the cathode comprises an electrode support structure comprising bacterial cellulose, and a catalyst disposed in or on the electrode support structure.

  11. Distributions of dimethyl sulfide in the Amundsen Sea water column, Antarctica, measured by membrane inlet mass spectrometer

    NASA Astrophysics Data System (ADS)

    KIM, I.; Park, K.; Hahm, D.; Choi, J. O.; Lee, S.

    2016-12-01

    Dimethyl sulfide (DMS), as important precursor of cloud condensation nuclei (CCN), directly affects the radioactive budget and resultant climate feedback. Because the oceanic emission is a major natural source of atmospheric DMS, it is fundamental to better understand the factors that controlling oceanic DMS cycle. Antarctic polynya, especially, can be a key source region of DMS due to high productivity and vast surface area. However, its observations are evidently lacked due to the limited accessibility of polar ocean, and thus, significance of DMS flux in Southern Ocean is still underestimated. Membrane inlet mass spectrometry (MIMS) technique directly samples analyte gases from the aqueous phase gases in seawater through a semi-permeable membrane. Since this method does not require headspace equilibration, MIMS enables us to make a near-real time, high frequency continuous observation of dissolved gases. In this study, we have investigated the horizontal- (underway) and vertical (discrete bottle samples) distributions DMS in the upper water column of entire Amundsen Sea in austral summer (Jan. Feb. 2016) using MIMS on the Korean icebreaker R/V Araon. The concentrations of DMS in surface water near ice shelf regions (Dotson and Getz ice shelf) were higher than that in polynya center along DT, which is conflict with the precious result from 2009 observation by Tortell et al. (2012) The highest concentrations of DMS (up to >300 nM) in the were observed in the polyna mouth and near Getz ice shelf surface. The overall trends of DMS were consistent with those of chlorophyll and ΔO2/Ar (as indicators of net community production). The spatial variability of DMS seems to be attributed to a phytoplankton composition, such as competition between Phaeocystis and other diatoms. These results imply that the biological process of P. Antarctica bloom provoke the significant emissions of algal metabolite dimethylsulfonioproprionate (DMSP) and resultant DMS.

  12. Laser device

    DOEpatents

    Scott, Jill R.; Tremblay, Paul L.

    2008-08-19

    A laser device includes a virtual source configured to aim laser energy that originates from a true source. The virtual source has a vertical rotational axis during vertical motion of the virtual source and the vertical axis passes through an exit point from which the laser energy emanates independent of virtual source position. The emanating laser energy is collinear with an orientation line. The laser device includes a virtual source manipulation mechanism that positions the virtual source. The manipulation mechanism has a center of lateral pivot approximately coincident with a lateral index and a center of vertical pivot approximately coincident with a vertical index. The vertical index and lateral index intersect at an index origin. The virtual source and manipulation mechanism auto align the orientation line through the index origin during virtual source motion.

  13. LOADING DEVICE

    DOEpatents

    Ohlinger, L.A.

    1958-10-01

    A device is presented for loading or charging bodies of fissionable material into a reactor. This device consists of a car, mounted on tracks, into which the fissionable materials may be placed at a remote area, transported to the reactor, and inserted without danger to the operating personnel. The car has mounted on it a heavily shielded magazine for holding a number of the radioactive bodies. The magazine is of a U-shaped configuration and is inclined to the horizontal plane, with a cap covering the elevated open end, and a remotely operated plunger at the lower, closed end. After the fissionable bodies are loaded in the magazine and transported to the reactor, the plunger inserts the body at the lower end of the magazine into the reactor, then is withdrawn, thereby allowing gravity to roll the remaining bodies into position for successive loading in a similar manner.

  14. Electrooptical Devices.

    DTIC Science & Technology

    1981-09-30

    to monolithically integrate a passive waveguide with a GaInAsP/InP double-heterostructure laser for potential use in fabricating modulators and...HETEROSTRUCTURE DIODE LASERS 5 Ill. INTRACAVITY LOSS MODULATION OF GaInAsP DIODE LASERS 19 IV. MONOLITHIC INTEGRATION OF GaInAsP/InP LASERS WITH PASSIVE... integrating an electroabsorption modulator section with a waveguide section and an optical amplifier section as shown in Fig. III-1. The device

  15. Latching device

    NASA Technical Reports Server (NTRS)

    Ulrich, G. W. (Inventor)

    1975-01-01

    A latching device is suited for use in establishing a substantially motionless connection between a stationary receiver and a movable latching mechanism. The latching mechanism includes a pivotally supported restraining hook continuously urged into a capturing relationship with the receiver, characterized by a spring-biased pawl having a plurality of aligned teeth. The teeth are seated in the surface of the throat of the hook and positionable into restraining engagement with a rigid restraining shoulder projected from the receiver.

  16. Electrooptical Devices.

    DTIC Science & Technology

    1980-03-31

    Si N ’or Pl. The surface-related nature of the leakage currents was confirmed by testing the uncoated devices in several gaseous environments (O, NH ...later- tinre. Z-I.. Liau D. E. Mull .1. J. Ilsiebl J. N. Walpole T. A. Lind 711 G&InkA.P/ p I 643 6-C Fig. IV- t. Intensity distribution of an X-ray beam

  17. Closure device

    SciTech Connect

    Sable, D. E.

    1985-06-11

    A closure device connectible to a well head through which the polished rod of a rod string extends into a well tubing for operating pump means for moving well fluids to a surface flow conductor, the closure device having a tubular ram provided with a packing or plug for closing an annular passage between the polished rod and a tubular body connected to the well head above a lateral port of the tubular body, the tubular ram and the tubular body having thread means for moving the plug between an operative lower position wherein it closes the annular passage when the rod string is stationary and on inoperative upper position; seal means between the ram and the polished rod spaced above the plug; and a plurality of independent seal means between the ram and the tubular body operative when the plug is in its inoperative position. The plug of the closure device is especially adapted to operate under high temperature and pressure conditions of the well, as during steam injection operations when the rod string is stationary, to protect the seal means from high pressures and temperatures as well as any fluids which may be corrosive or otherwise deleterious to the substance of which the seal means are made.

  18. Organic Electrolyte Permselective Membranes.

    DTIC Science & Technology

    ORGANIC SOLVENTS), (*STORAGE BATTERIES, (*BATTERY SEPARATORS, MEMBRANES ), (* MEMBRANES , TRANSPORT PROPERTIES), LITHIUM, COPPER COMPOUNDS, DIFFUSION, CHLORIDES, IONS, ELECTRODIALYSIS , ION EXCHANGE RESINS.

  19. Gated Ion Channel-Based Biosensor Device

    NASA Astrophysics Data System (ADS)

    Separovic, Frances; Cornell, Bruce A.

    A biosensor device based on the ion channel gramicidin A (gA) incorporated into a bilayer membrane is described. This generic immunosensing device utilizes gA coupled to an antibody and assembled in a lipid membrane. The membrane is chemically tethered to a gold electrode, which reports on changes in the ionic conduction of the lipid bilayer. Binding of a target molecule in the bathing solution to the antibody causes the gramicidin channels to switch from predominantly conducting dimers to predominantly nonconducting monomers. Conventional a.c. impedance spectroscopy between the gold and a counter electrode in the bathing solution is used to measure changes in the ionic conductivity of the membrane. This approach permits the quantitative detection of a range of target species, including bacteria, proteins, toxins, DNA sequences, and drug molecules.

  20. A novel asymmetric membrane osmotic pump capsule with in situ formed delivery orifices for controlled release of gliclazide solid dispersion system.

    PubMed

    Yang, Yue; Zhao, Zhinan; Wang, Yongfei; Yang, Lu; Liu, Dandan; Yang, Xinggang; Pan, Weisan

    2016-06-15

    In this study, a novel asymmetric membrane osmotic pump capsule of gliclazide (GLC) solid dispersion was developed to achieve a controlled drug release. The capsule shells were obtained by wet phase inversion process using cellulose acetate as semi-permeable membrane, glycerol and kolliphor P188 as pore formers, then filled with the mixture of GLC solid dispersion and pH modifiers. Differentiate from the conventional formulations, sodium carbonate was chosen as the osmotic agent and effervescent agent simultaneously to control the drug release, instead of the polymer materials. The ternary solid dispersion of GLC, with polyethylene glycol 6000 and kolliphor P188 as carriers, was prepared by solvent-evaporation method, realizing a 2.09-fold increment in solubility and dissolution rate in comparison with unprocessed GLC. Influence of the composition of the coating solution and pH modifiers on the drug release from the asymmetric membrane capsule (AMC) was investigated. The ultimate cumulative release of the optimal formulation reached 91.32% in an approximately zero-order manner. The osmotic pressure test and dye test were conducted to validate the drug release mechanism from the AMC. The in vivo pharmacokinetic study of the AMC indicated a 102.66±10.95% relative bioavailability compared with the commercial tablet, suggesting the bioequivalence between the two formulations. Consequently, the novel controlled delivery system with combination of solid dispersion and AMC system is capable of providing a satisfactory alternative to release the water-insoluble drugs in a controlled manner. Copyright © 2016. Published by Elsevier B.V.

  1. Preparation, characterization, physical testing and performance of flurocarbon membranes and separators

    NASA Technical Reports Server (NTRS)

    Lagow, R. J.; Dumitru, E. T.

    1983-01-01

    The direct fluorination method of converting carefully selected hydrocarbon substrates to fluorinated membranes was successfully applied to produce promising, novel membranes for electrochemical devices. A family of polymer blends was identified which permits wide latitude in the concentration of both crosslinks and carboxyl groups in hydrocarbon membranes. The membranes of paragraph two were successfully fluorinated.

  2. Multilayer sulfur-resistant composite metal membranes and methods of making and repairing the same

    SciTech Connect

    Way, J. Douglas; Hatlevik, Oyvind

    2014-07-15

    The invention relates to thin, hydrogen-permeable, sulfur-resistant membranes formed from multi-layers of palladium or palladium-alloy coatings on porous, ceramic or metal supports, methods of making these membranes, methods of repairing layers of these membranes and devices that incorporate these membranes.

  3. Monitored separation device

    NASA Technical Reports Server (NTRS)

    Jackson, George William (Inventor); Willson, Richard Coale (Inventor); Fox, George Edward (Inventor)

    2011-01-01

    A device for separating and purifying useful quantities of particles comprises: a. an anolyte reservoir connected to an anode, the anolyte reservoir containing an electrophoresis buffer; b. a catholyte reservoir connected to a cathode, the catholyte reservoir also containing the electrophoresis buffer; c. a power supply connected to the anode and to the cathode; d. a column having a first end inserted into the anolyte reservoir, a second end inserted into the catholyte reservoir, and containing a separation medium; e. a light source; f. a first optical fiber having a first fiber end inserted into the separation medium, and having a second fiber end connected to the light source; g. a photo detector; h. a second optical fiber having a third fiber end inserted into the separation medium, and having a fourth fiber end connected to the photo detector; and i. an ion-exchange membrane in the anolyte reservoir.

  4. Nanoporous hard carbon membranes for medical applications.

    PubMed

    Narayan, Roger J; Jin, Chunming; Menegazzo, Nicola; Mizaikoff, Boris; Gerhardt, Rosario A; Andara, Melanie; Agarwal, Arvind; Shih, Chun-Che; Shih, Chun-Ming; Lin, Shing-Jong; Su, Yea-Yang

    2007-01-01

    Current blood glucose sensors have proven to be inadequate for long term in vivo applications; membrane biofouling and inflammation play significant roles in sensor instability. An ideal biosensor membrane material must prevent protein adsorption and promote integration of the sensor with the surrounding tissue. Furthermore, biosensor membranes must be sufficiently thin and porous in order to allow the sensor to rapidly respond to fluctuations in analyte concentration. In this study, the use of diamondlike carbon-coated anodized aluminum oxide as a potential biosensor membrane is discussed. Diamondlike carbon films and diamondlike carbon-coated anodized aluminum oxide nanoporous membranes were examined using scanning electron microscopy, atomic force microscopy, X-ray photoelectron spectroscopy, Raman spectroscopy, and platelet rich plasma testing. The diamondlike carbon-coated anodized aluminum oxide membranes remained free from protein adsorption during in vitro platelet rich plasma testing. We anticipate that this novel membrane could find use in immunoisolation devices, pacemakers, kidney dialysis membranes, microdialysis systems, and other devices facing biocompatibility issues that limit in vivo function.

  5. Electrooptical Devices.

    DTIC Science & Technology

    1984-09-30

    Table 1-1 10 II-5 Calculated Ij as a Function of the Cap p-Doping 12 III-1 L-I Characteristics of the Five Mass-Transported BH Lasers with Different...343, a = 5.0 /im, W = 1.5 nmy and b = 2.0 pm 9 vni ELECTROOPTICAL DEVICES I. NEW DEVELOPMENTS IN MASS-TRANSPORTED GalnAsP/InP BURIED...HETEROSTRUCTURE LASERS As a potentially very important class of sources in fiber optical communication and inte- grated optics, GalnAsP/InP buried

  6. Electrospray device

    NASA Technical Reports Server (NTRS)

    Demmons, Nathaniel (Inventor); Martin, Roy (Inventor); Hruby, Vladimir (Inventor); Roy, Thomas (Inventor); Spence, Douglas (Inventor); Ehrbar, Eric (Inventor); Zwahlen, Jurg (Inventor)

    2011-01-01

    An electrospray device includes an electrospray emitter adapted to receive electrospray fluid; an extractor plate spaced from the electrospray emitter and having at least one aperture; and a power supply for applying a first voltage between the extractor plate and emitter for generating at least one Taylor cone emission through the aperture to create an electrospray plume from the electrospray fluid, the extractor plate as well as accelerator and shaping plates may include a porous, conductive medium for transporting and storing excess, accumulated electrospray fluid away from the aperture.

  7. Electrochromic device

    SciTech Connect

    Schwendemanm, Irina G; Polcyn, Adam D; Finley, James J; Boykin, Cheri M; Knowles, Julianna M

    2011-03-15

    An electrochromic device includes a first substrate spaced from a second substrate. A first conductive member is formed over at least a portion of the first substrate. A first electrochromic material is formed over at least a portion of the first conductive member. The first electrochromic material includes an organic material. A second conductive member is formed over at least a portion of the second substrate. A second electrochromic material is formed over at least a portion of the second conductive member. The second electrochromic material includes an inorganic material. An ionic liquid is positioned between the first electrochromic material and the second electrochromic material.

  8. Diversionary device

    DOEpatents

    Grubelich, Mark C.

    2001-01-01

    A diversionary device has a housing having at least one opening and containing a non-explosive propellant and a quantity of fine powder packed within the housing, with the powder being located between the propellant and the opening. When the propellant is activated, it has sufficient energy to propel the powder through the opening to produce a cloud of powder outside the housing. An igniter is also provided for igniting the cloud of powder to create a diversionary flash and bang, but at a low enough pressure to avoid injuring nearby people.

  9. Device Connectivity

    PubMed Central

    Walsh, John; Roberts, Ruth; Morris, Richard

    2015-01-01

    Patients with diabetes have to take numerous factors/data into their therapeutic decisions in daily life. Connecting the devices they are using by feeding the data generated into a database/app is supposed to help patients to optimize their glycemic control. As this is not established in practice, the different roadblocks have to be discussed to open the road. That large telecommunication companies are now entering this market might be a big help in pushing this forward. Smartphones offer an ideal platform for connectivity solutions. PMID:25614015

  10. Cooling device

    SciTech Connect

    Teske, L.

    1984-02-21

    A cooling device is claimed for coal dust comprising a housing, a motor-driven conveyor system therein to transport the coal dust over coolable trays in the housing and conveyor-wheel arms of spiral curvature for moving the coal dust from one or more inlets to one or more outlets via a series of communicating passages in the trays over which the conveyor-wheel arms pass under actuation of a hydraulic motor mounted above the housing and driving a vertical shaft, to which the conveyor-wheel arms are attached, extending centrally downwardly through the housing.

  11. OLED devices

    SciTech Connect

    Sapochak, Linda Susan; Burrows, Paul Edward; Bimalchandra, Asanga

    2011-02-22

    An OLED device having an emission layer formed of an ambipolar phosphine oxide host material and a dopant, a hole transport layer in electrical communication with an anode, an electron transport layer in communication with a cathode, wherein the HOMO energy of the hole transport layer is substantially the same as the HOMO energy of the ambipolar host in the emission layer, and the LUMO energy of the electron transport layer is substantially the same as the LUMO energy of the ambipolar host in the emission layer.

  12. Electroexplosive device

    NASA Technical Reports Server (NTRS)

    Menichelli, V. J. (Inventor)

    1978-01-01

    An electroexplosive device is presented which employs a header having contact pins hermetically sealed with glass passing through from a connector end of the header to a cavity filled with a shunt layer of a new nonlinear resistive composition and a heat-sink layer of a new dielectric composition having good thermal conductivity and capacity. The nonlinear resistive layer and the heat-sink layer are prepared from materials by mixing with a low temperature polymerizing resin. The resin is dissolved in a suitable solvent and later evaporated. The resultant solid composite is ground into a powder, press formed into the header and cured (polymerized) at about 250 to 300 F.

  13. Modulation of Tenoxicam release from hydrophilic matrix: modulator membrane versus rate-controlling membrane.

    PubMed

    El-Nabarawi, Mohamed Ahmed

    2005-09-01

    This paper describes the preparation of two layered device comprising of tenoxicam containing layer and a drug free membrane layer based on Geomatrix Technology. Our device based on bilaminated films which produced by a casting/solvent evaporation technique. The drug-hydroxypropyl methylcellulose (HPMC) layer was covered by drug free membrane layer composed of a mixture of different ratios of HPMC and ethyl cellulose (EC). The prepared devices were evaluated for thickness, weight, drug content uniformity, water absorption capacity and in-vitro drug release. The films were also evaluated for appearance, smoothness and transparency. The influence of drug free membrane layer composition and thickness on the drug release pattern was studied on 12 devices (D1 to D12). The results indicate that, the release of drug from HPMC matrixes without the drug free membrane layer was fast and follows diffusion controlled mechanism. The release of drug from the devices D1, D4, D9 and D12 follow the same mechanism, while the release of drug from other devices become linear with time (zero order) and extended for long time especially when thickness and the ratio of EC was increased in the drug free membrane layer. From this study it is concluded that, changing the geometry of drug layer by addition of drug free membrane layer and changing its composition and thickness plays an important role in determining whether the drug free membrane layer is rate-controlling or modulator membrane. Hence it can facilitate the development of different pharmaceutical products with different release pattern.

  14. Porous membranes in secondary battery technologies.

    PubMed

    Lu, Wenjing; Yuan, Zhizhang; Zhao, Yuyue; Zhang, Hongzhang; Zhang, Huamin; Li, Xianfeng

    2017-03-13

    Secondary batteries have received huge attention due to their attractive features in applications of large-scale energy storage and portable electronic devices, as well as electrical vehicles. In a secondary battery, a membrane plays the role of separating the anode and cathode to prevent the occurrence of a short circuit, while allowing the transport of charge carriers to achieve a complete circuit. The properties of a membrane will largely determine the performance of a battery. In this article, we review the research and development progress of porous membranes in secondary battery technologies, such as lithium-based batteries together with flow batteries. The preparation methods as well as the required properties of porous membranes in different secondary battery technologies will be elucidated thoroughly and deeply. Most importantly, this review will mainly focus on the optimization and modification of porous membranes in different secondary battery systems. And various modifications on commercial porous membranes along with novel membrane materials are widely discussed and summarized. This review will help to optimize the membrane material for different secondary batteries, and favor the understanding of the preparation-structure-performance relationship of porous membranes in different secondary batteries. Therefore, this review will provide an extensive, comprehensive and professional reference to design and construct high-performance porous membranes.

  15. Omniphobic Membrane for Robust Membrane Distillation

    SciTech Connect

    Lin, SH; Nejati, S; Boo, C; Hu, YX; Osuji, CO; Ehmelech, M

    2014-11-01

    In this work, we fabricate an omniphobic microporous membrane for membrane distillation (MD) by modifying a hydrophilic glass fiber membrane with silica nanoparticles followed by surface fluorination and polymer coating. The modified glass fiber membrane exhibits an anti-wetting property not only against water but also against low surface tension organic solvents that easily wet a hydrophobic polytetrafluoroethylene (PTFE) membrane that is commonly used in MD applications. By comparing the performance of the PTFE and omniphobic membranes in direct contact MD experiments in the presence of a surfactant (sodium dodecyl sulfate, SDS), we show that SDS wets the hydrophobic PTFE membrane but not the omniphobic membrane. Our results suggest that omniphobic membranes are critical for MD applications with feed waters containing surface active species, such as oil and gas produced water, to prevent membrane pore wetting.

  16. Structural and functional properties of hydration and confined water in membrane interfaces.

    PubMed

    Disalvo, E A; Lairion, F; Martini, F; Tymczyszyn, E; Frías, M; Almaleck, H; Gordillo, G J

    2008-12-01

    or by changing the chemical groups esterified to the phosphates, mainly choline, ethanolamine or glycerol. Thus, surface membrane properties, such as the dipole potential and the surface pressure, are modulated by the water at the interphase region by changing the structure of the membrane components. An understanding of the properties of the structural water located at the hydration sites and the functional water confined around the polar head groups modulated by the hydrocarbon chains is helpful to interpret and analyze the consequences of water loss at the membranes of dehydrated cells. In this regard, a correlation between the effects of water activity on cell growth and the lipid composition is discussed in terms of the recovery of the cell volume and their viability. Critical analyses of the properties of water at the interface of lipid membranes merging from these results and others from the literature suggest that the interface links the membrane with the aqueous soluble proteins in a functional unit in which the cell may be considered as a complex structure stabilized by water rather than a water solution of macromolecules surrounded by a semi permeable barrier.

  17. Synthetic membranes for water purification: status and future.

    PubMed

    Fane, Anthony G; Wang, Rong; Hu, Matthew X

    2015-03-09

    Membrane technology offers the best options to "drought proof" mankind on an increasingly thirsty planet by purifying seawater or used (waste) water. Although desalination by reverse osmosis (RO) and wastewater treatment by membrane bioreactors are well established the various membrane technologies still need to be significantly improved in terms of separation properties, energy demand and costs. We can now define the ideal characteristics of membranes and advances in material science and novel chemistries are leading to increasingly effective membranes. However developments in membranes must be matched by improved device design and membrane engineering. It is likely that limitations in fluid mechanics and mass transfer will define the upper bounds of membrane performance. Nevertheless major advances and growth over the next 20 years can be anticipated with RO remaining as the key to desalination and reclamation, with other membrane processes growing in support and in niche areas. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Stable Complexes of Cationic Liposomes and Membrane Protein Bacteriorhodopsin

    NASA Astrophysics Data System (ADS)

    Kubo, I.; Koltover, I.; Safinya, C. R.; Israelachvili, J. N.

    1998-03-01

    Bacteriorhodposin (bR) is a light-driven proton pump which converts photoenergy to electro-chemical potential across cytoplasmic membrane of bacteria. It forms a self assembled two-dimensional crystal, purple membrane, in the bacterial membrane. Purple membrane has been used to construct photovoltaic cells, imaging devices and biosensors for pH measurement. In these devices, purple membrane was deposited on a solid metal substrate or a semiconductor electrode. However, puple membrane on solid surfaces is not stable in water. In our study, we propose a method for fabrication of stable complexes between cationic lipid and purple membrane. This complexes can be used to prepare robust bR multilayers for biosensors. We have caracterised the complex structure and photo-function at different bR/cationic lipid ratios. Supported by NSF DMR-9624091, Los Alamos CULAR grant No.STB/UC:95-146 and Soka University, foreign exchange program.

  19. Nanoengineered field induced charge separation membranes and methods of manufacture thereof

    DOEpatents

    O'Brien, Kevin C; Haslam, Jeffery J; Bourcier, William L

    2014-04-15

    A device according to one embodiment includes a porous membrane having a surface charge and pore configuration characterized by a double layer overlap effect being present in pores of the membrane. A device according to another embodiment includes a porous membrane having a surface charge in pores thereof sufficient to impart anion or cation selectivity in the pores. Additional devices, systems and methods are also presented.

  20. More About Thin-Membrane Biosensor

    NASA Technical Reports Server (NTRS)

    Case, George D.; Worley, Jennings F., III

    1994-01-01

    Report presents additional information about device described in "Thin-Membrane Sensor With Biochemical Switch" (MFS-26121). Device is modular sensor that puts out electrical signal indicative of chemical or biological agent. Signal produced as membrane-crossing ion current triggered by chemical reaction between agent and recognition protein conjugated to channel blocker. Prototype of biosensor useful in numerous laboratory, industrial, or field applications; such as to detect bacterial toxins in food, to screen for disease-producing micro-organisms, or to warn of toxins or pollutants in air.

  1. More About Thin-Membrane Biosensor

    NASA Technical Reports Server (NTRS)

    Case, George D.; Worley, Jennings F., III

    1994-01-01

    Report presents additional information about device described in "Thin-Membrane Sensor With Biochemical Switch" (MFS-26121). Device is modular sensor that puts out electrical signal indicative of chemical or biological agent. Signal produced as membrane-crossing ion current triggered by chemical reaction between agent and recognition protein conjugated to channel blocker. Prototype of biosensor useful in numerous laboratory, industrial, or field applications; such as to detect bacterial toxins in food, to screen for disease-producing micro-organisms, or to warn of toxins or pollutants in air.

  2. CLOSURE DEVICE

    DOEpatents

    Linzell, S.M.; Dorcy, D.J.

    1958-08-26

    A quick opening type of stuffing box employing two banks of rotatable shoes, each of which has a caraming action that forces a neoprene sealing surface against a pipe or rod where it passes through a wall is presented. A ring having a handle or wrench attached is placed eccentric to and between the two banks of shoes. Head bolts from the shoes fit into slots in this ring, which are so arranged that when the ring is rotated a quarter turn in one direction the shoes are thrust inwardly to cramp the neopnrene about the pipe, malting a tight seal. Moving the ring in the reverse direction moves the shoes outwardly and frees the pipe which then may be readily removed from the stuffing box. This device has particular application as a closure for the end of a coolant tube of a neutronic reactor.

  3. Optoelectronic device

    DOEpatents

    Bonekamp, Jeffrey E.; Boven, Michelle L.; Gaston, Ryan S.

    2014-09-09

    The invention is an optoelectronic device comprising an active portion which converts light to electricity or converts electricity to light, the active portion having a front side for the transmittal of the light and a back side opposite from the front side, at least two electrical leads to the active portion to convey electricity to or from the active portion, an enclosure surrounding the active portion and through which the at least two electrical leads pass wherein the hermetically sealed enclosure comprises at the front side of the active portion a barrier material which allows for transmittal of light, one or more getter materials disposed so as to not impede the transmission of light to or from the active portion, and a contiguous gap pathway to the getter material which pathway is disposed between the active portion and the barrier material.

  4. PLASMA DEVICE

    DOEpatents

    Baker, W.R.

    1961-08-22

    A device is described for establishing and maintaining a high-energy, rotational plasma for use as a fast discharge capacitor. A disc-shaped, current- conducting plasma is formed in an axinl magnetic field and a crossed electric field, thereby creating rotational kinetic enengy in the plasma. Such energy stored in the rotation of the plasma disc is substantial and is convertible tc electrical energy by generator action in an output line electrically coupled to the plasma volume. Means are then provided for discharging the electrical energy into an external circuit coupled to the output line to produce a very large pulse having an extremely rapid rise time in the waveform thereof. (AE C)

  5. Anion permselective membrane

    NASA Technical Reports Server (NTRS)

    Hodgdon, R. B.; Waite, W. A.

    1980-01-01

    The efforts on the synthesis of polymer anion redox membranes were mainly concentrated in two areas, membrane development and membrane fabrication. Membrane development covered the preparation and evaluation of experimental membranes systems with improved resistance stability and/or lower permeability. Membrane fabrication covered the laboratory scale production of prime candidate membranes in quantities of up to two hundred and sizes up to 18 inches x 18 inches (46 cm x 46 cm). These small (10 in x 11 in) and medium sized membranes were mainly for assembly into multicell units. Improvements in processing procedures and techniques for preparing such membrane sets lifted yields to over 90 percent.

  6. Selecting a Roof Membrane.

    ERIC Educational Resources Information Center

    Waldron, Larry W.

    1990-01-01

    Offers a brief synopsis of the unique characteristics of the following roof membranes: (1) built-up roofing; (2) elastoplastic membranes; (3) modified bitumen membranes; (4) liquid applied membranes; and (5) metal roofing. A chart compares the characteristics of the raw membranes only. (MLF)

  7. Structures and fabrication techniques for solid state electrochemical devices

    DOEpatents

    Visco, Steven J.; Jacobson, Craig P.; DeJonghe, Lutgard C.

    2006-10-10

    Low-cost, mechanically strong, highly electronically conductive porous substrates and associated structures for solid-state electrochemical devices, techniques for forming these structures, and devices incorporating the structures provide solid state electrochemical device substrates of novel composition and techniques for forming thin electrode/membrane/electrolyte coatings on the novel or more conventional substrates. In particular, in one aspect the invention provides techniques for co-firing of device substrate (often an electrode) with an electrolyte or membrane layer to form densified electrolyte/membrane films 5 to 20 microns thick. In another aspect, densified electrolyte/membrane films 5 to 20 microns thick may be formed on a pre-sintered substrate by a constrained sintering process. In some cases, the substrate may be a porous metal, alloy, or non-nickel cermet incorporating one or more of the transition metals Cr, Fe and Cu, or alloys thereof.

  8. Structures and fabrication techniques for solid state electrochemical devices

    DOEpatents

    Visco, Steven J.; Jacobson, Craig P.; DeJonghe, Lutgard C.

    2003-08-12

    Provided are low-cost, mechanically strong, highly electronically conductive porous substrates and associated structures for solid-state electrochemical devices, techniques for forming these structures, and devices incorporating the structures. The invention provides solid state electrochemical device substrates of novel composition and techniques for forming thin electrode/membrane/electrolyte coatings on the novel or more conventional substrates. In particular, in one embodiment the invention provides techniques for co-firing of device substrate (often an electrode) with an electrolyte or membrane layer to form densified electrolyte/membrane films 5 to 20 microns thick. In another embodiment, densified electrolyte/membrane films 5 to 20 microns thick may be formed on a pre-sintered substrate by a constrained sintering process. In some cases, the substrate may be a porous metal, alloy, or non-nickel cermet incorporating one or more of the transition metals Cr, Fe, Cu and Ag, or alloys thereof.

  9. Structures And Fabrication Techniques For Solid State Electrochemical Devices

    DOEpatents

    Visco, Steven J.; Jacobson, Craig P.; DeJonghe, Lutgard C.

    2005-12-27

    Provided are low-cost, mechanically strong, highly electronically conductive porous substrates and associated structures for solid-state electrochemical devices, techniques for forming these structures, and devices incorporating the structures. The invention provides solid state electrochemical device substrates of novel composition and techniques for forming thin electrode/membrane/electrolyte coatings on the novel or more conventional substrates. In particular, in one embodiment the invention provides techniques for co-firing of device substrate (often an electrode) with an electrolyte or membrane layer to form densified electrolyte/membrane films 5 to 20 microns thick. In another embodiment, densified electrolyte/membrane films 5 to 20 microns thick may be formed on a pre-sintered substrate by a constrained sintering process. In some cases, the substrate may be a porous metal, alloy, or non-nickel cermet incorporating one or more of the transition metals Cr, Fe, Cu and Ag, or alloys thereof.

  10. The application of co-melt-extruded poly(ε-caprolactone) as a controlled release drug delivery device when combined with novel bioactive drug candidates: Membrane permeation and Hanson dissolution studies

    PubMed Central

    Gardyne, Stephen J.; Mucalo, Michael R.; Rathbone, Michael J.

    2011-01-01

    Eight bioactive drug compounds (abamectin, amoxicillin, dexamethasone, dexamethasone valerate, ketoprofen, melatonin, oestradiol 17β, and oestradiol benzoate) were combined via melt extrusion and disc pressing processes with a polycaprolactone (PCL) matrix and were then evaluated and compared via membrane diffusion and Hanson dissolution studies. This investigation was to determine the potential of this matrix to act as a controlled release drug delivery vehicle for a number of drugs not previously combined with PCL in a melt extrusion mix. The inclusion of the progesterone/PCL system, for which the drug release behaviour has been well studied before was intended for comparison with the PCL systems incorporating drugs that have received little research attention in the past. Initial studies centred on an evaluation of the permeation ability of the bioactive drugs dissolved in aqueous cyclodextrin solutions through a poly(ε-caprolactone) (PCL) membrane using Valia-Chien side-by-side cells. Permeation rates were mostly low and found to range from 0 to 122 μg h−1 with only ketoprofen, melatonin, and progesterone displaying rates exceeding 20 μg h−1. Hanson dissolution release profiles in aqueous alcohol were subsequently measured for the 9 melt extruded PCL/drug combinations and led to Hanson release rates of 0–556 μg cm−2 h−0.5 with dexamethasone, dexamethasone valerate, ketoprofen, melatonin, and progesterone giving values exceeding 100 μg cm−2 h−0.5. A number of drugs such as the dexamethasones probably performed better than they did in the permeability rate measurements because of the less polar aqueous alcoholic solvent used. In searching for useful correlations between the drug physicochemical properties and release rate, only a moderate correlation (R2=0.5675) between Hanson dissolution release rate and permeation rate was found. This suggests that the release rate and the permeation are both controlled by the rate of drug

  11. Proton conducting membrane using a solid acid

    NASA Technical Reports Server (NTRS)

    Haile, Sossina M. (Inventor); Chisholm, Calum (Inventor); Boysen, Dane A. (Inventor); Narayanan, Sekharipuram R. (Inventor)

    2006-01-01

    A solid acid material is used as a proton conducting membrane in an electrochemical device. The solid acid material can be one of a plurality of different kinds of materials. A binder can be added, and that binder can be either a nonconducting or a conducting binder. Nonconducting binders can be, for example, a polymer or a glass. A conducting binder enables the device to be both proton conducting and electron conducting.

  12. Overview of membranes and membrane plates used in research and diagnostic ELISPOT assays.

    PubMed

    Weiss, Alan J

    2012-01-01

    Polyvinylidene fluoride (PVDF) membrane-bottomed, 96-well plates and 8-well strips constitute the formats in which the overwhelming majority of ELISPOT assays used in research and diagnostic applications are performed. PVDF is well suited for ELISPOT because it has a high antibody-binding capacity and because its white color provides an excellent backdrop for ELISPOT enumeration. Nitrocellulose (NC) and PVDF membranes and 96-well plates containing those membranes used in ELISPOT assays were initially commercialized for filtration applications and later optimized for a range of different protein analytical applications. An overview of the development and biotechnology applications of PVDF membrane is provided. Characteristics and attributes of the membrane that are relevant to ELISPOT are summarized. Enhancements in PVDF membrane performance and optimization of devices for automation compatible and diagnostic ELISPOT applications are presented.

  13. Intrauterine devices.

    PubMed

    Gromko, L

    1980-01-01

    IUDs were 1st used in Poland in 1909 when Richter introduced a silkworm gut device. Grafenberg's ring, made 1st of silkworm gut and later of gold or silver, was used in Berlin in the 1920s, but dangerous infections were associated with these IUDs. In the early 1960s new biologically inert materials (stainless steel and plastic) were used for the Lippes Loop, the Saf-T-Coil, and the Spiral (associated with a higher expulsion rate). The stainless tell Majzlin Spring was recalled by the FDA because of embedding in the uterine wall. The Dalkon Shield, introduced in the early 1970s, was implicated in midtrimester septic abortions and deaths, and was later withdrawn. Progestasert containing progesterone was 1st used in the mid-1970s, however, side effects included dysmenorrhea, vaso-vagal reaction, and higher ectopic pregnancy rates. Stimulation of the vagus nerve occurring during tenaculum placement can induce symptoms known as the vaso-vagal reaction: bradycardia, hypotension, nausea, pallor, syncope, and cardiac arrest. Moderate symptoms may be relieved by atropine sulfate (.6 mg iv). Baseline pulse and blood pressure must be routinely read before IUD fitting. Sounding the uterus during menstruation and a follow-up visit within 3 months with x-ray if necessary is recommended to rule out perforation. Reported expulsion rates vary from 1 to 24%, mostly among nulliparas. Copper-bearing devices usually require laparotomy for removal. Pregnancy occurs in 1-5% of IUD users. Removal may trigger spontaneous abortion, but the in situ IUD poses more danger. The theoretical efficacy of IUDs is 97-99% (of 100 women correctly using IUDs for 1 year, 1-3 become pregnant). Their disadvantages include increased dysmenorrhea, menstrual cramps, and bleeding. An estimated 5-10% of pregnancies occurring with an IUD in situ are ectopic. Women who use IUDs are several times more likely to develop pelvic inflammatory disease (PID) than nonusers. Recent research substantiates a 4.4 to 9-fold

  14. Integrated device architectures for electrochromic devices

    DOEpatents

    Frey, Jonathan Mack; Berland, Brian Spencer

    2015-04-21

    This disclosure describes systems and methods for creating monolithically integrated electrochromic devices which may be a flexible electrochromic device. Monolithic integration of thin film electrochromic devices may involve the electrical interconnection of multiple individual electrochromic devices through the creation of specific structures such as conductive pathway or insulating isolation trenches.

  15. Cooled membrane for high sensitivity gas sampling.

    PubMed

    Jiang, Ruifen; Pawliszyn, Janusz

    2014-04-18

    A novel sample preparation method that combines the advantages of high surface area geometry and cold surface effect was proposed to achieve high sensitivity gas sampling. To accomplish this goal, a device that enables the membrane to be cooled down was developed for sampling, and a gas chromatograph-mass spectrometer was used for separation and quantification analysis. Method development included investigation of the effect of membrane temperature, membrane size, gas flow rate and humidity. Results showed that high sensitivity for equilibrium sampling, such as limonene sampling in the current study could be achieved by either cooling down the membrane and/or using a large volume extraction phase. On the other hand, for pre-equilibrium extraction, in which the extracted amount was mainly determined by membrane surface area and diffusion coefficient, high sensitivity could be obtained by using thinner membranes with a larger surface and/or a higher sampling flow rate. In addition, humidity showed no significant influence on extraction efficiency, due to the absorption property of the liquid extraction phase. Next, the limit of detection (LOD) was found, and the reproducibility of the developed cooled membrane gas sampling method was evaluated. Results showed that LODs with a membrane diameter of 19mm at room temperature sampling were 9.2ng/L, 0.12ng/L, 0.10ng/L for limonene, cinnamaldehyde and 2-pentadecanone, respectively. Intra- and inter-membrane sampling reproducibility revealed RSD% lower than 8% and 13%, respectively. Results uniformly demonstrated that the proposed cooled membrane device could serve as an alternative powerful tool for future gas sampling.

  16. Laser device

    DOEpatents

    Scott, Jill R.; Tremblay, Paul L.

    2004-11-23

    A laser device includes a target position, an optical component separated a distance J from the target position, and a laser energy source separated a distance H from the optical component, distance H being greater than distance J. A laser source manipulation mechanism exhibits a mechanical resolution of positioning the laser source. The mechanical resolution is less than a spatial resolution of laser energy at the target position as directed through the optical component. A vertical and a lateral index that intersect at an origin can be defined for the optical component. The manipulation mechanism can auto align laser aim through the origin during laser source motion. The laser source manipulation mechanism can include a mechanical index. The mechanical index can include a pivot point for laser source lateral motion and a reference point for laser source vertical motion. The target position can be located within an adverse environment including at least one of a high magnetic field, a vacuum system, a high pressure system, and a hazardous zone. The laser source and an electro-mechanical part of the manipulation mechanism can be located outside the adverse environment. The manipulation mechanism can include a Peaucellier linkage.

  17. Laser device

    DOEpatents

    Scott, Jill R.; Tremblay, Paul L.

    2007-07-10

    A laser device includes a target position, an optical component separated a distance J from the target position, and a laser energy source separated a distance H from the optical component, distance H being greater than distance J. A laser source manipulation mechanism exhibits a mechanical resolution of positioning the laser source. The mechanical resolution is less than a spatial resolution of laser energy at the target position as directed through the optical component. A vertical and a lateral index that intersect at an origin can be defined for the optical component. The manipulation mechanism can auto align laser aim through the origin during laser source motion. The laser source manipulation mechanism can include a mechanical index. The mechanical index can include a pivot point for laser source lateral motion and a reference point for laser source vertical motion. The target position can be located within an adverse environment including at least one of a high magnetic field, a vacuum system, a high pressure system, and a hazardous zone. The laser source and an electro-mechanical part of the manipulation mechanism can be located outside the adverse environment. The manipulation mechanism can include a Peaucellier linkage.

  18. Membrane Systems in Cyanobacteria

    SciTech Connect

    Liberton, Michelle L.; Pakrasi, Himadri B.

    2008-01-01

    Cyanobacteria are photosynthetic prokaryotes with highly differentiated membrane systems. In addition to a Gram-negative-type cell envelope with plasma membrane and outer membrane separated by a periplasmic space, cyanobacteria have an internal system of thylakoid membranes where the fully functional electron transfer chains of photosynthesis and respiration reside. The presence of different membrane systems lends these cells a unique complexity among bacteria. Cyanobacteria must be able to reorganize the membranes, synthesize new membrane lipids, and properly target proteins to the correct membrane system. The outer membrane, plasma membrane, and thylakoid membranes each have specialized roles in the cyanobacterial cell. Understanding the organization, functionality, protein composition and dynamics of the membrane systems remains a great challenge in cyanobacterial cell biology.

  19. [Circulatory assist devices in cardiology].

    PubMed

    Ferrari, M; Figulla, H R

    2005-03-24

    One out of 13 patients with an acute myocardial infarction is endangered of cardiogenic shock. In addition, acute valvular leakage, shunt vitiae, and acute myocarditis can lead to acute myocardial failure. As a therapeutic option, mechanical assist devices offer cardiac support and hemodynamic stabilization under these circumstances. The following minimal-invasive devices are used in cardiology and intensive care medicine: intra-aortic balloon pulsation (IABP), intra-vascular axial screw pumps, extra-corporal centrifugal pumps with and without additional membrane oxygenator. The IABP improves left ventricular function by a systolic reduction of the after-load, and an increase of diastolic blood pressure dependent on myocardial function. In contrast, axial screw pumps and centrifugal pumps can provide circulatory support independently of myocardial function. Mechanical assist devices can prevent irreversible damage not only by offering a reduction of myocardial work load, but also by improving organ perfusion in cardiogenic shock situations. Another indication for mechanical circulatory support depicts high-risk coronary angioplasty if the left ventricular ejection fraction is severely reduced or the target vessel supplies more than 50 % of vital myocardium. In case of irreversible heart failure, turbine pumps or centrifugal pumps offer a stabilization for the patient's transfer to a cardiac surgery center. They can also be used for bridging to heart transplantation in acute situations. Technical improvements will enhance the use of mechanical assist devices in the near future. Especially the development of portable emergency devices will enrich therapeutic possibilities in cardiology and intensive care medicine.

  20. Simple Check Valves for Microfluidic Devices

    NASA Technical Reports Server (NTRS)

    Willis, Peter A.; Greer, Harold F.; Smith, J. Anthony

    2010-01-01

    A simple design concept for check valves has been adopted for microfluidic devices that consist mostly of (1) deformable fluorocarbon polymer membranes sandwiched between (2) borosilicate float glass wafers into which channels, valve seats, and holes have been etched. The first microfluidic devices in which these check valves are intended to be used are micro-capillary electrophoresis (microCE) devices undergoing development for use on Mars in detecting compounds indicative of life. In this application, it will be necessary to store some liquid samples in reservoirs in the devices for subsequent laboratory analysis, and check valves are needed to prevent cross-contamination of the samples. The simple check-valve design concept is also applicable to other microfluidic devices and to fluidic devices in general. These check valves are simplified microscopic versions of conventional rubber- flap check valves that are parts of numerous industrial and consumer products. These check valves are fabricated, not as separate components, but as integral parts of microfluidic devices. A check valve according to this concept consists of suitably shaped portions of a deformable membrane and the two glass wafers between which the membrane is sandwiched (see figure). The valve flap is formed by making an approximately semicircular cut in the membrane. The flap is centered over a hole in the lower glass wafer, through which hole the liquid in question is intended to flow upward into a wider hole, channel, or reservoir in the upper glass wafer. The radius of the cut exceeds the radius of the hole by an amount large enough to prevent settling of the flap into the hole. As in a conventional rubber-flap check valve, back pressure in the liquid pushes the flap against the valve seat (in this case, the valve seat is the adjacent surface of the lower glass wafer), thereby forming a seal that prevents backflow.

  1. Design of electrospinning mesh devices

    NASA Astrophysics Data System (ADS)

    Russo, Giuseppina; Peters, Gerrit W. M.; Solberg, Ramon H. M.; Vittoria, Vittoria

    2012-07-01

    This paper describes the features of new membranes that can act as local biomedical devices owing to their peculiar shape in the form of mesh structure. These materials are designed to provide significant effects to reduce local inflammations and improve the tissue regeneration. Lamellar Hydrotalcite loaded with Diclofenac Sodium (HTLc-DIK) was homogenously dispersed inside a polymeric matrix of Poly-caprolactone (PCL) to manufacture membranes by electrospinning technique. The experimental procedure and the criteria employed have shown to be extremely effective at increasing potentiality and related applications. The employed technique has proved to be very useful to manufacture polymeric fibers with diameters in the range of nano-micro scale. In this work a dedicated collector based on a proprietary technology of IME Technologies and Eindhoven University of Technology (TU/e) was used. It allowed to obtain devices with a macro shape of a 3D-mesh. Atomic Force Microscopy (AFM) highlights a very interesting texture of the electrospun fibers. They show a lamellar morphology that is only slightly modified by the inclusion of the interclay embedded in the devices to control the drug release phenomena.

  2. Voltage charging enhances ionic conductivity in gold nanotube membranes.

    PubMed

    Gao, Peng; Martin, Charles R

    2014-08-26

    Ionically conductive membranes are used in many electrochemical processes and devices, including batteries, fuel cells, and electrolyzers. In all such applications, it is advantageous to use membranes with high ionic conductivity because membrane resistance causes a voltage loss suffered by the cell. We describe here a method for enhancing ionic conductivity in membranes containing small diameter (4 nm) gold nanotubes. This entails making the gold nanotube membrane the working electrode in an electrochemical cell and applying a voltage to the membrane. We show here that voltage charging in this way can increase membrane ionic conductivity by over an order of magnitude. When expressed in terms of the ionic conductivity of the electrolyte, κ, within an individual voltage-charged tube, the most negative applied voltage yielded a κ comparable to that of 1 M aqueous KCl, over 2 orders of magnitude higher than κ of the 0.01 M KCl solution contacting the membrane.

  3. Preparation, characterization, physical testing and performance of fluorocarbon membranes and separators

    NASA Technical Reports Server (NTRS)

    Lagow, R. J.; Dumitru, E. T.

    1982-01-01

    The direct fluorination method of converting carefully selected hydrocarbon substrates to fluorinated membranes was successfully applied to produce promising, novel membranes for electrochemical devices. A family of polymer blends was identified which permits wide latitude in the concentration of both crosslinks and carboxyl groups in hydrocarbon membranes. These membranes were successfully fluorinated and are potentially competitive with commercial membranes in performance, and potentially much cheaper in price.

  4. Recent origin and semi-permeable species boundaries in the scleractinian coral genus Stylophora from the Red Sea.

    PubMed

    Arrigoni, Roberto; Benzoni, Francesca; Terraneo, Tullia I; Caragnano, Annalisa; Berumen, Michael L

    2016-10-07

    Reticulate evolution, introgressive hybridisation, and phenotypic plasticity have been documented in scleractinian corals and have challenged our ability to interpret speciation processes. Stylophora is a key model system in coral biology and physiology, but genetic analyses have revealed that cryptic lineages concealed by morphological stasis exist in the Stylophora pistillata species complex. The Red Sea represents a hotspot for Stylophora biodiversity with six morphospecies described, two of which are regionally endemic. We investigated Stylophora species boundaries from the Red Sea and the associated Symbiodinium by sequencing seven DNA loci. Stylophora morphospecies from the Red Sea were not resolved based on mitochondrial phylogenies and showed nuclear allele sharing. Low genetic differentiation, weak isolation, and strong gene flow were found among morphospecies although no signals of genetic recombination were evident among them. Stylophora mamillata harboured Symbiodinium clade C whereas the other two Stylophora morphospecies hosted either Symbiodinium clade A or C. These evolutionary patterns suggest that either gene exchange occurs through reticulate evolution or that multiple ecomorphs of a phenotypically plastic species occur in the Red Sea. The recent origin of the lineage leading to the Red Sea Stylophora may indicate an ongoing speciation driven by environmental changes and incomplete lineage sorting.

  5. A controlled model of moist wound healing: comparison between semi-permeable film, antiseptics and sugar paste.

    PubMed Central

    Archer, H. G.; Barnett, S.; Irving, S.; Middleton, K. R.; Seal, D. V.

    1990-01-01

    An established wound model in the pig has been modified using a Stomahesive ring to enable study of the effects of fluids used in wound care. Full thickness wounds (up to 9 mm deep) were treated with the substances under test. Each application was held in place with a Stomahesive flange, the inner part of which had been excised as far as the hard plastic ring. All dressings were then covered with OpSite which allowed gaseous exchange whilst retaining treatment fluids and secretions. Wounds were treated immediately and at 2 and 4 days. The experiment was terminated after 7 days and the whole wound, with dressing, was excised for histological examination. The wounds covered with OpSite alone and those treated with sugar paste under Opsite were found to be infilled with granulation tissue over which epidermal migration was taking place. Those wounds which had been packed with gauze, to which had been added one of the following: chlorhexidine gluconate 0.2%, Irgasan 0.2%, povidone iodine 0.8% or EUSOL half-strength, showed delayed healing in that less infilling had taken place over the same time period. This delay could be attributed to the nature of the chemicals used and/or the influence of gauze packing. This delay in the healing of wounds treated with chemical agents was least with EUSOL half-strength and greatest with chlorhexidine. No toxic effects were observed with sugar paste which may be preferable to antiseptics for the management of dirty or infected wounds. Images Fig. 2 Fig. 3 Fig. 4 p162-a p163-a p164-a p165-a PMID:2331404

  6. Recent origin and semi-permeable species boundaries in the scleractinian coral genus Stylophora from the Red Sea

    PubMed Central

    Arrigoni, Roberto; Benzoni, Francesca; Terraneo, Tullia I.; Caragnano, Annalisa; Berumen, Michael L.

    2016-01-01

    Reticulate evolution, introgressive hybridisation, and phenotypic plasticity have been documented in scleractinian corals and have challenged our ability to interpret speciation processes. Stylophora is a key model system in coral biology and physiology, but genetic analyses have revealed that cryptic lineages concealed by morphological stasis exist in the Stylophora pistillata species complex. The Red Sea represents a hotspot for Stylophora biodiversity with six morphospecies described, two of which are regionally endemic. We investigated Stylophora species boundaries from the Red Sea and the associated Symbiodinium by sequencing seven DNA loci. Stylophora morphospecies from the Red Sea were not resolved based on mitochondrial phylogenies and showed nuclear allele sharing. Low genetic differentiation, weak isolation, and strong gene flow were found among morphospecies although no signals of genetic recombination were evident among them. Stylophora mamillata harboured Symbiodinium clade C whereas the other two Stylophora morphospecies hosted either Symbiodinium clade A or C. These evolutionary patterns suggest that either gene exchange occurs through reticulate evolution or that multiple ecomorphs of a phenotypically plastic species occur in the Red Sea. The recent origin of the lineage leading to the Red Sea Stylophora may indicate an ongoing speciation driven by environmental changes and incomplete lineage sorting. PMID:27713475

  7. Graphene nanopore devices for DNA sensing.

    PubMed

    Merchant, Chris A; Drndić, Marija

    2012-01-01

    We describe here a method for detecting the translocation of individual DNA molecules through nanopores created in graphene membranes. The devices consist of 1-5-nm thick graphene membranes with electron-beam sculpted nanopores from 5 to 10 nm in diameter. Due to the thin nature of the graphene membranes, and the reduced electrical resistance, we observe larger blocked currents than for traditional solid-state nanopores. We also show how ionic current noise levels can be reduced with the atomic-layer deposition of a few nanometers of titanium dioxide over the graphene surface. Unlike traditional solid-state nanopore materials that are insulating, graphene is an excellent electrical conductor, and its use opens the door to a new future class of nanopore devices in which electronic sensing and control is performed directly at the pore.

  8. Medical devices: US medical device regulation.

    PubMed

    Jarow, Jonathan P; Baxley, John H

    2015-03-01

    Medical devices are regulated by the US Food and Drug Administration (FDA) within the Center for Devices and Radiological Health. Center for Devices and Radiological Health is responsible for protecting and promoting the public health by ensuring the safety, effectiveness, and quality of medical devices, ensuring the safety of radiation-emitting products, fostering innovation, and providing the public with accurate, science-based information about the products we oversee, throughout the total product life cycle. The FDA was granted the authority to regulate the manufacturing and marketing of medical devices in 1976. It does not regulate the practice of medicine. Devices are classified based on complexity and level of risk, and "pre-1976" devices were allowed to remain on the market after being classified without FDA review. Post-1976 devices of lower complexity and risk that are substantially equivalent to a marketed "predicate" device may be cleared through the 510(k) premarket notification process. Clinical data are typically not needed for 510(k) clearance. In contrast, higher-risk devices typically require premarket approval. Premarket approval applications must contain data demonstrating reasonable assurance of safety and efficacy, and this information typically includes clinical data. For novel devices that are not high risk, the de novo process allows FDA to simultaneously review and classify new devices. Devices that are not legally marketed are permitted to be used for clinical investigation purposes in the United States under the Investigational Device Exemptions regulation.

  9. Catalytic membranes for CO oxidation in fuel cells

    DOEpatents

    Sandi-Tapia, Giselle; Carrado Gregar, Kathleen; Kizilel, Riza

    2010-06-08

    A hydrogen permeable membrane, which includes a polymer stable at temperatures of about 200 C having clay impregnated with Pt or Au or Ru or Pd particles or mixtures thereof with average diameters of less than about 10 nanometers (nms) is disclosed. The membranes are useful in fuel cells or any device which requires hydrogen to be separated from carbon monoxide.

  10. Membrane Dehumidifier: High-Efficiency, On-Line Membrane Air Dehumidifier Enabling Sensible Cooling for Warm and Humid Climates

    SciTech Connect

    2010-09-01

    BEETIT Project: ADMA Products is developing a foil-like membrane for air conditioners that efficiently removes moisture from humid air. ADMA Products’s metal foil-like membrane consists of a paper thin, porous metal sheet coated with a layer of water-loving molecules. This new membrane allows water vapor to permeate across the membrane at high fluxes and at the same time, blocks air penetration efficiently resulting in high selectivity. The high selectivity of the membrane translates to less energy use, while the high permeation fluxes result in a more compact device. The new materials and the flat foil-like nature of the membrane facilitate the mass production of a low-coast compact dehumidification device

  11. An Optically Addressed Membrane Spatial Light Modulator

    NASA Astrophysics Data System (ADS)

    Pape, Dennis R.

    1984-08-01

    The architecture, operation, and performance of a new two-dimensional, optically addressed, membrane spatial light modulator are described. The modulator, the Optical-to-Optical Deformable Mirror Device (OTO-DMD), can be used to convert incoherent images to coherent images for optical information processing applications.

  12. Electrostatically actuated membranes made from silica thin films

    NASA Astrophysics Data System (ADS)

    Stout, John M.; Welker, Taylor M.; Hawkins, Aaron R.

    2017-01-01

    We present a method for fabricating flexible nano-scale membranes using surface micromachining and silica thin films. Standard microfabrication techniques are used, and the membrane can be moved using electrostatic forces. The degree of deflection is set by an applied voltage, and the devices can be fully collapsed (100 nm movement) by applying approximately 150 V. Deflection tests were performed using an optical profilometer when the area under the membrane was filled with air and water.

  13. Major intrinsic proteins in biomimetic membranes.

    PubMed

    Nielsen, Claus Hélix

    2010-01-01

    Biological membranes define the structural and functional boundaries in living cells and their organelles. The integrity of the cell depends on its ability to separate inside from outside and yet at the same time allow massive transport of matter in and out the cell. Nature has elegantly met this challenge by developing membranes in the form of lipid bilayers in which specialized transport proteins are incorporated. This raises the question: is it possible to mimic biological membranes and create a membrane based sensor and/or separation device? In the development of a biomimetic sensor/separation technology, a unique class of membrane transport proteins is especially interesting-the major intrinsic proteins (MIPs). Generally, MIPs conduct water molecules and selected solutes in and out of the cell while preventing the passage of other solutes, a property critical for the conservation of the cells internal pH and salt concentration. Also known as water channels or aquaporins they are highly efficient membrane pore proteins some of which are capable of transporting water at very high rates up to 10(9) molecules per second. Some MIPs transport other small, uncharged solutes, such as glycerol and other permeants such as carbon dioxide, nitric oxide, ammonia, hydrogen peroxide and the metalloids antimonite, arsenite, silicic and boric acid depending on the effective restriction mechanism of the protein. The flux properties of MIPs thus lead to the question ifMIPs can be used in separation devices or as sensor devices based on, e.g., the selective permeation of metalloids. In principle a MIP based membrane sensor/separation device requires the supporting biomimetic matrix to be virtually impermeable to anything but water or the solute in question. In practice, however, a biomimetic support matrix will generally have finite permeabilities to both electrolytes and non-electrolytes. The feasibility of a biomimetic MIP device thus depends on the relative transport

  14. Microfabricated bulk wave acoustic bandgap device

    DOEpatents

    Olsson, Roy H.; El-Kady, Ihab F.; McCormick, Frederick; Fleming, James G.; Fleming, Carol

    2010-06-08

    A microfabricated bulk wave acoustic bandgap device comprises a periodic two-dimensional array of scatterers embedded within the matrix material membrane, wherein the scatterer material has a density and/or elastic constant that is different than the matrix material and wherein the periodicity of the array causes destructive interference of the acoustic wave within an acoustic bandgap. The membrane can be suspended above a substrate by an air or vacuum gap to provide acoustic isolation from the substrate. The device can be fabricated using microelectromechanical systems (MEMS) technologies. Such microfabricated bulk wave phononic bandgap devices are useful for acoustic isolation in the ultrasonic, VHF, or UHF regime (i.e., frequencies of order 1 MHz to 10 GHz and higher, and lattice constants of order 100 .mu.m or less).

  15. Photocathode device that replenishes photoemissive coating

    SciTech Connect

    Moody, Nathan A.; Lizon, David C.

    2016-06-14

    A photocathode device may replenish its photoemissive coating to replace coating material that desorbs/evaporates during photoemission. A linear actuator system may regulate the release of a replenishment material vapor, such as an alkali metal, from a chamber inside the photocathode device to a porous cathode substrate. The replenishment material deposits on the inner surface of a porous membrane and effuses through the membrane to the outer surface, where it replenishes the photoemissive coating. The rate of replenishment of the photoemissive coating may be adjusted using the linear actuator system to regulate performance of the photocathode device during photoemission. Alternatively, the linear actuator system may adjust a plasma discharge gap between a cartridge containing replenishment material and a metal grid. A potential is applied between the cartridge and the grid, resulting in ejection of metal ions from the cartridge that similarly replenish the photoemissive coating.

  16. Microfabricated bulk wave acoustic bandgap device

    DOEpatents

    Olsson, Roy H.; El-Kady, Ihab F.; McCormick, Frederick; Fleming, James G.; Fleming, legal representative, Carol

    2010-11-23

    A microfabricated bulk wave acoustic bandgap device comprises a periodic two-dimensional array of scatterers embedded within the matrix material membrane, wherein the scatterer material has a density and/or elastic constant that is different than the matrix material and wherein the periodicity of the array causes destructive interference of the acoustic wave within an acoustic bandgap. The membrane can be suspended above a substrate by an air or vacuum gap to provide acoustic isolation from the substrate. The device can be fabricated using microelectromechanical systems (MEMS) technologies. Such microfabricated bulk wave phononic bandgap devices are useful for acoustic isolation in the ultrasonic, VHF, or UHF regime (i.e., frequencies of order 1 MHz to 10 GHz and higher, and lattice constants of order 100 .mu.m or less).

  17. Intelligent Membranes: Dream or Reality?

    PubMed

    Gugliuzza, Annarosa

    2013-07-15

    Intelligent materials are claimed to overcome current drawbacks associated with the attainment of high standards of life, health, security and defense. Membrane-based sensors represent a category of smart systems capable of providing a large number of benefits to different markets of textiles, biomedicine, environment, chemistry, agriculture, architecture, transport and energy. Intelligent membranes can be characterized by superior sensitivity, broader dynamic range and highly sophisticated mechanisms of autorecovery. These prerogatives are regarded as the result of multi-compartment arrays, where complementary functions can be accommodated and well-integrated. Based on the mechanism of "sense to act", stimuli-responsive membranes adapt themselves to surrounding environments, producing desired effects such as smart regulation of transport, wetting, transcription, hydrodynamics, separation, and chemical or energy conversion. Hopefully, the design of new smart devices easier to manufacture and assemble can be realized through the integration of sensing membranes with wireless networks, looking at the ambitious challenge to establish long-distance communications. Thus, the transfer of signals to collecting systems could allow continuous and real-time monitoring of data, events and/or processes.

  18. Ultrathin silicon membranes for wearable dialysis.

    PubMed

    Johnson, Dean G; Khire, Tejas S; Lyubarskaya, Yekaterina L; Smith, Karl J P; Desormeaux, Jon-Paul S; Taylor, Jeremy G; Gaborski, Thomas R; Shestopalov, Alexander A; Striemer, Christopher C; McGrath, James L

    2013-11-01

    The development of wearable or implantable technologies that replace center-based hemodialysis (HD) hold promise to improve outcomes and quality of life for patients with ESRD. A prerequisite for these technologies is the development of highly efficient membranes that can achieve high toxin clearance in small-device formats. Here we examine the application of the porous nanocrystalline silicon (pnc-Si) to HD. pnc-Si is a molecularly thin nanoporous membrane material that is orders of magnitude more permeable than conventional HD membranes. Material developments have allowed us to dramatically increase the amount of active membrane available for dialysis on pnc-Si chips. By controlling pore sizes during manufacturing, pnc-Si membranes can be engineered to pass middle-molecular-weight protein toxins while retaining albumin, mimicking the healthy kidney. A microfluidic dialysis device developed with pnc-Si achieves urea clearance rates that confirm that the membrane offers no resistance to urea passage. Finally, surface modifications with thin hydrophilic coatings are shown to block cell and protein adhesion.

  19. Experimenting with Liquid Membranes.

    ERIC Educational Resources Information Center

    Lamb, J. D.; And Others

    1980-01-01

    Outlined are two experiments using liquid membranes that illustrate carrier-facilitated transport, where chemical species are ushered across the membrane by selective "carrier" molecules residing in the membrane. The use of liquid membranes as models for studying and describing biological transport mechanisms is explored. (CS)

  20. Composite sensor membrane

    DOEpatents

    Majumdar, Arun; Satyanarayana, Srinath; Yue, Min

    2008-03-18

    A sensor may include a membrane to deflect in response to a change in surface stress, where a layer on the membrane is to couple one or more probe molecules with the membrane. The membrane may deflect when a target molecule reacts with one or more probe molecules.

  1. Connector device for building integrated photovoltaic device

    DOEpatents

    Keenihan, James R.; Langmaid, Joe A.; Eurich, Gerald K.; Lesniak, Michael J.; Mazor, Michael H.; Cleerman, Robert J.; Gaston, Ryan S.

    2015-11-10

    The present invention is premised upon a connector device and method that can more easily electrically connect a plurality of PV devices or photovoltaic system components and/or locate these devices/components upon a building structure. It also may optionally provide some additional sub-components (e.g. at least one bypass diode and/or an indicator means) and may enhance the serviceability of the device.

  2. Connector device for building integrated photovoltaic device

    DOEpatents

    Keenihan, James R.; Langmaid, Joseph A.; Eurich, Gerald K.; Lesniak, Michael J.; Mazor, Michael H.; Cleereman, Robert J.; Gaston, Ryan S.

    2014-06-03

    The present invention is premised upon a connector device and method that can more easily electrically connect a plurality of PV devices or photovoltaic system components and/or locate these devices/components upon a building structure. It also may optionally provide some additional sub-components (e.g. at least one bypass diode and/or an indicator means) and may enhance the serviceability of the device.

  3. A Pneumatic Actuated Microfluidic Beads-Trapping Device

    SciTech Connect

    Shao, Guocheng; Cai, Ziliang; Wang, Jun; Wang, Wanjun; Lin, Yuehe

    2011-08-20

    The development of a polydimethylsiloxane (PDMS) microfluidic microbeads trapping device is reported in this paper. Besides fluid channels, the proposed device includes a pneumatic control chamber and a beads-trapping chamber with a filter array structure. The pneumatic flow control chamber and the beads-trapping chamber are vertically stacked and separated by a thin membrane. By adjusting the pressure in the pneumatic control chamber, the membrane can either be pushed against the filter array to set the device in trapping mode or be released to set the device in releasing mode. In this paper, a computational fluid dynamics simulation was conducted to optimize the geometry design of the filter array structure; the device fabrication was also carried out. The prototype device was tested and the preliminary experimental results showed that it can be used as a beads-trapping unit for various biochemistry and analytical chemistry applications, especially for flow injection analysis systems.

  4. A promising method of liquid separation in orbital station's life support systems

    NASA Astrophysics Data System (ADS)

    Kapitsa Anna, A.

    2012-11-01

    A combined method of liquid separation from a gas-liquid flow is presented based on an analysis of existing methods of separation and experience gained from the Russian space stations Salut, Mir and the International Space Station. This method combines the advantages of both water-holding materials and semi-permeable membranes. The paper describes an actual device as well as laboratory test results for materials and the separator. The separator described has successfully been in experimental operation on the ISS since the 1st of September 2009.

  5. Traveling-Wave Membrane Photomixers

    NASA Technical Reports Server (NTRS)

    Wyss, R. A.; Martin, S. C.; Nakamura, B. J.; Neto, A.; Pasqualini, D.; Siegel, P. H.; Kadow, C.; Gossard, A. C.

    2001-01-01

    Traveling-wave photomixers have superior performance when compared with lumped area photomixers in the 1 to 3 THz frequency range. Their large active area and distributed gain mechanism assure high thermal damage threshold and elimination of the capacitive frequency roll-off. However, the losses experienced by the radio frequency wave traveling along the coplanar strips waveguide (due to underlying semi-infinite GaAs substrate) were a serious drawback. In this paper we present device designs and an experimental setup that make possible the realization of photomixers on membranes which eliminate the losses.

  6. Membrane position control

    NASA Technical Reports Server (NTRS)

    Su, Ji (Inventor); Harrison, Joycelyn S. (Inventor)

    2004-01-01

    A membrane structure includes at least one electroactive bending actuator fixed to a supporting base. Each electroactive bending actuator is operatively connected to the membrane for controlling membrane position. Any displacement of each electroactive bending actuator effects displacement of the membrane. More specifically, the operative connection is provided by a guiding wheel assembly and a track, wherein displacement of the bending actuator effects translation of the wheel assembly along the track, thereby imparting movement to the membrane.

  7. Nanoporous Membrane Immunosensor

    DTIC Science & Technology

    2000-01-01

    Another aspect of the invention is a method for detecting an analyte in a test sample, having 5 the steps: (a) modifying a side of a semipermeable... side of the membrane with the membrane modifiers; (c) drawing the test sample through the membrane, osmotically or with the application of...immunoassay labels on the side of the membrane with the membrane modifiers, where these labels have label binding ligands where these label binding

  8. The application of Dow Chemical's perfluorinated membranes in proton-exchange membrane fuel cells

    NASA Technical Reports Server (NTRS)

    Eisman, G. A.

    1989-01-01

    Dow Chemical's research activities in fuel cell devices revolves around the development and subsequent investigation of the perfluorinated inomeric membrane separator useful in proton-exchange membrane systems. Work is currently focusing on studying the effects of equivalent weight, thickness, water of hydration, pretreatment procedures, as well as the degree of water management required for a given membrane separator in the cell. The presentation will include details of certain aspects of the above as well as some of the requirements for high and low power generation.

  9. Decontamination of an Extracorporeal Membrane Oxygenator Contaminated With Mycobacterium chimaera.

    PubMed

    Garvey, Mark I; Phillips, Natalie; Bradley, Craig W; Holden, Elisabeth

    2017-10-01

    Water samples taken from extracorporeal membrane oxygenator (ECMO) devices used at University Hospitals Birmingham yielded high total viable counts (TVCs) containing a variety of microorganisms, including M. chimaera. Disinfection resulted in the reduction of TVCs and eradication of Mycobacterium chimaera. Weekly disinfection and water sampling are required to manage the water quality in these devices. Infect Control Hosp Epidemiol 2017;38:1244-1246.

  10. Through-membrane electron-beam lithography for ultrathin membrane applications

    NASA Astrophysics Data System (ADS)

    Neklyudova, M.; Erdamar, A. K.; Vicarelli, L.; Heerema, S. J.; Rehfeldt, T.; Pandraud, G.; Kolahdouz, Z.; Dekker, C.; Zandbergen, H. W.

    2017-08-01

    We present a technique to fabricate ultrathin (down to 20 nm) uniform electron transparent windows at dedicated locations in a SiN membrane for in situ transmission electron microscopy experiments. An electron-beam (e-beam) resist is spray-coated on the backside of the membrane in a KOH-etched cavity in silicon which is patterned using through-membrane electron-beam lithography. This is a controlled way to make transparent windows in membranes, whilst the topside of the membrane remains undamaged and retains its flatness. Our approach was optimized for MEMS-based heating chips but can be applied to any chip design. We show two different applications of this technique for (1) fabrication of a nanogap electrode by means of electromigration in thin free-standing metal films and (2) making low-noise graphene nanopore devices.

  11. Medical Device Safety

    MedlinePlus

    ... More Medical Device Recalls Recent Medical Device Safety Communications FDA analyses and recommendations for patients and health ... about ongoing medical device safety issues. FDA Safety Communication Date FDA Warns Of Potentially Contaminated SPS-1 ...

  12. Medical Device Safety

    MedlinePlus

    A medical device is any product used to diagnose, cure, or treat a condition, or to prevent disease. They range ... may need one in a hospital. To use medical devices safely Know how your device works. Keep instructions ...

  13. Infrared criminalistic devices

    NASA Astrophysics Data System (ADS)

    Gibin, Igor S.; Savkov, E. V.; Popov, Pavel G.

    1996-12-01

    We are presenting the devices of near-IR spectral range in this report. The devices may be used in criminalistics, in bank business, in restoration works, etc. the action principle of these devices is describing briefly.

  14. Membranes and membrane plates used in ELISPOT.

    PubMed

    Weiss, Alan J

    2005-01-01

    Membrane-bottomed, 96-well plates constitute the format in which the overwhelming majority of enzyme-linked immunospot (ELISPOT) assays are performed. The membranes in these plates are made from either nitrocellulose or polyvinylidene fluoride. These membranes are well suited for ELISPOT because they have high antibody binding capacities and because their white color provides an excellent backdrop for ELISPOT enumeration. These two membranes and, ultimately, the 96-well plates used in ELISPOT assays were commercialized for filtration applications and later optimized for deoxyribonucleic acid hybridization and protein chemistry applications. In this chapter, an overview of the development and biotechnology applications of nitrocellulose and polyvinylidene fluoride membrane is provided and characteristics and attributes of each of the membranes that are relevant to ELISPOT are summarized.

  15. Sub-10 nm device fabrication in a transmission electron microscope.

    PubMed

    Fischbein, Michael D; Drndić, Marija

    2007-05-01

    We show that a high-resolution transmission electron microscope can be used to fabricate metal nanostructures and devices on insulating membranes by nanosculpting metal films. Fabricated devices include nanogaps, nanodiscs, nanorings, nanochannels, and nanowires with tailored curvatures and multi-terminal nanogap devices with nanoislands or nanoholes between the terminals. The high resolution, geometrical flexibility, and yield make this fabrication method attractive for many applications including nanoelectronics and nanofluidics.

  16. Sheet Membrane Spacesuit Water Membrane Evaporator

    NASA Technical Reports Server (NTRS)

    Bue, Grant; Trevino, Luis; Zapata, Felipe; Dillion, Paul; Castillo, Juan; Vonau, Walter; Wilkes, Robert; Vogel, Matthew; Frodge, Curtis

    2013-01-01

    A document describes a sheet membrane spacesuit water membrane evaporator (SWME), which allows for the use of one common water tank that can supply cooling water to the astronaut and to the evaporator. Test data showed that heat rejection performance dropped only 6 percent after being subjected to highly contaminated water. It also exhibited robustness with respect to freezing and Martian atmospheric simulation testing. Water was allowed to freeze in the water channels during testing that simulated a water loop failure and vapor backpressure valve failure. Upon closing the backpressure valve and energizing the pump, the ice eventually thawed and water began to flow with no apparent damage to the sheet membrane. The membrane evaporator also serves to de-gas the water loop from entrained gases, thereby eliminating the need for special degassing equipment such as is needed by the current spacesuit system. As water flows through the three annular water channels, water evaporates with the vapor flowing across the hydrophobic, porous sheet membrane to the vacuum side of the membrane. The rate at which water evaporates, and therefore, the rate at which the flowing water is cooled, is a function of the difference between the water saturation pressure on the water side of the membrane, and the pressure on the vacuum side of the membrane. The primary theory is that the hydrophobic sheet membrane retains water, but permits vapor pass-through when the vapor side pressure is less than the water saturation pressure. This results in evaporative cooling of the remaining water.

  17. CONTROL LIMITER DEVICE

    DOEpatents

    DeShong, J.A.

    1960-03-01

    A control-limiting device for monltoring a control system is described. The system comprises a conditionsensing device, a condition-varying device exerting a control over the condition, and a control means to actuate the condition-varying device. A control-limiting device integrates the total movement or other change of the condition-varying device over any interval of time during a continuum of overlapping periods of time, and if the tothl movement or change of the condition-varying device exceeds a preset value, the control- limiting device will switch the control of the operated apparatus from automatic to manual control.

  18. Noise and its reduction in graphene based nanopore devices.

    PubMed

    Kumar, Ashvani; Park, Kyeong-Beom; Kim, Hyun-Mi; Kim, Ki-Bum

    2013-12-13

    Ionic current fluctuations in graphene nanopore devices are a ubiquitous phenomenon and are responsible for degraded spatial and temporal resolution. Here, we descriptively investigate the impact of different substrate materials (Si and quartz) and membrane thicknesses on noise characteristics of graphene nanopore devices. To mitigate the membrane fluctuations and pin-hole defects, a SiNx membrane is transferred onto the substrate and a pore of approximately 70 nm in diameter is perforated prior to the graphene transfer. Comprehensive noise study reveals that the few layer graphene transferred onto the quartz substrate possesses low noise level and higher signal to noise ratio as compared to single layer graphene, without deteriorating the spatial resolution. The findings here point to improvement of graphene based nanopore devices for exciting opportunities in future single-molecule genomic screening devices.

  19. Basic investigation into the electrical performance of solid electrolyte membranes

    NASA Technical Reports Server (NTRS)

    Richter, R.

    1982-01-01

    The electrical performance of solid electrolyte membranes was investigated analytically and the results were compared with experimental data. It is concluded that in devices that are used for pumping oxygen the major power losses have to be attributed to the thin film electrodes. Relations were developed by which the effectiveness of tubular solid electrolyte membranes can be determined and the optimum length evaluated. The observed failure of solid electrolyte tube membranes in very localized areas is explained by the highly non-uniform current distribution in the membranes. The analysis points to a possible contact resistance between the electrodes and the solid electrolyte material. This possible contact resistance remains to be investigated experimentally. It is concluded that film electrodes are not appropriate for devices which operate with current flow, i.e., pumps though they can be employed without reservation in devices that measure oxygen pressures if a limited increase in the response time can be tolerated.

  20. Block Copolymer Membranes for Efficient Capture of a Chemotherapy Drug

    DOE PAGES

    Chen, X. Chelsea; Oh, Hee Jeung; Yu, Jay F.; ...

    2016-07-23

    In this paper, we introduce the use of block copolymer membranes for an emerging application, “drug capture”. The polymer is incorporated in a new class of biomedical devices, referred to as ChemoFilter, which is an image-guided temporarily deployable endovascular device designed to increase the efficacy of chemotherapy-based cancer treatment. We show that block copolymer membranes consisting of functional sulfonated polystyrene end blocks and a structural polyethylene middle block (SSES) are capable of capturing doxorubicin, a chemotherapy drug. We focus on the relationship between morphology of the membrane in the ChemoFilter device and efficacy of doxorubicin capture measured in vitro. Usingmore » small-angle X-ray scattering and cryogenic scanning transmission electron microscopy, we discovered that rapid doxorubicin capture is associated with the presence of water-rich channels in the lamellar-forming S-SES membranes in aqueous environment.« less

  1. Block Copolymer Membranes for Efficient Capture of a Chemotherapy Drug

    PubMed Central

    2016-01-01

    We introduce the use of block copolymer membranes for an emerging application, “drug capture”. The polymer is incorporated in a new class of biomedical devices, referred to as ChemoFilter, which is an image-guided temporarily deployable endovascular device designed to increase the efficacy of chemotherapy-based cancer treatment. We show that block copolymer membranes consisting of functional sulfonated polystyrene end blocks and a structural polyethylene middle block (S-SES) are capable of capturing doxorubicin, a chemotherapy drug. We focus on the relationship between morphology of the membrane in the ChemoFilter device and efficacy of doxorubicin capture measured in vitro. Using small-angle X-ray scattering and cryogenic scanning transmission electron microscopy, we discovered that rapid doxorubicin capture is associated with the presence of water-rich channels in the lamellar-forming S-SES membranes in aqueous environment. PMID:27547493

  2. First steps in membrane oxygenation and prolonged extracorporeal perfusion in Duesseldorf using the Bramson membrane lung.

    PubMed

    Schulte, Hagen D

    2003-05-01

    After a shortened history of conventional closed and open heart surgery, including hypothermia by surface cooling and extracorporeal circulation, the first application of a new membrane oxygenator developed by ML Bramson with an integrated temperature exchange system and a heart-lung machine (HLM) was reported in 1972. The aim was to have an efficient oxygenating and gas exchange artificial lung that allowed prolonged perfusions in patients with cardiogenic shock or acute respiratory insufficiency. After in vitro closed recirculation studies comparing different bubble, vertical screen, and the new membrane oxygenators, the Bramson HLM was used in dog experiments before starting clinical cardiac surgery with routine interventions (closure of an atrial septal defect). The first clinically prolonged support for more than three hours after a double valve replacement in a NYHA class IV patient failed. A partial venoarterial prolonged perfusion for 42 hours and 43 minutes in a 10-year-old girl after surgical correction of a partial av canal defect and postoperative development of consistent lung edema caused by myocardial failure after an ischemic time of 43 minutes was the first successful long-term perfusion case in Europe. These first experiences with the Bramson membrane lung formed the basis, in our group, for further investigations of different perfusion routes and cannulations in animal experiments. Also, scanning electron microscopy studies could be performed with experimentally and clinically used membranes. The development of disposable membrane lung devices, for instance, Lande-Edwards, Kolobow Scimed, and General Electric Peirce membrane lungs, ameliorated and improved the use of these devices considerably. Also, BRAMSON had developed a disposable membrane lung device that had proved to be very effective in animal experiments by 1972, but, unfortunately, this device did not become commercially available.

  3. Geometry of membrane fission.

    PubMed

    Frolov, Vadim A; Escalada, Artur; Akimov, Sergey A; Shnyrova, Anna V

    2015-01-01

    Cellular membranes define the functional geometry of intracellular space. Formation of new membrane compartments and maintenance of complex organelles require division and disconnection of cellular membranes, a process termed membrane fission. Peripheral membrane proteins generally control membrane remodeling during fission. Local membrane stresses, reflecting molecular geometry of membrane-interacting parts of these proteins, sum up to produce the key membrane geometries of fission: the saddle-shaped neck and hour-glass hemifission intermediate. Here, we review the fundamental principles behind the translation of molecular geometry into membrane shape and topology during fission. We emphasize the central role the membrane insertion of specialized protein domains plays in orchestrating fission in vitro and in cells. We further compare individual to synergistic action of the membrane insertion during fission mediated by individual protein species, proteins complexes or membrane domains. Finally, we describe how local geometry of fission intermediates defines the functional design of the protein complexes catalyzing fission of cellular membranes. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  4. Extracorporeal Membrane Oxygenation Circuitry

    PubMed Central

    Horton, Stephen B.; McMullan, D. Michael; Bartlett, Robert H

    2013-01-01

    The extracorporeal membrane oxygenation (ECMO) circuit is made of a number of components that have been customized to provide adequate tissue oxygen delivery in patients with severe cardiac and/or respiratory failure for a prolonged period of time (days to weeks). A standard ECMO circuit consists of a mechanical blood pump, gas exchange device, and a heat exchanger all connected together with circuit tubing. ECMO circuits can vary from simple to complex and may include a variety of blood flow and pressure monitors, continuous oxyhemoglobin saturation monitors, circuit access sites and a bridge connecting the venous access and arterial infusion limbs of the circuit. Significant technical advancements have been made in the equipment available for short and long term ECMO applications. Contemporary ECMO circuits have greater biocompatibility and allow for more prolonged cardiopulmonary support time, while minimizing the procedure-related complications of bleeding, thrombosis and other physiologic derangements that were so common with the early application of ECMO. Modern era ECMO circuitry and components are simpler, safer, more compact and can be used across a wide variety of patient sizes from neonates to adults. PMID:23735989

  5. A pump-free membrane-controlled perfusion microfluidic platform

    PubMed Central

    Goral, Vasiliy N.; Tran, Elizabeth; Yuen, Po Ki

    2015-01-01

    In this article, we present a microfluidic platform for passive fluid pumping for pump-free perfusion cell culture, cell-based assay, and chemical applications. By adapting the passive membrane-controlled pumping principle from the previously developed perfusion microplate, which utilizes a combination of hydrostatic pressure generated by different liquid levels in the wells and fluid wicking through narrow strips of a porous membrane connecting the wells to generate fluid flow, a series of pump-free membrane-controlled perfusion microfluidic devices was developed and their use for pump-free perfusion cell culture and cell-based assays was demonstrated. Each pump-free membrane-controlled perfusion microfluidic device comprises at least three basic components: an open well for generating fluid flow, a micron-sized deep chamber/channel for cell culture or for fluid connection, and a wettable porous membrane for controlling the fluid flow. Each component is fluidically connected either by the porous membrane or by the micron-sized deep chamber/channel. By adapting and incorporating the passive membrane-controlled pumping principle into microfluidic devices, all the benefits of microfluidic technologies, such as small sample volumes, fast and efficient fluid exchanges, and fluid properties at the micro-scale, can be fully taken advantage of with this pump-free membrane-controlled perfusion microfluidic platform. PMID:26392835

  6. Membrane selectivity in pervaporation

    SciTech Connect

    Kujawski, W.

    1996-06-01

    A qualitative description is presented of pervaporation which discusses the initial preferential sorption into the membrane, diffusion of liquid, phase transition from liquid to vapor phase, followed by diffusion of vapors and fast desorption from the other side of the membrane. The overall separation of each pervaporation step was calculated in terms of separation factor {alpha}. The results show that in the case of hydrophilic membranes (i.e., dense polyamide-6 membrane and ion-exchange membrane PESS-1) and water-ethanol mixtures, the phase transition step decreases the overall separation. Also, diffusion through the membrane is unfavorable to water at a low concentration range.

  7. Mechanisms of Membrane Preparation and Membrane Assays.

    DTIC Science & Technology

    The course of the work for the report period involved: Evaluating and developing testing procedures for membrane filters, and the construction, procurement of equipment for such testing; and Numerous sol preparations and castings of membranes using the acetate-butyrate esters of cellulose in lieu of the cellulose acetate in conjunction with the cellulose nitrate base of formulation. (Author)

  8. Nanoporous membranes for medical and biological applications

    PubMed Central

    Adiga, Shashishekar P; Jin, Chunmin; Curtiss, Larry A; Monteiro-Riviere, Nancy A.; Narayan, Roger J

    2013-01-01

    Synthetic nanoporous materials have numerous potential biological and medical applications that involve sorting, sensing, isolating and releasing biological molecules. Nanoporous systems engineered to mimic natural filtration systems are actively being developed for use in smart implantable drug delivery systems, bioartificial organs, and other novel nano-enabled medical devices. Recent advances in nanoscience have made it possible to precisely control the morphology as well as physical and chemical properties of the pores in nanoporous materials that make them increasingly attractive for regulating and sensing transport at the molecular level. In this work, an overview of nanoporous membranes for biomedical applications is given. Various in vivo and in vitro membrane applications, including biosensing, biosorting, immunoisolation and drug delivery, are presented. Different types of nanoporous materials and their fabrication techniques are discussed with an emphasis on membranes with ordered pores. Desirable properties of membranes used in implantable devices, including biocompatibility and antibiofouling behavior, are discussed. The use of surface modification techniques to improve the function of nanoporous membranes is reviewed. Despite the extensive research carried out in fabrication, characterization, and modeling of nanoporous materials, there are still several challenges that must be overcome in order to create synthetic nanoporous systems that behave similarly to their biological counterparts. PMID:20049818

  9. Stretching micropatterned cells on a PDMS membrane.

    PubMed

    Carpi, Nicolas; Piel, Matthieu

    2014-01-22

    Mechanical forces exerted on cells and/or tissues play a major role in numerous processes. We have developed a device to stretch cells plated on a PolyDiMethylSiloxane (PDMS) membrane, compatible with imaging. This technique is reproducible and versatile. The PDMS membrane can be micropatterned in order to confine cells or tissues to a specific geometry. The first step is to print micropatterns onto the PDMS membrane with a deep UV technique. The PDMS membrane is then mounted on a mechanical stretcher. A chamber is bound on top of the membrane with biocompatible grease to allow gliding during the stretch. The cells are seeded and allowed to spread for several hours on the micropatterns. The sample can be stretched and unstretched multiple times with the use of a micrometric screw. It takes less than a minute to apply the stretch to its full extent (around 30%). The technique presented here does not include a motorized device, which is necessary for applying repeated stretch cycles quickly and/or computer controlled stretching, but this can be implemented. Stretching of cells or tissue can be of interest for questions related to cell forces, cell response to mechanical stress or tissue morphogenesis. This video presentation will show how to avoid typical problems that might arise when doing this type of seemingly simple experiment.

  10. Biomolecular Transport through Hemofiltration Membranes

    PubMed Central

    Datta, Subhra; Fissell, William H.; Roy, Shuvo

    2009-01-01

    A theoretical model for filtration of large solutes through a pore in the presence of transmembrane pressures, applied/induced electric fields, and dissimilar interactions at the pore entrance and exit is developed to characterize and predict the experimental performance of a hemofiltration membrane with nanometer scale pores designed for a proposed implantable Renal Assist Device (RAD). The model reveals that the sieving characteristics of the membrane can be improved by applying an external electric field, and ensuring a smaller ratio of the pore-feed and pore-permeate equilibrium partitioning coefficients when diffusion is present. The model is then customized to study the sieving characteristics for both charged and uncharged solutes in the slit-shaped nanopores of the hemofiltration device for the RAD. The effect of streaming potential or induced fields are found to be negligible under representative operating conditions. Experimental data on the sieving coefficient of bovine serum albumin, carbonic anhydrase and thyroglobulin are reported and compared with the theoretical predictions. Both steric and electrostatic partitioning are considered and the comparison suggests that in general electrostatic effects are present in the filtration of proteins though some data, particularly those recorded in a strongly hypertonic solution (10×PBS), show better agreement with the steric partitioning theory. PMID:19184436

  11. Implantable CMOS Biomedical Devices

    PubMed Central

    Ohta, Jun; Tokuda, Takashi; Sasagawa, Kiyotaka; Noda, Toshihiko

    2009-01-01

    The results of recent research on our implantable CMOS biomedical devices are reviewed. Topics include retinal prosthesis devices and deep-brain implantation devices for small animals. Fundamental device structures and characteristics as well as in vivo experiments are presented. PMID:22291554

  12. Ionene membrane battery separator

    NASA Technical Reports Server (NTRS)

    Moacanin, J.; Tom, H. Y.

    1969-01-01

    Ionic transport characteristics of ionenes, insoluble membranes from soluble polyelectrolyte compositions, are studied for possible application in a battery separator. Effectiveness of the thin film of separator membrane essentially determines battery lifetime.

  13. Hybrid adsorptive membrane reactor

    NASA Technical Reports Server (NTRS)

    Tsotsis, Theodore T. (Inventor); Sahimi, Muhammad (Inventor); Fayyaz-Najafi, Babak (Inventor); Harale, Aadesh (Inventor); Park, Byoung-Gi (Inventor); Liu, Paul K. T. (Inventor)

    2011-01-01

    A hybrid adsorbent-membrane reactor in which the chemical reaction, membrane separation, and product adsorption are coupled. Also disclosed are a dual-reactor apparatus and a process using the reactor or the apparatus.

  14. Hybrid adsorptive membrane reactor

    DOEpatents

    Tsotsis, Theodore T [Huntington Beach, CA; Sahimi, Muhammad [Altadena, CA; Fayyaz-Najafi, Babak [Richmond, CA; Harale, Aadesh [Los Angeles, CA; Park, Byoung-Gi [Yeosu, KR; Liu, Paul K. T. [Lafayette Hill, PA

    2011-03-01

    A hybrid adsorbent-membrane reactor in which the chemical reaction, membrane separation, and product adsorption are coupled. Also disclosed are a dual-reactor apparatus and a process using the reactor or the apparatus.

  15. Supported inorganic membranes

    DOEpatents

    Sehgal, Rakesh; Brinker, Charles Jeffrey

    1998-01-01

    Supported inorganic membranes capable of molecular sieving, and methods for their production, are provided. The subject membranes exhibit high flux and high selectivity. The subject membranes are substantially defect free and less than about 100 nm thick. The pores of the subject membranes have an average critical pore radius of less than about 5 .ANG., and have a narrow pore size distribution. The subject membranes are prepared by coating a porous substrate with a polymeric sol, preferably under conditions of low relative pressure of the liquid constituents of the sol. The coated substrate is dried and calcined to produce the subject supported membrane. Also provided are methods of derivatizing the surface of supported inorganic membranes with metal alkoxides. The subject membranes find use in a variety of applications, such as the separation of constituents of gaseous streams, as catalysts and catalyst supports, and the like.

  16. Premature rupture of membranes

    MedlinePlus

    ... gov/ency/patientinstructions/000512.htm Premature rupture of membranes To use the sharing features on this page, ... water that surrounds your baby in the womb. Membranes or layers of tissue hold in this fluid. ...

  17. Transmembrane Signalling: Membrane messengers

    NASA Astrophysics Data System (ADS)

    Cockroft, Scott L.

    2017-05-01

    Life has evolved elaborate means of communicating essential chemical information across cell membranes. Inspired by biology, two new artificial mechanisms have now been developed that use synthetic messenger molecules to relay chemical signals into or across lipid membranes.

  18. Membrane Innovation in Dialysis.

    PubMed

    Boschetti-de-Fierro, Adriana; Beck, Werner; Hildwein, Helmut; Krause, Bernd; Storr, Markus; Zweigart, Carina

    2017-01-01

    Despite advances in renal replacement therapy, the adequate removal of uremic toxins over a broad molecular weight range remains one of the unmet needs in hemodialysis. Therefore, membrane innovation is currently directed towards enhanced removal of uremic toxins and increased membrane permeability. This chapter presents a variety of opportunities where innovation is brought into dialysis membranes. It covers the membrane formation from solution, describing different approaches to control the phase inversion process through additives that either swell in the polymer solution or influence the pore shrinkage during the membrane drying process. Additionally, large-scale manufacturing is described, and the influence of raw materials, spinning, and drying processes on membrane selectivity are presented. Finally, new characterization methods developed for the latest innovations around the application of membranes in dialysis are discussed, which allow the membrane performance for removal of a broad range of uremic toxins and the expected albumin loss in clinical use. © 2017 S. Karger AG, Basel.

  19. Composite zeolite membranes

    DOEpatents

    Nenoff, Tina M.; Thoma, Steven G.; Ashley, Carol S.; Reed, Scott T.

    2002-01-01

    A new class of composite zeolite membranes and synthesis techniques therefor has been invented. These membranes are essentially defect-free, and exhibit large levels of transmembrane flux and of chemical and isotopic selectivity.

  20. Supertubes and Superconducting Membranes

    SciTech Connect

    Cordero, Ruben; Miguel-Pilar, Zelin

    2007-02-09

    We show the equivalence between configurations that arise from string theory of type IIA, called supertubes, and superconducting membranes at the bosonic level. We find equilibrium and oscillating configurations for a tubular membrane carrying a current along its axis.

  1. Evaluation of tissue interactions with mechanical elements of a transscleral drug delivery device.

    PubMed

    Cohen, Sarah J; Chan, Robison V Paul; Keegan, Mark; Andreoli, Christopher M; Borenstein, Jeffrey T; Miller, Joan W; Gragoudas, Evangelos S

    2012-03-12

    The goal of this work was to evaluate tissue-device interactions due to implantation of a mechanically operated drug delivery system onto the posterior sclera. Two test devices were designed and fabricated to model elements of the drug delivery device-one containing a free-spinning ball bearing and the other encasing two articulating gears. Openings in the base of test devices modeled ports for drug passage from device to sclera. Porous poly(tetrafluoroethylene) (PTFE) membranes were attached to half of the gear devices to minimize tissue ingrowth through these ports. Test devices were sutured onto rabbit eyes for 10 weeks. Tissue-device interactions were evaluated histologically and mechanically after removal to determine effects on device function and changes in surrounding tissue. Test devices were generally well-tolerated during residence in the animal. All devices encouraged fibrous tissue formation between the sclera and the device, fibrous tissue encapsulation and invasion around the device, and inflammation of the conjunctiva. Gear devices encouraged significantly greater inflammation in all cases and a larger rate of tissue ingrowth. PTFE membranes prevented tissue invasion through the covered drug ports, though tissue migrated in through other smaller openings. The torque required to turn the mechanical elements increased over 1000 times for gear devices, but only on the order of 100 times for membrane-covered gear devices and less than 100 times for ball bearing devices. Maintaining a lower device profile, minimizing microscale motion on the eye surface and covering drug ports with a porous membrane may minimize inflammation, decreasing the risk of damage to surrounding tissues and minimizing disruption of device operation.

  2. Electromechanical piezoresistive sensing in suspended graphene membranes.

    PubMed

    Smith, A D; Niklaus, F; Paussa, A; Vaziri, S; Fischer, A C; Sterner, M; Forsberg, F; Delin, A; Esseni, D; Palestri, P; Östling, M; Lemme, M C

    2013-07-10

    Monolayer graphene exhibits exceptional electronic and mechanical properties, making it a very promising material for nanoelectromechanical devices. Here, we conclusively demonstrate the piezoresistive effect in graphene in a nanoelectromechanical membrane configuration that provides direct electrical readout of pressure to strain transduction. This makes it highly relevant for an important class of nanoelectromechanical system (NEMS) transducers. This demonstration is consistent with our simulations and previously reported gauge factors and simulation values. The membrane in our experiment acts as a strain gauge independent of crystallographic orientation and allows for aggressive size scalability. When compared with conventional pressure sensors, the sensors have orders of magnitude higher sensitivity per unit area.

  3. Prism-patterned Nafion membrane for enhanced water transport in polymer electrolyte membrane fuel cell

    NASA Astrophysics Data System (ADS)

    Kim, Sang Moon; Kang, Yun Sik; Ahn, Chiyeong; Jang, Segeun; Kim, Minhyoung; Sung, Yung-Eun; Yoo, Sung Jong; Choi, Mansoo

    2016-06-01

    Here, we report a simple and effective strategy to enhance the performance of the polymer electrolyte membrane fuel cell by imprinting prism-patterned arrays onto the Nafion membrane, which provides three combined effects directly related to the device performance. First, a locally thinned membrane via imprinted micro prism-structures lead to reduced membrane resistance, which is confirmed by electrochemical impedance spectroscopy. Second, increments of the geometrical surface area of the prism-patterned Nafion membrane compared to a flat membrane result in the increase in the electrochemical active surface area. Third, the vertically asymmetric geometry of prism structures in the cathode catalyst layer lead to enhanced water transport, which is confirmed by oxygen gain calculation. To explain the enhanced water transport, we propose a simple theoretical model on removal of water droplets existing in the asymmetric catalyst layer. These three combined effects achieved via incorporating prism patterned arrays into the Nafion membrane effectively enhance the performance of the polymer electrolyte membrane fuel cell.

  4. Fluid sampling device

    NASA Technical Reports Server (NTRS)

    Studenick, D. K. (Inventor)

    1977-01-01

    An inlet leak is described for sampling gases, more specifically, for selectively sampling multiple fluids. This fluid sampling device includes a support frame. A plurality of fluid inlet devices extend through the support frame and each of the fluid inlet devices include a longitudinal aperture. An opening device that is responsive to a control signal selectively opens the aperture to allow fluid passage. A closing device that is responsive to another control signal selectively closes the aperture for terminating further fluid flow.

  5. Integrated Device for Circulating Tumor Cell Capture, Characterization and Lens-Free Microscopy

    DTIC Science & Technology

    2012-08-01

    microfilter platform captures CTC from the cancer patients’ blood cost effectively, where the larger CTC are preferentially retained on the membrane ... membrane microfilter, where the larger CTC (15-25 μm) are preferentially retained on the membrane while typical blood cells (2-12 μm) flow through. Our...between University of Miami and California Institute of Technology. Specific Aims • Aim 1: Adapt the membrane microfilter device for breast CTC

  6. Composite fuel cell membranes

    DOEpatents

    Plowman, K.R.; Rehg, T.J.; Davis, L.W.; Carl, W.P.; Cisar, A.J.; Eastland, C.S.

    1997-08-05

    A bilayer or trilayer composite ion exchange membrane is described suitable for use in a fuel cell. The composite membrane has a high equivalent weight thick layer in order to provide sufficient strength and low equivalent weight surface layers for improved electrical performance in a fuel cell. In use, the composite membrane is provided with electrode surface layers. The composite membrane can be composed of a sulfonic fluoropolymer in both core and surface layers.

  7. Composite fuel cell membranes

    DOEpatents

    Plowman, Keith R.; Rehg, Timothy J.; Davis, Larry W.; Carl, William P.; Cisar, Alan J.; Eastland, Charles S.

    1997-01-01

    A bilayer or trilayer composite ion exchange membrane suitable for use in a fuel cell. The composite membrane has a high equivalent weight thick layer in order to provide sufficient strength and low equivalent weight surface layers for improved electrical performance in a fuel cell. In use, the composite membrane is provided with electrode surface layers. The composite membrane can be composed of a sulfonic fluoropolymer in both core and surface layers.

  8. Cadmium sulfide membranes

    DOEpatents

    Spanhel, Lubomir; Anderson, Marc A.

    1992-07-07

    A method is described for the creation of novel q-effect cadmium sulfide membranes. The membranes are made by first creating a dilute cadmium sulfide colloid in aqueous suspension and then removing the water and excess salts therefrom. The cadmium sulfide membrane thus produced is luminescent at room temperature and may have application in laser fabrication.

  9. Cadmium sulfide membranes

    DOEpatents

    Spanhel, Lubomir; Anderson, Marc A.

    1991-10-22

    A method is described for the creation of novel q-effect cadmium sulfide membranes. The membranes are made by first creating a dilute cadmium sulfide colloid in aqueous suspension and then removing the water and excess salts therefrom. The cadmium sulfide membrane thus produced is luminescent at room temperature and may have application in laser fabrication.

  10. Polyphosphazene semipermeable membranes

    DOEpatents

    Allen, Charles A.; McCaffrey, Robert R.; Cummings, Daniel G.; Grey, Alan E.; Jessup, Janine S.; McAtee, Richard E.

    1988-01-01

    A semipermeable, inorganic membrane is disclosed; the membrane is prepared from a phosphazene polymer and, by the selective substitution of the constituent groups bound to the phosphorous in the polymer structure, the selective passage of fluid from a feedstream can be controlled. Resistance to high temperatures and harsh chemical environments is observed in the use of the phosphazene polymers as semipermeable membranes.

  11. Water vapor diffusion membranes

    NASA Technical Reports Server (NTRS)

    Holland, F. F., Jr.; Smith, J. K.

    1974-01-01

    The program is reported, which was designed to define the membrane technology of the vapor diffusion water recovery process and to test this technology using commercially available or experimental membranes. One membrane was selected, on the basis of the defined technology, and was subjected to a 30-day demonstration trial.

  12. Overview of membrane separations

    SciTech Connect

    Noble, R.D.

    1987-01-01

    The field of membrane separations is discussed. The major membrane types and applications are outlined. The outlook with respect to research activities and commercial applications is surveyed. The advantages and disadvantages of this separation process are discussed. Certain applications where membranes may save energy and improve productivity are also discussed.

  13. Meniscus membranes for separations

    DOEpatents

    Dye, Robert C.; Jorgensen, Betty; Pesiri, David R.

    2004-01-27

    Gas separation membranes, especially meniscus-shaped membranes for gas separations are disclosed together with the use of such meniscus-shaped membranes for applications such as thermal gas valves, pre-concentration of a gas stream, and selective pre-screening of a gas stream. In addition, a rapid screening system for simultaneously screening polymer materials for effectiveness in gas separation is provided.

  14. Meniscus Membranes For Separation

    DOEpatents

    Dye, Robert C.; Jorgensen, Betty; Pesiri, David R.

    2005-09-20

    Gas separation membranes, especially meniscus-shaped membranes for gas separations are disclosed together with the use of such meniscus-shaped membranes for applications such as thermal gas valves, pre-concentration of a gas stream, and selective pre-screening of a gas stream. In addition, a rapid screening system for simultaneously screening polymer materials for effectiveness in gas separation is provided.

  15. Recent developments on ion-exchange membranes and electro-membrane processes.

    PubMed

    Nagarale, R K; Gohil, G S; Shahi, Vinod K

    2006-02-28

    Rapid growth of chemical and biotechnology in diversified areas fuels the demand for the need of reliable green technologies for the down stream processes, which include separation, purification and isolation of the molecules. Ion-exchange membrane technologies are non-hazardous in nature and being widely used not only for separation and purification but their application also extended towards energy conversion devices, storage batteries and sensors etc. Now there is a quite demand for the ion-exchange membrane with better selectivities, less electrical resistance, high chemical, mechanical and thermal stability as well as good durability. A lot of work has been done for the development of these types of ion-exchange membranes during the past twenty-five years. Herein we have reviewed the preparation of various types of ion-exchange membranes, their characterization and applications for different electro-membrane processes. Primary attention has been given to the chemical route used for the membrane preparation. Several general reactions used for the preparation of ion-exchange membranes were described. Methodologies used for the characterization of these membranes and their applications were also reviewed for the benefit of readers, so that they can get all information about the ion-exchange membranes at one platform. Although there are large number of reports available regarding preparations and applications of ion-exchange membranes more emphasis were predicted for the usefulness of these membranes or processes for solving certain type of industrial or social problems. More efforts are needed to bring many products or processes to pilot scale and extent their applications.

  16. An oxygen enrichment device for lowlanders ascending to high altitude

    PubMed Central

    2013-01-01

    Background When ascending to the high altitude, people living in low altitude areas will suffer from acute mountain sickness. The aim of this study is to test the hypothesis that whether an oxygen concentration membrane can be made and used to construct a new portable oxygen enrichment device for individuals in acute exposure to the high altitude. Methods The membrane was fabricated using vinylsiloxane rubber, polyphenylene oxide hydrogen silicone polymers, chloroplatinic acid and isopropyl alcohol. The membrane was assembled in a frame and the performance was tested in terms of concentration of oxygen, flow rate of oxygen enriched air, pressure ratio across the membrane and ambient temperature. Furthermore, the oxygen concentration device was constructed using the membrane, a DC fan, vacuum pump and gas buffer. A nonrandomized preliminary field test was conducted, in which eight healthy male subjects were flown to Tibet (Lhasa, 3,700 m). First, subjects wore the oxygen enrichment device and performed an incremental exercise on cycle ergometer. The test included heart rate (HR), saturation of peripheral oxygen (SpO2) and physical work capacity (PWC). Then, after a rest period of 4 hours, the experimental protocol was repeated without oxygen enrichment device. Results The testing showed that the membrane could increase the oxygen concentration by up to 30%. Simulation test indicated that although the performance of the oxygen enrichment device decreased with altitudes, the oxygen concentration could still maintain 28% with flow rate of enriched air 110 cm3/s at 5000 m. The field test showed that higher SpO2, lower HR, and better PWC (measured by the PWC-170) were observed from all the subjects using oxygen enrichment device compared with non-using (P < 0.01). Conclusions We concluded that the new portable oxygen enrichment device would be effective in improving exercise performance when ascending to the high altitude. PMID:24103365

  17. Fluid and Resistive Tethered Lipid Membranes on Nanoporous Substrates.

    PubMed

    Gupta, Gautam; Staggs, Kyle; Mohite, Aditya D; Baldwin, Jon K; Iyer, Srinivas; Mukundan, Rangachary; Misra, Amit; Antoniou, Antonia; Dattelbaum, Andrew M

    2015-10-08

    Cell membranes perform important biological roles including compartmentalization, signaling, and transport of nutrients. Supported lipid membranes mimic the behavior of cell membranes and are an important model tool for studying membrane properties in a controlled laboratory environment. Lipid membranes may be supported on solid substrates; however, protein and lipid interactions with the substrate typically result in their denaturation. In this report, we demonstrate the formation of intact lipid membranes tethered on nanoporous metal thin films obtained via a dealloying process. Uniform lipid membranes were formed when the surface defect density of the nanoporous metal film was significantly reduced through a two-step dealloying process reported here. We show that the tethered lipid membranes on nanoporous metal substrates maintain both fluidity and electrical resistivity, which are key attributes to naturally occurring lipid membranes. The lipid assemblies supported on nanoporous metals provide a new platform for investigating lipid membrane properties, and potentially membrane proteins, for numerous applications including next generation biosensor platforms, targeted drug-delivery, and energy harvesting devices.

  18. Torque Transmission Device at Zero Leakage

    NASA Technical Reports Server (NTRS)

    Hendricks, R. C.; Mullen, R. L.

    2005-01-01

    In a few critical applications, mechanical transmission of power by rotation at low speed is required without leakage at an interface. Herein we examine a device that enables torque to be transmitted across a sealed environmental barrier. The barrier represents the restraint membrane through which the torque is transmitted. The power is transferred through elastic deformation of a circular tube into an elliptical cross-section. Rotation of the principle axis of the ellipse at one end results in a commensurate rotation of an elliptical cross section at the other end of the tube. This transfer requires no rigid body rotation of the tube allowing a membrane to seal one end from the other. Both computational and experimental models of the device are presented.

  19. Tracking membrane protein association in model membranes.

    PubMed

    Reffay, Myriam; Gambin, Yann; Benabdelhak, Houssain; Phan, Gilles; Taulier, Nicolas; Ducruix, Arnaud; Hodges, Robert S; Urbach, Wladimir

    2009-01-01

    Membrane proteins are essential in the exchange processes of cells. In spite of great breakthrough in soluble proteins studies, membrane proteins structures, functions and interactions are still a challenge because of the difficulties related to their hydrophobic properties. Most of the experiments are performed with detergent-solubilized membrane proteins. However widely used micellar systems are far from the biological two-dimensions membrane. The development of new biomimetic membrane systems is fundamental to tackle this issue.We present an original approach that combines the Fluorescence Recovery After fringe Pattern Photobleaching technique and the use of a versatile sponge phase that makes it possible to extract crucial informations about interactions between membrane proteins embedded in the bilayers of a sponge phase. The clear advantage lies in the ability to adjust at will the spacing between two adjacent bilayers. When the membranes are far apart, the only possible interactions occur laterally between proteins embedded within the same bilayer, whereas when membranes get closer to each other, interactions between proteins embedded in facing membranes may occur as well.After validating our approach on the streptavidin-biotinylated peptide complex, we study the interactions between two membrane proteins, MexA and OprM, from a Pseudomonas aeruginosa efflux pump. The mode of interaction, the size of the protein complex and its potential stoichiometry are determined. In particular, we demonstrate that: MexA is effectively embedded in the bilayer; MexA and OprM do not interact laterally but can form a complex if they are embedded in opposite bilayers; the population of bound proteins is at its maximum for bilayers separated by a distance of about 200 A, which is the periplasmic thickness of Pseudomonas aeruginosa. We also show that the MexA-OprM association is enhanced when the position and orientation of the protein is restricted by the bilayers. We extract a

  20. Evaluation of Tissue Interactions with Mechanical Elements of a Transscleral Drug Delivery Device

    PubMed Central

    Cohen, Sarah J.; Chan, Robison V. Paul; Keegan, Mark; Andreoli, Christopher M.; Borenstein, Jeffrey T.; Miller, Joan W.; Gragoudas, Evangelos S.

    2012-01-01

    The goal of this work was to evaluate tissue-device interactions due to implantation of a mechanically operated drug delivery system onto the posterior sclera. Two test devices were designed and fabricated to model elements of the drug delivery device—one containing a free-spinning ball bearing and the other encasing two articulating gears. Openings in the base of test devices modeled ports for drug passage from device to sclera. Porous poly(tetrafluoroethylene) (PTFE) membranes were attached to half of the gear devices to minimize tissue ingrowth through these ports. Test devices were sutured onto rabbit eyes for 10 weeks. Tissue-device interactions were evaluated histologically and mechanically after removal to determine effects on device function and changes in surrounding tissue. Test devices were generally well-tolerated during residence in the animal. All devices encouraged fibrous tissue formation between the sclera and the device, fibrous tissue encapsulation and invasion around the device, and inflammation of the conjunctiva. Gear devices encouraged significantly greater inflammation in all cases and a larger rate of tissue ingrowth. PTFE membranes prevented tissue invasion through the covered drug ports, though tissue migrated in through other smaller openings. The torque required to turn the mechanical elements increased over 1000 times for gear devices, but only on the order of 100 times for membrane-covered gear devices and less than 100 times for ball bearing devices. Maintaining a lower device profile, minimizing microscale motion on the eye surface and covering drug ports with a porous membrane may minimize inflammation, decreasing the risk of damage to surrounding tissues and minimizing disruption of device operation. PMID:24300189