Synthesis, characterization and biological activities of semicarbazones and their copper complexes.
Venkatachalam, Taracad K; Bernhardt, Paul V; Noble, Chris J; Fletcher, Nicholas; Pierens, Gregory K; Thurecht, Kris J; Reutens, David C
2016-09-01
Substituted semicarbazones/thiosemicarbazones and their copper complexes have been prepared and several single crystal structures examined. The copper complexes of these semicarbazone/thiosemicarbazones were prepared and several crystal structures examined. The single crystal X-ray structure of the pyridyl-substituted semicarbazone showed two types of copper complexes, a monomer and a dimer. We also found that the p-nitrophenyl semicarbazone formed a conventional 'magic lantern' acetate-bridged dimer. Electron Paramagnetic Resonance (EPR) of several of the copper complexes was consistent with the results of single crystal X-ray crystallography. The EPR spectra of the p-nitrophenyl semicarbazone copper complex in dimethylsulfoxide (DMSO) showed the presence of two species, confirming the structural information. Since thiosemicarbazones and semicarbazones have been reported to exhibit anticancer activity, we examined the anticancer activity of several of the derivatives reported in the present study and interestingly only the thiosemicarbazone showed activity while the semicarbazones were not active indicating that introduction of sulphur atom alters the biological profile of these thiosemicarbazones. Copyright © 2016 Elsevier Inc. All rights reserved.
An Efficient Procedure for Microscale Synthesis of Semicarbazones
ERIC Educational Resources Information Center
Pandita, Sangeeta; Goyal, Samta; Passey, Sarita
2004-01-01
A successful microscale fusion of semicarbazones, or transformation of carbonyl compounds into semicarbazones is performed through an effective grinding system. The donning of protective attire is advised to avoid the hazardous effects of semicarbazide hydrochloride during the fusion process.
NASA Astrophysics Data System (ADS)
Priya, V. Shanmuga; Rani, C. Uma; Velrani, S.
The synergistic effect of halide ions such as KCl, KBr and KI on the corrosion inhibition of mild steel in 1 N sulphuric acid by γ-2,c-6-diphenyl-t-3-methyl piperdin-4-ones with semicarbazone (01SC), γ-2,c-6-diphenyl-N-methyl-t-3-ethyl piperdin-4-ones with semicarbazone (02SC) and 2,6-diphenyl-t-3-ethyl piperdin-4-one with semicarbazone (03SC) has been examined by weight loss method, potentiodynamic polarization measurements and electrochemical AC impedance spectroscopy. Results show that substituted γ-2,c-6-diphenyl piperidin-4-ones with semicarbazone act as the perfect corrosion inhibitors and their inhibition efficiency increases with the addition of halide ions. The inhibitor (01SC) shows the inhibition efficiency of 78.28% (0.2mM) by using a weight loss method. The influence of I-, Br- and Cl- anions raises the inhibition efficiency of the substituted 2,6-diphenyl piperidin-4-ones with semicarbazone due to the synergistic effect. The synergistic effect of halide ions was formed in the following order: KI > KBr > KCl.
Oter, Ozlem; Ertekin, Kadriye; Kirilmis, Cumhur; Koca, Murat
2007-02-19
In this work photoluminescent properties of highly Cu(2+) selective organic fluoroionophore, semicarbazone derivative; bis(naphtho[2,1-b]furan-2-yl)methanone semicarbazone (BNF) was investigated in different solvents (dichloromethane, tetrahydrofuran, toluene and ethanol) and in polymer matrices of polyvinylchloride (PVC) and ethyl cellulose (EC) by absorption and emission spectrometry. The BNF derivative displayed enhanced fluorescence emission quantum yield, Q(f)=6.1 x 10(-2) and molar extinction coefficient, epsilon=29,000+/-65 cm(-1)M(-1) in immobilized PVC matrix, compared to 2.6 x 10(-3) and 24,573+/-115 in ethanol solution. The offered sensor exhibited remarkable fluorescence intensity quenching upon exposure to Cu(2+) ions at pH 4.0 in the concentration range of 1.0 x 10(-9) to 3.0 x 10(-4)M [Cu(2+)] while the effects of the responding ions (Ca(2+), Hg(+), Pb(2+), Al(3+), Cr(3+), Mn(2+), Mg(2+), Sn(2+), Cd(2+), Co(2+) and Ni(2+)) were less pronounced.
Jakusová, Klaudia; Donovalová, Jana; Cigáň, Marek; Gáplovský, Martin; Garaj, Vladimír; Gáplovský, Anton
2014-04-05
The anion induced tautomerism of isatin-3-4-phenyl(semicarbazone) derivatives is studied herein. The interaction of F(-), AcO(-), H2PO4(-), Br(-) or HSO4(-) anions with E and Z isomers of isatin-3-4-phenyl(semicarbazone) and N-methylisatin-3-4-phenyl(semicarbazone) as sensors influences the tautomeric equilibrium of these sensors in the liquid phase. This tautomeric equilibrium is affected by (1) the inter- and intra-molecular interactions' modulation of isatinphenylsemicarbazone molecules due to the anion induced change in the solvation shell of receptor molecules and (2) the sensor-anion interaction with the urea hydrogens. The acid-base properties of anions and the difference in sensor structure influence the equilibrium ratio of the individual tautomeric forms. Here, the tautomeric equilibrium changes were indicated by "naked-eye" experiment, UV-VIS spectral and (1)H NMR titration, resulting in confirmation that appropriate selection of experimental conditions leads to a high degree of sensor selectivity for some investigated anions. Sensors' E and Z isomers differ in sensitivity, selectivity and sensing mechanism. Detection of F(-) or CH3COO(-) anions at high weakly basic anions' excess is possible. Copyright © 2014 Elsevier B.V. All rights reserved.
Tripathi, Rati K P; M Sasi, Vishnu; Gupta, Sukesh K; Krishnamurthy, Sairam; Ayyannan, Senthil R
2018-12-01
A series of 2-amino-5-nitrothiazole derived semicarbazones were designed, synthesised and investigated for MAO and ChE inhibition properties. Most of the compounds showed preferential inhibition towards MAO-B. Compound 4, (1-(1-(4-Bromophenyl)ethylidene)-4-(5-nitrothiazol-2-yl)semicarbazide) emerged as lead candidate (IC 50 = 0.212 µM, SI = 331.04) against MAO-B; whereas compounds 21 1-(5-Bromo-2-oxoindolin-3-ylidene)-4-(5-nitrothiazol-2-yl)semicarbazide (IC 50 = 0.264 µM) and 17 1-((4-Chlorophenyl) (phenyl)methylene)-4-(5-nitrothiazol-2-yl)semicarbazide (IC 50 = 0.024 µM) emerged as lead AChE and BuChE inhibitors respectively; with activity of compound 21 almost equivalent to tacrine. Kinetic studies indicated that compound 4 exhibited competitive and reversible MAO-B inhibition while compounds 21 and 17 showed mixed-type of AChE and BuChE inhibition respectively. Docking studies revealed that these compounds were well-accommodated within MAO-B and ChE active sites through stable hydrogen bonding and/or hydrophobic interactions. This study revealed the requirement of small heteroaryl ring at amino terminal of semicarbazone template for preferential inhibition and selectivity towards MAO-B. Our results suggest that 5-nitrothiazole derived semicarbazones could be further exploited for its multi-targeted role in development of anti-neurodegenerative agents. [Formula: see text] A library of 2-amino-5-nitrothiazole derived semicarbazones (4-21) was designed, synthesised and evaluated for in vitro MAO and ChE inhibitory activity. Compounds 4, 21 and 17 (shown) have emerged as lead MAO-B (IC 50 :0.212 µM, competitive and reversible), AChE (IC 50 :0.264 µM, mixed and reversible) and BuChE (IC 50 :0.024 µM, mixed and reversible) inhibitor respectively. SAR studies disclosed several structural aspects significant for potency and selectivity and indicated the role of size of aryl binding site in potency and selectivity towards MAO-B. Antioxidant activity and neurotoxicity screening results further suggested their multifunctional potential for the therapy of neurodegenerative diseases.
NASA Astrophysics Data System (ADS)
Chandra, Sulekh; Kumar, Anil
2007-12-01
Co(II), Ni(II) and Cu(II) complexes were synthesized with thiosemicarbazone (L 1) and semicarbazone (L 2) derived from 2-acetyl furan. These complexes were characterized by elemental analysis, molar conductance, magnetic moment, mass, IR, electronic and EPR spectral studies. The molar conductance measurement of the complexes in DMSO corresponds to non-electrolytic nature. All the complexes are of high-spin type. On the basis of different spectral studies six coordinated geometry may be assigned for all the complexes except Co(L) 2(SO 4) and Cu(L) 2(SO 4) [where L = L 1 and L 2] which are of five coordinated square pyramidal geometry.
Four transition metal complexes with a semicarbazone ligand bearing pyrazine unit
NASA Astrophysics Data System (ADS)
Chen, Hong; Ma, Xiu-qin; Lv, Yan-yun; Jia, Lei; Xu, Jun; Wang, Yuan; Ge, Zhi-jun
2016-04-01
Four new complexes based on L (where L = 3-ethyl-2-acetylpyrazine semicarbazone), namely [CoL2]Cl2·0.5H2O (1), [CoL2](NO3)2 (2), [CdL(H2O)2(NO3)](NO3)·H2O (3) and [CuL(CH3OH)Cl2]·[CuLCl2] (4) have been synthesized and characterized by X-ray diffraction analyses. The results show that the semicarbazone acts as a tridentate neutral ligand in all complexes. Each of complex 1 and 2 reveals a distorted octahedral geometry around the metal ion provided by two units of the ligand, while the ratio of the ligand and metal is 1:1 in complexes 3 and 4. The effect of complexes 1-4 on cell proliferation, apoptosis of human pancreatic cancer (Patu8988), human gastric cancer (SGC7901) and human hepatic cancer (SMMC7721) cell lines have been detected by MTT assay, Annexin V/PI double staining flow cytometry and TUNEL assay. The results show that complexes 1-4 can inhibit cell proliferation of Patu8988, SGC7901 and SMMC7721 cells, significantly higher than the effect of the ligand. However, the complex 4 reveals higher apoptosis rate, and displays up-regulated expression level of caspase 3, detected by western blotting, which also indicates the complex 4 can induce caspase-dependent cell apoptosis in SMMC7721.
Korshun, M; Dema, O; Kucherenko, O; Ruda, T; Korshun, O; Gorbachevskyi, R; Pelio, I; Antonenko, A
2016-07-01
Application of pesticides in modern agriculture is a powerful permanent risk factor for public health and the natural environment. The aim of the study was a comparative hygienic assessment of soil pollution hazards by the most widely used herbicides of different chemical classes (sulfonylureas, imidazolinones, pyrimidinyl (thio) benzoates, semicarbazones). Hygienic field experiment for studying of the dynamics of residual amounts of the test substances in the soil under different climatic zones of Ukraine was conducted. Half life periods (DT50) or herbicides in soil were calculated using the method of mathematical modeling. Ecotoxicological risk of herbicides on ecosystems and ecological communities was determined. It was established that bispyribac-sodium (pyrimidinyl (thio) benzoates) and imidazolinones are persist the longest time in soil and most rapidly degradable is diflufenzopyr (semicarbazone); ecotoxicological risk of the studied herbicides for terrestrial biocenoses of Ukraine by 4-6 orders of magnitude lower than dihlordifeniltrihlormetilmetan (DDT).
In vivo anticancer activity of vanillin semicarbazone
Ali, Shaikh M Mohsin; Azad, M Abul Kalam; Jesmin, Mele; Ahsan, Shamim; Rahman, M Mijanur; Khanam, Jahan Ara; Islam, M Nazrul; Shahriar, Sha M Shahan
2012-01-01
Objective To evaluate the anticancer activity of vanillin semicarbazone (VSC) against Ehrlich ascites carcinoma (EAC) cells in Swiss albino mice. Methods The compound VSC at three doses (5, 7.5 and 10 mg/kg i.p.) was administered into the intraperitoneal cavity of the EAC inoculated mice to observe its efficiency by studying the cell growth inhibition, reduction of tumour weight, enhancement of survival time as well as the changes in depleted hematological parameters. All such parameters were also studied with a known standard drug bleomycin at the dose of 0.3 mg/kg (i.p.). Results Among the doses studied, 10 mg/kg (i.p.) was found to be quite comparable in potency to that of bleomycin at the dose of 0.3 mg/kg (i.p.). The host toxic effects of VSC was found to be negligible. Conclusions It can be concluded that VSC can therefore be considered as potent anticancer agent. PMID:23569946
Amir, Mohammad; Ali, Israr; Hassan, Mohd Zaheen
2013-06-01
A series of novel imidazole incorporated semicarbazones was synthesized using an appropriate synthetic route and characterized by spectral analysis (IR, 1H NMR, 13C NMR and Mass). The anticonvulsant activity of the synthesized compounds was determined using doses of 30, 100, and 300 mg kg-1 against maximal electroshock seizure (MES), subcutaneous pentylenetetrazole (scPTZ) induced seizure and minimal neurotoxicity test. Six compounds exhibited protection in both models and 2-(1-(4-chlorophenyl)-2-(1H-imidazol-1-yl)ethylidene)-N-p-tolylsemicarbazone emerged as the most active compound of the series without any neurotoxicity and significant CNS depressant effect. Liver enzyme estimations (SGOT, SGPT, Alkaline phosphatase) of the compound also showed no significant change in the enzymes levels. Moreover, it caused 80% elevation of γ-amino butyric acid (GABA) levels in the whole mice brain, thus indicating that it could be a promising candidate in designing of a potent anticonvulsant drug.
Abernethy, Grant A
2015-01-01
This paper proposes a mechanism to explain the trace levels of natural semicarbazide occasionally observed in foods. The analytical derivative of semicarbazide, 2-nitrobenzaldehyde semicarbazone, is often measured as a metabolite marker to detect the widely banned antibiotic nitrofurazone. However, this marker is not specific as semicarbazide may be present in foods for several reasons other than exposure to nitrofurazone. In some cases, an entirely natural origin of semicarbazide is suspected, although up until now there was no explanation about how semicarbazide could occur naturally. In this work, semicarbazide is proposed as being generated from natural food compounds via an azine intermediate. Hydrazine, in the form of azines or hydrazones, may be generated in dilute aqueous solution from the natural food compounds ammonia, hydrogen peroxide and acetone, following known oxidation chemistry. When this mixture was prepared in the presence of ureas such as allantoin, urea, biuret or hydroxyurea, and then analysed by the standard method for the determination of semicarbazide, 2-nitrobenzaldehyde semicarbazone was detected. 2-Nitrobenzaldehyde aldazine was also found, and it may be a general marker for azines in foods. This proposal, that azine formation is central to semicarbazide development, provides a convergence of the published mechanisms for semicarbazide. The reaction starts with hydrogen peroxide, peracetic acid, atmospheric oxygen or hypochlorite; generates hydrazine either by an oxaziridine intermediate or via the chlorination of ammonia; and then either route may converge on azine formation, followed by reaction with a urea compound. Additionally, carbamate ion may speculatively generate semicarbazide by reaction with hydrazine, which might be a significant route in the case of the hypochlorite treatment of foods or food contact surfaces. Significantly, detection of 2-nitrobenzaldehyde semicarbazone may be somewhat artefactual because semicarbazide can form during the acid conditions of analysis, which can free hydrazine in the presence of urea compounds.
Islam, Farhadul; Ali, Shaikh Mohummad Mohsin; Khanam, Jahan Ara
2013-01-01
Objective To determine the hepatoprotective effect of acetone semicarbazone (ASC) in vivo in normal and Ehrlich ascites carcinoma (EAC) bearing male Swiss albino mice. Methods Drug-induced changes in biochemical and behavioral parameters at dose of 2.0 mg/kg body weight for 14 d and nullifying the toxicity induced by EAC cells were studied. The histopathology studies of the protective effects of ASC on vital organs were also assessed. Results The administration of ASC made insignificant changes in body weight and behavioral (salivation, diarrhea, muscular numbness) changes during treatment period due to minor toxicity were minimized after the treatment in normal mice. The biochemical parameters, including serum glutamate pyruvate transaminase, glutamate oxaloactate transaminase, alkaline phosphatase, serum glucose, cholesterol, urea, triglyceride and billirubin changed modestly in normal mice receiving ASC. Though the treatment continued, these values gradually decreased to normal level after the treatment. In EAC bearing mice, the toxic effects due to EAC cells in all cases were nullified by treatment with the ASC. Significant abnormalities were not detected in histology of the various organs of the normal mice treated with ASC. Conclusions ASC can, therefore, be considered safe in formulating novel anticancer drug, as it exhibits strong protective effect against EAC cell bearing mice. PMID:23593588
Tripathi, Rati K P; Rai, Gopal K; Ayyannan, Senthil R
2016-06-06
A library of 3,4-(methylenedioxy)aniline-derived semicarbazones was designed, synthesized, and evaluated as monoamine oxidase (MAO) and acetylcholinesterase (AChE) inhibitors for the treatment of neurodegenerative diseases. Most of the new compounds selectively inhibited MAO-B and AChE, with IC50 values in the micro- or nanomolar ranges. Compound 16, 1-(2,6-dichlorobenzylidene)-4-(benzo[1,3]dioxol-5-yl)semicarbazide presented a balanced multifunctional profile of MAO-A (IC50 =4.52±0.032 μm), MAO-B (IC50 =0.059±0.002 μm), and AChE (IC50 =0.0087±0.0002 μm) inhibition without neurotoxicity. Kinetic studies revealed that compound 16 exhibits competitive and reversible inhibition against MAO-A and MAO-B, and mixed-type inhibition against AChE. Molecular docking studies further revealed insight into the possible interactions within the enzyme-inhibitor complexes. The most active compounds were found to interact with the enzymes through hydrogen bonding and hydrophobic interactions. Additionally, in silico molecular properties and ADME properties of the synthesized compounds were calculated to explore their drug-like characteristics. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
A novel series of IKKβ inhibitors part I: Initial SAR studies of a HTS hit.
Cushing, Timothy D; Baichwal, Vijay; Berry, Karen; Billedeau, Roland; Bordunov, Viola; Broka, Chris; Cardozo, Mario; Cheng, Peng; Clark, David; Dalrymple, Stacie; DeGraffenreid, Michael; Gill, Adrian; Hao, Xiaolin; Hawley, Ronald C; He, Xiao; Jaen, Juan C; Labadie, Sharada S; Labelle, Marc; Lehel, Csaba; Lu, Pu-Ping; McIntosh, Joel; Miao, Shichang; Parast, Camran; Shin, Youngsook; Sjogren, Eric B; Smith, Marie-Louise; Talamas, Francisco X; Tonn, George; Walker, Keith M; Walker, Nigel P C; Wesche, Holger; Whitehead, Chris; Wright, Matt; Browner, Michelle F
2011-01-01
A novel series of (E)-1-((2-(1-methyl-1H-imidazol-5-yl) quinolin-4-yl) methylene) thiosemicarbazides was discovered as potent inhibitors of IKKβ. In this Letter we document our early efforts at optimization of the quinoline core, the imidazole and the semithiocarbazone moiety. Most potency gains came from substitution around the 6- and 7-positions of the quinoline ring. Replacement of the semithiocarbazone with a semicarbazone decreased potency but led to some measurable exposure. Copyright © 2010 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Arockia doss, M.; Savithiri, S.; Rajarajan, G.; Thanikachalam, V.; Saleem, H.
2015-09-01
The structural and spectroscopic studies of 3t-pentyl-2r,6c-diphenylpiperidin-4-one semicarbazone (PDPOSC) were made by adopting B3LYP/HF levels theory using 6-311++G(d,p) basis set. The FT-IR and Raman spectra were recorded in solid phase, the fundamental vibrations were assigned on the basis of the total energy distribution (TED) of the vibrational modes, calculated with scaled quantum mechanics (SQM) method and PQS program. DFT method indicates that B3LYP is superior to HF method for molecular vibrational analysis. UV-vis spectrum of the compound was recorded in different solvents in the region of 200-800 nm and the electronic properties such as excitation energies, oscillator strength, wavelengths, HOMO and LUMO energies were evaluated by time-dependent DFT (TD-DFT) approach. The polarizability and first order hyperpolarizability of the title molecule were calculated and interpreted. The hyperconjugative interaction energy (E(2)) and electron densities of donor (i) and acceptor (j) bonds were calculated using NBO analysis. In addition, MEP and atomic charges of carbon, nitrogen and oxygen were calculated using B3LYP/6-311++G(d,p) level theory. Moreover, thermodynamic properties of the title compound were calculated by B3LYP/HF, levels using 6-311++G(d,p) basis set. The 1H and 13C nuclear magnetic resonance (NMR) chemical shifts of the molecule were calculated by the gauge independent atomic orbital (GIAO) method and compared with experimental results.
NASA Astrophysics Data System (ADS)
da Silva, João Bosco P.; Hallwass, Fernando; da Silva, Aluizio G.; Moreira, Diogo Rodrigo; Ramos, Mozart N.; Espíndola, José Wanderlan P.; de Oliveira, Ana Daura T.; Brondani, Dalci José; Leite, Ana Cristina L.; Merz, Kenneth M.
2015-08-01
DFT calculations were used to access information about structure, energy and electronic properties of series of phenyl- and phenoxymethyl-(thio)semicarbazone derivatives with demonstrated activity against the larvae of Aedes aegypti in stage L4. The way as the thiosemicarbazone derivatives can interact with solvents like DMSO and water were analyzed from the comparison between calculated and experimental 1H NMR chemical shifts. The evidences of thiosemicarbazone derivatives making H-bond interaction to solvent have provide us insights on how they can interact with a potential A. aegypti's biological target, the Sterol Carrier Protein-2.
NASA Astrophysics Data System (ADS)
Schindler, Matthias; Kretschmer, Wolfgang; Scharf, Andreas; Tschekalinskij, Alexander
2016-05-01
Three new methods to sample and prepare various carbonyl compounds for radiocarbon measurements were developed and tested. Two of these procedures utilized the Strecker synthetic method to form amino acids from carbonyl compounds with either sodium cyanide or trimethylsilyl cyanide. The third procedure used semicarbazide to form crystalline carbazones with the carbonyl compounds. The resulting amino acids and semicarbazones were then separated and purified using thin layer chromatography. The separated compounds were then combusted to CO2 and reduced to graphite to determine 14C content by accelerator mass spectrometry (AMS). All of these methods were also compared with the standard carbonyl compound sampling method wherein a compound is derivatized with 2,4-dinitrophenylhydrazine and then separated by high-performance liquid chromatography (HPLC).
NASA Astrophysics Data System (ADS)
Manikandan, R.; Viswnathamurthi, P.
2012-11-01
Reactions of 2-acetylpyridine-thiosemicarbazone HL1, 2-acetylpyridine-4-methyl-thiosemicarbazone HL2, 2-acetylpyridine-4-phenyl-thiosemicarbazone HL3 and 2-acetylpyridine-semicarbazone HL4 with ruthenium(III) precursor complexes were studied and the products were characterized by analytical and spectral (FT-IR, electronic, EPR and EI-MS) methods. The ligands coordinated with the ruthenium(III) ion via pyridine nitrogen, azomethine nitrogen and thiolate sulfur/enolate oxygen. An octahedral geometry has been proposed for all the complexes based on the studies. All the complexes are redox active and display an irreversible and quasireversible metal centered redox processes. Further, the catalytic activity of the new complexes has been investigated for the transfer hydrogenation of ketones in the presence of isopropanol/KOH and the Kumada-Corriu coupling of aryl halides with aryl Grignard reagents. The DNA cleavage efficiency of new complexes has also been tested.
Metaflumizone is a novel sodium channel blocker insecticide.
Salgado, V L; Hayashi, J H
2007-12-15
Metaflumizone is a novel semicarbazone insecticide, derived chemically from the pyrazoline sodium channel blocker insecticides (SCBIs) discovered at Philips-Duphar in the early 1970s, but with greatly improved mammalian safety. This paper describes studies confirming that the insecticidal action of metaflumizone is due to the state-dependent blockage of sodium channels. Larvae of the moth Spodoptera eridania injected with metaflumizone became paralyzed, concomitant with blockage of all nerve activity. Furthermore, tonic firing of abdominal stretch receptor organs from Spodoptera frugiperda was blocked by metaflumizone applied in the bath, consistent with the block of voltage-dependent sodium channels. Studies on native sodium channels, in primary-cultured neurons isolated from the CNS of the larvae of the moth Manduca sexta and on Para/TipE sodium channels heterologously expressed in Xenopus (African clawed frog) oocytes, confirmed that metaflumizone blocks sodium channels by binding selectively to the slow-inactivated state, which is characteristic of the SCBIs. The results confirm that metaflumizone is a novel sodium channel blocker insecticide.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wise, M.L.; Stiebel, C.L.; Grizzle, J.M.
1987-01-01
Nitrofurazone (5-nitro-2-furaldehyde semicarbazone) is a nitrofuran, a group of organic compounds which have inhibitory activity against many Gram-negative and Gram-positive bacteria and against some protozoan parasites. Although not approved by the United States Food and Drug Administration for use with food fish, nitrofurazone has been found effective in fish against external and internal infections by various species of Aeromonas, Pseudomonas and myxobacteria and can be administered either as a food additive or as a bath treatment. Attempts to control the microsporidian parasite Pleistophora ovariae in golden shiners, Notemigonus crysoleucas, with nitrofurazone met with equivocal results. The following experiment was performedmore » to determine acute toxicity, including lesions, of nitrofurazone to channel catfish, Ictalurus punctatus, and goldfish, carassius auratus, fingerlings. Toxicity of nitrofurazone to channel catfish was determined with low dissolved oxygen concentrations (2 mg/L) to simulate conditions frequently encountered in channel catfish culture. Information abut toxic levels of drugs and the lesions occurring in exposed fish is important to determine the safety of treatment levels and the effects of toxic concentrations.« less
Kumar, S.; Srivastava, D. P.
2010-01-01
An efficient electrochemical method for the preparation of 2-amino-5-substituted-1,3,4-oxadiazoles (4a-k) at platinum anode through the electrooxidation of semicarbazone (3a-k) at controlled potential electrolysis has been reported in the present study. The electrolysis was carried out in the acetic acid solvent and lithium perchlorate was used as supporting electrolyte. The products were characterized by IR,1H-NMR,13C-NMR, mass spectra and elemental analysis. The synthesized compounds were screened for their in vitro growth inhibiting activity against different strains of bacteria viz., Klebsilla penumoniae, Escherichia coli, Bassilus subtilis and Streptococcus aureus and antifungal activity against Aspergillus niger and Crysosporium pannical and results have been compared with the standard antibacterial streptomycin and antifungal griseofulvin. Compounds exhibits significant antibacterial activity and antifungal activity. Compounds 4a and g exhibited equal while 4c, d, i and j slightly less antibacterial activity than standard streptomycin. Compounds 4a and g exhibited equal while 4b, c, d, f and i displayed slightly less antifungal activity than standard griseofulvins. PMID:21218056
Tomato root growth, gravitropism, and lateral development: correlation with auxin transport
NASA Technical Reports Server (NTRS)
Muday, G. K.; Haworth, P.
1994-01-01
Tomato (Lycopersicon esculentum, Mill.) roots were analyzed during growth on agar plates. Growth of these roots was inhibited by the auxin transport inhibitors naphthylphthalamic acid (NPA) and semicarbazone derivative I (SCB-1). The effect of auxin transport inhibitors on root gravitropism was analyzed by measurement of the angle of gravitropic curvature after the roots were reoriented 90 degrees from the vertical. NPA and SCB-1 abolished both the response of these roots to gravity and the formation of lateral roots, with SCB-1 being the more effective at inhibition. Auxins also inhibited root growth. Both auxins tested has a slight effect on the gravity response, but this effect is probably indirect, since auxins reduced the growth rate. Auxins also stimulated lateral root growth at concentration where primary root growth was inhibited. When roots were treated with both IAA and NPA simultaneously, a cumulative inhibition of root growth was found. When both compounds were applied together, analysis of gravitropism and lateral root formation indicated that the dominant effect was exerted by auxin transport inhibitors. Together, these data suggest a model for the role of auxin transport in controlling both primary and lateral root growth.
NASA Astrophysics Data System (ADS)
Dias, L. C.; de Lima, G. M.; Pinheiro, C. B.; Rodrigues, B. L.; Donnici, C. L.; Fujiwara, R. T.; Bartholomeu, D. C.; Ferreira, R. A.; Ferreira, S. R.; Mendes, T. A. O.; da Silva, J. G.; Alves, M. R. A.
2015-01-01
In this paper we report the synthesis and characterization of four new nitroaromatic compounds, 2-{6-nitrobenzo[1,3]dioxol-5-(methyleneamino)}benzoic acid (1), 2-{[5-(2-nitrophenyl)furan-2-yl]methylene-amino}benzoic acid (2), 2-{(6-nitrobenzo[1,3]dioxol-5-yl)methylene}hydrazinecarboxamide (3) and 2-{[5-(2-nitrophenyl)furan-2-yl]methylene}hydrazinecarboxamide (4). Compounds (1)-(4) have been authenticated by infrared and NMR spectroscopy, and the structure of (1), (2) and (4) have been determined by X-ray diffraction. In addition, the in vitro ability of compounds (1)-(4) to inhibit the growth of Leishmania infantum has been evaluated. Comparisons of the redox potential of the compounds and leishmanicidal activity indicate that the presence of the electroactive nitro group is important for the biological activity. The inhibition activity of compound (3) is comparable to that of the reference drug, SbCl3. Considering the important side effects and the low efficiency of SbCl3 in the case of resistance, compound (3) deserves further attention as a promising anti-leishmanicidal drug for veterinary use.
NASA Astrophysics Data System (ADS)
Layana, S. R.; Saritha, S. R.; Anitha, L.; Sithambaresan, M.; Sudarsanakumar, M. R.; Suma, S.
2018-04-01
A novel O,N,O donor salicylaldehyde-N4-phenylsemicarbazone, (H2L) has been synthesized and physicochemically characterized. Detailed structural studies of H2L using single crystal X-ray diffraction technique reveals the existence of intra and inter molecular hydrogen bonding interactions, which provide extra stability to the molecule. We have successfully synthesized a binuclear copper(II) complex, [Cu2(HL)2(NO3)(H2O)2]NO3 with phenoxy bridging between the two copper centers. The complex was characterized by elemental analysis, magnetic susceptibility and conductivity measurements, FT-IR, UV-Visible, mass and EPR spectral methods. The grown crystals of the copper complex were employed for the single crystal X-ray diffraction studies. The complex possesses geometrically different metal centers, in which the ligand coordinates through ketoamide oxygen, azomethine nitrogen and deprotonated phenoxy oxygen. The extensive intermolecular hydrogen bonding interactions of the coordinated and the lattice nitrate groups interconnect the complex units to form a 2D supramolecular assembly. The ESI mass spectrum substantiates the existence of 1:1 complex. The g values obtained from the EPR spectrum in frozen DMF suggest dx2 -y2 ground state for the unpaired electron.
Selective inhibitor of endosomal trafficking pathways exploited by multiple toxins and viruses
Gillespie, Eugene J.; Ho, Chi-Lee C.; Balaji, Kavitha; Clemens, Daniel L.; Deng, Gang; Wang, Yao E.; Elsaesser, Heidi J.; Tamilselvam, Batcha; Gargi, Amandeep; Dixon, Shandee D.; France, Bryan; Chamberlain, Brian T.; Blanke, Steven R.; Cheng, Genhong; de la Torre, Juan Carlos; Brooks, David G.; Jung, Michael E.; Colicelli, John; Damoiseaux, Robert; Bradley, Kenneth A.
2013-01-01
Pathogenic microorganisms and toxins have evolved a variety of mechanisms to gain access to the host-cell cytosol and thereby exert virulent effects upon the host. One common mechanism of cellular entry requires trafficking to an acidified endosome, which promotes translocation across the host membrane. To identify small-molecule inhibitors that block this process, a library of 30,000 small molecules was screened for inhibitors of anthrax lethal toxin. Here we report that 4-bromobenzaldehyde N-(2,6-dimethylphenyl)semicarbazone, the most active compound identified in the screen, inhibits intoxication by lethal toxin and blocks the entry of multiple other acid-dependent bacterial toxins and viruses into mammalian cells. This compound, which we named EGA, also delays lysosomal targeting and degradation of the EGF receptor, indicating that it targets host-membrane trafficking. In contrast, EGA does not block endosomal recycling of transferrin, retrograde trafficking of ricin, phagolysosomal trafficking, or phagosome permeabilization by Franciscella tularensis. Furthermore, EGA does not neutralize acidic organelles, demonstrating that its mechanism of action is distinct from pH-raising agents such as ammonium chloride and bafilomycin A1. EGA is a powerful tool for the study of membrane trafficking and represents a class of host-targeted compounds for therapeutic development to treat infectious disease. PMID:24191014
Chandra, Sulekh; Hooda, Sunita; Tomar, Praveen Kumar; Malik, Amrita; Kumar, Ankit; Malik, Sakshi; Gautam, Seema
2016-05-01
The PVC based-ion selective electrode viz., bis nitrato[4-hydroxyacetophenone semicarbazone] nickel(II) as an ionophore was prepared for the determination of thiocyanate ion. The ionophore was characterized by FT-IR, UV-vis, XRD, magnetic moment and elemental analysis (CHN). On the basis of spectral studies an octahedral geometry has been assigned. The best performance was obtained with a membrane composition of 31% PVC, 63% 2-nitrophenyl octylether, 4.0% ionophore and 2.0% trioctylmethyl ammonium chloride. The electrode exhibited an excellent Nernstian response to SCN(-) ion ranging from 1.0 × 10(-7) to 1.0 × 10(-1)M with a detection limit of 8.6 × 10(-8)M and a slope of -59.4 ± 0.2 mV/decade over a wide pH range (1.8-10.7) with a fast response time (6s) at 25 °C. The proposed electrode showed high selectivity for thiocyanate ion over a number of common inorganic and organic anions. It was successfully applied to direct determination of thiocyanate in biological (urine and saliva) samples in order to distinguish between smokers and non-smokers, environmental samples and as an indicator electrode for titration of thiocyanate ions with AgNO3 solution. Copyright © 2016 Elsevier B.V. All rights reserved.
Berdyshev, Evgeny V; Goya, Jonathan; Gorshkova, Irina; Prestwich, Glenn D; Byun, Hoe-Sup; Bittman, Robert; Natarajan, Viswanathan
2011-01-01
Sphingosine-1-phosphate (S1P) is a sphingolipid signaling molecule crucial for cell survival and proliferation. S1P-mediated signaling is largely controlled through its biosynthesis and degradation, and S1P lyase (S1PL) is the only known enzyme that irreversibly degrades sphingoid base-1-phosphates to phosphoethanolamine and the corresponding fatty aldehydes. S1PL-mediated degradation of S1P results in the formation of (2E)-hexadecenal, whereas hexadecanal is the product of dihydrosphingosine-1-phosphate (DHS1P) degradation. Fatty aldehydes can undergo biotransformation to fatty acids and/or alcohols, making them elusive and rendering the task of fatty aldehyde quantitation challenging. We have developed a simple, highly sensitive, and high-throughput protocol for (2E)-hexadecenal quantitation as a semicarbazone derivative by liquid chromatography-electrospray ionization-tandem mass spectrometry. The approach was applied to determining S1PL activity in vitro with the ability to use as low as 0.25μg of microsomal protein per assay. The method is also applicable to the use of total tissue homogenate as the source of S1PL. A correction for (2E)-hexadecenal disappearance due to its biotransformation during enzymatic reaction is required, especially at higher protein concentrations. The method was applied to confirm FTY720 as the inhibitor of S1PL with an IC₅₀ value of 52.4μM. Copyright © 2010 Elsevier Inc. All rights reserved.
Berdyshev, Evgeny V.; Goya, Jonathan; Gorshkova, Irina; Prestwich, Glenn D.; Byun, Hoe-Sup; Bittman, Robert; Natarajan, Viswanathan
2010-01-01
Sphingosine-1-phosphate (S1P) is a sphingolipid signaling molecule crucial for cell survival and proliferation. S1P-mediated signaling is largely controlled through its biosynthesis and degradation, and S1P lyase (S1PL) is the only known enzyme, which irreversibly degrades sphingoid base-1-phosphates to phosphoethanolamine and the corresponding fatty aldehydes. S1PL-mediated degradation of S1P results in the formation of (2E)-hexadecenal, while hexadecanal is the product of dihydrosphingosine-1-phosphate (DHS1P) degradation. Fatty aldehydes can undergo biotransformation to fatty acids and/or alcohols, which makes them elusive and renders the task of fatty aldehyde quantitation challenging. We have developed a simple, highly sensitive, and high-throughput protocol for (2E)-hexadecenal quantitation as a semicarbazone derivative by liquid chromatography-electrospray ionization-tandem mass spectrometry. The approach was applied to determining S1PL activity in vitro, with the ability to use as low as 0.25 µg microsomal protein per assay. The method is also applicable to the use of total tissue homogenate as the source of S1PL. A correction for (2E)-hexadecenal disappearance due to its biotransformation during enzymatic reaction is required, especially at higher protein concentrations. The method was applied to confirm FTY720 as the inhibitor of S1PL with the IC50 of 52.4 µM. PMID:20804717
Schnell, Leonie; Mittler, Ann-Katrin; Sadi, Mirko; Popoff, Michel R.; Schwan, Carsten; Aktories, Klaus; Mattarei, Andrea; Tehran, Domenico Azarnia; Montecucco, Cesare; Barth, Holger
2016-01-01
The pathogenic bacteria Clostridium difficile, Clostridium perfringens and Clostridium botulinum produce the binary actin ADP-ribosylating toxins CDT, iota and C2, respectively. These toxins are composed of a transport component (B) and a separate enzyme component (A). When both components assemble on the surface of mammalian target cells, the B components mediate the entry of the A components via endosomes into the cytosol. Here, the A components ADP-ribosylate G-actin, resulting in depolymerization of F-actin, cell-rounding and eventually death. In the present study, we demonstrate that 4-bromobenzaldehyde N-(2,6-dimethylphenyl)semicarbazone (EGA), a compound that protects cells from multiple toxins and viruses, also protects different mammalian epithelial cells from all three binary actin ADP-ribosylating toxins. In contrast, EGA did not inhibit the intoxication of cells with Clostridium difficile toxins A and B, indicating a possible different entry route for this toxin. EGA does not affect either the binding of the C2 toxin to the cells surface or the enzyme activity of the A components of CDT, iota and C2, suggesting that this compound interferes with cellular uptake of the toxins. Moreover, for C2 toxin, we demonstrated that EGA inhibits the pH-dependent transport of the A component across cell membranes. EGA is not cytotoxic, and therefore, we propose it as a lead compound for the development of novel pharmacological inhibitors against clostridial binary actin ADP-ribosylating toxins. PMID:27043629
Schnell, Leonie; Mittler, Ann-Katrin; Sadi, Mirko; Popoff, Michel R; Schwan, Carsten; Aktories, Klaus; Mattarei, Andrea; Azarnia Tehran, Domenico; Montecucco, Cesare; Barth, Holger
2016-04-01
The pathogenic bacteria Clostridium difficile, Clostridium perfringens and Clostridium botulinum produce the binary actin ADP-ribosylating toxins CDT, iota and C2, respectively. These toxins are composed of a transport component (B) and a separate enzyme component (A). When both components assemble on the surface of mammalian target cells, the B components mediate the entry of the A components via endosomes into the cytosol. Here, the A components ADP-ribosylate G-actin, resulting in depolymerization of F-actin, cell-rounding and eventually death. In the present study, we demonstrate that 4-bromobenzaldehyde N-(2,6-dimethylphenyl)semicarbazone (EGA), a compound that protects cells from multiple toxins and viruses, also protects different mammalian epithelial cells from all three binary actin ADP-ribosylating toxins. In contrast, EGA did not inhibit the intoxication of cells with Clostridium difficile toxins A and B, indicating a possible different entry route for this toxin. EGA does not affect either the binding of the C2 toxin to the cells surface or the enzyme activity of the A components of CDT, iota and C2, suggesting that this compound interferes with cellular uptake of the toxins. Moreover, for C2 toxin, we demonstrated that EGA inhibits the pH-dependent transport of the A component across cell membranes. EGA is not cytotoxic, and therefore, we propose it as a lead compound for the development of novel pharmacological inhibitors against clostridial binary actin ADP-ribosylating toxins.
Tan, Ming Yueh; Crouse, Karen A; Ravoof, Thahira B S A; Jotani, Mukesh M; Tiekink, Edward R T
2017-07-01
The title Zn II complex, [Zn(C 18 H 18 N 3 S) 2 ], (I), features two independent but chemically equivalent mol-ecules in the asymmetric unit. In each, the thio-semicarbazonate monoanion coordinates the Zn II atom via the thiol-ate-S and imine-N atoms, with the resulting N 2 S 2 donor set defining a distorted tetra-hedral geometry. The five-membered ZnSCN 2 chelate rings adopt distinct conformations in each independent mol-ecule, i.e. one ring is almost planar while the other is twisted about the Zn-S bond. In the crystal, the two mol-ecules comprising the asymmetric unit are linked by amine-N-H⋯N(imine) and amine-N-H⋯S(thiol-ate) hydrogen bonds via an eight-membered heterosynthon, {⋯HNCN⋯HNCS}. The dimeric aggregates are further consolidated by benzene-C-H⋯S(thiol-ate) inter-actions and are linked into a zigzag supra-molecular chain along the c axis via amine-N-H⋯S(thiol-ate) hydrogen bonds. The chains are connected into a three-dimensional architecture via phenyl-C-H⋯π(phen-yl) and π-π inter-actions, the latter occurring between chelate and phenyl rings [inter-centroid separation = 3.6873 (11) Å]. The analysis of the Hirshfeld surfaces calculated for (I) emphasizes the different inter-actions formed by the independent mol-ecules in the crystal and the impact of the π-π inter-actions between chelate and phenyl rings.
Deroussent, Alain; Skarbek, Charles; Maury, Adeline; Chapuis, Hubert; Daudigeos-Dubus, Estelle; Le Dret, Ludivine; Durand, Sylvère; Couvreur, Patrick; Desmaële, Didier; Paci, Angelo
2015-06-15
The antitumor drug, ifosfamide (IFO), requires activation by cytochrome P450 (CYP) to form the active metabolite, 4-hydroxyisfosfamide (4-OHIFO), leading to toxic by-products at high dose. In order to overcome these drawbacks, preactivated ifosfamide derivatives (RXIFO) were designed to release 4-OHIFO without CYP involvement. A high performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) method was developed for the simultaneous quantification of 4-OHIFO, IFO and four derivatives RXIFO in mouse plasma using multiple reaction monitoring. Because of its instability in plasma, 4-OHIFO was immediately converted to the semi-carbazone derivative, 4-OHIFO-SCZ. For the six analytes, the calibration curves were linear from 20 to 5000ng/mL in 50μL plasma and the lower limit of quantitation was determined at 20ng/mL with accuracies within ±10% of nominal and precisions less than 12%. Their recoveries ranged from 62 to 96% by using liquid-liquid extraction. With an improved assay sensitivity compared to analogues, the derivative 4-OHIFO-SCZ was stable in plasma at 4°C for 24h and at -20°C for three months. For all compounds, the assay was validated with accuracies within ±13% and precisions less than 15%. This method was applied to a comparative pharmacokinetic study of 4-OHIFO from IFO and three derivatives RXIFO in mice. This active metabolite was produced by some of the novel conjugates with good pharmacokinetic properties. Copyright © 2015 Elsevier B.V. All rights reserved.
The pheromone production of female Plodia interpunctella is inhibited by tyraminergic antagonists.
Hirashima, Akinori; Kimizu, Megumi; Shigeta, Yoko; Matsugu, Sachiko; Eiraku, Tomohiko; Kuwano, Eiichi; Eto, Morifusa
2004-11-01
Several compounds were found to suppress the calling behavior and in vitro pheromone biosynthesis of the Indian meal moth, Plodia interpunctella. The compounds were screened by means of a calling-behavior bioassay with female P. interpunctella. Five derivatives with activities in the nanomolar range were identified, in order of decreasing pheromonostatic activity: 4-hydroxybenzaldehyde semicarbazone (42) > 5-(4-methoxyphenyl)-1,3-oxazole (38) > 5-[4-(tert-butyl)phenyl]-1,3-oxazole (40) > 5-(3-methoxyphenyl)-1,3-oxazole (35) > 5-(4-cyanophenyl)-1,3-oxazole (36). These compounds also showed in vitro inhibitory activity in intracellular de novo pheromone biosynthesis, as determined with isolated pheromone-gland preparations that incorporated [1-(14)C]sodium acetate in the presence of the so-called pheromone-biosynthesis-activating neuropeptide (PBAN). The non-additive effect of the inhibitor with antagonist (yohimbine) for the tyramine (TA) receptor suggests that it could be a tyraminergic antagonist. Three-dimensional (3D) computer models were built from a set of compounds. Among the common-featured models generated by the program Catalyst/HipHop, aromatic-ring (AR) and H-bond-acceptor-lipophilic (HBAl) features were considered to be essential for inhibitory activity in the calling behavior and in vitro pheromone biosynthesis. Active compounds, including yohimbine, mapped well onto all the AR and HBAl features of the hypothesis. Less-active compounds were shown to be unable to achieve an energetically favorable conformation, consistent with our 3D common-feature pharmacophore models. The present hypothesis demonstrates that calling behavior and PBAN-stimulated incorporation of radioactivity are inhibited by tyraminergic antagonists.
Hernandez-Munoz, R; Ma, X L; Baraona, E; Lieber, C S
1992-07-01
After alcohol consumption, a substantial amount of acetaldehyde that is reversibly bound to protein and nonprotein components of the red blood cells circulates in the blood and could cause extrahepatic toxicity. However, acetaldehyde measurement in human red blood cells is hampered by considerable ex vivo artifactual formation as a result of nonenzymatic oxidation of ethanol during protein precipitation. To eliminate this source of artifactual formation, free and reversibly bound acetaldehyde were trapped with semicarbazide from red blood cell hemolysates, and both the stroma and the hemoglobin were sequentially removed by centrifugation and ion-exchange chromatography in carboxymethyl Sephadex, respectively. The eluted semi-carbazone was dissociated with perchloric acid, and the acetaldehyde that was released in the protein-free supernatants was measured by head-space gas chromatography. Maximal retention of hemoglobin by carboxymethyl Sephadex and complete recovery of acetaldehyde and ethanol were achieved at a pH of 5.3. The artifactual formation decreased from 2.62 +/- 0.32 mumol of acetaldehyde per millimole of ethanol in the initial hemolysates to 1.38 +/- 0.20 mumol after removal of the stroma and to a level that is comparable to measurements in plasma (0.09 +/- 0.02 mumol) after removal of both the stroma and the hemoglobin. In 12 actively drinking subjects with alcoholism, with blood ethanol levels that ranged between 9 and 81 mmol/L, the concentrations of acetaldehyde in red blood cells (11.50 +/- 1.46 mumol/L; range: 7.5 to 22 mumol/L) were minimally affected by blood ethanol levels and were three times as high as those in the plasma (3.74 +/- 1.49 mumol/L).(ABSTRACT TRUNCATED AT 250 WORDS)
Comparison of metabolic pathways of different α-N-heterocyclic thiosemicarbazones.
Pelivan, Karla; Frensemeier, Lisa M; Karst, Uwe; Koellensperger, Gunda; Heffeter, Petra; Keppler, Bernhard K; Kowol, Christian R
2018-03-01
Clinical failure of novel drugs is often related to their rapid metabolism and excretion. This highlights the importance of elucidation of their pharmacokinetic profile already at the preclinical stage of drug development. Triapine, the most prominent representative of α-N-heterocyclic thiosemicarbazones, was investigated in more than 30 clinical phase I/II trials, but the results against solid tumors were disappointing. Recent investigations from our group suggested that this is, at least partially, based on the fast metabolism and excretion. In order to establish more detailed structure/activity/metabolism relationships, herein a panel of 10 different Triapine derivatives was investigated for their metabolic pathways. From the biological point of view, the panel consists of terminally dimethylated thiosemicarbazones with nanomolar IC 50 values, derivatives with micromolar cytotoxicities comparable to Triapine and a completely inactive representative. To study the oxidative metabolism, a purely instrumental approach based on electrochemistry/mass spectrometry was applied and the results were compared to the data obtained from microsomal incubations. Overall, the investigated thiosemicarbazones underwent the phase I metabolic reactions dehydrogenation, hydroxylation, oxidative desulfuration (to semicarbazone and amidrazone) and demethylation. Notably, dehydrogenation resulted in a ring-closure reaction with formation of thiadiazoles. Although strong differences between the metabolic pathways of the different thiosemicarbazones were observed, they could not be directly correlated to their cytotoxicities. Finally, the metabolic pathways for the most cytotoxic compound were elucidated also in tissues collected from drug-treated mice, confirming the data obtained by electrochemical oxidation and microsomes. In addition, the in vivo experiments revealed a very fast metabolism and excretion of the compound. Graphical abstract Structure/activity/metabolisation relationships for 10 anticancer thiosemicarbazones were established using electrochemical oxidation coupled to mass spectrometry (EC-MS) and human liver microsomes analyzed by LC-MS.