Sample records for semiconductor multiple barriers

  1. Semiconductor systems utilizing materials that form rectifying junctions in both N and P-type doping regions, whether metallurgically or field induced, and methods of use

    DOEpatents

    Welch, James D.

    2000-01-01

    Disclosed are semiconductor systems, such as integrated circuits utilizing Schotky barrier and/or diffused junction technology, which semiconductor systems incorporate material(s) that form rectifying junctions in both metallurgically and/or field induced N and P-type doping regions, and methods of their use. Disclosed are Schottky barrier based inverting and non-inverting gate voltage channel induced semiconductor single devices with operating characteristics similar to multiple device CMOS systems and which can be operated as modulators, N and P-channel MOSFETS and CMOS formed therefrom, and (MOS) gate voltage controlled rectification direction and gate voltage controlled switching devices, and use of such material(s) to block parasitic current flow pathways. Simple demonstrative five mask fabrication procedures for inverting and non-inverting gate voltage channel induced semiconductor single devices with operating characteristics similar to multiple device CMOS systems are also presented.

  2. Formation of multiple levels of porous silicon for buried insulators and conductors in silicon device technologies

    DOEpatents

    Blewer, Robert S.; Gullinger, Terry R.; Kelly, Michael J.; Tsao, Sylvia S.

    1991-01-01

    A method of forming a multiple level porous silicon substrate for semiconductor integrated circuits including anodizing non-porous silicon layers of a multi-layer silicon substrate to form multiple levels of porous silicon. At least one porous silicon layer is then oxidized to form an insulating layer and at least one other layer of porous silicon beneath the insulating layer is metallized to form a buried conductive layer. Preferably the insulating layer and conductive layer are separated by an anodization barrier formed of non-porous silicon. By etching through the anodization barrier and subsequently forming a metallized conductive layer, a fully or partially insulated buried conductor may be fabricated under single crystal silicon.

  3. Progress on single barrier varactors for submillimeter wave power generation

    NASA Technical Reports Server (NTRS)

    Nilsen, Svein M.; Groenqvist, Hans; Hjelmgren, Hans; Rydberg, Anders; Kollberg, Erik L.

    1992-01-01

    Theoretical work on Single Barrier Varactor (SBV) diodes, indicate that the efficiency for a multiplier has a maximum for a considerably smaller capacitance variation than previously thought. The theoretical calculations are performed, both with a simple theoretical model and a complete computer simulation using the method of harmonic balance. Modeling of the SBV is carried out in two steps. First, the semiconductor transport equations are solved simultaneously using a finite difference scheme in one dimension. Secondly, the calculated I-V, and C-V characteristics are input to a multiplier simulator which calculates the optimum impedances, and output powers at the frequencies of interest. Multiple barrier varactors can also be modeled in this way. Several examples on how to design the semiconductor layers to obtain certain characteristics are given. The calculated conversion efficiencies of the modeled structures, in a multiplier circuit, are also presented. Computer simulations for a case study of a 750 GHz multiplier show that InAs diodes perform favorably compared to GaAs diodes. InAs and InGaAs SBV diodes have been fabricated and their current vs. voltage characteristics are presented. In the InAs diode, was the large bandgap semiconductor AlSb used as barrier. The InGaAs diode was grown lattice matched to an InP substrate with InAlAs as a barrier material. The current density is greatly reduced for these two material combinations, compared to that of GaAs/AlGaAs SBV diodes. GaAs based diodes can be biased to higher voltages than InAs diodes.

  4. Intermediate-band photosensitive device with quantum dots embedded in energy fence barrier

    DOEpatents

    Forrest, Stephen R.; Wei, Guodan

    2010-07-06

    A plurality of layers of a first semiconductor material and a plurality of dots-in-a-fence barriers disposed in a stack between a first electrode and a second electrode. Each dots-in-a-fence barrier consists essentially of a plurality of quantum dots of a second semiconductor material embedded between and in direct contact with two layers of a third semiconductor material. Wave functions of the quantum dots overlap as at least one intermediate band. The layers of the third semiconductor material are arranged as tunneling barriers to require a first electron and/or a first hole in a layer of the first material to perform quantum mechanical tunneling to reach the second material within a respective quantum dot, and to require a second electron and/or a second hole in a layer of the first semiconductor material to perform quantum mechanical tunneling to reach another layer of the first semiconductor material.

  5. Tunnel barrier schottky

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chu, Rongming; Cao, Yu; Li, Zijian

    2018-02-20

    A diode includes: a semiconductor substrate; a cathode metal layer contacting a bottom of the substrate; a semiconductor drift layer on the substrate; a graded aluminum gallium nitride (AlGaN) semiconductor barrier layer on the drift layer and having a larger bandgap than the drift layer, the barrier layer having a top surface and a bottom surface between the drift layer and the top surface, the barrier layer having an increasing aluminum composition from the bottom surface to the top surface; and an anode metal layer directly contacting the top surface of the barrier layer.

  6. Explanation of the barrier heights of graphene Schottky contacts by the MIGS-and-electronegativity concept

    NASA Astrophysics Data System (ADS)

    Mönch, Winfried

    2016-09-01

    Graphene-semiconductor contacts exhibit rectifying properties and, in this respect, they behave in exactly the same way as a "conventional" metal-semiconductor or Schottky contacts. It will be demonstrated that, as often assumed, the Schottky-Mott rule does not describe the reported barrier heights of graphene-semiconductor contacts. With "conventional" Schottky contacts, the same conclusion was reached already in 1940. The physical reason is that the Schottky-Mott rule considers no interaction between the metal and the semiconductor. The barrier heights of "conventional" Schottky contacts were explained by the continuum of metal-induced gap states (MIGSs), where the differences of the metal and semiconductor electronegativities describe the size and the sign of the intrinsic electric-dipoles at the interfaces. It is demonstrated that the MIGS-and-electronegativity concept unambiguously also explains the experimentally observed barrier heights of graphene Schottky contacts. This conclusion includes also the barrier heights reported for MoS2 Schottky contacts with "conventional" metals as well as with graphene.

  7. Optically switched graphene/4H-SiC junction bipolar transistor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chandrashekhar, MVS; Sudarshan, Tangali S.; Omar, Sabih U.

    A bi-polar device is provided, along with methods of making the same. The bi-polar device can include a semiconductor substrate doped with a first dopant, a semiconductor layer on the first surface of the semiconductor substrate, and a Schottky barrier layer on the semiconductor layer. The method of forming a bi-polar device can include: forming a semiconductor layer on a first surface of a semiconductor substrate, where the semiconductor substrate comprises a first dopant and where the semiconductor layer comprises a second dopant that has an opposite polarity than the first dopant; and forming a Schottky barrier layer on amore » first portion of the semiconductor layer while leaving a second portion of the semiconductor layer exposed.« less

  8. Monolayer borophene electrode for effective elimination of both the Schottky barrier and strong electric field effect

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, L. Z., E-mail: lzliu@nju.edu.cn, E-mail: hkxlwu@nju.edu.cn; Xiong, S. J.; Wu, X. L., E-mail: lzliu@nju.edu.cn, E-mail: hkxlwu@nju.edu.cn

    2016-08-08

    The formation of Schottky barriers between 2D semiconductors and traditional metallic electrodes has greatly limited the application of 2D semiconductors in nanoelectronic and optoelectronic devices. In this study, metallic borophene was used as a substitute for the traditional noble metal electrode to contact with the 2D semiconductor. Theoretical calculations demonstrated that no Schottky barrier exists in the borophene/2D semiconductor heterostructure. The contact remains ohmic even with a strong electric field applied. This finding provides a way to construct 2D electronic devices and sensors with greatly enhanced performance.

  9. Micro heat barrier

    DOEpatents

    Marshall, Albert C.; Kravitz, Stanley H.; Tigges, Chris P.; Vawter, Gregory A.

    2003-08-12

    A highly effective, micron-scale micro heat barrier structure and process for manufacturing a micro heat barrier based on semiconductor and/or MEMS fabrication techniques. The micro heat barrier has an array of non-metallic, freestanding microsupports with a height less than 100 microns, attached to a substrate. An infrared reflective membrane (e.g., 1 micron gold) can be supported by the array of microsupports to provide radiation shielding. The micro heat barrier can be evacuated to eliminate gas phase heat conduction and convection. Semi-isotropic, reactive ion plasma etching can be used to create a microspike having a cusp-like shape with a sharp, pointed tip (<0.1 micron), to minimize the tip's contact area. A heat source can be placed directly on the microspikes. The micro heat barrier can have an apparent thermal conductivity in the range of 10.sup.-6 to 10.sup.-7 W/m-K. Multiple layers of reflective membranes can be used to increase thermal resistance.

  10. Graphite based Schottky diodes formed semiconducting substrates

    NASA Astrophysics Data System (ADS)

    Schumann, Todd; Tongay, Sefaattin; Hebard, Arthur

    2010-03-01

    We demonstrate the formation of semimetal graphite/semiconductor Schottky barriers where the semiconductor is either silicon (Si), gallium arsenide (GaAs) or 4H-silicon carbide (4H-SiC). The fabrication can be as easy as allowing a dab of graphite paint to air dry on any one of the investigated semiconductors. Near room temperature, the forward-bias diode characteristics are well described by thermionic emission, and the extracted barrier heights, which are confirmed by capacitance voltage measurements, roughly follow the Schottky-Mott relation. Since the outermost layer of the graphite electrode is a single graphene sheet, we expect that graphene/semiconductor barriers will manifest similar behavior.

  11. Effect of barrier height on friction behavior of the semiconductors silicon and gallium arsenide in contact with pure metals

    NASA Technical Reports Server (NTRS)

    Mishina, H.; Buckley, D. H.

    1984-01-01

    Friction experiments were conducted for the semiconductors silicon and gallium arsenide in contact with pure metals. Polycrystalline titanium, tantalum, nickel, palladium, and platinum were made to contact a single crystal silicon (111) surface. Indium, nickel, copper, and silver were made to contact a single crystal gallium arsenide (100) surface. Sliding was conducted both in room air and in a vacuum of 10 to the minus 9th power torr. The friction of semiconductors in contact with metals depended on a Schottky barrier height formed at the metal semiconductor interface. Metals with a higher barrier height on semiconductors gave lower friction. The effect of the barrier height on friction behavior for argon sputtered cleaned surfaces in vacuum was more specific than that for the surfaces containing films in room air. With a silicon surface sliding on titanium, many silicon particles back transferred. In contrast, a large quantity of indium transferred to the gallium arsenide surface.

  12. Characterization and Modeling Analysis for Metal-Semiconductor-Metal GaAs Diodes with Pd/SiO2 Mixture Electrode

    PubMed Central

    Tan, Shih-Wei; Lai, Shih-Wen

    2012-01-01

    Characterization and modeling of metal-semiconductor-metal (MSM) GaAs diodes using to evaporate SiO2 and Pd simultaneously as a mixture electrode (called M-MSM diodes) compared with similar to evaporate Pd as the electrode (called Pd-MSM diodes) were reported. The barrier height (φ b) and the Richardson constant (A*) were carried out for the thermionic-emission process to describe well the current transport for Pd-MSM diodes in the consideration of the carrier over the metal-semiconductor barrier. In addition, in the consideration of the carrier over both the metal-semiconductor barrier and the insulator-semiconductor barrier simultaneously, thus the thermionic-emission process can be used to describe well the current transport for M-MSM diodes. Furthermore, in the higher applied voltage, the carrier recombination will be taken into discussion. Besides, a composite-current (CC) model is developed to evidence the concepts. Our calculated results are in good agreement with the experimental ones. PMID:23226352

  13. Tunneling effect on double potential barriers GaAs and PbS

    NASA Astrophysics Data System (ADS)

    Prastowo, S. H. B.; Supriadi, B.; Ridlo, Z. R.; Prihandono, T.

    2018-04-01

    A simple model of transport phenomenon tunnelling effect through double barrier structure was developed. In this research we concentrate on the variation of electron energy which entering double potential barriers to transmission coefficient. The barriers using semiconductor materials GaAs (Galium Arsenide) with band-gap energy 1.424 eV, distance of lattice 0.565 nm, and PbS (Lead Sulphide) with band gap energy 0.41 eV distance of lattice is 18 nm. The Analysisof tunnelling effect on double potentials GaAs and PbS using Schrodinger’s equation, continuity, and matrix propagation to get transmission coefficient. The maximum energy of electron that we use is 1.0 eV, and observable from 0.0025 eV- 1.0 eV. The shows the highest transmission coefficient is0.9982 from electron energy 0.5123eV means electron can pass the barriers with probability 99.82%. Semiconductor from materials GaAs and PbS is one of selected material to design semiconductor device because of transmission coefficient directly proportional to bias the voltage of semiconductor device. Application of the theoretical analysis of resonant tunnelling effect on double barriers was used to design and develop new structure and combination of materials for semiconductor device (diode, transistor, and integrated circuit).

  14. Andreev reflection enhancement in semiconductor-superconductor structures

    NASA Astrophysics Data System (ADS)

    Bouscher, Shlomi; Winik, Roni; Hayat, Alex

    2018-02-01

    We develop a theoretical approach for modeling a wide range of semiconductor-superconductor structures with arbitrary potential barriers and a spatially dependent superconducting order parameter. We demonstrate asymmetry in the conductance spectrum as a result of a Schottky barrier shape. We further show that the Andreev reflection process can be significantly enhanced through resonant tunneling with appropriate barrier configuration, which can incorporate the Schottky barrier as a contributing component of the device. Moreover, we show that resonant tunneling can be achieved in superlattice structures as well. These theoretically demonstrated effects along with our modeling approach enable much more efficient Cooper pair injection into semiconductor-superconductor structures, including superconducting optoelectronic devices.

  15. Physical aspects of colossal dielectric constant material CaCu3Ti4O12 thin films

    NASA Astrophysics Data System (ADS)

    Deng, Guochu; He, Zhangbin; Muralt, Paul

    2009-04-01

    The underlying physical mechanism of the so-called colossal dielectric constant phenomenon in CaCu3Ti4O12 (CCTO) thin films were investigated by using semiconductor theories and methods. The semiconductivity of CCTO thin films originated from the acceptor defect at a level ˜90 meV higher than valence band. Two contact types, metal-semiconductor and metal-insulator-semiconductor junctions, were observed and their barrier heights, and impurity concentrations were theoretically calculated. Accordingly, the Schottky barrier height of metal-semiconductor contact is about 0.8 eV, and the diffusion barrier height of metal-insulator-semiconductor contact is about 0.4-0.7 eV. The defect concentrations of both samples are quite similar, of the magnitude of 1019 cm-3, indicating an inherent feature of high defect concentration.

  16. Methods for fabricating a micro heat barrier

    DOEpatents

    Marshall, Albert C.; Kravitz, Stanley H.; Tigges, Chris P.; Vawter, Gregory A.

    2004-01-06

    Methods for fabricating a highly effective, micron-scale micro heat barrier structure and process for manufacturing a micro heat barrier based on semiconductor and/or MEMS fabrication techniques. The micro heat barrier has an array of non-metallic, freestanding microsupports with a height less than 100 microns, attached to a substrate. An infrared reflective membrane (e.g., 1 micron gold) can be supported by the array of microsupports to provide radiation shielding. The micro heat barrier can be evacuated to eliminate gas phase heat conduction and convection. Semi-isotropic, reactive ion plasma etching can be used to create a microspike having a cusp-like shape with a sharp, pointed tip (<0.1 micron), to minimize the tip's contact area. A heat source can be placed directly on the microspikes. The micro heat barrier can have an apparent thermal conductivity in the range of 10.sup.-6 to 10.sup.-7 W/m-K. Multiple layers of reflective membranes can be used to increase thermal resistance.

  17. Spatial fluctuations in barrier height at the graphene-silicon carbide Schottky junction.

    PubMed

    Rajput, S; Chen, M X; Liu, Y; Li, Y Y; Weinert, M; Li, L

    2013-01-01

    When graphene is interfaced with a semiconductor, a Schottky contact forms with rectifying properties. Graphene, however, is also susceptible to the formation of ripples upon making contact with another material. Here we report intrinsic ripple- and electric field-induced effects at the graphene semiconductor Schottky junction, by comparing chemical vapour-deposited graphene transferred on semiconductor surfaces of opposite polarization-the hydrogen-terminated silicon and carbon faces of hexagonal silicon carbide. Using scanning tunnelling microscopy/spectroscopy and first-principles calculations, we show the formation of a narrow Schottky dipole barrier approximately 10 Å wide, which facilitates the observed effective electric field control of the Schottky barrier height. We further find atomic-scale spatial fluctuations in the Schottky barrier that directly follow the undulation of ripples on both graphene-silicon carbide junctions. These findings reveal fundamental properties of the graphene/semiconductor Schottky junction-a key component of vertical graphene devices that offer functionalities unattainable in planar device architecture.

  18. Photovoltaic driven multiple quantum well optical modulator

    NASA Technical Reports Server (NTRS)

    Maserjian, Joseph (Inventor)

    1990-01-01

    Multiple quantum well (MQW) structures (12) are utilized to provide real-time, reliable, high-performance, optically-addressed spatial-light modulators (SLM) (10). The optically-addressed SLM comprises a vertical stack of quantum well layers (12a) within the penetration depth of an optical write signal 18, a plurality of space charge barriers (12b) having predetermined tunneling times by control of doping and thickness. The material comprising the quantum well layers has a lower bandgap than that of the space charge barrier layers. The write signal modulates a read signal (20). The modulation sensitivity of the device is high and no external voltage source is required. In a preferred embodiment, the SLM having interleaved doped semiconductor layers for driving the MQW photovoltaically is characterized by the use of a shift analogous to the Moss-Burnstein shift caused by the filling of two-dimensional states in the multiple quantum wells, thus allowing high modulation sensitivity in very narrow wells. Arrays (30) may be formed with a plurality of the modulators.

  19. Ultralow-power complementary metal-oxide-semiconductor inverters constructed on Schottky barrier modified nanowire metal-oxide-semiconductor field-effect-transistors.

    PubMed

    Ma, R M; Peng, R M; Wen, X N; Dai, L; Liu, C; Sun, T; Xu, W J; Qin, G G

    2010-10-01

    We show that the threshold voltages of both n- and p-channel metal-oxide-semiconductor field-effect-transistors (MOSFETs) can be lowered to close to zero by adding extra Schottky contacts on top of nanowires (NWs). Novel complementary metal-oxide-semiconductor (CMOS) inverters are constructed on these Schottky barrier modified n- and p-channel NW MOSFETs. Based on the high performances of the modified n- and p-channel MOSFETs, especially the low threshold voltages, the as-fabricated CMOS inverters have low operating voltage, high voltage gain, and ultra-low static power dissipation.

  20. Direct control and characterization of a Schottky barrier by scanning tunneling microscopy

    NASA Technical Reports Server (NTRS)

    Bell, L. D.; Kaiser, W. J.; Hecht, M. H.; Grunthaner, F. J.

    1988-01-01

    Scanning tunneling microscopy (STM) methods are used to directly control the barrier height of a metal tunnel tip-semiconductor tunnel junction. Barrier behavior is measured by tunnel current-voltage spectroscopy and compared to theory. A unique surface preparation method is used to prepare a low surface state density Si surface. Control of band bending with this method enables STM investigation of semiconductor subsurface properties.

  1. Control of GaAs Microwave Schottky Diode Electrical Characteristics by Contact Geometry: The Gap Diode.

    DTIC Science & Technology

    1982-05-01

    semiconductor Schottky-barrier contacts are used in many semiconductor devices, including switches, rectifiers, varactors , IMPATTs, mixer and detector...ionic materials such as most of the II-VI compound semiconductors (e.g. ZnS and ZnO) and the transition-metal oxides , the barrier height is strongly...the alloying process described above is nonuniformity, due to the incomplete removal of residual surface oxides prior to the evaporation of the metal

  2. Thermionic emission and tunneling at carbon nanotube-organic semiconductor interface.

    PubMed

    Sarker, Biddut K; Khondaker, Saiful I

    2012-06-26

    We study the charge carrier injection mechanism across the carbon nanotube (CNT)-organic semiconductor interface using a densely aligned carbon nanotube array as electrode and pentacene as organic semiconductor. The current density-voltage (J-V) characteristics measured at different temperatures show a transition from a thermal emission mechanism at high temperature (above 200 K) to a tunneling mechanism at low temperature (below 200 K). A barrier height of ∼0.16 eV is calculated from the thermal emission regime, which is much lower compared to the metal/pentacene devices. At low temperatures, the J-V curves exhibit a direct tunneling mechanism at low bias, corresponding to a trapezoidal barrier, while at high bias the mechanism is well described by Fowler-Nordheim tunneling, which corresponds to a triangular barrier. A transition from direct tunneling to Fowler-Nordheim tunneling further signifies a small injection barrier at the CNT/pentacene interface. Our results presented here are the first direct experimental evidence of low charge carrier injection barrier between CNT electrodes and an organic semiconductor and are a significant step forward in realizing the overall goal of using CNT electrodes in organic electronics.

  3. Current-voltage characteristics of the semiconductor nanowires under the metal-semiconductor-metal structure

    NASA Astrophysics Data System (ADS)

    Wen, Jing; Zhang, Xitian; Gao, Hong; Wang, Mingjiao

    2013-12-01

    We present a method to calculate the I-V characteristics of semiconductor nanowires under the metal-semiconductor-metal (MSM) structure. The carrier concentration as an important parameter is introduced into the expression of the current. The subband structure of the nanowire has been considered for associating it with the position of the Fermi level and circumventing the uncertainties of the contact areas in the contacts. The tunneling and thermionic emission currents in the two Schottky barriers at the two metal-semiconductor contacts are discussed. We find that the two barriers have different influences on the I-V characteristics of the MSM structure, one of which under the forward bias plays the role of threshold voltage if its barrier height is large and the applied voltage is small, and the other under the reverse bias controls the shapes of I-V curves. Our calculations show that the shapes of the I-V curves for the MSM structure are mainly determined by the barrier heights of the contacts and the carrier concentration. The nearly identical I-V characteristics can be obtained by using different values of the barrier heights and carrier concentration, which means that the contact type conversion can be ascribed not only to the changes of the barrier heights but also that of the carrier concentration. We also discuss the mechanisms of the ohmic-Schottky conversions and clarify the ambiguity in the literature. The possibility about the variation of the carrier concentration under the applied fields has been confirmed by experimental results.

  4. Low resistance barrier layer for isolating, adhering, and passivating copper metal in semiconductor fabrication

    DOEpatents

    Weihs, Timothy P.; Barbee, Jr., Troy W.

    2002-01-01

    Cubic or metastable cubic refractory metal carbides act as barrier layers to isolate, adhere, and passivate copper in semiconductor fabrication. One or more barrier layers of the metal carbide are deposited in conjunction with copper metallizations to form a multilayer characterized by a cubic crystal structure with a strong (100) texture. Suitable barrier layer materials include refractory transition metal carbides such as vanadium carbide (VC), niobium carbide (NbC), tantalum carbide (TaC), chromium carbide (Cr.sub.3 C.sub.2), tungsten carbide (WC), and molybdenum carbide (MoC).

  5. Quantum ballistic transport in strained epitaxial germanium

    NASA Astrophysics Data System (ADS)

    Gul, Y.; Holmes, S. N.; Newton, P. J.; Ellis, D. J. P.; Morrison, C.; Pepper, M.; Barnes, C. H. W.; Myronov, M.

    2017-12-01

    Large scale fabrication using Complementary Metal Oxide Semiconductor compatible technology of semiconductor nanostructures that operate on the principles of quantum transport is an exciting possibility now due to the recent development of ultra-high mobility hole gases in epitaxial germanium grown on standard silicon substrates. We present here a ballistic transport study of patterned surface gates on strained Ge quantum wells with SiGe barriers, which confirms the quantum characteristics of the Ge heavy hole valence band structure in 1-dimension. Quantised conductance at multiples of 2e2/h is a universal feature of hole transport in Ge up to 10 × (2e2/h). The behaviour of ballistic plateaus with finite source-drain bias and applied magnetic field is elucidated. In addition, a reordering of the ground state is observed.

  6. Intermediate type excitons in Schottky barriers of A3B6 layer semiconductors and UV photodetectors

    NASA Astrophysics Data System (ADS)

    Alekperov, O. Z.; Guseinov, N. M.; Nadjafov, A. I.

    2006-09-01

    Photoelectric and photovoltaic spectra of Schottky barrier (SB) structures of InSe, GaSe and GaS layered semiconductors (LS) are investigated at quantum energies from the band edge excitons of corresponding materials up to 6.5eV. Spectral dependences of photoconductivity (PC) of photo resistors and barrier structures are strongly different at the quantum energies corresponding to the intermediate type excitons (ITE) observed in these semiconductors. It was suggested that high UV photoconductivity of A3B6 LS is due to existence of high mobility light carriers in the depth of the band structure. It is shown that SB of semitransparent Au-InSe is high sensitive photo detector in UV region of spectra.

  7. Field-effect transistor having a superlattice channel and high carrier velocities at high applied fields

    DOEpatents

    Chaffin, R.J.; Dawson, L.R.; Fritz, I.J.; Osbourn, G.C.; Zipperian, T.E.

    1984-04-19

    In a field-effect transistor comprising a semiconductor having therein a source, a drain, a channel and a gate in operational relationship, there is provided an improvement wherein said semiconductor is a superlattice comprising alternating quantum well and barrier layers, the quantum well layers comprising a first direct gap semiconductor material which in bulk form has a certain bandgap and a curve of electron velocity versus applied electric field which has a maximum electron velocity at a certain electric field, the barrier layers comprising a second semiconductor material having a bandgap wider than that of said first semiconductor material, wherein the layer thicknesses of said quantum well and barrier layers are sufficiently thin that the alternating layers constitute a superlattice having a curve of electron velocity versus applied electric field which has a maximum electron velocity at a certain electric field, and wherein the thicknesses of said quantum well layers are selected to provide a superlattice curve of electron velocity versus applied electric field whereby, at applied electric fields higher than that at which the maximum electron velocity occurs in said first material when in bulk form, the electron velocities are higher in said superlattice than they are in said first semiconductor material in bulk form.

  8. Nanotube junctions

    DOEpatents

    Crespi, Vincent Henry; Cohen, Marvin Lou; Louie, Steven Gwon; Zettl, Alexander Karlwalte

    2004-12-28

    The present invention comprises a new nanoscale metal-semiconductor, semiconductor-semiconductor, or metal-metal junction, designed by introducing topological or chemical defects in the atomic structure of the nanotube. Nanotubes comprising adjacent sections having differing electrical properties are described. These nanotubes can be constructed from combinations of carbon, boron, nitrogen and other elements. The nanotube can be designed having different indices on either side of a junction point in a continuous tube so that the electrical properties on either side of the junction vary in a useful fashion. For example, the inventive nanotube may be electrically conducting on one side of a junction and semiconducting on the other side. An example of a semiconductor-metal junction is a Schottky barrier. Alternatively, the nanotube may exhibit different semiconductor properties on either side of the junction. Nanotubes containing heterojunctions, Schottky barriers, and metal-metal junctions are useful for microcircuitry.

  9. Nanotube junctions

    DOEpatents

    Crespi, Vincent Henry; Cohen, Marvin Lou; Louie, Steven Gwon Sheng; Zettl, Alexander Karlwalter

    2003-01-01

    The present invention comprises a new nanoscale metal-semiconductor, semiconductor-semiconductor, or metal-metal junction, designed by introducing topological or chemical defects in the atomic structure of the nanotube. Nanotubes comprising adjacent sections having differing electrical properties are described. These nanotubes can be constructed from combinations of carbon, boron, nitrogen and other elements. The nanotube can be designed having different indices on either side of a junction point in a continuous tube so that the electrical properties on either side of the junction vary in a useful fashion. For example, the inventive nanotube may be electrically conducting on one side of a junction and semiconducting on the other side. An example of a semiconductor-metal junction is a Schottky barrier. Alternatively, the nanotube may exhibit different semiconductor properties on either side of the junction. Nanotubes containing heterojunctions, Schottky barriers, and metal-metal junctions are useful for microcircuitry.

  10. Complementary barrier infrared detector (CBIRD)

    NASA Technical Reports Server (NTRS)

    Ting, David Z. (Inventor); Bandara, Sumith V. (Inventor); Hill, Cory J. (Inventor); Gunapala, Sarath D. (Inventor)

    2013-01-01

    An infrared detector having a hole barrier region adjacent to one side of an absorber region, an electron barrier region adjacent to the other side of the absorber region, and a semiconductor adjacent to the electron barrier.

  11. Ferroelectric-field-effect-enhanced electroresistance in metal/ferroelectric/semiconductor tunnel junctions

    NASA Astrophysics Data System (ADS)

    Wen, Zheng; Li, Chen; Wu, Di; Li, Aidong; Ming, Naiben

    2013-07-01

    Ferroelectric tunnel junctions (FTJs), composed of two metal electrodes separated by an ultrathin ferroelectric barrier, have attracted much attention as promising candidates for non-volatile resistive memories. Theoretical and experimental works have revealed that the tunnelling resistance switching in FTJs originates mainly from a ferroelectric modulation on the barrier height. However, in these devices, modulation on the barrier width is very limited, although the tunnelling transmittance depends on it exponentially as well. Here we propose a novel tunnelling heterostructure by replacing one of the metal electrodes in a normal FTJ with a heavily doped semiconductor. In these metal/ferroelectric/semiconductor FTJs, not only the height but also the width of the barrier can be electrically modulated as a result of a ferroelectric field effect, leading to a greatly enhanced tunnelling electroresistance. This idea is implemented in Pt/BaTiO3/Nb:SrTiO3 heterostructures, in which an ON/OFF conductance ratio above 104, about one to two orders greater than those reported in normal FTJs, can be achieved at room temperature. The giant tunnelling electroresistance, reliable switching reproducibility and long data retention observed in these metal/ferroelectric/semiconductor FTJs suggest their great potential in non-destructive readout non-volatile memories.

  12. Giant tunnelling electroresistance in metal/ferroelectric/semiconductor tunnel junctions by engineering the Schottky barrier

    PubMed Central

    Xi, Zhongnan; Ruan, Jieji; Li, Chen; Zheng, Chunyan; Wen, Zheng; Dai, Jiyan; Li, Aidong; Wu, Di

    2017-01-01

    Recently, ferroelectric tunnel junctions have attracted much attention due to their potential applications in non-destructive readout non-volatile memories. Using a semiconductor electrode has been proven effective to enhance the tunnelling electroresistance in ferroelectric tunnel junctions. Here we report a systematic investigation on electroresistance of Pt/BaTiO3/Nb:SrTiO3 metal/ferroelectric/semiconductor tunnel junctions by engineering the Schottky barrier on Nb:SrTiO3 surface via varying BaTiO3 thickness and Nb doping concentration. The optimum ON/OFF ratio as great as 6.0 × 106, comparable to that of commercial Flash memories, is achieved in a device with 0.1 wt% Nb concentration and a 4-unit-cell-thick BaTiO3 barrier. With this thinnest BaTiO3 barrier, which shows a negligible resistance to the tunnelling current but is still ferroelectric, the device is reduced to a polarization-modulated metal/semiconductor Schottky junction that exhibits a more efficient control on the tunnelling resistance to produce the giant electroresistance observed. These results may facilitate the design of high performance non-volatile resistive memories. PMID:28513590

  13. Giant tunnelling electroresistance in metal/ferroelectric/semiconductor tunnel junctions by engineering the Schottky barrier

    NASA Astrophysics Data System (ADS)

    Xi, Zhongnan; Ruan, Jieji; Li, Chen; Zheng, Chunyan; Wen, Zheng; Dai, Jiyan; Li, Aidong; Wu, Di

    2017-05-01

    Recently, ferroelectric tunnel junctions have attracted much attention due to their potential applications in non-destructive readout non-volatile memories. Using a semiconductor electrode has been proven effective to enhance the tunnelling electroresistance in ferroelectric tunnel junctions. Here we report a systematic investigation on electroresistance of Pt/BaTiO3/Nb:SrTiO3 metal/ferroelectric/semiconductor tunnel junctions by engineering the Schottky barrier on Nb:SrTiO3 surface via varying BaTiO3 thickness and Nb doping concentration. The optimum ON/OFF ratio as great as 6.0 × 106, comparable to that of commercial Flash memories, is achieved in a device with 0.1 wt% Nb concentration and a 4-unit-cell-thick BaTiO3 barrier. With this thinnest BaTiO3 barrier, which shows a negligible resistance to the tunnelling current but is still ferroelectric, the device is reduced to a polarization-modulated metal/semiconductor Schottky junction that exhibits a more efficient control on the tunnelling resistance to produce the giant electroresistance observed. These results may facilitate the design of high performance non-volatile resistive memories.

  14. Barrier height enhancement of metal/semiconductor contact by an enzyme biofilm interlayer

    NASA Astrophysics Data System (ADS)

    Ocak, Yusuf Selim; Gul Guven, Reyhan; Tombak, Ahmet; Kilicoglu, Tahsin; Guven, Kemal; Dogru, Mehmet

    2013-06-01

    A metal/interlayer/semiconductor (Al/enzyme/p-Si) MIS device was fabricated using α-amylase enzyme as a thin biofilm interlayer. It was observed that the device showed an excellent rectifying behavior and the barrier height value of 0.78 eV for Al/α-amylase/p-Si was meaningfully larger than the one of 0.58 eV for conventional Al/p-Si metal/semiconductor (MS) contact. Enhancement of the interfacial potential barrier of Al/p-Si MS diode was realized using enzyme interlayer by influencing the space charge region of Si semiconductor. The electrical properties of the structure were executed by the help of current-voltage and capacitance-voltage measurements. The photovoltaic properties of the structure were executed under a solar simulator with AM1.5 global filter between 40 and 100 mW/cm2 illumination conditions. It was also reported that the α-amylase enzyme produced from Bacillus licheniformis had a 3.65 eV band gap value obtained from optical method.

  15. Two-dimensional layered semiconductor/graphene heterostructures for solar photovoltaic applications.

    PubMed

    Shanmugam, Mariyappan; Jacobs-Gedrim, Robin; Song, Eui Sang; Yu, Bin

    2014-11-07

    Schottky barriers formed by graphene (monolayer, bilayer, and multilayer) on 2D layered semiconductor tungsten disulfide (WS2) nanosheets are explored for solar energy harvesting. The characteristics of the graphene-WS2 Schottky junction vary significantly with the number of graphene layers on WS2, resulting in differences in solar cell performance. Compared with monolayer or stacked bilayer graphene, multilayer graphene helps in achieving improved solar cell performance due to superior electrical conductivity. The all-layered-material Schottky barrier solar cell employing WS2 as a photoactive semiconductor exhibits efficient photon absorption in the visible spectral range, yielding 3.3% photoelectric conversion efficiency with multilayer graphene as the Schottky contact. Carrier transport at the graphene/WS2 interface and the interfacial recombination process in the Schottky barrier solar cells are examined.

  16. Planar heterostructures of single-layer transition metal dichalcogenides: Composite structures, Schottky junctions, tunneling barriers, and half metals

    NASA Astrophysics Data System (ADS)

    Aras, Mehmet; Kılıç, ćetin; Ciraci, S.

    2017-02-01

    Planar composite structures formed from the stripes of transition metal dichalcogenides joined commensurately along their zigzag or armchair edges can attain different states in a two-dimensional (2D), single-layer, such as a half metal, 2D or one-dimensional (1D) nonmagnetic metal and semiconductor. Widening of stripes induces metal-insulator transition through the confinements of electronic states to adjacent stripes, that results in the metal-semiconductor junction with a well-defined band lineup. Linear bending of the band edges of the semiconductor to form a Schottky barrier at the boundary between the metal and semiconductor is revealed. Unexpectedly, strictly 1D metallic states develop in a 2D system along the boundaries between stripes, which pins the Fermi level. Through the δ doping of a narrow metallic stripe one attains a nanowire in the 2D semiconducting sheet or narrow band semiconductor. A diverse combination of constituent stripes in either periodically repeating or finite-size heterostructures can acquire critical fundamental features and offer device capacities, such as Schottky junctions, nanocapacitors, resonant tunneling double barriers, and spin valves. These predictions are obtained from first-principles calculations performed in the framework of density functional theory.

  17. Diamagnetic excitons and exciton magnetopolaritons in semiconductors

    NASA Astrophysics Data System (ADS)

    Seisyan, R. P.

    2012-05-01

    Interband magneto-absorption in semiconductors is reviewed in the light of the diamagnetic exciton (DE) concept. Beginning with a proof of the exciton nature of oscillating-magnetoabsorption (the DE discovery), development of the DE concept is discussed, including definition of observation conditions, quasi-cubic approximation for hexagonal crystals, quantum-well effects in artificial structures, and comprehension of an important role of the DE polariton. The successful use of the concept application to a broad range of substances is reviewed, namely quasi-Landau magnetic spectroscopy of the ‘Rydberg’ exciton states in cubic semiconductors such as InP and GaAs and in hexagonal ones such as CdSe, the proof of exciton participation in the formation of optical spectra in narrow-gap semiconductors such as InSb, InAs, and, especially, PbTe, observation of DE spectra in semiconductor solid solutions like InGaAs. The most fundamental findings of the DE spectroscopy for various quantum systems are brought together, including the ‘Coulomb-well’ effect, fine structure of discrete oscillatory states in the InGaAs/GaAs multiple quantum wells, the magneto-optical observation of above-barrier exciton. Prospects of the DE physics in ultrahigh magnetic field are discussed, including technological creation of controllable low-dimensional objects with extreme oscillator strengths, formation of magneto-quantum exciton polymer, and even modelling of the hydrogen behaviour in the atmosphere of a neutron star.

  18. Chemical Modification of Semiconductor Surfaces for Molecular Electronics.

    PubMed

    Vilan, Ayelet; Cahen, David

    2017-03-08

    Inserting molecular monolayers within metal/semiconductor interfaces provides one of the most powerful expressions of how minute chemical modifications can affect electronic devices. This topic also has direct importance for technology as it can help improve the efficiency of a variety of electronic devices such as solar cells, LEDs, sensors, and possible future bioelectronic ones. The review covers the main aspects of using chemistry to control the various aspects of interface electrostatics, such as passivation of interface states and alignment of energy levels by intrinsic molecular polarization, as well as charge rearrangement with the adjacent metal and semiconducting contacts. One of the greatest merits of molecular monolayers is their capability to form excellent thin dielectrics, yielding rich and unique current-voltage characteristics for transport across metal/molecular monolayer/semiconductor interfaces. We explain the interplay between the monolayer as tunneling barrier on the one hand, and the electrostatic barrier within the semiconductor, due to its space-charge region, on the other hand, as well as how different monolayer chemistries control each of these barriers. Practical tools to experimentally identify these two barriers and distinguish between them are given, followed by a short look to the future. This review is accompanied by another one, concerning the formation of large-area molecular junctions and charge transport that is dominated solely by molecules.

  19. Effects of ultrathin oxides in conducting MIS structures on GaAs

    NASA Technical Reports Server (NTRS)

    Childs, R. B.; Ruths, J. M.; Sullivan, T. E.; Fonash, S. J.

    1978-01-01

    Schottky barrier-type GaAs baseline devices (semiconductor surface etched and then immediately metalized) and GaAs conducting metal oxide-semiconductor devices are fabricated and characterized. The baseline surfaces (no purposeful oxide) are prepared by a basic or an acidic etch, while the surface for the MIS devices are prepared by oxidizing after the etch step. The metallizations used are thin-film Au, Ag, Pd, and Al. It is shown that the introduction of purposeful oxide into these Schottky barrier-type structures examined on n-type GaAs modifies the barrier formation, and that thin interfacial layers can modify barrier formation through trapping and perhaps chemical reactions. For Au- and Pd-devices, enhanced photovoltaic performance of the MIS configuration is due to increased barrier height.

  20. Intracavity double diode structures with GaInP barrier layers for thermophotonic cooling

    NASA Astrophysics Data System (ADS)

    Tiira, Jonna; Radevici, Ivan; Haggren, Tuomas; Hakkarainen, Teemu; Kivisaari, Pyry; Lyytikäinen, Jari; Aho, Arto; Tukiainen, Antti; Guina, Mircea; Oksanen, Jani

    2017-02-01

    Optical cooling of semiconductors has recently been demonstrated both for optically pumped CdS nanobelts and for electrically injected GaInAsSb LEDs at very low powers. To enable cooling at larger power and to understand and overcome the main obstacles in optical cooling of conventional semiconductor structures, we study thermophotonic (TPX) heat transport in cavity coupled light emitters. Our structures consist of a double heterojunction (DHJ) LED with a GaAs active layer and a corresponding DHJ or a p-n-homojunction photodiode, enclosed within a single semiconductor cavity to eliminate the light extraction challenges. Our presently studied double diode structures (DDS) use GaInP barriers around the GaAs active layer instead of the AlGaAs barriers used in our previous structures. We characterize our updated double diode structures by four point probe IV- measurements and measure how the material modifications affect the recombination parameters and coupling quantum efficiencies in the structures. The coupling quantum efficiency of the new devices with InGaP barrier layers is found to be approximately 10 % larger than for the structures with AlGaAs barriers at the point of maximum efficiency.

  1. Tuning the p-type Schottky barrier in 2D metal/semiconductor interface:boron-sheet on MoSe2, and WSe2

    NASA Astrophysics Data System (ADS)

    Couto, W. R. M.; Miwa, R. H.; Fazzio, A.

    2017-10-01

    Van der Waals (vdW) metal/semiconductor heterostructures have been investigated through first-principles calculations. We have considered the recently synthesized borophene (Mannix et al 2015 Science 350 1513), and the planar boron sheets (S1 and S2) (Feng et al 2016 Nat. Chem. 8 563) as the 2D metal layer, and the transition metal dichalcogenides (TMDCs) MoSe2, and WSe2 as the semiconductor monolayer. We find that the energetic stability of those 2D metal/semiconductor heterojunctions is mostly ruled by the vdW interactions; however, chemical interactions also take place in borophene/TMDC. The electronic charge transfer at the metal/semiconductor interface has been mapped, where we find a a net charge transfer from the TMDCs to the boron sheets. Further electronic structure calculations reveal that the metal/semiconductor interfaces, composed by planar boron sheets S1 and S2, present a p-type Schottky barrier which can be tuned to a p-type ohmic contact by an external electric field.

  2. Low-voltage organic electronics based on a gate-tunable injection barrier in vertical graphene-organic semiconductor heterostructures.

    PubMed

    Hlaing, Htay; Kim, Chang-Hyun; Carta, Fabio; Nam, Chang-Yong; Barton, Rob A; Petrone, Nicholas; Hone, James; Kymissis, Ioannis

    2015-01-14

    The vertical integration of graphene with inorganic semiconductors, oxide semiconductors, and newly emerging layered materials has recently been demonstrated as a promising route toward novel electronic and optoelectronic devices. Here, we report organic thin film transistors based on vertical heterojunctions of graphene and organic semiconductors. In these thin heterostructure devices, current modulation is accomplished by tuning of the injection barriers at the semiconductor/graphene interface with the application of a gate voltage. N-channel devices fabricated with a thin layer of C60 show a room temperature on/off ratio >10(4) and current density of up to 44 mAcm(-2). Because of the ultrashort channel intrinsic to the vertical structure, the device is fully operational at a driving voltage of 200 mV. A complementary p-channel device is also investigated, and a logic inverter based on two complementary transistors is demonstrated. The vertical integration of graphene with organic semiconductors via simple, scalable, and low-temperature fabrication processes opens up new opportunities to realize flexible, transparent organic electronic, and optoelectronic devices.

  3. Charge Transport in Spiro-OMeTAD Investigated through Space-Charge-Limited Current Measurements

    NASA Astrophysics Data System (ADS)

    Röhr, Jason A.; Shi, Xingyuan; Haque, Saif A.; Kirchartz, Thomas; Nelson, Jenny

    2018-04-01

    Extracting charge-carrier mobilities for organic semiconductors from space-charge-limited conduction measurements is complicated in practice by nonideal factors such as trapping in defects and injection barriers. Here, we show that by allowing the bandlike charge-carrier mobility, trap characteristics, injection barrier heights, and the shunt resistance to vary in a multiple-trapping drift-diffusion model, a numerical fit can be obtained to the entire current density-voltage curve from experimental space-charge-limited current measurements on both symmetric and asymmetric 2 ,2',7 ,7' -tetrakis(N ,N -di-4-methoxyphenylamine)-9 ,9' -spirobifluorene (spiro-OMeTAD) single-carrier devices. This approach yields a bandlike mobility that is more than an order of magnitude higher than the effective mobility obtained using analytical approximations, such as the Mott-Gurney law and the moving-electrode equation. It is also shown that where these analytical approximations require a temperature-dependent effective mobility to achieve fits, the numerical model can yield a temperature-, electric-field-, and charge-carrier-density-independent mobility. Finally, we present an analytical model describing trap-limited current flow through a semiconductor in a symmetric single-carrier device. We compare the obtained charge-carrier mobility and trap characteristics from this analytical model to the results from the numerical model, showing excellent agreement. This work shows the importance of accounting for traps and injection barriers explicitly when analyzing current density-voltage curves from space-charge-limited current measurements.

  4. Band alignments in Fe/graphene/Si(001) junctions studied by x-ray photoemission spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Le Breton, J.-C., E-mail: jean-christophe.lebreton@univ-rennes1.fr; Tricot, S.; Delhaye, G.

    2016-08-01

    The control of tunnel contact resistance is of primary importance for semiconductor-based spintronic devices. This control is hardly achieved with conventional oxide-based tunnel barriers due to deposition-induced interface states. Manipulation of single 2D atomic crystals (such as graphene sheets) weakly interacting with their substrate might represent an alternative and efficient way to design new heterostructures for a variety of different purposes including spin injection into semiconductors. In the present paper, we study by x-ray photoemission spectroscopy the band alignments and interface chemistry of iron–graphene-hydrogenated passivated silicon (001) surfaces for a low and a high n-doping concentration. We find that themore » hydrogen passivation of the Si(001) surface remains efficient even with a graphene sheet on the Si(001) surface. For both doping concentrations, the semiconductor is close to flat-band conditions which indicates that the Fermi level is unpinned on the semiconductor side of the Graphene/Si(001):H interface. When iron is deposited on the graphene/Si(001):H structures, the Schottky barrier height remains mainly unaffected by the metallic overlayer with a very low barrier height for electrons, a sought-after property in semiconductor based spintronic devices. Finally, we demonstrate that the graphene layer intercalated between the metal and semiconductor also serves as a protection against iron-silicide formation even at elevated temperatures preventing from the formation of a Si-based magnetic dead layer.« less

  5. Band alignments in Fe/graphene/Si(001) junctions studied by x-ray photoemission spectroscopy

    NASA Astrophysics Data System (ADS)

    Le Breton, J.-C.; Tricot, S.; Delhaye, G.; Lépine, B.; Turban, P.; Schieffer, P.

    2016-08-01

    The control of tunnel contact resistance is of primary importance for semiconductor-based spintronic devices. This control is hardly achieved with conventional oxide-based tunnel barriers due to deposition-induced interface states. Manipulation of single 2D atomic crystals (such as graphene sheets) weakly interacting with their substrate might represent an alternative and efficient way to design new heterostructures for a variety of different purposes including spin injection into semiconductors. In the present paper, we study by x-ray photoemission spectroscopy the band alignments and interface chemistry of iron-graphene-hydrogenated passivated silicon (001) surfaces for a low and a high n-doping concentration. We find that the hydrogen passivation of the Si(001) surface remains efficient even with a graphene sheet on the Si(001) surface. For both doping concentrations, the semiconductor is close to flat-band conditions which indicates that the Fermi level is unpinned on the semiconductor side of the Graphene/Si(001):H interface. When iron is deposited on the graphene/Si(001):H structures, the Schottky barrier height remains mainly unaffected by the metallic overlayer with a very low barrier height for electrons, a sought-after property in semiconductor based spintronic devices. Finally, we demonstrate that the graphene layer intercalated between the metal and semiconductor also serves as a protection against iron-silicide formation even at elevated temperatures preventing from the formation of a Si-based magnetic dead layer.

  6. Effects of Hydrostatic Pressure and Electric Field on the Electron-Related Optical Properties in GaAs Multiple Quantum Well.

    PubMed

    Ospina, D A; Mora-Ramos, M E; Duque, C A

    2017-02-01

    The properties of the electronic structure of a finite-barrier semiconductor multiple quantum well are investigated taking into account the effects of the application of a static electric field and hydrostatic pressure. With the information of the allowed quasi-stationary energy states, the coefficients of linear and nonlinear optical absorption and of the relative refractive index change associated to transitions between allowed subbands are calculated with the use of a two-level scheme for the density matrix equation of motion and the rotating wave approximation. It is noticed that the hydrostatic pressure enhances the amplitude of the nonlinear contribution to the optical response of the multiple quantum well, whilst the linear one becomes reduced. Besides, the calculated coefficients are blueshifted due to the increasing of the applied electric field, and shows systematically dependence upon the hydrostatic pressure. The comparison of these results with those related with the consideration of a stationary spectrum of states in the heterostructure-obtained by placing infinite confining barriers at a conveniently far distance-shows essential differences in the pressure-induced effects in the sense of resonant frequency shifting as well as in the variation of the amplitudes of the optical responses.

  7. Semi-insulating GaAs and Au Schottky barrier photodetectors for near-infrared detection (1280 nm)

    NASA Astrophysics Data System (ADS)

    Nusir, A. I.; Makableh, Y. F.; Manasreh, O.

    2015-08-01

    Schottky barriers formed between metal (Au) and semiconductor (GaAs) can be used to detect photons with energy lower than the bandgap of the semiconductor. In this study, photodetectors based on Schottky barriers were fabricated and characterized for the detection of light at wavelength of 1280 nm. The device structure consists of three gold fingers with 1.75 mm long and separated by 0.95 mm, creating an E shape while the middle finger is disconnected from the outer frame. When the device is biased, electric field is stretched between the middle finger and the two outermost electrodes. The device was characterized by measuring the current-voltage (I-V) curve at room temperature. This showed low dark current on the order of 10-10 A, while the photocurrent was higher than the dark current by four orders of magnitude. The detectivity of the device at room temperature was extracted from the I-V curve and estimated to be on the order of 5.3x1010 cm.Hz0.5/W at 5 V. The step response of the device was measured from time-resolved photocurrent curve at 5 V bias with multiple on/off cycles. From which the average recovery time was estimated to be 0.63 second when the photocurrent decreases by four orders of magnitude, and the average rise time was measured to be 0.897 second. Furthermore, the spectral response spectrum of the device exhibits a strong peak close to the optical communication wavelength (~1.3 μm), which is attributed to the internal photoemission of electrons above the Schottky barrier formed between Au and GaAs.

  8. Early Stages of Interface Formation at Compound Semiconductor Surfaces Studied by Scanning Tunneling Microscopy

    DTIC Science & Technology

    1991-10-01

    classical image potential in an ideal creasing gap separation, that is specific to the form of the metal- insulator -semiconductor (MIS) junction...with which one can precisely adjust s, and hence continuously vary the vacvuum barrier, is a potentially valuable tool for investigating this effect- By... insulator -semiconductor (MIS) junction similar to that shown in Fig. I diverge at the semiconductor-vacuum and vacuum-metal interfaces [7,81. These

  9. Van der Waals metal-semiconductor junction: Weak Fermi level pinning enables effective tuning of Schottky barrier

    PubMed Central

    Liu, Yuanyue; Stradins, Paul; Wei, Su-Huai

    2016-01-01

    Two-dimensional (2D) semiconductors have shown great potential for electronic and optoelectronic applications. However, their development is limited by a large Schottky barrier (SB) at the metal-semiconductor junction (MSJ), which is difficult to tune by using conventional metals because of the effect of strong Fermi level pinning (FLP). We show that this problem can be overcome by using 2D metals, which are bounded with 2D semiconductors through van der Waals (vdW) interactions. This success relies on a weak FLP at the vdW MSJ, which is attributed to the suppression of metal-induced gap states. Consequently, the SB becomes tunable and can vanish with proper 2D metals (for example, H-NbS2). This work not only offers new insights into the fundamental properties of heterojunctions but also uncovers the great potential of 2D metals for device applications. PMID:27152360

  10. Van der Waals metal-semiconductor junction: Weak Fermi level pinning enables effective tuning of Schottky barrier

    DOE PAGES

    Liu, Yuanyue; Stradins, Paul; Wei, Su -Huai

    2016-04-22

    Two-dimensional (2D) semiconductors have shown great potential for electronic and optoelectronic applications. However, their development is limited by a large Schottky barrier (SB) at the metal-semiconductor junction (MSJ), which is difficult to tune by using conventional metals because of the effect of strong Fermi level pinning (FLP). We show that this problem can be overcome by using 2D metals, which are bounded with 2D semiconductors through van der Waals (vdW) interactions. This success relies on a weak FLP at the vdW MSJ, which is attributed to the suppression of metal-induced gap states. Consequently, the SB becomes tunable and can vanishmore » with proper 2D metals (for example, H-NbS2). This work not only offers new insights into the fundamental properties of heterojunctions but also uncovers the great potential of 2D metals for device applications.« less

  11. Organic semiconductor density of states controls the energy level alignment at electrode interfaces

    PubMed Central

    Oehzelt, Martin; Koch, Norbert; Heimel, Georg

    2014-01-01

    Minimizing charge carrier injection barriers and extraction losses at interfaces between organic semiconductors and metallic electrodes is critical for optimizing the performance of organic (opto-) electronic devices. Here, we implement a detailed electrostatic model, capable of reproducing the alignment between the electrode Fermi energy and the transport states in the organic semiconductor both qualitatively and quantitatively. Covering the full phenomenological range of interfacial energy level alignment regimes within a single, consistent framework and continuously connecting the limiting cases described by previously proposed models allows us to resolve conflicting views in the literature. Our results highlight the density of states in the organic semiconductor as a key factor. Its shape and, in particular, the energy distribution of electronic states tailing into the fundamental gap is found to determine both the minimum value of practically achievable injection barriers as well as their spatial profile, ranging from abrupt interface dipoles to extended band-bending regions. PMID:24938867

  12. Integration of an Anti-parallel Pair of Planar Schottky Barrier Diodes for Millimeter and Submillimeter Wavelengths

    DTIC Science & Technology

    1991-08-01

    built in potential OB - barrier potential Om - metal work function Os - semiconductor work function Xs semiconductor electron affinity (tOF...undoped Si0 2 (grown at 350 ’C) at a rate of 35 A/sec. The etch is isotropic, with 75 a lateral etch rate equal to the vertical etch rate. Agitation...the chromium to the atmosphere when the target is changed. The samples must therefore be allowed to outgas in a vacuum for several hours before the

  13. Temperature dependent electrical characterisation of Pt/HfO{sub 2}/n-GaN metal-insulator-semiconductor (MIS) Schottky diodes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shetty, Arjun, E-mail: arjun@ece.iisc.ernet.in; Vinoy, K. J.; Roul, Basanta

    2015-09-15

    This paper reports an improvement in Pt/n-GaN metal-semiconductor (MS) Schottky diode characteristics by the introduction of a layer of HfO{sub 2} (5 nm) between the metal and semiconductor interface. The resulting Pt/HfO{sub 2}/n-GaN metal-insulator-semiconductor (MIS) Schottky diode showed an increase in rectification ratio from 35.9 to 98.9(@ 2V), increase in barrier height (0.52 eV to 0.63eV) and a reduction in ideality factor (2.1 to 1.3) as compared to the MS Schottky. Epitaxial n-type GaN films of thickness 300nm were grown using plasma assisted molecular beam epitaxy (PAMBE). The crystalline and optical qualities of the films were confirmed using high resolutionmore » X-ray diffraction and photoluminescence measurements. Metal-semiconductor (Pt/n-GaN) and metal-insulator-semiconductor (Pt/HfO{sub 2}/n-GaN) Schottky diodes were fabricated. To gain further understanding of the Pt/HfO{sub 2}/GaN interface, I-V characterisation was carried out on the MIS Schottky diode over a temperature range of 150 K to 370 K. The barrier height was found to increase (0.3 eV to 0.79 eV) and the ideality factor decreased (3.6 to 1.2) with increase in temperature from 150 K to 370 K. This temperature dependence was attributed to the inhomogeneous nature of the contact and the explanation was validated by fitting the experimental data into a Gaussian distribution of barrier heights.« less

  14. Spatially inhomogeneous barrier height in graphene/MoS2 Schottky junctions

    NASA Astrophysics Data System (ADS)

    Tomer, Dushyant; Rajput, Shivani; Li, Lian

    Graphene interfaced with a semiconductor forms a Schottky junction with rectifying properties. In this study, graphene Schottky junctions are fabricated by transferring CVD monolayer graphene on mechanically exfoliated MoS2 multilayers. The forward bias current-voltage characteristics are measured in the temperature range of 210-300 K. An increase in the zero bias barrier height and decrease in the ideality factor are observed with increasing temperature. Such behavior is attributed to Schottky barrier inhomogeneities possibly due to graphene ripples and ridges at the junction interface as suggested by atomic force microscopy. Assuming a Gaussian distribution of the barrier height, mean barrier of 0.97+/-0.10 eV is found for the graphene MoS2 junction. Our findings provide significant insight on the barrier height inhomogeneities in graphene/two dimensional semiconductor Schottky junctions. U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering Award No. DEFG02-07ER46228.

  15. Quantum well multijunction photovoltaic cell

    DOEpatents

    Chaffin, R.J.; Osbourn, G.C.

    1983-07-08

    A monolithic, quantum well, multilayer photovoltaic cell comprises a p-n junction comprising a p-region on one side and an n-region on the other side, each of which regions comprises a series of at least three semiconductor layers, all p-type in the p-region and all n-type in the n-region; each of said series of layers comprising alternating barrier and quantum well layers, each barrier layer comprising a semiconductor material having a first bandgap and each quantum well layer comprising a semiconductor material having a second bandgap when in bulk thickness which is narrower than said first bandgap, the barrier layers sandwiching each quantum well layer and each quantum well layer being sufficiently thin that the width of its bandgap is between said first and second bandgaps, such that radiation incident on said cell and above an energy determined by the bandgap of the quantum well layers will be absorbed and will produce an electrical potential across said junction.

  16. Quantum well multijunction photovoltaic cell

    DOEpatents

    Chaffin, Roger J.; Osbourn, Gordon C.

    1987-01-01

    A monolithic, quantum well, multilayer photovoltaic cell comprises a p-n junction comprising a p-region on one side and an n-region on the other side, each of which regions comprises a series of at least three semiconductor layers, all p-type in the p-region and all n-type in the n-region; each of said series of layers comprising alternating barrier and quantum well layers, each barrier layer comprising a semiconductor material having a first bandgap and each quantum well layer comprising a semiconductor material having a second bandgap when in bulk thickness which is narrower than said first bandgap, the barrier layers sandwiching each quantum well layer and each quantum well layer being sufficiently thin that the width of its bandgap is between said first and second bandgaps, such that radiation incident on said cell and above an energy determined by the bandgap of the quantum well layers will be absorbed and will produce an electrical potential across said junction.

  17. Metal-organic semiconductor interfacial barrier height determination from internal photoemission signal in spectral response measurements

    NASA Astrophysics Data System (ADS)

    Kumar, Sandeep; Iyer, S. Sundar Kumar

    2017-04-01

    Accurate and convenient evaluation methods of the interfacial barrier ϕb for charge carriers in metal semiconductor (MS) junctions are important for designing and building better opto-electronic devices. This becomes more critical for organic semiconductor devices where a plethora of molecules are in use and standardised models applicable to myriads of material combinations for the different devices may have limited applicability. In this paper, internal photoemission (IPE) from spectral response (SR) in the ultra-violet to near infra-red range of different MS junctions of metal-organic semiconductor-metal (MSM) test structures is used to determine more realistic MS ϕb values. The representative organic semiconductor considered is [6, 6]-phenyl C61 butyric acid methyl ester, and the metals considered are Al and Au. The IPE signals in the SR measurement of the MSM device are identified and separated before it is analysed to estimate ϕb for the MS junction. The analysis of IPE signals under different bias conditions allows the evaluation of ϕb for both the front and back junctions, as well as for symmetric MSM devices.

  18. Gate Modulation of Graphene-ZnO Nanowire Schottky Diode.

    PubMed

    Liu, Ren; You, Xu-Chen; Fu, Xue-Wen; Lin, Fang; Meng, Jie; Yu, Da-Peng; Liao, Zhi-Min

    2015-05-06

    Graphene-semiconductor interface is important for the applications in electronic and optoelectronic devices. Here we report the modulation of the electric transport properties of graphene/ZnO nanowire Schottky diode by gate voltage (Vg). The ideality factor of the graphene/ZnO nanowire Schottky diode is ~1.7, and the Schottky barrier height is ~0.28 eV without external Vg. The Schottky barrier height is sensitive to Vg due to the variation of Fermi level of graphene. The barrier height increases quickly with sweeping Vg towards the negative value, while decreases slowly towards the positive Vg. Our results are helpful to understand the fundamental mechanism of the electric transport in graphene-semiconductor Schottky diode.

  19. Edge-induced Schottky barrier modulation at metal contacts to exfoliated molybdenum disulfide flakes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nouchi, Ryo, E-mail: r-nouchi@21c.osakafu-u.ac.jp

    2016-08-14

    Ultrathin two-dimensional semiconductors obtained from layered transition-metal dichalcogenides such as molybdenum disulfide (MoS{sub 2}) are promising for ultimately scaled transistors beyond Si. Although the shortening of the semiconductor channel is widely studied, the narrowing of the channel, which should also be important for scaling down the transistor, has been examined to a lesser degree thus far. In this study, the impact of narrowing on mechanically exfoliated MoS{sub 2} flakes was investigated according to the channel-width-dependent Schottky barrier heights at Cr/Au contacts. Narrower channels were found to possess a higher Schottky barrier height, which is ascribed to the edge-induced band bendingmore » in MoS{sub 2}. The higher barrier heights degrade the transistor performance as a higher electrode-contact resistance. Theoretical analyses based on Poisson's equation showed that the edge-induced effect can be alleviated by a high dopant impurity concentration, but this strategy should be limited to channel widths of roughly 0.7 μm because of the impurity-induced charge-carrier mobility degradation. Therefore, proper termination of the dangling bonds at the edges should be necessary for aggressive scaling with layered semiconductors.« less

  20. Spatial inhomogeneous barrier heights at graphene/semiconductor Schottky junctions

    NASA Astrophysics Data System (ADS)

    Tomer, Dushyant

    Graphene, a semimetal with linear energy dispersion, forms Schottky junction when interfaced with a semiconductor. This dissertation presents temperature dependent current-voltage and scanning tunneling microscopy/spectroscopy (STM/S) measurements performed on graphene Schottky junctions formed with both three and two dimensional semiconductors. To fabricate Schottky junctions, we transfer chemical vapor deposited monolayer graphene onto Si- and C-face SiC, Si, GaAs and MoS2 semiconducting substrates using polymer assisted chemical method. We observe three main type of intrinsic spatial inhomogeneities, graphene ripples, ridges and semiconductor steps in STM imaging that can exist at graphene/semiconductor junctions. Tunneling spectroscopy measurements reveal fluctuations in graphene Dirac point position, which is directly related to the Schottky barrier height. We find a direct correlation of Dirac point variation with the topographic undulations of graphene ripples at the graphene/SiC junction. However, no such correlation is established at graphene/Si and Graphene/GaAs junctions and Dirac point variations are attributed to surface states and trapped charges at the interface. In addition to graphene ripples and ridges, we also observe atomic scale moire patterns at graphene/MoS2 junction due to van der Waals interaction at the interface. Periodic topographic modulations due to moire pattern do not lead to local variation in graphene Dirac point, indicating that moire pattern does not contribute to fluctuations in electronic properties of the heterojunction. We perform temperature dependent current-voltage measurements to investigate the impact of topographic inhomogeneities on electrical properties of the Schottky junctions. We observe temperature dependence in junction parameters, such as Schottky barrier height and ideality factor, for all types of Schottky junctions in forward bias measurements. Standard thermionic emission theory which assumes a perfect smooth interface fails to explain such behavior, hence, we apply a modified emission theory with Gaussian distribution of Schottky barrier heights. The modified theory, applicable to inhomogeneous interfaces, explains the temperature dependent behavior of our Schottky junctions and gives a temperature independent mean barrier height. We attribute the inhomogeneous barrier height to the presence of graphene ripples and ridges in case of SiC and MoS2 while surface states and trapped charges at the interface is dominating in Si and GaAs. Additionally, we observe bias dependent current and barrier height in reverse bias regime also for all Schottky junctions. To explain such behavior, we consider two types of reverse bias conduction mechanisms; Poole-Frenkel and Schottky emission. We find that Poole-Frenkel emission explains the characteristics of graphene/SiC junctions very well. However, both the mechanism fails to interpret the behavior of graphene/Si and graphene/GaAs Schottky junctions. These findings provide insight into the fundamental physics at the interface of graphene/semiconductor junctions.

  1. Spatial inhomogeneity in Schottky barrier height at graphene/MoS2 Schottky junctions

    NASA Astrophysics Data System (ADS)

    Tomer, D.; Rajput, S.; Li, L.

    2017-04-01

    Transport properties of graphene semiconductor Schottky junctions strongly depend on interfacial inhomogeneities due to the inherent formation of ripples and ridges. Here, chemical vapor deposited graphene is transferred onto multilayer MoS2 to fabricate Schottky junctions. These junctions exhibit rectifying current-voltage behavior with the zero bias Schottky barrier height increases and ideality factor decreases with increasing temperature between 210 and 300 K. Such behavior is attributed to the inhomogeneous interface that arises from graphene ripples and ridges, as revealed by atomic force and scanning tunneling microscopy imaging. Assuming a Gaussian distribution of the barrier height, a mean value of 0.96  ±  0.14 eV is obtained. These findings indicate a direct correlation between temperature dependent Schottky barrier height and spatial inhomogeneity in graphene/2D semiconductor Schottky junctions.

  2. Planar varactor frequency multiplier devices with blocking barrier

    NASA Technical Reports Server (NTRS)

    Lieneweg, Udo (Inventor); Frerking, Margaret A. (Inventor); Maserjian, Joseph (Inventor)

    1994-01-01

    The invention relates to planar varactor frequency multiplier devices with a heterojunction blocking barrier for near millimeter wave radiation of moderate power from a fundamental input wave. The space charge limitation of the submillimeter frequency multiplier devices of the BIN(sup +) type is overcome by a diode structure comprising an n(sup +) doped layer of semiconductor material functioning as a low resistance back contact, a layer of semiconductor material with n-type doping functioning as a drift region grown on the back contact layer, a delta doping sheet forming a positive charge at the interface of the drift region layer with a barrier layer, and a surface metal contact. The layers thus formed on an n(sup +) doped layer may be divided into two isolated back-to-back BNN(sup +) diodes by separately depositing two surface metal contacts. By repeating the sequence of the drift region layer and the barrier layer with the delta doping sheet at the interfaces between the drift and barrier layers, a plurality of stacked diodes is formed. The novelty of the invention resides in providing n-type semiconductor material for the drift region in a GaAs/AlGaAs structure, and in stacking a plurality of such BNN(sup +) diodes stacked for greater output power with and connected back-to-back with the n(sup +) GaAs layer as an internal back contact and separate metal contact over an AlGaAs barrier layer on top of each stack.

  3. Contact formation and gettering of precipitated impurities by multiple firing during semiconductor device fabrication

    DOEpatents

    Sopori, Bhushan

    2014-05-27

    Methods for contact formation and gettering of precipitated impurities by multiple firing during semiconductor device fabrication are provided. In one embodiment, a method for fabricating an electrical semiconductor device comprises: a first step that includes gettering of impurities from a semiconductor wafer and forming a backsurface field; and a second step that includes forming a front contact for the semiconductor wafer, wherein the second step is performed after completion of the first step.

  4. Graphene-insulator-semiconductor capacitors as superior test structures for photoelectric determination of semiconductor devices band diagrams

    NASA Astrophysics Data System (ADS)

    Piskorski, K.; Passi, V.; Ruhkopf, J.; Lemme, M. C.; Przewlocki, H. M.

    2018-05-01

    We report on the advantages of using Graphene-Insulator-Semiconductor (GIS) instead of Metal-Insulator-Semiconductor (MIS) structures in reliable and precise photoelectric determination of the band alignment at the semiconductor-insulator interface and of the insulator band gap determination. Due to the high transparency to light of the graphene gate in GIS structures large photocurrents due to emission of both electrons and holes from the substrate and negligible photocurrents due to emission of carriers from the gate can be obtained, which allows reliable determination of barrier heights for both electrons, Ee and holes, Eh from the semiconductor substrate. Knowing the values of both Ee and Eh allows direct determination of the insulator band gap EG(I). Photoelectric measurements were made of a series of Graphene-SiO2-Si structures and an example is shown of the results obtained in sequential measurements of the same structure giving the following barrier height values: Ee = 4.34 ± 0.01 eV and Eh = 4.70 ± 0.03 eV. Based on this result and results obtained for other structures in the series we conservatively estimate the maximum uncertainty of both barrier heights estimations at ± 0.05 eV. This sets the SiO2 band gap estimation at EG(I) = 7.92 ± 0.1 eV. It is shown that widely different SiO2 band gap values were found by research groups using various determination methods. We hypothesize that these differences are due to different sensitivities of measurement methods used to the existence of the SiO2 valence band tail.

  5. Dye-sensitized Schottky barrier solar cells

    DOEpatents

    Skotheim, Terje A.

    1978-01-01

    A low-cost dye-sensitized Schottky barrier solar cell comprised of a substrate of semiconductor with an ohmic contact on one face, a sensitizing dye adsorbed onto the opposite face of the semiconductor, a transparent thin-film layer of a reducing agent over the dye, and a thin-film layer of metal over the reducing agent. The ohmic contact and metal layer constitute electrodes for connection to an external circuit and one or the other or both are made transparent to permit light to penetrate to the dye and be absorbed therein for generating electric current. The semiconductor material chosen to be the substrate is one having a wide bandgap and which therefore is transparent; the dye selected is one having a ground state within the bandgap of the semiconductor to generate carriers in the semiconductor, and a first excited state above the conduction band edge of the semiconductor to readily conduct electrons from the dye to the semiconductor; the reducing agent selected is one having a ground state above the ground state of the sensitizer to provide a plentiful source of electrons to the dye during current generation and thereby enhance the generation; and the metal for the thin-film layer of metal is selected to have a Fermi level in the vicinity of or above the ground state of the reducing agent to thereby amply supply electrons to the reducing agent.

  6. Optically controlled electroresistance and electrically controlled photovoltage in ferroelectric tunnel junctions

    PubMed Central

    Jin Hu, Wei; Wang, Zhihong; Yu, Weili; Wu, Tom

    2016-01-01

    Ferroelectric tunnel junctions (FTJs) have recently attracted considerable interest as a promising candidate for applications in the next-generation non-volatile memory technology. In this work, using an ultrathin (3 nm) ferroelectric Sm0.1Bi0.9FeO3 layer as the tunnelling barrier and a semiconducting Nb-doped SrTiO3 single crystal as the bottom electrode, we achieve a tunnelling electroresistance as large as 105. Furthermore, the FTJ memory states could be modulated by light illumination, which is accompanied by a hysteretic photovoltaic effect. These complimentary effects are attributed to the bias- and light-induced modulation of the tunnel barrier, both in height and width, at the semiconductor/ferroelectric interface. Overall, the highly tunable tunnelling electroresistance and the correlated photovoltaic functionalities provide a new route for producing and non-destructively sensing multiple non-volatile electronic states in such FTJs. PMID:26924259

  7. Miniaturized Metal (Metal Alloy)/PdO(x)/SiC Hydrogen and Hydrocarbon Gas Sensors

    NASA Technical Reports Server (NTRS)

    Hunter, Gary W. (Inventor); Xu, Jennifer C. (Inventor); Lukco, Dorothy (Inventor)

    2008-01-01

    A miniaturized Schottky diode hydrogen and hydrocarbon sensor and the method of making same is disclosed and claimed. The sensor comprises a catalytic metal layer, such as palladium, a silicon carbide substrate layer and a thin barrier layer in between the catalytic and substrate layers made of palladium oxide (PdO(x)). This highly stable device provides sensitive gas detection at temperatures ranging from at least 450 to 600 C. The barrier layer prevents reactions between the catalytic metal layer and the substrate layer. Conventional semiconductor fabrication techniques are used to fabricate the small-sided sensors. The use of a thicker palladium oxide barrier layer for other semiconductor structures such as a capacitor and transistor structures is also disclosed.

  8. Polar semiconductor heterojunction structure energy band diagram considerations

    NASA Astrophysics Data System (ADS)

    Lin, Shuxun; Wen, Cheng P.; Wang, Maojun; Hao, Yilong

    2016-03-01

    The unique nature of built-in electric field induced positive/negative charge pairs of polar semiconductor heterojunction structure has led to a more realistic device model for hexagonal III-nitride HEMT. In this modeling approach, the distribution of charge carriers is dictated by the electrostatic potential profile instead of Femi statistics. The proposed device model is found suitable to explain peculiar properties of GaN HEMT structures, including: (1) Discrepancy in measured conventional linear transmission line model (LTLM) sheet resistance and contactless sheet resistance of GaN HEMT with thin barrier layer. (2) Below bandgap radiation from forward biased Nickel Schottky barrier diode on GaN HEMT structure. (3) GaN HEMT barrier layer doping has negligible effect on transistor channel sheet charge density.

  9. Schottky barrier MOSFET systems and fabrication thereof

    DOEpatents

    Welch, James D.

    1997-01-01

    (MOS) device systems-utilizing Schottky barrier source and drain to channel region junctions are disclosed. Experimentally derived results which demonstrate operation of fabricated N-channel and P-channel Schottky barrier (MOSFET) devices, and of fabricated single devices with operational characteristics similar to (CMOS) and to a non-latching (SRC) are reported. Use of essentially non-rectifying Schottky barriers in (MOS) structures involving highly doped and the like and intrinsic semiconductor to allow non-rectifying interconnection of, and electrical accessing of device regions is also disclosed. Insulator effected low leakage current device geometries and fabrication procedures therefore are taught. Selective electrical interconnection of drain to drain, source to drain, or source to source, of N-channel and/or P-channel Schottky barrier (MOSFET) devices formed on P-type, N-type and Intrinsic semiconductor allows realization of Schottky Barrier (CMOS), (MOSFET) with (MOSFET) load, balanced differential (MOSFET) device systems and inverting and non-inverting single devices with operating characteristics similar to (CMOS), which devices can be utilized in modulation, as well as in voltage controled switching and effecting a direction of rectification.

  10. Schottky barrier MOSFET systems and fabrication thereof

    DOEpatents

    Welch, J.D.

    1997-09-02

    (MOS) device systems-utilizing Schottky barrier source and drain to channel region junctions are disclosed. Experimentally derived results which demonstrate operation of fabricated N-channel and P-channel Schottky barrier (MOSFET) devices, and of fabricated single devices with operational characteristics similar to (CMOS) and to a non-latching (SRC) are reported. Use of essentially non-rectifying Schottky barriers in (MOS) structures involving highly doped and the like and intrinsic semiconductor to allow non-rectifying interconnection of, and electrical accessing of device regions is also disclosed. Insulator effected low leakage current device geometries and fabrication procedures therefore are taught. Selective electrical interconnection of drain to drain, source to drain, or source to source, of N-channel and/or P-channel Schottky barrier (MOSFET) devices formed on P-type, N-type and Intrinsic semiconductor allows realization of Schottky Barrier (CMOS), (MOSFET) with (MOSFET) load, balanced differential (MOSFET) device systems and inverting and non-inverting single devices with operating characteristics similar to (CMOS), which devices can be utilized in modulation, as well as in voltage controlled switching and effecting a direction of rectification. 89 figs.

  11. Metal-semiconductor barrier modulation for high photoresponse in transition metal dichalcogenide field effect transistors.

    PubMed

    Li, Hua-Min; Lee, Dae-Yeong; Choi, Min Sup; Qu, Deshun; Liu, Xiaochi; Ra, Chang-Ho; Yoo, Won Jong

    2014-02-10

    A gate-controlled metal-semiconductor barrier modulation and its effect on carrier transport were investigated in two-dimensional (2D) transition metal dichalcogenide (TMDC) field effect transistors (FETs). A strong photoresponse was observed in both unipolar MoS2 and ambipolar WSe2 FETs (i) at the high drain voltage due to a high electric field along the channel for separating photo-excited charge carriers and (ii) at the certain gate voltage due to the optimized barriers for the collection of photo-excited charge carriers at metal contacts. The effective barrier height between Ti/Au and TMDCs was estimated by a low temperature measurement. An ohmic contact behavior and drain-induced barrier lowering (DIBL) were clearly observed in MoS2 FET. In contrast, a Schottky-to-ohmic contact transition was observed in WSe2 FET as the gate voltage increases, due to the change of majority carrier transport from holes to electrons. The gate-dependent barrier modulation effectively controls the carrier transport, demonstrating its great potential in 2D TMDCs for electronic and optoelectronic applications.

  12. Schottky Barrier Height Tuning via the Dopant Segregation Technique through Low-Temperature Microwave Annealing.

    PubMed

    Fu, Chaochao; Zhou, Xiangbiao; Wang, Yan; Xu, Peng; Xu, Ming; Wu, Dongping; Luo, Jun; Zhao, Chao; Zhang, Shi-Li

    2016-04-27

    The Schottky junction source/drain structure has great potential to replace the traditional p/n junction source/drain structure of the future ultra-scaled metal-oxide-semiconductor field effect transistors (MOSFETs), as it can form ultimately shallow junctions. However, the effective Schottky barrier height (SBH) of the Schottky junction needs to be tuned to be lower than 100 meV in order to obtain a high driving current. In this paper, microwave annealing is employed to modify the effective SBH of NiSi on Si via boron or arsenic dopant segregation. The barrier height decreased from 0.4-0.7 eV to 0.2-0.1 eV for both conduction polarities by annealing below 400 °C. Compared with the required temperature in traditional rapid thermal annealing, the temperature demanded in microwave annealing is ~60 °C lower, and the mechanisms of this observation are briefly discussed. Microwave annealing is hence of high interest to future semiconductor processing owing to its unique capability of forming the metal/semiconductor contact at a remarkably lower temperature.

  13. Schottky Barrier Height Tuning via the Dopant Segregation Technique through Low-Temperature Microwave Annealing

    PubMed Central

    Fu, Chaochao; Zhou, Xiangbiao; Wang, Yan; Xu, Peng; Xu, Ming; Wu, Dongping; Luo, Jun; Zhao, Chao; Zhang, Shi-Li

    2016-01-01

    The Schottky junction source/drain structure has great potential to replace the traditional p/n junction source/drain structure of the future ultra-scaled metal-oxide-semiconductor field effect transistors (MOSFETs), as it can form ultimately shallow junctions. However, the effective Schottky barrier height (SBH) of the Schottky junction needs to be tuned to be lower than 100 meV in order to obtain a high driving current. In this paper, microwave annealing is employed to modify the effective SBH of NiSi on Si via boron or arsenic dopant segregation. The barrier height decreased from 0.4–0.7 eV to 0.2–0.1 eV for both conduction polarities by annealing below 400 °C. Compared with the required temperature in traditional rapid thermal annealing, the temperature demanded in microwave annealing is ~60 °C lower, and the mechanisms of this observation are briefly discussed. Microwave annealing is hence of high interest to future semiconductor processing owing to its unique capability of forming the metal/semiconductor contact at a remarkably lower temperature. PMID:28773440

  14. Surface Conduction in III-V Semiconductor Infrared Detector Materials

    NASA Astrophysics Data System (ADS)

    Sidor, Daniel Evan

    III-V semiconductors are increasingly used to produce high performance infrared photodetectors; however a significant challenge inherent to working with these materials is presented by unintended electrical conduction pathways that form along their surfaces. Resulting leakage currents contribute to system noise and are ineffectively mitigated by device cooling, and therefore limit ultimate performance. When the mechanism of surface conduction is understood, the unipolar barrier device architecture offers a potential solution. III-V bulk unipolar barrier detectors that effectively suppress surface leakage have approached the performance of the best II-VI pn-based structures. This thesis begins with a review of empirically determined Schottky barrier heights and uses this information to present a simple model of semiconductor surface conductivity. The model is validated through measurements of degenerate n-type surface conductivity on InAs pn junctions, and non-degenerate surface conductivity on GaSb pn junctions. It is then extended, along with design principles inspired by the InAs-based nBn detector, to create a flat-band pn-based unipolar barrier detector possessing a conductive surface but free of detrimental surface leakage current. Consideration is then given to the relative success of these and related bulk detectors in suppressing surface leakage when compared to analogous superlattice-based designs, and general limitations of unipolar barriers in suppressing surface leakage are proposed. Finally, refinements to the molecular beam epitaxy crystal growth techniques used to produce InAs-based unipolar barrier heterostructure devices are discussed. Improvements leading to III-V device performance well within an order of magnitude of the state-of-the-art are demonstrated.

  15. Observation of quantum oscillation of work function in ultrathin-metal/semiconductor junctions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Takhar, Kuldeep; Meer, Mudassar; Khachariya, Dolar

    2015-09-15

    Quantization in energy level due to confinement is generally observed for semiconductors. This property is used for various quantum devices, and it helps to improve the characteristics of conventional devices. Here, the authors have demonstrated the quantum size effects in ultrathin metal (Ni) layers sandwiched between two large band-gap materials. The metal work function is found to oscillate as a function of its thickness. The thermionic emission current bears the signature of the oscillating work function, which has a linear relationship with barrier heights. This methodology allows direct observation of quantum oscillations in metals at room temperature using a Schottkymore » diode and electrical measurements using source-measure-units. The observed phenomena can provide additional mechanism to tune the barrier height of metal/semiconductor junctions, which are used for various electronic devices.« less

  16. Valence-band structure of the ferromagnetic semiconductor GaMnAs studied by spin-dependent resonant tunneling spectroscopy.

    PubMed

    Ohya, Shinobu; Muneta, Iriya; Hai, Pham Nam; Tanaka, Masaaki

    2010-04-23

    The valence-band structure and the Fermi level (E(F)) position of ferromagnetic-semiconductor GaMnAs are quantitatively investigated by electrically detecting the resonant tunneling levels of a GaMnAs quantum well (QW) in double-barrier heterostructures. The resonant level from the heavy-hole first state is clearly observed in the metallic GaMnAs QW, indicating that holes have a high coherency and that E(F) exists in the band gap. Clear enhancement of tunnel magnetoresistance induced by resonant tunneling is demonstrated in these double-barrier heterostructures.

  17. Electron transport in high aspect ratio semiconductor nanowires and metal-semiconductor interfaces

    NASA Astrophysics Data System (ADS)

    Sun, Zhuting

    We are facing variability problems for modern semiconductor transistors due to the fact that the performances of nominally identical devices in the scale of 10 100 nm could be dramatically different attributed to the small manufacturing variations. Different doping strategies give statistical variations in the number of dopant atom density ND in the channel. The material size gives variations in wire diameter dW. And the immediate environment of the material leads to an additional level of variability. E.g. vacuum-semiconductor interface causes variations in surface state density Ds, metal-semiconductor interface causes variations in Schottky barrier and dielectric semiconductor interface induces dielectric confinement at small scales. To approach these variability problems, I choose Si-doped GaAs nanowires as an example. I investigate transport in Si-doped GaAs nanowire (NW) samples contacted by lithographically patterned Gold-Titanium films as function of temperature T. I find a drastically different temperature dependence between the wire resistance RW, which is relatively weak, and the zero bias resistance RC, which is strong. I show that the data are consistent with a model based on a sharp donor energy level slightly above the bottom of the semiconductor conduction band and develop a simple method for using transport measurements for estimates of the doping density after nanowire growth. I discuss the predictions of effective free carrier density n eff as function of the surface state density Ds and wire size dW. I also describe a correction to the widely used model of Schottky contacts that improves thermodynamic consistency of the Schottky tunnel barrier profile and show that the original theory may underestimate the barrier conductance under certain conditions. I also provide analytical calculations for shallow silicon dopant energy in GaAs crystals, and find the presence of dielectrics (dielectric screening) and free carriers (Coulomb screening) cause a reduction of ionization energy and shift the donor energy level ED upward, accompanying conduction band EC shift downward due to band gap narrowing for doped semiconductor material. The theoretical results are in a reasonable agreement with previous experimental data. I also find that when the material reduces to nanoscale, dielectric confinement and surface depletion compete with both Coulomb screening and dielectric screening that shift the donor level ED down towards the band gap. The calculation should be appropriate for all types of semiconductors and dopant species.

  18. Miniaturized metal (metal alloy)/ PdO.sub.x/SiC hydrogen and hydrocarbon gas sensors

    NASA Technical Reports Server (NTRS)

    Hunter, Gary W. (Inventor); Xu, Jennifer C. (Inventor); Lukco, Dorothy (Inventor)

    2011-01-01

    A miniaturized Schottky diode hydrogen and hydrocarbon sensor and the method of making same is disclosed and claimed. The sensor comprises a catalytic metal layer, such as palladium, a silicon carbide substrate layer and a thin barrier layer in between the catalytic and substrate layers made of palladium oxide (PdO.sub.x ). This highly stable device provides sensitive gas detection at temperatures ranging from at least 450 to 600.degree. C. The barrier layer prevents reactions between the catalytic metal layer and the substrate layer. Conventional semiconductor fabrication techniques are used to fabricate the small-sized sensors. The use of a thicker palladium oxide barrier layer for other semiconductor structures such as a capacitor and transistor structures is also disclosed.

  19. Miniaturized metal (metal alloy)/ PdO.sub.x/SiC hydrogen and hydrocarbon gas sensors

    NASA Technical Reports Server (NTRS)

    Xu, Jennifer C. (Inventor); Hunter, Gary W. (Inventor); Lukco, Dorothy (Inventor)

    2008-01-01

    A miniaturized Schottky diode hydrogen and hydrocarbon sensor and the method of making same is disclosed and claimed. The sensor comprises a catalytic metal layer, such as palladium, a silicon carbide substrate layer and a thin barrier layer in between the catalytic and substrate layers made of palladium oxide (PdO.sub.x). This highly stable device provides sensitive gas detection at temperatures ranging from at least 450 to 600.degree. C. The barrier layer prevents reactions between the catalytic metal layer and the substrate layer. Conventional semiconductor fabrication techniques are used to fabricate the small-sized sensors. The use of a thicker palladium oxide barrier layer for other semiconductor structures such as a capacitor and transistor structures is also disclosed.

  20. Room-temperature semiconductor heterostructure refrigeration

    NASA Astrophysics Data System (ADS)

    Chao, K. A.; Larsson, Magnus; Mal'shukov, A. G.

    2005-07-01

    With the proper design of semiconductor tunneling barrier structures, we can inject low-energy electrons via resonant tunneling, and take out high-energy electrons via a thermionic process. This is the operation principle of our semiconductor heterostructure refrigerator (SHR) without the need of applying a temperature gradient across the device. Even for the bad thermoelectric material AlGaAs, our calculation shows that at room temperature, the SHR can easily lower the temperature by 5-7K. Such devices can be fabricated with the present semiconductor technology. Besides its use as a kitchen refrigerator, the SHR can efficiently cool microelectronic devices.

  1. Operation and biasing for single device equivalent to CMOS

    DOEpatents

    Welch, James D.

    2001-01-01

    Disclosed are semiconductor devices including at least one junction which is rectifying whether the semiconductor is caused to be N or P-type, by the presence of field induced carriers. In particular, inverting and non-inverting gate voltage channel induced semiconductor single devices with operating characteristics similar to conventional multiple device CMOS systems, which can be operated as modulators, are disclosed as are a non-latching SCR and an approach to blocking parasitic currents. Operation of the gate voltage channel induced semiconductor single devices with operating characteristics similar to multiple device CMOS systems under typical bias schemes is described, and simple demonstrative five mask fabrication procedures for the inverting and non-inverting gate voltage channel induced semiconductor single devices with operating characteristics similar to multiple device CMOS systems are also presented.

  2. Investigation of the basic physics of high efficiency semiconductor hot carrier solar cell

    NASA Technical Reports Server (NTRS)

    Alfano, R. R.; Wang, W. B.; Mohaidat, J. M.; Cavicchia, M. A.; Raisky, O. Y.

    1995-01-01

    The main purpose of this research program is to investigate potential semiconductor materials and their multi-band-gap MQW (multiple quantum wells) structures for high efficiency solar cells for aerospace and commercial applications. The absorption and PL (photoluminescence) spectra, the carrier dynamics, and band structures have been investigated for semiconductors of InP, GaP, GaInP, and InGaAsP/InP MQW structures, and for semiconductors of GaAs and AlGaAs by previous measurements. The barrier potential design criteria for achieving maximum energy conversion efficiency, and the resonant tunneling time as a function of barrier width in high efficiency MQW solar cell structures have also been investigated in the first two years. Based on previous carrier dynamics measurements and the time-dependent short circuit current density calculations, an InAs/InGaAs - InGaAs/GaAs - GaAs/AlGaAs MQW solar cell structure with 15 bandgaps has been designed. The absorption and PL spectra in InGaAsP/InP bulk and MQW structures were measured at room temperature and 77 K with different pump wavelength and intensity, to search for resonant states that may affect the solar cell activities. Time-resolved IR absorption for InGaAsP/InP bulk and MQW structures has been measured by femtosecond visible-pump and IR-probe absorption spectroscopy. This, with the absorption and PL measurements, will be helpful to understand the basic physics and device performance in multi-bandgap InAs/InGaAs - InGaAs/InP - InP/InGaP MQW solar cells. In particular, the lifetime of the photoexcited hot electrons is an important parameter for the device operation of InGaAsP/InP MQW solar cells working in the resonant tunneling conditions. Lastly, time evolution of the hot electron relaxation in GaAs has been measured in the temperature range of 4 K through 288 K using femtosecond pump-IR-probe absorption technique. The temperature dependence of the hot electron relaxation time in the X valley has been measured.

  3. Context-based automated defect classification system using multiple morphological masks

    DOEpatents

    Gleason, Shaun S.; Hunt, Martin A.; Sari-Sarraf, Hamed

    2002-01-01

    Automatic detection of defects during the fabrication of semiconductor wafers is largely automated, but the classification of those defects is still performed manually by technicians. This invention includes novel digital image analysis techniques that generate unique feature vector descriptions of semiconductor defects as well as classifiers that use these descriptions to automatically categorize the defects into one of a set of pre-defined classes. Feature extraction techniques based on multiple-focus images, multiple-defect mask images, and segmented semiconductor wafer images are used to create unique feature-based descriptions of the semiconductor defects. These feature-based defect descriptions are subsequently classified by a defect classifier into categories that depend on defect characteristics and defect contextual information, that is, the semiconductor process layer(s) with which the defect comes in contact. At the heart of the system is a knowledge database that stores and distributes historical semiconductor wafer and defect data to guide the feature extraction and classification processes. In summary, this invention takes as its input a set of images containing semiconductor defect information, and generates as its output a classification for the defect that describes not only the defect itself, but also the location of that defect with respect to the semiconductor process layers.

  4. Ballistic Electron Emission Microscopy Studies of Ferromagnet - Semiconductor Interfaces

    NASA Astrophysics Data System (ADS)

    Mather, P. G.; Perrella, A. C.; Yurtsever, A.; Buhrman, R. A.

    2004-03-01

    Devices that employ spin as well as charge effects have been the subjects of extensive study recently. The magnetic tunneling transistor (1) is one important device that demonstrates an electrical means of injecting spin-polarized electrons into a semiconductor. A Schottky barrier lies at the heart of the device, and a high quality spatially homogenous and uniform barrier formed on GaAs is highly desirable. We have used ballistic electron emission microscopy (BEEM) to study CoFe, Fe and permalloy deposited on a GaAs substrate to give nanometer resolved evaluation of hot electron transport through the films and across the Schottky barrier. All films give a homogenous, uniform barrier as compared with evaporated Au/GaAs and Ag/GaAs interfaces. We will report on BEEM measurements of the hot electron transfer ratio across the Schottky barrier for the different ferromagnetic materials, and on the energy and spin-dependent hot electron attenuation lengths of the CoFe, Fe, and permalloy films. (1) Sebastiaan van Dijken, Xin Jiang, Stuart S. P. Parkin, APL, 80, 3364.

  5. Canonical Schottky barrier heights of transition metal dichalcogenide monolayers in contact with a metal

    NASA Astrophysics Data System (ADS)

    Szcześniak, Dominik; Hoehn, Ross D.; Kais, Sabre

    2018-05-01

    The transition metal dichalcogenide (M X2 , where M =Mo , W and X =S , Se, Te) monolayers are of high interest for semiconducting applications at the nanoscale level; this interest is due to both their direct band gaps and high charge mobilities. In this regard, an in-depth understating of the related Schottky barrier heights, associated with the incorporation of M X2 sheets into novel low-dimensional metal-semiconductor junctions, is of crucial importance. Herein, we generate and provide analysis of the Schottky barrier heights behavior to account for the metal-induced gap states concept as its explanation. In particular, the present investigations concentrate on the estimation of the charge neutrality levels directly by employing the primary theoretical model, i.e., the cell-averaged Green's function formalism combined with the complex band structure technique. The results presented herein place charge neutrality levels in the vicinity of the midgap; this is in agreement with previous reports and analogous to the behavior of three-dimensional semiconductors. The calculated canonical Schottky barrier heights are also found to be in agreement with other computational and experimental values in cases where the difference between electronegativities of the semiconductor and metal contact is small. Moreover, the influence of the spin-orbit effects is herein considered and supports that Schottky barrier heights have metal-induced gap state-derived character, regardless whether spin-orbit coupling interactions are considered. The results presented within this report constitute a direct and vital verification of the importance of metal-induced gap states in explaining the behavior of observed Schottky barrier heights at M X2 -metal junctions.

  6. Analytical modeling of trilayer graphene nanoribbon Schottky-barrier FET for high-speed switching applications.

    PubMed

    Rahmani, Meisam; Ahmadi, Mohammad Taghi; Abadi, Hediyeh Karimi Feiz; Saeidmanesh, Mehdi; Akbari, Elnaz; Ismail, Razali

    2013-01-30

    Recent development of trilayer graphene nanoribbon Schottky-barrier field-effect transistors (FETs) will be governed by transistor electrostatics and quantum effects that impose scaling limits like those of Si metal-oxide-semiconductor field-effect transistors. The current-voltage characteristic of a Schottky-barrier FET has been studied as a function of physical parameters such as effective mass, graphene nanoribbon length, gate insulator thickness, and electrical parameters such as Schottky barrier height and applied bias voltage. In this paper, the scaling behaviors of a Schottky-barrier FET using trilayer graphene nanoribbon are studied and analytically modeled. A novel analytical method is also presented for describing a switch in a Schottky-contact double-gate trilayer graphene nanoribbon FET. In the proposed model, different stacking arrangements of trilayer graphene nanoribbon are assumed as metal and semiconductor contacts to form a Schottky transistor. Based on this assumption, an analytical model and numerical solution of the junction current-voltage are presented in which the applied bias voltage and channel length dependence characteristics are highlighted. The model is then compared with other types of transistors. The developed model can assist in comprehending experiments involving graphene nanoribbon Schottky-barrier FETs. It is demonstrated that the proposed structure exhibits negligible short-channel effects, an improved on-current, realistic threshold voltage, and opposite subthreshold slope and meets the International Technology Roadmap for Semiconductors near-term guidelines. Finally, the results showed that there is a fast transient between on-off states. In other words, the suggested model can be used as a high-speed switch where the value of subthreshold slope is small and thus leads to less power consumption.

  7. Hybrid semiconductor nanomagnetoelectronic devices

    NASA Astrophysics Data System (ADS)

    Bae, Jong Uk

    2007-12-01

    The subject of this dissertation is the exploration of a new class of hybrid semiconductor nanomagnetoelectronic devices. In these studies, single-domain nanomagnets are used as the gate in a transistor structure, and the spatially non-uniform magnetic fields that they generate provide an additional means to modulate the channel conductance. A quantum wire etched in a high-mobility GaAs/AlGaAs quantum well serves as the channel of this device and the current flow through it is modulated by a high-aspect-ratio Co nanomagnet. The conductance of this device exhibits clear hysteresis in a magnetic field, which is significantly enhanced when the nanomagnet is used as a gate to form a local tunnel barrier in the semiconductor channel. A simple theoretical model, which models the tunnel barrier as a simple harmonic saddle, is able to account for the experimentallyobserved behavior. Further improvements in the tunneling magneto-resistance of this device should be possible in the future by optimizing the gate and channel geometries. In addition to these investigations, we have also explored the hysteretic magnetoresistance of devices in which the tunnel barrier is absent and the behavior is instead dominated by the properties of the magnetic barrier alone. We show experimentally how quantum corrections to the conductance of the quantum wire compete against the magneto-transport effects induced by the non-uniform magnetic field.

  8. Influence of Asymmetric Contact Form on Contact Resistance and Schottky Barrier, and Corresponding Applications of Diode.

    PubMed

    Zhao, Yudan; Xiao, Xiaoyang; Huo, Yujia; Wang, Yingcheng; Zhang, Tianfu; Jiang, Kaili; Wang, Jiaping; Fan, Shoushan; Li, Qunqing

    2017-06-07

    We have fabricated carbon nanotube and MoS 2 field-effect transistors with asymmetric contact forms of source-drain electrodes, from which we found the current directionality of the devices and different contact resistances under the two current directions. By designing various structures, we can conclude that the asymmetric electrical performance was caused by the difference in the effective Schottky barrier height (Φ SB ) caused by the different contact forms. A detailed temperature-dependent study was used to extract and compare the Φ SB for both contact forms of CNT and MoS 2 devices; we found that the Φ SB for the metal-on-semiconductor form was much lower than that of the semiconductor-on-metal form and is suitable for all p-type, n-type, or ambipolar semiconductors. This conclusion is meaningful with respect to the design and application of nanomaterial electronic devices. Additionally, using the difference in barrier height caused by the contact forms, we have also proposed and fabricated Schottky barrier diodes with a current ratio up to 10 4 ; rectifying circuits consisting of these diodes were able to work in a wide frequency range. This design avoided the use of complex chemical doping or heterojunction methods to achieve fundamental diodes that are relatively simple and use only a single material; these may be suitable for future application in nanoelectronic radio frequency or integrated circuits.

  9. Apparatus and method of manufacture for an imager equipped with a cross-talk barrier

    NASA Technical Reports Server (NTRS)

    Pain, Bedabrata (Inventor)

    2012-01-01

    An imager apparatus and associated starting material are provided. In one embodiment, an imager is provided including a silicon layer of a first conductivity type acting as a junction anode. Such silicon layer is adapted to convert light to photoelectrons. Also included is a semiconductor well of a second conductivity type formed in the silicon layer for acting as a junction cathode. Still yet, a barrier is formed adjacent to the semiconductor well. In another embodiment, a starting material is provided including a first silicon layer and an oxide layer disposed adjacent to the first silicon layer. Also included is a second silicon layer disposed adjacent to the oxide layer opposite the first silicon layer. Such second silicon layer is further equipped with an associated passivation layer and/or barrier.

  10. Schottky-barrier-free contacts with two-dimensional semiconductors by surface-engineered MXenes

    DOE PAGES

    Liu, Yuanyue; Xiao, Hai; Goddard, III, William A.

    2016-11-22

    Two-dimensional (2D) metal carbides and nitrides, called MXenes, have attracted great interest for applications such as energy storage. Here we demonstrate their potential as Schottky-barrier-free metal contacts to 2D semiconductors, providing a solution to the contact-resistance problem in 2D electronics. Based on first principles calculations, we find that the surface chemistry strongly affects the Fermi level of MXenes: O termination always increases the work function with respect to that of bare surface, OH always decreases it, while F exhibits either trend depending on the specific material. This phenomenon originates from the effect of surface dipoles, which together with the weakmore » Fermi level pinning, enable Schottky-barrier-free hole (or electron) injection into 2D semiconductors through van der Waals junctions with some of the O-terminated (or all the OH-terminated) MXenes. Furthermore, we suggest synthetic routes to control the surface terminations based on the calculated formation energies. Finally, this study enhances the understanding of the correlation between surface chemistry and electronic/transport properties of 2D materials, and also gives practical predictions for improving 2D electronics.« less

  11. Ferrite film growth on semiconductor substrates towards microwave and millimeter wave integrated circuits

    NASA Astrophysics Data System (ADS)

    Chen, Z.; Harris, V. G.

    2012-10-01

    It is widely recognized that as electronic systems' operating frequency shifts to microwave and millimeter wave bands, the integration of ferrite passive devices with semiconductor solid state active devices holds significant advantages in improved miniaturization, bandwidth, speed, power and production costs, among others. Traditionally, ferrites have been employed in discrete bulk form, despite attempts to integrate ferrite as films within microwave integrated circuits. Technical barriers remain centric to the incompatibility between ferrite and semiconductor materials and their processing protocols. In this review, we present past and present efforts at ferrite integration with semiconductor platforms with the aim to identify the most promising paths to realizing the complete integration of on-chip ferrite and semiconductor devices, assemblies and systems.

  12. Excitability and optical pulse generation in semiconductor lasers driven by resonant tunneling diode photo-detectors.

    PubMed

    Romeira, Bruno; Javaloyes, Julien; Ironside, Charles N; Figueiredo, José M L; Balle, Salvador; Piro, Oreste

    2013-09-09

    We demonstrate, experimentally and theoretically, excitable nanosecond optical pulses in optoelectronic integrated circuits operating at telecommunication wavelengths (1550 nm) comprising a nanoscale double barrier quantum well resonant tunneling diode (RTD) photo-detector driving a laser diode (LD). When perturbed either electrically or optically by an input signal above a certain threshold, the optoelectronic circuit generates short electrical and optical excitable pulses mimicking the spiking behavior of biological neurons. Interestingly, the asymmetric nonlinear characteristic of the RTD-LD allows for two different regimes where one obtain either single pulses or a burst of multiple pulses. The high-speed excitable response capabilities are promising for neurally inspired information applications in photonics.

  13. Enhancing the Photocatalytic Hydrogen Evolution Performance of a Metal/Semiconductor Catalyst through Modulation of the Schottky Barrier Height by Controlling the Orientation of the Interface.

    PubMed

    Liu, Yang; Gu, Xin; Qi, Wen; Zhu, Hong; Shan, Hao; Chen, Wenlong; Tao, Peng; Song, Chengyi; Shang, Wen; Deng, Tao; Wu, Jianbo

    2017-04-12

    Construction of a metal-semiconductor heterojunction is a promising method to improve heterogeneous photocatalysis for various reactions. Although the structure and photocatalytic performance of such a catalyst system have been extensively studied, few reports have demonstrated the effect of interface orientation at the metal-semiconductor junction on junction-barrier bending and the electronic transport properties. Here, we construct a Pt/PbS heterojunction, in which Pt nanoparticles are used as highly active catalysts and PbS nanocrystals (NCs) with well-controlled shapes are used as light-harvesting supports. Experimental results show that the photoelectrocatalytic activities of the Pt/PbS catalyst are strongly dependent on the contacting facets of PbS at the junction. Pt/octahedral PbS NCs with exposed PbS(111) facets show the highest photoinduced enhancement of hydrogen evolution reaction activity, which is ∼14.38 times higher than that of the ones with only PbS(100) facets (Pt/cubic PbS NCs). This enhancement can further be rationalized by the different energy barriers of the Pt/PbS Schottky junction due to the specific band structure and electron affinity, which is also confirmed by the calculations based on density functional theory. Therefore, controlling the contacting interfaces of a metal/semiconductor material may offer an effective approach to form the desired heterojunction for optimization of the catalytic performance.

  14. The Effect of the Electron Tunneling on the Photoelectric Hot Electrons Generation in Metallic-Semiconductor Nanostructures

    NASA Astrophysics Data System (ADS)

    Elsharif, Asma M.

    2018-01-01

    Semiconductor photonic crystals (MSPhC) were used to convert solar energy into hot electrons. An experimental model was designed by using metallic semiconductor photonic crystals (MSPhC). The designed MSPhC is based on TiO2/Au schottky contact. The model has similar nanocavity structure for broad gold absorption, but the materials on top of the cavity were changed to a metal and a semiconductor in order to collect the hot electrons. Detailed design steps and characterization have shown a broadband sub-bandgap photoresponse at a wavelength of 590 nm. This is due to the surface plasmon absorption by the wafer-scale Au/TiO2 metallic-semiconductor photonic crystal. Analytical calculation of the hot electron transport from the Au thin layer to the TiO2 conduction band is discussed. This theoretical study is based on the quantum tunneling effect. The photo generation of the hot electrons was undertaken at different wavelengths in Au absorber followed by tunneling through a schottky barrier into a TiO2 collector. The presence of a tunnel current from the absorber to the collector under illumination, offers a method to extract carriers from a hot-electron distribution at few bias voltages is presented in this study. The effects of doping different concentrations of the semiconductor on the evolution of the current characteristics were also investigated and discussed. The electrical characteristics were found to be sensitive to any change in the thickness of the barrier.

  15. Canadian Semiconductor Technology Conference, 6th, Ottawa, Canada, Aug. 11-13, 1992, Proceedings

    NASA Astrophysics Data System (ADS)

    Baribeau, Jean-Marc

    1992-11-01

    This volume contains papers on the growth efficiency and distribution coefficient of GaInP-InP epilayers and heterostructures, X-ray photoelectron spectroscopy studies of Ge epilayers on Si(100), and mechanical properties of silicon carbide films for X-ray lithography application. Attention is also given to fine structure in Raman spectroscopy and X-ray reflectometry and its uses for the characterization of superlattices, phase formation in Fe-Si thin-film diffusion couples, process optimization for a micromachined silicon nonreverse valve, and a numerical study of heat transport in thermally isolated flow-rate microsensors. Particular consideration is given to a versatile 2D model for InGaAsP quantum-well semiconductor lasers, gallium arsenide electronics in the marketplace, and optical channel grading in p-type Si/SiGe MOSFETs. Other papers are on ultrafast electron tunneling in a reverse-biased high-efficiency quantum well laser structure, excess currents as a result of trap-assisted tunneling in double-barrier resonant tunneling diodes, and carrier lifetimes in strained InGaAsP multiple quantum-well laser structures.

  16. Interface and photoluminescence characteristics of graphene-(GaN/InGaN){sub n} multiple quantum wells hybrid structure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Liancheng, E-mail: wanglc@semi.ac.cn, E-mail: lzq@semi.ac.cn, E-mail: zh.zhang@hebut.edu.cn; Semiconductor Lighting Technology Research and Development Center, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083; Mind Star

    The effects of graphene on the optical properties of active system, e.g., the InGaN/GaN multiple quantum wells, are thoroughly investigated and clarified. Here, we have investigated the mechanisms accounting for the photoluminescence reduction for the graphene covered GaN/InGaN multiple quantum wells hybrid structure. Compared to the bare multiple quantum wells, the photoluminescence intensity of graphene covered multiple quantum wells showed a 39% decrease after excluding the graphene absorption losses. The responsible mechanisms have been identified with the following factors: (1) the graphene two dimensional hole gas intensifies the polarization field in multiple quantum wells, thus steepening the quantum well bandmore » profile and causing hole-electron pairs to further separate; (2) a lower affinity of graphene compared to air leading to a weaker capability to confine the excited hot electrons in multiple quantum wells; and (3) exciton transfer through non-radiative energy transfer process. These factors are theoretically analysed based on advanced physical models of semiconductor devices calculations and experimentally verified by varying structural parameters, such as the indium fraction in multiple quantum wells and the thickness of the last GaN quantum barrier spacer layer.« less

  17. Field-effect transistor having a superlattice channel and high carrier velocities at high applied fields

    DOEpatents

    Chaffin, R.J.; Dawson, L.R.; Fritz, I.J.; Osbourn, G.C.; Zipperian, T.E.

    1987-06-08

    A field effect transistor comprises a semiconductor having a source, a drain, a channel and a gate in operational relationship. The semiconductor is a strained layer superlattice comprising alternating quantum well and barrier layers, the quantum well layers and barrier layers being selected from the group of layer pairs consisting of InGaAs/AlGaAs, InAs/InAlGaAs, and InAs/InAlAsP. The layer thicknesses of the quantum well and barrier layers are sufficiently thin that the alternating layers constitute a superlattice which has a superlattice conduction band energy level structure in k-vector space. The layer thicknesses of the quantum well layers are selected to provide a superlattice L/sub 2D/-valley which has a shape which is substantially more two-dimensional than that of said bulk L-valley. 2 figs.

  18. Removing the current-limit of vertical organic field effect transistors

    NASA Astrophysics Data System (ADS)

    Sheleg, Gil; Greenman, Michael; Lussem, Bjorn; Tessler, Nir

    2017-11-01

    The reported Vertical Organic Field Effect Transistors (VOFETs) show either superior current and switching speeds or well-behaved transistor performance, especially saturation in the output characteristics. Through the study of the relationship between the device architecture or dimensions and the device performance, we find that achieving a saturation regime in the output characteristics requires that the device operates in the injection limited regime. In current structures, the existence of the injection limited regime depends on the source's injection barrier as well as on the buried semiconductor layer thickness. To overcome the injection limit imposed by the necessity of injection barrier, we suggest a new architecture to realize VOFETs. This architecture shows better gate control and is independent of the injection barrier at the source, thus allowing for several A cm-2 for a semiconductor having a mobility value of 0.1 cm2 V-1 s-1.

  19. Schottky nanocontact of one-dimensional semiconductor nanostructures probed by using conductive atomic force microscopy

    NASA Astrophysics Data System (ADS)

    Lee, Jung Ah; Rok Lim, Young; Jung, Chan Su; Choi, Jun Hee; Im, Hyung Soon; Park, Kidong; Park, Jeunghee; Kim, Gyu Tae

    2016-10-01

    To develop the advanced electronic devices, the surface/interface of each component must be carefully considered. Here, we investigate the electrical properties of metal-semiconductor nanoscale junction using conductive atomic force microscopy (C-AFM). Single-crystalline CdS, CdSe, and ZnO one-dimensional nanostructures are synthesized via chemical vapor transport, and individual nanobelts (or nanowires) are used to fabricate nanojunction electrodes. The current-voltage (I -V) curves are obtained by placing a C-AFM metal (PtIr) tip as a movable contact on the nanobelt (or nanowire), and often exhibit a resistive switching behavior that is rationalized by the Schottky (high resistance state) and ohmic (low resistance state) contacts between the metal and semiconductor. We obtain the Schottky barrier height and the ideality factor through fitting analysis of the I-V curves. The present nanojunction devices exhibit a lower Schottky barrier height and a higher ideality factor than those of the bulk materials, which is consistent with the findings of previous works on nanostructures. It is shown that C-AFM is a powerful tool for characterization of the Schottky contact of conducting channels between semiconductor nanostructures and metal electrodes.

  20. Process for Making a Semiconductor Device with Barrier Film Formation Using a Metal Halide and Products Thereof

    DTIC Science & Technology

    1998-08-20

    structure of the barrier film on an atomic level where the barrier film is comprised of a plurality of contiguous monolayers, while FIG. 7B shows...another embodiment where the barrier film is comprised of a plurality of i contiguous monolayers in which different monolayers thereof are formed... effusion cell, for example a barium fluoride, strontium fluoride or the like effusion cell, is provided at 32, and has a shutter 33. A 15 shutter 35

  1. Universal strategy for Ohmic hole injection into organic semiconductors with high ionization energies

    NASA Astrophysics Data System (ADS)

    Kotadiya, Naresh B.; Lu, Hao; Mondal, Anirban; Ie, Yutaka; Andrienko, Denis; Blom, Paul W. M.; Wetzelaer, Gert-Jan A. H.

    2018-02-01

    Barrier-free (Ohmic) contacts are a key requirement for efficient organic optoelectronic devices, such as organic light-emitting diodes, solar cells, and field-effect transistors. Here, we propose a simple and robust way of forming an Ohmic hole contact on organic semiconductors with a high ionization energy (IE). The injected hole current from high-work-function metal-oxide electrodes is improved by more than an order of magnitude by using an interlayer for which the sole requirement is that it has a higher IE than the organic semiconductor. Insertion of the interlayer results in electrostatic decoupling of the electrode from the semiconductor and realignment of the Fermi level with the IE of the organic semiconductor. The Ohmic-contact formation is illustrated for a number of material combinations and solves the problem of hole injection into organic semiconductors with a high IE of up to 6 eV.

  2. Universal strategy for Ohmic hole injection into organic semiconductors with high ionization energies.

    PubMed

    Kotadiya, Naresh B; Lu, Hao; Mondal, Anirban; Ie, Yutaka; Andrienko, Denis; Blom, Paul W M; Wetzelaer, Gert-Jan A H

    2018-04-01

    Barrier-free (Ohmic) contacts are a key requirement for efficient organic optoelectronic devices, such as organic light-emitting diodes, solar cells, and field-effect transistors. Here, we propose a simple and robust way of forming an Ohmic hole contact on organic semiconductors with a high ionization energy (IE). The injected hole current from high-work-function metal-oxide electrodes is improved by more than an order of magnitude by using an interlayer for which the sole requirement is that it has a higher IE than the organic semiconductor. Insertion of the interlayer results in electrostatic decoupling of the electrode from the semiconductor and realignment of the Fermi level with the IE of the organic semiconductor. The Ohmic-contact formation is illustrated for a number of material combinations and solves the problem of hole injection into organic semiconductors with a high IE of up to 6 eV.

  3. Electrostatic analysis of n-doped SrTiO{sub 3} metal-insulator-semiconductor systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kamerbeek, A. M., E-mail: a.m.kamerbeek@rug.nl; Banerjee, T.; Hueting, R. J. E.

    2015-12-14

    Electron doped SrTiO{sub 3}, a complex-oxide semiconductor, possesses novel electronic properties due to its strong temperature and electric-field dependent permittivity. Due to the high permittivity, metal/n-SrTiO{sub 3} systems show reasonably strong rectification even when SrTiO{sub 3} is degenerately doped. Our experiments show that the insertion of a sub nanometer layer of AlO{sub x} in between the metal and n-SrTiO{sub 3} interface leads to a dramatic reduction of the Schottky barrier height (from around 0.90 V to 0.25 V). This reduces the interface resistivity by 4 orders of magnitude. The derived electrostatic analysis of the metal-insulator-semiconductor (n-SrTiO{sub 3}) system is consistent with thismore » trend. When compared with a Si based MIS system, the change is much larger and mainly governed by the high permittivity of SrTiO{sub 3}. The non-linear permittivity of n-SrTiO{sub 3} leads to unconventional properties such as a temperature dependent surface potential non-existent for semiconductors with linear permittivity such as Si. This allows tuning of the interfacial band alignment, and consequently the Schottky barrier height, in a much more drastic way than in conventional semiconductors.« less

  4. Current injection and transport in polyfluorene

    NASA Astrophysics Data System (ADS)

    Yang, Chieh-Kai; Yang, Chia-Ming; Liao, Hua-Hsien; Horng, Sheng-Fu; Meng, Hsin-Fei

    2007-08-01

    A comprehensive numerical model is established for the electrical processes in a sandwich organic semiconductor device with high carrier injection barrier. The charge injection at the anode interface with 0.8eV energy barrier is dominated by the hopping among the gap states of the semiconductor caused by disorders. The Ohmic behavior at low voltage is demonstrated to be not due to the background doping but the filaments formed by conductive clusters. In bipolar devices with low work function cathode it is shown that near the anode the electron traps significantly enhance hole injection through Fowler-Nordheim tunneling, resulting in rapid increases of the hole carrier and current in comparison with the hole-only devices.

  5. Investigation of significantly high barrier height in Cu/GaN Schottky diode

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garg, Manjari, E-mail: meghagarg142@gmail.com; Kumar, Ashutosh; Singh, R.

    2016-01-15

    Current-voltage (I-V) measurements combined with analytical calculations have been used to explain mechanisms for forward-bias current flow in Copper (Cu) Schottky diodes fabricated on Gallium Nitride (GaN) epitaxial films. An ideality factor of 1.7 was found at room temperature (RT), which indicated deviation from thermionic emission (TE) mechanism for current flow in the Schottky diode. Instead the current transport was better explained using the thermionic field-emission (TFE) mechanism. A high barrier height of 1.19 eV was obtained at room temperature. X-ray photoelectron spectroscopy (XPS) was used to investigate the plausible reason for observing Schottky barrier height (SBH) that is significantlymore » higher than as predicted by the Schottky-Mott model for Cu/GaN diodes. XPS measurements revealed the presence of an ultrathin cuprous oxide (Cu{sub 2}O) layer at the interface between Cu and GaN. With Cu{sub 2}O acting as a degenerate p-type semiconductor with high work function of 5.36 eV, a high barrier height of 1.19 eV is obtained for the Cu/Cu{sub 2}O/GaN Schottky diode. Moreover, the ideality factor and barrier height were found to be temperature dependent, implying spatial inhomogeneity of barrier height at the metal semiconductor interface.« less

  6. Impact of energy filtering and carrier localization on the thermoelectric properties of granular semiconductors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Narducci, Dario, E-mail: dario.narducci@unimib.it; Consorzio DeltaTi Research; Selezneva, Ekaterina

    2012-09-15

    Energy filtering has been widely considered as a suitable tool to increase the thermoelectric performances of several classes of materials. In its essence, energy filtering provides a way to increase the Seebeck coefficient by introducing a strongly energy-dependent scattering mechanism. Under certain conditions, however, potential barriers may lead to carrier localization, that may also affect the thermoelectric properties of a material. A model is proposed, actually showing that randomly distributed potential barriers (as those found, e.g., in polycrystalline films) may lead to the simultaneous occurrence of energy filtering and carrier localization. Localization is shown to cause a decrease of themore » actual carrier density that, along with the quantum tunneling of carriers, may result in an unexpected increase of the power factor with the doping level. The model is corroborated toward experimental data gathered by several authors on degenerate polycrystalline silicon and lead telluride. - Graphical abstract: In heavily doped semiconductors potential barriers may lead to both carrier energy filtering and localization. This may lead to an enhancement of the thermoelectric properties of the material, resulting in an unexpected increase of the power factor with the doping level. Highlights: Black-Right-Pointing-Pointer Potential barriers are shown to lead to carrier localization in thermoelectric materials. Black-Right-Pointing-Pointer Evidence is put forward of the formation of a mobility edge. Black-Right-Pointing-Pointer Energy filtering and localization may explain the enhancement of power factor in degenerate semiconductors.« less

  7. Transport gap of organic semiconductors in organic modified Schottky contacts

    NASA Astrophysics Data System (ADS)

    Zahn, Dietrich R. T.; Kampen, Thorsten U.; Méndez, Henry

    2003-05-01

    Two different organic molecules with similar structure, 3,4,9,10-perylenetetracarboxylic dianhydride (PTCDA) and N, N'-dimethyl-3,4,9,10-perylenetetracarboxylic diimide (DiMe-PTCDI), were used for the modification of Ag Schottky contacts on sulphur passivated GaAs(1 0 0) (S-GaAs). Such diodes were investigated recording in situ current-voltage ( I- V) characteristics. As a function of the PTCDA thickness the effective barrier height of Ag/PTCDA/S-GaAs contacts initially increases from 0.59±0.01 to 0.72±0.01 eV, and then decreases to 0.54±0.01 eV, while only a decrease in barrier height from 0.54±0.01 to 0.45±0.01 eV is observed for DiMe-PTCDI interlayers. The initial increase and decrease in effective barrier height for PTCDA and DiMe-PTCDI respectively, is correlated with the energy level alignment of the lowest unoccupied molecular orbital (LUMO) with respect to the conduction band minimum (CBM) of S-GaAs at the organic/inorganic semiconductor interface. Whilst there is an additional barrier for electrons at the PTCDA/S-GaAs interface of about 150 meV, i.e. the LUMO lies above CBM, the LUMO is aligned or below CBM in the DiMe-PTCDI case. The results also shine light on the important issue of the transport gap in organic semiconductors for which an estimation can be obtained.

  8. Comparative Study on Graded-Barrier AlxGa1‑xN/AlN/GaN/Si Metal-Oxide-Semiconductor Heterostructure Field-Effect Transistor by Using Ultrasonic Spray Pyrolysis Deposition Technique

    NASA Astrophysics Data System (ADS)

    Lee, Ching-Sung; Hsu, Wei-Chou; Huang, Yi-Ping; Liu, Han-Yin; Yang, Wen-Luh; Yang, Shen-Tin

    2018-06-01

    Comparative study on a novel Al2O3-dielectric graded-barrier (GB) AlxGa1‑xN/AlN/GaN/Si (x = 0.22 ∼ 0.3) metal-oxide-semiconductor heterostructure field-effect transistor (MOS-HFET) formed by using the ultrasonic spray pyrolysis deposition (USPD) technique has been made with respect to a conventional-barrier (CB) Al0.26Ga0.74N/AlN/GaN/Si MOS-HFET and the reference Schottky-gate HFET devices. The GB AlxGa1‑xN was devised to improve the interfacial quality and enhance the Schottky barrier height at the same time. A cost-effective ultrasonic spray pyrolysis deposition (USPD) method was used to form the high-k Al2O3 gate dielectric and surface passivation on the AlGaN barrier of the present MOS-HFETs. Comprehensive device performances, including maximum extrinsic transconductance (g m,max), maximum drain-source current density (I DS,max), gate-voltage swing (GVS) linearity, breakdown voltages, subthreshold swing (SS), on/off current ratio (I on /I off ), high frequencies, and power performance are investigated.

  9. Substrate solder barriers for semiconductor epilayer growth

    DOEpatents

    Drummond, Timothy J.; Ginley, David S.; Zipperian, Thomas E.

    1989-01-01

    During the growth of compound semiconductors by epitaxial processes, substrates are typically mounted to a support. In modular beam epitaxy, mounting is done using indium as a solder. This method has two drawbacks: the indium reacts with the substrate, and it is difficult to uniformly wet the back of a large diameter substrate. Both of these problems have been successfully overcome by sputter coating the back of the substrate with a thin layer of tungsten carbide or tungsten carbide and gold. In addition to being compatible with the growth of high quality semiconductor epilayers this coating is also inert in all standard substrate cleaning etchants used for compound semiconductors, and provides uniform distribution of energy in radiant heating.

  10. Substrate solder barriers for semiconductor epilayer growth

    DOEpatents

    Drummond, T.J.; Ginley, D.S.; Zipperian, T.E.

    1989-05-09

    During the growth of compound semiconductors by epitaxial processes, substrates are typically mounted to a support. In modular beam epitaxy, mounting is done using indium as a solder. This method has two drawbacks: the indium reacts with the substrate, and it is difficult to uniformly wet the back of a large diameter substrate. Both of these problems have been successfully overcome by sputter coating the back of the substrate with a thin layer of tungsten carbide or tungsten carbide and gold. In addition to being compatible with the growth of high quality semiconductor epilayers this coating is also inert in all standard substrate cleaning etchants used for compound semiconductors, and provides uniform distribution of energy in radiant heating.

  11. Substrate solder barriers for semiconductor epilayer growth

    DOEpatents

    Drummond, T.J.; Ginley, D.S.; Zipperian, T.E.

    1987-10-23

    During the growth of compound semiconductors by epitaxial processes, substrates are typically mounted to a support. In molecular beam epitaxy, mounting is done using indium as a solder. This method has two drawbacks: the indium reacts with the substrate, and it is difficult to uniformly wet the back of a large diameter substrate. Both of these problems have been successfully overcome by sputter coating the back of the substrate with a thin layer of tungsten carbide or tungsten carbide and gold. In addition to being compatible with the growth of high quality semiconductor epilayers this coating is also inert in all standard substate cleaning etchants used for compound semiconductors, and provides uniform distribution of energy in radiant heating. 1 tab.

  12. Rectification and Photoconduction Mapping of Axial Metal-Semiconductor Interfaces Embedded in GaAs Nanowires

    NASA Astrophysics Data System (ADS)

    Orrù, Marta; Piazza, Vincenzo; Rubini, Silvia; Roddaro, Stefano

    2015-10-01

    Semiconductor nanowires have emerged as an important enabling technology and are today used in many advanced device architectures, with an impact both for what concerns fundamental science and in view of future applications. One of the key challenges in the development of nanowire-based devices is the fabrication of reliable nanoscale contacts. Recent developments in the creation of metal-semiconductor junctions by thermal annealing of metallic electrodes offer promising perspectives. Here, we analyze the optoelectronic properties of nano-Schottky barriers obtained thanks to the controlled formation of metallic AuGa regions in GaAs nanowire. The junctions display a rectifying behavior and their transport characteristics are analyzed to extract the average ideality factor and barrier height in the current architecture. The presence, location, and properties of the Schottky junctions are cross-correlated with spatially resolved photocurrent measurements. Broadband light emission is reported in the reverse breakdown regime; this observation, combined with the absence of electroluminescence at forward bias, is consistent with the device unipolar nature.

  13. Multiple gap photovoltaic device

    DOEpatents

    Dalal, Vikram L.

    1981-01-01

    A multiple gap photovoltaic device having a transparent electrical contact adjacent a first cell which in turn is adjacent a second cell on an opaque electrical contact, includes utilizing an amorphous semiconductor as the first cell and a crystalline semiconductor as the second cell.

  14. Electrical properties of nano-resistors made from the Zr-doped HfO2 high-k dielectric film

    NASA Astrophysics Data System (ADS)

    Zhang, Shumao; Kuo, Yue

    2018-03-01

    Electrical properties of nano-sized resistors made from the breakdown of the metal-oxide-semiconductor capacitor composed of the amorphous high-k gate dielectric have been investigated under different stress voltages and temperatures. The effective resistance of nano-resistors in the device was estimated from the I-V curve in the high voltage range. It decreased with the increase of the number of resistors. The resistance showed complicated temperature dependence, i.e. it neither behaves like a conductor nor a semiconductor. In the low voltage operation range, the charge transfer was controlled by the Schottky barrier at the nano-resistor/Si interface. The barrier height decreased with the increase of stress voltage, which was probably caused by the change of the nano-resistor composition. Separately, it was observed that the barrier height was dependent on the temperature, which was probably due to the dynamic nano-resistor formation process and the inhomogeneous barrier height distribution. The unique electrical characteristics of this new type of nano-resistors are important for many electronic and optoelectronic applications.

  15. Low-Resistance Spin Injection into Silicon Using Graphene Tunnel Barriers

    DTIC Science & Technology

    2012-11-01

    compromise spin injection/transport/detection. Ferromagnetic metals readily form silicides even at room tempera- ture19, and diffusion of the ferromagnetic... metal /tunnel barrier/Si contacts using 2 nm SiO2 (triangles), 1.5 nm Al2O3 (diamond) and monolayer graphene (circles) tunnel barriers prepared from...and B. T. Jonker* Spin manipulation in a semiconductor offers a new paradigm for device operation beyond Moore’s law. Ferromagnetic metals are ideal

  16. Superlattice photoelectrodes for photoelectrochemical cells

    DOEpatents

    Nozik, Arthur J.

    1987-01-01

    A superlattice or multiple-quantum-well semiconductor is used as a photoelectrode in a photoelectrochemical process for converting solar energy into useful fuels or chemicals. The quantum minibands of the superlattice or multiple-quantum-well semiconductor effectively capture hot-charge carriers at or near their discrete quantum energies and deliver them to drive a chemical reaction in an electrolyte. The hot-charge carries can be injected into the electrolyte at or near the various discrete multiple energy levels quantum minibands, or they can be equilibrated among themselves to a hot-carrier pool and then injected into the electrolyte at one average energy that is higher than the lowest quantum band gap in the semiconductor.

  17. Plastic Schottky barrier solar cells

    DOEpatents

    Waldrop, James R.; Cohen, Marshall J.

    1984-01-24

    A photovoltaic cell structure is fabricated from an active medium including an undoped, intrinsically p-type organic semiconductor comprising polyacetylene. When a film of such material is in rectifying contact with a magnesium electrode, a Schottky-barrier junction is obtained within the body of the cell structure. Also, a gold overlayer passivates the magnesium layer on the undoped polyacetylene film.

  18. Metal Contacts in Semiconductors.

    DTIC Science & Technology

    1983-11-01

    greater understanding of the role that imperfec- tions, defects etc. play in the formation of Schottk~y barriers and related devices. In section 1 of...these effects. In Section 2 of this report we consider the role of surface defects in the pinning of the Fermi level at free semiconductor surfaces and...in the adsorption and oxidation processes involved when these surfaces interact with gases and metals. The role of imperfections at metal

  19. Single photon detection with self-quenching multiplication

    NASA Technical Reports Server (NTRS)

    Zheng, Xinyu (Inventor); Cunningham, Thomas J. (Inventor); Pain, Bedabrata (Inventor)

    2011-01-01

    A photoelectronic device and an avalanche self-quenching process for a photoelectronic device are described. The photoelectronic device comprises a nanoscale semiconductor multiplication region and a nanoscale doped semiconductor quenching structure including a depletion region and an undepletion region. The photoelectronic device can act as a single photon detector or a single carrier multiplier. The avalanche self-quenching process allows electrical field reduction in the multiplication region by movement of the multiplication carriers, thus quenching the avalanche.

  20. Design and simulation of GaN based Schottky betavoltaic nuclear micro-battery.

    PubMed

    San, Haisheng; Yao, Shulin; Wang, Xiang; Cheng, Zaijun; Chen, Xuyuan

    2013-10-01

    The current paper presents a theoretical analysis of Ni-63 nuclear micro-battery based on a wide-band gap semiconductor GaN thin-film covered with thin Ni/Au films to form Schottky barrier for carrier separation. The total energy deposition in GaN was calculated using Monte Carlo methods by taking into account the full beta spectral energy, which provided an optimal design on Schottky barrier width. The calculated results show that an 8 μm thick Schottky barrier can collect about 95% of the incident beta particle energy. Considering the actual limitations of current GaN growth technique, a Fe-doped compensation technique by MOCVD method can be used to realize the n-type GaN with a carrier concentration of 1×10(15) cm(-3), by which a GaN based Schottky betavoltaic micro-battery can achieve an energy conversion efficiency of 2.25% based on the theoretical calculations of semiconductor device physics. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. Free-electron laser spectroscopy in biology, medicine, and materials science; Proceedings of the Meeting, Los Angeles, CA, Jan. 22, 1993

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schwettman, H.A.

    1993-01-01

    Various papers on FEL spectroscopy in biology, medicine, and materials science are presented. Individual topics addressed include: Vanderbilt University FEL Center, FIR FEL facility at the University of California/Santa Barbara, FEL research facilities and opportunities at Duke, facilities at the Stanford Picosecond FEL Center, FIR nonlinear response of electrons in semiconductor nanostructures, FIR harmonic generation from semiconductor heterostructures, intrinsic response times of double-barrier resonant tunneling diodes at tetrahertz frequencies, semiconductor spectroscopy and ablation processes with the Vanderbilt FEL. Also discussed are: picosecond nonlinear optics in semiconductor quantum wells with the SCA FEL, excitation spectroscopy of thin-film disordered semiconductors, biophysical applicationmore » of FELs, FEL investigation of energy transfer in condensed phase systems, probing protein photochemistry and dynamics with ultrafast infrared spectroscopy, plasma ablation of hard tissues by FEL, FEL irradiation of the cornea.« less

  2. Wavelength-resonant surface-emitting semiconductor laser

    DOEpatents

    Brueck, Steven R. J.; Schaus, Christian F.; Osinski, Marek A.; McInerney, John G.; Raja, M. Yasin A.; Brennan, Thomas M.; Hammons, Burrell E.

    1989-01-01

    A wavelength resonant semiconductor gain medium is disclosed. The essential feature of this medium is a multiplicity of quantum-well gain regions separated by semiconductor spacer regions of higher bandgap. Each period of this medium consisting of one quantum-well region and the adjacent spacer region is chosen such that the total width is equal to an integral multiple of 1/2 the wavelength in the medium of the radiation with which the medium is interacting. Optical, electron-beam and electrical injection pumping of the medium is disclosed. This medium may be used as a laser medium for single devices or arrays either with or without reflectors, which may be either semiconductor or external.

  3. Strontium ruthenate-anatase titanium dioxide heterojunctions from first-principles: Electronic structure, spin, and interface dipoles

    NASA Astrophysics Data System (ADS)

    Ferdous, Naheed; Ertekin, Elif

    2016-07-01

    The epitaxial integration of functional oxides with wide band gap semiconductors offers the possibility of new material systems for electronics and energy conversion applications. We use first principles to consider an epitaxial interface between the correlated metal oxide SrRuO3 and the wide band gap semiconductor TiO2, and assess energy level alignment, interfacial chemistry, and interfacial dipole formation. Due to the ferromagnetic, half-metallic character of SrRuO3, according to which only one spin is present at the Fermi level, we demonstrate the existence of a spin dependent band alignment across the interface. For two different terminations of SrRuO3, the interface is found to be rectifying with a Schottky barrier of ≈1.3-1.6 eV, in good agreement with experiment. In the minority spin, SrRuO3 exhibits a Schottky barrier alignment with TiO2 and our calculated Schottky barrier height is in excellent agreement with previous experimental measurements. For majority spin carriers, we find that SrRuO3 recovers its exchange splitting gap and bulk-like properties within a few monolayers of the interface. These results demonstrate a possible approach to achieve spin-dependent transport across a heteroepitaxial interface between a functional oxide material and a conventional wide band gap semiconductor.

  4. Investigation of ultrahigh sensitivity in GaInAsP nanolaser biosensor

    NASA Astrophysics Data System (ADS)

    Saijo, Yoshito; Watanabe, Takumi; Hasegawa, Yu; Nishijima, Yoshiaki; Baba, Toshihiko

    2018-02-01

    We have developed GaInAsP semiconductor photonic crystal nanolaser biosensor and demonstrated the detection of ultralow-concentration (fM to aM) proteins and deoxyribonucleic acids (DNAs) adsorbed on the device surface. In general, this type of photonic sensors exploiting optical resonance has been considered to detect the refractive index of biomolecules via the wavelength shift. However, this principle cannot explain the detection of such ultralowconcentration. Therefore, we investigated another candidate principle, i.e., ion sensitivity. We consider such a process that 1) the electric charge of biomolecules changes the nanolaser's surface charge, 2) the Schottky barrier near the semiconductor surface is increased or decreased, 3) the distribution of photopumped carriers is modified by the barrier, 4) the refractive index of the semiconductor is changed by the carrier effects, and 5) the laser wavelength shifts. To confirm this process, we electrochemically measured the zeta and flatband potentials when charged electrolyte polymers were adsorbed in water. We clearly observed that these potentials temporally behaved consistently with that of the laser wavelength, which suggests that polymers significantly acted on the Schottky barrier. The same behaviors were also observed for the adsorption of 1 fM DNA. We consider that a limited number of charged DNA changed the surface functional group of the entire device surface. Such charge effects will be the key that achieves the ultrahigh sensitivity in the nanolaser biosensor.

  5. Insulator charging limits direct current across tunneling metal-insulator-semiconductor junctions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vilan, Ayelet

    Molecular electronics studies how the molecular nature affects the probability of charge carriers to tunnel through the molecules. Nevertheless, transport is also critically affected by the contacts to the molecules, an aspect that is often overlooked. Specifically, the limited ability of non-metallic contacts to maintain the required charge balance across the fairly insulating molecule often have dramatic effects. This paper shows that in the case of lead/organic monolayer-silicon junctions, a charge balance is responsible for an unusual current scaling, with the junction diameter (perimeter), rather than its area. This is attributed to the balance between the 2D charging at themore » metal/insulator interface and the 3D charging of the semiconductor space-charge region. A derivative method is developed to quantify transport across tunneling metal-insulator-semiconductor junctions; this enables separating the tunneling barrier from the space-charge barrier for a given current-voltage curve, without complementary measurements. The paper provides practical tools to analyze specific molecular junctions compatible with existing silicon technology, and demonstrates the importance of contacts' physics in modeling charge transport across molecular junctions.« less

  6. High-temperature tunneling electroresistance in metal/ferroelectric/semiconductor tunnel junctions

    NASA Astrophysics Data System (ADS)

    Xi, Zhongnan; Jin, Qiao; Zheng, Chunyan; Zhang, Yongcheng; Lu, Chaojing; Li, Qiang; Li, Shandong; Dai, Jiyan; Wen, Zheng

    2017-09-01

    Recently, ferroelectric tunnel junctions (FTJs) have attracted great attention due to promising applications in non-volatile memories. In this study, we report high-temperature tunneling electroresistance (TER) of metal/ferroelectric/semiconductor FTJs. Hysteretic resistance-voltage loops are observed in the Pt/BaTiO3/Nb:SrTiO3 tunnel junction from 300 to 513 K due to the modulation of interfacial Schottky barrier by polarization switching in the 4 u.c.-thick BaTiO3 barrier via a ferroelectric field effect. The Pt/BaTiO3/Nb:SrTiO3 device exhibits a giant ROFF/RON resistance ratio of ˜3 × 105 at 383 K and maintains bipolar resistance switching up to 513 K, suggesting excellent thermal endurance of the FTJs. The temperature-dependent TER behaviors are discussed in terms of the decrease of polarization in the BaTiO3 barrier, and the associated junction barrier profiles are deduced by transport and capacitance analyses. In addition, by extrapolating the retention time at elevated temperature in an Arrhenius-type relation, activation energy of ˜0.93 eV and room-temperature retention time of ˜70 years can be extracted.

  7. First-principles study of the effects of Silicon doping on the Schottky barrier of TiSi2/Si interfaces

    NASA Astrophysics Data System (ADS)

    Wang, Han; Silva, Eduardo; West, Damien; Sun, Yiyang; Restrepo, Oscar; Zhang, Shengbai; Kota, Murali

    As scaling of semiconductor devices is pursued in order to improve power efficiency, quantum effects due to the reduced dimensions on devices have become dominant factors in power, performance, and area scaling. In particular, source/drain contact resistance has become a limiting factor in the overall device power efficiency and performance. As a consequence, techniques such as heavy doping of source and drain have been explored to reduce the contact resistance, thereby shrinking the width of depletion region and lowering the Schottky barrier height. In this work, we study the relation between doping in Silicon and the Schottky barrier of a TiSi2/Si interface with first-principles calculation. Virtual Crystal Approximation (VCA) is used to calculate the average potential of the interface with varying doping concentration, while the I-V curve for the corresponding interface is calculated with a generalized one-dimensional transfer matrix method. The relation between substitutional and interstitial Boron and Phosphorus dopant near the interface, and their effect on tuning the Schottky barrier is studied. These studies provide insight to the type of doping and the effect of dopant segregation to optimize metal-semiconductor interface resistance.

  8. I-V characteristics of graphene nanoribbon/h-BN heterojunctions and resonant tunneling.

    PubMed

    Wakai, Taiga; Sakamoto, Shoichi; Tomiya, Mitsuyoshi

    2018-07-04

    We present the first principle calculations of the electrical properties of graphene sheet/h-BN heterojunction (GS/h-BN) and 11-armchair graphene nanoribbon/h-BN heterojunction (11-AGNR/h-BN), which are carried out using the density functional theory (DFT) method and the non-equilibrium Green's function (NEGF) technique. Since 11-AGNR belongs to the conductive (3n-1)-family of AGNR, both are metallic nanomaterials with two transverse arrays of h-BN, which is a wide-gap semi-conductor. The two h-BN arrays act as double barriers. The transmission functions (TF) and I-[Formula: see text] characteristics of GS/h-BN and 11-AGNR/h-BN are calculated by DFT and NEGF, and they show that quantum double barrier tunneling occurs. The TF becomes very spiky in both materials, and it leads to step-wise I-[Formula: see text] characteristics rather than negative resistance, which is the typical behavior of double barriers in semiconductors. The results of our first principle calculations are also compared with 1D Dirac equation model for the double barrier system. The model explains most of the peaks of the transmission functions nearby the Fermi energy quite well. They are due to quantum tunneling.

  9. Collaborative research in tunneling and field emission pumped surface wave local oscillators and amplifiers for infrared and submillimeter wavelengths under director's discretionary fund

    NASA Technical Reports Server (NTRS)

    Gustafson, T. K.

    1982-01-01

    Progress is reported in work towards the development of surface wave sources for the infrared and sub-millimeter portion of the spectrum to be based upon electron pumping by tunneling electrons in metal-barrier-metal or metal-barrier-semiconductor devices. Tunneling phenomena and the coupling of radiation to tunnel junctions were studied. The propagation characteristics of surface electro-magnetic modes in metal-insulator-p(++) semiconductor structures as a function of frequency were calculated. A model for the gain process based upon Tucker's formalism was developed and used to estimate what low frequency gain might be expected from such structures. The question of gain was addressed from a more fundamental viewpoint using the method of Lasher and Stern.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Veselov, D. A., E-mail: dmitriy90@list.ru; Shashkin, I. S.; Bakhvalov, K. V.

    Semiconductor lasers based on MOCVD-grown AlGaInAs/InP separate-confinement heterostructures are studied. It is shown that raising only the energy-gap width of AlGaInAs-waveguides without the introduction of additional barriers results in more pronounced current leakage into the cladding layers. It is found that the introduction of additional barrier layers at the waveguide–cladding-layer interface blocks current leakage into the cladding layers, but results in an increase in the internal optical loss with increasing pump current. It is experimentally demonstrated that the introduction of blocking layers makes it possible to obtain maximum values of the internal quantum efficiency of stimulated emission (92%) and continuouswavemore » output optical power (3.2 W) in semiconductor lasers in the eye-safe wavelength range (1400–1600 nm).« less

  11. Calculation of the Schottky barrier and current–voltage characteristics of metal–alloy structures based on silicon carbide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Altuhov, V. I., E-mail: altukhovv@mail.ru; Kasyanenko, I. S.; Sankin, A. V.

    2016-09-15

    A simple but nonlinear model of the defect density at a metal–semiconductor interface, when a Schottky barrier is formed by surface defects states localized at the interface, is developed. It is shown that taking the nonlinear dependence of the Fermi level on the defect density into account leads to a Schottky barrier increase by 15–25%. The calculated barrier heights are used to analyze the current–voltage characteristics of n-M/p-(SiC){sub 1–x}(AlN){sub x} structures. The results of calculations are compared to experimental data.

  12. Quantum propagation and confinement in 1D systems using the transfer-matrix method

    NASA Astrophysics Data System (ADS)

    Pujol, Olivier; Carles, Robert; Pérez, José-Philippe

    2014-05-01

    The aim of this article is to provide some Matlab scripts to the teaching community in quantum physics. The scripts are based on the transfer-matrix formalism and offer a very efficient and versatile tool to solve problems of a physical object (electron, proton, neutron, etc) with one-dimensional (1D) stationary potential energy. Resonant tunnelling through a multiple-barrier or confinement in wells of various shapes is particularly analysed. The results are quantitatively discussed with semiconductor heterostructures, harmonic and anharmonic molecular vibrations, or neutrons in a gravity field. Scripts and other examples (hydrogen-like ions and transmission by a smooth variation of potential energy) are available freely at http://www-loa.univ-lille1.fr/˜pujol in three languages: English, French and Spanish.

  13. Diffusion barriers

    NASA Technical Reports Server (NTRS)

    Nicolet, M. A.

    1983-01-01

    The choice of the metallic film for the contact to a semiconductor device is discussed. One way to try to stabilize a contact is by interposing a thin film of a material that has low diffusivity for the atoms in question. This thin film application is known as a diffusion barrier. Three types of barriers can be distinguished. The stuffed barrier derives its low atomic diffusivity to impurities that concentrate along the extended defects of a polycrystalline layer. Sacrificial barriers exploit the fact that some (elemental) thin films react in a laterally uniform and reproducible fashion. Sacrificial barriers have the advantage that the point of their failure is predictable. Passive barriers are those most closely approximating an ideal barrier. The most-studied case is that of sputtered TiN films. Stuffed barriers may be viewed as passive barriers whose low diffusivity material extends along the defects of the polycrystalline host.

  14. Method for measuring the drift mobility in doped semiconductors

    DOEpatents

    Crandall, Richard S.

    1982-01-01

    A method for measuring the drift mobility of majority carriers in semiconductors consists of measuring the current transient in a Schottky-barrier device following the termination of a forward bias pulse. An example is given using an amorphous silicon hydrogenated material doped with 0.2% phosphorous. The method is particularly useful with material in which the dielectric relaxation time is shorter than the carrier transit time. It is particularly useful in material useful in solar cells.

  15. InP and GaAs characterization with variable stoichiometry obtained by molecular spray

    NASA Technical Reports Server (NTRS)

    Massies, J.; Linh, N. T.; Olivier, J.; Faulconnier, P.; Poirier, R.

    1979-01-01

    Both InP and GaAs surfaces were studied in parallel. A molecular spray technique was used to obtain two semiconductor surfaces with different superficial compositions. The structures of these surfaces were examined by electron diffraction. Electron energy loss was measured spectroscopically in order to determine surface electrical characteristics. The results are used to support conclusions relative to the role of surface composition in establishing a Schottky barrier effect in semiconductor devices.

  16. Recent Vertical External Cavity Surface Emitting Lasers (VECSELs) Developments for Sensor Applications (POSTPRINT)

    DTIC Science & Technology

    2013-02-01

    edge-emitting strained InxGa1−xSb/AlyGa1−ySb quantum well struc- tures using solid-source molecular beam epitaxy (MBE) with varying barrier heights...intersubband quantum wells. The most common high-power edge-emitting semiconductor lasers suffter from poor beam quality, due primarily to the linewidth...reduces the power scalability of semiconductor lasers. In vertical cavity surface emitting lasers ( VCSELs ), light propagates parallel to the growth

  17. In Situ Chemical Modification of Schottky Barrier in Solution-Processed Zinc Tin Oxide Diode.

    PubMed

    Son, Youngbae; Li, Jiabo; Peterson, Rebecca L

    2016-09-14

    Here we present a novel in situ chemical modification process to form vertical Schottky diodes using palladium (Pd) rectifying bottom contacts, amorphous zinc tin oxide (Zn-Sn-O) semiconductor made via acetate-based solution process, and molybdenum top ohmic contacts. Using X-ray photoelectron spectroscopy depth profiling, we show that oxygen plasma treatment of Pd creates a PdOx interface layer, which is then reduced back to metallic Pd by in situ reactions during Zn-Sn-O film annealing. The plasma treatment ensures an oxygen-rich environment in the semiconductor near the Schottky barrier, reducing the level of oxygen-deficiency-related defects and improving the rectifying contact. Using this process, we achieve diodes with high forward current density exceeding 10(3)A cm(-2) at 1 V, rectification ratios of >10(2), and ideality factors of around 1.9. The measured diode current-voltage characteristics are compared to numerical simulations of thermionic field emission with sub-bandgap states in the semiconductor, which we attribute to spatial variations in metal stoichiometry of amorphous Zn-Sn-O. To the best of our knowledge, this is the first demonstration of vertical Schottky diodes using solution-processed amorphous metal oxide semiconductor. Furthermore, the in situ chemical modification method developed here can be adapted to tune interface properties in many other oxide devices.

  18. Spin Coherence in Semiconductor Nanostructures

    DTIC Science & Technology

    2006-12-10

    to the collector under the operating conditions of the unipolar spin transistor. This work has appeared in Journal of Applied Physics. (Left...Original proposal of the homojunction unipolar spin transistor, showing the dropping of the barrier for carriers to leak from base to collector ...Right) new proposal of the heterostructure unipolar spin transistor, showing that the barrier for majority carriers to leak from base to collector is

  19. Roadmap on semiconductor-cell biointerfaces

    NASA Astrophysics Data System (ADS)

    Tian, Bozhi; Xu, Shuai; Rogers, John A.; Cestellos-Blanco, Stefano; Yang, Peidong; Carvalho-de-Souza, João L.; Bezanilla, Francisco; Liu, Jia; Bao, Zhenan; Hjort, Martin; Cao, Yuhong; Melosh, Nicholas; Lanzani, Guglielmo; Benfenati, Fabio; Galli, Giulia; Gygi, Francois; Kautz, Rylan; Gorodetsky, Alon A.; Kim, Samuel S.; Lu, Timothy K.; Anikeeva, Polina; Cifra, Michal; Krivosudský, Ondrej; Havelka, Daniel; Jiang, Yuanwen

    2018-05-01

    This roadmap outlines the role semiconductor-based materials play in understanding the complex biophysical dynamics at multiple length scales, as well as the design and implementation of next-generation electronic, optoelectronic, and mechanical devices for biointerfaces. The roadmap emphasizes the advantages of semiconductor building blocks in interfacing, monitoring, and manipulating the activity of biological components, and discusses the possibility of using active semiconductor-cell interfaces for discovering new signaling processes in the biological world.

  20. Characterization of the absorbance bleaching in AllnAs/AlGaInAs multiple-quantum wells for semiconductor saturable absorbers.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wanke, Michael Clement; Cederberg, Jeffrey George; Alliman, Darrell L.

    2010-05-01

    Semiconductor saturable absorbers (SESAs) introduce loss into a solid-state laser cavity until the cavity field bleaches the absorber producing a high-energy pulse. Multiple quantum wells (MQWs) of AlGaInAs grown lattice-matched to InP have characteristics that make them attractive for SESAs. The band gap can be tuned around the target wavelength, 1064 nm, and the large conduction band offset relative to the AlInAs barrier material helps reduces the saturation fluence, and transparent substrate reduces nonsaturable losses. We have characterized the lifetime of the bleaching process, the modulation depth, the nonsaturable losses, and the saturation fluence associated with SESAs. We compare differentmore » growth conditions and structure designs. These parameters give insight into the quality of the epitaxy and effect structure design has on SESA performance in a laser cavity. AlGaInAs MQWs were grown by MOVPE using a Veeco D125 machine using methyl-substituted metal-organics and hydride sources at a growth temperature of 660 C at a pressure of 60 Torr. A single period of the basic SESA design consists of approximately 130 to 140 nm of AlInAs barrier followed by two AlGaInAs quantum wells separated by 10 nm AlInAs. This design places the QWs near the nodes of the 1064-nm laser cavity standing wave. Structures consisting of 10-, 20-, and 30-periods were grown and evaluated. The SESAs were measured at 1064 nm using an optical pump-probe technique. The absorbance bleaching lifetime varies from 160 to 300 nsec. The nonsaturable loss was as much as 50% for structures grown on n-type, sulfur-doped InP substrates, but was reduced to 16% when compensated, Fe-doped InP substrates were used. The modulation depth of the SESAs increased linearly from 9% to 30% with the number of periods. We are currently investigating how detuning the QW transition energy impacts the bleaching characteristics. We will discuss how each of these parameters impacts the laser performance.« less

  1. Selective control of electron and hole tunneling in 2D assembly

    PubMed Central

    Chu, Dongil; Lee, Young Hee; Kim, Eun Kyu

    2017-01-01

    Recent discoveries in the field of two-dimensional (2D) materials have led to the demonstration of exotic devices. Although they have new potential applications in electronics, thermally activated transport over a metal/semiconductor barrier sets physical subthermionic limitations. The challenge of realizing an innovative transistor geometry that exploits this concern remains. A new class of 2D assembly (namely, “carristor”) with a configuration similar to the metal-insulator-semiconductor structure is introduced in this work. Superior functionalities, such as a current rectification ratio of up to 400,000 and a switching ratio of higher than 106 at room temperature, are realized by quantum-mechanical tunneling of majority and minority carriers across the barrier. These carristors have a potential application as the fundamental building block of low–power consumption electronics. PMID:28439554

  2. Dark current suppression of MgZnO metal-semiconductor-metal solar-blind ultraviolet photodetector by asymmetric electrode structures.

    PubMed

    Wang, Ping; Zheng, Qinghong; Tang, Qing; Yang, Yintang; Guo, Lixin; Huang, Feng; Song, Zhenjie; Zhang, Zhiyong

    2014-01-15

    The application of asymmetric Schottky barrier and electrode area in an MgZnO metal-semiconductor-metal (MSM) solar-blind ultraviolet photodetector has been investigated by a physical-based numerical model in which the electron mobility is obtained by an ensemble Monte Carlo simulation combined with first principle calculations using the density functional theory. Compared with the experimental data of symmetric and asymmetric MSM structures based on ZnO substrate, the validity of this model is verified. The asymmetric Schottky barrier and electrode area devices exhibit reductions of 20 times and 1.3 times on dark current, respectively, without apparent photocurrent scarification. The plots of photo-to-dark current ratio (PDR) indicate that the asymmetric MgZnO MSM structure has better dark current characteristic than that of the symmetric one.

  3. Theory of thermionic emission from a two-dimensional conductor and its application to a graphene-semiconductor Schottky junction

    NASA Astrophysics Data System (ADS)

    Trushin, Maxim

    2018-04-01

    The standard theory of thermionic emission developed for three-dimensional semiconductors does not apply to two-dimensional materials even for making qualitative predictions because of the vanishing out-of-plane quasiparticle velocity. This study reveals the fundamental origin of the out-of-plane charge carrier motion in a two-dimensional conductor due to the finite quasiparticle lifetime and huge uncertainty of the out-of-plane momentum. The theory is applied to a Schottky junction between graphene and a bulk semiconductor to derive a thermionic constant, which, in contrast to the conventional Richardson constant, is determined by the Schottky barrier height and Fermi level in graphene.

  4. Effect of temperature on series resistance of organic/inorganic semiconductor junction diode

    NASA Astrophysics Data System (ADS)

    Tripathi, Udbhav; Kaur, Ramneek; Bharti, Shivani

    2016-05-01

    The paper reports the fabrication and characterization of CuPc/n-Si organic/inorganic semiconductor diode. Copper phthalocyanine, a p-type organic semiconductor layer has been deposited on Si substrate by thermal evaporation technique. The detailed analysis of the forward and reverse bias current-voltage characteristics has been provided. Temperature dependence of the schottky diode parameters has been studied and discussed in the temperature range, 303 K to 353 K. Series resistance of the diode has been determined using Cheung's function method. Series resistance decreases with increase in temperature. The large value of series resistance at low temperature has been explained on the basis of barrier inhomogeneities in the diode.

  5. Gamma ray detector modules

    NASA Technical Reports Server (NTRS)

    Capote, M. Albert (Inventor); Lenos, Howard A. (Inventor)

    2009-01-01

    A radiation detector assembly has a semiconductor detector array substrate of CdZnTe or CdTe, having a plurality of detector cell pads on a first surface thereof, the pads having a contact metallization and a solder barrier metallization. An interposer card has planar dimensions no larger than planar dimensions of the semiconductor detector array substrate, a plurality of interconnect pads on a first surface thereof, at least one readout semiconductor chip and at least one connector on a second surface thereof, each having planar dimensions no larger than the planar dimensions of the interposer card. Solder columns extend from contacts on the interposer first surface to the plurality of pads on the semiconductor detector array substrate first surface, the solder columns having at least one solder having a melting point or liquidus less than 120 degrees C. An encapsulant is disposed between the interposer circuit card first surface and the semiconductor detector array substrate first surface, encapsulating the solder columns, the encapsulant curing at a temperature no greater than 120 degrees C.

  6. Field-effect transistor having a superlattice channel and high carrier velocities at high applied fields

    DOEpatents

    Chaffin, deceased, Roger J.; Dawson, Ralph; Fritz, Ian J.; Osbourn, Gordon C.; Zipperian, Thomas E.

    1989-01-01

    A field effect transistor comprises a semiconductor having a source, a drain, a channel and a gate in operational relationship. The semiconductor is a strained layer superlattice comprising alternating quantum well and barrier layers, the quantum well layers and barrier layers being selected from the group of layer pairs consisting of InGaAs/AlGaAs, InAs/InAlGaAs, and InAs/InAlAsP. The layer thicknesses of the quantum well and barrier layers are sufficiently thin that the alternating layers constitute a superlattice which has a superlattice conduction band energy level structure in k-vector space which includes a lowest energy .GAMMA.-valley and a next lowest energy L-valley, each k-vector corresponding to one of the orthogonal directions defined by the planes of said layers and the directions perpendicular thereto. The layer thicknesses of the quantum well layers are selected to provide a superlattice L.sub.2D -valley which has a shape which is substantially more two-dimensional than that of said bulk L-valley.

  7. Effect of localized states on the current-voltage characteristics of metal-semiconductor contacts with thin interfacial layer

    NASA Astrophysics Data System (ADS)

    Chattopadhyay, P.

    1994-10-01

    The role of discrete localized states on the current-voltage characteristics of metal-semiconductor contact is examined. It is seen that, because of these localized states, the logarithmic current vs voltage characteristics become nonlinear. Such nonlinearity is found sensitive to the temperature, and the energy and density of the localized states. The predicted temperature dependence of barrier height and the current-voltage characteristics are in agreement with the experimental results of Aboelfotoh [ Phys. Rev. B39, 5070 (1989)].

  8. Plastic Schottky-barrier solar cells

    DOEpatents

    Waldrop, J.R.; Cohen, M.J.

    1981-12-30

    A photovoltaic cell structure is fabricated from an active medium including an undoped polyacetylene, organic semiconductor. When a film of such material is in rectifying contact with a metallic area electrode, a Schottky-barrier junction is obtained within the body of the cell structure. Also, a gold overlayer passivates a magnesium layer on the undoped polyacetylene film. With the proper selection and location of elements a photovoltaic cell structure and solar cell are obtained.

  9. The dynamical conductance of graphene tunnelling structures.

    PubMed

    Zhang, Huan; Chan, K S; Lin, Zijing

    2011-12-16

    The dynamical conductances of graphene tunnelling structures were numerically calculated using the scattering matrix method with the interaction effect included in a phenomenological approach. The overall single-barrier dynamical conductance is capacitative. Transmission resonances in the single-barrier structure lead to dips in the capacitative imaginary part of the response. This is different from the ac responses of typical semiconductor nanostructures, where transmission resonances usually lead to inductive peaks. The features of the dips depend on the Fermi energy. When the Fermi energy is below half of the barrier height, the dips are sharper. When the Fermi energy is higher than half of the barrier height, the dips are broader. Inductive behaviours can be observed in a double-barrier structure due to the resonances formed by reflection between the two barriers.

  10. Dynamic spin polarization by orientation-dependent separation in a ferromagnet-semiconductor hybrid

    NASA Astrophysics Data System (ADS)

    Korenev, V. L.; Akimov, I. A.; Zaitsev, S. V.; Sapega, V. F.; Langer, L.; Yakovlev, D. R.; Danilov, Yu. A.; Bayer, M.

    2012-07-01

    Integration of magnetism into semiconductor electronics would facilitate an all-in-one-chip computer. Ferromagnet/bulk semiconductor hybrids have been, so far, mainly considered as key devices to read out the ferromagnetism by means of spin injection. Here we demonstrate that a Mn-based ferromagnetic layer acts as an orientation-dependent separator for carrier spins confined in a semiconductor quantum well that is set apart from the ferromagnet by a barrier only a few nanometers thick. By this spin-separation effect, a non-equilibrium electron-spin polarization is accumulated in the quantum well due to spin-dependent electron transfer to the ferromagnet. The significant advance of this hybrid design is that the excellent optical properties of the quantum well are maintained. This opens up the possibility of optical readout of the ferromagnet's magnetization and control of the non-equilibrium spin polarization in non-magnetic quantum wells.

  11. Dynamic spin polarization by orientation-dependent separation in a ferromagnet-semiconductor hybrid.

    PubMed

    Korenev, V L; Akimov, I A; Zaitsev, S V; Sapega, V F; Langer, L; Yakovlev, D R; Danilov, Yu A; Bayer, M

    2012-07-17

    Integration of magnetism into semiconductor electronics would facilitate an all-in-one-chip computer. Ferromagnet/bulk semiconductor hybrids have been, so far, mainly considered as key devices to read out the ferromagnetism by means of spin injection. Here we demonstrate that a Mn-based ferromagnetic layer acts as an orientation-dependent separator for carrier spins confined in a semiconductor quantum well that is set apart from the ferromagnet by a barrier only a few nanometers thick. By this spin-separation effect, a non-equilibrium electron-spin polarization is accumulated in the quantum well due to spin-dependent electron transfer to the ferromagnet. The significant advance of this hybrid design is that the excellent optical properties of the quantum well are maintained. This opens up the possibility of optical readout of the ferromagnet's magnetization and control of the non-equilibrium spin polarization in non-magnetic quantum wells.

  12. Demonstration of the spin solar cell and spin photodiode effect

    PubMed Central

    Endres, B.; Ciorga, M.; Schmid, M.; Utz, M.; Bougeard, D.; Weiss, D.; Bayreuther, G.; Back, C.H.

    2013-01-01

    Spin injection and extraction are at the core of semiconductor spintronics. Electrical injection is one method of choice for the creation of a sizeable spin polarization in a semiconductor, requiring especially tailored tunnel or Schottky barriers. Alternatively, optical orientation can be used to generate spins in semiconductors with significant spin-orbit interaction, if optical selection rules are obeyed, typically by using circularly polarized light at a well-defined wavelength. Here we introduce a novel concept for spin injection/extraction that combines the principle of a solar cell with the creation of spin accumulation. We demonstrate that efficient optical spin injection can be achieved with unpolarized light by illuminating a p-n junction where the p-type region consists of a ferromagnet. The discovered mechanism opens the window for the optical generation of a sizeable spin accumulation also in semiconductors without direct band gap such as Si or Ge. PMID:23820766

  13. Main principles of developing exploitation models of semiconductor devices

    NASA Astrophysics Data System (ADS)

    Gradoboev, A. V.; Simonova, A. V.

    2018-05-01

    The paper represents primary tasks, solutions of which allow to develop the exploitation modes of semiconductor devices taking into account complex and combined influence of ionizing irradiation and operation factors. The structure of the exploitation model of the semiconductor device is presented, which is based on radiation and reliability models. Furthermore, it was shown that the exploitation model should take into account complex and combine influence of various ionizing irradiation types and operation factors. The algorithm of developing the exploitation model of the semiconductor devices is proposed. The possibility of creating the radiation model of Schottky barrier diode, Schottky field-effect transistor and Gunn diode is shown based on the available experimental data. The basic exploitation model of IR-LEDs based upon double AlGaAs heterostructures is represented. The practical application of the exploitation models will allow to output the electronic products with guaranteed operational properties.

  14. A graphene solution to conductivity mismatch: spin injection from ferromagnetic metal/graphene tunnel contacts into silicon

    NASA Astrophysics Data System (ADS)

    van't Erve, Olaf

    2014-03-01

    New paradigms for spin-based devices, such as spin-FETs and reconfigurable logic, have been proposed and modeled. These devices rely on electron spin being injected, transported, manipulated and detected in a semiconductor channel. This work is the first demonstration on how a single layer of graphene can be used as a low resistance tunnel barrier solution for electrical spin injection into Silicon at room temperature. We will show that a FM metal / monolayer graphene contact serves as a spin-polarized tunnel barrier which successfully circumvents the classic metal / semiconductor conductivity mismatch issue for electrical spin injection. We demonstrate electrical injection and detection of spin accumulation in Si above room temperature, and show that the corresponding spin lifetimes correlate with the Si carrier concentration, confirming that the spin accumulation measured occurs in the Si and not in interface trap states. An ideal tunnel barrier should exhibit several key material characteristics: a uniform and planar habit with well-controlled thickness, minimal defect / trapped charge density, a low resistance-area product for minimal power consumption, and compatibility with both the FM metal and semiconductor, insuring minimal diffusion to/from the surrounding materials at temperatures required for device processing. Graphene, offers all of the above, while preserving spin injection properties, making it a compelling solution to the conductivity mismatch for spin injection into Si. Although Graphene is very conductive in plane, it exhibits poor conductivity perpendicular to the plane. Its sp2 bonding results in a highly uniform, defect free layer, which is chemically inert, thermally robust, and essentially impervious to diffusion. The use of a single monolayer of graphene at the Si interface provides a much lower RA product than any film of an oxide thick enough to prevent pinholes (1 nm). Our results identify a new route to low resistance-area product spin-polarized contacts, a crucial requirement enabling future semiconductor spintronic devices, which rely upon two-terminal magnetoresistance, including spin-based transistors, logic and memory.

  15. Direct measurement of free-energy barrier to nucleation of crystallites in amorphous silicon thin films

    NASA Technical Reports Server (NTRS)

    Shi, Frank G.

    1994-01-01

    A method is introduced to measure the free-energy barrier W(sup *), the activation energy, and activation entropy to nucleation of crystallites in amorphous solids, independent of the energy barrier to growth. The method allows one to determine the temperature dependence of W(sup *), and the effect of the preparation conditions of the initial amorphous phase, the dopants, and the crystallization methds on W(sup *). The method is applied to determine the free-energy barrier to nucleation of crystallites in amorphous silicon (a-Si) thin films. For thermally induced nucleation in a-Si thin films with annealing temperatures in the range of from 824 to 983 K, the free-energy barrier W(sup *) to nucleation of silicon crystals is about 2.0 - 2.1 eV regardless of the preparation conditions of the films. The observation supports the idea that a-Si transforms into an intermediate amorphous state through the structural relaxation prior to the onset of nucleation of crystallites in a-Si. The observation also indicates that the activation entropy may be an insignificant part of the free-energy barrier for the nucleation of crystallites in a-Si. Compared with the free-energy barrier to nucleation of crystallites in undoped a-Si films, a significant reduction is observed in the free-energy barrier to nucleation in Cu-doped a-Si films. For a-Si under irradiation of Xe(2+) at 10(exp 5) eV, the free-energy barrier to ion-induced nucleation of crystallites is shown to be about half of the value associated with thermal-induced nucleation of crystallites in a-Si under the otherwise same conditions, which is much more significant than previously expected. The present method has a general kinetic basis; it thus should be equally applicable to nucleation of crystallites in any amorphous elemental semiconductors and semiconductor alloys, metallic and polymeric glasses, and to nucleation of crystallites in melts and solutions.

  16. Laser-to-electricity energy converter for short wavelengths

    NASA Technical Reports Server (NTRS)

    Stirn, R. J.; Yeh, Y. C. M.

    1975-01-01

    Short-wavelength energy converter can be made using Schottky barrier structure. It has wider band gap than p-n junction silicon semiconductors, and thus it has improved response at wavelengths down to and including ultraviolet region.

  17. Synthesis, fabrication and characterization of Ge/Si axial nanowire heterostructure tunnel FETs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Picraux, Samuel T; Dayeh, Shadi A

    2010-01-01

    Axial Ge/Si heterostructure nanowires allow energy band-edge engineering along the axis of the nanowire, which is the charge transport direction, and the realization of asymmetric devices for novel device architectures. This work reports on two advances in the area of heterostructure nanowires and tunnel FETs: (i) the realization of 100% compositionally modulated Si/Ge axial heterostructure nanowires with lengths suitable for device fabrication and (ii) the design and implementation of Schottky barrier tunnel FETs on these nanowires for high-on currents and suppressed ambipolar behavior. Initial prototype devices resulted in a current drive in excess of 100 {micro}A/{micro}m (I/{pi}D) and 10{sup 5}more » I{sub on}/I{sub off} ratios. These results demonstrate the potential of such asymmetric heterostructures (both in the semiconductor channel and metal-semiconductor barrier heights) for low-power and high performance electronics.« less

  18. The Effect of Metal-Semiconductor Contact on the Transient Photovoltaic Characteristic of HgCdTe PV Detector

    PubMed Central

    Cui, Haoyang; Xu, Yongpeng; Yang, Junjie; Tang, Naiyun; Tang, Zhong

    2013-01-01

    The transient photovoltaic (PV) characteristic of HgCdTe PV array is studied using an ultrafast laser. The photoresponse shows an apparent negative valley first, then it evolves into a positive peak. By employing a combined theoretical model of pn junction and Schottky potential, this photo-response polarity changing curves can be interpreted well. An obvious decreasing of ratio of negative valley to positive peak can be realized by limiting the illumination area of the array electrode. This shows that the photoelectric effect of Schottky barrier at metal-semiconductor (M/S) interface is suppressed, which will verify the correctness of the model. The characteristic parameters of transient photo-response induced from p-n junction and Schottky potential are extracted by fitting the response curve utilizing this model. It shows that the negative PV response induced by the Schottky barrier decreases the positive photovoltage generated by the pn junction. PMID:24194676

  19. Transparent conductive coatings

    NASA Technical Reports Server (NTRS)

    Ashok, S.

    1983-01-01

    Thin film transparent conductors are discussed. Materials with electrical conductivity and optical transparency are highly desirable in many optoelectronic applications including photovoltaics. Certain binary oxide semiconductors such as tin oxide (SnO2) and indium oxide (In2O3) offer much better performance tradeoff in optoelectronics as well as better mechanical and chemical stability than thin semitransparent films. These thin-film transparent conductors (TC) are essentially wide-bandgap degenerate semiconductors - invariably n-type - and hence are transparent to sub-bandgap (visible) radiation while affording high electrical conductivity due to the large free electron concentration. The principal performance characteristics of TC's are, of course, electrical conductivity and optical transmission. The TC's have a refractive index of around 2.0 and hence act as very efficient antireflection coatings. For using TC's in surface barrier solar cells, the photovoltaic barrier is of utmost importance and so the work function or electron affinity of the TC is also a very important material parameter. Fabrication processes are discussed.

  20. The effect of metal-semiconductor contact on the transient photovoltaic characteristic of HgCdTe PV detector.

    PubMed

    Cui, Haoyang; Xu, Yongpeng; Yang, Junjie; Tang, Naiyun; Tang, Zhong

    2013-01-01

    The transient photovoltaic (PV) characteristic of HgCdTe PV array is studied using an ultrafast laser. The photoresponse shows an apparent negative valley first, then it evolves into a positive peak. By employing a combined theoretical model of pn junction and Schottky potential, this photo-response polarity changing curves can be interpreted well. An obvious decreasing of ratio of negative valley to positive peak can be realized by limiting the illumination area of the array electrode. This shows that the photoelectric effect of Schottky barrier at metal-semiconductor (M/S) interface is suppressed, which will verify the correctness of the model. The characteristic parameters of transient photo-response induced from p-n junction and Schottky potential are extracted by fitting the response curve utilizing this model. It shows that the negative PV response induced by the Schottky barrier decreases the positive photovoltage generated by the pn junction.

  1. Electrical transport engineering of semiconductor superlattice structures

    NASA Astrophysics Data System (ADS)

    Shokri, Aliasghar

    2014-04-01

    We investigate the influence of doping concentration on band structures of electrons and electrical transmission in a typical aperiodic semiconductor superlattice consisting of quantum well and barrier layers, theoretically. For this purpose, we assume that each unit cell of the superlattice contains alternately two types of material GaAs (as a well) and GaAlAs (as a barrier) with six sublayers of two materials. Our calculations are based on the generalized Kronig-Penny (KP) model and the transfer matrix method within the framework of the parabolic conductance band effective mass approximation in the coherent regime. This model reduces the numerical calculation time and enables us to use the transfer matrix method to investigate transport in the superlattices. We show that by varying the doping concentration and geometrical parameters, one can easily block the transmission of the electrons. The numerical results may be useful in designing of nanoenergy filter devices.

  2. Efficient charge transfer and field-induced tunneling transport in hybrid composite device of organic semiconductor and cadmium telluride quantum dots

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Varade, Vaibhav, E-mail: vaibhav.tvarade@gmail.com; Jagtap, Amardeep M.; Koteswara Rao, K. S. R.

    2015-06-07

    Temperature and photo-dependent current–voltage characteristics are investigated in thin film devices of a hybrid-composite comprising of organic semiconductor poly(3,4-ethylenedioxythiophene):polystyrenesulfonate (PEDOT:PSS) and cadmium telluride quantum dots (CdTe QDs). A detailed study of the charge injection mechanism in ITO/PEDOT:PSS-CdTe QDs/Al device exhibits a transition from direct tunneling to Fowler–Nordheim tunneling with increasing electric field due to formation of high barrier at the QD interface. In addition, the hybrid-composite exhibits a huge photoluminescence quenching compared to aboriginal CdTe QDs and high increment in photoconductivity (∼ 400%), which is attributed to the charge transfer phenomena. The effective barrier height (Φ{sub B} ≈ 0.68 eV) ismore » estimated from the transition voltage and the possible origin of its variation with temperature and photo-illumination is discussed.« less

  3. Spin selective filtering of polariton condensate flow

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gao, T.; Department of Materials Science and Technology, University of Crete, 71003 Heraklion, Crete; Antón, C.

    2015-07-06

    Spin-selective spatial filtering of propagating polariton condensates, using a controllable spin-dependent gating barrier, in a one-dimensional semiconductor microcavity ridge waveguide is reported. A nonresonant laser beam provides the source of propagating polaritons, while a second circularly polarized weak beam imprints a spin dependent potential barrier, which gates the polariton flow and generates polariton spin currents. A complete spin-based control over the blocked and transmitted polaritons is obtained by varying the gate polarization.

  4. Optical devices featuring textured semiconductor layers

    DOEpatents

    Moustakas, Theodore D [Dover, MA; Cabalu, Jasper S [Cary, NC

    2011-10-11

    A semiconductor sensor, solar cell or emitter, or a precursor therefor, has a substrate and one or more textured semiconductor layers deposited onto the substrate. The textured layers enhance light extraction or absorption. Texturing in the region of multiple quantum wells greatly enhances internal quantum efficiency if the semiconductor is polar and the quantum wells are grown along the polar direction. Electroluminescence of LEDs of the invention is dichromatic, and results in variable color LEDs, including white LEDs, without the use of phosphor.

  5. Optical devices featuring textured semiconductor layers

    DOEpatents

    Moustakas, Theodore D [Dover, MA; Cabalu, Jasper S [Cary, NC

    2012-08-07

    A semiconductor sensor, solar cell or emitter, or a precursor therefor, has a substrate and one or more textured semiconductor layers deposited onto the substrate. The textured layers enhance light extraction or absorption. Texturing in the region of multiple quantum wells greatly enhances internal quantum efficiency if the semiconductor is polar and the quantum wells are grown along the polar direction. Electroluminescence of LEDs of the invention is dichromatic, and results in variable color LEDs, including white LEDs, without the use of phosphor.

  6. Investigation of a New Concept in Semiconductor Microwave Oscillators: The Contiguous Domain Oscillator

    DTIC Science & Technology

    1993-02-28

    on a potential microwave source with many novel properties. It combines the transferred electron effect in n-type GaAs material together with 2 the...the channel direction. This barrier could be a physical barrier provided by a high band-gap material in a MOSFET structure or a potential barrier...rralivtic vcloocltv flc’ld curve of GmAs\\. chargc- oscillation ii po, ~ible once the dectnic fiC Xi di ’!I;ihU1]0n ClC(I OceCd OheMO) Osld fticl, ’Idh in 3

  7. Significant improvement in the electrical characteristics of Schottky barrier diodes on molecularly modified Gallium Nitride surfaces

    NASA Astrophysics Data System (ADS)

    Garg, Manjari; Naik, Tejas R.; Pathak, C. S.; Nagarajan, S.; Rao, V. Ramgopal; Singh, R.

    2018-04-01

    III-Nitride semiconductors face the issue of localized surface states, which causes fermi level pinning and large leakage current at the metal semiconductor interface, thereby degrading the device performance. In this work, we have demonstrated the use of a Self-Assembled Monolayer (SAM) of organic molecules to improve the electrical characteristics of Schottky barrier diodes (SBDs) on n-type Gallium Nitride (n-GaN) epitaxial films. The electrical characteristics of diodes were improved by adsorption of SAM of hydroxyl-phenyl metallated porphyrin organic molecules (Zn-TPPOH) onto the surface of n-GaN. SAM-semiconductor bonding via native oxide on the n-GaN surface was confirmed using X-ray photoelectron spectroscopy measurements. Surface morphology and surface electronic properties were characterized using atomic force microscopy and Kelvin probe force microscopy. Current-voltage characteristics of different metal (Cu, Ni) SBDs on bare n-GaN were compared with those of Cu/Zn-TPPOH/n-GaN and Ni/Zn-TPPOH/n-GaN SBDs. It was found that due to the molecular monolayer, the surface potential of n-GaN was decreased by ˜350 mV. This caused an increase in the Schottky barrier height of Cu and Ni SBDs from 1.13 eV to 1.38 eV and 1.07 eV to 1.22 eV, respectively. In addition to this, the reverse bias leakage current was reduced by 3-4 orders of magnitude for both Cu and Ni SBDs. Such a significant improvement in the electrical performance of the diodes can be very useful for better device functioning.

  8. Integrated-circuit balanced parametric amplifier

    NASA Technical Reports Server (NTRS)

    Dickens, L. E.

    1975-01-01

    Amplifier, fabricated on single dielectric substrate, has pair of Schottky barrier varactor diodes mounted on single semiconductor chip. Circuit includes microstrip transmission line and slot line section to conduct signals. Main features of amplifier are reduced noise output and low production cost.

  9. Radiation-tolerant imaging device

    DOEpatents

    Colella, N.J.; Kimbrough, J.R.

    1996-11-19

    A barrier at a uniform depth for an entire wafer is used to produce imaging devices less susceptible to noise pulses produced by the passage of ionizing radiation. The barrier prevents charge created in the bulk silicon of a CCD detector or a semiconductor logic or memory device from entering the collection volume of each pixel in the imaging device. The charge barrier is a physical barrier, a potential barrier, or a combination of both. The physical barrier is formed by an SiO{sub 2} insulator. The potential barrier is formed by increasing the concentration of majority carriers (holes) to combine with the electron`s generated by the ionizing radiation. A manufacturer of CCD imaging devices can produce radiation-tolerant devices by merely changing the wafer type fed into his process stream from a standard wafer to one possessing a barrier beneath its surface, thus introducing a very small added cost to his production cost. An effective barrier type is an SiO{sub 2} layer. 7 figs.

  10. Barrier inhomogeneities limited current and 1/f noise transport in GaN based nanoscale Schottky barrier diodes

    PubMed Central

    Kumar, Ashutosh; Heilmann, M.; Latzel, Michael; Kapoor, Raman; Sharma, Intu; Göbelt, M.; Christiansen, Silke H.; Kumar, Vikram; Singh, Rajendra

    2016-01-01

    The electrical behaviour of Schottky barrier diodes realized on vertically standing individual GaN nanorods and array of nanorods is investigated. The Schottky diodes on individual nanorod show highest barrier height in comparison with large area diodes on nanorods array and epitaxial film which is in contrast with previously published work. The discrepancy between the electrical behaviour of nanoscale Schottky diodes and large area diodes is explained using cathodoluminescence measurements, surface potential analysis using Kelvin probe force microscopy and 1ow frequency noise measurements. The noise measurements on large area diodes on nanorods array and epitaxial film suggest the presence of barrier inhomogeneities at the metal/semiconductor interface which deviate the noise spectra from Lorentzian to 1/f type. These barrier inhomogeneities in large area diodes resulted in reduced barrier height whereas due to the limited role of barrier inhomogeneities in individual nanorod based Schottky diode, a higher barrier height is obtained. PMID:27282258

  11. Radiation-tolerant imaging device

    DOEpatents

    Colella, Nicholas J.; Kimbrough, Joseph R.

    1996-01-01

    A barrier at a uniform depth for an entire wafer is used to produce imaging devices less susceptible to noise pulses produced by the passage of ionizing radiation. The barrier prevents charge created in the bulk silicon of a CCD detector or a semiconductor logic or memory device from entering the collection volume of each pixel in the imaging device. The charge barrier is a physical barrier, a potential barrier, or a combination of both. The physical barrier is formed by an SiO.sub.2 insulator. The potential barrier is formed by increasing the concentration of majority carriers (holes) to combine with the electron's generated by the ionizing radiation. A manufacturer of CCD imaging devices can produce radiation-tolerant devices by merely changing the wafer type fed into his process stream from a standard wafer to one possessing a barrier beneath its surface, thus introducing a very small added cost to his production cost. An effective barrier type is an SiO.sub.2 layer.

  12. Silicon metal-semiconductor-metal photodetector

    DOEpatents

    Brueck, Steven R. J.; Myers, David R.; Sharma, Ashwani K.

    1997-01-01

    Silicon MSM photodiodes sensitive to radiation in the visible to near infrared spectral range are produced by altering the absorption characteristics of crystalline Si by ion implantation. The implantation produces a defected region below the surface of the silicon with the highest concentration of defects at its base which acts to reduce the contribution of charge carriers formed below the defected layer. The charge carriers generated by the radiation in the upper regions of the defected layer are very quickly collected between biased Schottky barrier electrodes which form a metal-semiconductor-metal structure for the photodiode.

  13. Silicon metal-semiconductor-metal photodetector

    DOEpatents

    Brueck, Steven R. J.; Myers, David R.; Sharma, Ashwani K.

    1995-01-01

    Silicon MSM photodiodes sensitive to radiation in the visible to near infrared spectral range are produced by altering the absorption characteristics of crystalline Si by ion implantation. The implantation produces a defected region below the surface of the silicon with the highest concentration of defects at its base which acts to reduce the contribution of charge carriers formed below the defected layer. The charge carriers generated by the radiation in the upper regions of the defected layer are very quickly collected between biased Schottky barrier electrodes which form a metal-semiconductor-metal structure for the photodiode.

  14. Spin manipulation with magnetic semiconductor barriers.

    PubMed

    Miao, Guo-Xing; Moodera, Jagadeesh S

    2015-01-14

    Magnetic semiconductors are a class of materials with special spin-filtering capabilities with magnetically tunable energy gaps. Many of these materials also possess another intrinsic property: indirect exchange interaction between the localized magnetic moments and the adjacent free electrons, which manifests as an extremely large effective magnetic field applying only on the spin degrees of freedom of the free electrons. Novel device concepts can be created by taking advantage of these properties. We discuss in the article the basic principles of these phenomena, and potential ways of applying them in constructing spintronic devices.

  15. Study and modeling of the transport mechanism in a semi insulating GaAs Schottky diode

    NASA Astrophysics Data System (ADS)

    Resfa, A.; Smahi, Bourzig Y.; Menezla, Brahimi. R.

    2012-09-01

    The current through a metal-semiconductor junction is mainly due to the majority carriers. Three distinctly different mechanisms exist in a Schottky diode: diffusion of carriers from the semiconductor into the metal, thermionic emission-diffusion (TED) of carriers across the Schottky barrier and quantum-mechanical tunneling through the barrier. The insulating layer converts the MS device in an MIS device and has a strong influence on its current-voltage (I-V) and the parameters of a Schottky barrier from 3.7 to 15 eV. There are several possible reasons for the error that causes a deviation of the ideal behavior of Schottky diodes with and without an interfacial insulator layer. These include the particular distribution of interface states, the series resistance, bias voltage and temperature. The GaAs and its large concentration values of trap centers will participate in an increase of the process of thermionic electrons and holes, which will in turn the IV characteristic of the diode, and an overflow maximum value [NT = 3 × 1020] is obtained. The I-V characteristics of Schottky diodes are in the hypothesis of a parabolic summit.

  16. Effect of annealing temperature on the electrical properties of Au/Ta2O5/n-GaN metal-insulator-semiconductor (MIS) structure

    NASA Astrophysics Data System (ADS)

    Prasanna Lakshmi, B.; Rajagopal Reddy, V.; Janardhanam, V.; Siva Pratap Reddy, M.; Lee, Jung-Hee

    2013-11-01

    We report on the effect of an annealing temperature on the electrical properties of Au/Ta2O5/n-GaN metal-insulator-semiconductor (MIS) structure by current-voltage ( I- V) and capacitance-voltage ( C- V) measurements. The measured Schottky barrier height ( Φ bo) and ideality factor n values of the as-deposited Au/Ta2O5/n-GaN MIS structure are 0.93 eV ( I- V) and 1.19. The barrier height (BH) increases to 1.03 eV and ideality factor decreases to 1.13 upon annealing at 500 ∘C for 1 min under nitrogen ambient. When the contact is annealed at 600 ∘C, the barrier height decreases and the ideality factor increases to 0.99 eV and 1.15. The barrier heights obtained from the C- V measurements are higher than those obtained from I- V measurements, and this indicates the existence of spatial inhomogeneity at the interface. Cheung’s functions are also used to calculate the barrier height ( Φ bo), ideality factor ( n), and series resistance ( R s ) of the Au/Ta2O5/n-GaN MIS structure. Investigations reveal that the Schottky emission is the dominant mechanism and the Poole-Frenkel emission occurs only in the high voltage region. The energy distribution of interface states is determined from the forward bias I- V characteristics by taking into account the bias dependence of the effective barrier height. It is observed that the density value of interface states for the annealed samples with interfacial layer is lower than that of the density value of interface states of the as-deposited sample.

  17. Verification of Fowler-Nordheim electron tunneling mechanism in Ni/SiO2/n-4H SiC and n+ poly-Si/SiO2/n-4H SiC MOS devices by different models

    NASA Astrophysics Data System (ADS)

    Kodigala, Subba Ramaiah

    2016-11-01

    This article emphasizes verification of Fowler-Nordheim electron tunneling mechanism in the Ni/SiO2/n-4H SiC MOS devices by developing three different kinds of models. The standard semiconductor equations are categorically solved to obtain the change in Fermi energy level of semiconductor with effect of temperature and field that extend support to determine sustainable and accurate tunneling current through the oxide layer. The forward and reverse bias currents with variation of electric field are simulated with help of different models developed by us for MOS devices by applying adequate conditions. The latter is quite different from former in terms of tunneling mechanism in the MOS devices. The variation of barrier height with effect of quantum mechanical, temperature, and fields is considered as effective barrier height for the generation of current-field (J-F) curves under forward and reverse biases but quantum mechanical effect is void in the latter. In addition, the J-F curves are also simulated with variation of carrier concentration in the n-type 4H SiC semiconductor of MOS devices and the relation between them is established.

  18. Rotator side chains trigger cooperative transition for shape and function memory effect in organic semiconductors.

    PubMed

    Chung, Hyunjoong; Dudenko, Dmytro; Zhang, Fengjiao; D'Avino, Gabriele; Ruzié, Christian; Richard, Audrey; Schweicher, Guillaume; Cornil, Jérôme; Beljonne, David; Geerts, Yves; Diao, Ying

    2018-01-18

    Martensitic transition is a solid-state phase transition involving cooperative movement of atoms, mostly studied in metallurgy. The main characteristics are low transition barrier, ultrafast kinetics, and structural reversibility. They are rarely observed in molecular crystals, and hence the origin and mechanism are largely unexplored. Here we report the discovery of martensitic transition in single crystals of two different organic semiconductors. In situ microscopy, single-crystal X-ray diffraction, Raman and nuclear magnetic resonance spectroscopy, and molecular simulations combined indicate that the rotating bulky side chains trigger cooperative transition. Cooperativity enables shape memory effect in single crystals and function memory effect in thin film transistors. We establish a molecular design rule to trigger martensitic transition in organic semiconductors, showing promise for designing next-generation smart multifunctional materials.

  19. George E. Pake Prize: A Few Challenges in the Evolution of Semiconductor Device/Manufacturing Technology

    NASA Astrophysics Data System (ADS)

    Doering, Robert

    In the early 1980s, the semiconductor industry faced the related challenges of ``scaling through the one-micron barrier'' and converting single-level-metal NMOS integrated circuits to multi-level-metal CMOS. Multiple advances in lithography technology and device materials/process integration led the way toward the deep-sub-micron transistors and interconnects that characterize today's electronic chips. In the 1990s, CMOS scaling advanced at an accelerated pace enabled by rapid advances in many aspects of optical lithography. However, the industry also needed to continue the progress in manufacturing on ever-larger silicon wafers to maintain economy-of-scale trends. Simultaneously, the increasing complexity and absolute-precision requirements of manufacturing compounded the necessity for new processes, tools, and control methodologies. This talk presents a personal perspective on some of the approaches that addressed the aforementioned challenges. In particular, early work on integrating silicides, lightly-doped-drain FETs, shallow recessed isolation, and double-level metal will be discussed. In addition, some pioneering efforts in deep-UV lithography and single-wafer processing will be covered. The latter will be mainly based on results from the MMST Program - a 100 M +, 5-year R&D effort, funded by DARPA, the U.S. Air Force, and Texas Instruments, that developed a wide range of new technologies for advanced semiconductor manufacturing. The major highlight of the program was the demonstration of sub-3-day cycle time for manufacturing 350-nm CMOS integrated circuits in 1993. This was principally enabled by the development of: (1) 100% single-wafer processing, including rapid-thermal processing (RTP), and (2) computer-integrated-manufacturing (CIM), including real-time, in-situ process control.

  20. Review on analog/radio frequency performance of advanced silicon MOSFETs

    NASA Astrophysics Data System (ADS)

    Passi, Vikram; Raskin, Jean-Pierre

    2017-12-01

    Aggressive gate-length downscaling of the metal-oxide-semiconductor field-effect transistor (MOSFET) has been the main stimulus for the growth of the integrated circuit industry. This downscaling, which has proved beneficial to digital circuits, is primarily the result of the need for improved circuit performance and cost reduction and has resulted in tremendous reduction of the carrier transit time across the channel, thereby resulting in very high cut-off frequencies. It is only in recent decades that complementary metal-oxide-semiconductor (CMOS) field-effect transistor (FET) has been considered as the radio frequency (RF) technology of choice. In this review, the status of the digital, analog and RF figures of merit (FoM) of silicon-based FETs is presented. State-of-the-art devices with very good performance showing low values of drain-induced barrier lowering, sub-threshold swing, high values of gate transconductance, Early voltage, cut-off frequencies, and low minimum noise figure, and good low-frequency noise characteristic values are reported. The dependence of these FoM on the device gate length is also shown, helping the readers to understand the trends and challenges faced by shorter CMOS nodes. Device performance boosters including silicon-on-insulator substrates, multiple-gate architectures, strain engineering, ultra-thin body and buried-oxide and also III-V and 2D materials are discussed, highlighting the transistor characteristics that are influenced by these boosters. A brief comparison of the two main contenders in continuing Moore’s law, ultra-thin body buried-oxide and fin field-effect transistors are also presented. The authors would like to mention that despite extensive research carried out in the semiconductor industry, silicon-based MOSFET will continue to be the driving force in the foreseeable future.

  1. Ab initio study of Ga-GaN system: Transition from adsorbed metal atoms to a metal–semiconductor junction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Witczak, Przemysław; Kempisty, Pawel; Strak, Pawel

    2015-11-15

    Ab initio studies of a GaN(0001)-Ga system with various thicknesses of a metallic Ga layer were undertaken. The studied systems extend from a GaN(0001) surface with a fractional coverage of gallium atoms to a Ga-GaN metal–semiconductor (m–s) contact. Electronic properties of the system are simulated using density functional theory calculations for different doping of the bulk semiconductor. It is shown that during transition from a bare GaN(0001) surface to a m–s heterostructure, the Fermi level stays pinned at a Ga-broken bond highly dispersive surface state to Ga–Ga states at the m–s interface. Adsorption of gallium leads to an energy gainmore » of about 4 eV for a clean GaN(0001) surface and the energy decreases to 3.2 eV for a thickly Ga-covered surface. The transition to the m–s interface is observed. For a thick Ga overlayer such interface corresponds to a Schottky contact with a barrier equal to 0.9 and 0.6 eV for n- and p-type, respectively. Bond polarization-related dipole layer occurring due to an electron transfer to the metal leads to a potential energy jump of 1.5 eV, independent on the semiconductor doping. Additionally high electron density in the Ga–Ga bond region leads to an energy barrier about 1.2 eV high and 4 Å wide. This feature may adversely affect the conductivity of the n-type m–s system.« less

  2. Gate tunneling current and quantum capacitance in metal-oxide-semiconductor devices with graphene gate electrodes

    NASA Astrophysics Data System (ADS)

    An, Yanbin; Shekhawat, Aniruddh; Behnam, Ashkan; Pop, Eric; Ural, Ant

    2016-11-01

    Metal-oxide-semiconductor (MOS) devices with graphene as the metal gate electrode, silicon dioxide with thicknesses ranging from 5 to 20 nm as the dielectric, and p-type silicon as the semiconductor are fabricated and characterized. It is found that Fowler-Nordheim (F-N) tunneling dominates the gate tunneling current in these devices for oxide thicknesses of 10 nm and larger, whereas for devices with 5 nm oxide, direct tunneling starts to play a role in determining the total gate current. Furthermore, the temperature dependences of the F-N tunneling current for the 10 nm devices are characterized in the temperature range 77-300 K. The F-N coefficients and the effective tunneling barrier height are extracted as a function of temperature. It is found that the effective barrier height decreases with increasing temperature, which is in agreement with the results previously reported for conventional MOS devices with polysilicon or metal gate electrodes. In addition, high frequency capacitance-voltage measurements of these MOS devices are performed, which depict a local capacitance minimum under accumulation for thin oxides. By analyzing the data using numerical calculations based on the modified density of states of graphene in the presence of charged impurities, it is shown that this local minimum is due to the contribution of the quantum capacitance of graphene. Finally, the workfunction of the graphene gate electrode is extracted by determining the flat-band voltage as a function of oxide thickness. These results show that graphene is a promising candidate as the gate electrode in metal-oxide-semiconductor devices.

  3. Critical side channel effects in random bit generation with multiple semiconductor lasers in a polarization-based quantum key distribution system.

    PubMed

    Ko, Heasin; Choi, Byung-Seok; Choe, Joong-Seon; Kim, Kap-Joong; Kim, Jong-Hoi; Youn, Chun Ju

    2017-08-21

    Most polarization-based BB84 quantum key distribution (QKD) systems utilize multiple lasers to generate one of four polarization quantum states randomly. However, random bit generation with multiple lasers can potentially open critical side channels that significantly endangers the security of QKD systems. In this paper, we show unnoticed side channels of temporal disparity and intensity fluctuation, which possibly exist in the operation of multiple semiconductor laser diodes. Experimental results show that the side channels can enormously degrade security performance of QKD systems. An important system issue for the improvement of quantum bit error rate (QBER) related with laser driving condition is further addressed with experimental results.

  4. Dye-sensitized solar cells

    DOEpatents

    Skotheim, T.A.

    1980-03-04

    A low-cost dye-sensitized Schottky barrier solar cell is comprised of a substrate of semiconductor with an ohmic contact on one face, a sensitizing dye adsorbed onto the opposite face of the semiconductor, a transparent thin-film layer of a reducing agent over the dye, and a thin-film layer of metal over the reducing agent. The ohmic contact and metal layer constitute electrodes for connection to an external circuit and one or the other or both are made transparent to permit light to penetrate to the dye and be absorbed therein for generating electric current. The semiconductor material chosen to be the substrate is one having a wide bandgap and which therefore is transparent; the dye selected is one having a ground state within the bandgap of the semiconductor to generate carriers in the semiconductor, and a first excited state above the conduction band edge of the semiconductor to readily conduct electrons from the dye to the semiconductor; the reducing agent selected is one having a ground state above the ground state of the sensitizer to provide a plentiful source of electrons to the dye during current generation and thereby enhance the generation; and the metal for the thin-film layer of metal is selected to have a Fermi level in the vicinity of or above the ground state of the reducing agent to thereby amply supply electrons to the reducing agent. 3 figs.

  5. Dye-sensitized solar cells

    DOEpatents

    Skotheim, Terje A. [Berkeley, CA

    1980-03-04

    A low-cost dye-sensitized Schottky barrier solar cell comprised of a substrate of semiconductor with an ohmic contact on one face, a sensitizing dye adsorbed onto the opposite face of the semiconductor, a transparent thin-film layer of a reducing agent over the dye, and a thin-film layer of metal over the reducing agent. The ohmic contact and metal layer constitute electrodes for connection to an external circuit and one or the other or both are made transparent to permit light to penetrate to the dye and be absorbed therein for generating electric current. The semiconductor material chosen to be the substrate is one having a wide bandgap and which therefore is transparent; the dye selected is one having a ground state within the bandgap of the semiconductor to generate carriers in the semiconductor, and a first excited state above the conduction band edge of the semiconductor to readily conduct electrons from the dye to the semiconductor; the reducing agent selected is one having a ground state above the ground state of the sensitizer to provide a plentiful source of electrons to the dye during current generation and thereby enhance the generation; and the metal for the thin-film layer of metal is selected to have a Fermi level in the vicinity of or above the ground state of the reducing agent to thereby amply supply electrons to the reducing agent.

  6. Optical temperature indicator using thermochromic semiconductors

    DOEpatents

    Kronberg, J.W.

    1995-01-01

    A reversible optical temperature indicator utilizes thermochromic semiconductors which vary in color in response to various temperature levels. The thermochromic material is enclosed in an enamel which provides protection and prevents breakdown at higher temperatures. Cadmium sulfide is the preferred semiconductor material. The indicator may be utilized as a sign or in a striped arrangement to clearly provide a warning to a user. The various color responses provide multiple levels of alarm.

  7. Optical temperature indicator using thermochromic semiconductors

    DOEpatents

    Kronberg, James W.

    1996-01-01

    A reversible optical temperature indicator utilizes thermochromic semiconductors which vary in color in response to various temperature levels. The thermochromic material is enclosed in an enamel which provides protection and prevents breakdown at higher temperatures. Cadmium sulfide is the preferred semiconductor material. The indicator may be utilized as a sign or in a striped arrangement to clearly provide a warning to a user. The various color responses provide multiple levels of alarm.

  8. Potential barrier heights at metal on oxygen-terminated diamond interfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Muret, P., E-mail: pierre.muret@neel.cnrs.fr; Traoré, A.; Maréchal, A.

    2015-11-28

    Electrical properties of metal-semiconductor (M/SC) and metal/oxide/SC structures built with Zr or ZrO{sub 2} deposited on oxygen-terminated surfaces of (001)-oriented diamond films, comprised of a stack of lightly p-doped diamond on a heavily doped layer itself homoepitaxially grown on an Ib substrate, are investigated experimentally and compared to different models. In Schottky barrier diodes, the interfacial oxide layer evidenced by high resolution transmission electron microscopy and electron energy losses spectroscopy before and after annealing, and barrier height inhomogeneities accounts for the measured electrical characteristics until flat bands are reached, in accordance with a model which generalizes that by Tung [Phys.more » Rev. B 45, 13509 (1992)] and permits to extract physically meaningful parameters of the three kinds of interface: (a) unannealed ones, (b) annealed at 350 °C, (c) annealed at 450 °C with the characteristic barrier heights of 2.2–2.5 V in case (a) while as low as 0.96 V in case (c). Possible models of potential barriers for several metals deposited on well defined oxygen-terminated diamond surfaces are discussed and compared to experimental data. It is concluded that interface dipoles of several kinds present at these compound interfaces and their chemical evolution due to annealing are the suitable ingredients that are able to account for the Mott-Schottky behavior when the effect of the metal work function is ignored, and to justify the reverted slope observed regarding metal work function, in contrast to the trend always reported for all other metal-semiconductor interfaces.« less

  9. N-type molecular electrical doping in organic semiconductors: formation and dissociation efficiencies of charge transfer complex

    NASA Astrophysics Data System (ADS)

    Kim, Jae-Min; Yoo, Seung-Jun; Moon, Chang-Ki; Sim, Bomi; Lee, Jae-Hyun; Lim, Heeseon; Kim, Jeong Won; Kim, Jang-Joo

    2016-09-01

    Electrical doping is an important method in organic electronics to enhance device efficiency by controlling Fermi level, increasing conductivity, and reducing injection barrier from electrode. To understand the charge generation process of dopant in doped organic semiconductors, it is important to analyze the charge transfer complex (CTC) formation and dissociation into free charge carrier. In this paper, we correlate charge generation efficiency with the CTC formation and dissociation efficiency of n-dopant in organic semiconductors (OSs). The CTC formation efficiency of Rb2CO3 linearly decreases from 82.8% to 47.0% as the doping concentration increases from 2.5 mol% to 20 mol%. The CTC formation efficiency and its linear decrease with doping concentration are analytically correlated with the concentration-dependent size and number of dopant agglomerates by introducing the degree of reduced CTC formation. Lastly, the behavior of dissociation efficiency is discussed based on the picture of the statistical semiconductor theory and the frontier orbital hybridization model.

  10. Spin-dependent transport phenomena in organic semiconductors

    NASA Astrophysics Data System (ADS)

    Bergeson, Jeremy D.

    Thin-film organic semiconductors transport can have an anomalously high sensitivity to low magnetic fields. Such a response is unexpected considering that thermal fluctuation energies are greater than the energy associated with the intrinsic spin of charge carriers at a modest magnetic field of 100 Oe by a factor of more than 104 at room temperature and is still greater by 102 even at liquid helium temperatures. Nevertheless, we report experimental characterization of (1) spin-dependent injection, detection and transport of spin-polarized current through organic semiconductors and (2) the influence of a magnetic field on the spin dynamics of recombination-limited transport. The first focus of this work was accomplished by fabricating basic spin-valve devices consisting of two magnetic layers spatially separated by a nonmagnetic organic semiconductor. The spin-valve effect is a change in electrical resistance due to the magnetizations of the magnetic layers changing from parallel to antiparallel alignment, or vice versa. The conductivities of the metallic contacts and that of the semiconductor differed by many orders of magnitude, which inhibited the injection of a spin-polarized current from the magnet into the nonmagnet. We successfully overcame the problem of conductivity mismatch by inserting ultra-thin tunnel barriers at the metal/semiconductor interfaces which aided in yielding a ˜20% spin-valve effect at liquid helium temperatures and the effect persisted up to 150 K. We built on this achievement by constructing spin valves where one of the metallic contacts was replaced by the organic-based magnetic semiconductor vanadium tetracyanoethylene (V[TCNE]2). At 10 K these devices produced the switching behavior of the spin-valve effect. The second focus of this work was the bulk magnetoresistance (MR) of small molecule, oligomer and polymer organic semiconductors in thin-film structures. At room temperature the resistance can change up to 8% at 100 Oe and 15% at 1000 Oe. Depending on parameters such as temperature, layer thickness, or applied voltage, the resistance of these materials may increase or decrease as a function of field. A model for this phenomenon, termed magnetoresistance by the interconversion of singlets and triplets (MIST), is developed to account for this anomalous behavior. This model predicts that increasing the spin-orbit coupling in the organic semiconductor should decrease the magnitude of the MR. In an experiment where the small molecule Alq3 was doped with phosphorescent sensitizers, to increase the spin-orbit coupling, the MR was observed to decrease by an order of magnitude or more, depending on the doping. In addition to low-magnetic-field effects, we show the experimental observation of high-field MR in devices with and without magnetic contacts. To the best of our knowledge, we are the first to report (1) a tunnel-barrier-assisted spin-valve effect into an organic semiconductor using partially polarized metallic magnetic electrodes and (2) an experimental characterization of the central impact of the hyperfine interaction and spin-orbit coupling on MR in organic semiconductors.

  11. Optimization of Silicon parameters as a betavoltaic battery: Comparison of Si p-n and Ni/Si Schottky barrier

    NASA Astrophysics Data System (ADS)

    Rahmani, Faezeh; Khosravinia, Hossein

    2016-08-01

    Theoretical studies on the optimization of Silicon (Si) parameters as the base of betavoltaic battery have been presented using Monte Carlo simulations and the state equations in semiconductor to obtain maximum power. Si with active area of 1 cm2 has been considered in p-n junction and Schottky barrier structure to collect the radiation induced-charge from 10 mCi cm-2 of Nickle-63 (63Ni) Source. The results show that the betavoltaic conversion efficiency in the Si p-n structure is about 2.7 times higher than that in the Ni/Si Schottky barrier structure.

  12. Effect of the δ-potential on spin-dependent electron tunneling in double barrier semiconductor heterostructure

    NASA Astrophysics Data System (ADS)

    Chandrasekar, L. Bruno; Gnanasekar, K.; Karunakaran, M.

    2018-06-01

    The effect of δ-potential was studied in GaAs/Ga0.6Al0·4As double barrier heterostructure with Dresselhaus spin-orbit interaction. The role of barrier height and position of the δ- potential in the well region was analysed on spin-dependent electron tunneling using transfer matrix method. The spin-separation between spin-resonances on energy scale depends on both height and position of the δ- potential, whereas the tunneling life time of electrons highly influenced by the position of the δ- potential and not on the height. These results might be helpful for the fabrication of spin-filters.

  13. Resonant optical device with a microheater

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lentine, Anthony L.; DeRose, Christopher

    2017-04-04

    A resonant photonic device is provided. The device comprises an optical waveguiding element, such as an optical resonator, that includes a diode junction region, two signal terminals configured to apply a bias voltage across the junction region, and a heater laterally separated from the optical waveguiding element. A semiconductor electrical barrier element is juxtaposed to the heater. A metallic strip is electrically and thermally connected at one end to a signal terminal of the optical waveguiding element and thermally connected at another end to the barrier element.

  14. The origin of excellent gate-bias stress stability in organic field-effect transistors employing fluorinated-polymer gate dielectrics.

    PubMed

    Kim, Jiye; Jang, Jaeyoung; Kim, Kyunghun; Kim, Haekyoung; Kim, Se Hyun; Park, Chan Eon

    2014-11-12

    Tuning of the energetic barriers to charge transfer at the semiconductor/dielectric interface in organic field-effect transistors (OFETs) is achieved by varying the dielectric functionality. Based on this, the correlation between the magnitude of the energy barrier and the gate-bias stress stability of the OFETs is demonstrated, and the origin of the excellent device stability of OFETs employing fluorinated dielectrics is revealed. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Multiple trapping on a comb structure as a model of electron transport in disordered nanostructured semiconductors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sibatov, R. T., E-mail: ren-sib@bk.ru; Morozova, E. V., E-mail: kat-valezhanina@yandex.ru

    2015-05-15

    A model of dispersive transport in disordered nanostructured semiconductors has been proposed taking into account the percolation structure of a sample and joint action of several mechanisms. Topological and energy disorders have been simultaneously taken into account within the multiple trapping model on a comb structure modeling the percolation character of trajectories. The joint action of several mechanisms has been described within random walks with a mixture of waiting time distributions. Integral transport equations with fractional derivatives have been obtained for an arbitrary density of localized states. The kinetics of the transient current has been calculated within the proposed newmore » model in order to analyze time-of-flight experiments for nanostructured semiconductors.« less

  16. Hot carrier-enhanced interlayer electron-hole pair multiplication in 2D semiconductor heterostructure photocells

    NASA Astrophysics Data System (ADS)

    Barati, Fatemeh; Grossnickle, Max; Su, Shanshan; Lake, Roger K.; Aji, Vivek; Gabor, Nathaniel M.

    2017-12-01

    Strong electronic interactions can result in novel particle-antiparticle (electron-hole, e-h) pair generation effects, which may be exploited to enhance the photoresponse of nanoscale optoelectronic devices. Highly efficient e-h pair multiplication has been demonstrated in several important nanoscale systems, including nanocrystal quantum dots, carbon nanotubes and graphene. The small Fermi velocity and nonlocal nature of the effective dielectric screening in ultrathin layers of transition-metal dichalcogenides (TMDs) indicates that e-h interactions are very strong, so high-efficiency generation of e-h pairs from hot electrons is expected. However, such e-h pair multiplication has not been observed in 2D TMD devices. Here, we report the highly efficient multiplication of interlayer e-h pairs in 2D semiconductor heterostructure photocells. Electronic transport measurements of the interlayer I-VSD characteristics indicate that layer-indirect e-h pairs are generated by hot-electron impact excitation at temperatures near T = 300 K. By exploiting this highly efficient interlayer e-h pair multiplication process, we demonstrate near-infrared optoelectronic devices that exhibit 350% enhancement of the optoelectronic responsivity at microwatt power levels. Our findings, which demonstrate efficient carrier multiplication in TMD-based optoelectronic devices, make 2D semiconductor heterostructures viable for a new class of ultra-efficient photodetectors based on layer-indirect e-h excitations.

  17. Doping enhanced barrier lowering in graphene-silicon junctions

    NASA Astrophysics Data System (ADS)

    Zhang, Xintong; Zhang, Lining; Chan, Mansun

    2016-06-01

    Rectifying properties of graphene-semiconductor junctions depend on the Schottky barrier height. We report an enhanced barrier lowering in graphene-Si junction and its essential doping dependence in this paper. The electric field due to ionized charge in n-type Si induces the same type doping in graphene and contributes another Schottky barrier lowering factor on top of the image-force-induced lowering (IFIL). We confirm this graphene-doping-induced lowering (GDIL) based on well reproductions of the measured reverse current of our fabricated graphene-Si junctions by the thermionic emission theory. Excellent matching between the theoretical predictions and the junction data of the doping-concentration dependent barrier lowering serves as another evidence of the GDIL. While both GDIL and IFIL are enhanced with the Si doping, GDIL exceeds IFIL with a threshold doping depending on the as-prepared graphene itself.

  18. Wafer-level packaging with compression-controlled seal ring bonding

    DOEpatents

    Farino, Anthony J

    2013-11-05

    A device may be provided in a sealed package by aligning a seal ring provided on a first surface of a first semiconductor wafer in opposing relationship with a seal ring that is provided on a second surface of a second semiconductor wafer and surrounds a portion of the second wafer that contains the device. Forcible movement of the first and second wafer surfaces toward one another compresses the first and second seal rings against one another. A physical barrier against the movement, other than the first and second seal rings, is provided between the first and second wafer surfaces.

  19. Regenerative switching CMOS system

    DOEpatents

    Welch, James D.

    1998-01-01

    Complementary Metal Oxide Semiconductor (CMOS) Schottky barrier Field Effect Transistor systems, which are a seriesed combination of N and P-Channel MOSFETS, in which Source Schottky barrier junctions of the N and P-Channel Schottky barrier MOSFETS are electically interconnected, (rather than the Drains as in conventional diffused junction CMOS), which Schottky barrier MOSFET system demonstrates Regenerative Inverting Switching Characteristics in use are disclosed. Both the N and P-Channel Schottky barrier MOSFET devices are unique in that they provide operational Drain Current vs. Drain to Source voltage as a function of Gate voltage only where the polarities of the Drain voltage and Gate voltage are opposite, referenced to the Source as a common terminal, and where the polarity of the voltage applied to the Gate is appropriate to cause Channel inversion. Experimentally derived results which demonstrate and verify the operation of N and P-Channel Schottky barrier MOSFETS actually fabricated on P and N-type Silicon respectively, by a common procedure using vacuum deposited Chromium as a Schottky barrier forming metal, are also provided.

  20. Regenerative switching CMOS system

    DOEpatents

    Welch, J.D.

    1998-06-02

    Complementary Metal Oxide Semiconductor (CMOS) Schottky barrier Field Effect Transistor systems, which are a series combination of N and P-Channel MOSFETS, in which Source Schottky barrier junctions of the N and P-Channel Schottky barrier MOSFETS are electrically interconnected, (rather than the Drains as in conventional diffused junction CMOS), which Schottky barrier MOSFET system demonstrates Regenerative Inverting Switching Characteristics in use are disclosed. Both the N and P-Channel Schottky barrier MOSFET devices are unique in that they provide operational Drain Current vs. Drain to Source voltage as a function of Gate voltage only where the polarities of the Drain voltage and Gate voltage are opposite, referenced to the Source as a common terminal, and where the polarity of the voltage applied to the Gate is appropriate to cause Channel inversion. Experimentally derived results which demonstrate and verify the operation of N and P-Channel Schottky barrier MOSFETS actually fabricated on P and N-type Silicon respectively, by a common procedure using vacuum deposited Chromium as a Schottky barrier forming metal, are also provided. 14 figs.

  1. Inhomogeneity in barrier height at graphene/Si (GaAs) Schottky junctions.

    PubMed

    Tomer, D; Rajput, S; Hudy, L J; Li, C H; Li, L

    2015-05-29

    Graphene (Gr) interfaced with a semiconductor forms a Schottky junction with rectifying properties, however, fluctuations in the Schottky barrier height are often observed. In this work, Schottky junctions are fabricated by transferring chemical vapor deposited monolayer Gr onto n-type Si and GaAs substrates. Temperature dependence of the barrier height and ideality factor are obtained by current-voltage measurements between 215 and 350 K. An increase in the zero bias barrier height and decrease in the ideality factor are observed with increasing temperature for both junctions. Such behavior is attributed to barrier inhomogeneities that arise from interfacial disorders as revealed by scanning tunneling microscopy/spectroscopy. Assuming a Gaussian distribution of the barrier heights, mean values of 1.14 ± 0.14 eV and 0.76 ± 0.10 eV are found for Gr/Si and Gr/GaAs junctions, respectively. These findings resolve the origin of barrier height inhomogeneities in these Schottky junctions.

  2. Modulation of electrical potential and conductivity in an atomic-layer semiconductor heterojunction

    PubMed Central

    Kobayashi, Yu; Yoshida, Shoji; Sakurada, Ryuji; Takashima, Kengo; Yamamoto, Takahiro; Saito, Tetsuki; Konabe, Satoru; Taniguchi, Takashi; Watanabe, Kenji; Maniwa, Yutaka; Takeuchi, Osamu; Shigekawa, Hidemi; Miyata, Yasumitsu

    2016-01-01

    Semiconductor heterojunction interfaces have been an important topic, both in modern solid state physics and in electronics and optoelectronics applications. Recently, the heterojunctions of atomically-thin transition metal dichalcogenides (TMDCs) are expected to realize one-dimensional (1D) electronic systems at their heterointerfaces due to their tunable electronic properties. Herein, we report unique conductivity enhancement and electrical potential modulation of heterojunction interfaces based on TMDC bilayers consisted of MoS2 and WS2. Scanning tunneling microscopy/spectroscopy analyses showed the formation of 1D confining potential (potential barrier) in the valence (conduction) band, as well as bandgap narrowing around the heterointerface. The modulation of electronic properties were also probed as the increase of current in conducting atomic force microscopy. Notably, the observed band bending can be explained by the presence of 1D fixed charges around the heterointerface. The present findings indicate that the atomic layer heterojunctions provide a novel approach to realizing tunable 1D electrical potential for embedded quantum wires and ultrashort barriers of electrical transport. PMID:27515115

  3. Tunable Schottky barrier and electronic properties in borophene/g-C2N van der Waals heterostructures

    NASA Astrophysics Data System (ADS)

    Jiang, J. W.; Wang, X. C.; Song, Y.; Mi, W. B.

    2018-05-01

    By stacking different layers of two dimensional (2D) monolayer materials, the electronic properties of the 2D van der Waals (vdW) heterostructures can be tailored. However, the Schottky barrier formed between 2D semiconductor and metallic electrode has greatly limited the application of 2D semiconductor in nanoelectronic and optoelectronic devices. Herewith, we investigate the electronic properties of borophene/g-C2N vdW heterostructures by first-principles calculations. The results indicate that electronic structures of borophene and g-C2N are preserved in borophene/g-C2N vdW heterostructures. Meanwhile, upon the external electric field, a transition from the n-type Schottky contact to Ohmic contact is induced, and the carrier concentration between the borophene and g-C2N interfaces can be tuned. These results are expected to provide useful insight in the nanoelectronic and optoelectronic devices based on the borophene/g-C2N vdW heterostructures.

  4. Graphene/h-BN/GaAs sandwich diode as solar cell and photodetector.

    PubMed

    Li, Xiaoqiang; Lin, Shisheng; Lin, Xing; Xu, Zhijuan; Wang, Peng; Zhang, Shengjiao; Zhong, Huikai; Xu, Wenli; Wu, Zhiqian; Fang, Wei

    2016-01-11

    In graphene/semiconductor heterojunction, the statistic charge transfer between graphene and semiconductor leads to decreased junction barrier height and limits the Fermi level tuning effect in graphene, which greatly affects the final performance of the device. In this work, we have designed a sandwich diode for solar cells and photodetectors through inserting 2D hexagonal boron nitride (h-BN) into graphene/GaAs heterostructure to suppress the static charge transfer. The barrier height of graphene/GaAs heterojunction can be increased from 0.88 eV to 1.02 eV by inserting h-BN. Based on the enhanced Fermi level tuning effect with interface h-BN, through adopting photo-induced doping into the device, power conversion efficiency (PCE) of 10.18% has been achieved for graphene/h-BN/GaAs compared with 8.63% of graphene/GaAs structure. The performance of graphene/h-BN/GaAs based photodetector is also improved with on/off ratio increased by one magnitude compared with graphene/GaAs structure.

  5. Active bialkali photocathodes on free-standing graphene substrates

    DOE PAGES

    Yamaguchi, Hisato; Liu, Fangze; DeFazio, Jeffrey; ...

    2017-06-01

    Here, the hexagonal structure of graphene gives rise to the property of gas impermeability, motivating its investigation for a new application: protection of semiconductor photocathodes in electron accelerators. These materials are extremely susceptible to degradation in efficiency through multiple mechanisms related to contamination from the local imperfect vacuum environment of the host photoinjector. Few-layer graphene has been predicted to permit a modified photoemission response of protected photocathode surfaces, and recent experiments of single-layer graphene on copper have begun to confirm these predictions for single crystal metallic photocathodes. Unlike metallic photoemitters, the integration of an ultra-thin graphene barrier film with conventionalmore » semiconductor photocathode growth processes is not straightforward. A first step toward addressing this challenge is the growth and characterization of technologically relevant, high quantum efficiency bialkali photocathodes on ultra-thin free-standing graphene substrates. Photocathode growth on free-standing graphene provides the opportunity to integrate these two materials and study their interaction. Specifically, spectral response features and photoemission stability of cathodes grown on graphene substrates are compared to those deposited on established substrates. In addition, we observed an increase of work function for the graphene encapsulated bialkali photocathode surfaces, which is predicted by our calculations. The results provide a unique demonstration of bialkali photocathodes on free-standing substrates, and indicate promise towards our goal of fabricating high-performance graphene encapsulated photocathodes with enhanced lifetime for accelerator applications.« less

  6. Active bialkali photocathodes on free-standing graphene substrates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yamaguchi, Hisato; Liu, Fangze; DeFazio, Jeffrey

    Here, the hexagonal structure of graphene gives rise to the property of gas impermeability, motivating its investigation for a new application: protection of semiconductor photocathodes in electron accelerators. These materials are extremely susceptible to degradation in efficiency through multiple mechanisms related to contamination from the local imperfect vacuum environment of the host photoinjector. Few-layer graphene has been predicted to permit a modified photoemission response of protected photocathode surfaces, and recent experiments of single-layer graphene on copper have begun to confirm these predictions for single crystal metallic photocathodes. Unlike metallic photoemitters, the integration of an ultra-thin graphene barrier film with conventionalmore » semiconductor photocathode growth processes is not straightforward. A first step toward addressing this challenge is the growth and characterization of technologically relevant, high quantum efficiency bialkali photocathodes on ultra-thin free-standing graphene substrates. Photocathode growth on free-standing graphene provides the opportunity to integrate these two materials and study their interaction. Specifically, spectral response features and photoemission stability of cathodes grown on graphene substrates are compared to those deposited on established substrates. In addition, we observed an increase of work function for the graphene encapsulated bialkali photocathode surfaces, which is predicted by our calculations. The results provide a unique demonstration of bialkali photocathodes on free-standing substrates, and indicate promise towards our goal of fabricating high-performance graphene encapsulated photocathodes with enhanced lifetime for accelerator applications.« less

  7. Noise And Charge Transport In Carbon Nanotube Devices

    NASA Astrophysics Data System (ADS)

    Reza, Shahed; Huynh, Quyen T.; Bosman, Gijs; Sippel, Jennifer; Rinzler, Andrew G.

    2005-11-01

    The charge transport and noise properties of three terminal, gated devices containing multiple, single wall, metallic and semiconductor carbon nanotubes have been measured as a function of gate and drain bias at 300K. Using pulsed bias the metallic tubes could be burned sequentially enabling the separation of measured conductance and low frequency excess noise into metallic and semiconductor contributions. The relative low frequency excess noise of the metallic tubes was about a factor 100 lower than that of the semiconductor tubes, whereas the conductance of the metallic tubes was significantly higher (10 to 50 times) than that of the semiconductor tubes.

  8. Study of Structural, Optical and Electrical Properties of InAs/InAsSb Superlattices Using Multiple Characterization Techniques

    NASA Astrophysics Data System (ADS)

    Shen, Xiaomeng

    InAs/InAsSb type-II superlattices (T2SLs) can be considered as potential alternatives for conventional HgCdTe photodetectors due to improved uniformity, lower manufacturing costs with larger substrates, and possibly better device performance. This dissertation presents a comprehensive study on the structural, optical and electrical properties of InAs/InAsSb T2SLs grown by Molecular Beam Epitaxy. The effects of different growth conditions on the structural quality were thoroughly investigated. Lattice-matched condition was successfully achieved and material of exceptional quality was demonstrated. After growth optimization had been achieved, structural defects could hardly be detected, so different characterization techniques, including etch-pit-density (EPD) measurements, cathodoluminescence (CL) imaging and X-ray topography (XRT), were explored, in attempting to gain better knowledge of the sparsely distributed defects. EPD revealed the distribution of dislocation-associated pits across the wafer. Unfortunately, the lack of contrast in images obtained by CL imaging and XRT indicated their inability to provide any quantitative information about defect density in these InAs/InAsSb T2SLs. The nBn photodetectors based on mid-wave infrared (MWIR) and long-wave infrared (LWIR) InAs/InAsSb T2SLs were fabricated. The significant difference in Ga composition in the barrier layer coupled with different dark current behavior, suggested the possibility of different types of band alignment between the barrier layers and the absorbers. A positive charge density of 1.8 x 1017/cm3 in the barrier of MWIR nBn photodetector, as determined by electron holography, confirmed the presence of a potential well in its valence band, thus identifying type-II alignment. In contrast, the LWIR nBn photodetector was shown to have type-I alignment because no sign of positive charge was detected in its barrier. Capacitance-voltage measurements were performed to investigate the temperature dependence of carrier densities in a metal-oxide-semiconductor (MOS) structure based on MWIR InAs/InAsSb T2SLs, and a nBn structure based on LWIR InAs/InAsSb T2SLs. No carrier freeze-out was observed in either sample, indicating very shallow donor levels. The decrease in carrier density when temperature increased was attributed to the increased density of holes that had been thermally excited from localized states near the oxide/semiconductor interface in the MOS sample. No deep-level traps were revealed in deep-level transient spectroscopy temperature scans.

  9. Compact modeling of SiC Schottky barrier diode and its extension to junction barrier Schottky diode

    NASA Astrophysics Data System (ADS)

    Navarro, Dondee; Herrera, Fernando; Zenitani, Hiroshi; Miura-Mattausch, Mitiko; Yorino, Naoto; Jürgen Mattausch, Hans; Takusagawa, Mamoru; Kobayashi, Jun; Hara, Masafumi

    2018-04-01

    A compact model applicable for both Schottky barrier diode (SBD) and junction barrier Schottky diode (JBS) structures is developed. The SBD model considers the current due to thermionic emission in the metal/semiconductor junction together with the resistance of the lightly doped drift layer. Extension of the SBD model to JBS is accomplished by modeling the distributed resistance induced by the p+ implant developed for minimizing the leakage current at reverse bias. Only the geometrical features of the p+ implant are necessary to model the distributed resistance. Reproduction of 4H-SiC SBD and JBS current-voltage characteristics with the developed compact model are validated against two-dimensional (2D) device-simulation results as well as measurements at different temperatures.

  10. Semiconductor Laser Low Frequency Noise Characterization

    NASA Technical Reports Server (NTRS)

    Maleki, Lute; Logan, Ronald T.

    1996-01-01

    This work summarizes the efforts in identifying the fundamental noise limit in semiconductor optical sources (lasers) to determine the source of 1/F noise and it's associated behavior. In addition, the study also addresses the effects of this 1/F noise on RF phased arrays. The study showed that the 1/F noise in semiconductor lasers has an ultimate physical limit based upon similar factors to fundamental noise generated in other semiconductor and solid state devices. The study also showed that both additive and multiplicative noise can be a significant detriment to the performance of RF phased arrays especially in regard to very low sidelobe performance and ultimate beam steering accuracy. The final result is that a noise power related term must be included in a complete analysis of the noise spectrum of any semiconductor device including semiconductor lasers.

  11. Electronic Characterization of Au/DNA/ITO Metal-Semiconductor-Metal Diode and Its Application as a Radiation Sensor.

    PubMed

    Al-Ta'ii, Hassan Maktuff Jaber; Periasamy, Vengadesh; Amin, Yusoff Mohd

    2016-01-01

    Deoxyribonucleic acid or DNA molecules expressed as double-stranded (DSS) negatively charged polymer plays a significant role in electronic states of metal/silicon semiconductor structures. Electrical parameters of an Au/DNA/ITO device prepared using self-assembly method was studied by using current-voltage (I-V) characteristic measurements under alpha bombardment at room temperature. The results were analyzed using conventional thermionic emission model, Cheung and Cheung's method and Norde's technique to estimate the barrier height, ideality factor, series resistance and Richardson constant of the Au/DNA/ITO structure. Besides demonstrating a strongly rectifying (diode) characteristic, it was also observed that orderly fluctuations occur in various electrical parameters of the Schottky structure. Increasing alpha radiation effectively influences the series resistance, while the barrier height, ideality factor and interface state density parameters respond linearly. Barrier height determined from I-V measurements were calculated at 0.7284 eV for non-radiated, increasing to about 0.7883 eV in 0.036 Gy showing an increase for all doses. We also demonstrate the hypersensitivity phenomena effect by studying the relationship between the series resistance for the three methods, the ideality factor and low-dose radiation. Based on the results, sensitive alpha particle detectors can be realized using Au/DNA/ITO Schottky junction sensor.

  12. Electronic Characterization of Au/DNA/ITO Metal-Semiconductor-Metal Diode and Its Application as a Radiation Sensor

    PubMed Central

    Al-Ta’ii, Hassan Maktuff Jaber; Periasamy, Vengadesh; Amin, Yusoff Mohd

    2016-01-01

    Deoxyribonucleic acid or DNA molecules expressed as double-stranded (DSS) negatively charged polymer plays a significant role in electronic states of metal/silicon semiconductor structures. Electrical parameters of an Au/DNA/ITO device prepared using self-assembly method was studied by using current–voltage (I-V) characteristic measurements under alpha bombardment at room temperature. The results were analyzed using conventional thermionic emission model, Cheung and Cheung’s method and Norde’s technique to estimate the barrier height, ideality factor, series resistance and Richardson constant of the Au/DNA/ITO structure. Besides demonstrating a strongly rectifying (diode) characteristic, it was also observed that orderly fluctuations occur in various electrical parameters of the Schottky structure. Increasing alpha radiation effectively influences the series resistance, while the barrier height, ideality factor and interface state density parameters respond linearly. Barrier height determined from I–V measurements were calculated at 0.7284 eV for non-radiated, increasing to about 0.7883 eV in 0.036 Gy showing an increase for all doses. We also demonstrate the hypersensitivity phenomena effect by studying the relationship between the series resistance for the three methods, the ideality factor and low-dose radiation. Based on the results, sensitive alpha particle detectors can be realized using Au/DNA/ITO Schottky junction sensor. PMID:26799703

  13. Role of the dielectric for the charging dynamics of the dielectric/barrier interface in AlGaN/GaN based metal-insulator-semiconductor structures under forward gate bias stress

    NASA Astrophysics Data System (ADS)

    Lagger, P.; Steinschifter, P.; Reiner, M.; Stadtmüller, M.; Denifl, G.; Naumann, A.; Müller, J.; Wilde, L.; Sundqvist, J.; Pogany, D.; Ostermaier, C.

    2014-07-01

    The high density of defect states at the dielectric/III-N interface in GaN based metal-insulator-semiconductor structures causes tremendous threshold voltage drifts, ΔVth, under forward gate bias conditions. A comprehensive study on different dielectric materials, as well as varying dielectric thickness tD and barrier thickness tB, is performed using capacitance-voltage analysis. It is revealed that the density of trapped electrons, ΔNit, scales with the dielectric capacitance under spill-over conditions, i.e., the accumulation of a second electron channel at the dielectric/AlGaN barrier interface. Hence, the density of trapped electrons is defined by the charging of the dielectric capacitance. The scaling behavior of ΔNit is explained universally by the density of accumulated electrons at the dielectric/III-N interface under spill-over conditions. We conclude that the overall density of interface defects is higher than what can be electrically measured, due to limits set by dielectric breakdown. These findings have a significant impact on the correct interpretation of threshold voltage drift data and are of relevance for the development of normally off and normally on III-N/GaN high electron mobility transistors with gate insulation.

  14. Analytical model of threshold voltage degradation due to localized charges in gate material engineered Schottky barrier cylindrical GAA MOSFETs

    NASA Astrophysics Data System (ADS)

    Kumar, Manoj; Haldar, Subhasis; Gupta, Mridula; Gupta, R. S.

    2016-10-01

    The threshold voltage degradation due to the hot carrier induced localized charges (LC) is a major reliability concern for nanoscale Schottky barrier (SB) cylindrical gate all around (GAA) metal-oxide-semiconductor field-effect transistors (MOSFETs). The degradation physics of gate material engineered (GME)-SB-GAA MOSFETs due to LC is still unexplored. An explicit threshold voltage degradation model for GME-SB-GAA-MOSFETs with the incorporation of localized charges (N it) is developed. To accurately model the threshold voltage the minimum channel carrier density has been taken into account. The model renders how +/- LC affects the device subthreshold performance. One-dimensional (1D) Poisson’s and 2D Laplace equations have been solved for two different regions (fresh and damaged) with two different gate metal work-functions. LCs are considered at the drain side with low gate metal work-function as N it is more vulnerable towards the drain. For the reduction of carrier mobility degradation, a lightly doped channel has been considered. The proposed model also includes the effect of barrier height lowering at the metal-semiconductor interface. The developed model results have been verified using numerical simulation data obtained by the ATLAS-3D device simulator and excellent agreement is observed between analytical and simulation results.

  15. Common-path interference and oscillatory Zener tunneling in bilayer graphene p-n junctions

    PubMed Central

    Nandkishore, Rahul; Levitov, Leonid

    2011-01-01

    Interference and tunneling are two signature quantum effects that are often perceived as the yin and yang of quantum mechanics: a particle simultaneously propagating along several distinct classical paths versus a particle penetrating through a classically inaccessible region via a single least-action path. Here we demonstrate that the Dirac quasiparticles in graphene provide a dramatic departure from this paradigm. We show that Zener tunneling in gapped bilayer graphene, which governs transport through p-n heterojunctions, exhibits common-path interference that takes place under the tunnel barrier. Due to a symmetry peculiar to the gapped bilayer graphene bandstructure, interfering tunneling paths form conjugate pairs, giving rise to high-contrast oscillations in transmission as a function of the gate-tunable bandgap and other control parameters of the junction. The common-path interference is solely due to forward-propagating waves; in contrast to Fabry–Pérot-type interference in resonant-tunneling structures, it does not rely on multiple backscattering. The oscillations manifest themselves in the junction I–V characteristic as N-shaped branches with negative differential conductivity. The negative dI/dV, which arises solely due to under-barrier interference, can enable new high-speed active-circuit devices with architectures that are not available in electronic semiconductor devices. PMID:21825159

  16. Internal Photoemission at Interaces of ALD TaiOx Insulating Layers Deposited on Si, InP and In0.53Ga0.47As

    NASA Astrophysics Data System (ADS)

    Chou, H. Y.; Afanas'ev, V. V.; Thoan, N. H.; Adelmann, C.; Lin, H. C.; Houssa, M.; Stesmans, A.

    2012-12-01

    Electrical analysis of interfaces of (100)Si, (100)InP, and (100)In0.53Ga0.47As with TaSiOx (Ta/Si≈1) films atomic-layer deposited using SiCl4, TaCl5, and H2O precursors suggests Ta silicate as a good insulating and surface passivating layer on all three semiconductors. However, when a positive voltage is applied to the top metal electrode in a metal/ TaSiOx /semiconductor configuration, considerable hysteresis of the capacitance-voltage curves, both at 300 and 77 K, is universally observed indicating electron injection and trapping in the insulator. To shed some light on the origin of this charge instability, we analyzed interface band alignment of the studied interfaces using the spectroscopies of internal photoemission and photoconductivity measurements. The latter reveals that independently of the semiconductor substrate material, TaSiOx layers exhibit a bandgap of only 4.5±0.1 eV, typical for a Ta2O5 network. The density of electron states associated with this narrow-gap network may account for the enhanced electron injection and trapping. Furthermore, while a sufficiently high energy barrier for electrons between Si and TaSiOx (3.1±0.1 eV) is found, much lower IPE thresholds are encountered at the (100)InP/TaSiOx and (100) In0.53Ga0.47As/TaSiOx interfaces, i.e., 2.4 and 2.0 eV, respectively. The lower barrier may be related by the formation of narrow-gap In-rich interlayers between AIIIBV semiconductors and TaSiOx.

  17. Internal Photoemission at Interfaces of ALD TaSiOx Insulating Layers Deposited on Si, InP and In0.53Ga0.47As

    NASA Astrophysics Data System (ADS)

    Y Chou, H.; Afanas'ev, V. V.; Thoan, N. H.; Adelmann, C.; Lin, H. C.; Houssa, M.; Stesmans, A.

    2012-10-01

    Electrical analysis of interfaces of (100)Si, (100)InP, and (100)In0.53Ga0.47As with TaSiOx (Ta/Si≈1) films atomic-layer deposited using SiCl4, TaCl5, and H2O precursors suggests Ta silicate as a good insulating and surface passivating layer on all three semiconductors. However, when a positive voltage is applied to the top metal electrode in a metal/ TaSiOx /semiconductor configuration, considerable hysteresis of the capacitance-voltage curves, both at 300 and 77 K, is universally observed indicating electron injection and trapping in the insulator. To shed some light on the origin of this charge instability, we analyzed interface band alignment of the studied interfaces using the spectroscopies of internal photoemission and photoconductivity measurements. The latter reveals that independently of the semiconductor substrate material, TaSiOx layers exhibit a bandgap of only 4.5±0.1 eV, typical for a Ta2O5 network. The density of electron states associated with this narrow-gap network may account for the enhanced electron injection and trapping. Furthermore, while a sufficiently high energy barrier for electrons between Si and TaSiOx (3.1±0.1 eV) is found, much lower IPE thresholds are encountered at the (100)InP/TaSiOx and (100) In0.53Ga0.47As/TaSiOx interfaces, i.e., 2.4 and 2.0 eV, respectively. The lower barrier may be related by the formation of narrow-gap In-rich interlayers between AIIIBV semiconductors and TaSiOx.

  18. Physical aspects of ferroelectric semiconductors for photovoltaic solar energy conversion

    NASA Astrophysics Data System (ADS)

    Lopez-Varo, Pilar; Bertoluzzi, Luca; Bisquert, Juan; Alexe, Marin; Coll, Mariona; Huang, Jinsong; Jimenez-Tejada, Juan Antonio; Kirchartz, Thomas; Nechache, Riad; Rosei, Federico; Yuan, Yongbo

    2016-10-01

    Solar energy conversion using semiconductors to fabricate photovoltaic devices relies on efficient light absorption, charge separation of electron-hole pair carriers or excitons, and fast transport and charge extraction to counter recombination processes. Ferroelectric materials are able to host a permanent electrical polarization which provides control over electrical field distribution in bulk and interfacial regions. In this review, we provide a critical overview of the physical principles and mechanisms of solar energy conversion using ferroelectric semiconductors and contact layers, as well as the main achievements reported so far. In a ferroelectric semiconductor film with ideal contacts, the polarization charge would be totally screened by the metal layers and no charge collection field would exist. However, real materials show a depolarization field, smooth termination of polarization, and interfacial energy barriers that do provide the control of interface and bulk electric field by switchable spontaneous polarization. We explore different phenomena as the polarization-modulated Schottky-like barriers at metal/ferroelectric interfaces, depolarization fields, vacancy migration, and the switchable rectifying behavior of ferroelectric thin films. Using a basic physical model of a solar cell, our analysis provides a general picture of the influence of ferroelectric effects on the actual power conversion efficiency of the solar cell device, and we are able to assess whether these effects or their combinations are beneficial or counterproductive. We describe in detail the bulk photovoltaic effect and the contact layers that modify the built-in field and the charge injection and separation in bulk heterojunction organic cells as well as in photocatalytic and water splitting devices. We also review the dominant families of ferroelectric materials that have been most extensively investigated and have provided the best photovoltaic performance.

  19. OPS laser EPI design for different wavelengths

    NASA Astrophysics Data System (ADS)

    Moloney, J. V.; Hader, J.; Li, H.; Kaneda, Y.; Wang, T. S.; Yarborough, M.; Koch, S. W.; Stolz, W.; Kunert, B.; Bueckers, C.; Chaterjee, S.; Hardesty, G.

    2009-02-01

    Design of optimized semiconductor optically-pumped semiconductor lasers (OPSLs) depends on many ingredients starting from the quantum wells, barrier and cladding layers all the way through to the resonant-periodic gain (RPG) and high reflectivity Bragg mirror (DBR) making up the OPSL active mirror. Accurate growth of the individual layers making up the RPG region is critical if performance degradation due to cavity misalignment is to be avoided. Optimization of the RPG+DBR structure requires knowledge of the heat generation and heating sinking of the active mirror. Nonlinear Control Strategies SimuLaseTM software, based on rigorous many-body calculations of the semiconductor optical response, allows for quantum well and barrier optimization by correlating low intensity photoluminescence spectra computed for the design, with direct experimentally measured wafer-level edge and surface PL spectra. Consequently, an OPSL device optimization procedure ideally requires a direct iterative interaction between designer and grower. In this article, we discuss the application of the many-body microscopic approach to OPSL devices lasing at 850nm, 1040nm and 2μm. The latter device involves and application of the many-body approach to mid-IR OPSLs based on antimonide materials. Finally we will present results on based on structural modifications of the epitaxial structure and/or novel material combinations that offer the potential to extend OPSL technology to new wavelength ranges.

  20. Trap densities and transport properties of pentacene metal-oxide-semiconductor transistors: II—Numerical modeling of dc characteristics

    NASA Astrophysics Data System (ADS)

    Basile, A. F.; Kyndiah, A.; Biscarini, F.; Fraboni, B.

    2014-06-01

    A numerical procedure to calculate the drain-current (ID) vs. gate-voltage (VG) characteristics from numerical solutions of the Poisson equation for organic Thin-Film Transistors (TFTs) is presented. Polaron transport is modeled as two-dimensional charge transport in a semiconductor having free-carrier density of states proportional to the density of molecules and traps with energy equal to the polaron-hopping barrier. The simulated ID-VG curves are proportional to the product of the density of free carriers, calculated as a function of VG, and the intrinsic mobility, assumed to be a constant independent of temperature. The presence of traps in the oxide was also taken into account in the model, which was applied to a TFT made with six monolayers of pentacene grown on an oxide substrate. The polaron-hopping barrier determines the temperature dependence of the simulated ID-VG curves, trapping in the oxide is responsible for current reduction at high bias and the slope of the characteristics near threshold is related to the metal-semiconductor work-function difference. The values of the model parameters yielding the best match between calculations and experiments are consistent with previous experimental results and theoretical predictions. Therefore, this model enables to extract both physical and technological properties of thin-film devices from the temperature-dependent dc characteristics.

  1. Strong Schottky barrier reduction at Au-catalyst/GaAs-nanowire interfaces by electric dipole formation and Fermi-level unpinning.

    PubMed

    Suyatin, Dmitry B; Jain, Vishal; Nebol'sin, Valery A; Trägårdh, Johanna; Messing, Maria E; Wagner, Jakob B; Persson, Olof; Timm, Rainer; Mikkelsen, Anders; Maximov, Ivan; Samuelson, Lars; Pettersson, Håkan

    2014-01-01

    Nanoscale contacts between metals and semiconductors are critical for further downscaling of electronic and optoelectronic devices. However, realizing nanocontacts poses significant challenges since conventional approaches to achieve ohmic contacts through Schottky barrier suppression are often inadequate. Here we report the realization and characterization of low n-type Schottky barriers (~0.35 eV) formed at epitaxial contacts between Au-In alloy catalytic particles and GaAs-nanowires. In comparison to previous studies, our detailed characterization, employing selective electrical contacts defined by high-precision electron beam lithography, reveals the barrier to occur directly and solely at the abrupt interface between the catalyst and nanowire. We attribute this lowest-to-date-reported Schottky barrier to a reduced density of pinning states (~10(17) m(-2)) and the formation of an electric dipole layer at the epitaxial contacts. The insight into the physical mechanisms behind the observed low-energy Schottky barrier may guide future efforts to engineer abrupt nanoscale electrical contacts with tailored electrical properties.

  2. Schottky-type grain boundaries in CCTO ceramics

    NASA Astrophysics Data System (ADS)

    Felix, A. A.; Orlandi, M. O.; Varela, J. A.

    2011-10-01

    In this work we studied electrical barriers existing at CaCu 3Ti 4O 12 (CCTO) ceramics using dc electrical measurements. CCTO pellets were produced by solid state reaction method and X-ray diffractograms showed which single phase polycrystalline samples were obtained. The samples were electrically characterized by dc and ac measurements as a function of temperature, and semiconductor theory was applied to analyze the barrier at grain boundaries. The ac results showed the sample's permittivity is almost constant ( 104) as function of temperature at low frequencies and it changes from 100 to 104 as the temperature increases at high frequencies. Using dc measurements as a function of temperature, the behavior of barriers was studied in detail. Comparison between Schottky and Poole-Frenkel models was performed, and results prove that CCTO barriers are more influenced by temperature than by electric field (Schottky barriers). Besides, the behavior of barrier width as function of temperature was also studied and experimental results confirm the theoretical assumptions.

  3. Analysing black phosphorus transistors using an analytic Schottky barrier MOSFET model.

    PubMed

    Penumatcha, Ashish V; Salazar, Ramon B; Appenzeller, Joerg

    2015-11-13

    Owing to the difficulties associated with substitutional doping of low-dimensional nanomaterials, most field-effect transistors built from carbon nanotubes, two-dimensional crystals and other low-dimensional channels are Schottky barrier MOSFETs (metal-oxide-semiconductor field-effect transistors). The transmission through a Schottky barrier-MOSFET is dominated by the gate-dependent transmission through the Schottky barriers at the metal-to-channel interfaces. This makes the use of conventional transistor models highly inappropriate and has lead researchers in the past frequently to extract incorrect intrinsic properties, for example, mobility, for many novel nanomaterials. Here we propose a simple modelling approach to quantitatively describe the transfer characteristics of Schottky barrier-MOSFETs from ultra-thin body materials accurately in the device off-state. In particular, after validating the model through the analysis of a set of ultra-thin silicon field-effect transistor data, we have successfully applied our approach to extract Schottky barrier heights for electrons and holes in black phosphorus devices for a large range of body thicknesses.

  4. Analysing black phosphorus transistors using an analytic Schottky barrier MOSFET model

    PubMed Central

    Penumatcha, Ashish V.; Salazar, Ramon B.; Appenzeller, Joerg

    2015-01-01

    Owing to the difficulties associated with substitutional doping of low-dimensional nanomaterials, most field-effect transistors built from carbon nanotubes, two-dimensional crystals and other low-dimensional channels are Schottky barrier MOSFETs (metal-oxide-semiconductor field-effect transistors). The transmission through a Schottky barrier-MOSFET is dominated by the gate-dependent transmission through the Schottky barriers at the metal-to-channel interfaces. This makes the use of conventional transistor models highly inappropriate and has lead researchers in the past frequently to extract incorrect intrinsic properties, for example, mobility, for many novel nanomaterials. Here we propose a simple modelling approach to quantitatively describe the transfer characteristics of Schottky barrier-MOSFETs from ultra-thin body materials accurately in the device off-state. In particular, after validating the model through the analysis of a set of ultra-thin silicon field-effect transistor data, we have successfully applied our approach to extract Schottky barrier heights for electrons and holes in black phosphorus devices for a large range of body thicknesses. PMID:26563458

  5. Impact of GaN cap on charges in Al₂O₃/(GaN/)AlGaN/GaN metal-oxide-semiconductor heterostructures analyzed by means of capacitance measurements and simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ťapajna, M., E-mail: milan.tapajna@savba.sk; Jurkovič, M.; Válik, L.

    2014-09-14

    Oxide/semiconductor interface trap density (D{sub it}) and net charge of Al₂O₃/(GaN)/AlGaN/GaN metal-oxide-semiconductor high-electron mobility transistor (MOS-HEMT) structures with and without GaN cap were comparatively analyzed using comprehensive capacitance measurements and simulations. D{sub it} distribution was determined in full band gap of the barrier using combination of three complementary capacitance techniques. A remarkably higher D{sub it} (∼5–8 × 10¹²eV⁻¹ cm⁻²) was found at trap energies ranging from E C-0.5 to 1 eV for structure with GaN cap compared to that (D{sub it} ∼ 2–3 × 10¹²eV⁻¹ cm⁻²) where the GaN cap was selectively etched away. D{sub it} distributions were then used for simulation of capacitance-voltage characteristics. A good agreement betweenmore » experimental and simulated capacitance-voltage characteristics affected by interface traps suggests (i) that very high D{sub it} (>10¹³eV⁻¹ cm⁻²) close to the barrier conduction band edge hampers accumulation of free electron in the barrier layer and (ii) the higher D{sub it} centered about E C-0.6 eV can solely account for the increased C-V hysteresis observed for MOS-HEMT structure with GaN cap. Analysis of the threshold voltage dependence on Al₂O₃ thickness for both MOS-HEMT structures suggests that (i) positive charge, which compensates the surface polarization, is not necessarily formed during the growth of III-N heterostructure, and (ii) its density is similar to the total surface polarization charge of the GaN/AlGaN barrier, rather than surface polarization of the top GaN layer only. Some constraints for the positive surface compensating charge are discussed.« less

  6. Multi-line triggering and interdigitated electrode structure for photoconductive semiconductor switches

    DOEpatents

    Mar, Alan [Albuquerque, NM; Zutavern, Fred J [Albuquerque, NM; Loubriel, Guillermo [Albuquerque, NM

    2007-02-06

    An improved photoconductive semiconductor switch comprises multiple-line optical triggering of multiple, high-current parallel filaments between the switch electrodes. The switch can also have a multi-gap, interdigitated electrode for the generation of additional parallel filaments. Multi-line triggering can increase the switch lifetime at high currents by increasing the number of current filaments and reducing the current density at the contact electrodes in a controlled manner. Furthermore, the improved switch can mitigate the degradation of switching conditions with increased number of firings of the switch.

  7. Electrostatic separation for recycling conductors, semiconductors, and nonconductors from electronic waste.

    PubMed

    Xue, Mianqiang; Yan, Guoqing; Li, Jia; Xu, Zhenming

    2012-10-02

    Electrostatic separation has been widely used to separate conductors and nonconductors for recycling e-waste. However, the components of e-waste are complex, which can be classified as conductors, semiconductors, and nonconductors according to their conducting properties. In this work, we made a novel attempt to recover the mixtures containing conductors (copper), semiconductors (extrinsic silicon), and nonconductors (woven glass reinforced resin) by electrostatic separation. The results of binary mixtures separation show that the separation of conductor and nonconductor, semiconductor and nonconductor need a higher voltage level while the separation of conductor and semiconductor needs a higher roll speed. Furthermore, the semiconductor separation efficiency is more sensitive to the high voltage level and the roll speed than the conductor separation efficiency. An integrated process was proposed for the multiple mixtures separation. The separation efficiency of conductors and semiconductors can reach 82.5% and 88%, respectively. This study contributes to the efficient recycling of valuable resources from e-waste.

  8. Polymer/metal oxide hybrid dielectrics for low voltage field-effect transistors with solution-processed, high-mobility semiconductors

    NASA Astrophysics Data System (ADS)

    Held, Martin; Schießl, Stefan P.; Miehler, Dominik; Gannott, Florentina; Zaumseil, Jana

    2015-08-01

    Transistors for future flexible organic light-emitting diode (OLED) display backplanes should operate at low voltages and be able to sustain high currents over long times without degradation. Hence, high capacitance dielectrics with low surface trap densities are required that are compatible with solution-processable high-mobility semiconductors. Here, we combine poly(methyl methacrylate) (PMMA) and atomic layer deposition hafnium oxide (HfOx) into a bilayer hybrid dielectric for field-effect transistors with a donor-acceptor polymer (DPPT-TT) or single-walled carbon nanotubes (SWNTs) as the semiconductor and demonstrate substantially improved device performances for both. The ultra-thin PMMA layer ensures a low density of trap states at the semiconductor-dielectric interface while the metal oxide layer provides high capacitance, low gate leakage and superior barrier properties. Transistors with these thin (≤70 nm), high capacitance (100-300 nF/cm2) hybrid dielectrics enable low operating voltages (<5 V), balanced charge carrier mobilities and low threshold voltages. Moreover, the hybrid layers substantially improve the bias stress stability of the transistors compared to those with pure PMMA and HfOx dielectrics.

  9. Interface designed MoS2/GaAs heterostructure solar cell with sandwich stacked hexagonal boron nitride

    PubMed Central

    Lin, Shisheng; Li, Xiaoqiang; Wang, Peng; Xu, Zhijuan; Zhang, Shengjiao; Zhong, Huikai; Wu, Zhiqian; Xu, Wenli; Chen, Hongsheng

    2015-01-01

    MoS2 is a layered two-dimensional semiconductor with a direct band gap of 1.8 eV. The MoS2/bulk semiconductor system offers a new platform for solar cell device design. Different from the conventional bulk p-n junctions, in the MoS2/bulk semiconductor heterostructure, static charge transfer shifts the Fermi level of MoS2 toward that of bulk semiconductor, lowering the barrier height of the formed junction. Herein, we introduce hexagonal boron nitride (h-BN) into MoS2/GaAs heterostructure to suppress the static charge transfer, and the obtained MoS2/h-BN/GaAs solar cell exhibits an improved power conversion efficiency of 5.42%. More importantly, the sandwiched h-BN makes the Fermi level tuning of MoS2 more effective. By employing chemical doping and electrical gating into the solar cell device, PCE of 9.03% is achieved, which is the highest among all the reported monolayer transition metal dichalcogenide based solar cells. PMID:26458358

  10. Electrical spin injection from CoFe2O4 into p-Si semiconductor across MgO tunnel barrier for spin electronics

    NASA Astrophysics Data System (ADS)

    Panda, J.; Maji, Nilay; Nath, T. K.

    2017-05-01

    The room temperature spin injection and detection in non magnetic p-Si semiconductor have been studied in details in our CoFe2O4 (CFO)/MgO/p-Si heterojunction. The 3-terminal tunnel contacts have been made on the device for transport measurements. The electrical transport properties have been investigated at different isothermal conditions in the temperature range of 10-300 K. The spin accumulation in non magnetic p-Si semiconductor has been observed at different bias current under the applied magnetic field parallel to the film plane in the temperature range of 40-300 K. We have observed a giant spin accumulation in p-Si semiconductor using MgO/CFO tunnel contact. The Hanley effect is used to control the reduction of spin accumulation by applying magnetic field perpendicular to the carrier spin in the p-Si. The accumulated spin signal decays as a function of applied magnetic field for fixed bias current. These results will enable utilization of the spin degree of freedom in complementary Si devices and its further development.

  11. Use of separate ZnTe interface layers to form ohmic contacts to p-CdTe films

    DOEpatents

    Gessert, T.A.

    1999-06-01

    A method of is disclosed improving electrical contact to a thin film of a p-type tellurium-containing II-VI semiconductor comprising: depositing a first undoped layer of ZnTe on a thin film of p-type tellurium containing II-VI semiconductor with material properties selected to limit the formation of potential barriers at the interface between the p-CdTe and the undoped layer, to a thickness sufficient to control diffusion of the metallic-doped ZnTe into the p-type tellurium-containing II-VI semiconductor, but thin enough to minimize affects of series resistance; depositing a second heavy doped p-type ZnTe layer to the first layer using an appropriate dopant; and depositing an appropriate metal onto the outer-most surface of the doped ZnTe layer for connecting an external electrical conductor to an ohmic contact. 11 figs.

  12. Electrothermal energy conversion using electron gas volumetric change inside semiconductors

    NASA Astrophysics Data System (ADS)

    Yazawa, K.; Shakouri, A.

    2016-07-01

    We propose and analyze an electrothermal energy converter using volumetric changes in non-equilibrium electron gas inside semiconductors. The geometric concentration of electron gas under an electric field increases the effective pressure of the electrons, and then a barrier filters out cold electrons, acting like a valve. Nano- and micro-scale features enable hot electrons to arrive at the contact in a short enough time to avoid thermalization with the lattice. Key length and time scales, preliminary device geometry, and anticipated efficiency are estimated for electronic analogs of Otto and Brayton power generators and Joule-Thomson micro refrigerators on a chip. The power generators convert the energy of incident photons from the heat source to electrical current, and the refrigerator can reduce the temperature of electrons in a semiconductor device. The analytic calculations show that a large energy conversion efficiency or coefficient of performance may be possible.

  13. Use of separate ZnTe interface layers to form OHMIC contacts to p-CdTe films

    DOEpatents

    Gessert, Timothy A.

    1999-01-01

    A method of improving electrical contact to a thin film of a p-type tellurium-containing II-VI semiconductor comprising: depositing a first undoped layer of ZnTe on a thin film of p-type tellurium containing II-VI semiconductor with material properties selected to limit the formation of potential barriers at the interface between the p-CdTe and the undoped layer, to a thickness sufficient to control diffusion of the metallic-doped ZnTe into the p-type tellurim-containing II-VI semiconductor, but thin enough to minimize affects of series resistance; depositing a second heavy doped p-type ZnTe layer to the first layer using an appropriate dopant; and depositing an appropriate metal onto the outer-most surface of the doped ZnTe layer for connecting an external electrical conductor to an ohmic contact.

  14. Electrothermal energy conversion using electron gas volumetric change inside semiconductors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yazawa, K.; Shakouri, A.

    2016-07-25

    We propose and analyze an electrothermal energy converter using volumetric changes in non-equilibrium electron gas inside semiconductors. The geometric concentration of electron gas under an electric field increases the effective pressure of the electrons, and then a barrier filters out cold electrons, acting like a valve. Nano- and micro-scale features enable hot electrons to arrive at the contact in a short enough time to avoid thermalization with the lattice. Key length and time scales, preliminary device geometry, and anticipated efficiency are estimated for electronic analogs of Otto and Brayton power generators and Joule-Thomson micro refrigerators on a chip. The powermore » generators convert the energy of incident photons from the heat source to electrical current, and the refrigerator can reduce the temperature of electrons in a semiconductor device. The analytic calculations show that a large energy conversion efficiency or coefficient of performance may be possible.« less

  15. Models of second-order effects in metal-oxide-semiconductor field-effect transistors for computer applications

    NASA Technical Reports Server (NTRS)

    Benumof, Reuben; Zoutendyk, John; Coss, James

    1988-01-01

    Second-order effects in metal-oxide-semiconductor field-effect transistors (MOSFETs) are important for devices with dimensions of 2 microns or less. The short and narrow channel effects and drain-induced barrier lowering primarily affect threshold voltage, but formulas for drain current must also take these effects into account. In addition, the drain current is sensitive to channel length modulation due to pinch-off or velocity saturation and is diminished by electron mobility degradation due to normal and lateral electric fields in the channel. A model of a MOSFET including these considerations and emphasizing charge conservation is discussed.

  16. Selective high-resolution electrodeposition on semiconductor defect patterns.

    PubMed

    Schmuki, P; Erickson, L E

    2000-10-02

    We report a new principle and technique that allows one to electrodeposit material patterns of arbitrary shape down to the submicrometer scale. We demonstrate that an electrochemical metal deposition reaction can be initiated selectively at surface defects created in a p-type Si(100) substrate by Si (++) focused ion beam bombardment. The key principle is that, for cathodic electrochemical polarization of p-type material in the dark, breakdown of the blocking Schottky barrier at the semiconductor/electrolyte interface occurs at significantly lower voltages at implanted locations than for an unimplanted surface. This difference in the threshold voltages is exploited to achieve selective electrochemical deposition.

  17. First-principles multiple-barrier diffusion theory. The case study of interstitial diffusion in CdTe

    DOE PAGES

    Yang, Ji -Hui; Park, Ji -Sang; Kang, Joongoo; ...

    2015-02-17

    The diffusion of particles in solid-state materials generally involves several sequential thermal-activation processes. However, presently, diffusion coefficient theory only deals with a single barrier, i.e., it lacks an accurate description to deal with multiple-barrier diffusion. Here, we develop a general diffusion coefficient theory for multiple-barrier diffusion. Using our diffusion theory and first-principles calculated hopping rates for each barrier, we calculate the diffusion coefficients of Cd, Cu, Te, and Cl interstitials in CdTe for their full multiple-barrier diffusion pathways. As a result, we found that the calculated diffusivity agrees well with the experimental measurement, thus justifying our theory, which is generalmore » for many other systems.« less

  18. Multiple-Barrier Resonant Tunneling Structures for Application in a Microwave Generator Stabilized by Microstrip Resonator

    DTIC Science & Technology

    2000-06-23

    conductivity ( NDC ) effects in double barrier resonant tunneling structures (DBRTS) prove the extremely fast frequency response of charge transport (less...UNCLASSIFIED Defense Technical Information Center Compilation Part Notice ADP013131 TITLE: Multiple-Barrier Resonant Tunneling Structures for...Institute Multiple-barrier resonant tunneling structures for application in a microwave generator stabilized by microstrip resonator S. V. Evstigneev, A. L

  19. Ultrafast all-optical imaging technique using low-temperature grown GaAs/AlxGa1 - xAs multiple-quantum-well semiconductor

    NASA Astrophysics Data System (ADS)

    Gao, Guilong; Tian, Jinshou; Wang, Tao; He, Kai; Zhang, Chunmin; Zhang, Jun; Chen, Shaorong; Jia, Hui; Yuan, Fenfang; Liang, Lingliang; Yan, Xin; Li, Shaohui; Wang, Chao; Yin, Fei

    2017-11-01

    We report and experimentally demonstrate an ultrafast all-optical imaging technique capable of single-shot ultrafast recording with a picosecond-scale temporal resolution and a micron-order two-dimensional spatial resolution. A GaAs/AlxGa1 - xAs multiple-quantum-well (MQW) semiconductor with a picosecond response time, grown using molecular beam epitaxy (MBE) at a low temperature (LT), is used for the first time in ultrafast imaging technology. The semiconductor transforms the signal beam information to the probe beam, the birefringent delay crystal time-serializes the input probe beam, and the beam displacer maps different polarization probe beams onto different detector locations, resulting in two frames with an approximately 9 ps temporal separation and approximately 25 lp/mm spatial resolution in the visible range.

  20. The intestinal barrier in multiple sclerosis: implications for pathophysiology and therapeutics.

    PubMed

    Camara-Lemarroy, Carlos R; Metz, Luanne; Meddings, Jonathan B; Sharkey, Keith A; Wee Yong, V

    2018-05-30

    Biological barriers are essential for the maintenance of homeostasis in health and disease. Breakdown of the intestinal barrier is an essential aspect of the pathophysiology of gastrointestinal inflammatory diseases, such as inflammatory bowel disease. A wealth of recent studies has shown that the intestinal microbiome, part of the brain-gut axis, could play a role in the pathophysiology of multiple sclerosis. However, an essential component of this axis, the intestinal barrier, has received much less attention. In this review, we describe the intestinal barrier as the physical and functional zone of interaction between the luminal microbiome and the host. Besides its essential role in the regulation of homeostatic processes, the intestinal barrier contains the gut mucosal immune system, a guardian of the integrity of the intestinal tract and the whole organism. Gastrointestinal disorders with intestinal barrier breakdown show evidence of CNS demyelination, and content of the intestinal microbiome entering into the circulation can impact the functions of CNS microglia. We highlight currently available studies suggesting that there is intestinal barrier dysfunction in multiple sclerosis. Finally, we address the mechanisms by which commonly used disease-modifying drugs in multiple sclerosis could alter the intestinal barrier and the microbiome, and we discuss the potential of barrier-stabilizing strategies, including probiotics and stabilization of tight junctions, as novel therapeutic avenues in multiple sclerosis.

  1. Effect of inhomogeneous Schottky barrier height of SnO2 nanowires device

    NASA Astrophysics Data System (ADS)

    Amorim, Cleber A.; Bernardo, Eric P.; Leite, Edson R.; Chiquito, Adenilson J.

    2018-05-01

    The current–voltage (I–V) characteristics of metal–semiconductor junction (Au–Ni/SnO2/Au–Ni) Schottky barrier in SnO2 nanowires were investigated over a wide temperature range. By using the Schottky–Mott model, the zero bias barrier height Φ B was estimated from I–V characteristics, and it was found to increase with increasing temperature; on the other hand the ideality factor (n) was found to decrease with increasing temperature. The variation in the Schottky barrier and n was attributed to the spatial inhomogeneity of the Schottky barrier height. The experimental I–V characteristics exhibited a Gaussian distribution having mean barrier heights {\\overline{{{Φ }}}}B of 0.30 eV and standard deviation σ s of 60 meV. Additionally, the Richardson modified constant was obtained to be 70 A cm‑2 K‑2, leading to an effective mass of 0.58m 0. Consequently, the temperature dependence of I–V characteristics of the SnO2 nanowire devices can be successfully explained on the Schottky–Mott theory framework taking into account a Gaussian distribution of barrier heights.

  2. Charge transport in nanoscale "all-inorganic" networks of semiconductor nanorods linked by metal domains.

    PubMed

    Lavieville, Romain; Zhang, Yang; Casu, Alberto; Genovese, Alessandro; Manna, Liberato; Di Fabrizio, Enzo; Krahne, Roman

    2012-04-24

    Charge transport across metal-semiconductor interfaces at the nanoscale is a crucial issue in nanoelectronics. Chains of semiconductor nanorods linked by Au particles represent an ideal model system in this respect, because the metal-semiconductor interface is an intrinsic feature of the nanosystem and does not manifest solely as the contact to the macroscopic external electrodes. Here we investigate charge transport mechanisms in all-inorganic hybrid metal-semiconductor networks fabricated via self-assembly in solution, in which CdSe nanorods were linked to each other by Au nanoparticles. Thermal annealing of our devices changed the morphology of the networks and resulted in the removal of small Au domains that were present on the lateral nanorod facets, and in ripening of the Au nanoparticles in the nanorod junctions with more homogeneous metal-semiconductor interfaces. In such thermally annealed devices the voltage dependence of the current at room temperature can be well described by a Schottky barrier lowering at a metal semiconductor contact under reverse bias, if the spherical shape of the gold nanoparticles is considered. In this case the natural logarithm of the current does not follow the square-root dependence of the voltage as in the bulk, but that of V(2/3). From our fitting with this model we extract the effective permittivity that agrees well with theoretical predictions for the permittivity near the surface of CdSe nanorods. Furthermore, the annealing improved the network conductance at cryogenic temperatures, which could be related to the reduction of the number of trap states.

  3. The Physics and Operation of Ultra-Submicron Length Semiconductor Devices.

    DTIC Science & Technology

    1994-05-01

    300 mei heterostructure diode at T=3001( with Fenni statistics and flat band conditions In all of the calculations with a heterostructure barrier, once...25 24- 22- 21- 0 50 100 150 200 Obhnce (mre Figure 8. Self-consistent T=300K calculation with Fenni statistics showing the density and donor

  4. Dynamic Processes at Semiconductor Interfaces: Atomic Intermixing, Diffusion Barriers, and Stability

    DTIC Science & Technology

    1991-08-15

    that the movement of the Fermi level position at the Si surface and the variation of heterojunction band lineup correlated to the density of...that the topmost layer of As atoms was initially involved in a sequential two-step reaction to produce As l - and As 3+- like oxides. These reactions

  5. Intermediate-band photosensitive device with quantum dots having tunneling barrier embedded in organic matrix

    DOEpatents

    Forrest, Stephen R.

    2008-08-19

    A plurality of quantum dots each have a shell. The quantum dots are embedded in an organic matrix. At least the quantum dots and the organic matrix are photoconductive semiconductors. The shell of each quantum dot is arranged as a tunneling barrier to require a charge carrier (an electron or a hole) at a base of the tunneling barrier in the organic matrix to perform quantum mechanical tunneling to reach the respective quantum dot. A first quantum state in each quantum dot is between a lowest unoccupied molecular orbital (LUMO) and a highest occupied molecular orbital (HOMO) of the organic matrix. Wave functions of the first quantum state of the plurality of quantum dots may overlap to form an intermediate band.

  6. Hybrid device based on GaN nanoneedles and MEH-PPV/PEDOT:PSS polymer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shin, Min Jeong; Gwon, Dong-Oh; Lee, Chan-Mi

    2015-08-15

    Highlights: • A hybrid device was demonstrated by using MEH-PPV, PEDOT:PSS, and GaN nanoneedles. • I–V curve of the hybrid device showed its rectification behaviour, similar to a diode. • EL peak originated by the different potential barriers at MEH-PPV and GaN interface. - Abstract: A hybrid device that combines the properties of organic and inorganic semiconductors was fabricated and studied. It incorporated poly[2-methoxy-5-(2-ethylhexyloxy)- 1,4-phenylenevinylene] (MEH-PPV) and poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) as organic polymers and GaN nanoneedles as an inorganic semiconductor. Layers of the two polymers were spin coated on to the GaN nanoneedles. The one peak in the electroluminescence spectrum originatedmore » from the MEH-PPV layer owing to the different potential barriers of electrons and holes at its interface with the GaN nanoneedles. However, the photoluminescence spectrum showed peaks due to both GaN nanoneedles and MEH-PPV. Such hybrid structures, suitably developed, might be able to improve the efficiency of optoelectronic devices.« less

  7. Decreased Charge Transport Barrier and Recombination of Organic Solar Cells by Constructing Interfacial Nanojunction with Annealing-Free ZnO and Al Layers.

    PubMed

    Liu, Chunyu; Zhang, Dezhong; Li, Zhiqi; Zhang, Xinyuan; Guo, Wenbin; Zhang, Liu; Ruan, Shengping; Long, Yongbing

    2017-07-05

    To overcome drawbacks of the electron transport layer, such as complex surface defects and unmatched energy levels, we successfully employed a smart semiconductor-metal interfacial nanojunciton in organic solar cells by evaporating an ultrathin Al interlayer onto annealing-free ZnO electron transport layer, resulting in a high fill factor of 73.68% and power conversion efficiency of 9.81%. The construction of ZnO-Al nanojunction could effectively fill the surface defects of ZnO and reduce its work function because of the electron transfer from Al to ZnO by Fermi level equilibrium. The filling of surface defects decreased the interfacial carrier recombination in midgap trap states. The reduced surface work function of ZnO-Al remodulated the interfacial characteristics between ZnO and [6,6]-phenyl C71-butyric acid methyl ester (PC 71 BM), decreasing or even eliminating the interfacial barrier against the electron transport, which is beneficial to improve the electron extraction capacity. The filled surface defects and reduced interfacial barrier were realistically observed by photoluminescence measurements of ZnO film and the performance of electron injection devices, respectively. This work provides a simple and effective method to simultaneously solve the problems of surface defects and unmatched energy level for the annealing-free ZnO or other metal oxide semiconductors, paving a way for the future popularization in photovoltaic devices.

  8. Exploring the validity and limitations of the Mott-Gurney law for charge-carrier mobility determination of semiconducting thin-films.

    PubMed

    Röhr, Jason A; Moia, Davide; Haque, Saif A; Kirchartz, Thomas; Nelson, Jenny

    2018-03-14

    Using drift-diffusion simulations, we investigate the voltage dependence of the dark current in single carrier devices typically used to determine charge-carrier mobilities. For both low and high voltages, the current increases linearly with the applied voltage. Whereas the linear current at low voltages is mainly due to space charge in the middle of the device, the linear current at high voltage is caused by charge-carrier saturation due to a high degree of injection. As a consequence, the current density at these voltages does not follow the classical square law derived by Mott and Gurney, and we show that for trap-free devices, only for intermediate voltages, a space-charge-limited drift current can be observed with a slope that approaches a value of two. We show that, depending on the thickness of the semiconductor layer and the size of the injection barriers, the two linear current-voltage regimes can dominate the whole voltage range, and the intermediate Mott-Gurney regime can shrink or disappear. In this case, which will especially occur for thicknesses and injection barriers typical of single-carrier devices used to probe organic semiconductors, a meaningful analysis using the Mott-Gurney law will become unachievable, because a square-law fit can no longer be achieved, resulting in the mobility being substantially underestimated. General criteria for when to expect deviations from the Mott-Gurney law when used for analysis of intrinsic semiconductors are discussed.

  9. Exploring the validity and limitations of the Mott-Gurney law for charge-carrier mobility determination of semiconducting thin-films

    NASA Astrophysics Data System (ADS)

    Röhr, Jason A.; Moia, Davide; Haque, Saif A.; Kirchartz, Thomas; Nelson, Jenny

    2018-03-01

    Using drift-diffusion simulations, we investigate the voltage dependence of the dark current in single carrier devices typically used to determine charge-carrier mobilities. For both low and high voltages, the current increases linearly with the applied voltage. Whereas the linear current at low voltages is mainly due to space charge in the middle of the device, the linear current at high voltage is caused by charge-carrier saturation due to a high degree of injection. As a consequence, the current density at these voltages does not follow the classical square law derived by Mott and Gurney, and we show that for trap-free devices, only for intermediate voltages, a space-charge-limited drift current can be observed with a slope that approaches a value of two. We show that, depending on the thickness of the semiconductor layer and the size of the injection barriers, the two linear current-voltage regimes can dominate the whole voltage range, and the intermediate Mott-Gurney regime can shrink or disappear. In this case, which will especially occur for thicknesses and injection barriers typical of single-carrier devices used to probe organic semiconductors, a meaningful analysis using the Mott-Gurney law will become unachievable, because a square-law fit can no longer be achieved, resulting in the mobility being substantially underestimated. General criteria for when to expect deviations from the Mott-Gurney law when used for analysis of intrinsic semiconductors are discussed.

  10. Reduction of the potential energy barrier and resistance at wafer-bonded n-GaAs/n-GaAs interfaces by sulfur passivation

    NASA Astrophysics Data System (ADS)

    Jackson, Michael J.; Jackson, Biyun L.; Goorsky, Mark S.

    2011-11-01

    Sulfur passivation and subsequent wafer-bonding treatments are demonstrated for III-V semiconductor applications using GaAs-GaAs direct wafer-bonded structures. Two different sulfur passivation processes are addressed. A dry sulfur passivation method that utilizes elemental sulfur vapor activated by ultraviolet light in vacuum is compared with aqueous sulfide and native-oxide-etch treatments. The electrical conductivity across a sulfur-treated 400 - °C-bonded n-GaAs/n-GaAs interface significantly increased with a short anneal (1-2 min) at elevated temperatures (500-600 °C). Interfaces treated with the NH4OH oxide etch, on the other hand, exhibited only mild improvement in accordance with previously published studies in this area. TEM and STEM images revealed similar interfacial microstructure changes with annealing for both sulfur-treated and NH4OH interfaces, whereby some areas have direct semiconductor-semiconductor contact without any interfacial layer. Fitting the observed temperature dependence of zero-bias conductance using a model for tunneling through a grain boundary reveals that the addition of sulfur at the interface lowered the interfacial energy barrier by 0.2 eV. The interface resistance for these sulfur-treated structures is 0.03 Ω.cm at room temperature. These results emphasize that sulfur-passivation techniques reduce interface states that otherwise limit the implementation of wafer bonding for high-efficiency solar cells and other devices.

  11. Optical cavity furnace for semiconductor wafer processing

    DOEpatents

    Sopori, Bhushan L.

    2014-08-05

    An optical cavity furnace 10 having multiple optical energy sources 12 associated with an optical cavity 18 of the furnace. The multiple optical energy sources 12 may be lamps or other devices suitable for producing an appropriate level of optical energy. The optical cavity furnace 10 may also include one or more reflectors 14 and one or more walls 16 associated with the optical energy sources 12 such that the reflectors 14 and walls 16 define the optical cavity 18. The walls 16 may have any desired configuration or shape to enhance operation of the furnace as an optical cavity 18. The optical energy sources 12 may be positioned at any location with respect to the reflectors 14 and walls defining the optical cavity. The optical cavity furnace 10 may further include a semiconductor wafer transport system 22 for transporting one or more semiconductor wafers 20 through the optical cavity.

  12. Method of making high breakdown voltage semiconductor device

    DOEpatents

    Arthur, Stephen D.; Temple, Victor A. K.

    1990-01-01

    A semiconductor device having at least one P-N junction and a multiple-zone junction termination extension (JTE) region which uniformly merges with the reverse blocking junction is disclosed. The blocking junction is graded into multiple zones of lower concentration dopant adjacent termination to facilitate merging of the JTE to the blocking junction and placing of the JTE at or near the high field point of the blocking junction. Preferably, the JTE region substantially overlaps the graded blocking junction region. A novel device fabrication method is also provided which eliminates the prior art step of separately diffusing the JTE region.

  13. Multilevel metallization method for fabricating a metal oxide semiconductor device

    NASA Technical Reports Server (NTRS)

    Hollis, B. R., Jr.; Feltner, W. R.; Bouldin, D. L.; Routh, D. E. (Inventor)

    1978-01-01

    An improved method is described of constructing a metal oxide semiconductor device having multiple layers of metal deposited by dc magnetron sputtering at low dc voltages and low substrate temperatures. The method provides multilevel interconnections and cross over between individual circuit elements in integrated circuits without significantly reducing the reliability or seriously affecting the yield.

  14. Nanophotonic Hot Electron Solar-Blind Ultraviolet Detectors with a Metal-Oxide-Semiconductor Structure

    NASA Astrophysics Data System (ADS)

    Wang, Zhiyuan

    Solar-blind ultraviolet detection refers to photon detection specifically in the wavelength range of 200 nm to 320 nm. Without background noises from solar radiation, it has broad applications from homeland security to environmental monitoring. In this thesis, we design and fabricate a nanophotonic metal-oxide-semiconductor device for solar-blind UV detection. Instead of using semiconductors as the active absorber, we use metal Sn nano- grating structures to absorb UV photons and generate hot electrons for internal photoemission across the Sn/SiO 2 interfacial barrier, thereby generating photocurrent between metal and semiconductor region upon UV excitation. The large metal/oxide interfacial energy barrier enables solar-blind UV detection by blocking the less energetic electrons excited by visible photons. With optimized design, 85% UV absorption and hot electron excitation can be achieved within the mean free path of 20 nm from the metal/oxide interface. This feature greatly enhances hot electron transport across the interfacial barrier to generate photocurrent. Various fabrication techniques have been developed for preparing nano gratings. For nominally 20 nm-thick deposited Sn, the self- formed pseudo-periodic nanostructure help achieve 75% UV absorption from lambda=200 nm to 300 nm. With another layer of nominally 20 nm-thick Sn, similar UV absorption is maintained while conductivity is improved, which is beneficial for overall device efficiency. The Sn/SiO2/Si MOS devices show good solar-blind character while achieving 13% internal quantum efficiency for 260 nm UV with only 20 nm-thick Sn and some devices demonstrate much higher (even >100%) internal quantum efficiency. While a more accurate estimation of device effective area is needed for proving our calculation, these results indeed show a great potential for this type of hot-electron-based photodetectors and for Sn nanostructure as an effective UV absorber. The simple geometry of the self- assembled Sn nano-gratings and MOS structure make this novel type of device easy to fabricate and integrate with Si ROICs compared to existing solar-blind UV detection schemes. The presented device structure also breaks through the conventional notion that photon absorption by metal is always a loss in solid-state photodetectors, and it can potentially be extended to other active metal photonic devices.

  15. Lithographically defined few-electron silicon quantum dots based on a silicon-on-insulator substrate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Horibe, Kosuke; Oda, Shunri; Kodera, Tetsuo, E-mail: kodera.t.ac@m.titech.ac.jp

    2015-02-23

    Silicon quantum dot (QD) devices with a proximal single-electron transistor (SET) charge sensor have been fabricated in a metal-oxide-semiconductor structure based on a silicon-on-insulator substrate. The charge state of the QDs was clearly read out using the charge sensor via the SET current. The lithographically defined small QDs enabled clear observation of the few-electron regime of a single QD and a double QD by charge sensing. Tunnel coupling on tunnel barriers of the QDs can be controlled by tuning the top-gate voltages, which can be used for manipulation of the spin quantum bit via exchange interaction between tunnel-coupled QDs. Themore » lithographically defined silicon QD device reported here is technologically simple and does not require electrical gates to create QD confinement potentials, which is advantageous for the integration of complicated constructs such as multiple QD structures with SET charge sensors for the purpose of spin-based quantum computing.« less

  16. Commercial production of QWIP wafers by molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Fastenau, J. M.; Liu, W. K.; Fang, X. M.; Lubyshev, D. I.; Pelzel, R. I.; Yurasits, T. R.; Stewart, T. R.; Lee, J. H.; Li, S. S.; Tidrow, M. Z.

    2001-06-01

    As the performance of quantum well infrared photodetectors (QWIPs) and QWIP-based imaging systems continues to improve, their demand will undoubtedly grow. This points to the importance of a reliable commercial supplier of semiconductor QWIP material on three inch and, in the near future, four-inch substrates. Molecular beam epitaxy (MBE) is the preferred technique for growing the demanding QWIP structure, as tight control is required over the material composition and layer thickness. We report the current status of MBE-grown GaAs-based QWIP structures in a commercial production environment at IQE. Uniformity data and run-to-run reproducibility on both three-inch and four-inch GaAs substrates are quantified using alloy composition and QW thickness. Initial results on growth technology transfer to a multi-wafer MBE reactor are also presented. High-resolution X-ray diffraction measurements demonstrate GaAs QW thickness variations and AlGaAs barrier compositions changes to be less than 4% and 1% Al, respectively, across four-inch QWIP wafers from both single- and multiple-wafer MBE platforms.

  17. Ballistic-electron-emission spectroscopy of Al{sub x}Ga{sub 1{minus}x}As/GaAs heterostructures: Conduction-band offsets, transport mechanisms, and band-structure effects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    OShea, J.J.; Brazel, E.G.; Rubin, M.E.

    1997-07-01

    We report an extensive investigation of semiconductor band-structure effects in single-barrier Al{sub x}Ga{sub 1{minus}x}As/GaAs heterostructures using ballistic-electron-emission spectroscopy (BEES). The transport mechanisms in these single-barrier structures were studied systematically as a function of temperature and Al composition over the full compositional range (0{le}x{le}1). The initial ({Gamma}) BEES thresholds for Al{sub x}Ga{sub 1{minus}x}As single barriers with 0{le}x{le}0.42 were extracted using a model which includes the complete transmission probability of the metal-semiconductor interface and the semiconductor heterostructure. Band offsets measured by BEES are in good agreement with previous measurements by other techniques which demonstrates the accuracy of this technique. BEES measurements atmore » 77 K give the same band-offset values as at room temperature. When a reverse bias is applied to the heterostructures, the BEES thresholds shift to lower voltages in good agreement with the expected bias-induced band-bending. In the indirect band-gap regime ({ital x}{gt}0.45), spectra show a weak ballistic-electron-emission microscopy current contribution due to intervalley scattering through Al{sub x}Ga{sub 1{minus}x}As {ital X} valley states. Low-temperature spectra show a marked reduction in this intervalley current component, indicating that intervalley phonon scattering at the GaAs/Al{sub x}Ga{sub 1{minus}x}As interface produces a significant fraction of this{ital X} valley current. A comparison of the BEES thresholds with the expected composition dependence of the Al{sub x}Ga{sub 1{minus}x}As {Gamma}, {ital L}, and {ital X} points yields good agreement over the entire composition range. {copyright} {ital 1997} {ital The American Physical Society}« less

  18. Route to the Smallest Doped Semiconductor: Mn(2+)-Doped (CdSe)13 Clusters.

    PubMed

    Yang, Jiwoong; Fainblat, Rachel; Kwon, Soon Gu; Muckel, Franziska; Yu, Jung Ho; Terlinden, Hendrik; Kim, Byung Hyo; Iavarone, Dino; Choi, Moon Kee; Kim, In Young; Park, Inchul; Hong, Hyo-Ki; Lee, Jihwa; Son, Jae Sung; Lee, Zonghoon; Kang, Kisuk; Hwang, Seong-Ju; Bacher, Gerd; Hyeon, Taeghwan

    2015-10-14

    Doping semiconductor nanocrystals with magnetic transition-metal ions has attracted fundamental interest to obtain a nanoscale dilute magnetic semiconductor, which has unique spin exchange interaction between magnetic spin and exciton. So far, the study on the doped semiconductor NCs has usually been conducted with NCs with larger than 2 nm because of synthetic challenges. Herein, we report the synthesis and characterization of Mn(2+)-doped (CdSe)13 clusters, the smallest doped semiconductors. In this study, single-sized doped clusters are produced in large scale. Despite their small size, these clusters have semiconductor band structure instead of that of molecules. Surprisingly, the clusters show multiple excitonic transitions with different magneto-optical activities, which can be attributed to the fine structure splitting. Magneto-optically active states exhibit giant Zeeman splittings up to elevated temperatures (128 K) with large g-factors of 81(±8) at 4 K. Our results present a new synthetic method for doped clusters and facilitate the understanding of doped semiconductor at the boundary of molecules and quantum nanostructure.

  19. Method of installing subsurface barrier

    DOEpatents

    Nickelson, Reva A.; Richardson, John G.; Kostelnik, Kevin M.; Sloan, Paul A.

    2007-10-09

    Systems, components, and methods relating to subterranean containment barriers. Laterally adjacent tubular casings having male interlock structures and multiple female interlock structures defining recesses for receiving a male interlock structure are used to create subterranean barriers for containing and treating buried waste and its effluents. The multiple female interlock structures enable the barriers to be varied around subsurface objects and to form barrier sidewalls. The barrier may be used for treating and monitoring a zone of interest.

  20. Comparison of nickel, cobalt, palladium, and tungsten Schottky contacts on n-4H-silicon carbide

    NASA Astrophysics Data System (ADS)

    Gora, V. E.; Chawanda, A.; Nyamhere, C.; Auret, F. D.; Mazunga, F.; Jaure, T.; Chibaya, B.; Omotoso, E.; Danga, H. T.; Tunhuma, S. M.

    2018-04-01

    We have investigated the current-voltage (I-V) characteristics of nickel (Ni), cobalt (Co), tungsten (W) and palladium (Pd) Schottky contacts on n-type 4H-SiC in the 300-800 K temperature range. Results extracted from I-V measurements of Schottky barrier diodes showed that barrier height (ФBo) and ideality factor (n) were strongly dependent on temperature. Schottky barrier heights for contacts of all the metals showed an increase with temperature between 300 K and 800 K. This was attributed to barrier inhomogeneities at the interface between the metal and the semiconductor, which resulted in a distribution of barrier heights at the interface. Ideality factors of Ni, Co and Pd decreased from 1.6 to 1.0 and for W the ideality factor decreased from 1.1 to 1.0 when the temperature was increased from 300 K to 800 K respectively. The device parameters were compared to assess advantages and disadvantages of the metals for envisaged applications.

  1. Removal of GaAs growth substrates from II-VI semiconductor heterostructures

    NASA Astrophysics Data System (ADS)

    Bieker, S.; Hartmann, P. R.; Kießling, T.; Rüth, M.; Schumacher, C.; Gould, C.; Ossau, W.; Molenkamp, L. W.

    2014-04-01

    We report on a process that enables the removal of II-VI semiconductor epilayers from their GaAs growth substrate and their subsequent transfer to arbitrary host environments. The technique combines mechanical lapping and layer selective chemical wet etching and is generally applicable to any II-VI layer stack. We demonstrate the non-invasiveness of the method by transferring an all-II-VI magnetic resonant tunneling diode. High resolution x-ray diffraction proves that the crystal integrity of the heterostructure is preserved. Transport characterization confirms that the functionality of the device is maintained and even improved, which is ascribed to completely elastic strain relaxation of the tunnel barrier layer.

  2. Implantable biomedical devices on bioresorbable substrates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rogers, John A; Kim, Dae-Hyeong; Omenetto, Fiorenzo

    Provided herein are implantable biomedical devices, methods of administering implantable biomedical devices, methods of making implantable biomedical devices, and methods of using implantable biomedical devices to actuate a target tissue or sense a parameter associated with the target tissue in a biological environment. Each implantable biomedical device comprises a bioresorbable substrate, an electronic device having a plurality of inorganic semiconductor components supported by the bioresorbable substrate, and a barrier layer encapsulating at least a portion of the inorganic semiconductor components. Upon contact with a biological environment the bioresorbable substrate is at least partially resorbed, thereby establishing conformal contact between themore » implantable biomedical device and the target tissue in the biological environment.« less

  3. Enhanced Resonant Tunneling in Symmetric 2D Semiconductor Vertical Heterostructure Transistors.

    PubMed

    Campbell, Philip M; Tarasov, Alexey; Joiner, Corey A; Ready, William J; Vogel, Eric M

    2015-05-26

    Tunneling transistors with negative differential resistance have widespread appeal for both digital and analog electronics. However, most attempts to demonstrate resonant tunneling devices, including graphene-insulator-graphene structures, have resulted in low peak-to-valley ratios, limiting their application. We theoretically demonstrate that vertical heterostructures consisting of two identical monolayer 2D transition-metal dichalcogenide semiconductor electrodes and a hexagonal boron nitride barrier result in a peak-to-valley ratio several orders of magnitude higher than the best that can be achieved using graphene electrodes. The peak-to-valley ratio is large even at coherence lengths on the order of a few nanometers, making these devices appealing for nanoscale electronics.

  4. Polymer/metal oxide hybrid dielectrics for low voltage field-effect transistors with solution-processed, high-mobility semiconductors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Held, Martin; Schießl, Stefan P.; Gannott, Florentina

    Transistors for future flexible organic light-emitting diode (OLED) display backplanes should operate at low voltages and be able to sustain high currents over long times without degradation. Hence, high capacitance dielectrics with low surface trap densities are required that are compatible with solution-processable high-mobility semiconductors. Here, we combine poly(methyl methacrylate) (PMMA) and atomic layer deposition hafnium oxide (HfO{sub x}) into a bilayer hybrid dielectric for field-effect transistors with a donor-acceptor polymer (DPPT-TT) or single-walled carbon nanotubes (SWNTs) as the semiconductor and demonstrate substantially improved device performances for both. The ultra-thin PMMA layer ensures a low density of trap states atmore » the semiconductor-dielectric interface while the metal oxide layer provides high capacitance, low gate leakage and superior barrier properties. Transistors with these thin (≤70 nm), high capacitance (100–300 nF/cm{sup 2}) hybrid dielectrics enable low operating voltages (<5 V), balanced charge carrier mobilities and low threshold voltages. Moreover, the hybrid layers substantially improve the bias stress stability of the transistors compared to those with pure PMMA and HfO{sub x} dielectrics.« less

  5. Four-terminal circuit element with photonic core

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sampayan, Stephen

    A four-terminal circuit element is described that includes a photonic core inside of the circuit element that uses a wide bandgap semiconductor material that exhibits photoconductivity and allows current flow through the material in response to the light that is incident on the wide bandgap material. The four-terminal circuit element can be configured based on various hardware structures using a single piece or multiple pieces or layers of a wide bandgap semiconductor material to achieve various designed electrical properties such as high switching voltages by using the photoconductive feature beyond the breakdown voltages of semiconductor devices or circuits operated basedmore » on electrical bias or control designs. The photonic core aspect of the four-terminal circuit element provides unique features that enable versatile circuit applications to either replace the semiconductor transistor-based circuit elements or semiconductor diode-based circuit elements.« less

  6. Biasing, operation and parasitic current limitation in single device equivalent to CMOS, and other semiconductor systems

    DOEpatents

    Welch, James D.

    2003-09-23

    Disclosed are semiconductor devices including at least one junction which is rectifying whether the semiconductor is caused to be N or P-type, by the presence of applied gate voltage field induced carriers in essentially intrinsic, essentially homogeneously simultaneously containing both N and P-type metallurgical dopants at substantially equal doping levels, essentially homogeneously simultaneously containing both N and P-type metallurgical dopants at different doping levels, and containing a single metallurgical doping type, and functional combinations thereof. In particular, inverting and non-inverting gate voltage channel induced semiconductor single devices with operating characteristics similar to conventional multiple device CMOS systems, which can be operated as modulators, are disclosed as are a non-latching SCR and an approach to blocking parasitic currents utilizing material(s) which form rectifying junctions with both N and P-type semiconductor whether metallurigically or field induced.

  7. Semiconductor devices for optical communications in 1 micron band of wavelength. [gallium indium arsenide phosphide lasers and diodes

    NASA Technical Reports Server (NTRS)

    Suematsu, Y.; Iga, K.

    1980-01-01

    Crystal growth and the characteristics of semiconductor lasers and diodes for the long wavelength band used in optical communications are examined. It is concluded that to utilize the advantages of this band, it is necessary to have a large scale multiple wavelength communication, along with optical cumulative circuits and optical exchangers.

  8. Investigation of Transmission Resonances with Specific Properties in Rectangular Semiconductor Quantum Wells

    ERIC Educational Resources Information Center

    Niketic, Nemanja; Milanovic, Vitomir; Radovanovic, Jelena

    2012-01-01

    In this paper we provide a detailed analysis of the energy position and type of transmission maxima in rectangular quantum wells (QWs), taking into consideration the difference of electron effective masses in the barrier and well layers. Particular attention is given to transmission maxima that are less than unity and the implications of effective…

  9. Interlayer electron-hole pair multiplication by hot carriers in atomic layer semiconductor heterostructures

    NASA Astrophysics Data System (ADS)

    Barati, Fatemeh; Grossnickle, Max; Su, Shanshan; Lake, Roger; Aji, Vivek; Gabor, Nathaniel

    Two-dimensional heterostructures composed of atomically thin transition metal dichalcogenides provide the opportunity to design novel devices for the study of electron-hole pair multiplication. We report on highly efficient multiplication of interlayer electron-hole pairs at the interface of a tungsten diselenide / molybdenum diselenide heterostructure. Electronic transport measurements of the interlayer current-voltage characteristics indicate that layer-indirect electron-hole pairs are generated by hot electron impact excitation. Our findings, which demonstrate an efficient energy relaxation pathway that competes with electron thermalization losses, make 2D semiconductor heterostructures viable for a new class of hot-carrier energy harvesting devices that exploit layer-indirect electron-hole excitations. SHINES, an Energy Frontier Research Center funded by the U.S. Department of Energy, Air Force Office of Scientific Research.

  10. Measuring the continuity of diffusion barriers on porous films using γ-ray energy spectra of escaping positronium

    NASA Astrophysics Data System (ADS)

    Xu, Jun; Mills, Allen P.; Case, Carlye

    2005-08-01

    Diffusion barriers for capping porous low dielectric constant films are important for preventing metal migration into a semiconductor circuit. Using the fact that positrons implanted into a porous dielectric form ortho-positronium (o-Ps) copiously, Gidley et al. [D. W. Gidley, W. F. Frieze, T. L. Dull, J. Sun, A. F. Yee, C. V. Nguyen, and D. Y. Yoon, Appl. Phys. Lett. 76, 1282 (2000)], have been able to measure open area fractions as low as 10-5 in porous dielectric film barrier layers from the increase in the ortho-positronium lifetime and intensity associated with positronium escape into vacuum. We demonstrate that it is possible to obtain comparable sensitivities by measuring the gamma-ray energy spectrum of the escaping positronium.

  11. Solution-processed, barrier-confined, and 1D nanostructure supported quasi-quantum well with large photoluminescence enhancement.

    PubMed

    Yan, Keyou; Zhang, Lixia; Kuang, Qin; Wei, Zhanhua; Yi, Ya; Wang, Jiannong; Yang, Shihe

    2014-04-22

    Planar substrate supported semiconductor quantum well (QW) structures are not amenable to manipulation in miniature devices, while free-standing QW nanostructures, e.g., ultrathin nanosheets and nanoribbons, suffer from mechanical and environmental instability. Therefore, it is tempting to fashion high-quality QW structures on anisotropic and mechanically robust supporting nanostructures such as nanowires and nanoplates. Herein, we report a solution quasi-heteroepitaxial route for growing a barrier-confined quasi-QW structure (ZnSe/CdSe/ZnSe) on the supporting arms of ZnO nanotetrapods, which have a 1D nanowire structure, through the combination of ion exchange and successive deposition assembly. This resulted in highly crystalline and highly oriented quasi-QWs along the whole axial direction of the arms of the nanotetrapod because a transition buffer layer (Zn(x)Cd(1-x)Se) was formed and in turn reduced the lattice mismatch and surface defects. Significantly, such a barrier-confined QW emits excitonic light ∼17 times stronger than the heterojunction (HJ)-type structure (ZnSe/CdSe, HJ) at the single-particle level. Time-resolved photoluminescence from ensemble QWs exhibits a lifetime of 10 ns, contrasting sharply with ∼300 ps for the control HJ sample. Single-particle PL and Raman spectra suggest that the barrier layer of QW has completely removed the surface trap states on the HJ and restored or upgraded the photoelectric properties of the semiconductor layer. Therefore, this deliberate heteroepitaxial growth protocol on the supporting nanotetrapod has realized a several micrometer long QW structure with high mechanical robustness and high photoelectric quality. We envision that such QWs integrated on 1D nanostructures will largely improve the performance of solar cells and bioprobes, among others.

  12. Sustained hole inversion layer in a wide-bandgap metal-oxide semiconductor with enhanced tunnel current

    NASA Astrophysics Data System (ADS)

    Shoute, Gem; Afshar, Amir; Muneshwar, Triratna; Cadien, Kenneth; Barlage, Douglas

    2016-02-01

    Wide-bandgap, metal-oxide thin-film transistors have been limited to low-power, n-type electronic applications because of the unipolar nature of these devices. Variations from the n-type field-effect transistor architecture have not been widely investigated as a result of the lack of available p-type wide-bandgap inorganic semiconductors. Here, we present a wide-bandgap metal-oxide n-type semiconductor that is able to sustain a strong p-type inversion layer using a high-dielectric-constant barrier dielectric when sourced with a heterogeneous p-type material. A demonstration of the utility of the inversion layer was also investigated and utilized as the controlling element in a unique tunnelling junction transistor. The resulting electrical performance of this prototype device exhibited among the highest reported current, power and transconductance densities. Further utilization of the p-type inversion layer is critical to unlocking the previously unexplored capability of metal-oxide thin-film transistors, such applications with next-generation display switches, sensors, radio frequency circuits and power converters.

  13. Voltage Controlled Hot Carrier Injection Enables Ohmic Contacts Using Au Island Metal Films on Ge.

    PubMed

    Ganti, Srinivas; King, Peter J; Arac, Erhan; Dawson, Karl; Heikkilä, Mikko J; Quilter, John H; Murdoch, Billy; Cumpson, Peter; O'Neill, Anthony

    2017-08-23

    We introduce a new approach to creating low-resistance metal-semiconductor ohmic contacts, illustrated using high conductivity Au island metal films (IMFs) on Ge, with hot carrier injection initiated at low applied voltage. The same metallization process simultaneously allows ohmic contact to n-Ge and p-Ge, because hot carriers circumvent the Schottky barrier formed at metal/n-Ge interfaces. A 2.5× improvement in contact resistivity is reported over previous techniques to achieve ohmic contact to both n- and p- semiconductor. Ohmic contacts at 4.2 K confirm nonequilibrium current transport. Self-assembled Au IMFs are strongly orientated to Ge by annealing near the Au/Ge eutectic temperature. Au IMF nanostructures form, provided the Au layer is below a critical thickness. We anticipate that optimized IMF contacts may have applicability to many material systems. Optimizing this new paradigm for metal-semiconductor contacts offers the prospect of improved nanoelectronic systems and the study of voltage controlled hot holes and electrons.

  14. Wide and ultra-wide bandgap oxides: where paradigm-shift photovoltaics meets transparent power electronics

    NASA Astrophysics Data System (ADS)

    Pérez-Tomás, Amador; Chikoidze, Ekaterine; Jennings, Michael R.; Russell, Stephen A. O.; Teherani, Ferechteh H.; Bove, Philippe; Sandana, Eric V.; Rogers, David J.

    2018-03-01

    Oxides represent the largest family of wide bandgap (WBG) semiconductors and also offer a huge potential range of complementary magnetic and electronic properties, such as ferromagnetism, ferroelectricity, antiferroelectricity and high-temperature superconductivity. Here, we review our integration of WBG and ultra WBG semiconductor oxides into different solar cells architectures where they have the role of transparent conductive electrodes and/or barriers bringing unique functionalities into the structure such above bandgap voltages or switchable interfaces. We also give an overview of the state-of-the-art and perspectives for the emerging semiconductor β- Ga2O3, which is widely forecast to herald the next generation of power electronic converters because of the combination of an UWBG with the capacity to conduct electricity. This opens unprecedented possibilities for the monolithic integration in solar cells of both self-powered logic and power electronics functionalities. Therefore, WBG and UWBG oxides have enormous promise to become key enabling technologies for the zero emissions smart integration of the internet of things.

  15. Solid-state framing camera with multiple time frames

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baker, K. L.; Stewart, R. E.; Steele, P. T.

    2013-10-07

    A high speed solid-state framing camera has been developed which can operate over a wide range of photon energies. This camera measures the two-dimensional spatial profile of the flux incident on a cadmium selenide semiconductor at multiple times. This multi-frame camera has been tested at 3.1 eV and 4.5 keV. The framing camera currently records two frames with a temporal separation between the frames of 5 ps but this separation can be varied between hundreds of femtoseconds up to nanoseconds and the number of frames can be increased by angularly multiplexing the probe beam onto the cadmium selenide semiconductor.

  16. Subsurface materials management and containment system

    DOEpatents

    Nickelson, Reva A.; Richardson, John G.; Kosteinik, Kevin M.; Sloan, Paul A.

    2004-07-06

    Systems, components, and methods relating to subterranean containment barriers. Laterally adjacent tubular casings having male interlock structures and multiple female interlock structures defining recesses for receiving a male interlock structure are used to create subterranean barriers for containing and treating buried waste and its effluents. The multiple female interlock structures enable the barriers to be varied around subsurface objects and to form barrier sidewalls. The barrier may be used for treating and monitoring a zone of interest.

  17. Subsurface materials management and containment system

    DOEpatents

    Nickelson, Reva A.; Richardson, John G.; Kostelnik, Kevin M.; Sloan, Paul A.

    2006-10-17

    Systems, components, and methods relating to subterranean containment barriers. Laterally adjacent tubular casings having male interlock structures and multiple female interlock structures defining recesses for receiving a male interlock structure are used to create subterranean barriers for containing and treating buried waste and its effluents. The multiple female interlock structures enable the barriers to be varied around subsurface objects and to form barrier sidewalls. The barrier may be used for treating and monitoring a zone of interest.

  18. Calculation of the Electronic Parameters of an Al/DNA/p-Si Schottky Barrier Diode Influenced by Alpha Radiation

    PubMed Central

    Al-Ta’ii, Hassan Maktuff Jaber; Amin, Yusoff Mohd; Periasamy, Vengadesh

    2015-01-01

    Many types of materials such as inorganic semiconductors have been employed as detectors for nuclear radiation, the importance of which has increased significantly due to recent nuclear catastrophes. Despite the many advantages of this type of materials, the ability to measure direct cellular or biological responses to radiation might improve detector sensitivity. In this context, semiconducting organic materials such as deoxyribonucleic acid or DNA have been studied in recent years. This was established by studying the varying electronic properties of DNA-metal or semiconductor junctions when exposed to radiation. In this work, we investigated the electronics of aluminium (Al)/DNA/silicon (Si) rectifying junctions using their current-voltage (I-V) characteristics when exposed to alpha radiation. Diode parameters such as ideality factor, barrier height and series resistance were determined for different irradiation times. The observed results show significant changes with exposure time or total dosage received. An increased deviation from ideal diode conditions (7.2 to 18.0) was observed when they were bombarded with alpha particles for up to 40 min. Using the conventional technique, barrier height values were observed to generally increase after 2, 6, 10, 20 and 30 min of radiation. The same trend was seen in the values of the series resistance (0.5889–1.423 Ω for 2–8 min). These changes in the electronic properties of the DNA/Si junctions could therefore be utilized in the construction of sensitive alpha particle detectors. PMID:25730484

  19. M-I-S solar cell - Theory and experimental results

    NASA Technical Reports Server (NTRS)

    Childs, R.; Fortuna, J.; Geneczko, J.; Fonash, S. J.

    1976-01-01

    The paper presents an operating-mode analysis of an MIS solar cell and discusses the advantages which can arise as a result of the use of transport control, field shaping (increased n factor), and zero bias barrier height modification. It is noted that for an n-type semiconductor, it is relatively easy to obtain an enhanced n factor using acceptor-like states without an increase in diode saturation current, the converse being true for p-type semiconductors. Several MIS configurations are examined: an acceptor-like, localized state configuration producing field shaping and no change in diode saturation current, and acceptor-like localized configurations producing field shaping, with a decrease of diode saturation current, in one case, and an increase in the other.

  20. Application of CaCu3Ti4O12 based quadruple perovskites as a promising candidate for optoelectronic devices

    NASA Astrophysics Data System (ADS)

    Pal, Kamalesh; Jana, Rajkumar; Dey, Arka; Ray, Partha P.; Seikh, Md Motin; Gayen, Arup

    2018-05-01

    We report the synthesis of nanosized (40-50 nm) CaCu3-xMnxTi4-xMnxO12 (x = 0, 0.5 and 1) quadruple perovskite (QP) semiconductor via a modified combustion method for use as Schottky barrier diode (SBD) at the Al/QP junction. The fabricated SBD is analysed on the basis of thermionic emission theory to observe its quality and some important diode parameters. For insight analysis of charge transport mechanism through metal-semiconductor junction, theory of space charge limited currents is applied and discussed in the light of parameters like carrier concentration, mobility-lifetime product and diffusion length. The Mn-doped exhibit better device performance compared to parent material.

  1. Opposing effects of stacking faults and antisite domain boundaries on the conduction band edge in kesterite quaternary semiconductors

    NASA Astrophysics Data System (ADS)

    Park, Ji-Sang; Kim, Sunghyun; Walsh, Aron

    2018-01-01

    We investigated stability and the electronic structure of extended defects including antisite domain boundaries and stacking faults in the kesterite-structured semiconductors, Cu2ZnSnS4 (CZTS) and Cu2ZnSnSe4 (CZTSe). Our hybrid density functional theory calculations show that stacking faults in CZTS and CZTSe induce a higher conduction band edge than the bulk counterparts, and thus the stacking faults act as electron barriers. Antisite domain boundaries, however, accumulate electrons as the conduction band edge is reduced in energy, having an opposite role. An Ising model was constructed to account for the stability of stacking faults, which shows the nearest-neighbor interaction is stronger in the case of the selenide.

  2. Nonvolatile semiconductor memory having three dimension charge confinement

    DOEpatents

    Dawson, L. Ralph; Osbourn, Gordon C.; Peercy, Paul S.; Weaver, Harry T.; Zipperian, Thomas E.

    1991-01-01

    A layered semiconductor device with a nonvolatile three dimensional memory comprises a storage channel which stores charge carriers. Charge carriers flow laterally through the storage channel from a source to a drain. Isolation material, either a Schottky barrier or a heterojunction, located in a trench of an upper layer controllably retains the charge within the a storage portion determined by the confining means. The charge is retained for a time determined by the isolation materials' nonvolatile characteristics or until a change of voltage on the isolation material and the source and drain permit a read operation. Flow of charge through an underlying sense channel is affected by the presence of charge within the storage channel, thus the presences of charge in the memory can be easily detected.

  3. Method of sealing casings of subsurface materials management system

    DOEpatents

    Nickelson, Reva A.; Richardson, John G.; Kostelnik, Kevin M.; Sloan, Paul A.

    2007-02-06

    Systems, components, and methods relating to subterranean containment barriers. Laterally adjacent tubular casings having male interlock structures and multiple female interlock structures defining recesses for receiving a male interlock structure are used to create subterranean barriers for containing and treating buried waste and its effluents. The multiple female interlock structures enable the barriers to be varied around subsurface objects and to form barrier sidewalls. The barrier may be used for treating and monitoring a zone of interest.

  4. Photonic Switching Devices Using Light Bullets

    NASA Technical Reports Server (NTRS)

    Goorjian, Peter M. (Inventor)

    1999-01-01

    A unique ultra-fast, all-optical switching device or switch is made with readily available, relatively inexpensive, highly nonlinear optical materials. which includes highly nonlinear optical glasses, semiconductor crystals and/or multiple quantum well semiconductor materials. At the specified wavelengths. these optical materials have a sufficiently negative group velocity dispersion and high nonlinear index of refraction to support stable light bullets. The light bullets counter-propagate through, and interact within the waveguide to selectively change each others' directions of propagation into predetermined channels. In one embodiment, the switch utilizes a rectangularly planar slab waveguide. and further includes two central channels and a plurality of lateral channels for guiding the light bullets into and out of the waveguide. An advantage of the present all-optical switching device lies in its practical use of light bullets, thus preventing the degeneration of the pulses due to dispersion and diffraction at the front and back of the pulses. Another advantage of the switching device is the relative insensitivity of the collision process to the time difference in which the counter-propagating pulses enter the waveguide. since. contrary to conventional co-propagating spatial solitons, the relative phase of the colliding pulses does not affect the interaction of these pulses. Yet another feature of the present all-optical switching device is the selection of the light pulse parameters which enables the generation of light bullets in nonlinear optical materials. including highly nonlinear optical glasses and semiconductor materials such as semiconductor crystals and/or multiple quantum well semiconductor materials.

  5. SNS Heterojunctions With New Combinations Of Materials

    NASA Technical Reports Server (NTRS)

    Vasquez, Richard P.; Hunt, Brian D.; Foote, Marc C.

    1992-01-01

    New combinations of materials proposed for superconductor/normal-metal/superconductor (SNS) heterojunctions in low-temperature electronic devices such as fast switches, magnetometers, and mixers. Epitaxial heterojunctions formed between high-temperature superconductors and either oxide semiconductors or metals. Concept offers alternative to other three-layer heterojunction concepts; physical principles of operation permit SNS devices to have thicker barrier layers and fabricated more easily.

  6. Core-shell chromium silicide-silicon nanopillars: a contact material for future nanosystems.

    PubMed

    Chang, Mu-Tung; Chen, Chih-Yen; Chou, Li-Jen; Chen, Lih-Juann

    2009-11-24

    Chromium silicide nanostructures are fabricated inside silicon nanopillars grown by the vapor-liquid-solid mechanism. The remarkable field-emission behavior of these nanostructures results from extensive improvement of carrier transport due to the reduced energy barrier between the metal and semiconductor layers. The results warrant consideration of chromium silicide as a potentially important contact material in future nanosystems.

  7. Delay induced high order locking effects in semiconductor lasers

    NASA Astrophysics Data System (ADS)

    Kelleher, B.; Wishon, M. J.; Locquet, A.; Goulding, D.; Tykalewicz, B.; Huyet, G.; Viktorov, E. A.

    2017-11-01

    Multiple time scales appear in many nonlinear dynamical systems. Semiconductor lasers, in particular, provide a fertile testing ground for multiple time scale dynamics. For solitary semiconductor lasers, the two fundamental time scales are the cavity repetition rate and the relaxation oscillation frequency which is a characteristic of the field-matter interaction in the cavity. Typically, these two time scales are of very different orders, and mutual resonances do not occur. Optical feedback endows the system with a third time scale: the external cavity repetition rate. This is typically much longer than the device cavity repetition rate and suggests the possibility of resonances with the relaxation oscillations. We show that for lasers with highly damped relaxation oscillations, such resonances can be obtained and lead to spontaneous mode-locking. Two different laser types-—a quantum dot based device and a quantum well based device—are analysed experimentally yielding qualitatively identical dynamics. A rate equation model is also employed showing an excellent agreement with the experimental results.

  8. Delay induced high order locking effects in semiconductor lasers.

    PubMed

    Kelleher, B; Wishon, M J; Locquet, A; Goulding, D; Tykalewicz, B; Huyet, G; Viktorov, E A

    2017-11-01

    Multiple time scales appear in many nonlinear dynamical systems. Semiconductor lasers, in particular, provide a fertile testing ground for multiple time scale dynamics. For solitary semiconductor lasers, the two fundamental time scales are the cavity repetition rate and the relaxation oscillation frequency which is a characteristic of the field-matter interaction in the cavity. Typically, these two time scales are of very different orders, and mutual resonances do not occur. Optical feedback endows the system with a third time scale: the external cavity repetition rate. This is typically much longer than the device cavity repetition rate and suggests the possibility of resonances with the relaxation oscillations. We show that for lasers with highly damped relaxation oscillations, such resonances can be obtained and lead to spontaneous mode-locking. Two different laser types--a quantum dot based device and a quantum well based device-are analysed experimentally yielding qualitatively identical dynamics. A rate equation model is also employed showing an excellent agreement with the experimental results.

  9. Designing new classes of high-power, high-brightness VECSELs

    NASA Astrophysics Data System (ADS)

    Moloney, J. V.; Zakharian, A. R.; Hader, J.; Koch, Stephan W.

    2005-10-01

    Optically-pumped vertical external cavity semiconductor lasers offer the exciting possibility of designing kW-class solid state lasers that provide significant advantages over their doped YAG, thin-disk YAG and fiber counterparts. The basic VECSEL/OPSL (optically-pumped semiconductor laser) structure consists of a very thin (approximately 6 micron thick) active mirror consisting of a DBR high-reflectivity stack followed by a multiple quantum well resonant periodic (RPG) structure. An external mirror (reflectivity typically between 94%-98%) provides conventional optical feedback to the active semiconductor mirror chip. The "cold" cavity needs to be designed to take into account the semiconductor sub-cavity resonance shift with temperature and, importantly, the more rapid shift of the semiconductor material gain peak with temperature. Thermal management proves critical in optimizing the device for serious power scaling. We will describe a closed-loop procedure that begins with a design of the semiconductor active epi structure. This feeds into the sub-cavity optimization, optical and thermal transport within the active structure and thermal transport though the various heat sinking elements. Novel schemes for power scaling beyond current record performances will be discussed.

  10. Hot-electron-based solar energy conversion with metal-semiconductor nanodiodes.

    PubMed

    Lee, Young Keun; Lee, Hyosun; Lee, Changhwan; Hwang, Euyheon; Park, Jeong Young

    2016-06-29

    Energy dissipation at metal surfaces or interfaces between a metal and a dielectric generally results from elementary excitations, including phonons and electronic excitation, once external energy is deposited to the surface/interface during exothermic chemical processes or an electromagnetic wave incident. In this paper, we outline recent research activities to develop energy conversion devices based on hot electrons. We found that photon energy can be directly converted to hot electrons and that hot electrons flow through the interface of metal-semiconductor nanodiodes where a Schottky barrier is formed and the energy barrier is much lower than the work function of the metal. The detection of hot electron flow can be successfully measured using the photocurrent; we measured the photoyield of photoemission with incident photons-to-current conversion efficiency (IPCE). We also show that surface plasmons (i.e. the collective oscillation of conduction band electrons induced by interaction with an electromagnetic field) are excited on a rough metal surface and subsequently decay into secondary electrons, which gives rise to enhancement of the IPCE. Furthermore, the unique optical behavior of surface plasmons can be coupled with dye molecules, suggesting the possibility for producing additional channels for hot electron generation.

  11. Vertical Charge Transport and Negative Transconductance in Multilayer Molybdenum Disulfides.

    PubMed

    Liu, Yuan; Guo, Jian; He, Qiyuan; Wu, Hao; Cheng, Hung-Chieh; Ding, Mengning; Shakir, Imran; Gambin, Vincent; Huang, Yu; Duan, Xiangfeng

    2017-09-13

    Negative transconductance (NTC) devices have been heavily investigated for their potential in low power logical circuit, memory, oscillating, and high-speed switching applications. Previous NTC devices are largely attributed to two working mechanisms: quantum mechanical tunneling, and mobility degradation at high electrical field. Herein we report a systematic investigation of charge transport in multilayer two-dimensional semiconductors (2DSCs) with optimized van der Waals contact and for the first time demonstrate NTC and antibipolar characteristics in multilayer 2DSCs (such as MoS 2 , WSe 2 ). By varying the measurement temperature, bias voltage, and body thickness, we found the NTC behavior can be attributed to a vertical potential barrier in the multilayer 2DSCs and the competing mechanisms between intralayer lateral transport and interlayer vertical transport, thus representing a new working mechanism for NTC operation. Importantly, this vertical potential barrier arises from inhomogeneous carrier distribution in 2DSC from the near-substrate region to the bulk region, which is in contrast to conventional semiconductors with homogeneous doping defined by bulk dopants. We further show that the unique NTC behavior can be explored for creating frequency doublers and phase shift keying circuits with only one transistor, greatly simplifying the circuit design compared to conventional technology.

  12. Electronic components embedded in a single graphene nanoribbon.

    PubMed

    Jacobse, P H; Kimouche, A; Gebraad, T; Ervasti, M M; Thijssen, J M; Liljeroth, P; Swart, I

    2017-07-25

    The use of graphene in electronic devices requires a band gap, which can be achieved by creating nanostructures such as graphene nanoribbons. A wide variety of atomically precise graphene nanoribbons can be prepared through on-surface synthesis, bringing the concept of graphene nanoribbon electronics closer to reality. For future applications it is beneficial to integrate contacts and more functionality directly into single ribbons by using heterostructures. Here, we use the on-surface synthesis approach to fabricate a metal-semiconductor junction and a tunnel barrier in a single graphene nanoribbon consisting of 5- and 7-atom wide segments. We characterize the atomic scale geometry and electronic structure by combined atomic force microscopy, scanning tunneling microscopy, and conductance measurements complemented by density functional theory and transport calculations. These junctions are relevant for developing contacts in all-graphene nanoribbon devices and creating diodes and transistors, and act as a first step toward complete electronic devices built into a single graphene nanoribbon.Adding functional electronic components to graphene nanoribbons requires precise control over their atomic structure. Here, the authors use a bottom-up approach to build a metal-semiconductor junction and a tunnel barrier directly into a single graphene nanoribbon, an exciting development for graphene-based electronic devices.

  13. UV sensing using film bulk acoustic resonators based on Au/n-ZnO/piezoelectric-ZnO/Al structure.

    PubMed

    Bian, Xiaolei; Jin, Hao; Wang, Xiaozhi; Dong, Shurong; Chen, Guohao; Luo, J K; Deen, M Jamal; Qi, Bensheng

    2015-03-16

    A new type of ultraviolet (UV) light sensor based on film bulk acoustic wave resonator (FBAR) is proposed. The new sensor uses gold and a thin n-type ZnO layer deposited on the top of piezoelectric layer of FBAR to form a Schottky barrier. The Schottky barrier's capacitance can be changed with UV light, resulting in an enhanced shift in the entire FBAR's resonant frequency. The fabricated UV sensor has a 50 nm thick n-ZnO semiconductor layer with a carrier concentration of ~ 10(17) cm(-3). A large frequency downshift is observed when UV light irradiates the FBAR. With 365 nm UV light of intensity 1.7 mW/cm(2), the FBAR with n-ZnO/Au Schottky diode has 250 kHz frequency downshift, much larger than the 60 kHz frequency downshift in a conventional FBAR without the n-ZnO layer. The shift in the new FBAR's resonant frequency is due to the junction formed between Au and n-ZnO semiconductor and its properties changes with UV light. The experimental results are in agreement with the theoretical analysis using an equivalent circuit model of the new FBAR structure.

  14. Highly sensitive hydrogen sensor based on graphite-InP or graphite-GaN Schottky barrier with electrophoretically deposited Pd nanoparticles

    PubMed Central

    2011-01-01

    Depositions on surfaces of semiconductor wafers of InP and GaN were performed from isooctane colloid solutions of palladium (Pd) nanoparticles (NPs) in AOT reverse micelles. Pd NPs in evaporated colloid and in layers deposited electrophoretically were monitored by SEM. Diodes were prepared by making Schottky contacts with colloidal graphite on semiconductor surfaces previously deposited with Pd NPs and ohmic contacts on blank surfaces. Forward and reverse current-voltage characteristics of the diodes showed high rectification ratio and high Schottky barrier heights, giving evidence of very small Fermi level pinning. A large increase of current was observed after exposing diodes to flow of gas blend hydrogen in nitrogen. Current change ratio about 700,000 with 0.1% hydrogen blend was achieved, which is more than two orders-of-magnitude improvement over the best result reported previously. Hydrogen detection limit of the diodes was estimated at 1 ppm H2/N2. The diodes, besides this extremely high sensitivity, have been temporally stable and of inexpensive production. Relatively more expensive GaN diodes have potential for functionality at high temperatures. PMID:21831273

  15. Effect of temperature and magnetic field on disorder in semiconductor structures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Agrinskaya, N. V., E-mail: nina.agrins@mail.ioffe.ru; Kozub, V. I.

    We present the results of consistent theoretical analysis of various factors that may lead to influence of temperature and external magnetic field on disorder in semiconductor structures. Main attention is paid to quantum well (QW) structures in which only QWs or both QW and barriers are doped (the doping level is assumed to be close to the value corresponding to the metal–insulator transition). The above factors include (i) ionization of localized states to the region of delocalized states above the mobility edge, which is presumed to exist in the impurity band; (ii) the coexistence in the upper and lower Hubbardmore » bands (upon doping of QWs as well as barriers); in this case, in particular, the external magnetic field determines the relative contribution of the upper Hubbard band due to spin correlations at doubly filled sites; and (iii) the contribution of the exchange interaction at pairs of sites, in which the external magnetic field can affect the relation between ferromagnetic and antiferromagnetic configurations. All these factors, which affect the structure and degree of disorder, lead to specific features in the temperature dependence of resistivity and determine specific features of the magnetoresistance. Our conclusions are compared with available experimental data.« less

  16. Subsurface materials management and containment system, components thereof and methods relating thereto

    DOEpatents

    Nickelson, Reva A.; Richardson, John G.; Kostelnik, Kevin M.; Sloan, Paul A.

    2006-04-18

    Systems, components, and methods relating to subterranean containment barriers. Laterally adjacent tubular casings having male interlock structures and multiple female interlock structures defining recesses for receiving a male interlock structure are used to create subterranean barriers for containing and treating buried waste and its effluents. The multiple female interlock structures enable the barriers to be varied around subsurface objects and to form barrier sidewalls. The barrier may be used for treating and monitoring a zone of interest.

  17. The determination of modified barrier heights in Ti/GaN nano-Schottky diodes at high temperature.

    PubMed

    Lee, Seung-Yong; Kim, Tae-Hong; Chol, Nam-Kyu; Seong, Han-Kyu; Choi, Heon-Jin; Ahn, Byung-Guk; Lee, Sang-Kwon

    2008-10-01

    We have investigated the size-effect of the nano-Schottky diodes on the electrical transport properties and the temperature-dependent current transport mechanism in a metal-semiconductor nanowire junction (a Ti/GaN nano-Schottky diode) using current-voltage characterization in the range of 300-423 K. We found that the modified mean Schottky barrier height (SBH) was approximately 0.7 eV with a standard deviation of approximately 0.14 V using a Gaussian distribution model of the barrier heights. The slightly high value of the modified mean SBH (approximately 0.11 eV) compared to the results from the thin-film based Ti/GaN Schottky diodes could be due to an additional oxide layer at the interface between the Ti and GaN nanowires. Moreover, we found that the abnormal behavior of the barrier heights and the ideality factors in a Ti/GaN nano-Schottky diode at a temperature below 423 K could be explained by a combination of the enhancement of the tunneling current and a model with a Gaussian distribution of the barrier heights.

  18. Characterization of WB/SiC Schottky Barrier Diodes Using I-V-T Method

    NASA Astrophysics Data System (ADS)

    Aldridge, James; Oder, Tom

    2009-04-01

    The importance of silicon carbide (SiC) semiconductor for high temperature and high power microelectronic device applications has long been established. We have fabricated SiC Schottky barrier diodes using tungsten boride (WB) as the Schottky contact. The diodes were characterized using the current-voltage-temperature method. The sample was mounted on a heated stage and the temperature varied from about 25 ^oC to 300 ^oC at intervals of 25 ^oC. From the Richardson's plot, we obtained an energy barrier height of 0.96 eV and a Richardson's constant of 71.2 AK-1cm-2. Using the modified Richardson's plot, we obtained a barrier height of 1.01 eV. From the variation of the ideality factor and the temperature, we determined a characteristic energy of 0.02 eV to 0.04 eV across the range of the measurement temperature. This implies that thermionic emission is dominant in the low measurement temperature range. Our results confirm the excellent thermal stability of WB/SiC Schottky barrier diodes.

  19. Room temperature current-voltage (I-V) characteristics of Ag/InGaN/n-Si Schottky barrier diode

    NASA Astrophysics Data System (ADS)

    Erdoğan, Erman; Kundakçı, Mutlu

    2017-02-01

    Metal-semiconductors (MSs) or Schottky barrier diodes (SBDs) have a significant potential in the integrated device technology. In the present paper, electrical characterization of Ag/InGaN/n-Si Schottky diode have been systematically carried out by simple Thermionic method (TE) and Norde function based on the I-V characteristics. Ag ohmic and schottky contacts are deposited on InGaN/n-Si film by thermal evaporation technique under a vacuum pressure of 1×10-5 mbar. Ideality factor, barrier height and series resistance values of this diode are determined from I-V curve. These parameters are calculated by TE and Norde methods and findings are given in a comparetive manner. The results show the consistency for both method and also good agreement with other results obtained in the literature. The value of ideality factor and barrier height have been determined to be 2.84 and 0.78 eV at room temperature using simple TE method. The value of barrier height obtained with Norde method is calculated as 0.79 eV.

  20. Measuring the continuity of diffusion barriers on porous films using {gamma}-ray energy spectra of escaping positronium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu Jun; Mills, Allen P. Jr.; Case, Carlye

    2005-08-01

    Diffusion barriers for capping porous low dielectric constant films are important for preventing metal migration into a semiconductor circuit. Using the fact that positrons implanted into a porous dielectric form ortho-positronium (o-Ps) copiously, Gidley et al. [D. W. Gidley, W. F. Frieze, T. L. Dull, J. Sun, A. F. Yee, C. V. Nguyen, and D. Y. Yoon, Appl. Phys. Lett. 76, 1282 (2000)], have been able to measure open area fractions as low as 10{sup -5} in porous dielectric film barrier layers from the increase in the ortho-positronium lifetime and intensity associated with positronium escape into vacuum. We demonstrate thatmore » it is possible to obtain comparable sensitivities by measuring the gamma-ray energy spectrum of the escaping positronium.« less

  1. Tunable semiconductor lasers

    NASA Technical Reports Server (NTRS)

    Taghavi-Larigani, Shervin (Inventor); Vanzyl, Jakob J. (Inventor); Yariv, Amnon (Inventor)

    2006-01-01

    Tunable semiconductor lasers are disclosed requiring minimized coupling regions. Multiple laser embodiments employ ring resonators or ring resonator pairs using only a single coupling region with the gain medium are detailed. Tuning can be performed by changing the phase of the coupling coefficient between the gain medium and a ring resonator of the laser. Another embodiment provides a tunable laser including two Mach-Zehnder interferometers in series and a reflector coupled to a gain medium.

  2. Interfacial Chemistry-Induced Modulation of Schottky Barrier Heights: In Situ Measurements of the Pt-Amorphous Indium Gallium Zinc Oxide Interface Using X-ray Photoelectron Spectroscopy.

    PubMed

    Flynn, Brendan T; Oleksak, Richard P; Thevuthasan, Suntharampillai; Herman, Gregory S

    2018-01-31

    A method to understand the role of interfacial chemistry on the modulation of Schottky barrier heights for platinum and amorphous indium gallium zinc oxide (a-IGZO) interfaces is demonstrated through thermal processing and background ambient pressure control. In situ X-ray photoelectron spectroscopy was used to characterize the interfacial chemistries that modulate barrier heights in this system. The primary changes were a significant chemical reduction of indium, from In 3+ to In 0 , that occurs during deposition of Pt on to the a-IGZO surface in ultrahigh vacuum. Postannealing and controlling the background ambient O 2 pressure allows further tuning of the reduction of indium and the corresponding Schottky barrier heights from 0.17 to 0.77 eV. Understanding the detailed interfacial chemistries at Pt/a-IGZO interfaces may allow for improved electronic device performance, including Schottky diodes, memristors, and metal-semiconductor field-effect transistors.

  3. MBE Growth of Ferromagnetic Metal/Compound Semiconductor Heterostructures for Spintronics

    ScienceCinema

    Palmstrom, Chris [University of California, Santa Barbara, California, United States

    2017-12-09

    Electrical transport and spin-dependent transport across ferromagnet/semiconductor contacts is crucial in the realization of spintronic devices. Interfacial reactions, the formation of non-magnetic interlayers, and conductivity mismatch have been attributed to low spin injection efficiency. MBE has been used to grow epitaxial ferromagnetic metal/GA(1-x)AL(x)As heterostructures with the aim of controlling the interfacial structural, electronic, and magnetic properties. In situ, STM, XPS, RHEED and LEED, and ex situ XRD, RBS, TEM, magnetotransport, and magnetic characterization have been used to develop ferromagnetic elemental and metallic compound/compound semiconductor tunneling contacts for spin injection. The efficiency of the spin polarized current injected from the ferromagnetic contact has been determined by measuring the electroluminescence polarization of the light emitted from/GA(1-x)AL(x)As light-emitting diodes as a function of applied magnetic field and temperature. Interfacial reactions during MBE growth and post-growth anneal, as well as the semiconductor device band structure, were found to have a dramatic influence on the measured spin injection, including sign reversal. Lateral spin-transport devices with epitaxial ferromagnetic metal source and drain tunnel barrier contacts have been fabricated with the demonstration of electrical detection and the bias dependence of spin-polarized electron injection and accumulation at the contacts. This talk emphasizes the progress and achievements in the epitaxial growth of a number of ferromagnetic compounds/III-V semiconductor heterostructures and the progress towards spintronic devices.

  4. Interfacial electronic structure of a hybrid organic-inorganic optical upconverter device: The role of interface states

    NASA Astrophysics Data System (ADS)

    Tsai, K. Y. F.; Helander, M. G.; Lu, Z. H.

    2009-04-01

    Organic-inorganic hybrid heterojunctions are critical for the integration of organic electronics with traditional Si and III-V semiconductor microelectronics. The amorphous nature of organic semiconductors eliminates the stringent lattice-matching requirements in semiconductor monolithic growth. However, as of yet it is unclear what driving forces dictate the energy-level alignment at hybrid organic-inorganic heterojunctions. Using photoelectron spectroscopy we investigate the energy-level alignment at the hybrid organic-inorganic heterojunction formed between S-passivated InP(100) and several commonly used hole injection/transport molecules, namely, copper phthalocyanine (CuPc), N ,N'-diphenyl-N ,N'-bis-(1-naphthyl)-1-1'-biphenyl-4,4'-diamine (α-NPD), and fullerene (C60). The energy-level alignment at the hybrid organic-inorganic heterojunction is found to be consistent with traditional interface dipole theory, originally developed to describe Schottky contacts. Contrary to conventional wisdom, hole injection from S-passivated InP(100) into an organic semiconductor is found to originate from interface states at or near the Fermi level, rather than from the valance band maximum of the semiconductor. As a result the barrier height for hole injection is defined by the offset between the surface Fermi level of the S-passivated InP(100) and the highest occupied molecular orbital of the organic. This finding sheds new light on the unusual trend in device performance reported in literature for such hybrid organic-inorganic heterojunction devices.

  5. Development and characterization of semiconductor ion detectors for plasma diagnostics in the range over 0.3 keV

    NASA Astrophysics Data System (ADS)

    Cho, T.; Sakamoto, Y.; Hirata, M.; Kohagura, J.; Makino, K.; Kanke, S.; Takahashi, K.; Okamura, T.; Nakashima, Y.; Yatsu, K.; Tamano, T.; Miyoshi, S.

    1997-01-01

    For the purpose of plasma-ion-energy analyses in a wide-energy range from a few hundred eV to hundreds of keV, upgraded semiconductor detectors are newly fabricated and characterized using a test-ion-beam line from 0.3 to 12 keV. In particular, the detectable lowest-ion energy is drastically improved at least down to 0.3 keV; this energy is one to two orders-of-magnitude better than those for commercially available Si-surface-barrier diodes employed for previous plasma-ion diagnostics. A signal-to-noise ratio of two to three orders-of-magnitude better than that for usual metal-collector detectors is demonstrated for the compact-sized semiconductor along with the availability of the use under conditions of a good vacuum and a strong-magnetic field. Such characteristics are achieved due to the improving methods of the optimization of the thicknesses of a Si dead layer and a SiO2 layer, as well as the nitrogen-doping technique near the depletion layer along with minimizing impurity concentrations in Si. Such an upgraded capability of an extremely low-energy-ion detection with the low-noise characteristics enlarges research regimes of plasma-ion behavior using semiconductor detectors not only in the divertor regions of tokamaks but in wider spectra of open-field plasma devices including tandem mirrors. An application of the semiconductor ion detector for plasma-ion diagnostics is demonstrated in a specially designed ion-spectrometer structure.

  6. Barriers to the Accessibility and Continuity of Health-Care Services in People with Multiple Sclerosis

    PubMed Central

    Bishop, Malachy; Pionke, J.J.; Strauser, David; Santens, Ryan L.

    2017-01-01

    Background: Individuals with multiple sclerosis (MS) face a range of barriers to accessing and using health-care services. The aim of this review was to identify specific barriers to accessing and using health-care services based on a continuum of the health-care delivery system. Methods: Literature searches were conducted in the PubMed, PsycINFO, CINAHL, and Web of Science databases. The following terms were searched as subject headings, key words, or abstracts: health care, access, barriers, physical disability, and multiple sclerosis. The literature search produced 361 potentially relevant citations. After screening titles, abstracts, and citations, eight citations were selected for full-text review. Results: Health-care barriers were divided into three continuous phases of receiving health care. In the before-visit phase, the most commonly identified barrier was transportation. In the during-visit phase, communication quality was the major concern. In the after-visit phase, discontinued referral was the major barrier encountered. Conclusions: There are multiple interrelated barriers to accessing and using health-care services along the health-care delivery continuum for people with MS and its associated physical disabilities, ranging from complex and long-recognized barriers that will likely require extended advocacy to create policy changes to issues that can and should be addressed through relatively minor changes in health-care delivery practices, improved care coordination, and increased provider awareness, education, and responsiveness to patients' needs. PMID:29270089

  7. Frequency doubling of an InGaAs multiple quantum wells semiconductor disk laser

    NASA Astrophysics Data System (ADS)

    Lidan, Jiang; Renjiang, Zhu; Maohua, Jiang; Dingke, Zhang; Yuting, Cui; Peng, Zhang; Yanrong, Song

    2018-01-01

    We demonstrate a good beam quality 483 nm blue coherent radiation from a frequency doubled InGaAs multiple quantum wells semiconductor disk laser. The gain chip is consisted of 6 repeats of strain uncompensated InGaAs/GaAs quantum wells and 25 pairs of GaAs/AlAs distributed Bragg reflector. A 4 × 4 × 7 mm3 type I phase-matched BBO nonlinear crystal is used in a V-shaped laser cavity for the second harmonic generation, and 210 mW blue output power is obtained when the absorbed pump power is 3.5 W. The M2 factors of the laser beam in x and y directions are about 1.04 and 1.01, respectively. The output power of the blue laser is limited by the relatively small number of the multiple quantum wells, and higher power can be expected by increasing the number of the multiple quantum wells and improving the heat management of the laser.

  8. Semiconductor-to-metal transition in rutile TiO 2 induced by tensile strain

    DOE PAGES

    Benson, Eric E.; Miller, Elisa M.; Nanayakkara, Sanjini U.; ...

    2017-02-10

    Here, we report the first observation of a reversible, degenerate doping of titanium dioxide with strain, which is referred to as a semiconductor-to-metal transition. Application of tensile strain to a ~50 nm film of rutile TiO 2 thermally grown on a superelastic nitinol (NiTi intermetallic) substrate causes reversible degenerate doping as evidenced by electrochemistry, X-ray photoelectron spectroscopy (XPS), and conducting atomic force microscopy (CAFM). Cyclic voltammetry and impedance measurements show behavior characteristic of a highly doped n-type semiconductor for unstrained TiO 2 transitioning to metallic behavior under tensile strain. The transition reverses when strain is removed. Valence band XPS spectramore » show that samples strained to 5% exhibit metallic-like intensity near the Fermi level. Strain also induces a distinct transition in CAFM current-voltage curves from rectifying (typical of an n-type semiconductor) to ohmic (metal-like) behavior. We propose that strain raises the energy distribution of oxygen vacancies ( n-type dopants) near the conduction band and causes an increase in carrier concentration. As the carrier concentration is increased, the width of the depletion region is reduced, which then permits electron tunneling through the space charge barrier resulting in the observed metallic behavior.« less

  9. Monolithic integration of a resonant tunneling diode and a quantum well semiconductor laser

    NASA Astrophysics Data System (ADS)

    Grave, I.; Kan, S. C.; Griffel, G.; Wu, S. W.; Sa'Ar, A.

    1991-01-01

    A monolithic integration of a double barrier AlAs/GaAs resonant tunneling diode and a GaAs/AlGaAs quantum well laser is reported. Negative differential resistance and negative differential optical response are observed at room temperature. The device displays bistable electrical and optical characteristics which are voltage controlled. Operation as a two-state optical memory is demonstrated.

  10. Direct determination of quantum efficiency of semiconducting films

    DOEpatents

    Faughnan, Brian W.; Hanak, Joseph J.

    1986-01-01

    Photovoltaic quantum efficiency of semiconductor samples is determined directly, without requiring that a built-in photovoltage be generated by the sample. Electrodes are attached to the sample so as to form at least one Schottky barrier therewith. When illuminated, the generated photocurrent carriers are collected by an external bias voltage impressed across the electrodes. The generated photocurrent is measured, and photovoltaic quantum efficiency is calculated therefrom.

  11. Direct determination of quantum efficiency of semiconducting films

    DOEpatents

    Faughnan, B.W.; Hanak, J.J.

    Photovoltaic quantum efficiency of semiconductor samples is determined directly, without requiring that a built-in photovoltage be generated by the sample. Electrodes are attached to the sample so as to form at least one Schottky barrier therewith. When illuminated, the generated photocurrent carriers are collected by an external bias voltage impressed across the electrodes. The generated photocurrent is measured, and photovoltaic quantum efficiency is calculated therefrom.

  12. A Kronig-Penney Model of Salts of DNA

    PubMed Central

    Rosen, Philip

    1968-01-01

    A one dimensional Kronig-Penney model for a salt like Na DNA is given. The helical periodicity is treated in a manner suggested by Tinoco and Woody. Using data on the semiconductor band gap, we estimate the strength of the potential barrier. The energy limits of the ten bands filled by 20π electrons per unit cell are calculated and exhibited in Table I. PMID:5643271

  13. An Assessment of Critical Dimension Small Angle X-ray Scattering Metrology for Advanced Semiconductor Manufacturing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Settens, Charles M.

    2015-01-01

    Simultaneous migration of planar transistors to FinFET architectures, the introduction of a plurality of materials to ensure suitable electrical characteristics, and the establishment of reliable multiple patterning lithography schemes to pattern sub-10 nm feature sizes imposes formidable challenges to current in-line dimensional metrologies. Because the shape of a FinFET channel cross-section immediately influences the electrical characteristics, the evaluation of 3D device structures requires measurement of parameters beyond traditional critical dimension (CD), including their sidewall angles, top corner rounding and footing, roughness, recesses and undercuts at single nanometer dimensions; thus, metrologies require sub-nm and approaching atomic level measurement uncertainty. Synchrotron criticalmore » dimension small angle X-ray scattering (CD-SAXS) has unique capabilities to non-destructively monitor the cross-section shape of surface structures with single nanometer uncertainty and can perform overlay metrology to sub-nm uncertainty. In this dissertation, we perform a systematic experimental investigation using CD-SAXS metrology on a hierarchy of semiconductor 3D device architectures including, high-aspect-ratio contact holes, H2 annealed Si fins, and a series of grating type samples at multiple points along a FinFET fabrication process increasing in structural intricacy and ending with fully fabricated FinFET. Comparative studies between CD-SAXS metrology and other relevant semiconductor dimensional metrologies, particularly CDSEM, CD-AFM and TEM are used to determine physical limits of CD-SAXS approach for advanced semiconductor samples. CD-SAXS experimental tradeoffs, advice for model-dependent analysis and thoughts on the compatibility with a semiconductor manufacturing environment are discussed.« less

  14. Uncooled infrared photon detection concepts and devices

    NASA Astrophysics Data System (ADS)

    Piyankarage, Viraj Vishwakantha Jayaweera

    This work describes infrared (IR) photon detector techniques based on novel semiconductor device concepts and detector designs. The aim of the investigation was to examine alternative IR detection concepts with a view to resolve some of the issues of existing IR detectors such as operating temperature and response range. Systems were fabricated to demonstrate the following IR detection concepts and determine detector parameters: (i) Near-infrared (NIR) detection based on dye-sensitization of nanostructured semiconductors, (ii) Displacement currents in semiconductor quantum dots (QDs) embedded dielectric media, (iii) Split-off band transitions in GaAs/AlGaAs heterojunction interfacial workfunction internal photoemission (HEIWIP) detectors. A far-infrared detector based on GaSb homojunction interfacial workfunction internal photoemission (HIWIP) structure is also discussed. Device concepts, detector structures, and experimental results discussed in the text are summarized below. Dye-sensitized (DS) detector structures consisting of n-TiO 2/Dye/p-CuSCN heterostructures with several IR-sensitive dyes showed response peaks at 808, 812, 858, 866, 876, and 1056 nm at room temperature. The peak specific-detectivity (D*) was 9.5x1010 cm Hz-1/2 W-1 at 812 nm at room temperature. Radiation induced carrier generation alters the electronic polarizability of QDs provided the quenching of excitation is suppressed by separation of the QDs. A device constructed to illustrate this concept by embedding PbS QDs in paraffin wax showed a peak D* of 3x108 cm Hz 1/2 W-1 at ˜540 nm at ambient temperature. A typical HEIWIP/HIWIP detector structures consist of single (or multiple) period(s) of doped emitter(s) and undoped barrier(s) which are sandwiched between two highly doped contact layers. A p-GaAs/AlGaAs HEIWIP structure showed enhanced absorption in NIR range due to heavy/light-hole band to split-off band transitions and leading to the development of GaAs based uncooled sensors for IR detection in the 2--5 microm wavelength range with a peak D* of 6.8x105 cm Hz1/2 W-1. A HIWIP detector based on p-GaSb/GaSb showed a free carrier response threshold wavelength at 97 microm (˜3 THz) with a peak D* of 5.7x1011 cm Hz1/2 W-1 at 36 microm and 4.9 K. In this detector, a bolometric type response in the 97--200 microm (3--1.5 THz) range was also observed. INDEX WORDS: Infrared detectors, Photon detection, NIR detectors, THz detectors, Uncooled detectors, Dye-sensitized, IR dye, Quantum dot, Split-off band, GaSb, GaAs, AlGaAs, TiO2, CuSCN, PbS, Homojunction, Heterojunction, Workfunction, Photoemission, Displacement currents, 1/f noise.

  15. Setup for in situ deep level transient spectroscopy of semiconductors during swift heavy ion irradiation.

    PubMed

    Kumar, Sandeep; Kumar, Sugam; Katharria, Y S; Safvan, C P; Kanjilal, D

    2008-05-01

    A computerized system for in situ deep level characterization during irradiation in semiconductors has been set up and tested in the beam line for materials science studies of the 15 MV Pelletron accelerator at the Inter-University Accelerator Centre, New Delhi. This is a new facility for in situ irradiation-induced deep level studies, available in the beam line of an accelerator laboratory. It is based on the well-known deep level transient spectroscopy (DLTS) technique. High versatility for data manipulation is achieved through multifunction data acquisition card and LABVIEW. In situ DLTS studies of deep levels produced by impact of 100 MeV Si ions on Aun-Si(100) Schottky barrier diode are presented to illustrate performance of the automated DLTS facility in the beam line.

  16. Trap density of GeNx/Ge interface fabricated by electron-cyclotron-resonance plasma nitridation

    NASA Astrophysics Data System (ADS)

    Fukuda, Yukio; Otani, Yohei; Toyota, Hiroshi; Ono, Toshiro

    2011-07-01

    We have investigated GeNx/Ge interface properties using Si3N4(7 nm)/GeNx(2 nm)/Ge metal-insulator-semiconductor structures fabricated by the plasma nitridation of Ge substrates using an electron-cyclotron-resonance-generated nitrogen plasma. The interface trap density (Dit) measured by the conductance method is found to be distributed symmetrically in the Ge band gap with a minimum Dit value lower than 3 × 1011 cm-2eV-1 near the midgap. This result may lead to the development of processes for the fabrication of p- and n-Ge Schottky-barrier (SB) source/drain metal-insulator-semiconductor field-effect transistors using chemically and thermally robust GeNx dielectrics as interlayers for SB source/drain contacts and high-κ gate dielectrics.

  17. Positive and negative gain exceeding unity magnitude in silicon quantum well metal-oxide-semiconductor transistors

    NASA Astrophysics Data System (ADS)

    Hu, Gangyi; Wijesinghe, Udumbara; Naquin, Clint; Maggio, Ken; Edwards, H. L.; Lee, Mark

    2017-10-01

    Intrinsic gain (AV) measurements on Si quantum well (QW) n-channel metal-oxide-semiconductor (NMOS) transistors show that these devices can have |AV| > 1 in quantum transport negative transconductance (NTC) operation at room temperature. QW NMOS devices were fabricated using an industrial 45 nm technology node process incorporating ion implanted potential barriers to define a lateral QW in the conduction channel under the gate. While NTC at room temperature arising from transport through gate-controlled QW bound states has been previously established, it was unknown whether the quantum NTC mechanism could support gain magnitude exceeding unity. Bias conditions were found giving both positive and negative AV with |AV| > 1 at room temperature. This result means that QW NMOS devices could be useful in amplifier and oscillator applications.

  18. Amorphous metallizations for high-temperature semiconductor device applications

    NASA Technical Reports Server (NTRS)

    Wiley, J. D.; Perepezko, J. H.; Nordman, J. E.; Kang-Jin, G.

    1981-01-01

    The initial results of work on a class of semiconductor metallizations which appear to hold promise as primary metallizations and diffusion barriers for high temperature device applications are presented. These metallizations consist of sputter-deposited films of high T sub g amorphous-metal alloys which (primarily because of the absence of grain boundaries) exhibit exceptionally good corrosion-resistance and low diffusion coefficients. Amorphous films of the alloys Ni-Nb, Ni-Mo, W-Si, and Mo-Si were deposited on Si, GaAs, GaP, and various insulating substrates. The films adhere extremely well to the substrates and remain amorphous during thermal cycling to at least 500 C. Rutherford backscattering and Auger electron spectroscopy measurements indicate atomic diffussivities in the 10 to the -19th power sq cm/S range at 450 C.

  19. Transition model for ricin-aptamer interactions with multiple pathways and energy barriers

    NASA Astrophysics Data System (ADS)

    Wang, Bin; Xu, Bingqian

    2014-02-01

    We develop a transition model to interpret single-molecule ricin-aptamer interactions with multiple unbinding pathways and energy barriers measured by atomic force microscopy dynamic force spectroscopy. Molecular simulations establish the relationship between binding conformations and the corresponding unbinding pathways. Each unbinding pathway follows a Bell-Evans multiple-barrier model. Markov-type transition matrices are developed to analyze the redistribution of unbinding events among the pathways under different loading rates. Our study provides detailed information about complex behaviors in ricin-aptamer unbinding events.

  20. Long-range electron tunneling.

    PubMed

    Winkler, Jay R; Gray, Harry B

    2014-02-26

    Electrons have so little mass that in less than a second they can tunnel through potential energy barriers that are several electron-volts high and several nanometers wide. Electron tunneling is a critical functional element in a broad spectrum of applications, ranging from semiconductor diodes to the photosynthetic and respiratory charge transport chains. Prior to the 1970s, chemists generally believed that reactants had to collide in order to effect a transformation. Experimental demonstrations that electrons can transfer between reactants separated by several nanometers led to a revision of the chemical reaction paradigm. Experimental investigations of electron exchange between redox partners separated by molecular bridges have elucidated many fundamental properties of these reactions, particularly the variation of rate constants with distance. Theoretical work has provided critical insights into the superexchange mechanism of electronic coupling between distant redox centers. Kinetics measurements have shown that electrons can tunnel about 2.5 nm through proteins on biologically relevant time scales. Longer-distance biological charge flow requires multiple electron tunneling steps through chains of redox cofactors. The range of phenomena that depends on long-range electron tunneling continues to expand, providing new challenges for both theory and experiment.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhai, Yaxin; Baniya, Sangita; Zhang, Chuang

    Two-dimensional (2D) layered hybrid organic-inorganic halide perovskite semiconductors form natural “multiple quantum wells” that have strong spin-orbit coupling due to the heavy elements in their building blocks. This may lead to “Rashba splitting” close to the extrema in the electron bands. We have used a plethora of ultrafast transient, nonlinear optical spectroscopies and theoretical calculations to study the primary (excitons) and long-lived (free carriers) photoexcitations in thin films of 2D perovskite, namely, (C 6H 5C 2H 4NH 3) 2PbI 4. The density functional theory calculation shows the occurrence of Rashba splitting in the plane perpendicular to the 2D barrier. Frommore » the electroabsorption spectrum and photoinduced absorption spectra from excitons and free carriers, we obtain a giant Rashba splitting in this compound, with energy splitting of (40 ± 5) meV and Rashba parameter of (1.6 ± 0.1) eV·Å, which are among the highest Rashba splitting size parameters reported so far. In conclusion, this finding shows that 2D hybrid perovskites have great promise for potential applications in spintronics.« less

  2. Ultimate linewidth reduction of a semiconductor laser frequency-stabilized to a Fabry-Pérot interferometer.

    PubMed

    Bahoura, Messaoud; Clairon, André

    2003-11-01

    We report a theoretical dynamical analysis on effect of semiconductor laser phase noise on the achievable linewidth when locked to a Fabry-Pérot cavity fringe using a modulation-demodulation frequency stabilization technique such as the commonly used Pound-Drever-Hall frequency locking scheme. We show that, in the optical domain, the modulation-demodulation operation produces, in the presence of semiconductor laser phase noise, two kinds of excess noise, which could be much above the shot noise limit, namely, conversion noise (PM-to-AM) and intermodulation noise. We show that, in typical stabilization conditions, the ultimate semiconductor laser linewidth reduction can be severely limited by the intermodulation excess noise. The modulation-demodulation operation produces the undesirable nonlinear intermodulation effect through which the phase noise spectral components of the semiconductor laser, in the vicinity of even multiples of the modulation frequency, are downconverted into the bandpass of the frequency control loop. This adds a spurious signal, at the modulation frequency, to the error signal and limits the performance of the locked semiconductor laser. This effect, reported initially in the microwave domain using the quasistatic approximation, can be considerably reduced by a convenient choice of the modulation frequency.

  3. Graphene and thin-film semiconductor heterojunction transistors integrated on wafer scale for low-power electronics.

    PubMed

    Heo, Jinseong; Byun, Kyung-Eun; Lee, Jaeho; Chung, Hyun-Jong; Jeon, Sanghun; Park, Seongjun; Hwang, Sungwoo

    2013-01-01

    Graphene heterostructures in which graphene is combined with semiconductors or other layered 2D materials are of considerable interest, as a new class of electronic devices has been realized. Here we propose a technology platform based on graphene-thin-film-semiconductor-metal (GSM) junctions, which can be applied to large-scale and power-efficient electronics compatible with a variety of substrates. We demonstrate wafer-scale integration of vertical field-effect transistors (VFETs) based on graphene-In-Ga-Zn-O (IGZO)-metal asymmetric junctions on a transparent 150 × 150 mm(2) glass. In this system, a triangular energy barrier between the graphene and metal is designed by selecting a metal with a proper work function. We obtain a maximum current on/off ratio (Ion/Ioff) up to 10(6) with an average of 3010 over 2000 devices under ambient conditions. For low-power logic applications, an inverter that combines complementary n-type (IGZO) and p-type (Ge) devices is demonstrated to operate at a bias of only 0.5 V.

  4. Tunneling conductance in semiconductor-superconductor hybrid structures

    NASA Astrophysics Data System (ADS)

    Stenger, John; Stanescu, Tudor D.

    2017-12-01

    We study the differential conductance for charge tunneling into a semiconductor wire-superconductor hybrid structure, which is actively investigated as a possible scheme for realizing topological superconductivity and Majorana zero modes. The calculations are done based on a tight-binding model of the heterostructure using both a Blonder-Tinkham-Klapwijk approach and a Keldysh nonequilibrium Green's function method. The dependence of various tunneling conductance features on the coupling strength between the semiconductor and the superconductor, the tunnel barrier height, and temperature is systematically investigated. We find that treating the parent superconductor as an active component of the system, rather than a passive source of Cooper pairs, has qualitative consequences regarding the low-energy behavior of the differential conductance. In particular, the presence of subgap states in the parent superconductor, due to disorder and finite magnetic fields, leads to characteristic particle-hole asymmetric features and to the breakdown of the quantization of the zero-bias peak associated with the presence of Majorana zero modes localized at the ends of the wire. The implications of these findings for the effort toward the realization of Majorana bound states with true non-Abelian properties are discussed.

  5. Infrared emitting device and method

    DOEpatents

    Kurtz, S.R.; Biefeld, R.M.; Dawson, L.R.; Howard, A.J.; Baucom, K.C.

    1997-04-29

    The infrared emitting device comprises a III-V compound semiconductor substrate upon which are grown a quantum-well active region having a plurality of quantum-well layers formed of a ternary alloy comprising InAsSb sandwiched between barrier layers formed of a ternary alloy having a smaller lattice constant and a larger energy bandgap than the quantum-well layers. The quantum-well layers are preferably compressively strained to increase the threshold energy for Auger recombination; and a method is provided for determining the preferred thickness for the quantum-well layers. Embodiments of the present invention are described having at least one cladding layer to increase the optical and carrier confinement in the active region, and to provide for waveguiding of the light generated within the active region. Examples have been set forth showing embodiments of the present invention as surface- and edge-emitting light emitting diodes (LEDs), an optically-pumped semiconductor laser, and an electrically-injected semiconductor diode laser. The light emission from each of the infrared emitting devices of the present invention is in the midwave infrared region of the spectrum from about 2 to 6 microns. 8 figs.

  6. Sustained hole inversion layer in a wide-bandgap metal-oxide semiconductor with enhanced tunnel current

    PubMed Central

    Shoute, Gem; Afshar, Amir; Muneshwar, Triratna; Cadien, Kenneth; Barlage, Douglas

    2016-01-01

    Wide-bandgap, metal-oxide thin-film transistors have been limited to low-power, n-type electronic applications because of the unipolar nature of these devices. Variations from the n-type field-effect transistor architecture have not been widely investigated as a result of the lack of available p-type wide-bandgap inorganic semiconductors. Here, we present a wide-bandgap metal-oxide n-type semiconductor that is able to sustain a strong p-type inversion layer using a high-dielectric-constant barrier dielectric when sourced with a heterogeneous p-type material. A demonstration of the utility of the inversion layer was also investigated and utilized as the controlling element in a unique tunnelling junction transistor. The resulting electrical performance of this prototype device exhibited among the highest reported current, power and transconductance densities. Further utilization of the p-type inversion layer is critical to unlocking the previously unexplored capability of metal-oxide thin-film transistors, such applications with next-generation display switches, sensors, radio frequency circuits and power converters. PMID:26842997

  7. Micromachined peristaltic pump

    NASA Technical Reports Server (NTRS)

    Hartley, Frank T. (Inventor)

    1998-01-01

    A micromachined pump including a channel formed in a semiconductor substrate by conventional processes such as chemical etching. A number of insulating barriers are established in the substrate parallel to one another and transverse to the channel. The barriers separate a series of electrically conductive strips. An overlying flexible conductive membrane is applied over the channel and conductive strips with an insulating layer separating the conductive strips from the conductive membrane. Application of a sequential voltage to the series of strips pulls the membrane into the channel portion of each successive strip to achieve a pumping action. A particularly desirable arrangement employs a micromachined push-pull dual channel cavity employing two substrates with a single membrane sandwiched between them.

  8. Subnanosecond Scintillation Detector

    NASA Technical Reports Server (NTRS)

    Hoenk, Michael (Inventor); Hennessy, John (Inventor); Hitlin, David (Inventor)

    2017-01-01

    A scintillation detector, including a scintillator that emits scintillation; a semiconductor photodetector having a surface area for receiving the scintillation, wherein the surface area has a passivation layer configured to provide a peak quantum efficiency greater than 40% for a first component of the scintillation, and the semiconductor photodetector has built in gain through avalanche multiplication; a coating on the surface area, wherein the coating acts as a bandpass filter that transmits light within a range of wavelengths corresponding to the first component of the scintillation and suppresses transmission of light with wavelengths outside said range of wavelengths; and wherein the surface area, the passivation layer, and the coating are controlled to increase the temporal resolution of the semiconductor photodetector.

  9. Semiconductor quantum dot-sensitized solar cells.

    PubMed

    Tian, Jianjun; Cao, Guozhong

    2013-10-31

    Semiconductor quantum dots (QDs) have been drawing great attention recently as a material for solar energy conversion due to their versatile optical and electrical properties. The QD-sensitized solar cell (QDSC) is one of the burgeoning semiconductor QD solar cells that shows promising developments for the next generation of solar cells. This article focuses on recent developments in QDSCs, including 1) the effect of quantum confinement on QDSCs, 2) the multiple exciton generation (MEG) of QDs, 3) fabrication methods of QDs, and 4) nanocrystalline photoelectrodes for solar cells. We also make suggestions for future research on QDSCs. Although the efficiency of QDSCs is still low, we think there will be major breakthroughs in developing QDSCs in the future.

  10. A Model of High-Frequency Self-Mixing in Double-Barrier Rectifier

    NASA Astrophysics Data System (ADS)

    Palma, Fabrizio; Rao, R.

    2018-03-01

    In this paper, a new model of the frequency dependence of the double-barrier THz rectifier is presented. The new structure is of interest because it can be realized by CMOS image sensor technology. Its application in a complex field such as that of THz receivers requires the availability of an analytical model, which is reliable and able to highlight the dependence on the parameters of the physical structure. The model is based on the hydrodynamic semiconductor equations, solved in the small signal approximation. The model depicts the mechanisms of the THz modulation of the charge in the depleted regions of the double-barrier device and explains the self-mixing process, the frequency dependence, and the detection capability of the structure. The model thus substantially improves the analytical models of the THz rectification available in literature, mainly based on lamped equivalent circuits.

  11. Molecular-Barrier-Enhanced Aromatic Fluorophores in Cocrystals with Unity Quantum Efficiency.

    PubMed

    Ye, Huanqing; Liu, Guangfeng; Liu, Sheng; Casanova, David; Ye, Xin; Tao, Xutang; Zhang, Qichun; Xiong, Qihua

    2018-02-12

    Singlet-triplet conversion in organic light-emitting materials introduces non-emissive (dark) and long-lived triplet states, which represents a significant challenge in constraining the optical properties. There have been considerable attempts at separating singlets and triplets in long-chain polymers, scavenging triplets, and quenching triplets with heavy metals; nonetheless, such triplet-induced loss cannot be fully eliminated. Herein, a new strategy of crafting a periodic molecular barrier into the π-conjugated matrices of organic aromatic fluorophores is reported. The molecular barriers effectively block the singlet-to-triplet pathway, resulting in near-unity photoluminescence quantum efficiency (PLQE) of the organic fluorophores. The transient optical spectroscopy measurements confirm the absence of the triplet absorption. These studies provide a general approach to preventing the formation of dark triplet states in organic semiconductors and bring new opportunities for the development of advanced organic optics and photonics. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Behavior of the Si/SiO2 interface observed by Fowler-Nordheim tunneling

    NASA Technical Reports Server (NTRS)

    Maserjian, J.; Zamani, N.

    1982-01-01

    Thin-oxide (40-50 A) metal oxide semiconductor (MOS) structures are shown to exhibit, before large levels of electron tunnel injection, the near-ideal behavior predicted for a uniform trapezoidal barrier with thick-oxide properties. The oscillatory field dependence caused by electron-wave interference at the Si/SiO2 interface suggests an abrupt, one-monolayer barrier transition (approximately 2.5 A) consistent with earlier work. After tunnel injection of 10 to the 17th - 5 x 10 to the 18th electrons/sq cm, the barrier undergoes appreciable degradation, leading to enhanced tunneling conductance. Reproducible behavior is observed among different samples. This effect is found to be consistent with the generation of positive states in the region of the oxide near the Si/SiO2 interface (less than 20 A), where the tunneling electrons emerge into the oxide conduction band.

  13. Theoretical analysis of the effects of light intensity on the photocorrosion of semiconductor electrodes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Benito, R.M.; Nozik, A.J.

    1985-07-18

    A kinetic model was developed to describe the effects of light intensity on the photocorrosion of n-type semiconductor electrodes. The model is an extension of previous work by Gomes and co-workers that includes the possibility of multiple steps for the oxidation reaction of the reducing agent in the electrolyte. Six cases are considered where the semiconductor decomposition reaction is multistep (each step involves a hole); the oxidation reaction of the reducing agent is multistep (each step after the first involves a hole or a chemical intermediate), and the first steps of the competing oxidation reactions are reversible or irreversible. Itmore » was found, contrary to previous results, that the photostability of semiconductor electrodes could increase with increased light intensity if the desired oxidation reaction of the reducing agent in the electrolyte was multistep with the first step being reversible. 14 references, 5 figures, 1 table.« less

  14. The Physics of Semiconductors

    NASA Astrophysics Data System (ADS)

    Brennan, Kevin F.

    1999-02-01

    Modern fabrication techniques have made it possible to produce semiconductor devices whose dimensions are so small that quantum mechanical effects dominate their behavior. This book describes the key elements of quantum mechanics, statistical mechanics, and solid-state physics that are necessary in understanding these modern semiconductor devices. The author begins with a review of elementary quantum mechanics, and then describes more advanced topics, such as multiple quantum wells. He then disusses equilibrium and nonequilibrium statistical mechanics. Following this introduction, he provides a thorough treatment of solid-state physics, covering electron motion in periodic potentials, electron-phonon interaction, and recombination processes. The final four chapters deal exclusively with real devices, such as semiconductor lasers, photodiodes, flat panel displays, and MOSFETs. The book contains many homework exercises and is suitable as a textbook for electrical engineering, materials science, or physics students taking courses in solid-state device physics. It will also be a valuable reference for practicing engineers in optoelectronics and related areas.

  15. Non-Geiger-Mode Single-Photon Avalanche Detector with Low Excess Noise

    NASA Technical Reports Server (NTRS)

    Zhao, Kai; Lo, YuHwa; Farr, William

    2010-01-01

    This design constitutes a self-resetting (gain quenching), room-temperature operational semiconductor single-photon-sensitive detector that is sensitive to telecommunications optical wavelengths and is scalable to large areas (millimeter diameter) with high bandwidth and efficiencies. The device can detect single photons at a 1,550-nm wavelength at a gain of 1 x 10(exp 6). Unlike conventional single photon avalanche detectors (SPADs), where gain is an extremely sensitive function to the bias voltage, the multiplication gain of this device is stable at 1 x 10(exp 6) over a wide range of bias from 30.2 to 30.9 V. Here, the multiplication gain is defined as the total number of charge carriers contained in one output pulse that is triggered by the absorption of a single photon. The statistics of magnitude of output signals also shows that the device has a very narrow pulse height distribution, which demonstrates a greatly suppressed gain fluctuation. From the histograms of both pulse height and pulse charge, the equivalent gain variance (excess noise) is between 1.001 and 1.007 at a gain of 1 x 10(exp 6). With these advantages, the device holds promise to function as a PMT-like photon counter at a 1,550- nm wavelength. The epitaxial layer structure of the device allows photons to be absorbed in the InGaAs layer, generating electron/hole (e-h) pairs. Driven by an electrical field in InGaAs, electrons are collected at the anode while holes reach the multiplication region (InAlAs p-i-n structure) and trigger the avalanche process. As a result, a large number of e-h pairs are created, and the holes move toward the cathode. Holes created by the avalanche process gain large kinetic energy through the electric field, and are considered hot. These hot holes are cooled as they travel across a p -InAlAs low field region, and are eventually blocked by energy barriers formed by the InGaAsP/ InAlAs heterojunctions. The composition of the InGaAsP alloy was chosen to have an 80 meV valance band offset with InAlAs, which is high enough to hinder the transport of the already cooled holes. Being stopped by the energy barrier, holes are accumulated at the junctions to shield the electric field, resulting in a decrease of the electric field in the multiplication region. Because the impact ionization rate is extremely sensitive to the magnitude of the electric field, the field-screening effect drastically reduces the impact ionization rate and quenches the output signals. After the avalanche pulse signal is self-quenched, the accumulated holes at the InGaAsP/ InAlAs interface escape the energy barrier through thermal excitation and tunneling and finally leave the device. The device is thus reset and ready for subsequent photon detection. This recovery time is controlled by the height of the energy barrier and the hole-cooling rate.

  16. Semiconductor Alloy Theory.

    DTIC Science & Technology

    1985-09-27

    REPORT & PERIOD COVERED -v Semiconductor Alloy Theory Annual 0) 84-9-1 to 85-8-31 M’) 6. PERFORMING O𔃾G. REPORT NUMBER 7. AUTHOR(@) 8. CONTRACT OR...GRANT NUMBER(s) An-Ban Chen AFOSR-84-0282 9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT. TASK AREA & W R UNT NUMBERS Auburn...and the effective mass. We generalized the formula for indirect-gap alloys with multiple bands and applied it to SiGe alloy. Our results, correlated

  17. Fabrication of polycrystalline solar cells on low-cost substrates

    NASA Technical Reports Server (NTRS)

    Chu, T. L. (Inventor)

    1976-01-01

    A new method of producing p-n junction semiconductors for solar cells was described; the principal objective of this investigation is to reduce production costs significantly by depositing polycrystalline silicon on a relatively cheap substrate such as metallurgical-grade silicon, graphite, or steel. The silicon layer contains appropriate dopants, and the substrates are coated with a diffusion barrier of silica, borosilicate, phosphosilicate, or mixtures of these compounds.

  18. Simulation of Devices with Molecular Potentials

    DTIC Science & Technology

    2013-12-22

    10] W. R. Frensley, Wigner - function model of a resonant-tunneling semiconductor de- vice, Phys. Rev. B, 36 (1987), pp. 1570–1580. 6 [11] M. J...develop the principal investigator’s Wigner -Poisson code and extend that code to deal with longer devices and more complex barrier profiles. Over...Research Triangle Park, NC 27709-2211 Molecular Confirmation, Sparse Interpolation, Wigner -Poisson Equation, Parallel Algorithms REPORT DOCUMENTATION PAGE 11

  19. Crystal growth of device quality GaAs in space

    NASA Technical Reports Server (NTRS)

    Gatos, H. C.; Lagowski, J.

    1980-01-01

    The apparatus and techniques used in effort to determine the relationships between crystal growth and electronic properties are described with emphasis on electroepitaxy and melt-grown gallium aresenide crystal. Applications of deep level transient spectroscopy, derivative photocapitance spectroscopy, and SEM-cathodoluminescene in characterizing wide bandgap semiconductors; determining photoionization in MOS, Schottky barriers, and p-n junctions; and for identifying inhomogeneities are examined, as well as the compensation of indium phosphide.

  20. 2D Vertical Heterostructures for Novel Tunneling Device Applications

    DTIC Science & Technology

    2017-03-01

    controlled by a combination of the drain-source voltage bias (VDS) and the top and bottom gate biases (VTG and VBG, respectively). The drain-source...properties that can potentially overcome some of the limitations of epitaxial 3D semiconductor heterostructures. Simulations of 2D...interlayer barrier, such as h-BN, a high-k dielectric material, or a van der Waal gap. Under appropriate bias conditions, charge carriers can tunnel

  1. Diluted-Magenetic Semiconductor (DMS) Tunneling Devices for the Terahertz Regime

    DTIC Science & Technology

    2014-12-10

    that utilize electron spin properties for achieving higher- level functionality (e.g., transistor action) at very high switching speeds and...influence of the carrier-ion interaction on the properties of a semi-magnetic semi- conductor with a moderate energy gap it is important to keep in mind...the relative numbers: Some of the double barrier experiments, particularly those with II-VI materials are constructed with materials in which the

  2. Interface Properties of Wide Bandgap Semiconductor Structures

    DTIC Science & Technology

    1993-12-01

    oxyacetylene torch and a water cooled substrate. Studying and controlling this chemical vapor deposition (CVD) process, however, can be frustrating because the...the carbide heat of formation. The precursors of chlorinated methylsilanes coupled with bias were used to deposit C films on Si(100). Textured C (lll...films were also achieved using an oxyacetylene torch . Cu forms an epitaxial rectifyingIcontact to diamond with a Schottky barrier height (SBH) of

  3. Electronic Properties of DNA-Based Schottky Barrier Diodes in Response to Alpha Particles.

    PubMed

    Al-Ta'ii, Hassan Maktuff Jaber; Periasamy, Vengadesh; Amin, Yusoff Mohd

    2015-05-21

    Detection of nuclear radiation such as alpha particles has become an important field of research in recent history due to nuclear threats and accidents. In this context; deoxyribonucleic acid (DNA) acting as an organic semiconducting material could be utilized in a metal/semiconductor Schottky junction for detecting alpha particles. In this work we demonstrate for the first time the effect of alpha irradiation on an Al/DNA/p-Si/Al Schottky diode by investigating its current-voltage characteristics. The diodes were exposed for different periods (0-20 min) of irradiation. Various diode parameters such as ideality factor, barrier height, series resistance, Richardson constant and saturation current were then determined using conventional, Cheung and Cheung's and Norde methods. Generally, ideality factor or n values were observed to be greater than unity, which indicates the influence of some other current transport mechanism besides thermionic processes. Results indicated ideality factor variation between 9.97 and 9.57 for irradiation times between the ranges 0 to 20 min. Increase in the series resistance with increase in irradiation time was also observed when calculated using conventional and Cheung and Cheung's methods. These responses demonstrate that changes in the electrical characteristics of the metal-semiconductor-metal diode could be further utilized as sensing elements to detect alpha particles.

  4. Modification of electrical properties of Au/n-type InP Schottky diode with a high-k Ba0.6Sr0.4TiO3 interlayer

    NASA Astrophysics Data System (ADS)

    Thapaswini, P. Prabhu; Padma, R.; Balaram, N.; Bindu, B.; Rajagopal Reddy, V.

    2016-05-01

    Au/Ba0.6Sr0.4TiO3 (BST)/n-InP metal/insulator/semiconductor (MIS) Schottky diodes have been analyzed by current-voltage (I-V) and capacitance-voltage (C-V) measurements. The surface morphology of the BST films on InP is fairly smooth. The Au/BST/n-InP MIS Schottky diode shows better rectification ratio and low leakage current compared to the conventional Au/n-InP metal-semiconductor (MS) Schottky diode. Higher barrier height is achieved for the MIS Schottky diode compared to the MS Schottky diode. The Norde and Cheung's methods are employed to determine the barrier height, ideality factor and series resistance. The interface state density (NSS) is determined from the forward bias I-V data for both the MS and MIS Schottky diodes. Results reveal that the NSS of the MIS Schottky diode is lower than that of the MS Schottky diode. The Poole-Frenkel emission is found dominating the reverse current in both Au/n-InP MS and Au/BST/n-InP MIS Schottky diodes, indicating the presence of structural defects and trap levels in the dielectric film.

  5. Steep-slope hysteresis-free negative capacitance MoS2 transistors

    NASA Astrophysics Data System (ADS)

    Si, Mengwei; Su, Chun-Jung; Jiang, Chunsheng; Conrad, Nathan J.; Zhou, Hong; Maize, Kerry D.; Qiu, Gang; Wu, Chien-Ting; Shakouri, Ali; Alam, Muhammad A.; Ye, Peide D.

    2018-01-01

    The so-called Boltzmann tyranny defines the fundamental thermionic limit of the subthreshold slope of a metal-oxide-semiconductor field-effect transistor (MOSFET) at 60 mV dec-1 at room temperature and therefore precludes lowering of the supply voltage and overall power consumption1,2. Adding a ferroelectric negative capacitor to the gate stack of a MOSFET may offer a promising solution to bypassing this fundamental barrier3. Meanwhile, two-dimensional semiconductors such as atomically thin transition-metal dichalcogenides, due to their low dielectric constant and ease of integration into a junctionless transistor topology, offer enhanced electrostatic control of the channel4-12. Here, we combine these two advantages and demonstrate a molybdenum disulfide (MoS2) two-dimensional steep-slope transistor with a ferroelectric hafnium zirconium oxide layer in the gate dielectric stack. This device exhibits excellent performance in both on and off states, with a maximum drain current of 510 μA μm-1 and a sub-thermionic subthreshold slope, and is essentially hysteresis-free. Negative differential resistance was observed at room temperature in the MoS2 negative-capacitance FETs as the result of negative capacitance due to the negative drain-induced barrier lowering. A high on-current-induced self-heating effect was also observed and studied.

  6. Method and apparatus for determining minority carrier diffusion length in semiconductors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moore, A.R.

    1984-02-21

    Method and apparatus are provided for determining the diffusion length of minority carriers in semiconductor material, particularly amorphous silicon, which has a significantly small minority carrier diffusion length using the constant magnitude surface-photovoltage (SPV) method. Steady or modulated illumination at several wavelengths provides the light excitation on the surface of the material to generate the SPV. A manually controlled or automatic servo system maintains a constant predetermined value of the SPB for each wavelength. A probe electrode immersed in an electrolyte solution containing redox couples (preferably quinhydrone) having an oxidation-reduction potential (E) in the order of +0.6 to -1.65 voltsmore » couples the SPV to a measurement system. The redox couple solution functions to create a liquid Schottky barrier at the surface of the material. The Schottky barrier is contacted by merely placing the probe in the solution. The redox solution is placed over and in contact with the material to be tested and light is passed through the solution to generate the SPV. To compensate for colored redox solutions a portion of the redox solution not over the material is also illuminated for determining the color compensated light intensity. Steady red light is also used as an optical bias to reduce deleterious space-charge effects that occur in amorphous silicon.« less

  7. UV sensing using film bulk acoustic resonators based on Au/n-ZnO/piezoelectric-ZnO/Al structure

    PubMed Central

    Bian, Xiaolei; Jin, Hao; Wang, Xiaozhi; Dong, Shurong; Chen, Guohao; Luo, J. K.; Deen, M. Jamal; Qi, Bensheng

    2015-01-01

    A new type of ultraviolet (UV) light sensor based on film bulk acoustic wave resonator (FBAR) is proposed. The new sensor uses gold and a thin n-type ZnO layer deposited on the top of piezoelectric layer of FBAR to form a Schottky barrier. The Schottky barrier's capacitance can be changed with UV light, resulting in an enhanced shift in the entire FBAR's resonant frequency. The fabricated UV sensor has a 50 nm thick n-ZnO semiconductor layer with a carrier concentration of ~ 1017 cm−3. A large frequency downshift is observed when UV light irradiates the FBAR. With 365 nm UV light of intensity 1.7 mW/cm2, the FBAR with n-ZnO/Au Schottky diode has 250 kHz frequency downshift, much larger than the 60 kHz frequency downshift in a conventional FBAR without the n-ZnO layer. The shift in the new FBAR's resonant frequency is due to the junction formed between Au and n-ZnO semiconductor and its properties changes with UV light. The experimental results are in agreement with the theoretical analysis using an equivalent circuit model of the new FBAR structure. PMID:25773146

  8. Method and apparatus for determining minority carrier diffusion length in semiconductors

    DOEpatents

    Moore, Arnold R.

    1984-02-21

    Method and apparatus are provided for determining the diffusion length of minority carriers in semiconductor material, particularly amorphous silicon, which has a significantly small minority carrier diffusion length using the constant magnitude surface-photovoltage (SPV) method. Steady or modulated illumination at several wavelengths provides the light excitation on the surface of the material to generate the SPV. A manually controlled or automatic servo system maintains a constant predetermined value of the SPV for each wavelength. A probe electrode immersed in an electrolyte solution containing redox couples (preferably quinhydrone) having an oxidation-reduction potential (E) in the order of +0.6 to -1.65 volts couples the SPV to a measurement system. The redox couple solution functions to create a liquid Schottky barrier at the surface of the material. The Schottky barrier is contacted by merely placing the probe in the solution. The redox solution is placed over and in contact with the material to be tested and light is passed through the solution to generate the SPV. To compensate for colored redox solutions a portion of the redox solution not over the material is also illuminated for determining the color compensated light intensity. Steady red light is also used as an optical bias to reduce deleterious space-charge effects that occur in amorphous silicon.

  9. Temperature and frequency response of conductivity in Ag2S doped chalcogenide glassy semiconductor

    NASA Astrophysics Data System (ADS)

    Ojha, Swarupa; Das, Anindya Sundar; Roy, Madhab; Bhattacharya, Sanjib

    2018-06-01

    The electric conductivity of chalcogenide glassy semiconductor xAg2S-(1-x)(0.5S-0.5Te) has been presented here as a function of temperature and frequency. Formation of different nanocrystallites has been confirmed from X-ray diffraction study. It is also noteworthy that average size of nanocrystallites decreases with the increase of dislocation density. Dc conductivity data have been interpreted using Mott's model and Greaves's model in low and high temperature regions respectively. Ac conductivity above the room temperature has been analyzed using Meyer-Neldel (MN) conduction rule. It is interestingly noted that Correlated Barrier Hopping (CBH) model is the most appropriate conduction mechanism for x = 0.35, where pairs of charge carrier are considered to hop over the potential barrier between the sites via thermal activation. To interpret experimental data for x = 0.45, modified non-overlapping small polaron tunnelling (NSPT) model is supposed to be appropriate model due to tunnelling through grain boundary. The conductivity spectra at various temperatures have been analyzed using Almond-West Formalism (power law model). Scaling of conductivity spectra reveals that electrical relaxation process of charge carriers (polaron) is temperature independent but depends upon the composition of the present chalcogenide glassy system.

  10. Frequency Dependent Electrical and Dielectric Properties of Au/P3HT:PCBM:F4-TCNQ/n-Si Schottky Barrier Diode

    NASA Astrophysics Data System (ADS)

    Taşçıoğlu, İ.; Tüzün Özmen, Ö.; Şağban, H. M.; Yağlıoğlu, E.; Altındal, Ş.

    2017-04-01

    In this study, poly(3-hexylthiophene):[6,6]-phenyl-C61-butyric acid methyl ester: 2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane (P3HT:PCBM:F4-TCNQ) organic film was deposited on n-type silicon (n-Si) substrate by spin coating method. The electrical and dielectric analysis of Au/P3HT:PCBM:F4-TCNQ/n-Si Schottky barrier diode was conducted by means of capacitance-voltage ( C- V) and conductance-voltage ( G/ ω- V) measurements in the frequency range of 10 kHz-2 MHz. The C- V- f plots exhibit fairly large frequency dispersion due to excess capacitance caused by the presence of interface states ( N ss). The values of N ss located in semiconductor bandgap at the organic film/semiconductor interface were calculated by Hill-Coleman method. Experimental results show that dielectric constant ( ɛ') and dielectric loss ( ɛ″) decrease with increasing frequency, whereas loss tangent (tan δ) remains nearly the same. The decrease in ɛ' and ɛ″ was interpreted by the theory of dielectric relaxation due to interfacial polarization. It is also observed that ac electrical conductivity ( σ ac) and electric modulus ( M' and M″) increase with increasing frequency.

  11. Note: All solid-state high repetitive sub-nanosecond risetime pulse generator based on bulk gallium arsenide avalanche semiconductor switches.

    PubMed

    Hu, Long; Su, Jiancang; Ding, Zhenjie; Hao, Qingsong; Fan, Yajun; Liu, Chunliang

    2016-08-01

    An all solid-state high repetitive sub-nanosecond risetime pulse generator featuring low-energy-triggered bulk gallium arsenide (GaAs) avalanche semiconductor switches and a step-type transmission line is presented. The step-type transmission line with two stages is charged to a potential of 5.0 kV also biasing at the switches. The bulk GaAs avalanche semiconductor switch closes within sub-nanosecond range when illuminated with approximately 87 nJ of laser energy at 905 nm in a single pulse. An asymmetric dipolar pulse with peak-to-peak amplitude of 9.6 kV and risetime of 0.65 ns is produced on a resistive load of 50 Ω. A technique that allows for repetition-rate multiplication of pulse trains experimentally demonstrated that the parallel-connected bulk GaAs avalanche semiconductor switches are triggered in sequence. The highest repetition rate is decided by recovery time of the bulk GaAs avalanche semiconductor switch, and the operating result of 100 kHz of the generator is discussed.

  12. Electron Tunneling in Junctions Doped with Semiconductors and Metals.

    NASA Astrophysics Data System (ADS)

    Bell, Lloyd Douglas, II

    In this study, tunnel junctions incorporating thin layers of semiconductors and metals have been analyzed. Inelastic electron tunneling spectroscopy (IETS) was employed to yield high-resolution vibrational spectra of surface species deposited at the oxide-M_2 interface of M_1-M_1O _{rm x}-M _2 tunneling samples. Analysis was also performed on the elastic component of the tunneling current, yielding information on the tunnel barrier shape. The samples in this research exhibit a wide range of behavior. The IETS for Si, SiO_2, and Ge doped samples show direct evidence of SiH _{rm x} and GeH_ {rm x} formation. The particular species formed is shown to depend on the form of the evaporated dopant. Samples were also made with organic dopants deposited over the evaporated dopants. Many such samples show marked effects of the evaporated dopants on the inelastic peak intensities of the organic dopants. These alterations are correlated with the changed reactivity of the oxide surface coupled with a change in the OH dipole layer density on the oxide. Thicker organic dopant layers cause large changes in the elastic tunneling barrier due to OH layer alterations or the low barrier attributes of the evaporated dopant. In the cases of the thicker layers an extra current-carrying mechanism is shown to be contributing. Electron ejection from charge traps is proposed as an explanation for this extra current. The trend of barrier shape with dopant thickness is examined. Many of these dopants also produce a voltage-induced shift in the barrier shape which is stable at low temperature but relaxes at high temperature. This effect is similar to that produced by certain organic dopants and is explained by metastable bond formation between the surface OH and dopant. Other dopants, such as Al, Mg, and Fe, produce different effects. These dopants cause large I-V nonlinearity at low voltages. This nonlinearity is modeled as a giant zero-bias anomaly (ZBA) and fits are presented which show good agreement with theory. For some samples, poor fits result due to additional nonlinearity at higher voltages. This is explained in terms of a barrier lowering due to disruption of the OH layer or the small bandgap of the dopant.

  13. Electron transport through magnetic quantum point contacts

    NASA Astrophysics Data System (ADS)

    Day, Timothy Ellis

    Spin-based electronics, or spintronics, has generated a great deal of interest as a possible next-generation integrated circuit technology. Recent experimental and theoretical work has shown that these devices could exhibit increased processing speed, decreased power consumption, and increased integration densities as compared with conventional semiconductor devices. The spintronic device that was designed, fabricated, and tested throughout the course of this work aimed to study the generation of spin-polarized currents in semiconductors using magnetic fringe fields. The device scheme relied on the Zeeman effect in combination with a quantum mechanical barrier to generate spin-polarized currents. The Zeeman effect was used to break the degeneracy of spin-up and spin-down electrons and the quantum mechanical potential to transmit one while rejecting the other. The design was dictated by the drive to maximize the strength of the magnetic fringe field and in turn maximize the energy separation of the two spin species. The device was fabricated using advanced techniques in semiconductor processing including electron beam lithography and DC magnetron sputtering. Measurements were performed in a 3He cryostat equipped with a superconducting magnet at temperatures below 300 mK. Preliminary characterization of the device revealed magnetoconductance oscillations produced by the effect of the transverse confining potential on the density of states and the mobility. Evidence of the effect of the magnetic fringe fields on the transport properties of electrons in the device were observed in multiple device measurements. An abrupt washout of the quantized conductance steps was observed over a minute range of the applied magnetic field. The washout was again observed as electrons were shifted closer to the magnetic gates. In addition, bias spectroscopy demonstrated that the washout occurred despite stronger electron confinement, as compared to a non-magnetic split-gate. Thus, the measurements indicated that conductance quantization breaks down in a non-uniform magnetic field, possibly due to changes to the stationary Landau states. It was also demonstrated that non-integer conductance plateaus at high source-drain bias are not caused by a macroscopic asymmetry in the potential drop.

  14. Morphology, stoichiometry, and crystal structure control via post-annealing for Pt-ZnO nanograin Schottky barrier interfaces

    NASA Astrophysics Data System (ADS)

    Chan, Yuet Ching; Yu, Jerry; Ho, Derek

    2018-06-01

    Nanointerfaces have attracted intensive research effort for advanced electronics due to their unique and tunable semiconducting properties made possible by metal-contacted oxide structures at the nanoscale. Although much work has been on the adjustment of fabrication parameters to achieve high-quality interfaces, little work has experimentally obtained the various correlations between material parameters and Schottky barrier electronic properties to accurately probe the underlying phenomenon. In this work, we investigate the control of Pt-ZnO nanograin interfaces properties by thermal annealing. Specifically, we quantitatively analyze the correlation between material parameters (such as surface morphology, crystallographic structure, and stoichiometry) and Schottky diode parameters (Schottky barrier height, ideality factor, and contact resistance). Results revealed strong dependencies of Schottky barrier characteristics on oxygen vacancies, surface roughness, grain density, d-spacing, and crystallite size. I-V-T data shows that annealing at 600 °C produces a nanograin based interface with the most rectifying diode characteristics. These dependencies, which have not been previously reported holistically, highlight the close relationship between material properties and Schottky barrier characteristics, and are instrumental for the performance optimization of nanostructured metal-semiconductor interfaces in advanced electronic devices.

  15. A photovoltaic device structure based on internal electron emission.

    PubMed

    McFarland, Eric W; Tang, Jing

    2003-02-06

    There has been an active search for cost-effective photovoltaic devices since the development of the first solar cells in the 1950s (refs 1-3). In conventional solid-state solar cells, electron-hole pairs are created by light absorption in a semiconductor, with charge separation and collection accomplished under the influence of electric fields within the semiconductor. Here we report a multilayer photovoltaic device structure in which photon absorption instead occurs in photoreceptors deposited on the surface of an ultrathin metal-semiconductor junction Schottky diode. Photoexcited electrons are transferred to the metal and travel ballistically to--and over--the Schottky barrier, so providing the photocurrent output. Low-energy (approximately 1 eV) electrons have surprisingly long ballistic path lengths in noble metals, allowing a large fraction of the electrons to be collected. Unlike conventional cells, the semiconductor in this device serves only for majority charge transport and separation. Devices fabricated using a fluorescein photoreceptor on an Au/TiO2/Ti multilayer structure had typical open-circuit photovoltages of 600-800 mV and short-circuit photocurrents of 10-18 micro A cm(-2) under 100 mW cm(-2) visible band illumination: the internal quantum efficiency (electrons measured per photon absorbed) was 10 per cent. This alternative approach to photovoltaic energy conversion might provide the basis for durable low-cost solar cells using a variety of materials.

  16. Fabrication of Si-As-Te ternary amorphous semiconductor in the microgravity environment (M-13)

    NASA Technical Reports Server (NTRS)

    Hamakawa, Yoshihiro

    1993-01-01

    Ternary chalcogenide Si-As-Te system is an interesting semiconductor from the aspect of both basic physics and technological applications. Since a Si-As-Te system consists of a IV-III-II hedral bonding network, it has a very large glass forming region with a wide physical constant controllability. For example, its energy gap can be controlled in a range from 0.6 eV to 2.5 eV, which corresponds to the classical semiconductor Ge (0.66 eV), Si (1.10 eV), GaAs (1.43 eV), and GaP (2.25 eV). This fact indicates that it would be a suitable system to investigate the compositional dependence of the atomic and electronic properties in the random network of solids. In spite of these significant advantages in the Si-As-Te amorphous system, a big barrier impending the wide utilization of this material is the huge difficulty encountered in the material preparation which results from large differences in the weight density, melting point, and vapor pressure of individual elements used for the alloying composition. The objective of the FMPT/M13 experiment is to fabricate homogeneous multi-component amorphous semiconductors in the microgravity environment of space, and to make a series of comparative characterizations of the amorphous structures and their basic physical constants on the materials prepared both in space and in normal terrestrial gravity.

  17. Strain-compensated infrared photodetector and photodetector array

    DOEpatents

    Kim, Jin K; Hawkins, Samuel D; Klem, John F; Cich, Michael J

    2013-05-28

    A photodetector is disclosed for the detection of infrared light with a long cutoff wavelength in the range of about 4.5-10 microns. The photodetector, which can be formed on a semiconductor substrate as an nBn device, has a light absorbing region which includes InAsSb light-absorbing layers and tensile-strained layers interspersed between the InAsSb light-absorbing layers. The tensile-strained layers can be formed from GaAs, InAs, InGaAs or a combination of these III-V compound semiconductor materials. A barrier layer in the photodetector can be formed from AlAsSb or AlGaAsSb; and a contact layer in the photodetector can be formed from InAs, GaSb or InAsSb. The photodetector is useful as an individual device, or to form a focal plane array.

  18. Semiconductor adiabatic qubits

    DOEpatents

    Carroll, Malcolm S.; Witzel, Wayne; Jacobson, Noah Tobias; Ganti, Anand; Landahl, Andrew J.; Lilly, Michael; Nguyen, Khoi Thi; Bishop, Nathaniel; Carr, Stephen M.; Bussmann, Ezra; Nielsen, Erik; Levy, James Ewers; Blume-Kohout, Robin J.; Rahman, Rajib

    2016-12-27

    A quantum computing device that includes a plurality of semiconductor adiabatic qubits is described herein. The qubits are programmed with local biases and coupling terms between qubits that represent a problem of interest. The qubits are initialized by way of a tuneable parameter, a local tunnel coupling within each qubit, such that the qubits remain in a ground energy state, and that initial state is represented by the qubits being in a superposition of |0> and |1> states. The parameter is altered over time adiabatically or such that relaxation mechanisms maintain a large fraction of ground state occupation through decreasing the tunnel coupling barrier within each qubit with the appropriate schedule. The final state when tunnel coupling is effectively zero represents the solution state to the problem represented in the |0> and |1> basis, which can be accurately read at each qubit location.

  19. Structural and electronic properties of in-plane phase engineered WSe2: A DFT study

    NASA Astrophysics Data System (ADS)

    Bhart, Ankush; Kapoor, Pooja; Sharma, Munish; Sharma, Raman; Ahluwalia, P. K.

    2018-04-01

    We present first principal investigations on structural and electronic properties of in-plane phase engineered WSe2 with armchair type interface. The 2H and 1T phases of WSe2, joined along x-direction is a natural metal-semiconductor heterostructure and therefore shows potential for applications in 2D electronics and opto-electronics. The electronic properties transit towards metallic 1T region. No inflections across interface shows negligible mismatch strain which is unlike what has been reported for MoS2. Charge density analysis shows charge accumulation on 1T domain. This can lead to reduction of Schottky barrier heights at the metal-semiconductor junction. STM analysis confirms transition of 1T phase towards distorted 1T' structure. The present results provide essential insights for nano-devices using 2D hybrid materials.

  20. Semiconductor CdF2:Ga and CdF2:In Crystals as Media for Real-Time Holography

    PubMed Central

    Ryskin, Alexander I.; Shcheulin, Alexander S.; Angervaks, Alexander E.

    2012-01-01

    Monocrystalline cadmium fluoride is a dielectric solid that can be converted into a semiconductor by doping with donor impurities and subsequent heating in the reduction atmosphere. For two donor elements, Ga and In, the donor (“shallow”) state is a metastable one separated from the ground (“deep”) state by a barrier. Photoinduced deep-to-shallow state transition underlies the photochromism of CdF2:Ga and CdF2:In. Real-time phase holograms are recorded in these crystals capable of following up optical processes in a wide frequency range. The features of photochromic transformations in CdF2:Ga and CdF2:In crystals as well as holographic characteristics of these media are discussed. Exemplary applications of CdF2-based holographic elements are given. PMID:28817009

  1. Photo-Detection on Narrow-Bandgap High-Mobility 2D Semiconductors

    NASA Astrophysics Data System (ADS)

    Charnas, Adam; Qiu, Gang; Deng, Yexin; Wang, Yixiu; Du, Yuchen; Yang, Lingming; Wu, Wenzhuo; Ye, Peide

    Photo-detection and energy harvesting device concepts have been demonstrated widely in 2D materials such as graphene, TMDs, and black phosphorus. In this work, we demonstrate anisotropic photo-detection achieved using devices fabricated from hydrothermally grown narrow-bandgap high-mobility 2D semiconductor. Back-gated FETs were fabricated by transferring the 2D flakes onto a Si/SiO2 substrate and depositing various metal contacts across the flakes to optimize the access resistance for optoelectronic devices. Photo-responsivity was measured and mapped by slightly biasing the devices and shining a laser spot at different locations of the device to observe and map the resulting photo-generated current. Optimization of the Schottky barrier height for both n and p at the metal-2D interfaces using asymmetric contact engineering was performed to improve device performance.

  2. Efficient dynamic coherence transfer relying on offset locking using optical phase-locked loop

    NASA Astrophysics Data System (ADS)

    Xie, Weilin; Dong, Yi; Bretenaker, Fabien; Shi, Hongxiao; Zhou, Qian; Xia, Zongyang; Qin, Jie; Zhang, Lin; Lin, Xi; Hu, Weisheng

    2018-01-01

    We design and experimentally demonstrate a highly efficient coherence transfer based on composite optical phaselocked loop comprising multiple feedback servo loops. The heterodyne offset-locking is achieved by conducting an acousto-optic frequency shifter in combination with the current tuning and the temperature controlling of the semiconductor laser. The adaptation of the composite optical phase-locked loop enables the tight coherence transfer from a frequency comb to a semiconductor laser in a fully dynamic manner.

  3. Solid state neutron detector array

    DOEpatents

    Seidel, John G.; Ruddy, Frank H.; Brandt, Charles D.; Dulloo, Abdul R.; Lott, Randy G.; Sirianni, Ernest; Wilson, Randall O.

    1999-01-01

    A neutron detector array is capable of measuring a wide range of neutron fluxes. The array includes multiple semiconductor neutron detectors. Each detector has a semiconductor active region that is resistant to radiation damage. In one embodiment, the array preferably has a relatively small size, making it possible to place the array in confined locations. The ability of the array to detect a wide range of neutron fluxes is highly advantageous for many applications such as detecting neutron flux during start up, ramp up and full power of nuclear reactors.

  4. Cryptography based on the absorption/emission features of multicolor semiconductor nanocrystal quantum dots.

    PubMed

    Zhou, Ming; Chang, Shoude; Grover, Chander

    2004-06-28

    Further to the optical coding based on fluorescent semiconductor quantum dots (QDs), a concept of using mixtures of multiple single-color QDs for creating highly secret cryptograms based on their absorption/emission properties was demonstrated. The key to readout of the optical codes is a group of excitation lights with the predetermined wavelengths programmed in a secret manner. The cryptograms can be printed on the surfaces of different objects such as valuable documents for security purposes.

  5. Epstein Barr Virus and Blood Brain Barrier in Multiple Sclerosis

    DTIC Science & Technology

    2013-07-01

    Distribution Unlimited 13. SUPPLEMENTARY NOTES 14. ABSTRACT Multiple sclerosis (MS) is a chronic, autoimmune neurodegenerative disease . Epstein - Barr ...of EBV in MS disease . 15. SUBJECT TERMS Blood-brain-barrier, Epstein - Barr virus ; EBV; BBB; MS, Multiple sclerosis 16. SECURITY CLASSIFICATION OF...AD_________________ Award Number: W81XWH-12-1-0225 TITLE: Epstein Barr virus and blood brain

  6. Effect of dual-dielectric hydrogen-diffusion barrier layers on the performance of low-temperature processed transparent InGaZnO thin-film transistors

    NASA Astrophysics Data System (ADS)

    Tari, Alireza; Wong, William S.

    2018-02-01

    Dual-dielectric SiOx/SiNx thin-film layers were used as back-channel and gate-dielectric barrier layers for bottom-gate InGaZnO (IGZO) thin-film transistors (TFTs). The concentration profiles of hydrogen, indium, gallium, and zinc oxide were analyzed using secondary-ion mass spectroscopy characterization. By implementing an effective H-diffusion barrier, the hydrogen concentration and the creation of H-induced oxygen deficiency (H-Vo complex) defects during the processing of passivated flexible IGZO TFTs were minimized. A bilayer back-channel passivation layer, consisting of electron-beam deposited SiOx on plasma-enhanced chemical vapor-deposition (PECVD) SiNx films, effectively protected the TFT active region from plasma damage and minimized changes in the chemical composition of the semiconductor layer. A dual-dielectric PECVD SiOx/PECVD SiNx gate-dielectric, using SiOx as a barrier layer, also effectively prevented out-diffusion of hydrogen atoms from the PECVD SiNx-gate dielectric to the IGZO channel layer during the device fabrication.

  7. Superlattice infrared photodetector research at the Jet Propulsion Laboratory

    NASA Astrophysics Data System (ADS)

    Gunapala, S. D.; Ting, D. Z.; Rafol, S. B.; Soibel, A.; Khoshakhlagh, A.; Hill, C. J.; Höglund, L.; Keo, S. A.; Liu, J. K.; Mumolo, J. M.; Luong, E. M.; Fisher, A.

    2015-08-01

    III-V semiconductors offer a highly effective platform for the development of sophisticated heterostructure-based MWIR and LWIR detectors, as exemplified by the high-performance double heterstructure (DH) nBn, XBn, and type- II superlattice infrared detectors. A key enabling design element is the unipolar barrier, which is used to implement the complementary barrier infra-red detector (CBIRD) design for increasing the collection efficiency of photogenerated carriers, and reducing dark current generation without impeding photocurrent flow. Heterostructure superlattice detectors that make effective use of unipolar barriers have demonstrated strong reduction of generationrecombination (G-R) dark current due to Shockley-Read-Hall (SRH) processes. In the last several years we solely focused on the development of antimonide based IR detectors. Recently, we demonstrated RoA values over 14,000 Ohm cm2 for a 9.9 μm cutoff device by incorporating electron-blocking and hole-blocking unipolar barriers. This device has shown 300K BLIP operation with f/2 optics at 87 K with blackbody * of 1.1x1011 cm Hz1/2/W.

  8. Enhancing the gate fidelity of silicon-based singlet-triplet qubits under symmetric exchange control using optimized pulse sequences

    NASA Astrophysics Data System (ADS)

    Zhang, Chengxian; Throckmorton, Robert; Yang, Xu-Chen; Wang, Xin; Barnes, Edwin

    We perform Randomized Benchmarking of a family of recently introduced control scheme for singlet-triplet qubits in semiconductor double quantum dots, which is optimized to have substantially shorter gate times. We study their performances under the recently introduced symmetric control scheme of changing the exchange interaction by raising and lowering the barrier between the two dots (barrier control) and compare these results to those under the traditional tilt control method in which the exchange interaction is varied by detuning. It has been suggested that the barrier control method encounters a much smaller charge noise. We found that for the cases where the charge noise is dominant, corresponding to the device made on isotopically enriched silicon, the optimized sequences offer much longer coherence time under barrier control compared to the tilt control method of the strength of the exchange interaction. This work was supported by the Research Grants Council of Hong Kong SAR (No. CityU 21300116) and the National Natural Science Foundation of China (No. 11604277), and by LPS-MPO-CMTC.

  9. Vertical field effect tunneling transistor based on graphene-ultrathin Si nanomembrane heterostructures

    NASA Astrophysics Data System (ADS)

    Das, Tanmoy; Jang, Houk; Bok Lee, Jae; Chu, Hyunwoo; Kim, Seong Dae; Ahn, Jong-Hyun

    2015-12-01

    Graphene-based heterostructured vertical transistors have attracted a great deal of research interest. Herein we propose a Si-based technology platform for creating graphene/ultrathin semiconductor/metal (GSM) junctions, which can be applied to large-scale and low-power electronics compatible with a variety of substrates. We fabricated graphene/Si nanomembrane (NM)/metal vertical heterostructures by using a dry transfer technique to transfer Si NMs onto chemical vapor deposition-grown graphene layers. The resulting van der Waals interfaces between graphene and p-Si NMs exhibited nearly ideal Schottky barrier behavior. Due to the low density of states of graphene, the graphene/Si NM Schottky barrier height can be modulated by modulating the band profile in the channel region, yielding well-defined current modulation. We obtained a maximum current on/off ratio (Ion/Ioff) of up to ˜103, with a current density of 102 A cm-2. We also observed significant dependence of Schottky barrier height Δφb on the thickness of the Si NMs. We confirmed that the transport in these devices is dominated by the effects of the graphene/Si NM Schottky barrier.

  10. Interface Schottky barrier engineering via strain in metal-semiconductor composites

    NASA Astrophysics Data System (ADS)

    Ma, Xiangchao; Dai, Ying; Yu, Lin; Huang, Baibiao

    2016-01-01

    The interfacial carrier transfer property, which is dominated by the interface Schottky barrier height (SBH), plays a crucial role in determining the performance of metal-semiconductor heterostructures in a variety of applications. Therefore, artificially controlling the interface SBH is of great importance for their industrial applications. As a model system, the Au/TiO2 (001) heterostructure is studied using first-principles calculations and the tight-binding method in the present study. Our investigation demonstrates that strain can be an effective way to decrease the interface SBH and that the n-type SBH can be more effectively decreased than the p-type SBH. Astonishingly, strain affects the interface SBH mainly by changing the intrinsic properties of Au and TiO2, whereas the interfacial potential alignment is almost independent of strain due to two opposite effects, which are induced by strain at the interfacial region. These observed trends can be understood on the basis of the general free-electron gas model of typical metals, the tight-binding theory and the crystal-field theory, which suggest that similar trends may be generalized for many other metal-semiconductor heterostructures. Given the commonness and tunability of strain in typical heterostructures, we anticipate that the tunability of the interface SBH with strain described here can provide an alternative effective way for realizing more efficient applications of relevant heterostructures.The interfacial carrier transfer property, which is dominated by the interface Schottky barrier height (SBH), plays a crucial role in determining the performance of metal-semiconductor heterostructures in a variety of applications. Therefore, artificially controlling the interface SBH is of great importance for their industrial applications. As a model system, the Au/TiO2 (001) heterostructure is studied using first-principles calculations and the tight-binding method in the present study. Our investigation demonstrates that strain can be an effective way to decrease the interface SBH and that the n-type SBH can be more effectively decreased than the p-type SBH. Astonishingly, strain affects the interface SBH mainly by changing the intrinsic properties of Au and TiO2, whereas the interfacial potential alignment is almost independent of strain due to two opposite effects, which are induced by strain at the interfacial region. These observed trends can be understood on the basis of the general free-electron gas model of typical metals, the tight-binding theory and the crystal-field theory, which suggest that similar trends may be generalized for many other metal-semiconductor heterostructures. Given the commonness and tunability of strain in typical heterostructures, we anticipate that the tunability of the interface SBH with strain described here can provide an alternative effective way for realizing more efficient applications of relevant heterostructures. Electronic supplementary information (ESI) available: The changes of Au 5d DOS, valence bands of TiO2, the interfacial bond length and interfacial energy with strain, and the local DOS results for the change of SBH with strain. See DOI: 10.1039/c5nr05583k

  11. Effects of acoustic- and optical-phonon sidebands on the fundamental optical-absorption edge in crystals and disordered semiconductors

    NASA Astrophysics Data System (ADS)

    Grein, C. H.; John, Sajeev

    1990-04-01

    We present the results of a parameter-free first-principles theory for the fine structure of the Urbach optical-absorption edge in crystalline and disordered semiconductors. The dominant features are recaptured by means of a simple physical argument based on the most probable potential-well analogy. At finite temperatures, the overall linear exponential Urbach behavior of the subgap optical-absorption coefficient is a consequence of multiple LA-phonon emission and absorption sidebands that accompany the electronic transition. The fine structure of subgap absorption spectra observed in some materials is accounted for by multiple TO-, LO-, and TA-phonon absorption and emission sidebands. Good agreement is found with experimental data on crystalline silicon. The effects of nonadiabaticity in the electron-phonon interaction are calculated.

  12. Enhancement mode GaN-based multiple-submicron channel array gate-recessed fin metal-oxide-semiconductor high-electron mobility transistors

    NASA Astrophysics Data System (ADS)

    Lee, Ching-Ting; Wang, Chun-Chi

    2018-04-01

    To study the function of channel width in multiple-submicron channel array, we fabricated the enhancement mode GaN-based gate-recessed fin metal-oxide-semiconductor high-electron mobility transistors (MOS-HEMTs) with a channel width of 450 nm and 195 nm, respectively. In view of the enhanced gate controllability in a narrower fin-channel structure, the transconductance was improved from 115 mS/mm to 151 mS/mm, the unit gain cutoff frequency was improved from 6.2 GHz to 6.8 GHz, and the maximum oscillation frequency was improved from 12.1 GHz to 13.1 GHz of the devices with a channel width of 195 nm, compared with the devices with a channel width of 450 nm.

  13. Cross-plane electronic and thermal transport properties of p-type La0.67Sr0.33MnO3/LaMnO3 perovskite oxide metal/semiconductor superlattices

    NASA Astrophysics Data System (ADS)

    Jha, Pankaj; Sands, Timothy D.; Cassels, Laura; Jackson, Philip; Favaloro, Tela; Kirk, Benjamin; Zide, Joshua; Xu, Xianfan; Shakouri, Ali

    2012-09-01

    Lanthanum strontium manganate (La0.67Sr0.33MnO3, i.e., LSMO)/lanthanum manganate (LaMnO3, i.e., LMO) perovskite oxide metal/semiconductor superlattices were investigated as a potential p-type thermoelectric material. Growth was performed using pulsed laser deposition to achieve epitaxial LSMO (metal)/LMO (p-type semiconductor) superlattices on (100)-strontium titanate (STO) substrates. The magnitude of the in-plane Seebeck coefficient of LSMO thin films (<20 μV/K) is consistent with metallic behavior, while LMO thin films were p-type with a room temperature Seebeck coefficient of 140 μV/K. Thermal conductivity measurements via the photo-acoustic (PA) technique showed that LSMO/LMO superlattices exhibit a room temperature cross-plane thermal conductivity (0.89 W/m.K) that is significantly lower than the thermal conductivity of individual thin films of either LSMO (1.60 W/m.K) or LMO (1.29 W/m.K). The lower thermal conductivity of LSMO/LMO superlattices may help overcome one of the major limitations of oxides as thermoelectrics. In addition to a low cross-plane thermal conductivity, a high ZT requires a high power factor (S2σ). Cross-plane electrical transport measurements were carried out on cylindrical pillars etched in LSMO/LMO superlattices via inductively coupled plasma reactive ion etching. Cross-plane electrical resistivity data for LSMO/LMO superlattices showed a magnetic phase transition temperature (TP) or metal-semiconductor transition at ˜330 K, which is ˜80 K higher than the TP observed for in-plane resistivity of LSMO, LMO, or LSMO/LMO thin films. The room temperature cross-plane resistivity (ρc) was found to be greater than the in-plane resistivity by about three orders of magnitude. The magnitude and temperature dependence of the cross-plane conductivity of LSMO/LMO superlattices suggests the presence of a barrier with the effective barrier height of ˜300 meV. Although the magnitude of the cross-plane power factor is too low for thermoelectric applications by a factor of approximately 10-4—in part because the growth conditions chosen for this study yielded relatively high resistivity films—the temperature dependence of the resistivity and the potential for tuning the power factor by engineering strain, oxygen stoichiometry, and electronic band structure suggest that these epitaxial metal/semiconductor superlattices are deserving of further investigation.

  14. Enhanced Semiconductor Nanocrystal Conductance via Solution Grown Contacts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sheldon, Matthew T.; Trudeau, Paul-Emile; Mokari, Taleb

    We report a 100,000-fold increase in the conductance of individual CdSe nanorods when they are electrically contacted via direct solution phase growth of Au tips on the nanorod ends. Ensemble UV-Vis and X-Ray photoelectron spectroscopy indicate this enhancement does not result from alloying of the nanorod. Rather, low temperature tunneling and high temperature (250-400 K) thermionic emission across the junction at the Au contact reveal a 75percent lower interface barrier to conduction compared to a control sample. We correlate this barrier lowering with the electronic structure at the Au-CdSe interface. Our results emphasize the importance of nanocrystal surface structure formore » robust device performance and the advantage of this contact method.« less

  15. Flexible IGZO Schottky diodes on paper

    NASA Astrophysics Data System (ADS)

    Kaczmarski, Jakub; Borysiewicz, Michał A.; Piskorski, Krzysztof; Wzorek, Marek; Kozubal, Maciej; Kamińska, Eliana

    2018-01-01

    With the development of novel device applications, e.g. in the field of robust and recyclable paper electronics, came an increased demand for the understanding and control of IGZO Schottky contact properties. In this work, a fabrication and characterization of flexible Ru-Si-O/IGZO Schottky barriers on paper is presented. It is found that an oxygen-rich atomic composition and microstructure of Ru-Si-O containing randomly oriented Ru inclusions with diameter of 3-5 nm embedded in an amorphous SiO2 matrix are effective in preventing interfacial reactions in the contact region, allowing to avoid pre-treatment of the semiconductor surface and fabricate reliable diodes at room temperature characterized by Schottky barrier height and ideality factor equal 0.79 eV and 2.13, respectively.

  16. Sputter deposition of indium tin oxide onto zinc pthalocyanine: Chemical and electronic properties of the interface studied by photoelectron spectroscopy

    NASA Astrophysics Data System (ADS)

    Gassmann, Jürgen; Brötz, Joachim; Klein, Andreas

    2012-02-01

    The interface chemistry and the energy band alignment at the interface formed during sputter deposition of transparent conducting indium tin oxide (ITO) onto the organic semiconductor zinc phtalocyanine (ZnPc), which is important for inverted, transparent, and stacked organic light emitting diodes, is studied by in situ photoelectron spectroscopy (XPS and UPS). ITO was sputtered at room temperature and a low power density with a face to face arrangement of the target and substrate. With these deposition conditions, no chemical reaction and a low barrier height for charge injection at this interface are observed. The barrier height is comparable to those observed for the reverse deposition sequence, which also confirms the absence of sputter damage.

  17. [Optical and electrical properties of NPB/Alq3 organic quantum well].

    PubMed

    Huang, Jin-Zhao; Xu, Zheng; Zhao, Su-Ling; Zhang, Fu-Jun; Wang, Yong

    2007-04-01

    In the present paper, the organic quantum-well device similar to the type-II quantum well of inorganic semiconductor material was prepared by heat evaporation. NPB (N, N'-di-[(1-naphthalenyl)-N, N'-diphenyl]-(1,1'-biphenyl)-4,4'-diamine) and Alq3 (Tris-(8-quinolinolato) aluminum) act as the potential barrier layer and the potential well layer respectively. Besides, the single layer structure of Alq3 was prepared. In the experiments, the Forster nonradiative resonant energy transfer from the barrier layer to the well layer was identified, and the quantum well luminescence device possesses a favorable current-voltage property. The narrowing of spectrum was observed, and the spectrum shifted to blue region continuously when the applied voltage increased.

  18. Experimental evidence of hot carriers solar cell operation in multi-quantum wells heterostructures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rodière, Jean; Lombez, Laurent, E-mail: laurent.lombez@chimie-paristech.fr; Le Corre, Alain

    We investigated a semiconductor heterostructure based on InGaAsP multi quantum wells (QWs) using optical characterizations and demonstrate its potential to work as a hot carrier cell absorber. By analyzing photoluminescence spectra, the quasi Fermi level splitting Δμ and the carrier temperature are quantitatively measured as a function of the excitation power. Moreover, both thermodynamics values are measured at the QWs and the barrier emission energy. High values of Δμ are found for both transition, and high carrier temperature values in the QWs. Remarkably, the quasi Fermi level splitting measured at the barrier energy exceeds the absorption threshold of the QWs.more » This indicates a working condition beyond the classical Shockley-Queisser limit.« less

  19. Silicon-based Coulomb blockade thermometer with Schottky barriers

    NASA Astrophysics Data System (ADS)

    Tuboltsev, V.; Savin, A.; Rogozin, V. D.; Räisänen, J.

    2014-04-01

    A hybrid Coulomb blockade thermometer (CBT) in form of an array of intermittent aluminum and silicon islands connected in series via tunnel junctions was fabricated on a thin silicon-on-insulator (SOI) film. Tunnel barriers in the micrometer size junctions were formed by metal-semiconductor Schottky contacts between aluminium electrodes and heavily doped silicon. Differential conductance through the array vs. bias voltage was found to exhibit characteristic features of competing thermal and charging effects enabling absolute temperature measurements over the range of ˜65 to ˜500 mK. The CBT performance implying the primary nature of the thermometer demonstrated for rather trivial architecture attempted in this work paves a route for introduction of Coulomb blockade thermometry into well-developed contemporary SOI technology.

  20. Europium Silicide – a Prospective Material for Contacts with Silicon

    PubMed Central

    Averyanov, Dmitry V.; Tokmachev, Andrey M.; Karateeva, Christina G.; Karateev, Igor A.; Lobanovich, Eduard F.; Prutskov, Grigory V.; Parfenov, Oleg E.; Taldenkov, Alexander N.; Vasiliev, Alexander L.; Storchak, Vyacheslav G.

    2016-01-01

    Metal-silicon junctions are crucial to the operation of semiconductor devices: aggressive scaling demands low-resistive metallic terminals to replace high-doped silicon in transistors. It suggests an efficient charge injection through a low Schottky barrier between a metal and Si. Tremendous efforts invested into engineering metal-silicon junctions reveal the major role of chemical bonding at the interface: premier contacts entail epitaxial integration of metal silicides with Si. Here we present epitaxially grown EuSi2/Si junction characterized by RHEED, XRD, transmission electron microscopy, magnetization and transport measurements. Structural perfection leads to superb conductivity and a record-low Schottky barrier with n-Si while an antiferromagnetic phase invites spin-related applications. This development opens brand-new opportunities in electronics. PMID:27211700

  1. Europium Silicide - a Prospective Material for Contacts with Silicon.

    PubMed

    Averyanov, Dmitry V; Tokmachev, Andrey M; Karateeva, Christina G; Karateev, Igor A; Lobanovich, Eduard F; Prutskov, Grigory V; Parfenov, Oleg E; Taldenkov, Alexander N; Vasiliev, Alexander L; Storchak, Vyacheslav G

    2016-05-23

    Metal-silicon junctions are crucial to the operation of semiconductor devices: aggressive scaling demands low-resistive metallic terminals to replace high-doped silicon in transistors. It suggests an efficient charge injection through a low Schottky barrier between a metal and Si. Tremendous efforts invested into engineering metal-silicon junctions reveal the major role of chemical bonding at the interface: premier contacts entail epitaxial integration of metal silicides with Si. Here we present epitaxially grown EuSi2/Si junction characterized by RHEED, XRD, transmission electron microscopy, magnetization and transport measurements. Structural perfection leads to superb conductivity and a record-low Schottky barrier with n-Si while an antiferromagnetic phase invites spin-related applications. This development opens brand-new opportunities in electronics.

  2. Schottky barrier at graphene/metal oxide interfaces: insight from first-principles calculations

    NASA Astrophysics Data System (ADS)

    Cheng, Kai; Han, Nannan; Su, Yan; Zhang, Junfeng; Zhao, Jijun

    2017-02-01

    Anode materials play an important role in determining the performance of lithium ion batteries. In experiment, graphene (GR)/metal oxide (MO) composites possess excellent electrochemical properties and are promising anode materials. Here we perform density functional theory calculations to explore the interfacial interaction between GR and MO. Our result reveals generally weak physical interactions between GR and several MOs (including Cu2O, NiO). The Schottky barrier height (SBH) in these metal/semiconductor heterostructures are computed using the macroscopically averaged electrostatic potential method, and the role of interfacial dipole is discussed. The calculated SBHs below 1 eV suggest low contact resistance; thus these GR/MO composites are favorable anode materials for better lithium ion batteries.

  3. Schottky barrier at graphene/metal oxide interfaces: insight from first-principles calculations.

    PubMed

    Cheng, Kai; Han, Nannan; Su, Yan; Zhang, Junfeng; Zhao, Jijun

    2017-02-06

    Anode materials play an important role in determining the performance of lithium ion batteries. In experiment, graphene (GR)/metal oxide (MO) composites possess excellent electrochemical properties and are promising anode materials. Here we perform density functional theory calculations to explore the interfacial interaction between GR and MO. Our result reveals generally weak physical interactions between GR and several MOs (including Cu2O, NiO). The Schottky barrier height (SBH) in these metal/semiconductor heterostructures are computed using the macroscopically averaged electrostatic potential method, and the role of interfacial dipole is discussed. The calculated SBHs below 1 eV suggest low contact resistance; thus these GR/MO composites are favorable anode materials for better lithium ion batteries.

  4. Phosphorus-free mode-locked semiconductor laser with emission wavelength 1550 nm

    NASA Astrophysics Data System (ADS)

    Kolodeznyi, E. S.; Novikov, I. I.; Babichev, A. V.; Kurochkin, A. S.; Gladyshev, A. G.; Karachinsky, L. Ya; Gadzhiev, I. M.; Buyalo, M. S.; Usikova, A. A.; Ilynskaya, N. D.; Bougrov, V. E.; Egorov, A. Yu

    2017-11-01

    We have fabricated passive mode-locked laser diodes based on strained InGaAlAs/InGaAs/InP heterostructures with crystal lattice mismatch parameter of +1.0 % between quantum well and barrier. The laser with temperature stabilization at 18 °C was demonstrated 10.027 GHz optical pulse repetition rate with 6 ps pulse duration time. Timing jitter of optical pulses in mode-locked regime was 0.145 ps.

  5. Government-Imposed Barriers to the Use of Commercial Integrated Circuits in Military Systems.

    DTIC Science & Technology

    1996-02-01

    Advanced Planning Briefing for Industry (undated). The FY94/FY95 research agenda of the Microprocessor Technology Utiliza- tion Program includes... planning and re- sults. As a model of how a private institute might operate, we suggest (without implying partiality) the Semiconductor Research...or incorporate lessons learned). Those IC suppliers passing the audit are listed on the QML. Products from QML-listed suppliers can be used with

  6. Latest progress in gallium-oxide electronic devices

    NASA Astrophysics Data System (ADS)

    Higashiwaki, Masataka; Wong, Man Hoi; Konishi, Keita; Nakata, Yoshiaki; Lin, Chia-Hung; Kamimura, Takafumi; Ravikiran, Lingaparthi; Sasaki, Kohei; Goto, Ken; Takeyama, Akinori; Makino, Takahiro; Ohshima, Takeshi; Kuramata, Akito; Yamakoshi, Shigenobu; Murakami, Hisashi; Kumagai, Yoshinao

    2018-02-01

    Gallium oxide (Ga2O3) has emerged as a new competitor to SiC and GaN in the race toward next-generation power switching and harsh environment electronics by virtue of the excellent material properties and the relative ease of mass wafer production. In this proceedings paper, an overview of our recent development progress of Ga2O3 metal-oxide-semiconductor field-effect transistors and Schottky barrier diodes will be reported.

  7. Theoretical determination of the ionization potential and the electron affinity of organic semiconductors

    NASA Astrophysics Data System (ADS)

    Yanagisawa, Susumu

    2017-11-01

    Ionization potential and electron affinity of organic semicondutors are important quantities, which are relevant to charge injection barriers. The electrostatic and dynamical contributions to the polarization energies for the injected charges in pentacene polymorphs were investigated. While the dynamical polarization induced narrowing of the energy gap, the electrostatic effect shifted up or down the frontier energy levels, which is sensitive to the molecular orientation at the surface.

  8. WATER QUALITY IN SOURCE WATER, TREATMENT, AND DISTRIBUTION SYSTEMS

    EPA Science Inventory

    Most drinking water utilities practice the multiple-barrier concept as the guiding principle for providing safe water. This chapter discusses multiple barriers as they relate to the basic criteria for selecting and protecting source waters, including known and potential sources ...

  9. Removal of bacteria, protozoa and viruses through a multiple-barrier household water disinfection system.

    PubMed

    Espinosa-García, A C; Díaz-Ávalos, C; Solano-Ortiz, R; Tapia-Palacios, M A; Vázquez-Salvador, N; Espinosa-García, S; Sarmiento-Silva, R E; Mazari-Hiriart, M

    2014-03-01

    Municipal water disinfection systems in some areas are not always able to meet water consumer needs, such as ensuring distributed water quality, because household water management can be a contributing factor in water re-contamination. This fact is related to the storage options that are common in places where water is scarce or is distributed over limited time periods. The aim of this study is to assess the removal capacity of a multiple-barrier water disinfection device for protozoa, bacteria, and viruses. Water samples were taken from households in Mexico City and spiked with a known amount of protozoa (Giardia cyst, Cryptosporidium oocyst), bacteria (Escherichia coli), and viruses (rotavirus, adenovirus, F-specific ribonucleic acid (FRNA) coliphage). Each inoculated sample was processed through a multiple-barrier device. The efficiency of the multiple-barrier device to remove E. coli was close to 100%, and more than 87% of Cryptosporidium oocysts and more than 98% of Giardia cysts were removed. Close to 100% of coliphages were removed, 99.6% of the adenovirus was removed, and the rotavirus was almost totally removed. An effect of site by zone was detected; this observation is important because the water characteristics could indicate the efficiency of the multiple-barrier disinfection device.

  10. Coarse-grained molecular dynamics modeling of the kinetics of lamellar BCP defect annealing

    NASA Astrophysics Data System (ADS)

    Peters, Andrew J.; Lawson, Richard A.; Nation, Benjamin D.; Ludovice, Peter J.; Henderson, Clifford L.

    2015-03-01

    Directed self-assembly of block copolymers (BCPs) is a process that has received great interest in the field of nanomanufacturing in the past decade, and great strides towards forming high quality aligned patterns have been made. But state of the art methods still yield defectivities orders of magnitude higher than is necessary in semi-conductor fabrication even though free energy calculations suggest that equilibrium defectivities are much lower than is necessary for economic semi-conductor fabrication. This disparity suggests that the main problem may lie in the kinetics of defect removal. This work uses a coarse-grained model to study the rates, pathways, and dependencies of healing a common defect to give insight into the fundamental processes that control defect healing and give guidance on optimal process conditions for BCP-DSA. It is found that infinitely thick films yield an exponential drop in defect heal rate above χN ~ 30. Below χN ~ 30, the rate of transport was similar to the rate at which the transition state was reached so that the overall rate changed only slightly. The energy barrier in periodic simulations increased with 0.31 χN on average. Thin film simulations show no change in rate associated with the energy barrier below χN ~ 50, and then show an increase in energy barrier scaling with 0.16χN. Thin film simulations always begin to heal at either the free interface or the BCP-underlayer interface where the increased A-B contact area associated with the transition state will be minimized, while the infinitely thick films must start healing in the bulk where the A-B contact area is increased. It is also found that cooperative chain movement is required for the defect to start healing.

  11. Impact of oxygen plasma postoxidation process on Al2O3/n-In0.53Ga0.47As metal-oxide-semiconductor capacitors

    NASA Astrophysics Data System (ADS)

    Lechaux, Y.; Fadjie-Djomkam, A. B.; Bollaert, S.; Wichmann, N.

    2016-09-01

    Capacitance-voltage (C-V) measurements and x-ray photoelectron spectroscopy (XPS) analysis were performed in order to investigate the effect of a oxygen (O2) plasma after oxide deposition on the Al2O3/n-In0.53Ga0.47As metal-oxide-semiconductor structure passivated with ammonia NH4OH solution. From C-V measurements, an improvement of charge control is observed using the O2 plasma postoxidation process on In0.53Ga0.47As, while the minimum of interface trap density remains at a good value lower than 1 × 1012 cm-2 eV-1. From XPS measurements, we found that NH4OH passivation removes drastically the Ga and As native oxides on the In0.53Ga0.47As surface and the O2 plasma postoxidation process enables the reduction of interface re-oxidation after post deposition annealing (PDA) of the oxide. The advanced hypothesis is the formation of interfacial barrier between Al2O3 and In0.53Ga0.47As which prevents the diffusion of oxygen species into the semiconductor surface during PDA.

  12. Infrared emitting device and method

    DOEpatents

    Kurtz, Steven R.; Biefeld, Robert M.; Dawson, L. Ralph; Howard, Arnold J.; Baucom, Kevin C.

    1997-01-01

    An infrared emitting device and method. The infrared emitting device comprises a III-V compound semiconductor substrate upon which are grown a quantum-well active region having a plurality of quantum-well layers formed of a ternary alloy comprising InAsSb sandwiched between barrier layers formed of a ternary alloy having a smaller lattice constant and a larger energy bandgap than the quantum-well layers. The quantum-well layers are preferably compressively strained to increase the threshold energy for Auger recombination; and a method is provided for determining the preferred thickness for the quantum-well layers. Embodiments of the present invention are described having at least one cladding layer to increase the optical and carrier confinement in the active region, and to provide for waveguiding of the light generated within the active region. Examples have been set forth showing embodiments of the present invention as surface- and edge-emitting light emitting diodes (LEDs), an optically-pumped semiconductor laser, and an electrically-injected semiconductor diode laser. The light emission from each of the infrared emitting devices of the present invention is in the midwave infrared region of the spectrum from about 2 to 6 microns.

  13. Electric measurement and magnetic control of spin transport in InSb-based lateral spin devices

    NASA Astrophysics Data System (ADS)

    Viglin, N. A.; Ustinov, V. V.; Demokritov, S. O.; Shorikov, A. O.; Bebenin, N. G.; Tsvelikhovskaya, V. M.; Pavlov, T. N.; Patrakov, E. I.

    2017-12-01

    Electric injection and detection of spin-polarized electrons in InSb semiconductors have been realized in nonlocal experimental geometry using an InSb-based "lateral spin valve." The valve of the InSb /MgO /C o0.9F e0.1 composition has semiconductor/insulator/ferromagnet nanoheterojunctions in which the thickness of the InSb layer considerably exceeded the spin diffusion length of conduction electrons. The spin direction in spin diffusion current has been manipulated by a magnetic field under the Hanle effect conditions. The spin polarization of the electron gas has been registered using ferromagnetic C o0.9F e0.1 probes by measuring electrical potentials arising in the probes in accordance with the Johnson-Silsbee concept of the spin-charge coupling. The developed theory is valid at any degree of degeneracy of electron gas in a semiconductor. The spin relaxation time and spin diffusion length of conduction electrons in InSb have been determined, and the electron-spin polarization in InSb has been evaluated for electrons injected from C o0.9F e0.1 through an MgO tunnel barrier.

  14. Optical bandgap of single- and multi-layered amorphous germanium ultra-thin films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Pei; Zaslavsky, Alexander; Longo, Paolo

    2016-01-07

    Accurate optical methods are required to determine the energy bandgap of amorphous semiconductors and elucidate the role of quantum confinement in nanometer-scale, ultra-thin absorbing layers. Here, we provide a critical comparison between well-established methods that are generally employed to determine the optical bandgap of thin-film amorphous semiconductors, starting from normal-incidence reflectance and transmittance measurements. First, we demonstrate that a more accurate estimate of the optical bandgap can be achieved by using a multiple-reflection interference model. We show that this model generates more reliable results compared to the widely accepted single-pass absorption method. Second, we compare two most representative methods (Taucmore » and Cody plots) that are extensively used to determine the optical bandgap of thin-film amorphous semiconductors starting from the extracted absorption coefficient. Analysis of the experimental absorption data acquired for ultra-thin amorphous germanium (a-Ge) layers demonstrates that the Cody model is able to provide a less ambiguous energy bandgap value. Finally, we apply our proposed method to experimentally determine the optical bandgap of a-Ge/SiO{sub 2} superlattices with single and multiple a-Ge layers down to 2 nm thickness.« less

  15. A Multiple Indicators Multiple Causes (MIMIC) model of internal barriers to drug treatment in China.

    PubMed

    Qi, Chang; Kelly, Brian C; Liao, Yanhui; He, Haoyu; Luo, Tao; Deng, Huiqiong; Liu, Tieqiao; Hao, Wei; Wang, Jichuan

    2015-03-01

    Although evidence exists for distinct barriers to drug abuse treatment (BDATs), investigations of their inter-relationships and the effect of individual characteristics on the barrier factors have been sparse, especially in China. A Multiple Indicators Multiple Causes (MIMIC) model is applied for this target. A sample of 262 drug users were recruited from three drug rehabilitation centers in Hunan Province, China. We applied a MIMIC approach to investigate the effect of gender, age, marital status, education, primary substance use, duration of primary drug use, and drug treatment experience on the internal barrier factors: absence of problem (AP), negative social support (NSS), fear of treatment (FT), and privacy concerns (PC). Drug users of various characteristics were found to report different internal barrier factors. Younger participants were more likely to report NSS (-0.19, p=0.038) and PC (-0.31, p<0.001). Compared to other drug users, ice users were more likely to report AP (0.44, p<0.001) and NSS (0.25, p=0.010). Drug treatment experiences related to AP (0.20, p=0.012). In addition, differential item functioning (DIF) occurred in three items when participant from groups with different duration of drug use, ice use, or marital status. Individual characteristics had significant effects on internal barriers to drug treatment. On this basis, BDAT perceived by different individuals could be assessed before tactics were utilized to successfully remove perceived barriers to drug treatment. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  16. Microwave Frequency Comb from a Semiconductor in a Scanning Tunneling Microscope.

    PubMed

    Hagmann, Mark J; Yarotski, Dmitry A; Mousa, Marwan S

    2017-04-01

    Quasi-periodic excitation of the tunneling junction in a scanning tunneling microscope, by a mode-locked ultrafast laser, superimposes a regular sequence of 15 fs pulses on the DC tunneling current. In the frequency domain, this is a frequency comb with harmonics at integer multiples of the laser pulse repetition frequency. With a gold sample the 200th harmonic at 14.85 GHz has a signal-to-noise ratio of 25 dB, and the power at each harmonic varies inversely with the square of the frequency. Now we report the first measurements with a semiconductor where the laser photon energy must be less than the bandgap energy of the semiconductor; the microwave frequency comb must be measured within 200 μm of the tunneling junction; and the microwave power is 25 dB below that with a metal sample and falls off more rapidly at the higher harmonics. Our results suggest that the measured attenuation of the microwave harmonics is sensitive to the semiconductor spreading resistance within 1 nm of the tunneling junction. This approach may enable sub-nanometer carrier profiling of semiconductors without requiring the diamond nanoprobes in scanning spreading resistance microscopy.

  17. Using normalisation process theory to understand barriers and facilitators to implementing mindfulness-based stress reduction for people with multiple sclerosis.

    PubMed

    Simpson, Robert; Simpson, Sharon; Wood, Karen; Mercer, Stewart W; Mair, Frances S

    2018-01-01

    Objectives To study barriers and facilitators to implementation of mindfulness-based stress reduction for people with multiple sclerosis. Methods Qualitative interviews were used to explore barriers and facilitators to implementation of mindfulness-based stress reduction, including 33 people with multiple sclerosis, 6 multiple sclerosis clinicians and 2 course instructors. Normalisation process theory provided the underpinning conceptual framework. Data were analysed deductively using normalisation process theory constructs (coherence, cognitive participation, collective action and reflexive monitoring). Results Key barriers included mismatched stakeholder expectations, lack of knowledge about mindfulness-based stress reduction, high levels of comorbidity and disability and skepticism about embedding mindfulness-based stress reduction in routine multiple sclerosis care. Facilitators to implementation included introducing a pre-course orientation session; adaptations to mindfulness-based stress reduction to accommodate comorbidity and disability and participants suggested smaller, shorter classes, shortened practices, exclusion of mindful-walking and more time with peers. Post-mindfulness-based stress reduction booster sessions may be required, and objective and subjective reports of benefit would increase clinician confidence in mindfulness-based stress reduction. Discussion Multiple sclerosis patients and clinicians know little about mindfulness-based stress reduction. Mismatched expectations are a barrier to participation, as is rigid application of mindfulness-based stress reduction in the context of disability. Course adaptations in response to patient needs would facilitate uptake and utilisation. Rendering access to mindfulness-based stress reduction rapid and flexible could facilitate implementation. Embedded outcome assessment is desirable.

  18. Nitride Metal-Semiconductor Superlattices for Solid State Thermionic Energy Conversion

    NASA Astrophysics Data System (ADS)

    Wortman, Robert; Schroeder, Jeremy; Burmistrova, Polina; Zebarjadi, Mona; Bian, Zhixi; Shakouri, Ali; Sands, Timothy

    2009-03-01

    A new class of thermoelectric materials based off of superlattices have been proposed that show a potential for enhanced thermoelectric performance^1,2. The increase of thermoelectric figure-of-merit ZT of these materials is due to both the energy filtering effect of the Schottky barriers as well as the reduced thermal conductivity that results from increased interface density. Our work has centered on the metal-semiconductor materials system of HfN-ScN. These are both high temperature materials (Tm> 2500C). They have the same rocksalt crystal structure and similar lattice constants, allowing epitaxial growth. We have grown superlattices of these materials via DC magnetron sputtering. Results from x-ray diffraction, and electrical and thermal tests will be presented. Their potential as thermoelectric energy conversion materials will be discussed. 1 G. D. Mahan et al, Phys. Rev. Lett., 80, 4016 (1998) 2 D. Vashaee et al, Phys. Rev. Lett. 92, 106103 (2004)

  19. Hybrid organic/inorganic position-sensitive detectors based on PEDOT:PSS/n-Si

    NASA Astrophysics Data System (ADS)

    Javadi, Mohammad; Gholami, Mahdiyeh; Torbatiyan, Hadis; Abdi, Yaser

    2018-03-01

    Various configurations like p-n junctions, metal-semiconductor Schottky barriers, and metal-oxide-semiconductor structures have been widely used in position-sensitive detectors. In this report, we propose a PEDOT:PSS/n-Si heterojunction as a hybrid organic/inorganic configuration for position-sensitive detectors. The influence of the thickness of the PEDOT:PSS layer, the wavelength of incident light, and the intensity of illumination on the device performance are investigated. The hybrid PSD exhibits very high sensitivity (>100 mV/mm), excellent nonlinearity (<3%), and a response correlation coefficient (>0.995) with a response time of <4 ms to the inhomogeneous IR illumination. The presented hybrid configuration also benefits from a straightforward low-temperature fabrication process. These advantages of the PEDOT:PSS/n-Si heterojunction are very promising for developing a new class of position-sensitive detectors based on the hybrid organic/inorganic junctions.

  20. High efficiency solution processed sintered CdTe nanocrystal solar cells: the role of interfaces.

    PubMed

    Panthani, Matthew G; Kurley, J Matthew; Crisp, Ryan W; Dietz, Travis C; Ezzyat, Taha; Luther, Joseph M; Talapin, Dmitri V

    2014-02-12

    Solution processing of photovoltaic semiconducting layers offers the potential for drastic cost reduction through improved materials utilization and high device throughput. One compelling solution-based processing strategy utilizes semiconductor layers produced by sintering nanocrystals into large-grain semiconductors at relatively low temperatures. Using n-ZnO/p-CdTe as a model system, we fabricate sintered CdTe nanocrystal solar cells processed at 350 °C with power conversion efficiencies (PCE) as high as 12.3%. JSC of over 25 mA cm(-2) are achieved, which are comparable or higher than those achieved using traditional, close-space sublimated CdTe. We find that the VOC can be substantially increased by applying forward bias for short periods of time. Capacitance measurements as well as intensity- and temperature-dependent analysis indicate that the increased VOC is likely due to relaxation of an energetic barrier at the ITO/CdTe interface.

  1. Photo-induced persistent inversion of germanium in a 200-nm-deep surface region.

    PubMed

    Prokscha, T; Chow, K H; Stilp, E; Suter, A; Luetkens, H; Morenzoni, E; Nieuwenhuys, G J; Salman, Z; Scheuermann, R

    2013-01-01

    The controlled manipulation of the charge carrier concentration in nanometer thin layers is the basis of current semiconductor technology and of fundamental importance for device applications. Here we show that it is possible to induce a persistent inversion from n- to p-type in a 200-nm-thick surface layer of a germanium wafer by illumination with white and blue light. We induce the inversion with a half-life of ~12 hours at a temperature of 220 K which disappears above 280 K. The photo-induced inversion is absent for a sample with a 20-nm-thick gold capping layer providing a Schottky barrier at the interface. This indicates that charge accumulation at the surface is essential to explain the observed inversion. The contactless change of carrier concentration is potentially interesting for device applications in opto-electronics where the gate electrode and gate oxide could be replaced by the semiconductor surface.

  2. A Self-Aligned InGaAs Quantum-Well Metal-Oxide-Semiconductor Field-Effect Transistor Fabricated through a Lift-Off-Free Front-End Process

    NASA Astrophysics Data System (ADS)

    Lin, Jianqiang; Kim, Tae-Woo; Antoniadis, Dimitri A.; del Alamo, Jesús A.

    2012-06-01

    We present a novel n-type InGaAs quantum-well metal-oxide-semiconductor field-effect transistor (QW-MOSFET) fabricated by a self-aligned gate-last process and investigate relevant Si-like manufacturing issues in future III-V MOSFETs. The device structure features a composite InP/Al2O3 gate barrier with a capacitance equivalent thickness (CET) of 3 nm and non alloyed Mo ohmic contacts. We have found that RIE introduces significant damage to the intrinsic device resulting in poor current drive and subthreshold swing. The effect is largely removed through a thermal annealing step. Thermally annealed QW-MOSFETs exhibit a subthreshold swing of 95 mV/dec, indicative of excellent interfacial characteristics. The peak mobility of the MOSFET is 2780 cm2 V-1 s-1.

  3. Effect of Γ-X band mixing on the donor binding energy in a Quantum Wire

    NASA Astrophysics Data System (ADS)

    Vijaya Shanthi, R.; Jayakumar, K.; Nithiananthi, P.

    2015-02-01

    To invoke the technological applications of heterostructure semiconductors like Quantum Well (QW), Quantum Well Wire (QWW) and Quantum Dot (QD), it is important to understand the property of impurity energy which is responsible for the peculiar electronic & optical behavior of the Low Dimensional Semiconductor Systems (LDSS). Application of hydrostatic pressure P>35kbar drastically alters the band offsets leading to the crossover of Γ band of the well & X band of the barrier resulting in an indirect transition of the carrier and this effect has been studied experimentally and theoretically in a QW structure. In this paper, we have investigated the effect of Γ-X band mixing due to the application of hydrostatic pressure in a GaAs/AlxGa1-xAs QWW system. The results are presented and discussed for various widths of the wire.

  4. Effect of nanodimensional polyethylenimine layer on surface potential barriers of hybrid structures based on silicon single crystal

    NASA Astrophysics Data System (ADS)

    Malyar, Ivan V.; Gorin, Dmitry A.; Stetsyura, Svetlana V.

    2013-01-01

    In this report we present the analysis of I-V curves for MIS-structures like silicon substrate / nanodimensional polyelectrolyte layer / metal probe (contact) which is promising for biosensors, microfluidic chips, different devices of molecular electronics, such as OLEDs, solar cells, where polyelectrolyte layers can be used to modify semiconductor surface. The research is directed to investigate the contact phenomena which influence the resulting signal of devices mentioned above. The comparison of I-V characteristics of such structures measured by scanning tunnel microscopy (contactless technique) and using contact areas deposited by thermal evaporation onto the organic layer (the contact one) was carried out. The photoassisted I-V measurements and complex analysis based on Simmons and Schottky models allow one to extract the potential barriers and to observe the changes of charge transport in MIS-structures under illumination and after polyelectrolyte adsorption. The direct correlation between the thickness of the deposited polyelectrolyte layer and both equilibrium tunnel barrier and Schottky barrier height was observed for hybrid structures with polyethylenimine. The possibility of control over the I-V curves of hybrid structure and the height of the potential barriers (for different charge transports) by illumination was confirmed. Based on experimental data and complex analysis the band diagrams were plotted which illustrate the changes of potential barriers for MIS-structures due to the polyelectrolyte adsorption and under the illumination.

  5. Electrically-detected magnetic resonance in semiconductor nanostructures inserted in microcavities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bagraev, Nikolay; Danilovskii, Eduard; Gets, Dmitrii

    2013-12-04

    We present the first findings of the new electrically-detected electron spin resonance technique (EDESR), which reveal the point defects in the ultra-narrow silicon quantum wells (Si-QW) confined by the superconductor δ-barriers. This technique allows the ESR identification without application of an external cavity, as well as a high frequency source and recorder, and with measuring the only response of the magnetoresistance caused by the microcavities embedded in the Si-QW plane.

  6. Transition mechanism of Stone-Wales defect in armchair edge (5,5) carbon nanotube

    NASA Astrophysics Data System (ADS)

    Setiadi, Agung; Suprijadi

    2015-04-01

    We performed first principles calculations of Stone-Wales (SW) defects in armchair edge (5,5) carbon nanotube (CNT) by the density functional theory (DFT). Stone Wales (SW) defect is one kind of topological defect on the CNT. There are two kind of SW defect on the armchair edge (5,5) CNT, such as longitudinal and circumference SW defect. Barrier energy in the formation of SW defects is a good consideration to become one of parameter in controlling SW defects on the CNT. Our calculation results that a longitudinal SW defect is more stable than circumference SW defect. However, the barrier energy of circumference SW defect is lower than another one. We applied Climbing Image Nudge Elastic Band (CI-NEB) method to find minimum energy path (MEP) and barrier energy for SW defect transitions. We also found that in the case of circumference SW defect, armchair edge (5,5) CNT become semiconductor with the band gap of 0.0544 eV.

  7. Improved transfer of graphene for gated Schottky-junction, vertical, organic, field-effect transistors.

    PubMed

    Lemaitre, Maxime G; Donoghue, Evan P; McCarthy, Mitchell A; Liu, Bo; Tongay, Sefaattin; Gila, Brent; Kumar, Purushottam; Singh, Rajiv K; Appleton, Bill R; Rinzler, Andrew G

    2012-10-23

    An improved process for graphene transfer was used to demonstrate high performance graphene enabled vertical organic field effect transistors (G-VFETs). The process reduces disorder and eliminates the polymeric residue that typically plagues transferred films. The method also allows for purposely creating pores in the graphene of a controlled areal density. Transconductance observed in G-VFETs fabricated with a continuous (pore-free) graphene source electrode is attributed to modulation of the contact barrier height between the graphene and organic semiconductor due to a gate field induced Fermi level shift in the low density of electronic-states graphene electrode. Pores introduced in the graphene source electrode are shown to boost the G-VFET performance, which scales with the areal pore density taking advantage of both barrier height lowering and tunnel barrier thinning. Devices with areal pore densities of 20% exhibit on/off ratios and output current densities exceeding 10(6) and 200 mA/cm(2), respectively, at drain voltages below 5 V.

  8. Room temperature electrical spin injection into GaAs by an oxide spin injector

    PubMed Central

    Bhat, Shwetha G.; Kumar, P. S. Anil

    2014-01-01

    Spin injection, manipulation and detection are the integral parts of spintronics devices and have attracted tremendous attention in the last decade. It is necessary to judiciously choose the right combination of materials to have compatibility with the existing semiconductor technology. Conventional metallic magnets were the first choice for injecting spins into semiconductors in the past. So far there is no success in using a magnetic oxide material for spin injection, which is very important for the development of oxide based spintronics devices. Here we demonstrate the electrical spin injection from an oxide magnetic material Fe3O4, into GaAs with the help of tunnel barrier MgO at room temperature using 3-terminal Hanle measurement technique. A spin relaxation time τ ~ 0.9 ns for n-GaAs at 300 K is observed along with expected temperature dependence of τ. Spin injection using Fe3O4/MgO system is further established by injecting spins into p-GaAs and a τ of ~0.32 ns is obtained at 300 K. Enhancement of spin injection efficiency is seen with barrier thickness. In the field of spin injection and detection, our work using an oxide magnetic material establishes a good platform for the development of room temperature oxide based spintronics devices. PMID:24998440

  9. Anomalous Temperature Dependence in Metal-Black Phosphorus Contact.

    PubMed

    Li, Xuefei; Grassi, Roberto; Li, Sichao; Li, Tiaoyang; Xiong, Xiong; Low, Tony; Wu, Yanqing

    2018-01-10

    Metal-semiconductor contact has been the performance limiting problem for electronic devices and also dictates the scaling potential for future generation devices based on novel channel materials. Two-dimensional semiconductors beyond graphene, particularly few layer black phosphorus, have attracted much attention due to their exceptional electronic properties such as anisotropy and high mobility. However, due to its ultrathin body nature, few layer black phosphorus-metal contact behaves differently than conventional Schottky barrier (SB) junctions, and the mechanisms of its carrier transport across such a barrier remain elusive. In this work, we examine the transport characteristic of metal-black phosphorus contact under varying temperature. We elucidated the origin of apparent negative SB heights extracted from classical thermionic emission model and also the phenomenon of metal-insulator transition observed in the current-temperature transistor characteristic. In essence, we found that the SB height can be modulated by the back-gate voltage, which beyond a certain critical point becomes so low that the injected carrier can no longer be described by the conventional thermionic emission theory. The transition from transport dominated by a Maxwell-Boltzmann distribution for the high energy tail states, to that of a Fermi distribution by low energy Fermi sea electrons, is the physical origin of the observed metal-insulator transition. We identified two distinctive tunneling limited transport regimes in the contact: vertical and longitudinal tunneling.

  10. The effect of multi-intermediate bands on the behavior of an InAs1-xNx/GaAs1-ySby quantum dot solar cell

    NASA Astrophysics Data System (ADS)

    Aly, Abou El-Maaty M.; Nasr, A.

    2015-04-01

    A mathematical model of quantum dot intermediate band solar cells (QDIBSCs) is investigated using two intermediate bands (IBs). These two IBs arise from the quantum dot (QD) semiconductor material within the bandgap energy. Some parameters such as the width of the QD (WQD) and the barrier thickness or the inter-dot distances between the QDs (BT) are studied to show their influence on the performance of the QDIBSC. The time-independent Schrüdinger equation, which is solved using the Kronig-Penney model, is used to determine the position and bandwidth energies of the two IBs. In our proposed model, the cubic shape of the QDs from InAs0.9N0.1 and the barrier or host semiconductor material from GaAs0.98Sb0.02 are utilized. It is shown from the results obtained that changing the parameters WQD and BT has more influence on the bandwidth energy for the first IB, Δ1, than in the case of the second IB, Δ2. The optimum power conversion efficiencies (PCEs) of the QDIBSCs with two IBs for the model under study are 58.01% and 73.55% at 1 sun and maximum solar concentration, respectively. One can observe that, in the case of the two IBs, an improvement of the PCE is achieved.

  11. Characterization of the inhomogeneous barrier distribution in a Pt/(100)β-Ga2O3 Schottky diode via its temperature-dependent electrical properties

    NASA Astrophysics Data System (ADS)

    Jian, Guangzhong; He, Qiming; Mu, Wenxiang; Fu, Bo; Dong, Hang; Qin, Yuan; Zhang, Ying; Xue, Huiwen; Long, Shibing; Jia, Zhitai; Lv, Hangbing; Liu, Qi; Tao, Xutang; Liu, Ming

    2018-01-01

    β-Ga2O3 is an ultra-wide bandgap semiconductor with applications in power electronic devices. Revealing the transport characteristics of β-Ga2O3 devices at various temperatures is important for improving device performance and reliability. In this study, we fabricated a Pt/β-Ga2O3 Schottky barrier diode with good performance characteristics, such as a low ON-resistance, high forward current, and a large rectification ratio. Its temperature-dependent current-voltage and capacitance-voltage characteristics were measured at various temperatures. The characteristic diode parameters were derived using thermionic emission theory. The ideality factor n was found to decrease from 2.57 to 1.16 while the zero-bias barrier height Φb0 increased from 0.47 V to 1.00 V when the temperature was increased from 125 K to 350 K. This was explained by the Gaussian distribution of barrier height inhomogeneity. The mean barrier height Φ ¯ b0 = 1.27 V and zero-bias standard deviation σ0 = 0.13 V were obtained. A modified Richardson plot gave a Richardson constant A* of 36.02 A.cm-2.K-2, which is close to the theoretical value of 41.11 A.cm-2.K-2. The differences between the barrier heights determined using the capacitance-voltage and current-voltage curves were also in line with the Gaussian distribution of barrier height inhomogeneity.

  12. Superlattice photoelectrodes for photoelectrochemical cells

    DOEpatents

    Nozik, A.J.

    1985-07-03

    The application of superlattice semiconductors as photoelectrodes in photoelectrochemical energy conversion processes is described. The invention is comprised of a multiple quantum well, or superlattice, semiconductor positioned on a plate and encapsulated in an insulation material, except the top surface, which is left exposed. An opening in insulation exposes a portion of the plate. When the photoelectrochemical cell is immersed in a liquid electrolyte and exposed to solar radiation, a redox reaction occurs, producing gases such as hydrogen and oxygen from a water electrolyte, which bubble off the cathode and anode portions of the cell. (LEW)

  13. Solid state neutron detector array

    DOEpatents

    Seidel, J.G.; Ruddy, F.H.; Brandt, C.D.; Dulloo, A.R.; Lott, R.G.; Sirianni, E.; Wilson, R.O.

    1999-08-17

    A neutron detector array is capable of measuring a wide range of neutron fluxes. The array includes multiple semiconductor neutron detectors. Each detector has a semiconductor active region that is resistant to radiation damage. In one embodiment, the array preferably has a relatively small size, making it possible to place the array in confined locations. The ability of the array to detect a wide range of neutron fluxes is highly advantageous for many applications such as detecting neutron flux during start up, ramp up and full power of nuclear reactors. 7 figs.

  14. Silicon Carbide Gas Sensors for Propulsion Emissions and Safety Applications

    NASA Technical Reports Server (NTRS)

    Hunter, G. W.; Xu, J.; Neudeck, P. G.; Lukco, D.; Trunek, A.; Spry, D.; Lampard, P.; Androjna, D.; Makel, D.; Ward, B.

    2007-01-01

    Silicon carbide (SiC) based gas sensors have the ability to meet the needs of a range of aerospace propulsion applications including emissions monitoring, leak detection, and hydrazine monitoring. These applications often require sensitive gas detection in a range of environments. An effective sensing approach to meet the needs of these applications is a Schottky diode based on a SiC semiconductor. The primary advantage of using SiC as a semiconductor is its inherent stability and capability to operate at a wide range of temperatures. The complete SiC Schottky diode gas sensing structure includes both the SiC semiconductor and gas sensitive thin film metal layers; reliable operation of the SiC-based gas sensing structure requires good control of the interface between these gas sensitive layers and the SiC. This paper reports on the development of SiC gas sensors. The focus is on two efforts to better control the SiC gas sensitive Schottky diode interface. First, the use of palladium oxide (PdOx) as a barrier layer between the metal and SiC is discussed. Second, the use of atomically flat SiC to provide an improved SiC semiconductor surface for gas sensor element deposition is explored. The use of SiC gas sensors in a multi-parameter detection system is briefly discussed. It is concluded that SiC gas sensors have potential in a range of propulsion system applications, but tailoring of the sensor for each application is necessary.

  15. Study and modeling of the transport mechanism in a Schottky diode on the basis of a GaAs semiinsulator

    NASA Astrophysics Data System (ADS)

    Resfa, A.; Smahi, Bourzig Y.; Menezla, Brahimi R.

    2011-12-01

    The current through a metal—semiconductor junction is mainly due to the majority carriers. Three distinctly different mechanisms exist in a Schottky diode: diffusion of the semiconductor carriers in metal, thermionic emission-diffusion (TED) of carriers through a Schottky gate, and a mechanical quantum that pierces a tunnel through the gate. The system was solved by using a coupled Poisson—Boltzmann algorithm. Schottky BH is defined as the difference in energy between the Fermi level and the metal band carrier majority of the metal—semiconductor junction to the semiconductor contacts. The insulating layer converts the MS device in an MIS device and has a strong influence on its current—voltage (I—V) and the parameters of a Schottky barrier from 3.7 to 15 eV. There are several possible reasons for the error that causes a deviation of the ideal behaviour of Schottky diodes with and without an interfacial insulator layer. These include the particular distribution of interface states, the series resistance, bias voltage and temperature. The GaAs and its large concentration values of trap centers will participate in an increase in the process of thermionic electrons and holes, which will in turn act on the I—V characteristic of the diode, and an overflow maximum value [NT = 3 × 1020] is obtained. The I—V characteristics of Schottky diodes are in the hypothesis of a parabolic summit.

  16. Theoretical analysis of nBn infrared photodetectors

    NASA Astrophysics Data System (ADS)

    Ting, David Z.; Soibel, Alexander; Khoshakhlagh, Arezou; Gunapala, Sarath D.

    2017-09-01

    The depletion and surface leakage dark current suppression properties of unipolar barrier device architectures such as the nBn have been highly beneficial for III-V semiconductor-based infrared detectors. Using a one-dimensional drift-diffusion model, we theoretically examine the effects of contact doping, minority carrier lifetime, and absorber doping on the dark current characteristics of nBn detectors to explore some basic aspects of their operation. We found that in a properly designed nBn detector with highly doped excluding contacts the minority carriers are extracted to nonequilibrium levels under reverse bias in the same manner as the high operating temperature (HOT) detector structure. Longer absorber Shockley-Read-Hall (SRH) lifetimes result in lower diffusion and depletion dark currents. Higher absorber doping can also lead to lower diffusion and depletion dark currents, but the benefit should be weighted against the possibility of reduced diffusion length due to shortened SRH lifetime. We also briefly examined nBn structures with unintended minority carrier blocking barriers due to excessive n-doping in the unipolar electron barrier, or due to a positive valence band offset between the barrier and the absorber. Both types of hole blocking structures lead to higher turn-on bias, although barrier n-doping could help suppress depletion dark current.

  17. The Influence of High-Energy Electrons Irradiation on Surface of n-GaP and on Au/n-GaP/Al Schottky Barrier Diode

    NASA Astrophysics Data System (ADS)

    Demir, K. Çinar; Kurudirek, S. V.; Oz, S.; Biber, M.; Aydoğan, Ş.; Şahin, Y.; Coşkun, C.

    We fabricated 25 Au/n-GaP/Al Schottky devices and investigated the influence of high electron irradiation, which has 12MeV on the devices, at room temperature. The X-ray diffraction patterns, scanning electron microscopic images and Raman spectra of a gallium phosphide (GaP) semiconductor before and after electron irradiation have been analyzed. Furthermore, some electrical measurements of the devices were carried out through the current-voltage (I-V) and capacitance-voltage (C-V) measurements. From the I-V characteristics, experimental ideality factor n and barrier height Φ values of these Schottky diodes have been determined before and after irradiation, respectively. The results have also been analyzed statically, and a gauss distribution has been obtained. The built-in potential Vbi, barrier height Φ, Fermi level EF and donor concentration Nd values have been determined from the reverse bias C-V and C-2-V curves of Au/n-GaP/Al Schottky barrier diodes at 100kHz before and after 12MeV electron irradiation. Furthermore, we obtained the series resistance values of Au/n-GaP/Al Schottky barrier diodes with the help of different methods. Experimental results confirmed that the electrical characterization of the device changed with the electron irradiation.

  18. Agent based modeling of the effects of potential treatments over the blood-brain barrier in multiple sclerosis.

    PubMed

    Pennisi, Marzio; Russo, Giulia; Motta, Santo; Pappalardo, Francesco

    2015-12-01

    Multiple sclerosis is a disease of the central nervous system that involves the destruction of the insulating sheath of axons, causing severe disabilities. Since the etiology of the disease is not yet fully understood, the use of novel techniques that may help to understand the disease, to suggest potential therapies and to test the effects of candidate treatments is highly advisable. To this end we developed an agent based model that demonstrated its ability to reproduce the typical oscillatory behavior observed in the most common form of multiple sclerosis, relapsing-remitting multiple sclerosis. The model has then been used to test the potential beneficial effects of vitamin D over the disease. Many scientific studies underlined the importance of the blood-brain barrier and of the mechanisms that influence its permeability on the development of the disease. In the present paper we further extend our previously developed model with a mechanism that mimics the blood-brain barrier behavior. The goal of our work is to suggest the best strategies to follow for developing new potential treatments that intervene in the blood-brain barrier. Results suggest that the best treatments should potentially prevent the opening of the blood-brain barrier, as treatments that help in recovering the blood-brain barrier functionality could be less effective. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Interfaces of electrical contacts in organic semiconductor devices

    NASA Astrophysics Data System (ADS)

    Demirkan, Korhan

    Progress in organic semiconductor devices relies on better understanding of interfaces as well as material development. The engineering of interfaces that exhibit low resistance, low operating voltage and long-term stability to minimize device degradation is one of the crucial requirements. Photoelectron spectroscopy is a powerful technique to study the metal-semiconductor interfaces, allowing: (i) elucidation of the energy levels of the semiconductor and the contacts that determine Schottky barrier height, (ii) inspection of electrical interactions (such as charge transfer, dipole formation, formation of induced density of states or formation of polaron/bi-polaron states) that effect the energy level alignment, (iii) determination of interfacial chemistry, and (iv) estimation of interface morphology. In this thesis, we have used photoelectron spectroscopy extensively for detailed analysis of the metal organic semiconductor interfaces. In this study, we demonstrate the use of photoelectron spectroscopy for construction of energy level diagrams and display some results related to chemical tailoring of materials for engineering interfaces with lowered Schottky barriers. Following our work on the energy level alignment of poly(p-phenyene vinylene) based organic semiconductors on various substrates [Au, indium tin oxide, Si (with native oxide) and Al (with native oxide)], we tested controlling the energy level alignment by using polar self assembled molecules (SAMs). Photoelectron spectroscopy showed that, by introducing SAMs on the Au surface, we successfully changed the effective work function of Au surface. We found that in this case, the change in the effective work function of the metal surface was not reflected as a shift in the energy levels of the organic semiconductor, as opposed to the results achieved with different substrate materials. To investigate the chemical interactions at the metal/organic interface, we studied the metallization of poly(2-methoxy-5,2'-ethyl-hexyloxy-phenylene vinylene) (MEH-PPV), polystyrene (PS) and ozone treated polystyrene (PS-O3) surfaces by thermal deposition of aluminum. Photoelectron spectroscopy showed the degree of chemical interaction between Al and each polymer, for MEH-PPV, the chemical interactions were mainly through the C-O present in the side chain of the polymer structure. The chemical interaction of Al with polystyrene was less significant, but it showed a dramatic increase after ozone treatment of the polystyrene surface (due to the formation of exposed oxygen sites). Formation of metal oxide and metal-organic compound is detected during the Al metallization of MEH-PPV and ozone-treated PS surfaces. Our results showed that the condensation of Al on polymer surfaces is highly dependent on surface reactivity. Enormous differences were observed for the condensation coefficient of Al on PS and PS-O3 surfaces. For the inert PS surface, results showed that Al atoms poorly wet the polymer surface and form distributed clusters at the surface. Results on reactive polymer surfaces suggest morphology reminiscent of a Stranski-Krastanov-type growth and high contact area. Many studies have shown that the insertion of a thin interlayer of the oxide or fluoride of alkali or alkaline metals between the low work function electrode and the organic semiconductor layers dramatically lowers the onset voltage and increases the efficiency compared to identical devices without the insulating layer. Various modes have been suggested for the mechanism of device performance enhancement. We have investigated the chemical and electrical interaction of (i) LiF with MEH-PPV, (ii) Al with MEH-PPV in the presence of a thin LiF layer at the interface, and finally (iii) the interaction of Al with LiF. AFM and XPS data showed that LiF forms island on the surface. Our data in agreement with various existing models suggested the (i) alteration in the electronic properties under applied bias, (ii) doping of the organic semiconductor, (iii) formation of metal alloy (Au-Li). In addition to the possible electrical modifications at the interface suggested previously, our data also suggest a change in the film growth on LiF modified surfaces.

  20. Giant Rashba splitting in 2D organic-inorganic halide perovskites measured by transient spectroscopies

    DOE PAGES

    Zhai, Yaxin; Baniya, Sangita; Zhang, Chuang; ...

    2017-07-28

    Two-dimensional (2D) layered hybrid organic-inorganic halide perovskite semiconductors form natural “multiple quantum wells” that have strong spin-orbit coupling due to the heavy elements in their building blocks. This may lead to “Rashba splitting” close to the extrema in the electron bands. We have used a plethora of ultrafast transient, nonlinear optical spectroscopies and theoretical calculations to study the primary (excitons) and long-lived (free carriers) photoexcitations in thin films of 2D perovskite, namely, (C 6H 5C 2H 4NH 3) 2PbI 4. The density functional theory calculation shows the occurrence of Rashba splitting in the plane perpendicular to the 2D barrier. Frommore » the electroabsorption spectrum and photoinduced absorption spectra from excitons and free carriers, we obtain a giant Rashba splitting in this compound, with energy splitting of (40 ± 5) meV and Rashba parameter of (1.6 ± 0.1) eV·Å, which are among the highest Rashba splitting size parameters reported so far. In conclusion, this finding shows that 2D hybrid perovskites have great promise for potential applications in spintronics.« less

  1. Damage-Free Smooth-Sidewall InGaAs Nanopillar Array by Metal-Assisted Chemical Etching.

    PubMed

    Kong, Lingyu; Song, Yi; Kim, Jeong Dong; Yu, Lan; Wasserman, Daniel; Chim, Wai Kin; Chiam, Sing Yang; Li, Xiuling

    2017-10-24

    Producing densely packed high aspect ratio In 0.53 Ga 0.47 As nanostructures without surface damage is critical for beyond Si-CMOS nanoelectronic and optoelectronic devices. However, conventional dry etching methods are known to produce irreversible damage to III-V compound semiconductors because of the inherent high-energy ion-driven process. In this work, we demonstrate the realization of ordered, uniform, array-based In 0.53 Ga 0.47 As pillars with diameters as small as 200 nm using the damage-free metal-assisted chemical etching (MacEtch) technology combined with the post-MacEtch digital etching smoothing. The etching mechanism of In x Ga 1-x As is explored through the characterization of pillar morphology and porosity as a function of etching condition and indium composition. The etching behavior of In 0.53 Ga 0.47 As, in contrast to higher bandgap semiconductors (e.g., Si or GaAs), can be interpreted by a Schottky barrier height model that dictates the etching mechanism constantly in the mass transport limited regime because of the low barrier height. A broader impact of this work relates to the complete elimination of surface roughness or porosity related defects, which can be prevalent byproducts of MacEtch, by post-MacEtch digital etching. Side-by-side comparison of the midgap interface state density and flat-band capacitance hysteresis of both the unprocessed planar and MacEtched pillar In 0.53 Ga 0.47 As metal-oxide-semiconductor capacitors further confirms that the surface of the resultant pillars is as smooth and defect-free as before etching. MacEtch combined with digital etching offers a simple, room-temperature, and low-cost method for the formation of high-quality In 0.53 Ga 0.47 As nanostructures that will potentially enable large-volume production of In 0.53 Ga 0.47 As-based devices including three-dimensional transistors and high-efficiency infrared photodetectors.

  2. Analysis of quantum semiconductor heterostructures by ballistic electron emission spectroscopy

    NASA Astrophysics Data System (ADS)

    Guthrie, Daniel K.

    1998-09-01

    The microelectronics industry is diligently working to achieve the goal of gigascale integration (GSI) by early in the 21st century. For the past twenty-five years, progress toward this goal has been made by continually scaling down device technology. Unfortunately, this trend cannot continue to the point of producing arbitrarily small device sizes. One possible solution to this problem that is currently under intensive study is the relatively new area of quantum devices. Quantum devices represent a new class of microelectronic devices that operate by utilizing the wave-like nature (reflection, refraction, and confinement) of electrons together with the laws of quantum mechanics to construct useful devices. One difficulty associated with these structures is the absence of measurement techniques that can fully characterize carrier transport in such devices. This thesis addresses this need by focusing on the study of carrier transport in quantum semiconductor heterostructures using a relatively new and versatile measurement technique known as ballistic electron emission spectroscopy (BEES). To achieve this goal, a systematic approach that encompasses a set of progressively more complex structures is utilized. First, the simplest BEES structure possible, the metal/semiconductor interface, is thoroughly investigated in order to provide a foundation for measurements on more the complex structures. By modifying the semiclassical model commonly used to describe the experimental BEES spectrum, a very complete and accurate description of the basic structure has been achieved. Next, a very simple semiconductor heterostructure, a Ga1-xAlxAs single-barrier structure, was measured and analyzed. Low-temperature measurements on this structure were used to investigate the band structure and electron-wave interference effects in the Ga1-xAlxAs single barrier structure. These measurements are extended to a simple quantum device by designing, measuring, and analyzing a set of complementary electron-wave Fabry-Perot quantum interference filters which included both a half- and a quarter-electron-wavelength resonant device. High-resolution, low noise, BEES spectra obtained on these devices at low-temperature were used to measure the zero-bias electron transmittance as a function of injected energy for these resonant devices. Finally, by analyzing BEES spectra taken at various spatial locations, one monolayer variations in the thickness of a buried quantum well have been detected.

  3. Optical Studies of Semiconductor Heterostructures: Measurements of Tunneling Times, and Studies of Strained Superlattices.

    NASA Astrophysics Data System (ADS)

    Jackson, Michael Kevin

    1991-05-01

    This thesis describes experimental optical studies of semiconductor heterostructures. The topic is introduced in Chapter 1. In Chapter 2 we describe measurements of tunneling escape times for carriers photoexcited in the quantum well of an undoped GaAs/AlAs/GaAs/AlAs/GaAs double -barrier heterostructure. The first experimental measurements of the tunneling escape times for both electrons and heavy holes were made using the two-beam technique of photoluminescence excitation correlation spectroscopy (PECS). Heavy holes were observed to escape much more rapidly than expected from a simple one-band calculation of the heavy-hold tunneling escape time. This can be explained by considering a four -band model for holes. Calculations indicate that mixing of the quantum well heavy- and light-hole levels, due to dispersion in the plane of the quantum well, can lead to significantly faster heavy hole escape at the experimental carrier densities and temperatures. Chapter 3 describes a study of the effect of indirect (X-point) levels in the AlAs barriers on the tunneling escape of electrons in undoped double-barrier heterostructures. The X-point levels affect the escape of photoexcited electrons in devices where the energy of the electron state confined in the GaAs quantum well is nearly equal to, or higher than, that of the X-point levels in the AlAs barriers. In Chapter 4, we present time-resolved photoluminescence and photocurrent studies of electrically biased double -barrier heterostructures. Studies of the photoluminescence indicate that transport of photoexcited carriers from the electrodes into the quantum well occurs. The PECS technique has been extended to a study of photocurrents in these devices; results indicate that this technique may be useful for the study of devices that cannot be studied with photoluminescence. Chapter 5 describes a study of the accomodation of lattice mismatch in CdTe/ZnTe strained layer superlattices. Using resonance Raman scattering, the energies of the ZnTe-like phonons were determined in a series of superlattices. The ZnTe-like phonon energies decrease with increasing average CdTe content, indicative of the increasing strain of the ZnTe layers, and in agreement with calculations assuming a free-standing superlattice.

  4. Design and exploration of semiconductors from first principles: A review of recent advances

    NASA Astrophysics Data System (ADS)

    Oba, Fumiyasu; Kumagai, Yu

    2018-06-01

    Recent first-principles approaches to semiconductors are reviewed, with an emphasis on theoretical insight into emerging materials and in silico exploration of as-yet-unreported materials. As relevant theory and methodologies have developed, along with computer performance, it is now feasible to predict a variety of material properties ab initio at the practical level of accuracy required for detailed understanding and elaborate design of semiconductors; these material properties include (i) fundamental bulk properties such as band gaps, effective masses, dielectric constants, and optical absorption coefficients; (ii) the properties of point defects, including native defects, residual impurities, and dopants, such as donor, acceptor, and deep-trap levels, and formation energies, which determine the carrier type and density; and (iii) absolute and relative band positions, including ionization potentials and electron affinities at semiconductor surfaces, band offsets at heterointerfaces between dissimilar semiconductors, and Schottky barrier heights at metal–semiconductor interfaces, which are often discussed systematically using band alignment or lineup diagrams. These predictions from first principles have made it possible to elucidate the characteristics of semiconductors used in industry, including group III–V compounds such as GaN, GaP, and GaAs and their alloys with related Al and In compounds; amorphous oxides, represented by In–Ga–Zn–O transparent conductive oxides (TCOs), represented by In2O3, SnO2, and ZnO; and photovoltaic absorber and buffer layer materials such as CdTe and CdS among group II–VI compounds and chalcopyrite CuInSe2, CuGaSe2, and CuIn1‑ x Ga x Se2 (CIGS) alloys, in addition to the prototypical elemental semiconductors Si and Ge. Semiconductors attracting renewed or emerging interest have also been investigated, for instance, divalent tin compounds, including SnO and SnS; wurtzite-derived ternary compounds such as ZnSnN2 and CuGaO2; perovskite oxides such as SrTiO3 and BaSnO3; and organic–inorganic hybrid perovskites, represented by CH3NH3PbI3. Moreover, the deployment of first-principles calculations allows us to predict the crystal structure, stability, and properties of as-yet-unreported materials. Promising materials have been explored via high-throughput screening within either publicly available computational databases or unexplored composition and structure space. Reported examples include the identification of nitride semiconductors, TCOs, solar cell photoabsorber materials, and photocatalysts, some of which have been experimentally verified. Machine learning in combination with first-principles calculations has emerged recently as a technique to accelerate and enhance in silico screening. A blend of computation and experimentation with data science toward the development of materials is often referred to as materials informatics and is currently attracting growing interest.

  5. Tunable Schottky barrier and high responsivity in graphene/Si-nanotip optoelectronic device

    NASA Astrophysics Data System (ADS)

    Di Bartolomeo, Antonio; Giubileo, Filippo; Luongo, Giuseppe; Iemmo, Laura; Martucciello, Nadia; Niu, Gang; Fraschke, Mirko; Skibitzki, Oliver; Schroeder, Thomas; Lupina, Grzegorz

    2017-03-01

    We demonstrate tunable Schottky barrier height and record photo-responsivity in a new-concept device made of a single-layer CVD graphene transferred onto a matrix of nanotips patterned on n-type Si wafer. The original layout, where nano-sized graphene/Si heterojunctions alternate to graphene areas exposed to the electric field of the Si substrate, which acts both as diode cathode and transistor gate, results in a two-terminal barristor with single-bias control of the Schottky barrier. The nanotip patterning favors light absorption, and the enhancement of the electric field at the tip apex improves photo-charge separation and enables internal gain by impact ionization. These features render the device a photodetector with responsivity (3 {{A}} {{{W}}}-1 for white LED light at 3 {{mW}} {{{cm}}}-2 intensity) almost an order of magnitude higher than commercial photodiodes. We extensively characterize the voltage and the temperature dependence of the device parameters, and prove that the multi-junction approach does not add extra-inhomogeneity to the Schottky barrier height distribution. We also introduce a new phenomenological graphene/semiconductor diode equation, which well describes the experimental I-V characteristics both in forward and reverse bias.

  6. Multiple Intimate Partner Violence Experiences: Knowledge, Access, Utilization and Barriers to Utilization of Resources by Women of the African Diaspora.

    PubMed

    Sabri, Bushra; Huerta, Julia; Alexander, Kamila A; St Vil, Noelle M; Campbell, Jacquelyn C; Callwood, Gloria B

    2015-11-01

    This study examined knowledge, access, utilization, and barriers to use of resources among Black women exposed to multiple types of intimate partner violence in Baltimore, Maryland and the U.S. Virgin Islands (USVI). We analyzed quantitative survey data collected by 163 women recruited from primary care, prenatal or family planning clinics in Baltimore and the USVI. In addition we analyzed qualitative data from in-depth interviews with 11 women. Quantitative data were analyzed using descriptive statistics and qualitative data were analyzed using thematic analysis. A substantial proportion of Black women with multiple types of violence experiences lacked knowledge of, did not have access to, and did not use resources. Barriers to resource use were identified at the individual, relationship, and community levels. There is need for programs to develop awareness, promote access and utilization of resources, and eliminate barriers to resource use among abused Black women.

  7. The Effect of Secondary Phases and Birefringence on Visible Light Transmission in Translucent alpha-Sialon Ceramics

    DTIC Science & Technology

    2016-07-06

    lenses / High Temperature Tubes and Glass a-Si3N4 6 ≈2.07 77.1 Oxygen Barrier / Passivation / Dielectric Layer in Semiconductor Devices and...1987). 77A. Rosenflanz and I.-W. Chen, "Kinetics of Phase Transformations in SiAlON Ceramics: Effects of Cation Size, Composition and Temperature ," J... oxygen content, neither smelled of ammonia anymore, suggesting that oxidation of the powders at room temperature had become kinetically limited. For

  8. RKKY exchange interaction within the parabolic quantum-well

    NASA Astrophysics Data System (ADS)

    Baķ, Zygmunt

    2001-03-01

    Indirect magnetic exchange in a semimagnetic semiconductor heterostructure with the parabolic quantum-well barrier potential is considered. Within the analytical method, we provide the exact derivation of the spatial dependence of the RKKY exchange integral. Using the effective dimensionality approach, we show that the spectral dimensionality of the free electron (hole) system equals four. We prove, that the RKKY exchange integral shows conventional, sign reversal variation with the 2 kF period, however, the envelope function falls off in a manner characteristic to 4D systems.

  9. Heavy Ion Induced Degradation in SiC Schottky Diodes: Bias and Energy Deposition Dependence

    NASA Technical Reports Server (NTRS)

    Javanainen, Arto; Galloway, Kenneth F.; Nicklaw, Christopher; Bosser, Alexandre L.; Ferlet-Cavrois, Veronique; Lauenstein, Jean-Marie; Pintacuda, Francesco; Reed, Robert A.; Schrimpf, Ronald D.; Weller, Robert A.; hide

    2016-01-01

    Experimental results on ion-induced leakage current increase in 4H-SiC Schottky power diodes are presented. Monte Carlo and TCAD simulations show that degradation is due to the synergy between applied bias and ion energy deposition. This degradation is possibly related to thermal spot annealing at the metal semiconductor interface. This thermal annealing leads to an inhomogeneity of the Schottky barrier that could be responsible for the increase leakage current as a function of fluence.

  10. The 1.06 micrometer avalanche photodiode detectors with integrated circuit preamplifiers

    NASA Technical Reports Server (NTRS)

    Eden, R. C.

    1975-01-01

    The development of a complete solid state 1.06 micron optical receiver which can be used in optical communications at data rates approaching 1.5 Gb/s, or in other applications requiring sensitive, short-pulse detection, is reported. This work entailed both the development of a new type of heterojunction 3-5 semiconductor alloy avalanche photodiode and an extremely charge-sensitive wideband low-noise preamp design making use of GaAs Schottky barrier-gate field effect transistors.

  11. Efficient hybrid metrology for focus, CD, and overlay

    NASA Astrophysics Data System (ADS)

    Tel, W. T.; Segers, B.; Anunciado, R.; Zhang, Y.; Wong, P.; Hasan, T.; Prentice, C.

    2017-03-01

    In the advent of multiple patterning techniques in semiconductor industry, metrology has progressively become a burden. With multiple patterning techniques such as Litho-Etch-Litho-Etch and Sidewall Assisted Double Patterning, the number of processing step have increased significantly and therefore, so as the amount of metrology steps needed for both control and yield monitoring. The amount of metrology needed is increasing in each and every node as more layers needed multiple patterning steps, and more patterning steps per layer. In addition to this, there is that need for guided defect inspection, which in itself requires substantially denser focus, overlay, and CD metrology as before. Metrology efficiency will therefore be cruicial to the next semiconductor nodes. ASML's emulated wafer concept offers a highly efficient method for hybrid metrology for focus, CD, and overlay. In this concept metrology is combined with scanner's sensor data in order to predict the on-product performance. The principle underlying the method is to isolate and estimate individual root-causes which are then combined to compute the on-product performance. The goal is to use all the information available to avoid ever increasing amounts of metrology.

  12. ZnO-based multiple channel and multiple gate FinMOSFETs

    NASA Astrophysics Data System (ADS)

    Lee, Ching-Ting; Huang, Hung-Lin; Tseng, Chun-Yen; Lee, Hsin-Ying

    2016-02-01

    In recent years, zinc oxide (ZnO)-based metal-oxide-semiconductor field-effect transistors (MOSFETs) have attracted much attention, because ZnO-based semiconductors possess several advantages, including large exciton binding energy, nontoxicity, biocompatibility, low material cost, and wide direct bandgap. Moreover, the ZnO-based MOSFET is one of most potential devices, due to the applications in microwave power amplifiers, logic circuits, large scale integrated circuits, and logic swing. In this study, to enhance the performances of the ZnO-based MOSFETs, the ZnObased multiple channel and multiple gate structured FinMOSFETs were fabricated using the simple laser interference photolithography method and the self-aligned photolithography method. The multiple channel structure possessed the additional sidewall depletion width control ability to improve the channel controllability, because the multiple channel sidewall portions were surrounded by the gate electrode. Furthermore, the multiple gate structure had a shorter distance between source and gate and a shorter gate length between two gates to enhance the gate operating performances. Besides, the shorter distance between source and gate could enhance the electron velocity in the channel fin structure of the multiple gate structure. In this work, ninety one channels and four gates were used in the FinMOSFETs. Consequently, the drain-source saturation current (IDSS) and maximum transconductance (gm) of the ZnO-based multiple channel and multiple gate structured FinFETs operated at a drain-source voltage (VDS) of 10 V and a gate-source voltage (VGS) of 0 V were respectively improved from 11.5 mA/mm to 13.7 mA/mm and from 4.1 mS/mm to 6.9 mS/mm in comparison with that of the conventional ZnO-based single channel and single gate MOSFETs.

  13. Polymer waveguide grating sensor integrated with a thin-film photodetector

    PubMed Central

    Song, Fuchuan; Xiao, Jing; Xie, Antonio Jou; Seo, Sang-Woo

    2014-01-01

    This paper presents a planar waveguide grating sensor integrated with a photodetector (PD) for on-chip optical sensing systems which are suitable for diagnostics in the field and in-situ measurements. III–V semiconductor-based thin-film PD is integrated with a polymer based waveguide grating device on a silicon platform. The fabricated optical sensor successfully discriminates optical spectral characteristics of the polymer waveguide grating from the on-chip PD. In addition, its potential use as a refractive index sensor is demonstrated. Based on a planar waveguide structure, the demonstrated sensor chip may incorporate multiple grating waveguide sensing regions with their own optical detection PDs. In addition, the demonstrated processing is based on a post-integration process which is compatible with silicon complementary metal-oxide semiconductor (CMOS) electronics. Potentially, this leads a compact, chip-scale optical sensing system which can monitor multiple physical parameters simultaneously without need for external signal processing. PMID:24466407

  14. Engineered nanomaterials for solar energy conversion.

    PubMed

    Mlinar, Vladan

    2013-02-01

    Understanding how to engineer nanomaterials for targeted solar-cell applications is the key to improving their efficiency and could lead to breakthroughs in their design. Proposed mechanisms for the conversion of solar energy to electricity are those exploiting the particle nature of light in conventional photovoltaic cells, and those using the collective electromagnetic nature, where light is captured by antennas and rectified. In both cases, engineered nanomaterials form the crucial components. Examples include arrays of semiconductor nanostructures as an intermediate band (so called intermediate band solar cells), semiconductor nanocrystals for multiple exciton generation, or, in antenna-rectifier cells, nanomaterials for effective optical frequency rectification. Here, we discuss the state of the art in p-n junction, intermediate band, multiple exciton generation, and antenna-rectifier solar cells. We provide a summary of how engineered nanomaterials have been used in these systems and a discussion of the open questions.

  15. Electron tunneling transport across heterojunctions between europium sulfide and indium arsenide

    NASA Astrophysics Data System (ADS)

    Kallaher, Raymond L.

    This dissertation presents research done on utilizing the ferromagnetic semiconductor europium sulfide (EuS) to inject spin polarized electrons into the non-magnetic semiconductor indium arsenide (InAs). There is great interest in expanding the functionality of modern day electronic circuits by creating devices that depend not only on the flow of charge in the device, but also on the transport of spin through the device. Within this mindset, there is a concerted effort to establish an efficient means of injecting and detecting spin polarized electrons in a two dimensional electron system (2DES) as the first step in developing a spin based field effect transistor. Thus, the research presented in this thesis has focused on the feasibility of using EuS, in direct electrical contact with InAs, as a spin injecting electrode into an InAs 2DES. Doped EuS is a concentrated ferromagnetic semiconductor, whose conduction band undergoes a giant Zeeman splitting when the material becomes ferromagnetic. The concomitant difference in energy between the spin-up and spin-down energy bands makes the itinerant electrons in EuS highly spin polarized. Thus, in principle, EuS is a good candidate to be used as an injector of spin polarized electrons into non-magnetic materials. In addition, the ability to adjust the conductivity of EuS by varying the doping level in the material makes EuS particularly suited for injecting spins into non-magnetic semiconductors and 2DES. For this research, thin films of EuS have been grown via e-beam evaporation of EuS powder. This growth technique produces EuS films that are sulfur deficient; these sulfur vacancies act as intrinsic electron donors and the resulting EuS films behave like heavily doped ferromagnetic semiconductors. The growth parameters and deposition procedures were varied and optimized in order to fabricate films that have minimal crystalline defects. Various properties and characteristics of these EuS films were measured and compared to those characteristics found in previous reported work on doped EuS crystals. In particular, the magnetic switching behavior of individual micro-fabricated EuS structures was investigated to determine what types of spintronic devices EuS is best suited for. These studies found that the crystalline anisotropy of EuS dominates the switching behavior in EuS thin film structures with minimum feature sizes greater than ˜5 mum. This, in conjunction with the relatively high resistance of junctions between EuS and semiconductors, restricts the use of two tandem EuS electrodes in all semiconductor spintronic devices that require independently switching ferromagnetic electrodes. Spin transport studies in InAs 2DES are particularly interesting because of the heterostructure's high electron mobility and tunable spin-orbit interactions. Detailed measurements of the electrical transport characteristics across the heterojunction formed between EuS and InAs were taken in order to investigate the spin transport characteristics across the junction. These measurements show that the electrical transport across the heterojunction, below the ferromagnetic transition temperature, is directly related to the magnetization of the EuS layer and thus the transport is dominated by the spin-dependent Schottky barrier formed in EuS. Using a simple theory developed for these junctions, the magnitude of the change in barrier height---half the Zeeman splitting of the conduction band in EuS---as found to be ˜0.22 eV. The electrical transport measurements of the heterojunction between EuS and InAs at temperatures well above the ferromagnetic transition temperature of EuS shows that there are at least two separate scattering mechanisms in these junctions. As expected, critical scattering is the dominate scattering mechanism in the strongly paramagnetic regime; however, unexpectedly, the data show that critical scattering is not the dominate mechanism at temperatures greater than ˜100 K. The high temperature electrical transport measurements of the EuS/InAs heterojunction, in conjunction with low temperature zero-bias conductance measurements on junctions between EuS and gold (Au), suggest that there exists an interfacial layer in series with the magnetic Schottky barrier in these EuS junctions. This interfacial layer is modeled and explained as resulting from a rather high concentration of defects at the interface between EuS and the counter electrode.

  16. Homogeneous spectral spanning of terahertz semiconductor lasers with radio frequency modulation.

    PubMed

    Wan, W J; Li, H; Zhou, T; Cao, J C

    2017-03-08

    Homogeneous broadband and electrically pumped semiconductor radiation sources emitting in the terahertz regime are highly desirable for various applications, including spectroscopy, chemical sensing, and gas identification. In the frequency range between 1 and 5 THz, unipolar quantum cascade lasers employing electron inter-subband transitions in multiple-quantum-well structures are the most powerful semiconductor light sources. However, these devices are normally characterized by either a narrow emission spectrum due to the narrow gain bandwidth of the inter-subband optical transitions or an inhomogeneous broad terahertz spectrum from lasers with heterogeneous stacks of active regions. Here, we report the demonstration of homogeneous spectral spanning of long-cavity terahertz semiconductor quantum cascade lasers based on a bound-to-continuum and resonant phonon design under radio frequency modulation. At a single drive current, the terahertz spectrum under radio frequency modulation continuously spans 330 GHz (~8% of the central frequency), which is the record for single plasmon waveguide terahertz lasers with a bound-to-continuum design. The homogeneous broadband terahertz sources can be used for spectroscopic applications, i.e., GaAs etalon transmission measurement and ammonia gas identification.

  17. Homogeneous spectral spanning of terahertz semiconductor lasers with radio frequency modulation

    PubMed Central

    Wan, W. J.; Li, H.; Zhou, T.; Cao, J. C.

    2017-01-01

    Homogeneous broadband and electrically pumped semiconductor radiation sources emitting in the terahertz regime are highly desirable for various applications, including spectroscopy, chemical sensing, and gas identification. In the frequency range between 1 and 5 THz, unipolar quantum cascade lasers employing electron inter-subband transitions in multiple-quantum-well structures are the most powerful semiconductor light sources. However, these devices are normally characterized by either a narrow emission spectrum due to the narrow gain bandwidth of the inter-subband optical transitions or an inhomogeneous broad terahertz spectrum from lasers with heterogeneous stacks of active regions. Here, we report the demonstration of homogeneous spectral spanning of long-cavity terahertz semiconductor quantum cascade lasers based on a bound-to-continuum and resonant phonon design under radio frequency modulation. At a single drive current, the terahertz spectrum under radio frequency modulation continuously spans 330 GHz (~8% of the central frequency), which is the record for single plasmon waveguide terahertz lasers with a bound-to-continuum design. The homogeneous broadband terahertz sources can be used for spectroscopic applications, i.e., GaAs etalon transmission measurement and ammonia gas identification. PMID:28272492

  18. Permeability of the blood-brain barrier predicts conversion from optic neuritis to multiple sclerosis.

    PubMed

    Cramer, Stig P; Modvig, Signe; Simonsen, Helle J; Frederiksen, Jette L; Larsson, Henrik B W

    2015-09-01

    Optic neuritis is an acute inflammatory condition that is highly associated with multiple sclerosis. Currently, the best predictor of future development of multiple sclerosis is the number of T2 lesions visualized by magnetic resonance imaging. Previous research has found abnormalities in the permeability of the blood-brain barrier in normal-appearing white matter of patients with multiple sclerosis and here, for the first time, we present a study on the capability of blood-brain barrier permeability in predicting conversion from optic neuritis to multiple sclerosis and a direct comparison with cerebrospinal fluid markers of inflammation, cellular trafficking and blood-brain barrier breakdown. To this end, we applied dynamic contrast-enhanced magnetic resonance imaging at 3 T to measure blood-brain barrier permeability in 39 patients with monosymptomatic optic neuritis, all referred for imaging as part of the diagnostic work-up at time of diagnosis. Eighteen healthy controls were included for comparison. Patients had magnetic resonance imaging and lumbar puncture performed within 4 weeks of onset of optic neuritis. Information on multiple sclerosis conversion was acquired from hospital records 2 years after optic neuritis onset. Logistic regression analysis showed that baseline permeability in normal-appearing white matter significantly improved prediction of multiple sclerosis conversion (according to the 2010 revised McDonald diagnostic criteria) within 2 years compared to T2 lesion count alone. There was no correlation between permeability and T2 lesion count. An increase in permeability in normal-appearing white matter of 0.1 ml/100 g/min increased the risk of multiple sclerosis 8.5 times whereas having more than nine T2 lesions increased the risk 52.6 times. Receiver operating characteristic curve analysis of permeability in normal-appearing white matter gave a cut-off of 0.13 ml/100 g/min, which predicted conversion to multiple sclerosis with a sensitivity of 88% and specificity of 72%. We found a significant correlation between permeability and the leucocyte count in cerebrospinal fluid as well as levels of CXCL10 and MMP9 in the cerebrospinal fluid. These findings suggest that blood-brain barrier permeability, as measured by magnetic resonance imaging, may provide novel pathological information as a marker of neuroinflammation related to multiple sclerosis, to some extent reflecting cellular permeability of the blood-brain barrier, whereas T2 lesion count may more reflect the length of the subclinical pre-relapse phase.See Naismith and Cross (doi:10.1093/brain/awv196) for a scientific commentary on this article. © The Author (2015). Published by Oxford University Press on behalf of the Guarantors of Brain.

  19. Carrier Multiplication Mechanisms and Competing Processes in Colloidal Semiconductor Nanostructures

    PubMed Central

    Kershaw, Stephen V.; Rogach, Andrey L.

    2017-01-01

    Quantum confined semiconductor nanoparticles, such as colloidal quantum dots, nanorods and nanoplatelets have broad extended absorption spectra at energies above their bandgaps. This means that they can absorb light at high photon energies leading to the formation of hot excitons with finite excited state lifetimes. During their existence, the hot electron and hole that comprise the exciton may start to cool as they relax to the band edge by phonon mediated or Auger cooling processes or a combination of these. Alongside these cooling processes, there is the possibility that the hot exciton may split into two or more lower energy excitons in what is termed carrier multiplication (CM). The fission of the hot exciton to form lower energy multiexcitons is in direct competition with the cooling processes, with the timescales for multiplication and cooling often overlapping strongly in many materials. Once CM has been achieved, the next challenge is to preserve the multiexcitons long enough to make use of the bonus carriers in the face of another competing process, non-radiative Auger recombination. However, it has been found that Auger recombination and the several possible cooling processes can be manipulated and usefully suppressed or retarded by engineering the nanoparticle shape, size or composition and by the use of heterostructures, along with different choices of surface treatments. This review surveys some of the work that has led to an understanding of the rich carrier dynamics in semiconductor nanoparticles, and that has started to guide materials researchers to nanostructures that can tilt the balance in favour of efficient CM with sustained multiexciton lifetimes. PMID:28927007

  20. Demonstration of in-vivo Multi-Probe Tracker Based on a Si/CdTe Semiconductor Compton Camera

    NASA Astrophysics Data System (ADS)

    Takeda, Shin'ichiro; Odaka, Hirokazu; Ishikawa, Shin-nosuke; Watanabe, Shin; Aono, Hiroyuki; Takahashi, Tadayuki; Kanayama, Yousuke; Hiromura, Makoto; Enomoto, Shuichi

    2012-02-01

    By using a prototype Compton camera consisting of silicon (Si) and cadmium telluride (CdTe) semiconductor detectors, originally developed for the ASTRO-H satellite mission, an experiment involving imaging multiple radiopharmaceuticals injected into a living mouse was conducted to study its feasibility for medical imaging. The accumulation of both iodinated (131I) methylnorcholestenol and 85Sr into the mouse's organs was simultaneously imaged by the prototype. This result implies that the Compton camera is expected to become a multi-probe tracker available in nuclear medicine and small animal imaging.

  1. Temperature dependence of the fundamental optical absorption edge in crystals and disordered semiconductors

    NASA Astrophysics Data System (ADS)

    Grein, C. H.; John, Sajeev

    1989-04-01

    We present a first principles theory of the temperature dependence of the Urbach optical absorption edge in crystals and disordered semiconductors which incorporates the effects of short range correlated static disorder and the non-adiabatic quantum dynamics of the coupled electron-phonon system. At finite temperatures the dominant features of the Urbach tail are accounted for by multiple phonon absorption and emission side bands which accompany the optically induced electronic transition and which provide a dynamic polaronic potential well that localizes the electron. Excellent agreement is found with experimental data on both crystalline and amorphous silicon.

  2. Photoconductivity response time in amorphous semiconductors

    NASA Astrophysics Data System (ADS)

    Adriaenssens, G. J.; Baranovskii, S. D.; Fuhs, W.; Jansen, J.; Öktü, Ö.

    1995-04-01

    The photoconductivity response time of amorphous semiconductors is examined theoretically on the basis of standard definitions for free- and trapped-carrier lifetimes, and experimentally for a series of a-Si1-xCx:H alloys with x<0.1. Particular attention is paid to its dependence on carrier generation rate and temperature. As no satisfactory agreement between models and experiments emerges, a simple theory is developed that can account for the experimental observations on the basis of the usual multiple-trappping ideas, provided a small probability of direct free-carrier recombination is included. The theory leads to a stretched-exponential photocurrent decay.

  3. A unified physical model of Seebeck coefficient in amorphous oxide semiconductor thin-film transistors

    NASA Astrophysics Data System (ADS)

    Lu, Nianduan; Li, Ling; Sun, Pengxiao; Banerjee, Writam; Liu, Ming

    2014-09-01

    A unified physical model for Seebeck coefficient was presented based on the multiple-trapping and release theory for amorphous oxide semiconductor thin-film transistors. According to the proposed model, the Seebeck coefficient is attributed to the Fermi-Dirac statistics combined with the energy dependent trap density of states and the gate-voltage dependence of the quasi-Fermi level. The simulation results show that the gate voltage, energy disorder, and temperature dependent Seebeck coefficient can be well described. The calculation also shows a good agreement with the experimental data in amorphous In-Ga-Zn-O thin-film transistor.

  4. Electrical Spin Injection and Detection in Silicon Nanowires with Axial Doping Gradient.

    PubMed

    Kountouriotis, Konstantinos; Barreda, Jorge L; Keiper, Timothy D; Zhang, Mei; Xiong, Peng

    2018-06-19

    The interest in spin transport in nanoscopic semiconductor channels is driven by both the inevitable miniaturization of spintronics devices toward nanoscale and the rich spin-dependent physics the quantum confinement engenders. For such studies, the all-important issue of the ferromagnet/semiconductor (FM/SC) interface becomes even more critical at nanoscale. Here we elucidate the effects of the FM/SC interface on electrical spin injection and detection at nanoscale dimensions, utilizing a unique type of Si nanowires (NWs) with an inherent axial doping gradient. Two-terminal and nonlocal four-terminal lateral spin-valve measurements were performed using different combinations from a series of FM contacts positioned along the same NW. The data are analyzed with a general model of spin accumulation in a normal channel under electrical spin injection from a FM, which reveals a distinct correlation of decreasing spin-valve signal with increasing injector junction resistance. The observation is attributed to the diminishing contribution of the d-electrons in the FM to the injected current spin polarization with increasing Schottky barrier width. The results demonstrate that there is a window of interface parameters for optimal spin injection efficiency and current spin polarization, which provides important design guidelines for nanospintronic devices with quasi-one-dimensional semiconductor channels.

  5. UV/ozone assisted local graphene (p)/ZnO(n) heterojunctions as a nanodiode rectifier

    NASA Astrophysics Data System (ADS)

    Sahatiya, Parikshit; Badhulika, Sushmee

    2016-07-01

    Here we report the fabrication of a novel graphene/ZnO nanodiode by UV/ozone assisted oxidation of graphene and demonstrate its application as a half-wave rectifier to generate DC voltage. The method involves the use of electrospinning for one-step in situ synthesis and alignment of single Gr/ZnO nanocomposite across metal electrodes. On subsequent UV illumination, graphene oxidizes, which induces p type doping and ZnO being an n type semiconductor, thus resulting in the formation of a nanodiode. The as-fabricated device shows strong non-linear current-voltage characteristic similar to that of conventional semiconductor p-n junction diodes. Excellent rectifying behavior with a rectification ratio of ~103 was observed and the nanodiodes were found to exhibit long-term repeatability in their performance. Ideality factor and barrier height, as calculated by the thermionic emission model, were found to be 1.6 and 0.504 eV respectively. Due to the fact that diodes are the basic building blocks in the electronics and semiconductor industry, the successful fabrication of these nanodiodes based on UV assisted p type doping of graphene indicates that this approach can be used for developing highly scalable and efficient components for nanoelectronics, such as rectifiers and logic gates that find applications in numerous fields.

  6. Removing barriers to educating children in foster care through interagency collaboration: a seven county multiple-case study.

    PubMed

    Weinberg, Lois A; Zetlin, Andrea; Shea, Nancy M

    2009-01-01

    This multiple-case study examines interagency collaboration between child protective services (CPS), local education agencies (LEAs), and other public agencies in seven California counties. These agencies were provided technical assistance to remove barriers impeding the education of children in foster care and improve their educational outcomes. Results of this study suggest that making changes to remove educational barriers for foster children and improve their educational outcomes requires successful collaboration between CPS and LEAs and strong leadership within at least one of the agencies.

  7. Focus on Success: An Explanatory Embedded Multiple-Case Study on How Youth Successfully Navigate Workforce Development Programs in Southern Nevada

    ERIC Educational Resources Information Center

    Villalobos, Ricardo

    2017-01-01

    This explanatory qualitative study investigated the perspectives of participant's and practitioner's perceived barriers to success and the necessary navigational expertise for overcoming the identified barriers. This multiple-case study research design examined three WIA out-of-school youth workforce development programs in Southern Nevada, with…

  8. Mid-infrared Photoconductive Response in AlGaN/GaN Step Quantum Wells

    PubMed Central

    Rong, X.; Wang, X. Q.; Chen, G.; Zheng, X. T.; Wang, P.; Xu, F. J.; Qin, Z. X.; Tang, N.; Chen, Y. H.; Sang, L. W.; Sumiya, M.; Ge, W. K.; Shen, B.

    2015-01-01

    AlGaN/GaN quantum structure is an excellent candidate for high speed infrared detectors based on intersubband transitions. However, fabrication of AlGaN/GaN quantum well infrared detectors suffers from polarization-induced internal electric field, which greatly limits the carrier vertical transport. In this article, a step quantum well is proposed to attempt solving this problem, in which a novel spacer barrier layer is used to balance the internal electric field. As a result, a nearly flat band potential profile is obtained in the step barrier layers of the AlGaN/GaN step quantum wells and a bound-to-quasi-continuum (B-to-QC) type intersubband prototype device with detectable photocurrent at atmosphere window (3–5 μm) is achieved in such nitride semiconductors. PMID:26395756

  9. Shallow Melt Apparatus for Semicontinuous Czochralski Crystal Growth

    DOEpatents

    Wang, T.; Ciszek, T. F.

    2006-01-10

    In a single crystal pulling apparatus for providing a Czochralski crystal growth process, the improvement of a shallow melt crucible (20) to eliminate the necessity supplying a large quantity of feed stock materials that had to be preloaded in a deep crucible to grow a large ingot, comprising a gas tight container a crucible with a deepened periphery (25) to prevent snapping of a shallow melt and reduce turbulent melt convection; source supply means for adding source material to the semiconductor melt; a double barrier (23) to minimize heat transfer between the deepened periphery (25) and the shallow melt in the growth compartment; offset holes (24) in the double barrier (23) to increase melt travel length between the deepened periphery (25) and the shallow growth compartment; and the interface heater/heat sink (22) to control the interface shape and crystal growth rate.

  10. Coplanar semiconductor-metal circuitry defined on few-layer MoTe2 via polymorphic heteroepitaxy

    NASA Astrophysics Data System (ADS)

    Sung, Ji Ho; Heo, Hoseok; Si, Saerom; Kim, Yong Hyeon; Noh, Hyeong Rae; Song, Kyung; Kim, Juho; Lee, Chang-Soo; Seo, Seung-Young; Kim, Dong-Hwi; Kim, Hyoung Kug; Yeom, Han Woong; Kim, Tae-Hwan; Choi, Si-Young; Kim, Jun Sung; Jo, Moon-Ho

    2017-11-01

    Crystal polymorphism selectively stabilizes the electronic phase of atomically thin transition-metal dichalcogenides (TMDCs) as metallic or semiconducting, suggesting the potential to integrate these polymorphs as circuit components in two-dimensional electronic circuitry. Developing a selective and sequential growth strategy for such two-dimensional polymorphs in the vapour phase is a critical step in this endeavour. Here, we report on the polymorphic integration of distinct metallic (1T‧) and semiconducting (2H) MoTe2 crystals within the same atomic planes by heteroepitaxy. The realized polymorphic coplanar contact is atomically coherent, and its barrier potential is spatially tight-confined over a length of only a few nanometres, with a lowest contact barrier height of ∼25 meV. We also demonstrate the generality of our synthetic integration approach for other TMDC polymorph films with large areas.

  11. GHz Yb:KYW oscillators in time-resolved spectroscopy

    NASA Astrophysics Data System (ADS)

    Li, Changxiu; Krauß, Nico; Schäfer, Gerhard; Ebner, Lukas; Kliebisch, Oliver; Schmidt, Johannes; Winnerl, Stephan; Hettich, Mike; Dekorsy, Thomas

    2018-02-01

    A high-speed asynchronous optical sampling system (ASOPS) based on Yb:KYW oscillators with 1-GHz repetition rate is reported. Two frequency-offset-stabilized diode-pumped Yb:KYW oscillators are employed as pump and probe source, respectively. The temporal resolution of this system within 1-ns time window is limited to 500 fs and the noise floor around 10-6 (ΔR/R) close to the shot-noise level is obtained within an acquisition time of a few seconds. Coherent acoustic phonons are investigated by measuring multilayer semiconductor structures with multiple quantum wells and aluminum/silicon membranes in this ASOPS system. A wavepacket-like phonon sequence at 360 GHz range is detected in the semiconductor structures and a decaying sequence of acoustic oscillations up to 200 GHz is obtained in the aluminum/silicon membranes. Coherent acoustic phonons generated from semiconductor structures are further manipulated by a double pump scheme through pump time delay control.

  12. Resistive Switching and Voltage Induced Modulation of Tunneling Magnetoresistance in Nanosized Perpendicular Organic Spin Valves

    NASA Astrophysics Data System (ADS)

    Schmidt, Georg; Goeckeritz, Robert; Homonnay, Nico; Mueller, Alexander; Fuhrmann, Bodo

    Resistive switching has already been reported in organic spin valves (OSV), however, its origin is still unclear. We have fabricated nanosized OSV based on La0.7Sr0.3MnO3/Alq3/Co. These devices show fully reversible resistive switching of up to five orders of magnitude. The magnetoresistance (MR) is modulated during the switching process from negative (-70%) to positive values (+23%). The results are reminiscent of experiments claiming magnetoelectric coupling in LSMO based tunneling structures using ferroelectric barriers. By analyzing the I/V characteristics of the devices we can show that transport is dominated by tunneling through pinholes. The resistive switching is caused by voltage induced creation and motion of oxygen vacancies at the LSMO surface, however, the resulting tunnel barrier is complemented by a second adjacent barrier in the organic semiconductor. Our model shows that the barrier in the organic material is constant, causing the initial MR while the barrier in the LMSO can be modulated by the voltage resulting in the resistive switching and the modulation of the MR as the coupling to the states in the LSMO changes. A switching caused by LSMO only is also supported by the fact that replacing ALQ3 by H2PC yields almost identical results. Supported by the DFG in the SFB762.

  13. Novel p-Type Conductive Semiconductor Nanocrystalline Film as the Back Electrode for High-Performance Thin Film Solar Cells.

    PubMed

    Zhang, Ming-Jian; Lin, Qinxian; Yang, Xiaoyang; Mei, Zongwei; Liang, Jun; Lin, Yuan; Pan, Feng

    2016-02-10

    Thin film solar cells, due to the low cost, high efficiency, long-term stability, and consumer applications, have been widely applied for harvesting green energy. All of these thin film solar cells generally adopt various metal thin films as the back electrode, like Mo, Au, Ni, Ag, Al, graphite, and so forth. When they contact with p-type layer, it always produces a Schottky contact with a high contact potential barrier, which greatly affects the cell performance. In this work, we report for the first time to find an appropriate p-type conductive semiconductor film, digenite Cu9S5 nanocrystalline film, as the back electrode for CdTe solar cells as the model device. Its low sheet resistance (16.6 Ω/sq) could compare to that of the commercial TCO films (6-30 Ω/sq), like FTO, ITO, and AZO. Different from the traditonal metal back electrode, it produces a successive gradient-doping region by the controllable Cu diffusion, which greatly reduces the contact potential barrier. Remarkably, it achieved a comparable power conversion efficiency (PCE, 11.3%) with the traditional metal back electrode (Cu/Au thin films, 11.4%) in CdTe cells and a higher PCE (13.8%) with the help of the Au assistant film. We believe it could also act as the back electrode for other thin film solar cells (α-Si, CuInS2, CIGSe, CZTS, etc.), for their performance improvement.

  14. Tuning contact transport mechanisms in bilayer MoSe2 transistors up to Fowler-Nordheim regime

    NASA Astrophysics Data System (ADS)

    Mouafo, L. D. N.; Godel, F.; Froehlicher, G.; Berciaud, S.; Doudin, B.; Venkata Kamalakar, M.; Dayen, J.-F.

    2017-03-01

    Atomically thin molybdenum diselenide (MoSe2) is an emerging two-dimensional (2D) semiconductor with significant potential for electronic, optoelectronic, spintronic applications and a common platform for their possible integration. Tuning interface charge transport between such new 2D materials and metallic electrodes is a key issue in 2D device physics and engineering. Here, we report tunable interface charge transport in bilayer MoSe2 field effect transistors with Ti/Au contacts showing high on/off ratio up to 107 at room temperature. Our experiments reveal a detailed map of transport mechanisms obtained by controlling the interface band bending profile via temperature, gate and source-drain bias voltages. This comprehensive investigation leads to demarcating regimes and tuning in transport mechanisms while controlling the interface barrier profile. The careful analysis allows us to identify thermally activated regime at low carrier density, and Schottky barrier driven mechanisms at higher carrier density demonstrating the transition from low-field direct tunneling/ thermionic emission to high-field Fowler-Nordheim tunneling. Furthermore, we show that the transition voltage Vtrans to Fowler-Nordheim correlates directly to the difference between the chemical potential of the metal electrode and the conduction band minimum in the 2D semiconductor, which opens up opportunities for new theoretical and experimental investigations. Our approach being generic can be extended to other 2D materials, and the possibility of tuning contact transport regimes is promising for designing MoSe2 device applications.

  15. Coupled-resonator vertical-cavity lasers with two active gain regions

    DOEpatents

    Fischer, Arthur J.; Choquette, Kent D.; Chow, Weng W.

    2003-05-20

    A new class of coupled-resonator vertical-cavity semiconductor lasers has been developed. These lasers have multiple resonant cavities containing regions of active laser media, resulting in a multi-terminal laser component with a wide range of novel properties.

  16. Astrocytic TYMP and VEGFA drive blood–brain barrier opening in inflammatory central nervous system lesions

    PubMed Central

    Chapouly, Candice; Tadesse Argaw, Azeb; Horng, Sam; Castro, Kamilah; Zhang, Jingya; Asp, Linnea; Loo, Hannah; Laitman, Benjamin M.; Mariani, John N.; Straus Farber, Rebecca; Zaslavsky, Elena; Nudelman, German; Raine, Cedric S.

    2015-01-01

    In inflammatory central nervous system conditions such as multiple sclerosis, breakdown of the blood–brain barrier is a key event in lesion pathogenesis, predisposing to oedema, excitotoxicity, and ingress of plasma proteins and inflammatory cells. Recently, we showed that reactive astrocytes drive blood–brain barrier opening, via production of vascular endothelial growth factor A (VEGFA). Here, we now identify thymidine phosphorylase (TYMP; previously known as endothelial cell growth factor 1, ECGF1) as a second key astrocyte-derived permeability factor, which interacts with VEGFA to induce blood–brain barrier disruption. The two are co-induced NFκB1-dependently in human astrocytes by the cytokine interleukin 1 beta (IL1B), and inactivation of Vegfa in vivo potentiates TYMP induction. In human central nervous system microvascular endothelial cells, VEGFA and the TYMP product 2-deoxy-d-ribose cooperatively repress tight junction proteins, driving permeability. Notably, this response represents part of a wider pattern of endothelial plasticity: 2-deoxy-d-ribose and VEGFA produce transcriptional programs encompassing angiogenic and permeability genes, and together regulate a third unique cohort. Functionally, each promotes proliferation and viability, and they cooperatively drive motility and angiogenesis. Importantly, introduction of either into mouse cortex promotes blood–brain barrier breakdown, and together they induce severe barrier disruption. In the multiple sclerosis model experimental autoimmune encephalitis, TYMP and VEGFA co-localize to reactive astrocytes, and correlate with blood–brain barrier permeability. Critically, blockade of either reduces neurologic deficit, blood–brain barrier disruption and pathology, and inhibiting both in combination enhances tissue preservation. Suggesting importance in human disease, TYMP and VEGFA both localize to reactive astrocytes in multiple sclerosis lesion samples. Collectively, these data identify TYMP as an astrocyte-derived permeability factor, and suggest TYMP and VEGFA together promote blood–brain barrier breakdown. PMID:25805644

  17. Intersections of discrimination due to unemployment and mental health problems: the role of double stigma for job- and help-seeking behaviors.

    PubMed

    Staiger, Tobias; Waldmann, Tamara; Oexle, Nathalie; Wigand, Moritz; Rüsch, Nicolas

    2018-05-21

    The everyday lives of unemployed people with mental health problems can be affected by multiple discrimination, but studies about double stigma-an overlap of identities and experiences of discrimination-in this group are lacking. We therefore studied multiple discrimination among unemployed people with mental health problems and its consequences for job- and help-seeking behaviors. Everyday discrimination and attributions of discrimination to unemployment and/or to mental health problems were examined among 301 unemployed individuals with mental health problems. Job search self-efficacy, barriers to care, and perceived need for treatment were compared among four subgroups, depending on attributions of experienced discrimination to unemployment and to mental health problems (group i); neither to unemployment nor to mental health problems (group ii); mainly to unemployment (group iii); or mainly to mental health problems (group iv). In multiple regressions among all participants, higher levels of discrimination predicted reduced job search self-efficacy and higher barriers to care; and attributions of discrimination to unemployment were associated with increased barriers to care. In ANOVAs for subgroup comparisons, group i participants, who attributed discrimination to both unemployment and mental health problems, reported lower job search self-efficacy, more perceived stigma-related barriers to care and more need for treatment than group iii participants, as well as more stigma-related barriers to care than group iv. Multiple discrimination may affect job search and help-seeking among unemployed individuals with mental health problems. Interventions to reduce public stigma and to improve coping with multiple discrimination for this group should be developed.

  18. Epitaxy of spin injectors and their application toward spin-polarized lasers

    NASA Astrophysics Data System (ADS)

    Holub, Michael A.

    Spintronics is an emerging; multidisciplinary field which examines the role of electron and nuclear spin in solid-state physics. Recent experiments suggest that the spin degree of freedom may be exploited to enhance the functionality of conventional semi conductor devices. Such endeavors require methods for efficient spin injection; spin transport, and spin detection in semiconductor heterostructures. This dissertation investigates the molecular-beam epitaxial growth and properties of ferromagnetic materials for electrical spin injection. Spin-injecting contacts are incorporated into prototype spintronic devices and their performance is examined. Two classes of materials may be used for spin injection into semiconductors: dilute magnetic semiconductor and ferromagnetic metals. The low-temperature growth and properties of (Al)Gal4nAs and In(Ga)MnAs epilayers and nanostructures are investigated, and a technique for the self-organized growth of Mn-doped InAs quantum dots is developed. The epitaxial growth of (Fe,MnAs)/(Al)GaAs Schottky tunnel barriers for electron spin injection is also investigated. The spin-injection efficiency of these contacts is assessed using a spin-valve or spin-polarized light-emitting diode. Lateral MnAs/GaAs spin-valves where Schottky tunnel barriers enable all-electrical spin injection and detection are grown, fabricated, and characterized. The Rowell criteria confirm that tunneling is the dominant, transport mechanism for the Schottky tunnel contacts. A peak magnetoresistance of 3.6% at 10 K and 1.1% at 125 K are observed for a 0.5 pin channel length spin-valve. Measurements using non-local spin-valves and other control devices verify that spurious contributions from anisotropic magnetoresistance and local Hall effects are negligible. Spin-polarized lasers offer inherent polarization control, reduced chirp, and lower threshold currents and are expected to outperform their charge-based counterparts. Initial efforts to realize a spin-VCSEL utilize (Ga,Mn)As spin aligners for hole spin injection. The polarization of the laser emission is dominated by dichroic absorption in the ferromagnetic (Ga,Mn)As spin-aligner layer, which greatly complicates the verification of spin injection. Significant spin-dependent effects are observed in a spin-VCSEL utilizing epitaxially regrown Fe/AlGaAs Schottky tunnel barriers. A maximum degree of circular polarization of 23% and corresponding threshold current reduction of 11% are measured for a 15 mum Fe spin-VCSEL at 50 K. A cavity spin polarization of 16.8% is estimated from rate equation analysis.

  19. Multiple Intimate Partner Violence Experiences: Knowledge, Access, Utilization and Barriers to Utilization of Resources by Women of the African Diaspora

    PubMed Central

    Sabri, Bushra; Huerta, Julia; Alexander, Kamila A.; St.Vil, Noelle M.; Campbell, Jacquelyn C.; Callwood, Gloria B.

    2016-01-01

    Objective This study examined knowledge, access, utilization, and barriers to use of resources among Black women exposed to multiple types of intimate partner violence in Baltimore, Maryland and the U.S. Virgin Islands (USVI). Methods We analyzed quantitative survey data collected by 163 women recruited from primary care, prenatal or family planning clinics in Baltimore and the USVI. In addition we analyzed qualitative data from in-depth interviews with 11 women. Quantitative data were analyzed using descriptive statistics and qualitative data were analyzed using thematic analysis. Results A substantial proportion of Black women with multiple types of violence experiences lacked knowledge of, did not have access to, and did not use resources. Barriers to resource use were identified at the individual, relationship, and community levels. Conclusion There is need for programs to develop awareness, promote access and utilization of resources, and eliminate barriers to resource use among abused Black women. PMID:26548679

  20. Capacitance and conductance-frequency characteristics of In-pSi Schottky barrier diode

    NASA Astrophysics Data System (ADS)

    Dhimmar, J. M.; Desai, H. N.; Modi, B. P.

    2015-06-01

    The Schottky barrier height (SBH) values have been calculated by using the reverse bias capacitance-voltage (C-V) characteristics at temperature range of 120-360K. The forward bias capacitance-frequency (C-f) and conductance- frequency (G-f) measurement of In-pSi SBD have been carried out from 0-1.0 V with a step up 0.05 V whereby the energy distribution of the interface state has been determined from the forward bias I-V data taking the bias dependence of the effective barrier height and series resistance (RS) into account. The high value of ideality factor (n=2.12) was attributing to high density of interface states and interfacial oxide layer at metal semiconductor interface. The interface state density (NSS) shows a decrease with bias from bottom of conduction band toward the mid gap. In order to examine frequency dependence NSS, RS, C-V and G(ω)/ω-f measurement of the diode were performed at room temperature in the frequency range of 100Hz-100KHz. Experimental result confirmed that there is an influence in the electrical characteristic of Schottky diode.

  1. Spectroscopy of bulk and few-layer superconducting NbSe2 with van der Waals tunnel junctions.

    PubMed

    Dvir, T; Massee, F; Attias, L; Khodas, M; Aprili, M; Quay, C H L; Steinberg, H

    2018-02-09

    Tunnel junctions, an established platform for high resolution spectroscopy of superconductors, require defect-free insulating barriers; however, oxides, the most common barrier, can only grow on a limited selection of materials. We show that van der Waals tunnel barriers, fabricated by exfoliation and transfer of layered semiconductors, sustain stable currents with strong suppression of sub-gap tunneling. This allows us to measure the spectra of bulk (20 nm) and ultrathin (3- and 4-layer) NbSe 2 devices at 70 mK. These exhibit two distinct superconducting gaps, the larger of which decreases monotonically with thickness and critical temperature. The spectra are analyzed using a two-band model incorporating depairing. In the bulk, the smaller gap exhibits strong depairing in in-plane magnetic fields, consistent with high out-of-plane Fermi velocity. In the few-layer devices, the large gap exhibits negligible depairing, consistent with out-of-plane spin locking due to Ising spin-orbit coupling. In the 3-layer device, the large gap persists beyond the Pauli limit.

  2. [The photoluminescence characteristics of organic multilayer quantum wells].

    PubMed

    Zhao, De-Wei; Song, Shu-Fang; Zhao, Su-Ling; Xu, Zheng; Wang, Yong-Sheng; Xu, Xu-Rong

    2007-04-01

    By the use of multi-source high-vaccum organic beam deposition system, the authors prepared organic multilayer quantum well structures, which consist of alternate organic small molecule materials PBD and Alq3. Based on 4-period organic quantum wells, different samples with different thickness barriers and wells were prepared. The authors measured the lowest unoccupied molecular orbit (LUMO) and the highest occupied molecular orbit (HOMO) by electrochemistry cyclic voltammetry and optical absorption. From the energy diagrams, it seems like type-I quantum well structures of the inorganic semiconductor, in which PBD is used as a barrier layer and Alq3 as a well layer and emitter. From small angle X-ray diffraction measurements, the results indicate that these structures have high interface quality and uniformity. The photoluminescence characteristics of organic multilayer quantum wells were investigated. The PL peak has a blue-shift with the decrease of the well layer thickness. Meanwhile as the barrier thickness decreases the PL peaks of PBD disappear gradually. And the energy may be effectively transferred from PBD to Alq3, inducing an enhancement of the luminescence of Alq3.

  3. Integration of perovskite oxide dielectrics into complementary metal-oxide-semiconductor capacitor structures using amorphous TaSiN as oxygen diffusion barrier

    NASA Astrophysics Data System (ADS)

    Mešić, Biljana; Schroeder, Herbert

    2011-09-01

    The high permittivity perovskite oxides have been intensively investigated for their possible application as dielectric materials for stacked capacitors in dynamic random access memory circuits. For the integration of such oxide materials into the CMOS world, a conductive diffusion barrier is indispensable. An optimized stack p++-Si/Pt/Ta21Si57N21/Ir was developed and used as the bottom electrode for the oxide dielectric. The amorphous TaSiN film as oxygen diffusion barrier showed excellent conductive properties and a good thermal stability up to 700 °C in oxygen ambient. The additional protective iridium layer improved the surface roughness after annealing. A 100-nm-thick (Ba,Sr)TiO3 film was deposited using pulsed laser deposition at 550 °C, showing very promising properties for application; the maximum relative dielectric constant at zero field is κ ≈ 470, and the leakage current density is below 10-6 A/cm2 for fields lower then ± 200 kV/cm, corresponding to an applied voltage of ± 2 V.

  4. Geographically multifarious phenotypic divergence during speciation

    PubMed Central

    Gompert, Zachariah; Lucas, Lauren K; Nice, Chris C; Fordyce, James A; Alex Buerkle, C; Forister, Matthew L

    2013-01-01

    Speciation is an important evolutionary process that occurs when barriers to gene flow evolve between previously panmictic populations. Although individual barriers to gene flow have been studied extensively, we know relatively little regarding the number of barriers that isolate species or whether these barriers are polymorphic within species. Herein, we use a series of field and lab experiments to quantify phenotypic divergence and identify possible barriers to gene flow between the butterfly species Lycaeides idas and Lycaeides melissa. We found evidence that L. idas and L. melissa have diverged along multiple phenotypic axes. Specifically, we identified major phenotypic differences in female oviposition preference and diapause initiation, and more moderate divergence in mate preference. Multiple phenotypic differences might operate as barriers to gene flow, as shown by correlations between genetic distance and phenotypic divergence and patterns of phenotypic variation in admixed Lycaeides populations. Although some of these traits differed primarily between species (e.g., diapause initiation), several traits also varied among conspecific populations (e.g., male mate preference and oviposition preference). PMID:23532669

  5. Compound Event Barrier Coverage in Wireless Sensor Networks under Multi-Constraint Conditions.

    PubMed

    Zhuang, Yaoming; Wu, Chengdong; Zhang, Yunzhou; Jia, Zixi

    2016-12-24

    It is important to monitor compound event by barrier coverage issues in wireless sensor networks (WSNs). Compound event barrier coverage (CEBC) is a novel coverage problem. Unlike traditional ones, the data of compound event barrier coverage comes from different types of sensors. It will be subject to multiple constraints under complex conditions in real-world applications. The main objective of this paper is to design an efficient algorithm for complex conditions that can combine the compound event confidence. Moreover, a multiplier method based on an active-set strategy (ASMP) is proposed to optimize the multiple constraints in compound event barrier coverage. The algorithm can calculate the coverage ratio efficiently and allocate the sensor resources reasonably in compound event barrier coverage. The proposed algorithm can simplify complex problems to reduce the computational load of the network and improve the network efficiency. The simulation results demonstrate that the proposed algorithm is more effective and efficient than existing methods, especially in the allocation of sensor resources.

  6. Compound Event Barrier Coverage in Wireless Sensor Networks under Multi-Constraint Conditions

    PubMed Central

    Zhuang, Yaoming; Wu, Chengdong; Zhang, Yunzhou; Jia, Zixi

    2016-01-01

    It is important to monitor compound event by barrier coverage issues in wireless sensor networks (WSNs). Compound event barrier coverage (CEBC) is a novel coverage problem. Unlike traditional ones, the data of compound event barrier coverage comes from different types of sensors. It will be subject to multiple constraints under complex conditions in real-world applications. The main objective of this paper is to design an efficient algorithm for complex conditions that can combine the compound event confidence. Moreover, a multiplier method based on an active-set strategy (ASMP) is proposed to optimize the multiple constraints in compound event barrier coverage. The algorithm can calculate the coverage ratio efficiently and allocate the sensor resources reasonably in compound event barrier coverage. The proposed algorithm can simplify complex problems to reduce the computational load of the network and improve the network efficiency. The simulation results demonstrate that the proposed algorithm is more effective and efficient than existing methods, especially in the allocation of sensor resources. PMID:28029118

  7. Doping dependence of the contact resistivity of end-bonded metal contacts to thin heavily doped semiconductor nanowires

    NASA Astrophysics Data System (ADS)

    Shukkoor, Anvar A.; Karmalkar, Shreepad

    2017-12-01

    We study the resistivity, ρcN, of end-bonded contacts to semiconductor NanoWires (NWs) of radius R = 5-10 nm over doping Nd = 1018-1020 cm-3. The study is important for NW device design and characterization. It reports realistic calculations of ρcN and highlights and explains how ρcN differs significantly from the resistivity ρcB of bulk contacts. First, the space-charge width in NW contacts is increased by the surrounding field which depends on R, contact geometry, and ambient dielectric; this width also depends on surface charge and dielectric confinement which reduces dopant ionization. Second, thin NWs have a low effective lifetime, τN, due to surface recombination. Third, NW contacts have a lesser image force barrier lowering due to the higher space-charge width. Due to these factors, apart from tunneling (which decides ρcB), space-charge region generation-recombination current also affects ρcN. As Nd is raised from 1018 to 1020 cm-3, ρcB falls rapidly, but ρcN varies slowly and may even increase up to 3-5 × 1018 and then falls rapidly. Further, ρcN/ρcB can be ≪1 at Nd = 1 × 1018 cm-3, reaches a peak ≫1 around Nd = 1 × 1019 cm-3, and → 1 at Nd = 1 × 1020 cm-3, e.g., for 0.8 V contact barrier on 10 nm thick n-type silicon NWs with τN = 1 ps embedded in SiO2, at T = 300 K, even a 10 nm contact extension yields a peak of 75 at Nd = 8 × 1018 cm-3. We study changes in ρcN/ρcB versus Nd behavior with R, contact geometry, ambient dielectric, surface charge, τN, T, tunneling mass, and barrier height.

  8. Increased photocatalytic activity induced by TiO2/Pt/SnO2 heterostructured films

    NASA Astrophysics Data System (ADS)

    Testoni, Glaucio O.; Amoresi, Rafael A. C.; Lustosa, Glauco M. M. M.; Costa, João P. C.; Nogueira, Marcelo V.; Ruiz, Miguel; Zaghete, Maria A.; Perazolli, Leinig A.

    2018-02-01

    In this work, a high photocatalytic activity was attained by intercalating a Pt layer between SnO2 and TiO2 semiconductors, which yielded a TiO2/Pt/SnO2 - type heterostructure used in the discoloration of blue methylene (MB) solution. The porous films and platinum layer were obtained by electrophoretic deposition and DC Sputtering, respectively, and were both characterized morphologically and structurally by FE-SEM and XRD. The films with the Pt interlayer were evaluated by photocatalytic activity through exposure to UV light. An increase in efficiency of 22% was obtained for these films compared to those without platinum deposition. Studies on the reutilization of the films pointed out high efficiency and recovery of the photocatalyst, rendering the methodology favorable for the construction of fixed bed photocatalytic reactors. A proposal associated with the mechanism is discussed in this work in terms of the difference in Schottky barrier between the semiconductors and the electrons transfer and trapping cycle. These are fundamental factors for boosting photocatalytic efficiency.

  9. Large thermoelectric power factor from crystal symmetry-protected non-bonding orbital in half-Heuslers.

    PubMed

    Zhou, Jiawei; Zhu, Hangtian; Liu, Te-Huan; Song, Qichen; He, Ran; Mao, Jun; Liu, Zihang; Ren, Wuyang; Liao, Bolin; Singh, David J; Ren, Zhifeng; Chen, Gang

    2018-04-30

    Modern society relies on high charge mobility for efficient energy production and fast information technologies. The power factor of a material-the combination of electrical conductivity and Seebeck coefficient-measures its ability to extract electrical power from temperature differences. Recent advancements in thermoelectric materials have achieved enhanced Seebeck coefficient by manipulating the electronic band structure. However, this approach generally applies at relatively low conductivities, preventing the realization of exceptionally high-power factors. In contrast, half-Heusler semiconductors have been shown to break through that barrier in a way that could not be explained. Here, we show that symmetry-protected orbital interactions can steer electron-acoustic phonon interactions towards high mobility. This high-mobility regime enables large power factors in half-Heuslers, well above the maximum measured values. We anticipate that our understanding will spark new routes to search for better thermoelectric materials, and to discover high electron mobility semiconductors for electronic and photonic applications.

  10. Effect of interfaces on electron transport properties of MoS2-Au Contacts

    NASA Astrophysics Data System (ADS)

    Aminpour, Maral; Hapala, Prokop; Le, Duy; Jelinek, Pavel; Rahman, Talat S.; Rahman's Group Collaboration; Nanosurf Lab Collaboration

    2014-03-01

    Single layer MoS2 is a promising material for future electronic devices such as transistors since it has good transport characteristics with mobility greater than 200 cm-1V-1s-1 and on-off current ratios up to 108. However, before MoS2 can become a mainstream electronic material for the semiconductor industry, the design of low resistive metal-semiconductor junctions as contacts of the electronic devices needs to be addressed and studied systematically. We have examined the effect of Au contacts on the electronic transport properties of single layer MoS2 using density functional theory in combination with the non-equilibrium Green's function method. The Schottky barrier between Au contact and MoS2, transmission spectra, and I-V curves will be reported and discussed as a function of MoS2 and Au interfaces of varying geometry. This work is supported in part by the US Department of Energy under grant DE-FG02-07ER15842.

  11. Two-diode behavior in metal-ferroelectric-semiconductor structures with bismuth titanate interfacial layer

    NASA Astrophysics Data System (ADS)

    Durmuş, Perihan; Altindal, Şemsettin

    2017-10-01

    In this study, electrical parameters of the Al/Bi4Ti3O12/p-Si metal-ferroelectric-semiconductor (MFS) structure and their temperature dependence were investigated using current-voltage (I-V) data measured between 120 K and 300 K. Semi-logarithmic I-V plots of the structure revealed that fabricated structure presents two-diode behavior that leads to two sets of ideality factor, reverse saturation current and zero-bias barrier height (BH) values. Obtained results of these parameters suggest that current conduction mechanism (CCM) deviates strongly from thermionic emission theory particularly at low temperatures. High values of interface states and nkT/q-kT/q plot supported the idea of deviation from thermionic emission. In addition, ln(I)-ln(V) plots suggested that CCM varies from one bias region to another and depends on temperature as well. Series resistance values were calculated using Ohm’s law and Cheungs’ functions, and they decreased drastically with increasing temperature.

  12. Single-electron-occupation metal-oxide-semiconductor quantum dots formed from efficient poly-silicon gate layout

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carroll, Malcolm S.; rochette, sophie; Rudolph, Martin

    We introduce a silicon metal-oxide-semiconductor quantum dot structure that achieves dot-reservoir tunnel coupling control without a dedicated barrier gate. The elementary structure consists of two accumulation gates separated spatially by a gap, one gate accumulating a reservoir and the other a quantum dot. Control of the tunnel rate between the dot and the reservoir across the gap is demonstrated in the single electron regime by varying the reservoir accumulation gate voltage while compensating with the dot accumulation gate voltage. The method is then applied to a quantum dot connected in series to source and drain reservoirs, enabling transport down tomore » the single electron regime. Finally, tuning of the valley splitting with the dot accumulation gate voltage is observed. This split accumulation gate structure creates silicon quantum dots of similar characteristics to other realizations but with less electrodes, in a single gate stack subtractive fabrication process that is fully compatible with silicon foundry manufacturing.« less

  13. Hot Charge Carrier Transmission from Plasmonic Nanostructures

    NASA Astrophysics Data System (ADS)

    Christopher, Phillip; Moskovits, Martin

    2017-05-01

    Surface plasmons have recently been harnessed to carry out processes such as photovoltaic current generation, redox photochemistry, photocatalysis, and photodetection, all of which are enabled by separating energetic (hot) electrons and holes—processes that, previously, were the domain of semiconductor junctions. Currently, the power conversion efficiencies of systems using plasmon excitation are low. However, the very large electron/hole per photon quantum efficiencies observed for plasmonic devices fan the hope of future improvements through a deeper understanding of the processes involved and through better device engineering, especially of critical interfaces such as those between metallic and semiconducting nanophases (or adsorbed molecules). In this review, we focus on the physics and dynamics governing plasmon-derived hot charge carrier transfer across, and the electronic structure at, metal-semiconductor (molecule) interfaces, where we feel the barriers contributing to low efficiencies reside. We suggest some areas of opportunity that deserve early attention in the still-evolving field of hot carrier transmission from plasmonic nanostructures to neighboring phases.

  14. In situ current-voltage characterization of swift heavy ion irradiated Au/n-GaAs Schottky diode at low temperature

    NASA Astrophysics Data System (ADS)

    Singh, R.; Arora, S. K.; Singh, J. P.; Kanjilal, D.

    A Au/n-GaAs(100) Schottky diode was irradiated at 80 K by a 180 MeV Ag-107(14+) ion beam. In situ current-voltage (I--V) characterization of the diode was performed at various irradiation fluences ranging from 1x10(10) to 1x10(13) ions cm(-2) . The semiconductor was heavily doped (carrier concentration=1x10(18) cm(-3)), hence thermionic field emission was assumed to be the dominant current transport mechanism in the diode. Systematic variations in various parameters of the Schottky diode like characteristic energy E-0 , ideality factor n , reverse saturation current I-S , flatband barrier height Phi(bf) and reverse leakage current I-R have been observed with respect to the irradiation fluence. The nuclear and electronic energy losses of the swift heavy ion affect the interface state density at the metal-semiconductor interface resulting in observed variations in Schottky diode parameters.

  15. The perceived benefits and barriers to exercise participation in persons with multiple sclerosis.

    PubMed

    Stroud, Nicole; Minahan, Clare; Sabapathy, Surendran

    2009-01-01

    The purpose of this study was to examine the perceived benefits and barriers to exercise participation in persons with multiple sclerosis (MS). A cross-sectional postal survey comprised of 93 adults with MS was conducted. Participants completed the Exercise Benefits and Barriers Scale (EBBS), Spinal Cord Injury Exercise Self-Efficacy Scale (EXSE), Multiple Sclerosis Impact Scale, Disease Steps Scale and International Physical Activity Questionnaire. Forty-three percent of the participants were classified as exercising individuals (EX group) as compared with non-exercising individuals (non-EX group). Participants in the EX group reported significantly higher scores on the EBBS and EXSE. Items related to physical performance and personal accomplishment were cited as the greatest perceived benefits to exercise participation and those items related to physical exertion as the greatest perceived barriers to both the EX and non-EX groups. When compared with previous studies conducted in the general population, the participants in the present study reported different perceived barriers to exercise participation. Furthermore, awareness of the benefits of physical activity is not sufficient to promote exercise participation in persons with MS. Perceived exercise self-efficacy is shown to play an important role in promoting exercise participation in persons with MS.

  16. Therapist, Parent, and Youth Perspectives of Treatment Barriers to Family-Focused Community Outpatient Mental Health Services

    PubMed Central

    Jenkins, Melissa M.; Haine-Schlagel, Rachel

    2012-01-01

    This exploratory qualitative study describes treatment barriers to receiving family-focused child mental health services for youths with disruptive behavior problems from multiple perspectives. Data were collected during a series of focus groups and interviews, including: 4 therapist focus groups, 3 parent focus groups, and 10 youth semi-structured interviews. Therapist, parent, and youth stakeholder participants discussed perceived barriers to effective treatment, the problems with current child outpatient therapy, and desired changes (i.e., policy, intervention, etc.) to improve mental health services. Results indicate similar themes around treatment barriers and dissatisfaction with services within and across multiple stakeholder groups, including inadequate support and lack of family involvement; however, parents and therapists, in particular, identified different contributing factors to these barriers. Overall, stakeholders reported much frustration and dissatisfaction with current community-based outpatient child therapy services. Study findings can inform service provision, intervention development, and future research. PMID:24019737

  17. Increased risk of death with congenital anomalies in the offspring of male semiconductor workers.

    PubMed

    Lin, Ching-Chun; Wang, Jung-Der; Hsieh, Gong-Yih; Chang, Yu-Yin; Chen, Pau-Chung

    2008-01-01

    Female workers in the semiconductor industry have higher risks of subfertility and spontaneous abortion, but no studies exploring male-mediated developmental toxicity have been published. This study aimed to investigate whether the offspring of male workers employed in the semiconductor manufacturing industry had an increased risk of death with congenital anomalies. The 6,834 male workers had been employed in the eight semiconductor companies in Taiwan between 1980 and 1994. We identified the live born children with or without congenital anomalies of the workers using the National Birth and Death Registries from the Department of Health, Taiwan. Multiple logistic regression models were used to estimate the odds ratios (OR) of birth outcomes and deaths, controlling for infant sex, maternal age, and paternal education. A total of 5,702 children were born to male workers during the period 1980-1994. There were increased risks of deaths with congenital anomalies (adjusted OR, 3.26; and 95% confidence interval [CI], 1.12-9.44) and heart anomalies (OR, 4.15; 95% CI, 1.08-15.95) in the offspring of male workers who were employed during the two months before conception. We found evidence of a possible link between paternal preconception exposure of semiconductor manufacturing and an increased risk of congenital anomalies, especially of the heart. The possible etiological basis needs to be corroborated in further research.

  18. Magnetic field-driven lateral photovoltaic effect in the Fe/SiO2/p-Si hybrid structure with the Schottky barrier

    NASA Astrophysics Data System (ADS)

    Volkov, N. V.; Rautskii, M. V.; Tarasov, A. S.; Yakovlev, I. A.; Bondarev, I. A.; Lukyanenko, A. V.; Varnakov, S. N.; Ovchinnikov, S. G.

    2018-07-01

    We demonstrate that the lateral photovoltaic effect in the Fe/SiO2/p-Si structure not only strongly depends on the optical radiation wavelength and temperature, but is also sensitive to external magnetic fields. The magnetic field lowers the absolute value of photovoltage regardless of the wavelength and temperature; however, the relative photovoltage variation significantly depends on these parameters. The lateral photovoltage is observed both on the Fe film and Si substrate sides and results from separation of photoinduced electrons and holes in a built-in electric field of the Schottky barrier with their subsequent diffusion to the structure in the lateral direction from the illuminated area. The observed features in the behavior of the lateral photovoltaic effect originate from the variation in the light absorption coefficient of the semiconductor and the related quantum efficiency upon light wavelength variation. In addition, an important role is played by the change in the characteristics of the Schottky barrier at the redistribution of optically generated carriers and temperature variation. The effect of the magnetic field is attributed to the Lorentz force, which bends trajectories of carriers drifting under the action of the Schottky barrier field and, consequently, suppresses the lateral photovoltaic effect.

  19. Varistor piezotronics: Mechanically tuned conductivity in varistors

    NASA Astrophysics Data System (ADS)

    Baraki, Raschid; Novak, Nikola; Hofstätter, Michael; Supancic, Peter; Rödel, Jürgen; Frömling, Till

    2015-08-01

    The piezoelectric effect of ZnO has been investigated recently with the goal to modify metal/semiconductor Schottky-barriers and p-n-junctions by application of mechanical stress. This research area called "piezotronics" is so far focused on nano structured ZnO wires. At the same time, ZnO varistor materials are already widely utilized and may benefit from a piezotronic approach. In this instance, the grain boundary potential barriers in the ceramic can be tuned by mechanical stress. Polycrystalline varistors exhibit huge changes of resistivity upon applied electrical and mechanical fields and therefore offer descriptive model systems to study the piezotronic effect. If the influence of temperature is contemplated, our current mechanistic understanding can be interrogated and corroborated. In this paper, we present a physical model based on parallel conducting pathways. This affords qualitative and semi-quantitative rationalization of temperature dependent electrical properties. The investigations demonstrate that narrow conductive pathways contribute to the overall current, which becomes increasingly conductive with application of mechanical stress due to lowering of the barrier height. Rising temperature increases the thermionic current through the rest of the material with higher average potential barriers, which are hardly affected by the piezoelectric effect. Hence, relative changes in resistance due to application of stress are higher at low temperature.

  20. Design and testing of 45 kV, 50 kHz pulse power supply for dielectric barrier discharges

    NASA Astrophysics Data System (ADS)

    Sharma, Surender Kumar; Shyam, Anurag

    2016-10-01

    The design, construction, and testing of high frequency, high voltage pulse power supply are reported. The purpose of the power supply is to generate dielectric barrier discharges for industrial applications. The power supply is compact and has the advantage of low cost, over current protection, and convenient control for voltage and frequency selection. The power supply can generate high voltage pulses of up to 45 kV at the repetitive frequency range of 1 kHz-50 kHz with 1.2 kW input power. The output current of the power supply is limited to 500 mA. The pulse rise time and fall time are less than 2 μs and the pulse width is 2 μs. The power supply is short circuit proof and can withstand variable plasma load conditions. The power supply mainly consists of a half bridge series resonant converter to charge an intermediate capacitor, which discharges through a step-up transformer at high frequency to generate high voltage pulses. Semiconductor switches and amorphous cores are used for power modulation at higher frequencies. The power supply is tested with quartz tube dielectric barrier discharge load and worked stably. The design details and the performance of the power supply on no load and dielectric barrier discharge load are presented.

  1. Design and testing of 45 kV, 50 kHz pulse power supply for dielectric barrier discharges.

    PubMed

    Sharma, Surender Kumar; Shyam, Anurag

    2016-10-01

    The design, construction, and testing of high frequency, high voltage pulse power supply are reported. The purpose of the power supply is to generate dielectric barrier discharges for industrial applications. The power supply is compact and has the advantage of low cost, over current protection, and convenient control for voltage and frequency selection. The power supply can generate high voltage pulses of up to 45 kV at the repetitive frequency range of 1 kHz-50 kHz with 1.2 kW input power. The output current of the power supply is limited to 500 mA. The pulse rise time and fall time are less than 2 μs and the pulse width is 2 μs. The power supply is short circuit proof and can withstand variable plasma load conditions. The power supply mainly consists of a half bridge series resonant converter to charge an intermediate capacitor, which discharges through a step-up transformer at high frequency to generate high voltage pulses. Semiconductor switches and amorphous cores are used for power modulation at higher frequencies. The power supply is tested with quartz tube dielectric barrier discharge load and worked stably. The design details and the performance of the power supply on no load and dielectric barrier discharge load are presented.

  2. Magnetic field induced suppression of the forward bias current in Bi2Se3/Si Schottky barrier diodes

    NASA Astrophysics Data System (ADS)

    Jin, Haoming; Hebard, Arthur

    Schottky diodes formed by van der Waals bonding between freshly cleaved flakes of the topological insulator Bi2Se3 and doped silicon substrates show electrical characteristics in good agreement with thermionic emission theory. The motivation is to use magnetic fields to modulate the conductance of the topologically protected conducting surface state. This surface state in close proximity to the semiconductor surface may play an important role in determining the nature of the Schottky barrier. Current-voltage (I-V) and capacitance-voltage (C-V) characteristics were obtained for temperatures in the range 50-300 K and magnetic fields, both perpendicular and parallel to the interface, as high as 7 T. The I-V curve shows more than 6 decades linearity on semi-logarithmic plots, allowing extraction of parameters such as ideality (η), zero-voltage Schottky barrier height (SBH), and series resistance (Rs). In forward bias we observe a field-induced decrease in current which becomes increasingly more pronounced at higher voltages and lower temperature, and is found to be correlated with changes in Rs rather than other barrier parameters. A comparison of changes in Rs in both field direction will be made with magnetoresistance in Bi2Se3 transport measurement. The work is supported by NSF through DMR 1305783.

  3. Magnesium Oxide (MgO) pH-sensitive Sensing Membrane in Electrolyte-Insulator-Semiconductor Structures with CF4 Plasma Treatment.

    PubMed

    Kao, Chyuan-Haur; Chang, Chia Lung; Su, Wei Ming; Chen, Yu Tzu; Lu, Chien Cheng; Lee, Yu Shan; Hong, Chen Hao; Lin, Chan-Yu; Chen, Hsiang

    2017-08-03

    Magnesium oxide (MgO) sensing membranes in pH-sensitive electrolyte-insulator-semiconductor structures were fabricated on silicon substrate. To optimize the sensing capability of the membrane, CF 4 plasma was incorporated to improve the material quality of MgO films. Multiple material analyses including FESEM, XRD, AFM, and SIMS indicate that plasma treatment might enhance the crystallization and increase the grain size. Therefore, the sensing behaviors in terms of sensitivity, linearity, hysteresis effects, and drift rates might be improved. MgO-based EIS membranes with CF 4 plasma treatment show promise for future industrial biosensing applications.

  4. Formation and evolution of ripples on ion-irradiated semiconductor surfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kang, M.; Wu, J. H.; Ye, W.

    We have examined the formation and evolution of ripples on focused-ion-beam (FIB) irradiated compound semiconductor surfaces. Using initially normal-incidence Ga{sup +} FIB irradiation of InSb, we tuned the local beam incidence angle (θ{sub eff}) by varying the pitch and/or dwell time. For single-pass FIB irradiation, increasing θ{sub eff} induces morphological evolution from pits and islands to ripples to featureless surfaces. Multiple-pass FIB irradiation of the rippled surfaces at a fixed θ{sub eff} leads to island formation on the ripple crests, followed by nanorod (NR) growth. This ripple-NR transition provides an alternative approach for achieving dense arrays of NRs.

  5. Infrared Focal Plane Arrays Based on Semiconductor Quantum Dots

    DTIC Science & Technology

    2002-01-01

    an ensemble of self -assembled InAs/GaAs or InAs/InP quantum dots (QDs) are typically in the range of 10-30 monolayers [1]. Here, we report on InAs...photoconductive properties of QDIPs based on self organized InAs quantum dots grown on In.52Al.48As/InP(100), using the MBE technique. Dr. Gendry grew the...composed of 10 layers of self assembled InAs dots, separated by 500 Å thick InAlAs (lattice matched to the semi-insulating InP substrate) barrier

  6. Space Power Management and Distribution Status and Trends

    NASA Technical Reports Server (NTRS)

    Reppucci, G. M.; Biess, J. J.; Inouye, L.

    1984-01-01

    An overview of space power management and distribution (PMAD) is provided which encompasses historical and current technology trends. The PMAD components discussed include power source control, energy storage control, and load power processing electronic equipment. The status of distribution equipment comprised of rotary joints and power switchgear is evaluated based on power level trends in the public, military, and commercial sectors. Component level technology thrusts, as driven by perceived system level trends, are compared to technology status of piece-parts such as power semiconductors, capacitors, and magnetics to determine critical barriers.

  7. Crested Tunnel Barriers for Fast, Scalable, Nonvolatile Semiconductor Memories (Theme 3)

    DTIC Science & Technology

    2006-12-01

    single layer Si0 2 with similar EOT [19]. In Fig. 2, the solid symbols represent the typical I-V characteristics of an AI/(HfON-Si3N4)/Si structure. The...black curve (with open symbols ) is a simulated I-V curve for theoretical Si0 2 with the same EOT. It can be seen clearly that it takes only 3 volts for...R. Wasser , B. Reichenberg, and S. Tiedke, "Resistive switching mechanism of TiO 2 thin films grown by atomic-layer deposition", J. App/. Phys., vol

  8. Infrared and Terahertz Lasers on SI Using Novel Group-IV Alloys

    DTIC Science & Technology

    2011-11-30

    gain at 2,883 nm is comparable with those of many conventional III-V semiconductor lasers. On the other hand, a waveguide design was also presented ...other conduction-band valleys (", X) are above the L-valley band edge of the Ge0.76Si0.19Sn0.05 barrier. This band alignment presents a desirable...the QCL structure based upon Ge/ Ge0.76Si0.19Sn0.05 QWs. Only L-valley conduction- band lineups are shown in the potential diagram under an applied

  9. Hot Carriers in Semiconductors (Proceedings (6th) Held in Scottsdale, Arizona on 23-28 July 1989

    DTIC Science & Technology

    1989-07-01

    Research Red Bank, NJ 07701. We compared with that in bulk material and this is observe a strongly pronounced current controlled (S- observed in our...speaker TuP-1 "Barrier controlled hot carrier cooling in InGaAs/InP quantum wells," U. Cebulla, G. Bacher, A. Forchel, D. Grutzmacher, and W. T. Tsang...10 " Design , fabrication and operation of a hot lectron resonant tunneling transistor," U. K. Reddy, I. Mehdi. R. K. Mains, and G. I. Haddqd Ann Arbor

  10. A Workshop on 3-5 Semiconductor: Metal Interfacial Chemistry and Its Effect on Electrical Properties, November 3-5, 1986,

    DTIC Science & Technology

    1986-11-05

    band bending condition eliminated after metal deposition onto Ga203 * up to "𔃺.7 eY shift in EF occurs with sequential oxide and metal surface...and the tables of band- lineups to estimate the sign and magnitude of the effect. *Supported, in part, by ONR Contract No. N00014-85-C-0i35 ** Permanent...V1a,3. c SL. c93 1 Ill-V Interfaces: Schottky Barriers vs. Heterojunctions Giorgio Margaritondo University of Wisconsin HETE-ROJUNCTION BAND LINEUPS VS

  11. A 1.06 micrometer avalanche photodiode receiver

    NASA Technical Reports Server (NTRS)

    Eden, R. C.

    1975-01-01

    The development of a complete solid state 1.06 micron optical receiver which can be used in optical communications at data rates approaching 1.5 Gb/s, or in other applications requiring sensitive, short pulse detection, is reported. This work entailed both the development of a new type of heterojunction III-V semiconductor alloy avalanche photodiode and an extremely charge-sensitive wideband low noise preamp design making use of GaAs Schottky barrier-gate field effect transistors (GAASFET's) operating in in the negative-feedback transimpedance mode. The electrical characteristics of the device are described.

  12. Hyperfine-induced spin relaxation of a diffusively moving carrier in low dimensions: Implications for spin transport in organic semiconductors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mkhitaryan, V. V.; Dobrovitski, V. V.

    2015-08-24

    The hyperfine coupling between the spin of a charge carrier and the nuclear spin bath is a predominant channel for the carrier spin relaxation in many organic semiconductors. We theoretically investigate the hyperfine-induced spin relaxation of a carrier performing a random walk on a d-dimensional regular lattice, in a transport regime typical for organic semiconductors. We show that in d=1 and 2, the time dependence of the space-integrated spin polarization P(t) is dominated by a superexponential decay, crossing over to a stretched-exponential tail at long times. The faster decay is attributed to multiple self-intersections (returns) of the random-walk trajectories, whichmore » occur more often in lower dimensions. We also show, analytically and numerically, that the returns lead to sensitivity of P(t) to external electric and magnetic fields, and this sensitivity strongly depends on dimensionality of the system (d=1 versus d=3). We investigate in detail the coordinate dependence of the time-integrated spin polarization σ(r), which can be probed in the spin-transport experiments with spin-polarized electrodes. We also demonstrate that, while σ(r) is essentially exponential, the effect of multiple self-intersections can be identified in transport measurements from the strong dependence of the spin-decay length on the external magnetic and electric fields.« less

  13. Abatement of waste gases and water during the processes of semiconductor fabrication.

    PubMed

    Wen, Rui-mei; Liang, Jun-wu

    2002-10-01

    The purpose of this article is to examine the methods and equipment for abating waste gases and water produced during the manufacture of semiconductor materials and devices. Three separating methods and equipment are used to control three different groups of electronic wastes. The first group includes arsine and phosphine emitted during the processes of semiconductor materials manufacture. The abatement procedure for this group of pollutants consists of adding iodates, cupric and manganese salts to a multiple shower tower (MST) structure. The second group includes pollutants containing arsenic, phosphorus, HF, HCl, NO2, and SO3 emitted during the manufacture of semiconductor materials and devices. The abatement procedure involves mixing oxidants and bases in an oval column with a separator in the middle. The third group consists of the ions of As, P and heavy metals contained in the waste water. The abatement procedure includes adding CaCO3 and ferric salts in a flocculation-sedimentation compact device equipment. Test results showed that all waste gases and water after the abatement procedures presented in this article passed the discharge standards set by the State Environmental Protection Administration of China.

  14. A comparative study of wood highway sound barriers

    Treesearch

    Stefan Grgurevich; Thomas Boothby; Harvey Manbeck; Courtney Burroughs; Stephen Cegelka; Craig Bernecker; Michael A. Ritter

    2002-01-01

    Prototype designs for wood highway sound barriers meeting the multiple criteria of structural integrity, acoustic effectiveness, durability, and potential for public acceptance have been developed. Existing installations of wood sound barriers were reviewed and measurements conducted in the field to estimate acoustic insertion losses. A complete matrix of design...

  15. Ferroelectric polarization-controlled two-dimensional electron gas in ferroelectric/AlGaN/GaN heterostructure

    NASA Astrophysics Data System (ADS)

    Kong, Y. C.; Xue, F. S.; Zhou, J. J.; Li, L.; Chen, C.; Li, Y. R.

    2009-06-01

    The control effect of the ferroelectric polarization on the two-dimensional electron gas (2DEG) in a ferroelectric/AlGaN/GaN metal-ferroelectric-semiconductor (MFS) structure is theoretically analyzed by a self-consistent approach. With incorporating the hysteresis nature of the ferroelectric into calculation, the nature of the control effect is disclosed, where the 2DEG density is depleted/restored after poling/depoling operation on the MFS structure. The orientation of the ferroelectric polarization is clarified to be parallel to that of the AlGaN barrier, which, based on an electrostatics analysis, is attributed to the pinning effect of the underlying polarization. Reducing the thickness of the AlGaN barrier from 25 nm to 20 nm leads to an improved control modulation of the 2DEG density from 36.7% to 54.1%.

  16. Tunneling Anomalous and Spin Hall Effects.

    PubMed

    Matos-Abiague, A; Fabian, J

    2015-07-31

    We predict, theoretically, the existence of the anomalous Hall effect when a tunneling current flows through a tunnel junction in which only one of the electrodes is magnetic. The interfacial spin-orbit coupling present in the barrier region induces a spin-dependent momentum filtering in the directions perpendicular to the tunneling current, resulting in a skew tunneling even in the absence of impurities. This produces an anomalous Hall conductance and spin Hall currents in the nonmagnetic electrode when a bias voltage is applied across the tunneling heterojunction. If the barrier is composed of a noncentrosymmetric material, the anomalous Hall conductance and spin Hall currents become anisotropic with respect to both the magnetization and crystallographic directions, allowing us to separate this interfacial phenomenon from the bulk anomalous and spin Hall contributions. The proposed effect should be useful for proving and quantifying the interfacial spin-orbit fields in metallic and metal-semiconductor systems.

  17. Suppression of electron overflow in 370-nm InGaN/AlGaN ultraviolet light emitting diodes with different insertion layer thicknesses

    NASA Astrophysics Data System (ADS)

    Wang, C. K.; Wang, Y. W.; Chiou, Y. Z.; Chang, S. H.; Jheng, J. S.; Chang, S. P.; Chang, S. J.

    2017-06-01

    In this study, the properties of 370-nm InGaN/AlGaN ultraviolet light emitting diodes (UV LEDs) with different thicknesses of un-doped Al0.3Ga0.7N insertion layer (IL) between the last quantum barrier and electron blocking layer (EBL) have been numerically simulated by Advance Physical Model of Semiconductor Devices (APSYS). The results show that the LEDs using the high Al composition IL can effectively improve the efficiency droop, light output power, and internal quantum efficiency (IQE) compared to the original structure. The improvements of the optical properties are mainly attributed to the energy band discontinuity and offset created by IL, which increase the potential barrier height of conduction band to suppress the electron overflow from the active region to the p-side layer.

  18. Investigation of accelerated stress factors and failure/degradation mechanisms in terrestrial solar cells

    NASA Technical Reports Server (NTRS)

    Lathrop, J. W.

    1983-01-01

    Results of an ongoing research program into the reliability of terrestrial solar cells are presented. Laboratory accelerated testing procedures are used to identify failure/degradation modes which are then related to basic physical, chemical, and metallurgical phenomena. In the most recent tests, ten different types of production cells, both with and without encapsulation, from eight different manufacturers were subjected to a variety of accelerated tests. Results indicated the presence of a number of hitherto undetected failure mechanisms, including Schottky barrier formation at back contacts and loss of adhesion of grid metallization. The mechanism of Schottky barrier formation is explained by hydrogen, formed by the dissociation of water molecules at the contact surface, diffusing to the metal semiconductor interface. This same mechanism accounts for the surprising increase in sensitivity to accelerated stress conditions that was observed in some cells when encapsulated.

  19. Mn concentration and quantum size effects on spin-polarized transport through CdMnTe based magnetic resonant tunneling diode.

    PubMed

    Mnasri, S; Abdi-Ben Nasrallahl, S; Sfina, N; Lazzari, J L; Saïd, M

    2012-11-01

    Theoretical studies on spin-dependent transport in magnetic tunneling diodes with giant Zeeman splitting of the valence band are carried out. The studied structure consists of two nonmagnetic layers CdMgTe separated by a diluted magnetic semiconductor barrier CdMnTe, the hole is surrounded by two p-doped CdTe layers. Based on the parabolic valence band effective mass approximation and the transfer matrix method, the magnetization and the current densities for holes with spin-up and spin-down are studied in terms of the Mn concentration, the well and barrier thicknesses as well as the voltage. It is found that, the current densities depend strongly on these parameters and by choosing suitable values; this structure can be a good spin filter. Such behaviors are originated from the enhancement and suppression in the spin-dependent resonant states.

  20. Direct Determination of Field Emission across the Heterojunctions in a ZnO/Graphene Thin-Film Barristor.

    PubMed

    Mills, Edmund M; Min, Bok Ki; Kim, Seong K; Kim, Seong Jun; Kang, Min-A; Song, Wooseok; Myung, Sung; Lim, Jongsun; An, Ki-Seok; Jung, Jongwan; Kim, Sangtae

    2015-08-26

    Graphene barristors are a novel type of electronic switching device with excellent performance, which surpass the low on-off ratios that limit the operation of conventional graphene transistors. In barristors, a gate bias is used to vary graphene's Fermi level, which in turn controls the height and resistance of a Schottky barrier at a graphene/semiconductor heterojunction. Here we demonstrate that the switching characteristic of a thin-film ZnO/graphene device with simple geometry results from tunneling current across the Schottky barriers formed at the ZnO/graphene heterojunctions. Direct characterization of the current-voltage-temperature relationship of the heterojunctions by ac-impedance spectroscopy reveals that this relationship is controlled predominantly by field emission, unlike most graphene barristors in which thermionic emission is observed. This governing mechanism makes the device unique among graphene barristors, while also having the advantages of simple fabrication and outstanding performance.

Top