Synthesis, characterization and biological activities of semicarbazones and their copper complexes.
Venkatachalam, Taracad K; Bernhardt, Paul V; Noble, Chris J; Fletcher, Nicholas; Pierens, Gregory K; Thurecht, Kris J; Reutens, David C
2016-09-01
Substituted semicarbazones/thiosemicarbazones and their copper complexes have been prepared and several single crystal structures examined. The copper complexes of these semicarbazone/thiosemicarbazones were prepared and several crystal structures examined. The single crystal X-ray structure of the pyridyl-substituted semicarbazone showed two types of copper complexes, a monomer and a dimer. We also found that the p-nitrophenyl semicarbazone formed a conventional 'magic lantern' acetate-bridged dimer. Electron Paramagnetic Resonance (EPR) of several of the copper complexes was consistent with the results of single crystal X-ray crystallography. The EPR spectra of the p-nitrophenyl semicarbazone copper complex in dimethylsulfoxide (DMSO) showed the presence of two species, confirming the structural information. Since thiosemicarbazones and semicarbazones have been reported to exhibit anticancer activity, we examined the anticancer activity of several of the derivatives reported in the present study and interestingly only the thiosemicarbazone showed activity while the semicarbazones were not active indicating that introduction of sulphur atom alters the biological profile of these thiosemicarbazones. Copyright © 2016 Elsevier Inc. All rights reserved.
An Efficient Procedure for Microscale Synthesis of Semicarbazones
ERIC Educational Resources Information Center
Pandita, Sangeeta; Goyal, Samta; Passey, Sarita
2004-01-01
A successful microscale fusion of semicarbazones, or transformation of carbonyl compounds into semicarbazones is performed through an effective grinding system. The donning of protective attire is advised to avoid the hazardous effects of semicarbazide hydrochloride during the fusion process.
NASA Astrophysics Data System (ADS)
Layana, S. R.; Saritha, S. R.; Anitha, L.; Sithambaresan, M.; Sudarsanakumar, M. R.; Suma, S.
2018-04-01
A novel O,N,O donor salicylaldehyde-N4-phenylsemicarbazone, (H2L) has been synthesized and physicochemically characterized. Detailed structural studies of H2L using single crystal X-ray diffraction technique reveals the existence of intra and inter molecular hydrogen bonding interactions, which provide extra stability to the molecule. We have successfully synthesized a binuclear copper(II) complex, [Cu2(HL)2(NO3)(H2O)2]NO3 with phenoxy bridging between the two copper centers. The complex was characterized by elemental analysis, magnetic susceptibility and conductivity measurements, FT-IR, UV-Visible, mass and EPR spectral methods. The grown crystals of the copper complex were employed for the single crystal X-ray diffraction studies. The complex possesses geometrically different metal centers, in which the ligand coordinates through ketoamide oxygen, azomethine nitrogen and deprotonated phenoxy oxygen. The extensive intermolecular hydrogen bonding interactions of the coordinated and the lattice nitrate groups interconnect the complex units to form a 2D supramolecular assembly. The ESI mass spectrum substantiates the existence of 1:1 complex. The g values obtained from the EPR spectrum in frozen DMF suggest dx2 -y2 ground state for the unpaired electron.
NASA Astrophysics Data System (ADS)
Priya, V. Shanmuga; Rani, C. Uma; Velrani, S.
The synergistic effect of halide ions such as KCl, KBr and KI on the corrosion inhibition of mild steel in 1 N sulphuric acid by γ-2,c-6-diphenyl-t-3-methyl piperdin-4-ones with semicarbazone (01SC), γ-2,c-6-diphenyl-N-methyl-t-3-ethyl piperdin-4-ones with semicarbazone (02SC) and 2,6-diphenyl-t-3-ethyl piperdin-4-one with semicarbazone (03SC) has been examined by weight loss method, potentiodynamic polarization measurements and electrochemical AC impedance spectroscopy. Results show that substituted γ-2,c-6-diphenyl piperidin-4-ones with semicarbazone act as the perfect corrosion inhibitors and their inhibition efficiency increases with the addition of halide ions. The inhibitor (01SC) shows the inhibition efficiency of 78.28% (0.2mM) by using a weight loss method. The influence of I-, Br- and Cl- anions raises the inhibition efficiency of the substituted 2,6-diphenyl piperidin-4-ones with semicarbazone due to the synergistic effect. The synergistic effect of halide ions was formed in the following order: KI > KBr > KCl.
Tripathi, Rati K P; M Sasi, Vishnu; Gupta, Sukesh K; Krishnamurthy, Sairam; Ayyannan, Senthil R
2018-12-01
A series of 2-amino-5-nitrothiazole derived semicarbazones were designed, synthesised and investigated for MAO and ChE inhibition properties. Most of the compounds showed preferential inhibition towards MAO-B. Compound 4, (1-(1-(4-Bromophenyl)ethylidene)-4-(5-nitrothiazol-2-yl)semicarbazide) emerged as lead candidate (IC 50 = 0.212 µM, SI = 331.04) against MAO-B; whereas compounds 21 1-(5-Bromo-2-oxoindolin-3-ylidene)-4-(5-nitrothiazol-2-yl)semicarbazide (IC 50 = 0.264 µM) and 17 1-((4-Chlorophenyl) (phenyl)methylene)-4-(5-nitrothiazol-2-yl)semicarbazide (IC 50 = 0.024 µM) emerged as lead AChE and BuChE inhibitors respectively; with activity of compound 21 almost equivalent to tacrine. Kinetic studies indicated that compound 4 exhibited competitive and reversible MAO-B inhibition while compounds 21 and 17 showed mixed-type of AChE and BuChE inhibition respectively. Docking studies revealed that these compounds were well-accommodated within MAO-B and ChE active sites through stable hydrogen bonding and/or hydrophobic interactions. This study revealed the requirement of small heteroaryl ring at amino terminal of semicarbazone template for preferential inhibition and selectivity towards MAO-B. Our results suggest that 5-nitrothiazole derived semicarbazones could be further exploited for its multi-targeted role in development of anti-neurodegenerative agents. [Formula: see text] A library of 2-amino-5-nitrothiazole derived semicarbazones (4-21) was designed, synthesised and evaluated for in vitro MAO and ChE inhibitory activity. Compounds 4, 21 and 17 (shown) have emerged as lead MAO-B (IC 50 :0.212 µM, competitive and reversible), AChE (IC 50 :0.264 µM, mixed and reversible) and BuChE (IC 50 :0.024 µM, mixed and reversible) inhibitor respectively. SAR studies disclosed several structural aspects significant for potency and selectivity and indicated the role of size of aryl binding site in potency and selectivity towards MAO-B. Antioxidant activity and neurotoxicity screening results further suggested their multifunctional potential for the therapy of neurodegenerative diseases.
Amir, Mohammad; Ali, Israr; Hassan, Mohd Zaheen
2013-06-01
A series of novel imidazole incorporated semicarbazones was synthesized using an appropriate synthetic route and characterized by spectral analysis (IR, 1H NMR, 13C NMR and Mass). The anticonvulsant activity of the synthesized compounds was determined using doses of 30, 100, and 300 mg kg-1 against maximal electroshock seizure (MES), subcutaneous pentylenetetrazole (scPTZ) induced seizure and minimal neurotoxicity test. Six compounds exhibited protection in both models and 2-(1-(4-chlorophenyl)-2-(1H-imidazol-1-yl)ethylidene)-N-p-tolylsemicarbazone emerged as the most active compound of the series without any neurotoxicity and significant CNS depressant effect. Liver enzyme estimations (SGOT, SGPT, Alkaline phosphatase) of the compound also showed no significant change in the enzymes levels. Moreover, it caused 80% elevation of γ-amino butyric acid (GABA) levels in the whole mice brain, thus indicating that it could be a promising candidate in designing of a potent anticonvulsant drug.
Tripathi, Rati K P; Rai, Gopal K; Ayyannan, Senthil R
2016-06-06
A library of 3,4-(methylenedioxy)aniline-derived semicarbazones was designed, synthesized, and evaluated as monoamine oxidase (MAO) and acetylcholinesterase (AChE) inhibitors for the treatment of neurodegenerative diseases. Most of the new compounds selectively inhibited MAO-B and AChE, with IC50 values in the micro- or nanomolar ranges. Compound 16, 1-(2,6-dichlorobenzylidene)-4-(benzo[1,3]dioxol-5-yl)semicarbazide presented a balanced multifunctional profile of MAO-A (IC50 =4.52±0.032 μm), MAO-B (IC50 =0.059±0.002 μm), and AChE (IC50 =0.0087±0.0002 μm) inhibition without neurotoxicity. Kinetic studies revealed that compound 16 exhibits competitive and reversible inhibition against MAO-A and MAO-B, and mixed-type inhibition against AChE. Molecular docking studies further revealed insight into the possible interactions within the enzyme-inhibitor complexes. The most active compounds were found to interact with the enzymes through hydrogen bonding and hydrophobic interactions. Additionally, in silico molecular properties and ADME properties of the synthesized compounds were calculated to explore their drug-like characteristics. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Oter, Ozlem; Ertekin, Kadriye; Kirilmis, Cumhur; Koca, Murat
2007-02-19
In this work photoluminescent properties of highly Cu(2+) selective organic fluoroionophore, semicarbazone derivative; bis(naphtho[2,1-b]furan-2-yl)methanone semicarbazone (BNF) was investigated in different solvents (dichloromethane, tetrahydrofuran, toluene and ethanol) and in polymer matrices of polyvinylchloride (PVC) and ethyl cellulose (EC) by absorption and emission spectrometry. The BNF derivative displayed enhanced fluorescence emission quantum yield, Q(f)=6.1 x 10(-2) and molar extinction coefficient, epsilon=29,000+/-65 cm(-1)M(-1) in immobilized PVC matrix, compared to 2.6 x 10(-3) and 24,573+/-115 in ethanol solution. The offered sensor exhibited remarkable fluorescence intensity quenching upon exposure to Cu(2+) ions at pH 4.0 in the concentration range of 1.0 x 10(-9) to 3.0 x 10(-4)M [Cu(2+)] while the effects of the responding ions (Ca(2+), Hg(+), Pb(2+), Al(3+), Cr(3+), Mn(2+), Mg(2+), Sn(2+), Cd(2+), Co(2+) and Ni(2+)) were less pronounced.
Jakusová, Klaudia; Donovalová, Jana; Cigáň, Marek; Gáplovský, Martin; Garaj, Vladimír; Gáplovský, Anton
2014-04-05
The anion induced tautomerism of isatin-3-4-phenyl(semicarbazone) derivatives is studied herein. The interaction of F(-), AcO(-), H2PO4(-), Br(-) or HSO4(-) anions with E and Z isomers of isatin-3-4-phenyl(semicarbazone) and N-methylisatin-3-4-phenyl(semicarbazone) as sensors influences the tautomeric equilibrium of these sensors in the liquid phase. This tautomeric equilibrium is affected by (1) the inter- and intra-molecular interactions' modulation of isatinphenylsemicarbazone molecules due to the anion induced change in the solvation shell of receptor molecules and (2) the sensor-anion interaction with the urea hydrogens. The acid-base properties of anions and the difference in sensor structure influence the equilibrium ratio of the individual tautomeric forms. Here, the tautomeric equilibrium changes were indicated by "naked-eye" experiment, UV-VIS spectral and (1)H NMR titration, resulting in confirmation that appropriate selection of experimental conditions leads to a high degree of sensor selectivity for some investigated anions. Sensors' E and Z isomers differ in sensitivity, selectivity and sensing mechanism. Detection of F(-) or CH3COO(-) anions at high weakly basic anions' excess is possible. Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Arockia doss, M.; Savithiri, S.; Rajarajan, G.; Thanikachalam, V.; Saleem, H.
2015-09-01
The structural and spectroscopic studies of 3t-pentyl-2r,6c-diphenylpiperidin-4-one semicarbazone (PDPOSC) were made by adopting B3LYP/HF levels theory using 6-311++G(d,p) basis set. The FT-IR and Raman spectra were recorded in solid phase, the fundamental vibrations were assigned on the basis of the total energy distribution (TED) of the vibrational modes, calculated with scaled quantum mechanics (SQM) method and PQS program. DFT method indicates that B3LYP is superior to HF method for molecular vibrational analysis. UV-vis spectrum of the compound was recorded in different solvents in the region of 200-800 nm and the electronic properties such as excitation energies, oscillator strength, wavelengths, HOMO and LUMO energies were evaluated by time-dependent DFT (TD-DFT) approach. The polarizability and first order hyperpolarizability of the title molecule were calculated and interpreted. The hyperconjugative interaction energy (E(2)) and electron densities of donor (i) and acceptor (j) bonds were calculated using NBO analysis. In addition, MEP and atomic charges of carbon, nitrogen and oxygen were calculated using B3LYP/6-311++G(d,p) level theory. Moreover, thermodynamic properties of the title compound were calculated by B3LYP/HF, levels using 6-311++G(d,p) basis set. The 1H and 13C nuclear magnetic resonance (NMR) chemical shifts of the molecule were calculated by the gauge independent atomic orbital (GIAO) method and compared with experimental results.
NASA Astrophysics Data System (ADS)
Chandra, Sulekh; Kumar, Anil
2007-12-01
Co(II), Ni(II) and Cu(II) complexes were synthesized with thiosemicarbazone (L 1) and semicarbazone (L 2) derived from 2-acetyl furan. These complexes were characterized by elemental analysis, molar conductance, magnetic moment, mass, IR, electronic and EPR spectral studies. The molar conductance measurement of the complexes in DMSO corresponds to non-electrolytic nature. All the complexes are of high-spin type. On the basis of different spectral studies six coordinated geometry may be assigned for all the complexes except Co(L) 2(SO 4) and Cu(L) 2(SO 4) [where L = L 1 and L 2] which are of five coordinated square pyramidal geometry.
Four transition metal complexes with a semicarbazone ligand bearing pyrazine unit
NASA Astrophysics Data System (ADS)
Chen, Hong; Ma, Xiu-qin; Lv, Yan-yun; Jia, Lei; Xu, Jun; Wang, Yuan; Ge, Zhi-jun
2016-04-01
Four new complexes based on L (where L = 3-ethyl-2-acetylpyrazine semicarbazone), namely [CoL2]Cl2·0.5H2O (1), [CoL2](NO3)2 (2), [CdL(H2O)2(NO3)](NO3)·H2O (3) and [CuL(CH3OH)Cl2]·[CuLCl2] (4) have been synthesized and characterized by X-ray diffraction analyses. The results show that the semicarbazone acts as a tridentate neutral ligand in all complexes. Each of complex 1 and 2 reveals a distorted octahedral geometry around the metal ion provided by two units of the ligand, while the ratio of the ligand and metal is 1:1 in complexes 3 and 4. The effect of complexes 1-4 on cell proliferation, apoptosis of human pancreatic cancer (Patu8988), human gastric cancer (SGC7901) and human hepatic cancer (SMMC7721) cell lines have been detected by MTT assay, Annexin V/PI double staining flow cytometry and TUNEL assay. The results show that complexes 1-4 can inhibit cell proliferation of Patu8988, SGC7901 and SMMC7721 cells, significantly higher than the effect of the ligand. However, the complex 4 reveals higher apoptosis rate, and displays up-regulated expression level of caspase 3, detected by western blotting, which also indicates the complex 4 can induce caspase-dependent cell apoptosis in SMMC7721.
Korshun, M; Dema, O; Kucherenko, O; Ruda, T; Korshun, O; Gorbachevskyi, R; Pelio, I; Antonenko, A
2016-07-01
Application of pesticides in modern agriculture is a powerful permanent risk factor for public health and the natural environment. The aim of the study was a comparative hygienic assessment of soil pollution hazards by the most widely used herbicides of different chemical classes (sulfonylureas, imidazolinones, pyrimidinyl (thio) benzoates, semicarbazones). Hygienic field experiment for studying of the dynamics of residual amounts of the test substances in the soil under different climatic zones of Ukraine was conducted. Half life periods (DT50) or herbicides in soil were calculated using the method of mathematical modeling. Ecotoxicological risk of herbicides on ecosystems and ecological communities was determined. It was established that bispyribac-sodium (pyrimidinyl (thio) benzoates) and imidazolinones are persist the longest time in soil and most rapidly degradable is diflufenzopyr (semicarbazone); ecotoxicological risk of the studied herbicides for terrestrial biocenoses of Ukraine by 4-6 orders of magnitude lower than dihlordifeniltrihlormetilmetan (DDT).
In vivo anticancer activity of vanillin semicarbazone
Ali, Shaikh M Mohsin; Azad, M Abul Kalam; Jesmin, Mele; Ahsan, Shamim; Rahman, M Mijanur; Khanam, Jahan Ara; Islam, M Nazrul; Shahriar, Sha M Shahan
2012-01-01
Objective To evaluate the anticancer activity of vanillin semicarbazone (VSC) against Ehrlich ascites carcinoma (EAC) cells in Swiss albino mice. Methods The compound VSC at three doses (5, 7.5 and 10 mg/kg i.p.) was administered into the intraperitoneal cavity of the EAC inoculated mice to observe its efficiency by studying the cell growth inhibition, reduction of tumour weight, enhancement of survival time as well as the changes in depleted hematological parameters. All such parameters were also studied with a known standard drug bleomycin at the dose of 0.3 mg/kg (i.p.). Results Among the doses studied, 10 mg/kg (i.p.) was found to be quite comparable in potency to that of bleomycin at the dose of 0.3 mg/kg (i.p.). The host toxic effects of VSC was found to be negligible. Conclusions It can be concluded that VSC can therefore be considered as potent anticancer agent. PMID:23569946
Tan, Ming Yueh; Crouse, Karen A; Ravoof, Thahira B S A; Jotani, Mukesh M; Tiekink, Edward R T
2017-07-01
The title Zn II complex, [Zn(C 18 H 18 N 3 S) 2 ], (I), features two independent but chemically equivalent mol-ecules in the asymmetric unit. In each, the thio-semicarbazonate monoanion coordinates the Zn II atom via the thiol-ate-S and imine-N atoms, with the resulting N 2 S 2 donor set defining a distorted tetra-hedral geometry. The five-membered ZnSCN 2 chelate rings adopt distinct conformations in each independent mol-ecule, i.e. one ring is almost planar while the other is twisted about the Zn-S bond. In the crystal, the two mol-ecules comprising the asymmetric unit are linked by amine-N-H⋯N(imine) and amine-N-H⋯S(thiol-ate) hydrogen bonds via an eight-membered heterosynthon, {⋯HNCN⋯HNCS}. The dimeric aggregates are further consolidated by benzene-C-H⋯S(thiol-ate) inter-actions and are linked into a zigzag supra-molecular chain along the c axis via amine-N-H⋯S(thiol-ate) hydrogen bonds. The chains are connected into a three-dimensional architecture via phenyl-C-H⋯π(phen-yl) and π-π inter-actions, the latter occurring between chelate and phenyl rings [inter-centroid separation = 3.6873 (11) Å]. The analysis of the Hirshfeld surfaces calculated for (I) emphasizes the different inter-actions formed by the independent mol-ecules in the crystal and the impact of the π-π inter-actions between chelate and phenyl rings.
Abernethy, Grant A
2015-01-01
This paper proposes a mechanism to explain the trace levels of natural semicarbazide occasionally observed in foods. The analytical derivative of semicarbazide, 2-nitrobenzaldehyde semicarbazone, is often measured as a metabolite marker to detect the widely banned antibiotic nitrofurazone. However, this marker is not specific as semicarbazide may be present in foods for several reasons other than exposure to nitrofurazone. In some cases, an entirely natural origin of semicarbazide is suspected, although up until now there was no explanation about how semicarbazide could occur naturally. In this work, semicarbazide is proposed as being generated from natural food compounds via an azine intermediate. Hydrazine, in the form of azines or hydrazones, may be generated in dilute aqueous solution from the natural food compounds ammonia, hydrogen peroxide and acetone, following known oxidation chemistry. When this mixture was prepared in the presence of ureas such as allantoin, urea, biuret or hydroxyurea, and then analysed by the standard method for the determination of semicarbazide, 2-nitrobenzaldehyde semicarbazone was detected. 2-Nitrobenzaldehyde aldazine was also found, and it may be a general marker for azines in foods. This proposal, that azine formation is central to semicarbazide development, provides a convergence of the published mechanisms for semicarbazide. The reaction starts with hydrogen peroxide, peracetic acid, atmospheric oxygen or hypochlorite; generates hydrazine either by an oxaziridine intermediate or via the chlorination of ammonia; and then either route may converge on azine formation, followed by reaction with a urea compound. Additionally, carbamate ion may speculatively generate semicarbazide by reaction with hydrazine, which might be a significant route in the case of the hypochlorite treatment of foods or food contact surfaces. Significantly, detection of 2-nitrobenzaldehyde semicarbazone may be somewhat artefactual because semicarbazide can form during the acid conditions of analysis, which can free hydrazine in the presence of urea compounds.
Kumar, S.; Srivastava, D. P.
2010-01-01
An efficient electrochemical method for the preparation of 2-amino-5-substituted-1,3,4-oxadiazoles (4a-k) at platinum anode through the electrooxidation of semicarbazone (3a-k) at controlled potential electrolysis has been reported in the present study. The electrolysis was carried out in the acetic acid solvent and lithium perchlorate was used as supporting electrolyte. The products were characterized by IR,1H-NMR,13C-NMR, mass spectra and elemental analysis. The synthesized compounds were screened for their in vitro growth inhibiting activity against different strains of bacteria viz., Klebsilla penumoniae, Escherichia coli, Bassilus subtilis and Streptococcus aureus and antifungal activity against Aspergillus niger and Crysosporium pannical and results have been compared with the standard antibacterial streptomycin and antifungal griseofulvin. Compounds exhibits significant antibacterial activity and antifungal activity. Compounds 4a and g exhibited equal while 4c, d, i and j slightly less antibacterial activity than standard streptomycin. Compounds 4a and g exhibited equal while 4b, c, d, f and i displayed slightly less antifungal activity than standard griseofulvins. PMID:21218056
Islam, Farhadul; Ali, Shaikh Mohummad Mohsin; Khanam, Jahan Ara
2013-01-01
Objective To determine the hepatoprotective effect of acetone semicarbazone (ASC) in vivo in normal and Ehrlich ascites carcinoma (EAC) bearing male Swiss albino mice. Methods Drug-induced changes in biochemical and behavioral parameters at dose of 2.0 mg/kg body weight for 14 d and nullifying the toxicity induced by EAC cells were studied. The histopathology studies of the protective effects of ASC on vital organs were also assessed. Results The administration of ASC made insignificant changes in body weight and behavioral (salivation, diarrhea, muscular numbness) changes during treatment period due to minor toxicity were minimized after the treatment in normal mice. The biochemical parameters, including serum glutamate pyruvate transaminase, glutamate oxaloactate transaminase, alkaline phosphatase, serum glucose, cholesterol, urea, triglyceride and billirubin changed modestly in normal mice receiving ASC. Though the treatment continued, these values gradually decreased to normal level after the treatment. In EAC bearing mice, the toxic effects due to EAC cells in all cases were nullified by treatment with the ASC. Significant abnormalities were not detected in histology of the various organs of the normal mice treated with ASC. Conclusions ASC can, therefore, be considered safe in formulating novel anticancer drug, as it exhibits strong protective effect against EAC cell bearing mice. PMID:23593588
NASA Astrophysics Data System (ADS)
Dias, L. C.; de Lima, G. M.; Pinheiro, C. B.; Rodrigues, B. L.; Donnici, C. L.; Fujiwara, R. T.; Bartholomeu, D. C.; Ferreira, R. A.; Ferreira, S. R.; Mendes, T. A. O.; da Silva, J. G.; Alves, M. R. A.
2015-01-01
In this paper we report the synthesis and characterization of four new nitroaromatic compounds, 2-{6-nitrobenzo[1,3]dioxol-5-(methyleneamino)}benzoic acid (1), 2-{[5-(2-nitrophenyl)furan-2-yl]methylene-amino}benzoic acid (2), 2-{(6-nitrobenzo[1,3]dioxol-5-yl)methylene}hydrazinecarboxamide (3) and 2-{[5-(2-nitrophenyl)furan-2-yl]methylene}hydrazinecarboxamide (4). Compounds (1)-(4) have been authenticated by infrared and NMR spectroscopy, and the structure of (1), (2) and (4) have been determined by X-ray diffraction. In addition, the in vitro ability of compounds (1)-(4) to inhibit the growth of Leishmania infantum has been evaluated. Comparisons of the redox potential of the compounds and leishmanicidal activity indicate that the presence of the electroactive nitro group is important for the biological activity. The inhibition activity of compound (3) is comparable to that of the reference drug, SbCl3. Considering the important side effects and the low efficiency of SbCl3 in the case of resistance, compound (3) deserves further attention as a promising anti-leishmanicidal drug for veterinary use.
Chandra, Sulekh; Hooda, Sunita; Tomar, Praveen Kumar; Malik, Amrita; Kumar, Ankit; Malik, Sakshi; Gautam, Seema
2016-05-01
The PVC based-ion selective electrode viz., bis nitrato[4-hydroxyacetophenone semicarbazone] nickel(II) as an ionophore was prepared for the determination of thiocyanate ion. The ionophore was characterized by FT-IR, UV-vis, XRD, magnetic moment and elemental analysis (CHN). On the basis of spectral studies an octahedral geometry has been assigned. The best performance was obtained with a membrane composition of 31% PVC, 63% 2-nitrophenyl octylether, 4.0% ionophore and 2.0% trioctylmethyl ammonium chloride. The electrode exhibited an excellent Nernstian response to SCN(-) ion ranging from 1.0 × 10(-7) to 1.0 × 10(-1)M with a detection limit of 8.6 × 10(-8)M and a slope of -59.4 ± 0.2 mV/decade over a wide pH range (1.8-10.7) with a fast response time (6s) at 25 °C. The proposed electrode showed high selectivity for thiocyanate ion over a number of common inorganic and organic anions. It was successfully applied to direct determination of thiocyanate in biological (urine and saliva) samples in order to distinguish between smokers and non-smokers, environmental samples and as an indicator electrode for titration of thiocyanate ions with AgNO3 solution. Copyright © 2016 Elsevier B.V. All rights reserved.
Mechanochemical Synthesis of Carbon Nanothread Single Crystals.
Li, Xiang; Baldini, Maria; Wang, Tao; Chen, Bo; Xu, En-Shi; Vermilyea, Brian; Crespi, Vincent H; Hoffmann, Roald; Molaison, Jamie J; Tulk, Christopher A; Guthrie, Malcolm; Sinogeikin, Stanislav; Badding, John V
2017-11-15
Synthesis of well-ordered reduced dimensional carbon solids with extended bonding remains a challenge. For example, few single-crystal organic monomers react under topochemical control to produce single-crystal extended solids. We report a mechanochemical synthesis in which slow compression at room temperature under uniaxial stress can convert polycrystalline or single-crystal benzene monomer into single-crystalline packings of carbon nanothreads, a one-dimensional sp 3 carbon nanomaterial. The long-range order over hundreds of microns of these crystals allows them to readily exfoliate into fibers. The mechanochemical reaction produces macroscopic single crystals despite large dimensional changes caused by the formation of multiple strong, covalent C-C bonds to each monomer and a lack of reactant single-crystal order. Therefore, it appears not to follow a topochemical pathway, but rather one guided by uniaxial stress, to which the nanothreads consistently align. Slow-compression room-temperature synthesis may allow diverse molecular monomers to form single-crystalline packings of polymers, threads, and higher dimensional carbon networks.
The effect of adding CTAB template in ZSM-5 synthesis
NASA Astrophysics Data System (ADS)
Widayat, Widayat; Annisa, Arianti Nuur
2017-11-01
In general, ZSM-5 synthesis is performed using a hydrothermal process that takes place at high temperature and high pressure (> 373 K,> 1 bar). The synthesis of ZSM-5 is influenced by the organic template used. The organic template serves as a determinant of the zeolite crystal structure formation. CTAB is an easily found organic template and the price is cheap so the production cost of ZSM-5 synthesis would be more efficient. In this research, ZSM-5 is synthesized by varying temperature and crystallization time. The result showed the optimal condition of ZSM-5 synthesis was at 363 K for the crystallization temperature with 8 hours of crystallization time. The crystalline product had 60.07% of crystallinity with an aluminosilicate composition of 72% w/w.
Time Dependent Structural Evolution of Porous Organic Cage CC3
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lucero, Jolie; Elsaidi, Sameh; Anderson, Ryther
Porous organic cage compounds are emerged with remarkable structural diversity and functionality that have applications in gas separation, catalysis and energy storage. Fundamental understanding of nucleation and growth of such materials have significant implications for understanding molecularly directed self-assembly phenomena. Herein we followed the structural evolution of a prototypical type of porous organic cage, CC3 as a function of synthesis time. Three distinctive crystal formation stages were identified: at short synthesis times, a rapid crystal growth stage in which amorphous agglomerates transformed into larger irregular particles was observed. At intermediate synthesis times, a decrease in crystal size over time wasmore » observed presumably due to crystal fragmentation, redissolution and/or homogeneous nucleation led. Finally, at longer synthesis times, a regrowth process was observed in which particles coalesced through Ostwald ripening leading to a continuous increase in crystal size. Molecular simulation studies, based on the construction of in silico CC3 models and simulation of XRD patterns and nitrogen isotherms, confirm the samples at different synthesis times to be a mixture of CC3α and CC3 amorphous phases. The CC3α phase is found to contract at different synthesis times, and the amorphous phase is found to essentially disappear at the longest synthesis time. Nitrogen and carbon dioxide adsorption properties of these CC3 phases were evaluated, and were highly dependent on synthesis time.« less
Synthesis and Physical Properties of Liquid Crystals: An Interdisciplinary Experiment
ERIC Educational Resources Information Center
Van Hecke, Gerald R.; Karukstis, Kerry K.; Hanhan Li; Hendargo, Hansford C.; Cosand, Andrew J.; Fox, Marja M.
2005-01-01
A study involves multiple chemistry and physics concepts applied to a state of matter that has biological relevance. An experiment involving the synthesis and physical properties of liquid crystals illustrates the interdisciplinary nature of liquid crystal research and the practical devices derived from such research.
A novel series of IKKβ inhibitors part I: Initial SAR studies of a HTS hit.
Cushing, Timothy D; Baichwal, Vijay; Berry, Karen; Billedeau, Roland; Bordunov, Viola; Broka, Chris; Cardozo, Mario; Cheng, Peng; Clark, David; Dalrymple, Stacie; DeGraffenreid, Michael; Gill, Adrian; Hao, Xiaolin; Hawley, Ronald C; He, Xiao; Jaen, Juan C; Labadie, Sharada S; Labelle, Marc; Lehel, Csaba; Lu, Pu-Ping; McIntosh, Joel; Miao, Shichang; Parast, Camran; Shin, Youngsook; Sjogren, Eric B; Smith, Marie-Louise; Talamas, Francisco X; Tonn, George; Walker, Keith M; Walker, Nigel P C; Wesche, Holger; Whitehead, Chris; Wright, Matt; Browner, Michelle F
2011-01-01
A novel series of (E)-1-((2-(1-methyl-1H-imidazol-5-yl) quinolin-4-yl) methylene) thiosemicarbazides was discovered as potent inhibitors of IKKβ. In this Letter we document our early efforts at optimization of the quinoline core, the imidazole and the semithiocarbazone moiety. Most potency gains came from substitution around the 6- and 7-positions of the quinoline ring. Replacement of the semithiocarbazone with a semicarbazone decreased potency but led to some measurable exposure. Copyright © 2010 Elsevier Ltd. All rights reserved.
The Preparation and Characterization of Natrolite Synthetized by Purified Attapulgite
NASA Astrophysics Data System (ADS)
Li, H. J.; Zhou, X. D.; Zhang, J. M.; Wu, X. Y.; Gao, H. B.
2017-06-01
This paper mainly researched the hydrothermal synthesis of Natrolite, using amorphous silicon source from the purified attapulgite. The effects of silicon source, silicon aluminum ratio, crystallization time and crystallization temperature on the synthesis of natrolite were investigated. The results showed that the optimal synthesis condition of natrolite was: Hydrothermal activated ATP with NaOH was silicon source, silicon aluminum ratio was 10:1, crystallization time lasted to 72h and crystallization temperature was 150°C, the template was removed by calcining 8 hours at 550°C. The structural formula of obtained natrolite is Na2Al2Si3O10•2H2O.
Synthesis of sub-millimeter calcite from aqueous solution
NASA Astrophysics Data System (ADS)
Reimi, M. A.; Morrison, J. M.; Burns, P. C.
2011-12-01
A novel aqueous synthesis that leads to the formation of calcite (CaCO3) crystals, up to 500μm in diameter, will be used to facilitate the study of contaminant transport in aqueous environmental systems. Existing processes tend to be complicated and often yield nanometer-sized or amorphous CaCO3. The synthesis method presented here, which involves slow mixing of concentrated solutions of CaCl2 ¬and (NH4)2CO3, produces single crystals of rhombohedral calcite in 2 to 4 days. Variations on the experimental method, including changes in pH and solution concentration, were explored to optimize the synthesis. Scanning Electron Microscope images show the differences in size and purity observed when the crystals are grown at pH values ranging from 2 to 6. The crystals grown from solutions of pH 2 were large (up to 500 micrometers in diameter) with minimal polycrystalline calcium carbonate, while crystals grown from solutions with pH values beyond 4 were smaller (up to 100 micrometers in diameter) with significant polycrystalline calcium carbonate. The synthesis method, materials characterization, and use in future actinide contaminant studies will be discussed.
2006 Global Demilitarization Symposium Volume 1 Presentations
2006-05-04
produce inorganic crystals in continuous-reaction mode: Continuous synthesis of CdSe–ZnS composite nanoparticles in a microfluidic reactor, Hongzhi...crystallize lead azide nanoparticles , and to grow them into dextrinated microparticles; Point of Application Microfluidic Synthesis of Sensitive...National Laboratory Point of Application Synthesis of Sensitive Explosive Mr. Karl Wally, Sandia National Laboratories Session III- A Session
NASA Astrophysics Data System (ADS)
da Silva, João Bosco P.; Hallwass, Fernando; da Silva, Aluizio G.; Moreira, Diogo Rodrigo; Ramos, Mozart N.; Espíndola, José Wanderlan P.; de Oliveira, Ana Daura T.; Brondani, Dalci José; Leite, Ana Cristina L.; Merz, Kenneth M.
2015-08-01
DFT calculations were used to access information about structure, energy and electronic properties of series of phenyl- and phenoxymethyl-(thio)semicarbazone derivatives with demonstrated activity against the larvae of Aedes aegypti in stage L4. The way as the thiosemicarbazone derivatives can interact with solvents like DMSO and water were analyzed from the comparison between calculated and experimental 1H NMR chemical shifts. The evidences of thiosemicarbazone derivatives making H-bond interaction to solvent have provide us insights on how they can interact with a potential A. aegypti's biological target, the Sterol Carrier Protein-2.
Rapid crystallization and morphological adjustment of zeolite ZSM-5 in nonionic emulsions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang Ying, E-mail: yingzh1977@163.co; Jin Chao; Research Institute of Petroleum Processing, Beijing 100083
2011-01-15
Zeolite ZSM-5 was synthesized for the first time in a nonionic emulsion composed of polyoxyethylated alkylphenol, butanol, cyclohexane and tetraethylammonium hydroxide (TEAOH)-containing zeolite synthesis mixture. The crystallization kinetics in the emulsion was investigated and the ZSM-5 product was characterized in detail by XRD, SEM, FT-IR, TG, N{sub 2} adsorption and CHN analysis techniques. Compared with the conventionally hydrothermal synthesis with the same structure directing agent TEAOH, the emulsion system allows rapid crystallization of ZSM-5. The ZSM-5 product exhibits unusual agglomerated structure and possesses larger specific surface area. The FT-IR, TG results plus CHN analysis show the encapsulation of a tracemore » of emulsion components in the emulsion ZSM-5. Control experiments show the emulsion system exerts the crystallization induction and morphological adjustment effects mainly during the aging period. The effects are tentatively attributed to the confined space domains, surfactant-water interaction as well as surfactant-growing crystals interaction existing in the emulsion. -- Graphical abstract: The nonionic emulsion synthesis allows rapid crystallization and morphological adjustment of zeolite ZSM-5 compared with the conventional hydrothermal synthesis. Display Omitted« less
Fundamental Studies of Crystal Growth of Microporous Materials
NASA Technical Reports Server (NTRS)
Singh, Ramsharan; Doolittle, John, Jr.; Payra, Pramatha; Dutta, Prabir K.; George, Michael A.; Ramachandran, Narayanan; Schoeman, Brian J.
2003-01-01
Microporous materials are framework structures with well-defined porosity, often of molecular dimensions. Zeolites contain aluminum and silicon atoms in their framework and are the most extensively studied amongst all microporous materials. Framework structures with P, Ga, Fe, Co, Zn, B, Ti and a host of other elements have also been made. Typical synthesis of microporous materials involve mixing the framework elements (or compounds, thereof) in a basic solution, followed by aging in some cases and then heating at elevated temperatures. This process is termed hydrothermal synthesis, and involves complex chemical and physical changes. Because of a limited understanding of this process, most synthesis advancements happen by a trial and error approach. There is considerable interest in understanding the synthesis process at a molecular level with the expectation that eventually new framework structures will be built by design. The basic issues in the microporous materials crystallization process include: (a) Nature of the molecular units responsible for the crystal nuclei formation; (b) Nature of the nuclei and nucleation process; (c) Growth process of the nuclei into crystal; (d) Morphological control and size of the resulting crystal; (e) Surface structure of the resulting crystals; and (f) Transformation of frameworks into other frameworks or condensed structures.
Miao, Yu; Qiu, Yanxuan; Cai, Jiawei; Wang, Zizhou; Yu, Xinwei; Dong, Wen
2016-01-01
The in-situ nano-crystal-to-crystal transformation (SCCT) synthesis provides a powerful approach for tailoring controllable feature shapes and sizes of nano crystals. In this work, three nitrogen-rich energetic nano-crystals based on 5,5′-azotetrazolate(AZT2−) Cr(III) salts were synthesized by means of SCCT methodology. SEM and TEM analyses show that the energetic nano-crystals feature a composition- and structure-dependent together with size-dependent thermal stability. Moreover, nano-scale decomposition products can be obtained above 500 °C, providing a new method for preparing metallic oxide nano materials. PMID:27869221
NASA Astrophysics Data System (ADS)
Shao, Hui; Chen, Jingjing; Chen, Xia; Leng, Yixin; Zhong, Jing
2015-04-01
An experimental design was applied to the synthesis of AlPO4-21 molecular sieve (AWO structure) by vapor phase transport (VPT) method, using tetramethylguanidine (TMG) as the template. In this study, the effects of crystallization time, crystallization temperature, phosphor content, template content and water content in the synthesis gel were investigated. The materials obtained were characterized by X-ray diffraction, scanning electron microscopy and fourier transform infrared spectroscopy (FT-IR). Microstructural analysis of the crystal growth in vapor synthetic conditions revealed a revised crystal growth route from zeolite AlPO4-21 to AlPO4-15 in the presence of the TMG. Homogenous hexagonal prism AlPO4-21 crystals with size of 7 × 3 μm were synthesized at a lower temperature (120 °C), which were completely different from the typical tabular parallelogram crystallization microstructure of AlPO4-21 phase. The crystals were transformed into AlPO4-21 phase with higher crystallization temperature, longer crystallization time, higher P2O5/Al2O3 ratio and higher TMG/Al2O3 ratio.
NASA Astrophysics Data System (ADS)
Falkner, Joshua Charles
The three projects within this work address the difficulties of controlling biomolecular crystal formats (i.e. size and shape), producing 3-D ordered composite materials from biomolecular crystal templates, and understanding the mechanism of a practical iron oxide synthesis. The unifying thread consistent throughout these three topics is the development of methods to manipulate nanomaterials using a bottom-up approach. Biomolecular crystals are nanometer to millimeter sized crystals that have well ordered mesoporous solvent channels. The overall physical dimensions of these crystals are highly dependent on crystallization conditions. The controlled growth of micro- and nanoprotein crystals was studied to provide new pathways for creating smaller crystalline protein materials. This method produced tetragonal hen egg-white lysozyme crystals (250--100,000 nm) with near monodisperse size distributions (<15%). With this degree of control, existing protein crystal applications such as drug delivery and analytical sensors can reach their full potential. Applications for larger crystals with inherently ubiquitous pore structures could extend to materials used for membranes or templates. In this work, the porous structure of larger cowpea mosaic virus crystals was used to template metal nanoparticle growth within the body centered cubic crystalline network. The final composite material was found to have long range ordering of palladium and platinum nonocrystal aggregates (10nm) with symmetry consistent to the virus template. Nanoparticle synthesis itself is an immense field of study with an array of diverse applications. The final piece of this work investigates the mechanism behind a previously developed iron oxide synthesis to gain more understanding and direction to future synthesis strategies. The particle growth mechanism was found to proceed by the formation of a solvated iron(III)oleate complex followed by a reduction of iron (III) to iron (II). This unstable iron(II) nucleates to form a wustite (FeO) core which serves as an epitaxial surface for the magnetite (Fe3O4) shell growth. This method produces spherical particles (6-60nm) with relative size distributions of less than 15%.
Synthesis and structural study of N-isopropenylbenzimidazolone
NASA Astrophysics Data System (ADS)
Mondieig, D.; Negrier, Ph.; Leger, J. M.; Lakhrissi, L.; El Assyry, A.; Lakhrissi, B.; Essassi, E. M.; Benali, B.; Boucetta, A.
2015-05-01
The synthesis and the crystal structure of the N-isopropenylbenzimidazolone (C10H10N2O) are presented. The synthesis was performed by Meth-Cohen method by reaction of o-phenylenediamine with ethyl acetoacetate in refluxed xylene. The single crystal structure was determined at room temperature by means of X-rays diffraction. The crystal system is monoclinic, with space group C2/c and eight molecules per unit cell. The unit cell dimensions are: a = 15.978(1) Å, b = 6.100(2) Å, c = 18.222(2) Å, β = 90.16(1)° and V = 1776.0(6) Å3.
Low-Temperature Growth of Two-Dimensional Layered Chalcogenide Crystals on Liquid.
Zhou, Yubing; Deng, Bing; Zhou, Yu; Ren, Xibiao; Yin, Jianbo; Jin, Chuanhong; Liu, Zhongfan; Peng, Hailin
2016-03-09
The growth of high-quality two-dimensional (2D) layered chalcogenide crystals is highly important for practical applications in future electronics, optoelectronics, and photonics. Current route for the synthesis of 2D chalcogenide crystals by vapor deposition method mainly involves an energy intensive high-temperature growth process on solid substrates, often suffering from inhomogeneous nucleation density and grain size distribution. Here, we first demonstrate a facile vapor-phase synthesis of large-area high-quality 2D layered chalcogenide crystals on liquid metal surface with relatively low surface energy at a growth temperature as low as ∼100 °C. Uniform and large-domain-sized 2D crystals of GaSe and GaxIn1-xSe were grown on liquid metal surface even supported on a polyimide film. As-grown 2D GaSe crystals have been fabricated to flexible photodetectors, showing high photoresponse and excellent flexibility. Our strategy of energy-sustainable low-temperature growth on liquid metal surface may open a route to the synthesis of high-quality 2D crystals of Ga-, In-, Bi-, Hg-, Pb-, or Sn-based chalcogenides and halides.
Effect of alkali ions (Na+, K+, Cs+) on reaction mechanism of CZTS nano-particles synthesis
NASA Astrophysics Data System (ADS)
Kumar, Suresh; Altosaar, Mare; Grossberg, Maarja; Mikli, Valdek
2018-04-01
The control of morphology, elemental composition and phase composition of Cu2ZnSnS4 (CZTS) nano-crystals depends on the control of complex formation and surface stabilization of nano-particles in solution-based synthesis in oleylamine. At temperatures ≥280 °C, the control of nano-crystal's morphology and homogenous growth is difficult because of fast poly-nuclear growth occurring at higher temperatures. In the present work the effect of oleylamine complex formation with different alkali ions (Na+, K+ and Cs+) on nano-crystals growth at synthesis temperature of 280 °C was studied. It was found that nano-powders synthesized in the presence of Na+ and K+ ions showed the formation of crystals of different sizes - small nano-particles (18 nm-30 nm), large aggregated crystals (few nm to 1 μm) and large single crystals (1 μm - 4 μm). The presence of Cs+ ions in the nano-powder synthesis in oleylamine-metal precursor-CsOH solution promoted growth of nano-crystals of homogenous size. It is proposed that the formed oleylamine-Cs complexes a) enhance the formation and stabilization of oleylamine-metal (Cu, Zn and Sn) complexes before the injection of sulphur precursor into the oleylamine-metal precursor solution and b) after addition of sulphur stabilize the fast nucleated nano-particles and promote diffusion limited growth.
Fundamental Studies of Crystal Growth of Microporous Materials
NASA Technical Reports Server (NTRS)
Dutta, P.; George, M.; Ramachandran, N.; Schoeman, B.; Curreri, Peter A. (Technical Monitor)
2002-01-01
Microporous materials are framework structures with well-defined porosity, often of molecular dimensions. Zeolites contain aluminum and silicon atoms in their framework and are the most extensively studied amongst all microporous materials. Framework structures with P, Ga, Fe, Co, Zn, B, Ti and a host of other elements have also been made. Typical synthesis of microporous materials involve mixing the framework elements (or compounds, thereof) in a basic solution, followed by aging in some cases and then heating at elevated temperatures. This process is termed hydrothermal synthesis, and involves complex chemical and physical changes. Because of a limited understanding of this process, most synthesis advancements happen by a trial and error approach. There is considerable interest in understanding the synthesis process at a molecular level with the expectation that eventually new framework structures will be built by design. The basic issues in the microporous materials crystallization process include: (1) Nature of the molecular units responsible for the crystal nuclei formation; (2) Nature of the nuclei and nucleation process; (3) Growth process of the nuclei into crystal; (4) Morphological control and size of the resulting crystal; (5) Surface structure of the resulting crystals; (6) Transformation of frameworks into other frameworks or condensed structures. The NASA-funded research described in this report focuses to varying degrees on all of the above issues and has been described in several publications. Following is the presentation of the highlights of our current research program. The report is divided into five sections: (1) Fundamental aspects of the crystal growth process; (2) Morphological and Surface properties of crystals; (3) Crystal dissolution and transformations; (4) Modeling of Crystal Growth; (5) Relevant Microgravity Experiments.
Wu, Yiming; Hu, Xiaomin; Ge, Yong; Zheng, Dasheng; Yuan, Zhiming
2012-05-01
Bacillus sphaericus has been used with great success in mosquito control programs worldwide. Under conditions of nutrient limitation, it undergoes sporulation via a series of well defined morphological stages. However, only a small number of genes involved in sporulation have been identified. To identify genes associated with sporulation, and to understand the relationship between sporulation and crystal protein synthesis, a random mariner-based transposon insertion mutant library of B. sphaericus strain 2297 was constructed and seven sporulation-defective mutants were selected. Sequencing of the DNA flanking of the transposon insertion identified several genes involved in sporulation. The morphologies of mutants were determined by electron microscopy and synthesis of crystal proteins was analyzed by SDS-PAGE and Western blot. Four mutants blocked at early stages of sporulation failed to produce crystal proteins and had lower larvicidal activity. However, the other three mutants were blocked at later stages and were able to form crystal proteins, and the larvicidal activity was similar to wild type. These results indicated that crystal protein synthesis in B. sphaericus is dependent on sporulation initiation. © 2012 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mumbaraddi, Dundappa; Sarkar, Sumanta; Peter, Sebastian C., E-mail: sebastiancp@jncasr.ac.in
2016-04-15
This review highlights the synthesis and crystal growth of quaternary intermetallic compounds based on rare earth metals. In the first part of this review, we highlight briefly about intermetallics and their versatile properties in comparison to the constituent elements. In the next part, we have discussed about various synthesis techniques with more focus on the metal flux technique towards the well shaped crystal growth of novel compounds. In the subsequent parts, several disordered quaternary compounds have been reviewed and then outlined most known ordered quaternary compounds with their complex structure. A special attention has been given to the ordered compoundsmore » with structural description and relation to the parent binary and ternary compounds. The importance of electronic and structural feature is highlighted as the key roles in designing these materials for emerging applications. - Graphical abstract: Rare earth based quaternary intermetallic compounds crystallize in complex novel crystal structures. The diversity in the crystal structure may induce unique properties and can be considered them as future materials. - Highlights: • Crystal growth and crystal structure of quaternary rare earth based intermetallics. • Structural complexity of quaternary compounds in comparison to the parent compounds. • Novel quaternary compounds display unique crystal structure.« less
Highly Non-Linear Optical (NLO) organic crystals
NASA Technical Reports Server (NTRS)
Harris, J. Milton
1987-01-01
This research project involves the synthesis and characterization of organic materials having powerful nonlinear optical (NLO) properties and the growth of highly ordered crystals and monomolecular films of these materials. Research in four areas is discussed: theoretical design of new materials, characterization of NLO materials, synthesis of new materials and development of coupling procedures for forming layered films, and improvement of the techniques for vapor phase and solution phase growth of high quality organic crystals. Knowledge gained from these experiments will form the basis for experiments in the growth of these crystals.
Studies on synthesis of diamond at high pressure and temperature
NASA Astrophysics Data System (ADS)
Kailath, Ansu J.
Diamond is an essential material of modern industry and probably the most versatile abrasive available today. It also has many other industrial applications attributable to its unique mechanical, optical, thermal and electrical properties. Its usage has grown to the extent that there is hardly a production process in modern industry in which industrial diamond does not play a part. Bulk diamond production today is a major industry. Diamonds can be produced in its thermodynamically stable regions either by direct static conversion, or shock-wave conversion. The pressures and temperatures required for direct static conversion are very high. In the catalyst-solvent method, the material used establishes a reaction path with lower activation energy than for direct transformation. This helps in a quicker transformation under more benign conditions. Hence, catalyst-solvent synthesis is readily accomplished and is now a viable and successful industrial process. Diamonds produced by shock wave are very small (approximately 60mu). Therefore this diamond is limited to applications such as polishing compounds only. The quality, quantity, size and morphology of the crystals synthesized by catalyst-solvent process depend on different conditions employed for synthesis. These details, because of commercial reasons are not disclosed in published literature. Hence, systematic studies have been planned to investigate the effect of various growth parameters on the synthesized crystals. During the growth of synthetic diamond crystals, some catalyst-solvent is retained into the crystals in some form and behaves like an impurity. Several physico-mechanical properties of the crystals are found to depend on the total quantity and distribution of these inclusions. Thus, detailed investigation of the crystallization medium and inclusions in synthesized diamonds was also undertaken in the present work. The work incorporated in this thesis has been divided into seven chapters. The first chapter is a general introduction incorporating the information regarding diamond together with a brief history of diamond synthesis. It also includes the details of the high pressure synthesis of diamond, the uses of diamond grits, the advantages of the synthetic diamond grit over natural grit and an outline to elucidate the reasons which prompted to undertake the present work. The details of the technique used in the present studies for synthesis of diamond grits by high-pressure high-temperature process are included in chapter II. The hydraulic press used for synthesis, the details of the reactant materials, stacking of the high pressure cell and the details of synthesis run have been described together with the separation procedure to isolate diamond grits from the frozen slug. Different analytical and characterization techniques used in the present studies for the analysis and characterization of the reactant materials, synthesized diamonds and the crystallization medium have been illustrated in chapter III. The effect of different synthesizing parameters on synthesized diamond crystals were studied. This study includes: (a) dependence of yield of diamond on temperature and pressure, (b) dependence of crystal size on cook length, (c) effect of variation of the relative amounts of carbonaceous material and catalyst on synthesis, (d) morphological variation and (e) effect of pressure pulse on synthesized crystals. Various observations made during this study and the results obtained have been compiled in chapter IV. The synthesized diamond crystals were characterized by X-ray Powder Diffraction (XRD), Raman Spectroscopy, Scanning Electron Microscopy (SEM) and Optical Microscopy. The results obtained have been compiled in chapter V. In addition to these, the results obtained from the Infrared Spectra and the Electron Paramagnetic Spectra have also been included. Studies of crystallization medium and inclusions in the synthesized diamonds were carried out. This include: (a) X-ray diffraction study of the phase composition of crystallization medium and inclusions in synthesized diamonds, (b) metallographic examination of the initial catalyst-solvent and the frozen slug after synthesis, (c) temperature dependence of the magnetic susceptibility of the initial catalyst-solvent and the frozen catalyst-solvent after synthesis, (d) scanning electron microscopic examination of the inclusion on the mechanically polished cross-sections of the synthesized crystals, (e) EDAX analysis of these observed inclusions and the frozen catalyst-solvent matrix after growth, (f) temperature dependence of the magnetic susceptibility of the synthesized crystals and (g) the Mossbauer spectroscopic analysis of the synthesized crystals. Different observations and the results obtained from these studies have been compiled and presented in chapter VI. Chapter VII illustrates the various conclusions drawn from the present studies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Casado, Clara; Amghouz, Zakariae; Garcia, Jose R.
2009-06-03
Titanosilicate ETS-10 crystals were prepared by hydrothermal synthesis varying Ti source (TiCl{sub 3} and commercial TiO{sub 2}-anatase), time in autoclave and seeding with previously prepared ETS-10 crystals. The crystalline powders were characterized by X-ray diffraction, N{sub 2} adsorption, thermogravimetric analysis, and scanning and transmission electron microscopies. Control of the particle size of ETS-10 crystals ranging from 0.32 {mu}m x 0.41 {mu}m to 16.4 {mu}m x 32.5 {mu}m was successfully achieved varying the seeding and synthesis conditions. In particular, it was found that the use of TiO{sub 2}-anatase alone or together with TiCl{sub 3} promotes heterogeneous primary nucleation. Transmission electron microscopymore » demonstrated that the largest crystals obtained here were twinned.« less
Reticular synthesis of porous molecular 1D nanotubes and 3D networks.
Slater, A G; Little, M A; Pulido, A; Chong, S Y; Holden, D; Chen, L; Morgan, C; Wu, X; Cheng, G; Clowes, R; Briggs, M E; Hasell, T; Jelfs, K E; Day, G M; Cooper, A I
2017-01-01
Synthetic control over pore size and pore connectivity is the crowning achievement for porous metal-organic frameworks (MOFs). The same level of control has not been achieved for molecular crystals, which are not defined by strong, directional intermolecular coordination bonds. Hence, molecular crystallization is inherently less controllable than framework crystallization, and there are fewer examples of 'reticular synthesis', in which multiple building blocks can be assembled according to a common assembly motif. Here we apply a chiral recognition strategy to a new family of tubular covalent cages to create both 1D porous nanotubes and 3D diamondoid pillared porous networks. The diamondoid networks are analogous to MOFs prepared from tetrahedral metal nodes and linear ditopic organic linkers. The crystal structures can be rationalized by computational lattice-energy searches, which provide an in silico screening method to evaluate candidate molecular building blocks. These results are a blueprint for applying the 'node and strut' principles of reticular synthesis to molecular crystals.
Reticular synthesis of porous molecular 1D nanotubes and 3D networks
NASA Astrophysics Data System (ADS)
Slater, A. G.; Little, M. A.; Pulido, A.; Chong, S. Y.; Holden, D.; Chen, L.; Morgan, C.; Wu, X.; Cheng, G.; Clowes, R.; Briggs, M. E.; Hasell, T.; Jelfs, K. E.; Day, G. M.; Cooper, A. I.
2017-01-01
Synthetic control over pore size and pore connectivity is the crowning achievement for porous metal-organic frameworks (MOFs). The same level of control has not been achieved for molecular crystals, which are not defined by strong, directional intermolecular coordination bonds. Hence, molecular crystallization is inherently less controllable than framework crystallization, and there are fewer examples of 'reticular synthesis', in which multiple building blocks can be assembled according to a common assembly motif. Here we apply a chiral recognition strategy to a new family of tubular covalent cages to create both 1D porous nanotubes and 3D diamondoid pillared porous networks. The diamondoid networks are analogous to MOFs prepared from tetrahedral metal nodes and linear ditopic organic linkers. The crystal structures can be rationalized by computational lattice-energy searches, which provide an in silico screening method to evaluate candidate molecular building blocks. These results are a blueprint for applying the 'node and strut' principles of reticular synthesis to molecular crystals.
Synthesis of nanometer-sized sodalite without adding organic additives.
Fan, Wei; Morozumi, Kazumasa; Kimura, Riichiro; Yokoi, Toshiyuki; Okubo, Tatsuya
2008-06-01
Aggregates (80 nm) of sodalite nanocrystals with crystallite sizes ranging from 20 to 40 nm have been synthesized from a sodium aluminosilicate solution at low temperature, without adding any organic additives, while paying attention to the key factors for the synthesis of nanosized zeolite crystals. The physical properties of nanosized sodalite crystals were characterized by X-ray diffraction, scanning electron microscopy, high-resolution transmission electron microscopy, 29Si solid-state magic-angle spinning (MAS) NMR, and N2 adsorption. As expected, the external surface area of nanosized sodalite crystals is significantly increased compared with that of microsized sodalite crystals. The size of synthesized sodalite crystals can be controlled from 20 nm to 10 microm. It is found that the preparation of a homogeneous aluminosilicate solution followed by the formation of an aluminosilicate hard gel by adjusting the initial composition, for example, SiO2/Al2O3 and Na2O/H2O ratios, is critical for synthesis.
Jiang, Li-Ping; Xu, Shu; Zhu, Jian-Min; Zhang, Jian-Rong; Zhu, Jun-Jie; Chen, Hong-Yuan
2004-09-20
A simple sonochemical route was developed for the crystal growth of uniform silver nanoplates and ringlike gold nanocrystals in a N,N-dimethylformamide solution. The platelike structures were generated from the selective growth on different crystal planes in the presence of poly(vinylpyrrolidone) and the ultrasonic-assisted Ostwald ripening processes. The silver nanoplates in solution served as the templates for the synthesis of ringlike gold crystals via a displacement reaction. Both the silver nanoplates and gold nanorings were highly oriented single crystals with (111) planes as the basal planes. Copyright 2004 American Chemical Society
Racemic & quasi-racemic protein crystallography enabled by chemical protein synthesis.
Kent, Stephen Bh
2018-04-04
A racemic protein mixture can be used to form centrosymmetric crystals for structure determination by X-ray diffraction. Both the unnatural d-protein and the corresponding natural l-protein are made by total chemical synthesis based on native chemical ligation-chemoselective condensation of unprotected synthetic peptide segments. Racemic protein crystallography is important for structure determination of the many natural protein molecules that are refractory to crystallization. Racemic mixtures facilitate the crystallization of recalcitrant proteins, and give diffraction-quality crystals. Quasi-racemic crystallization, using a single d-protein molecule, can facilitate the determination of the structures of a series of l-protein analog molecules. Copyright © 2018 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Wei, Kaya; Dong, Yongkwan; Nolas, George S.
2016-05-01
A new quaternary clathrate-II composition, Cs8Na16Al24Si112, was synthesized by kinetically controlled thermal decomposition (KCTD) employing both NaSi and NaAlSi as the precursors and CsCl as a reactive flux. The crystal structure and composition of Cs8Na16Al24Si112 were investigated using both Rietveld refinement and elemental analysis, and the temperature dependent transport properties were investigated. Our results indicate that KCTD with multiple precursors is an effective method for the synthesis of multinary inorganic phases that are not easily accessible by traditional solid-state synthesis or crystal growth techniques.
Bustamante, Eugenia L; Fernández, José L; Zamaro, Juan M
2014-06-15
The effect of the solvent on the synthesis process and on the nanocrystal characteristics of the zeolitic imidazolate framework-8 (ZIF-8) was investigated. A synthesis protocol at room temperature employing a series of aliphatic alcohols, water, dimethylformamide and acetone was employed. The results show that the solvent modifies the evolution of the reaction, altering the crystallization rates and nanocrystal sizes. Its hydrogen bond donation ability is the main factor that governs this effect. More precisely, the solvent modulates the formation of ZIF-8 nanocrystals with sizes in the range between 15 and 42 nm. When synthesized in alcohol and acetone, these nanocrystals form globular aggregates with sizes between 130 and 420 nm. In contrast, under the same synthesis conditions, when using water or dimethylformamide the ZIF phase is not developed. In alcohols other than methanol, the crystals develop pill-shaped morphologies with poorly defined facets. Moreover, a markedly fast growing kinetics is verified in these alcohols, leading to an ultra-fast crystallization of ZIF-8 in about 60s. These findings provide new information about the role of the solvent in the synthesis process of nanoZIF-8, which can be useful for controlling the crystallization rates and nanocrystal sizes of this material. Copyright © 2014 Elsevier Inc. All rights reserved.
NASA Technical Reports Server (NTRS)
Golden, Barbara L.; Kundrot, Craig E.
2003-01-01
RNA molecules may be crystallized using variations of the methods developed for protein crystallography. As the technology has become available to syntheisize and purify RNA molecules in the quantities and with the quality that is required for crystallography, the field of RNA structure has exploded. The first consideration when crystallizing an RNA is the sequence, which may be varied in a rational way to enhance crystallizability or prevent formation of alternate structures. Once a sequence has been designed, the RNA may be synthesized chemically by solid-state synthesis, or it may be produced enzymatically using RNA polymerase and an appropriate DNA template. Purification of milligram quantities of RNA can be accomplished by HPLC or gel electrophoresis. As with proteins, crystallization of RNA is usually accomplished by vapor diffusion techniques. There are several considerations that are either unique to RNA crystallization or more important for RNA crystallization. Techniques for design, synthesis, purification, and crystallization of RNAs will be reviewed here.
NASA Astrophysics Data System (ADS)
Fathima, K. Saiadali; Vasumathi, M.; Anitha, K.
2016-05-01
The novel organic material C20H21ClN2O was synthesized by One-Pot synthesis method and the single crystals were grown by slow evaporation solution growth technique. The crystal structure was elucidated by subjecting the grown crystals to the single crystal x-ray diffraction analysis and was refined by full matrix least-squares method to R=0.039 for 2746 reflections. Crystal system of the grown crystal was found to be monoclinic with the space group P21/a and a=9.196(4) Å, b=13.449(4) Å, c=14.818(4) Å, β= 101.542(3)°, V=1795.6(11) Å3 and Z=4. In this crystal structure, cyclooctanone prefers to reside in a chair-boat conformation. The structure is stabilized by attractive molecular force such as CH/π interaction called hydrophobic interaction.
Das, Dipesh; Sabaraya, Indu V; Sabo-Attwood, Tara; Saleh, Navid B
2018-06-05
Carbon nanotubes are hybridized with metal crystals to impart multifunctionality into the nanohybrids (NHs). Simple but effective synthesis techniques are desired to form both zero-valent and oxides of different metal species on carbon nanotube surfaces. Sol-gel technique brings in significant advantages and is a viable technique for such synthesis. This study probes the efficacy of sol-gel process and aims to identify underlying mechanisms of crystal formation. Standard electron potential (SEP) is used as a guiding parameter to choose the metal species; i.e., highly negative SEP (e.g., Zn) with oxide crystal tendency, highly positive SEP (e.g., Ag) with zero-valent crystal-tendency, and intermediate range SEP (e.g., Cu) to probe the oxidation tendency in crystal formation are chosen. Transmission electron microscopy and X-ray diffraction are used to evaluate the synthesized NHs. Results indicate that SEP can be a reliable guide for the resulting crystalline phase of a certain metal species, particularly when the magnitude of this parameter is relatively high. However, for intermediate range SEP-metals, mix phase crystals can be expected. For example, Cu will form Cu₂O and zero-valent Cu crystals, unless the synthesis is performed in a reducing environment.
NASA Astrophysics Data System (ADS)
Stowe, Ashley C.; Morrell, J.; Battacharya, Pijush; Tupitsyn, Eugene; Burger, Arnold
2011-09-01
Lithium containing AIBIIICVI semiconductors are being considered as alternative materials for room temperature neutron detection. One of the primary challenges in growing a high quality crystal of such a material is the reactivity of lithium metal. The presence of nitrides, oxides, and a variety of alkali and alkaline earth metal impurities prevent pure synthesis and truncate crystal growth by introducing multiple nucleation centers during growth. Multiple lithium metal purification methods have been investigated which ultimately raised the metal purity to 99.996%. Multi-cycle vacuum distillation removed all but 40 ppm of metal impurities in lithium metal. LiGa(Se/Te)2 was then synthesized with the high purity lithium metal by a variety of conditions. Lithium metal reacts violently with many standard crucible materials, and thermodynamic studies were undertaken to insure that an appropriate crucible choice was made, with high purity iron and boron nitride crucibles being the least reactive practical materials. Once conditions were optimized for synthesis of the chalcopyrite, vertical Bridgman crystal growth resulted in red crystals. The optical, electronic, and thermodynamic properties were collected.
Wang, Guangmei; Valldor, Martin; Spielberg, Eike T; Mudring, Anja-Verena
2014-03-17
A new framework cobalt(II) hydroxyl phosphate, Co2PO4OH, was prepared by ionothermal synthesis using 1-butyl-4-methyl-pyridinium hexafluorophosphate as the ionic liquid. As the formation of Co2PO4F competes in the synthesis, the synthesis conditions have to be judiciously chosen to obtain well-crystallized, single phase Co2PO4OH. Single-crystal X-ray diffraction analyses reveal Co2PO4OH crystallizes with space group I41/amd (a = b = 5.2713(7) Å, c = 12.907(3) Å, V = 358.63(10) Å(3), and Z = 4). Astonishingly, it does not crystallize isotypically with Co2PO4F but rather isotypically with the hydroxyl minerals caminite Mg1.33[SO4(OH)0.66(H2O)0.33] and lipscombite Fe(2–y)PO4(OH) (0 ≤ y ≤ 2/3). Phosphate tetrahedra groups interconnect four rod-packed face-sharing ∞(1){CoO(6/2)} octahedra chains to form a three-dimensional framework structure. The compound Co2PO4OH was further characterized by powder X-ray diffraction, Fourier transform–infrared, and ultraviolet–visible spectroscopy, confirming the discussed structure. The magnetic measurement reveals that Co2PO4OH undergoes a magnetic transition and presents at low temperatures a canted antiferromagnetic spin order in the ground state.
Faustini, Marco; Kim, Jun; Jeong, Guan-Young; Kim, Jin Yeong; Moon, Hoi Ri; Ahn, Wha-Seung; Kim, Dong-Pyo
2013-10-02
Herein, we report a novel nanoliter droplet-based microfluidic strategy for continuous and ultrafast synthesis of metal-organic framework (MOF) crystals and MOF heterostructures. Representative MOF structures, such as HKUST-1, MOF-5, IRMOF-3, and UiO-66, were synthesized within a few minutes via solvothermal reactions with substantially faster kinetics in comparison to the conventional batch processes. The approach was successfully extended to the preparation of a demanding Ru3BTC2 structure that requires high-pressure hydrothermal synthesis conditions. Finally, three different types of core-shell MOF composites, i.e., Co3BTC2@Ni3BTC2, MOF-5@diCH3-MOF-5, and Fe3O4@ZIF-8, were synthesized by exploiting a unique two-step integrated microfluidic synthesis scheme in a continuous-flow mode. The synthesized MOF crystals were characterized by X-ray diffraction, scanning electron microscopy, and BET surface area measurements. In comparison with bare MOF-5, MOF-5@diCH3-MOF-5 showed enhanced structural stability in the presence of moisture, and the catalytic performance of Fe3O4@ZIF-8 was examined using Knoevenagel condensation as a probe reaction. The microfluidic strategy allowed continuous fabrication of high-quality MOF crystals and composites exhibiting distinct morphological characteristics in a time-efficient manner and represents a viable alternative to the time-consuming and multistep MOF synthesis processes.
Synthesis and Crystal Structure Study of 2’-Se-Adenosine-Derivatized DNA
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sheng, J.; Salon, J; Gan, J
2010-01-01
The selenium derivatization of nucleic acids is a novel and promising strategy for 3D structure determination of nucleic acids. Selenium can serve as an excellent anomalous scattering center to solve the phase problem, which is one of the two major bottlenecks in macromolecule X-ray crystallography. The other major bottleneck is crystallization. It has been demonstrated that the incorporated selenium functionality at the 2'-positions of the nucleosides and nucleotides is stable and does not cause significant structure perturbation. Furthermore, it was observed that the 2'-Se-derivatization could facilitate crystallization of oligonucleotides with fast crystal growth and high diffraction quality. Herein, we describemore » a convenient synthesis of the 2'-Se-adenosine phosphoramidite, and report the first synthesis and X-ray crystal structure determination of the DNA containing the 2'-Se-A derivatization. The 3D structure of 2'-Se-A-DNA decamer [5'-GTACGCGT(2'-Se-A)C-3']{sub 2} was determined at 1.75 {angstrom} resolution, the 2'-Se-functionality points to the minor groove, and the Se-modified and native structures are virtually identical. Moreover, we have observed that the 2'-Se-A modification can greatly facilitate the crystal growth with high diffraction quality. In conjunction with the crystallization facilitation by the 2'-Se-U and 2'-Se-T, this novel observation on the 2'-Se-A functionality suggests that the 2'-Se moiety is sole responsible for the crystallization facilitation and the identity of nucleobases does not influence the crystal growth significantly.« less
Synthesis and single crystal growth of perovskite semiconductor CsPbBr3
NASA Astrophysics Data System (ADS)
Zhang, Mingzhi; Zheng, Zhiping; Fu, Qiuyun; Chen, Zheng; He, Jianle; Zhang, Sen; Chen, Cheng; Luo, Wei
2018-02-01
As a typical representative of all-inorganic lead halide perovskites, cesium lead bromine (CsPbBr3) has attracted significant attention in recent years. The direct band gap semiconductor CsPbBr3 has a wide band gap of 2.25 eV and high average atomic number (Cs: 55, Pb: 82 and Br: 35), which meet most of the requirements for detection of X- and γ-ray radiation, such as high attenuation, high resistivity, and significant photoconductivity response. However, the growth of large volume CsPbBr3 single crystals remains a challenge. In this paper, the synthesis of CsPbBr3 polycrystalline powders by a chemical co-precipitation method was investigated and the optimum synthesis conditions were obtained. A large CsPbBr3 single crystal of 8 mm diameter and 60 mm length was obtained by a creative electronic dynamic gradient (EDG) method. X-ray diffraction (XRD) patterns and X-ray rocking curve showed that the CsPbBr3 crystal preferentially oriented in the (1 1 0) direction and had a low dislocation density and small residual stress in the crystal. The IR and UV-Vis transmittance and temperature-dependent photoluminescence (PL) spectra showed the crystal had a good basic optical performance. The almost linear current-voltage (I-V) curves implied good ohmic contact between the electrodes and crystal surfaces. The resistivity of the crystal was calculated 109-1010 Ω cm. The above results showed that the quality of the obtained crystal had met the demand of optoelectronic applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fathima, K. Saiadali; Vasumathi, M.; Anitha, K., E-mail: singlecrystalxrd@gmail.com
2016-05-23
The novel organic material C{sub 20}H{sub 21}ClN{sub 2}O was synthesized by One-Pot synthesis method and the single crystals were grown by slow evaporation solution growth technique. The crystal structure was elucidated by subjecting the grown crystals to the single crystal x-ray diffraction analysis and was refined by full matrix least-squares method to R=0.039 for 2746 reflections. Crystal system of the grown crystal was found to be monoclinic with the space group P2{sub 1}/a and a=9.196(4) Å, b=13.449(4) Å, c=14.818(4) Å, β= 101.542(3)°, V=1795.6(11) Å{sup 3} and Z=4. In this crystal structure, cyclooctanone prefers to reside in a chair-boat conformation. Themore » structure is stabilized by attractive molecular force such as CH/π interaction called hydrophobic interaction.« less
Pandi, P; Peramaiyan, G; Kumar, M Krishna; Kumar, R Mohan; Jayavel, R
2012-03-01
Synthesis and growth of a novel organic nonlinear optical (NLO) crystal of 4-aminopyridinium maleate (4APM) in larger size by the slow evaporation solution growth technique are reported. Single crystal and powder X-ray diffraction analyses reveal that 4APM crystallizes in monoclinic system with space group P2(1) with cell parameters a=8.140(4)Å, b=5.457(5)Å, c=10.926(10)Å and volume=481.4(7)Å(3). The grown crystal has been characterized by Fourier transform infrared and UV-visible spectral analyses. Thermogravimetric analysis (TGA) and differential thermal analysis (DTA) have been carried out to study its thermal properties. Dielectric measurements have been carried out to study the distribution of charges within the crystal. The mechanical strength of the crystal has been studied by using Vickers' microhardness test. The etching studies have been carried out on the grown crystal. The Kurtz and Perry powder SHG technique confirms the NLO property of the grown crystal and the SHG efficiency of 4APM was found to be 4.8 times greater than that of KDP crystal. Copyright © 2011 Elsevier B.V. All rights reserved.
Suvitha, A; Murugakoothan, P
2012-02-01
The semi-organic nonlinear optical (NLO) crystal, zinc guanidinium phosphate (ZGuP) has been grown through synthesis between zinc sulphate, guanidine carbonate and orthophosphoric acid from its aqueous solution by slow solvent evaporation technique. Solubility of the synthesized material has been determined for various temperatures using water as solvent. The grown crystal has been characterized by powder X-ray diffraction to confirm the crystal structure. Investigation has been carried out to assign the vibrational frequencies of the grown crystals by Fourier transform infrared spectroscopy technique. (1)H and (13)C FT-NMR have been recorded to elucidate the molecular structure. The optical absorption study confirms the suitability of the crystal for device applications. The second harmonic generation (SHG) efficiency of ZGuP is found to be 1.825 times that of potassium dihydrogen phosphate (KDP). Thermal behavior of the grown crystals has been studied by thermogravimetric and differential thermal analysis. The mechanical properties of the grown crystals have been studied using Vickers microhardness tester. Copyright © 2011 Elsevier B.V. All rights reserved.
Srinivasan, Bikshandarkoil R; Dhuri, Sunder N; Nadkarni, V S
2014-01-03
We argue that (trans)-4-chloro-4'-nitrostilbene is not a new organic nonlinear optical material as claimed by Dinakaran and Kalainathan [P.M. Dinakaran, S. Kalainathan, Synthesis, growth, structural, spectral, thermal, chemical etching, linear and nonlinear optical and mechanical studies of an organic single crystal 4-Chloro 4-Nitrostilbene (CONS): a potential NLO material, Spectrochim. Acta A 111 (2013) 123-130], but instead a well-known compound whose synthesis, spectral data, single crystal structure and second harmonic generation (SHG) efficiency are well documented in the literature. The title paper is completely erroneous. Copyright © 2013 Elsevier B.V. All rights reserved.
Hydrothermal synthesis of ammonium illite
Šucha, Vladimír; Elsass, F.; Eberl, D.D.; Kuchta, L'.; Madejova, J.; Gates, W.P.; Komadel, P.
1998-01-01
Synthetic gel and glass of illitic composition, natural kaolinite, and mixed-layer illite-smectite were used as starting materials for hydrothermal synthesis of ammonium illite. Ammonium illite was prepared from synthetic gel by hydrothermal treatment at 300??C. The onset of crystallization began within 3 h, and well-crystallized ammonium illite appeared at 24 h. Increasing reaction time (up to four weeks) led to many illite layers per crystal. In the presence of equivalent proportions of potassium and ammonium, the gel was transformed to illite with equimolar contents of K and NH4. In contrast, synthesis using glass under the same conditions resulted in a mixture of mixed-layer ammonium illite-smectite with large expandability and discrete illite. Hydrothermal treatments of the fine fractions of natural kaolinite and illite-smectite produced ammonium illite from kaolinite but the illite-smectite remained unchanged.
Synthesis of Oxides Containing Transition Metals
1990-07-09
metal oxide single crystals by the electrolysis of molten salts containing mixtures of the appropriate oxides. Andreiux and Bozon (33-34) were able to...examples of unusual transition metal oxides which can be prepared (usually as single crystals) by electrolysis of fused salts . Summary The methods of...ferrites with the composition MFe 204 involved the thermal decomposition of oxalate (3) or pyridinate salts (1). The synthesis of ferrites from mixed
Xiong, Dehua; Zeng, Xianwei; Zhang, Wenjun; Wang, Huan; Zhao, Xiujian; Chen, Wei; Cheng, Yi-Bing
2014-04-21
In this work, we present one-step low temperature hydrothermal synthesis of submicrometer particulate CuAlO2 and AgAlO2 delafossite oxides, which are two important p-type transparent conducting oxides. The synthesis parameters that affect the crystal formation processes and the product morphologies, including the selection of starting materials and their molar ratios, the pH value of precursors, the hydrothermal temperature, pressure, and reaction time, have been studied. CuAlO2 crystals have been synthesized from the starting materials of CuCl and NaAlO2 at 320-400 °C, and from Cu2O and Al2O3 at 340-400 °C, respectively. AgAlO2 crystals have been successfully synthesized at the low temperature of 190 °C, using AgNO3 and Al(NO3)3 as the starting materials and NaOH as the mineralizer. The detailed elemental compositions, thermal stability, optical properties, and synthesis mechanisms of CuAlO2 and AgAlO2 also have been studied. Noteworthy is the fact that both CuAlO2 and AgAlO2 can be stabilized up to 800 °C, and their optical transparency can reach 60%-85% in the visible range. Besides, it is believed the crystal formation mechanisms uncovered in the synthesis of CuAlO2 and AgAlO2 will prove insightful guildlines for the preparation of other delafossite oxides.
Reverse Micelle Based Synthesis of Microporous Materials in Microgravity
NASA Technical Reports Server (NTRS)
Dutta, Prabir K.
1995-01-01
Formation of zincophosphates from zinc and phosphate containing reverse micelles (water droplets in hexane) has been examined. The frameworks formed resemble that made by conventional hydrothermal synthesis. Dynamics of crystal growth are however quite different, and form the main focus of this study. In particular, the formation of zincophosphate with the sodalite framework was examined in detail. The intramicellar pH was found to have a strong influence on crystal growth. Crystals with a cubic morphology were formed directly from the micelles, without an apparent intermediate amorphous phase over a period of four days by a layer-bylayer growth at the intramicellar pH of 7.6. At a pH of 6.8, an amorphous precipitate rapidly sediments in hours. Sodalite was eventually formed from this settled phase via surface diffusion and reconstruction within four days. With a rotating cell, it was possible to minimize sedimentation and crystals were found to grow epitaxially from the spherical, amorphous particles. Intermediate pH's of 7.2 led to formation of aggregated sodalite crystals prior to settling, again without any indication of an intermediate amorphous phase. These diverse pathways were possible due to changes in intramicellar supersaturation conditions by minor changes in pH. In contrast, conventional syntheses in this pH range all proceeded by similar crystallization pathways through an amorphous gel. This study establishes that synthesis of microporous frameworks is not only possible in reverse micellar systems, but they also allow examination of possible crystallization pathways.
NASA Astrophysics Data System (ADS)
Tong, Huifen; Zhou, Yingying; Chang, Gang; Li, Pai; Zhu, Ruizhi; He, Yunbin
2018-06-01
Anatase TiO2 micro-crystals with 51% surface exposing highly active {0 0 1} facets are prepared by hydrothermal synthesis using TiF4 as Ti resource and HF as morphology control agent. In addition, anatase TiO2 single crystals exposing large {0 0 1} crystal facets are facilely synthesized with "green" NaF plus HCl replacing HF for the morphology control. A series of comparative experiments are carried out for separately studying the effects of F- and H+ concentrations on the growth of TiO2 crystals, which have not been understood very much in depth so far. The results indicate that both F- and H+ synergistically affect the synthesis of truncated anatase octahedrons, where F- is preferentially adsorbed on the {0 0 1} facets resulting in lateral growth of these facets and H+ adjusts the growth rate of anatase TiO2 along different orientations by tuning the hydrolysis rate. Based on this information, anatase TiO2 single crystals with small size (1.3 μm) and large exposure of {0 0 1} facets (45%) are successfully prepared under optimal conditions ([H+]/[F-] = 20:1). Photocatalytic activities of the as-prepared products toward methylene blue photo-degradation are further tested. It is revealed that both crystal size and percentage of {0 0 1} facets are decisive for the photocatalytic performance, and the crystals with a small size (1.3 μm) and large exposure of {0 0 1} facets (45%) are catalytically most active. This work has clarified the main factors that control the growth process and morphology of anatase TiO2 single crystals for achieving superior photocatalytic properties.
Lin, Jinru; Chen, Ning; Pan, Yuanming
2014-06-17
Newberyite (MgHPO4·3H2O), a biomineral and common constituent in guano deposits, is an important decomposition product of struvite that is an increasingly popular green fertilizer recovered from wastewaters. Two samples of newberyite containing 1099 and 25 ppm As have been obtained at pH = 6.4, by using Na2HAsO4·7H2O and NaAsO2 as the dopant, respectively (i.e., Synthesis 1 and Synthesis 2). Synchrotron arsenic K-edge X-ray absorption spectroscopic data of newberyite from Synthesis 1 show that As(5+) is dominant and has a local environment typical of the arsenate species. Single-crystal electron paramagnetic resonance (EPR) spectra of gamma-ray-irradiated newberyite from Synthesis 1 contain two arsenic-associated oxyradicals: [AsO3](2-) and [AsO2](2-) derived from As(5+) and As(3+), respectively, at the P site. Quantitative analyses of powder EPR spectra allow determinations of the As(5+) and As(3+) contents in newberyite from Synthesis 1 and Synthesis 2. Elevated concentrations of arsenic also occur in natural newberyite transformed from struvite in guano deposits and record the accumulation of this metalloid in the food chain. Therefore, newberyite, which sequesters As during crystallization and retains this metalloid during the transformation from struvite, can attenuate arsenic contamination from green fertilizers in moderately acidic soils. Also, the capacity for accommodating both As(5+) and As(3+) in the crystal lattice coupled with simple chemistry and easy crystallization at ambient conditions makes newberyite an attractive material for remediation of arsenic contamination in aqueous environments.
Secondary Crystal Growth on a Cracked Hydrotalcite-Based Film Synthesized by the Sol-Gel Method.
Lee, Wooyoung; Lee, Chan Hyun; Lee, Ki Bong
2016-05-02
The sol-gel synthesis method is an attractive technology for the fabrication of ceramic films due to its preparation simplicity and ease of varying the metal composition. However, this technique presents some limitations in relation to the film thickness. Notably, when the film thickness exceeds the critical limit, large tensile stresses occur, resulting in a cracked morphology. In this study, a secondary crystal growth method was introduced as a post-treatment process for Mg/Al hydrotalcite-based films synthesized by the sol-gel method, which typically present a cracked morphology. The cracked hydrotalcite-based film was hydrothermally treated for the secondary growth of hydrotalcite crystals. In the resulting film, hydrotalcite grew with a vertical orientation, and the gaps formed during the sol-gel synthesis were filled with hydrotalcite after the crystal growth. The secondary crystal growth method provides a new solution for cracked ceramic films synthesized by the sol-gel method.
Synthesis, crystal growth and studies on non-linear optical property of new chalcones
NASA Astrophysics Data System (ADS)
Sarojini, B. K.; Narayana, B.; Ashalatha, B. V.; Indira, J.; Lobo, K. G.
2006-09-01
The synthesis, crystal growth and non-linear optical (NLO) property of new chalcone derivatives are reported. 4-Propyloxy and 4-butoxy benzaldehydes were made to under go Claisen-Schmidt condensation with 4-methoxy, 4-nitro and 4-phenoxy acetophenones to form corresponding chalcones. The newly synthesized compounds were characterized by analytical and spectral data. The Second harmonic generation (SHG) efficiency of these compounds was measured by powder technique using Nd:YAG laser. Among tested compounds three chalcones showed NLO property. The chalcone 1-(4-methoxyphenyl)-3-(4-propyloxy phenyl)-2-propen-1-one exhibited SHG conversion efficiency 2.7 times that of urea. The bulk crystal of 1-(4-methoxyphenyl)-3-(4-butoxyphenyl)-2-propen-1-one (crystal size 65×28×15 mm 3) was grown by slow-evaporation technique from acetone. Microhardness of the crystal was tested by Vicker's microhardness method.
NASA Astrophysics Data System (ADS)
Sharma, K. P.; Reddi, R. S. B.; Bhattacharya, S.; Rai, R. N.
2012-06-01
The solid-state reaction, which is solvent free and green synthesis, has been adopted to explore the novel compound. The phase diagram of 4-chloroaniline (CA) and 3-hydroxy-4-methoxybenzaldehyde (HMB) system shows the formation of a novel 1:1 molecular complex, and two eutectics on either sides of complex. Thermochemical studies of complex and eutectics have been carried out for various properties such as heat of fusion, entropy of fusion, Jackson's parameters, interfacial energy and excess thermodynamic functions. The formation of molecular complex was also studied by IR, NMR, elemental analysis and UV-Vis absorption spectra. The single crystal of molecular complex was grown and its XRD study confirms the formation of complex and identifies the crystal structure and atomic packing of crystal of complex. Transmission spectra of grown crystal of the complex show 70% transmittance efficiency with cut off wavelength 412 nm. The band gap and refractive index of the crystal of complex have also been studied.
Deciphering Halogen Competition in Organometallic Halide Perovskite Growth
Keum, Jong Kahk; Ovchinnikova, Olga S.; Chen, Shiyou; ...
2016-03-01
Organometallic halide perovskites (OHPs) hold great promise for next-generation, low-cost optoelectronic devices. During the chemical synthesis and crystallization of OHP thin films a major unresolved question is the competition between multiple halide species (e.g. I-, Cl-, Br-) in the formation of the mixed halide perovskite crystals. Whether Cl- ions are successfully incorporated into the perovskite crystal structure or alternatively, where they are located, is not yet fully understood. Here, in situ X-ray diffraction measurements of crystallization dynamics are combined with ex situ TOF-SIMS chemical analysis to reveal that Br- or Cl- ions can promote crystal growth, yet reactive I- ionsmore » prevent them from incorporating into the lattice of the final perovskite crystal structure. The Cl- ions are located in the grain boundaries of the perovskite films. These findings significantly advance our understanding of the role of halogens during synthesis of hybrid perovskites, and provide an insightful guidance to the engineering of high-quality perovskite films, essential for exploring superior-performance and cost-effective optoelectronic devices.« less
Deciphering Halogen Competition in Organometallic Halide Perovskite Growth
DOE Office of Scientific and Technical Information (OSTI.GOV)
Keum, Jong Kahk; Ovchinnikova, Olga S.; Chen, Shiyou
Organometallic halide perovskites (OHPs) hold great promise for next-generation, low-cost optoelectronic devices. During the chemical synthesis and crystallization of OHP thin films a major unresolved question is the competition between multiple halide species (e.g. I-, Cl-, Br-) in the formation of the mixed halide perovskite crystals. Whether Cl- ions are successfully incorporated into the perovskite crystal structure or alternatively, where they are located, is not yet fully understood. Here, in situ X-ray diffraction measurements of crystallization dynamics are combined with ex situ TOF-SIMS chemical analysis to reveal that Br- or Cl- ions can promote crystal growth, yet reactive I- ionsmore » prevent them from incorporating into the lattice of the final perovskite crystal structure. The Cl- ions are located in the grain boundaries of the perovskite films. These findings significantly advance our understanding of the role of halogens during synthesis of hybrid perovskites, and provide an insightful guidance to the engineering of high-quality perovskite films, essential for exploring superior-performance and cost-effective optoelectronic devices.« less
Lee, Sang-Yup; Gao, Xueyun; Matsui, Hiroshi
2008-01-01
The room temperature synthesis of β-Ga2O3 nanocrystal was examined by coupling two biomimetic crystallization techniques, the enzymatic peptide nano-assembly templating and the aggregation-driven crystallization. The catalytic template of peptide assembly nucleated and mineralized primary β-Ga2O3 crystals, and then fused them to grow single-crystalline and monodisperse nanoparticles in the cavity of the peptide assembly at room temperature. In this work, the peptide assembly was exploited as a nano-reactor with an enzymatic functionality catalyzing the hydrolysis of gallium precursors. In addition, the characteristic ring-structure of peptide assembly is expected to provide an efficient dehydration pathway and the crystallization control over the surface tension, which are advantageous for the β-Ga2O3 crystal growth. This multifunctional peptide assembly could be applied for syntheses of a variety of nanomaterials that are kinetically difficult to grow at room temperature. PMID:17302413
Ok, Kang Min; Lee, Dong Woo; Smith, Ronald I; O'Hare, Dermot
2012-10-31
In the first in situ neutron powder diffraction study of a supercritical hydrothermal synthesis, the crystallization of KTiOPO(4) (KTP) at 450 °C and 380 bar has been investigated. The time-resolved diffraction data suggest that the crystallization of KTP occurs by the reaction between dissolved K(+)(aq), PO(4)(3-)(aq), and [Ti(OH)(x)]((4-x)+)(aq) species.
Lan, Ya-Qian; Jiang, Hai-Long; Li, Shun-Li; Xu, Qiang
2012-07-16
In this work, for the first time, we have systematically demonstrated that solvent plays crucial roles in both controllable synthesis of metal-organic frameworks (MOFs) and their structural transformation process. With solvent as the only variable, five new MOFs with different structures have been constructed, in which one MOF undergoes solvent-induced single-crystal to single-crystal (SCSC) transformation that involves not only solvent exchange but also the cleavage and formation of coordination bonds. Particularly, a significant crystallographic change has been realized through an unprecedented three-step SCSC transformation process. Furthermore, we have demonstrated that the obtained MOF could be an excellent host for chromophores such as Alq3 for modulated luminescent properties.
Synthesis and Characterization of Self-Assembled Liquid Crystals: "p"-Alkoxybenzoic Acids
ERIC Educational Resources Information Center
Jensen, Jana; Grundy, Stephan C.; Bretz, Stacey Lowery; Hartley, C. Scott
2011-01-01
Thermotropic liquid crystal phases are ordered fluids found, for some molecules, at intermediate temperatures between the crystal and liquid states. Although technologically important, these materials typically receive little attention in the undergraduate curriculum. Here, we describe a laboratory activity for introductory organic chemistry…
Recent progress in the synthesis of metal–organic frameworks
Sun, Yujia; Zhou, Hong -Cai
2015-09-25
Metal–organic frameworks (MOFs) have attracted considerable attention for various applications due to their tunable structure, porosity and functionality. In general, MOFs have been synthesized from isolated metal ions and organic linkers under hydrothermal or solvothermal conditions via one-spot reactions. The emerging precursor approach and kinetically tuned dimensional augmentation strategy add more diversity to this field. In addition, to speed up the crystallization process and create uniform crystals with reduced size, many alternative synthesis routes have been explored. Recent advances in microwave-assisted synthesis and electrochemical synthesis are presented in this review. In recent years, post-synthetic approaches have been shown to bemore » powerful tools to synthesize MOFs with modified functionality, which cannot be attained via de novo synthesis. In this study, some current accomplishments of post-synthetic modification (PSM) based on covalent transformations and coordinative interactions as well as post-synthetic exchange (PSE) in robust MOFs are provided.« less
NASA Astrophysics Data System (ADS)
Talhi, Oualid; Fernandes, José A.; Pinto, Diana C. G. A.; Almeida Paz, Filipe A.; Silva, Artur M. S.
2015-08-01
The synthesis of a new series of warfarin analogues by convenient organobase catalyzed 1,4-conjugate addition of 4-hydroxycoumarin to chalcone derivatives is described. 1H NMR spectroscopy evidenced the presence of a predominant acyclic open-form together with the cyclic hemiketal tautomers of the resulting Michael adducts. The acyclic open-form has been unequivocally proved by single-crystal X-ray diffraction analysis. The use of the B ring ortho-hydroxychalcone synthons in this reaction has led to a diastereoselective synthesis of warfarin bicyclo[3.3.1]nonane ketal derivatives.
NASA Astrophysics Data System (ADS)
Choi, Byung Sang
Compared to overwhelming technical data available in other advanced technologies, knowledge about particle technology, especially in particle synthesis from a solution, is still poor due to the lack of available equipment to study crystallization phenomena in a crystallizer. Recent technical advances in particle size measurement such as Coulter counter and laser light scattering have made in/ex situ study of some of particle synthesis, i.e., growth, attrition, and aggregation, possible with simple systems. Even with these advancements in measurement technology, to grasp fully the crystallization phenomena requires further theoretical and technical advances in understanding such particle synthesis mechanisms. Therefore, it is the motive of this work to establish the general processing parameters and to produce rigorous experimental data with reliable performance and characterization that rigorously account for the crystallization phenomena of nucleation, growth, aggregation, and breakage including their variations with time and space in a controlled continuous mixed-suspension mixed-product removal (CMSMPR) crystallizer. This dissertation reports the results and achievements in the following areas: (1) experimental programs to support the development and validation of the phenomenological models and generation of laboratory data for the purpose of testing, refining, and validating the crystallization process, (2) development of laboratory well-mixed crystallizer system and experimental protocols to generate crystal size distribution (CSD) data, (3) the effects of feed solution concentration, crystallization temperature, feed flow rate, and mixing speed, as well as different types of mixers resulting in the evolution of CSDs with time from a concentrated brine solution, (4) with statistically designed experiments the effects of processing variables on the resultant particle structure and CSD at steady state were quantified and related to each of those operating conditions by studying the detailed crystallization processes, such as nucleation, growth, and breakage, as well as agglomeration. The purification of CaCl2 solution involving the crystallization of NaCl from the solution mixture of CaCl2, KCl, and NaCl as shipped from Dow Chemical, Ludington, in a CMSMPR crystallizer was studied as our model system because of its nucleation and crystal growth tendencies with less agglomeration. This project also generated a significant body of experimental data that are available at URL that is http://www.che.utah.edu/˜ring/CrystallizationWeb.
Synthesis of boron suboxide from boron and boric acid under mild pressure and temperature conditions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jiao, Xiaopeng; Jin, Hua; Ding, Zhanhui
2011-05-15
Graphical abstract: Well-crystallized and icosahedral B{sub 6}O crystals were prepared by reacting boron and boric acid at milder reaction conditions (1 GPa and 1300 {sup o}C for 2 h) as compared to previous work.. Research highlights: {yields} Well-crystallized icosahedral B{sub 6}O was synthesized by reacting boric acid and boron. {yields} The synthesis conditions (1 GPa and 1300 {sup o}C for 2 h) are milder in comparison with previous work. {yields} The more practical synthesis method may make B{sub 6}O as a potential substitute for diamond in industry. -- Abstract: Boron suboxide (B{sub 6}O) was synthesized by reacting boron and boricmore » acid (H{sub 3}BO{sub 3}) at pressures between 1 and 10 GPa, and at temperatures between 1300 and 1400 {sup o}C. The B{sub 6}O samples prepared were icosahedral with diameters ranging from 20 to 300 nm. Well-crystallized and icosahedral crystals with an average size of {approx}100 nm can be obtained at milder reaction conditions (1 GPa and 1300 {sup o}C for 2 h) as compared to previous work. The bulk B{sub 6}O sample was stable in air at 600 {sup o}C and then slowly oxidized up to 1000 {sup o}C. The relatively mild synthetic conditions developed in this study provide a more practical synthesis of B{sub 6}O, which may potentially be used as a substitute for diamond in industry as a new superhard material.« less
NASA Astrophysics Data System (ADS)
Maina, James W.; Gonzalo, Cristina Pozo; Merenda, Andrea; Kong, Lingxue; Schütz, Jürg A.; Dumée, Ludovic F.
2018-01-01
Fabrication of metal organic framework (MOF) films and membranes across macro-porous metal substrates is extremely challenging, due to the large pore sizes across the substrates, poor wettability, and the lack of sufficient reactive functional groups on the surface, which prevent high density nucleation of MOF crystals. Herein, macroporous stainless steel substrates (pore size 44 × 40 μm) are functionalized with amine functional groups, and the growth of ZIF-8 crystals investigated through both solvothermal synthesis and rapid thermal deposition (RTD), to assess the role of synthesis routes in the resultant membranes microstructure, and subsequently their performance. Although a high density of well interconnected MOF crystals was observed across the modified substrates following both techniques, RTD was found to be a much more efficient route, yielding high quality membranes under 1 h, as opposed to the 24 h required for solvothermal synthesis. The RTD membranes also exhibited high gas permeance, with He permeance of up to 2.954 ± 0.119 × 10-6 mol m-2 s-1 Pa-1, and Knudsen selectivities for He/N2, Ar/N2 and CO2/N2, suggesting the membranes were almost defect free. This work opens up route for efficient fabrication of MOF films and membranes across macro-porous metal supports, with potential application in electrically mediated separation applications.
Dislocation, crystallite size distribution and lattice strain of magnesium oxide nanoparticles
NASA Astrophysics Data System (ADS)
Sutapa, I. W.; Wahid Wahab, Abdul; Taba, P.; Nafie, N. L.
2018-03-01
The oxide of magnesium nanoparticles synthesized using sol-gel method and analysis of the structural properties was conducted. The functional groups of nanoparticles has been analysed by Fourier Transform Infrared Spectroscopy (FT-IR). Dislocations, average size of crystal, strain, stress, the energy density of crystal, crystallite size distribution and morphologies of the crystals were determined based on X-ray diffraction profile analysis. The morphological of the crystal was analysed based on the image resulted from SEM analysis. The crystallite size distribution was calculated with the contention that the particle size has a normal logarithmic form. The most orientations of crystal were determined based on the textural crystal from diffraction data of X-ray diffraction profile analysis. FT-IR results showed the stretching vibration mode of the Mg-O-Mg in the range of 400.11-525 cm-1 as a broad band. The average size crystal of nanoparticles resulted is 9.21 mm with dislocation value of crystal is 0.012 nm-2. The strains, stress, the energy density of crystal are 1.5 x 10-4 37.31 MPa; 0.72 MPa respectively. The highest texture coefficient value of the crystal is 0.98. This result is supported by morphological analysis using SEM which shows most of the regular cubic-shaped crystals. The synthesis method is suitable for simple and cost-effective synthesis model of MgO nanoparticles.
Synthesis and Crystal Structure of 2’-Se-modified guanosine Containing DNA
DOE Office of Scientific and Technical Information (OSTI.GOV)
Salon, J.; Sheng, J; Gan, J
Selenium modification of nucleic acids is of great importance in X-ray crystal structure determination and functional study of nucleic acids. Herein, we describe a convenient synthesis of a new building block, the 2{prime}-SeMe-modified guanosine (G{sub Se}) phosphoramidite, and report the first incorporation of the 2{prime}-Se-G moiety into DNA. The X-ray crystal structure of the 2{prime}-Se-modified octamer DNA (5{prime}-GTG{sub Se}TACAC-3{prime}) was determined at a resolution of 1.20 {angstrom}. We also found that the 2{prime}-Se modification points to the minor groove and that the modified and native structures are virtually identical. Furthermore, we observed that the 2{prime}-Se-G modification can significantly facilitate themore » crystal growth with respect to the corresponding native DNA.« less
NASA Astrophysics Data System (ADS)
Dilek Özçelik, Nefise; Tunç, Tuncay; Çatak Çelik, Raziye; Erzengin, Mahmut; Özışık, Hacı
2017-05-01
We report in this paper the synthesis, spectroscopic, crystal structure, biological activities and theoretical results of the title compound. The crystal structure was defined by the X-ray diffraction (XRD) method. In addition, this newly synthesized hydrazone derivative was also subjected to its possible antioxidant activity with free radical scavenging ability of 2,2-diphenyl-1-picrylhydrazyl (DPPH) radicals using butylated hydroxytoluene (BHT) as standard antioxidant. The structural calculations were performed by the density functional theory using the B3LYP method with 6-311++G(2d,2p) basis set. The calculated values were compared with experimental results.
Racemic protein crystallography.
Yeates, Todd O; Kent, Stephen B H
2012-01-01
Although natural proteins are chiral and are all of one "handedness," their mirror image forms can be prepared by chemical synthesis. This opens up new opportunities for protein crystallography. A racemic mixture of the enantiomeric forms of a protein molecule can crystallize in ways that natural proteins cannot. Recent experimental data support a theoretical prediction that this should make racemic protein mixtures highly amenable to crystallization. Crystals obtained from racemic mixtures also offer advantages in structure determination strategies. The relevance of these potential advantages is heightened by advances in synthetic methods, which are extending the size limit for proteins that can be prepared by chemical synthesis. Recent ideas and results in the area of racemic protein crystallography are reviewed.
Semiconductor nanowhiskers: Synthesis, properties, and applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dubrovskii, V. G., E-mail: dubrovskii@mail.ioffe.ru; Cirlin, G. E., E-mail: Cirlin@beam.ioffe.ru; Ustinov, V. M., E-mail: Vmust@beam.ioffe.ru
2009-12-15
Recent results of studying the semiconductor's whisker nanocrystals are reviewed. Physical grounds of growing whisker nanocrystals using the mechanism vapor-liquid-crystal are given and the main epitaxial technologies of synthesis of whisker nanocrystals are described. Thermodynamic and kinetic factors controlling the morphological properties, composition, and crystal structure of whisker nanocrystals are considered in detail. The main theoretical models of the growth and structure of whisker nanocrystals are described. The data on physical properties of whisker nanocrystals and possibilities of their use in nanophotonics, nanoelectronics, and nanobiotechnology are presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sornadurai, D.; Ravindran, T. R.; Paul, V. Thomas
Synthesis parameters are optimized in order to grow single crystals of multiferroic BiFeO{sub 3}. 2 to 3 mm size pyramid (tetrahedron) shaped single crystals were successfully obtained by solvothermal method. Scanning electron microscopy with EDAX confirmed the phase formation. Raman scattering spectra of bulk BiFeO3 single crystals have been measured which match well with reported spectra.
The synthesis of cadmium sulfide nanoplatelets using a novel continuous flow sonochemical reactor
Palanisamy, Barath; Paul, Brian; Chang, Chih -hung
2015-01-21
A continuous flow sonochemical reactor was developed capable of producing metastable cadmium sulfide (CdS) nanoplatelets with thicknesses at or below 10 nm. The continuous flow sonochemical reactor included the passive in-line micromixing of reagents prior to sonochemical reaction. Synthesis results were compared with those from reactors involving batch conventional heating and batch ultrasound-induced heating. The continuous sonochemical synthesis was found to result in high aspect ratio hexagonal platelets of CdS possessing cubic crystal structures with thicknesses well below 10 nm. The unique shape and crystal structure of the nanoplatelets are suggestive of high localized temperatures within the sonochemical process. Asmore » a result, the particle size uniformity and product throughput are much higher for the continuous sonochemical process in comparison to the batch sonochemical process and conventional synthesis processes.« less
Evolutionary selection growth of two-dimensional materials on polycrystalline substrates
NASA Astrophysics Data System (ADS)
Vlassiouk, Ivan V.; Stehle, Yijing; Pudasaini, Pushpa Raj; Unocic, Raymond R.; Rack, Philip D.; Baddorf, Arthur P.; Ivanov, Ilia N.; Lavrik, Nickolay V.; List, Frederick; Gupta, Nitant; Bets, Ksenia V.; Yakobson, Boris I.; Smirnov, Sergei N.
2018-03-01
There is a demand for the manufacture of two-dimensional (2D) materials with high-quality single crystals of large size. Usually, epitaxial growth is considered the method of choice1 in preparing single-crystalline thin films, but it requires single-crystal substrates for deposition. Here we present a different approach and report the synthesis of single-crystal-like monolayer graphene films on polycrystalline substrates. The technological realization of the proposed method resembles the Czochralski process and is based on the evolutionary selection2 approach, which is now realized in 2D geometry. The method relies on `self-selection' of the fastest-growing domain orientation, which eventually overwhelms the slower-growing domains and yields a single-crystal continuous 2D film. Here we have used it to synthesize foot-long graphene films at rates up to 2.5 cm h-1 that possess the quality of a single crystal. We anticipate that the proposed approach could be readily adopted for the synthesis of other 2D materials and heterostructures.
Crystal phase-based epitaxial growth of hybrid noble metal nanostructures on 4H/fcc Au nanowires
NASA Astrophysics Data System (ADS)
Lu, Qipeng; Wang, An-Liang; Gong, Yue; Hao, Wei; Cheng, Hongfei; Chen, Junze; Li, Bing; Yang, Nailiang; Niu, Wenxin; Wang, Jie; Yu, Yifu; Zhang, Xiao; Chen, Ye; Fan, Zhanxi; Wu, Xue-Jun; Chen, Jinping; Luo, Jun; Li, Shuzhou; Gu, Lin; Zhang, Hua
2018-03-01
Crystal-phase engineering offers opportunities for the rational design and synthesis of noble metal nanomaterials with unusual crystal phases that normally do not exist in bulk materials. However, it remains a challenge to use these materials as seeds to construct heterometallic nanostructures with desired crystal phases and morphologies for promising applications such as catalysis. Here, we report a strategy for the synthesis of binary and ternary hybrid noble metal nanostructures. Our synthesized crystal-phase heterostructured 4H/fcc Au nanowires enable the epitaxial growth of Ru nanorods on the 4H phase and fcc-twin boundary in Au nanowires, resulting in hybrid Au-Ru nanowires. Moreover, the method can be extended to the epitaxial growth of Rh, Ru-Rh and Ru-Pt nanorods on the 4H/fcc Au nanowires to form unique hybrid nanowires. Importantly, the Au-Ru hybrid nanowires with tunable compositions exhibit excellent electrocatalytic performance towards the hydrogen evolution reaction in alkaline media.
Synthesis and structural characterization of bulk Sb2Te3 single crystal
NASA Astrophysics Data System (ADS)
Sultana, Rabia; Gahtori, Bhasker; Meena, R. S.; Awana, V. P. S.
2018-05-01
We report the growth and characterization of bulk Sb2Te3 single crystal synthesized by the self flux method via solid state reaction route from high temperature melt (850˚C) and slow cooling (2˚C/hour) of constituent elements. The single crystal X-ray diffraction pattern showed the 00l alignment and the high crystalline nature of the resultant sample. The rietveld fitted room temperature powder XRD revealed the phase purity and rhombohedral structure of the synthesized crystal. The formation and analysis of unit cell structure further verified the rhombohedral structure composed of three quintuple layers stacked one over the other. The SEM image showed the layered directional growth of the synthesized crystal carried out using the ZEISS-EVOMA-10 scanning electron microscope The electrical resistivity measurement was carried out using the conventional four-probe method on a quantum design Physical Property Measurement System (PPMS). The temperature dependent electrical resistivity plot for studied Sb2Te3 single crystal depicts metallic behaviour in the absence of any applied magnetic field. The synthesis as well as the structural characterization of as grown Sb2Te3 single crystal is reported and discussed in the present letter.
Single crystal, liquid crystal, and hybrid organic semiconductors
NASA Astrophysics Data System (ADS)
Twieg, Robert J.; Getmanenko, Y.; Lu, Z.; Semyonov, A. N.; Huang, S.; He, P.; Seed, A.; Kiryanov, A.; Ellman, B.; Nene, S.
2003-07-01
The synthesis and characterization of organic semiconductors is being pursued in three primary structure formats: single crystal, liquid crystal and organic-inorganic hybrid. The strategy here is to share common structures, synthesis methods and fabrication techniques across these formats and to utilize common characterization tools such as the time of flight technique. The single crystal efforts concentrate on aromatic and heteroaromatic compounds including simple benzene derivatives and derivatives of the acenes. The structure-property relationships due to incorporation of small substituents and heteroatoms are being examined. Crystals are grown by solution, melt or vapor transport techniques. The liquid crystal studies exploit their self-organizing properties and relative ease of sample preparation. Though calamitic systems tha deliver the largest mobilities are higher order smectics, even some unusual twist grain boundary phases are being studied. We are attempting to synthesize discotic acene derivatives with appropriate substitution patterns to render them mesogenic. The last format being examined is the hybrid organic-inorganic class. Here, layered materials of alternating organic and inorganic composition are designed and synthesized. Typical materials are conjugated aromatic compounds, usually functinalized with an amine or a pyridine and reacted with appropriate reactive metal derivatives to incorporate them into metal oxide or sulfide layers.
NASA Astrophysics Data System (ADS)
Schindler, Matthias; Kretschmer, Wolfgang; Scharf, Andreas; Tschekalinskij, Alexander
2016-05-01
Three new methods to sample and prepare various carbonyl compounds for radiocarbon measurements were developed and tested. Two of these procedures utilized the Strecker synthetic method to form amino acids from carbonyl compounds with either sodium cyanide or trimethylsilyl cyanide. The third procedure used semicarbazide to form crystalline carbazones with the carbonyl compounds. The resulting amino acids and semicarbazones were then separated and purified using thin layer chromatography. The separated compounds were then combusted to CO2 and reduced to graphite to determine 14C content by accelerator mass spectrometry (AMS). All of these methods were also compared with the standard carbonyl compound sampling method wherein a compound is derivatized with 2,4-dinitrophenylhydrazine and then separated by high-performance liquid chromatography (HPLC).
Khan, Nazmul Abedin; Haque, Enamul; Jhung, Sung Hwa
2010-03-20
A typical MOF material, Cu-BTC has been synthesized with microwave and conventional electric heating in various conditions to elucidate, for the first time, the quantitative acceleration in the synthesis of a MOF by microwaves. The acceleration by microwaves is mainly due to rapid nucleation rather than rapid crystal growth, even though both stages are accelerated. The acceleration in the nucleation stage by microwaves is due to the very large pre-exponential factor (about 1.4 x 10(10) times that of conventional synthesis) in the Arrhenius plot. However, the activation energy for the nucleation in the case of microwave synthesis is higher than the activation energy of conventional synthesis. The large acceleration in the nucleation, compared with that in the crystal growth, is observed once again by the syntheses in two-steps (changing heating methods from microwave into conventional heating or from conventional heating into microwave heating just after the nucleation is completed). The crystal size of Cu-BTC obtained by microwave-nucleation is generally smaller than the Cu-BTC made by conventional-nucleation, probably due to rapid nucleation and the small size of nuclei with microwave-nucleation.
Hydrothermal synthesis of free-template zeolite T from kaolin
NASA Astrophysics Data System (ADS)
Arshad, Sazmal E.; Yusslee, Eddy F.; Rahman, Md. Lutfor; Sarkar, Shaheen M.; Patuwan, Siti Z.
2017-12-01
Free-template zeolite T crystals were synthesized via hydrothermal synthesis by utilizing the activated kaolin as silica and alumina source, with the molar composition of 1 SiO2: 0.04 Al2O3: 0.26 Na2O: 0.09 K2O: 14 H2O. Observation of the formation of free-template zeolite crystals were done at temperature 90°C, 100 °C and 110 °C respectively. It was therefore determined that during the 120 h of the synthesis at 90 °C, zeolite T nucleated and formed a first competitive phase with zeolite L. As temperature increases to 100 °C, zeolite T presented itself as a major phase in the system at time 168 h. Subsequently, development of Zeolite T with second competitive phase of zeolite W was observed at temperature 110 °C. In this study, XRD and SEM instruments were used to monitor the behavior of zeolite T crystals with respect of temperature and time. By using natural resource of kaolin clay as a starting material, this paper hence aims to provide new findings in synthesis of zeolite T using low energy consumption and low production cost.
Sakamoto, Takeshi; Nagao, Daisuke; Noba, Masahiro; Ishii, Haruyuki; Konno, Mikio
2014-06-24
Submicrometer-sized amorphous titania spheres incorporating Au nanoparticles (NPs) were prepared in a one-pot synthesis consisting of a sol-gel reaction of titanium(IV) isopropoxide in the presence of chloroauric acid and a successive reduction with sodium borohydride in a mixed solvent of ethanol/acetonitrile. The synthesis was allowed to prepare monodisperse titania spheres that homogeneously incorporated Au NPs with sizes of ca. 7 nm. The Au NP-loaded titania spheres underwent different crystallization processes, including 500 °C calcination in air, high-temperature hydrothermal treatment (HHT), and/or low-temperature hydrothermal treatment (LHT). Photocatalytic experiments were conducted with the Au NP-loaded crystalline titania spheres under irradiation of UV and visible light. A combined process of LHT at 80 °C followed by calcination at 500 °C could effectively crystallize titania spheres maintaining the dispersion state of Au NPs, which led to photocatalytic activity higher than that of commercial P25 under UV irradiation. Under visible light irradiation, the Au NP-titania spheres prepared with a crystallization process of LHT at 80 °C for 6 h showed photocatalytic activity much higher than a commercial product of visible light photocatalyst. Structure analysis of the visible light photocatalysts indicates the importance of prevention of the Au NPs aggregation in the crystallization processes for enhancement of photocatalytic activity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gall, Philippe; Guizouarn, Thierry; Potel, Michel
Powder samples and single crystals of the new ternary compound BaMo{sub 6}Te{sub 6} were obtained by solid state reaction. The structure was determined by single-crystal X-ray diffraction. BaMo{sub 6}Te{sub 6} crystallizes in the hexagonal space group P6{sub 3}/m (No. 176) with unit-cell parameters a=9.3941(2) Å, c=4.5848(1) Å and Z=1. Full-matrix least-squares refinement on F{sup 2} using 452 independent reflections for 17 refinable parameters resulted in R1=0.0208 and wR2=0.0539. The structure consists of one-dimensional infinite chains of trans-face shared Mo{sub 6} octahedra capped by Se atoms. These chains that are running along the c axis are separated from each other bymore » nine-coordinate Ba atoms. Resistivity measurements on a single crystal indicated that the BaMo{sub 6}Te{sub 6} compound is metallic down to 160 K and semiconductor below. Magnetic susceptibility measurements showed that BaMo{sub 6}Te{sub 6} is weakly diamagnetic with no anomaly at the metal–semiconductor transition. - Graphical abstract: We present here the synthesis, the crystal structure, and the electrical and magnetic properties of the new compound BaMo{sub 6}Te{sub 6} containing infinite chains of trans-face shared Mo{sub 6} octahedra. - Highlights: • BaMo{sub 6}Te{sub 6} contains infinite chains of trans-face-sharing Mo{sub 6} octahedra |Mo{sub 6/2}|{sub ∞}{sup 1}. • Synthesis by solid state reaction. • Single-crystal X-ray study. • Continuous metal–nonmetal transition. • Anderson localization.« less
Crystallisation and crystal forms of carbohydrate derivatives
NASA Astrophysics Data System (ADS)
Lennon, Lorna
This thesis is focused on the synthesis and solid state analysis of carbohydrate derivatives, including many novel compounds. Although the synthetic chemistry surrounding carbohydrates is well established in the literature, the crystal chemistry of carbohydrates is less well studied. Therefore this research aims to improve understanding of the solid state properties of carbohydrate derivatives through gaining more information on their supramolecular bonding. Chapter One focuses on an introduction to the solid state of organic compounds, with a background to crystallisation, including issues that can arise during crystal growth. Chapter Two is based on glucopyranuronate derivatives which are understudied in terms of their solid state forms. This chapter reports on the formation of novel glucuronamides and utilising the functionality of the amide bond for crystallisation. TEMPO oxidation was completed to form glucopyranuronates by oxidation of the primary alcohol groups of glucosides to the carboxylic acid derivatives, to increase functionality for enhanced crystal growth. Chapter Three reports on the synthesis of glucopyranoside derivatives by O-glycosylation reactions and displays crystal structures, including a number of previously unsolved acetate protected and deprotected crystal structures. More complex glycoside derivatives were also researched in an aim to study the resultant supramolecular motifs. Chapter Four contains the synthesis of aryl cellobioside derivatives including the novel crystal structures that were solved for the acetate protected and deprotected compounds. Research was carried out to determine if 1-deoxycellodextrins could act as putative isostructures for cellulose. Our research displays the presence of isostructural references with 1-deoxycellotriose shown to be similar to cellulose III11, 1-deoxycellotetraose correlates with cellulose IV11 and 1-deoxycellopentose shows isostructurality similar to that of cellulose II. Chapter Five contains the full experimental details and spectral characterisation of all novel compounds synthesised in this project and relevant crystallographic information.
Bunker, Richard D; Mandal, Kalyaneswar; Bashiri, Ghader; Chaston, Jessica J; Pentelute, Bradley L; Lott, J Shaun; Kent, Stephen B H; Baker, Edward N
2015-04-07
Protein 3D structure can be a powerful predictor of function, but it often faces a critical roadblock at the crystallization step. Rv1738, a protein from Mycobacterium tuberculosis that is strongly implicated in the onset of nonreplicating persistence, and thereby latent tuberculosis, resisted extensive attempts at crystallization. Chemical synthesis of the L- and D-enantiomeric forms of Rv1738 enabled facile crystallization of the D/L-racemic mixture. The structure was solved by an ab initio approach that took advantage of the quantized phases characteristic of diffraction by centrosymmetric crystals. The structure, containing L- and D-dimers in a centrosymmetric space group, revealed unexpected homology with bacterial hibernation-promoting factors that bind to ribosomes and suppress translation. This suggests that the functional role of Rv1738 is to contribute to the shutdown of ribosomal protein synthesis during the onset of nonreplicating persistence of M. tuberculosis.
Large-scale synthesis and growth habit of 3-D flower-like crystal of PbTe
NASA Astrophysics Data System (ADS)
Zhou, Nan; Chen, Gang; Yang, Xi; Zhang, Xiaosong
2012-02-01
In this paper, 3-D flower-like crystal of PbTe was successfully synthesized using Pb(CH3COO)2·3H2O and Na2TeO3 as precursors under hydrothermal conditions, and characterized by means of scanning electron microscopy (SEM), transmission electron microscopy (TEM) and X-ray diffraction pattern (XRD). The reaction parameters that influenced the evolution of PbTe synthesis and morphology were investigated. It was shown that the flower-like crystal of PbTe was composed of a nucleus with eight pods. A possible growth mechanism was proposed based on the calculation of the surface energies of PbTe and the SEM observation. Furthermore, the temperature-dependent transport properties of 3-D flower-like crystal of PbTe specimen have been evaluated with an average thermoelectric power of 120 S cm-1 and electrical conductivity of 220 μV K-1 at 740 K.
Synthesis of vaterite and aragonite crystals using biomolecules of tomato and capsicum
NASA Astrophysics Data System (ADS)
Chen, Long; Xu, Wang-Hua; Zhao, Ying-Guo; Kang, Yan; Liu, Shao-Hua; Zhang, Zai-Yong
2012-12-01
In this paper, biomimetic synthesis of calcium carbonate (CaCO3) in the presence of biomolecules of two vegetables-tomato and capsicum is investigated. Scanning electron microscopy and X-ray powder diffractometry were used to characterize the CaCO3 obtained. The biomolecules in the extracts of two vegetables are determined by UV-vis or FTIR. The results indicate that a mixture of calcite and vaterite spheres constructed from small particles is produced with the extract of tomato, while aragonite rods or ellipsoids are formed in the presence of extract of capsicum. The possible formation mechanism of the CaCO3 crystals with tomato biomolecules can be interpreted by particle-aggregation based non-classical crystallization laws. The proteins and/or other biomolecules in tomato and capsicum may control the formation of vaterite and aragonite crystals by adsorbing onto facets of them.
Synthesis of Self-Bonded Pellets of ETS-4 Phase by New Methodology of Preparation
NASA Astrophysics Data System (ADS)
De Luca, P.; Mastroianni, C.; Nagy, J. B.
2018-06-01
We hereby present the results of a research in order to prepare self-bonded pellets of ETS-4 phase by a new methodology of preparation. In particular, the pellets were prepared by kneading crystals of ETS-4 phase and a dry gel, the latter being the precursor for the synthesis of the ETS-4 phase crystals. One of the innovative aspects that is proposed and highlighted in this work is represented by the fact that the dry-gel acts as a “binder”. It is characterized by the same chemical composition of crystals, thus avoiding contamination with other elements. In addition, dry-gel allows, the promotion of nucleation phenomena and thus the formation of new crystals of ETS-4 during the pellets baking phases. The pellets were characterized by X-ray diffraction (XRD), Electron microscopy (SEM) and mechanical strength by hardness tester.
NASA Astrophysics Data System (ADS)
Hincapie Palacio, Beatriz Omaira
Mordenite is a zeolite that has been used as a selective adsorbent and as a catalyst. In reactions where the diffusion of reagents into the pore system is the rate-determining step, nanoparticles of the catalyst improve the reaction rate. Mordenite with a crystal diameter smaller than 100 nm has been prepared by the modification of different synthetic parameters such as the source of aluminum, the presence of seeds, the use of low temperatures (150°C vs. 170°C), longer crystallization times (24 h vs. 96 h), and different silica to alumina ratios (10--30). The decrease in the crystal diameter of the prepared mordenite was monitored by the application of the Scherrer equation that relates the broadness of the X-ray diffraction peaks to crystal sizes. Zeolite RHO with an initial silica to alumina ratio (SAR) higher than 20 has been prepared. EDTA, citric acid, and tartaric acid have been used as complexing agents in the synthesis of zeolite RHO. Crystallization time increases (from 48 h to 900 h) with increasing the silica to alumina ratios (SAR) of the initial gel (SAR: 10.8 to 30) and by adding complexing agents. Complexing agents favor the formation of small crystals (0.8 mum) with increased silica to alumina ratio (final SAR: 4.5 vs. 4.0 without complexing agents). The products were characterized by XRD, FESEM, EDX, FTIR, and in-situ XRD. Copper containing faujasite has been successfully prepared for the first time using a direct synthesis method. Ammonium hydroxide was used to form a copper complex that was later mixed with the reacting gel. Crystallization took place at 85°C for 11 days. The copper containing faujasite obtained was characterized by XRD, FESEM, EDX, EPR, FTIR, TPR, and BET. According to the XRD pattern only FAU type zeolite was obtained. According to TPR experiments, the reduction temperature for Cu2+ ions present in Cu-FAU prepared by direct synthesis was 70 K higher than for Cu-FAU prepared by ion-exchange. This difference can be due to the different location of the copper ions in the supercages or in the sodalite cages of the faujasite.
Thermotropic Ionic Liquid Crystals
Axenov, Kirill V.; Laschat, Sabine
2011-01-01
The last five years’ achievements in the synthesis and investigation of thermotropic ionic liquid crystals are reviewed. The present review describes the mesomorphic properties displayed by organic, as well as metal-containing ionic mesogens. In addition, a short overview on the ionic polymer and self-assembled liquid crystals is given. Potential and actual applications of ionic mesogens are also discussed. PMID:28879986
Thermotropic Ionic Liquid Crystals.
Axenov, Kirill V; Laschat, Sabine
2011-01-14
The last five years' achievements in the synthesis and investigation of thermotropic ionic liquid crystals are reviewed. The present review describes the mesomorphic properties displayed by organic, as well as metal-containing ionic mesogens. In addition, a short overview on the ionic polymer and self-assembled liquid crystals is given. Potential and actual applications of ionic mesogens are also discussed.
2017-09-28
5192 (2011). 39. Shi, Y., Mo, J., Wei, J. & Guo, J. Chiral assembly and plasmonic response of silver nanoparticles in a three-dimensional blue-phase... synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 µm. Nature 405, 437–440 (2000). 3. Arsenault, A. et al
Direct Growth of Graphene on Silicon by Metal-Free Chemical Vapor Deposition
NASA Astrophysics Data System (ADS)
Tai, Lixuan; Zhu, Daming; Liu, Xing; Yang, Tieying; Wang, Lei; Wang, Rui; Jiang, Sheng; Chen, Zhenhua; Xu, Zhongmin; Li, Xiaolong
2018-06-01
The metal-free synthesis of graphene on single-crystal silicon substrates, the most common commercial semiconductor, is of paramount significance for many technological applications. In this work, we report the growth of graphene directly on an upside-down placed, single-crystal silicon substrate using metal-free, ambient-pressure chemical vapor deposition. By controlling the growth temperature, in-plane propagation, edge-propagation, and core-propagation, the process of graphene growth on silicon can be identified. This process produces atomically flat monolayer or bilayer graphene domains, concave bilayer graphene domains, and bulging few-layer graphene domains. This work would be a significant step toward the synthesis of large-area and layer-controlled, high-quality graphene on single-crystal silicon substrates. [Figure not available: see fulltext.
NASA Astrophysics Data System (ADS)
Belyaev, A. P.; Rubets, V. P.; Antipov, V. V.; Bordei, N. S.; Zarembo, V. I.
2014-03-01
We report on the structural and technological investigations of the vapor-crystal phase transition during synthesis of paracetamol films of the monoclinic system by vacuum evaporation and condensation in the temperature range 220-320 K. The complex nature of the transformation accompanied by the formation of a gel-like phase is revealed. The results are interpreted using a model according to which the vapor-crystal phase transition is not a simple first-order phase transition, but is a nonlinear superposition of two phase transitions: a first-order transition with a change in density and a second-order phase transition with a change in ordering. Micrographs of the surface of the films are obtained at different phases of formation.
Synthesis of mesoporous zeolite single crystals with cheap porogens
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tao Haixiang; Li Changlin; Ren Jiawen
2011-07-15
Mesoporous zeolite (silicalite-1, ZSM-5, TS-1) single crystals have been successfully synthesized by adding soluble starch or sodium carboxymethyl cellulose (CMC) to a conventional zeolite synthesis system. The obtained samples were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), transmission electron microscopy (TEM), nitrogen sorption analysis, {sup 27}Al magic angle spinning nuclear magnetic resonance ({sup 27}Al MAS NMR), temperature-programmed desorption of ammonia (NH{sub 3}-TPD) and ultraviolet-visible spectroscopy (UV-vis). The SEM images clearly show that all zeolite crystals possess the similar morphology with particle size of about 300 nm, the TEM images reveal that irregular intracrystalmore » pores are randomly distributed in the whole crystal. {sup 27}Al MAS NMR spectra indicate that nearly all of the Al atoms are in tetrahedral co-ordination in ZSM-5, UV-vis spectra confirm that nearly all of titanium atoms are incorporated into the framework of TS-1. The catalytic activity of meso-ZSM-5 in acetalization of cyclohexanone and meso-TS-1 in hydroxylation of phenol was also studied. The synthesis method reported in this paper is cost-effective and environmental friendly, can be easily expended to prepare other hierarchical structured zeolites. - Graphical abstract: Mesoporous zeolite single crystals were synthesized by using cheap porogens as template. Highlights: > Mesoporous zeolite (silicalite-1, ZSM-5, TS-1) single crystals were synthesized. > Soluble starch or sodium carboxymethyl cellulose (CMC) was used as porogens. > The mesoporous zeolites had connected mesopores although closed pores existed. > Higher catalytic activities were obtained.« less
Utilization of plasmas for graphene synthesis
NASA Astrophysics Data System (ADS)
Shashurin, Alexey; Keidar, Michael
2013-10-01
Graphene is a one-atom-thick planar sheet of carbon atoms that are densely packed in a honeycomb crystal lattice. Grapheen has tremendous range of potential applications ranging from high-speed transistors to electrochemical energy storage devices and biochemical sensors. Methods of graphene synthesis include mechanical exfoliation, epitaxial growth on SiC, CVD and colloidal suspensions. In this work the utilization of plasmas in synthesis process is considered. Types of carbonaceous structures produced by the anodic arc and regions of their synthesis were studied. Ultimate role of substrate temperature and transformations occurring with various carbonaceous structures generated in plasma discharge were considered. Formation of graphene film on copper substrate was detected at temperatures around the copper melting point. The film was consisted of several layers graphene flakes having typical sizes of about 200 nm. Time required for crystallization of graphene on externally heated substrates was determined. This work was supported by National Science Foundation (NSF Grant No. CBET-1249213).
Solvent-Free Synthesis of Zeolites: Mechanism and Utility.
Wu, Qinming; Meng, Xiangju; Gao, Xionghou; Xiao, Feng-Shou
2018-05-08
Zeolites have been extensively studied for years in different areas of chemical industry, such as shape selective catalysis, ion-exchange, and gas adsorption and separation. Generally, zeolites are prepared from solvothermal synthesis in the presence of a large amounts of solvents such as water and alcohols in sealed autoclaves under autogenous pressure. Water has been regarded as essential to synthesize zeolites for fast mass transfer of reactants, but it occupies a large space in autoclaves, which greatly reduces the yield of zeolite products. Furthermore, polluted wastes and relatively high pressure due to the presence of water solvent in the synthesis also leads to environmental and safety issues. Recently, inspired by great benefits of solvent-free synthesis, including the environmental concerns, energy consumption, safety, and economic cost, researchers continually challenge the rationale of the solvent and reconsider the age-old question "Do we actually need solvents at all in zeolite synthesis?" In this Account, we briefly summarize our efforts to rationally synthesize zeolites via a solvent-free route. Our research demonstrates that a series of silica, aluminosilicate, and aluminophosphate-based zeolites can be successfully prepared by mixing, grinding, and heating starting solid materials under solvent-free conditions. Combining an organotemplate-free synthesis with a solvent-free approach maximizes the advantages resulting in a more sustainable synthetic route, which avoids using toxic and costly organic templates and the formation of harmful gases by calcination of organic templates at high temperature. Furthermore, new insights into the solvent-free crystallization process of zeolites have been provided by modern techniques such as NMR and UV-Raman spectroscopy, which should be helpful in designing new zeolite structures and developing novel routes for synthesis of zeolites. The role of water and the vital intermediates during the crystallization of zeolites have been proposed and verified. In addition to a significant reduction in liquid wastes and a remarkable increase in zeolite yields, the solvent-free synthesis of zeolites exhibits more unprecedented benefits, including (i) the formation of hierarchical micro-, meso-, and macrostructures, which benefit the mass transfer in the reactions, (ii) rapid synthesis at higher temperatures, which greatly improve the space-time yields of zeolites, and (iii) construction of a novel catalytic system for encapsulation of metal nanoparticles and metal oxide particles within zeolite crystals synergistically combining the advantages of catalytic metal nanoparticles and metal oxide particles (high activity) and zeolites (shape selectivity). We believe that the concept of "solvent-free synthesis of zeolites" would open a door for deep understanding of zeolite crystallization and the design of efficient zeolitic catalysts.
Laser-Activated Metal Deposition.
1988-01-31
Quartz F "" (0.1 Mm film thickness) AI-4N N APPENDIX 2 SYNTHESIS OF ORGANOMETALLIC COMPOUNDS p 1 . SYNTHESIS OF COPPER BIS HEXAFLUOROACETYLACETONATE...point. 2. SYNTHESIS OF CHROMIUM TRIS HEXAFLUOROACETYLACETONATE (Procedure of R. E. Sievers, et al., Inorg. Chem, 1 , 966 (1962)) A mixture of chromium...The precipi- tate was filtered and recrystallized in carbon tetrachloride to yield about 1 g of brownish-green crystals. 3. SYNTHESIS OF ALUMINUM
DOE Office of Scientific and Technical Information (OSTI.GOV)
Domán, Andrea; Madarász, János; László, Krisztina
The results of a complete thermogravimetric study of copper benzene-1,3,5-tricarboxylate (Cu-BTC or HKUST-1) are reported here together with mass spectrometry (MS) and Fourier transform infrared spectroscopy (FTIR) analyses of the evolved gases up to 800 °C. Oxidative and inert conditions were applied to reveal the stoichiometry of the as-received synthesis product. In spite of using a water-ethanol mixture during the synthesis and the filtration, only water is retained in the pores. It is proposed that the thermolytic release of ethanol in the temperature range 150–250 °C originates from ethanol-benzene-1,3,5-tricarboxylate (BTC) esters situated on the surface of the HKUST-1 crystal, andmore » which limit the size of the developing crystals during the synthesis.« less
Kostman, Todd A.; Tarlyn, Nathan M.; Loewus, Frank A.; Franceschi, Vincent R.
2001-01-01
l-Ascorbic acid (AsA) and its metabolic precursors give rise to oxalic acid (OxA) found in calcium oxalate crystals in specialized crystal idioblast cells in plants; however, it is not known if AsA and OxA are synthesized within the crystal idioblast cell or transported in from surrounding mesophyll cells. Isolated developing crystal idioblasts from Pistia stratiotes were used to study the pathway of OxA biosynthesis and to determine if idioblasts contain the entire path and are essentially independent in OxA synthesis. Idioblasts were supplied with various 14C-labeled compounds and examined by micro-autoradiography for incorporation of 14C into calcium oxalate crystals. [14C]OxA gave heavy labeling of crystals, indicating the isolated idioblasts are functional in crystal formation. Incubation with [1-14C]AsA also gave heavy labeling of crystals, whereas [6-14C]AsA gave no labeling. Labeled precursors of AsA (l-[1-14C]galactose; d-[1-14C]mannose) also resulted in crystal labeling, as did the ascorbic acid analog, d-[1-14C]erythorbic acid. Intensity of labeling of isolated idioblasts followed the pattern OxA > AsA (erythorbic acid) > l-galactose > d-mannose. Our results demonstrate that P. stratiotes crystal idioblasts synthesize the OxA used for crystal formation, the OxA is derived from the number 1 and 2 carbons of AsA, and the proposed pathway of ascorbic acid synthesis via d-mannose and l-galactose is operational in individual P. stratiotes crystal idioblasts. These results are discussed with respect to fine control of calcium oxalate precipitation and the concept of crystal idioblasts as independent physiological compartments. PMID:11161021
NASA Astrophysics Data System (ADS)
Boopathi, K.; Babu, S. Moorthy; Ramasamy, P.
2018-04-01
Tetrabromo (piperazinium) zincate, a new metal-organic crystal has been synthesized and its single crystal grown by slow evaporation method. The grown crystal has characterized by structural, spectral, thermal, linear and nonlinear optical properties. Single crystal X-ray diffractions study reveals that grown crystal belongs to orthorhombic crystal system with space group P212121. The presence of functional groups is identified by FT-IR spectral analysis. Thermal stability of the crystal was ascertained by TG-DTA measurement. The second order harmonic generation efficiency was measured using Kurtz and Perry technique and it was found to be 1.5 times that of KDP.
NASA Astrophysics Data System (ADS)
Zakirov, Roman A.; Parfenov, Oleg G.; Solovyov, Leonid A.
2018-02-01
A new process for developing titanium aluminides (TiAls) using chemical vapor synthesis was investigated in a laboratory experiment. Aluminum subchloride (AlCl) was used as the reducing agent in the reaction with TiCl4 and the source of aluminum for Ti-Al alloy. Two types of products, with large crystals and fine particles, were fabricated. The large crystals were determined to be TiAl, with small amounts of Ti and Ti3Al phases. The composition of fine particles, on the other hand, varied in wide range.
Controllable synthesis of rice-shape Alq3 nanoparticles with single crystal structure
NASA Astrophysics Data System (ADS)
Xie, Wanfeng; Fan, Jihui; Song, Hui; Jiang, Feng; Yuan, Huimin; Wei, Zhixian; Ji, Ziwu; Pang, Zhiyong; Han, Shenghao
2016-10-01
We report the controllable growth of rice-shape nanoparticles of Alq3 by an extremely facile self-assembly approach. Possible mechanisms have been proposed to interpret the formation and controlled process of the single crystal nanoparticles. The field-emission performances (turn-on field 7 V μm-1, maximum current density 2.9 mA cm-2) indicate the potential application on miniaturized nano-optoelectronics devices of Alq3-based. This facile method can potentially be used for the controlled synthesis of other functional complexes and organic nanostructures.
Tris(acetonitrile)chloropalladium tetrafluoroborate synthesis, application and structural analysis
NASA Astrophysics Data System (ADS)
Dybała, Izabela; Demchuk, Oleg M.
2016-10-01
Results of the single crystal X-ray diffraction analysis of tris(acetonitrile)chloropalladium tetrafluoroborate [PdCl(CH3CN)3]BF4 are presented in details. It was found that the title compound crystallises in the monoclinic system, in the space group C2/c. The role of charge-assisted C-HṡṡṡF-B interactions in crystal architecture was investigated. Due to its untypical properties the prepared [PdCl(CH3CN)3]BF4 has proved to be an excellent palladium source in the synthesis of phosphine-palladium complexes.
Self-Assembly of Reconfigurable By-Design Optical Materials with Molecular-Level Control
2014-09-21
International Conference on Metamaterials, Photonic Crystals and Plasmonics, Singapore, May 20 - 23, 2014. Zhang, W. “Design, Synthesis, and Applications of...metal nanoparticles positioned in 3D crystal lattices...materials such as photonic crystal and metamaterial hold high promise of providing a path to by-design optical materials with engineered optical
NASA Technical Reports Server (NTRS)
Leslie, Thomas M.
1995-01-01
Data obtained from the electric field induced second harmonic generation (EFISH) and Kurtz Powder Methods will be provided to MSFC for further refinement of their method. A theoretical model for predicting the second-order nonlinearities of organic salts is being worked on. Another task is the synthesis of a number of salts with various counterions. Several salts with promising SHG activities and new salts will be tested for the presence of two crystalline forms. The materials will be recrystallized from dry and wet solvents and compared for SHG efficiency. Salts that have a high SHG efficiency and no tendency to form hydrates will be documented. The synthesis of these materials are included in this report. A third task involves method to aid in the growth of large, high quality single crystals by solution processes. These crystals will be characterized for their applicability in the fabrication of devices that will be incorporated into optical computers in future programs. Single crystals of optimum quality may be obtained by crystal growth in low-gravity. The final task is the design of a temperature lowering single crystal growth apparatus for ground based work. At least one prototype will be built.
Sol-Gel Synthesis and Crystallization of Magnesium and Calcium Rich Silicate Dust Analogs
NASA Astrophysics Data System (ADS)
Gillot, J.; Roskosz, M.; Depecker, C.; Roussel, P.; Leroux, H.
2009-03-01
A new sol-gel method optimized to synthesize amorphous and porous silicate dust analogs is proposed. The crystallization of such analogs is metastable and polyphasic. Their high reactivity is probably due to high surface/volume ratio.
Photonic Crystal Biosensor with In-Situ Synthesized DNA Probes for Enhanced Sensitivity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hu, Shuren; Zhao, Y.; Retterer, Scott T
2013-01-01
We report on a nearly 8-fold increase in multi-hole defect photonic crystal biosensor response by incorporating in-situ synthesis of DNA probes, as compared to the conventional functionalization method employing pre-synthesized DNA probe immobilization.
Ultrasmall Zeolite L Crystals Prepared from Highly-Interdispersed Alkali-Silicate Precursors.
Li, Rui; Linares, Noemi; Sutjianto, James G; Chawla, Aseem; Garcia Martinez, Javier; Rimer, Jeffrey D
2018-06-19
The preparation of nanosized zeolites is critical for applications where mass transport limitations within microporous networks hinder their performance. Oftentimes the ability to generate ultrasmall zeolite crystals is dependent upon the use of expensive organics with limited commercial relevance. Here, we report the generation of zeolite L crystals with uniform sizes less than 30 nm using a facile, organic-free method. Time-resolved analysis of precursor assembly and evolution during nonclassical crystallization highlights key differences among silicon sources. Our findings reveal that a homogenous dispersion of potassium ions throughout silicate precursors is critical to enhancing the rate of nucleation and facilitating the formation of ultrasmall crystals. Intimate contact between the inorganic structure-directing agent and silica leads to the formation of a metastable nonporous phase, identified as KAlSi2O6, which undergoes an intercrystalline transformation to zeolite L. The presence of highly-interdispersed alkali-silicate precursors is seemingly integral to a reduced zeolite induction time and may facilitate the development of ultrasmall crystals. Given the general difficulty of achieving nanosized crystals in zeolite synthesis, it is likely that using well-dispersed precursors does not have the same effect on all framework types; however, in select cases it may provide an alternative strategy for optimizing zeolite synthesis. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Wichmann, Kathrin A.; Söhnel, Tilo; Cooper, Garth J. S.
2012-03-01
N1,N10-diacetyltriethylenetetramine (DAT) is a recently-discovered major in vivo metabolite of triethylenetetramine (TETA), a highly-selective CuII chelator currently under clinical development as a novel first-in-class therapeutic for the cardiovascular, renal and retinal complications of diabetes mellitus. Characterisation of DAT is an integral aspect of the pharmacological work-up required to support this clinical development programme and, to our knowledge, no previous synthesis for it has been published. Here we report the synthesis of DAT dihydrochloride (DAT·2 HCl); its crystal structure as determined by X-ray single-crystal (XRD) and powder diffraction (XRPD); and protonation constants and species distribution in aqueous solution, which represents the different protonation states of DAT at different pH values. The crystal structure of DAT·2 HCl reveals 3D-assemblies of alternating 2D-layers comprising di-protonated DAT strands and anionic species, which form an extensive hydrogen-bond network between amine groups, acetyl groups, and chloride anions. Potentiometric titrations show that HDAT+ is the physiologically relevant state of DAT in solution. These findings contribute to the understanding of TETA's pharmacology and to its development for the experimental therapeutics of the diabetic complications.
Simplifying the growth of hybrid single-crystals by using nanoparticle precursors: the case of AgI
NASA Astrophysics Data System (ADS)
Xu, Biao; Wang, Ruji; Wang, Xun
2012-03-01
We report the synthesis of a series of AAgmIn single-crystals within 24 h, at room temperature, utilizing AgI nanoparticles (NPs) as the precursor. The AgI NPs impart high reactivity under mild conditions and favor the growth kinetics. 0D, 1D and 2D iodoargentate crystals can be obtained. This work represents the first application of NPs in the field of organo-metal-halide crystals and will inspire the design of other AMmXn crystals.We report the synthesis of a series of AAgmIn single-crystals within 24 h, at room temperature, utilizing AgI nanoparticles (NPs) as the precursor. The AgI NPs impart high reactivity under mild conditions and favor the growth kinetics. 0D, 1D and 2D iodoargentate crystals can be obtained. This work represents the first application of NPs in the field of organo-metal-halide crystals and will inspire the design of other AMmXn crystals. Electronic supplementary information (ESI) available: XPS spectra of AgI NPs, schematic representation of the formation process of [Ag4I8]4- in 2, UV-Vis spectra of the DTMA-Ag-I clusters, analysis of force balance of a crystal at the interface between H2O and CH2Cl2 and crystal structure depiction of 1-4. CIF files of 1-4 are also provided. CCDC reference numbers 863848, 863849, 863850 and 863851. For ESI and crystallographic data in CIF or other electronic format see DOI: 10.1039/c2nr30139c
DOE Office of Scientific and Technical Information (OSTI.GOV)
Song, Yu, E-mail: songyu@dlpu.edu.cn; Ding, Ling; An, Qingda
2013-06-15
Zinc borophosphate (NH{sub 4}){sub 16}[Zn{sub 16}B{sub 8}P{sub 24}O{sub 96}] (denoted as ZnBP-ANA) with ANA-zeotype structure has been synthesized by employing microwave-assisted solvothermal synthesis in the reaction system ZnCl{sub 2}∙6H{sub 2}O-(NH{sub 4}){sub 2}HPO{sub 4}–H{sub 3}BO{sub 3} using ethylene glycol as a co-solvent. The influences of various experimental parameters, such as reaction temperature, solvent ratio, zinc precursors and reactive power, have been systematically investigated. The products were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and thermogravimetric analysis (TGA), and so on. Small and homogeneous ZnBP-ANA single crystal with regular cube morphology are crystallized by using microwave solvothermal synthesis method withinmore » a shorter time, and its grain size decreases with power. - Graphical abstract: Tailor-made ANA zeolites with varied size can be prepared by simply changing the reaction power. - Highlights: • Zinc borophosphate zeolites with ANA-zeotype structures were prepared by microwave technique. • The size of crystals could be controlled by tuning power. • Synthesis period can be significantly reduced by raising reaction temperature.« less
Dong, Yongkwan; Chai, Ping; Beekman, Matt; Zeng, Xiaoyu; Tritt, Terry M; Nolas, George S
2015-06-01
Single crystals of the ternary clathrate-I Na8Al8Si38 were synthesized by kinetically controlled thermal decomposition (KCTD), and microcrystalline Na8Al8Si38 was synthesized by spark plasma sintering (SPS) using a NaSi + NaAlSi mixture as the precursor. Na8AlxSi46-x compositions with x ≤ 8 were also synthesized by SPS from precursor mixtures of different ratios. The crystal structure of Na8Al8Si38 was investigated using both Rietveld and single-crystal refinements. Temperature-dependent transport and UV/vis measurements were employed in the characterization of Na8Al8Si38, with diffuse-reflectance measurement indicating an indirect optical gap of 0.64 eV. Our results indicate that, when more than one precursor is used, both SPS and KCTD are effective methods for the synthesis of multinary inorganic phases that are not easily accessible by traditional solid-state synthesis or crystal growth techniques.
Evolutionary selection growth of two-dimensional materials on polycrystalline substrates
Vlassiouk, Ivan V.; Stehle, Yijing; Pudasaini, Pushpa Raj; ...
2018-03-12
There is a demand for the manufacture of two-dimensional (2D) materials with high-quality single crystals of large size. Usually, epitaxial growth is considered the method of choice in preparing single-crystalline thin films, but it requires single-crystal substrates for deposition. Here in this paper we present a different approach and report the synthesis of single-crystal-like monolayer graphene films on polycrystalline substrates. The technological realization of the proposed method resembles the Czochralski process and is based on the evolutionary selection approach, which is now realized in 2D geometry. The method relies on ‘self-selection’ of the fastest-growing domain orientation, which eventually overwhelms themore » slower-growing domains and yields a single-crystal continuous 2D film. Here we have used it to synthesize foot-long graphene films at rates up to 2.5 cm h -1 that possess the quality of a single crystal. We anticipate that the proposed approach could be readily adopted for the synthesis of other 2D materials and heterostructures.« less
Evolutionary selection growth of two-dimensional materials on polycrystalline substrates
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vlassiouk, Ivan V.; Stehle, Yijing; Pudasaini, Pushpa Raj
There is a demand for the manufacture of two-dimensional (2D) materials with high-quality single crystals of large size. Usually, epitaxial growth is considered the method of choice in preparing single-crystalline thin films, but it requires single-crystal substrates for deposition. Here in this paper we present a different approach and report the synthesis of single-crystal-like monolayer graphene films on polycrystalline substrates. The technological realization of the proposed method resembles the Czochralski process and is based on the evolutionary selection approach, which is now realized in 2D geometry. The method relies on ‘self-selection’ of the fastest-growing domain orientation, which eventually overwhelms themore » slower-growing domains and yields a single-crystal continuous 2D film. Here we have used it to synthesize foot-long graphene films at rates up to 2.5 cm h -1 that possess the quality of a single crystal. We anticipate that the proposed approach could be readily adopted for the synthesis of other 2D materials and heterostructures.« less
Synthesis of Hexagonal Boron Nitride Mono layer: Control of Nucleation and Crystal Morphology
Stehle, Yijing Y.; Meyer, III, Harry M.; Unocic, Raymond R.; ...
2015-11-10
Mono layer hexagonal boron nitride (hBN) attracts significant attention due to the potential to be used as a complementary two-dimensional dielectric in fabrication of functional 2D heterostructures. Here we investigate the growth stages of the hBN single crystals and show that hBN crystals change their shape from triangular to truncated triangular and further to hexagonal depending on copper substrate distance from the precursor. We suggest that the observed hBN crystal shape variation is affected by the ratio of boron to nitrogen active species concentrations on the copper surface inside the CVD reactor. Strong temperature dependence reveals the activation energies formore » the hBN nucleation process of similar to 5 eV and crystal growth of similar to 3.5 eV. We also show that the resulting h-BN film morphology is strongly affected by the heating method of borazane precursor and the buffer gas. Elucidation of these details facilitated synthesis of high quality large area monolayer hexagonal boron nitride by atmospheric pressure chemical vapor deposition on copper using borazane as a precursor.« less
Rekha, P; Peramaiyan, G; NizamMohideen, M; Kumar, R Mohan; Kanagadurai, R
2015-03-15
A novel organic single crystal of Piperazinium (bis) p-toluenesulfonate (PPTS) was grown by a slow evaporation solution growth technique. The structure of the grown crystal was determined using single crystal X-ray diffraction analysis. The PPTS crystal belongs to the triclinic crystal system with space group of P1¯. The presence of functional groups was confirmed by FTIR spectral analysis. The optical transmittance range and cut-off wavelength were identified by UV-vis-NIR spectral studies. The luminescent properties of PPTS crystal were investigated. The thermal behavior of PPTS crystal was studied by TG-DT analyses. Copyright © 2014 Elsevier B.V. All rights reserved.
Transparent Glass-Ceramics Produced by Sol-Gel: A Suitable Alternative for Photonic Materials.
Gorni, Giulio; Velázquez, Jose J; Mosa, Jadra; Balda, Rolindes; Fernández, Joaquin; Durán, Alicia; Castro, Yolanda
2018-01-30
Transparent glass-ceramics have shown interesting optical properties for several photonic applications. In particular, compositions based on oxide glass matrices with fluoride crystals embedded inside, known as oxyfluoride glass-ceramics, have gained increasing interest in the last few decades. Melt-quenching is still the most used method to prepare these materials but sol-gel has been indicated as a suitable alternative. Many papers have been published since the end of the 1990s, when these materials were prepared by sol-gel for the first time, thus a review of the achievements obtained so far is necessary. In the first part of this paper, a review of transparent sol-gel glass-ceramics is made focusing mainly on oxyfluoride compositions. Many interesting optical results have been obtained but very little innovation of synthesis and processing is found with respect to pioneering papers published 20 years ago. In the second part we describe the improvements in synthesis and processing obtained by the authors during the last five years. The main achievements are the preparation of oxyfluoride glass-ceramics with a much higher fluoride crystal fraction, at least double that reported up to now, and the first synthesis of NaGdF₄ glass-ceramics. Moreover, a new SiO₂ precursor was introduced in the synthesis, allowing for a reduction in the treatment temperature and favoring hydroxyl group removal. Interesting optical properties demonstrated the incorporation of dopant ions in the fluoride crystals, thus obtaining crystal-like spectra along with higher efficiencies with respect to xerogels, and hence demonstrating that these materials are a suitable alternative for photonic applications.
Modeling Calculation and Synthesis of Alumina Whiskers Based on the Vapor Deposition Process.
Gong, Wei; Li, Xiangcheng; Zhu, Boquan
2017-10-17
This study simulated the bulk structure and surface energy of Al₂O₃ based on the density of states (DOS) and studied the synthesis and microstructure of one-dimensional Al₂O₃ whiskers. The simulation results indicate that the (001) surface has a higher surface energy than the others. The growth mechanism of Al₂O₃ whiskers follows vapor-solid (VS) growth. For the (001) surface with the higher surface energy, the driving force of crystal growth would be more intense in the (001) plane, and the alumina crystal would tend to grow preferentially along the direction of the (001) plane from the tip of the crystal. The Al₂O₃ grows to the shape of whisker with [001] orientation, which is proved both through modeling and experimentation.
Electrosynthesis of cerium hexaboride by the molten salt technique
NASA Astrophysics Data System (ADS)
Amalajyothi, K.; Berchmans, L. John; Angappan, S.; Visuvasam, A.
2008-07-01
Molten salts are well thought-out as the incredibly promising medium for chemical and electrochemical synthesis of compounds. Hence a stab has been made on the electrochemical synthesis of CeB 6 using molten salt technique. The electrolyte consisted of lithium fluoride (LiF), boron trioxide (B 2O 3) and cerium chloride (CeCl 3). Electrochemical experiments were carried out in an inconal reactor in an argon atmosphere. Electrolysis was executed in a high-density graphite crucible, which doles out as the electrolyte clutching vessel as well as the anode. The cathode was made up of a molybdenum rod. The electrolysis was carried out at 900 °C at different current densities intended for the synthesis of CeB 6 crystals. After the electrolysis, the cathode product was removed and cleaned using dilute HCl solution. The crystals were scrutinized by X-ray diffraction (XRD) to make out the phase and the purity. It has been observed that CeB 6 crystals are synthesized at all current densities and the product has traces of impurities.
Process for production of solution-derived (Pb,La)(Nb,Sn,Zr,Ti)O{sub 3} thin films and powders
Boyle, T.J.
1999-01-12
A simple and rapid process for synthesizing (Pb,La)(Nb,Sn,Zr,Ti)O{sub 3} precursor solutions and subsequent ferroelectric thin films and powders of the perovskite phase of these materials has been developed. This process offers advantages over standard methods, including: rapid solution synthesis (<10 minutes), use of commercially available materials, film production under ambient conditions, ease of lanthanum dissolution at high concentrations, and no heating requirements during solution synthesis. For lanthanum-doped ferroelectric materials, the lanthanum source can be added with total synthesis time less than 10 minutes. Films and powders are crystallized at approximately 650 C and exhibit ferroelectric properties comparable to films and powders produced by other techniques which require higher crystallization temperatures. 2 figs.
Electrochemical Synthesis of Magnesium Hexaboride by Molten Salt Technique
Angappan, S.; Kalaiselvi, N.; Sudha, R.; Visuvasam, A.
2014-01-01
The present work reports electrochemical synthesis of MgB6 from molten salts using the precursor consists of LiF–B2O3–MgCl2. An attempt has been made to synthesize metastable phase MgB6 crystal by electrolysis method. DTA/TGA studies were made to determine the eutectic point of the melt and it was found to be around 900°C. The electrolysis was performed at 900°C under argon atmosphere, at current density of 1.5 A/cm2. The electrodeposited crystals were examined using XRD, SEM, and XPS. From the above studies, the electrochemical synthesis method for hypothetical MgB6 from chloro-oxy-fluoride molten salt system is provided. Mechanism for the formation of magnesium hexaboride is discussed. PMID:27350961
Electrochemical Synthesis of Magnesium Hexaboride by Molten Salt Technique.
Angappan, S; Kalaiselvi, N; Sudha, R; Visuvasam, A
2014-01-01
The present work reports electrochemical synthesis of MgB6 from molten salts using the precursor consists of LiF-B2O3-MgCl2. An attempt has been made to synthesize metastable phase MgB6 crystal by electrolysis method. DTA/TGA studies were made to determine the eutectic point of the melt and it was found to be around 900°C. The electrolysis was performed at 900°C under argon atmosphere, at current density of 1.5 A/cm(2). The electrodeposited crystals were examined using XRD, SEM, and XPS. From the above studies, the electrochemical synthesis method for hypothetical MgB6 from chloro-oxy-fluoride molten salt system is provided. Mechanism for the formation of magnesium hexaboride is discussed.
Process for production of solution-derived (Pb,La)(Nb,Sn,Zr,Ti)O.sub.3 thin films and powders
Boyle, Timothy J.
1999-01-01
A simple and rapid process for synthesizing (Pb,La)(Nb,Sn,Zr,Ti)O.sub.3 precursor solutions and subsequent ferroelectric thin films and powders of the perovskite phase of these materials has been developed. This process offers advantages over standard methods, including: rapid solution synthesis (<10 minutes), use of commercially available materials, film production under ambient conditions, ease of lanthanum dissolution at high concentrations, and no heating requirements during solution synthesis. For lanthanum-doped ferroelectric materials, the lanthanum source can be added with total synthesis time less than 10 minutes. Films and powders are crystallized at approximately 650.degree. C. and exhibit ferroelectric properties comparable to films and powders produced by other techniques which require higher crystallization temperatures.
Advancing radiation balanced lasers (RBLs) in rare-earth (RE)-doped solids
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hehlen, Markus Peter
2016-11-21
These slides cover the following topics: Mid-IR lasers in crystals using two-tone RBL (Single-dopant two-tone RBLs: Tm 3+, Er 3+, and Co-doped two-tone RBLs: (Yb 3+, Nd 3+) and (Ho 3+, Tm 3+); Advanced approaches to RBL crystals (Precursor purification, Micro-pulling-down crystal growth, and Bridgman crystal growth); Advanced approaches to RBL fibers (Materials for RBL glass fibers, Micro-structured fibers for RBL, and Fiber preform synthesis); and finally objectives.
Dielectric and domain studies on Fe doped KNbO3 single crystal
NASA Astrophysics Data System (ADS)
Shamkuwar, Sanjaykumar H.; Patil, Naresh M.; Korde, Vivek B.; Pradnyakar, Namrata V.
2018-05-01
Synthesis of Fe doped KNbO3 single crystals by flux method is reported here. The effect of Fe-doping on phase transition temperatures of KNbO3 single crystals was investigated using dielectric studies. The phase transition temperatures were found to be 225°C and 425°C which almost same as reported by others. The domain studies were carried out using metallurgical microscope and it shows the presence of 60° and 90° domains in the grown crystals.
Banigan, James R; Mandal, Kalyaneswar; Sawaya, Michael R; Thammavongsa, Vilasak; Hendrickx, Antoni P A; Schneewind, Olaf; Yeates, Todd O; Kent, Stephen B H
2010-10-01
The 50-residue snake venom protein L-omwaprin and its enantiomer D-omwaprin were prepared by total chemical synthesis. Radial diffusion assays were performed against Bacillus megaterium and Bacillus anthracis; both L- and D-omwaprin showed antibacterial activity against B. megaterium. The native protein enantiomer, made of L-amino acids, failed to crystallize readily. However, when a racemic mixture containing equal amounts of L- and D-omwaprin was used, diffraction quality crystals were obtained. The racemic protein sample crystallized in the centrosymmetric space group P2(1)/c and its structure was determined at atomic resolution (1.33 A) by a combination of Patterson and direct methods based on the strong scattering from the sulfur atoms in the eight cysteine residues per protein. Racemic crystallography once again proved to be a valuable method for obtaining crystals of recalcitrant proteins and for determining high-resolution X-ray structures by direct methods.
NASA Astrophysics Data System (ADS)
Yamaura, Kazunari
2016-04-01
High-pressure crystal growth and synthesis of selected solid-state osmium oxides, many of which are perovskite-related types, are briefly reviewed, and their magnetic and electrical properties are introduced. Crystals of the osmium oxides, including NaOsO3, LiOsO3, and Na2OsO4, were successfully grown under high-pressure and high-temperature conditions at 6 GPa in the presence of an appropriate amount of flux in a belt-type apparatus. The unexpected discovery of a magnetic metal-insulator transition in NaOsO3, a ferroelectric-like transition in LiOsO3, and high-temperature ferrimagnetism driven by a local structural distortion in Ca2FeOsO6 may represent unique features of the osmium oxides. The high-pressure and high-temperature synthesis and crystal growth has played a central role in the development of solid-state osmium oxides and the elucidation of their magnetic and electronic properties toward possible use in multifunctional devices.
Single Crystal Synthesis and STM Studies of High Temperature Superconductors
NASA Technical Reports Server (NTRS)
Barrientos, Alfonso
1997-01-01
This is a final report for the work initiated in September of 1994 under the grant NAG8-1085 - NASA/OMU, on the fabrication of bulk and single crystal synthesis, specific heat measuring and STM studies of high temperature superconductors. Efforts were made to fabricate bulk and single crystals of mercury based superconducting material. A systematic thermal analysis on the precursors for the corresponding oxides and carbonates were carried out to synthesized bulk samples. Bulk material was used as seed in an attempt to grow single crystals by a two-step self flux process. On the other hand bulk samples were characterized by x-ray diffraction, electrical resistivity and magnetic susceptibility, We studied the specific heat behavior in the range from 80 to 300 K. Some preliminary attempts were made to study the atomic morphology of our samples. As part of our efforts we built an ac susceptibility apparatus for measuring the transition temperature of our sintered samples.
NASA Astrophysics Data System (ADS)
Kurake, Naoyuki; Tanaka, Hiromasa; Ishikawa, Kenji; Nakamura, Kae; Kajiyama, Hiroaki; Kikkawa, Fumitaka; Mizuno, Masaaki; Yamanishi, Yoko; Hori, Masaru
2016-09-01
The non-equilibrium atmospheric pressure plasma (NEAPP) has been attracted attention because of its characteristic high reactivity even in a low temperature so that various phenomena by the NEAPP such as a sterilization, growth promotion and so forth have been reported around the world. Previously, we reported the NEAPP irradiation generated the calcium oxalate crystals in the medium, which contains 31 kinds of organics and inorganics. The Dulbecco's Modified Eagle Medium (DMEM) which was used in previous study is composed of no oxalate. Interestingly, not only crystallization but also synthesis of the oxalate was occurred by the NEAPP irradiation. Also the crystallization details were analyzed with the X-ray diffraction (XRD). In this study, we have clarified the mechanism on the crystallization due that D-glucose, calcium ion and bicarbonate ions are minimum essential components. The oxalate synthesis was proved by the gas chromatography and mass spectrometer (GC-MS). Finally, we conclude that a supersaturation of oxalic acid synthesized in those 3 species by the NEAPP.
Frackowiak, Anna; Skibiński, Przemysław; Gaweł, Wiesław; Zaczyńska, Ewa; Czarny, Anna; Gancarz, Roman
2010-03-01
Synthesis of glycosyl derivatives of hydroxyanthraquinones (6-10) potentially useful for kidney stone therapy is presented. These compounds were analyzed as inhibitors of calcium oxalate crystals formation as well as substances with the ability of dissolving crystalline calcium oxalate. In addition, the effect of the compounds obtained on real kidney stones was analyzed by ex vivo tests. The tests on L929 and A545 cell lines have shown that the compounds obtained were not cytotoxic. Copyright (c) 2009 Elsevier Masson SAS. All rights reserved.
Solvothermal synthesis and surface chemistry to control the size and morphology of nanoquartz
Sochalski-Kolbus, Lindsay M.; Wang, Hsiu-Wen; Rondinone, Adam Justin; ...
2015-09-29
In this paper, we report a solvothermal synthesis method that allows the crystallization of quartz to occur at a relatively low temperature of 300°C in the form of isolated nanosized euhedral crystals. Transmission electron microscopy (TEM) and small area electron diffraction (SAED) were used to confirm the phases present and their particle sizes, morphologies, and crystallinity of the products. In conclusion, the results show that it is possible to control the size and morphology of the nanoquartz from rough nanospheres to nanorods using fluoride, which templates the nanocrystals and moderates growth.
2006-03-31
crystals by the flux method and modified Bridgman technique, the growth results were hardly reproducible, and the quality of the crystals was still a serious... growth . 2.2.1.2.2) Solution Bridgman Growth A modified Bridgman method using excess of PbO as solvent was developed for the growth of PZNT91/9 crystals ...of growth , the grown crystal can be rotated via the A120 3 rod which was driven by a motor at a speed of 0 to 30 rmp. Figure 15(b) gives the
Aqueous synthesis of III-V semiconductor GaP and InP exhibiting pronounced quantum confinement.
Gao, Shanmin; Lu, Jun; Chen, Nan; Zhao, Yan; Xie, Yi
2002-12-21
A mild aqueous synthesis route was successfully established to synthesize well crystallized and monodisperse GaP and InP nanocrystals, which were proved to exhibit pronounced quantum confinement by room-temperature UV/Vis adsorption and photoluminescence (PL) spectra.
NASA Astrophysics Data System (ADS)
Karunagaran, N.; Ramasamy, P.
2018-02-01
Silver Gallium Indium Sulfide (AgGa0.5In0.5S2) belongs to the family of AIBIIIC2VI ternary compound semiconductors which crystallize in the chalcopyrite structure. Synthesis of the polycrystalline material from the starting elements is achieved using melt temperature oscillation method. The AgGa0.5In0.5S2 single crystals have been grown by the vertical Bridgman technique. The synthesized AgGa0.5In0.5S2 polycrystalline charge was confirmed by powder XRD. The peak positions are in good agreement with the powder diffraction file. Thermal property was analyzed using differential scanning calorimetry (DSC) technique. The melting point of the crystal is 896 °C and freezing point is 862 °C. The unit cell parameters were confirmed by single crystal X-ray. The transmittance of the grown crystal is 55% in the NIR region and 60% in the mid-IR region. The optical band gap was found to be 2.0 eV. The stoichiometric composition of AgGa0.5In0.5S2 was measured using energy dispersive spectrometry (EDS). The photoluminescence behavior of AgGa0.5In0.5S2 has been analyzed. The resistivity of the grown single crystal has been measured.
NASA Astrophysics Data System (ADS)
Mehdi, Sayed Hasan; Hashim, Rokiah; Ghalib, Raza Murad; Fátima C. Guedes da Silva, M.; Sulaiman, Othman; Rahman, Syed Ziaur; Murugaiyah, Vikneswaran; Marimuthu, Mani Maran
2011-12-01
The crystal structure of the title compound, 4b,9b-dihydroxy-7,8-dihydro-4bH-indeno[1,2-b]benzofuran-9,10(6H,9bH)-dione has been determined by single crystal X-ray diffraction. It crystallizes in the monoclinic space group P2 1/c with Z = 4. The FTIR as well as the 1H and 13C NMR spectra of the compound were also recorded and briefly discussed. The compound showed potential antimicrobial activity comparable to that of clinically used antimicrobial agents against selected microorganisms. It has selective and moderate inhibitory activity on butyryl cholinesterase enzyme and could serve as potential lead compound for synthesis of more bioactive derivatives.
Armstrong, Mitchell R; Senthilnathan, Sethuraman; Balzer, Christopher J; Shan, Bohan; Chen, Liang; Mu, Bin
2017-01-01
Systematic studies of key operating parameters for the sonochemical synthesis of the metal organic framework (MOF) HKUST-1(also called CuBTC) were performed including reaction time, reactor volume, sonication amplitude, sonication tip size, solvent composition, and reactant concentrations analyzed through SEM particle size analysis. Trends in the particle size and size distributions show reproducible control of average particle sizes between 1 and 4μm. These results along with complementary studies in sonofragmentation and temperature control were conducted to compare these results to kinetic crystal growth models found in literature to develop a plausible hypothetical mechanism for ultrasound-assisted growth of metal-organic-frameworks composed of a competitive mechanism including constructive solid-on-solid (SOS) crystal growth and a deconstructive sonofragmentation. Copyright © 2016 Elsevier B.V. All rights reserved.
Advantage of low-temperature hydrothermal synthesis to grow stoichiometric crednerite crystals
NASA Astrophysics Data System (ADS)
Poienar, Maria; Martin, Christine; Lebedev, Oleg I.; Maignan, Antoine
2018-06-01
This work reports a new approach for the growth of stoichiometric crednerite CuMnO2 crystals. The hydrothermal reaction, starting from soluble metal sulphates as precursors, is assisted by ethylene glycol and the formation of crednerite is found to depend strongly on pH and temperature. This method allows obtaining small hexagonal platelets with the larger dimension about 1.0-1.5 μm and with a composition characterized by a Cu/Mn ratio of 1. Thus, these crystals differ from the needle-like millimetric ones obtained by the flux technique for which the composition departs from the expected one and is close to Cu1.04Mn0.96. This monitoring of the cationic composition in crednerite, using hydrothermal synthesis, is important as the Cu/Mn ratio controls the low temperature antiferromagnetic ground-state.
Zimmermann, Iwan; Johnsson, Mats
2013-10-21
Three new cobalt selenite hydroxo-phosphates laying in the solid solution Co3(SeO3)3-x(PO3OH)x(H2O), with x = 0.8, x = 1.0, and x = 1.2 are reported. Single crystals were obtained by hydrothermal synthesis and the crystal structure was determined by single crystal X-ray diffraction. The structure can be described as a 3D framework having selenite and hydroxo-phosphate groups protruding into channels in the crystal structure. Se(4+) and P(5+) share a split position in the structure so that either SeO3 groups having a stereochemically active lone pair or tetrahedrally coordinated PO3OH groups are present. The OH-group is thus only present when the split position is occupied by P(5+). The crystal water is coordinated to a cobalt atom and TG and IR measurements show that the water and hydroxyl groups leave the structure at unusually high temperatures (>450 °C). Magnetic susceptibility measurements show antiferromagnetic coupling below 16 K and a magnetic moment of 4.02(3) μB per Co atom was observed.
Synthesis of a mixed-valent tin nitride and considerations of its possible crystal structures
Caskey, Christopher M.; Holder, Aaron; Shulda, Sarah; ...
2016-04-12
Recent advances in theoretical structure prediction methods and high-throughput computational techniques are revolutionizing experimental discovery of the thermodynamically stable inorganic materials. Metastable materials represent a new frontier for these studies, since even simple binary non-ground state compounds of common elements may be awaiting discovery. However, there are significant research challenges related to non-equilibrium thin film synthesis and crystal structure predictions, such as small strained crystals in the experimental samples and energy minimization based theoretical algorithms. Here, we report on experimental synthesis and characterization, as well as theoretical first-principles calculations of a previously unreported mixed-valent binary tin nitride. Thin film experimentsmore » indicate that this novel material is N-deficient SnN with tin in the mixed ii/iv valence state and a small low-symmetry unit cell. Theoretical calculations suggest that the most likely crystal structure has the space group 2 (SG2) related to the distorted delafossite (SG166), which is nearly 0.1 eV/atom above the ground state SnN polymorph. Furthermore, this observation is rationalized by the structural similarity of the SnN distorted delafossite to the chemically related Sn 3N 4 spinel compound, which provides a fresh scientific insight into the reasons for growth of polymorphs of metastable materials. In addition to reporting on the discovery of the simple binary SnN compound, this paper illustrates a possible way of combining a wide range of advanced characterization techniques with the first-principle property calculation methods, to elucidate the most likely crystal structure of the previously unreported metastable materials.« less
Synthesis of a mixed-valent tin nitride and considerations of its possible crystal structures
NASA Astrophysics Data System (ADS)
Caskey, Christopher M.; Holder, Aaron; Shulda, Sarah; Christensen, Steven T.; Diercks, David; Schwartz, Craig P.; Biagioni, David; Nordlund, Dennis; Kukliansky, Alon; Natan, Amir; Prendergast, David; Orvananos, Bernardo; Sun, Wenhao; Zhang, Xiuwen; Ceder, Gerbrand; Ginley, David S.; Tumas, William; Perkins, John D.; Stevanovic, Vladan; Pylypenko, Svitlana; Lany, Stephan; Richards, Ryan M.; Zakutayev, Andriy
2016-04-01
Recent advances in theoretical structure prediction methods and high-throughput computational techniques are revolutionizing experimental discovery of the thermodynamically stable inorganic materials. Metastable materials represent a new frontier for these studies, since even simple binary non-ground state compounds of common elements may be awaiting discovery. However, there are significant research challenges related to non-equilibrium thin film synthesis and crystal structure predictions, such as small strained crystals in the experimental samples and energy minimization based theoretical algorithms. Here, we report on experimental synthesis and characterization, as well as theoretical first-principles calculations of a previously unreported mixed-valent binary tin nitride. Thin film experiments indicate that this novel material is N-deficient SnN with tin in the mixed ii/iv valence state and a small low-symmetry unit cell. Theoretical calculations suggest that the most likely crystal structure has the space group 2 (SG2) related to the distorted delafossite (SG166), which is nearly 0.1 eV/atom above the ground state SnN polymorph. This observation is rationalized by the structural similarity of the SnN distorted delafossite to the chemically related Sn3N4 spinel compound, which provides a fresh scientific insight into the reasons for growth of polymorphs of metastable materials. In addition to reporting on the discovery of the simple binary SnN compound, this paper illustrates a possible way of combining a wide range of advanced characterization techniques with the first-principle property calculation methods, to elucidate the most likely crystal structure of the previously unreported metastable materials.
Synthesis of a mixed-valent tin nitride and considerations of its possible crystal structures.
Caskey, Christopher M; Holder, Aaron; Shulda, Sarah; Christensen, Steven T; Diercks, David; Schwartz, Craig P; Biagioni, David; Nordlund, Dennis; Kukliansky, Alon; Natan, Amir; Prendergast, David; Orvananos, Bernardo; Sun, Wenhao; Zhang, Xiuwen; Ceder, Gerbrand; Ginley, David S; Tumas, William; Perkins, John D; Stevanovic, Vladan; Pylypenko, Svitlana; Lany, Stephan; Richards, Ryan M; Zakutayev, Andriy
2016-04-14
Recent advances in theoretical structure prediction methods and high-throughput computational techniques are revolutionizing experimental discovery of the thermodynamically stable inorganic materials. Metastable materials represent a new frontier for these studies, since even simple binary non-ground state compounds of common elements may be awaiting discovery. However, there are significant research challenges related to non-equilibrium thin film synthesis and crystal structure predictions, such as small strained crystals in the experimental samples and energy minimization based theoretical algorithms. Here, we report on experimental synthesis and characterization, as well as theoretical first-principles calculations of a previously unreported mixed-valent binary tin nitride. Thin film experiments indicate that this novel material is N-deficient SnN with tin in the mixed ii/iv valence state and a small low-symmetry unit cell. Theoretical calculations suggest that the most likely crystal structure has the space group 2 (SG2) related to the distorted delafossite (SG166), which is nearly 0.1 eV/atom above the ground state SnN polymorph. This observation is rationalized by the structural similarity of the SnN distorted delafossite to the chemically related Sn3N4 spinel compound, which provides a fresh scientific insight into the reasons for growth of polymorphs of metastable materials. In addition to reporting on the discovery of the simple binary SnN compound, this paper illustrates a possible way of combining a wide range of advanced characterization techniques with the first-principle property calculation methods, to elucidate the most likely crystal structure of the previously unreported metastable materials.
Synthesis of a mixed-valent tin nitride and considerations of its possible crystal structures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Caskey, Christopher M.; Colorado School of Mines, Golden, Colorado 80401; Larix Chemical Science, Golden, Colorado 80401
2016-04-14
Recent advances in theoretical structure prediction methods and high-throughput computational techniques are revolutionizing experimental discovery of the thermodynamically stable inorganic materials. Metastable materials represent a new frontier for these studies, since even simple binary non-ground state compounds of common elements may be awaiting discovery. However, there are significant research challenges related to non-equilibrium thin film synthesis and crystal structure predictions, such as small strained crystals in the experimental samples and energy minimization based theoretical algorithms. Here, we report on experimental synthesis and characterization, as well as theoretical first-principles calculations of a previously unreported mixed-valent binary tin nitride. Thin film experimentsmore » indicate that this novel material is N-deficient SnN with tin in the mixed II/IV valence state and a small low-symmetry unit cell. Theoretical calculations suggest that the most likely crystal structure has the space group 2 (SG2) related to the distorted delafossite (SG166), which is nearly 0.1 eV/atom above the ground state SnN polymorph. This observation is rationalized by the structural similarity of the SnN distorted delafossite to the chemically related Sn{sub 3}N{sub 4} spinel compound, which provides a fresh scientific insight into the reasons for growth of polymorphs of metastable materials. In addition to reporting on the discovery of the simple binary SnN compound, this paper illustrates a possible way of combining a wide range of advanced characterization techniques with the first-principle property calculation methods, to elucidate the most likely crystal structure of the previously unreported metastable materials.« less
Loren, Bradley P.; Wleklinski, Michael; Koswara, Andy; Yammine, Kathryn; Hu, Yanyang
2017-01-01
A highly integrated approach to the development of a process for the continuous synthesis and purification of diphenhydramine is reported. Mass spectrometry (MS) is utilized throughout the system for on-line reaction monitoring, off-line yield quantitation, and as a reaction screening module that exploits reaction acceleration in charged microdroplets for high throughput route screening. This effort has enabled the discovery and optimization of multiple routes to diphenhydramine in glass microreactors using MS as a process analytical tool (PAT). The ability to rapidly screen conditions in charged microdroplets was used to guide optimization of the process in a microfluidic reactor. A quantitative MS method was developed and used to measure the reaction kinetics. Integration of the continuous-flow reactor/on-line MS methodology with a miniaturized crystallization platform for continuous reaction monitoring and controlled crystallization of diphenhydramine was also achieved. Our findings suggest a robust approach for the continuous manufacture of pharmaceutical drug products, exemplified in the particular case of diphenhydramine, and optimized for efficiency and crystal size, and guided by real-time analytics to produce the agent in a form that is readily adapted to continuous synthesis. PMID:28979759
Ultrafast synthesis of LTA nanozeolite using a two-phase segmented fluidic microreactor.
Zhou, Jianhai; Jiang, Hao; Xu, Jian; Hu, Jun; Liu, Honglai; Hu, Ying
2013-08-01
Fast synthesis of nanosized zeolite is desirable for many industrial applications. An ultrafast synthesis of LTA nanozeolite by the organic-additive-free method in a two-phase segmented fluidic microreactor has been realized. The results reveal that the obtained LTA nanozeolites through microreactor are much smaller and higher crystallinity than those under similar conditions through conventional macroscale batch reactor. By investing various test conditions, such as the crystallization temperature, the flow rate, the microchannel length, and the aging time of gel solution, this two-phase segmented fluidic microreactor system enables us to develop an ultrafast method for nanozeolite production. Particularly, when using a microreactor with the microchannel length of 20 m, it only takes 10 min for the crystallization and no aging process to successfully produce the crystalline LTA nanozeolites at 95 degrees C.
Controlled synthesis of quantum confined CsPbBr3 perovskite nanocrystals under ambient conditions
NASA Astrophysics Data System (ADS)
He, Huimei; Tang, Bing; Ma, Ying
2018-02-01
Room temperature recrystallization is a simple and convenient method for synthesis of all-inorganic perovskite nanomaterials with excellent luminescent properties. However, the fast crystallization usually brings the colloidal stability and uncontrollable synthesis issues in the formation of all-inorganic perovskite. In the present study, we present a new strategy to prepare the quantum confined CsPbBr3 nanocrystals with controlled morphology under ambient condition. With the assist of fatty acid-capped precursor, the crystallization and the following growth rate can be retarded. Thanks to the retarded reaction, the morphology can be varied from nanowires to nanoplates and the thickness can be controlled from 5-7 monolayers by simply adjusting the amount of octylammonium cations and oleic acid. The nanoplates exhibit a higher photoluminescence quantum yield than the nanowires possibly due to fewer defects in the nanoplates.
NASA Astrophysics Data System (ADS)
Susanto, B. H.; Prakasa, M. B.; Shahab, M. H.
2016-11-01
The synthesis of metal nanocrystal was conducted by modification preparation from simple heating method which heating and cooling process run rapidly. The result of NiMo/Z 575 °C characterizations are 33.73 m2/gram surface area and 31.80 nm crystal size. By used NiMo/C 700 °C catalyst for 30 minutes which had surface area of 263.21 m2/gram, had 31.77 nm crystal size, and good morphology, obtained catalyst with high activity, selectivity, and stability. After catalyst activated, synthesis of renewable diesel performed in hydrogenation reactor at 375 °C, 12 bar, and 800 rpm. The result of conversion was 81.99%, yield was 68.08%, and selectivity was 84.54%.
Multicolour synthesis in lanthanide-doped nanocrystals through cation exchange in water
NASA Astrophysics Data System (ADS)
Han, Sanyang; Qin, Xian; An, Zhongfu; Zhu, Yihan; Liang, Liangliang; Han, Yu; Huang, Wei; Liu, Xiaogang
2016-10-01
Meeting the high demand for lanthanide-doped luminescent nanocrystals across a broad range of fields hinges upon the development of a robust synthetic protocol that provides rapid, just-in-time nanocrystal preparation. However, to date, almost all lanthanide-doped luminescent nanomaterials have relied on direct synthesis requiring stringent controls over crystal nucleation and growth at elevated temperatures. Here we demonstrate the use of a cation exchange strategy for expeditiously accessing large classes of such nanocrystals. By combining the process of cation exchange with energy migration, the luminescence properties of the nanocrystals can be easily tuned while preserving the size, morphology and crystal phase of the initial nanocrystal template. This post-synthesis strategy enables us to achieve upconversion luminescence in Ce3+ and Mn2+-activated hexagonal-phased nanocrystals, opening a gateway towards applications ranging from chemical sensing to anti-counterfeiting.
Transparent Glass-Ceramics Produced by Sol-Gel: A Suitable Alternative for Photonic Materials
Gorni, Giulio; Mosa, Jadra; Balda, Rolindes; Fernández, Joaquin; Durán, Alicia; Castro, Yolanda
2018-01-01
Transparent glass-ceramics have shown interesting optical properties for several photonic applications. In particular, compositions based on oxide glass matrices with fluoride crystals embedded inside, known as oxyfluoride glass-ceramics, have gained increasing interest in the last few decades. Melt-quenching is still the most used method to prepare these materials but sol-gel has been indicated as a suitable alternative. Many papers have been published since the end of the 1990s, when these materials were prepared by sol-gel for the first time, thus a review of the achievements obtained so far is necessary. In the first part of this paper, a review of transparent sol-gel glass-ceramics is made focusing mainly on oxyfluoride compositions. Many interesting optical results have been obtained but very little innovation of synthesis and processing is found with respect to pioneering papers published 20 years ago. In the second part we describe the improvements in synthesis and processing obtained by the authors during the last five years. The main achievements are the preparation of oxyfluoride glass-ceramics with a much higher fluoride crystal fraction, at least double that reported up to now, and the first synthesis of NaGdF4 glass-ceramics. Moreover, a new SiO2 precursor was introduced in the synthesis, allowing for a reduction in the treatment temperature and favoring hydroxyl group removal. Interesting optical properties demonstrated the incorporation of dopant ions in the fluoride crystals, thus obtaining crystal-like spectra along with higher efficiencies with respect to xerogels, and hence demonstrating that these materials are a suitable alternative for photonic applications. PMID:29385706
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wei, Kaya; Dong, Yongkwan; Nolas, George S., E-mail: gnolas@usf.edu
A new quaternary clathrate–II composition, Cs{sub 8}Na{sub 16}Al{sub 24}Si{sub 112}, was synthesized by kinetically controlled thermal decomposition (KCTD) employing both NaSi and NaAlSi as the precursors and CsCl as a reactive flux. The crystal structure and composition of Cs{sub 8}Na{sub 16}Al{sub 24}Si{sub 112} were investigated using both Rietveld refinement and elemental analysis, and the temperature dependent transport properties were investigated. Our results indicate that KCTD with multiple precursors is an effective method for the synthesis of multinary inorganic phases that are not easily accessible by traditional solid-state synthesis or crystal growth techniques. - Graphical abstract: Quaternary Cs{sub 8}Na{sub 16}Al{sub 24}S{submore » 112} clathrate–II was synthesized for the first time by kinetically controlled thermal decomposition (KCTD) employing a NaSi+NaAlSi precursor mixture with CsCl as the reactive flux, and the structural and transport properties were investigated. Our approach demonstrates a new synthetic pathway for the synthesis of multinary inorganic compounds. This work reports the exploration of a new clathrate composition as this class of materials continues to be of interest for thermoelectrics and other energy-related applications.« less
Precipitation method for barium metaborate (BaB2O4) synthesis from borax solution
NASA Astrophysics Data System (ADS)
Akşener, Eymen; Figen, Aysel Kantürk; Pişkin, Sabriye
2013-12-01
In this study, barium metaborate (BaB2O4, BMB) synthesis from the borax solution was carried out. BMB currently is used in production of ceramic glazes, luminophors, oxide cathodes as well as additives to pigments for aqueous emulsion paints and also β-BaB2O4 single crystals are the best candidate for fabrication of solid-state UV lasers operating at a wavelength of 200 nm due to excellent nonlinear optical properties. In the present study, synthesis was carried out from the borax solution (Na2B4O7ṡ10H2O, BDH) and barium chloride (BaCI2ṡ2H2O, Ba) in the glass-batch reactor with stirring. The effect of, times (5-15 min), molar ratio [stoich.ration (1.0:2.0), 1.25:2.0, 1.5:2.0, 2.5:2:0, 3.0:2.0, 3.5:2.0,4.0:2.0, 5.0:2.0] and also crystallization time (2-6 hour) on the BMB yield (%) was investigated at 80 °C reaction temperature. It is found that, BMB precipitation synthesis with 90 % yield can be performed from 0.50 molar ration (BDH:Ba), under 80 °C, 15 minute, and 6 hours crystallization time. The structural properties of BMB powders were characterized by using XRD, FT-IR and DTA-TG instrumental analysis technique.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, J.; Bolstad, D; Smith, A
2009-01-01
Candida glabrata, a fungal strain resistant to many commonly administered antifungal agents, has become an emerging threat to human health. In previous work, we validated that the essential enzyme, dihydrofolate reductase, is a drug target in C. glabrata. Using a crystal structure of dihydrofolate reductase from C. glabrata bound to an initial lead compound, we designed a class of biphenyl antifolates that potently and selectively inhibit both the enzyme and the growth of the fungal culture. In this work, we explore the structure-activity relationships of this class of antifolates with four new high resolution crystal structures of enzyme:inhibitor complexes andmore » the synthesis of four new inhibitors. The designed inhibitors are intended to probe key hydrophobic pockets visible in the crystal structure. The crystal structures and an evaluation of the new compounds reveal that methyl groups at the meta and para positions of the distal phenyl ring achieve the greatest number of interactions with the pathogenic enzyme and the greatest degree of selectivity over the human enzyme. Additionally, antifungal activity can be tuned with substitution patterns at the propargyl and para-phenyl positions.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Breshears, Andrew T.; Brown, M. Alex; Bloom, Ira
We report a new method of crystal growth and synthesis based on liquid-liquid partitioning that allows for isolation and in-depth characterization of molybdenyl bis(formohydroxamate), Mo-FHA, molybdenyl bis(acetohydroxamate), Mo-AHA, and molybdenyl deferoxamine, Mo-DFO, for the first time. This novel approach affords shorter crystal growth time (hourly timeframe) without sacrificing crystal size or integrity when other methods of crystallization were unsuccessful. All three Mo complexes are characterized in solution via FTIR, NMR, UV-vis, and EXAFS spectroscopy. Mo-AHA and Mo-FHA structures are resolved by single crystal X-ray diffraction. Using the molybdenyl hydroxamate structural information, the speciation of Mo in a siderophore complex (Mo-DFO)more » is determined via complimentary spectroscopic methods and confirmed by DFT calculations. ESI-MS verifies that a complex of 1:1 molybdenum to deferoxamine is present in solution. Additionally, the Mo solution speciation in the precursor organic phase, MoO2(NO3)2HEH[EHP]2 (where HEH[EHP] is 2-ethylhexylphosphonic acid mono-2-ethylhexyl ester), is characterized by FTIR and EXAFS spectroscopy as well as DFT calculations.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Khaleel, Maryam; Xu, Wenqian; Lesch, David A.
The effects of synthesis conditions on the FAU/EMT content and the size of nanocrystals, formed from inorganic aluminosilicate sols, were investigated. High resolution transmission electron microscopy imaging and comparison of experimental X-ray diffraction patterns with simulations demonstrated that all materials made starting from synthesis mixtures in the composition range (1.8-33) SiO2: 1 Al2O3: (2.7-33) Na2O: (41-1000) H2O contain FAU/EMT intergrowths. Compositions with low water content increase the FAU fraction up to 0.8 but the crystal size exceeds 100 nm. Extension of the higher FAU purity to nanocrystals was achieved only by first mixing the sol at high water content compositionsmore » that favor nanocrystal formation and then - after a certain time - lowering by freeze-drying the water to levels favoring the formation of FAU. Cryogenic transmission electron microscopy and small angle X-ray scattering from representative optically clear and colloidally stable precursor sols (aged and crystallized at ambient temperature) reveal the formation of amorphous aggregates before the detection of crystals, in agreement with earlier findings and an existing model for the aggregative growth of the zeolite MFI. The presence of these amorphous aggregates coincides with the aforementioned state of sol that preserves the original trajectory towards nano-crystals after the pronounced reduction of water content by freeze-drying. If water reduction by freeze-drying is applied earlier (before the detection of amorphous aggregates), the sol follows the low water content trajectory towards larger crystals. Despite this memory effect, the sol at this stage is still agnostic towards FAU or EMT formation, the relative content of which is dominantly determined by the final water content. These findings demonstrate that it is possible to combine the effects of pre-and post-nucleation sol composition to steer crystal size and crystal structure, respectively. They confirm precursor nanoparticle evolution, while they emphasize the importance of solution phase composition at both pre- and post-nucleation stages of aggregative crystal growth.« less
NASA Astrophysics Data System (ADS)
Shruthi, C.; Ravindrachary, V.; Guruswamy, B.; Lokanath, N. K.; Kumara, Karthik; Goveas, Janet
2018-05-01
Needle shaped brown coloured single crystal of the title compound was grown by slow evaporation technique using methanol as solvent. The grown crystal was characterized using FT-IR, Single crystal XRD, UV-visible and NLO studies. Crystal structure was confirmed by FT-IR study and the functional groups were identified. XRD study reveals that the crystal belongs to orthorhombic crystal system with pnaa space group and the corresponding cell parameters were calculated. UV-visible spectrum shows that the crystal is transparent in the entire visible region and absorption takes place in the UV-range. NLO efficiency of the crystal obtained 0.66 times that of urea was determined by SHG test. The intermolecular interaction and percentage contribution of each individual atom in the crystal lattice was quantized using Hirshfeld surface and 2D finger print analysis.
Synthesis-Structure-Activity Relationships in Co3O4 Catalyzed CO Oxidation
NASA Astrophysics Data System (ADS)
Mingle, Kathleen; Lauterbach, Jochen
2018-05-01
In this work, a statistical design and analysis platform was used to develop cobalt oxide based oxidation catalysts prepared via one pot metal salt reduction. An emphasis was placed upon understanding the effects of synthesis conditions, such as heating regimen and Co2+ concentration on the metal salt reduction mechanism, the resultant nanomaterial properties (i.e. size, crystal structure, and crystal faceting), and the catalytic activity in CO oxidation. This was accomplished by carrying out XRD, TEM, and FTIR studies on synthesis intermediates and products. Additionally, high-throughput experimentation was employed to study the performance of Co3O4 oxidation catalysts over a wide range of reaction conditions using a 16-channel fixed bed reactor equipped with a parallel infrared imaging system. Specifically, Co3O4 nanomaterials of varying properties were evaluated for their performance as CO oxidation catalysts. Figure-of-merits including light-off temperatures and activation energies were measured and mapped back to the catalyst properties and synthesis conditions. Statistical analysis methods were used to elucidate significant property-activity relationships as well as the design rules relevant in the synthesis of active catalysts. It was found that CO oxidation light off temperatures could be decreased to <90°C by utilizing the discovered synthesis-structure-activity relationships.
NASA Astrophysics Data System (ADS)
Slathia, Goldy; Raina, Bindu; Gupta, Rashmi; Bamzai, K. K.
2018-05-01
The synthesis of samarium chloride coordinated single crystal was carried out at room temperature by slow evaporation method. The crystal possesses a well defined hexagonal morphology with six symmetrically equivalent growth sectors separated by growth boundaries. The theoretical morphology has been established by structural approach using Bravaise-Friedele-Donnaye-Harker (BFDH) law. Fourier transform infra red spectroscopy was carried in order to study the geometry and structure of the crystal. The detailed thermogravimetric analysis elucidates the thermal stability of the complex.
Crystal structure and optical properties of silver nanorings
NASA Astrophysics Data System (ADS)
Zhou, Li; Fu, Xiao-Feng; Yu, Liao; Zhang, Xian; Yu, Xue-Feng; Hao, Zhong-Hua
2009-04-01
We report the polyol synthesis and crystal structure characterization of silver nanorings, which have perfect circular shape, smooth surface, and elliptical wire cross-section. The characterization results show that the silver nanorings have well-defined crystal of singly twinned along the whole ring. The spatial distribution of the scattering of a silver nanoring with slanted incidence reveals the unique focus effect of the nanoring, and the focus scattering varies with the incident wavelength. The silver nanorings with perfect geometry and well-defined crystal have potential applications in nanoscaled photonics, plasmonic devices, and optical manipulation.
Mesoscopic monodisperse ferromagnetic colloids enable magnetically controlled photonic crystals.
Xu, Xiangling; Majetich, Sara A; Asher, Sanford A
2002-11-20
We report here the first synthesis of mesoscopic, monodisperse particles which contain nanoscopic inclusions of ferromagnetic cobalt ferrites. These monodisperse ferromagnetic composite particles readily self-assemble into magnetically responsive photonic crystals that efficiently Bragg diffract incident light. Magnetic fields can be used to control the photonic crystal orientation and, thus, the diffracted wavelength. We demonstrate the use of these ferromagnetic particles to fabricate magneto-optical diffracting fluids and magnetically switchable diffracting mirrors.
2016-04-12
AFRL-AFOSR-CL-TR-2016-0012 Intramolecular Charge Transfer of Conjugated Liquid Crystal Ferrocene Macromolecules Ronald Ziolo CIQA Final Report 07/07...3. DATES COVERED (From - To) 15 Aug 2014 to 14 Jan 2016 4. TITLE AND SUBTITLE Intramolecular Charge Transfer of Conjugated Liquid Crystal Ferrocene...characterization of a new series of conjugated macromolecules bearing ferrocene as a highly efficient electron donor material coupled to 2,5-di(alcoxy) benzene
Yan, Shicheng; Wan, Lijuan; Li, Zhaosheng; Zhou, Yong; Zou, Zhigang
2010-09-14
A new approach is proposed to synthesize a mesoporous single crystal Ga(2)O(3) nanoplate by heating a single crystal nanoplate of GaOOH, which involves an ion exchange between KGaO(2) and CH(3)COOH at room temperature for the formation of GaOOH and pseudomorphic and topotactic phase transformation from GaOOH to Ga(2)O(3).
NASA Astrophysics Data System (ADS)
Kabak, Mehmet; Şenöz, Hülya; Elmali, Ayhan; Adar, Vildan; Svoboda, Ingrid; Dušek, Michal; Fejfarová, Karla
2010-12-01
The title compound, C29H23NO2, has been characterized by single-crystal X-ray diffraction at two different temperatures (303 K and 120 K) and wavelengths (Mo K α and Cu K α). The non-centrosymmetric hexagonal crystal structure contains four-membered planar β-lactam ring with an unusually long C-C bond. The β-lactam ring is almost planar.
NASA Astrophysics Data System (ADS)
Manikandan, R.; Viswnathamurthi, P.
2012-11-01
Reactions of 2-acetylpyridine-thiosemicarbazone HL1, 2-acetylpyridine-4-methyl-thiosemicarbazone HL2, 2-acetylpyridine-4-phenyl-thiosemicarbazone HL3 and 2-acetylpyridine-semicarbazone HL4 with ruthenium(III) precursor complexes were studied and the products were characterized by analytical and spectral (FT-IR, electronic, EPR and EI-MS) methods. The ligands coordinated with the ruthenium(III) ion via pyridine nitrogen, azomethine nitrogen and thiolate sulfur/enolate oxygen. An octahedral geometry has been proposed for all the complexes based on the studies. All the complexes are redox active and display an irreversible and quasireversible metal centered redox processes. Further, the catalytic activity of the new complexes has been investigated for the transfer hydrogenation of ketones in the presence of isopropanol/KOH and the Kumada-Corriu coupling of aryl halides with aryl Grignard reagents. The DNA cleavage efficiency of new complexes has also been tested.
NASA Astrophysics Data System (ADS)
Abidi, Syed Sibte Asghar; Azim, Yasser; Gupta, Abhishek Kumar; Pradeep, Chullikkattil P.
2017-12-01
With an aim to explore the interactions of (RR'Cdbnd Nsbnd OH) oxime moiety of dimethylglyoxime (DMG) with pyridyl ring of N-heterocyclic aromatic compounds and acetamide, three novel cocrystals of dimethylglyoxime with acridine (ACR), 1,10-phenanthroline monohydrate (PT) and acetamide (ACT) are reported. These three cocrystals were obtained with a mechanochemical synthesis approach and were characterized by single crystal X-ray diffraction (SCXRD), powder X-ray diffraction (PXRD), fourier transform-infrared spectroscopy (FT-IR), differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). Additionally, Hirshfeld surface analysis is used to investigate the intermolecular interaction and the crystal packing of cocrystals.
Loren, Bradley P; Wleklinski, Michael; Koswara, Andy; Yammine, Kathryn; Hu, Yanyang; Nagy, Zoltan K; Thompson, David H; Cooks, R Graham
2017-06-01
A highly integrated approach to the development of a process for the continuous synthesis and purification of diphenhydramine is reported. Mass spectrometry (MS) is utilized throughout the system for on-line reaction monitoring, off-line yield quantitation, and as a reaction screening module that exploits reaction acceleration in charged microdroplets for high throughput route screening. This effort has enabled the discovery and optimization of multiple routes to diphenhydramine in glass microreactors using MS as a process analytical tool (PAT). The ability to rapidly screen conditions in charged microdroplets was used to guide optimization of the process in a microfluidic reactor. A quantitative MS method was developed and used to measure the reaction kinetics. Integration of the continuous-flow reactor/on-line MS methodology with a miniaturized crystallization platform for continuous reaction monitoring and controlled crystallization of diphenhydramine was also achieved. Our findings suggest a robust approach for the continuous manufacture of pharmaceutical drug products, exemplified in the particular case of diphenhydramine, and optimized for efficiency and crystal size, and guided by real-time analytics to produce the agent in a form that is readily adapted to continuous synthesis.
Selective synthesis of FAU-type zeolites
NASA Astrophysics Data System (ADS)
Garcia, Gustavo; Cabrera, Saúl; Hedlund, Jonas; Mouzon, Johanne
2018-05-01
In the present work, parameters influencing the selectivity of the synthesis of FAU-zeolites from diatomite were studied. The final products after varying synthesis time were characterized by scanning electron microscopy, energy dispersive spectroscopy, X-ray diffraction and gas adsorption. It was found that high concentrations of NaCl could completely inhibit the formation of zeolite P, which otherwise usually forms as soon as maximum FAU crystallinity is reached. In the presence of NaCl, the FAU crystals were stable for extended time after completed crystallization of FAU before formation of sodalite. It was also found that addition of NaCl barely changed the crystallization kinetics of FAU zeolite and only reduced the final FAU particle size and SiO2/Al2O3 ratio slightly. Other salts containing either Na or Cl were also investigated. Our results suggest that there is a synergistic effect between Na+ and Cl-. This is attributed to the formation of (Na4Cl)3+ clusters that stabilize the sodalite cages. This new finding may be used to increase the selectivity of syntheses leading to FAU-zeolites and avoid the formation of undesirable by-products, especially if impure natural sources of aluminosilica are used.
NASA Astrophysics Data System (ADS)
Meftah, Mahdi; Oueslati, Walid; Chorfi, Nejmeddine; Ben Haj Amara, Abdesslem
Zeolites are currently one of the most important classes of inorganic materials because of their multiple applications not only as ions exchangers and molecular sieves, but also as catalysts. This works focus the synthesis and the characterization of Zeolite Na-P1 using halloysite (collected near Ain Khemouda, western Tunisia) as the starting material. Two parameters, such as the host materials type (natural or treated) and the reaction time, involved in the synthesis process are investigated. The intermediate phases and final products were characterized by X-ray diffraction, Infrared IR spectroscopy, scanning electron microscopy and high-resolution 29Si and 27Al MAS NMR. Obtained results show that the hydrothermal synthesis from natural and heated-halloysite leads to formation of homogenous Zeolite Na-P1. The difference in the crystallization/transformation time process is explained by the effect of the dissolution rate of the starting materials in sodium hydroxide solution. In the case of heated halloysite, the synthesis reaction with alkali solution occurs very readily and achieved without prior thermal activation at high temperature. The optimal conditions of Zeolite Na-P1 crystallization, from heated-halloysite, are reached at 120 °C.
Tilt Grain Boundary Topology Induced by Substrate Topography.
Yu, Henry; Gupta, Nitant; Hu, Zhili; Wang, Kai; Srijanto, Bernadeta R; Xiao, Kai; Geohegan, David B; Yakobson, Boris I
2017-09-26
Synthesis of two-dimensional (2D) crystals is a topic of great current interest, since their chemical makeup, electronic, mechanical, catalytic, and optical properties are so diverse. A universal challenge, however, is the generally random formation of defects caused by various growth factors on flat surfaces. Here we show through theoretical analysis and experimental demonstration that nonplanar, curved-topography substrates permit the intentional and controllable creation of topological defects within 2D materials. We augment a common phase-field method by adding a geometric phase to track the crystal misorientation on a curved surface and to detect the formation of grain boundaries, especially when a growing monocrystal "catches its own tail" on a nontrivial topographical feature. It is specifically illustrated by simulated growth of a trigonal symmetry crystal on a conical-planar substrate, to match the experimental synthesis of WS 2 on silicon template, with satisfactory and in some cases remarkable agreement of theory predictions and experimental evidence.
Recent advances in racemic protein crystallography.
Yan, Bingjia; Ye, Linzhi; Xu, Weiliang; Liu, Lei
2017-09-15
Solution of the three-dimensional structures of proteins is a critical step in deciphering the molecular mechanisms of their bioactivities. Among the many approaches for obtaining protein crystals, racemic protein crystallography has been developed as a unique method to solve the structures of an increasing number of proteins. Exploiting unnatural protein enantiomers in crystallization and resolution, racemic protein crystallography manifests two major advantages that are 1) to increase the success rate of protein crystallization, and 2) to obviate the phase problem in X-ray diffraction. The requirement of unnatural protein enantiomers in racemic protein crystallography necessitates chemical protein synthesis, which is hitherto accomplished through solid phase peptide synthesis and chemical ligation reactions. This review highlights the fundamental ideas of racemic protein crystallography and surveys the harvests in the field of racemic protein crystallography over the last five years from early 2012 to late 2016. Copyright © 2017. Published by Elsevier Ltd.
Synthesis, crystal structure, and structural conversion of Ni molybdate hydrate NiMoO 4· nH 2O
NASA Astrophysics Data System (ADS)
Eda, Kazuo; Kato, Yasuyuki; Ohshiro, Yu; Sugitani, Takamitu; Whittingham, M. Stanley
2010-06-01
The synthesis and crystal structure of NiMoO 4· nH 2O were investigated. The hydrate crystallized in the triclinic system with space group P-1, Z=4 with unit cell parameters of a=6.7791(2) Å, b=6.8900(2) Å, c=9.2486(2) Å, α=76.681(2)°, β=83.960(2)°, γ=74.218(2)°. Its ideal chemical composition was NiMoO 4·3/4H 2O rather than NiMoO 4·1H 2O. Under hydrothermal conditions the hydrate turned directly into α-NiMoO 4 above 483 K, giving nanorods thinner than the crystallites of the mother hydrate. On the other hand, it turned into Anderson type of polyoxomolybdate via a solid-solution process in a molybdate solution at room temperature.
Single-Crystal Germanium Core Optoelectronic Fibers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ji, Xiaoyu; Page, Ryan L.; Chaudhuri, Subhasis
Synthesis and fabrication of high-quality, small-core single-crystal germanium fibers that are photosensitive at the near-infrared and have low optical losses ≈1 dB cm-1 at 2 μm are reported. These fibers have potential applications in fiber-based spectroscopic imaging, nonlinear optical devices, and photodetection at the telecommunication wavelengths.
Materials research at Stanford University. [composite materials, crystal structure, acoustics
NASA Technical Reports Server (NTRS)
1975-01-01
Research activity related to the science of materials is described. The following areas are included: elastic and thermal properties of composite materials, acoustic waves and devices, amorphous materials, crystal structure, synthesis of metal-metal bonds, interactions of solids with solutions, electrochemistry, fatigue damage, superconductivity and molecular physics and phase transition kinetics.
NASA Astrophysics Data System (ADS)
Ramos, Christian Paul L.; Conato, Marlon T.
2018-05-01
Despite the numerous researches in metal-organic frameworks (MOFs), there are only few reports on biologically important amino acids, histidine in particular, on its use as bridging ligand in the construction of open-framework architectures. In this work, hydrothermal synthesis was used to prepare a compound based on Ni2+ and histidine. The coordination assembly of imidazole side chain of histidine with divalent nickel ions in aqueous condition yielded purple prismatic solids. Single crystal X-ray diffraction (XRD) analysis of the product revealed structure for Ni(C6H8N3O2)2 • H2O that has a monoclinic (C2) structure with lattice parameters, a = 29.41, b = 8.27, c = 6.31 Å, β = 90.01 ˚. Circular dichroism - optical rotatory dispersion (CD-ORD), Powder X-ray diffraction (PXRD) and Fourier transform - infrared spectroscopy (FT-IR) analyses are conducted to further characterize the crystals. Enantioselective adsorption analysis using racemic mixture of 2-butanol confirmed bis(L-histidinato)nickel(II) monohydrate MOF crystal's enantioselective property preferentially favoring the adsorption of (S)-2-butanol isomer.
Jiao, Mingzhi; Nguyen, Duc; Nguyen, Van; ...
2015-11-10
We measured luminescence and scintillation in ZnO single crystals by photoluminescence and X-ray-induced luminescence (XRIL). XRIL allowed a direct comparison to be made between the near-band emission (NBE) and trap emissions providing insight into the carrier recombination efficiency in the ZnO crystals. In the origin of green emission, the dominant trap emission in ZnO, was investigated by gamma-induced positron spectroscopy (GIPS) - a unique defect spectroscopy method that enables positron lifetime measurements to be made for a sample without contributions from positron annihilation in the source materials or the surroundings. Moreover, the measurements showed the absence of positron traps inmore » the crystals and yielded a bulk positron lifetime value that is in complete agreement with the predicted theoretical value = thereby confirming the advantage of the GIPS method. By combining scintillation measurements with XRIL, the fast scintillation in ZnO crystals was found to be strongly correlated with the ratio between the defect luminescence and NBE.« less
Synthesis and an X-ray diffraction study of Rb{sub 2}[(UO{sub 2}){sub 2}(C{sub 2}O{sub 4}){sub 3}
DOE Office of Scientific and Technical Information (OSTI.GOV)
Serezhkina, L. B., E-mail: Lserezh@ssu.samara.ru; Peresypkina, E. V.; Neklyudova, N. A.
2010-09-15
The synthesis and X-ray diffraction study of compound Rb{sub 2}[(UO{sub 2}){sub 2}(C{sub 2}O{sub 4}){sub 3}], which crystallizes in the monoclinic crystal system, are performed. The unit cell parameters are as follows: a = 7.9996(6) A, b = 8.8259(8) A, c = 11.3220(7) A, {beta} = 105.394(2){sup o}, and V = 770.7(1) A{sup 3}; space group P2{sub 1}/n, Z = 2, and R{sub 1} = 0.0271. [(UO{sub 2}){sub 2}(C{sub 2}O{sub 4}){sub 3}]{sup 2-} layers belonging to the AK{sub 0.5}{sup 02}T{sup 11} crystal chemical group of uranyl complexes (A = UO{sub 2}{sup 2+}, K{sup 02} = C{sub 2}O{sub 4}{sup 2-}, and T{supmore » 11} = C{sub 2}O{sub 4}{sup 2-}) are uranium-containing structural units of the crystals. The layers are connected with outer-sphere rubidium cations by electrostatic interactions.« less
Galvão, Tiago L P; Neves, Cristina S; Caetano, Ana P F; Maia, Frederico; Mata, Diogo; Malheiro, Eliana; Ferreira, Maria J; Bastos, Alexandre C; Salak, Andrei N; Gomes, José R B; Tedim, João; Ferreira, Mário G S
2016-04-15
Zinc-aluminum layered double hydroxides with nitrate intercalated (Zn(n)Al-NO3, n=Zn/Al) is an intermediate material for the intercalation of different functional molecules used in a wide range of industrial applications. The synthesis of Zn(2)Al-NO3 was investigated considering the time and temperature of hydrothermal treatment. By examining the crystallite size in two different directions, hydrodynamic particle size, morphology, crystal structure and chemical species in solution, it was possible to understand the crystallization and dissolution processes involved in the mechanisms of crystallite and particle growth. In addition, hydrogeochemical modeling rendered insights on the speciation of different metal cations in solution. Therefore, this tool can be a promising solution to model and optimize the synthesis of layered double hydroxide-based materials for industrial applications. Copyright © 2016 Elsevier Inc. All rights reserved.
Synthesis of an un-supported, high-flow ZSM-22 zeolite membrane
Thoma, Steven G [Albuquerque, NM; Nenoff, Tina M [Albuquerque, NM
2006-10-10
Novel methods for synthesizing wholly un-supported, high-flow catalytic membranes consisting of 100% crystalline ZSM-22 crystals with no binder phase, having sufficient porosity to allow high Weight Hourly Space Velocities of feedstock to pass through without generating back pressure. The ZSM-22 membranes perform favorably to existing bulk ZSM-22 catalysts (e.g., via 1-butene conversion and selectivity). The method of membrane synthesis, based on Vapor Phase Transport, allows free-standing, binder-less membranes to be fabricated in varied geometries and sizes so that membranes can be tailor-made for particular geometries applications. The ZSM-22 precursor gel may be consolidated into a semi-cohesive body prior to vapor phase crystallization, for example, by uniaxial pressing. These crystalline membranes may be modified by ion exchange, pore ion exchange, framework exchange, synthesis modification techniques to incorporate other elements into the framework, such as K, H, Mg, Zn, V, Ga, and Pt.
Advances in nanosized zeolites
NASA Astrophysics Data System (ADS)
Mintova, Svetlana; Gilson, Jean-Pierre; Valtchev, Valentin
2013-07-01
This review highlights recent developments in the synthesis of nanosized zeolites. The strategies available for their preparation (organic-template assisted, organic-template free, and alternative procedures) are discussed. Major breakthroughs achieved by the so-called zeolite crystal engineering and encompass items such as mastering and using the physicochemical properties of the precursor synthesis gel/suspension, optimizing the use of silicon and aluminium precursor sources, the rational use of organic templates and structure-directing inorganic cations, and careful adjustment of synthesis conditions (temperature, pressure, time, heating processes from conventional to microwave and sonication) are addressed. An on-going broad and deep fundamental understanding of the crystallization process, explaining the influence of all variables of this complex set of reactions, underpins an even more rational design of nanosized zeolites with exceptional properties. Finally, the advantages and limitations of these methods are addressed with particular attention to their industrial prospects and utilization in existing and advanced applications.
Synthesis of nano anatase for titanosilicate ETS-10 synthesis
NASA Astrophysics Data System (ADS)
Shafeque, Shihara
Functionalized textiles present a vast and growing niche in the global textile market at US $400 billion [1, 2]. Engelhard Titanium Silicate 10 (ETS-10), a photocatalytic zeo-type material if coated on textiles, is expected to impart useful properties similar to TiO2, such as stain-resistant, odor repellant, bactericidal and enhanced UV protection [3, 4]. Typically, small ETS-10 crystals of size ˜300-800 nm are synthesized using solid titania (e.g., anatase or P25) sources [5, 6, 7]. However, smaller ETS-10 crystals are required for a uniform surface coating with highly effective surface area. The dissolution of titania particles (i.e., their size) is hypothesized to be important in small ETS-10 crystal formation [5, 6, 7]. Nano anatase was synthesized by modification of two methods: direct precipitation [7] and sol-gel synthesis [3]. Analysis by XRD confirmed that both methods produced nano anatase of crystallite size ˜4-5 nm. However, FE-SEM analysis showed that product from direct precipitation, existed as intergrown spheroidal particles with size ˜1.0 mum. These particles dispersed poorly in deionized water. Therefore, the best nano anatase samples were from sol-gel synthesis in two forms, dry powder and colloidal anatase. ETS-10 synthesis was investigated using two methods adopted from literature [6, 7]. The method of Yoon and co-workers [7], with nano anatase in a molar composition of 5.5TEOS: TiO2: 8.4NaOH: 1.43KF: 350H2O: 2.2H2SO4 produced unknown phase(s) with some ETS-10 and quartz. Using colloidal anatase with molar composition 5.5TEOS:1.0TiO 2:8.4NaOH:1.43KF:400H2O:2.2H2SO4 also produced unknown phase(s). The method of Anderson and co-workers [6] with nano anatase powder in a molar composition of 5.5SiO2: TiO 2: 5.2Na2O: 0.5K2O: 113H2O produced quartz with ETS-10 impurity. When colloidal anatase was used, with molar composition TiO2:5.5SiO2:5.2Na2O:0.5K2O:332H 2O, unreacted anatase and quartz were formed. It was hypothesized that the very low reaction mixture pH of ˜4.1 was responsible for the absence of ETS-10. Therefore, pH of this mixture was modified between ˜6.55-12.75.At low pH of ˜6.55 unreacted anatase was present, while, pH higher than ˜11.24 formed ETS-4 crystals. At an "optimum" pH of ˜11.24 nearly phase-pure ETS-10 crystals were formed. However, these ETS-10 crystals were not small but ˜10-20 mum. This is the first time, that colloidal anatase has been utilized for ETS-10 synthesis.
Growth of Single Crystals and Fabrication of GaN and AlN Wafers
2006-03-01
Chemical Physics of Solid Surfaces and Heterogeneous Catalysis, Synthesis and Decomposition of Ammonia ", 4, Elsevier Scientific Publishing Company...Solid Surfaces and Heterogeneous Catalysis, Synthesis and Decomposition of Ammonia ", 4, Elsevier Scientific Publishing Company, Amsterdam (1982). 119...GaN(s), (2) Ga(g) + _ N2(g) = GaN(s) 93 APPENDIX C: AMMONIA DECOMPOSITION Despite the apparent simplicity of the GaN synthesis from elemental Ga and
Surfactant-assisted synthesis of mono-dispersed cubic BaTiO{sub 3} nanoparticles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hai, Chunxi; Inukai, Koji; Takahashi, Yosuke
2014-09-15
Mono-dispersed BaTiO{sub 3} nanoparticles have been prepared via the assistance of capping agent poly(vinylpyrrolidone) (PVP). - Highlights: • BaTiO{sub 3} nanoparticles with single cubic crystal structure. • Poor dispersibility of nanoparticles has been overcome by in situ modification way. • Growth competition between BaTiO3 core and polymer shell. - Abstract: In this study, poly(vinylpyrrolidone)-assisted synthesis of mono-dispersed BaTiO{sub 3} nanoparticles have been reported. The various processing parameters, namely, refluxing temperature, KOH concentration, and poly(vinylpyrrolidone) concentration, have been varied, and the effects on the growth of BaTiO{sub 3} particles have been analyzed systematically. X-ray diffraction studies indicated that poly(vinylpyrrolidone) did notmore » affect the crystal structure, but rather influenced the crystal lattice structure. In addition, the use of surfactant poly(vinylpyrrolidone) hindered the agglomeration of the nanoparticles, and facilitated the formation of mono-dispersed core–shell organic/inorganic hybrid nanocomposite. Furthermore, the mineralizer KOH promoted the dissolution of reactants and promoted the crystallization of BaTiO{sub 3} particles. Accordingly, the dissolution-precipitation scheme was believed to be the mechanism underlying the formation of BaTiO{sub 3} particles. This was further substantiated by the experimental observations, which indicated that the nucleation and crystallization of the particles was affected by the KOH concentration in the reaction system. Finally, the formation of mono-dispersed core–shell nanocomposites proceeded via reaction limited cluster aggregation. We believe that the method proposed in this study could be extended for the synthesis of mono-dispersed nanoparticles for industrial applications.« less
Facile synthesis of gold nanomaterials with unusual crystal structures.
Fan, Zhanxi; Huang, Xiao; Chen, Ye; Huang, Wei; Zhang, Hua
2017-11-01
Gold (Au) nanomaterials have attracted wide research attention, owing to their high chemical stability, promising catalytic properties, excellent biocompatibility, unique electronic structure and outstanding localized surface plasmon resonance (LSPR) absorption properties; all of which are closely related to their size and shape. Recently, crystal-phase-controlled synthesis of noble metal nanomaterials has emerged as a promising strategy to tune their physicochemical properties. This protocol describes the detailed experimental procedures for the crystal-phase-controlled syntheses of Au nanomaterials with unusual crystal structures under mild conditions. Briefly, pure hexagonal close-packed (hcp) Au square sheets (AuSSs) with a thickness of ∼2.4 nm are synthesized using a graphene-oxide-assisted method in which HAuCl 4 is reduced by oleylamine in a mixture of hexane and ethanol. By using pure hexane as the solvent, well-dispersed ultrathin hcp/face-centered cubic (fcc) Au nanowires with a diameter of ∼1.6 nm on graphene oxide can be obtained. Meanwhile, hcp/fcc Au square-like plates with a side length of 200-400 nm are prepared via the secondary growth of Au on the hcp AuSSs. Remarkably, hexagonal (4H) Au nanoribbons with a thickness of 2.0-6.0 nm can be synthesized with a one-pot colloidal method in which HAuCl 4 is reduced by oleylamine in a mixed solvent of hexane and 1,2-dichloropropane. It takes 17-37 h for the synthesis of these Au nanomaterials with unusual crystal structures. Transmission electron microscopy (TEM) and atomic force microscopy (AFM) are used to characterize the resultant Au nanomaterials, which could have many promising applications, such as biosensing, near-IR photothermal therapy, catalysis and surface-enhanced Raman scattering (SERS).
Modelling Assisted Design and Synthesis of Highly Porous Materials for Chemical Adsorbents
2010-10-01
two phases of crystal, a monoclinic phase within the solution, and after removal from solution a trigonal phase is obtained. The single crystal...days. Single crystal X-ray data showed there existed a monoclinic phase within the solution that, upon removal from solution, rapidly converted to a... monoclinic to trigonal upon desolvation, as the new peak which has emerged matches the simulated PXRD of the trigonal phase. Also, as the sample is
2014-08-01
Std. Z39.18 Final Report Liquid Crystals of Dendron-Like Pt Complexes Processable Into Nanofilms. Dendrimers Eduardo Arias...to pack and also the presence of a polar group. Figure 4. Summary of phase behavior. DENDRIMERS New Denrimers. The synthesis...purification and some spectral characteristics of the new dendrimers shown in Fig 5 were reported in AFOSR FA9550-11-1-0169, May, 2013. Further
Synthesis and crystal structure determination of yttrium ultraphosphate YP 5O 14
NASA Astrophysics Data System (ADS)
Mbarek, A.; Graia, M.; Chadeyron, G.; Zambon, D.; Bouaziz, J.; Fourati, M.
2009-03-01
The crystal structure of monoclinic YP 5O 14 (space group C2/ c, a=12.919(2) Å, b=12.796(4) Å, c=12.457(2) Å, β=91.30(1)°, Z=8) has been refined from single-crystal X-ray diffraction data. Full-matrix least-squares refinement on F2 using 2249 independent reflections for 183 refinable parameters results in a final R value of 0.027 ( ωR=0.069). The structure is isotypic with HoP 5O 14. This structure is built up from infinite layers of PO 4 tetrahedra linked through isolated YO 8 polyhedra. The three-dimensional cohesion of the framework results from Y-O-P bridges. This crystal structure refinement leads to the calculated X-ray diffraction powder pattern of this monoclinic polymorph, which has been the starting point of a thorough study of the solid-state synthesis of this ultraphosphate. This investigation further leads to a better outstanding of features observed during the synthesis of powdered samples. The thermal behavior of this ultraphosphate has been studied by DTA and TGA analyses. The infrared and Raman spectroscopic characterizations have been carried out on polycrystalline samples. The luminescence properties of the Eu 3+ ion incorporated in the monoclinic C2/ c polymorph of YP 5O 14 as local structural probe show that in YP 5O 14: 5% Eu 3+ sample, the Eu 3+ ions are distributed over the two Y 3+ crystallographic sites of C 2 symmetry of this structure.
Wong-Ng, W.; Culp, J. T.; Chen, Y. S.; ...
2013-01-01
This paper reports our synthesis of flexible coordination polymer, Ni(L)[Ni(CN) 4], (L = 1,2-bis(4-pyridyl)ethylene (nicknamed bpene)), and its structural characterization using synchrotron single crystal X-ray diffraction. The structure of the purplish crystals has been determined to be monoclinic, space group P2 1/m, a = 13.5941(12) Å, b = 14.3621(12) Å, c = 14.2561(12) Å, β = 96.141(2)°, V = 2767.4(4) Å 3, Z = 4, D c = 1.46 g cm -1. Ni(bpene)[Ni(CN) 4] assumes a pillared layer structure with layers defined by Ni[Ni(CN) 4] n nets and bpene ligands acting as pillars. With the present crystallization technique which involvesmore » the use of concentrated ammonium hydroxide solution and dimethyl sulfoxide (DMSO), disordered free bpene ligands and solvents of crystallization (DMSO and water molecules) occupy the pores, resulting in a formula of Ni(bpene)[Ni(CN) 4](1/2)bpene∙DMSO 2H 2O, or Ni 2N 7C 24H 25SO 3. Without the inclusion of free bpene ligands and solvent molecules, the free volume is approximately 61% of the total volume; this free volume fraction is reduced to 50% with the free ligands present. Pores without the free ligands were found to have a local diameter of 5.7 Å and a main aperture of 3.5 Å. Based on the successful crystal synthesis, we also devised a new bulk synthetic technique which yielded a polycrystalline material with a significantly improved CO 2 uptake as compared to the originally reported powder material. The improved synthetic technique yielded a polycrystalline material with 40% higher CO 2 uptake compared to the previously reported powder material. An estimated 14.4 molecules of CO 2 per unit cell was obtained.« less
NASA Astrophysics Data System (ADS)
Prabukanthan, P.; Lakshmi, R.; Harichandran, G.; Kumar, C. Sudarsana
2018-03-01
The organic materials, N-methyl-N-aryl benzamides were synthesized from benzoylation of N-methyl-4-nitrobenzenamine (MNBA) using suitably substituted benzoyl chlorides. The products were purified by recrystallization and their single crystal were grown by a slow evaporation technique. The crystals were characterized by FTIR, UV-Vis-NIR, 1H &13C NMR, and single & powder X-ray diffraction. Thermal stability of the crystals was studied by thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). Dielectric and NLO properties of MNPB, FMNPB and MMNPB crystals were studied. The second harmonic generation (SHG) has been confirmed by the Kurtz powder test for all these crystals and the SHG efficiency of MMNPB crystal was found to be 2.25 times higher than that of KDP crystal.
Shape-Evolution Control of hybrid perovskite CH3NH3PbI3 crystals via solvothermal synthesis
NASA Astrophysics Data System (ADS)
Zhang, Baohua; Guo, Fuqiang; Yang, Lianhong; Jia, Xiuling; Liu, Bin; Xie, Zili; Chen, Dunjun; Lu, Hai; Zhang, Rong; Zheng, Youdou
2017-02-01
We systematically synthesized CH3NH3PbI3 crystals using solvothermal process, and the reaction conditions such as concentration of the precursor, temperature, time, and lead source have been comprehensively investigated to obtain shape-controlled CH3NH3PbI3 crystals. The results showed that the CH3NH3PbI3 crystals exhibit tetragonal phase and the crystals change from nanoparticles to hopper-faced cuboids. Photoluminescence spectra of the crystals obtained with different lead sources show a blue shift due to the presence of defects in the crystals, and the peak intensity is very sensitive to the lead sources. Moreover, impurities (undesirable byproducts and excess components like HI or CH3NH2) presented during crystal growth can result in hopper growth.
Crystallization of human nicotinamide phosphoribosyltransferase
DOE Office of Scientific and Technical Information (OSTI.GOV)
Takahashi, Ryo; Nakamura, Shota; Yoshida, Takuya
2007-05-01
Human nicotinamide phosphoribosyltransferase has been crystallized using microseeding methods and X-ray diffraction data have been collected at 2.0 Å resolution. In the NAD biosynthetic pathway, nicotinamide phosphoribosyltransferase (NMPRTase; EC 2.4.2.12) plays an important role in catalyzing the synthesis of nicotinamide mononucleotide from nicotinamide and 5′-phosphoribosyl-1′-pyrophosphate. Because the diffraction pattern of the initally obtained crystals was not suitable for structure analysis, the crystal quality was improved by successive use of the microseeding technique. The resultant crystals diffracted to 2.0 Å resolution. These crystals belonged to space group P21, with unit-cell parameters a = 60.56, b = 106.40, c = 82.78 Å.more » Here, the crystallization of human NMPRTase is reported in the free form; the crystals should be useful for inhibitor-soaking experiments on the enzyme.« less
Invisible defects in complex crystals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Longhi, Stefano, E-mail: stefano.longhi@fisi.polimi.it; Della Valle, Giuseppe
2013-07-15
We show that invisible localized defects, i.e. defects that cannot be detected by an outside observer, can be realized in a crystal with an engineered imaginary potential at the defect site. The invisible defects are synthesized by means of supersymmetric (Darboux) transformations of an ordinary crystal using band-edge wavefunctions to construct the superpotential. The complex crystal has an entire real-valued energy spectrum and Bragg scattering is not influenced by the defects. An example of complex crystal synthesis is presented for the Mathieu potential. -- Highlights: •We show the existence of invisible localized defects in complex crystals. •They turn out tomore » be fully invisible to Bloch waves belonging to any lattice band. •An example of invisible defect is presented for a PT-symmetric Mathieu crystal.« less
NASA Astrophysics Data System (ADS)
Shruthi, C.; Ravindrachary, V.; Guruswamy, B.; Lokanath, N. K.; Kumara, Karthik; Goveas, Janet
2018-05-01
Needle shaped single crystal of the title compound was grown by slow evaporation solution growth technique using ethanol as solvent. The grown single crystal was characterized using FT-IR, Single crystal XRD and Thermal analysis. The FT-IR spectrum confirms the molecular structure and identifies the different functional groups present in the compound. Single crystal XRD study reveals that the crystallized compound belongs to the monoclinic crystal system with P21/c space group and the corresponding cell parameters were identified. The thermal stability of the material was determined using both TGA and DTA analysis. The intermolecular interaction of each individual atom in the crystal lattice was estimated using Hirshfeld surface and finger print analysis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ward, Ashleigh L.; Buckley, Heather L.; Gryko, Daniel T.
2013-12-01
The first synthesis and structural characterization of actinide corroles is presented. Thorium(IV) and uranium(IV) macrocycles of Mes2(p-OMePh)corrole were synthesised and characterized by single-crystal X-ray diffraction, UV-Visible spectroscopy, variable-temperature 1H NMR, ESI mass spectrometry and cyclic voltammetry.
Guo, Rey-Ting; Chong, Yeeting E; Guo, Min; Yang, Xiang-Lei
2009-10-16
Aminoacyl-tRNA synthetases catalyze the attachment of amino acids to their cognate tRNAs for protein synthesis. However, the aminoacylation reaction can be diverted to produce diadenosine tetraphosphate (Ap4A), a universal pleiotropic signaling molecule needed for cell regulation pathways. The only known mechanism for Ap4A production by a tRNA synthetase is through the aminoacylation reaction intermediate aminoacyl-AMP, thus making Ap4A synthesis amino acid-dependent. Here, we demonstrate a new mechanism for Ap4A synthesis. Crystal structures and biochemical analyses show that human glycyl-tRNA synthetase (GlyRS) produces Ap4A by direct condensation of two ATPs, independent of glycine concentration. Interestingly, whereas the first ATP-binding pocket is conserved for all class II tRNA synthetases, the second ATP pocket is formed by an insertion domain that is unique to GlyRS, suggesting that GlyRS is the only tRNA synthetase catalyzing direct Ap4A synthesis. A special role for GlyRS in Ap4A homeostasis is proposed.
Guo, Rey-Ting; Chong, Yeeting E.; Guo, Min; Yang, Xiang-Lei
2009-01-01
Aminoacyl-tRNA synthetases catalyze the attachment of amino acids to their cognate tRNAs for protein synthesis. However, the aminoacylation reaction can be diverted to produce diadenosine tetraphosphate (Ap4A), a universal pleiotropic signaling molecule needed for cell regulation pathways. The only known mechanism for Ap4A production by a tRNA synthetase is through the aminoacylation reaction intermediate aminoacyl-AMP, thus making Ap4A synthesis amino acid-dependent. Here, we demonstrate a new mechanism for Ap4A synthesis. Crystal structures and biochemical analyses show that human glycyl-tRNA synthetase (GlyRS) produces Ap4A by direct condensation of two ATPs, independent of glycine concentration. Interestingly, whereas the first ATP-binding pocket is conserved for all class II tRNA synthetases, the second ATP pocket is formed by an insertion domain that is unique to GlyRS, suggesting that GlyRS is the only tRNA synthetase catalyzing direct Ap4A synthesis. A special role for GlyRS in Ap4A homeostasis is proposed. PMID:19710017
Sudhahar, S; Krishna Kumar, M; Sornamurthy, B M; Mohan Kumar, R
2014-01-24
Organic nonlinear optical material, 4-methylpyridinium 4-hydroxybenzoate (4MPHB) was synthesized and single crystal was grown by slow evaporation solution growth method. Single crystal and powder X-ray diffraction analyses confirm the structure and crystalline perfection of 4MPHB crystal. Infrared, Raman and NMR spectroscopy techniques were used to elucidate the functional groups present in the compound. TG-DTA analysis was carried out in nitrogen atmosphere to study the decomposition stages, endothermic and exothermic reactions. UV-visible and Photoluminescence spectra were recorded for the grown crystal to estimate the transmittance and band gap energy respectively. Linear refractive index, birefringence, and SHG efficiency of the grown crystal were studied. Laser induced surface damage threshold and mechanical properties of grown crystal were studied to assess the suitability of the grown crystals for device applications. Copyright © 2013 Elsevier B.V. All rights reserved.
Barta, Michael L.; Thomas, Keisha; Yuan, Hongling; Lovell, Scott; Battaile, Kevin P.; Schramm, Vern L.; Hefty, P. Scott
2014-01-01
The obligate intracellular human pathogen Chlamydia trachomatis is the etiological agent of blinding trachoma and sexually transmitted disease. Genomic sequencing of Chlamydia indicated this medically important bacterium was not exclusively dependent on the host cell for energy. In order for the electron transport chain to function, electron shuttling between membrane-embedded complexes requires lipid-soluble quinones (e.g. menaquionone or ubiquinone). The sources or biosynthetic pathways required to obtain these electron carriers within C. trachomatis are poorly understood. The 1.58Å crystal structure of C. trachomatis hypothetical protein CT263 presented here supports a role in quinone biosynthesis. Although CT263 lacks sequence-based functional annotation, the crystal structure of CT263 displays striking structural similarity to 5′-methylthioadenosine nucleosidase (MTAN) enzymes. Although CT263 lacks the active site-associated dimer interface found in prototypical MTANs, co-crystal structures with product (adenine) or substrate (5′-methylthioadenosine) indicate that the canonical active site residues are conserved. Enzymatic characterization of CT263 indicates that the futalosine pathway intermediate 6-amino-6-deoxyfutalosine (kcat/Km = 1.8 × 103 m−1 s−1), but not the prototypical MTAN substrates (e.g. S-adenosylhomocysteine and 5′-methylthioadenosine), is hydrolyzed. Bioinformatic analyses of the chlamydial proteome also support the futalosine pathway toward the synthesis of menaquinone in Chlamydiaceae. This report provides the first experimental support for quinone synthesis in Chlamydia. Menaquinone synthesis provides another target for agents to combat C. trachomatis infection. PMID:25253688
Precipitation method for barium metaborate (BaB{sub 2}O{sub 4}) synthesis from borax solution
DOE Office of Scientific and Technical Information (OSTI.GOV)
Akşener, Eymen; Figen, Aysel Kantürk; Pişkin, Sabriye
2013-12-16
In this study, barium metaborate (BaB{sub 2}O{sub 4}, BMB) synthesis from the borax solution was carried out. BMB currently is used in production of ceramic glazes, luminophors, oxide cathodes as well as additives to pigments for aqueous emulsion paints and also β−BaB{sub 2}O{sub 4} single crystals are the best candidate for fabrication of solid-state UV lasers operating at a wavelength of 200 nm due to excellent nonlinear optical properties. In the present study, synthesis was carried out from the borax solution (Na{sub 2}B{sub 4}O{sub 7⋅}10H{sub 2}O, BDH) and barium chloride (BaCI{sub 2⋅}2H{sub 2}O, Ba) in the glass-batch reactor with stirring.more » The effect of, times (5-15 min), molar ratio [stoich.ration (1.0:2.0), 1.25:2.0, 1.5:2.0, 2.5:2:0, 3.0:2.0, 3.5:2.0,4.0:2.0, 5.0:2.0] and also crystallization time (2-6 hour) on the BMB yield (%) was investigated at 80 °C reaction temperature. It is found that, BMB precipitation synthesis with 90 % yield can be performed from 0.50 molar ration (BDH:Ba), under 80 °C, 15 minute, and 6 hours crystallization time. The structural properties of BMB powders were characterized by using XRD, FT-IR and DTA-TG instrumental analysis technique.« less
Swarna Sowmya, N; Sampathkrishnan, S; Vidyalakshmi, Y; Sudhahar, S; Mohan Kumar, R
2015-06-15
Organic nonlinear optical material, pyrrolidinium-2-carboxylate-4-nitrophenol (PCN) was synthesized and single crystals were grown by slow evaporation solution growth method. Single crystal X-ray diffraction analysis confirmed the structure and lattice parameters of PCN crystals. Infrared, Raman and NMR spectral analyses were used to elucidate the functional groups present in the compound. The thermal behavior of synthesized compound was studied by thermogravimetric and differential scanning calorimetry (TG-DSC) analyses. The photoluminescence property was studied by exciting the crystal at 360 nm. The relative second harmonic generation (SHG) efficiency of grown crystal was estimated by using Nd:YAG laser with fundamental wavelength of 1,064 nm. Copyright © 2015 Elsevier B.V. All rights reserved.
Kirubavathi, K; Selvaraju, K; Valluvan, R; Vijayan, N; Kumararaman, S
2008-04-01
Single crystals of a new semiorganic nonlinear optical (NLO) material, L-valine hydrochloride (LVHCl), having dimensions up to 20 mm x 6 mm x 4 mm have been grown by slow evaporation solution growth technique. Single crystal X-ray diffraction studies confirm that the grown crystal belongs to the monoclinic system. The functional groups presented in the crystal were confirmed by Fourier transform infrared (FTIR) technique. Optical transmission spectrum shows very low absorption in the entire visible region. Differential thermal and thermogravimetric analyses confirmed that the crystal is stable up to 211 degrees C. The powder second harmonic generation (SHG) efficiency of LVHCl is 1.7 times efficient as potassium dihydrogen phosphate (KDP).
Crystallization and diffraction analysis of [beta]-N-acetylhexosaminidase from Aspergillus oryzae
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vanek, Ondrej; Brynd, Jirí; Hofbauerová, Katerina
2012-05-08
Fungal {beta}-N-acetylhexosaminidases are enzymes that are used in the chemoenzymatic synthesis of biologically interesting oligosaccharides. The enzyme from Aspergillus oryzae was produced and purified from its natural source and crystallized using the hanging-drop vapor-diffusion method. Diffraction data from two crystal forms (primitive monoclinic and primitive tetragonal) were collected to resolutions of 3.2 and 2.4 {angstrom}, respectively. Electrophoretic and quantitative N-terminal protein-sequencing analyses confirmed that the crystals are formed by a complete biologically active enzyme consisting of a glycosylated catalytic unit and a noncovalently attached propeptide.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nhalil, Hariharan; Whiteside, Vincent R.; Sellers, Ian R.
Here, we report synthesis, crystal and electronic structures, and optical properties of two new Hg-based zero-dimensional hybrid organic-inorganic halides (HIm)2Hg3Cl8 and (HIm)HgI3 (HIm = imidazolium). (HIm) 2Hg 3Cl 8 crystallizes in the triclinic P-1 space group with a pseudo-layered structure made of organic imidazolium cation layers and anionic inorganic layers containing [Hg 2Cl 6] 2- units and linear [HgCl 2] 0 molecules. (HIm)HgI 3 crystallizes in the monoclinic P2 1/c space group featuring anionic [HgI 3]- units that are surrounded by imidazolium cations. Based on density functional theory calculations, (HIm) 2Hg 3Cl 8 has an indirect band gap, whereas (HIm)HgImore » 3 has a direct band gap with the measured onsets of optical absorption at 3.43 and 2.63 eV, respectively. (HIm) 2Hg 3Cl 8 and (HIm)HgI 3 are broadband light emitters with broad photoluminescence peaks centered at 548 nm (2.26 eV) and 582 nm (2.13 eV), respectively. In conclusion, following the crystal and electronic structure considerations, the PL peaks are assigned to self-trapped excitons.« less
Potential contribution of low cost materials in clean technology
NASA Astrophysics Data System (ADS)
Smail, Heman A.; Shareef, Kafia M.; Ramli, Zainab
2016-03-01
As the world's population approaches more than 9 billion, the strain on the planet's resources is steadily increasing. This demand can only be met by improving production methods to reduce the use of chemicals and the amount of chemical waste. Zeolites are among the least-known products for environmental pollution control, separation science and technology. This study investigates whether the use of geological sources as low-cost materials are suitable for zeolite synthesis and future applications. In this investigation natural montmorillonite clay, locally available in Erbil-Kurdistan, was used as raw material. The experiments were carried out in the presence of ultrasound 30KHz at 60°C and for different crystallization times (5, 10 &15 hours) and the results were compared with those obtained by performing conventional alkaline hydrothermal static syntheses under similar conditions and crystallization time of (90 hours). The raw material as well as the products was analyzed using; Fourier Transform Infra-Red (FT-IR), X-Ray Diffraction (XRD) and X-Ray Fluorescence (XRF) spectroscopy and scanning electron microscope (SEM). The experimental data were ascertained the formation of Zeolite successfully. Crystallization by ultrasound has been demonstrated to offer the possibilities of increasing the nucleation and crystallization rates of zeolites, improving the yield and directing the synthesis towards different crystal phases.
Effect of synthesis conditions on the nanopowder properties of Ce{sub 0.9}Zr{sub 0.1}O{sub 2}
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zimicz, M.G.; Fabregas, I.O.; Lamas, D.G.
Graphical abstract: . The synthesis of nanocrystalline Ce{sub 0.9}Zr{sub 0.1}O{sub 2} powders via the gel-combustion method, using different fuels, and following either stoichiometric or non-stoichiometric pH-controlled routes is investigated. Research highlights: {yields} All samples exhibited the fluorite-type crystal structure, nanometric average crystallite size and negligible carbon content. {yields} Synthesis conditions strongly affect the average crystallite size, the degree of agglomeration, the specific surface area and the pore volume. {yields} Our results indicate that, by controlling the synthesis conditions it is possible to obtain solids with custom-made morphological properties. -- Abstract: In this work, the synthesis of nanocrystalline Ce{sub 0.9}Zr{sub 0.1}O{submore » 2} powders via the gel-combustion method, using different fuels, and following either stoichiometric or non-stoichiometric pH-controlled routes is investigated. The objective is to evaluate the effect of synthesis conditions on the textural and morphological properties, and the crystal structure of the synthesized materials. The solids were characterized by nitrogen physisorption, Scanning Electron Microscopy (SEM), X-ray powder diffraction (XPD), and Carbon-Hydrogen-Nitrogen Elemental Analysis (CHN). All the powders exhibited nanometric crystallite size, fluorite-type structure and negligible carbon content. Synthesis conditions strongly affect the average crystallite size, the degree of agglomeration, the specific surface area and the pore volume. Our results indicate that, by controlling the synthesis conditions it is possible to obtain solids with custom-made morphological properties.« less
Synthesis and characterization of polycrystalline CdSiP2
NASA Astrophysics Data System (ADS)
Bereznaya, S. A.; Korotchenko, Z. V.; Sarkisov, S. Yu; Korolkov, I. V.; Kuchumov, B. M.; Saprykin, A. I.; Atuchin, V. V.
2018-05-01
A modified method is proposed for the CdSiP2 compound synthesis from elemental starting components. The developed technique allows completing the synthesis process within 30 h. The phase and chemical composition of the synthesized material were confirmed by the x-ray diffraction analysis and scanning electron microscopy with energy-dispersive spectroscopy. The transparent crystal block sized 3 × 3 × 2 mm3 was cut from the polycrystalline ingot and characterized by optical methods.
NASA Astrophysics Data System (ADS)
Maulia, R.; Putra, R. A.; Suharyadi, E.
2017-05-01
Mg0.5Ni0.5Fe2O4 nanoparticles have been successfully synthesized by using co-precipitation method and varying the synthesis parameter, i.e. synthesis temperature and NaOH concentration. X-ray Diffraction (XRD) pattern showed that nanoparticles have cubic spinel structures with an additional phase of γ-Fe2O3 and particle size varies within the range of 4.3 - 6.7 nm. This variation is due to the effect of various synthesis parameters. Transmission Electron Microscopy (TEM) image showed that the nanoparticles exhibited agglomeration. The observed diffraction ring from selected area electron diffraction showed that the sample was polycrystalline and confirmed the peak appearing in XRD. The coercivities showed an increasing trend with an increase in particle size from 44.7 Oe to 49.6 Oe for variation of NaOH concentration, and a decreasing trend with an increase in particle size from 46.8 to 45.1 Oe for variation of synthesis temperature. The maximum magnetization showed an increasing trend with an increase in the ferrite phase from 3.7 emu/g to 5.4 emu/g possessed in the sample with variations on NaOH concentration. The maximum magnetization for the sample with variations on synthesis temperature varied from 4.4 emu/g to 5.7 emu/g due to its crystal structures.
Laassiri, Said; Bion, Nicolas; Duprez, Daniel; Royer, Sébastien; Alamdari, Houshang
2014-03-07
Microstructural properties of mixed oxides play essential roles in their oxygen mobility and consequently in their catalytic performances. Two families of mixed oxides (perovskite and hexaaluminate) with different microstructural features, such as crystal size and specific surface area, were prepared using the activated reactive synthesis (ARS) method. It was shown that ARS is a flexible route to synthesize both mixed oxides with nano-scale crystal size and high specific surface area. Redox properties and oxygen mobility were found to be strongly affected by the material microstructure. Catalytic activities of hexaaluminate and perovskite materials for methane oxidation were discussed in the light of structural, redox and oxygen mobility properties.
Synthesis of trevorite to capture Tc
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tsui, Colin
2011-09-02
Spinel containing technetium can be used to prevent Tc volatilization during vitrification of radioactive waste. Spinel dissolves in glass at elevated temperatures. This study focuses on the synthesis of spinel and the retention of rhenium, a nonradioactive surrogate for Tc in the crystals. To produce trevorite, a nickel-iron spinel (NiFe2O4), Fe and Ni nitrates were mixed with alkali nitrates along with Al(OH)3 and heated to 500 to 800°C. The trevorite content in samples (up to 40 mass%) was measured with x-ray diffraction. Viable samples were rerun with KReO4. Scanning electron microscopy-energy dispersive spectroscopy detected that Re became partly immobilized inmore » spinel-forming crystals.« less
NASA Astrophysics Data System (ADS)
Zhang, Chengwei; Yang, Hui; Sun, Tingting; Shan, Nannan; Chen, Jianfeng; Xu, Lianbin; Yan, Yushan
2014-01-01
Three dimensionally ordered macro-/mesoporous (3DOM/m) Pt catalysts are fabricated by chemical reduction employing a dual-templating synthesis approach combining both colloidal crystal (opal) templating (hard-templating) and lyotropic liquid crystal templating (soft-templating) techniques. The macropore walls of the prepared 3DOM/m Pt exhibit a uniform mesoporous structure composed of polycrystalline Pt nanoparticles. Both the size of the mesopores and Pt nanocrystallites are in the range of 3-5 nm. The 3DOM/m Pt catalyst shows a larger electrochemically active surface area (ECSA), and higher catalytic activity as well as better poisoning tolerance for methanol oxidation reaction (MOR) than the commercial Pt black catalyst.
Synthesis and Crystal Structure of a Chalcone Derivative
NASA Astrophysics Data System (ADS)
Singh, Vikram D.; Salian, Vinutha V.; Narayana, B.; Sarojini, B. K.; Kamni; Anthal, Sumati; Kant, Rajni
2017-12-01
(2E)-3-(anthrance-9-yl)-1-(3,4-dichlorophenyl)prop-2-en-1-one [C23H14OCl2] is synthesized and its crystal structure is determined by single X-ray diffraction. There exist two molecules in the asymmetric unit. The dihedral angle between the benzene and anthracene moiety of the molecule A and B is 86.51(12)° and 76.42(13)°, respectively. No classical hydrogen bonds are observed and only van der Waals forces stabilize the crystal packing.
Liang, Zhili; Mohanty, Paritosh; Fei, Yingwei; Landskron, Kai
2010-12-14
Coesite nanocrystals have been synthesized from periodic mesoporous organosilica (PMO) with (CH(2))(2) bridges heated at 300 °C for 150 min and 12 GPa. The crystals are not sintered, single crystalline, and have diameters of ca. 100-300 nm. Below 300 °C, an amorphous non-porous organosilica glass was obtained. Heating above 300 °C at 12 GPa results in the rapid crystal growth and micron size coesite crystals were formed.
Synthesis and Doping of Silicon Nanocrystals for Versatile Nanocrystal Inks
NASA Astrophysics Data System (ADS)
Kramer, Nicolaas Johannes
The impact of nanotechnology on our society is getting larger every year. Electronics are becoming smaller and more powerful, the "Internet of Things" is all around us, and data generation is increasing exponentially. None of this would have been possible without the developments in nanotechnology. Crystalline semiconductor nanoparticles (nanocrystals) are one of the latest developments in the field of nanotechnology. This thesis addresses three important challenges for the transition of silicon nanocrystals from the lab bench to the marketplace: A better understanding of the nanocrystal synthesis was obtained, the electronic properties of the nanocrystals were characterized and tuned, and novel silicon nanocrystal inks were formed and applied using simple coating technologies. Plasma synthesis of nanocrystals has numerous advantages over traditional solution-based synthesis methods. While the formation of nanoparticles in low pressure nonthermal plasmas is well known, the heating mechanism leading to their crystallization is poorly understood. A combination of comprehensive plasma characterization with a nanoparticle heating model presented here reveals the underlying plasma physics leading to crystallization. The model predicts that the nanoparticles reach temperatures as high as 900 K in the plasma as a result of heating reactions on the nanoparticle surface. These temperatures are well above the gas temperature and sufficient for complete nanoparticle crystallization. Moving the field of plasma nanoparticle synthesis to atmospheric pressures is important for lowering its cost and making the process attractive for industrial applications. The heating and charging model for silicon nanoparticles was adapted in Chapter 3 to study plasmas maintained over a wide range of pressures (10 -- 105 Pa). The model considers three collisionality regimes and determines the dominant contribution of each regime under various plasma conditions. Strong nanoparticle cooling at atmospheric pressures necessitates high plasma densities to reach temperatures required for crystallization of nanoparticles. Using experimentally determined plasma properties from the literature, the model estimates the nanoparticle temperature that is achieved during synthesis at atmospheric pressures. It was found that temperatures well above those required for crystallization can be achieved. Now that the synthesis of nanocrystals is understood, the second half of this thesis will focus on doping of the nanocrystals. The doping of semiconductor nanocrystals, which is vital for the optimization of nanocrystal-based devices, remains a challenge. Gas phase plasma approaches have been very successful in incorporating dopant atoms into nanocrystals by simply adding a dopant precursor during synthesis. However, little is known about the electronic activation of these dopants. This was investigated with field-effect transistor measurements using doped silicon nanocrystal films. It was found that, analogous to bulk silicon, boron and phosphorous electronically dope silicon nanocrystals. However, the dopant activation efficiency remains low as a result of self-purification of the dopants to the nanocrystal surface. Next the plasmonic properties of heavily doped silicon nanocrystals was explored. While the synthesis method was identical, the plasmonic behavior of phosphorus-doped and boron-doped nanocrystals was found the be significantly different. Phosphorus-doped nanocrystals exhibit a plasmon resonance immediately after synthesis, while boron-doped nanocrystals require a post-synthesis annealing or oxidation treatment. This is a result of the difference in dopant location. Phosphorus is more likely to be incorporated into the core of the nanocrystal, while the majority of boron is placed on the surface of the nanocrystal. The oxidized boron-doped particles exhibit stable plasmonic properties, and therefore this allows for the production of air-stable silicon-based plasmonic materials which is very interesting for certain applications. Finally the boron atoms were used to form a Lewis acidic nanocrystal surface chemistry allowing for the creation of ligand-less silicon nanocrystal solutions. This represents an immense step towards an abundant, non-toxic alternative to Pb and Cd-based nanocrystal technologies. The lack of long ligand chains enables the production of dense films with excellent electrical conductivity. This was demonstrated by forming uniform nanocrystal thin-films using simple and inexpensive spray coating techniques.
JPRS Report - Science & Technology Japan: New Functional Materials.
1989-12-27
Using Modified and Controlled High Pressure Environments [Masao Wakatsuki, Kaoru J. Takano] 21 Molecular Design, Synthesis, and Evaluation of High...Crystals [ Shigetoshi Takahashi ] 51 Synthesis of New Organosilicon Polymers and Their Functionalities [Mitsuo Ishikawa , Joji Ohshita] 52...Analysis of The Formation Mechanisms Using Modified and Controlled High Pressure Environments Masao Wakatsuki and Kaoru J. Takano Institute of
Synthesis and characterization of colloidal CdTe nanocrystals
NASA Astrophysics Data System (ADS)
Semendy, Fred; Jaganathan, Gomatam; Dhar, Nibir; Trivedi, Sudhir; Bhat, Ishwara; Chen, Yuanping
2008-08-01
We synthesized CdTe nano crystals (NCs) in uniform sizes and in good quality as characterized by photoluminescence (PL), AFM, and X-ray diffraction. In this growth procedure, CdTe nano-crystal band gap is strongly dependent on the growth time and not on the injection temperature or organic ligand concentration. This is very attractive because of nano-crystal size can be easily controlled by the growth time only and is very attractive for large scale synthesis. The color of the solution changes from greenish yellow to light orange then to deep orange and finally grayish black to black over a period of one hour. This is a clear indication of the gradual growth of different size (and different band gap) of CdTe nano-crystals as a function of the growth time. In other words, the size of the nano-crystal and its band gap can be controlled by adjusting the growth time after injection of the tellurium. The prepared CdTe NCs were characterized by absorption spectra, photoluminescence (PL), AFM and X-ray diffraction. Measured absorption maxima are at 521, 560, 600 and 603 nm corresponding to band gaps of 2.38, 2.21,2,07 and 2.04 eV respectively for growth times of 15, 30, 45 and 60 minutes. From the absorption data nano-crystal growth size saturates out after 45 minutes. AFM scanning of these materials indicate that the size of these particles is between 4 - 10 nm in diameter for growth time of 45 minutes. XD-ray diffraction indicates that these nano crystals are of cubic zinc blende phase. This paper will present growth and characterization data on CdTe nano crystals for various growth times.
Growth mechanisms of MgO nanocrystals via a sol-gel synthesis using different complexing agents
2014-01-01
In the preparation of nanostructured materials, it is important to optimize synthesis parameters in order to obtain the desired material. This work investigates the role of complexing agents, oxalic acid and tartaric acid, in the production of MgO nanocrystals. Results from simultaneous thermogravimetric analysis (STA) show that the two different synthesis routes yield precursors with different thermal profiles. It is found that the thermal profiles of the precursors can reveal the effects of crystal growth during thermal annealing. X-ray diffraction confirms that the final products are pure, single phase and of cubic shape. It is also found that complexing agents can affect the rate of crystal growth. The structures of the oxalic acid and tartaric acid as well as the complexation sites play very important roles in the formation of the nanocrystals. The complexing agents influence the rate of growth which affects the final crystallite size of the materials. Surprisingly, it is also found that oxalic acid and tartaric acid act as surfactants inhibiting crystal growth even at a high temperature of 950°C and a long annealing time of 36 h. The crystallite formation routes are proposed to be via linear and branched polymer networks due to the different structures of the complexing agents. PMID:24650322
Phase Behavior and Physical Properties of New Biobased Ionic Liquid Crystals.
Toledo Hijo, Ariel A C; Maximo, Guilherme J; Costa, Mariana C; Cunha, Rosiane L; Pereira, Jorge F B; Kurnia, Kiki A; Batista, Eduardo A C; Meirelles, Antonio J A
2017-04-13
Protic ionic liquids (PILs) have emerged as promising compounds and attracted the interest of the industry and the academy community, due to their easy preparation and unique properties. In the context of green chemistry, the use of biocompounds, such as fatty acids, for their synthesis could disclose a possible alternative way to produce ILs with a low or nontoxic effect and, consequently, expanding their applicability in biobased processes or in the development of bioproducts. This work addressed efforts to a better comprehension of the complex solid-[liquid crystal]-liquid thermodynamic equilibrium of 20 new PILs synthesized by using fatty acids commonly found in vegetable oils, as well as their rheological profile and self-assembling ability. The work revealed that their phase equilibrium and physical properties are significantly impacted by the structure of the ions used for their synthesis. The use of unsaturated fatty acids and bis(2-hydroxyethyl)ammonium for the synthesis of these biobased ILs led to a drastic decreasing of their melting temperatures. Also, the longest alkyl chain fatty acids promoted higher self-assembling and more stable mesophases. Besides their sustainable appeal, the marked high viscosity, non-Newtonian profile, and very low critical micellar concentration values of the PIL crystals here disclosed make them interesting renewable compounds with potential applications as emulsifiers, stabilizers, thickeners, or biolubricants.
Edge-Controlled Growth and Etching of Two-Dimensional GaSe Monolayers
Li, Xufan; Dong, Jichen; Idrobo, Juan C.; ...
2016-12-07
Understanding the atomistic mechanisms governing the growth of two-dimensional (2D) materials is of great importance in guiding the synthesis of wafer-sized, single-crystalline, high-quality 2D crystals and heterostructures. Etching, in many cases regarded as the reverse process of material growth, has been used to study the growth kinetics of graphene. In this paper, we explore a growth–etching–regrowth process of monolayer GaSe crystals, including single-crystalline triangles and irregularly shaped domains formed by merged triangles. We show that the etching begins at a slow rate, creating triangular, truncated triangular, or hexagonally shaped holes that eventually evolve to exclusively triangles that are rotated 60°more » with respect to the crystalline orientation of the monolayer triangular crystals. The regrowth occurs much faster than etching, reversibly filling the etched holes and then enlarging the size of the monolayer crystals. A theoretical model developed based on kinetic Wulff construction (KWC) theory and density functional theory (DFT) calculations accurately describe the observed morphology evolution of the monolayer GaSe crystals and etched holes during the growth and etching processes, showing that they are governed by the probability of atom attachment/detachment to/from different types of edges with different formation energies of nucleus/dents mediated by chemical potential difference Δμ between Ga and Se. Finally, our growth–etching–regrowth study provides not only guidance to understand the growth mechanisms of 2D binary crystals but also a potential method for the synthesis of large, shape-controllable, high-quality single-crystalline 2D crystals and their lateral heterostructures.« less
Silambarasan, A; Rajesh, P; Ramasamy, P
2014-01-24
The organic single crystals of 4-nitroaniline 4-aminobenzoic acid (4NAABA) were grown from ethanol solvent. The lattice parameters of the grown crystal have been confirmed from single crystal XRD analysis. The powder XRD pattern shows the various planes of grown crystal. The FTIR and (1)H NMR spectral analysis confirm the presence of various functional groups and the placement of proton in 4NAABA compound respectively. The UV absorption was carried out which shows the cutoff wavelength around 459 nm. The optical band gap of the crystal has been evaluated from the transmission spectra and absorption coefficient by extrapolation technique. In addition, a fluorescence spectral analysis is carried out for 4NAABA crystals. The thermal properties of crystals were evaluated from thermogravimetrical analysis. It shows that the grown crystal is stable up to 160°C and the crystal has sharp melting point at 151°C. Copyright © 2013 Elsevier B.V. All rights reserved.
Continuous-Flow In-Line Solvent-Swap Crystallization of Vitamin D3
2017-01-01
A continuous tandem in-line evaporation–crystallization is presented. The process includes an in-line solvent-swap step, suitable to be coupled to a capillary based cooler. As a proof of concept, this setup is tested in a direct in-line acetonitrile mediated crystallization of Vitamin D3. This configuration is suitable to be coupled to a new end-to-end continuous microflow synthesis of Vitamin D3. By this procedure, vitamin particles can be crystallized in continuous flow and isolated using an in-line continuous filtration step. In one run in just 1 min of cooling time, ∼50% (w/w) crystals of Vitamin D3 are directly obtained. Furthermore, the polymorphic form as well as crystals shape and size properties are described in this paper.
Conductive Hybrid Crystal Composed from Polyoxomolybdate and Deprotonatable Ionic-Liquid Surfactant
Kobayashi, Jun; Kawahara, Ryosuke; Uchida, Sayaka; Koguchi, Shinichi; Ito, Takeru
2016-01-01
A polyoxomolybdate inorganic-organic hybrid crystal was synthesized with deprotonatable ionic-liquid surfactant. 1-dodecylimidazolium cation was employed for its synthesis. The hybrid crystal contained δ-type octamolybdate (Mo8) isomer, and possessed alternate stacking of Mo8 monolayers and interdigitated surfactant bilayers. The crystal structure was compared with polyoxomolybdate hybrid crystals comprising 1-dodecyl-3-methylimidazolium surfactant, which preferred β-type Mo8 isomer. The less bulky hydrophilic moiety of the 1-dodecylimidazolium interacted with the δ-Mo8 anion by N–H···O hydrogen bonds, which presumably induced the formation of the δ-Mo8 anion. Anhydrous conductivity of the hybrid crystal was estimated to be 5.5 × 10−6 S·cm−1 at 443 K by alternating current (AC) impedance spectroscopy. PMID:27347926
Discovery and gram-scale synthesis of BMS-593214, a potent, selective FVIIa inhibitor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Priestley, E. Scott; De Lucca, Indawati; Zhou, Jinglan
A 6-amidinotetrahydroquinoline screening hit was driven to a structurally novel, potent, and selective FVIIa inhibitor through a combination of library synthesis and rational design. An efficient gram-scale synthesis of the active enantiomer BMS-593214 was developed, which required significant optimization of the key Povarov annulation. Importantly, BMS-593214 showed antithrombotic efficacy in a rabbit arterial thrombosis model. A crystal structure of BMS-593214 bound to FVIIa highlights key contacts with Asp 189, Lys 192, and the S2 pocket.
High-rate synthesis of Cu-BTC metal-organic frameworks.
Kim, Ki-Joong; Li, Yong Jun; Kreider, Peter B; Chang, Chih-Hung; Wannenmacher, Nick; Thallapally, Praveen K; Ahn, Ho-Geun
2013-12-21
The reaction conditions for the synthesis of Cu-BTC (BTC = benzene-1,3,5-tricarboxylic acid) were elucidated using a continuous-flow microreactor-assisted solvothermal system to achieve crystal size and phase control. A high-rate synthesis of Cu-BTC metal-organic frameworks with a BET surface area of more than 1600 m(2) g(-1) (Langmuir surface area of more than 2000 m(2) g(-1)) and with a 97% production yield could be achieved with a total reaction time of 5 minutes.
Crystal chemistry of M{sup II}M′{sup IV}(PO{sub 4}){sub 2} double monophosphates
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bregiroux, Damien, E-mail: damien.bregiroux@upmc.fr; Popa, Karin; Wallez, Gilles
2015-10-15
M{sup II}M′{sup IV}(PO{sub 4}){sub 2} compounds have been extensively studied for several decades for their potential applications in the field of several domains such as matrices for actinides conditioning, phosphors etc. In this paper, the relationships between composition and crystal structure of these compounds are established. A review of the various processes used for the synthesis of these compounds is also proposed, as well as their most reported properties. M{sup II}M′{sup IV}(PO{sub 4}){sub 2} structures stem from two different archetypes: the cheralite and the yavapaiite structures, with some exceptions that are also described in this article. The ratio of themore » cations radii appears to be the most relevant parameter. The high ratio between the ionic radii of the divalent and tetravalent cations in yavapaiite derivates results in the ordering of these cations into well-differentiated polyhedra whereas cheralite is the only non-ordered structure encountered for M{sup II}M′{sup IV}(PO{sub 4}){sub 2} compounds. - Graphical abstract: In this paper, the relationships between composition and crystal structure of M{sup II}M′{sup IV}(PO{sub 4}){sub 2} compounds are established. A review of the various processes used for the synthesis of these compounds is also proposed, as well as their most reported properties. - Highlights: • Crystal structure–composition relationships of MIIM′IV(PO4)2 compounds. • Review of the various processes used for the synthesis of these compounds. • Their most reported properties are described and discussed.« less
Total Synthesis of Eleutherobin and Analogs and Study of Anti-Cancer Mechanism
2001-05-01
storage of the samples in our prenmiscs for five months at into 25- 35 nmn large single crystals of zeolite Y. Further 78"C. crystallization of the...5, , " Sevcrl ib6kcular sieves, including zeolite A, Y, L, ZSM -5, d) R. E. Ireland, L. Liu, J. Org. Chem. 3993,58,2899; review of TPAP/ NMO oxidation
Fascio, Mirta L; Alvarez-Larena, Angel; D'Accorso, Norma B
2002-11-29
Three isoxazoline tetracycles were obtained enantiomerically pure by intramolecular 1,3-dipolar cycloaddition. The characterization of the new compounds was performed by high-resolution 1H and 13C NMR spectroscopy. The relative configuration of the new chiral centers was determined by NOESY experiments and confirmed by single-crystal X-ray structural analysis.
Synthesis of single-crystal perovskite PbCrO3 through a new reaction route at high pressure
NASA Astrophysics Data System (ADS)
Han, Yunxia; Wang, Shanmin; Liu, Yinjuan; Ma, Dejiang; He, Duanwei; Zhao, Yusheng
2018-04-01
As a new member in the family of Mott system, perovskite PbCrO3 has recently been uncovered to exhibit fantastic structural transition under pressure, coupled with magnetic, electronic, and ferromagnetic transitions, which provide many opportunities for understanding of correlated system. However, it is still challenging to synthesize high-quality single-crystal PbCrO3, leading to the limited exploration of this Mott compound. In this work, we formulate a new high-pressure reaction route for preparation of high-quality PbCrO3 crystals between PbCl2 and Na2CrO4 at high pressure of 5-10 GPa and at high temperature of 750-1500°C. Because of the formation of reaction byproduct NaCl, the final product can readily be separated by washing with water. The obtained sample is in the form of single crystal with crystallite size up to 200 μm. In addition, combined with X-ray diffraction measurement, a tentative pressure-temperature synthesis diagram of PbCrO3 is mapped out from the reaction between PbCl2 and Na2CrO4 and the reaction mechanism is also explored in detail.
New diols with imidazoquinazoline ring
NASA Astrophysics Data System (ADS)
Szyszkowska, Agnieszka; Klasek, Antonin; Pawlędzio, Sylwia; Trzybiński, Damian; Woźniak, Krzysztof; Zarzyka, Iwona
2018-02-01
The objective of these studies was to synthesize and characterize new diols with an imidazoquinazoline ring. New diols were obtained in reactions of 2,6-bis-(ethoxycarbonylmethyl)-1-phenylimidazo[1,5-c]quinazoline-3,5-dione with excess of ethylene glycol or in reaction of 1-phenyl-2H,6H-imidazo[1,5-c]quinazoline-3,5-dione with 2-M excess of ethylene oxide. The products were isolated at high yield and characterized by instrumental methods (IR, 1H- and 13C-NMR, MS-ESI, UV, TGA). The structure of 2,6-bis(2-hydroxyethyl)-1-phenylimidazo[1,5-c]quinazoline-3,5-dione (BEFIQ) was also investigated by single-crystal X-ray diffraction. BEFIQ crystallizes in the monoclinic P21/n space group with two molecules in the asymmetric unit of the crystal lattice. The nature of the packing of molecules in the crystal lattice of BEFIQ was investigated by Hirshfeld surface analysis. The described methods enable the synthesis of new diols with an imidazoquinazoline ring. The new diols are quite soluble in typical organic solvents. Therefore, they can be used as raw materials for the synthesis of thermally stable polymers, and they can also have biological activity.
NASA Technical Reports Server (NTRS)
Abu-Safe, Husam H.; Naseem, Hameed A.; Brown, William D.
2007-01-01
Poly-silicon thin films on glass substrates are synthesized using laser initiated metal induced crystallization of hydrogenated amorphous silicon films. These films can be used to fabricate solar cells on low cost glass and flexible substrates. The process starts by depositing 200 nm amorphous silicon films on the glass substrates. Following this, 200 nm of sputtered aluminum films were deposited on top of the silicon layers. The samples are irradiated with an argon ion cw laser beam for annealing. Laser power densities ranging from 4 to 9 W/cm2 were used in the annealing process. Each area on the sample is irradiated for a different exposure time. Optical microscopy was used to examine any cracks in the films and loss of adhesion to the substrates. X-Ray diffraction patterns from the initial results indicated the crystallization in the films. Scanning electron microscopy shows dendritic growth. The composition analysis of the crystallized films was conducted using Energy Dispersive x-ray Spectroscopy. The results of poly-silicon films synthesis on space qualified flexible substrates such as Kapton are also presented.
Synthesis, Crystal Structure, and Magnetic Properties of the YbFeTi2O7 Compound
NASA Astrophysics Data System (ADS)
Drokina, T. V.; Petrakovskii, G. A.; Molokeev, M. S.; Velikanov, D. A.
2018-03-01
We report on the synthesis conductions and results of experimental investigations of the crystal structure and magnetic properties of a new magnetic compound YbFeTi2O7. According to the X-ray diffractometry data, the crystal structure of the investigated compound is described by the rhombic space group Pcnb with unit cell parameters of a = 9.8115(1) Å, b = 13.5106(2) Å, and c = 7.31302(9) Å and atomic disordering in the distribution of iron ions Fe3+ over five structural sites. The magnetic measurements in the lowtemperature region revealed a kink in the temperature dependence of the magnetic moment and its dependence on the sample magnetic prehistory. The experimental results obtained suggest that with a decrease in temperature the sample passes from the paramagnetic state to the spin-glass-like magnetic state characterized by a freezing temperature of T f = 4.5 K at the preferred antiferromagnetic exchange coupling in the sample spin system. The chemical pressure variation upon replacement of rare-earth ion R by Yb in the RFeTi2O7 system does not change the crystal lattice symmetry and magnetic state.
Jia, Bao-Rui; Qin, Ming-Li; Li, Shu-Mei; Zhang, Zi-Li; Lu, Hui-Feng; Chen, Peng-Qi; Wu, Hao-Yang; Lu, Xin; Zhang, Lin; Qu, Xuan-Hui
2016-06-22
A new class of mesoporous single crystalline (MSC) material, Co(OH)2 nanoplates, is synthesized by a soft template method, and it is topotactically converted to dual-pore MSC Co3O4. Most mesoporous materials derived from the soft template method are reported to be amorphous or polycrystallined; however, in our synthesis, Co(OH)2 seeds grow to form single crystals, with amphiphilic block copolymer F127 colloids as the pore producer. The single-crystalline nature of material can be kept during the conversion from Co(OH)2 to Co3O4, and special dual-pore MSC Co3O4 nanoplates can be obtained. As the anode of lithium-ion batteries, such dual-pore MSC Co3O4 nanoplates possess exceedingly high capacity as well as long cyclic performance (730 mAh g(-1) at 1 A g(-1) after the 350th cycle). The superior performance is because of the unique hierarchical mesoporous structure, which could significantly improve Li(+) diffusion kinetics, and the exposed highly active (111) crystal planes are in favor of the conversion reaction in the charge/discharge cycles.
Building zeolites from pre-crystallized units: nanoscale architecture.
Corma, Avelino; Li, Chengeng; Moliner, Manuel
2018-01-24
Since the earlier descriptions by Barrer in the 40's on converting natural minerals into synthetic zeolites, the use of pre-crystallized zeolites as crucial inorganic directing agents to synthesize other crystalline zeolites with improved physico-chemical properties, has become a very intense and relevant research field, allowing the design, particularly in the last years, of new industrial catalysts. In the present review, we will highlight how the presence of some crystalline fragments in the synthesis media, such as small secondary building units (SBUs) or layered substructures, not only favors the crystallization of other zeolites presenting similar SBUs or layers, but also permits mostly controlling important parameters affecting to their catalytic activity (i.e. chemical composition, crystal size, or porosity, among others). In this sense, the recent advances on the preparation of 3-D and 2-D related zeolites through seeding and zeolite-to-zeolite transformation processes will be extensively revised, including their preparation in presence or absence of organic structure directing agents (OSDAs), with the aim of introducing general guidelines for designing more efficient future synthesis approaches for target zeolites. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Erdemir, Fatoş; Barut Celepci, Duygu; Aktaş, Aydın; Taslimi, Parham; Gök, Yetkin; Karabıyık, Hasan; Gülçin, İlhami
2018-03-01
This study contains novel a serie synthesis of N-heterocyclic carbene (NHC) precursors that 2-hydroxyethyl substituted. The NHC precursors have been prepared from 1-(2- hydroxyethyl)benzimidazole and alkyl halides. The novel NHC precursors have been characterized by using 1H NMR, 13C NMR, FTIR spectroscopy and elemental analysis techniques. Molecular and crystal structures of 2a, 2d, 2e, 2f and 2g were obtained with single-crystal X-ray diffraction studies. These novel NHC precursor's derivatives effectively inhibited the α-glycosidase, cytosolic carbonic anhydrase I and II isoforms (hCA I and II), butyrylcholinesterase (BChE) and acetylcholinesterase (AChE). Inhibition constant (Ki) were found in the range of 0.30-9.22 nM for α-glycosidase, 13.90-41.46 nM for hCA I, 12.82-49.95 nM for hCA II, 145.82-882.01 nM for BChE, and 280.92-1370.01 nM for AChE, respectively.
Sequential structural and optical evolution of MoS2 by chemical synthesis and exfoliation
NASA Astrophysics Data System (ADS)
Kim, Ju Hwan; Kim, Jungkil; Oh, Si Duck; Kim, Sung; Choi, Suk-Ho
2015-06-01
Various types of MoS2 structures are successfully obtained by using economical and facile sequential synthesis and exfoliation methods. Spherically-shaped lumps of multilayer (ML) MoS2 are prepared by using a conventional hydrothermal method and were subsequently 1st-exfoliated in hydrazine while being kept in autoclave to be unrolled and separated into five-to-six-layer MoS2 pieces of several-hundred nm in size. The MoS2 MLs are 2nd-exfoliated in sodium naphthalenide under an Ar ambient to finally produce bilayer MoS2 crystals of ~100 nm. The sequential exfoliation processes downsize MoS2 laterally and reduce its number of layers. The three types of MoS2 allotropes exhibit particular optical properties corresponding to their structural differences. These results suggest that two-dimensional MoS2 crystals can be prepared by employing only chemical techniques without starting from high-pressure-synthesized bulk MoS2 crystals.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sorokin, N. I., E-mail: nsorokin1@yandex.ru; Sobolev, B. P.
We have investigated the conductivity of some representatives of different technological forms of fluoride-conducting solid electrolytes R{sub 1–y}M{sub y}F{sub 3–y} (M = Ca, Sr, Ba; R are rare earth elements) with an LaF{sub 3} structure: single crystals, cold- and hot-pressing ceramics based on a charge prepared in different ways (mechanochemical synthesis, solid-phase synthesis, and fragmentation of single crystals), polycrystalline alloys, etc. It is shown (by impedance spectroscopy), that different technological forms of identical chemical composition (R, M, y) exhibit different electrical characteristics. The maximum conductivity is observed for the single-crystal form of R{sub 1–y}M{sub y}F{sub 3–y} tysonite phases, which providesmore » (in contrast to other technological forms) the formation of true volume ion-conducting characteristics.« less
Naqvi, Kubra F.; Staker, Bart L.; Dobson, Renwick C. J.; ...
2016-01-01
The enzyme dihydrodipicolinate synthase catalyzes the committed step in the synthesis of diaminopimelate and lysine to facilitate peptidoglycan and protein synthesis. Dihydrodipicolinate synthase catalyzes the condensation of L-aspartate 4-semialdehyde and pyruvate to synthesize L-2,3-dihydrodipicolinate. Here, the cloning, expression, purification, crystallization and X-ray diffraction analysis of dihydrodipicolinate synthase from the pathogenic bacteriumBartonella henselae, the causative bacterium of cat-scratch disease, are presented. Protein crystals were grown in conditions consisting of 20%(w/v) PEG 4000, 100 mMsodium citrate tribasic pH 5.5 and were shown to diffract to ~2.10 Å resolution. They belonged to space groupP2 12 12 1, with unit-cell parametersa= 79.96,b= 106.33,c= 136.25more » Å. The finalRvalues wereR r.i.m.= 0.098,R work= 0.183,R free= 0.233.« less
Synthesis of large single-crystal hexagonal boron nitride grains on Cu-Ni alloy
NASA Astrophysics Data System (ADS)
Lu, Guangyuan; Wu, Tianru; Yuan, Qinghong; Wang, Huishan; Wang, Haomin; Ding, Feng; Xie, Xiaoming; Jiang, Mianheng
2015-01-01
Hexagonal boron nitride (h-BN) has attracted significant attention because of its superior properties as well as its potential as an ideal dielectric layer for graphene-based devices. The h-BN films obtained via chemical vapour deposition in earlier reports are always polycrystalline with small grains because of high nucleation density on substrates. Here we report the successful synthesis of large single-crystal h-BN grains on rational designed Cu-Ni alloy foils. It is found that the nucleation density can be greatly reduced to 60 per mm2 by optimizing Ni ratio in substrates. The strategy enables the growth of single-crystal h-BN grains up to 7,500 μm2, approximately two orders larger than that in previous reports. This work not only provides valuable information for understanding h-BN nucleation and growth mechanisms, but also gives an effective alternative to exfoliated h-BN as a high-quality dielectric layer for large-scale nanoelectronic applications.
Synthesis and stereochemical analysis of β-nitromethane substituted γ-amino acids and peptides.
Ganesh Kumar, Mothukuri; Mali, Sachitanand M; Gopi, Hosahudya N
2013-02-07
The high diastereoselectivity in the Michael addition of nitromethane to α,β-unsaturated γ-amino esters, crystal conformations of β-nitromethane substituted γ-amino acids and peptides are studied. Results suggest that the N-Boc protected amide NH, conformations of α,β-unsaturated γ-amino esters and alkyl side chains play a crucial role in dictating the high diastereoselectivity of nitromethane addition to E-vinylogous amino esters. Investigation of the crystal conformations of both α,β-unsaturated γ-amino esters and the Michael addition products suggests that an H-C(γ)-C(β)=C(α) eclipsed conformer of the unsaturated amino ester leads to the major (anti) product compared to that of an N-C(γ)-C(β)=C(α) eclipsed conformer. The major diastereomers were separated and subjected to the peptide synthesis. The single crystal analysis of the dipeptide containing β-nitromethane substituted γ-amino acids reveals a helical type of folded conformation with an isolated H-bond involving a nine-atom pseudocycle.
Synthesis and structural characterization of Li3K3Y7(BO3)9
NASA Astrophysics Data System (ADS)
Bräuchle, Sebastian; Huppertz, Hubert
2017-09-01
Li3K3Y7(BO3)9 was prepared by high-temperature solid state synthesis at 900 °C in a platinum crucible from lithium carbonate, potassium carbonate, boric acid, and yttrium(III) oxide. The compound crystallizes in the orthorhombic space group Pca21 (no. 29) (Z = 4). The structure was refined from single-crystal X-ray diffraction data: a = 20.743(8), b = 6.387(4), c = 17.474(4) Å, V = 2315.2(2) Å3, R1 = 0.0473, and wR2 = 0.0637 for all data. The crystal structure of Li3K3Y7(BO3)9 consists of isolated BO3 groups forming [Li3B4O21] units in combination with LiO6 octahedra in the ac plane, which are interconnected to each other by additional planar BO3 groups. The Y3+ and K+ cations are arranged in layers along the a-axis.
The role of boric acid in the synthesis of Eni Carbon Silicates.
Zanardi, Stefano; Bellussi, Giuseppe; Parker, Wallace O'Neil; Montanari, Erica; Bellettato, Michela; Cruciani, Giuseppe; Carati, Angela; Guidetti, Stefania; Rizzo, Caterina; Millini, Roberto
2014-07-21
The influence of H3BO3 on the crystallization of hybrid organic-inorganic aluminosilicates denoted as Eni Carbon Silicates (ECS's) was investigated. Syntheses were carried out at 100 °C under different experimental conditions, using bridged silsesquioxanes of general formula (EtO)3Si-R-Si(OEt)3 (R = -C6H4- (BTEB), -C10H6- (BTEN) and -C6H4-C6H4- (BTEBP)), in the presence of equimolar concentrations of NaAlO2 and H3BO3. The study, involving the synthesis of three different but structurally related phases (ECS-14 from BTEB, ECS-13 here described for the first time from BTEN, and ECS-5 from BTEBP), confirmed a catalytic role for H3BO3 which in general increased the crystallization rate and improved the product quality in terms of amount of crystallized phase (crystallinity), size of the crystallites and phase purity, while it was weakly incorporated in trace amounts in the framework of ECS's.
The different conformations and crystal structures of dihydroergocristine
NASA Astrophysics Data System (ADS)
Mönch, B.; Kraus, W.; Köppen, R.; Emmerling, F.
2016-02-01
The identification of different forms of dihydroergocristine (DHEC) was carried out by crystallization from different organic solvents. DHEC was identified as potential template for molecularly imprinted polymers (MIPs) for the epimeric specific analysis of ergot alkaloids (EAs) in food. DHEC was crystallized from different solvents in order to mimic the typical MIP synthesis conditions. Four new solvatomorphs of DHEC were obtained. All solvatomorphs contain a water molecule in the crystal structure, whereas three compounds contain an additional solvent molecule. Based on the conformation of DHEC a comparison with typical EA molecules was possible. The analysis showed that DHEC is a suitable template for MIPs for EAs.
Shao, Hua; Pinnavaia, Thomas J
2010-09-01
The low-temperature synthesis (90°C) of nanoparticle forms of a pure phase smectic clay (saponite) and zeolite (cancrinite) is reported, along with phase mixtures thereof. A synthesis gel corresponding to the Si:Al:Mg unit cell composition of saponite (3.6:0.40:3.0) and a NaOH/Si ratio of 1.39 affords the pure phase clay with disordered nanolayer stacking. Progressive increases in the NaOH/Si ratio up to a value of 8.33 results in the co-crystallization of first garronite and then cancrinite zeolites with nanolath morphology. The resulting phase mixtures exhibit a compound particulate structure of intertwined saponite nanolayers and cancrinite nanolaths that cannot be formed through physical mixing of the pure phase end members. Under magnesium-free conditions, pure phase cancrinite nanocrystals are formed. The Si/Al ratio of the reaction mixture affects the particle morphology as well as the chemical composition of the cancrinite zeolite. Ordinarily, cancrinite crystallizes with a Si/Al ratio of 1.0, but a silicon-rich form of the zeolite (Si/Al=1.25) is crystallized at low temperature from a silica rich synthesis gel, as evidenced by (29)Si NMR spectroscopy and XEDS-TEM. Owing to the exceptionally high external surface areas of the pure phase clay (875 m(2)/g) and zeolite end members (8.9 - 40 m(2)/g), as well as their unique mixed phase composites (124 - 329 m(2)/g), these synthetic derivatives are promising model nanoparticles for studies of the bioavailability of poly-aromatic hydrocarbons immobilized in silicate bearing sediments and soils.
Li, Xiansen; Michaelis, Vladimir K.; Ong, Ta-Chung; Smith, Stacey J.; Griffin, Robert G.; Wang, Evelyn N.
2014-01-01
The controllable synthesis of well-ordered layered materials with specific nanoarchitecture poses a grand challenge in materials chemistry. We report the solvothermal synthesis of two structurally analogous 5-coordinate organosilicate complexes via a novel transesterification mechanism. Since the polycrystalline nature of the intrinsic hypervalent Si complex thwarts the endeavor in determining its structure, a novel strategy concerning the elegant addition of a small fraction of B species as an effective crystal growth mediator and a sacrificial agent is proposed to directly prepare diffraction-quality single crystals without disrupting the intrinsic elemental type. In the determined crystal structure, two monomeric primary building units (PBUs) self-assemble into a dimeric asymmetric secondary BU via strong Na+-O2− ionic bonds. The designed one-pot synthesis is straightforward, robust, and efficient, leading to a well-ordered (10ī)-parallel layered Si complex with its principal interlayers intercalated with extensive van der Waals gaps in spite of the presence of substantial Na+ counterions as a result of unique atomic arrangement in its structure. On the other hand, upon fast pyrolysis, followed by acid leaching, both complexes are converted into two SiO2 composites bearing BET surface areas of 163.3 and 254.7 m2 g−1 for the pyrolyzed intrinsic and B-assisted Si complexes, respectively. The transesterification methodology merely involving alcoholysis but without any hydrolysis side reaction is designed to have generalized applicability for use in synthesizing new layered metal-organic compounds with tailored PBUs and corresponding metal oxide particles with hierarchical porosity. PMID:24737615
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vasala, Sami; Yamauchi, Hisao; Karppinen, Maarit, E-mail: maarit.karppinen@aalto.fi
2014-12-15
Here we synthesize and characterize a new double-perovskite oxide Sr{sub 2}CuIrO{sub 6}. The synthesis requires the use of high oxygen pressure to stabilize the VI oxidation state of iridium. The compound has a tetragonally-distorted crystal structure due to the Jahn–Teller active Cu{sup II} ion, and a high degree of B-site cation order. Magnetic transition is apparent at 15 K, but the zero-field-cooled and field-cooled susceptibilities diverge below this temperature. The high degree of cation order would exclude the possibility of a typical spin-glass, indicating that the divergence is probably due to a frustration of the magnetic interactions between Cu andmore » Ir, with a high frustration factor of f≈25. - Graphical abstract: A new member of the A{sub 2}B′B″O{sub 6} double-perovskite family with JT-active Cu{sup II} at the B′ site and Ir{sup VI} at the B″ site is synthesized through high pressure synthesis and characterized for the structural and magnetic properties. - Highlights: • New member of the A{sub 2}CuB″O{sub 6} double-perovskite family is synthesized with B″=Ir. • Stabilization of Ir{sup VI} requires the use of high oxygen pressure synthesis. • Crystal structure is tetragonally distorted due to JT-active Cu{sup II}. • Divergence of ZFC and FC curves is seen below the T{sub N} of 15 K. • This is presumably due to a frustration effect.« less
Second harmonic generation and crystal growth of new chalcone derivatives
NASA Astrophysics Data System (ADS)
Patil, P. S.; Dharmaprakash, S. M.; Ramakrishna, K.; Fun, Hoong-Kun; Sai Santosh Kumar, R.; Narayana Rao, D.
2007-05-01
We report on the synthesis, crystal structure and optical characterization of chalcone derivatives developed for second-order nonlinear optics. The investigation of a series of five chalcone derivatives with the second harmonic generation powder test according to Kurtz and Perry revealed that these chalcones show efficient second-order nonlinear activity. Among them, high-quality single crystals of 3-Br-4'-methoxychalcone (3BMC) were grown by solvent evaporation solution growth technique. Grown crystals were characterized by X-ray powder diffraction (XRD), laser damage threshold, UV-vis-NIR and refractive index measurement studies. Infrared spectroscopy, thermogravimetric analysis and differential thermal analysis measurements were performed to study the molecular vibration and thermal behavior of 3BMC crystal. Thermal analysis does not show any structural phase transition.
Development of a model for on-line control of crystal growth by the AHP method
NASA Astrophysics Data System (ADS)
Gonik, M. A.; Lomokhova, A. V.; Gonik, M. M.; Kuliev, A. T.; Smirnov, A. D.
2007-05-01
The possibility to apply a simplified 2D model for heat transfer calculations in crystal growth by the axial heat close to phase interface (AHP) method is discussed in this paper. A comparison with global heat transfer calculations with the CGSim software was performed to confirm the accuracy of this model. The simplified model was shown to provide adequate results for the shape of the melt-crystal interface and temperature field in an opaque (Ge) and a transparent crystal (CsI:Tl). The model proposed is used for identification of the growth setup as a control object, for synthesis of a digital controller (PID controller at the present stage) and, finally, in on-line simulations of crystal growth control.
Method for solid state crystal growth
Nolas, George S.; Beekman, Matthew K.
2013-04-09
A novel method for high quality crystal growth of intermetallic clathrates is presented. The synthesis of high quality pure phase crystals has been complicated by the simultaneous formation of both clathrate type-I and clathrate type-II structures. It was found that selective, phase pure, single-crystal growth of type-I and type-II clathrates can be achieved by maintaining sufficient partial pressure of a chemical constituent during slow, controlled deprivation of the chemical constituent from the primary reactant. The chemical constituent is slowly removed from the primary reactant by the reaction of the chemical constituent vapor with a secondary reactant, spatially separated from the primary reactant, in a closed volume under uniaxial pressure and heat to form the single phase pure crystals.
NASA Astrophysics Data System (ADS)
Soderholm, L.; Mitchell, J. F.
2016-05-01
Synthesis of inorganic extended solids is a critical starting point from which real-world functional materials and their consequent technologies originate. However, unlike the rich mechanistic foundation of organic synthesis, with its underlying rules of assembly (e.g., functional groups and their reactivities), the synthesis of inorganic materials lacks an underpinning of such robust organizing principles. In the latter case, any such rules must account for the diversity of chemical species and bonding motifs inherent to inorganic materials and the potential impact of mass transport on kinetics, among other considerations. Without such assembly rules, there is less understanding, less predictive power, and ultimately less control of properties. Despite such hurdles, developing a mechanistic understanding for synthesis of inorganic extended solids would dramatically impact the range of new material discoveries and resulting new functionalities, warranting a broad call to explore what is possible. Here we discuss our recent approaches toward a mechanistic framework for the synthesis of bulk inorganic extended solids, in which either embryonic atomic correlations or fully developed phases in solutions or melts can be identified and tracked during product selection and crystallization. The approach hinges on the application of high-energy x-rays, with their penetrating power and large Q-range, to explore reaction pathways in situ. We illustrate this process using two examples: directed assembly of Zr clusters in aqueous solution and total phase awareness during crystallization from K-Cu-S melts. These examples provide a glimpse of what we see as a larger vision, in which large scale simulations, data-driven science, and in situ studies of atomic correlations combine to accelerate materials discovery and synthesis, based on the assembly of well-defined, prenucleated atomic correlations.
Soderholm, L.; Mitchell, J. F.
2016-05-26
Synthesis of inorganic extended solids is a critical starting point from which real-world functional materials and their consequent technologies originate. However, unlike the rich mechanistic foundation of organic synthesis, with its underlying rules of assembly (e.g., functional groups and their reactivities), the synthesis of inorganic materials lacks an underpinning of such robust organizing principles. In the latter case, any such rules must account for the diversity of chemical species and bonding motifs inherent to inorganic materials and the potential impact of mass transport on kinetics, among other considerations. Without such assembly rules, there is less understanding, less predictive power, andmore » ultimately less control of properties. Despite such hurdles, developing a mechanistic understanding for synthesis of inorganic extended solids would dramatically impact the range of new material discoveries and resulting new functionalities, warranting a broad call to explore what is possible. Here we discuss our recent approaches toward a mechanistic framework for the synthesis of bulk inorganic extended solids, in which either embryonic atomic correlations or fully developed phases in solutions or melts can be identified and tracked during product selection and crystallization. The approach hinges on the application of high-energy x-rays, with their penetrating power and large Q-range, to explore reaction pathways in situ. We illustrate this process using two examples: directed assembly of Zr clusters in aqueous solution and total phase awareness during crystallization from K–Cu–S melts. These examples provide a glimpse of what we see as a larger vision, in which large scale simulations, data-driven science, and in situ studies of atomic correlations combine to accelerate materials discovery and synthesis, based on the assembly of well-defined, prenucleated atomic correlations.« less
Crystal Structures of the E. coli Transcription Initiation Complexes with a Complete Bubble
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zuo, Yuhong; Steitz, Thomas A.
2015-05-01
During transcription initiation, RNA polymerase binds to promoter DNA to form an initiation complex containing a DNA bubble and enters into abortive cycles of RNA synthesis before escaping the promoter to transit into the elongation phase for processive RNA synthesis. Here we present the crystal structures of E. coli transcription initiation complexes containing a complete transcription bubble and de novo synthesized RNA oligonucleotides at about 6-Å resolution. The structures show how RNA polymerase recognizes DNA promoters that contain spacers of different lengths and reveal a bridging interaction between the 5'-triphosphate of the nascent RNA and the σ factor that maymore » function to stabilize the short RNA-DNA hybrids during the early stage of transcription initiation. The conformation of the RNA oligonucleotides and the paths of the DNA strands in the complete initiation complexes provide insights into the mechanism that controls both the abortive and productive RNA synthesis.« less
Sol-gel synthesis and densification of aluminoborosilicate powders. Part 2: Densification
NASA Technical Reports Server (NTRS)
Bull, Jeffrey; Selvaduray, Guna; Leiser, Daniel
1992-01-01
Aluminoborosilicate (ABS) powders, high in alumina content, were synthesized by the sol-gel process utilizing four different methods of synthesis. The effect of these methods on the densification behavior of ABS powder compacts was studied. Five regions of shrinkage in the temperature range 25-1184 C were identified. In these regions, the greatest shrinkage occurred between the gel-to-glass transition temperature (T sub g approximately equal to 835 C) and the crystallization transformation temperature (T sub t approximately equal 900 C). The dominant mechanism of densification in this range was found to be viscous sintering. ABS powders were amorphous to x-rays up to T sub t at which a multiphasic structure crystallized. No 2Al2O3.B2O3 was found in these powders as predicted in the phase diagram. Above T sub t, densification was the result of competing mechanisms including grain growth and boria fluxed viscous sintering. Apparent activation energies for densification in each region varied according to the method of synthesis.
Pandi, P; Peramaiyan, G; Sudhahar, S; Chakkaravarthi, G; Mohan Kumar, R; Bhagavannarayana, G; Jayavel, R
2012-12-01
Picolinium maleate (PM), an organic material has been synthesised and single crystals were grown by slow evaporation technique. The structure of the grown crystal was elucidated by using single crystal X-ray diffraction analysis. PM crystal belongs to the monoclinic crystallographic system with space group P2(1)/c. The crystalline perfection of the grown crystals was analyzed by high-resolution X-ray diffraction rocking curve measurements. The presence of functional groups in PM was identified by FTIR and FT-NMR spectral analyses. Thermal behaviour and stability of picolinium maleate were studied by TGA/DTA analyses. UV-Vis spectral studies reveal that PM crystals are transparent in the wavelength region 327-1100 nm. The laser damage threshold value of PM crystal was found to be 4.3 GW/cm(2) using Nd:YAG laser. The Kurtz and Perry powder second harmonic generation technique confirms the nonlinear optical property of the grown crystal. Copyright © 2012 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Ravindra, H. J.; John Kiran, A.; Nooji, Satheesha Rai; Dharmaprakash, S. M.; Chandrasekharan, K.; Kalluraya, Balakrishna; Rotermund, Fabian
2008-05-01
Good quality single crystals of p-chloro dibenzylideneacetone (CDBA) of size 13 mm×8 mm×2 mm were grown by slow evaporation solution growth technique. The grown crystals were confirmed by elemental analysis, Fourier transform infrared (FTIR) analysis and single crystal X-ray diffraction techniques. From the thermo gravimetric/differential thermal (TG/DT) analysis, the CDBA was found to be thermally stable up to 250 °C. The mechanical stability of the crystal is comparable with that of the other reported chalcones. The lower optical cut-off wavelength for this crystal was observed at 440 nm. The laser damage threshold of the crystal was 0.6 GW/cm 2 at 532 nm. The second harmonic generation conversion efficiency of the powder sample of CDBA was found to be 4.5 times greater than that of urea. We also demonstrate the existence of the phase matching property in this crystal using Kurtz powder technique.
Synthesis of Caffeine/Maleic Acid Co-crystal by Ultrasound-assisted Slurry Co-crystallization.
Apshingekar, Prafulla P; Aher, Suyog; Kelly, Adrian L; Brown, Elaine C; Paradkar, Anant
2017-01-01
A green approach has been used for co-crystallization of noncongruent co-crystal pair of caffeine/maleic acid using water. Ultrasound is known to affect crystallization; hence, the effect of high power ultrasound on the ternary phase diagram has been investigated in detail using a slurry co-crystallization approach. A systematic investigation was performed to understand how the accelerated conditions during ultrasound-assisted co-crystallization will affect different regions of the ternary phase diagram. Application of ultrasound showed considerable effect on the ternary phase diagram, principally on caffeine/maleic acid 2:1 (disappeared) and 1:1 co-crystal (narrowed) regions. Also, the stability regions for pure caffeine and maleic acid in water were narrowed in the presence of ultrasound, expanding the solution region. The observed effect of ultrasound on the phase diagram was correlated with solubility of caffeine and maleic acid and stability of co-crystal forms in water. Copyright © 2016. Published by Elsevier Inc.
NASA Astrophysics Data System (ADS)
Permin, D. A.; Novikova, A. V.; Balabanov, S. S.; Gavrishchuk, E. M.; Kurashkin, S. V.; Savikin, A. P.
2018-04-01
This paper describes a comparative study of structural and luminescent properties of 5%Yb-doped yttrium, scandium, and lutetium oxides (Yb:RE2O3) powders and ceramics fabricated by self-propagating high-temperature synthesis. According to X-ray diffractometry and electron microscopy the chosen method ensures preparation of low-agglomerated cubic Ctype crystal structured powders at one step. No crucial differences in luminescence spectra were found the Yb:RE2O3 powders and ceramics. It was shown that the emission lifetimes of the Yb:RE2O3 powders are lowered by crystal structure defects, while its values for ceramics samples are compared to that of monocrystals and more influenced by rare earth impurities.
NASA Astrophysics Data System (ADS)
Essid, Idris; Lahbib, Karima; Kaminsky, Werner; Ben Nasr, Cherif; Touil, Soufiane
2017-08-01
Herein we report a simple and efficient one-pot three-component synthesis of 5-phosphonato-3,4-dihydropyrimidin-2(1H)-ones, through the zinc triflate-catalyzed Biginelli-type reaction of β-ketophosphonates, aldehydes and urea. The compounds obtained were characterized by various spectroscopic tools including IR, NMR (1H, 31P, 13C) spectroscopy, mass spectrometry and single crystal X-ray diffraction. All the synthesized compounds were screened, for the first time, for anti-inflammatory activity by carrageenan-induced hind paw edema method, using female Wister rats and they showed significant anti-inflammatory activity in some cases higher than the standard indomethacin.
Utilization of biogenic tea waste silver nanoparticles for the reduction of organic dyes
NASA Astrophysics Data System (ADS)
Kaur, H.; Jaryal, N.
2018-05-01
Eco-friendly synthesis of nanoparticles is the need of the society today. Present study has been undertaken to investigate the greener approach for the preparation of medicinally and chemically important nanoparticles. Tea waste has been taken to synthesis silver nanoparticles. The nanoparticles are characterized by x-ray Diffraction, and Transmission Emission Microscopy studies. The particle size varied from 2 to 34 nm. These silver nanoparticles were evaluated for their reducing activity against four organic dyes viz crystal violet, methylene blue, Congo red and brilliant green. The particles exhibited good catalytic activity against crystal violet, methylene blue and brilliant green but no activity was visible for Congo red. Furthermore, AgNPs shows very promising and prominent antioxidant activity.
NASA Astrophysics Data System (ADS)
Thu Trang Pham, Thi; Phuong Nguyen, Thu; Pham, Thi Nam; Phuong Vu, Thi; Tran, Dai Lam; Thai, Hoang; Thanh Dinh, Thi Mai
2013-09-01
In this paper, the synthesis of hydroxyapatite (HAp) nanopowder was studied by chemical precipitation method at different values of reaction temperature, settling time, Ca/P ratio, calcination temperature, (NH4)2HPO4 addition rate, initial concentration of Ca(NO3)2 and (NH4)2HPO4. Analysis results of properties, morphology, structure of HAp powder from infrared (IR) spectra, x-ray diffraction (XRD), energy dispersive x-ray (EDX) spectra and scanning electron microscopy (SEM) indicated that the synthesized HAp powder had cylinder crystal shape with size less than 100 nm, single-phase structure. The variation of the synthesis conditions did not affect the morphology but affected the size of HAp crystals.
One-Step Synthesis of Monodisperse In-Doped ZnO Nanocrystals
NASA Astrophysics Data System (ADS)
Wang, Qing Ling; Yang, Ye Feng; He, Hai Ping; Chen, Dong Dong; Ye, Zhi Zhen; Jin, Yi Zheng
2010-05-01
A method for the synthesis of high quality indium-doped zinc oxide (In-doped ZnO) nanocrystals was developed using a one-step ester elimination reaction based on alcoholysis of metal carboxylate salts. The resulting nearly monodisperse nanocrystals are well-crystallized with typically crystal structure identical to that of wurtzite type of ZnO. Structural, optical, and elemental analyses on the products indicate the incorporation of indium into the host ZnO lattices. The individual nanocrystals with cubic structures were observed in the 5% In-ZnO reaction, due to the relatively high reactivity of indium precursors. Our study would provide further insights for the growth of doped oxide nanocrystals, and deepen the understanding of doping process in colloidal nanocrystal syntheses.
Bio-inspired routes for synthesizing efficient nanoscale platinum electrocatalysts
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cha, Jennifer N.; Wang, Joseph
2014-08-31
The overall objective of the proposed research is to use fundamental advances in bionanotechnology to design powerful platinum nanocrystal electrocatalysts for fuel cell applications. The new economically-viable, environmentally-friendly, bottom-up biochemical synthetic strategy will produce platinum nanocrystals with tailored size, shape and crystal orientation, hence leading to a maximum electrochemical reactivity. There are five specific aims to the proposed bio-inspired strategy for synthesizing efficient electrocatalytic platinum nanocrystals: (1) isolate peptides that both selectively bind particular crystal faces of platinum and promote the nucleation and growth of particular nanocrystal morphologies, (2) pattern nanoscale 2-dimensional arrays of platinum nucleating peptides from DNA scaffolds,more » (3) investigate the combined use of substrate patterned peptides and soluble peptides on nanocrystal morphology and growth (4) synthesize platinum crystals on planar and large-area carbon electrode supports, and (5) perform detailed characterization of the electrocatalytic behavior as a function of catalyst size, shape and morphology. Project Description and Impact: This bio-inspired collaborative research effort will address key challenges in designing powerful electrocatalysts for fuel cell applications by employing nucleic acid scaffolds in combination with peptides to perform specific, environmentally-friendly, simultaneous bottom-up biochemical synthesis and patterned assembly of highly uniform and efficient platinum nanocrystal catalysts. Bulk synthesis of nanoparticles usually produces a range of sizes, accessible catalytic sites, crystal morphologies, and orientations, all of which lead to inconsistent catalytic activities. In contrast, biological systems routinely demonstrate exquisite control over inorganic syntheses at neutral pH and ambient temperature and pressures. Because the orientation and arrangement of the templating biomolecules can be precisely controlled, the nanocrystals boast a defined shape, morphology, orientation and size and are synthesized at benign reaction conditions. Adapting the methods of biomineralization towards the synthesis of platinum nanocrystals will allow effective control at a molecular level of the synthesis of highly active metal electrocatalysts, with readily tailored properties, through tuning of the biochemical inputs. The proposed research will incorporate many facets of biomineralization by: (1) isolating peptides that selectively bind particular crystal faces of platinum (2) isolating peptides that promote the nucleation and growth of particular nanocrystal morphologies (3) using two-dimensional DNA scaffolds to control the spatial orientation and density of the platinum nucleating peptides, and (4) combining bio-templating and soluble peptides to control crystal nucleation, orientation, and morphology. The resulting platinum nanocrystals will be evaluated for their electrocatalytic behavior (on common carbon supports) to determine their optimal size, morphology and crystal structure. We expect that such rational biochemical design will lead to highly uniform and efficient platinum nanocrystal catalysts for fuel cell applications.« less
The Arabidopsis COBRA Protein Facilitates Cellulose Crystallization at the Plasma Membrane*
Sorek, Nadav; Sorek, Hagit; Kijac, Aleksandra; Szemenyei, Heidi J.; Bauer, Stefan; Hématy, Kian; Wemmer, David E.; Somerville, Chris R.
2014-01-01
Mutations in the Arabidopsis COBRA gene lead to defects in cellulose synthesis but the function of COBRA is unknown. Here we present evidence that COBRA localizes to discrete particles in the plasma membrane and is sensitive to inhibitors of cellulose synthesis, suggesting that COBRA and the cellulose synthase complex reside in close proximity on the plasma membrane. Live-cell imaging of cellulose synthesis indicated that, once initiated, cellulose synthesis appeared to proceed normally in the cobra mutant. Using isothermal calorimetry, COBRA was found to bind individual β1–4-linked glucan chains with a KD of 3.2 μm. Competition assays suggests that COBRA binds individual β1–4-linked glucan chains with higher affinity than crystalline cellulose. Solid-state nuclear magnetic resonance studies of the cell wall of the cobra mutant also indicated that, in addition to decreases in cellulose amount, the properties of the cellulose fibrils and other cell wall polymers differed from wild type by being less crystalline and having an increased number of reducing ends. We interpret the available evidence as suggesting that COBRA facilitates cellulose crystallization from the emerging β1–4-glucan chains by acting as a “polysaccharide chaperone.” PMID:25331944
Liu, Yinghui; Zhang, Yanming; Cao, Xupeng; Xue, Song
2013-11-01
Malonyl-coenzymeA:acyl-carrier protein transacylase (MCAT), which catalyzes the transfer of the malonyl group from malonyl-CoA to acyl-carrier protein (ACP), is an essential enzyme in type II fatty-acid synthesis. The enzyme MCAT from Synechocystis sp. PCC 6803 (spMCAT), the first MCAT counterpart from a cyanobacterium, was cloned, purified and crystallized in order to determine its three-dimensional crystal structure. A higher-quality crystal with better diffraction was obtained by crystallization optimization. The crystal diffracted to 1.8 Å resolution and belonged to the orthorhombic space group P2(1)2(1)2, with unit-cell parameters a = 43.22, b = 149.21, c = 40.59 Å. Matthews coefficient calculations indicated that the crystal contained one spMCAT molecule in the asymmetric unit with a Matthews coefficient of 2.18 Å(3) Da(-1) and a solvent content of 43.65%.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sathyalakshmi, R.; Bhagavannarayana, G.; Ramasamy, P.
L-(+)-Glutamic acid hydro bromide, an isomorphic salt of L-glutamic acid hydrochloride, was synthesized and the synthesis was confirmed using Fourier transform infrared analysis. Solubility of the material in water was determined. L-Glutamic acid hydro bromide crystals were grown by low temperature solution growth using the solvent evaporation technique. Single crystal X-ray diffraction studies were carried out and the cell parameters, atomic co-ordinates, bond lengths and bond angles were reported. High-resolution X-ray diffraction studies were carried out and good crystallinity for the grown crystal was observed from the diffraction curve. The grown crystals were subjected to dielectric studies. Ultraviolet-visible-near infrared spectralmore » analysis shows good optical transmission in the visible and infrared region of the grown crystals. The second harmonic generation efficiency of L-glutamic acid hydro bromide crystal was determined using the Kurtz powder test and it was found that it had efficiency comparable with that of the potassium di-hydrogen phosphate crystal.« less
NASA Astrophysics Data System (ADS)
Lenin, M.; Ramasamy, P.
2008-10-01
Single crystals of 3-nitroacetanilide, an organic nonlinear optical material has been grown by the Bridgman-Stockbarger method. The single crystal X-ray diffraction (XRD) data revealed the noncentrosymmetric crystal structure, which is an essential criterion for second harmonic generation. The crystalline nature of the grown crystals was confirmed using powder XRD techniques. The functional group of the compound is identified by FTIR spectrum. The thermal stability and its tendency to grow as single crystal in solution and in melt have been identified for the new title compound. The UV-vis spectrum of mNAA shows the lower optical cut off at 400 nm and was transparent in the visible region. The second harmonic generation efficiency was found using Kurtz powder technique. The dielectric constant and dielectric loss of the crystal were measured as a function of frequency and temperature, and the results are discussed.
Electrooptic crystal growth and properties
NASA Astrophysics Data System (ADS)
1994-02-01
A new member in the tungsten-bronze family of ferroelectric lead potassium niobate (PKN), with general formula Pb(1-x)K(2x)Nb2O6, has been grown as bulk single crystal. Growth of PKN with charge composition x = 0.23 has been achieved using the Czochralski technique of crystal pulling. Large diameter boules were grown in platinum crucibles at temperatures between 1280 and 1300 C. Crystallographic studies were conducted using x ray diffraction techniques. The samples were characterized for ferroelectric properties between 25 and 600 C and for optical absorption. This paper presents the crystal synthesis and the results of ferroelectric and optical characterization. Bulk single crystals of potassium tantalate niobate, KTa(1-x)Nb(x)O3, ferroelectric with different values of Ta/Nb ratios have been grown by temperature gradient transport technique (TGTT). A second attached paper presents the results of the crystal growth experiments, ferroelectric characterization techniques, and properties of potassium tantalate niobate crystals.
NASA Astrophysics Data System (ADS)
AlDamen, Murad A.; Juwhari, Hassan K.; Al-zuheiri, Aya M.; Alnazer, Louy A.
2017-12-01
Single crystal of Li[UO2(CH3COO)3]3[Co(H2O)6] was prepared and found to crystallize in the monoclinic crystal system in the sp. gr. C2/ c, with Z = 2, and unit cell parameters a = 22.1857(15) Å, b = 13.6477(8) Å, c = 15.6921(10) Å, β = 117.842(9)°, V = 4201.3(4) Å3. The crystal was characterized by X-ray diffraction, Fourier transform infrared spectroscopy, and differential scanning calorimetry. The single crystal X-ray diffraction analysis revealed that the crystal has a lamellar structure in which a cobalt hydrate is sandwiched within the Li[UO2(CH3COO)3]3 2- chains. Furthermore, the room temperature photoluminescence spectrum of the complex was investigated in the solid state.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yamnova, N. A., E-mail: aks.crys@gmail.com; Aksenov, S. M.; Stefanovich, S. Yu.
Calcium triborate CaB{sub 3}O5(OH) obtained by hydrothermal synthesis in the Ca(OH){sub 2}–H{sub 3}BO{sub 3}–Na{sub 2}CO{sub 3}–KCl system is studied by single-crystal X-ray diffraction. The parameters of the orthorhombic unit cell are as follows: a = 13.490(1), b = 6.9576(3), and c = 4.3930(2) Å; V = 412.32(3) Å{sup 3} and space group Pna2{sub 1}. The structure is refined in the anisotropic approximation of the atomic displacement parameters to R = 4.28% using 972 vertical bar F vertical bar > 4σ(F). It is confirmed that the crystal structure of Ca triborate CaB{sub 3}O{sub 5}(OH) is identical to that described earlier. Themore » hydrogen atom is localized. An SHG signal stronger than that of the quartz standard is registered. The phase transition of calcium triborate into calciborite is found on heating. The comparative crystal-chemical analysis of a series of borates with the general chemical formula 2CaO · 3B{sub 2}O{sub 3} · nH{sub 2}O (n = 0–13) with the constant CaO: B{sub 2}O{sub 3}= 2: 3 ratio and variable content of water is performed.« less
NASA Astrophysics Data System (ADS)
Arizaga, Livia; Gancheff, Jorge S.; Faccio, Ricardo; Cañón-Mancisidor, Walter; González, Ricardo; Kremer, Carlos; Chiozzone, Raúl
2014-01-01
A novel carboxylate/picolinate oxo-bridged iron(III) cluster, namely [Na2(H2O)8][Fe4(μ-O)2(O2CPh)7(pic)2]2·2H2O (1) where pic = picolinate, has been obtained by reacting "basic iron benzoate" [Fe3O(O2CPh)6(H2O)3](O2CPh) with sodium picolinate in acetonitrile. The compound has been characterized by elemental analysis and IR spectroscopy and its crystal structure has been determined by single-crystal X-ray diffraction.
NASA Astrophysics Data System (ADS)
Kurake, Naoyuki; Tanaka, Hiromasa; Ishikawa, Kenji; Nakamura, Kae; Kajiyama, Hiroaki; Kikkawa, Fumitaka; Mizuno, Masaaki; Yamanishi, Yoko; Hori, Masaru
2016-09-01
Octahedral particulates several tens of microns in size were synthesized in a culture medium irradiated through contact with a plume of non-equilibrium atmospheric-pressure plasma (NEAPP). The particulates were identified in the crystalline phase as calcium oxalate dihydrate (COD). The original medium contained constituents such as NaCl, d-glucose, CaCl2, and NaHCO3 but not oxalate or oxalic acid. The oxalate was clearly synthesized and crystallized in the medium as thermodynamically unstable COD crystals after the NEAPP irradiation.
Investigation of Optical and Electrical Properties of Wide Band Gap Materials
1976-06-01
porous and heterogeneous. 22 IF 3. CRYSTAL GROWTH OF HgS A. Background fI’ Mercury sulfide is a wide bandgap semiconductor which is of considerable...I24 I 23 Mercury sulfide exists in two modifications, cinnabar (a-HgS) and metacinnabar (0-HgS). The a phase crystallizes in an unusual, dihedrally...5.817 ) at 26 °C, with Eg = -0.15 eV. An early technique, reported by Hamilton 31, on the synthesis of single crystals of the sulphides of Zn, Cd
Applications of ultrasound to chiral crystallization, resolution and deracemization.
Xiouras, Christos; Fytopoulos, Antonios; Jordens, Jeroen; Boudouvis, Andreas G; Van Gerven, Tom; Stefanidis, Georgios D
2018-05-01
Industrial synthesis of enantiopure compounds is nowadays heavily based on the separation of racemates through crystallization processes. Although the application of ultrasound in solution crystallization processes (sonocrystallization) has become a promising emerging technology, offering several benefits (e.g. reduction of the induction time and narrowing of the metastable zone width, control over the product size, shape and polymorphic modification), little attention has been paid so far to the effects of ultrasound on chiral crystallization processes. Several recent studies have reported on the application of acoustic energy to crystallization processes that separate enantiomers, ranging from classical (diastereomeric) resolution and preferential crystallization to new and emerging processes such as attrition-enhanced deracemization (Viedma ripening). A variety of interesting effects have been observed, which include among others, enhanced crystallization yield with higher enantiomeric purity crystals, spontaneous mirror symmetry breaking crystallization, formation of metastable conglomerate crystals and enhanced deracemization rates. The objective of this review is to provide an overview of the effects of ultrasound on chiral crystallization and outline several aspects of interest in this emerging field. Copyright © 2018 Elsevier B.V. All rights reserved.
Aerosol Route Synthesis and Applications of Doped Nanostructured Materials
NASA Astrophysics Data System (ADS)
Sahu, Manoranjan
Nanotechnology presents an attractive opportunity to address various challenges in air and water purification, energy, and other environment issues. Thus, the development of new nanoscale materials in low-cost scalable synthesis processes is important. Furthermore, the ability to independently manipulate the material properties as well as characterize the material at different steps along the synthesis route will aide in product optimization. In addition, to ensure safe and sustainable development of nanotechnology applications, potential impacts need to be evaluated. In this study, nanomaterial synthesis in a single-step gas phase reactor to continuously produce doped metal oxides was demonstrated. Copper-doped TiO2 nanomaterial properties (composition, size, and crystal phase) were independently controlled based on nanoparticle formation and growth mechanisms dictated by process control parameters. Copper dopant found to significantly affect TiO2 properties such as particle size, crystal phase, stability in the suspension, and absorption spectrum (shift from UV to visible light absorption). The in-situ charge distribution characterization of the synthesized nanomaterials was carried out by integrating a tandem differential mobility analyzer (TDMA) set up with the flame reactor synthesis system. Both singly- and doubly- charged nanoparticles were measured, with the charged fractions dependent on particle mobility and dopant concentration. A theoretical calculation was conducted to evaluate the relative importance of the two charging mechanisms, diffusion and thermo-ionization, in the flame. Nanoparticle exposure characterization was conducted during synthesis as a function of operating condition, product recovery and handling technique, and during maintenance of the reactors. Strategies were then indentified to minimize the exposure risk. The nanoparticle exposure potential varied depending on the operating conditions such as precursor feed rate, working conditions of the fume hood, ventilation system, and distance from the reactors. Nanoparticle exposure varied during product recovery and handling depending on the quantity of nanomaterial handled. Most nanomaterial applications require nanomaterials to be in solution. Thus, the role of nanomaterial physio-chemical properties (size, crystal phase, dopant types and concentrations) on dispersion properties was investigated based on hydrodynamic size and surface charge. Dopant type and concentration were found to significantly affect iso-electric point (IEP)-shifting the IEP to a high or lower pH value compared to pristine TiO2 based on the oxidation state of the dopant. The microbial inactivation effectiveness of as-synthesized nanomaterials was investigated under different light irradiation conditions. Microbial inactivation was found to strongly depend on the light irradiation condition as well as on material properties such chemical composition, crystal phase, and particle size. The potential interaction mechanisms of copper-doped TiO2 nanomaterial with microbes were also explored. The studies conducted as part of this dissertation addressed issues in nanomaterial synthesis, characterization and their potential environmental applications.
Synthesis, characterization, and ion-exchange properties of colloidal zeolite nanocrystals
NASA Astrophysics Data System (ADS)
Jawor, Anna; Jeong, Byeong-Heon; Hoek, Eric M. V.
2009-10-01
Here, we present physical-chemical properties of Linde type A (LTA) zeolite crystals synthesized via conventional hydrothermal and microwave heating methods. Both heating methods produced LTA crystals that were sub-micron in size, highly negatively charged, super-hydrophilic, and stable when dispersed in water. However, microwave heating produced relatively narrow crystal size distributions, required much shorter heating times, and did not significantly change composition, crystallinity, or surface chemistry. Moreover, microwave heating allowed systematic variation of crystal size by varying heating temperature and time during the crystallization reaction, thus producing a continuous gradient of crystal sizes ranging from about 90 to 300 nm. In ion-exchange studies, colloidal zeolites exhibited excellent sorption kinetics and capacity for divalent metal ions, suggesting their potential for use in water softening, scale inhibition, and scavenging of toxic metal ions from water.
Fernández, Carlos E; Mancera, Manuel; Holler, Eggehard; Bou, Jordi J; Galbis, Juan A; Muñoz-Guerra, Sebastián
2005-02-23
Low-molecular-weight poly(alpha-methyl beta,L-malate) made of approximately 25-30 units was prepared from microbial poly(beta,L-malic acid) by treatment with diazomethane. The thermal characterization of the polymalate methyl ester was carried out and its crystalline structure was preliminary examined. Its ability to crystallize both from solution and from the melt was comparatively evaluated.
Selvaraju, K; Kirubavathi, K
2013-11-01
The single crystals of bis l-proline hydrogen nitrate (BLPHN) belonging to non-centrosymmetric space group were successfully grown by the slow evaporation solution growth technique. The BLPHN crystals of size 10×7×3mm(3) were obtained in 35days. Initially, the solubility tests were carried out for two solvents such as deionized water and mixed of deionized water-acetone. Among the two solvents, the solubility of BLPHN was found to be the highest in deionized water, so crystallization of BLPHN was done from its aqueous solution. As grown, crystals were characterized by single crystal X-ray diffraction studies and optical transmission spectral studies. Infrared spectroscopy, thermo gravimetric analysis and differential thermal analysis measurements were performed to study the molecular vibration and thermal behavior of the grown BLPHN crystals. Nonlinear optical (NLO) behavior of BLPHN crystal was studied by Kurtz and Perry powder method. Copyright © 2013 Elsevier B.V. All rights reserved.
Preparation of fine single crystals of magnetic superconductor RuSr2GdCu2O8-δ by partial melting
NASA Astrophysics Data System (ADS)
Yamaki, Kazuhiro; Bamba, Yoshihiro; Irie, Akinobu
2018-03-01
In this study, fine uniform RuSr2GdCu2O8-δ (RuGd-1212) single crystals have been successfully prepared by partial melting. Synthesis temperature could be lowered to a value not exceeding the decomposition temperature of RuGd-1212 using the Sr-Gd-Cu-O flux. The crystals grown by alumina boats are cubic, which coincides with the result of a previous study of RuGd-1212 single crystals using platinum crucibles. The single crystals were up to 15 × 15 × 15 µm3 in size and their lattice constants were consistent with those of polycrystalline samples reported previously. Although the present size of single crystals is not sufficient for measurements, the partial melting technique will be beneficial for future progress of research using RuGd-1212 single crystals. Appropriate nominal composition, sintering atmosphere, and temperature are essential factors for growing RuGd-1212 single crystals.
NASA Astrophysics Data System (ADS)
Bergamini, F. R. G.; Ribeiro, M. A.; Lancellotti, M.; Machado, D.; Miranda, P. C. M. L.; Cuin, A.; Formiga, A. L. B.; Corbi, P. P.
2016-09-01
This article describes the synthesis and characterization of the 1-ethyl-7-methyl-4-oxo-1,4-dihydro-1,8-naphthyridine-3-carbohydrazide (hzd) and six carbonyl hydrazones derivatives of the nalidixic with 1H-pyrrol-2-ylmethylidene (hpyrr), 1H-imidazol-2-ylmethylidene (h2imi), pyridin-2-ylmethylidene (h2py), pyridin-3-ylmethylidene (h3py), pyridin-4-ylmethylidene(h4py) and (2-hydroxyphenyl)methylidene (hsali). The carbonyl hydrazones were characterized by elemental and ESI-QTOF-MS analyses, IR and detailed NMR spectroscopic measurements. The 2D NMR experiments allowed the unambiguous assignment of the hydrogen, carbon and nitrogen atoms, which have not been reported for nalidixic acid carbonyl hydrazone derivatives so far. Crystal structures of hzd and the new carbonyl hydrazones h2imi, hpyrr and h3py were determined by X-ray diffraction studies. Although the synthesis of hzd was reported decades ago, the hzd crystal structure have not been reported yet. Geometric optimizations of all the characterized structures were performed with the aid of DFT studies. Despite the fact that the hydrazones with 2-pyridine carboxylic acid (h2py) and salicyl aldehyde (hsali) were already reported by literature, a detailed spectroscopic study followed by DFT studies are also reported for such compounds in this manuscript. Antimicrobial studies of the compounds are also presented.
The Effect of deposition rate on FePt/MgO crystal orientation
NASA Astrophysics Data System (ADS)
Sheikhi, M.; Sebt, S. A.; Khajehnezhad, A.
2018-06-01
FePt granular layers which are made in suitable conditions can have three types of ordering that are crystalline, compositional orders and directional configuration of nanoparticles. Formation of fct structure with L10 compositional ordering requires high temperature. At this temperature, a problem is the size control of the nanoparticles and another problem is control of their crystal orientation. Fabrication method and the use of suitable substrates can help solving these problems. In direct synthesis by sputtering method on the warm substrate the size of FePt nanoparticles in L10 compositional ordered phase can be controlled. We show that crystal orientation of L10-FePt nanoparticles on a thin layer of MgO depends on the rate of deposition. This becomes clear from the results of the XRD analyses of samples. Based on these results in synthesis at room temperature with deposition rate of upper than 1.5 Å/s after annealing, (001) peak is dominated and at rate of lower than 1.0 Å/s just (111) peak is appeared. In direct synthesis with intermediate rate (111) and (110) peaks can be seen. Moreover, the difference of the shape of hysteresis loops of samples in parallel and vertical directions are the witnesses for orientation of samples in presence of MgO layer and the effect of FePt deposition rate on it.
NASA Astrophysics Data System (ADS)
Budi Hutami Rahayu, Lale; Oktavia Wulandari, Ika; Herry Santjojo, Djoko; Sabarudin, Akhmad
2018-01-01
The use of polyvinyl alcohol (PVA) as a capping agent and glutaraldehyde (GA) as a crosslinker for a synthesis of magnetite (Fe3O4) nanoparticles is able to reduce agglomeration of produced Fe3O4. Additionally, oxidation of Fe3O4 by air could be avoided. The synthesis is carried out in two steps: first step, magnetite (Fe3O4) nanoparticles were prepared by dissolving the FeCl3.6H2O and FeCl2.4H2O in alkaline media (NH3.H2O). The second step, magnetite nanoparticles were coated with polyvinyl alcohol (PVA) and glutaraldehyde (GA) to obtain Fe3O4-PVA-GA. The latter material was then characterized by FTIR to determine the typical functional groups of magnetite coated with PVA-GA. X-ray Diffraction analysis was used to determine structure and size of crystal as well as the percentage of magnetite produced. It was found that the produced nanoparticles have crystal sizes around 4-9 nm with the cubic crystal structure. The percentage of magnetite phase increases when the amount of glutaraldehyde increased. SEM-EDX was employed to assess the surface morphology and elemental composition of the resulted nanoparticles. The magnetic character of the magnetite and Fe3O4- PVA-GA were studied using Electron Spin Resonance.
Programmable pulse generator based on programmable logic and direct digital synthesis.
Suchenek, M; Starecki, T
2012-12-01
The paper presents a new approach of pulse generation which results in both wide range tunability and high accuracy of the output pulses. The concept is based on the use of programmable logic and direct digital synthesis. The programmable logic works as a set of programmable counters, while direct digital synthesis (DDS) as the clock source. Use of DDS as the clock source results in stability of the output pulses comparable to the stability of crystal oscillators and quasi-continuous tuning of the output frequency.
Synthesis and structure of synthetically pure and deuterated amorphous (basic) calcium carbonates
Wang, Hsiu-Wen; Daemen, Luke L.; Cheshire, Michael C.; ...
2017-02-17
It is generally believed that H 2O and OH - are the key species stabilizing and controlling amorphous calcium carbonate “polyamorph” forms, and may in turn control the ultimate crystallization products during synthesis and in natural systems. Yet, the locations and hydrogen-bonding network of these species in ACC have never been measured directly using neutron diffraction. In this paper, we report a synthesis route that overcomes the existing challenges with respect to yield quantities and deuteration, both of which are critically necessary for high quality neutron studies.
Total chemical synthesis and X-ray structure of kaliotoxin by racemic protein crystallography.
Pentelute, Brad L; Mandal, Kalyaneswar; Gates, Zachary P; Sawaya, Michael R; Yeates, Todd O; Kent, Stephen B H
2010-11-21
Here we report the total synthesis of kaliotoxin by 'one pot' native chemical ligation of three synthetic peptides. A racemic mixture of D- and L-kaliotoxin synthetic protein molecules gave crystals in the centrosymmetric space group P1 that diffracted to atomic-resolution (0.95 Å), enabling the X-ray structure of kaliotoxin to be determined by direct methods.
Synthesis, Properties, and Applications Of Boron Nitride
NASA Technical Reports Server (NTRS)
Pouch, John J.; Alterovitz, Samuel A.
1993-01-01
Report describes synthesis, properties, and applications of boron nitride. Especially in thin-film form. Boron nitride films useful as masks in x-ray lithography; as layers for passivation of high-speed microelectronic circuits; insulating films; hard, wear-resistant, protective films for optical components; lubricants; and radiation detectors. Present status of single-crystal growth of boron nitride indicates promising candidate for use in high-temperature semiconductor electronics.
NASA Astrophysics Data System (ADS)
Hosseinpour, Pegah M.; Yung, Daniel; Panaitescu, Eugen; Heiman, Don; Menon, Latika; Budil, David; Lewis, Laura H.
2014-12-01
Titania nanotubes have the potential to be employed in a wide range of energy-related applications such as solar energy-harvesting devices and hydrogen production. As the functionality of titania nanostructures is critically affected by their morphology and crystallinity, it is necessary to understand and control these factors in order to engineer useful materials for green applications. In this study, electrochemically-synthesized titania nanotube arrays were thermally processed in inert and reducing environments to isolate the role of post-synthesis processing conditions on the crystallization behavior, electronic structure and morphology development in titania nanotubes, correlated with the nanotube functionality. Structural and calorimetric studies revealed that as-synthesized amorphous nanotubes crystallize to form the anatase structure in a three-stage process that is facilitated by the creation of structural defects. It is concluded that processing in a reducing gas atmosphere versus in an inert environment provides a larger unit cell volume and a higher concentration of Ti3+ associated with oxygen vacancies, thereby reducing the activation energy of crystallization. Further, post-synthesis annealing in either reducing or inert atmospheres produces pronounced morphological changes, confirming that the nanotube arrays thermally transform into a porous morphology consisting of a fragmented tubular architecture surrounded by a network of connected nanoparticles. This study links explicit data concerning morphology, crystallization and defects, and shows that the annealing gas environment determines the details of the crystal structure, the electronic structure and the morphology of titania nanotubes. These factors, in turn, impact the charge transport and consequently the functionality of these nanotubes as photocatalysts.
Synthesis, structural and optical properties of (ALa)(FeMn)O6 (A = Ba and Sr) double perovskites
NASA Astrophysics Data System (ADS)
Kumar, Dinesh; Sudarshan, V.; Singh, Akhilesh Kumar
2018-05-01
Here, we report structural and optical properties of ALaFeMnO6 (A = Ba and Sr) double perovskite synthesized via auto-combustion followed by calcinations process. Rietveld refinement of structure using x-ray diffraction data reveals that BaLaFeMnO6 crystallizes into cubic crystal structure with space group Pm-3m while SrLaFeMnO6 crystallizes into rhombohedral crystal structure having space group R-3c. The absorption spectrum measurement using UV-Vis spectroscopy reveals that these samples are prefect insulator having energy band gap between conduction and valence band of the order of 6 eV.
Dhanuskodi, S; Manivannan, S; Kirschbaum, K
2006-05-15
1-Ethyl-2,6-dimethyl-4-hydroxy pyridinium chloride dihydrate and bromide dihydrate salts have been synthesized and their single crystals were grown by the slow evaporation of aqueous solution at 30 degrees C. The grown crystals were characterized by elemental analysis, FT-NMR and FT-IR techniques to confirm the formation of the expected compound. Optical transmittance window in aqueous solution was found to be 275-1100 nm by UV-vis-NIR technique. Thermogravimetric and differential thermal analyses reveal thermal stability and the presence of two water molecules in the crystal lattices. The crystal structure of chloride salt was also determined by X-ray diffraction method.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nishitani, Yuichi; Maruyama, Daisuke; Nonaka, Tsuyoshi
2006-04-01
Preliminary X-ray diffraction studies on N-acetylglucosamine-phosphate mutase from C. albicans are reported. N-acetylglucosamine-phosphate mutase (AGM1) is an essential enzyme in the synthesis of UDP-N-acetylglucosamine (UDP-GlcNAc) in eukaryotes and belongs to the α-d-phosphohexomutase superfamily. AGM1 from Candida albicans (CaAGM1) was purified and crystallized by the sitting-drop vapour-diffusion method. The crystals obtained belong to the primitive monoclinic space group P2{sub 1}, with unit-cell parameters a = 60.2, b = 130.2, c = 78.0 Å, β = 106.7°. The crystals diffract X-rays to beyond 1.8 Å resolution using synchrotron radiation.
Metaflumizone is a novel sodium channel blocker insecticide.
Salgado, V L; Hayashi, J H
2007-12-15
Metaflumizone is a novel semicarbazone insecticide, derived chemically from the pyrazoline sodium channel blocker insecticides (SCBIs) discovered at Philips-Duphar in the early 1970s, but with greatly improved mammalian safety. This paper describes studies confirming that the insecticidal action of metaflumizone is due to the state-dependent blockage of sodium channels. Larvae of the moth Spodoptera eridania injected with metaflumizone became paralyzed, concomitant with blockage of all nerve activity. Furthermore, tonic firing of abdominal stretch receptor organs from Spodoptera frugiperda was blocked by metaflumizone applied in the bath, consistent with the block of voltage-dependent sodium channels. Studies on native sodium channels, in primary-cultured neurons isolated from the CNS of the larvae of the moth Manduca sexta and on Para/TipE sodium channels heterologously expressed in Xenopus (African clawed frog) oocytes, confirmed that metaflumizone blocks sodium channels by binding selectively to the slow-inactivated state, which is characteristic of the SCBIs. The results confirm that metaflumizone is a novel sodium channel blocker insecticide.
Mechanism of radiative recombination in acceptor-doped bulk GaN crystals
NASA Astrophysics Data System (ADS)
Godlewski, M.; Suski, T.; Grzegory, I.; Porowski, S.; Bergman, J. P.; Chen, W. M.; Monemar, B.
1999-12-01
Optical and electrical properties of acceptor-doped bulk GaN crystals are discussed. Though introducing Zn and Ca to bulk GaN does not significantly change electron concentration, it results in the appearance of a blue photoluminescence band accompanying the relatively strong yellow band usually present. Highly resistive GaN : Mg crystals are obtained when high amount of Mg is introduced to the Ga melt during high-pressure synthesis. Change of electrical properties of Mg-doped bulk crystals is accompanied by the appearance of a strong blue emission of GaN similar to that in Ca- and Zn-doped crystals. Optically detected magnetic resonance investigations indicate a multi-band character of this blue emission and suggest possible mechanism of compensation in acceptor-doped bulk GaN.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhelev, Doncho V., E-mail: dontcho.jelev@nih.gov; Zheleva, Tsvetanka S.
2014-01-28
Silver has unique electrical, catalytic, and plasmonic characteristics and has been widely sought for fabrication of nanostructures. The properties of silver nanostructures are intimately coupled to the structure of silver crystals. Two crystal structures are known for silver: the stable (ground) state cubic face centered 3C-Ag structure and the metastable hexagonal 4H-Ag structure. Recently, Chackraborty et al. [J. Phys.: Condens. Matter 23, 325401 (2011)] discovered a low density, highly reactive metastable hexagonal 2H-Ag structure accessible during electrodeposition of silver nanowires in porous anodic alumina templates. This 2H-Ag structure has enhanced electrical and catalytic characteristics. In the present work we reportmore » template-free synthesis of silver nanoplates with the metastable 2H-Ag crystal structure, which appears together with the ground 3C-Ag and the metastable 4H-Ag structures in a two-phase solution synthesis with citric acid as the capping agent. The capacity of citric acid to stabilize both the stable and the metastable structures is explained by its preferential binding to the close packed facets of Ag crystals, which are the (111) planes for 3C-Ag and the (0001) planes for 4H-Ag and 2H-Ag. Nanoplate morphology and structure are characterized using scanning electron microscopy, X-ray diffraction, and transmission electron microscopy. The synthesized nanoplates have thickness from 15 to 17 nm and edge length from 1 to 10 μm. Transmission electron microscopy selected area electron diffraction is used to uniquely identify and distinguish between nanoplates with 2H-Ag or 4H-Ag or 3C-Ag structures.« less
NASA Astrophysics Data System (ADS)
Sudhakar, K.; Nandhini, S.; Muniyappan, S.; Arumanayagam, T.; Vivek, P.; Murugakoothan, P.
2018-04-01
Ammonium sulfate hydrogen sulphamate (ASHS), an inorganic nonlinear optical crystal, was grown from the aqueous solution by slow evaporation solution growth technique. The single-crystal XRD confirms that the grown single crystal belongs to the orthorhombic system with the space group of Pna21. Powder XRD confirms the crystalline nature and the diffraction planes were indexed. Crystalline perfection of grown crystal was analysed by high-resolution X-ray diffraction rocking curve technique. UV-Vis-NIR studies revealed that ASHS crystal has optical transparency 65% and lower cut-off wavelength at 218 nm. The violet light emission of the crystal was identified by photoluminescence studies. The particle size-dependent second-harmonic generation efficiency for ASHS crystal was evaluated by Kurtz-Perry powder technique using Nd:YAG laser which established the existence of phase matching. Surface laser damage threshold value was evaluated using Nd:YAG laser. Optical homogeneity of the crystal was evaluated using modified channel spectrum method through birefringence study. Thermal analysis reveals that ASHS crystal is stable up to 213 °C. The mechanical behaviour of the ASHS crystal was analysed using Vickers microhardness study.
Hydrothermal synthesis of barium strontium titanate and bismuth titanate materials
NASA Astrophysics Data System (ADS)
Xu, Huiwen
Hydrothermal processing facilitates the synthesis of crystalline ceramic materials of varying composition or complex crystal structure. The present work can be divided into two parts. First is to study the low temperature hydrothermal synthesis of bismuth titanate. Second is to study both thermodynamic and kinetic aspects of the hydrothermally synthesized barium strontium titanate. A chelating agent was used to form a Bi-Ti gel precursor. By hydrothermally treating the Bi-Ti gel, crystalline bismuth titanate has been synthesized at 160°C for the first time. Microstructural evolution during the low temperature synthesis of bismuth titanate can be divided into two stages, including condensation of Bi-Ti gel particles and crystallization of bismuth titanate. Crystallization of bismuth titanate occurred by an in situ transformation mechanism at an early stage followed by a dissolution-reprecipitation mechanism. Phase separation was observed in hydrothermally synthesized barium strontium titanate (BST). By hydrothermally treating BST powders between 250°C--300°C, an asymmetrical miscibility gap was found in the BaTiO3-SrTiO 3 system at low temperatures (T ≤ 320°C). A subregular solid solution model was applied to calculate the equilibrium compositions and the Gibbs free energy of formation of BST solid solution at low temperatures (T ≤ 320°C). The Gibbs free energy of formation of Sr-rich BST phase is larger than that of Ba-rich BST phase. Kinetic studies of single phase BST solid solution at 80°C show that, compared to the BaTiO3 or Ba-rich BST, SrTiO3 and Sr-rich BST powders form at lower reaction rates.
NASA Astrophysics Data System (ADS)
Riaz, Shahina; Raza, Zulfiqar Ali; Majeed, Muhammad Irfan; Jan, Tariq
2018-05-01
In the present study, zinc sulfide (ZnS) nanoparticles (NPs) were successfully synthesized through a modified chemical precipitation protocol and then mediated into poly(hydroxybutyrate) (PHB) matrix to get ZnS/PHB nanocomposite. Mean diameter and zeta potential of ZnS NPs, as determined using dynamic light scattering technique (DLS), were observed to be 53 nm and ‑89 mV, respectively. The structural investigations performed using x-ray diffraction (XRD) technique depicted the phase purity of ZnS NPs exhibiting cubic crystal structure. Fourier transform infrared (FTIR) spectroscopic analysis was conducted to identify the presence or absence of bonding vibrational modes on the surface of synthesized single phase ZnS NPs. The FTIR analysis confirmed the metal to sulphur bond formation by showing the characteristic band at 1123 cm‑1. The UV–vis absorption spectra of ZnS NPs confirmed the synthesis of particles in nanoscale regime showing a λ max of 302 nm. These NPs were then successfully incorporated into PHB matrix to synthesize ZnS/PHB nanocomposite. The synthesis of nanocomposite was confirmed by EDX analysis. The chemical bonding and structural properties of ZnS/PHB nanocomposite were determined by FTIR and XRD analysis, respectively. The FTIR analysis confirmed the synthesis of ZnS/PHB nanocomposite. Moreover, XRD analysis showed that structure of nanocomposite was completely controlled by ZnS NPs as pure PHB exhibited orthorhombic crystal structure while the nanocomposite demonstrated cubic crystal structure of ZnS. Thermal properties of nanocomposite were studied through thermogravimetric analysis revealing that the incorporation of ZnS NPs into PHB matrix lead to enhance heat resistance properties of PHB.
Synthesis of zeolite NaA membrane from fused fly ash extract.
Ameh, Alechine E; Musyoka, Nicholas M; Fatoba, Ojo O; Syrtsova, Daria A; Teplyakov, Vladimir V; Petrik, Leslie F
2016-01-01
Zeolite-NaA membranes were synthesized from an extract of fused South African fly ash on a porous titanium support by a secondary growth method. The influence of the synthesis molar regime on the formation of zeolite NaA membrane layer was investigated. Two synthesis mixtures were generated by adding either aluminium hydroxide or sodium aluminate to the fused fly ash extract. The feedstock material and the synthesized membranes were characterized by X-diffraction (XRD), scanning electron microscopy (SEM) and X-ray fluorescence spectroscopy (XRF). It was found by XRD and SEM that the cubic crystals of a typical zeolite NaA with a dense intergrown layer was formed on the porous Ti support. The study shows that the source of Al used had an effect on the membrane integrity as sodium aluminate provided the appropriate amount of Na(+) to form a coherent membrane of zeolite NaA, whereas aluminium hydroxide did not. Morphological, the single hydrothermal stage seeded support formed an interlocked array of zeolite NaA particles with neighbouring crystals. Also, a robust, continuous and well-intergrown zeolite NaA membrane was formed with neighbouring crystals of zeolite fused to each other after the multiple stage synthesis. The synthesized membrane was permeable to He (6.0 × 10(6) L m(-2)h(-1) atm(-1)) and CO2 (5.6 × 10(6) L m(-2)h(-1) atm(-1)), which indicate that the layer of the membrane was firmly attached to the porous Ti support. Membrane selectivity was maintained showing membrane integrity with permselectivity of 1.1, showing that a waste feedstock, fly ash, could be utilized for preparing robust zeolite NaA membranes on Ti support.
NASA Astrophysics Data System (ADS)
Hou, Chau-Chung; Brahma, Sanjaya; Weng, Shao-Chieh; Chang, Chia-Chin; Huang, Jow-Lay
2017-08-01
We demonstrate a facile, single step, low temperature and energy efficient strategy for the synthesis of SnO2-reduced graphene oxide (RGO) nanocomposite where the crystallization of SnO2 nanoparticles and the reduction of graphene oxide takes place simultaneously by an in situ chemical reduction process. The electrochemical property of the SnO2-RGO composite prepared by using low concentrations of reducing agent shows better Li storage performance, good rate capability (378 mAh g-1 at 3200 mA g-1) and stable capacitance (522 mAh g-1 after 50 cycles). Increasing the reductant concentration lead to crystallization of high concentration of SnO2 nanoparticle aggregation and degrade the Li ion storage property.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rueff, Jean-Michel, E-mail: jean-michel.rueff@ensicaen.fr; Poienar, Maria; Guesdon, Anne
Novel physical or chemical properties are expected in a great variety of materials, in connection with the dimensionality of their structures and/or with their nanostructures, hierarchical superstructures etc. In the search of new advanced materials, the hydrothermal technique plays a crucial role, mimicking the nature able to produce fractal, hyperbranched, urchin-like or snow flake structures. In this short review including new results, this will be illustrated by examples selected in two types of materials, phosphates and phosphonates, prepared by this method. The importance of the synthesis parameters will be highlighted for a magnetic iron based phosphates and for hybrids containingmore » phosphonates organic building units crystallizing in different structural types. - Graphical abstract: Phosphate dendrite like and phosphonate platelet crystals.« less
Controllable cyanation of carbon-hydrogen bonds by zeolite crystals over manganese oxide catalyst
Wang, Liang; Wang, Guoxiong; Zhang, Jian; Bian, Chaoqun; Meng, Xiangju; Xiao, Feng-Shou
2017-01-01
The synthesis of organic nitriles without using toxic cyanides is in great demand but challenging to make. Here we report an environmentally benign and cost-efficient synthesis of nitriles from the direct oxidative cyanation of primary carbon-hydrogen bonds with easily available molecular oxygen and urea. The key to this success is to design and synthesize manganese oxide catalysts fixed inside zeolite crystals, forming a manganese oxide catalyst with zeolite sheath (MnOx@S-1), which exhibits high selectivity for producing nitriles by efficiently facilitating the oxidative cyanation reaction and hindering the side hydration reaction. The work delineates a sustainable strategy for synthesizing nitriles while avoiding conventional toxic cyanide, which might open a new avenue for selective transformation of carbon-hydrogen bonds. PMID:28504259
NASA Astrophysics Data System (ADS)
Raviolo, Mónica A.; Williams, Patricia A. M.; Etcheverry, Susana B.; Piro, Oscar E.; Castellano, Eduardo E.; Gualdesi, Maria S.; Briñón, Margarita C.
2010-04-01
3'-Azido-3'-deoxythymidine (zidovudine, AZT), a synthetic analog of natural nucleoside thymidine, has been used extensively in AIDS treatments. We report here the synthesis, X-ray crystal and molecular structure, NMR, IR and Raman spectra and the thermal behavior of a novel carbonate of AZT [(AZT-O) 2C dbnd O], prepared by the reaction of zidovudine with carbonyldiimidazole. The carbonate compound, C 21H 24N 10O 9, crystallizes in the tetragonal space group P4 12 12 with a = b = 15.284(1), c = 21.695(1) Å, and Z = 8 molecules per unit cell. It consists of two AZT moieties of closely related conformations which are bridged by a carbonyl group to adopt a folded Z-like shape.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Storm, Mie Møller, E-mail: mmst@dtu.dk; Johnsen, Rune E.; Norby, Poul
2016-08-15
Graphene oxide (GO) and reduced graphene oxide (rGO) are important materials in a wide range of fields. The modified Hummers methods, for synthesizing GO, and subsequent thermal reduction to rGO, are often employed for production of rGO. However, the mechanism behinds these syntheses methods are still unclear. We present an in situ X-ray diffraction study of the synthesis of GO and thermal reduction of GO. The X-ray diffraction revealed that the Hummers method includes an intercalation state and finally formation of additional crystalline material. The formation of GO is observed during both the intercalation and the crystallization stage. During thermalmore » reduction of GO three stages were observed: GO, a disordered stage, and the rGO stage. The appearance of these stages depends on the heating ramp. The aim of this study is to provide deeper insight into the chemical and physical processes during the syntheses. - Graphical abstract: In situ X-ray diffraction results for of the modified Hummers synthesis and the thermal reduction of graphene oxide, revealing three stages for both syntheses as well as new GO diffraction peaks and unidentified crystalline material for the Hummers synthesis and a disordered stage for the thermal reduction of graphene oxide. Display Omitted - Highlights: • Hummers synthesis consists of three stages: dissolution, intercalation and crystal. • GO is produced early on during the synthesis and display new diffraction peaks. • An unidentified triclinic phase is observed for the Hummers synthesis. • Thermal reduction of GO display three stages: GO, a disordered stage and rGO. • In situ XRD indicate reformation of rGO even for fast heated thermal reduction.« less
Brooker's merocyanine: Comparison of single crystal structures
NASA Astrophysics Data System (ADS)
Hayes, Kathleen L.; Lasher, Emily M.; Choczynski, Jack M.; Crisci, Ralph R.; Wong, Calvin Y.; Dragonette, Joseph; Deschner, Joshua; Cardenas, Allan Jay P.
2018-06-01
Brooker's merocyanine and its derivatives are well-studied molecules due to their very interesting optical properties. Merocyanine dyes exhibit different colors in solution depending on the solvent's polarity, pH, aggregation and intermolecular interactions. The synthesis of 1-methyl-4-[(oxocyclohexadienylidene)ethylidene]-1,4-dihydropyridine (MOED) dye yielded a particularly interesting solid state structure where in one crystal lattice, MOED and its protonated form are bound by hydrogen bonding interactions.
NASA Astrophysics Data System (ADS)
Chareev, D. A.; Volkova, O. S.; Geringer, N. V.; Koshelev, A. V.; Nekrasov, A. N.; Osadchii, V. O.; Osadchii, E. G.; Filimonova, O. N.
2016-07-01
Some examples of growing crystals of metals, alloys, chalcogenides, and pnictides in melts of halides of alkali metals and aluminum at a steady-state temperature gradient are described. Transport media are chosen to be salt melts of eutectic composition with the participation of LiCl, NaCl, KCl, RbCl, CsCl, AlCl3, AlBr3, KBr, and KI in a temperature range of 850-150°C. Some crystals have been synthesized only using a conducting contour. This technique of crystal growth is similar to the electrochemical method. In some cases, to exclude mutual influence, some elements have been isolated and forced to migrate to the crystal growth region through independent channels. As a result, crystals of desired quality have been obtained using no special equipment and with sizes sufficient for study under laboratory conditions.
High-Mobility, Ultrathin Organic Semiconducting Films Realized by Surface-Mediated Crystallization.
Vladimirov, I; Kellermeier, M; Geßner, T; Molla, Zarah; Grigorian, S; Pietsch, U; Schaffroth, L S; Kühn, M; May, F; Weitz, R T
2018-01-10
The functionality of common organic semiconductor materials is determined by their chemical structure and crystal modification. While the former can be fine-tuned via synthesis, a priori control over the crystal structure has remained elusive. We show that the surface tension is the main driver for the plate-like crystallization of a novel small organic molecule n-type semiconductor at the liquid-air interface. This interface provides an ideal environment for the growth of millimeter-sized semiconductor platelets that are only few nanometers thick and thus highly attractive for application in transistors. On the basis of the novel high-performance perylene diimide, we show in as-grown, only 3 nm thin crystals electron mobilities of above 4 cm 2 /(V s) and excellent bias stress stability. We suggest that the established systematics on solvent parameters can provide the basis of a general framework for a more deterministic crystallization of other small molecules.
Diagnosing the Internal Architecture of Zeolite Ferrierite
Schmidt, Joel E.; Hendriks, Frank C.; Lutz, Martin; Post, L. Christiaan; Fu, Donglong
2017-01-01
Abstract Large crystals of zeolite ferrierite (FER) are important model systems for spatially resolved catalysis and diffusion studies, though there is considerable variation in crystal habit depending on the chemical composition and employed synthesis conditions. A synergistic combination of techniques has been applied, including single crystal X‐ray diffraction, high‐temperature in situ confocal fluorescence microscopy, fluorescent probe molecules, wide‐field microscopy and atomic force microscopy to unravel the internal architecture of three distinct FER zeolites. Pyrolyzed template species can be used as markers for the 8‐membered ring direction as they are trapped in the terraced roof of the FER crystals. This happens as the materials grow in a layer‐by‐layer, defect‐free manner normal to the large crystal surface, and leads to a facile method to diagnose the pore system orientation, which avoids tedious single crystal X‐ray diffraction experiments. PMID:28809081
Synthesis, Hardness, and Electronic Properties of Stoichiometric VN and CrN
Wang, Shanmin; Yu, Xiaohui; Zhang, Jianzhong; ...
2015-11-09
Here, we report synthesis of single-crystal VN and CrN through high-pressure ionexchange reaction routes. The final products are stoichiometric and have crystallite sizes in the range of 50-120 mu m. We also prepared VN and TiN crystals using high-pressure sintering of nitride powders. On the basis of single-crystal indentation testing, the determined asymptotic Vickers hardness for TiN, VN, and CrN is 18 (1), 10 (1), and 16 (1) GPa, respectively. Moreover, the relatively low hardness in VN indicates that the metallic bonding prevails due to the overfilled metallic a bonds, although the cation-anion covalent hybridization in this compound is muchmore » stronger than that in TiN and CrN. All three nitrides are intrinsically excellent metals at ambient pressure. In particular, VN exhibits superconducting transition at T-c approximate to 7.8 K, which is slightly lower than the reported values for nitrogen-deficient or crystallinedisordered samples due to unsuppressed "spin fluctuation" in the well-crystallized stoichiometric VN. The magnetostructural transition in CrN correlates with a metal metal transition at T-N = 240(5) K and is accompanied by a similar to 40% drop in electrical resistivity. Additionally, more detailed electronic properties are presented with new insights into these nitrides.« less
Xu, Qinghu; Gong, Yanjun; Xu, Wenjing; Xu, Jun; Deng, Feng; Dou, Tao
2011-06-01
A seeded approach was developed to synthesize high-silica EU-1 zeolite via inhibiting the co-crystallization of ZSM-48 in the presence of hexamethonium (HM) ions. A systematic study was carried out to determine factors such as seed content and SiO(2)/Al(2)O(3) ratio, which influenced the crystallization of high-silica EU-1 and transformation of EU-1 into ZSM-48. Using EU-1 seeds, not only well-crystallized pure EU-1 zeolites with SiO(2)/Al(2)O(3) ratios more than 500 were synthesized, but also the co-crystalline of ZSM-48/EU-1 or pure ZSM-48 was obtained in control from silica-rich mixture gels. Furthermore, the kinetic features of the seeded synthesis of EU-1 zeolites with SiO(2)/Al(2)O(3) ratios of 55, 190, and 500 were examined. It was found that seeds played crucial roles in the decrease of apparent activation energy of EU-1 nucleation and inhibiting the transformation of EU-1 into ZSM-48. The HM and Al species performed synergistic roles to inhibit the formation ZSM-48 during high-silica EU-1 nucleation and crystal growth. Copyright © 2011 Elsevier Inc. All rights reserved.
Synthesis, Crystal Structure, and Topology-Symmetry Analysis of a New Modification of NaIn[IO3]4
NASA Astrophysics Data System (ADS)
Belokoneva, E. L.; Karamysheva, A. S.; Dimitrova, O. V.; Volkov, A. S.
2018-01-01
Crystals of new iodate NaIn[IO3]4 were prepared by the hydrothermal synthesis. The unit cell parameters are a = 7.2672(2) Å, b = 15.2572(6) Å, c = 15.0208(6) Å, β = 101.517(3)°, sp. gr. P21/ c. The formula was determined during the structure determination and refinement of a twinned crystal based on a set of reflections from the atomic planes of the major individual. The refinement with anisotropic displacement parameters was performed for both twin components to the final R factor of 0.050. The In and Na atoms are in octahedral coordination formed by oxygen atoms. The oxygen octahedra are arranged into columns by sharing edges, and the columns are connected by isolated umbrella-like [IO3]- groups to form layers. The new structure is most similar to the isoformular iodate NaIn[IO3]4, which crystallizes in the same sp. gr. P21/ c and is structurally similar, but has a twice smaller unit cell and is characterized by another direction of the monoclinic axis. The structural similarity and difference between the two phases were studied by topologysymmetry analysis. The formation of these phases is related to different combinations of identical one-dimensional infinite chains of octahedra.
NASA Astrophysics Data System (ADS)
Nagamine, Kenta; Honma, Tsuyoshi; Komatsu, Takayuki
A synthesis of Li 3V 2(PO 4) 3 being a potential cathode material for lithium ion batteries was attempted via a glass-ceramic processing. A glass with the composition of 37.5Li 2O-25V 2O 5-37.5P 2O 5 (mol%) was prepared by a melt-quenching method and precursor glass powders were crystallized with/without 10 wt% glucose in N 2 or 7%H 2/Ar atmosphere. It was found that heat treatments with glucose at 700 °C in 7%H 2/Ar can produce well-crystallized Li 3V 2(PO 4) 3 in the short time of 30 min. The battery performance measurements revealed that the precursor glass shows the discharge capacity of 14 mAh g -1 at the rate of 1 μA cm -2 and the glass-ceramics with Li 3V 2(PO 4) 3 prepared with glucose at 700 °C in 7%H 2/Ar show the capacities of 117-126 mAh g -1 (∼96% of the theoretical capacity) which are independent of heat treatment time. The present study proposes that the glass-ceramic processing is a fast synthesizing route for Li 3V 2(PO 4) 3 crystals.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mancini, Alessandro; Quadrelli, Paolo; Amoroso, Giuseppe
2016-08-15
In this paper we report the synthesis, the crystal structure and the optical response of APbX{sub 3} (A=MA, DMA, and TMA; X=I, Br) hybrid organic-inorganic materials including some new phases. We observe that as the cation group increases in size, the optical absorption edge shifts to higher energies with energy steps which are systematic and independent on the anion. A linear correlation between the optical bad gap and the tolerance factor has been shown for the series of samples investigated. - Graphical abstract: The crystal structure and the optical response of the two series of hybrid organic-inorganic materials APbX{sub 3}more » (A=MA, DMA, and TMA; X=I, Br), which include some new phases, are reported. A dependence of crystal structure and band-gap with tolerance factor is shown. Display Omitted - Highlights: • DMAPbI{sub 3}, TMAPbI{sub 3} and TMAPbBr{sub 3} are reported as new hybrid organic-inorganic compounds. • Crystal structure and optical properties as a function of the number of methyl groups are provided. • Correlation between structure and optical properties are given as a function of tolerance factor.« less
NASA Astrophysics Data System (ADS)
Karthigha, S.; Krishnamoorthi, C.
2018-03-01
An organic quinolinium derivative nonlinear optical (NLO) crystal, 1-ethyl-2-[2-(4-nitro-phenyl)-vinyl]-quinolinium iodide (PNQI) was synthesized and successfully grown by slow evaporation solution growth technique. Formation of a crystalline compound was confirmed by single crystal X-ray diffraction. The quinolinium compound PNQI crystallizes in the triclinic crystal system with a centrosymmetric space group of P-1 symmetry. The molecular structure of PNQI was confirmed by 1H NMR and 13C NMR spectral studies. The thermal properties of the crystal have been investigated by thermogravimetric (TG) and differential scanning calorimetry (DSC) studies. The optical characteristics obtained from UV-Vis-NIR spectral data were described and the cut-off wavelength observed at 506 nm. The etching study was performed to analyse the growth features of PNQI single crystal. The third order NLO properties such as nonlinear refractive index (n2), nonlinear absorption coefficient (β) and nonlinear susceptibility (χ (3)) of the crystal were investigated using Z-scan technique at 632.8 nm of Hesbnd Ne laser.
UV-induced solvent free synthesis of truxillic acid-bile acid conjugates
NASA Astrophysics Data System (ADS)
Koivukorpi, Juha; Kolehmainen, Erkki
2009-07-01
The solvent free UV-induced [2 + 2] intermolecular cycloaddition of two molecules of 3α-cinnamic acid ester of methyl lithocholate produced in 99% yield of α- and ɛ-truxillic acid-bis(methyl lithocholate) isomers, which possess two structurally different potential binding sites. A prerequisite for this effective solid state reaction is a proper self-assembled crystal structure of the starting conjugate crystallized from acetonitrile. The crystallization of cinnamic acid ester of methyl lithocholate from acetonitrile produces two different crystalline forms (polymorphs), which is the reason for the solid state formation of two isomers of truxillic acid-bis(methyl lithocholate).
NASA Astrophysics Data System (ADS)
Bhaumik, Anagh; Narayan, Jagdish
2018-04-01
We report the synthesis and characterization of quenched (Q-carbon and Q-BN) and crystalline (diamond and c-BN) phases using a non-equilibrium technique. These phases are formed as a result of the melting and subsequent quenching of amorphous carbon and nanocrystalline h-BN in a super undercooled state by using high-power nanosecond laser pulses. Pulsed laser annealing also leads to the formation of nanoneedles, microneedles and single-crystal thin films of diamond and c-BN. This formation is dependent on the nucleation and growth times, which are controlled by laser energy density and thermal conductivities of substrate and as-deposited thin film. The diamond nuclei present in the Q-carbon structure ( 80% sp 3) can also be grown to larger sizes using the equilibrium hot filament chemical vapor deposition process. The texture of diamond and c-BN crystals is <111> under epitaxial growth and <110> under rapid unseeded crystallization. Our nanosecond laser processing opens up a roadmap to the fabrication of novel phases on heat-sensitive substrates.
Synthesis of Copper-Antimony-Sulfide Nanocrystals for Solution-Processed Solar Cells.
Suehiro, Satoshi; Horita, Keisuke; Yuasa, Masayoshi; Tanaka, Tooru; Fujita, Katsuhiko; Ishiwata, Yoichi; Shimanoe, Kengo; Kida, Tetsuya
2015-08-17
The p-type nanocrystals (NCs) of copper-based chalcogenides, such as CuInSe2 and Cu2ZnSnS4, have attracted increasing attention in photovoltaic applications due to their potential to produce cheap solution-processed solar cells. Herein, we report the synthesis of copper-antimony-sulfide (CAS) NCs with different crystal phases including CuSbS2, Cu3SbS4, and Cu12Sb4S13. In addition, their morphology, crystal phase, and optical properties were characterized using transmission electron microscopy, X-ray diffractometry, UV-vis-near-IR spectroscopy, and photoemission yield spectroscopy. The morphology, crystal phase, and electronic structure were significantly dependent on the chemical composition in the CAS system. Devices were fabricated using particulate films consisting of CAS NCs prepared by spin coating without a high-temperature treatment. The CAS NC-based devices exhibited a diode-like current-voltage characteristic when coupled with an n-type CdS layer. In particular, the CuSbS2 NC devices exhibited photovoltaic responses under simulated sunlight, demonstrating its applicability for use in solution-processed solar cells.
Synthesis of millimeter-scale transition metal dichalcogenides single crystals
Gong, Yongji; Ye, Gonglan; Lei, Sidong; ...
2016-02-10
The emergence of semiconducting transition metal dichalcogenide (TMD) atomic layers has opened up unprecedented opportunities in atomically thin electronics. Yet the scalable growth of TMD layers with large grain sizes and uniformity has remained very challenging. Here is reported a simple, scalable chemical vapor deposition approach for the growth of MoSe2 layers is reported, in which the nucleation density can be reduced from 105 to 25 nuclei cm -2, leading to millimeter-scale MoSe 2 single crystals as well as continuous macrocrystalline films with millimeter size grains. The selective growth of monolayers and multilayered MoSe2 films with well-defined stacking orientation canmore » also be controlled via tuning the growth temperature. In addition, periodic defects, such as nanoscale triangular holes, can be engineered into these layers by controlling the growth conditions. The low density of grain boundaries in the films results in high average mobilities, around ≈42 cm 2 V -1 s -1, for back-gated MoSe 2 transistors. This generic synthesis approach is also demonstrated for other TMD layers such as millimeter-scale WSe 2 single crystals.« less
Continuous flow synthesis of ZSM-5 zeolite on the order of seconds
Liu, Zhendong; Okabe, Kotatsu; Anand, Chokkalingam; Yonezawa, Yasuo; Zhu, Jie; Yamada, Hiroki; Endo, Akira; Yanaba, Yutaka; Yoshikawa, Takeshi; Ohara, Koji; Okubo, Tatsuya; Wakihara, Toru
2016-01-01
The hydrothermal synthesis of zeolites carried out in batch reactors takes a time so long (typically, on the order of days) that the crystallization of zeolites has long been believed to be very slow in nature. We herein present a synthetic process for ZSM-5, an industrially important zeolite, on the order of seconds in a continuous flow reactor using pressurized hot water as a heating medium. Direct mixing of a well-tuned precursor (90 °C) with the pressurized water preheated to extremely high temperature (370 °C) in the millimeter-sized continuous flow reactor resulted in immediate heating to high temperatures (240–300 °C); consequently, the crystallization of ZSM-5 in a seed-free system proceeded to completion within tens of or even several seconds. These results indicate that the crystallization of zeolites can complete in a period on the order of seconds. The subtle design combining a continuous flow reactor with pressurized hot water can greatly facilitate the mass production of zeolites in the future. PMID:27911823
Scalable salt-templated synthesis of two-dimensional transition metal oxides
Xiao, Xu; Song, Huaibing; Lin, Shizhe; Zhou, Ying; Zhan, Xiaojun; Hu, Zhimi; Zhang, Qi; Sun, Jiyu; Yang, Bo; Li, Tianqi; Jiao, Liying; Zhou, Jun; Tang, Jiang; Gogotsi, Yury
2016-01-01
Two-dimensional atomic crystals, such as two-dimensional oxides, have attracted much attention in energy storage because nearly all of the atoms can be exposed to the electrolyte and involved in redox reactions. However, current strategies are largely limited to intrinsically layered compounds. Here we report a general strategy that uses the surfaces of water-soluble salt crystals as growth templates and is applicable to not only layered compounds but also various transition metal oxides, such as hexagonal-MoO3, MoO2, MnO and hexagonal-WO3. The planar growth is hypothesized to occur via a match between the crystal lattices of the salt and the growing oxide. Restacked two-dimensional hexagonal-MoO3 exhibits high pseudocapacitive performances (for example, 300 F cm−3 in an Al2(SO4)3 electrolyte). The synthesis of various two-dimensional transition metal oxides and the demonstration of high capacitance are expected to enable fundamental studies of dimensionality effects on their properties and facilitate their use in energy storage and other applications. PMID:27103200
Phase Equilibrium of TiO2 Nanocrystals in Flame-Assisted Chemical Vapor Deposition.
Liu, Changran; Camacho, Joaquin; Wang, Hai
2018-01-19
Nano-scale titanium oxide (TiO 2 ) is a material useful for a wide range of applications. In a previous study, we showed that TiO 2 nanoparticles of both rutile and anatase crystal phases could be synthesized over the size range of 5 to 20 nm in flame-assisted chemical vapor deposition. Rutile was unexpectedly dominant in oxygen-lean synthesis conditions, whereas anatase is the preferred phase in oxygen-rich gases. The observation is in contrast to the 14 nm rutile-anatase crossover size derived from the existing crystal-phase equilibrium model. In the present work, we made additional measurements over a wider range of synthesis conditions; the results confirm the earlier observations. We propose an improved model for the surface energy that considers the role of oxygen desorption at high temperatures. The model successfully explains the observations made in the current and previous work. The current results provide a useful path to designing flame-assisted chemical vapor deposition of TiO 2 nanocrystals with controllable crystal phases. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Peng, Jiaoyu; Bian, Shaoju; Lin, Feng; Wang, Liping; Dong, Yaping; Li, Wu
2017-10-01
The synthesis of pinnoite (MgB2O(OH)6) in boron-containing brine was established with a novel dilution method. Effects of temperature, precipitation time, boron concentration and mass dilution ratio on the formation of pinnoite were investigated. The products obtained were characterized by X-ray diffraction (XRD), Raman, thermogravimetric and differential scanning calorimeter (TG-DSC), and scanning electron microscopy. The transformation mechanism of pinnoite with different dilution ratios was assumed by studying the crystal growth of pinnoite. The results showed that pinnoite was synthesized above 60 °C in the diluted brine. There were two reaction steps - precipitation of amorphous solid and the formation of pinnoite crystals - during the whole reaction process of pinnoite when the dilution ratio is more than 1.0 at 80 °C. While in the 0.5 diluted brine, only one reaction step of pinnoite crystal formation was observed and its transformation mechanism was discussed based on dissociation of polyborates in brine. Besides, the origin of pinnoite mineral deposited on salt lake bottom was proposed.
Key to enhance thermoelectric performance by controlling crystal size of strontium titanate
NASA Astrophysics Data System (ADS)
Wang, Jun; Ye, Xinxin; Yaer, Xinba; Wu, Yin; Zhang, Boyu; Miao, Lei
2015-09-01
One-step molten salt synthesis process was introduced to fabricate nano to micrometer sized SrTiO3 powders in which effects of synthesis temperature, oxide-to-flux ratios and raw materials on the generation of SrTiO3 powders were examined. 100 nm or above sized pure SrTiO3 particles were obtained at relatively lower temperature of 900∘C. Micro-sized rhombohedral crystals with a maximum size of approximately 12 μm were obtained from SrCO3 or Sr(NO3)2 strontium source with 1:1 O/S ratio. Controlled crystal size and morphology of Nb-doped SrTiO3 particles are prepared by using this method to confirm the performance of thermoelectric properties. The Seebeck coefficient obtained is significantly high when compared with the reported data, and the high ratio of nano particles in the sample has a positive effect on the increase of Seebeck coefficient too, which is likely due to the energy filtering effect at large numbers of grain boundaries resulting from largely distributed structure.
NASA Astrophysics Data System (ADS)
Saritha, A.; Raju, B.; Ramachary, M.; Raghavaiah, P.; Hussain, K. A.
2012-11-01
The synthesis, crystal structure and physical properties of chiral, three-dimensional anhydrous potassium tris(oxalato)ferrate(III) [K3Fe(C2O4)3] are described. X-ray analysis reveals that the compound crystallized in the chiral space group P4132 of cubic system with a=b=c=13.5970(2), Z=4. The structure of the complex consists of infinite anionic [Fe(C2O4)3]3- units with distorted octahedral environment of iron surrounded by six oxygen atoms of three oxalato groups. The anionic units are interlinked through K+ ions of three different coordination environments of distorted octahedral, bicapped trigonal prismatic and trigonal prismatic yielding a three-dimensional motif. The two broad absorption bands at 644 and 924 nm from UV-vis-NIR transmittance spectra were ascribed to a ligand-to-metal charge transfer. The room temperature crystalline EPR spectra indicate the high-spin (S=5/2) of Fe(III) ion. The vibrating sample magnetometer measurement shows the paramagnetic nature at room temperature. Thermal studies of the compound confirm the absence of water molecule.
Functional materials based on nanocrystalline cellulose
NASA Astrophysics Data System (ADS)
Surov, O. V.; Voronova, M. I.; Zakharov, A. G.
2017-10-01
The data on the synthesis of functional materials based on nanocrystalline cellulose (NCC) published over the past 10 years are analyzed. The liquid-crystal properties of NCC suspensions, methods of investigation of NCC suspensions and films, conditions for preserving chiral nematic structure in the NCC films after removal of the solvent and features of templated sol-gel synthesis of functional materials based on NCC are considered. The bibliography includes 106 references.
Controllable Growth of Monolayer MoS2 and MoSe2 Crystals Using Three-temperature-zone Furnace
NASA Astrophysics Data System (ADS)
Zheng, Binjie; Chen, Yuanfu
2017-12-01
Monolayer molybdenum disulfide (MoS2) and molybdenum diselenide (MoSe2) have attracted a great attention for their exceptional electronic and optoelectronic properties among the two dimensional family. However, controllable synthesis of monolayer crystals with high quality needs to be improved urgently. Here we demonstrate a chemical vapor deposition (CVD) growth of monolayer MoS2 and MoSe2 crystals using three-temperature-zone furnace. Systematical study of the effects of growth pressure, temperature and time on the thickness, morphology and grain size of crystals shows the good controllability. The photoluminescence (PL) characterizations indicate that the as-grown monolayer MoS2 and MoSe2 crystals possess excellent optical qualities with very small full-width-half-maximum (FWHM) of 96 me V and 57 me V, respectively. It is comparable to that of exfoliated monolayers and reveals their high crystal quality. It is promising that our strategy should be applicable for the growth of other transition metal dichalcogenides (TMDs) monolayer crystals.
Chitosan-Assisted Crystallization and Film Forming of Perovskite Crystals through Biomineralization.
Yang, Yang; Sun, Chen; Yip, Hin-Lap; Sun, Runcang; Wang, Xiaohui
2016-03-18
Biomimetic mineralization is a powerful approach for the synthesis of advanced composite materials with hierarchical organization and controlled structure. Herein, chitosan was introduced into a perovskite precursor solution as a biopolymer additive to control the crystallization and to improve the morphology and film-forming properties of a perovskite film by way of biomineralization. The biopolymer additive was able to control the size and morphology of the perovskite crystals and helped to form smooth films. The mechanism of chitosan-mediated nucleation and growth of the perovskite crystals was explored. As a possible application, the chitosan-perovskite composite film was introduced into a planar heterojunction solar cell and increased power conversion efficiency relative to that observed for the pristine perovskite film was achieved. The biomimetic mineralization method proposed in this study provides an alternative way of preparing perovskite crystals with well-controlled morphology and properties and extends the applications of perovskite crystals in photoelectronic fields, including planar-heterojunction solar cells. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
2012-01-01
We report a simple chemical conversion and cation exchange technique to realize the synthesis of Sb2S3 nanotubes at a low temperature of 90°C. The successful chemical conversion from ZnS nanotubes to Sb2S3 ones benefits from the large difference in solubility between ZnS and Sb2S3. The as-grown Sb2S3 nanotubes have been transformed from a weak crystallization to a polycrystalline structure via successive annealing. In addition to the detailed structural, morphological, and optical investigation of the yielded Sb2S3 nanotubes before and after annealing, we have shown high photocatalytic activities of Sb2S3 nanotubes for methyl orange degradation under visible light irradiation. This approach offers an effective control of the composition and structure of Sb2S3 nanomaterials, facilitates the production at a relatively low reaction temperature without the need of organics, templates, or crystal seeds, and can be extended to the synthesis of hollow structures with various compositions and shapes for unique properties. PMID:22448960
Synthesis of Ga 2O 3 chains with closely spaced knots connected by nanowires
NASA Astrophysics Data System (ADS)
Dai, L.; You, L. P.; Duan, X. F.; Lian, W. C.; Qin, G. G.
2004-07-01
Chains of closely spaced metal or semiconductor particles have potential applications in optoelectronics and single electron devices. We report, for the first time, the synthesis of Ga 2O 3 chains with closely spaced knots connected by nanowires using the thermal evaporation method with a specially designed quartz boat. The Ga 2O 3 chains grew only on the Si substrates where Au catalyst or Ga droplets were coated. The average diameter of the knots is about 450 nm and that of the nanowires is about 50 nm. The selected area electron diffraction of either a knot or a connecting nanowire includes two sets of overlapped single crystal electron diffraction patterns which belong to the [1 0 2] and [1 0 1¯] crystal zone axes of the monoclinic β-Ga 2O 3 phase, respectively. The knot and its neighbor nanowire have the common ( 2¯ 0 1) growth planes at their interface. A mechanism model for the Ga 2O 3 chains synthesis based on the vapor-liquid-solid mechanism is discussed.
Mechanochemical synthesis of N-salicylideneaniline: thermosalient effect of polymorphic crystals
Mittapalli, Sudhir; Sravanakumar Perumalla, D.
2017-01-01
Polymorphs of the dichloro derivative of N-salicylideneaniline exhibit mechanical responses such as jumping (Forms I and III) and exploding (Form II) in its three polymorphs. The molecules are connected via the amide N—H⋯O dimer synthon and C—Cl⋯O halogen bond in the three crystal structures. A fourth high-temperature Form IV was confirmed by variable-temperature single-crystal X-ray diffraction at 180°C. The behaviour of jumping exhibited by the polymorphic crystals of Forms I and III is due to the layered sheet morphology and the transmission of thermal stress in a single direction, compared with the corrugated sheet structure of Form II such that heat dissipation is more isotropic causing blasting. The role of weak C—Cl⋯O interactions in the thermal response of molecular crystals is discussed. PMID:28512571
Photo-Responsive Soft Ionic Crystals: Ion-Pairing Assemblies of Azobenzene Carboxylates.
Yamakado, Ryohei; Hara, Mitsuo; Nagano, Shusaku; Seki, Takahiro; Maeda, Hiromitsu
2017-07-12
This report delineates the design and synthesis of negatively charged azobenzene derivatives that form photo-responsive ion-pairing assemblies. The azobenzene carboxylates possessing aliphatic chains were prepared as photo-responsive anions that promote the formation of ion-pairing dimension-controlled assemblies, including mesophases, when used in conjunction with a tetrabutylammonium (TBA) cation. The photo-responsive properties of the ion pairs and the precursory carboxylic acids in the bulk state were examined by polarized optical microscopy (POM) and X-ray diffraction (XRD), demonstrating that liquid crystal (LC)-liquid and crystal-liquid phase transitions occurred, depending on the number and lengths of the aliphatic chains of each assembly. An ion pair exhibited photo-induced crystal-crystal phase transitions upon switching between two irradiation wavelengths (365/436 nm). © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Iino, Daisuke; Takakura, Yasuaki; Kuroiwa, Mika; Kawakami, Ryouta; Sasaki, Yasuyuki; Hoshino, Takayuki; Ohsawa, Kanju; Nakamura, Akira; Yajima, Shunsuke
2007-08-01
Aminoglycoside antibiotics, such as hygromycin, kanamycin, neomycin, spectinomycin and streptomycin, inhibit protein synthesis by acting on bacterial and eukaryotic ribosomes. Hygromycin B phosphotransferase (Hph; EC 2.7.1.119) converts hygromycin B to 7''-O-phosphohygromycin using a phosphate moiety from ATP, resulting in the loss of its cell-killing activity. The Hph protein has been crystallized for the first time using a thermostable mutant and the hanging-drop vapour-diffusion method. The crystal provided diffraction data to a resolution of 2.1 A and belongs to space group P3(2)21, with unit-cell parameters a = b = 71.0, c = 125.0 A. Crystals of complexes of Hph with hygromycin B and AMP-PNP or ADP have also been obtained in the same crystal form as that of the apoprotein.
Iino, Daisuke; Takakura, Yasuaki; Kuroiwa, Mika; Kawakami, Ryouta; Sasaki, Yasuyuki; Hoshino, Takayuki; Ohsawa, Kanju; Nakamura, Akira; Yajima, Shunsuke
2007-01-01
Aminoglycoside antibiotics, such as hygromycin, kanamycin, neomycin, spectinomycin and streptomycin, inhibit protein synthesis by acting on bacterial and eukaryotic ribosomes. Hygromycin B phosphotransferase (Hph; EC 2.7.1.119) converts hygromycin B to 7′′-O-phosphohygromycin using a phosphate moiety from ATP, resulting in the loss of its cell-killing activity. The Hph protein has been crystallized for the first time using a thermostable mutant and the hanging-drop vapour-diffusion method. The crystal provided diffraction data to a resolution of 2.1 Å and belongs to space group P3221, with unit-cell parameters a = b = 71.0, c = 125.0 Å. Crystals of complexes of Hph with hygromycin B and AMP-PNP or ADP have also been obtained in the same crystal form as that of the apoprotein. PMID:17671368
Synthesis of formamidinium lead iodide perovskite bulk single crystal and its optical properties
NASA Astrophysics Data System (ADS)
Zheng, Hongge; Duan, Junjie; Dai, Jun
2017-07-01
Formamidinium lead iodide (FAPbI3) is a promising hybrid perovskite material for optoelectronic devices. We synthesized bulk single crystal FAPbI3 by a rapid solution crystallization method. X-ray diffraction (XRD) was performed to characterize the crystal structure. Temperature-dependent photoluminescence (PL) spectra of the bulk single crystal FAPbI3 were measured from 10 to 300 K to explain PL recombination mechanism. It shows that near band edge emission blueshifts with the temperature increasing from 10 to 120 K and from 140 K to room temperature, a sudden emission band redshift demonstrates near 140 K because of the phase transition from orthorhombic phase to cubic phase. From the temperature-dependent PL spectra, the temperature coefficients of the bandgap and thermal activation energies of FAPbI3 perovskite are fitted.
Synthesis and Characterization of a New Co-Crystal Explosive with High Energy and Good Sensitivity
NASA Astrophysics Data System (ADS)
Gao, Han; Jiang, Wei; Liu, Jie; Hao, Gazi; Xiao, Lei; Ke, Xiang; Chen, Teng
2017-10-01
A new energetic co-crystal consisting of one of the most powerful explosive molecules 2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane (CL-20) and the military explosive cyclotrimethylenetrinitramine (RDX) was prepared with a simple solvent evaporation method. Scanning electron microscopy (SEM) revealed the morphology of the bar-shaped product, which differed greatly from the morphology of the individual components. Fourier transform infrared spectroscopy (FT-IR), Raman spectroscopy, X-ray diffraction spectrum (XRD), and differential scanning calorimetry (DSC) proved the formation of the co-crystal at the molecular level. The result of mechanical sensitivity test indicated the sensitivity was effectively reduced compared to raw CL-20. Finally, a possible crystallization mechanism was discussed.
Synthesis of macroporous structures
Stein, Andreas; Holland, Brian T.; Blanford, Christopher F.; Yan, Hongwei
2004-01-20
The present application discloses a method of forming an inorganic macroporous material. In some embodiments, the method includes: providing a sample of organic polymer particles having a particle size distribution of no greater than about 10%; forming a colloidal crystal template of the sample of organic polymer particles, the colloidal crystal template including a plurality of organic polymer particles and interstitial spaces therebetween; adding an inorganic precursor composition including a noncolloidal inorganic precursor to the colloidal crystal template such that the precursor composition permeates the interstitial spaces between the organic polymer particles; converting the noncolloidal inorganic precursor to a hardened inorganic framework; and removing the colloidal crystal template from the hardened inorganic framework to form a macroporous material. Inorganic macroporous materials are also disclosed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ni, Shuisong; McAteer, Kathleen; Bussiere, Dirksen E.
2004-06-01
CylR2 is one of the two regulatory proteins associated with the quorum-sensing-dependent synthesis of cytolysin for the common pathogen Enterococcus faecalis. The protein was expressed with a C-terminal 6-histidine tag and purified to homogeneity with a cobalt affinity column followed by another size exclusion column. Both native and SeMet proteins were crystallized. A complete X-ray diffraction data set from the native crystal was collected to 2.3 resolution. The crystal was tetragonal, belonging to space group P41/43, with unit-cell dimensions a=b=66.2 , c=40.9 and a=b=g=90. The asymmetric unit contained two molecules of CylR2.
Venkatasubramanian, Rajesh; He, Jibao; Johnson, Michael W; Stern, Ilan; Kim, Dae Ho; Pesika, Noshir S
2013-10-29
A room-temperature electrochemical approach to synthesizing anisotropic platelike copper microcrystals and nanocrystals in the presence of potassium bromide is presented. Morphological and elemental characterization was performed using SEM, TEM, and XRD to confirm the anisotropic morphology and crystal structure of the synthesized copper particles. A possible mechanism for explaining the anisotropic crystal growth is proposed on the basis of the preferential adsorption of bromide ions to selective crystal faces. The shape-dependent electrocatalytic property of copper particles is demonstrated by its enhanced catalytic activity for methanol oxidation. Further development of such anisotropic copper particles localized on an electrode surface will lead us to find a suitable alternative for noble metal-based electrocatalysts for the methanol oxidation reaction relevant to fuel cells.
Tao, Jinhui; Nielsen, Michael H.; De Yoreo, James J.
2018-04-27
Identification of crystal nucleation and growth pathways is of fundamental importance for synthesis of functional materials, which requires control over size, orientation, polymorph, and hierarchical structure, often in the presence of additives used to tune the energy landscape defining these pathways. Furthermore we summarize the recent progress in application of in situ TEM and AFM techniques to monitor or even tune the pathway of crystal nucleation and growth.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tao, Jinhui; Nielsen, Michael H.; De Yoreo, James J.
Identification of crystal nucleation and growth pathways is of fundamental importance for synthesis of functional materials, which requires control over size, orientation, polymorph, and hierarchical structure, often in the presence of additives used to tune the energy landscape defining these pathways. Furthermore we summarize the recent progress in application of in situ TEM and AFM techniques to monitor or even tune the pathway of crystal nucleation and growth.
Optimized Pyroelectric Vidicon Thermal Imager. Volume II. Improper Ferroelectric Crystal Growth.
1980-09-01
75 4.1 Hydrothermal Synthesis of Boracite Powders..... 75 4.2 Hydrothermal Growth of Boracite Crystals ......... 77...4.2.1 Apparatus .......................... 77 4.2.2 Growth from Acidic Media .................o 78 4.2.3 Hydrothermal Growth in Basic Media ...... 99...Calculated temperature dependence of p/cc for DSP under biasing fields of 0, 2 and 5 kV/cm... 74 11 LIST OF ILLUSTRATIONS (Cont’d) Page Fig. 44: Hydrothermal
Synthesis and thermal properties of strontium and calcium peroxides
NASA Technical Reports Server (NTRS)
Philipp, Warren H.; Kraft, Patricia A.
1989-01-01
A practical synthesis and a discussion of some chemical properties of pure strontium peroxide and calcium peroxide are presented. The general synthesis of these peroxides involves precipitation of their octahydrates by addition of H2O2 to aqueous ammoniacal Sr(NO3)2 or CaCl2. The octahydrates are converted to the anhydrous peroxides by various dehydration techniques. A new x-ray diffraction powder pattern for CaO2 x 8H2O is given from which lattice parameters a=6.212830 and c=11.0090 were calculated on the basis of the tetragonal crystal system.
Ding, Wenjin; Baracchini, Giulia; Klumpp, Michael; Schwieger, Wilhelm; Dittmeyer, Roland
2016-08-25
We present a high-temperature and high-pressure gas adsorption measurement device based on a high-frequency oscillating microbalance (5 MHz langatate crystal microbalance, LCM) and its use for gas adsorption measurements in zeolite H-ZSM-5. Prior to the adsorption measurements, zeolite H-ZSM-5 crystals were synthesized on the gold electrode in the center of the LCM, without covering the connection points of the gold electrodes to the oscillator, by the steam-assisted crystallization (SAC) method, so that the zeolite crystals remain attached to the oscillating microbalance while keeping good electroconductivity of the LCM during the adsorption measurements. Compared to a conventional quartz crystal microbalance (QCM) which is limited to temperatures below 80 °C, the LCM can realize the adsorption measurements in principle at temperatures as high as 200-300 °C (i.e., at or close to the reaction temperature of the target application of one-stage DME synthesis from the synthesis gas), owing to the absence of crystalline-phase transitions up to its melting point (1,470 °C). The system was applied to investigate the adsorption of CO2, H2O, methanol and dimethyl ether (DME), each in the gas phase, on zeolite H-ZSM-5 in the temperature and pressure range of 50-150 °C and 0-18 bar, respectively. The results showed that the adsorption isotherms of these gases in H-ZSM-5 can be well fitted by Langmuir-type adsorption isotherms. Furthermore, the determined adsorption parameters, i.e., adsorption capacities, adsorption enthalpies, and adsorption entropies, compare well to literature data. In this work, the results for CO2 are shown as an example.
Ding, Wenjin; Baracchini, Giulia; Klumpp, Michael; Schwieger, Wilhelm; Dittmeyer, Roland
2016-01-01
We present a high-temperature and high-pressure gas adsorption measurement device based on a high-frequency oscillating microbalance (5 MHz langatate crystal microbalance, LCM) and its use for gas adsorption measurements in zeolite H-ZSM-5. Prior to the adsorption measurements, zeolite H-ZSM-5 crystals were synthesized on the gold electrode in the center of the LCM, without covering the connection points of the gold electrodes to the oscillator, by the steam-assisted crystallization (SAC) method, so that the zeolite crystals remain attached to the oscillating microbalance while keeping good electroconductivity of the LCM during the adsorption measurements. Compared to a conventional quartz crystal microbalance (QCM) which is limited to temperatures below 80 °C, the LCM can realize the adsorption measurements in principle at temperatures as high as 200-300 °C (i.e., at or close to the reaction temperature of the target application of one-stage DME synthesis from the synthesis gas), owing to the absence of crystalline-phase transitions up to its melting point (1,470 °C). The system was applied to investigate the adsorption of CO2, H2O, methanol and dimethyl ether (DME), each in the gas phase, on zeolite H-ZSM-5 in the temperature and pressure range of 50-150 °C and 0-18 bar, respectively. The results showed that the adsorption isotherms of these gases in H-ZSM-5 can be well fitted by Langmuir-type adsorption isotherms. Furthermore, the determined adsorption parameters, i.e., adsorption capacities, adsorption enthalpies, and adsorption entropies, compare well to literature data. In this work, the results for CO2 are shown as an example. PMID:27585356
DOE Office of Scientific and Technical Information (OSTI.GOV)
Naqvi, Kubra F.; Staker, Bart L.; Dobson, Renwick C. J.
The enzyme dihydrodipicolinate synthase catalyzes the committed step in the synthesis of diaminopimelate and lysine to facilitate peptidoglycan and protein synthesis. Dihydrodipicolinate synthase catalyzes the condensation of L-aspartate 4-semialdehyde and pyruvate to synthesize L-2,3-dihydrodipicolinate. Here, the cloning, expression, purification, crystallization and X-ray diffraction analysis of dihydrodipicolinate synthase from the pathogenic bacteriumBartonella henselae, the causative bacterium of cat-scratch disease, are presented. Protein crystals were grown in conditions consisting of 20%(w/v) PEG 4000, 100 mMsodium citrate tribasic pH 5.5 and were shown to diffract to ~2.10 Å resolution. They belonged to space groupP2 12 12 1, with unit-cell parametersa= 79.96,b= 106.33,c= 136.25more » Å. The finalRvalues wereR r.i.m.= 0.098,R work= 0.183,R free= 0.233.« less
Tin sulfides and tin selenides at ambient and high pressure conditions
NASA Astrophysics Data System (ADS)
Nguyen Cong, Kien; Gonzalez, Joseph; Steele, Brad; Oleynik, Ivan
The application of high pressure promotes unusual chemical bonding in condensed phase resulting in the synthesis of novel materials, which may be recoverable in metastable states at ambient conditions. First-principles evolutionary crystal structure search is performed to explore novel tin sulfide (SnxSy) and tin selenide (SnxSy) crystals with the goal to discover novel photovoltaic and thermoelectric materials. Variable stoichiometry searches at various pressures are performed and the phase diagrams are constructed in the range of pressures 0-100 GPa, which include both the thermodynamically stable and lowest enthalpy metastable structures. Several new structures are identified and their dynamical stability is investigated. To help experimental synthesis of these novel compounds, Raman spectra and XRD patterns are also calculated. These new materials are also investigated to identify those with promising photovoltaic and thermoelectric properties.
"Extracting" the key fragment in ETS-10 crystallization and its application in AM-6 assembly.
Guo, Meiling; Feng, Zhaochi; Li, Guanna; Hofmann, Jan P; Pidko, Evgeny A; Magusin, Pieter C M M; Guo, Qiang; Weckhuysen, Bert M; Hensen, Emiel J M; Fan, Fengtao; Li, Can
2012-09-17
The mechanism of crystallization of microporous titanosilicate ETS-10 was investigated by Raman spectroscopy combined with (29)Si magic-angle spinning (MAS) NMR spectroscopy, DFT calculations, and SEM imaging. The formation of three-membered ring species is shown to be the key step in the hydrothermal synthesis of ETS-10. They are formed by means of a complex process that involves the interaction of silicate species in the reaction mixture, which promotes the dissolution of TiO(2) particles. These insights into the mechanism of ETS-10 growth led to the successful development of a new synthesis route to the vanadosilicate AM-6 that involves the use of intermediates that contain three-membered ring species as an initiator. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Spectroscopic observations of nanosized TiO2 by the hydrothermal method
NASA Astrophysics Data System (ADS)
Zikriya, Mohamed; Nadaf, Y. F.; Bharathy, P. Vijai; Renuka, C. G.
2018-05-01
Metal oxides are useful materials that have various applications in advanced field such as, in view of their different properties, hardness, thermal dependability and compound resistance. Novel utilizations of the nanostructures of these oxides are drawing in critical enthusiasm as new preparation process are created and new structures are described. Hydrothermal synthesis is a fruitful procedure to prepare different sensitive structures of metal oxides on the scales from a couple to several nanometres, particularly, the hugely scattered middle structures which are hardly through pyro-preparation. Titanium dioxide nanocrystals are synthesis by a hydrolysis procedure of metatitanic acid. Nano precious crystal of different sizes is procure in the after calcinations from 150 to 225°C. Raman scattering was utilized to examine the advancement of the anatase stage in the nano crystal during calcinations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, XS; Michaelis, VK; Ong, TC
The controllable synthesis of well-ordered layered materials with specific nanoarchitecture poses a grand challenge in materials chemistry. Here the solvothermal synthesis of two structurally analogous 5-coordinate organosilicate complexes through a novel transesterification mechanism is reported. Since the polycrystalline nature of the intrinsic hypervalent Si complex thwarts the endeavor in determining its structure, a novel strategy concerning the elegant addition of a small fraction of B species as an effective crystal growth mediator and a sacrificial agent is proposed to directly prepare diffraction-quality single crystals without disrupting the intrinsic elemental type. In the determined crystal structure, two monomeric primary building unitsmore » (PBUs) self-assemble into a dimeric asymmetric secondary BU via strong Na+O2- ionic bonds. The designed one-pot synthesis is straightforward, robust, and efficient, leading to a well-ordered (10)-parallel layered Si complex with its principal interlayers intercalated with extensive van der Waals gaps in spite of the presence of substantial Na+ counter-ions as a result of unique atomic arrangement in its structure. However, upon fast pyrolysis, followed by acid leaching, both complexes are converted into two SiO2 composites bearing BET surface areas of 163.3 and 254.7m(2)g(-1) for the pyrolyzed intrinsic and B-assisted Si complexes, respectively. The transesterification methodology merely involving alcoholysis but without any hydrolysis side reaction is designed to have generalized applicability for use in synthesizing new layered metal-organic compounds with tailored PBUs and corresponding metal oxide particles with hierarchical porosity.« less
NASA Astrophysics Data System (ADS)
Li, Cong; Zhang, Yu; Ji, Qingqing; Shi, Jianping; Chen, Zhaolong; Zhou, Xiebo; Fang, Qiyi; Zhang, Yanfeng
2016-09-01
In accommodating the rapid development of two-dimensional (2D) nanomaterials, chemical vapor deposition (CVD) has become a powerful tool for their batch production with desirable characteristics, such as high crystal quality, large domain size, and tunable domain shape. The crystallinity and morphology of the growth substrates usually play a crucial role in the CVD synthesis of high-quality monolayer MoS2, a kind of 2D layered material which has ignited huge interest in nanoelectronics, optoelectronics and energy harvesting, etc. Herein, by utilizing a low-pressure chemical vapor deposition (LPCVD) system, we demonstrate a regioselective synthesis of monolayer MoS2 on the corrugated single-crystal LaAlO3 (100) with twin crystal domains induced by the second-order phase transition. Unique dendritic morphologies with tunable nucleation densities were obtained in different regions of the undulated substrate, presenting a strong substrate modulation effect. Interestingly, the exposure of abundant active edge sites along with the rather high nucleation density makes the monolayer dendritic MoS2 a good electrocatalyst for hydrogen evolution reaction (HER), particularly featured by a rather high exchange current density (70.4 μA cm-2). Furthermore, uniform monolayer MoS2 films can also be obtained and transferred to arbitrary substrates. We believe that this work provides a new growth system for the controllable synthesis of 2D layered materials with unique dendritic morphologies, as well as its great application potential in energy conversion and harvesting.
Seeded growth of boron arsenide single crystals with high thermal conductivity
NASA Astrophysics Data System (ADS)
Tian, Fei; Song, Bai; Lv, Bing; Sun, Jingying; Huyan, Shuyuan; Wu, Qi; Mao, Jun; Ni, Yizhou; Ding, Zhiwei; Huberman, Samuel; Liu, Te-Huan; Chen, Gang; Chen, Shuo; Chu, Ching-Wu; Ren, Zhifeng
2018-01-01
Materials with high thermal conductivities are crucial to effectively cooling high-power-density electronic and optoelectronic devices. Recently, zinc-blende boron arsenide (BAs) has been predicted to have a very high thermal conductivity of over 2000 W m-1 K-1 at room temperature by first-principles calculations, rendering it a close competitor for diamond which holds the highest thermal conductivity among bulk materials. Experimental demonstration, however, has proved extremely challenging, especially in the preparation of large high quality single crystals. Although BAs crystals have been previously grown by chemical vapor transport (CVT), the growth process relies on spontaneous nucleation and results in small crystals with multiple grains and various defects. Here, we report a controllable CVT synthesis of large single BAs crystals (400-600 μm) by using carefully selected tiny BAs single crystals as seeds. We have obtained BAs single crystals with a thermal conductivity of 351 ± 21 W m-1 K-1 at room temperature, which is almost twice as conductive as previously reported BAs crystals. Further improvement along this direction is very likely.
2014-03-20
ligands, [ 3 ] exhibit high surface area, good thermal stability, and have signifi cant synthetic versatility, ena- bling structures with tunable pore...sizes and adjustable internal functionality. [ 4 ] MOF synthesis usually follows wet solvo- thermal batch methods, producing pow- ders that require...surface areas—limiting applicability. For example, Kuesgens et al. grew HKUST-1 crystals on pulp fibers using direct solvo- thermal synthesis and found
Synthesis of rhenium nitride crystals with MoS2 structure
NASA Astrophysics Data System (ADS)
Kawamura, Fumio; Yusa, Hitoshi; Taniguchi, Takashi
2012-06-01
Rhenium nitride (ReN2) crystals were synthesized from a metathesis reaction between ReCl5 and Li3N under high pressure. The reaction was well controlled by the addition of a large amount of NaCl as reaction inhibitor to prevent a violent exothermic reaction. The largest rhenium nitride crystals obtained had a millimeter-order size with a platelet shape. X-ray diffraction analysis revealed that rhenium nitride has MoS2 structure similar to hexagonal rhenium diboride (ReB2) which has recently been investigated as an ultra-hard material. The structure was different from any structures previously predicted for ReN2 by theoretical calculations.
Chandramohan, A; Bharathikannan, R; Kandavelu, V; Chandrasekaran, J; Kandhaswamy, M A
2008-12-01
Crystalline substance of naphthalene picrate (NP) was synthesized and single crystals were grown using slow evaporation solution growth technique. The solubility of the naphthalene picrate complex was estimated using different solvents such as chloroform and benzene. The material was characterized by elemental analysis, powder X-ray diffraction (XRD), nuclear magnetic resonance (NMR) and fourier transform-infrared (FT-IR) techniques. The electronic absorption was studied through UV-vis spectrophotometer. Thermal behavior and stability of the crystal were studied using thermogravimetric (TG) and differential thermal analysis (DTA) techniques. The second harmonic generation (SHG) of the material was confirmed using Nd:YAG laser.
NASA Astrophysics Data System (ADS)
Kurbah, Sunshine D.; Syiemlieh, Ibanphylla; Lal, Ram A.
2018-03-01
Dioxido-vanadium(V) complex has been synthesized in good yield, the complex was characterized by IR, UV-visible and 1H NMR spectroscopy. Single crystal X-ray crystallography techniques were used to assign the structure of the complex. Complex crystallized with monoclinic P21/c space group with cell parameters a (Å) = 39.516(5), b (Å) = 6.2571(11), c (Å) = 17.424(2), α (°) = 90, β (°) = 102.668(12) and γ (°) = 90. The hydrazone ligand is coordinate to metal ion in tridentate fashion through -ONO- donor atoms forming a distorted square pyramidal geometry around the metal ion.
Mandrus, D.; Gai, Zheng; Ward, Thomas Zac; ...
2017-08-02
Here, we report the synthesis of single-crystal iron germanium nanowires via chemical vapor deposition without the assistance of any catalysts. The assembly of single-crystal FeGe 2 nanowires with tetragonal C16 crystal structure shows anisotropic magnetic behavior along the radial direction or the growth axial direction, with both antiferromagnetic and ferromagnetic orders. Single FeGe 2 nanowire devices were fabricated using e-beam lithography. Electronic transport measurement in these devices show two resistivity anomalies near 250 K and 200 K which are likely signatures of the two spin density wave states in FeGe 2.
NASA Astrophysics Data System (ADS)
Nakamura, Daisuke; Tasaki, Ryohei; Fujiwara, Yuki; Nagasaki, Fumiaki; Higashihata, Mitsuhiro; Ikenoue, Hiroshi; Okada, Tatsuo
2017-03-01
ZnO nano/microstructures have attracted much attention as building blocks for optoelectronic devices because of their high crystalline quality and unique structures. We have succeeded in synthesizing ZnO microspherical crystals by a simple atmospheric laser ablation method, and demonstrated ultraviolet whispering-gallery-mode lasing from the spheres. In the microsphere synthesis process, molten droplets formed into spherical shapes by surface tension, and crystalized during ejection from the ablation spot. In this study, we observed the generation of ZnO microspheres by high-speed camera. Now we are trying to control and manipulate the microspheres using a vortex beam.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mandrus, D.; Gai, Zheng; Ward, Thomas Zac
Here, we report the synthesis of single-crystal iron germanium nanowires via chemical vapor deposition without the assistance of any catalysts. The assembly of single-crystal FeGe 2 nanowires with tetragonal C16 crystal structure shows anisotropic magnetic behavior along the radial direction or the growth axial direction, with both antiferromagnetic and ferromagnetic orders. Single FeGe 2 nanowire devices were fabricated using e-beam lithography. Electronic transport measurement in these devices show two resistivity anomalies near 250 K and 200 K which are likely signatures of the two spin density wave states in FeGe 2.
Hanging colloidal drop: A new photonic crystal synthesis route
NASA Astrophysics Data System (ADS)
Sandu, Ion; Dumitru, Marius; Fleaca, Claudiu Teodor; Dumitrache, Florian
2018-05-01
High-quality photonic crystals (hundreds of micrometres in thickness) were grown by the free evaporation of a colloidal drop consisting of silica and polystyrene nanospheres with dimensions of 300 nm, 500 nm, and 1000 nm. The essence of experimental findings is that the drop has to hang on a pillar. This leads to the inhibition of the droplet spreading, the minimisation of the convective force, and the zeroing of the static frictional force between nanospheres and the liquid/air interface, where the first layer is formed. The theoretical essence is the continuous adjustment of nanospheres positions during the growth of photonic crystal, a key condition of the self-assembling phenomenon.
Shukla, Rakesh; Grover, Vinita; Srinivasu, Kancharlapalli; Paul, Barnita; Roy, Anushree; Gupta, Ruma; Tyagi, Avesh Kumar
2018-05-15
Rare earth indates are an interesting class of compounds with rich crystallography. The present study explores the crystallographic phases observed in REInO3 (RE: La-Yb) systems and their dependence on synthesis routes and annealing temperature. All REInO3 compositions were synthesized by a solid state route as well as gel-combustion synthesis (GC) followed by annealing at different temperatures. The systems were well characterized by powder XRD studies and were analysed by Rietveld refinement for the structural parameters. The cell parameters were observed to decrease in accordance with the trend in ionic radii on proceeding from lighter to heavier rare earth ions. Interestingly, the synthesis route and the annealing temperature had a profound bearing on the phase relationships observed in the REInO3 series. The solid state synthesized samples depicted an orthorhombic phase (Pbnm) field for LaInO3 to SmInO3, followed by a hexagonal-type phase (P63cm) for GdInO3 to DyInO3. However, the phase field distribution was greatly influenced upon employing gel-combustion (GC) wherein both single-phasic hexagonal and orthorhombic phase fields were found to shrink. Annealing the GC-synthesized compositions to still higher temperatures (1250 °C) further evolved the phase boundaries. An important outcome of the study is observance of polymorphism in SmInO3 which crystallized in the hexagonal phase when synthesized by GC and orthorhombic phase by solid state synthesis. This reveals the all-important role played by synthesis conditions. The existence and energetics of the two polymorphs have been elucidated and discussed with the aid of theoretical studies.
One-step synthesis and structural features of CdS/montmorillonite nanocomposites.
Han, Zhaohui; Zhu, Huaiyong; Bulcock, Shaun R; Ringer, Simon P
2005-02-24
A novel synthesis method was introduced for the nanocomposites of cadmium sulfide and montmorillonite. This method features the combination of an ion exchange process and an in situ hydrothermal decomposition process of a complex precursor, which is simple in contrast to the conventional synthesis methods that comprise two separate steps for similar nanocomposite materials. Cadmium sulfide species in the composites exist in the forms of pillars and nanoparticles, the crystallized sulfide particles are in the hexagonal phase, and the sizes change when the amount of the complex for the synthesis is varied. Structural features of the nanocomposites are similar to those of the clay host but changed because of the introduction of the sulfide into the clay.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Bin; Keum, Jong K.; Geohegan, David B.
In-Situ and time-resolved X-ray scattering and diffraction is dedicated to yielding the change of structural information as the materials are processed or grown in a controlled environment. In this chapter, we introduce the use of in situ and time-resolved X-ray techniques to understand molecular packing, crystal orientation, and phase transformation during the synthesis and processing of functional organic semiconductors, organic nanowires, and hybrid perovskite materials.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Latshaw, Allison M.; Wilkins, Branford O.; Morrison, Gregory
Crystals of Na{sub 5}Pr{sub 4}F[GeO{sub 4}]{sub 4} and Na{sub 5}Nd{sub 4}F[GeO{sub 4}]{sub 4} were synthesized using a eutectic sodium fluoride, sodium chloride flux. Both compounds crystallize in the tetragonal space group I-4 with lattice parameters of a=12.1173(4) Å and c=5.6795(2) Å (Pr) and of a=12.0642(17) Å and c=5.6674(11) Å (Nd). The structure of the reported compounds is three-dimensional with face and corner sharing lanthanide polyhedra which edge and corner share with isolated germanium tetrahedra. These novel compositions represent the first example of quaternary germanium containing oxyfluorides. - Graphical abstract: Structural image of the first examples of quaternary germanate oxyfluorides. Displaymore » Omitted - Highlights: • Molten flux growth of crystals of two lanthanide germanate oxyfluorides. • Expansion of the A{sub 5}RE{sub 4}X[TO{sub 4}]{sub 4} family into germanate oxyfluorides. • Synthesis of Na{sub 5}Nd{sub 4}F[GeO{sub 4}]{sub 4} and Na{sub 5}Pr{sub 4}F[GeO{sub 4}]{sub 4}.« less
Duan, Bo; Shou, Kangquan; Su, Xiaojuan; Niu, Yahui; Zheng, Guan; Huang, Yao; Yu, Aixi; Zhang, Yu; Xia, Hong; Zhang, Lina
2017-07-10
Chitin exists abundantly in crab and shrimp shells as the template of the minerals, which inspired us to mineralize it for fabricating bone grafting materials. In the present work, chitin nanofibrous microspheres were used as the matrix for in situ synthesis of hydroxyapatite (HA) crystals including microflakes, submicron-needles, and submicron-spheres, which were penetrated by long chitin nanofibers, leading to the hierarchical structure. The shape and size of the HA crystals could be controlled by changing the HA synthesis process. The tight interface adhesion between chitin and HA through the noncovanlent bonds occurred in the composite microspheres, and HAs were homogeneously dispersed and bounded to the chitin nanofibers. In our findings, the inherent biocompatibilities of the both chitin and HA contributed the bone cell adhesion and osteoconduction. Moreover, the chitin microsphere with submicron-needle and submicron-sphere HA crystals remarkably promoted in vitro cell adhesion and in vivo bone healing. It was demonstrated that rabbits with 1.5 cm radius defect were almost cured completely within three months in a growth factor- and cell-free state, as a result of the unique surface microstructure and biocompatibilities of the composite microspheres. The microsphere scaffold displayed excellent biofunctions and an appropriate biodegradability. This work opened up a new avenue to construct natural polymer-based organic-inorganic hybrid microspheres for bone regeneration.
Two novel nonlinear optical carbonates in the deep-ultraviolet region: KBeCO3F and RbAlCO3F2
Kang, Lei; Lin, Zheshuai; Qin, Jingui; Chen, Chuangtian
2013-01-01
With the rapid developments of the all-solid-state deep-ultraviolet (deep-UV) lasers, the good nonlinear optical (NLO) crystal applied in this spectral region is currently lacking. Here, we design two novel NLO carbonates KBeCO3F and RbAlCO3F2 from the first-principles theory implemented in the molecular engineering expert system especially for NLO crystals. Both structurally stable crystals possess very large energy band gaps and optical anisotropy, so they would become the very promising deep-UV NLO crystals alternative to KBBF. Recent experimental results on MNCO3F (M = K, Rb, Cs; N = Ca, Sr, Ba) not only confirm our calculations, but also suggest that the synthesis of the KBeCO3F and RbAlCO3F2 crystals is feasible. PMID:23455618
Zhang, Wei; Saliba, Michael; Moore, David T; Pathak, Sandeep K; Hörantner, Maximilian T; Stergiopoulos, Thomas; Stranks, Samuel D; Eperon, Giles E; Alexander-Webber, Jack A; Abate, Antonio; Sadhanala, Aditya; Yao, Shuhua; Chen, Yulin; Friend, Richard H; Estroff, Lara A; Wiesner, Ulrich; Snaith, Henry J
2015-01-30
To date, there have been a plethora of reports on different means to fabricate organic-inorganic metal halide perovskite thin films; however, the inorganic starting materials have been limited to halide-based anions. Here we study the role of the anions in the perovskite solution and their influence upon perovskite crystal growth, film formation and device performance. We find that by using a non-halide lead source (lead acetate) instead of lead chloride or iodide, the perovskite crystal growth is much faster, which allows us to obtain ultrasmooth and almost pinhole-free perovskite films by a simple one-step solution coating with only a few minutes annealing. This synthesis leads to improved device performance in planar heterojunction architectures and answers a critical question as to the role of the anion and excess organic component during crystallization. Our work paves the way to tune the crystal growth kinetics by simple chemistry.
Effects of Cr 3+ impurity concentration on the crystallography of synthetic emerald crystals
NASA Astrophysics Data System (ADS)
Lee, Pei-Lun; Huang, Eugene; Lee, Jan-Shing; Yu, Shu-Cheng
2011-06-01
Flux method has been adopted for the synthesis of emerald crystals using PbO-V 2O 5 as a flux in order to study the crystallography of the synthetic crystals. In general, the hue of green color of emerald deepens with the addition of Cr 3+. The molar volume of the synthesized crystals was found to increase with the incorporation of Cr 2O 3 dopant. The substitution of Cr 3+ for Al 3+ in the octahedral sites of beryl results in the expansion of a-axis, while c-axis remains nearly unchanged. The maximum Cr 2O 3-content allowed in the crystal lattice of emerald has been found to be about 3.5 wt%. When the doping Cr 2O 3-content exceeds 3.5 wt%, a significant anomaly in lattice parameters starts to take place, accompanying the precipitation of an unknown phase in the emerald matrix.
Congruent melting of gallium nitride at 6 GPa and its application to single-crystal growth.
Utsumi, Wataru; Saitoh, Hiroyuki; Kaneko, Hiroshi; Watanuki, Tetsu; Aoki, Katsutoshi; Shimomura, Osamu
2003-11-01
The synthesis of large single crystals of GaN (gallium nitride) is a matter of great importance in optoelectronic devices for blue-light-emitting diodes and lasers. Although high-quality bulk single crystals of GaN suitable for substrates are desired, the standard method of cooling its stoichiometric melt has been unsuccessful for GaN because it decomposes into Ga and N(2) at high temperatures before its melting point. Here we report that applying high pressure completely prevents the decomposition and allows the stoichiometric melting of GaN. At pressures above 6.0 GPa, congruent melting of GaN occurred at about 2,220 degrees C, and decreasing the temperature allowed the GaN melt to crystallize to the original structure, which was confirmed by in situ X-ray diffraction. Single crystals of GaN were formed by cooling the melt slowly under high pressures and were recovered at ambient conditions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maruyama, Daisuke; Nishitani, Yuichi; Nonaka, Tsuyoshi
2006-12-01
UDP-N-acetylglucosamine pyrophosphorylase was purified and crystallized and X-ray diffraction data were collected to 2.3 Å resolution. UDP-N-acetylglucosamine pyrophosphorylase (UAP) is an essential enzyme in the synthesis of UDP-N-acetylglucosamine. UAP from Candida albicans was purified and crystallized by the sitting-drop vapour-diffusion method. The crystals of the substrate and product complexes both diffract X-rays to beyond 2.3 Å resolution using synchrotron radiation. The crystals of the substrate complex belong to the triclinic space group P1, with unit-cell parameters a = 47.77, b = 62.89, c = 90.60 Å, α = 90.01, β = 97.72, γ = 92.88°, whereas those of the productmore » complex belong to the orthorhombic space group P2{sub 1}2{sub 1}2{sub 1}, with unit-cell parameters a = 61.95, b = 90.87, c = 94.88 Å.« less
Dong, Wenyong; Cheng, Haixing; Yao, Yuan; Zhou, Yongfeng; Tong, Gangsheng; Yan, Deyue; Lai, Yijian; Li, Wei
2011-01-04
In this Article, we combine the characters of hyperbranched polymers and the concept of double-hydrophilic block copolymer (DHBC) to design a 3D crystal growth modifier, HPG-COOH. The novel modifier can efficiently control the crystallization of CaCO(3) from amorphous nanoparticles to vaterite hollow spheres by a nonclassical crystallization process. The obtained vaterite hollow spheres have a special puffy dandelion-like appearance; that is, the shell of the hollow spheres is constructed by platelet-like vaterite mesocrystals, perpendicular to the globe surface. The cross-section of the wall of a vaterite hollow sphere is similar to that of nacres in microstructure, in which platelet-like calcium carbonate mesocrystals pile up with one another. These results reveal the topology effect of the crystal growth modifier on biomineralization and the essential role of the nonclassical crystallization for constructing hierarchical microstructures.
Bergquist, Leah; Zhang, Cuiyu; Ribeiro de Almeida, Roberta R.; ...
2017-02-07
Here, we report on the synthesis and characterization of bent-core liquid crystal (LC) compounds and the preparation of mixtures that provide an optically isotropic antiferroelectric (OI-AFLC) liquid crystal display mode over a very wide temperature interval and well below room temperature. From the collection of compounds synthesized during this study, we recognized that several ternary mixtures displayed a modulated SmC aP A phase down to below -40 °C and up to about 100 °C on both heating and cooling, as well as optical tilt angles in the transformed state of approximately 45° (optically isotropic state). The materials were fully characterizedmore » and their liquid crystal as well as electro-optical properties analyzed by polarized optical microscopy, differential scanning calorimetry, synchrotron X-ray diffraction, dielectric spectroscopy, and electro-optical tests.« less
NASA Astrophysics Data System (ADS)
Sharma, Raj Pal; Saini, Anju; Kumar, Santosh; Kumar, Jitendra; Sathishkumar, Ranganathan; Venugopalan, Paloth
2017-01-01
A new anionic copper(II) complex, (MeImH)2 [Cu(pfbz)4] (1) where, MeImH = 2-methylimidazolium and pfbz = pentafluorobenzoate has been isolated by reacting copper(II) sulfate pentahydrate, pentafluorobenzoic acid and 2-methylimidazole in ethanol: water mixture in 1:2:2 molar ratio. This complex 1 has been characterized by elemental analysis, thermogravimetric analysis, spectroscopic techniques (UV-Vis, FT-IR) and conductance measurements. The complex salt crystallizes in monoclinic crystal system with space group C2/c. Single crystal X-ray structure determination revealed the presence of discrete ions: [Cu(pfbz)4]2- anion and two 2-methylimidazolium cation (C4H7N2)+. The crystal lattice is stabilized by strong hydrogen bonding and F⋯F interactions between cationic-anionic and the anionic-anionic moieties respectively, besides π-π interactions.
NASA Astrophysics Data System (ADS)
Kobkeatthawin, T.; Chantrapromma, S.; Chidan Kumar, C. S.; Fun, H.-K.
2017-12-01
The one-pot synthesis of N-(4-acetylphenyl)-4-chlorobenzenesulfonamide under base conditions is carried out. The present method offers several advantages such as excellent yields, short reaction times and high purity. The chemical structure was elucidated using 1H-NMR, FT-IR and UV-Vis spectroscopy. The crystal structure of the substance was determined by single crystal X-ray structure analysis. The molecule is in a V-shape. The two substituted benzene rings make the dihedral angle of 84.31(9)°. In the crystal packing, the molecules are linked by N-H···O and C-H···O hydrogen bonds into double chains along the b-axis. The crystal is further stabilized by weak C-H···O, C-Cl···π and π···π interactions.
Dry-growth of silver single-crystal nanowires from porous Ag structure
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Chuantong, E-mail: chenchuantong@sanken.osaka-u.ac.jp; Nagao, Shijo; Jiu, Jinting
A fabrication method of single crystal Ag nanowires in large scale is introduced without any chemical synthesis in wet processes, which usually generates fivefold twinned nanowires of fcc metals. Dense single-crystal nanowires grow on a mechanically polished surface of micro-porous Ag structure, which is created from Ag micro-particles. The diameter and the length of the nanowires can be controlled simply by changing the temperature and the time of the heating during the nanowire growth in air. Unique growth mechanism is described in detail, based on stress-induced migration accelerated by the micro-porous structure where the origin of Ag nanowires growth ismore » incubated. Transmission electron microscopy analysis on the single crystal nanowires is also presented. This simple method offered an alternative preparation for metallic nanowires, especially with the single crystal structure in numerous applications.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bergquist, Leah; Zhang, Cuiyu; Ribeiro de Almeida, Roberta R.
Here, we report on the synthesis and characterization of bent-core liquid crystal (LC) compounds and the preparation of mixtures that provide an optically isotropic antiferroelectric (OI-AFLC) liquid crystal display mode over a very wide temperature interval and well below room temperature. From the collection of compounds synthesized during this study, we recognized that several ternary mixtures displayed a modulated SmC aP A phase down to below -40 °C and up to about 100 °C on both heating and cooling, as well as optical tilt angles in the transformed state of approximately 45° (optically isotropic state). The materials were fully characterizedmore » and their liquid crystal as well as electro-optical properties analyzed by polarized optical microscopy, differential scanning calorimetry, synchrotron X-ray diffraction, dielectric spectroscopy, and electro-optical tests.« less
Realignment of Nanocrystal Aggregates into Single Crystals as a Result of Inherent Surface Stress
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Zhaoming; Pan, Haihua; Zhu, Genxing
2016-07-19
Assembly of nanoparticles building blocks during single crystal growth is widely observed in both natural and synthetic environments. Although this form of non-classical crystallization is generally described by oriented attachment, random aggregation of building blocks leading to single crystal products is also observed, but the mechanism of crystallographic realignment is unknown. We herein reveal that random attachment during aggregation-based growth initially produces a non-oriented growth front. Subsequent evolution of the orientation is driven by the inherent surface stress applied by the disordered surface layer and results in single crystal formation via grain boundary migration. This mechanism is corroborated by measurementsmore » of orientation rate vs external stress, demonstrating a predictive relationship between the two. These findings advance our understanding of aggregation-based growth of natural minerals by nanocrystals, and suggest an approach to material synthesis that takes advantage of stress induced co-alignment.« less
NASA Astrophysics Data System (ADS)
Mangaiyarkarasi, K.; Ravichandran, A. T.; Anitha, K.; Manivel, A.
2018-03-01
The titled compound, L-Phenylalaninium methanesulfonate (LPA-MS) was synthesized and grown into single crystals by slow solvent evaporation solution growth technique in aqueous solution containing equimolar concentrations of L-phenylalanine and methanesulfonic acid at room temperature. The grown crystals were subjected to single crystal X-ray diffraction studies. It crystallizes in the monoclinic crystal structure with P21 space group and the unit cell parameters are a = 5.312 (10) Å, b = 8.883 (2) Å and c = 25.830 (7) Å. The functional groups of the LPA-MS crystal were confirmed with FT-IR and FT-Raman analysis. The carbon-hydrogen skeleton was confirmed with 1H NMR and 13C NMR analysis. TG-DTG and DSC studies were carried out to determine the thermal stability of the crystals. The optical transparency ranges were studied through UV-vis-spectroscopy and the crystal was found to be transparent in the visible region. The second Harmonic generation (SHG) efficiency of the grown LPA-MS crystal was measured by the Kurtz-Perry powder technique. The dipolar nature of the L-phenylalaninium methanesulfonate and the presence of the intermolecular hydrogen bonding between the molecules are the vital factors responsible for the existence of SHG activity in the crystal.
NASA Astrophysics Data System (ADS)
Prasanyaa, T.; Haris, M.; Jayaramakrishnan, V.; Amgalan, M.; Mathivanan, V.
2013-10-01
Optically transparent Cu2+ and Cd2+ doped l-arginine trifluoroacetate (LATF) single crystals were grown from its aqueous solution using the slow solvent evaporation technique. The grown crystals were characterized by powder x-ray diffraction to confirm the monoclinic crystal structure. The percentage of transmittance measured using the ultraviolet-visible-near infrared spectrophotometer was found to be more than 80% for doped crystals. The functional group analysis of the grown crystals has been made by Fourier transform infrared spectroscopy. Thermogravimetric/differential thermal analysis was performed for the grown crystals. An atomic absorption study was carried out to determine the presence of Cu2+ and Cd2+. The hardness of the grown crystals was assessed and the results show a significant variation in the hardness value between the pure and doped LATF crystals. The second harmonic generation measurements show that Cu2+ doped LATF is 2.8 times greater and Cd2+ doped is 2.6 times greater than KDP. The anti-bacterial and anti-fungal activities of the title compound were performed using the disc diffusion method against standard bacteria Escherichia coli, Xanthomonas oryzae and against the fungus Aspergillus niger and Aspergillus flavus.
NASA Astrophysics Data System (ADS)
Abosadiya, Hamza M.; Anouar, El Hassane; Abusaadiya, Salima M.; Hasbullah, Siti Aishah; Yamin, Bohari M.
2018-01-01
A simple efficient method for synthesis of some new 1,2,4-Triazole and Triazolidin derivatives namely, 5-(4-methoxyphenyl)-2-phenyl-2,4-dihydro-3H-1,2,4-triazole-3-thione (1a), (2-chlorophenyl)(3,3-dimethyl-1-phenyl-5-thioxo-1,2,4-triazolidin-4-yl)methanone (1b) and (2-iodophenyl)(3,3-dimethyl-1-phenyl-5-thioxo-1,2,4-triazolidin-4-yl)methanone (1c) have been synthesized in high yields from the reaction of carbonoyl isothiocyanate with phenyl hydrazine. The final products were characterized by FT-IR, 1H and 13C NMR spectroscopic techniques. X-ray crystallographic studies showed that 1a crystallized in triclinic crystal system with space group Pī, while both 1b and 1c crystallized in orthorhombic crystal system with space group Pna21. The asymmetric unit of 1a consists two crystallographically independent molecules, while only one molecule in asymmetric unit for both 1b and 1c compounds. All molecules possess Csbnd H ….S intramolecular hydrogen bonds which formed a pseudo-six-membered ring. Experimental results have been confirmed by the state-of-art density functional theory (DFT) in gas and solvent phase by using five different hybrid functionals B3LYP, B3P86, CAM-B3LYP, M06-2X and PBE0 combined with 6-311++G(d, p) basis set. The experimental data are relatively well produced, and relatively good correlations are obtained between the predicted and experimental data.
NASA Technical Reports Server (NTRS)
Hepp, Aloysius F.; Clark, Eric B.; Schupp, John D.; Williams, Jennifer N.; Duraj, Stan A.; Fanwick, Philip E.
2013-01-01
We describe the structures of four related indium complexes obtained during synthesis of solid-state materials precursors. Indium adducts of halides and 4-methylpyridine, InX3(pic)3 (X = Cl, Br; pic = 4-methylpyridine) consist of octahedral molecules with meridional (mer) geometry. Crystals of mer-InCl3(pic)3 (1) are triclinic, space group P1(bar) (No. 2), with a = 9.3240(3), b = 13.9580(6), c = 16.7268 (7) A, alpha = 84.323(2), beta = 80.938(2), gamma = 78.274(3)Z = 4, R = 0.035 for 8820 unique reflections. Crystals of mer-InBr3(pic)3 (2) are monoclinic, space group P21/n (No. 14), with a = 15.010(2), b = 19.938(2), c = 16.593(3), beta = 116.44(1)Z = 8, R = 0.053 for 4174 unique reflections. The synthesis and structures of related compounds with phenylsulfide (chloride) (3) and a dimeric complex with bridging hydroxide (bromide) (4) coordination is also described. Crystals of trans-In(SC6H5)Cl2(pic)3 (3) are monoclinic, space group P21/n (No. 14), with a = 9.5265(2), b = 17.8729(6), c = 13.8296(4), beta = 99.7640(15)Z = 4, R = 0.048 for 5511 unique reflections. Crystals of [In(mu-OH)Br2(pic)22 (4) are tetragonal, space group = I41cd (No. 110) with a = 19.8560(4), b = 19.8560(4), c = 25.9528(6), Z = 8, R = 0.039 for 5982 unique reflections.
NASA Astrophysics Data System (ADS)
Fathima, K. Saiadali; Anitha, K.
2017-05-01
The 1:1 molecular adducts 2-aminobenzimidazolium salicylate (ABIS) single crystal was synthesized and grown from 2-aminobenzimidazole (ABI) as a donor and salicylic acid (SA) as an acceptor. The cell parameter was determined using single crystal X-Ray diffraction method and the complex ABIS belongs to monoclinic system. The spectroscopic studies showed that ABIS crystal was an ion pair complex. The FTIR and Raman spectra showed that the presence of O-H, C=N, C=O vibration which confirms the proton transfer from SA to ABI. The UV-Vis spectrum exhibited a visible band at 359nm for ABIS due to the salicylate anion of the molecule. Further the antimicrobial activity of ABIS complex against Staphylococcus aureus, klebsiella pneumonia, Pseudomonas eruginos and E.coli pathogens was investigated. So the complex molecule inhibits both Gram positive and Gram negative bacterial. It is found that benzimidazole with aminogroup at position 2 increases the general antimicrobial activities of ABIS crystal.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Iino, Daisuke; Takakura, Yasuaki; Kuroiwa, Mika
2007-08-01
The crystallization and preliminary X-ray studies of the aminoglycoside antibiotic-modifying enzyme hygromycin B phosphotransferase from E. coli are reported. Aminoglycoside antibiotics, such as hygromycin, kanamycin, neomycin, spectinomycin and streptomycin, inhibit protein synthesis by acting on bacterial and eukaryotic ribosomes. Hygromycin B phosphotransferase (Hph; EC 2.7.1.119) converts hygromycin B to 7′′-O-phosphohygromycin using a phosphate moiety from ATP, resulting in the loss of its cell-killing activity. The Hph protein has been crystallized for the first time using a thermostable mutant and the hanging-drop vapour-diffusion method. The crystal provided diffraction data to a resolution of 2.1 Å and belongs to space group P3{submore » 2}21, with unit-cell parameters a = b = 71.0, c = 125.0 Å. Crystals of complexes of Hph with hygromycin B and AMP-PNP or ADP have also been obtained in the same crystal form as that of the apoprotein.« less
NASA Astrophysics Data System (ADS)
Ennaceur, Nasreddine; Jalel, Boutheina; Henchiri, Rokaya; Cordier, Marie; Ledoux-Rak, Isabelle
2018-01-01
Hybrid material: 4-Dimethylaminopyridinium nitrate gallic acid monohydrate abbreviated DNGA monohydrate has been successfully synthesized by slow evaporation method at room temperature. X-ray diffraction (XRD) on a single crystal showed that the latter was crystallized in P-1 space group. Likewise, thermal analyses demonstrated the stability of our crystal up to 80 °C. Besides, the analysis of the infrared spectrum (FTIR), allowed us to confirm the presence of the different groups present in the structure. Furthermore, by studying the UV-Visible spectrum, the transparency of our crystal was proven. Despite the fact that of having a centrosymmetric structure, the nonlinear optical properties of our single crystal, which was tested by Kurtz-Perry technique, proved that its second harmonic generation efficiency was 1.22 times more than that of KDP (potassium dihydrogen phosphate) single crystal. This nonlinear optical behavior of the studied compound was also determined through the calculations of polarizability and first hyperpolarizability values.
Ferromagnetism in CVT grown tungsten diselenide single crystals with nickel doping
NASA Astrophysics Data System (ADS)
Habib, Muhammad; Muhammad, Zahir; Khan, Rashid; Wu, Chuanqiang; Rehman, Zia ur; Zhou, Yu; Liu, Hengjie; Song, Li
2018-03-01
Two dimensional (2D) single crystal layered transition materials have had extensive consideration owing to their interesting magnetic properties, originating from their lattices and strong spin-orbit coupling, which make them of vital importance for spintronic applications. Herein, we present synthesis of a highly crystalline tungsten diselenide layered single crystal grown by chemical vapor transport technique and doped with nickel (Ni) to tailor its magnetic properties. The pristine WSe2 single crystal and Ni-doped crystal were characterized and analyzed for magnetic properties using both experimental and computational aspects. It was found that the magnetic behavior of the 2D layered WSe2 crystal changed from diamagnetic to ferromagnetic after Ni-doping at all tested temperatures. Moreover, first principle density functional theory (DFT) calculations further confirmed the origin of room temperature ferromagnetism of Ni-doped WSe2, where the d-orbitals of the doped Ni atom promoted the spin moment and thus largely contributed to the magnetism change in the 2D layered material.
NASA Astrophysics Data System (ADS)
Muche, Simon; Müller, Matthias; Hołyńska, Małgorzata
2018-03-01
The condensation reaction of ortho-vanillin and L-cysteine leads to formation of a racemic mixture of (2RS,4R)-2-(2-hydroxy-3-methoxyphenyl)thiazolidine-4-carboxylic acid and not, as reported in the available literature, to a Schiff base. The racemic mixture was fully characterized by 1D and 2D NMR techniques, ESI-MS and X-ray diffraction. Addition of ZnCl2 led to formation of crystals in form of colorless needles, suitable for X-ray diffraction studies. The measured crystals were identified as the diastereomer (2R,4R)-2-(2-hydroxy-3-methoxyphenyl)thiazolidine-4-carboxylic acid 1. The bulk material is racemic. Thiazolidine exists as zwitterion in solid state, as indicated by the crystal structure.
Shaping Crystal-Crystal Phase Transitions
NASA Astrophysics Data System (ADS)
Du, Xiyu; van Anders, Greg; Dshemuchadse, Julia; Glotzer, Sharon
Previous computational and experimental studies have shown self-assembled structure depends strongly on building block shape. New synthesis techniques have led to building blocks with reconfigurable shape and it has been demonstrated that building block reconfiguration can induce bulk structural reconfiguration. However, we do not understand systematically how this transition happens as a function of building block shape. Using a recently developed ``digital alchemy'' framework, we study the thermodynamics of shape-driven crystal-crystal transitions. We find examples of shape-driven bulk reconfiguration that are accompanied by first-order phase transitions, and bulk reconfiguration that occurs without any thermodynamic phase transition. Our results suggest that for well-chosen shapes and structures, there exist facile means of bulk reconfiguration, and that shape-driven bulk reconfiguration provides a viable mechanism for developing functional materials.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kumar, Sandeep; Andotra, Savit; Kaur, Mandeep
2016-09-15
Complex of iron(II) bis(2,4-dimethylphenyl)dithiophosphate with 4-ethylpyridine [((2,4- (CH{sub 3}){sub 2}C{sub 6}H{sub 3}O)2PS2)2Fe(NC{sub 5}H{sub 4}(C{sub 2}H{sub 5})-4){sub 2}] is synthesized and characterized by elemental analysis, magnetic moment, IR spectroscopy and single crystal X-ray analysis. Complex crystallizes in the monoclinic sp. gr. P2{sub 1}/n, Z = 2. Crystal structure consists of mononuclear units with Fe(II) ion chelated by four S atoms of the two diphenyldithiophosphate ligands in bidentate manner. N atoms from two 4-ethylpyridine ligands are axially coordinated to the Fe(II) atom leading to an octahedral geometry.
He, Jie; Samanta, Satyabrata; Selvakumar, Sermadurai; ...
2013-06-01
Nylon 13,T was successfully synthesized and chemical composition, thermal properties, crystal structure, and moisture absorption characterized. Melting temperature and glass transition temperature were determined to be 263 °C and 90 °C, respectively, while the equilibrium melting temperature was determined to be 289 °C. Characterization of the crystallization kinetics showed that nylon 13,T exhibits very fast crystallization compared to the industrially important nylons, nylon 6 and nylon 6,6. In addition, the moisture absorption of nylon 13,T was dramatically lower than nylon 6 and nylon 6,6 which is consistent with the much lower amide content of nylon 13,T. The crystal structure wasmore » determined to be pseudohexagonal.« less
van der Meijden, Maarten W; Balandina, Tatyana; Ivasenko, Oleksandr; De Feyter, Steven; Wurst, Klaus; Kellogg, Richard M
2016-10-04
A convergent synthesis of racemic [6]hexahelicene-7-carboxylic acid by cross-coupling of a bicyclic and a tricyclic component is described. A metal-catalyzed ring-closure is also a fundamental component of the synthetic approach. Scanning tunneling microscopy (STM) measurements of the racemate self-assembled on Au(111) at liquid-solid interface revealed the formation of ordered racemic 2D crystals. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Hsiu-Wen; Daemen, Luke L.; Cheshire, Michael C.
It is generally believed that H 2O and OH - are the key species stabilizing and controlling amorphous calcium carbonate “polyamorph” forms, and may in turn control the ultimate crystallization products during synthesis and in natural systems. Yet, the locations and hydrogen-bonding network of these species in ACC have never been measured directly using neutron diffraction. We report a synthesis route that overcomes the existing challenges with respect to yield quantities and deuteration, both of which are critically necessary for high quality neutron studies.
NASA Astrophysics Data System (ADS)
Siebert, Agnieszka; Cholewiński, Grzegorz; Garwolińska, Dorota; Olejnik, Adrian; Rachoń, Janusz; Chojnacki, Jarosław
2018-01-01
The synthesis of a potential immunosuppressant, i.e. dimethyl ester of N-mycophenoyl malonic acid was optimized in the reaction of mycophenolic acid (MPA) with amino malonic dimethyl ester in the presence of propanephosphonic anhydride (T3P) as a coupling reagent. The structural properties of the obtained MPA derivative were investigated by NMR, MS and single crystal X-ray diffraction methods. Theoretical considerations of conformational flexibility based on DFT calculations are presented.
Hydrothermal Synthesis of Metal Oxide Nanoparticles in Supercritical Water
Hayashi, Hiromichi; Hakuta, Yukiya
2010-01-01
This paper summarizes specific features of supercritical hydrothermal synthesis of metal oxide particles. Supercritical water allows control of the crystal phase, morphology, and particle size since the solvent's properties, such as density of water, can be varied with temperature and pressure, both of which can affect the supersaturation and nucleation. In this review, we describe the advantages of fine particle formation using supercritical water and describe which future tasks need to be solved. PMID:28883312
Schmidt, Bernd; Hölter, Frank; Kelling, Alexandra; Schilde, Uwe
2011-05-06
The first total synthesis of the natural product (3S,7R)-5,6-dehydro-de-O-methyl centrolobine and various analogues is reported, using a highly regio- and diastereoselective Mizoroki-Heck reaction of phenol diazonium salts and enantiopure dihydropyrans. The assigned relative configuration was confirmed by single-crystal X-ray structure analysis, but a revision of the absolute configuration is proposed based on polarimetric measurement. © 2011 American Chemical Society
NASA Astrophysics Data System (ADS)
Tith, Rany; Dutta, Jaydeep; Jung, Kichang; Martinez-Morales, Alfredo A.
2017-05-01
LiFePO4 is a highly researched cathode material that serves as an alternative material for traditional commercial lithiumion batteries such as LiCoO2. Currently, there are a number of different methods to synthesize LiFePO4 including: hydrothermal, solid state, spray pyrolysis, and coprecipitation. Our proposed method has the potential to provide an ecologically friendly and economically competitive way to synthesize LiFePO4 by utilizing ionic liquid and water, as a composite synthesis medium. The addition of water to ionic liquid can be beneficial as it can act as a mineralizer to bring insoluble precursors to form LiFePO4 seed crystals. Furthermore, this method provides the possibility of recycling the ionic liquid for repeated synthesis processes. In this work, we study the effects of ionic liquid to water ratio on the crystallinity and morphology of the synthesized material. Our group was able to conclude a reaction medium utilizing a ratio of equal parts of 1-ethyl-3-methyl imidazolium trifluoromethane sulfonate (EMIM Otf) and water, or a slightly favored ionic liquid ratio, increases the efficacy of the synthesis route. Crystallinity and purity was determined by X-ray diffraction (XRD), scanning electron microscopy (SEM) was used to determine morphology and crystal sizes, and energy dispersion spectroscopy (EDX) was used for elemental analysis.
NASA Astrophysics Data System (ADS)
Samad, Leith L. J.
The body of work reviewed here encompasses a variety of metal dichalcogenides all synthesized using chemical vapor deposition (CVD) for solar and electronics applications. The first reported phase-pure CVD synthesis of iron pyrite thin films is presented with detailed structural and electrochemical analysis. The phase-pure thin film and improved crystal growth on a metallic backing material represents one of the best options for potential solar applications using iron pyrite. Large tin-sulfur-selenide solid solution plates with tunable bandgaps were also synthesized via CVD as single-crystals with a thin film geometry. Solid solution tin-sulfur-selenide plates were demonstrated to be a new material for solar cells with the first observed solar conversion efficiencies up to 3.1%. Finally, a low temperature molybdenum disulfide vertical heterostructure CVD synthesis with layered controlled growth was achieved with preferential growth enabled by Van der Waals epitaxy. Through recognition of additional reaction parameters, a fully regulated CVD synthesis enabled the controlled growth of 1-6 molybdenum disulfide monolayers for nanoelectronic applications. The improvements in synthesis and materials presented here were all enabled by the control afforded by CVD such that advances in phase purity, growth, and composition control of several metal dichalcogenides were achieved. Further work will be able to take full advantage of these advances for future solar and electronics technologies.
The materials processing research base of the Materials Processing Center
NASA Technical Reports Server (NTRS)
Flemings, M. C.; Bowen, H. K.; Kenney, G. B.
1980-01-01
The goals and activities of the center are discussed. The center activities encompass all engineering materials including metals, ceramics, polymers, electronic materials, composites, superconductors, and thin films. Processes include crystallization, solidification, nucleation, and polymer synthesis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ramadhar, Timothy R.; Zheng, Shao-Liang; Chen, Yu-Sheng
This report describes complete practical guidelines and insights for the crystalline sponge method, which have been derived through the first use of synchrotron radiation on these systems, and includes a procedure for faster synthesis of the sponges. These guidelines will be applicable to crystal sponge data collected at synchrotrons or in-house facilities, and will allow researchers to obtain reliable high-quality data and construct chemically and physically sensible models for guest structural determination. A detailed set of synthetic and crystallographic guidelines for the crystalline sponge method based upon the analysis of expediently synthesized crystal sponges using third-generation synchrotron radiation are reported.more » The procedure for the synthesis of the zinc-based metal–organic framework used in initial crystal sponge reports has been modified to yield competent crystals in 3 days instead of 2 weeks. These crystal sponges were tested on some small molecules, with two being unexpectedly difficult cases for analysis with in-house diffractometers in regard to data quality and proper space-group determination. These issues were easily resolved by the use of synchrotron radiation using data-collection times of less than an hour. One of these guests induced a single-crystal-to-single-crystal transformation to create a larger unit cell with over 500 non-H atoms in the asymmetric unit. This led to a non-trivial refinement scenario that afforded the best Flack x absolute stereochemical determination parameter to date for these systems. The structures did not require the use of PLATON/SQUEEZE or other solvent-masking programs, and are the highest-quality crystalline sponge systems reported to date where the results are strongly supported by the data. A set of guidelines for the entire crystallographic process were developed through these studies. In particular, the refinement guidelines include strategies to refine the host framework, locate guests and determine occupancies, discussion of the proper use of geometric and anisotropic displacement parameter restraints and constraints, and whether to perform solvent squeezing/masking. The single-crystal-to-single-crystal transformation process for the crystal sponges is also discussed. The presented general guidelines will be invaluable for researchers interested in using the crystalline sponge method at in-house diffraction or synchrotron facilities, will facilitate the collection and analysis of reliable high-quality data, and will allow construction of chemically and physically sensible models for guest structural determination.« less
NASA Astrophysics Data System (ADS)
Shruthi, C.; Ravindrachary, V.; Prasad, D. Jagadeesh; Guruswamy, B.; Hegde, Shreedatta
2017-05-01
A novel organic nonlinear optical (NLO) material (2E)-1-(2-Bromo-4,5-Dimethoxyphenyl)-3-(3-Bromo-4-Fluorophenyl)Prop-2-en-1-one has been synthesized using Claisen-Schmidth condensation method. The chemical structure of the compound was confirmed by recording its FT-IR spectrum and the functional groups were identified. Single crystals were grown by slow evaporation method and the single crystal XRD study reveals that the compound crystallizes in the monoclinic crystal system with a space group -P 2yn. The observed cell parameters are a = 9.346(5) A°, b = 12.953(7) A°, c = 14.355(8) A°, α = 90°, β = 108.379°(9), γ = 90°. UV-Visible study shows that the compound is transparent in the entire visible region and the absorption takes place in the UV range. The Non linear optical efficiency of the crystal was estimated and it is found to be 0.5 times that of standard KDP crystal.
NASA Astrophysics Data System (ADS)
Wiggins, Brenden; Tupitsyn, Eugene; Bhattacharya, Pijush; Rowe, Emmanuel; Lukosi, Eric; Chvala, Ondrej; Burger, Arnold; Stowe, Ashley
2013-09-01
Impurity analysis and compositional distribution studies have been conducted on a crystal of LiInSe2, a compound semiconductor which recently has been shown to respond to ionizing radiation. IR microscopy and laser induced breakdown spectroscopy (LIBS) revealed the presence of inclusions within the crystal lattice. These precipitates were revealed to be alkali and alkaline earth elemental impurities with non-uniform spatial distribution in the crystal. LIBS compositional maps correlate the presence of these impurities with visual color differences in the crystal as well as a significant shift of the band gap. Further, LIBS revealed variation in the ratio of I-III-VI2 elemental constituents throughout the crystal. Analysis of compositional variation and impurities will aid in discerning optimal synthesis and crystal growth parameters to maximize the mobility-lifetime product and charge collection efficiency in the LiInSe2 crystal. Preliminary charge trapping calculations have also been conducted with the Monte Carlo N-particle eXtended (MCNPx) package indicating preferential trapping of holes during irradiation with thermal neutrons.
NASA Astrophysics Data System (ADS)
Anbarasi, A.; Ravi Kumar, S. M.; Sundar, G. J. Shanmuga; Mosses, M. Allen; Raj, M. Packiya; Prabhakaran, M.; Ravisankar, R.; Gunaseelan, R.
2017-10-01
Bis(thiourea) ammonium nitrate (BTAN), a new nonlinear optical crystal was grown successfully by slow evaporation technique using water as solvent at room temperature. The grown crystals were optically good quality with dimensions upto 10 × 6 × 3 mm3. Single crystal X-Ray diffraction analysis reveals that the crystal lattice is orthorhombic. From Powder X-ray diffraction analysis the diffraction planes have been indexed. The presence of the various functional groups of BTAN was identified through FTIR spectroscopic analysis. UV cut-off wavelength was observed from optical absorbance spectrum and it was found to be 240 nm. Second harmonic efficiency was determined using Kurtz powder method in comparison with KDP to confirm the nonlinearity of the material. Thermal analysis confirmed that grown crystal is thermally stable upto 184 °C. Microhardness studies show that hardness number (Hv) increases with load. Conductivity measurements such as dielectric, ac and photoconductivity were studied. Growth mechanism and surface features of the as grown single crystal was analysed by chemical etching analysis.
Scalable Synthesis of Cholesteric Glassy Liquid Crystals
Wallace, Jason U.; Shestopalov, Alexander; Kosc, Tanya; ...
2018-03-15
Capable of non-absorbing circular polarization of unpolarized incident light, cholesteric glassy liquid crystals consisting of hybrid chiral-nematic pendants to volume-excluding cores are potentially useful for the fabrication of various robust optical devices. As illustrated in this study, the well-oriented glassy film of enantiomeric Bz3ChN, with a glass transition at 73 °C and a cholesteric-to-isotropic transition at 295 °C, exhibits a selective reflection band centered at approximately 410 nm, an exceptional set of properties well suited for optical device exploration. To enable sustainable, large-scale synthesis of this material class for widespread applications, a productive strategy has been established, requiring a meremore » three-step scheme with an overall yield, atom economy, and reaction mass efficiency at 34%, 33% and 12%, respectively. Lastly, while amenable to improvements, the resultant green chemistry metrics are encouraging as the first attempt.« less
Microwave-Assisted Synthesis, Microstructure, and Magnetic Properties of Rare-Earth Cobaltites.
Gutiérrez Seijas, Julia; Prado-Gonjal, Jesús; Ávila Brande, David; Terry, Ian; Morán, Emilio; Schmidt, Rainer
2017-01-03
The series of perovskite rare-earth (RE) doped cobaltites (RE)CoO 3 (RE = La-Dy) was prepared by microwave-assisted synthesis. The crystal structure undergoes a change of symmetry depending on the size of the RE cation. LaCoO 3 is rhombohedral, S.G. R3̅c (No. 167), while, for the rest of the RE series (Pr-Dy), the symmetry is orthorhombic, S.G. Pnma (No. 62). The crystal structure obtained by X-ray diffraction was confirmed by high-resolution transmission electron microscopy, which yielded a good match between experimental and simulated images. It is further shown that the well-known magnetism in LaCoO 3 , which involves a thermally induced Co 3+ (d 6 ) low spin to intermediate or high spin state transition, is strongly modified by the RE cation, and a rich variety of magnetic order has been detected across the series.
Continuous flow synthesis of VO2 nanoparticles or nanorods by using a microreactor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Jie; Sun, Yugang; Muehleisen, Ralph T.
The invention provides a method for producing composite nanoparticles, the method using a first compound capable of transitioning from a monoclinic to a tetragonal rutile crystal state upon heating, and having the steps of subjecting the first compound to a hydrothermal synthesis to create anisotropic crystals of the compound; encapsulating the first compound with a second compound to create a core-shell construct; and annealing the construct as needed. Also provided is a device for continuously synthesizing composite nanoparticles, the device having a first precursor supply and a second precursor supply; a mixer to homogeneously combine the first precursor and secondmore » precursor to create a liquor; a first microreactor to subject the liquor to hydrothermic conditions to create an\\isotropic particles in a continuous operation mode; and a second microreactor for coating the particles with a third precursor to create a core-shell construct.« less
Synthesis, Structure, and Rigid Unit Mode-like Anisotropic Thermal Expansion of BaIr 2 In 9
DOE Office of Scientific and Technical Information (OSTI.GOV)
Calta, Nicholas P.; Han, Fei; Kanatzidis, Mercouri G.
2015-09-08
This Article reports the synthesis of large single crystals of BaIr 2In 9 using In flux and their characterization by variable-temperature single-crystal and synchrotron powder X-ray diffraction, resistivity, and magnetization measurements. The title compound adopts the BaFe 2Al 9-type structure in the space group P6/mmm with room temperature unit cell parameters a = 8.8548(6) angstrom and c = 4.2696(4) A. BaIr 2In 9 exhibits anisotropic thermal expansion behavior with linear expansion along the c axis more than 3 times larger than expansion in the ab plane between 90 and 400 K. This anisotropic expansion originates from a rigid unit mode-likemore » mechanism similar to the mechanism of zero and negative thermal expansion observed in many anomalous thermal expansion materials such as ZrW 2O 8 and ScF 3.« less
Synthesis, Structure, and Rigid Unit Mode-like Anisotropic Thermal Expansion of BaIr2In9.
Calta, Nicholas P; Han, Fei; Kanatzidis, Mercouri G
2015-09-08
This Article reports the synthesis of large single crystals of BaIr2In9 using In flux and their characterization by variable-temperature single-crystal and synchrotron powder X-ray diffraction, resistivity, and magnetization measurements. The title compound adopts the BaFe2Al9-type structure in the space group P6/mmm with room temperature unit cell parameters a = 8.8548(6) Å and c = 4.2696(4) Å. BaIr2In9 exhibits anisotropic thermal expansion behavior with linear expansion along the c axis more than 3 times larger than expansion in the ab plane between 90 and 400 K. This anisotropic expansion originates from a rigid unit mode-like mechanism similar to the mechanism of zero and negative thermal expansion observed in many anomalous thermal expansion materials such as ZrW2O8 and ScF3.
Scalable Synthesis of Cholesteric Glassy Liquid Crystals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wallace, Jason U.; Shestopalov, Alexander; Kosc, Tanya
2018-03-08
Capable of non-absorbing circular polarization of unpolarized incident light, cholesteric glassy liquid crystals consisting of hybrid chiral-nematic pendants to volume-excluding cores are potentially useful for the fabrication of various robust optical devices. As illustrated in this study, the well-oriented glassy film of enantiomeric Bz3ChN, with a glass transition at 73 oC and a cholesteric-to-isotropic transition at 295 oC, exhibits a selective reflection band centered at approximately 410 nm, an exceptional set of properties well suited for optical device exploration. To enable sustainable, large-scale synthesis of this material class for widespread applications, a productive strategy has been established, requiring a meremore » three-step scheme with an overall yield, atom economy, and reaction mass efficiency at 34, 33 and 12 %, respectively. While amenable to improvements, the resultant green chemistry metrics are encouraging as the first attempt.« less
Synthesis of gold nanoparticles using silk fibroin and their characterization
NASA Astrophysics Data System (ADS)
Gowda, Mahadeva; Harisha, K. S.; Ranjana, T.; Harish, K. V.; Narayana, B.; Byrappa, K.; Sangappa, Y.
2018-05-01
The synthesis of metal nanoparticales by environmentally friendly processes is an important aspect of nanotechnology today. One such approach that shows immense potential is based on the in situ synthesis of gold nanoparticles (AuNPs) using naturally available materials such as aqueous silk fibroin (SF) obtained from Bombyx mori silk. The UV-visible absorption study revealed the formation of AuNPs by showing characteristic surface plasmon resonance (SPR) band at 525 nm. The X-ray diffraction (XRD) analysis study suggests the synthesized gold nanoparticles are FCC crystal structure. The transmission electron microscopy (TEM) images showed that the formed AuNPs are spherical in shape with smooth edges.
Low-temperature solvothermal synthesis of EuS hollow microspheres
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peng, Yong; Wang, Hong; Li, Peng
2014-09-15
Graphical abstract: Synthesis of EuS hollow microspheres at low-temperature via solvothermal method for the first time. - Highlights: • We adopt an improved method to synthesise the (Phen)Eu(Et{sub 2}CNS{sub 2}){sub 3} in deionized water. • We have successfully synthesised the EuS hollow microsphere at 230 °C in acetonitrile. • The price of acetonitrile is more inexpensive, so the price of preparation was reduced. - Abstract: EuS crystals are synthesized by low-temperature solvothermal decomposition of the single source precursor complex (Phen)Eu(Et{sub 2}CNS{sub 2}){sub 3} in acetonitrile. X-ray powder diffraction, scanning electron microscopy, granulocyte diameter statistical analysis, surface energy-dispersive X-ray spectroscopy analysis,more » and UV–vis absorption spectroscopy are used to characterize the structure and properties of the obtained EuS crystals. The results show that the formed EuS crystals are uniform hollow microspheres with a typical cubic phase structure of rock salt and the average particle size of 2.01 μm. The mechanisms for the thermal decomposition of the precursor complex and the formation of the EuS hollow microspheres are postulated based on the experimental observations and previous reports.« less
Synthesis and X-ray Crystallography of [Mg(H2O)6][AnO2(C2H5COO)3]2 (An = U, Np, or Pu).
Serezhkin, Viktor N; Grigoriev, Mikhail S; Abdulmyanov, Aleksey R; Fedoseev, Aleksandr M; Savchenkov, Anton V; Serezhkina, Larisa B
2016-08-01
Synthesis and X-ray crystallography of single crystals of [Mg(H2O)6][AnO2(C2H5COO)3]2, where An = U (I), Np (II), or Pu (III), are reported. Compounds I-III are isostructural and crystallize in the trigonal crystal system. The structures of I-III are built of hydrated magnesium cations [Mg(H2O)6](2+) and mononuclear [AnO2(C2H5COO)3](-) complexes, which belong to the AB(01)3 crystallochemical group of uranyl complexes (A = AnO2(2+), B(01) = C2H5COO(-)). Peculiarities of intermolecular interactions in the structures of [Mg(H2O)6][UO2(L)3]2 complexes depending on the carboxylate ion L (acetate, propionate, or n-butyrate) are investigated using the method of molecular Voronoi-Dirichlet polyhedra. Actinide contraction in the series of U(VI)-Np(VI)-Pu(VI) in compounds I-III is reflected in a decrease in the mean An═O bond lengths and in the volume and sphericity degree of Voronoi-Dirichlet polyhedra of An atoms.
Crystal structure of human PCNA in complex with the PIP box of DVC1
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Yong; University of Chinese Academy of Sciences, 19A Yuquan Road, Shijingshan District, Beijing 100049; Xu, Min
2016-05-27
In higher eukaryotes, DVC1 (SPRTN, Spartan or C1orf124) is implicated in the translesion synthesis (TLS) pathway. DVC1 localizes to sites of DNA damage, binds to the proliferating cell nuclear antigen (PCNA) via its conserved PCNA-interacting motif (PIP box), and associates with ubiquitin selective segregase p97 and other factors, thus regulating translesion synthesis polymerases. Here, we report the crystal structure of human PCNA in complex with a peptide ({sup 321}SNSHQNVLSNYFPRVS{sup 336}) derived from human DVC1 that contains a unique YF type PIP box. Structural analysis reveals the detailed PIP box-PCNA interaction. Interestingly, substitution of Y331 with Phe severely reduces its PCNAmore » binding affinity. These findings offer new insights into the determinants of PIP box for PCNA binding. -- Highlights: •Crystal structure of PCNA in complex with DVC1{sup PIP} peptide was determined. •The Y331{sup P7}F mutation severely impairs DVC1's PCNA binding affinity. •The intramolecular hydrogen bond N326−Y331 in the 3{sub 10} helix affects DVC1's PCNA binding affinity.« less
NASA Astrophysics Data System (ADS)
Ettoumi, Houda; Bulou, Alain; Suñol, Joan Josep; Mhiri, Tahar
2015-11-01
The study reports on the synthesis, single-crystal X-ray structure, and infrared and polarized Raman spectra of a new metal phosphate. The chemical formula of the compound K2Cu(HPO4)2·6H2O resembled that of Tutton salts. The compound crystallized in the monoclinic system, space group P21/c, with a = 6.166(9), b = 12.118(19), c = 9.077(14) Å, β = 104.33(2), and Z = 2. The compound consisted of transition metal cations octahedrally coordinated by six water molecules, [Cu(H2O)6]2+, HPO4 pseudo-tetrahedra, and KO8 polyhedra. The KO8 polyhedra shared two edges with two HPO4 groups, two corners with the two other HPO4 groups, and two corners with Cu(H2O)6. The connection between [Cu(H2O)6]2+ octahedral and (HPO4)2- pseudo-tetrahedra was reinforced by hydrogen bonds formed between the water molecules and other oxygen atoms linked to the P atom. These structural results were corroborated by infrared and polarized Raman spectroscopy.
Crystallization of the c14-rotor of the chloroplast ATP synthase reveals that it contains pigments
Varco-Merth, Benjamin; Fromme, Raimund; Wang, Meitian; Fromme, Petra
2012-01-01
The ATP synthase is one of the most important enzymes on earth as it couples the transmembrane electrochemical potential of protons to the synthesis of ATP from ADP and inorganic phosphate, providing the main ATP source of almost all higher life on earth. During ATP synthesis, stepwise protonation of a conserved carboxylate on each protein subunit of an oligomeric ring of 10–15 c-subunits is commonly thought to drive rotation of the rotor moiety (c10–14γε) relative to stator moiety (α3β3δab2). Here we report the isolation and crystallization of the c14-ring of subunit c from the spinach chloroplast enzyme diffracting as far as 2.8 Å. Though ATP synthase was not previously known to contain any pigments, the crystals of the c-subunit possessed a strong yellow color. The pigment analysis revealed that they contain 1 chlorophyll and 2 carotenoids, thereby showing for the first time that the chloroplast ATP synthase contains cofactors, leading to the question of the possible roles of the functions of the pigments in the chloroplast ATP synthase. PMID:18515064
Synthesis and crystal structure of chromium-bearing anhydrous wadsleyite
NASA Astrophysics Data System (ADS)
Sirotkina, E. A.; Bindi, L.; Bobrov, A. V.; Aksenov, S. M.; Irifune, T.
2018-04-01
A chromium-bearing wadsleyite (Cr- Wad) was synthesized in the model system Mg2SiO4-MgCr2O4 at 14 GPa and 1600 °C and studied from the chemical and structural point of views. Microprobe data gave the formula Mg1.930Cr0.120Si0.945O4, on the basis of 4 oxygen atoms. The crystal structure has been studied by single-crystal X-ray diffraction. The orthorhombic unit-cell parameters are: a = 5.6909(5) Å, b = 11.4640(10) Å, c = 8.2406(9) Å, V = 537.62(9) Å3, Z = 8. The structure, space group Imma, was refined to R 1 = 5.99% in anisotropic approximation using 1135 reflections with F o > 4σ( F o) and 43 parameters. Chromium was found to substitute for both Mg at the octahedral sites and Si at the tetrahedral site, according to the reaction VIMg2+ + IVSi4+ = VICr3+ + IVCr3+. On the whole, the structural topology is nearly identical to that of pure wadsleyite. The successful synthesis of Cr- Wad may be important for the thermobarometry of mantle phase associations.
NASA Astrophysics Data System (ADS)
Maji, Ashis Kumar; Chatterjee, Arnab; Khan, Sumitava; Ghosh, Barindra Kumar; Ghosh, Rajarshi
2017-10-01
Synthesis and structural characterization of a mononuclear cobalt(III) Schiff base complex is reported. It crystallizes with monoclinic crystal system with P21/n space group with a = 9.9793(4) Å, b = 28.2907(12) Å and c = 13.1233(6) Å, and β = 97.532(3)°. The compound is active to catecholase and phenoxazinone synthase activities in MeOH, and MeOH and MeCN solvents, respectively at room temperature. Each of the reactions was found to be of first order with reaction rate 8.08 × 10-3 min-1 (MeOH) for the catecholase activity and 1.05 × 10-3 min-1 (MeOH) and 3.82 × 10-3 min-1 (MeCN) for the phenoxazinone synthase activity. The turn over numbers for the catecholase activity is 5.02 × 103 h-1 (MeOH) and for the phenoxazinone synthase activity is 4.59 × 103 h-1 (MeOH) and 5.12 × 103 h-1 (MeCN). Substrate-catalyst adduct was tried to be trapped in each case using mass spectrometry.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Izadyar, Soheila; Fatemi, Shohreh, E-mail: shfatemi@ut.ac.ir; Mousavand, Tahereh
2013-09-01
Graphical abstract: - Highlights: • Nanosized TiO{sub 2} doped with nitrogen and iron was produced by sol-gel method. • Linear models were derived to relate the phase and particle size to synthesis factors. • High photocatalytic activity was observed for acetaldehyde degradation. - Abstract: In this research, nitrogen and iron (III) co-doped nano TiO{sub 2} (N-Fe-TiO{sub 2}) was prepared by sol-gel method using ammonium chloride and iron chloride solutions as nitrogen and iron sources, respectively. The effect of synthesis parameters (weight ratios of N/TiO{sub 2} and Fe/TiO{sub 2}, synthesis temperature, calcination time and temperature) was simultaneously investigated on the qualitymore » of the N-Fe-TiO{sub 2} product by a two-level Placket–Burman experimental design. The synthesized powders were characterized by XRD, XPS and UV–Vis spectroscopy techniques. The mean crystal size and anatase content were determined and evaluated as the linear functions of so-called synthesis parameters by the statistical analysis and regression. The 2%N-1%Fe-TiO{sub 2} product by 11 nm mean crystal size and 78% anatase content, synthesized at 35 °C and calcined at 500 °C during 2 h, exhibited the most significant activity during the photo-degradation of acetaldehyde under visible light irradiation and its efficiency was obtained about four times more than photocatalytic activity of Degussa TiO{sub 2}-P25.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pastero, Linda; Interdepartmental Centre “Nanostructured Interfaces and Surfaces-NIS”, Via Quarello 15A, 10135 Torino; CrisDi – Interdepartmental Center for Crystallography, Università di Torino, Via Pietro Giuria 7, I-10125 Torino
2016-10-15
A novel layered aluminophosphate (TL-1) has been synthesized. Crystals grow as pseudo-hexagonal thin platelets and their whole morphology depends on the synthesis conditions. The structure was solved by single-crystal X-ray diffraction using charge flipping methods. The synthesized layered material, with composition [AlPO{sub 4}F(H{sub 2}O)]-(H{sub 10}C{sub 4}ON){sub 4}, crystallizes in the monoclinic space group P2{sub 1}/a with a=9.2282(5) Å, b=6.9152(4) Å, c=14.4615(9) Å, β=101.57(1)°. The novel compound has corner sharing AlO{sub 3}F{sub 2}(H{sub 2}O) octahedral chains running along [010], where fluorine atoms are at the shared apices, three oxygen atoms are shared with PO{sub 4} tetrahedra while the sixth oxygen pertainmore » to an H{sub 2}O molecule. The stability field of the novel material is enclosed in the HF/Al{sub 2}O{sub 3} ratio ranging between 1 and 4 and the HF/morpholine ratio lower than 3. At temperature lower than 190 °C, the synthesis results is a pure aluminophosphate sample (low alumina/morpholine ratio). A treatment with H{sub 2}CO{sub 3} leads to a complete morpholine removal, as shown by in situ Raman spectroscopy. Powder X-ray diffraction reveals that, after morpholine extraction, the material collapses. The collapse is irreversible. - Highlights: • A new layered aluminophosphate was obtained and characterized. • The crystal structure is a sequence of aluminophosphate and organic layers. • The stability field of the new phase was defined by changing chemistry and T. • The templating agent can be removed by using a CO{sub 2} aqueous solution. • The decomposition of the morpholine induce a collapse in the structure.« less
Maino, G; Carleer, R; Marchal, W; Bonneux, G; Hardy, A; Van Bael, M K
2017-11-07
LiMn 2 O 4 (LMO) is interesting from the viewpoint of its energy storage applications as it is a cathode in lithium ion batteries (LIB), which contains no rare, toxic or expansive elements, while it provides a high theoretical capacity (148 mA h g -1 ) at a reasonable voltage (4 V region) and a higher thermal stability compared to cobalt based cathodes and has a good rechargeability and cycling stability due to its spinel structure. Low temperature synthesis routes for cathode materials are currently gaining attention, in order to decrease the ecological footprint of the final LIB. Here, the crystallization temperature of LMO by a citrate based solution-gel synthesis was significantly lowered, to as low as 250 °C by the addition of ethanol to the precursor. The role of ethanol in this synthesis process was explored. It was found to lead to a considerable increase in the oxidation rate of the redox couple Mn 2+ /Mn 3+ , a lowering of the precursor decomposition temperature by 200 °C, besides a drastic decrease in the crystallization temperature (reaching 250 °C). Moreover, the main cause was identified to be an esterification reaction of ethanol with the carboxylic acid in the precursor complexes, taking place before the oxide formation. The insights obtained strengthen the knowledge regarding citrato-Mn 2+ /Mn 3+ complexes present in aqueous solution-gel synthesis routes and are relevant for the preparation of various manganese containing oxides. Moreover, the precursor developed opens up a new possibility for the low temperature synthesis of LMO powders and thin films for application in LIB. In the case of thin film batteries, the low temperature processing provides compatibility with other materials in the thin film battery stack, avoiding undesired oxidations or interfacial reactions.
Synthesis, Structural and Antioxidant Studies of Some Novel N-Ethyl Phthalimide Esters
Chandraju, Siddegowda; Win, Yip-Foo; Tan, Weng Kang; Quah, Ching Kheng; Fun, Hoong-Kun
2015-01-01
A series of N-ethyl phthalimide esters 4(a-n) were synthesized and characterized by spectroscopic studies. Further, the molecular structure of majority of compounds were analysed by single crystal X-ray diffraction studies. The X-ray analysis revealed the importance of substituents on the crystal stability and molecular packing. All the synthesized compounds were tested for in vitro antioxidant activity by DPPH radical scavenging, FRAP and CUPRAC methods. Few of them have shown good antioxidant activity. PMID:25742494
Synthesis, structural and antioxidant studies of some novel N-ethyl phthalimide esters.
Chidan Kumar, C S; Loh, Wan-Sin; Chandraju, Siddegowda; Win, Yip-Foo; Tan, Weng Kang; Quah, Ching Kheng; Fun, Hoong-Kun
2015-01-01
A series of N-ethyl phthalimide esters 4(a-n) were synthesized and characterized by spectroscopic studies. Further, the molecular structure of majority of compounds were analysed by single crystal X-ray diffraction studies. The X-ray analysis revealed the importance of substituents on the crystal stability and molecular packing. All the synthesized compounds were tested for in vitro antioxidant activity by DPPH radical scavenging, FRAP and CUPRAC methods. Few of them have shown good antioxidant activity.
Semiconductor neutron detectors
NASA Astrophysics Data System (ADS)
Gueorguiev, Andrey; Hong, Huicong; Tower, Joshua; Kim, Hadong; Cirignano, Leonard; Burger, Arnold; Shah, Kanai
2016-09-01
Lithium Indium Selenide (LiInSe2) has been under development in RMD Inc. and Fisk University for room temperature thermal neutron detection due to a number of promising properties. The recent advances of the crystal growth, material processing, and detector fabrication technologies allowed us to fabricate large detectors with 100 mm2 active area. The thermal neutron detection sensitivity and gamma rejection ratio (GRR) were comparable to 3He tube with 10 atm gas pressure at comparable dimensions. The synthesis, crystal growth, detector fabrication, and characterization are reported in this paper.
Growth of large zeolite crystals in space
NASA Technical Reports Server (NTRS)
Sacco, A., Jr.; Dixon, A.; Thompson, R.; Scott, G.; Ditr, J.
1988-01-01
Synthesis studies performed using close analogs of triethanolamine (TEA) have shown that all three hydroxyl groups and the amine group in this molecule are necessary to provide nucleation suppression. Studies using C-13 nuclear magnetic resonance (NMR) revealed that the hydroxyl ions and the amine group are involved in the formation of an aluminum complex. It was also shown that silicate species fo not interact this way with TEA in an alkaline solution. These results suggest that successful aluminum complexation leads to nucleation in zeolite-A crystallization.
Spatial height directed microfluidic synthesis of transparent inorganic upconversion nano film
NASA Astrophysics Data System (ADS)
Liu, Xiaoxia; Zhu, Cheng; Liao, Wei; Jin, Junyang; Ni, Yaru; Lu, Chunhua; Xu, Zhongzi
2017-11-01
A microfluidic-based synthesis of an inorganic upconversion nano film has been developed with a large area of dense-distributed NaYF4 crystal grains in a silica glass micro-reactor and the film exhibits high transparence, strong upconversion luminescence and robust adhesion with the substrate. The spatial heights of micro-reactors are tuned between 31 and 227 mm, which can regulate flow regimes. The synergistic effect of spatial height and fluid regime is put forward, which influences diffusion paths and assembly ways of different precursor molecules and consequently directs final distributions and morphologies of crystal grains, as well as optical properties due to diversity of surface and thickness of films. The spatial height of 110 mm is advantageous for high transmittance of upconversion film due to the flat surface and appropriate film thickness of 67 nm. The height of 150 mm is in favor of uniform distribution of upconversion fluorescence and achieving the strongest fluorescence due to minimized optical loss. Such a transparent upconversion film with a large area of uniform distribution is promising to promote the application of upconversion materials and spatial height directed microfluidic regime have a certain significance on many microfluidic synthesis.
NASA Astrophysics Data System (ADS)
Ying, Hao; Li, Xiuting; Li, Deshuai; Huang, Mingqiang; Wan, Wen; Yao, Qian; Chen, Xiangping; Wang, Zhiwei; Wu, Yanqing; Wang, Le; Chen, Shanshan
2018-04-01
The scalable synthesis of two-dimensional (2D) hexagonal boron nitride (h-BN) is of great interest for its numerous applications in novel electronic devices. Highly-crystalline h-BN films, with single-crystal sizes up to hundreds of microns, are demonstrated via a novel Ni foam assisted technique reported here for the first time. The nucleation density of h-BN domains can be significantly reduced due to the high boron solubility, as well as the large specific surface area of the Ni foam. The crystalline structure of the h-BN domains is found to be well aligned with, and therefore strongly dependent upon, the underlying Pt lattice orientation. Growth-time dependent experiments confirm the presence of a surface mediated self-limiting growth mechanism for monolayer h-BN on the Pt substrate. However, utilizing remote catalysis from the Ni foam, bilayer h-BN films can be synthesized breaking the self-limiting effect. This work provides further understanding of the mechanisms involved in the growth of h-BN and proposes a facile synthesis technique that may be applied to further applications in which control over the crystal alignment, and the numbers of layers is crucial.
Synthesis and characterization of Gd-doped magnetite nanoparticles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Honghu; Iowa State Univ., Ames, IA; Malik, Vikash
There has been rising interest in the synthesis of magnetite nanoparticles due to their importance in biomedical and technological applications. Tunable magnetic properties of magnetite nanoparticles to meet specific requirements will greatly expand the spectrum of applications. Tremendous efforts have been devoted to studying and controlling the size, shape and magnetic properties of magnetite nanoparticles. We investigate gadolinium (Gd) doping to influence the growth process as well as magnetic properties of magnetite nanocrystals via a simple co-precipitation method under mild conditions in aqueous media. Gd doping was found to affect the growth process leading to synthesis of controllable particle sizesmore » under the conditions tested (0–10 at% Gd 3+). Typically, undoped and 5 at% Gd-doped magnetite nanoparticles were found to have crystal sizes of about 18 and 44 nm, respectively, supported by X-ray diffraction and transmission electron microscopy. These results showed that Gd-doped nanoparticles retained the magnetite crystal structure, with Gd 3+ randomly incorporated in the crystal lattice, probably in the octahedral sites. The composition of 5 at% Gd-doped magnetite was Fe (3-x)Gd xO 4 (x=0.085±0.002), as determined by inductively coupled plasma mass spectrometry. 5 at% Gd-doped nanoparticles exhibited ferrimagnetic properties with small coercivity (~65 Oe) and slightly decreased magnetization at 260 K in contrast to the undoped, superparamagnetic magnetite nanoparticles. Templation by the bacterial biomineralization protein Mms6 did not appear to affect the growth of the Gd-doped magnetite particles synthesized by this method.« less
NASA Astrophysics Data System (ADS)
Bhat, Muzzaffar A.; Lone, Shabir H.; Mir, Muzzaffar A.; Majid, Sheikh A.; Bhat, Haroon Mohi-ud-din; Butcher, Raymond J.; Srivastava, Sanjay K.
2018-07-01
A convenient and facile synthesis of t-butyl-2-(4-hydroxy-3-methoxybenzylidene)hydrazine carboxylate (1) was accomplished by refluxing t-butyl carbazate with an appropriate aldehyde in ethanol. The resulting compound was characterized using spectral data analysis augmented by X-ray. Single crystal analysis depicted that compound 1 crystallizes in a monoclinic crystal system with P 21/c space group having trans-geometry at the Cdbnd N bond. The structural and electronic properties of the title compound have been calculated using DFT/B3LYP/6-311G (d,p) level of theory. Theoretically obtained parameters were well compared to the experimentally obtained results which depicted excellent agreement. Molecular electrostatic potential surface, frontier orbital analysis and vibrational analysis were also carried out. HOMO-LUMO energy gap was calculated which allowed the calculation of relative reactivity descriptors like chemical hardness, chemical inertness, chemical potential, nucleophilicity and electrophilicity index of the synthesized product. Pass prediction was carried out which revealed that compound 1 can be highly active against Mcl-1 enzyme, with Pa of 0.544. Based on Pass, molecular docking of compound 1 was carried out against Mcl-1 protein. Compound 1 displayed a binding free energy of -5.22 kcal/mol and inhibition constant of 149.06 μM and 1 depicted only alkyl hydrophobic and mixed pi/alkyl hydrophobic interactions with Mcl-1 enzyme. In short, this study reveals the synthesis of a new schiff base, and unravels the structural, electronic and biological properties of the title compound, paving way for further research in the field of drug development.
Synthesis and characterization of Gd-doped magnetite nanoparticles
Zhang, Honghu; Iowa State Univ., Ames, IA; Malik, Vikash; ...
2016-10-04
There has been rising interest in the synthesis of magnetite nanoparticles due to their importance in biomedical and technological applications. Tunable magnetic properties of magnetite nanoparticles to meet specific requirements will greatly expand the spectrum of applications. Tremendous efforts have been devoted to studying and controlling the size, shape and magnetic properties of magnetite nanoparticles. We investigate gadolinium (Gd) doping to influence the growth process as well as magnetic properties of magnetite nanocrystals via a simple co-precipitation method under mild conditions in aqueous media. Gd doping was found to affect the growth process leading to synthesis of controllable particle sizesmore » under the conditions tested (0–10 at% Gd 3+). Typically, undoped and 5 at% Gd-doped magnetite nanoparticles were found to have crystal sizes of about 18 and 44 nm, respectively, supported by X-ray diffraction and transmission electron microscopy. These results showed that Gd-doped nanoparticles retained the magnetite crystal structure, with Gd 3+ randomly incorporated in the crystal lattice, probably in the octahedral sites. The composition of 5 at% Gd-doped magnetite was Fe (3-x)Gd xO 4 (x=0.085±0.002), as determined by inductively coupled plasma mass spectrometry. 5 at% Gd-doped nanoparticles exhibited ferrimagnetic properties with small coercivity (~65 Oe) and slightly decreased magnetization at 260 K in contrast to the undoped, superparamagnetic magnetite nanoparticles. Templation by the bacterial biomineralization protein Mms6 did not appear to affect the growth of the Gd-doped magnetite particles synthesized by this method.« less
Plant cellulose synthesis: CESA proteins crossing kingdoms.
Kumar, Manoj; Turner, Simon
2015-04-01
Cellulose is a biopolymer of considerable economic importance. It is synthesised by the cellulose synthase complex (CSC) in species ranging from bacteria to higher plants. Enormous progress in our understanding of bacterial cellulose synthesis has come with the recent publication of both the crystal structure and biochemical characterisation of a purified complex able to synthesis cellulose in vitro. A model structure of a plant CESA protein suggests considerable similarity between the bacterial and plant cellulose synthesis. In this review article we will cover current knowledge of how plant CESA proteins synthesise cellulose. In particular the focus will be on the lessons learned from the recent work on the catalytic mechanism and the implications that new data on cellulose structure has for the assembly of CESA proteins into the large complex that synthesis plant cellulose microfibrils. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.
NASA Astrophysics Data System (ADS)
Fathima, K. Saiadali; Kavitha, P.; Anitha, K.
2017-09-01
The 1:1 molecular adducts 2- Amino-1H-benzimidazolium pyridine-3-carboxylate (2ABPC) was synthesized and grown as single crystal where 2-aminobenzimidazole (ABI) acts as a donor and nicotinic acid (NA) acts as an acceptor. The presence of proton and carbon were predicted using 1H and 13C NMR spectral analysis. The molecular structure of the crystal was elucidated by subjecting the grown crystals to the single crystal x-ray diffraction analysis and was refined by full matrix least-squares method to R = 0.038 for 2469 reflections. The vibrational modes of functional group have been studied using FTIR and Raman spectroscopic analysis. The UV-Vis spectrum exhibited a visible band at 246 nm for 2ABPC due to the nicotinate anion of the molecule. Further, the antimicrobial activity of 2ABPC complex against B. subtilis, klebsiella pneumonia, Pseudomonas eruginos and E. coli pathogens was investigated. Minimum Inhibitory Concentration (MIC) for this crystal was obtained using UV spectrometer against MRSA pathogen. It was found that the benzimidazole with aminogroup at position 2 increases the general antimicrobial activities of 2ABPC crystal.
NASA Astrophysics Data System (ADS)
Shakila, K.; Kalainathan, S.
2015-01-01
In this paper, we report the successful growth of complex compound of zinc iodide with thiocarbamide by slow evaporation method. The single crystal XRD study reveals that the crystal belongs to monoclinic system with centrosymmetric space group and powder XRD analysis shows that the perfect crystalline nature of the crystal. The presence of functional group and element were confirmed from FT-IR and EDAX analysis. Optical absorbance of the grown crystal was studied by UV-Vis spectrophotometer. The optical constants were calculated from the optical absorbance data such as refractive index (n), extinction coefficient (K) and reflectance (R). The optical band gap (Eg) of thiocarbamide zinc iodide crystal is 4.22 eV. The magnetic properties of grown crystal have been determined by Vibrating Sample Magnetometry (VSM). Room temperature magnetization revealed a ferromagnetic behaviour for the grown crystal. The antibacterial and antifungal activities of the title compound were performed by well diffusion method and MIC method against the standard bacteria like Staphylococcus aureus, Escherichia coli, Klebsiella pneumonia and against fungus like Aspergillus niger, Rhizopus sps and Penicillium sps. Thermal behaviour of the crystal has been investigated using thermogravimetric analysis (TGA) and differential thermal analysis (DTA).
Synthesis of oleoylethanolamide using lipase.
Wang, Xiaosan; Wang, Xingguo; Wang, Tong
2012-01-11
An effective process for the enzymatic synthesis of oleoylethanolamide is described in this study. The process included purification of a commercial oleic acid product and then optimization of the reaction between the purified oleic acid and ethanolamine in the presence of hexane and a lipase. Under the optimal amidation reaction conditions identified, oleoylethanolamide was obtained with 96.6% purity. The synthesis was also conducted on a large scale (50 mmol of each of the reactants), and oleoylethanolamide purity and yield after crystallization purification were 96.1 and 73.5%, respectively. Compared to the previous studies, the current method of preparing high-purity oleoylethanolamide is more effective and economically feasible. The scalability and ease for such synthesis make it possible to study the biological and nutritional functions of the cannabinoid-like oleoylethanolamide in animal or human subjects.
TitaniQ recrystallized: experimental confirmation of the original Ti-in-quartz calibrations
NASA Astrophysics Data System (ADS)
Thomas, Jay B.; Watson, E. Bruce; Spear, Frank S.; Wark, D. A.
2015-03-01
Several studies have reported the P- T dependencies of Ti-in-quartz solubility, and there is close agreement among three of the four experimental calibrations. New experiments were conducted in the present study to identify potential experimental disequilibrium, and to determine which Ti-in-quartz solubility calibration is most accurate. Crystals of quartz, rutile and zircon were grown from SiO2-, TiO2-, and ZrSiO4-saturated aqueous fluids in an initial synthesis experiment at 925 °C and 10 kbar in a piston-cylinder apparatus. A range of quartz crystal sizes was produced in this experiment; both large and small examples were analyzed by electron microprobe to determine whether Ti concentrations are correlated with crystal size. Cathodoluminescence images and EPMA measurements show that intercrystalline and intracrystalline variations in Ti concentrations are remarkably small regardless of crystal size. The average Ti-in-quartz concentration from the synthesis experiment is 392 ± 1 ppmw Ti, which is within 95 % confidence interval of data from the 10 kbar isobar of Wark and Watson (Contrib Mineral Petrol 152:743-754, 2006) and Thomas et al. (Contrib Mineral Petrol 160:743-759, 2010). As a cross-check on the Ti-in-quartz calibration, we also measured the concentration of Zr in rutile from the synthesis experiment. The average Zr-in-rutile concentration is 4337 ± 32 ppmw Zr, which is also within the 95 % confidence interval of the Zr-in-rutile solubility calibration of Ferry and Watson (Contrib Mineral Petrol 154:429-437, 2007). The P- T dependencies of Ti solubility in quartz and Zr solubility in rutile were applied as a thermobarometer to the experimental sample. The average Ti-in-quartz isopleth calculated from the calibration of Thomas et al. (Contrib Mineral Petrol 160:743-759, 2010) and the average Zr-in-rutile isopleth calculated from the calibration of Tomkins et al. (J Metamorph Geol 25:703-713, 2007) cross at 9.5 kbar and 920 °C, which is in excellent agreement with the P- T conditions of the synthesis experiment. Separates of the high-Ti quartz from the initial synthesis experiment described above were used as starting material in subsequent experiments at 20 kbar, at which pressure the solubility of Ti in quartz is expected to be significantly lower in the recrystallized quartz. These recrystallization experiments were conducted under wet and dry conditions at 925 °C, and under wet conditions at 850 °C. Both wet and dry recrystallization experiments produced polycrystalline quartzites. Rutile occurs as inclusions in quartz, and as individual crystals dispersed along quartz grain boundaries. Quartz that grew during the recrystallization experiments has dark cathodoluminescence indicating substantially lower Ti concentrations. The average Ti concentrations in quartz from the recrystallization experiments are within the 95 % confidence interval of a linear fit to the 20 kbar data of Thomas et al. (Contrib Mineral Petrol 160:743-759, 2010). Collectively, the results from the synthesis and recrystallization experiments confirm that the Ti-in-quartz concentrations used to calibrate the P- T dependencies of Ti-in-quartz solubility in Thomas et al.'s (Contrib Mineral Petrol 160:743-759, 2010) calibration represent the equilibrium concentrations of Ti in quartz.
The Preparation and Characterization of a Sodium Tungsten Bronze
ERIC Educational Resources Information Center
Conroy, Lawrence E.
1977-01-01
Describes an experiment that utilizes the techniques of temperature synthesis, crystallization from a molten salt, oxidation-reduction in a molten salt, powder X-ray diffraction and analysis by high temperature volatilization or a specific ion electrode. (MLH)
Ionic Liquid Crystals: Versatile Materials.
Goossens, Karel; Lava, Kathleen; Bielawski, Christopher W; Binnemans, Koen
2016-04-27
This Review covers the recent developments (2005-2015) in the design, synthesis, characterization, and application of thermotropic ionic liquid crystals. It was designed to give a comprehensive overview of the "state-of-the-art" in the field. The discussion is focused on low molar mass and dendrimeric thermotropic ionic mesogens, as well as selected metal-containing compounds (metallomesogens), but some references to polymeric and/or lyotropic ionic liquid crystals and particularly to ionic liquids will also be provided. Although zwitterionic and mesoionic mesogens are also treated to some extent, emphasis will be directed toward liquid-crystalline materials consisting of organic cations and organic/inorganic anions that are not covalently bound but interact via electrostatic and other noncovalent interactions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Murakami, Katsuhisa, E-mail: k.murakami@bk.tsukuba.ac.jp; Hiyama, Takaki; Kuwajima, Tomoya
2015-03-02
A single layer of graphene with dimensions of 20 mm × 20 mm was grown directly on an insulating substrate by chemical vapor deposition using Ga vapor catalysts. The graphene layer showed highly homogeneous crystal quality over a large area on the insulating substrate. The crystal quality of the graphene was measured by Raman spectroscopy and was found to improve with increasing Ga vapor density on the reaction area. High-resolution transmission electron microscopy observations showed that the synthesized graphene had a perfect atomic-scale crystal structure within its grains, which ranged in size from 50 nm to 200 nm.
Mandal, Pradeep K; Collie, Gavin W; Kauffmann, Brice; Huc, Ivan
2014-12-22
Racemates increase the chances of crystallization by allowing molecular contacts to be formed in a greater number of ways. With the advent of protein synthesis, the production of protein racemates and racemic-protein crystallography are now possible. Curiously, racemic DNA crystallography had not been investigated despite the commercial availability of L- and D-deoxyribo-oligonucleotides. Here, we report a study into racemic DNA crystallography showing the strong propensity of racemic DNA mixtures to form racemic crystals. We describe racemic crystal structures of various DNA sequences and folded conformations, including duplexes, quadruplexes, and a four-way junction, showing that the advantages of racemic crystallography should extend to DNA. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Saghatforoush, L. A.; Valencia, L.; Chalabian, F.; Ghammamy, Sh.
2011-01-01
A new Cd(II) complex with the ligand 4′-chloro-2,2′6′,2′′-terpyridine (Cltpy), [Cd(Cltpy)(I)2], has been synthesized and characterized by CHN elemental analysis, 1H-NMR, 13C-NMR, and IR spectroscopy and structurally analyzed by X-ray single-crystal diffraction. The single-crystal X-ray analyses show that the coordination number in complex is five with three terpyridine (Cltpy) N-donor atoms and two iodine atoms. The antibacterial activities of Cltpy and its Cd(II) complex are tested against different bacteria. PMID:21738495
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rastogi, Rupali, E-mail: rastogirupali@ymail.com; Tarannum, Nazia; Butcher, R. J.
2016-03-15
5-Bromosalicylalcohol was prepared by the interaction of NaBH{sub 4} and 5-bromosalicylaldehyde. The use of sodium borohydride makes the reaction easy, facile, economic and does not require any toxic catalyst. The compound is characterized by FTIR, {sup 1}H NMR, {sup 13}C NMR, TEM and ESI-mass spectra. Crystal structure is determined by single crystal X-ray analysis. Quantum mechanical calculations of geometries, energies and thermodynamic parameters are carried out using density functional theory (DFT/B3LYP) method with 6-311G(d,p) basis set. The optimized geometrical parameters obtained by B3LYP method show good agreement with experimental data.
High-Pressure Synthesis and Characterization of the Ammonium Yttrium Borate (NH4)YB8O14.
Schmitt, Martin K; Podewitz, Maren; Liedl, Klaus R; Huppertz, Hubert
2017-11-20
The first high-pressure yttrium borate (NH 4 )YB 8 O 14 was synthesized at 12.8 GPa/1300 °C using a Walker-type multianvil module. The compound crystallizes in the orthorhombic space group Pnma (no. 62) with the lattice parameters a = 17.6375(9), b = 10.7160(5), and c = 4.2191(2) Å. (NH 4 )YB 8 O 14 constitutes a novel structure type but exhibits similarities to the crystal structure of β-BaB 4 O 7 . X-ray single-crystal and powder diffraction, EDX, vibrational spectroscopy as well as quantum chemical calculations were used to characterize (NH 4 )YB 8 O 14 .
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gogotsi, Yury
Here, the research community has been steadily expanding the family of few-atom-thick crystals beyond graphene, discovering new materials or producing known materials in a 2D state and demonstrating their unique properties 1, 2. Recently, nanometre-thin 2D transition metal carbides have also joined this family 3. Writing in Nature Materials, Chuan Xu and colleagues now report a significant advance in the field, showing the synthesis of large-area, high-quality, nanometre-thin crystals of molybdenum carbide that demonstrate low-temperature 2D superconductivity 4. Moreover, they also show that other ultrathin carbide crystals, such as tungsten and tantalum carbides, can be grown by chemical vapour depositionmore » with a high crystallinity and very low defect concentration.« less
NASA Astrophysics Data System (ADS)
Zhao, Dan; Zhao, Ji; Fan, Yun-Chang; Ma, Zhao; Zhang, Rui-Juan; Liu, Bao-Zhong
2018-06-01
High temperature solution reaction leads to a new tungstate compound CsGa0.333W1.667O6, whose structure was determined by single-crystal X-ray diffraction analysis. The results show that it crystallizes in pyrochlore structure with cubic space group Fd-3m and a = 10.2529 (13) Å. In this structure, Ga and W atoms are in a statistical disorder manner. The self-activated luminescent properties CsGa0.333W1.667O6 were studied. Under the excitation of 323 nm, the emission spectrum exhibits a blue emission centered at 466 nm with the chromaticity coordinates (0.1838, 0.1814).
Synthesis of anatase TiO2 nanoparticles with beta-cyclodextrin as a supramolecular shell.
Li, Landong; Sun, Xiaohong; Yang, Yali; Guan, Naijia; Zhang, Fuxiang
2006-11-20
We report a novel, green hydrothermal-synthesis route to well-dispersed anatase TiO2 nanoparticles with particle sizes of 9-16 nm in the presence of beta-CD (beta-cyclodextrin). During the synthesis process, the CD-containing synthesis mixture assembled in both longitudinal and latitudinal directions. Driven by the interaction between molecules, the beta-CDs assembled in the longitudinal direction to form long-chain compounds, whereas in the latitudinal direction, they tended to form regular aggregates through coordination with the Ti species from the hydrolysis of tetrabutyl titanate. In view of the effect of the coordination and the steric hindrance of beta-CDs as a supramolecular shell, homogeneous nuclei and slow growth of TiO2 crystals during the synthesis process was observed, which was responsible for the formation of uniform TiO2 nanoparticles. The low beta-CD dosage and the high product yield (>90%) demonstrated well the potential of this synthesis route in the large-scale industrial production of anatase nanoparticles.
Structure and functional dynamics of the mitochondrial Fe/S cluster synthesis complex.
Boniecki, Michal T; Freibert, Sven A; Mühlenhoff, Ulrich; Lill, Roland; Cygler, Miroslaw
2017-11-03
Iron-sulfur (Fe/S) clusters are essential protein cofactors crucial for many cellular functions including DNA maintenance, protein translation, and energy conversion. De novo Fe/S cluster synthesis occurs on the mitochondrial scaffold protein ISCU and requires cysteine desulfurase NFS1, ferredoxin, frataxin, and the small factors ISD11 and ACP (acyl carrier protein). Both the mechanism of Fe/S cluster synthesis and function of ISD11-ACP are poorly understood. Here, we present crystal structures of three different NFS1-ISD11-ACP complexes with and without ISCU, and we use SAXS analyses to define the 3D architecture of the complete mitochondrial Fe/S cluster biosynthetic complex. Our structural and biochemical studies provide mechanistic insights into Fe/S cluster synthesis at the catalytic center defined by the active-site Cys of NFS1 and conserved Cys, Asp, and His residues of ISCU. We assign specific regulatory rather than catalytic roles to ISD11-ACP that link Fe/S cluster synthesis with mitochondrial lipid synthesis and cellular energy status.
Hydrothermal synthesis of NiWO4 crystals for high performance non-enzymatic glucose biosensors
NASA Astrophysics Data System (ADS)
Mani, Sivakumar; Vediyappan, Veeramani; Chen, Shen-Ming; Madhu, Rajesh; Pitchaimani, Veerakumar; Chang, Jia-Yaw; Liu, Shang-Bin
2016-04-01
A facile hydrothermal route for the synthesis of ordered NiWO4 nanocrystals, which show promising applications as high performance non-enzymatic glucose sensor is reported. The NiWO4-modified electrodes showed excellent sensitivity (269.6 μA mM-1 cm-2) and low detection limit (0.18 μM) for detection of glucose with desirable selectivity, stability, and tolerance to interference, rendering their prospective applications as cost-effective, enzyme-free glucose sensors.
Oxide glass used as inorganic template for fluorescent fluoride nanoparticles synthesis
NASA Astrophysics Data System (ADS)
Mortier, Michel; Patriarche, Gilles
2006-09-01
We report an original way to synthesise single-crystal PbF 2 nanoparticles by selective chemical attack of a bulk nanocomposite oxyfluoride glass-ceramic. Free of impurities and homogeneously doped with Er 3+ ions, the particles are of narrow size dispersion around 15 nm and weakly aggregated. The nanocrystallites emit a very intense green and blue up conversion fluorescence after infrared excitation. The doping level and the size of the particles is finely driven through the precursor glass-ceramic synthesis and composition.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Hsiu-Wen; Daemen, Luke L.; Cheshire, Michael C.
It is generally believed that H 2O and OH - are the key species stabilizing and controlling amorphous calcium carbonate “polyamorph” forms, and may in turn control the ultimate crystallization products during synthesis and in natural systems. Yet, the locations and hydrogen-bonding network of these species in ACC have never been measured directly using neutron diffraction. In this paper, we report a synthesis route that overcomes the existing challenges with respect to yield quantities and deuteration, both of which are critically necessary for high quality neutron studies.
Hydrothermal synthesis of NiWO4 crystals for high performance non-enzymatic glucose biosensors.
Mani, Sivakumar; Vediyappan, Veeramani; Chen, Shen-Ming; Madhu, Rajesh; Pitchaimani, Veerakumar; Chang, Jia-Yaw; Liu, Shang-Bin
2016-04-18
A facile hydrothermal route for the synthesis of ordered NiWO4 nanocrystals, which show promising applications as high performance non-enzymatic glucose sensor is reported. The NiWO4-modified electrodes showed excellent sensitivity (269.6 μA mM(-1 )cm(-2)) and low detection limit (0.18 μM) for detection of glucose with desirable selectivity, stability, and tolerance to interference, rendering their prospective applications as cost-effective, enzyme-free glucose sensors.
Synthesis of Polycrystalline CdSiP2 in a Gradient Temperature Field
NASA Astrophysics Data System (ADS)
Bereznaya, S. A.; Korotchenko, Z. V.; Kurasova, A. S.; Sarkisov, S. Yu.; Sarkisov, Yu. S.; Chernyshov, A. I.; Korolkov, I. V.; Kuchumov, B. M.; Saprykin, A. I.; Atuchin, V. V.
2018-05-01
A procedure for the synthesis of a CdSiP2 compound from the initial elementary components in a gradient thermal field has been developed. The phase and chemical composition of the synthesized and recrystallized material is confirmed by the data of X-ray diffraction analysis and scanning electron microscopy with an energy-dispersive system. The polycrystalline material obtained by the developed method will be used to grow bulk nonlinear optical CdSiP2 crystals.
Synthesis and characteristics of polyarylene ether sulfones
NASA Technical Reports Server (NTRS)
Viswanathan, R.; Johnson, B. C.; Ward, T. C.; Mcgrath, J. E.
1981-01-01
A method utilizing potassium carbonate/dimethyl acetamide, as base and solvent respectively, was used for the synthesis of several homopolymers and copolymers derived from various bisphenols. It is demonstrated that this method deviates from simple second order kinetics; this deviation being due to the heterogeneous nature of the reaction. Also, it is shown that a liquid induced crystallization process can improve the solvent resistance of these polymers. Finally, a Monte Carlo simulation of the triad distribution of monomers in nonequilibrium copolycondensation is discussed.
One-pot and two-step synthesis of novel carbonylthioureas and dicarbonyldithioureas derivatives
NASA Astrophysics Data System (ADS)
Banaei, Alireza; Shiran, Jafar Abbasi; Saadat, Afshin; Ardabili, Farnaz Fazlalizadeh; McArdle, Patrick
2015-11-01
One-pot, two-step synthesis of several 1-cyclopropanecarbonyl-3-(substituted phenyl)-thioureas and 1-(phenylene-1,4-dione)-3,3‧-(substituted phenyl)-dithioureas have been successfully prepared. The structures of the synthesized compounds were confirmed by elemental analysis, FT-IR spectroscopy and NMR. Also the crystal structure one of these compounds was determined by X-ray crystallography. All synthesized compounds were evaluated for antibacterial activity using Salmonella enterica (SE), Micrococcus luteus (ML), Bacillus subtilis (BS) and Pseudomonas aeruginosa (PS).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wise, M.L.; Stiebel, C.L.; Grizzle, J.M.
1987-01-01
Nitrofurazone (5-nitro-2-furaldehyde semicarbazone) is a nitrofuran, a group of organic compounds which have inhibitory activity against many Gram-negative and Gram-positive bacteria and against some protozoan parasites. Although not approved by the United States Food and Drug Administration for use with food fish, nitrofurazone has been found effective in fish against external and internal infections by various species of Aeromonas, Pseudomonas and myxobacteria and can be administered either as a food additive or as a bath treatment. Attempts to control the microsporidian parasite Pleistophora ovariae in golden shiners, Notemigonus crysoleucas, with nitrofurazone met with equivocal results. The following experiment was performedmore » to determine acute toxicity, including lesions, of nitrofurazone to channel catfish, Ictalurus punctatus, and goldfish, carassius auratus, fingerlings. Toxicity of nitrofurazone to channel catfish was determined with low dissolved oxygen concentrations (2 mg/L) to simulate conditions frequently encountered in channel catfish culture. Information abut toxic levels of drugs and the lesions occurring in exposed fish is important to determine the safety of treatment levels and the effects of toxic concentrations.« less
Detonation Synthesis of Alpha-Variant Silicon Carbide
NASA Astrophysics Data System (ADS)
Langenderfer, Martin; Johnson, Catherine; Fahrenholtz, William; Mochalin, Vadym
2017-06-01
A recent research study has been undertaken to develop facilities for conducting detonation synthesis of nanomaterials. This process involves a familiar technique that has been utilized for the industrial synthesis of nanodiamonds. Developments through this study have allowed for experimentation with the concept of modifying explosive compositions to induce synthesis of new nanomaterials. Initial experimentation has been conducted with the end goal being synthesis of alpha variant silicon carbide (α-SiC) in the nano-scale. The α-SiC that can be produced through detonation synthesis methods is critical to the ceramics industry because of a number of unique properties of the material. Conventional synthesis of α-SiC results in formation of crystals greater than 100 nm in diameter, outside nano-scale. It has been theorized that the high temperature and pressure of an explosive detonation can be used for the formation of α-SiC in the sub 100 nm range. This paper will discuss in detail the process development for detonation nanomaterial synthesis facilities, optimization of explosive charge parameters to maximize nanomaterial yield, and introduction of silicon to the detonation reaction environment to achieve first synthesis of nano-sized alpha variant silicon carbide.
Bioinspired synthesis of magnetic nanoparticles
DOE Office of Scientific and Technical Information (OSTI.GOV)
David, Anand
2009-01-01
The synthesis of magnetic nanoparticles has long been an area of active research. Magnetic nanoparticles can be used in a wide variety of applications such as magnetic inks, magnetic memory devices, drug delivery, magnetic resonance imaging (MRI) contrast agents, and pathogen detection in foods. In applications such as MRI, particle uniformity is particularly crucial, as is the magnetic response of the particles. Uniform magnetic particles with good magnetic properties are therefore required. One particularly effective technique for synthesizing nanoparticles involves biomineralization, which is a naturally occurring process that can produce highly complex nanostructures. Also, the technique involves mild conditions (ambientmore » temperature and close to neutral pH) that make this approach suitable for a wide variety of materials. The term 'bioinspired' is important because biomineralization research is inspired by the naturally occurring process, which occurs in certain microorganisms called 'magnetotactic bacteria'. Magnetotactic bacteria use biomineralization proteins to produce magnetite crystals having very good uniformity in size and morphology. The bacteria use these magnetic particles to navigate according to external magnetic fields. Because these bacteria synthesize high quality crystals, research has focused on imitating aspects of this biomineralization in vitro. In particular, a biomineralization iron-binding protein found in a certain species of magnetotactic bacteria, magnetospirillum magneticum, AMB-1, has been extracted and used for in vitro magnetite synthesis; Pluronic F127 gel was used to increase the viscosity of the reaction medium to better mimic the conditions in the bacteria. It was shown that the biomineralization protein mms6 was able to facilitate uniform magnetite synthesis. In addition, a similar biomineralization process using mms6 and a shorter version of this protein, C25, has been used to synthesize cobalt ferrite particles. The overall goal of this project is to understand the mechanism of magnetite particle synthesis in the presence of the biomineralization proteins, mms6 and C25. Previous work has hypothesized that the mms6 protein helps to template magnetite and cobalt ferrite particle synthesis and that the C25 protein templates cobalt ferrite formation. However, the effect of parameters such as the protein concentration on the particle formation is still unknown. It is expected that the protein concentration significantly affects the nucleation and growth of magnetite. Since the protein provides iron-binding sites, it is expected that magnetite crystals would nucleate at those sites. In addition, in the previous work, the reaction medium after completion of the reaction was in the solution phase, and magnetic particles had a tendency to fall to the bottom of the medium and aggregate. The research presented in this thesis involves solid Pluronic gel phase reactions, which can be studied readily using small-angle x-ray scattering, which is not possible for the solution phase experiments. In addition, the concentration effect of both of the proteins on magnetite crystal formation was studied.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abosadiya, Hamza M.; Hasbullah, Siti Aishah; Yamin, Bohari M.
2015-09-25
C-4-acetamidophenylcalix[4]pyrogallolarene was synthesized by an acid catalyzed condensation reaction of pyrogallol with 4-acetamidobenzaldehyde. The compound was characterized by IR, {sup 1}H and {sup 13}C NMR spectroscopy. Single crystal X-ray analysis revealed that the molecule crystallized in a triclinic system with space group Pī and the unit cell dimensions a= 12.2948(16) Å, b= 13.4423(17) Å, c= 13.5906(18) Å, α =107.549(4)°, β =102.034(4)°, γ =90.535(4)°, Z= 1 and V= 2088.2(5) Å{sup 3}. The macrocyclic calix adopts a chair (C{sub 2h}) conformation and the molecule is associated with eight DMSO molecules of crystallization. Antioxidant test by DPPH method showed that the compound exhibitsmore » good antioxidant activity of about 72%.« less
NASA Astrophysics Data System (ADS)
Yu, Yuanyuan
2017-06-01
A new Cd(II) compound, namely [Cd2(btc)(phen)2Cl]n·n(H2O)·n(DMA) (1, H3btc = 1, 3, 5-benzenetricarboxylic acid, phen = 1,10-phenanthroline, DMA = N,N'-dimethylacetamide) has been synthesized and structurally characterized by single-crystal X-ray diffraction analysis. This compound crystallizes in monoclinic P21/n space group with a = 13.5729(7) Å, b = 20.1049(7) Å, c = 13.9450(6) Å, β = 104.671(4)°, Z = 4. Single-crystal X-ray diffraction analysis reveals that compound 1 features a 2D → 3D interdigitated framework directed by the intermolecular hydrogen bonds. In addition, the luminescent properties of compound 1 were also investigated in the solid state at room temperature.
NASA Astrophysics Data System (ADS)
Prasad, S. Shibu; Sudarsanakumar, M. R.; Dhanya, V. S.; Suma, S.; Kurup, M. R. Prathapachandra
2018-09-01
A new metal-organic framework of lead, [Pb(1,5-nds)(H2O)3]n (1,5-nds = 1,5-naphthalenedisulfonate) having prominent nonlinear optical property has been prepared by single gel diffusion technique at ambient condition using sodium metasilicate. The second harmonic generation efficiency was analyzed using Kurtz and Perry powder method and was found to be 30 times as large as potassium dihydrogen phosphate (KDP). Single crystal X-ray diffraction studies reveal the crystal structure. The grown crystals were further characterized by elemental analysis, powder XRD study, thermogravimetry, FT-IR and UV-visible spectral studies. The Pb2S2O4 rings in the crystal structure form a 1D channel. Hydrogen bonding and π-π interactions provide additional stability to the compound. Photoluminescence studies were also carried out.
NASA Astrophysics Data System (ADS)
Karthigha, S.; Kalainathan, S.; Maheswara Rao, Kunda Uma; Hamada, Fumio; Yamada, Manabu; Kondo, Yoshihiko
2016-02-01
Single crystals of 2-[2-(4-cholro-phenyl)-vinyl]-1-methylquinolinium naphthalene-2-sulfonate (4CLNS) were grown by a slow evaporation technique. The formation of molecule was confirmed from 1H NMR and FTIR analysis. The confirmation of crystal structure was done by single crystal XRD and atomic packing of grown crystal was identified. The grown single crystal crystallized in triclinic structure with centrosymmetric space group P-1. The crystalline nature of the synthesised material was recorded by powder XRD. The optical absorption properties of the grown crystals were analyzed by UV-vis spectral studies. The thermal behaviour of the title material has been studied by TG/DTA analysis which revealed the stability of the compound till its melting point 276.7 °C. The third order nonlinear optical property of 4CLNS was investigated in detail by Z scan technique and it confirms that the title crystal is suitable for photonic devices and NLO optical applications. Emissions at 519 nm in green region of the EM spectrum were found by photoluminescence studies. The charge transfer occurring within the molecule is explained by the calculated HOMO and LUMO energies.
Pushing the boundaries of high power lasers: low loss, large area CVD diamond
NASA Astrophysics Data System (ADS)
Wickham, Benjamin; Schoofs, Frank; Olsson-Robbie, Stefan; Bennett, Andrew; Balmer, Richard
2018-02-01
Synthetic CVD diamond has exceptional properties, including broad spectral transmission, physical and chemical robustness, and the highest thermal conductivity of any known material, making diamond an attractive material for medium to high power optical and laser applications, minimizing the detrimental effects of thermal lensing and radiation damage. Example applications include ATR prisms, Raman laser crystals, extra- and intra-cavity laser cooling. In each case the demands on the fundamental material properties and fabrication routes are slightly different. In recent years, there has been good progress in the development of low-loss, single crystal diamond, suitable for higher power densities, higher pulse rates and more demanding intra- and extra-cavity thermal management. The adoption of single crystal diamond in this area has however, been hindered by the availability of large area, low birefringence plates. To address this, we report a combination of CVD growth and processing methods that have enabled the manufacture of large, low defect substrates. A final homoepitaxial, low absorption synthesis stage has produced plates with large area (up to 16 mm edge length), low absorption (α<0.005 cm-1 at 1064 nm), and low birefringence (Δn <10-5), suitable for double-sided intra-cavity cooling. We demonstrate the practical advances in synthesis, including increasing the size while reducing in-use losses compared to previous generations of single crystal material, and practical developments in processing and implementation of the single crystal diamond parts, optimizing them for use in a state-of-the-art femto-second pulsed Ti:Sa thin disk gain module, all made in collaboration with the wider European FP7 funded Ti:Sa TD consortium.
NASA Astrophysics Data System (ADS)
Ben Gzaiel, Malika; Oueslati, Abderrazek; Lhoste, Jérôme; Gargouri, Mohamed; Bulou, Alain
2015-06-01
The present paper accounts for the synthesis, crystal structure, differential scanning calorimetry and vibrational spectroscopy of a new compound tri-tetrabutylammonium heptachloro-dizincate (I) grown at room temperature by slow evaporation of aqueous solution. From X-ray diffraction data collected at room temperature, it is concluded that it crystallizes in the monoclinic system (P21/n space group) containing ZnCl42- and ZnCl3H2O1- tetrahedra. The atomic arrangement can be described by an alternation of organic and organic-inorganic layers stacked along the c direction. Differential scanning calorimetry (DSC) in the range 250-450 K disclosed a reversible structural phase transition of order-disorder type at 358 K, prior to the melting at 395 K. The temperature dependence of the Raman spectra of [N(C4H9)4]3Zn2Cl7H2O single crystals was studied in the spectral range 100-3500 cm-1 and for temperatures between 300 and 386 K. The most important changes are observed for the line at 261 cm-1 issued from ν1(ZnCl4). The analysis of the wavenumber, intensity and the line width based on an order-disorder model allowed to obtain information relative to the activation energy and the correlation length. The decrease of the activation energy with increasing temperature has been interpreted in term of a change in the re-orientation motion of the anionic parts. The assumption of cluster fluctuations also allowed the critical exponents to be obtained for the transition δ = 0.011 and the correlation length ξ0 = 598 Å.
Role of a Modulator in the Synthesis of Phase-Pure NU-1000.
Webber, Thomas E; Liu, Wei-Guang; Desai, Sai Puneet; Lu, Connie C; Truhlar, Donald G; Penn, R Lee
2017-11-15
NU-1000 is a robust, mesoporous metal-organic framework (MOF) with hexazirconium nodes ([Zr 6 O 16 H 16 ] 8+ , referred to as oxo-Zr 6 nodes) that can be synthesized by combining a solution of ZrOCl 2 ·8H 2 O and a benzoic acid modulator in N,N-dimethylformamide with a solution of linker (1,3,6,8-tetrakis(p-benzoic acid)pyrene, referred to as H 4 TBAPy) and by aging at an elevated temperature. Typically, the resulting crystals are primarily composed of NU-1000 domains that crystallize with a more dense phase that shares structural similarity with NU-901, which is an MOF composed of the same linker molecules and nodes. Density differences between the two polymorphs arise from the differences in the node orientation: in NU-1000, the oxo-Zr 6 nodes rotate 120° from node to node, whereas in NU-901, all nodes are aligned in parallel. Considering this structural difference leads to the hypothesis that changing the modulator from benzoic acid to a larger and more rigid biphenyl-4-carboxylic acid might lead to a stronger steric interaction between the modulator coordinating on the oxo-Zr 6 node and misaligned nodes or linkers in the large pore and inhibit the growth of the more dense NU-901-like material, resulting in phase-pure NU-1000. Side-by-side reactions comparing the products of synthesis using benzoic acid or biphenyl-4-carboxylic acid as a modulator produce structurally heterogeneous crystals and phase-pure NU-1000 crystals. It can be concluded that the larger and more rigid biphenyl-4-carboxylate inhibits the incorporation of nodes with an alignment parallel to the neighboring nodes already residing in the crystal.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morrison, Gregory; Prestigiacomo, Joseph; Haldolaarachchige, Neel
2016-04-15
Single crystals of Ln{sub 2}Ru{sub 3}Al{sub 15+x} (Ln=Gd, Tb) have been grown using the self-flux method under Ru-poor conditions. The structure of the Gd analog is found to be highly dependent on the synthesis method. Gd{sub 2}Ru{sub 3}Al{sub 15.08} orders antiferromagnetically at 17.5 K. Tb{sub 2}Ru{sub 3}Al{sub 15.05} enters an antiferromagnetic state at 16.6 K followed by a likely incommensurate-to-commensurate transition at 14.9 K for crystals oriented with H//ab. For crystals oriented with H//c, a broad maximum is observed in the temperature dependent M/H, indicative of a highly anisotropic magnetic system with the hard axis in the c-direction. The magnetizationmore » as a function of field and magnetoresistance along the ab-direction of Tb{sub 2}Ru{sub 3}Al{sub 15.05} display a stepwise behavior and indicate strong crystalline electric field effects. - Graphical abstract: Single crystal, structure, and highly anisotropic magnetoresistance due to strong crystalline electric field effects of Tb{sub 2}Ru{sub 3}Al{sub 15.05}. - Highlights: • Single crystals of Ln{sub 2}Ru{sub 3}Al{sub 15+x} were grown for the first time via flux growth. • The structure of Gd{sub 2}Ru{sub 3}Al{sub 15.09} differs from that of arc melted Gd{sub 2}Ru{sub 3.08}Al{sub 15}. • Tb{sub 2}Ru{sub 3}Al{sub 15.05} exhibits highly anisotropic magnetic and transport properties. • The properties of Tb{sub 2}Ru{sub 3}Al{sub 15.05} arise due to crystalline electric field effects.« less
Facile synthesis, single crystal analysis, and computational studies of sulfanilamide derivatives
NASA Astrophysics Data System (ADS)
Tahir, Muhammad Nawaz; Khalid, Muhammad; Islam, Ayesha; Ali Mashhadi, Syed Muddassir; Braga, Ataualpa A. C.
2017-01-01
Antibacterial resistance is a worldwide problem. Sulfanilamide is widely used antibacterial. For the first time, we report here a simple method for the derivative synthesis of the title drugs, single crystal XRD and density functional theory (DFT) studies. The optimized molecular structure, natural bond orbital (NBO), frontier molecular orbitals (FMOs) molecular electrostatic potential studies (MEP) and Mulliken population analysis (MPA) have been performed using M06-2X/6-31G(d, p). The FT-IR spectra and thermodynamic parameters were calculated at M06-2X/6-311 + G(2d,p) and B3LYP/6-31G(d, p) levels respectively, while, the UV-Vis analysis was performed using TD-DFT/B3LYP/6-31G(d, p) method. The experimental FT-IR spectra of both compounds were also carried out to reconfirm sbnd H⋯Osbnd hydrogen bonds. The DFT optimized parameters exhibiting good agreement with the experimental data. NBO analysis explored the hyper conjugative interaction and stability of title crystals, especially, reconfirmed the existence of sbnd H⋯Osbnd hydrogen bonds between the dimers. The FT-IR, thermodynamic parameters, MEP and MPA also revealed the hydrogen bonding detail is harmonious to XRD data. As a matter of the fact, the hydrogen bonding is a significant parameter for the understanding and design of molecular crystals, subsequently; it can also play a vital role in the supramolecular chemistry. Moreover, the global reactivity descriptors suggest that title compounds might be bioactive.
Advanced Experimental Methods for Low-temperature Magnetotransport Measurement of Novel Materials
Hagmann, Joseph A.; Le, Son T.; Richter, Curt A.; Seiler, David G.
2016-01-01
Novel electronic materials are often produced for the first time by synthesis processes that yield bulk crystals (in contrast to single crystal thin film synthesis) for the purpose of exploratory materials research. Certain materials pose a challenge wherein the traditional bulk Hall bar device fabrication method is insufficient to produce a measureable device for sample transport measurement, principally because the single crystal size is too small to attach wire leads to the sample in a Hall bar configuration. This can be, for example, because the first batch of a new material synthesized yields very small single crystals or because flakes of samples of one to very few monolayers are desired. In order to enable rapid characterization of materials that may be carried out in parallel with improvements to their growth methodology, a method of device fabrication for very small samples has been devised to permit the characterization of novel materials as soon as a preliminary batch has been produced. A slight variation of this methodology is applicable to producing devices using exfoliated samples of two-dimensional materials such as graphene, hexagonal boron nitride (hBN), and transition metal dichalcogenides (TMDs), as well as multilayer heterostructures of such materials. Here we present detailed protocols for the experimental device fabrication of fragments and flakes of novel materials with micron-sized dimensions onto substrate and subsequent measurement in a commercial superconducting magnet, dry helium close-cycle cryostat magnetotransport system at temperatures down to 0.300 K and magnetic fields up to 12 T. PMID:26863449
Colloidal CdTe Nano Crystals Synthesis and Characterization
2008-09-01
Nibir Dhar, and Yuanping Chen Sensors and Electron Devices Directorate, ARL Gomatam Jaganathan and Sudhir Trivedi Brimrose Corporation...POLYTECHNIC INSTITUTE ATTN I BHAT TROY NJ 12180 10 BRIMROSE CORP OF AMERICA ATTN G JAGANATHAN (5 COPIES) ATTN S TRIVEDI (5 COPIES
ATP forms a stable complex with the essential histidine kinase WalK (YycG) domain
DOE Office of Scientific and Technical Information (OSTI.GOV)
Celikel, Reha; Veldore, Vidya Harini; Mathews, Irimpan
The histidine WalK (YycG) plays a crucial role in coordinating murein synthesis with cell division and the crystal structure of its ATP binding domain has been determined. Interestingly the bound ATP was not hydrolyzed during crystallization and remains intact in the crystal lattice. In Bacillus subtilis, the WalRK (YycFG) two-component system coordinates murein synthesis with cell division. It regulates the expression of autolysins that function in cell-wall remodeling and of proteins that modulate autolysin activity. The transcription factor WalR is activated upon phosphorylation by the histidine kinase WalK, a multi-domain homodimer. It autophosphorylates one of its histidine residues by transferringmore » the γ-phosphate from ATP bound to its ATP-binding domain. Here, the high-resolution crystal structure of the ATP-binding domain of WalK in complex with ATP is presented at 1.61 Å resolution. The bound ATP remains intact in the crystal lattice. It appears that the strong binding interactions and the nature of the binding pocket contribute to its stability. The triphosphate moiety of ATP wraps around an Mg{sup 2+} ion, providing three O atoms for coordination in a near-ideal octahedral geometry. The ATP molecule also makes strong interactions with the protein. In addition, there is a short contact between the exocyclic O3′ of the sugar ring and O2B of the β-phosphate, implying an internal hydrogen bond. The stability of the WalK–ATP complex in the crystal lattice suggests that such a complex may exist in vivo poised for initiation of signal transmission. This feature may therefore be part of the sensing mechanism by which the WalRK two-component system is so rapidly activated when cells encounter conditions conducive for growth.« less
Day, Robert W; Mankin, Max N; Lieber, Charles M
2016-04-13
One-dimensional (1D) structures offer unique opportunities for materials synthesis since crystal phases and morphologies that are difficult or impossible to achieve in macroscopic crystals can be synthesized as 1D nanowires (NWs). Recently, we demonstrated one such phenomenon unique to growth on a 1D substrate, termed Plateau-Rayleigh (P-R) crystal growth, where periodic shells develop along a NW core to form diameter-modulated NW homostructures with tunable morphologies. Here we report a novel extension of the P-R crystal growth concept with the synthesis of heterostructures in which Ge (Si) is deposited on Si (Ge) 1D cores to generate complex NW morphologies in 1, 2, or 3D. Depositing Ge on 50 nm Si cores with a constant GeH4 pressure yields a single set of periodic shells, while sequential variation of GeH4 pressure can yield multimodulated 1D NWs with two distinct sets of shell periodicities. P-R crystal growth on 30 nm cores also produces 2D loop structures, where Ge (Si) shells lie primarily on the outside (inside) of a highly curved Si (Ge) core. Systematic investigation of shell morphology as a function of growth time indicates that Ge shells grow in length along positive curvature Si cores faster than along straight Si cores by an order of magnitude. Short Ge deposition times reveal that shells develop on opposite sides of 50 and 100 nm Si cores to form straight 1D morphologies but that shells develop on the same side of 20 nm cores to produce 2D loop and 3D spring structures. These results suggest that strain mediates the formation of 2 and 3D morphologies by altering the NW's surface chemistry and that surface diffusion of heteroatoms on flexible freestanding 1D substrates can facilitate this strain-mediated mechanism.
NASA Astrophysics Data System (ADS)
Prabhu, Shobha R.; Jayarama, A.; Chandrasekharan, K.; Upadhyaya, V.; Ng, Seik Weng
2017-05-01
A new chalcone compound (2E)-3-(3-methylphenyl)-1-(4-nitrophenyl)prop-2-en-1-one (3MPNP) with molecular formula C16H13NO3 has been synthesized and crystallized by slow solvent evaporation technique. The Fourier transform infrared, Fourier transform Raman and nuclear magnetic resonance techniques were used for structural characterization. UV-visible absorption studies were carried out to study the transparency of the crystal in the visible region. Differential scanning calorimetry study shows thermal stability of crystals up to temperature 122 °C. Single crystal X-ray diffraction and powder X-ray diffraction techniques were used to study crystal structure and cell parameters. The Hirshfeld surface and 2-D fingerprint analysis were performed to study the nature of interactions and their quantitative contributions towards the crystal packing. The third order non-linear optical properties have been studied using single beam Z-scan technique and the results show that the material is a potential candidate for optical device applications such as optical limiters and optical switches.
NASA Astrophysics Data System (ADS)
Shanmugavadivu, T.; Dhandapani, M.; Naveen, S.; Lokanath, N. K.
2017-09-01
An organic NLO active material N,N‧-diphenylguanidinium picrate: diacetone solvate (C13H14N3+. C6H2N3O7-. 2C3H6O) (DPGPD) was synthesized and single crystals were grown by slow evaporation-solution growth technique at room temperature. DPGPD crystallizes in monoclinic crystal system with noncentrosymmetric space group, Cc confirmed by single crystal X-ray diffraction analysis. The presence of various functional groups was identified from FT-IR spectral analysis and the proton transfer during the formation of compound was confirmed by NMR spectroscopic techniques. The thermal stability was investigated by TG/DTA analyses. Optical transmittance was measured by UV-Vis-NIR spectroscopy and band gap energy was calculated. Photoluminescence spectrum was used to explore its applicability towards laser diodes. Dielectric property of the material was ascertained at different temperatures and it is found that the grown crystal has higher dielectric constant in low frequencies. Photoconductivity study revealed that DPGPD exhibits positive photoconductivity. SHG property was found to be 0.6 times higher than that of KDP.
NASA Astrophysics Data System (ADS)
Subhashini, R.; Arjunan, S.
2018-05-01
An exceedingly apparent nonlinear semiorganic optical crystals of bis(L-asparaginato)zinc(II) [BLAZ], was synthesized by a traditional slow evaporation solution growth technique. The cell parameters were estimated from single crystal X-ray diffraction analysis. Spectroscopic study substantiates the presence of functional groups. The UV spectrum shows the sustenance of wide transparency window and several optical constants, such as extinction coefficient (K), refractive index, optical conductivity and electric susceptibility with real and imaginary parts of dielectric constant were calculated using the transmittance data. The fluorescence emission spectrum of the crystal pronounces red emission. The laser induced surface damage threshold of the crystal was measured using Nd:YAG laser. The output intensity of second harmonic generation was estimated using the Kurtz and Perry powder method. The hardness stability was investigated by Vickers microhardness test. The decomposition and thermal stability of the compound were scrutinized by TGA-DSC studies. Dielectric studies were carried out to anatomize the electrical properties of the crystal. SEM analysis reveals the existence of minute crystallites on the growth surface.
Chondroitin sulfate template-mediated biomimetic synthesis of nano-flake hydroxyapatite
NASA Astrophysics Data System (ADS)
He, Dan; Xiao, Xiufeng; Liu, Fang; Liu, Rongfang
2008-11-01
By Ca(NO 3) 2·4H 2O and (NH 4) 3PO 4·3H 2O as reagents and chondroitin sulfate (ChS) as a template, nano-flake hydroxyapatite (HA) is synthesized using a biomimetic method according to the biomineralization theory. HA crystals obtained are characterized in crystalline phase, microstructure, chemical composition and morphology by X-ray diffraction (XRD), Fourier transform infrared spectroscope (FTIR), transmission electron microscopy (TEM) and elemental analysis respectively. UV-vis spectrum is adopted to investigate interactions between functional groups ChS and HA. The results show that HA crystal nucleation and growth take place in chemical interactions between HA crystals and ChS as a template. And elemental analysis indicates that obtained HA contains a small amount of ChS. Furthermore, ChS concentration significantly affects the morphology of HA crystals. Staple-fiber-like HA crystals can be obtained at a low concentration in ChS, and flake-like HA crystals synthesized at a high concentration (≥0.5 wt.%) of ChS as a template.
NASA Astrophysics Data System (ADS)
Liu, Jinglin; Ouyang, Liangqi; Wu, Jinghang; Kuo, Chin-Chen; Wei, Bin; Martin, David
2013-03-01
Conjugated polymers are widely used in organic solar cells, biomedical devices, and chemical sensors. Both chemical and electrochemical methods have been developed for preparing conducting polymers, but the extent of crystalline order is usually modest. Here we synthesized highly-ordered brominated (3,4-ethylenedioxythiophene) (EDOT-Br) monomer crystals via electrochemical methods. The kinetics of the synthesis was studied with a Quartz Crystal Microbalance (QCM) and Cyclic Voltammetry (CV). The chemical structure of the EDOT-Br monomer has been confirmed by Nuclear Magnetic Resonance (NMR), Ultraviolet-Visible Spectroscopy (UV-Vis), Fourier Transform Infrared Spectroscopy (FTIR), and Mass Spectrometry (MS). The EDOT-Br monomer crystals can be in-situ polymerized into highly ordered PEDOT conjugated polymer crystals by annealing at temperatures below the EDOT-Br melting point. The crystalline structure was studied by optical microscopy, electron microscopy and X-Ray analysis. The conductivity and electrochemical properties of both the EDOT-Br monomer and corresponding PEDOT polymer crystals were examined with electrochemical impedance spectroscopy (EIS) and CV. This work was supported by NSF, DMR- 1103027.
Magnetic structure and phase stability of the van der Waals bonded ferromagnet Fe 3-xGeTe 2
May, Andrew F.; Calder, Stuart A.; Cantoni, Claudia; ...
2016-01-08
The magnetic structure and phase diagram of the layered ferromagnetic compound Fe 3GeTe 2 have been investigated by a combination of synthesis, x-ray and neutron diffraction, high-resolution microscopy, and magnetization measurements. Single crystals were synthesized by self-flux reactions, and single-crystal neutron diffraction finds ferromagnetic order with moments of 1.11(5)μ B/Fe aligned along the c axis at 4 K. These flux-grown crystals have a lower Curie temperature T c ≈ 150 K than crystals previously grown by vapor transport (T c = 220 K). The difference is a reduced Fe content in the flux-grown crystals, as illustrated by the behavior observedmore » in a series of polycrystalline samples. As Fe content decreases, so do the Curie temperature, magnetic anisotropy, and net magnetization. Furthermore, Hall-effect and thermoelectric measurements on flux-grown crystals suggest that multiple carrier types contribute to electrical transport in Fe 3–xGeTe 2 and structurally similar Ni 3–xGeTe 2.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Conner, Benjamin S.; Susner, Michael A.; UES Inc., Beavercreek, OH
Advances in crystal growth have allowed for synthesis of large single crystals of Nd 1+ϵFe 4B 4, a well-known phase with a modulated structure. As a result we are able to report heat capacity and resistivity measurements on a single crystal Nd 1+ϵFe 4B 4 sample with a distribution of ϵ that skews towards the solubility limit of Nd near ϵ ≈ 17. Heat capacity measurements show evidence of crystal field splitting at temperatures higher than the long-range ferromagnetic Curie temperature. Heat capacity, resistivity, and magnetization measurements all confirm a Curie temperature of 7 K which is lower than previouslymore » reported values in the Nd 1+ϵFe 4B 4 system. Here, we also perform measurements of the angular dependence of the magnetization and discover behavior associated with the magnetic anisotropy that is inconsistent with the simple description previously proposed.« less
Nanowires and Nanostructures That Grow Like Polymer Molecules
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shaw, Santosh; Cademartiri, Ludovico
Unique properties (e.g., rubber elasticity, viscoelasticity, folding, reptation) determine the utility of polymer molecules and derive from their morphology (i.e., one-dimensional connectivity and large aspect ratios) and flexibility. Crystals do not display similar properties because they have smaller aspect ratios, they are rigid, and they are often too large and heavy to be colloidally stable. We argue, with the support of recent experimental studies, that these limitations are not fundamental and that they might be overcome by growth processes that mimic polymerization. Furthermore, we (i) discuss the similarities between crystallization and polymerization, (ii) critically review the existing experimental evidence ofmore » polymer-like growth kinetic and behavior in crystals and nanostructures, and (iii) propose heuristic guidelines for the synthesis of “polymer-like” crystals and assemblies. Understanding these anisotropic materials at the boundary between molecules and solids will determine whether we can confer the unique properties of polymer molecules to crystals, expanding them with topology, dynamics, and information and not just tuning them with size.« less
Prakash, M; Geetha, D; Lydia Caroline, M
2013-04-15
Single crystals of L-phenylalanine-benzoic acid (LPBA) were successfully grown from aqueous solution by solvent evaporation technique. Purity of the crystals was increased by the method of recrystallization. The XRD analysis confirms that the crystal belongs to the monoclinic system with noncentrosymmetric space group P21. The chemical structure of compound was established by FT-NMR technique. The presence of functional groups was estimated qualitatively by Fourier transform infrared analysis (FT-IR). Ultraviolet-visible spectral analyses showed that the crystal has low UV cut-off at 254 nm combined with very good transparency of 90% in a wide range. The optical band gap was estimated to be 6.91 eV. Thermal behavior has been studied with TGA/DTA analyses. The existence of second harmonic generation (SHG) efficiency was found to be 0.56 times the value of KDP. The dielectric behavior of the sample was also studied for the first time. Copyright © 2013 Elsevier B.V. All rights reserved.
Pressure-induced nano-crystallization of silicate garnets from glass
Irifune, T.; Kawakami, K.; Arimoto, T.; Ohfuji, H.; Kunimoto, T.; Shinmei, T.
2016-01-01
Transparent ceramics are important for scientific and industrial applications because of the superior optical and mechanical properties. It has been suggested that optical transparency and mechanical strength are substantially enhanced if transparent ceramics with nano-crystals are available. However, synthesis of the highly transparent nano-crystalline ceramics has been difficult using conventional sintering techniques at relatively low pressures. Here we show direct conversion from bulk glass starting material in mutianvil high-pressure apparatus leads to pore-free nano-polycrystalline silicate garnet at pressures above ∼10 GPa in a limited temperature range around 1,400 °C. The synthesized nano-polycrystalline garnet is optically as transparent as the single crystal for almost the entire visible light range and harder than the single crystal by ∼30%. The ultrahigh-pressure conversion technique should provide novel functional ceramics having various crystal structures, including those of high-pressure phases, as well as ideal specimens for some mineral physics applications. PMID:27924866
Electrochemical growth of linear conducting crystals in microgravity
NASA Technical Reports Server (NTRS)
Cronise, Raymond J., IV
1988-01-01
Much attention has been given to the synthesis of linear conducting materials. These inorganic, organic, and polymeric materials have some very interesting electrical and optical properties, including low temperature superconductivity. Because of the anisotropic nature of these compounds, impurities and defects strongly influences the unique physical properties of such crystals. Investigations have demonstrated that electrochemical growth has provided the most reproducible and purest crystals. Space, specifically microgravity, eliminates phenomena such as buoyancy driven convection, and could permit formation of crystals many times purer than the ones grown to date. Several different linear conductors were flown on Get Away Special G-007 on board the Space Shuttle Columbia, STS 61-C, the first of a series of Project Explorer payloads. These compounds were grown by electrochemical methods, and the growth was monitored by photographs taken throughout the mission. Due to some thermal problems, no crystals of appreciable size were grown. The experimental results will be incorporated into improvements for the next 2 missions of Project Explorer. The results and conclusions of the first mission are discussed.
NASA Astrophysics Data System (ADS)
Bertinotti, A.; Viallet, V.; Colson, D.; Marucco, J.-F.; Hammann, J.; Forget, A.; Le Bras, G.
1996-02-01
Single crystals of HgBa2CuO4+δ of submillimetric sizes were grown with the same one step, low pressure, gold amalgamation technique used to obtain single crystals of HgBa2Ca2Cu3O8+δ. Remarkable superconducting properties are displayed by the samples which are optimally doped as grown. The sharpness of the transition profiles of the magnetic susceptibility, its anisotropy dependence and the volume fraction exhibiting the Meissner effect exceed the values obtained with the best crystal samples of Hg-1223. X-rays show that no substitutional defects have been found in the mercury plane, in particular no mixed occupancy of copper at the mercury site. The interstitial oxygen content at (1/2, 1/2, 0) δ = 0.066+/-0.008 is about one third that observed in optimally doped Hg-1223, resulting in an identical doping level per CuO2 plane in both compounds.
Conner, Benjamin S.; Susner, Michael A.; UES Inc., Beavercreek, OH; ...
2017-04-04
Advances in crystal growth have allowed for synthesis of large single crystals of Nd 1+ϵFe 4B 4, a well-known phase with a modulated structure. As a result we are able to report heat capacity and resistivity measurements on a single crystal Nd 1+ϵFe 4B 4 sample with a distribution of ϵ that skews towards the solubility limit of Nd near ϵ ≈ 17. Heat capacity measurements show evidence of crystal field splitting at temperatures higher than the long-range ferromagnetic Curie temperature. Heat capacity, resistivity, and magnetization measurements all confirm a Curie temperature of 7 K which is lower than previouslymore » reported values in the Nd 1+ϵFe 4B 4 system. Here, we also perform measurements of the angular dependence of the magnetization and discover behavior associated with the magnetic anisotropy that is inconsistent with the simple description previously proposed.« less
NASA Astrophysics Data System (ADS)
Sudharsana, N.; Krishnakumar, V.; Nagalakshmi, R.
2016-10-01
A 3-methoxy-4-hydroxybenzaldehyde-2,4,6-trinitrophenol (mhba-tnp) cocrystal was grown by the slow evaporation solution growth technique using ethanol as a solvent. As-grown crystals were characterized by single crystal X-ray diffraction (XRD) study and crystallized with a centrosymmetric space group. Optical properties of the grown crystal have been studied by Ultraviolet-Visible (UV-Vis) absorption spectra in the range from 200 to 800nm and the band gap energy of the crystal was obtained as 2.8eV. Fourier transform infrared (FTIR) and micro Raman spectral analyses have been carried out to confirm the functional groups present in the title compound. Differential scanning calorimetry (DSC) and polarized light thermomicroscopy (PLTM) analyses were carried out to find the melting point. In addition, the optimized geometric parameters and the molecular orbitals were calculated using density functional theory (DFT) with the help of the Gaussian 03W software.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cordeiro, Artur T.; Feliciano, Patricia R.; Nonato, M. Cristina, E-mail: cristy@fcfrp.usp.br
2006-10-01
Dihydroorotate dehydrogenase from L. major has been crystallized by the vapour-diffusion technique using lithium sulfate as the precipitant agent. A complete data set from a native crystal has been collected to 2.0 Å resolution using an in-house rotating-anode generator. Dihydroorotate dehydrogenases (DHODHs) are flavin-containing enzymes that catalyze the oxidation of l-dihydroorotate to orotate, the fourth step in the de novo pyrimidine nucleotide synthesis pathway. In this study, DHODH from Leishmania major has been crystallized by the vapour-diffusion technique using lithium sulfate as the precipitating agent. The crystals belong to space group P6{sub 1}, with unit-cell parameters a = 143.7, cmore » = 69.8 Å. X-ray diffraction data were collected to 2.0 Å resolution using an in-house rotating-anode generator. Analysis of the solvent content and the self-rotation function indicate the presence of two molecules in the asymmetric unit. The structure has been solved by the molecular-replacement technique.« less
Synthesis, structural, spectroscopic and optical studies of charge transfer complex salts.
Manikandan, Maruthappan; Mahalingam, Thaiyan; Hayakawa, Yasuhiro; Ravi, Ganesan
2013-01-15
New charge transfer molecular complex adducts of picric acid (C6H3N3O7) with triethylamine (C6H15N) and dimethylformamide (HCON(CH3)2) were synthesized successfully for the first time. Chemical composition and stoichiometry of the synthesized complex salts were verified by CHN elemental analysis. Solubility of the complex salts have been determined by gravimetric method and single crystals of two new salts were grown by low temperature solution growth technique. Crystal system, crystalline nature and cell parameters of the grown crystals were determined by single crystal X-ray diffraction (SXRD) and powder X-ray diffraction (PXRD) analyses. The formations of the charge-transfer complex, functional groups and the modes of vibrations have been confirmed by Fourier transform infrared (FTIR) spectroscopy. In order to know the linear and nonlinear optical suitability for device fabrication, UV-Vis (UV) spectral analysis and relative second harmonic generation (SHG) efficiency test were performed for the grown crystals. Copyright © 2012 Elsevier B.V. All rights reserved.
Epitaxy: Programmable Atom Equivalents Versus Atoms
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Mary X.; Seo, Soyoung E.; Gabrys, Paul A.
The programmability of DNA makes it an attractive structure-directing ligand for the assembly of nanoparticle superlattices in a manner that mimics many aspects of atomic crystallization. However, the synthesis of multilayer single crystals of defined size remains a challenge. Though previous studies considered lattice mismatch as the major limiting factor for multilayer assembly, thin film growth depends on many interlinked variables. Here, a more comprehensive approach is taken to study fundamental elements, such as the growth temperature and the thermodynamics of interfacial energetics, to achieve epitaxial growth of nanoparticle thin films. Under optimized equilibrium conditions, single crystal, multilayer thin filmsmore » can be synthesized over 500 × 500 μm2 areas on lithographically patterned templates. Importantly, these superlattices follow the same patterns of crystal growth demonstrated in thin film atomic deposition, allowing for these processes to be understood in the context of well-studied atomic epitaxy, and potentially enabling a nanoscale model to study fundamental crystallization processes.« less
NASA Astrophysics Data System (ADS)
Arshad, Suhana; Pillai, Renjith Raveendran; Zainuri, Dian Alwani; Khalib, Nuridayanti Che; Razak, Ibrahim Abdul; Armaković, Stevan; Armaković, Sanja J.
2017-09-01
In the present study, single crystals of E)-3-(3,5-dichlorophenyl)-1-(4-fluorophenyl)prop-2-en-1-one, were prepared and structurally characterized by single crystal X-ray diffraction analysis. The molecular structure crystallized in monoclinic crystal system with P21/c space group. Sensitivity of the title molecule towards electrophilic attacks has been examined by calculations of average localized ionization energies (ALIE) and their mapping to electron density surface. Further determination of atoms that could be important reactive centres has been performed by calculations of Fukui functions. Sensitivity of title molecule towards autoxidation and hydrolysis mechanisms has been assessed by calculations of bond dissociation energies and radial distribution functions (RDF), respectively. Also, in order to explore possible binding mode of the title compound towards Dihydrofolate reductase enzyme, we have utilized in silico molecular docking to explore possible binding modes of the title compound with the DHFR enzyme.
Converting ceria polyhedral nanoparticles into single-crystal nanospheres.
Feng, Xiangdong; Sayle, Dean C; Wang, Zhong Lin; Paras, M Sharon; Santora, Brian; Sutorik, Anthony C; Sayle, Thi X T; Yang, Yi; Ding, Yong; Wang, Xudong; Her, Yie-Shein
2006-06-09
Ceria nanoparticles are one of the key abrasive materials for chemical-mechanical planarization of advanced integrated circuits. However, ceria nanoparticles synthesized by existing techniques are irregularly faceted, and they scratch the silicon wafers and increase defect concentrations. We developed an approach for large-scale synthesis of single-crystal ceria nanospheres that can reduce the polishing defects by 80% and increase the silica removal rate by 50%, facilitating precise and reliable mass-manufacturing of chips for nanoelectronics. We doped the ceria system with titanium, using flame temperatures that facilitate crystallization of the ceria yet retain the titania in a molten state. In conjunction with molecular dynamics simulation, we show that under these conditions, the inner ceria core evolves in a single-crystal spherical shape without faceting, because throughout the crystallization it is completely encapsulated by a molten 1- to 2-nanometer shell of titania that, in liquid state, minimizes the surface energy. The principle demonstrated here could be applied to other oxide systems.
Synthesis and Exfoliation of Discotic Zirconium Phosphates to Obtain Colloidal Liquid Crystals
Yu, Yi-Hsien; Wang, Xuezhen; Shinde, Abhijeet; Cheng, Zhengdong
2016-01-01
Due to their abundance in natural clay and potential applications in advanced materials, discotic nanoparticles are of interest to scientists and engineers. Growth of such anisotropic nanocrystals through a simple chemical method is a challenging task. In this study, we fabricate discotic nanodisks of zirconium phosphate [Zr(HPO4)2·H2O] as a model material using hydrothermal, reflux and microwave-assisted methods. Growth of crystals is controlled by duration time, temperature, and concentration of reacting species. The novelty of the adopted methods is that discotic crystals of size ranging from hundred nanometers to few micrometers can be obtained while keeping the polydispersity well within control. The layered discotic crystals are converted to monolayers by exfoliation with tetra-(n)-butyl ammonium hydroxide [(C4H9)4NOH, TBAOH]. Exfoliated disks show isotropic and nematic liquid crystal phases. Size and polydispersity of disk suspensions is highly important in deciding their phase behavior. PMID:27284765
Synthesis, structural, spectroscopic and optical studies of charge transfer complex salts
NASA Astrophysics Data System (ADS)
Manikandan, Maruthappan; Mahalingam, Thaiyan; Hayakawa, Yasuhiro; Ravi, Ganesan
2013-01-01
New charge transfer molecular complex adducts of picric acid (C6H3N3O7) with triethylamine (C6H15N) and dimethylformamide (HCON(CH3)2) were synthesized successfully for the first time. Chemical composition and stoichiometry of the synthesized complex salts were verified by CHN elemental analysis. Solubility of the complex salts have been determined by gravimetric method and single crystals of two new salts were grown by low temperature solution growth technique. Crystal system, crystalline nature and cell parameters of the grown crystals were determined by single crystal X-ray diffraction (SXRD) and powder X-ray diffraction (PXRD) analyses. The formations of the charge-transfer complex, functional groups and the modes of vibrations have been confirmed by Fourier transform infrared (FTIR) spectroscopy. In order to know the linear and nonlinear optical suitability for device fabrication, UV-Vis (UV) spectral analysis and relative second harmonic generation (SHG) efficiency test were performed for the grown crystals.
NASA Astrophysics Data System (ADS)
Nagapandiselvi, P.; Baby, C.; Gopalakrishnan, R.
2015-09-01
A new semiorganic compound namely, 2-carboxy pyridinium dihydrogen phosphate (2CPDP) was synthesised and grown as single crystals by slow evaporation solution growth technique. Single crystal XRD showed that 2CPDP belongs to monoclinic crystal system with space group P21/n. The molecular structure was further confirmed by modern spectroscopic techniques like FT-NMR (1H, 13C &31P), FT-IR, UV-Vis-NIR and Fluorescence. The UV-Vis-NIR analysis revealed suitability of the crystal for nonlinear optical applications. The photo active nature of the material is established from fluorescence studies. TG-DSC analysis showed that 2CPDP was thermally stable up to 170 °C. The dependence of dielectric properties on frequency and temperature were also studied. Nonlinear optical absorption determined from open aperture Z-Scan analysis by employing picosecond Nd-YAG laser, revealed that 2CPDP can serve as a promising candidate for optical limiting applications.
Zn3Sb4O6F6: Hydrothermal synthesis, crystal structure and nonlinear optical properties
NASA Astrophysics Data System (ADS)
Ali, Sk Imran; Zhang, Weiguo; Halasyamani, P. Shiv; Johnsson, Mats
2017-12-01
Zn3Sb4O6F6 has been synthesized hydrothermally at 230 °C. The crystal structure was determined from single crystal X-ray diffraction data. It crystallizes in the cubic non-centrosymmetric space group I-43m with the unit cell parameter a = 8.1291(4) Å and is isostructural with M3Sb4O6F6 (M = Co, Ni). The new compound is the first oxofluoride containing Zn2+ and a p-element cation with a stereochemically active lone pair. The crystal structure is made up by [ZnO2F4] octahedra forming a network via corner sharing at F-atoms and [SbO3] trigonal pyramids that form [Sb4O6] cages that connect via the O-atoms to the Zn-atoms. Powder second-harmonic generation (SHG) measurements using 1064 nm radiation on Zn3Sb4O6F6 indicate an SHG intensity of approximately 40 × α-SiO2.
Van Viet, Pham; Sang, Truong Tan; Bich, Nguyen Ho Ngoc; Thi, Cao Minh
2018-05-01
Silver nanoparticles (Ag NPs) were synthesized by an improved green synthesis method via a photo-reduction process using low-power UV light in the presence of poly (vinyl pyrrolidone) (PVP) as the surface stabilizer. The effective synthesis process was achieved by optimized synthesis parameters such as C 2 H 5 OH: H 2 O ratio, AgNO 3 : PVP ratio, pH value, and reducing time. The formation of Ag NPs was identified by Ultraviolet-visible (UV-vis) absorption spectra, X-ray diffraction pattern (XRD) and Fourier transform infrared spectroscopy (FTIR) spectra. Ag NPs were crystallized according to (111), (200), and (220) planes of the face-centered cubic. The transmission electron microscopy (TEM) image showed that the morphology of Ag NPs was uniform spherical with the average particle size of 16 ± 2 nm. The results of XRD pattern, TEM image, and dynamic light scattering (DLS) analysis proved that Ag crystals with uniform size were formed after the reduction process. The mechanism of the formation of Ag NPs was proposed and confirmed by FTIR spectra. The antibacterial activity of Ag NPs against Escherichia coli (E. coli) was tested and approximately 100% of E. coli was eliminated by Ag NPs 35 ppm. In the future, this study can become a new process for the application of Ag NPs as an antibiotic in the industrial scale. Copyright © 2018 Elsevier B.V. All rights reserved.
Magnetotactic Bacteria as Potential Sources of Bioproducts
Araujo, Ana Carolina V.; Abreu, Fernanda; Silva, Karen Tavares; Bazylinski, Dennis A.; Lins, Ulysses
2015-01-01
Magnetotactic bacteria (MTB) produce intracellular organelles called magnetosomes which are magnetic nanoparticles composed of magnetite (Fe3O4) or greigite (Fe3S4) enveloped by a lipid bilayer. The synthesis of a magnetosome is through a genetically controlled process in which the bacterium has control over the composition, direction of crystal growth, and the size and shape of the mineral crystal. As a result of this control, magnetosomes have narrow and uniform size ranges, relatively specific magnetic and crystalline properties, and an enveloping biological membrane. These features are not observed in magnetic particles produced abiotically and thus magnetosomes are of great interest in biotechnology. Most currently described MTB have been isolated from saline or brackish environments and the availability of their genomes has contributed to a better understanding and culturing of these fastidious microorganisms. Moreover, genome sequences have allowed researchers to study genes related to magnetosome production for the synthesis of magnetic particles for use in future commercial and medical applications. Here, we review the current information on the biology of MTB and apply, for the first time, a genome mining strategy on these microorganisms to search for secondary metabolite synthesis genes. More specifically, we discovered that the genome of the cultured MTB Magnetovibrio blakemorei, among other MTB, contains several metabolic pathways for the synthesis of secondary metabolites and other compounds, thereby raising the possibility of the co-production of new bioactive molecules along with magnetosomes by this species. PMID:25603340
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, L.; Duan, R. F.; Huang, F.
We report the synthesis of CH{sub 3}NH{sub 3}Pb(Br{sub 3−y}X{sub y}) (X=Cl and I) single crystals via a stepwise temperature control approach. High-quality CH{sub 3}NH{sub 3}Pb(Br{sub 3−y}X{sub y}) crystals with a tunable bandgap from 1.92 eV to 2.53 eV have been prepared successfully in this way. And further experiments revealed the influence of halogen content and preparation temperature on the structural and optical properties of these crystals. It is observed that chlorine can lower the critical nucleation energy, which results in crystallizing at lower temperature with the chlorine content increasing, while the nucleation energy increases slowly with increasing iodine content. Moreover,more » in contrast to Frank–van der Merwe growth with low heating rate, high heating rate leads to a mass of small size single crystals and Stranski-Krastanov growth. The single crystals with tunable band gap and impressive characteristics enable us to fabricate high performance photodetectors for different wavelengths.« less
Crystal growth of LiIn 1–xGa xSe 2 crystals
Wiggins, Brenden; Bell, Joseph; Woodward, Jonathan; ...
2016-10-22
Lithium containing chalcogenide single crystals have become very promising materials for photonics and radiation detection. Detection applications include nuclear nonproliferation, neutron science, and stellar investigations for the search of life. Synthesis and single crystal growth methods for lithium containing chalcogenide, specifically LiIn 1-xGa xSe 2, single crystals are discussed. This study elucidates the possibility of improving neutron detection by reducing the indium capture contribution; with the incorporation of the lithium-6 isotope, gallium substitution may overcome the neutron detection efficiency limitation of 6LiInSe 2 due to appreciable neutron capture by the indium-115 isotope. As a figure of merit, the ternary parentmore » compounds 6LiInSe 2 and 6LiGaSe 2 were included in this study. Quality crystals can be obtained utilizing the vertical Bridgman method to produce quaternary compounds with tunable optical properties. Here, quaternary crystals of varying quality depending on the gallium concentration, approximately 5 x 5 x 2 mm 3 or larger in volume, were harvested, analyzed and revealed tunable absorption characteristics between 2.8-3.4 eV.« less