Optical phonon effect in quasi-one-dimensional semiconductor quantum wires: Band-gap renormalization
NASA Astrophysics Data System (ADS)
Dan, Nguyen Trung; Bechstedt, F.
1996-02-01
We present theoretical studies of dynamical screening in quasi-one-dimensional semiconductor quantum wires including electron-electron and electron-LO-phonon interactions. Within the random-phase approximation we obtain analytical expressions for screened interaction potentials. These expressions can be used to calculate the band-gap renormalization of quantum wires, which depends on the free-carrier density and temperature. We find that the optical phonon interaction effect plays a significant role in band-gap renormalization of quantum wires. The numerical results are compared with some recent experiment measurements as well as available theories.
Two dimensional exciton polaritons in microcavities with embedded quantum wires
NASA Astrophysics Data System (ADS)
Kavokin, A. V.; Ivchenko, E. L.; Vladimirova, M. R.; Kaliteevski, M. A.; Goupalov, S. V.
1998-02-01
Optical anisotropy of the periodical array of quantum wires embedded in a semiconductor microcavity is shown to result in polarization-dependent vacuum-field Rabi-splitting and a triple-anticrossing shape of the exciton-polariton dispersion curves. Both effects originate from the resonant diffraction of light at the grating of quantum wires. The calculation has been done within the nonlocal dielectric response theory and using the 4 × 4 transfer matrix technique.
Crystal-Phase Quantum Wires: One-Dimensional Heterostructures with Atomically Flat Interfaces.
Corfdir, Pierre; Li, Hong; Marquardt, Oliver; Gao, Guanhui; Molas, Maciej R; Zettler, Johannes K; van Treeck, David; Flissikowski, Timur; Potemski, Marek; Draxl, Claudia; Trampert, Achim; Fernández-Garrido, Sergio; Grahn, Holger T; Brandt, Oliver
2018-01-10
In semiconductor quantum-wire heterostructures, interface roughness leads to exciton localization and to a radiative decay rate much smaller than that expected for structures with flat interfaces. Here, we uncover the electronic and optical properties of the one-dimensional extended defects that form at the intersection between stacking faults and inversion domain boundaries in GaN nanowires. We show that they act as crystal-phase quantum wires, a novel one-dimensional quantum system with atomically flat interfaces. These quantum wires efficiently capture excitons whose radiative decay gives rise to an optical doublet at 3.36 eV at 4.2 K. The binding energy of excitons confined in crystal-phase quantum wires is measured to be more than twice larger than that of the bulk. As a result of their unprecedented interface quality, these crystal-phase quantum wires constitute a model system for the study of one-dimensional excitons.
SALUTE Grid Application using Message-Oriented Middleware
NASA Astrophysics Data System (ADS)
Atanassov, E.; Dimitrov, D. Sl.; Gurov, T.
2009-10-01
Stochastic ALgorithms for Ultra-fast Transport in sEmiconductors (SALUTE) is a grid application developed for solving various computationally intensive problems which describe ultra-fast carrier transport in semiconductors. SALUTE studies memory and quantum effects during the relaxation process due to electronphonon interaction in one-band semiconductors or quantum wires. Formally, SALUTE integrates a set of novel Monte Carlo, quasi-Monte Carlo and hybrid algorithms for solving various computationally intensive problems which describe the femtosecond relaxation process of optically excited carriers in one-band semiconductors or quantum wires. In this paper we present application-specific job submission and reservation management tool named a Job Track Server (JTS). It is developed using Message-Oriented middleware to implement robust, versatile job submission and tracing mechanism, which can be tailored to application specific failover and quality of service requirements. Experience from using the JTS for submission of SALUTE jobs is presented.
Effect of Γ-X band mixing on the donor binding energy in a Quantum Wire
NASA Astrophysics Data System (ADS)
Vijaya Shanthi, R.; Jayakumar, K.; Nithiananthi, P.
2015-02-01
To invoke the technological applications of heterostructure semiconductors like Quantum Well (QW), Quantum Well Wire (QWW) and Quantum Dot (QD), it is important to understand the property of impurity energy which is responsible for the peculiar electronic & optical behavior of the Low Dimensional Semiconductor Systems (LDSS). Application of hydrostatic pressure P>35kbar drastically alters the band offsets leading to the crossover of Γ band of the well & X band of the barrier resulting in an indirect transition of the carrier and this effect has been studied experimentally and theoretically in a QW structure. In this paper, we have investigated the effect of Γ-X band mixing due to the application of hydrostatic pressure in a GaAs/AlxGa1-xAs QWW system. The results are presented and discussed for various widths of the wire.
Gordon Research Conference on Crystal Growth (1990)
1990-04-01
Labs, MH) 14. Cox Vapor Levitation Epitaxy of Quantum Wires and Wire-like Structures Using Laterally Propagating Surface Steps. (Bellcore, Red Bank) 15...introduced many new aspects of crystal growth, including strained layer superlattices, quantum cluster growth, and vertical zone melting of GaAs...Films 2. E. Bauser Semiconductor Liquid Phase Epitaxy: Growth and Properties of Layers and Heterostructures 3. M. L. Steigerwald Growth of Quantum
Electrostatic and electrodynamic response properties of nanostructures
NASA Astrophysics Data System (ADS)
Ayaz, Yuksel
1999-11-01
This thesis addresses the problem of nanostructure dielectric response to excitation by electric fields, both in the electrostatic c→infinity and the electrodynamic regimes. The nanostructures treated include planar quantum wells and quantum wires embedded in the vicinity of the bounding surface of the host semiconductor medium. Various cases are analyzed, including a single well or wire, a double well or wire, a lattice of N wells or wires and an infinite superlattice of wells or wires. The host medium is considered to have phonons and/or a bulk semiconductor plasma which interact with the plasmons of the embedded quantum wells or wires, and the host plasma is treated in both the local "cold" plasma regime and the nonlocal "hot" plasma regime. New hybridized quantum plasma collective modes emerge from these studies. The techniques employed here include the variational differential formulation of integral equations for the inverse dielectric function (in electrostatic case) and the dyadic Green's function (in the electrodynamic case) for the various systems described above. These integral equations are then solved in frequency-position representation by a variety of techniques depending on the geometrical features of the particular problem. Explicit closed form solutions for the inverse dielectric function or dyadic Green's function facilitate identification of the coupled collective modes in terms of their frequency poles, and the residues at the pole positions provide the relative amplitudes with which these normal modes respond to external excitation. Interesting features found include, for example, explicit formulas showing the transference of coupling of a two dimensional (2D) quantum well plasmon from a surface phonon to a bulk phonon as the 2D quantum well is displaced away from the bounding surface, deeper into the medium.
Exciton shelves for charge and energy transport in third-generation quantum-dot devices
NASA Astrophysics Data System (ADS)
Goodman, Samuel; Singh, Vivek; Noh, Hyunwoo; Casamada, Josep; Chatterjee, Anushree; Cha, Jennifer; Nagpal, Prashant
2014-03-01
Quantum dots are semiconductor nanocrystallites with size-dependent quantum-confined energy levels. While they have been intensively investigated to utilize hot-carriers for photovoltaic applications, to bridge the mismatch between incident solar photons and finite bandgap of semiconductor photocells, efficient charge or exciton transport in quantum-dot films has proven challenging. Here we show development of new coupled conjugated molecular wires with ``exciton shelves'', or different energy levels, matched with the multiple energy levels of quantum dots. Using single nanoparticle and ensemble device measurements we show successful extraction and transport of both bandedge and high-energy charge carriers, and energy transport of excitons. We demonstrate using measurements of electronic density of states, that careful matching of energy states of quantum-dot with molecular wires is important, and any mismatch can generate midgap states leading to charge recombination and reduced efficiency. Therefore, these exciton-shelves and quantum dots can lead to development of next-generation photovoltaic and photodetection devices using simultaneous transport of bandedge and hot-carriers or energy transport of excitons in these nanostructured solution-processed films.
Proposal to probe quantum nonlocality of Majorana fermions in tunneling experiments
NASA Astrophysics Data System (ADS)
Sau, Jay D.; Swingle, Brian; Tewari, Sumanta
2015-07-01
Topological Majorana fermion (MF) quasiparticles have been recently suggested to exist in semiconductor quantum wires with proximity induced superconductivity and a Zeeman field. Although the experimentally observed zero bias tunneling peak and a fractional ac-Josephson effect can be taken as necessary signatures of MFs, neither of them constitutes a sufficient "smoking gun" experiment. Since one pair of Majorana fermions share a single conventional fermionic degree of freedom, MFs are in a sense fractionalized excitations. Based on this fractionalization we propose a tunneling experiment that furnishes a nearly unique signature of end state MFs in semiconductor quantum wires. In particular, we show that a "teleportation"-like experiment is not enough to distinguish MFs from pairs of MFs, which are equivalent to conventional zero energy states, but our proposed tunneling experiment, in principle, can make this distinction.
Static strain tuning of quantum dots embedded in a photonic wire
NASA Astrophysics Data System (ADS)
Tumanov, D.; Vaish, N.; Nguyen, H. A.; Curé, Y.; Gérard, J.-M.; Claudon, J.; Donatini, F.; Poizat, J.-Ph.
2018-03-01
We use strain to statically tune the semiconductor band gap of individual InAs quantum dots (QDs) embedded in a GaAs photonic wire featuring very efficient single photon collection. Thanks to the geometry of the structure, we are able to shift the QD excitonic transition by more than 25 meV by using nano-manipulators to apply the stress. Moreover, owing to the strong transverse strain gradient generated in the structure, we can relatively tune two QDs located in the wire waveguide and bring them in resonance, opening the way to the observation of collective effects such as superradiance.
Hybrid semiconductor nanomagnetoelectronic devices
NASA Astrophysics Data System (ADS)
Bae, Jong Uk
2007-12-01
The subject of this dissertation is the exploration of a new class of hybrid semiconductor nanomagnetoelectronic devices. In these studies, single-domain nanomagnets are used as the gate in a transistor structure, and the spatially non-uniform magnetic fields that they generate provide an additional means to modulate the channel conductance. A quantum wire etched in a high-mobility GaAs/AlGaAs quantum well serves as the channel of this device and the current flow through it is modulated by a high-aspect-ratio Co nanomagnet. The conductance of this device exhibits clear hysteresis in a magnetic field, which is significantly enhanced when the nanomagnet is used as a gate to form a local tunnel barrier in the semiconductor channel. A simple theoretical model, which models the tunnel barrier as a simple harmonic saddle, is able to account for the experimentallyobserved behavior. Further improvements in the tunneling magneto-resistance of this device should be possible in the future by optimizing the gate and channel geometries. In addition to these investigations, we have also explored the hysteretic magnetoresistance of devices in which the tunnel barrier is absent and the behavior is instead dominated by the properties of the magnetic barrier alone. We show experimentally how quantum corrections to the conductance of the quantum wire compete against the magneto-transport effects induced by the non-uniform magnetic field.
NASA Astrophysics Data System (ADS)
Ivanov, Alexei L.
2004-09-01
The EU Research Training Network `Photon-Mediated Phenomena in Semiconductor Nanostructures' (HPRN-CT-2002-00298) comprises seven teams from across Europe: Cambridge, Cardiff, Dortmund, Heraklion, Grenoble, Lund and Paderborn (for details see the Network website http://www.astro.cardiff.ac.uk/research/PMPnetwork/index.html). The first workshop of the Network was held at Gregynog Hall, a conference centre in the beautiful countryside of mid-Wales. There were 44 participants who attended the meeting (7 from France, 2 from Japan, 3 from Germany, 1 from Greece, 2 from Russia, 3 from Sweden, 23 from UK and 3 from USA). Of these, 57% were students and young postdoctoral research associates. The talks presented at the meeting were mainly devoted to linear and nonlinear optics of semiconductor nanostructures. Thus the review and research papers included in this special issue of Journal of Physics: Condensed Matter deal with the exciton-mediated optical phenomena in semiconductor quantum wires, quantum wells, planar and spherical microcavities and self-assembled quantum dots. The specific topics covered by the proceedings are exciton-mediated optics, including lasing, of semiconductor quantum wires Bose-Einstein condensation of excitons and microcavity polaritons diffusion, thermalization and photoluminescence of free carriers and excitons in GaAs coupled quantum wells polaritons in semiconductor microcavities exciton-mediated optics of semiconductor photonic dots optical nonlinearities of biexciton waves optics of self-assembled quantum dots photosensitive metal oxides films On the first day of the workshop, a special session on presentation skills, lead by Mike Edmunds, was organized for the young researchers. The meeting concluded with a round-table discussion at which key questions on research, organization and management of the Network were identified and discussed. The second workshop of the Network, organized and chaired by George Kiriakidis, took place at Hersonissos (Crete, Greece) in October 2003. The forthcoming third workshop, organized by Detlef Schikora and Ulrike Woggon, will be held in Paderborn (conference part) and Dortmund (training part) from 4 October 4 through 7 October 2004 (for details visit the Network website). Finally, I would like to thank my colleagues, Celestino Creatore, Nikolay Nikolaev, Lois Smallwood and Andrew Smith, for their help with preparation of the Proceedings.
Electrons and Phonons in Semiconductor Multilayers
NASA Astrophysics Data System (ADS)
Ridley, B. K.
1996-11-01
This book provides a detailed description of the quantum confinement of electrons and phonons in semiconductor wells, superlattices and quantum wires, and shows how this affects their mutual interactions. It discusses the transition from microscopic to continuum models, emphasizing the use of quasi-continuum theory to describe the confinement of optical phonons and electrons. The hybridization of optical phonons and their interactions with electrons are treated, as are other electron scattering mechanisms. The book concludes with an account of the electron distribution function in three-, two- and one-dimensional systems, in the presence of electrical or optical excitation. This text will be of great use to graduate students and researchers investigating low-dimensional semiconductor structures, as well as to those developing new devices based on these systems.
Tunable Quantum Dot Solids: Impact of Interparticle Interactions on Bulk Properties
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sinclair, Michael B.; Fan, Hongyou; Brener, Igal
2015-09-01
QD-solids comprising self-assembled semiconductor nanocrystals such as CdSe are currently under investigation for use in a wide array of applications including light emitting diodes, solar cells, field effect transistors, photodetectors, and biosensors. The goal of this LDRD project was develop a fundamental understanding of the relationship between nanoparticle interactions and the different regimes of charge and energy transport in semiconductor quantum dot (QD) solids. Interparticle spacing was tuned through the application of hydrostatic pressure in a diamond anvil cell, and the impact on interparticle interactions was probed using x-ray scattering and a variety of static and transient optical spectroscopies. Duringmore » the course of this LDRD, we discovered a new, previously unknown, route to synthesize semiconductor quantum wires using high pressure sintering of self-assembled quantum dot crystals. We believe that this new, pressure driven synthesis approach holds great potential as a new tool for nanomaterials synthesis and engineering.« less
Spectroscopic characterization of the quantum wires in titanosilicates ETS-4 and ETS-10
NASA Astrophysics Data System (ADS)
Yilmaz, Bilge; Warzywoda, Juliusz; Sacco, Albert, Jr.
2006-08-01
Titanosilicates ETS-4 and ETS-10 contain octahedrally coordinated monatomic semiconductor \\cdots \\mathrm {Ti} -O-Ti-O-\\mathrm {Ti}\\cdots (titania) chains in their frameworks. Titania chains are isolated from one another by a siliceous matrix. Thus, these chains can be regarded as one-dimensional nanostructures, i.e., 'quantum wires'. Diffuse reflectance UV-vis (DR-UV-vis) spectroscopy analysis demonstrated a significant blue-shift of the optical absorption edge (>60 nm) for both ETS-4 and ETS-10 compared to bulk titania. This blue-shift is consistent with the hypothesis that the titania chains in ETS-4 and ETS-10 are acting as quantum wires. A broad range of ETS-4 and ETS-10 samples with diverse crystallo-chemical characteristics was prepared. The DR-UV-vis and Raman spectra of various ETS-4 and ETS-10 samples exhibited different characteristics, which were hypothesized to be related to the titania chain 'quality'. Detailed investigation of the spectroscopic bands associated with the titania chains in ETS-4 was performed for the first time. The 'quality' of these titania chains/quantum wires in ETS-4 and ETS-10 was correlated with the crystal growth mechanisms of these materials. Comparison of the growth mechanisms and the spectroscopic behaviour for ETS-4 and ETS-10 suggests that the control of 'quantum wire quality' via hydrothermal synthesis is possible in ETS-4 but would be difficult in ETS-10.
Markovian and non-Markovian light-emission channels in strained quantum wires.
Lopez-Richard, V; González, J C; Matinaga, F M; Trallero-Giner, C; Ribeiro, E; Sousa Dias, M Rebello; Villegas-Lelovsky, L; Marques, G E
2009-09-01
We have achieved conditions to obtain optical memory effects in semiconductor nanostructures. The system is based on strained InP quantum wires where the tuning of the heavy-light valence band splitting has allowed the existence of two independent optical channels with correlated and uncorrelated excitation and light-emission processes. The presence of an optical channel that preserves the excitation memory is unambiguously corroborated by photoluminescence measurements of free-standing quantum wires under different configurations of the incoming and outgoing light polarizations in various samples. High-resolution transmission electron microscopy and electron diffraction indicate the presence of strain effects in the optical response. By using this effect and under certain growth conditions, we have shown that the optical recombination is mediated by relaxation processes with different natures: one a Markov and another with a non-Markovian signature. Resonance intersubband light-heavy hole transitions assisted by optical phonons provide the desired mechanism for the correlated non-Markovian carrier relaxation process. A multiband calculation for strained InP quantum wires was developed to account for the description of the character of the valence band states and gives quantitative support for light hole-heavy hole transitions assisted by optical phonons.
Electron-phonon interactions in semiconductor nanostructures
NASA Astrophysics Data System (ADS)
Yu, Segi
In this dissertation, electron-phonon interactions are studied theoretically in semiconductor nanoscale heterostructures. Interactions of electrons with interface optical phonons dominate over other electron-phonon interactions in narrow width heterostructures. Hence, a transfer matrix method is used to establish a formalism for determining the dispersion relations and electrostatic potentials of the interface phonons for multiple-interface heterostructure within the macroscopic dielectric continuum model. This method facilitates systematic calculations for complex structures where the conventional method is difficult to implement. Several specific cases are treated to illustrate advantages of the formalism. Electrophonon resonance (EPR) is studied in cylindrical quantum wires using the confined/interface optical phonons representation and bulk phonon representation. It has been found that interface phonon contribution to EPR is small compared with confined phonon. Different selection rules for bulk phonons and confined phonons result in different EPR behaviors as the radius of cylindrical wire changes. Experiment is suggested to test which phonon representation is appropriate for EPR. The effects of phonon confinement on elect ron-acoustic-phonon scattering is studied in cylindrical and rectangular quantum wires. In the macroscopic elastic continuum model, the confined-phonon dispersion relations are obtained for several crystallographic directions with free-surface and clamped-surface boundary conditions in cylindrical wires. The scattering rates due to the deformation potential are obtained for these confined phonons and are compared with those of bulk-like phonons. The results show that the inclusion of acoustic phonon confinement may be crucial for calculating accurate low-energy electron scattering rates. Furthermore, it has been found that there is a scaling rule governing the directional dependence of the scattering rates. The Hamiltonian describing the deformation-potential of confined acoustic phonons is derived by quantizing the appropriate, experimentally verified approximate compressional acoustic-phonon modes in a free-standing rectangular quantum wire. The scattering rate is obtained for GaAs quantum wires with a range of cross-sectional dimensions. The results demonstrate that a proper treatment of confined acoustic phonons may be essential to correctly model electron scattering rates at low energies in nanoscale structures.
Spin-orbit qubit in a semiconductor nanowire.
Nadj-Perge, S; Frolov, S M; Bakkers, E P A M; Kouwenhoven, L P
2010-12-23
Motion of electrons can influence their spins through a fundamental effect called spin-orbit interaction. This interaction provides a way to control spins electrically and thus lies at the foundation of spintronics. Even at the level of single electrons, the spin-orbit interaction has proven promising for coherent spin rotations. Here we implement a spin-orbit quantum bit (qubit) in an indium arsenide nanowire, where the spin-orbit interaction is so strong that spin and motion can no longer be separated. In this regime, we realize fast qubit rotations and universal single-qubit control using only electric fields; the qubits are hosted in single-electron quantum dots that are individually addressable. We enhance coherence by dynamically decoupling the qubits from the environment. Nanowires offer various advantages for quantum computing: they can serve as one-dimensional templates for scalable qubit registers, and it is possible to vary the material even during wire growth. Such flexibility can be used to design wires with suppressed decoherence and to push semiconductor qubit fidelities towards error correction levels. Furthermore, electrical dots can be integrated with optical dots in p-n junction nanowires. The coherence times achieved here are sufficient for the conversion of an electronic qubit into a photon, which can serve as a flying qubit for long-distance quantum communication.
NASA Astrophysics Data System (ADS)
Karzig, Torsten; Knapp, Christina; Lutchyn, Roman M.; Bonderson, Parsa; Hastings, Matthew B.; Nayak, Chetan; Alicea, Jason; Flensberg, Karsten; Plugge, Stephan; Oreg, Yuval; Marcus, Charles M.; Freedman, Michael H.
2017-06-01
We present designs for scalable quantum computers composed of qubits encoded in aggregates of four or more Majorana zero modes, realized at the ends of topological superconducting wire segments that are assembled into superconducting islands with significant charging energy. Quantum information can be manipulated according to a measurement-only protocol, which is facilitated by tunable couplings between Majorana zero modes and nearby semiconductor quantum dots. Our proposed architecture designs have the following principal virtues: (1) the magnetic field can be aligned in the direction of all of the topological superconducting wires since they are all parallel; (2) topological T junctions are not used, obviating possible difficulties in their fabrication and utilization; (3) quasiparticle poisoning is abated by the charging energy; (4) Clifford operations are executed by a relatively standard measurement: detection of corrections to quantum dot energy, charge, or differential capacitance induced by quantum fluctuations; (5) it is compatible with strategies for producing good approximate magic states.
NASA Astrophysics Data System (ADS)
Porod, Wolfgang; Lent, Craig S.; Bernstein, Gary H.
1994-06-01
The Notre Dame group has developed a new paradigm for ultra-dense and ultra-fast information processing in nanoelectronic systems. These Quantum Cellular Automata (QCA's) are the first concrete proposal for a technology based on arrays of coupled quantum dots. The basic building block of these cellular arrays is the Notre Dame Logic Cell, as it has been called in the literature. The phenomenon of Coulomb exclusion, which is a synergistic interplay of quantum confinement and Coulomb interaction, leads to a bistable behavior of each cell which makes possible their use in large-scale cellular arrays. The physical interaction between neighboring cells has been exploited to implement logic functions. New functionality may be achieved in this fashion, and the Notre Dame group invented a versatile majority logic gate. In a series of papers, the feasibility of QCA wires, wire crossing, inverters, and Boolean logic gates was demonstrated. A major finding is that all logic functions may be integrated in a hierarchial fashion which allows the design of complicated QCA structures. The most complicated system which was simulated to date is a one-bit full adder consisting of some 200 cells. In addition to exploring these new concepts, efforts are under way to physically realize such structures both in semiconductor and metal systems. Extensive modeling work of semiconductor quantum dot structures has helped identify optimum design parameters for QCA experimental implementations.
Eshelby problem of polygonal inclusions in anisotropic piezoelectric full- and half-planes
NASA Astrophysics Data System (ADS)
Pan, E.
2004-03-01
This paper presents an exact closed-form solution for the Eshelby problem of polygonal inclusion in anisotropic piezoelectric full- and half-planes. Based on the equivalent body-force concept of eigenstrain, the induced elastic and piezoelectric fields are first expressed in terms of line integral on the boundary of the inclusion with the integrand being the Green's function. Using the recently derived exact closed-form line-source Green's function, the line integral is then carried out analytically, with the final expression involving only elementary functions. The exact closed-form solution is applied to a square-shaped quantum wire within semiconductor GaAs full- and half-planes, with results clearly showing the importance of material orientation and piezoelectric coupling. While the elastic and piezoelectric fields within the square-shaped quantum wire could serve as benchmarks to other numerical methods, the exact closed-form solution should be useful to the analysis of nanoscale quantum-wire structures where large strain and electric fields could be induced by the misfit strain.
Modeling Magnetic Properties in EZTB
NASA Technical Reports Server (NTRS)
Lee, Seungwon; vonAllmen, Paul
2007-01-01
A software module that calculates magnetic properties of a semiconducting material has been written for incorporation into, and execution within, the Easy (Modular) Tight-Binding (EZTB) software infrastructure. [EZTB is designed to model the electronic structures of semiconductor devices ranging from bulk semiconductors, to quantum wells, quantum wires, and quantum dots. EZTB implements an empirical tight-binding mathematical model of the underlying physics.] This module can model the effect of a magnetic field applied along any direction and does not require any adjustment of model parameters. The module has thus far been applied to study the performances of silicon-based quantum computers in the presence of magnetic fields and of miscut angles in quantum wells. The module is expected to assist experimentalists in fabricating a spin qubit in a Si/SiGe quantum dot. This software can be executed in almost any Unix operating system, utilizes parallel computing, can be run as a Web-portal application program. The module has been validated by comparison of its predictions with experimental data available in the literature.
Bulk anisotropic excitons in type-II semiconductors built with 1D and 2D low-dimensional structures
NASA Astrophysics Data System (ADS)
Coyotecatl, H. A.; Del Castillo-Mussot, M.; Reyes, J. A.; Vazquez, G. J.; Montemayor-Aldrete, J. A.; Reyes-Esqueda, J. A.; Cocoletzi, G. H.
2005-08-01
We used a simple variational approach to account for the difference in the electron and hole effective masses in Wannier-Mott excitons in type-II semiconducting heterostructures in which the electron is constrained in an one-dimensional quantum wire (1DQW) and the hole is in a two-dimensional quantum layer (2DQL) perpendicular to the wire or viceversa. The resulting Schrodinger equation is similar to that of a 3D bulk exciton because the number of free (nonconfined) variables is three; two coming from the 2DQL and one from the 1DQW. In this system the effective electron-hole interaction depends on the confinement potentials.
NASA Astrophysics Data System (ADS)
Nötzel, Richard
2009-07-01
This volume of IOP Conference Series: Materials Science and Engineering contains papers that were presented at the special symposium K at the EMRS 2009 Spring Meeting held 8-12 June in Strasbourg, France, which was entitled 'Semiconductor Nanostructures towards Electronic and Optoelectronic Device Applications II'. Thanks to the broad interest a large variety of quantum dots and quantum wires and related nanostructures and their application in devices could be covered. There was significant progress in the epitaxial growth of semiconductor quantum dots seen in the operation of high-power, as well as mode locked laser diodes and the lateral positioning of quantum dots on patterned substrates or by selective area growth for future single quantum dot based optoelectronic and electronic devices. In the field of semiconductor nanowires high quality, almost twin free structures are now available together with a new degree of freedom for band structure engineering based on alternation of the crystal structure. In the search for Si based light emitting structures, nanocrystals and miniband-related near infrared luminescence of Si/Ge quantum dot superlattices with high quantum efficiency were reported. These highlights, among others, and the engaged discussions of the scientists, engineers and students brought together at the symposium emphasize how active the field of semiconductor nanostructures and their applications in devices is, so that we can look forward to the progress to come. Guest Editor Richard Nötzel COBRA Research Institute Department of Applied Physics Eindhoven University of Technology 5600 MB Eindhoven The Netherlands Tel.: +31 40 247 2047; fax: +31 40 246 1339 E-mail address: r.noetzel@tue.nl
Wireless majorana fermions: from magnetic tunability to braiding (Conference Presentation)
NASA Astrophysics Data System (ADS)
Fatin, Geoffrey L.; Matos-Abiague, Alex; Scharf, Benedikt; Zutic, Igor
2016-10-01
In condensed-matter systems Majorana bound states (MBSs) are emergent quasiparticles with non-Abelian statistics and particle-antiparticle symmetry. While realizing the non-Abelian braiding statistics under exchange would provide both an ultimate proof for MBS existence and the key element for fault-tolerant topological quantum computing, even theoretical schemes imply a significant complexity to implement such braiding. Frequently examined 1D superconductor/semiconductor wires provide a prototypical example of how to produce MBSs, however braiding statistics are ill-defined in 1D and complex wire networks must be used. By placing an array of magnetic tunnel junctions (MTJs) above a 2D electron gas formed in a semiconductor quantum well grown on the surface of an s-wave superconductor, we have predicted the existence of highly tunable zero-energy MBSs and have proposed a novel scheme by which MBSs could be exchanged [1]. This scheme may then be used to demonstrate the states' non-Abelian statistics through braiding. The underlying magnetic textures produced by MTJ array provides a pseudo-helical texture which allows for highly-controllable topological phase transitions. By defining a local condition for topological nontriviality which takes into account the local rotation of magnetic texture, effective wire geometries support MBS formation and permit their controlled movement in 2D by altering the shape and orientation of such wires. This scheme then overcomes the requirement for a network of physical wires in order to exchange MBSs, allowing easier manipulation of such states. [1] G. L. Fatin, A. Matos-Abiague, B. Scharf, and I. Zutic, arXiv:1510.08182, preprint.
Effect of geometry on the pressure induced donor binding energy in semiconductor nanostructures
NASA Astrophysics Data System (ADS)
Kalpana, P.; Jayakumar, K.; Nithiananthi, P.
2015-09-01
The effect of geometry on an on-center hydrogenic donor impurity in a GaAs/(Ga,Al)As quantum wire (QWW) and quantum dot (QD) under the influence of Γ-X band mixing due to an applied hydrostatic pressure is theoretically studied. Numerical calculations are performed in an effective mass approximation. The ground state impurity energy is obtained by variational procedure. Both the effects of pressure and geometry are to exert an additional confinement on the impurity inside the wire as well as dot. We found that the donor binding energy is modified by the geometrical effects as well as by the confining potential when it is subjected to external pressure. The results are presented and discussed.
NASA Astrophysics Data System (ADS)
Bonderson, Parsa; Lutchyn, Roman M.
2011-04-01
We propose computing bus devices that enable quantum information to be coherently transferred between topological and conventional qubits. We describe a concrete realization of such a topological quantum bus acting between a topological qubit in a Majorana wire network and a conventional semiconductor double quantum dot qubit. Specifically, this device measures the joint (fermion) parity of these two different qubits by using the Aharonov-Casher effect in conjunction with an ancilliary superconducting flux qubit that facilitates the measurement. Such a parity measurement, together with the ability to apply Hadamard gates to the two qubits, allows one to produce states in which the topological and conventional qubits are maximally entangled and to teleport quantum states between the topological and conventional quantum systems.
Interfacing spin qubits in quantum dots and donors—hot, dense, and coherent
NASA Astrophysics Data System (ADS)
Vandersypen, L. M. K.; Bluhm, H.; Clarke, J. S.; Dzurak, A. S.; Ishihara, R.; Morello, A.; Reilly, D. J.; Schreiber, L. R.; Veldhorst, M.
2017-09-01
Semiconductor spins are one of the few qubit realizations that remain a serious candidate for the implementation of large-scale quantum circuits. Excellent scalability is often argued for spin qubits defined by lithography and controlled via electrical signals, based on the success of conventional semiconductor integrated circuits. However, the wiring and interconnect requirements for quantum circuits are completely different from those for classical circuits, as individual direct current, pulsed and in some cases microwave control signals need to be routed from external sources to every qubit. This is further complicated by the requirement that these spin qubits currently operate at temperatures below 100 mK. Here, we review several strategies that are considered to address this crucial challenge in scaling quantum circuits based on electron spin qubits. Key assets of spin qubits include the potential to operate at 1 to 4 K, the high density of quantum dots or donors combined with possibilities to space them apart as needed, the extremely long-spin coherence times, and the rich options for integration with classical electronics based on the same technology.
Bonderson, Parsa; Lutchyn, Roman M
2011-04-01
We propose computing bus devices that enable quantum information to be coherently transferred between topological and conventional qubits. We describe a concrete realization of such a topological quantum bus acting between a topological qubit in a Majorana wire network and a conventional semiconductor double quantum dot qubit. Specifically, this device measures the joint (fermion) parity of these two different qubits by using the Aharonov-Casher effect in conjunction with an ancilliary superconducting flux qubit that facilitates the measurement. Such a parity measurement, together with the ability to apply Hadamard gates to the two qubits, allows one to produce states in which the topological and conventional qubits are maximally entangled and to teleport quantum states between the topological and conventional quantum systems. © 2011 American Physical Society
Biomolecule/nanomaterial hybrid systems for nanobiotechnology.
Tel-Vered, Ran; Yehezkeli, Omer; Willner, Itamar
2012-01-01
The integration of biomolecules with metallic or semiconductor nanoparticles or carbon nanotubes yields new hybrid nanostructures of unique features that combine the properties of the biomolecules and of the nano-elements. These unique features of the hybrid biomolecule/nanoparticle systems provide the basis for the rapid development of the area of nanobiotechnology. Recent advances in the implementation of hybrid materials consisting of biomolecules and metallic nanoparticles or semiconductor quantum dots will be discussed. The following topics will be exemplified: (i) The electrical wiring of redox enzymes with electrodes by means of metallic nanoparticles or carbon nanotubes, and the application of the modified electrodes as amperometric biosensors or for the construction of biofuel cells. (ii) The biocatalytic growth of metallic nanoparticles as a means to construct optical or electrical sensors. (iii) The functionalization of semiconductor quantum dots with biomolecules and the application of the hybrid nanostructures for developing different optical sensors, including intracellular sensor systems. (iv) The use of biomolecule-metallic nanoparticle nanostructures as templates for growing metallic nanowires, and the construction of fuel-driven nano-transporters.
Giant nonlinear interaction between two optical beams via a quantum dot embedded in a photonic wire
NASA Astrophysics Data System (ADS)
Nguyen, H. A.; Grange, T.; Reznychenko, B.; Yeo, I.; de Assis, P.-L.; Tumanov, D.; Fratini, F.; Malik, N. S.; Dupuy, E.; Gregersen, N.; Auffèves, A.; Gérard, J.-M.; Claudon, J.; Poizat, J.-Ph.
2018-05-01
Optical nonlinearities usually appear for large intensities, but discrete transitions allow for giant nonlinearities operating at the single-photon level. This has been demonstrated in the last decade for a single optical mode with cold atomic gases, or single two-level systems coupled to light via a tailored photonic environment. Here, we demonstrate a two-mode giant nonlinearity with a single semiconductor quantum dot (QD) embedded in a photonic wire antenna. We exploit two detuned optical transitions associated with the exciton-biexciton QD level scheme. Owing to the broadband waveguide antenna, the two transitions are efficiently interfaced with two free-space laser beams. The reflection of one laser beam is then controlled by the other beam, with a threshold power as low as 10 photons per exciton lifetime (1.6 nW ). Such a two-color nonlinearity opens appealing perspectives for the realization of ultralow-power logical gates and optical quantum gates, and could also be implemented in an integrated photonic circuit based on planar waveguides.
Wire Array Solar Cells: Fabrication and Photoelectrochemical Studies
NASA Astrophysics Data System (ADS)
Spurgeon, Joshua Michael
Despite demand for clean energy to reduce our addiction to fossil fuels, the price of these technologies relative to oil and coal has prevented their widespread implementation. Solar energy has enormous potential as a carbon-free resource but is several times the cost of coal-produced electricity, largely because photovoltaics of practical efficiency require high-quality, pure semiconductor materials. To produce current in a planar junction solar cell, an electron or hole generated deep within the material must travel all the way to the junction without recombining. Radial junction, wire array solar cells, however, have the potential to decouple the directions of light absorption and charge-carrier collection so that a semiconductor with a minority-carrier diffusion length shorter than its absorption depth (i.e., a lower quality, potentially cheaper material) can effectively produce current. The axial dimension of the wires is long enough for sufficient optical absorption while the charge-carriers are collected along the shorter radial dimension in a massively parallel array. This thesis explores the wire array solar cell design by developing potentially low-cost fabrication methods and investigating the energy-conversion properties of the arrays in photoelectrochemical cells. The concept was initially investigated with Cd(Se, Te) rod arrays; however, Si was the primary focus of wire array research because its semiconductor properties make low-quality Si an ideal candidate for improvement in a radial geometry. Fabrication routes for Si wire arrays were explored, including the vapor-liquid-solid growth of wires using SiCl4. Uniform, vertically aligned Si wires were demonstrated in a process that permits control of the wire radius, length, and spacing. A technique was developed to transfer these wire arrays into a low-cost, flexible polymer film, and grow multiple subsequent arrays using a single Si(111) substrate. Photoelectrochemical measurements on Si wire array/polymer composite films showed that their energy-conversion properties were comparable to those of an array attached to the growth substrate. High quantum efficiencies were observed relative to the packing density of the wires, particularly with illumination at high angles of incidence. The results indicate that an inexpensive, solid-state Si wire array solar cell is possible, and a plan is presented to develop one.
Properties and applications of quantum dot heterostructures grown by molecular beam epitaxy
2006-01-01
One of the main directions of contemporary semiconductor physics is the production and study of structures with a dimension less than two: quantum wires and quantum dots, in order to realize novel devices that make use of low-dimensional confinement effects. One of the promising fabrication methods is to use self-organized three-dimensional (3D) structures, such as 3D coherent islands, which are often formed during the initial stage of heteroepitaxial growth in lattice-mismatched systems. This article is intended to convey the flavour of the subject by focussing on the structural, optical and electronic properties and device applications of self-assembled quantum dots and to give an elementary introduction to some of the essential characteristics.
NASA Astrophysics Data System (ADS)
Osowski, Mark Louis
With the arrival of advanced growth technologies such as molecular beam epitaxy (MBE) and metalorganic chemical vapor deposition (MOCVD), research in III-V compound semiconductor photonic devices has flourished. Advances in fabrication processes have allowed the realization of high-performance quantum well lasers which emit over a wide spectral range and operate with low threshold currents. As a result, semiconductor lasers are presently employed in a wide variety of applications, including fiber-optic telecommunications, optical spectroscopy, solid-state laser pumping, and photonic integrated circuits. The work in this dissertation addresses three photonic device structures which are currently receiving a great deal of attention in the research community: integrable quantum well laser devices, distributed feedback (DFB) laser devices, and quantum wire arrays. For the realization of the integrable and integrated photonic devices described-in Chapter 2, a three-step selective-area growth technique was utilized. The selective epitaxy process was used to produce discrete buried-heterostructure Fabry Perot lasers with threshold currents as low as 2.6 mA. Based on this process, broad- spectrum edge-emitting superluminescent diodes are demonstrated which display spectral widths of over 80 nm. In addition, the monolithic integration of a multiwavelength emitter is demonstrated in which two distinct laser sources are coupled into a single output waveguide. The dissertation also describes the development of a single-growth-step ridge waveguide DFB laser. The DFB laser utilizes an asymmetric cladding waveguide structure to enhance the interaction of the optical mode with the titanium surface metal to promote single frequency emission via gain coupling. These lasers exhibit low threshold currents (11 mA), high side mode suppression ratios (50 dB), and narrow linewidths (45 kHz). In light of the substantial performance advantages of quantum well lasers relative to double heterostructure lasers, extensive efforts have been directed toward producing quantum wire systems. In view of this, the final subject of this dissertation details the fabrication and characterization of quantum wire arrays by selective-area MOCVD. The method employs a silicon dioxide grating mask with sub-micron oxide dimensions to achieve selective deposition of high-quality buried layers in the open areas of the patterned substrate. This allows the fabrication of embedded nanostructures in a single growth step, and the crystallographic nature of the growth allows for control of their lateral size. Using this process, the growth of strained InGaAs wires with a lateral dimension of less than 50 nm are obtained. Subsequent characterization by photoluminescence, scanning electron microscopy and transmission electron microscopy is also presented.
Alvaro, M; Bonilla, L L; Carretero, M; Melnik, R V N; Prabhakar, S
2013-08-21
In this paper we develop a kinetic model for the analysis of semiconductor superlattices, accounting for quantum effects. The model consists of a Boltzmann-Poisson type system of equations with simplified Bhatnagar-Gross-Krook collisions, obtained from the general time-dependent Schrödinger-Poisson model using Wigner functions. This system for superlattice transport is supplemented by the quantum mechanical part of the model based on the Ben-Daniel-Duke form of the Schrödinger equation for a cylindrical superlattice of finite radius. The resulting energy spectrum is used to characterize the Fermi-Dirac distribution that appears in the Bhatnagar-Gross-Krook collision, thereby coupling the quantum mechanical and kinetic parts of the model. The kinetic model uses the dispersion relation obtained by the generalized Kronig-Penney method, and allows us to estimate radii of quantum wire superlattices that have the same miniband widths as in experiments. It also allows us to determine more accurately the time-dependent characteristics of superlattices, in particular their current density. Results, for several experimentally grown superlattices, are discussed in the context of self-sustained coherent oscillations of the current density which are important in an increasing range of current and potential applications.
Enhanced Ferromagnetism in Nanoscale GaN:Mn Wires Grown on GaN Ridges.
Cheng, Ji; Jiang, Shengxiang; Zhang, Yan; Yang, Zhijian; Wang, Cunda; Yu, Tongjun; Zhang, Guoyi
2017-05-02
The problem of weak magnetism has hindered the application of magnetic semiconductors since their invention, and on the other hand, the magnetic mechanism of GaN-based magnetic semiconductors has been the focus of long-standing debate. In this work, nanoscale GaN:Mn wires were grown on the top of GaN ridges by metalorganic chemical vapor deposition (MOCVD), and the superconducting quantum interference device (SQUID) magnetometer shows that its ferromagnetism is greatly enhanced. Secondary ion mass spectrometry (SIMS) and energy dispersive spectroscopy (EDS) reveal an obvious increase of Mn composition in the nanowire part, and transmission electron microscopy (TEM) and EDS mapping results further indicate the correlation between the abundant stacking faults (SFs) and high Mn doping. When further combined with the micro-Raman results, the magnetism in GaN:Mn might be related not only to Mn concentration, but also to some kinds of built-in defects introduced together with the Mn doping or the SFs.
Metallization of a Rashba wire by a superconducting layer in the strong-proximity regime
NASA Astrophysics Data System (ADS)
Reeg, Christopher; Loss, Daniel; Klinovaja, Jelena
2018-04-01
Semiconducting quantum wires defined within two-dimensional electron gases and strongly coupled to thin superconducting layers have been extensively explored in recent experiments as promising platforms to host Majorana bound states. We study numerically such a geometry, consisting of a quasi-one-dimensional wire coupled to a disordered three-dimensional superconducting layer. We find that, in the strong-coupling limit of a sizable proximity-induced superconducting gap, all transverse subbands of the wire are significantly shifted in energy relative to the chemical potential of the wire. For the lowest subband, this band shift is comparable in magnitude to the spacing between quantized levels that arises due to the finite thickness of the superconductor (which typically is ˜500 meV for a 10-nm-thick layer of aluminum); in higher subbands, the band shift is much larger. Additionally, we show that the width of the system, which is usually much larger than the thickness, and moderate disorder within the superconductor have almost no impact on the induced gap or band shift. We provide a detailed discussion of the ramifications of our results, arguing that a huge band shift and significant renormalization of semiconducting material parameters in the strong-coupling limit make it challenging to realize a topological phase in such a setup, as the strong coupling to the superconductor essentially metallizes the semiconductor. This metallization of the semiconductor can be tested experimentally through the measurement of the band shift.
The quantum pinch effect in semiconducting quantum wires: A bird’s-eye view
NASA Astrophysics Data System (ADS)
Kushwaha, Manvir S.
2016-01-01
Those who measure success with culmination do not seem to be aware that life is a journey not a destination. This spirit is best reflected in the unceasing failures in efforts for solving the problem of controlled thermonuclear fusion for even the simplest pinches for over decades; and the nature keeps us challenging with examples. However, these efforts have permitted researchers the obtention of a dense plasma with a lifetime that, albeit short, is sufficient to study the physics of the pinch effect, to create methods of plasma diagnostics, and to develop a modern theory of plasma processes. Most importantly, they have impregnated the solid state plasmas, particularly the electron-hole plasmas in semiconductors, which do not suffer from the issues related with the confinement and which have demonstrated their potential not only for the fundamental physics but also for the device physics. Here, we report on a two-component, cylindrical, quasi-one-dimensional quantum plasma subjected to a radial confining harmonic potential and an applied magnetic field in the symmetric gauge. It is demonstrated that such a system, as can be realized in semiconducting quantum wires, offers an excellent medium for observing the quantum pinch effect at low temperatures. An exact analytical solution of the problem allows us to make significant observations: Surprisingly, in contrast to the classical pinch effect, the particle density as well as the current density display a determinable maximum before attaining a minimum at the surface of the quantum wire. The effect will persist as long as the equilibrium pair density is sustained. Therefore, the technological promise that emerges is the route to the precise electronic devices that will control the particle beams at the nanoscale.
NASA Astrophysics Data System (ADS)
Glas, Frank
2003-06-01
We give a fully analytical solution for the displacement and strain fields generated by the coherent elastic relaxation of a type of misfitting inclusions with uniform dilatational eigenstrain lying in a half space, assuming linear isotropic elasticity. The inclusion considered is an infinitely long circular cylinder having an axis parallel to the free surface and truncated by two arbitrarily positioned planes parallel to this surface. These calculations apply in particular to strained semiconductor quantum wires. The calculations are illustrated by examples showing quantitatively that, depending on the depth of the wire under the free surface, the latter may significantly affect the magnitude and the distribution of the various strain components inside the inclusion as well as in the surrounding matrix.
Novel Growth Technologies for In Situ Formation of Semiconductor Quantum Wire Structures
1994-01-01
as the alternative source for phosphine for the first time. We have developed the Stranski-Krastanow (SK) growth mode for the in-situ formation of InP...tertiarybutylphosphine (TBP) as the alternative source 3 for phosphine for the first time. At growth temperatures of 600oC specular surface morphology and mobilities...semi-insulating hnP buffer layer using ferrocene as the Fe-dopant. For the n-channel in our JFET structure disilane is used to obtain carrier
Body of Knowledge (BOK) for Copper Wire Bonds
NASA Technical Reports Server (NTRS)
Rutkowski, E.; Sampson, M. J.
2015-01-01
Copper wire bonds have replaced gold wire bonds in the majority of commercial semiconductor devices for the latest technology nodes. Although economics has been the driving mechanism to lower semiconductor packaging costs for a savings of about 20% by replacing gold wire bonds with copper, copper also has materials property advantages over gold. When compared to gold, copper has approximately: 25% lower electrical resistivity, 30% higher thermal conductivity, 75% higher tensile strength and 45% higher modulus of elasticity. Copper wire bonds on aluminum bond pads are also more mechanically robust over time and elevated temperature due to the slower intermetallic formation rate - approximately 1/100th that of the gold to aluminum intermetallic formation rate. However, there are significant tradeoffs with copper wire bonding - copper has twice the hardness of gold which results in a narrower bonding manufacturing process window and requires that the semiconductor companies design more mechanically rigid bonding pads to prevent cratering to both the bond pad and underlying chip structure. Furthermore, copper is significantly more prone to corrosion issues. The semiconductor packaging industry has responded to this corrosion concern by creating a palladium coated copper bonding wire, which is more corrosion resistant than pure copper bonding wire. Also, the selection of the device molding compound is critical because use of environmentally friendly green compounds can result in internal CTE (Coefficient of Thermal Expansion) mismatches with the copper wire bonds that can eventually lead to device failures during thermal cycling. Despite the difficult problems associated with the changeover to copper bonding wire, there are billions of copper wire bonded devices delivered annually to customers. It is noteworthy that Texas Instruments announced in October of 2014 that they are shipping microcircuits containing copper wire bonds for safety critical automotive applications. An evaluation of copper wire bond technology for applicability to spaceflight hardware may be warranted along with concurrently compiling a comprehensive understanding of the failure mechanisms involved with copper wire bonded semiconductor devices.
Arrays of Nano Tunnel Junctions as Infrared Image Sensors
NASA Technical Reports Server (NTRS)
Son, Kyung-Ah; Moon, Jeong S.; Prokopuk, Nicholas
2006-01-01
Infrared image sensors based on high density rectangular planar arrays of nano tunnel junctions have been proposed. These sensors would differ fundamentally from prior infrared sensors based, variously, on bolometry or conventional semiconductor photodetection. Infrared image sensors based on conventional semiconductor photodetection must typically be cooled to cryogenic temperatures to reduce noise to acceptably low levels. Some bolometer-type infrared sensors can be operated at room temperature, but they exhibit low detectivities and long response times, which limit their utility. The proposed infrared image sensors could be operated at room temperature without incurring excessive noise, and would exhibit high detectivities and short response times. Other advantages would include low power demand, high resolution, and tailorability of spectral response. Neither bolometers nor conventional semiconductor photodetectors, the basic detector units as proposed would partly resemble rectennas. Nanometer-scale tunnel junctions would be created by crossing of nanowires with quantum-mechanical-barrier layers in the form of thin layers of electrically insulating material between them (see figure). A microscopic dipole antenna sized and shaped to respond maximally in the infrared wavelength range that one seeks to detect would be formed integrally with the nanowires at each junction. An incident signal in that wavelength range would become coupled into the antenna and, through the antenna, to the junction. At the junction, the flow of electrons between the crossing wires would be dominated by quantum-mechanical tunneling rather than thermionic emission. Relative to thermionic emission, quantum mechanical tunneling is a fast process.
Growing Cobalt Silicide Columns In Silicon
NASA Technical Reports Server (NTRS)
Fathauer, Obert W.
1991-01-01
Codeposition by molecular-beam epitaxy yields variety of structures. Proposed fabrication process produces three-dimensional nanometer-sized structures on silicon wafers. Enables control of dimensions of metal and semiconductor epitaxial layers in three dimensions instead of usual single dimension (perpendicular to the plane of the substrate). Process used to make arrays of highly efficient infrared sensors, high-speed transistors, and quantum wires. For fabrication of electronic devices, both shapes and locations of columns controlled. One possible technique for doing this electron-beam lithography, see "Making Submicron CoSi2 Structures on Silicon Substrates" (NPO-17736).
NASA Astrophysics Data System (ADS)
Kalpana, Panneer Selvam; Jayakumar, Kalyanasundaram
2017-11-01
We study the effect of magnetic field on the Coulomb interaction between the two electrons confined inside a CdTe/Cd1-xMnxTe Quantum Well (QW), Quantum Well Wire (QWW) and Quantum Dot (QD) for the composition of Mn2+ ion, x = 0.3. The two particle Schrodinger equation has been solved using variational technique in the effective mass approximation. The results show that the applied magnetic field tremendously alters the Coulomb interaction of the electrons and their binding to the donor impurity by shrinking the spatial extension of the two particle wavefunction and leads to tunnelling through the barrier. The qualitative phenomenon involved in such variation of electron - electron interaction with the magnetic field has also been explained through the 3D - plot of the probability density function.
Binding of two-electron metastable states in semiconductor quantum dots under a magnetic field
NASA Astrophysics Data System (ADS)
Garagiola, Mariano; Pont, Federico M.; Osenda, Omar
2018-04-01
Applying a strong enough magnetic field results in the binding of few-electron resonant states. The mechanism was proposed many years ago but its verification in laboratory conditions is far more recent. In this work we study the binding of two-electron resonant states. The electrons are confined in a cylindrical quantum dot which is embedded in a semiconductor wire. The geometry considered is similar to the one used in actual experimental setups. The low-energy two-electron spectrum is calculated numerically from an effective-mass approximation Hamiltonian modelling the system. Methods for binding threshold calculations in systems with one and two electrons are thoroughly studied; in particular, we use quantum information quantities to assess when the strong lateral confinement approximation can be used to obtain reliable low-energy spectra. For simplicity, only cases without bound states in the absence of an external field are considered. Under these conditions, the binding threshold for the one-electron case is given by the lowest Landau energy level. Moreover, the energy of the one-electron bounded resonance can be used to obtain the two-electron binding threshold. It is shown that for realistic values of the two-electron model parameters it is feasible to bind resonances with field strengths of a few tens of tesla.
Tuning Rashba spin-orbit coupling in homogeneous semiconductor nanowires
NASA Astrophysics Data System (ADS)
Wójcik, Paweł; Bertoni, Andrea; Goldoni, Guido
2018-04-01
We use k .p theory to estimate the Rashba spin-orbit coupling (SOC) in large semiconductor nanowires. We specifically investigate GaAs- and InSb-based devices with different gate configurations to control symmetry and localization of the electron charge density. We explore gate-controlled SOC for wires of different size and doping, and we show that in high carrier density SOC has a nonlinear electric field susceptibility, due to large reshaping of the quantum states. We analyze recent experiments with InSb nanowires in light of our calculations. Good agreement is found with the SOC coefficients reported in Phys. Rev. B 91, 201413(R) (2015), 10.1103/PhysRevB.91.201413, but not with the much larger values reported in Nat. Commun. 8, 478 (2017), 10.1038/s41467-017-00315-y. We discuss possible origins of this discrepancy.
InGaAs/InP quantum wires grown on silicon with adjustable emission wavelength at telecom bands
NASA Astrophysics Data System (ADS)
Han, Yu; Li, Qiang; Ng, Kar Wei; Zhu, Si; Lau, Kei May
2018-06-01
We report the growth of vertically stacked InGaAs/InP quantum wires on (001) Si substrates with adjustable room-temperature emission at telecom bands. Based on a self-limiting growth mode in selective area metal–organic chemical vapor deposition, crescent-shaped InGaAs quantum wires with variable dimensions are embedded within InP nano-ridges. With extensive transmission electron microscopy studies, the growth transition and morphology change from quantum wires to ridge quantum wells (QWs) have been revealed. As a result, we are able to decouple the quantum wires from ridge QWs and manipulate their dimensions by scaling the growth time. With minimized lateral dimension and their unique positioning, the InGaAs/InP quantum wires are more immune to dislocations and more efficient in radiative processes, as evidenced by their excellent optical quality at telecom-bands. These promising results thus highlight the potential of combining low-dimensional quantum wire structures with the aspect ratio trapping process for integrating III–V nano-light emitters on mainstream (001) Si substrates.
InGaAs/InP quantum wires grown on silicon with adjustable emission wavelength at telecom bands.
Han, Yu; Li, Qiang; Ng, Kar Wei; Zhu, Si; Lau, Kei May
2018-06-01
We report the growth of vertically stacked InGaAs/InP quantum wires on (001) Si substrates with adjustable room-temperature emission at telecom bands. Based on a self-limiting growth mode in selective area metal-organic chemical vapor deposition, crescent-shaped InGaAs quantum wires with variable dimensions are embedded within InP nano-ridges. With extensive transmission electron microscopy studies, the growth transition and morphology change from quantum wires to ridge quantum wells (QWs) have been revealed. As a result, we are able to decouple the quantum wires from ridge QWs and manipulate their dimensions by scaling the growth time. With minimized lateral dimension and their unique positioning, the InGaAs/InP quantum wires are more immune to dislocations and more efficient in radiative processes, as evidenced by their excellent optical quality at telecom-bands. These promising results thus highlight the potential of combining low-dimensional quantum wire structures with the aspect ratio trapping process for integrating III-V nano-light emitters on mainstream (001) Si substrates.
NASA Astrophysics Data System (ADS)
Hayata, K.; Tsuji, Y.; Koshiba, M.
1992-10-01
A theoretical formulation of electron pulse propagation in quantum wire structures with mesoscopic scale cross sections is presented, assuming quantum ballistic transport of electron wave packets over a certain characteristic length. As typical mesoscopic structures for realizing coherent electron transmission, two traveling-wave configurations are considered: straight quantum wire waveguides and quantum wire bend structures (quantum whispering galleries). To estimate temporal features of the pulse during propagation, the walk off, the dispersion, and the pulse coherence lengths are defined as useful characteristic lengths. Numerical results are shown for ultrashort pulse propagation through rectangular wire waveguides. Effects due to an external electric field are discussed as well.
Transport electron through a quantum wire by side-attached asymmetric quantum-dot rings
NASA Astrophysics Data System (ADS)
Rostami, A.; Zabihi, S.; Rasooli S., H.; Seyyedi, S. K.
2011-12-01
The electronic conductance at zero temperature through a quantum wire with side-attached asymmetric quantum ring (as a scatter system) is theoretically studied using the non-interacting Anderson tunneling Hamiltonian method. We show that the asymmetric configuration of QD- scatter system strongly impresses the amplitude and spectrum of quantum wire nanostructure transmission characteristics. It is shown that whenever the balanced number of quantum dots in two rings is substituted by unbalanced scheme, the number of forbidden mini-bands in quantum wire conductance increases and QW-nanostructure electronic conductance contains rich spectral properties due to appearance of the new anti-resonance and resonance points in spectrum. Considering the suitable gap between nano-rings can strengthen the amplitude of new resonant peaks in the QW conductance spectrum. The proposed asymmetric quantum ring scatter system idea in this paper opens a new insight on designing quantum wire nano structure for given electronic conductance.
Wang, Fudong; Buhro, William E
2017-12-26
Crystal-phase control is one of the most challenging problems in nanowire growth. We demonstrate that, in the solution-phase catalyzed growth of colloidal cadmium telluride (CdTe) quantum wires (QWs), the crystal phase can be controlled by manipulating the reaction chemistry of the Cd precursors and tri-n-octylphosphine telluride (TOPTe) to favor the production of either a CdTe solute or Te, which consequently determines the composition and (liquid or solid) state of the Bi x Cd y Te z catalyst nanoparticles. Growth of single-phase (e.g., wurtzite) QWs is achieved only from solid catalysts (y ≪ z) that enable the solution-solid-solid growth of the QWs, whereas the liquid catalysts (y ≈ z) fulfill the solution-liquid-solid growth of the polytypic QWs. Factors that affect the precursor-conversion chemistry are systematically accounted for, which are correlated with a kinetic study of the composition and state of the catalyst nanoparticles to understand the mechanism. This work reveals the role of the precursor-reaction chemistry in the crystal-phase control of catalytically grown colloidal QWs, opening the possibility of growing phase-pure QWs of other compositions.
Calculation of the figure of merit for carbon nanotubes based devices
NASA Astrophysics Data System (ADS)
Vaseashta, Ashok
2004-03-01
The dimensionality of a system has a profound influence on its physical behavior. With advances in technology over the past few decades, it has become possible to fabricate and study reduced-dimensional systems in which electrons are strongly confined in one or more dimensions. In the case of 1-D electron systems, most of the results, such as conductance quantization, have been explained in terms of non-interacting electrons. In contrast to the cases of 2D and 3D systems, the question of what roles electron-electron interactions play in real 1-D systems has been difficult to address, because of the difficulty in obtaining long, relatively disorder free 1-D wires. Since their first discovery and fabrication in 1991, carbon nanotubes (CNTs) have received considerable attention because of the prospect of new fundamental science and many potential applications. Hence, it has been possible to conduct studies of the electrons in 1-D. Carbon nanotubes are of considerable technological importance due to their excellent mechanical, electrical, and chemical characteristics. The potential technological applications include electronics, opto-electronics and biomedical sensors. The applications of carbon nanotubes include quantum wire interconnects, diodes and transistors for computing, capacitors, data storage devices, field emitters, flat panel displays and terahertz oscillators. One of the most remarkable characteristics is the possibility of bandgap engineering by controlling the microstructure. Hence, a pentagon-heptagon defect in the hexagonal network can connect a metallic to a semiconductor nanotube, providing an Angstrom-scale hetero-junction with a device density approximately 10^4 times greater than present day microelectronics. Also, successfully contacted carbon nanotubes have exhibited a large number of useful quantum electronic and low dimensional transport phenomena, such as true quantum wire behaviors, room temperature field effect transistors, room temperature single electron transistors, Luttinger-liquid behavior, the Aharonov Bohm effect, and Fabry-Perot interference effects. Hence it is evident that CNT can be used for a variety of applications. To use CNT based devices, it is critical to know the relative advantage of using CNTs over other known electronic materials. The figure of merit for CNT based devices is not reported so far. It is the objective of this investigation to calculate the figure of merit and present such results. Such calculations will enable researchers to focus their research for specific device designs where CNT based devices show a marked improvement over conventional semiconductor devices.
Edge Modes and Teleportation in a Topologically Insulating Quantum Wire
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ghrear, Majd; Mackovic, Brie; Semenoff, Gordon W.
We find a simple model of an insulating state of a quantum wire which has a single isolated edge mode. We argue that, when brought to proximity, the edge modes on independent wires naturally form Bell entangled states which could be used for elementary quantum processes such as teleportation. We give an example of an algorithm which teleports the spin state of an electron from one quantum wire to another.
Panchal, A K; Rai, D K; Solanki, C S
2011-04-01
Post-deposition annealing of a-Si/SiN(x) multilayer films at different temperature shows varying shift in high frequency (1 MHz) capacitance-voltage (HFCV) characteristics. Various a-Si/SiN(x) multilayer films were deposited using hot wire chemical vapor deposition (HWCVD) and annealed in the temperature range of 800 to 900 degrees C to precipitate Si quantum dots (Si-QD) in a-Si layers. HFCV measurements of the as-deposited and annealed films in metal-insulator-semiconductor (MIS) structures show hysterisis in C-V curves. The hysteresis in the as-deposited films and annealed films is attributed to charge trapping in Si-dangling bonds in a-Si layer and in Si-QD respectively. The charge trapping density in Si-QD increases with temperature while the interface defects density (D(it)) remains constant.
Correlating electronic transport to atomic structures in self-assembled quantum wires.
Qin, Shengyong; Kim, Tae-Hwan; Zhang, Yanning; Ouyang, Wenjie; Weitering, Hanno H; Shih, Chih-Kang; Baddorf, Arthur P; Wu, Ruqian; Li, An-Ping
2012-02-08
Quantum wires, as a smallest electronic conductor, are expected to be a fundamental component in all quantum architectures. The electronic conductance in quantum wires, however, is often dictated by structural instabilities and electron localization at the atomic scale. Here we report on the evolutions of electronic transport as a function of temperature and interwire coupling as the quantum wires of GdSi(2) are self-assembled on Si(100) wire-by-wire. The correlation between structure, electronic properties, and electronic transport are examined by combining nanotransport measurements, scanning tunneling microscopy, and density functional theory calculations. A metal-insulator transition is revealed in isolated nanowires, while a robust metallic state is obtained in wire bundles at low temperature. The atomic defects lead to electron localizations in isolated nanowire, and interwire coupling stabilizes the structure and promotes the metallic states in wire bundles. This illustrates how the conductance nature of a one-dimensional system can be dramatically modified by the environmental change on the atomic scale. © 2012 American Chemical Society
NASA Technical Reports Server (NTRS)
1971-01-01
The reliability of semiconductor devices as influenced by the reliability of wire bonds used in the assembly of the devices is investigated. The specific type of failure dealt with involves fracture of wire bonds as a result of repeated flexure of the wire at the heel of the bond when the devices are operated in an on-off mode. The mechanism of failure is one of induced fracture of the wire. To improve the reliability of a chosen transistor, one-mil diameter wires of aluminum with various alloy additions were studied using an accelerated fatigue testing machine. In addition, the electroprobe was used to study the metallurgy of the wires as to microstructure and kinetics of the growth of insoluble phases. Thermocompression and ultrasonic bonding techniques were also investigated.
Spatially selective hydrogen irradiation of dilute nitride semiconductors: a brief review
NASA Astrophysics Data System (ADS)
Felici, Marco; Pettinari, Giorgio; Biccari, Francesco; Capizzi, Mario; Polimeni, Antonio
2018-05-01
We provide a brief survey of the most recent results obtained by performing spatially selective hydrogen irradiation of dilute nitride semiconductors. The striking effects of the formation of stable N–H complexes in these compounds—coupled to the ultrasharp diffusion profile of H therein—can be exploited to tailor the structural (lattice constant) and optoelectronic (energy gap, refractive index, electron effective mass) properties of the material in the growth plane, with a spatial resolution of a few nm. This can be applied to the fabrication of site-controlled quantum dots (QDs) and wires, but also to the realization of the optical elements required for the on-chip manipulation and routing of qubits in fully integrated photonic circuits. The fabricated QDs—which have shown the ability to emit single photons—can also be deterministically coupled with photonic crystal microcavities, proving their inherent suitability to act as integrated light sources in complex nanophotonic devices.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schulz, T.; Remmele, T.; Korytov, M.
2014-01-21
Based on the evaluation of lattice parameter maps in aberration corrected high resolution transmission electron microscopy images, we propose a simple method that allows quantifying the composition and disorder of a semiconductor alloy at the unit cell scale with high accuracy. This is realized by considering, next to the out-of-plane, also the in-plane lattice parameter component allowing to separate the chemical composition from the strain field. Considering only the out-of-plane lattice parameter component not only yields large deviations from the true local alloy content but also carries the risk of identifying false ordering phenomena like formations of chains or platelets.more » Our method is demonstrated on image simulations of relaxed supercells, as well as on experimental images of an In{sub 0.20}Ga{sub 0.80}N quantum well. Principally, our approach is applicable to all epitaxially strained compounds in the form of quantum wells, free standing islands, quantum dots, or wires.« less
Parametric interactions in presence of different size colloids in semiconductor quantum plasmas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vanshpal, R., E-mail: ravivanshpal@gmail.com; Sharma, Uttam; Dubey, Swati
2015-07-31
Present work is an attempt to investigate the effect of different size colloids on parametric interaction in semiconductor quantum plasma. Inclusion of quantum effect is being done in this analysis through quantum correction term in classical hydrodynamic model of homogeneous semiconductor plasma. The effect is associated with purely quantum origin using quantum Bohm potential and quantum statistics. Colloidal size and quantum correction term modify the parametric dispersion characteristics of ion implanted semiconductor plasma medium. It is found that quantum effect on colloids is inversely proportional to their size. Moreover critical size of implanted colloids for the effective quantum correction ismore » determined which is found to be equal to the lattice spacing of the crystal.« less
Low temperature junction growth using hot-wire chemical vapor deposition
Wang, Qi; Page, Matthew; Iwaniczko, Eugene; Wang, Tihu; Yan, Yanfa
2014-02-04
A system and a process for forming a semi-conductor device, and solar cells (10) formed thereby. The process includes preparing a substrate (12) for deposition of a junction layer (14); forming the junction layer (14) on the substrate (12) using hot wire chemical vapor deposition; and, finishing the semi-conductor device.
Aptamer-Modified Semiconductor Quantum Dots for Biosensing Applications
Wen, Lin; Qiu, Liping; Wu, Yongxiang; Hu, Xiaoxiao; Zhang, Xiaobing
2017-01-01
Semiconductor quantum dots have attracted extensive interest in the biosensing area because of their properties, such as narrow and symmetric emission with tunable colors, high quantum yield, high stability and controllable morphology. The introduction of various reactive functional groups on the surface of semiconductor quantum dots allows one to conjugate a spectrum of ligands, antibodies, peptides, or nucleic acids for broader and smarter applications. Among these ligands, aptamers exhibit many advantages including small size, high chemical stability, simple synthesis with high batch-to-batch consistency and convenient modification. More importantly, it is easy to introduce nucleic acid amplification strategies and/or nanomaterials to improve the sensitivity of aptamer-based sensing systems. Therefore, the combination of semiconductor quantum dots and aptamers brings more opportunities in bioanalysis. Here we summarize recent advances on aptamer-functionalized semiconductor quantum dots in biosensing applications. Firstly, we discuss the properties and structure of semiconductor quantum dots and aptamers. Then, the applications of biosensors based on aptamer-modified semiconductor quantum dots by different signal transducing mechanisms, including optical, electrochemical and electrogenerated chemiluminescence approaches, is discussed. Finally, our perspectives on the challenges and opportunities in this promising field are provided. PMID:28788080
Aptamer-Modified Semiconductor Quantum Dots for Biosensing Applications.
Wen, Lin; Qiu, Liping; Wu, Yongxiang; Hu, Xiaoxiao; Zhang, Xiaobing
2017-07-28
Semiconductor quantum dots have attracted extensive interest in the biosensing area because of their properties, such as narrow and symmetric emission with tunable colors, high quantum yield, high stability and controllable morphology. The introduction of various reactive functional groups on the surface of semiconductor quantum dots allows one to conjugate a spectrum of ligands, antibodies, peptides, or nucleic acids for broader and smarter applications. Among these ligands, aptamers exhibit many advantages including small size, high chemical stability, simple synthesis with high batch-to-batch consistency and convenient modification. More importantly, it is easy to introduce nucleic acid amplification strategies and/or nanomaterials to improve the sensitivity of aptamer-based sensing systems. Therefore, the combination of semiconductor quantum dots and aptamers brings more opportunities in bioanalysis. Here we summarize recent advances on aptamer-functionalized semiconductor quantum dots in biosensing applications. Firstly, we discuss the properties and structure of semiconductor quantum dots and aptamers. Then, the applications of biosensors based on aptamer-modified semiconductor quantum dots by different signal transducing mechanisms, including optical, electrochemical and electrogenerated chemiluminescence approaches, is discussed. Finally, our perspectives on the challenges and opportunities in this promising field are provided.
Intermediate-band photosensitive device with quantum dots embedded in energy fence barrier
Forrest, Stephen R.; Wei, Guodan
2010-07-06
A plurality of layers of a first semiconductor material and a plurality of dots-in-a-fence barriers disposed in a stack between a first electrode and a second electrode. Each dots-in-a-fence barrier consists essentially of a plurality of quantum dots of a second semiconductor material embedded between and in direct contact with two layers of a third semiconductor material. Wave functions of the quantum dots overlap as at least one intermediate band. The layers of the third semiconductor material are arranged as tunneling barriers to require a first electron and/or a first hole in a layer of the first material to perform quantum mechanical tunneling to reach the second material within a respective quantum dot, and to require a second electron and/or a second hole in a layer of the first semiconductor material to perform quantum mechanical tunneling to reach another layer of the first semiconductor material.
NASA Astrophysics Data System (ADS)
Taylor, Robert A.
2010-09-01
These conference proceedings contain the written papers of the contributions presented at Quantum Dot 2010 (QD2010). The conference was held in Nottingham, UK, on 26-30 April 2010. The conference addressed topics in research on: 1. Epitaxial quantum dots (including self-assembled and interface structures, dots defined by electrostatic gates etc): optical properties and electron transport quantum coherence effects spin phenomena optics of dots in cavities interaction with surface plasmons in metal/semiconductor structures opto-electronics applications 2. Novel QD structures: fabrication and physics of graphene dots, dots in nano-wires etc 3. Colloidal quantum dots: growth (shape control and hybrid nanocrystals such as metal/semiconductor, magnetic/semiconductor) assembly and surface functionalisation optical properties and spin dynamics electrical and magnetic properties applications (light emitting devices and solar cells, biological and medical applications, data storage, assemblers) The Editors Acknowledgements Conference Organising Committee: Maurice Skolnick (Chair) Alexander Tartakovskii (Programme Chair) Pavlos Lagoudakis (Programme Chair) Max Migliorato (Conference Secretary) Paola Borri (Publicity) Robert Taylor (Proceedings) Manus Hayne (Treasurer) Ray Murray (Sponsorship) Mohamed Henini (Local Organiser) International Advisory Committee: Yasuhiko Arakawa (Tokyo University, Japan) Manfred Bayer (Dortmund University, Germany) Sergey Gaponenko (Stepanov Institute of Physics, Minsk, Belarus) Pawel Hawrylak (NRC, Ottawa, Canada) Fritz Henneberger (Institute for Physics, Berlin, Germany) Atac Imamoglu (ETH, Zurich, Switzerland) Paul Koenraad (TU Eindhoven, Nethehrlands) Guglielmo Lanzani (Politecnico di Milano, Italy) Jungil Lee (Korea Institute of Science and Technology, Korea) Henri Mariette (CNRS-CEA, Grenoble, France) Lu Jeu Sham (San Diego, USA) Andrew Shields (Toshiba Research Europe, Cambridge, UK) Yoshihisa Yamamoto (Stanford University, USA) Artur Zrenner (Paderborn University, Germany) International Programme Committee: Alexander Eychmüller (TU Dresden, Germany) Jonathan Finley (TU Munich, Germany) Dan Gammon (NRL, Washington, USA) Alexander Govorov (Ohio University, USA) Neil Greenham (Cavendish Laboratory, UK) Vladimir Korenev (Ioffe Institute, Russia) Leo Kouwenhoven (TU Delft, Netherlands) Wolfgang Langbein (Cardiff University, UK) Xavier Marie (CNRS Toulouse, France) David Ritchie (Cambridge, UK) Andrew Sachrajda (IMS, Ottawa, Canada) Katerina Soulantica (University of Toulouse, France) Seigo Tarucha (University of Tokyo, Japan) Carlos Tejedor (UAM, Madrid, Spain) Euijoon Yoon (Seoul National University, Korea) Ulrike Woggon (Tu Berlin, Germany) Proceedings edited and compiled by Profesor Robert A Taylor, University of Oxford
Quantum logic gates based on coherent electron transport in quantum wires.
Bertoni, A; Bordone, P; Brunetti, R; Jacoboni, C; Reggiani, S
2000-06-19
It is shown that the universal set of quantum logic gates can be realized using solid-state quantum bits based on coherent electron transport in quantum wires. The elementary quantum bits are realized with a proper design of two quantum wires coupled through a potential barrier. Numerical simulations show that (a) a proper design of the coupling barrier allows one to realize any one-qbit rotation and (b) Coulomb interaction between two qbits of this kind allows the implementation of the CNOT gate. These systems are based on a mature technology and seem to be integrable with conventional electronics.
Localized states in an arbitrarily bent quantum wire (bend-imitating approach)
NASA Astrophysics Data System (ADS)
Vakhnenko, Oleksity O.
1996-02-01
The bend-imitating matching technique is proposed to simplify the quantum mechanical treatment of singly and multiply bent 2D quantum wires of constant width, arbitrary bending angles, arbitrary bending radii and arbitrary distances between the bends. The spectrum of one-electron localized states and its dependence on the bending angle and the bending radius in a singly bent wire is explicitly calculated. Doubly bent wires are shown to possess doubly split localized states. The splitting energies as a function of the distance between the bends and the bending angles and bending radii have also been obtained. A similar description of bent 3D quantum wires and bent optical fibers is expected to be possible.
The Quantum Socket: Wiring for Superconducting Qubits - Part 2
NASA Astrophysics Data System (ADS)
Bejanin, J. H.; McConkey, T. G.; Rinehart, J. R.; Bateman, J. D.; Earnest, C. T.; McRae, C. H.; Rohanizadegan, Y.; Shiri, D.; Mariantoni, M.; Penava, B.; Breul, P.; Royak, S.; Zapatka, M.; Fowler, A. G.
Quantum computing research has reached a level of maturity where quantum error correction (QEC) codes can be executed on linear arrays of superconducting quantum bits (qubits). A truly scalable quantum computing architecture, however, based on practical QEC algorithms, requires nearest neighbor interaction between qubits on a two-dimensional array. Such an arrangement is not possible with techniques that rely on wire bonding. To address this issue, we have developed the quantum socket, a device based on three-dimensional wires that enables the control of superconducting qubits on a two-dimensional grid. In this talk, we present experimental results characterizing this type of wiring. We will show that the quantum socket performs exceptionally well for the transmission and reflection of microwave signals up to 10 GHz, while minimizing crosstalk between adjacent wires. Under realistic conditions, we measured an S21 of -5 dB at 6 GHz and an average crosstalk of -60 dB. We also describe time domain reflectometry results and arbitrary pulse transmission tests, showing that the quantum socket can be used to control superconducting qubits.
Impact of Relativistic Electron Beam on Hole Acoustic Instability in Quantum Semiconductor Plasmas
NASA Astrophysics Data System (ADS)
Siddique, M.; Jamil, M.; Rasheed, A.; Areeb, F.; Javed, Asif; Sumera, P.
2018-01-01
We studied the influence of the classical relativistic beam of electrons on the hole acoustic wave (HAW) instability exciting in the semiconductor quantum plasmas. We conducted this study by using the quantum-hydrodynamic model of dense plasmas, incorporating the quantum effects of semiconductor plasma species which include degeneracy pressure, exchange-correlation potential and Bohm potential. Analysis of the quantum characteristics of semiconductor plasma species along with relativistic effect of beam electrons on the dispersion relation of the HAW is given in detail qualitatively and quantitatively by plotting them numerically. It is worth mentioning that the relativistic electron beam (REB) stabilises the HAWs exciting in semiconductor (GaAs) degenerate plasma.
Carrier states and optical response in core-shell-like semiconductor nanostructures
NASA Astrophysics Data System (ADS)
Duque, C. M.; Mora-Ramos, M. E.; Duque, C. A.
2017-02-01
The charge carrier states in a GaAs/Al?Ga?As axially symmetric core-shell quantum wire are calculated in the effective mass approximation via a spectral method. The possible presence of externally applied electric and magnetic fields is taken into account, together with the variation in the characteristic in-plane dimensions of the structure. The obtained energy spectrum is used to evaluate the optical response through the coefficients of intersubband optical absorption and relative refractive index change. The particular geometry of the system also allows to use the same theoretical model in order to determine the photoluminescence peak energies associated to correlated electron-hole states in double GaAs/Al?Ga?As quantum rings, showing a good agreement when they are compared with recent experimental reports. This agreement may validate the use of both the calculation process and the approximate model of abrupt, circularly shaped cross section geometry for the system.
Nanoelectronics: Opportunities for future space applications
NASA Technical Reports Server (NTRS)
Frazier, Gary
1995-01-01
Further improvements in the performance of integrated electronics will eventually halt due to practical fundamental limits on our ability to downsize transistors and interconnect wiring. Avoiding these limits requires a revolutionary approach to switching device technology and computing architecture. Nanoelectronics, the technology of exploiting physics on the nanometer scale for computation and communication, attempts to avoid conventional limits by developing new approaches to switching, circuitry, and system integration. This presentation overviews the basic principles that operate on the nanometer scale that can be assembled into practical devices and circuits. Quantum resonant tunneling (RT) is used as the center-piece of the overview since RT devices already operate at high temperature (120 degrees C) and can be scaled, in principle, to a few nanometers in semiconductors. Near- and long-term applications of GaAs and silicon quantum devices are suggested for signal and information processing, memory, optoelectronics, and radio frequency (RF) communication.
Scalable quantum computer architecture with coupled donor-quantum dot qubits
Schenkel, Thomas; Lo, Cheuk Chi; Weis, Christoph; Lyon, Stephen; Tyryshkin, Alexei; Bokor, Jeffrey
2014-08-26
A quantum bit computing architecture includes a plurality of single spin memory donor atoms embedded in a semiconductor layer, a plurality of quantum dots arranged with the semiconductor layer and aligned with the donor atoms, wherein a first voltage applied across at least one pair of the aligned quantum dot and donor atom controls a donor-quantum dot coupling. A method of performing quantum computing in a scalable architecture quantum computing apparatus includes arranging a pattern of single spin memory donor atoms in a semiconductor layer, forming a plurality of quantum dots arranged with the semiconductor layer and aligned with the donor atoms, applying a first voltage across at least one aligned pair of a quantum dot and donor atom to control a donor-quantum dot coupling, and applying a second voltage between one or more quantum dots to control a Heisenberg exchange J coupling between quantum dots and to cause transport of a single spin polarized electron between quantum dots.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Papp, E.; Micu, C.; Racolta, D.
In this paper one deals with the theoretical derivation of energy bands and of related wavefunctions characterizing quasi 1D semiconductor heterostructures, such as InAs quantum wire models. Such models get characterized this time by equal coupling strength superpositions of Rashba and Dresselhaus spin-orbit interactions of dimensionless magnitude a under the influence of in-plane magnetic fields of magnitude B. We found that the orientations of the field can be selected by virtue of symmetry requirements. For this purpose one resorts to spin conservations, but alternative conditions providing sensible simplifications of the energy-band formula can be reasonably accounted for. Besides the wavenumbermore » k relying on the 1D electron, one deals with the spin-like s=±1 factors in the front of the square root term of the energy. Having obtained the spinorial wavefunction, opens the way to the derivation of spin precession effects. For this purpose one resorts to the projections of the wavenumber operator on complementary spin states. Such projections are responsible for related displacements proceeding along the Ox-axis. This results in a 2D rotation matrix providing both the precession angle as well as the precession axis.« less
Steering of quantum waves: Demonstration of Y-junction transistors using InAs quantum wires
NASA Astrophysics Data System (ADS)
Jones, Gregory M.; Qin, Jie; Yang, Chia-Hung; Yang, Ming-Jey
2005-06-01
In this paper we demonstrate using an InAs quantum wire Y-branch switch that the electron wave can be switched to exit from the two drains by a lateral gate bias. The gating modifies the electron wave functions as well as their interference pattern, causing the anti-correlated, oscillatory transconductances. Our result suggests a new transistor function in a multiple-lead ballistic quantum wire system.
Bound Electron States in Skew-symmetric Quantum Wire Intersections
2014-01-01
18 1.2.3 Kirchhoffs Rule for Quantum Wires . . . . . . . . . . . 19 1.3 Novel numerical methods development . . . . . . . . . . . . . 19 2...regions, though this is not as obvious as it is for bulges. CHAPTER 1. LITERATURE REVIEW 19 1.2.3 Kirchhoffs Rule for Quantum Wires One particle quantum...scattering theory on an arbitrary finite graph with n open ends and where we define the Hamiltonian to be (minus) the Laplace operator with general
Stochastic analysis of surface roughness models in quantum wires
NASA Astrophysics Data System (ADS)
Nedjalkov, Mihail; Ellinghaus, Paul; Weinbub, Josef; Sadi, Toufik; Asenov, Asen; Dimov, Ivan; Selberherr, Siegfried
2018-07-01
We present a signed particle computational approach for the Wigner transport model and use it to analyze the electron state dynamics in quantum wires focusing on the effect of surface roughness. Usually surface roughness is considered as a scattering model, accounted for by the Fermi Golden Rule, which relies on approximations like statistical averaging and in the case of quantum wires incorporates quantum corrections based on the mode space approach. We provide a novel computational approach to enable physical analysis of these assumptions in terms of phase space and particles. Utilized is the signed particles model of Wigner evolution, which, besides providing a full quantum description of the electron dynamics, enables intuitive insights into the processes of tunneling, which govern the physical evolution. It is shown that the basic assumptions of the quantum-corrected scattering model correspond to the quantum behavior of the electron system. Of particular importance is the distribution of the density: Due to the quantum confinement, electrons are kept away from the walls, which is in contrast to the classical scattering model. Further quantum effects are retardation of the electron dynamics and quantum reflection. Far from equilibrium the assumption of homogeneous conditions along the wire breaks even in the case of ideal wire walls.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Saravanan, S.; Peter, A. John, E-mail: a.john.peter@gmail.com
Intense high frequency laser field induced electronic and optical properties of heavy hole exciton in the InAs{sub 0.8}P{sub 0.2}/InP quantum wire is studied taking into account the geometrical confinement effect. Laser field related exciton binding energies and the optical band gap in the InAs{sub 0.8}P{sub 0.2}/InP quantum well wire are investigated. The optical gain, for the interband optical transition, as a function of photon energy, in the InAs{sub 0.8}P{sub 0.2}/InP quantum wire, is obtained in the presence of intense laser field. The compact density matrix method is employed to obtain the optical gain. The obtained optical gain in group III-Vmore » narrow quantum wire can be applied for achieving the preferred telecommunication wavelength.« less
NASA Astrophysics Data System (ADS)
Fu, Xi; Zhou, Guang-Hui
2009-02-01
We investigate theoretically the spin current in a quantum wire with weak Dresselhaus spin-orbit coupling connected to two normal conductors. Both the quantum wire and conductors are described by a hard-wall confining potential. Using the electron wave-functions in the quantum wire and a new definition of spin current, we have calculated the elements of linear spin current density js,xiT and js,yiT (i = x, y, z). We find that the elements jTs,xx and jTs,yy have a antisymmetrical relation and the element jTs,yz has the same amount level as js,xxT and js,yyT. We also find a net linear spin current density, which has peaks at the center of quantum wire. The net linear spin current can induce a linear electric field, which may imply a way of spin current detection.
2014-01-01
We report the development of a semiconductor nanorod-carbon nanotube based platform for wire-free, light induced retina stimulation. A plasma polymerized acrylic acid midlayer was used to achieve covalent conjugation of semiconductor nanorods directly onto neuro-adhesive, three-dimensional carbon nanotube surfaces. Photocurrent, photovoltage, and fluorescence lifetime measurements validate efficient charge transfer between the nanorods and the carbon nanotube films. Successful stimulation of a light-insensitive chick retina suggests the potential use of this novel platform in future artificial retina applications. PMID:25350365
Reliability of copper wire bonds on a novel over-pad metallization
NASA Astrophysics Data System (ADS)
Kawashiro, Fumiyoshi; Itoh, Satoshi; Maeda, Takehiko; Hirose, Tetsuya; Yajima, Akira; Etoh, Takaki; Nishikawa, Hiroshi
2015-05-01
Wire bonding technology is used in most semiconductor products. Recently, high gold prices have forced semiconductor manufacturers to replace Au wires with Cu wires. Because Cu wire bonds are vulnerable to high temperature and humidity, they remain unpopular in automotive and industrial applications with narrow-bond-pad pitches and small deformed ball diameters. To avoid forming the corrosive Cu-rich intermetallic compound Cu9Al4, the use of a Ni/Pd(/Au) over-pad metallization (OPM) structure produced by electroless plating on the Al metallization has been proposed. However, certain technical issues must be overcome, such as variations in the purity and thickness of the plating. To tackle these issues, a novel OPM structure produced by physical vapor deposition is proposed and evaluated in this study.
NASA Astrophysics Data System (ADS)
Khordad, R.
2010-03-01
The influence of temperature and pressure, simultaneously, on the binding energy of a hydrogenic donor impurity in a ridge GaAs/Ga 1- xAl xAs quantum wire is studied using a variational procedure within the effective mass approximation. The subband energy and the binding energy of the donor impurity in its ground state as a function of the wire bend width and impurity location at different temperatures and pressures are calculated. The results show that, when the temperature increases, the donor binding energy decreases for a constant applied pressure for all wire bend widths. Also, the binding energy increases by increasing the pressure for a constant temperature for all wire bend widths. In addition, when the temperature and pressure are applied simultaneously the binding energy decreases as the quantum wire bend width increases. On the whole, it is deduced that the temperature and pressure have important effects on the donor binding energy in a V-groove quantum wire.
Absorption and emission spectroscopy of individual semiconductor nanostructures
NASA Astrophysics Data System (ADS)
McDonald, Matthew P.
The advent of controllable synthetic methods for the production of semiconductor nanostructures has led to their use in a host of applications, including light-emitting diodes, field effect transistors, sensors, and even television displays. This is, in part, due to the size, shape, and morphologically dependent optical and electrical properties that make this class of materials extremely customizable; wire-, rod- and sphere-shaped nanocrystals are readily synthesized through common wet chemical methods. Most notably, confining the physical dimension of the nanostructure to a size below its Bohr radius (aB) results in quantum confinement effects that increase its optical energy gap. Not only the size, but the shape of a particle can be exploited to tailor its optical and electrical properties. For example, confined CdSe quantum dots (QDs) and nanowires (NWs) of equivalent diameter possess significantly different optical gaps. This phenomenon has been ascribed to electrostatic contributions arising from dielectric screening effects that are more pronounced in an elongated (wire-like) morphology. Semiconducting nanostructures have thus received significant attention over the past two decades. However, surprisingly little work has been done to elucidate their basic photophysics on a single particle basis. What has been done has generally been accomplished through emission-based measurements, and thus does not fully capture the full breadth of these intriguing systems. What is therefore needed then are absorption-based studies that probe the size and shape dependent evolution of nanostructure photophysics. This thesis summarizes the single particle absorption spectroscopy that we have carried out to fill this knowledge gap. Specifically, the diameter-dependent progression of one-dimensional (1D) excitonic states in CdSe NWs has been revealed. This is followed by a study that focuses on the polarization selection rules of 1D excitons within single CdSe NWs. Finally, shape effects are explored by probing the absorption spectra of CdSe nanowires and nanorods of varying length. All experimental studies are complemented by theoretical predictions from an effective mass model that takes electrostatic interactions into account. Thus, this thesis seeks to show the delicate interplay between quantum confinement and dielectric screening effects in single CdSe nanostructures.
NASA Astrophysics Data System (ADS)
Bouazra, A.; Nasrallah, S. Abdi-Ben; Said, M.
2016-01-01
In this work, we propose an efficient method to investigate optical properties as well as their dependence on geometrical parameters in InAs/InAlAs quantum wires. The used method is based on the coordinate transformation and the finite difference method. It provides sufficient accuracy, stability and flexibility with respect to the size and shape of the quantum wire. The electron and hole energy levels as well as their corresponding wave functions are investigated for different shape of quantum wires. The optical transition energies, the emission wavelengths and the oscillator strengths are also studied.
Control and Measurement of an Xmon with the Quantum Socket
NASA Astrophysics Data System (ADS)
McConkey, T. G.; Bejanin, J. H.; Earnest, C. T.; McRae, C. R. H.; Rinehart, J. R.; Weides, M.; Mariantoni, M.
The implementation of superconducting quantum processors is rapidly reaching scalability limitations. Extensible electronics and wiring solutions for superconducting quantum bits (qubits) are among the most imminent issues to be tackled. The necessity to substitute planar electrical interconnects (e.g., wire bonds) with three-dimensional wires is emerging as a fundamental pillar towards scalability. In a previous work, we have shown that three-dimensional wires housed in a suitable package, named the quantum socket, can be utilized to measure high-quality superconducting resonators. In this work, we set out to test the quantum socket with actual superconducting qubits to verify its suitability as a wiring solution in the development of an extensible quantum computing architecture. To this end, we have designed and fabricated a series of Xmon qubits. The qubits range in frequency from about 6 to 7 GHz with anharmonicity of 200 MHz and can be tuned by means of Z pulses. Controlling tunable Xmons will allow us to verify whether the three-dimensional wires contact resistance is low enough for qubit operation. Qubit T1 and T2 times and single qubit gate fidelities are compared against current standards in the field.
The Quantum Socket: Wiring for Superconducting Qubits - Part 1
NASA Astrophysics Data System (ADS)
McConkey, T. G.; Bejanin, J. H.; Rinehart, J. R.; Bateman, J. D.; Earnest, C. T.; McRae, C. H.; Rohanizadegan, Y.; Shiri, D.; Mariantoni, M.; Penava, B.; Breul, P.; Royak, S.; Zapatka, M.; Fowler, A. G.
Quantum systems with ten superconducting quantum bits (qubits) have been realized, making it possible to show basic quantum error correction (QEC) algorithms. However, a truly scalable architecture has not been developed yet. QEC requires a two-dimensional array of qubits, restricting any interconnection to external classical systems to the third axis. In this talk, we introduce an interconnect solution for solid-state qubits: The quantum socket. The quantum socket employs three-dimensional wires and makes it possible to connect classical electronics with quantum circuits more densely and accurately than methods based on wire bonding. The three-dimensional wires are based on spring-loaded pins engineered to insure compatibility with quantum computing applications. Extensive design work and machining was required, with focus on material quality to prevent magnetic impurities. Microwave simulations were undertaken to optimize the design, focusing on the interface between the micro-connector and an on-chip coplanar waveguide pad. Simulations revealed good performance from DC to 10 GHz and were later confirmed against experimental measurements.
Gan, C L; Hashim, U
2013-06-01
Wearout reliability and high temperature storage life (HTSL) activation energy of Au and Pd-coated Cu (PdCu) ball bonds are useful technical information for Cu wire deployment in nanoscale semiconductor device packaging. This paper discusses the influence of wire type on the wearout reliability performance of Au and PdCu wire used in fine pitch BGA package after HTSL stress at various aging temperatures. Failure analysis has been conducted to identify the failure mechanism after HTSL wearout conditions for Au and PdCu ball bonds. Apparent activation energies (Eaa) of both wire types are investigated after HTSL test at 150 °C, 175 °C and 200 °C aging temperatures. Arrhenius plot has been plotted for each ball bond types and the calculated Eaa of PdCu ball bond is 0.85 eV and 1.10 eV for Au ball bond in 110 nm semiconductor device. Obviously Au ball bond is identified with faster IMC formation rate with IMC Kirkendall voiding while PdCu wire exhibits equivalent wearout and or better wearout reliability margin compare to conventional Au wirebond. Lognormal plots have been established and its mean to failure (t 50 ) have been discussed in this paper.
NASA Astrophysics Data System (ADS)
Secchi, Andrea; Rontani, Massimo
2012-03-01
We demonstrate that the profile of the space-resolved spectral function at finite temperature provides a signature of Wigner localization for electrons in quantum wires and semiconducting carbon nanotubes. Our numerical evidence is based on the exact diagonalization of the microscopic Hamiltonian of few particles interacting in gate-defined quantum dots. The minimal temperature required to suppress residual exchange effects in the spectral function image of (nanotubes) quantum wires lies in the (sub)kelvin range.
Conditional Dispersive Readout of a CMOS Single-Electron Memory Cell
NASA Astrophysics Data System (ADS)
Schaal, S.; Barraud, S.; Morton, J. J. L.; Gonzalez-Zalba, M. F.
2018-05-01
Quantum computers require interfaces with classical electronics for efficient qubit control, measurement, and fast data processing. Fabricating the qubit and the classical control layer using the same technology is appealing because it will facilitate the integration process, improving feedback speeds and offering potential solutions to wiring and layout challenges. Integrating classical and quantum devices monolithically, using complementary metal-oxide-semiconductor (CMOS) processes, enables the processor to profit from the most mature industrial technology for the fabrication of large-scale circuits. We demonstrate a CMOS single-electron memory cell composed of a single quantum dot and a transistor that locks charge on the quantum-dot gate. The single-electron memory cell is conditionally read out by gate-based dispersive sensing using a lumped-element L C resonator. The control field-effect transistor (FET) and quantum dot are fabricated on the same chip using fully depleted silicon-on-insulator technology. We obtain a charge sensitivity of δ q =95 ×10-6e Hz-1 /2 when the quantum-dot readout is enabled by the control FET, comparable to results without the control FET. Additionally, we observe a single-electron retention time on the order of a second when storing a single-electron charge on the quantum dot at millikelvin temperatures. These results demonstrate first steps towards time-based multiplexing of gate-based dispersive readout in CMOS quantum devices opening the path for the development of an all-silicon quantum-classical processor.
Modulation of electrical potential and conductivity in an atomic-layer semiconductor heterojunction
Kobayashi, Yu; Yoshida, Shoji; Sakurada, Ryuji; Takashima, Kengo; Yamamoto, Takahiro; Saito, Tetsuki; Konabe, Satoru; Taniguchi, Takashi; Watanabe, Kenji; Maniwa, Yutaka; Takeuchi, Osamu; Shigekawa, Hidemi; Miyata, Yasumitsu
2016-01-01
Semiconductor heterojunction interfaces have been an important topic, both in modern solid state physics and in electronics and optoelectronics applications. Recently, the heterojunctions of atomically-thin transition metal dichalcogenides (TMDCs) are expected to realize one-dimensional (1D) electronic systems at their heterointerfaces due to their tunable electronic properties. Herein, we report unique conductivity enhancement and electrical potential modulation of heterojunction interfaces based on TMDC bilayers consisted of MoS2 and WS2. Scanning tunneling microscopy/spectroscopy analyses showed the formation of 1D confining potential (potential barrier) in the valence (conduction) band, as well as bandgap narrowing around the heterointerface. The modulation of electronic properties were also probed as the increase of current in conducting atomic force microscopy. Notably, the observed band bending can be explained by the presence of 1D fixed charges around the heterointerface. The present findings indicate that the atomic layer heterojunctions provide a novel approach to realizing tunable 1D electrical potential for embedded quantum wires and ultrashort barriers of electrical transport. PMID:27515115
NATO Advanced Study Institute on Spectroscopy
NASA Technical Reports Server (NTRS)
DiBartolo, Baldassare; Barnes, James (Technical Monitor)
2001-01-01
This booklet presents an account of the course 'Spectroscopy of Systems with Spatially Confined Structures' held in Erice-Sicily, Italy, from June 15 to June 30, 2001. This meeting was organized by the International School of Atomic and Molecular Spectroscopy of the 'Ettore Majorana' Centre for Scientific Culture. The purpose of this course was to present and discuss nanometer-scale physics, a rapidly progressing field. The top-down approach of semiconductor technology will soon meet the scales of the bottom-up approaches of supramolecular chemistry and of spatially localized excitations in ionic crystals. This course dealt with the fabrication, measurement and understanding of the relevant structures and brought together the scientific communities responsible for these development. The advances in this area of physics have already let to applications in optoelectronics and will likely lead to many more. The subjects of the course included spatially resolved structures such as quantum wells, quantum wires and quantum dots, single atoms and molecules, clusters, fractal systems, and the development of related techniques like near-field spectroscopy and confocal microscopy to study such systems.
Voltage-controlled quantum light from an atomically thin semiconductor
NASA Astrophysics Data System (ADS)
Chakraborty, Chitraleema; Kinnischtzke, Laura; Goodfellow, Kenneth M.; Beams, Ryan; Vamivakas, A. Nick
2015-06-01
Although semiconductor defects can often be detrimental to device performance, they are also responsible for the breadth of functionality exhibited by modern optoelectronic devices. Artificially engineered defects (so-called quantum dots) or naturally occurring defects in solids are currently being investigated for applications ranging from quantum information science and optoelectronics to high-resolution metrology. In parallel, the quantum confinement exhibited by atomically thin materials (semi-metals, semiconductors and insulators) has ushered in an era of flatland optoelectronics whose full potential is still being articulated. In this Letter we demonstrate the possibility of leveraging the atomically thin semiconductor tungsten diselenide (WSe2) as a host for quantum dot-like defects. We report that this previously unexplored solid-state quantum emitter in WSe2 generates single photons with emission properties that can be controlled via the application of external d.c. electric and magnetic fields. These new optically active quantum dots exhibit excited-state lifetimes on the order of 1 ns and remarkably large excitonic g-factors of 10. It is anticipated that WSe2 quantum dots will provide a novel platform for integrated solid-state quantum photonics and quantum information processing, as well as a rich condensed-matter physics playground with which to explore the coupling of quantum dots and atomically thin semiconductors.
Quantum-correlated two-photon transitions to excitons in semiconductor quantum wells.
Salazar, L J; Guzmán, D A; Rodríguez, F J; Quiroga, L
2012-02-13
The dependence of the excitonic two-photon absorption on the quantum correlations (entanglement) of exciting biphotons by a semiconductor quantum well is studied. We show that entangled photon absorption can display very unusual features depending on space-time-polarization biphoton parameters and absorber density of states for both bound exciton states as well as for unbound electron-hole pairs. We report on the connection between biphoton entanglement, as quantified by the Schmidt number, and absorption by a semiconductor quantum well. Comparison between frequency-anti-correlated, unentangled and frequency-correlated biphoton absorption is addressed. We found that exciton oscillator strengths are highly increased when photons arrive almost simultaneously in an entangled state. Two-photon-absorption becomes a highly sensitive probe of photon quantum correlations when narrow semiconductor quantum wells are used as two-photon absorbers.
Length dependence of electron transport through molecular wires--a first principles perspective.
Khoo, Khoong Hong; Chen, Yifeng; Li, Suchun; Quek, Su Ying
2015-01-07
One-dimensional wires constitute a fundamental building block in nanoscale electronics. However, truly one-dimensional metallic wires do not exist due to Peierls distortion. Molecular wires come close to being stable one-dimensional wires, but are typically semiconductors, with charge transport occurring via tunneling or thermally-activated hopping. In this review, we discuss electron transport through molecular wires, from a theoretical, quantum mechanical perspective based on first principles. We focus specifically on the off-resonant tunneling regime, applicable to shorter molecular wires (<∼4-5 nm) where quantum mechanics dictates electron transport. Here, conductance decays exponentially with the wire length, with an exponential decay constant, beta, that is independent of temperature. Different levels of first principles theory are discussed, starting with the computational workhorse - density functional theory (DFT), and moving on to many-electron GW methods as well as GW-inspired DFT + Sigma calculations. These different levels of theory are applied in two major computational frameworks - complex band structure (CBS) calculations to estimate the tunneling decay constant, beta, and Landauer-Buttiker transport calculations that consider explicitly the effects of contact geometry, and compute the transmission spectra directly. In general, for the same level of theory, the Landauer-Buttiker calculations give more quantitative values of beta than the CBS calculations. However, the CBS calculations have a long history and are particularly useful for quick estimates of beta. Comparing different levels of theory, it is clear that GW and DFT + Sigma calculations give significantly improved agreement with experiment compared to DFT, especially for the conductance values. Quantitative agreement can also be obtained for the Seebeck coefficient - another independent probe of electron transport. This excellent agreement provides confirmative evidence of off-resonant tunneling in the systems under investigation. Calculations show that the tunneling decay constant beta is a robust quantity that does not depend on details of the contact geometry, provided that the same contact geometry is used for all molecular lengths considered. However, because conductance is sensitive to contact geometry, values of beta obtained by considering conductance values where the contact geometry is changing with the molecular junction length can be quite different. Experimentally measured values of beta in general compare well with beta obtained using DFT + Sigma and GW transport calculations, while discrepancies can be attributed to changes in the experimental contact geometries with molecular length. This review also summarizes experimental and theoretical efforts towards finding perfect molecular wires with high conductance and small beta values.
Novel T-shaped GaSb/InAsN quantum wire for mid-infrared laser applications
NASA Astrophysics Data System (ADS)
Ridene, Said
2017-10-01
In this work, we investigate GaSb /InAs1-xNx T-shaped quantum wire active region in mid-infrared laser. Multi-band k.p model and variational formalism are applied to find the confinement energies, the band structures, and optical gain. We then present a method of numerical calculation that is suited to any T-shaped quantum wire. By tuning the quantum wire thickness, the TE- and TM-polarized optical gain up to 21 ×103 cm-1 can be obtained for λ = 3.11 μm at room temperature (RT), which is very promising to serve as an alternative active region for high-efficiency mid-infrared laser applications.
Semiconductor wire array structures, and solar cells and photodetectors based on such structures
Kelzenberg, Michael D.; Atwater, Harry A.; Briggs, Ryan M.; Boettcher, Shannon W.; Lewis, Nathan S.; Petykiewicz, Jan A.
2014-08-19
A structure comprising an array of semiconductor structures, an infill material between the semiconductor materials, and one or more light-trapping elements is described. Photoconverters and photoelectrochemical devices based on such structure also described.
Spectroscopic characterization of III-V semiconductor nanomaterials
NASA Astrophysics Data System (ADS)
Crankshaw, Shanna Marie
III-V semiconductor materials form a broad basis for optoelectronic applications, including the broad basis of the telecom industry as well as smaller markets for high-mobility transistors. In a somewhat analogous manner as the traditional silicon logic industry has so heavily depended upon process manufacturing development, optoelectronics often relies instead on materials innovations. This thesis focuses particularly on III-V semiconductor nanomaterials, detailed characterization of which is invaluable for translating the exhibited behavior into useful applications. Specifically, the original research described in these thesis chapters is an investigation of semiconductors at a fundamental materials level, because the nanostructures in which they appear crystallize in quite atypical forms for the given semiconductors. Rather than restricting the experimental approaches to any one particular technique, many different types of optical spectroscopies are developed and applied where relevant to elucidate the connection between the crystalline structure and exhibited properties. In the first chapters, for example, a wurtzite crystalline form of the prototypical zincblende III-V binary semiconductor, GaAs, is explored through polarization-dependent Raman spectroscopy and temperature-dependent photoluminescence, as well as second-harmonic generation (SHG). The altered symmetry properties of the wurtzite crystalline structure are particularly evident in the Raman and SHG polarization dependences, all within a bulk material realm. A rather different but deeply elegant aspect of crystalline symmetry in GaAs is explored in a separate study on zincblende GaAs samples quantum-confined in one direction, i.e. quantum well structures, whose quantization direction corresponds to the (110) direction. The (110) orientation modifies the low-temperature electron spin relaxation mechanisms available compared to the usual (001) samples, leading to altered spin coherence times explored through a novel spectroscopic technique first formulated for the rather different purpose of dispersion engineering for slow-light schemes. The frequency-resolved technique combined with the unusual (110) quantum wells in a furthermore atypical waveguide experimental geometry has revealed fascinating behavior of electron spin splitting which points to the possibility of optically orienting electron spins with linearly polarized light---an experimental result supporting a theoretical description of the phenomenon itself only a few years old. Lastly, to explore a space of further-restricted dimensionality, the final chapters describe InP semiconductor nanowires with dimensions small enough to be considered truly one-dimensional. Like the bulk GaAs of the first few chapters, the InP nanowires here crystallize in a wurtzite structure. In the InP nanowire case, though, the experimental techniques explored for characterization are temperature-dependent time-integrated photoluminescence at the single-wire level (including samples with InAsP insertions) and time-resolved photoluminescence at the ensemble level. The carrier dynamics revealed through these time-resolved studies are the first of their kind for wurtzite InP nanowires. The chapters are thus ordered as a progression from three (bulk), to two (quantum well), to one (nanowire), to zero dimensions (axially-structured nanowire), with the uniting theme the emphasis on connecting the semiconductor nanomaterials' crystallinity to its exhibited properties by relevant experimental spectroscopic techniques, whether these are standard methods or effectively invented for the case at hand.
Gain in three-dimensional metamaterials utilizing semiconductor quantum structures
NASA Astrophysics Data System (ADS)
Schwaiger, Stephan; Klingbeil, Matthias; Kerbst, Jochen; Rottler, Andreas; Costa, Ricardo; Koitmäe, Aune; Bröll, Markus; Heyn, Christian; Stark, Yuliya; Heitmann, Detlef; Mendach, Stefan
2011-10-01
We demonstrate gain in a three-dimensional metal/semiconductor metamaterial by the integration of optically active semiconductor quantum structures. The rolling-up of a metallic structure on top of strained semiconductor layers containing a quantum well allows us to achieve a tightly bent superlattice consisting of alternating layers of lossy metallic and amplifying gain material. We show that the transmission through the superlattice can be enhanced by exciting the quantum well optically under both pulsed or continuous wave excitation. This points out that our structures can be used as a starting point for arbitrary three-dimensional metamaterials including gain.
Plasmon absorption modulator systems and methods
Kekatpure, Rohan Deodatta; Davids, Paul
2014-07-15
Plasmon absorption modulator systems and methods are disclosed. A plasmon absorption modulator system includes a semiconductor substrate, a plurality of quantum well layers stacked on a top surface of the semiconductor substrate, and a metal layer formed on a top surface of the stack of quantum well layers. A method for modulating plasmonic current includes enabling propagation of the plasmonic current along a metal layer, and applying a voltage across the stack of quantum well layers to cause absorption of a portion of energy of the plasmonic current by the stack of quantum well layers. A metamaterial switching system includes a semiconductor substrate, a plurality of quantum well layers stacked on a top surface of the semiconductor substrate, and at least one metamaterial structure formed on a top surface of the stack of quantum well layers.
Quantum soldering of individual quantum dots.
Roy, Xavier; Schenck, Christine L; Ahn, Seokhoon; Lalancette, Roger A; Venkataraman, Latha; Nuckolls, Colin; Steigerwald, Michael L
2012-12-07
Making contact to a quantum dot: Single quantum-dot electronic circuits are fabricated by wiring atomically precise metal chalcogenide clusters with conjugated molecular connectors. These wired clusters can couple electronically to nanoscale electrodes and be tuned to control the charge-transfer characteristics (see picture). Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Effect of interface roughness on Auger recombination in semiconductor quantum wells
NASA Astrophysics Data System (ADS)
Tan, Chee-Keong; Sun, Wei; Wierer, Jonathan J.; Tansu, Nelson
2017-03-01
Auger recombination in a semiconductor is a three-carrier process, wherein the energy from the recombination of an electron and hole pair promotes a third carrier to a higher energy state. In semiconductor quantum wells with increased carrier densities, the Auger recombination becomes an appreciable fraction of the total recombination rate and degrades luminescence efficiency. Gaining insight into the variables that influence Auger recombination in semiconductor quantum wells could lead to further advances in optoelectronic and electronic devices. Here we demonstrate the important role that interface roughness has on Auger recombination within quantum wells. Our computational studies find that as the ratio of interface roughness to quantum well thickness is increased, Auger recombination is significantly enhanced. Specifically, when considering a realistic interface roughness for an InGaN quantum well, the enhancement in Auger recombination rate over a quantum well with perfect heterointerfaces can be approximately four orders of magnitude.
Bend-imitating models of abruptly bent electron waveguides
NASA Astrophysics Data System (ADS)
Vakhnenko, Oleksiy O.
2011-07-01
The fundamentals of bend-imitating approach regarding the one-electron quantum mechanics in abruptly bent ideal electron waveguides are given. In general, the theory allows to model each particular circularlike bend of a continuous quantum wire as some effective multichannel scatterer being pointlike in longitudinal direction. Its scattering ability is determined by the bending angle, mean bending radius, lateral coordinate (or coordinates) in wire cross section, time (or electronic energy), and possibly by the applied magnetic field. In an equivalent formulation, the theory gives rise to rather simple matching rules for the electron wave function and its longitudinal derivative affecting only the straight parts of a wire and thereby permitting to bypass a detailed quantum mechanical consideration of elbow domains. The proposed technique is applicable for the analytical investigation of spectral and transport electronic properties related to the ideal abruptly bent 3D wirelike structures of fixed cross section and is adaptable to the 2D wirelike structures as well as to the wirelike structures subjected to the magnetic field perpendicular to the plane of wire bending. In the framework of bend-imitating approach, the investigation of electron scattering in a singly bent 2D quantum wire and a doubly bent 2D quantum wire with S-like bend has been made and the explicit dependences of transmission and reflection coefficients on geometrical parameters of respective structure as well as on electron energy have been obtained. The total suppression of mixing between the scattering channels of S-like bent quantum wire is predicted.
Three-Dimensional Wiring for Extensible Quantum Computing: The Quantum Socket
NASA Astrophysics Data System (ADS)
Béjanin, J. H.; McConkey, T. G.; Rinehart, J. R.; Earnest, C. T.; McRae, C. R. H.; Shiri, D.; Bateman, J. D.; Rohanizadegan, Y.; Penava, B.; Breul, P.; Royak, S.; Zapatka, M.; Fowler, A. G.; Mariantoni, M.
2016-10-01
Quantum computing architectures are on the verge of scalability, a key requirement for the implementation of a universal quantum computer. The next stage in this quest is the realization of quantum error-correction codes, which will mitigate the impact of faulty quantum information on a quantum computer. Architectures with ten or more quantum bits (qubits) have been realized using trapped ions and superconducting circuits. While these implementations are potentially scalable, true scalability will require systems engineering to combine quantum and classical hardware. One technology demanding imminent efforts is the realization of a suitable wiring method for the control and the measurement of a large number of qubits. In this work, we introduce an interconnect solution for solid-state qubits: the quantum socket. The quantum socket fully exploits the third dimension to connect classical electronics to qubits with higher density and better performance than two-dimensional methods based on wire bonding. The quantum socket is based on spring-mounted microwires—the three-dimensional wires—that push directly on a microfabricated chip, making electrical contact. A small wire cross section (approximately 1 mm), nearly nonmagnetic components, and functionality at low temperatures make the quantum socket ideal for operating solid-state qubits. The wires have a coaxial geometry and operate over a frequency range from dc to 8 GHz, with a contact resistance of approximately 150 m Ω , an impedance mismatch of approximately 10 Ω , and minimal cross talk. As a proof of principle, we fabricate and use a quantum socket to measure high-quality superconducting resonators at a temperature of approximately 10 mK. Quantum error-correction codes such as the surface code will largely benefit from the quantum socket, which will make it possible to address qubits located on a two-dimensional lattice. The present implementation of the socket could be readily extended to accommodate a quantum processor with a (10 ×10 )-qubit lattice, which would allow for the realization of a simple quantum memory.
Optical devices featuring textured semiconductor layers
Moustakas, Theodore D [Dover, MA; Cabalu, Jasper S [Cary, NC
2011-10-11
A semiconductor sensor, solar cell or emitter, or a precursor therefor, has a substrate and one or more textured semiconductor layers deposited onto the substrate. The textured layers enhance light extraction or absorption. Texturing in the region of multiple quantum wells greatly enhances internal quantum efficiency if the semiconductor is polar and the quantum wells are grown along the polar direction. Electroluminescence of LEDs of the invention is dichromatic, and results in variable color LEDs, including white LEDs, without the use of phosphor.
Optical devices featuring textured semiconductor layers
Moustakas, Theodore D [Dover, MA; Cabalu, Jasper S [Cary, NC
2012-08-07
A semiconductor sensor, solar cell or emitter, or a precursor therefor, has a substrate and one or more textured semiconductor layers deposited onto the substrate. The textured layers enhance light extraction or absorption. Texturing in the region of multiple quantum wells greatly enhances internal quantum efficiency if the semiconductor is polar and the quantum wells are grown along the polar direction. Electroluminescence of LEDs of the invention is dichromatic, and results in variable color LEDs, including white LEDs, without the use of phosphor.
Polarization of the photoluminescence of quantum dots incorporated into quantum wires
DOE Office of Scientific and Technical Information (OSTI.GOV)
Platonov, A. V., E-mail: alexei.platonov@mail.ioffe.ru; Kochereshko, V. P.; Kats, V. N.
The photoluminescence spectra of individual quantum dots incorporated into a quantum wire are studied. From the behavior of the spectra in a magnetic field, it is possible to estimate the exciton binding energy in a quantum dot incorporated into a quantum wire. It is found that the exciton photoluminescence signal emitted from a quantum dot along the direction of the nanowire axis is linearly polarized. At the same time, the photoluminescence signal propagating in the direction orthogonal to the nanowire axis is practically unpolarized. The experimentally observed effect is attributed to the nonaxial arrangement of the dot in the wiremore » under conditions of a huge increase in the exciton binding energy due to the effect of the image potential on the exciton.« less
Quantum Monte Carlo Studies of Interaction-Induced Localization in Quantum Dots and Wires
NASA Astrophysics Data System (ADS)
Devrim Güçlü, A.
2009-03-01
We investigate interaction-induced localization of electrons in both quantum dots and inhomogeneous quantum wires using variational and diffusion quantum Monte Carlo methods. Quantum dots and wires are highly tunable systems that enable the study of the physics of strongly correlated electrons. With decreasing electronic density, interactions become stronger and electrons are expected to localize at their classical positions, as in Wigner crystallization in an infinite 2D system. (1) Dots: We show that the addition energy shows a clear progression from features associated with shell structure to those caused by commensurability of a Wigner crystal. This cross-over is, then, a signature of localization; it occurs near rs˜20. For higher values of rs, the configuration symmetry of the quantum dot becomes fully consistent with the classical ground state. (2) Wires: We study an inhomogeneous quasi-one-dimensional system -- a wire with two regions, one at low density and the other high. We find that strong localization occurs in the low density quantum point contact region as the gate potential is increased. The nature of the transition from high to low density depends on the density gradient -- if it is steep, a barrier develops between the two regions, causing Coulomb blockade effects. We find no evidence for ferromagnetic spin polarization for the range of parameters studied. The picture emerging here is in good agreement with the experimental measurements of tunneling between two wires. Collaborators: C. J. Umrigar (Cornell), Hong Jiang (Fritz Haber Institut), Amit Ghosal (IISER Calcutta), and H. U. Baranger (Duke).
Quantum anomalous Hall Majorana platform
NASA Astrophysics Data System (ADS)
Zeng, Yongxin; Lei, Chao; Chaudhary, Gaurav; MacDonald, Allan H.
2018-02-01
We show that quasi-one-dimensional quantum wires can be written onto the surface of magnetic topological insulator (MTI) thin films by gate arrays. When the MTI is in a quantum anomalous Hall state, MTI/superconductor quantum wires have especially broad stability regions for both topological and nontopological states, facilitating creation and manipulation of Majorana particles on the MTI surface.
Superlattice photoelectrodes for photoelectrochemical cells
Nozik, Arthur J.
1987-01-01
A superlattice or multiple-quantum-well semiconductor is used as a photoelectrode in a photoelectrochemical process for converting solar energy into useful fuels or chemicals. The quantum minibands of the superlattice or multiple-quantum-well semiconductor effectively capture hot-charge carriers at or near their discrete quantum energies and deliver them to drive a chemical reaction in an electrolyte. The hot-charge carries can be injected into the electrolyte at or near the various discrete multiple energy levels quantum minibands, or they can be equilibrated among themselves to a hot-carrier pool and then injected into the electrolyte at one average energy that is higher than the lowest quantum band gap in the semiconductor.
Simultaneous deterministic control of distant qubits in two semiconductor quantum dots.
Gamouras, A; Mathew, R; Freisem, S; Deppe, D G; Hall, K C
2013-10-09
In optimal quantum control (OQC), a target quantum state of matter is achieved by tailoring the phase and amplitude of the control Hamiltonian through femtosecond pulse-shaping techniques and powerful adaptive feedback algorithms. Motivated by recent applications of OQC in quantum information science as an approach to optimizing quantum gates in atomic and molecular systems, here we report the experimental implementation of OQC in a solid-state system consisting of distinguishable semiconductor quantum dots. We demonstrate simultaneous high-fidelity π and 2π single qubit gates in two different quantum dots using a single engineered infrared femtosecond pulse. These experiments enhance the scalability of semiconductor-based quantum hardware and lay the foundation for applications of pulse shaping to optimize quantum gates in other solid-state systems.
Self-organized MBE growth of II VI epilayers on patterned GaSb substrates
NASA Astrophysics Data System (ADS)
Wissmann, H.; Tran Anh, T.; Rogaschewski, S.; von Ortenberg, M.
1999-05-01
We report on the self-organized MBE growth of II-VI epilayers on patterned and unpatterned GaSb substrates resulting in quantum wires and quantum wells, respectively. The HgSe : Fe quantum wires were grown on (0 0 1)GaSb substrates with a buffer of lattice-matched ZnTe 1- xSe x. Due to the anisotropic growth of HgSe on the A-oriented stripes roof-like overgrowth with a definite ridge was obtained. Additional Fe doping in the direct vicinity of the ridge results in a highly conductive quantum wire.
NASA Astrophysics Data System (ADS)
Ko, Wai Son; Bhattacharya, Indrasen; Tran, Thai-Truong D.; Ng, Kar Wei; Adair Gerke, Stephen; Chang-Hasnain, Connie
2016-09-01
Highly sensitive and fast photodetectors can enable low power, high bandwidth on-chip optical interconnects for silicon integrated electronics. III-V compound semiconductor direct-bandgap materials with high absorption coefficients are particularly promising for photodetection in energy-efficient optical links because of the potential to scale down the absorber size, and the resulting capacitance and dark current, while maintaining high quantum efficiency. We demonstrate a compact bipolar junction phototransistor with a high current gain (53.6), bandwidth (7 GHz) and responsivity (9.5 A/W) using a single crystalline indium phosphide nanopillar directly grown on a silicon substrate. Transistor gain is obtained at sub-picowatt optical power and collector bias close to the CMOS line voltage. The quantum efficiency-bandwidth product of 105 GHz is the highest for photodetectors on silicon. The bipolar junction phototransistor combines the receiver front end circuit and absorber into a monolithic integrated device, eliminating the wire capacitance between the detector and first amplifier stage.
Ko, Wai Son; Bhattacharya, Indrasen; Tran, Thai-Truong D.; Ng, Kar Wei; Adair Gerke, Stephen; Chang-Hasnain, Connie
2016-01-01
Highly sensitive and fast photodetectors can enable low power, high bandwidth on-chip optical interconnects for silicon integrated electronics. III-V compound semiconductor direct-bandgap materials with high absorption coefficients are particularly promising for photodetection in energy-efficient optical links because of the potential to scale down the absorber size, and the resulting capacitance and dark current, while maintaining high quantum efficiency. We demonstrate a compact bipolar junction phototransistor with a high current gain (53.6), bandwidth (7 GHz) and responsivity (9.5 A/W) using a single crystalline indium phosphide nanopillar directly grown on a silicon substrate. Transistor gain is obtained at sub-picowatt optical power and collector bias close to the CMOS line voltage. The quantum efficiency-bandwidth product of 105 GHz is the highest for photodetectors on silicon. The bipolar junction phototransistor combines the receiver front end circuit and absorber into a monolithic integrated device, eliminating the wire capacitance between the detector and first amplifier stage. PMID:27659796
NASA Astrophysics Data System (ADS)
Kang, Yoon-Gu; Kim, Sun-Woo; Cho, Jun-Hyung
2017-12-01
Low-dimensional electron systems often show a delicate interplay between electron-phonon and electron-electron interactions, giving rise to interesting quantum phases such as the charge density wave (CDW) and magnetism. Using the density-functional theory (DFT) calculations with the semilocal and hybrid exchange-correlation functionals as well as the exact-exchange plus correlation in the random-phase approximation (EX + cRPA), we systematically investigate the ground state of the metallic atom wires containing dangling-bond (DB) electrons, fabricated by partially hydrogenating the GaN(10 1 ¯0 ) and ZnO(10 1 ¯0 ) surfaces. We find that the CDW or antiferromagnetic (AFM) order has an electronic energy gain due to a band-gap opening, thereby being more stabilized compared to the metallic state. Our semilocal DFT calculation predicts that both DB wires in GaN(10 1 ¯0 ) and ZnO(10 1 ¯0 ) have the same CDW ground state, whereas the hybrid DFT and EX + cRPA calculations predict the AFM ground state for the former DB wire and the CDW ground state for the latter one. It is revealed that more localized Ga DB electrons in GaN(10 1 ¯0 ) prefer the AFM order, while less localized Zn DB electrons in ZnO(10 1 ¯0 ) the CDW formation. Our findings demonstrate that the drastically different ground states are competing in the DB wires created on the two representative compound semiconductor surfaces.
Exciton absorption of entangled photons in semiconductor quantum wells
NASA Astrophysics Data System (ADS)
Rodriguez, Ferney; Guzman, David; Salazar, Luis; Quiroga, Luis; Condensed Matter Physics Group Team
2013-03-01
The dependence of the excitonic two-photon absorption on the quantum correlations (entanglement) of exciting biphotons by a semiconductor quantum well is studied. We show that entangled photon absorption can display very unusual features depending on space-time-polarization biphoton parameters and absorber density of states for both bound exciton states as well as for unbound electron-hole pairs. We report on the connection between biphoton entanglement, as quantified by the Schmidt number, and absorption by a semiconductor quantum well. Comparison between frequency-anti-correlated, unentangled and frequency-correlated biphoton absorption is addressed. We found that exciton oscillator strengths are highly increased when photons arrive almost simultaneously in an entangled state. Two-photon-absorption becomes a highly sensitive probe of photon quantum correlations when narrow semiconductor quantum wells are used as two-photon absorbers. Research funds from Facultad de Ciencias, Universidad de los Andes
Pientka, Falko; Kells, Graham; Romito, Alessandro; Brouwer, Piet W; von Oppen, Felix
2012-11-30
A recent experiment Mourik et al. [Science 336, 1003 (2012)] on InSb quantum wires provides possible evidence for the realization of a topological superconducting phase and the formation of Majorana bound states. Motivated by this experiment, we consider the signature of Majorana bound states in the differential tunneling conductance of multisubband wires. We show that the weight of the Majorana-induced zero-bias peak is strongly enhanced by mixing of subbands, when disorder is added to the end of the quantum wire. We also consider how the topological phase transition is reflected in the gap structure of the current-voltage characteristic.
-X Mixing in T- and V-Shaped Quantum Wires
NASA Astrophysics Data System (ADS)
di Carlo, A.; Pescetelli, S.; Kavokin, A.; Vladimirova, M.; Lugli, P.
1997-11-01
We have applied both tight-binding (TB) and multivalley envelope function (MEF) techniques to calculate the electronic states in T- and V-shaped realistic quantum wires taking into account -X mixing in the conduction band. Strong reduction of the electron quantization energy due to the off-resonant -X mixing has been found in all types of quantum wires. This effect appears to be tied to the localization of the electron wave function and to its overlap with atomic layers next to interfaces.
Effect of non-classical current paths in networks of 1-dimensional wires
NASA Astrophysics Data System (ADS)
Echternach, P. M.; Mikhalchuk, A. G.; Bozler, H. M.; Gershenson, M. E.; Bogdanov, A. L.; Nilsson, B.
1996-04-01
At low temperatures, the quantum corrections to the resistance due to weak localization and electron-electron interaction are affected by the shape and topology of samples. We observed these effects in the resistance of 2D percolation networks made from 1D wires and in a series of long 1D wires with regularly spaced side branches. Branches outside the classical current path strongly reduce the quantum corrections to the resistance and these reductions become a measure of the quantum lengths.
Realizing Controllable Quantum States
NASA Astrophysics Data System (ADS)
Takayanagi, Hideaki; Nitta, Junsaku
1. Entanglement in solid states. Orbital entanglement and violation of bell inequalities in mesoscopic conductors / M. Büttiker, P. Samuelsson and E. V. Sukhoruk. Teleportation of electron spins with normal and superconducting dots / O. Sauret, D. Feinberg and T. Martin. Entangled state analysis for one-dimensional quantum spin system: singularity at critical point / A. Kawaguchi and K. Shimizu. Detecting crossed Andreev reflection by cross-current correlations / G. Bignon et al. Current correlations and transmission probabilities for a Y-shaped diffusive conductor / S. K. Yip -- 2. Mesoscopic electronics. Quantum bistability, structural transformation, and spontaneous persistent currents in mesoscopic Aharonov-Bohm loops / I. O. Kulik. Many-body effects on tunneling of electrons in magnetic-field-induced quasi one-dimensional systems in quantum wells / T. Kubo and Y. Tokura. Electron transport in 2DEG narrow channel under gradient magnetic field / M. Hara et al. Transport properties of a quantum wire with a side-coupled quantum dot / M. Yamaguchi et al. Photoconductivity- and magneto-transport studies of single InAs quantum wires / A. Wirthmann et al. Thermoelectric transports in charge-density-wave systems / H. Yoshimoto and S. Kurihara -- 3. Mesoscopic superconductivity. Parity-restricted persistent currents in SNS nanorings / A. D. Zaikin and S. V. Sharov. Large energy dependence of current noise in superconductingh/normal metal junctions / F. Pistolesi and M. Houzet. Generation of photon number states and their superpositions using a superconducting qubit in a microcavity / Yu-Xi Liu, L. F. Wei and F. Nori. Andreev interferometry for pumped currents / F. Taddei, M. Governale and R. Fazio. Suppression of Cooper-pair breaking against high magnetic fields in carbon nanotubes / J. Haruyama et al. Impact of the transport supercurrent on the Josephson effect / S. N. Shevchenko. Josephson current through spin-polarized Luttinger liquid / N. Yokoshi and S. Kurihara -- 4. Mesoscopic superconductivity with unconventional superconductor or ferromagnet. Ultraefficient microrefrigerators realized with ferromagnet-superconductor junctions / F. Giazotto et al. Anomalous charge transport in triplet superconductor junctions by the synergy effect of the proximity effect and the mid gap Andreev resonant states / Y. Tanaka and S. Kashiwaya. Paramagnetic and glass states in superconductive YBa[symbol]Cu[symbol]O[symbol] ceramics of sub-micron scale grains / H. Deguchi et al. Quantum properties of single-domain triplet superconductors / A. M. Gulian and K. S. Wood. A numerical study of Josephson current in p wave superconducting junctions / Y. Asano et al. Tilted bi-crystal sapphire substrates improve properties of grain boundary YBa[symbol]Cu[symbol]O[symbol] junctions and extend their Josephson response to THZ frequencies / E. Stepantsov et al. Circuit theory analysis of AB-plane tunnel junctions of unconventional superconductor Bi[symbol]Sr[symbol]Ca[symbol]Cu[symbol]O[symbol] / I. Shigeta et al. Transport properties of normal metal/anisotropic superconductor junctions in the eutectic system Sr[symbol]RuO[symbol]Ru / M. Kawamura et al. Macroscopic quantum tunneling in d-wave superconductor Josephson / S. Kawabata et al. Quasiparticle states of high-T[symbol] oxides observed by a Zeeman magnetic field response / S. Kashiwaya et al. Experimentally realizable devices for controlling the motion of magnetic flux quanta in anisotropic superconductors: vortex lenses, vortex diodes and vortex pumps / S. Savel'ev and F. Nori. Stability of vortex-antivortex "molecules" in mesoscopic superconducting triangles / V. R. Misko et al. Superconducting network with magnetic decoration - Hofstadter butterfly in spatially modulated magnetic field / Y. Iye et al. Observation of paramagnetic supercurrent in mesoscopic superconducting rings and disks using multiple-small-tunnel-junction method / A. Kanda et al. Guidance of vortices in high-T[stmbol] superconducting thin films with special arrangements of antidots / R. Wöerdenweber, P. Dymashevski and V. R. Misko. Quantum tunneling of relativistic fluxons / K. Konno et al. -- 6. Quantum information processing in solid states. Qubit decoherence by low-frequency noise / K. Rabenstein, V. A. Sverdlov and D. V. Averin. A critique of two-level approximation / K. Savran and T. Hakioǧlu. Josephson arrays as quantum channels / A. Romito, C. Bruder and R. Fazio. Fighting decoherence in a Josephson qubit circuit / E. Collin et al. Fast switching current detection at low critical currents / J. Walter, S. Corlevi and D. Haviland. Asymmetric flux bias for coupled qubits to observe entangled states / Y. Shimazu. Interaction of Josephson qubits with strong QED cavity modes: dynamical entanglement transfer and navigation / G. Falci et al. Controlling decoherence of transported quantum spin information in semiconductor spintronics / B. Nikolic and S. Souma. Decoherence due to telegraph and 1/f noise in Josephson qubits / E. Paladino et al. Detection of entanglement in NMR quantum information processing / R. Rahimi, K. Takeda and M. Kitagawa. Multiphoton absorption and SQUID switching current behaviors in superconducting flux-qubit experiments / H. Takayanagi et al. -- 7. Quantum information theory. Quantum query complexities / K. Iwama. A construction for non-stabilizer Clifford codes / M. Hagiwara and H. Imai. Quantum pushdown automata that can deterministically solve a certain problem / Y. Murakami et al. Trading classical for quantum computation using indirection / R. van Meter. Intractability of the initial arrangement of input data on qubits / Y. Kawano et al. Reversibility of modular squaring / N. Kunihiro, Y. Takahashi and Y. Kawano. Study of proximity effect at D-wave superconductors in quasiclassical methods / Y. Tanuma, Y. Tanaka and S. Kashiwaya -- 8. Spintronics in band electrons. Triplet superconductors: exploitable basis for scalable quantum computing / K. S. Wood et al. Spin excitations in low-dimensional electron gases studied by far-infrared photoconductivity spectroscopy / C.-M. Hu. Control of photogenerated carriers and spins using surface acoustic waves / P. V. Santos, J. A. H. Stotz and R. Hey. PbTe nanostructures for spin filtering and detecting / G. Grabecki. G-factor control in an Ids-inserted InGaAs/InAlAs heterostructure / J. Nitta et al. Spin hall effect in p-type semiconductors / S. Murakami. Spin diffusion in mesoscopic superconducting A1 wires / Y.-S. Shin. H.-J. Lee and H.-W. Lee. Magnetization processes revealed by in-plane DC magnetoresistance measurements on manganite bicrystal thin film devices / R. Gunnarsson. M. Hanson and T. Claeson. Giant magnetoconductance at interface between a two-dimensional hole system and a magnetic semiconductor (Ga, Mn)As / Y. Hashimoto, S. Katsumoto and Y. Iye. Diffusion modes of the transport in diluted magnetic semiconductors / I. Kanazawa. Effect of an invasive voltage probe on the spin polarized current / J. Ohe and T. Ohtsuki -- 9. Spintronics in quantum dots. Tunable exchange interaction and Kondo screening in quantum dot devices / H. Tamura et al. Kondo effect in quantum dots in presence of itinerant-electron magnetism / J. Martinek et al. Optical band edge of II-VI and III-V based diluted magnetic semiconductors / M. Takahashi. Spin-polarized transport properties through double quantum dots / Y. Tanaka and N. Kawakami. RKKY interaction between two quantum dots embedded in an Aharonov-Bohm ring / Y. Utsumi et al. Fabrication and characterization of quantum dot single electron spin resonance devices / T. Kodera et al. Kondo effect in quantum dots with two orbitals and spin 1/2 - crossover from SU (4) to SU (2) symmetry / M. Eto. Detecting spin polarization of electrons in quantum dot edge channels by photoluminescence / S. Nomura. Manipulation of exchange interaction in a double quantum dot / M. Stopa, S. Tarucha and T. Hatano. Electron-density dependence of photoluminescence from Be-[symbol]-doped GaAs quantum wells with a back gate / M. Yamaguchi et al. Direct observation of [symbol]Si nuclear-spin decoherence process / S. Sasaki and S. Watanabe.
Multi-harmonic quantum dot optomechanics in fused LiNbO3-(Al)GaAs hybrids
NASA Astrophysics Data System (ADS)
Nysten, Emeline D. S.; Huo, Yong Heng; Yu, Hailong; Song, Guo Feng; Rastelli, Armando; Krenner, Hubert J.
2017-11-01
We fabricated an acousto-optic semiconductor hybrid device for strong optomechanical coupling of individual quantum emitters and a surface acoustic wave. Our device comprises of a surface acoustic wave chip made from highly piezoelectric LiNbO3 and a GaAs-based semiconductor membrane with an embedded layer of quantum dots. Employing multi-harmonic transducers, we generated sound waves on LiNbO3 over a wide range of radio frequencies. We monitored their coupling to and propagation across the semiconductor membrane, both in the electrical and optical domain. We demonstrate the enhanced optomechanical tuning of the embedded quantum dots with increasing frequencies. This effect was verified by finite element modelling of our device geometry and attributed to an increased localization of the acoustic field within the semiconductor membrane. For moderately high acoustic frequencies, our simulations predict strong optomechanical coupling, making our hybrid device ideally suited for applications in semiconductor based quantum acoustics.
Bound states and propagating modes in quantum wires with sharp bends and/or constrictions
NASA Astrophysics Data System (ADS)
Razavy, M.
1997-06-01
A number of interesting problems of quantum wires with different geometries can be studied with the help of conformal mapping. These include crossed wires, twisting wires, conductors with constrictions, and wires with a bend. Here the Helmholz equation with Dirichlet boundary condition on the surface of the wire is transformed to a Schröautdinger-like equation with an energy-dependent nonseparable potential but with boundary conditions given on two straight lines. By expanding the wave function in terms of the Fourier series of one of the variables one obtains an infinite set of coupled ordinary differential equations. Only the propagating modes plus a few of the localized modes contribute significantly to the total wave function. Once the problem is solved, one can express the results in terms of the original variables using the inverse conformal mapping. As an example, the total wave function, the components of the current density, and the bound-state energy for a Γ-shaped quantum wire is calculated in detail.
Phonoconductivity measurements of the electron-phonon interaction in quantum wire structures
NASA Astrophysics Data System (ADS)
Naylor, A. J.; Strickland, K. R.; Kent, A. J.; Henini, M.
1996-07-01
We have used a phonoconductivity technique to investigate the electron-phonon interaction in quantum wires. This interaction has important consequences for certain aspects of device behaviour. The 10 μm long wires were formed in GaAs/AlGaAs heterojunctions using split-gates. Ballistic phonon pulses, with an approximately Planckian frequency spectrum, were generated by a resistive film heater on the opposite side of the substrate. The interaction of the phonons with the quantum wire was detected via changes in conductance of the device. Oscillations in the phonoconductivity were observed with increasing (negative) gate bias. These oscillations were related to the Fermi level position relative to the one-dimensional subband structure which was determined from electrical transport measurements. We give a qualitative explanation of the results in terms of phonon induced inter- and intra- 1D subband electronic transitions leading to changes in the electron temperature which in turn affect the conductance. From our results we obtain a value for the effective width of the quantum wire.
NASA Astrophysics Data System (ADS)
Morath, D.; Sedlmayr, N.; Sirker, J.; Eggert, S.
2016-09-01
We study electron and spin transport in interacting quantum wires contacted by noninteracting leads. We theoretically model the wire and junctions as an inhomogeneous chain where the parameters at the junction change on the scale of the lattice spacing. We study such systems analytically in the appropriate limits based on Luttinger liquid theory and compare the results to quantum Monte Carlo calculations of the conductances and local densities near the junction. We first consider an inhomogeneous spinless fermion model with a nearest-neighbor interaction and then generalize our results to a spinful model with an on-site Hubbard interaction.
Measuring the complex admittance and tunneling rate of a germanium hut wire hole quantum dot
NASA Astrophysics Data System (ADS)
Li, Yan; Li, Shu-Xiao; Gao, Fei; Li, Hai-Ou; Xu, Gang; Wang, Ke; Liu, He; Cao, Gang; Xiao, Ming; Wang, Ting; Zhang, Jian-Jun; Guo, Guo-Ping
2018-05-01
We investigate the microwave reflectometry of an on-chip reflection line cavity coupled to a Ge hut wire hole quantum dot. The amplitude and phase responses of the cavity can be used to measure the complex admittance and evaluate the tunneling rate of the quantum dot, even in the region where transport signal through the quantum dot is too small to be measured by conventional direct transport means. The experimental observations are found to be in good agreement with a theoretical model of the hybrid system based on cavity frequency shift and linewidth shift. Our experimental results take the first step towards fast and sensitive readout of charge and spin states in Ge hut wire hole quantum dot.
M-plane core-shell InGaN/GaN multiple-quantum-wells on GaN wires for electroluminescent devices.
Koester, Robert; Hwang, Jun-Seok; Salomon, Damien; Chen, Xiaojun; Bougerol, Catherine; Barnes, Jean-Paul; Dang, Daniel Le Si; Rigutti, Lorenzo; de Luna Bugallo, Andres; Jacopin, Gwénolé; Tchernycheva, Maria; Durand, Christophe; Eymery, Joël
2011-11-09
Nonpolar InGaN/GaN multiple quantum wells (MQWs) grown on the {11-00} sidewalls of c-axis GaN wires have been grown by organometallic vapor phase epitaxy on c-sapphire substrates. The structural properties of single wires are studied in detail by scanning transmission electron microscopy and in a more original way by secondary ion mass spectroscopy to quantify defects, thickness (1-8 nm) and In-composition in the wells (∼16%). The core-shell MQW light emission characteristics (390-420 nm at 5 K) were investigated by cathodo- and photoluminescence demonstrating the absence of the quantum Stark effect as expected due to the nonpolar orientation. Finally, these radial nonpolar quantum wells were used in room-temperature single-wire electroluminescent devices emitting at 392 nm by exploiting sidewall emission.
Methods of measurement for semiconductor materials, process control, and devices
NASA Technical Reports Server (NTRS)
Bullis, W. M. (Editor)
1972-01-01
Activities directed toward the development of methods of measurement for semiconductor materials, process control, and devices are described. Topics investigated include: measurements of transistor delay time; application of the infrared response technique to the study of radiation-damaged, lithium-drifted silicon detectors; and identification of a condition that minimizes wire flexure and reduces the failure rate of wire bonds in transistors and integrated circuits under slow thermal cycling conditions. Supplementary data concerning staff, standards committee activities, technical services, and publications are included as appendixes.
Methods of measurement for semiconductor materials, process control, and devices
NASA Technical Reports Server (NTRS)
Bullis, W. M. (Editor)
1972-01-01
Activities directed toward the development of methods of measurement for semiconductor materials, process control, and devices are described. Accomplishments include the determination of the reasons for differences in measurements of transistor delay time, identification of an energy level model for gold-doped silicon, and the finding of evidence that it does not appear to be necessary for an ultrasonic bonding tool to grip the wire and move it across the substrate metallization to make the bond. Work is continuing on measurement of resistivity of semiconductor crystals; study of gold-doped silicon; development of the infrared response technique; evaluation of wire bonds and die attachment; measurement of thermal properties of semiconductor devices, delay time, and related carrier transport properties in junction devices, and noise properties of microwave diodes; and characterization of silicon nuclear radiation detectors.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Han, Yu; Li, Qiang; Lau, Kei May, E-mail: eekmlau@ust.hk
We report InGaAs quasi-quantum wires embedded in planar InP nanowires grown on (001) silicon emitting in the 1550 nm communication band. An array of highly ordered InP nanowire with semi-rhombic cross-section was obtained in pre-defined silicon V-grooves through selective-area hetero-epitaxy. The 8% lattice mismatch between InP and Si was accommodated by an ultra-thin stacking disordered InP/GaAs nucleation layer. X-ray diffraction and transmission electron microscope characterizations suggest excellent crystalline quality of the nanowires. By exploiting the morphological evolution of the InP and a self-limiting growth process in the V-grooves, we grew embedded InGaAs quantum-wells and quasi-quantum-wires with tunable shape and position. Roommore » temperature analysis reveals substantially improved photoluminescence in the quasi-quantum wires as compared to the quantum-well reference, due to the reduced intrusion defects and enhanced quantum confinement. These results show great promise for integration of III-V based long wavelength nanowire lasers on the well-established (001) Si platform.« less
Controlled Quantum Operations of a Semiconductor Three-Qubit System
NASA Astrophysics Data System (ADS)
Li, Hai-Ou; Cao, Gang; Yu, Guo-Dong; Xiao, Ming; Guo, Guang-Can; Jiang, Hong-Wen; Guo, Guo-Ping
2018-02-01
In a specially designed semiconductor device consisting of three capacitively coupled double quantum dots, we achieve strong and tunable coupling between a target qubit and two control qubits. We demonstrate how to completely switch on and off the target qubit's coherent rotations by presetting two control qubits' states. A Toffoli gate is, therefore, possible based on these control effects. This research paves a way for realizing full quantum-logic operations in semiconductor multiqubit systems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Choudhury, Sourav; Das, Tushar Kanti; Chatterjee, Prasanta
The influence of exchange-correlation potential, quantum Bohm term, and degenerate pressure on the nature of solitary waves in a quantum semiconductor plasma is investigated. It is found that an amplitude and a width of the solitary waves change with variation of different parameters for different semiconductors. A deformed Korteweg-de Vries equation is obtained for propagation of nonlinear waves in a quantum semiconductor plasma, and the effects of different plasma parameters on the solution of the equation are also presented.
Extremely high frequency RF effects on electronics.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Loubriel, Guillermo Manuel; Vigliano, David; Coleman, Phillip Dale
The objective of this work was to understand the fundamental physics of extremely high frequency RF effects on electronics. To accomplish this objective, we produced models, conducted simulations, and performed measurements to identify the mechanisms of effects as frequency increases into the millimeter-wave regime. Our purpose was to answer the questions, 'What are the tradeoffs between coupling, transmission losses, and device responses as frequency increases?', and, 'How high in frequency do effects on electronic systems continue to occur?' Using full wave electromagnetics codes and a transmission-line/circuit code, we investigated how extremely high-frequency RF propagates on wires and printed circuit boardmore » traces. We investigated both field-to-wire coupling and direct illumination of printed circuit boards to determine the significant mechanisms for inducing currents at device terminals. We measured coupling to wires and attenuation along wires for comparison to the simulations, looking at plane-wave coupling as it launches modes onto single and multiconductor structures. We simulated the response of discrete and integrated circuit semiconductor devices to those high-frequency currents and voltages, using SGFramework, the open-source General-purpose Semiconductor Simulator (gss), and Sandia's Charon semiconductor device physics codes. This report documents our findings.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mihaljevic, Miodrag J.
2007-05-15
It is shown that the security, against known-plaintext attacks, of the Yuen 2000 (Y00) quantum-encryption protocol can be considered via the wire-tap channel model assuming that the heterodyne measurement yields the sample for security evaluation. Employing the results reported on the wire-tap channel, a generic framework is proposed for developing secure Y00 instantiations. The proposed framework employs a dedicated encoding which together with inherent quantum noise at the attacker's side provides Y00 security.
High reliability bond program using small diameter aluminum wire
NASA Technical Reports Server (NTRS)
Macha, M.; Thiel, R. A.
1975-01-01
The program was undertaken to characterize the performance of small diameter aluminum wire ultrasonically bonded to conductors commonly encountered in hybrid assemblies, and to recommend guidelines for improving this performance. Wire, 25.4, 38.1 and 50.8 um (1, 1.5 and 2 mil), was used with bonding metallization consisting of thick film gold, thin film gold and aluminum as well as conventional aluminum pads on semiconductor chips. The chief tool for evaluating the performance was the double bond pull test in conjunction with a 72 hour - 150 C heat soak and -65 C to +150 C thermal cycling. In practice the thermal cycling was found to have relatively little effect compared to the heat soak. Pull strength will decrease after heat soak as a result of annealing of the aluminum wire; when bonded to thick film gold, the pull strength decreased by about 50% (weakening of the bond interface was the major cause of the reduction). Bonds to thin film gold lost about 30 - 40% of their initial pull strenth; weakening of the wire itself at the bond heel was the predominant cause. Bonds to aluminum substrate metallization lost only about 22%. Bonds between thick and thin film gold substrate metallization and semiconductor chips substantiated the previous conclusions but also showed that in about 20 to 25% of the cases, bond interface failure occurred at the semiconductor chip.
Performance of Continuous Quantum Thermal Devices Indirectly Connected to Environments
NASA Astrophysics Data System (ADS)
González, J.; Alonso, Daniel; Palao, José
2016-04-01
A general quantum thermodynamics network is composed of thermal devices connected to the environments through quantum wires. The coupling between the devices and the wires may introduce additional decay channels which modify the system performance with respect to the directly-coupled device. We analyze this effect in a quantum three-level device connected to a heat bath or to a work source through a two-level wire. The steady state heat currents are decomposed into the contributions of the set of simple circuits in the graph representing the master equation. Each circuit is associated with a mechanism in the device operation and the system performance can be described by a small number of circuit representatives of those mechanisms. Although in the limit of weak coupling between the device and the wire the new irreversible contributions can become small, they prevent the system from reaching the Carnot efficiency.
Deterministic strain-induced arrays of quantum emitters in a two-dimensional semiconductor
Branny, Artur; Kumar, Santosh; Proux, Raphaël; Gerardot, Brian D
2017-01-01
An outstanding challenge in quantum photonics is scalability, which requires positioning of single quantum emitters in a deterministic fashion. Site positioning progress has been made in established platforms including defects in diamond and self-assembled quantum dots, albeit often with compromised coherence and optical quality. The emergence of single quantum emitters in layered transition metal dichalcogenide semiconductors offers new opportunities to construct a scalable quantum architecture. Here, using nanoscale strain engineering, we deterministically achieve a two-dimensional lattice of quantum emitters in an atomically thin semiconductor. We create point-like strain perturbations in mono- and bi-layer WSe2 which locally modify the band-gap, leading to efficient funnelling of excitons towards isolated strain-tuned quantum emitters that exhibit high-purity single photon emission. We achieve near unity emitter creation probability and a mean positioning accuracy of 120±32 nm, which may be improved with further optimization of the nanopillar dimensions. PMID:28530219
Preferential sites for InAsP/InP quantum wire nucleation using molecular dynamics
NASA Astrophysics Data System (ADS)
Nuñez-Moraleda, Bernardo; Pizarro, Joaquin; Guerrero, Elisa; Guerrero-Lebrero, Maria P.; Yáñez, Andres; Molina, Sergio Ignacio; Galindo, Pedro Luis
2014-11-01
In this paper, stress fields at the surface of the capping layer of self-assembled InAsP quantum wires grown on an InP (001) substrate have been determined from atomistic models using molecular dynamics and Stillinger-Weber potentials. To carry out these calculations, the quantum wire compositional distribution was extracted from previous works, where the As and P distributions were determined by electron energy loss spectroscopy and high-resolution aberration-corrected Z-contrast imaging. Preferential sites for the nucleation of wires on the surface of the capping layer were studied and compared with (i) previous simulations using finite element analysis to solve anisotropic elastic theory equations and (ii) experimentally measured locations of stacked wires. Preferential nucleation sites of stacked wires were determined by the maximum stress location at the MD model surface in good agreement with experimental results and those derived from finite element analysis. This indicates that MD simulations based on empirical potentials provide a suitable and flexible tool to study strain dependent atom processes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chida, K.; Yamauchi, Y.; Arakawa, T.
2013-12-04
We performed the resistively-detected nuclear magnetic resonance (RDNMR) to study the electron spin polarization in the non-equilibrium quantum Hall regime. By measuring the Knight shift, we derive source-drain bias voltage dependence of the electron spin polarization in quantum wires. The electron spin polarization shows minimum value around the threshold voltage of the dynamic nuclear polarization.
Generation of heralded entanglement between distant quantum dot hole spins
NASA Astrophysics Data System (ADS)
Delteil, Aymeric
Entanglement plays a central role in fundamental tests of quantum mechanics as well as in the burgeoning field of quantum information processing. Particularly in the context of quantum networks and communication, some of the major challenges are the efficient generation of entanglement between stationary (spin) and propagating (photon) qubits, the transfer of information from flying to stationary qubits, and the efficient generation of entanglement between distant stationary (spin) qubits. In this talk, I will present such experimental implementations achieved in our team with semiconductor self-assembled quantum dots.Not only are self-assembled quantum dots good single-photon emitters, but they can host an electron or a hole whose spin serves as a quantum memory, and then present spin-dependent optical selection rules leading to an efficient spin-photon quantum interface. Moreover InGaAs quantum dots grown on GaAs substrate can profit from the maturity of III-V semiconductor technology and can be embedded in semiconductor structures like photonic cavities and Schottky diodes.I will report on the realization of heralded quantum entanglement between two semiconductor quantum dot hole spins separated by more than five meters. The entanglement generation scheme relies on single photon interference of Raman scattered light from both dots. A single photon detection projects the system into a maximally entangled state. We developed a delayed two-photon interference scheme that allows for efficient verification of quantum correlations. Moreover the efficient spin-photon interface provided by self-assembled quantum dots allows us to reach an unprecedented rate of 2300 entangled spin pairs per second, which represents an improvement of four orders of magnitude as compared to prior experiments carried out in other systems.Our results extend previous demonstrations in single trapped ions or neutral atoms, in atom ensembles and nitrogen vacancy centers to the domain of artificial atoms in semiconductor nanostructures that allow for on-chip integration of electronic and photonic elements. This work lays the groundwork for the realization of quantum repeaters and quantum networks on a chip.
NASA Astrophysics Data System (ADS)
Ferdous, F.; Haque, A.
2007-05-01
The effect of redistribution of elastic strain relaxation on the energy band structures of GaInAsP/InP compressively strained membrane quantum wires fabricated by electron-beam lithography, reactive-ion etching and two-step epitaxial growth is theoretically studied using an 8-band k ṡp method. Anisotropic strain analysis by the finite element method shows that due to etching away the top and the bottom InP clad layers in membrane structures, redistribution of strain occurs. It is found that strain redistribution increases the effective bandgap of membrane quantum wire structures causing a blueshift of the emission frequency. Comparison with effective bandgap calculations neglecting confinement and band mixing demonstrates that neglect of these effects leads to an overestimation of the change in the bandgap. We have also investigated the effect of variation of wire width, barrier strain compensation, number of stacked quantum wire layers, and thickness of the top and the bottom residual InP layers in membrane structures on the change in the effective bandgap of membrane structures.
Sub-Kelvin resistance thermometer
NASA Technical Reports Server (NTRS)
Castles, Stephen H. (Inventor)
1992-01-01
A device capable of accurate temperature measurement down to 0.01 K of a particular object is discussed. The device is comprised of the following: a heat sink wafer; a first conducting pad bonded near one end of the heat sink wafer; a second conducting pad bonded near the other end of the heat sink wafer; and an oblong doped semiconductor crystal such as germanium. The oblong doped semiconductor crystal has a third conducting pad bonded on its bottom surface with the oblong doped semiconductor crystal bonded to the heat sink wafer by having the fourth conducting pad bonded to the first conducting pad. A wire is bonded between the second and third conducting pads. Current and voltage wires bonded to the first and second conducting pads measure the change in resistance of the oblong doped semiconductor crystal; this indicates the temperature of the object whose temperature is to be measured.
NASA Astrophysics Data System (ADS)
Mughnetsyan, V. N.; Barseghyan, M. G.; Kirakosyan, A. A.
2008-01-01
We consider the photoionization of a hydrogen-like impurity centre in a quantum wire approximated by a cylindrical well of finite depth in a magnetic field directed along the wire axis. The ground state energy and the wave function of the electron localized on on-axis impurity centre are calculated using the variational method. The wave functions and energies of the final states in an one-dimensional conduction subband are also presented. The dependences of photoionization cross-section of a donor centre on magnetic field and frequency of incident radiation both for parallel and perpendicular polarizations and corresponding selection rules for the allowed transitions are found in the dipole approximation. The estimates of photoionization cross-section for various values of wire radius and magnetic field induction for GaAs quantum wire embedded in Ga 1-xAl 1-xAs matrix are given.
Interaction-induced backscattering in short quantum wires
Rieder, M. -T.; Micklitz, T.; Levchenko, A.; ...
2014-10-06
We study interaction-induced backscattering in clean quantum wires with adiabatic contacts exposed to a voltage bias. Particle backscattering relaxes such systems to a fully equilibrated steady state only on length scales exponentially large in the ratio of bandwidth of excitations and temperature. Here in this paper we focus on shorter wires in which full equilibration is not accomplished. Signatures of relaxation then are due to backscattering of hole excitations close to the band bottom which perform a diffusive motion in momentum space while scattering from excitations at the Fermi level. This is reminiscent to the first passage problem of amore » Brownian particle and, regardless of the interaction strength, can be described by an inhomogeneous Fokker-Planck equation. From general solutions of the latter we calculate the hole backscattering rate for different wire lengths and discuss the resulting length dependence of interaction-induced correction to the conductance of a clean single channel quantum wire.« less
Electrochemical Fabrication of Metallic Quantum Wires
ERIC Educational Resources Information Center
Tao, Nongjian
2005-01-01
The fabrication of metallic quantum wires using simple electrochemical techniques is described. The conductance of the system can be readily measured that allows one to constantly monitor the conductance during fabrication and use conductance quantization as a signature to guide the fabrication.
Conductance of a quantum wire at low electron density
NASA Astrophysics Data System (ADS)
Matveev, Konstantin
2006-03-01
We study the transport of electrons through a long quantum wire connecting two bulk leads. As the electron density in the wire is lowered, the Coulomb interactions lead to short-range crystalline ordering of electrons. In this Wigner crystal state the spins of electrons form an antiferromagnetic Heisenberg spin chain with exponentially small exchange coupling J. Inhomogeneity of the electron density due to the coupling of the wire to the leads results in violation of spin-charge separation in the device. As a result the spins affect the conductance of the wire. At zero temperature the low-energy spin excitations propagate freely through the wire, and its conductance remains 2e^2/h. At finite temperature some of the spin excitations are reflected by the wire and contribute to its resistance. Since the energy of the elementary excitations in the spin chain (spinons) cannot exceed πJ/2, the conductance of the wire acquires an exponentially small negative correction δG - (-πJ/2T) at low temperatures T J. At higher temperatures, T J, most of the spin excitations in the leads are reflected by the wire, and the conductance levels off at a new universal value e^2/h. This result is consistent with experimental observations of a mini-plateau of conductance at e^2/h in quantum wires in the absence of magnetic field.
Visible light water splitting using dye-sensitized oxide semiconductors.
Youngblood, W Justin; Lee, Seung-Hyun Anna; Maeda, Kazuhiko; Mallouk, Thomas E
2009-12-21
Researchers are intensively investigating photochemical water splitting as a means of converting solar to chemical energy in the form of fuels. Hydrogen is a key solar fuel because it can be used directly in combustion engines or fuel cells, or combined catalytically with CO(2) to make carbon containing fuels. Different approaches to solar water splitting include semiconductor particles as photocatalysts and photoelectrodes, molecular donor-acceptor systems linked to catalysts for hydrogen and oxygen evolution, and photovoltaic cells coupled directly or indirectly to electrocatalysts. Despite several decades of research, solar hydrogen generation is efficient only in systems that use expensive photovoltaic cells to power water electrolysis. Direct photocatalytic water splitting is a challenging problem because the reaction is thermodynamically uphill. Light absorption results in the formation of energetic charge-separated states in both molecular donor-acceptor systems and semiconductor particles. Unfortunately, energetically favorable charge recombination reactions tend to be much faster than the slow multielectron processes of water oxidation and reduction. Consequently, visible light water splitting has only recently been achieved in semiconductor-based photocatalytic systems and remains an inefficient process. This Account describes our approach to two problems in solar water splitting: the organization of molecules into assemblies that promote long-lived charge separation, and catalysis of the electrolysis reactions, in particular the four-electron oxidation of water. The building blocks of our artificial photosynthetic systems are wide band gap semiconductor particles, photosensitizer and electron relay molecules, and nanoparticle catalysts. We intercalate layered metal oxide semiconductors with metal nanoparticles. These intercalation compounds, when sensitized with [Ru(bpy)(3)](2+) derivatives, catalyze the photoproduction of hydrogen from sacrificial electron donors (EDTA(2-)) or non-sacrificial donors (I(-)). Through exfoliation of layered metal oxide semiconductors, we construct multilayer electron donor-acceptor thin films or sensitized colloids in which individual nanosheets mediate light-driven electron transfer reactions. When sensitizer molecules are "wired" to IrO(2).nH(2)O nanoparticles, a dye-sensitized TiO(2) electrode becomes the photoanode of a water-splitting photoelectrochemical cell. Although this system is an interesting proof-of-concept, the performance of these cells is still poor (approximately 1% quantum yield) and the dye photodegrades rapidly. We can understand the quantum efficiency and degradation in terms of competing kinetic pathways for water oxidation, back electron transfer, and decomposition of the oxidized dye molecules. Laser flash photolysis experiments allow us to measure these competing rates and, in principle, to improve the performance of the cell by changing the architecture of the electron transfer chain.
Negative differential conductance in InAs wire based double quantum dot induced by a charged AFM tip
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhukov, A. A., E-mail: azhukov@issp.ac.ru; Volk, Ch.; Winden, A.
We investigate the conductance of an InAs nanowire in the nonlinear regime in the case of low electron density where the wire is split into quantum dots connected in series. The negative differential conductance in the wire is initiated by means of a charged atomic force microscope tip adjusting the transparency of the tunneling barrier between two adjoining quantum dots. We confirm that the negative differential conductance arises due to the resonant tunneling between these two adjoining quantum dots. The influence of the transparency of the blocking barriers and the relative position of energy states in the adjoining dots onmore » a decrease of the negative differential conductance is investigated in detail.« less
Bajorowicz, Beata; Kobylański, Marek P; Gołąbiewska, Anna; Nadolna, Joanna; Zaleska-Medynska, Adriana; Malankowska, Anna
2018-06-01
Quantum dot (QD)-decorated semiconductor micro- and nanoparticles are a new class of functional nanomaterials that have attracted considerable interest for their unique structural, optical and electronic properties that result from the large surface-to-volume ratio and the quantum confinement effect. In addition, because of QDs' excellent light-harvesting capacity, unique photoinduced electron transfer, and up-conversion behaviour, semiconductor nanoparticles decorated with quantum dots have been used widely in photocatalytic applications for the degradation of organic pollutants in both the gas and aqueous phases. This review is a comprehensive overview of the recent progress in synthesis methods for quantum dots and quantum dot-decorated semiconductor composites with an emphasis on their composition, morphology and optical behaviour. Furthermore, various approaches used for the preparation of QD-based composites are discussed in detail with respect to visible and UV light-induced photoactivity. Finally, an outlook on future development is proposed with the goal of overcoming challenges and stimulating further research into this promising field. Copyright © 2018 Elsevier B.V. All rights reserved.
Semiconductor quantum wells: old technology or new device functionalities
NASA Astrophysics Data System (ADS)
Kolbas, R. M.; Lo, Y. C.; Hsieh, K. Y.; Lee, J. H.; Reed, F. E.; Zhang, D.; Zhang, T.
2009-08-01
The introduction of semiconductor quantum wells in the 1970s created a revolution in optoelectronic devices. A large fraction of today's lasers and light emitting diodes are based on quantum wells. It has been more than 30 years but novel ideas and new device functions have recently been demonstrated using quantum well heterostructures. This paper provides a brief overview of the subject and then focuses on the physics of quantum wells that the lead author believes holds the key to new device functionalities. The data and figures contained within are not new. They have been assembled from 30 years of work. They are presented to convey the story of why quantum wells continue to fuel the engine that drives the semiconductor optoelectronic business. My apologies in advance to my students and co-workers that contributed so much that could not be covered in such a short manuscript. The explanations provided are based on the simplest models possible rather than the very sophisticated mathematical models that have evolved over many years. The intended readers are those involved with semiconductor optoelectronic devices and are interested in new device possibilities.
Charge and spin dynamics driven by ultrashort extreme broadband pulses: A theory perspective
NASA Astrophysics Data System (ADS)
Moskalenko, Andrey S.; Zhu, Zhen-Gang; Berakdar, Jamal
2017-02-01
This article gives an overview on recent theoretical progress in controlling the charge and spin dynamics in low-dimensional electronic systems by means of ultrashort and ultrabroadband electromagnetic pulses. A particular focus is put on sub-cycle and single-cycle pulses and their utilization for coherent control. The discussion is mostly limited to cases where the pulse duration is shorter than the characteristic time scales associated with the involved spectral features of the excitations. The relevant current theoretical knowledge is presented in a coherent, pedagogic manner. We work out that the pulse action amounts in essence to a quantum map between the quantum states of the system at an appropriately chosen time moment during the pulse. The influence of a particular pulse shape on the post-pulse dynamics is reduced to several integral parameters entering the expression for the quantum map. The validity range of this reduction scheme for different strengths of the driving fields is established and discussed for particular nanostructures. Acting with a periodic pulse sequence, it is shown how the system can be steered to and largely maintained in predefined states. The conditions for this nonequilibrium sustainability are worked out by means of geometric phases, which are identified as the appropriate quantities to indicate quasistationarity of periodically driven quantum systems. Demonstrations are presented for the control of the charge, spin, and valley degrees of freedom in nanostructures on picosecond and subpicosecond time scales. The theory is illustrated with several applications to one-dimensional semiconductor quantum wires and superlattices, double quantum dots, semiconductor and graphene quantum rings. In the case of a periodic pulsed driving the influence of the relaxation and decoherence processes is included by utilizing the density matrix approach. The integrated and time-dependent spectra of the light emitted from the driven system deliver information on its spin-dependent dynamics. We review examples of such spectra of photons emitted from pulse-driven nanostructures as well as a possibility to characterize and control the light polarization on an ultrafast time scale. Furthermore, we consider the response of strongly correlated systems to short broadband pulses and show that this case bears a great potential to unveil high order correlations while they build up upon excitations.
NASA Astrophysics Data System (ADS)
Aoyagi, Yoshinobu; Goodnick, Stephen M.
2006-05-01
This special issue of the Journal of Physics: Conference Series contains the proceedings of the joint Seventh International Conference on New Phenomena in Mesoscopic Structures and Fifth International Conference on Surfaces and Interfaces of Mesoscopic Devices, which was held from November 27th - December 2nd, 2005, at the Ritz Carlton Kapalua, Maui, Hawaii. The string of these conferences dates back to the first one in 1989. Of special importance is that this year's conference was dedicated to Professor Gottfried Landwehr, in recognition of his many outstanding contributions to semiconductor physics. A personal tribute to Prof Landwehr by Dr K von Klitzing leads off this issue. The scope of NPMS-7/SIMD-5 spans nano-fabrication through complex phase coherent mesoscopic systems including nano-transistors and nano-scale characterization. Topics of interest include: •Nanoscale fabrication: high-resolution electron lithography, FIB nano-patterning, scanning- force-microscopy (SFM) lithography, SFM-stimulated growth, novel patterning, nano-imprint lithography, special etching, and self-assembled monolayers •Nanocharacterization: SFM characterization, ballistic-electron emission microscopy (BEEM), optical studies of nanostructures, tunneling, properties of discrete impurities, phase coherence, noise, THz studies, and electro-luminescence in small structures •Nanodevices: ultra-scaled FETs, quantum single-electron transistors (SETS), resonant tunneling diodes, ferromagnetic and spin devices, superlattice arrays, IR detectors with quantum dots and wires, quantum point contacts, non-equilibrium transport, simulation, ballistic transport, molecular electronic devices, carbon nanotubes, spin selection devices, spin-coupled quantum dots, and nanomagnetics •Quantum-coherent transport: the quantum Hall effect, ballistic quantum systems, quantum-computing implementations and theory, and magnetic spin systems •Mesoscopic structures: quantum wires and dots, quantum chaos, non-equilibrium transport, instabilities, nano-electro-mechanical systems, mesoscopic Josephson effects, phase coherence and breaking, and the Kondo effect •Systems of nanodevices: Quantum cellular automata, systolic SET processors, quantum neural nets, adaptive effects in circuits, and molecular circuits •Nanomaterials: nanotubes, nanowires, organic and molecular materials, self-assembled nano wires, and organic devices •Nanobioelectronics: electronic properties of biological structures on the nanoscale. This year's conference was organized by Prof Stephen Goodnick, Arizona State University, and Prof Yoshinobu Aoyagi, Tokyo Institute of Technology. The conference benefited from 14 invited speakers, whose topics spanned the above list, and a total of 97 registered attendees. The largest contingent was from Japan, followed closely by the US. In total, there were 49 from Japan, 31 fiom the US, and 17 from Europe. The organizers want to especially thank the sponsors for the meeting: The Office of Naval Research, the Army Research Office, and Arizona State University on the US side, and the Japan Society for the Promotion of Science, through their 151 Committee, on the Japanese side. PROGRAM COMMITTEE •Prof Gerhard Abstreiter, Technical University of Munich •Prof Tsuneya Ando, Tokyo Institute of Technology •Prof John Barker, University of Glasgow •Prof Jonathan Bird, the University at Buffalo •Prof Robert Blick, University of Wisconsin •Prof David Ferry, Chair, Arizona State University •Dr Yoshiro Hirayama, NTT Basic Research Laboratories •Dr Koji Ishibashi, RIKEN •Prof Carlo Jacoboni, University of Modena •Prof David Janes, Purdue University •Prof Friedl Kuchar, University of Leoben •Prof K. Matsumoto, Osaka University •Prof Wolfgang Porod, Notre Dame University •Prof Michiharu Tabe, Shizuoka University •Prof Joachim Wolter, Eindhoven Institute of Technology •Prof Lukas Worschech, University of Würzburg •Dr Naoki Yokoyama, Fujitsu Research
NREL Senior Research Fellow Honored by The Journal of Physical Chemistry |
and quantum size effects in semiconductors and carrier dynamics in semiconductor quantum dots and using hot carrier effects, size quantization, and superlattice concepts that could, in principle, enable
Methods of measurement for semiconductor materials, process control, and devices
NASA Technical Reports Server (NTRS)
Bullis, W. M. (Editor)
1972-01-01
Significant accomplishments include development of a procedure to correct for the substantial differences of transistor delay time as measured with different instruments or with the same instrument at different frequencies; association of infrared response spectra of poor quality germanium gamma ray detectors with spectra of detectors fabricated from portions of a good crystal that had been degraded in known ways; and confirmation of the excellent quality and cosmetic appearance of ultrasonic bonds made with aluminum ribbon wire. Work is continuing on measurement of resistivity of semiconductor crystals; study of gold-doped silicon, development of the infrared response technique; evaluation of wire bonds and die attachment; and measurement of thermal properties of semiconductor devices, delay time and related carrier transport properties in junction devices, and noise properties of microwave diodes.
Electrical and Thermal Transport in Inhomogeneous Luttinger Liquids
DeGottardi, Wade; Matveev, K. A.
2015-06-12
In this paper, we study the transport properties of long quantum wires by generalizing the Luttinger liquid approach to allow for the finite lifetime of the bosonic excitations. Our theory accounts for long-range disorder and strong electron interactions, both of which are common features of experiments with quantum wires. We obtain the electrical and thermal resistances and thermoelectric properties of such quantum wires and find a strong deviation from perfect conductance quantization. Finally, we cast our results in terms of the thermal conductivity and bulk viscosity of the electron liquid and give the temperature scale above which the transport canmore » be described by classical hydrodynamics.« less
Quantum dot in interacting environments
NASA Astrophysics Data System (ADS)
Rylands, Colin; Andrei, Natan
2018-04-01
A quantum impurity attached to an interacting quantum wire gives rise to an array of new phenomena. Using the Bethe Ansatz we solve exactly models describing two geometries of a quantum dot coupled to an interacting quantum wire: a quantum dot that is (i) side coupled and (ii) embedded in a Luttinger liquid. We find the eigenstates and determine the spectrum through the Bethe Ansatz equations. Using this we derive exact expressions for the ground-state dot occupation. The thermodynamics are then studied using the thermodynamics Bethe Ansatz equations. It is shown that at low energies the dot becomes fully hybridized and acts as a backscattering impurity or tunnel junction depending on the geometry and furthermore that the two geometries are related by changing the sign of the interactions. Although remaining strongly coupled for all values of the interaction in the wire, there exists competition between the tunneling and backscattering leading to a suppression or enhancement of the dot occupation depending on the sign of the bulk interactions.
Dynamic spin polarization by orientation-dependent separation in a ferromagnet-semiconductor hybrid
NASA Astrophysics Data System (ADS)
Korenev, V. L.; Akimov, I. A.; Zaitsev, S. V.; Sapega, V. F.; Langer, L.; Yakovlev, D. R.; Danilov, Yu. A.; Bayer, M.
2012-07-01
Integration of magnetism into semiconductor electronics would facilitate an all-in-one-chip computer. Ferromagnet/bulk semiconductor hybrids have been, so far, mainly considered as key devices to read out the ferromagnetism by means of spin injection. Here we demonstrate that a Mn-based ferromagnetic layer acts as an orientation-dependent separator for carrier spins confined in a semiconductor quantum well that is set apart from the ferromagnet by a barrier only a few nanometers thick. By this spin-separation effect, a non-equilibrium electron-spin polarization is accumulated in the quantum well due to spin-dependent electron transfer to the ferromagnet. The significant advance of this hybrid design is that the excellent optical properties of the quantum well are maintained. This opens up the possibility of optical readout of the ferromagnet's magnetization and control of the non-equilibrium spin polarization in non-magnetic quantum wells.
Dynamic spin polarization by orientation-dependent separation in a ferromagnet-semiconductor hybrid.
Korenev, V L; Akimov, I A; Zaitsev, S V; Sapega, V F; Langer, L; Yakovlev, D R; Danilov, Yu A; Bayer, M
2012-07-17
Integration of magnetism into semiconductor electronics would facilitate an all-in-one-chip computer. Ferromagnet/bulk semiconductor hybrids have been, so far, mainly considered as key devices to read out the ferromagnetism by means of spin injection. Here we demonstrate that a Mn-based ferromagnetic layer acts as an orientation-dependent separator for carrier spins confined in a semiconductor quantum well that is set apart from the ferromagnet by a barrier only a few nanometers thick. By this spin-separation effect, a non-equilibrium electron-spin polarization is accumulated in the quantum well due to spin-dependent electron transfer to the ferromagnet. The significant advance of this hybrid design is that the excellent optical properties of the quantum well are maintained. This opens up the possibility of optical readout of the ferromagnet's magnetization and control of the non-equilibrium spin polarization in non-magnetic quantum wells.
NASA Astrophysics Data System (ADS)
Brennan, Kevin F.
1999-02-01
Modern fabrication techniques have made it possible to produce semiconductor devices whose dimensions are so small that quantum mechanical effects dominate their behavior. This book describes the key elements of quantum mechanics, statistical mechanics, and solid-state physics that are necessary in understanding these modern semiconductor devices. The author begins with a review of elementary quantum mechanics, and then describes more advanced topics, such as multiple quantum wells. He then disusses equilibrium and nonequilibrium statistical mechanics. Following this introduction, he provides a thorough treatment of solid-state physics, covering electron motion in periodic potentials, electron-phonon interaction, and recombination processes. The final four chapters deal exclusively with real devices, such as semiconductor lasers, photodiodes, flat panel displays, and MOSFETs. The book contains many homework exercises and is suitable as a textbook for electrical engineering, materials science, or physics students taking courses in solid-state device physics. It will also be a valuable reference for practicing engineers in optoelectronics and related areas.
NASA Astrophysics Data System (ADS)
Lee, Myoung-Jae; Jung, Young-Dae
2017-10-01
The quantum recoil and oscillation effects on the entanglement fidelity and the electron-exchange function for the electron-ion collision are investigated in a semiconductor plasma by using the partial wave analysis and effective interaction potential in strong quantum recoil regime. The magnitude of the electron-exchange function is found to increase as the collision energy increases, but it decreases with an increase in the exchange parameter. It is also found that the collisional entanglement fidelity in strong quantum recoil plasmas is enhanced by the quantum-mechanical and shielding effects. The collisional entanglement fidelity in a semiconductor plasma is also enhanced by the collective plasmon oscillation and electron-exchange effect. However, the electron-exchange effect on the fidelity ratio function is reduced as the plasmon energy increases. Moreover, the electron-exchange influence on the fidelity ratio function is found to increase as the Fermi energy in the semiconductor plasma increases.
Semiconductor bridge (SCB) detonator
Bickes, Jr., Robert W.; Grubelich, Mark C.
1999-01-01
The present invention is a low-energy detonator for high-density secondary-explosive materials initiated by a semiconductor bridge igniter that comprises a pair of electrically conductive lands connected by a semiconductor bridge. The semiconductor bridge is in operational or direct contact with the explosive material, whereby current flowing through the semiconductor bridge causes initiation of the explosive material. Header wires connected to the electrically-conductive lands and electrical feed-throughs of the header posts of explosive devices, are substantially coaxial to the direction of current flow through the SCB, i.e., substantially coaxial to the SCB length.
Optically programmable electron spin memory using semiconductor quantum dots.
Kroutvar, Miro; Ducommun, Yann; Heiss, Dominik; Bichler, Max; Schuh, Dieter; Abstreiter, Gerhard; Finley, Jonathan J
2004-11-04
The spin of a single electron subject to a static magnetic field provides a natural two-level system that is suitable for use as a quantum bit, the fundamental logical unit in a quantum computer. Semiconductor quantum dots fabricated by strain driven self-assembly are particularly attractive for the realization of spin quantum bits, as they can be controllably positioned, electronically coupled and embedded into active devices. It has been predicted that the atomic-like electronic structure of such quantum dots suppresses coupling of the spin to the solid-state quantum dot environment, thus protecting the 'spin' quantum information against decoherence. Here we demonstrate a single electron spin memory device in which the electron spin can be programmed by frequency selective optical excitation. We use the device to prepare single electron spins in semiconductor quantum dots with a well defined orientation, and directly measure the intrinsic spin flip time and its dependence on magnetic field. A very long spin lifetime is obtained, with a lower limit of about 20 milliseconds at a magnetic field of 4 tesla and at 1 kelvin.
NASA Astrophysics Data System (ADS)
Ishioka, Sachio; Fujikawa, Kazuo
2006-06-01
Preface -- Committees -- Opening address / H. Fukuyama -- Welcoming address / N. Osakabe -- Special lecture. Albert Einstein: opportunity and perception / C. N. Yang -- Quantum information and entanglement. Quantum optics with single atoms and photons / H. J. Kimble. Quantum information system experiments using a single photon source / Y. Yamamoto. Quantum communication and quantum computation with entangled photons / A. Zeilinger. High-fidelity quantum teleportation and a quantum teleportation network for continuous variables / N. Takei, A. Furusawa. Long lived entangled states / H. Häffner ... [et al.]. Quantum non-locality using tripartite entanglement with non-orthogonal states / J. V. Corbett, D. Home. Quantum entanglement and wedge product / H Heydari. Analysis of the generation of photon pairs in periodically poled lithium niobate / J. Söderholm ... [et al.]. Generation of entangled photons in a semiconductor and violation of Bell's inequality / G. Oohata, R. Shimizu, K. Edamatsu -- Quantum computing. Decoherence of a Josephson junction flux qubit / Y. Nakamura ... [et al.]. Spectroscopic analysis of a candidate two-qubit silicon quantum computer in the microwave regime / J. Gorman, D. G. Hasko, D. A. Williams. Berry phase detection in charge-coupled flux-qubits and the effect of decoherence / H. Nakano ... [et al.]. Locally observable conditions for the successful implementation of entangling multi-qubit quantum gates / H. F. Hofmann, R. Okamoto, S. Takeuchi. State control in flux qubit circuits: manipulating optical selection rules of microwave-assisted transitions in three-level artificial atoms / Y.-X. Liu ... [et al.]. The effect of local structure and non-uniformity on decoherence-free states of charge qubits / T. Tanamoto, S. Fujita. Entanglement-assisted estimation of quantum channels / A. Fujiwara. Superconducting quantum bit with ferromagnetic [symbol]-Junction / T. Yamashita, S. Takahashi, S. Maekawa. Generation of macroscopic Greenberger-Horne-Zeilinger states in Josephson systems / T. Fujii, M. Nishida, N. Hatakenaka -- Quantum-dot systems. Tunable tunnel and exchange couplings in double quantum dots / S. Tarucha, T. Hatano, M. Stopa. Coherent transport through quantum dots / S. Katsumoto ... [et al.]. Electrically pumped single-photon sources towards 1.3 [symbol]m / X. Xu ... [et al.]. Aharonov-Bohm-type effects in antidot arrays and their decoherence / M. Kato ... [et al.]. Nonequilibrium Kondo dot connected to ferromagnetic leads / Y. Utsumi ... [et al.]. Full counting-statistics in a single-electron transistor in the presence of strong quantum fluctuations / Y. Utsumi -- Anomalous Hall effect and Spin-Hall effect. Geometry and the anomalous Hall effect in ferromagnets / N. P. Ong, W.-L. Lee. Control of spin chirality, Berry phase, and anomalous Hall effect / Y. Tokura, Y. Taguchi. Quantum geometry and Hall effect in ferromagnets and semiconductors / N. Nagaosa. Spin-Hall effect in a semiconductor two-dimensional hole gas with strong spin-orbit coupling / J. Wunderlich ... [et al.]. Intrinsic spin Hall effect in semiconductors / S. Murakami -- Spin related phenomena. Theory of spin transfer phenomena in magnetic metals and semiconductors / A. S. Núñez, A. H. MacDonald. Spin filters of semiconductor nanostructures / T. Dietl, G. Grabecki, J. Wróbel. Experimental study on current-driven domain wall motion / T. Ono ... [et al.]. Magnetization reversal of ferromagnetic nano-dot by non local spin injection / Y. Otani, T. Kimura. Theory of current-driven domain wall dynamics / G. Tatara ... [et al.]. Magnetic impurity states and ferromagnetic interaction in diluted magnetic semiconductors / M. Ichimura ... [et al.]. Geometrical effect on spin current in magnetic nano-structures / M. Ichimura, S. Takahashi, S. Maekawa. Ferromagnetism in anatase TiO[symbol] codoped with Co and Nb / T. Hitosugi ... [et al.] -- Superconductivity in nano-systems. Nonlinear quantum effects in nanosuperconductors / C. Carballeira ... [et al.]. Coalescence and rearrangement of vortices in mesoscopic superconductors / A. Kanda ... [et al.]. Superconductivity in topologically nontrivial spaces / M. Hayashi ... [et al.]. DC-SQUID ratchet using atomic point contact / Y. Ootuka, H. Miyazaki, A. Kanda. Superconducting wire network under spatially modulated magnetic field / H. Sano ... [et al.]. Simple and stable control of mechanical break junction for the study of superconducting atomic point contact / H. Miyazaki ... [et al.]. Critical currents in quasiperiodic pinning arrays: one-dimensional chains and Penrose lattices / V. R. Misko, S. Savel'ev, F. Nori. Macroscopic quantum tunneling in high-Tc superconductor Josephson junctions / S. Kawabata -- Novel properties of carbon nanotubes. Carbon nanotubes and unique transport properties: importance of symmetry and channel number / T. Ando. Optical processes in single-walled carbon nanotubes threaded by a magnetic flux / J. Kono ... [et al.]. Non-equilibrium transport through a single-walled carbon nanotube with highly transparent coupling to reservoirs / P. Recher, N. Y. Kim, Y. Yamamoto -- Novel properties of nano-systems. Transport properties in low dimensional artificial lattice of gold nano-particles / S. Saito ... [et al.]. First principles study of dihydride-chain structures on H-terminated Si(100) surface / Y. Suwa ... [et al.]. Electrical property of Ag nanowires fabricated on hydrogen-terminated Si(100) surface / M. Fujimori, S. Heike, T. Hashizume. Effect of environment on ionization of excited atoms embedded in a solid-state cavity / M. Ando ... [et al.]. Development of universal virtual spectroscope for optoelectronics research: first principles software replacing dielectric constant measurements / T. Hamada ... [et al.]. Quantum Nernst effect / H Nakamura, N. Hatano, R. Shirasaki -- Precise measurements. Quantum phenomena visualized using electron waves / A. Tonomura. An optical lattice clock: ultrastable atomic clock with engineered perturbation / H. Katori ... [et al.]. Development of Mach-Zehnder interferometer and "coherent beam steering" technique for cold neutron / K. Taketani ... [et al.]. Surface potential measurement by atomic force microscopy using a quartz resonator / S. Heike, T. Hashizume -- Fundamental Problems in quantum physics. Berry's phases and topological properties in the Born-Oppenheimer approximation / K. Fujikawa. Self-trapping of Bose-Einstein condensates by oscillating interactions / H. Saito, M. Ueda. Spinor solitons in Bose-Einstein condensates - atomic spin transport / J. Ieda. Spin decoherence in a gravitational field / H. Terashima, M. Ueda. Berry's phase of atoms with different sign of the g-factor in a conical rotating magnetic field observed by a time-domain atom interferometer / A. Morinaga ... [et al.] -- List of participants.
Hole-cyclotron instability in semiconductor quantum plasmas
NASA Astrophysics Data System (ADS)
Areeb, F.; Rasheed, A.; Jamil, M.; Siddique, M.; Sumera, P.
2018-01-01
The excitation of electrostatic hole-cyclotron waves generated by an externally injected electron beam in semiconductor plasmas is examined using a quantum hydrodynamic model. The quantum effects such as tunneling potential, Fermi degenerate pressure, and exchange-correlation potential are taken care of. The growth rate of the wave is analyzed on varying the parameters normalized by hole-plasma frequency, like the angle θ between propagation vector and B0∥z ̂ , speed of the externally injected electron beam v0∥k , thermal temperature of the electron beam τ, external magnetic field B0∥z ̂ that modifies the hole-cyclotron frequency, and finally, the semiconductor electron number density. The instability of the hole-cyclotron wave seeks its applications in semiconductor devices.
NASA Astrophysics Data System (ADS)
Kümmel, Stephan
Being able to visualize the dynamics of electrons in organic materials is a fascinating perspective. Simulations based on time-dependent density functional theory allow to realize this hope, as they visualize the flow of charge through molecular structures in real-space and real-time. We here present results on two fundamental processes: Photoemission from organic semiconductor molecules and charge transport through molecular structures. In the first part we demonstrate that angular resolved photoemission intensities - from both theory and experiment - can often be interpreted as a visualization of molecular orbitals. However, counter-intuitive quantum-mechanical electron dynamics such as emission perpendicular to the direction of the electrical field can substantially alter the picture, adding surprising features to the molecular orbital interpretation. In a second study we calculate the flow of charge through conjugated molecules. The calculations show in real time how breaks in the conjugation can lead to a local buildup of charge and the formation of local electrical dipoles. These can interact with neighboring molecular chains. As a consequence, collections of ''molecular electrical wires'' can show distinctly different characteristics than ''classical electrical wires''. German Science Foundation GRK 1640.
Quantum well multijunction photovoltaic cell
Chaffin, R.J.; Osbourn, G.C.
1983-07-08
A monolithic, quantum well, multilayer photovoltaic cell comprises a p-n junction comprising a p-region on one side and an n-region on the other side, each of which regions comprises a series of at least three semiconductor layers, all p-type in the p-region and all n-type in the n-region; each of said series of layers comprising alternating barrier and quantum well layers, each barrier layer comprising a semiconductor material having a first bandgap and each quantum well layer comprising a semiconductor material having a second bandgap when in bulk thickness which is narrower than said first bandgap, the barrier layers sandwiching each quantum well layer and each quantum well layer being sufficiently thin that the width of its bandgap is between said first and second bandgaps, such that radiation incident on said cell and above an energy determined by the bandgap of the quantum well layers will be absorbed and will produce an electrical potential across said junction.
Many-body exciton states in self-assembled quantum dots coupled to a Fermi sea
NASA Astrophysics Data System (ADS)
Kleemans, N. A. J. M.; van Bree, J.; Govorov, A. O.; Keizer, J. G.; Hamhuis, G. J.; Nötzel, R.; Silov, A. Yu.; Koenraad, P. M.
2010-07-01
Many-body interactions give rise to fascinating physics such as the X-ray Fermi-edge singularity in metals, the Kondo effect in the resistance of metals with magnetic impurities and the fractional quantum Hall effect. Here we report the observation of striking many-body effects in the optical spectra of a semiconductor quantum dot interacting with a degenerate electron gas. A semiconductor quantum dot is an artificial atom, the properties of which can be controlled by means of a tunnel coupling between a metallic contact and the quantum dot. Previous studies concern mostly the regime of weak tunnel coupling, whereas here we investigate the regime of strong coupling, which markedly modifies the optical spectra. In particular we observe two many-body exciton states: Mahan and hybrid excitons. These experimental results open the route towards the observation of a tunable Kondo effect in excited states of semiconductors and are of importance for the technological implementation of quantum dots in devices for quantum information processing.
Quantum well multijunction photovoltaic cell
Chaffin, Roger J.; Osbourn, Gordon C.
1987-01-01
A monolithic, quantum well, multilayer photovoltaic cell comprises a p-n junction comprising a p-region on one side and an n-region on the other side, each of which regions comprises a series of at least three semiconductor layers, all p-type in the p-region and all n-type in the n-region; each of said series of layers comprising alternating barrier and quantum well layers, each barrier layer comprising a semiconductor material having a first bandgap and each quantum well layer comprising a semiconductor material having a second bandgap when in bulk thickness which is narrower than said first bandgap, the barrier layers sandwiching each quantum well layer and each quantum well layer being sufficiently thin that the width of its bandgap is between said first and second bandgaps, such that radiation incident on said cell and above an energy determined by the bandgap of the quantum well layers will be absorbed and will produce an electrical potential across said junction.
Methods of measurement for semiconductor materials, process control, and devices
NASA Technical Reports Server (NTRS)
Bullis, W. M. (Editor)
1973-01-01
This progress report describes NBS activities directed toward the development of methods of measurement for semiconductor materials, process control, and devices. Significant accomplishments during this reporting period include design of a plan to provide standard silicon wafers for four-probe resistivity measurements for the industry, publication of a summary report on the photoconductive decay method for measuring carrier lifetime, publication of a comprehensive review of the field of wire bond fabrication and testing, and successful completion of organizational activity leading to the establishment of a new group on quality and hardness assurance in ASTM Committee F-1 on Electronics. Work is continuing on measurement of resistivity of semiconductor crystals; characterization of generation-recombination-trapping centers in silicon; study of gold-doped silicon; development of the infrared response technique; evaluation of wire bonds and die attachment; and measurement of thermal properties of semiconductor devices, delay time and related carrier transport properties in junction devices, and noise properties of microwave diodes.
Solar Power Wires Based on Organic Photovoltaic Materials
NASA Astrophysics Data System (ADS)
Lee, Michael R.; Eckert, Robert D.; Forberich, Karen; Dennler, Gilles; Brabec, Christoph J.; Gaudiana, Russell A.
2009-04-01
Organic photovoltaics in a flexible wire format has potential advantages that are described in this paper. A wire format requires long-distance transport of current that can be achieved only with conventional metals, thus eliminating the use of transparent oxide semiconductors. A phase-separated, photovoltaic layer, comprising a conducting polymer and a fullerene derivative, is coated onto a thin metal wire. A second wire, coated with a silver film, serving as the counter electrode, is wrapped around the first wire. Both wires are encased in a transparent polymer cladding. Incident light is focused by the cladding onto to the photovoltaic layer even when it is completely shadowed by the counter electrode. Efficiency values of the wires range from 2.79% to 3.27%.
Quantum-size-controlled photoelectrochemical etching of semiconductor nanostructures
Fischer, Arthur J.; Tsao, Jeffrey Y.; Wierer, Jr., Jonathan J.; Xiao, Xiaoyin; Wang, George T.
2016-03-01
Quantum-size-controlled photoelectrochemical (QSC-PEC) etching provides a new route to the precision fabrication of epitaxial semiconductor nanostructures in the sub-10-nm size regime. For example, quantum dots (QDs) can be QSC-PEC-etched from epitaxial InGaN thin films using narrowband laser photoexcitation, and the QD sizes (and hence bandgaps and photoluminescence wavelengths) are determined by the photoexcitation wavelength.
NASA Astrophysics Data System (ADS)
Arslan, Seval; Demir, Abdullah; Şahin, Seval; Aydınlı, Atilla
2018-02-01
In semiconductor lasers, quantum well intermixing (QWI) with high selectivity using dielectrics often results in lower quantum efficiency. In this paper, we report on an investigation regarding the effect of thermally induced dielectric stress on the quantum efficiency of quantum well structures in impurity-free vacancy disordering (IFVD) process using photoluminescence and device characterization in conjunction with microscopy. SiO2 and Si x O2/SrF2 (versus SrF2) films were employed for the enhancement and suppression of QWI, respectively. Large intermixing selectivity of 75 nm (125 meV), consistent with the theoretical modeling results, with negligible effect on the suppression region characteristics, was obtained. Si x O2 layer compensates for the large thermal expansion coefficient mismatch of SrF2 with the semiconductor and mitigates the detrimental effects of SrF2 without sacrificing its QWI benefits. The bilayer dielectric approach dramatically improved the dielectric-semiconductor interface quality. Fabricated high power semiconductor lasers demonstrated high quantum efficiency in the lasing region using the bilayer dielectric film during the intermixing process. Our results reveal that stress engineering in IFVD is essential and the thermal stress can be controlled by engineering the dielectric strain opening new perspectives for QWI of photonic devices.
NASA Astrophysics Data System (ADS)
Ma, Jiaju; Zhang, Yang; Wang, Xiaoxin; Ying, Lei; Masoodian, Saleh; Wang, Zhiyuan; Starkey, Dakota A.; Deng, Wei; Kumar, Rahul; Wu, Yang; Ghetmiri, Seyed Amir; Yu, Zongfu; Yu, Shui-Qing; Salamo, Gregory J.; Fossum, Eric R.; Liu, Jifeng
2017-05-01
This research investigates the fundamental limits and trade-space of quantum semiconductor photodetectors using the Schrödinger equation and the laws of thermodynamics.We envision that, to optimize the metrics of single photon detection, it is critical to maximize the optical absorption in the minimal volume and minimize the carrier transit process simultaneously. Integration of photon management with quantum charge transport/redistribution upon optical excitation can be engineered to maximize the quantum efficiency (QE) and data rate and minimize timing jitter at the same time. Due to the ultra-low capacitance of these quantum devices, even a single photoelectron transfer can induce a notable change in the voltage, enabling non-avalanche single photon detection at room temperature as has been recently demonstrated in Si quanta image sensors (QIS). In this research, uniform III-V quantum dots (QDs) and Si QIS are used as model systems to test the theory experimentally. Based on the fundamental understanding, we also propose proof-of-concept, photon-managed quantum capacitance photodetectors. Built upon the concepts of QIS and single electron transistor (SET), this novel device structure provides a model system to synergistically test the fundamental limits and tradespace predicted by the theory for semiconductor detectors. This project is sponsored under DARPA/ARO's DETECT Program: Fundamental Limits of Quantum Semiconductor Photodetectors.
Epitaxy of advanced nanowire quantum devices
NASA Astrophysics Data System (ADS)
Gazibegovic, Sasa; Car, Diana; Zhang, Hao; Balk, Stijn C.; Logan, John A.; de Moor, Michiel W. A.; Cassidy, Maja C.; Schmits, Rudi; Xu, Di; Wang, Guanzhong; Krogstrup, Peter; Op Het Veld, Roy L. M.; Zuo, Kun; Vos, Yoram; Shen, Jie; Bouman, Daniël; Shojaei, Borzoyeh; Pennachio, Daniel; Lee, Joon Sue; van Veldhoven, Petrus J.; Koelling, Sebastian; Verheijen, Marcel A.; Kouwenhoven, Leo P.; Palmstrøm, Chris J.; Bakkers, Erik P. A. M.
2017-08-01
Semiconductor nanowires are ideal for realizing various low-dimensional quantum devices. In particular, topological phases of matter hosting non-Abelian quasiparticles (such as anyons) can emerge when a semiconductor nanowire with strong spin-orbit coupling is brought into contact with a superconductor. To exploit the potential of non-Abelian anyons—which are key elements of topological quantum computing—fully, they need to be exchanged in a well-controlled braiding operation. Essential hardware for braiding is a network of crystalline nanowires coupled to superconducting islands. Here we demonstrate a technique for generic bottom-up synthesis of complex quantum devices with a special focus on nanowire networks with a predefined number of superconducting islands. Structural analysis confirms the high crystalline quality of the nanowire junctions, as well as an epitaxial superconductor-semiconductor interface. Quantum transport measurements of nanowire ‘hashtags’ reveal Aharonov-Bohm and weak-antilocalization effects, indicating a phase-coherent system with strong spin-orbit coupling. In addition, a proximity-induced hard superconducting gap (with vanishing sub-gap conductance) is demonstrated in these hybrid superconductor-semiconductor nanowires, highlighting the successful materials development necessary for a first braiding experiment. Our approach opens up new avenues for the realization of epitaxial three-dimensional quantum architectures which have the potential to become key components of various quantum devices.
Magnetically Defined Qubits on 3D Topological Insulators
NASA Astrophysics Data System (ADS)
Ferreira, Gerson J.; Loss, Daniel
2014-03-01
We explore potentials that break time-reversal symmetry to confine the surface states of 3D topological insulators into quantum wires and quantum dots. A magnetic domain wall on a ferromagnet insulator cap layer provides interfacial states predicted to show the quantum anomalous Hall effect. Here, we show that confinement can also occur at magnetic domain heterostructures, with states extended in the inner domain, as well as interfacial QAHE states at the surrounding domain walls. The proposed geometry allows the isolation of the wire and dot from spurious circumventing surface states. For the quantum dots, we find that highly spin-polarized quantized QAHE states at the dot edge constitute a promising candidate for quantum computing qubits. See [Ferreira and Loss, Phys. Rev. Lett. 111, 106802 (2013)]. We explore potentials that break time-reversal symmetry to confine the surface states of 3D topological insulators into quantum wires and quantum dots. A magnetic domain wall on a ferromagnet insulator cap layer provides interfacial states predicted to show the quantum anomalous Hall effect. Here, we show that confinement can also occur at magnetic domain heterostructures, with states extended in the inner domain, as well as interfacial QAHE states at the surrounding domain walls. The proposed geometry allows the isolation of the wire and dot from spurious circumventing surface states. For the quantum dots, we find that highly spin-polarized quantized QAHE states at the dot edge constitute a promising candidate for quantum computing qubits. See [Ferreira and Loss, Phys. Rev. Lett. 111, 106802 (2013)]. We acknowledge support from the Swiss NSF, NCCR Nanoscience, NCCR QSIT, and the Brazillian Research Support Center Initiative (NAP Q-NANO) from Pró-Reitoria de Pesquisa (PRP/USP).
NASA Astrophysics Data System (ADS)
Sharma, Akant Sagar; Dhar, S.
2018-02-01
The distribution of strain, developed in zero-dimensional quantum spherical dots and one-dimensional cylindrical quantum wires of an InGaN/GaN system is calculated as functions of radius of the structure and indium mole fraction. The strain shows strong dependence on indium mole fraction at small distances from the center. The strain associated with both the structures is found to decrease exponentially with the increase in dot or cylinder radius and increases linearly with indium content.
Semiconductor quantum dot scintillation under gamma-ray irradiation.
Létant, S E; Wang, T-F
2006-12-01
We recently demonstrated the ability of semiconductor quantum dots to convert alpha radiation into visible photons. In this letter, we report on the scintillation of quantum dots under gamma irradiation and compare the energy resolution of the 59 keV line of americium-241 obtained with our quantum dot-glass nanocomposite to that of a standard sodium iodide scintillator. A factor 2 improvement is demonstrated experimentally and interpreted theoretically using a combination of energy-loss and photon-transport models.
Nonlinear structures: Cnoidal, soliton, and periodical waves in quantum semiconductor plasma
NASA Astrophysics Data System (ADS)
Tolba, R. E.; El-Bedwehy, N. A.; Moslem, W. M.; El-Labany, S. K.; Yahia, M. E.
2016-01-01
Properties and emerging conditions of various nonlinear acoustic waves in a three dimensional quantum semiconductor plasma are explored. A plasma fluid model characterized by degenerate pressures, exchange correlation, and quantum recoil forces is established and solved. Our analysis approach is based on the reductive perturbation theory for deriving the Kadomtsev-Petviashvili equation from the fluid model and solving it by using Painlevé analysis to come up with different nonlinear solutions that describe different pulse profiles such as cnoidal, soliton, and periodical pulses. The model is then employed to recognize the possible perturbations in GaN semiconductor.
Nonlinear structures: Cnoidal, soliton, and periodical waves in quantum semiconductor plasma
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tolba, R. E., E-mail: tolba-math@yahoo.com; El-Bedwehy, N. A., E-mail: nab-elbedwehy@yahoo.com; Moslem, W. M., E-mail: wmmoslem@hotmail.com
2016-01-15
Properties and emerging conditions of various nonlinear acoustic waves in a three dimensional quantum semiconductor plasma are explored. A plasma fluid model characterized by degenerate pressures, exchange correlation, and quantum recoil forces is established and solved. Our analysis approach is based on the reductive perturbation theory for deriving the Kadomtsev-Petviashvili equation from the fluid model and solving it by using Painlevé analysis to come up with different nonlinear solutions that describe different pulse profiles such as cnoidal, soliton, and periodical pulses. The model is then employed to recognize the possible perturbations in GaN semiconductor.
H+-type and OH--type biological protonic semiconductors and complementary devices
NASA Astrophysics Data System (ADS)
Deng, Yingxin; Josberger, Erik; Jin, Jungho; Rousdari, Anita Fadavi; Helms, Brett A.; Zhong, Chao; Anantram, M. P.; Rolandi, Marco
2013-10-01
Proton conduction is essential in biological systems. Oxidative phosphorylation in mitochondria, proton pumping in bacteriorhodopsin, and uncoupling membrane potentials by the antibiotic Gramicidin are examples. In these systems, H+ hop along chains of hydrogen bonds between water molecules and hydrophilic residues - proton wires. These wires also support the transport of OH- as proton holes. Discriminating between H+ and OH- transport has been elusive. Here, H+ and OH- transport is achieved in polysaccharide- based proton wires and devices. A H+- OH- junction with rectifying behaviour and H+-type and OH--type complementary field effect transistors are demonstrated. We describe these devices with a model that relates H+ and OH- to electron and hole transport in semiconductors. In turn, the model developed for these devices may provide additional insights into proton conduction in biological systems.
H+-type and OH−-type biological protonic semiconductors and complementary devices
Deng, Yingxin; Josberger, Erik; Jin, Jungho; Rousdari, Anita Fadavi; Helms, Brett A.; Zhong, Chao; Anantram, M. P.; Rolandi, Marco
2013-01-01
Proton conduction is essential in biological systems. Oxidative phosphorylation in mitochondria, proton pumping in bacteriorhodopsin, and uncoupling membrane potentials by the antibiotic Gramicidin are examples. In these systems, H+ hop along chains of hydrogen bonds between water molecules and hydrophilic residues – proton wires. These wires also support the transport of OH− as proton holes. Discriminating between H+ and OH− transport has been elusive. Here, H+ and OH− transport is achieved in polysaccharide- based proton wires and devices. A H+- OH− junction with rectifying behaviour and H+-type and OH−-type complementary field effect transistors are demonstrated. We describe these devices with a model that relates H+ and OH− to electron and hole transport in semiconductors. In turn, the model developed for these devices may provide additional insights into proton conduction in biological systems. PMID:24089083
NASA Astrophysics Data System (ADS)
Yang, Fan; Liu, Ren-Bao
2013-03-01
Quantum evolution of particles under strong fields can be approximated by the quantum trajectories that satisfy the stationary phase condition in the Dirac-Feynmann path integrals. The quantum trajectories are the key concept to understand strong-field optics phenomena, such as high-order harmonic generation (HHG), above-threshold ionization (ATI), and high-order terahertz siedeband generation (HSG). The HSG in semiconductors may have a wealth of physics due to the possible nontrivial ``vacuum'' states of band materials. We find that in a spin-orbit-coupled semiconductor, the cyclic quantum trajectories of an electron-hole pair under a strong terahertz field accumulates nontrivial Berry phases. We study the monolayer MoS2 as a model system and find that the Berry phases are given by the Faraday rotation angles of the pulse emission from the material under short-pulse excitation. This result demonstrates an interesting Berry phase dependent effect in the extremely nonlinear optics of semiconductors. This work is supported by Hong Kong RGC/GRF 401512 and the CUHK Focused Investments Scheme.
NASA Astrophysics Data System (ADS)
Entin, M. V.; Magarill, L. I.
2010-02-01
The stationary current induced by a strong running potential wave in one-dimensional system is studied. Such a wave can result from illumination of a straight quantum wire with special grating or spiral quantum wire by circular-polarized light. The wave drags electrons in the direction correlated with the direction of the system symmetry and polarization of light. In a pure system the wave induces minibands in the accompanied system of reference. We study the effect in the presence of impurity scattering. The current is an interplay between the wave drag and impurity braking. It was found that the drag current is quantized when the Fermi level gets into energy gaps.
NASA Technical Reports Server (NTRS)
Li, Jian-Zhong; Kolokolov, Kanstantin I.; Ning, Cun-Zheng
2003-01-01
Linear absorption spectra arising from intersubband transitions in semiconductor quantum well heterostructures are analyzed using quantum kinetic theory by treating correlations to the first order within Hartree-Fock approximation. The resulting intersubband semiconductor Bloch equations take into account extrinsic dephasing contributions, carrier-longitudinal optical phonon interaction and carrier-interface roughness interaction which is considered with Ando s theory. As input for resonance lineshape calculation, a spurious-states-free 8-band kp Hamiltonian is used, in conjunction with the envelop function approximation, to compute self-consistently the energy subband structure of electrons in type II InAs/AlSb single quantum well structures. We demonstrate the interplay of nonparabolicity and many-body effects in the mid-infrared frequency range for such heterostructures.
Chaffin, R.J.; Dawson, L.R.; Fritz, I.J.; Osbourn, G.C.; Zipperian, T.E.
1984-04-19
In a field-effect transistor comprising a semiconductor having therein a source, a drain, a channel and a gate in operational relationship, there is provided an improvement wherein said semiconductor is a superlattice comprising alternating quantum well and barrier layers, the quantum well layers comprising a first direct gap semiconductor material which in bulk form has a certain bandgap and a curve of electron velocity versus applied electric field which has a maximum electron velocity at a certain electric field, the barrier layers comprising a second semiconductor material having a bandgap wider than that of said first semiconductor material, wherein the layer thicknesses of said quantum well and barrier layers are sufficiently thin that the alternating layers constitute a superlattice having a curve of electron velocity versus applied electric field which has a maximum electron velocity at a certain electric field, and wherein the thicknesses of said quantum well layers are selected to provide a superlattice curve of electron velocity versus applied electric field whereby, at applied electric fields higher than that at which the maximum electron velocity occurs in said first material when in bulk form, the electron velocities are higher in said superlattice than they are in said first semiconductor material in bulk form.
NASA Astrophysics Data System (ADS)
Henry, Edward Trowbridge
Semiconductor quantum dots in silicon demonstrate exceptionally long spin lifetimes as qubits and are therefore promising candidates for quantum information processing. However, control and readout techniques for these devices have thus far employed low frequency electrons, in contrast to high speed temperature readout techniques used in other qubit architectures, and coupling between multiple quantum dot qubits has not been satisfactorily addressed. This dissertation presents the design and characterization of a semiconductor charge qubit based on double quantum dot in silicon with an integrated microwave resonator for control and readout. The 6 GHz resonator is designed to achieve strong coupling with the quantum dot qubit, allowing the use of circuit QED control and readout techniques which have not previously been applicable to semiconductor qubits. To achieve this coupling, this document demonstrates successful operation of a novel silicon double quantum dot design with a single active metallic layer and a coplanar stripline resonator with a bias tee for dc excitation. Experiments presented here demonstrate quantum localization and measurement of both electrons on the quantum dot and photons in the resonator. Further, it is shown that the resonator-qubit coupling in these devices is sufficient to reach the strong coupling regime of circuit QED. The details of a measurement setup capable of performing simultaneous low noise measurements of the resonator and quantum dot structure are also presented here. The ultimate aim of this research is to integrate the long coherence times observed in electron spins in silicon with the sophisticated readout architectures available in circuit QED based quantum information systems. This would allow superconducting qubits to be coupled directly to semiconductor qubits to create hybrid quantum systems with separate quantum memory and processing components.
Optical Properties of III-V Semiconductor Nanostructures and Quantum Wells
2006-12-31
measurements were made using a BOMEM Fourier-transform infrared spectrometer in conjunction with a continuous flow cryostat. A low- noise current...infrared photodetector ( QWIP ). Quantum well infrared photodetectors are designed from wide bandgap (III-V) semiconductor materials in such a way where...quantum confinement is created. Unlike HgCdTe which utilizes electronic transitions across the fundamental bandgap, QWIPs relies on transitions between
Microbial synthesis of chalcogenide semiconductor nanoparticles: a review.
Jacob, Jaya Mary; Lens, Piet N L; Balakrishnan, Raj Mohan
2016-01-01
Chalcogenide semiconductor quantum dots are emerging as promising nanomaterials due to their size tunable optoelectronic properties. The commercial synthesis and their subsequent integration for practical uses have, however, been contorted largely due to the toxicity and cost issues associated with the present chemical synthesis protocols. Accordingly, there is an immediate need to develop alternative environment-friendly synthesis procedures. Microbial factories hold immense potential to achieve this objective. Over the past few years, bacteria, fungi and yeasts have been experimented with as eco-friendly and cost-effective tools for the biosynthesis of semiconductor quantum dots. This review provides a detailed overview about the production of chalcogen-based semiconductor quantum particles using the inherent microbial machinery. © 2015 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.
2017-02-01
MOVPE Growth of LWIR AlInAs/GaInAs/InP Quantum Cascade Lasers: Impact of Growth and Material Quality on Laser Performance (Invited paper) Christine A...epitaxial layers in quantum cascade lasers (QCLs) has a primary impact on QCL operation, and establishing correlations between epitaxial growth and materials...QCLs emitting in this range. Index terms – Quantum cascade lasers, semiconductor growth, semiconductor epitaxial layers, infrared emitters. I
Semiconductor bridge (SCB) detonator
Bickes, R.W. Jr.; Grubelich, M.C.
1999-01-19
The present invention is a low-energy detonator for high-density secondary-explosive materials initiated by a semiconductor bridge (SCB) igniter that comprises a pair of electrically conductive lands connected by a semiconductor bridge. The semiconductor bridge is in operational or direct contact with the explosive material, whereby current flowing through the semiconductor bridge causes initiation of the explosive material. Header wires connected to the electrically-conductive lands and electrical feed-throughs of the header posts of explosive devices, are substantially coaxial to the direction of current flow through the SCB, i.e., substantially coaxial to the SCB length. 3 figs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gehl, Michael; Gibson, Ricky; Zandbergen, Sander
Currently, superconducting qubits lead the way in potential candidates for quantum computing. This is a result of the robust nature of superconductivity and the non-linear Josephson effect which make possible many types of qubits. At the same time, transferring quantum information over long distances typically relies on the use of photons as the elementary qubit. Converting between stationary electronic qubits in superconducting systems and traveling photonic qubits is a challenging yet necessary goal for the interface of quantum computing and communication. The most promising path to achieving this goal appears to be the integration of superconductivity with optically active semiconductors,more » with quantum information being transferred between the two by means of the superconducting proximity effect. Obtaining good interfaces between superconductor and semiconductor is the next obvious step for improving these hybrid systems. As a result, we report on our observation of superconductivity in self-assembled indium structures grown epitaxially on the surface of semiconductor material.« less
Gehl, Michael; Gibson, Ricky; Zandbergen, Sander; ...
2016-02-01
Currently, superconducting qubits lead the way in potential candidates for quantum computing. This is a result of the robust nature of superconductivity and the non-linear Josephson effect which make possible many types of qubits. At the same time, transferring quantum information over long distances typically relies on the use of photons as the elementary qubit. Converting between stationary electronic qubits in superconducting systems and traveling photonic qubits is a challenging yet necessary goal for the interface of quantum computing and communication. The most promising path to achieving this goal appears to be the integration of superconductivity with optically active semiconductors,more » with quantum information being transferred between the two by means of the superconducting proximity effect. Obtaining good interfaces between superconductor and semiconductor is the next obvious step for improving these hybrid systems. As a result, we report on our observation of superconductivity in self-assembled indium structures grown epitaxially on the surface of semiconductor material.« less
Observation of entanglement between a quantum dot spin and a single photon.
Gao, W B; Fallahi, P; Togan, E; Miguel-Sanchez, J; Imamoglu, A
2012-11-15
Entanglement has a central role in fundamental tests of quantum mechanics as well as in the burgeoning field of quantum information processing. Particularly in the context of quantum networks and communication, a main challenge is the efficient generation of entanglement between stationary (spin) and propagating (photon) quantum bits. Here we report the observation of quantum entanglement between a semiconductor quantum dot spin and the colour of a propagating optical photon. The demonstration of entanglement relies on the use of fast, single-photon detection, which allows us to project the photon into a superposition of red and blue frequency components. Our results extend the previous demonstrations of single-spin/single-photon entanglement in trapped ions, neutral atoms and nitrogen-vacancy centres to the domain of artificial atoms in semiconductor nanostructures that allow for on-chip integration of electronic and photonic elements. As a result of its fast optical transitions and favourable selection rules, the scheme we implement could in principle generate nearly deterministic entangled spin-photon pairs at a rate determined ultimately by the high spontaneous emission rate. Our observation constitutes a first step towards implementation of a quantum network with nodes consisting of semiconductor spin quantum bits.
Optical devices featuring nonpolar textured semiconductor layers
Moustakas, Theodore D; Moldawer, Adam; Bhattacharyya, Anirban; Abell, Joshua
2013-11-26
A semiconductor emitter, or precursor therefor, has a substrate and one or more textured semiconductor layers deposited onto the substrate in a nonpolar orientation. The textured layers enhance light extraction, and the use of nonpolar orientation greatly enhances internal quantum efficiency compared to conventional devices. Both the internal and external quantum efficiencies of emitters of the invention can be 70-80% or higher. The invention provides highly efficient light emitting diodes suitable for solid state lighting.
Chemla, Daniel S.; Shah, Jagdeep
2000-01-01
The large dielectric constant and small effective mass in a semiconductor allows a description of its electronic states in terms of envelope wavefunctions whose energy, time, and length scales are mesoscopic, i.e., halfway between those of atomic and those of condensed matter systems. This property makes it possible to demonstrate and investigate many quantum mechanical, many-body, and quantum kinetic phenomena with tabletop experiments that would be nearly impossible in other systems. This, along with the ability to custom-design semiconductor nanostructures, makes semiconductors an ideal laboratory for experimental investigations. We present an overview of some of the most exciting results obtained in semiconductors in recent years using the technique of ultrafast nonlinear optical spectrocopy. These results show that Coulomb correlation plays a major role in semiconductors and makes them behave more like a strongly interacting system than like an atomic system. The results provide insights into the physics of strongly interacting systems that are relevant to other condensed matter systems, but not easily accessible in other materials. PMID:10716981
NASA Astrophysics Data System (ADS)
Tartakovskii, Alexander
2012-07-01
Part I. Nanostructure Design and Structural Properties of Epitaxially Grown Quantum Dots and Nanowires: 1. Growth of III/V semiconductor quantum dots C. Schneider, S. Hofling and A. Forchel; 2. Single semiconductor quantum dots in nanowires: growth, optics, and devices M. E. Reimer, N. Akopian, M. Barkelid, G. Bulgarini, R. Heeres, M. Hocevar, B. J. Witek, E. Bakkers and V. Zwiller; 3. Atomic scale analysis of self-assembled quantum dots by cross-sectional scanning tunneling microscopy and atom probe tomography J. G. Keizer and P. M. Koenraad; Part II. Manipulation of Individual Quantum States in Quantum Dots Using Optical Techniques: 4. Studies of the hole spin in self-assembled quantum dots using optical techniques B. D. Gerardot and R. J. Warburton; 5. Resonance fluorescence from a single quantum dot A. N. Vamivakas, C. Matthiesen, Y. Zhao, C.-Y. Lu and M. Atature; 6. Coherent control of quantum dot excitons using ultra-fast optical techniques A. J. Ramsay and A. M. Fox; 7. Optical probing of holes in quantum dot molecules: structure, symmetry, and spin M. F. Doty and J. I. Climente; Part III. Optical Properties of Quantum Dots in Photonic Cavities and Plasmon-Coupled Dots: 8. Deterministic light-matter coupling using single quantum dots P. Senellart; 9. Quantum dots in photonic crystal cavities A. Faraon, D. Englund, I. Fushman, A. Majumdar and J. Vukovic; 10. Photon statistics in quantum dot micropillar emission M. Asmann and M. Bayer; 11. Nanoplasmonics with colloidal quantum dots V. Temnov and U. Woggon; Part IV. Quantum Dot Nano-Laboratory: Magnetic Ions and Nuclear Spins in a Dot: 12. Dynamics and optical control of an individual Mn spin in a quantum dot L. Besombes, C. Le Gall, H. Boukari and H. Mariette; 13. Optical spectroscopy of InAs/GaAs quantum dots doped with a single Mn atom O. Krebs and A. Lemaitre; 14. Nuclear spin effects in quantum dot optics B. Urbaszek, B. Eble, T. Amand and X. Marie; Part V. Electron Transport in Quantum Dots Fabricated by Lithographic Techniques: III-V Semiconductors and Carbon: 15. Electrically controlling single spin coherence in semiconductor nanostructures Y. Dovzhenko, K. Wang, M. D. Schroer and J. R. Petta; 16. Theory of electron and nuclear spins in III-V semiconductor and carbon-based dots H. Ribeiro and G. Burkard; 17. Graphene quantum dots: transport experiments and local imaging S. Schnez, J. Guettinger, F. Molitor, C. Stampfer, M. Huefner, T. Ihn and K. Ensslin; Part VI. Single Dots for Future Telecommunications Applications: 18. Electrically operated entangled light sources based on quantum dots R. M. Stevenson, A. J. Bennett and A. J. Shields; 19. Deterministic single quantum dot cavities at telecommunication wavelengths D. Dalacu, K. Mnaymneh, J. Lapointe, G. C. Aers, P. J. Poole, R. L. Williams and S. Hughes; Index.
Approximation method for a spherical bound system in the quantum plasma
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mehramiz, A.; Sobhanian, S.; Mahmoodi, J.
2010-08-15
A system of quantum hydrodynamic equations has been used for investigating the dielectric tensor and dispersion equation of a semiconductor as a quantum magnetized plasma. Dispersion relations and their modifications due to quantum effects are derived for both longitudinal and transverse waves. The number of states and energy levels are analytically estimated for a spherical bound system embedded in a semiconductor quantum plasma. The results show that longitudinal waves decay rapidly and do not interact with the spherical bound system. The energy shifts caused by the spin-orbit interaction and the Zeeman effect are calculated.
Admittance Investigation of MIS Structures with HgTe-Based Single Quantum Wells.
Izhnin, Ihor I; Nesmelov, Sergey N; Dzyadukh, Stanislav M; Voitsekhovskii, Alexander V; Gorn, Dmitry I; Dvoretsky, Sergey A; Mikhailov, Nikolaj N
2016-12-01
This work presents results of the investigation of admittance of metal-insulator-semiconductor structure based on Hg1 - x Cd x Te grown by molecular beam epitaxy. The structure contains a single quantum well Hg0.35Cd0.65Te/HgTe/Hg0.35Cd0.65Te with thickness of 5.6 nm in the sub-surface layer of the semiconductor. Both the conductance-voltage and capacitance-voltage characteristics show strong oscillations when the metal-insulator-semiconductor (MIS) structure with a single quantum well based on HgTe is biased into the strong inversion mode. Also, oscillations on the voltage dependencies of differential resistance of the space charge region were observed. These oscillations were related to the recharging of quantum levels in HgTe.
NASA Astrophysics Data System (ADS)
Bennett, A. J.; Lee, J. P.; Ellis, D. J. P.; Farrer, I.; Ritchie, D. A.; Shields, A. J.
2016-10-01
Obtaining substantial nonlinear effects at the single-photon level is a considerable challenge that holds great potential for quantum optical measurements and information processing. Of the progress that has been made in recent years one of the most promising methods is to scatter coherent light from quantum emitters, imprinting quantum correlations onto the photons. We report effective interactions between photons, controlled by a single semiconductor quantum dot that is weakly coupled to a monolithic cavity. We show that the nonlinearity of a transition modifies the counting statistics of a Poissonian beam, sorting the photons in number. This is used to create strong correlations between detection events and to create polarization-correlated photons from an uncorrelated stream using a single spin. These results pave the way for semiconductor optical switches operated by single quanta of light.
Lhuillier, Emmanuel; Pedetti, Silvia; Ithurria, Sandrine; Nadal, Brice; Heuclin, Hadrien; Dubertret, Benoit
2015-01-20
CONSPECTUS: Semiconductors are at the basis of electronics. Up to now, most devices that contain semiconductors use materials obtained from a top down approach with semiconductors grown by molecular beam epitaxy or chemical vapor deposition. Colloidal semiconductor nanoparticles have been synthesized for more than 30 years now, and their synthesis is becoming mature enough that these nanoparticles have started to be incorporated into devices. An important development that recently took place in the field of colloidal quantum dots is the synthesis of two-dimensional (2D) semiconductor nanoplatelets that appear as free-standing nanosheets. These 2D colloidal systems are the newborn in the family of shaped-controlled nanoparticles that started with spheres, was extended with rods and wires, continued with tetrapods, and now ends with platelets. From a physical point of view, these objects bring 1D-confined particles into the colloidal family. It is a notable addition, since these platelets can have a thickness that is controlled with atomic precision, so that no inhomogeneous broadening is observed. Because they have two large free interfaces, mirror charges play an important role, and the binding energy of the exciton is extremely large. These two effects almost perfectly compensate each other, it results in particles with unique spectroscopic properties such as fast fluorescent lifetimes and extreme color purity (narrow full width at half-maximum of their emission spectra). These nanoplatelets with extremely large confinement but very simple and well-defined chemistry are model systems to check and further develop, notably with the incorporation in the models of the organic/inorganic interface, various theoretical approaches used for colloidal particles. From a chemical point of view, these colloidal particles are a model system to study the role of ligands since they have precisely defined facets. In addition, the synthesis of these highly anisotropic objects triggered new research to understand at a mechanistic level how this strong anisotropy could be generated. Luckily, some of the chemical know-how built with the spherical and rod-shaped particles is being transferred, with some adaptation, to 2D systems, so that 2D core/shell and core/crown heterostructures have recently been introduced. These objects are very interesting because they suggest that multiple quantum wells could be grown in solution. From the application point of view, 2D colloidal nanoplatelets offer interesting perspectives when color purity, charge conductivity, or field tunable absorption are required. In this Account, we review the chemical synthesis, the physical properties, and the applications of colloidal semiconductor nanoplatelets with an emphasis on the zinc-blende nanoplatelets that were developed more specifically in our group.
Electronegativity estimation of electronic polarizabilities of semiconductors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Keyan; Xue, Dongfeng, E-mail: dfxue@chem.dlut.edu.cn
2010-03-15
On the basis of the viewpoint of structure-property relationship in solid state matters, we proposed some useful relations to quantitatively calculate the electronic polarizabilities of binary and ternary chalcopyrite semiconductors, by using electronegativity and principal quantum number. The calculated electronic polarizabilities are in good agreement with reported values in the literature. Both electronegativity and principal quantum number can effectively reflect the detailed chemical bonding behaviors of constituent atoms in these semiconductors, which determines the magnitude of their electronic polarizabilities. The present work provides a useful guide to compositionally design novel semiconductor materials, and further explore advanced electro-optic devices.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Karpunin, V. V., E-mail: karpuninvv@mail.ru; Margulis, V. A., E-mail: theorphysics@mrsu.ru
2016-06-15
An analytical expression for the coefficient of absorption of electromagnetic radiation by electrons in a quantum wire in a magnetic field is derived. The case of a magnetic field transverse with respect to the wire axis is considered. The resonance character of absorption is shown, and the resonance frequencies as functions of the field are determined. The effect of the scattering of electrons at optical phonons is studied, and it is shown that scattering is responsible for additional resonance absorption peaks.
Single photon sources with single semiconductor quantum dots
NASA Astrophysics Data System (ADS)
Shan, Guang-Cun; Yin, Zhang-Qi; Shek, Chan Hung; Huang, Wei
2014-04-01
In this contribution, we briefly recall the basic concepts of quantum optics and properties of semiconductor quantum dot (QD) which are necessary to the understanding of the physics of single-photon generation with single QDs. Firstly, we address the theory of quantum emitter-cavity system, the fluorescence and optical properties of semiconductor QDs, and the photon statistics as well as optical properties of the QDs. We then review the localization of single semiconductor QDs in quantum confined optical microcavity systems to achieve their overall optical properties and performances in terms of strong coupling regime, efficiency, directionality, and polarization control. Furthermore, we will discuss the recent progress on the fabrication of single photon sources, and various approaches for embedding single QDs into microcavities or photonic crystal nanocavities and show how to extend the wavelength range. We focus in particular on new generations of electrically driven QD single photon source leading to high repetition rates, strong coupling regime, and high collection efficiencies at elevated temperature operation. Besides, new developments of room temperature single photon emission in the strong coupling regime are reviewed. The generation of indistinguishable photons and remaining challenges for practical single-photon sources are also discussed.
2012-09-01
MSM) photodectors fabricated using black silicon-germanium on silicon substrate (Si1–xGex//Si) for I-V, optical response, external quantum ...material for Si for many applications in low-power and high-speed semiconductor device technologies (4, 5). It is a promising material for quantum well ...MSM-Metal Semiconductor Metal Photo-detector Using Black Silicon Germanium (SiGe) for Extended Wavelength Near Infrared Detection by Fred
Mesoscopic Elastic Distortions in GaAs Quantum Dot Heterostructures.
Pateras, Anastasios; Park, Joonkyu; Ahn, Youngjun; Tilka, Jack A; Holt, Martin V; Reichl, Christian; Wegscheider, Werner; Baart, Timothy A; Dehollain, Juan Pablo; Mukhopadhyay, Uditendu; Vandersypen, Lieven M K; Evans, Paul G
2018-05-09
Quantum devices formed in high-electron-mobility semiconductor heterostructures provide a route through which quantum mechanical effects can be exploited on length scales accessible to lithography and integrated electronics. The electrostatic definition of quantum dots in semiconductor heterostructure devices intrinsically involves the lithographic fabrication of intricate patterns of metallic electrodes. The formation of metal/semiconductor interfaces, growth processes associated with polycrystalline metallic layers, and differential thermal expansion produce elastic distortion in the active areas of quantum devices. Understanding and controlling these distortions present a significant challenge in quantum device development. We report synchrotron X-ray nanodiffraction measurements combined with dynamical X-ray diffraction modeling that reveal lattice tilts with a depth-averaged value up to 0.04° and strain on the order of 10 -4 in the two-dimensional electron gas (2DEG) in a GaAs/AlGaAs heterostructure. Elastic distortions in GaAs/AlGaAs heterostructures modify the potential energy landscape in the 2DEG due to the generation of a deformation potential and an electric field through the piezoelectric effect. The stress induced by metal electrodes directly impacts the ability to control the positions of the potential minima where quantum dots form and the coupling between neighboring quantum dots.
Spin relaxation in semiconductor quantum rings and dots--a comparative study.
Zipper, Elżbieta; Kurpas, Marcin; Sadowski, Janusz; Maśka, Maciej M
2011-03-23
We calculate spin relaxation times due to spin-orbit-mediated electron-phonon interactions for experimentally accessible semiconductor quantum ring and dot architectures. We elucidate the differences between the two systems due to different confinement. The estimated relaxation times (at B = 1 T) are in the range between a few milliseconds to a few seconds. This high stability of spin in a quantum ring allows us to test it as a spin qubit. A brief discussion of quantum state manipulations with such a qubit is presented.
NASA Astrophysics Data System (ADS)
Moore, Christopher; Stanescu, Tudor D.; Tewari, Sumanta
2018-04-01
We show that a pair of overlapping Majorana bound states (MBSs) forming a partially separated Andreev bound state (ps-ABS) represents a generic low-energy feature in spin-orbit-coupled semiconductor-superconductor (SM-SC) hybrid nanowire in the presence of a Zeeman field. The ps-ABS interpolates continuously between the "garden variety" ABS, which consists of two MBSs sitting on top of each other, and the topologically protected Majorana zero modes (MZMs), which are separated by a distance given by the length of the wire. The really problematic ps-ABSs consist of component MBSs separated by a distance of the order of the characteristic Majorana decay length ξ , and have nearly zero energy in a significant range of control parameters, such as the Zeeman field and chemical potential, within the topologically trivial phase. Despite being topologically trivial, such ps-ABSs can generate signatures identical to MZMs in local charge tunneling experiments. In particular, the height of the zero-bias conductance peak (ZBCP) generated by ps-ABSs has the quantized value 2 e2/h , and it can remain unchanged in an extended range of experimental parameters, such as Zeeman field and the tunnel barrier height. We illustrate the formation of such low-energy robust ps-ABSs in two experimentally relevant situations: a hybrid SM-SC system consisting of a proximitized nanowire coupled to a quantum dot and the SM-SC system in the presence of a spatially varying inhomogeneous potential. We then show that, unlike local measurements, a two-terminal experiment involving charge tunneling at both ends of the wire is capable of distinguishing between the generic ps-ABSs and the non-Abelian MZMs. While the MZMs localized at the opposite ends of the wire generate correlated differential conduction spectra, including correlations in energy splittings and critical Zeeman fields associated with the emergence of the ZBCPs, such correlations are absent if the ZBCPs are due to ps-ABSs emerging in the topologically trivial phase. Measuring such correlations is the clearest and most straightforward test of topological MZMs in SM-SC heterostructures that can be done in a currently accessible experimental setup.
Terahertz Photoresponse of a Single InAs Quantum Wire
NASA Astrophysics Data System (ADS)
Peralta, X. G.; Allen, S. J.; Kono, J.; Sakaki, H.; Sugihara, T.; Sasa, S.; Inoue, M.
1997-03-01
The terahertz (THz) photoresponse of a single InAs quantum wire in a high magnetic field has been studied as a function of frequency, polarization and THz field strength. The wire was fabricated by wet chemical etching of a InAs/AlGaSb single quantum well with a mobility of 92000 cm^2/Vs and a density of 7.3x10^11 cm-2. The length of the wire is 2 μm. At high THz field strength , we observe non-resonant heating of the quasi-1-D electron gas in the wire which produces a temperature modulation of the Shubnikov-de Haas oscillations. While the period of the oscillations is independent of THz polarization and frequency, the magnetic field dependent amplitude depends on THz polarization. At low THz power a resonant peak whose position depends on THz frequency is identified as a magnetoplasmon in the single wire. We project the low power results on models of 1-D magnetoplasma oscillations. We are particularly interested in excitations at high terahertz field strength which are beyond the scope of exisiting models. This work is supported by ONR, QUEST and NSF Science and Technology Center, Japan Science and Technology Corporation and Consejo Nacional de Ciencia y Tecnología, México.
Baines, Tom; Papageorgiou, Giorgos; Hutter, Oliver S; Bowen, Leon; Durose, Ken; Major, Jonathan D
2018-04-25
CdTe wires have been fabricated via a catalyst free method using the industrially scalable physical vapor deposition technique close space sublimation. Wire growth was shown to be highly dependent on surface roughness and deposition pressure, with only low roughness surfaces being capable of producing wires. Growth of wires is highly (111) oriented and is inferred to occur via a vapor-solid-solid growth mechanism, wherein a CdTe seed particle acts to template the growth. Such seed particles are visible as wire caps and have been characterized via energy dispersive X-ray analysis to establish they are single phase CdTe, hence validating the self-catalysation route. Cathodoluminescence analysis demonstrates that CdTe wires exhibited a much lower level of recombination when compared to a planar CdTe film, which is highly beneficial for semiconductor applications.
Electron transport in high aspect ratio semiconductor nanowires and metal-semiconductor interfaces
NASA Astrophysics Data System (ADS)
Sun, Zhuting
We are facing variability problems for modern semiconductor transistors due to the fact that the performances of nominally identical devices in the scale of 10 100 nm could be dramatically different attributed to the small manufacturing variations. Different doping strategies give statistical variations in the number of dopant atom density ND in the channel. The material size gives variations in wire diameter dW. And the immediate environment of the material leads to an additional level of variability. E.g. vacuum-semiconductor interface causes variations in surface state density Ds, metal-semiconductor interface causes variations in Schottky barrier and dielectric semiconductor interface induces dielectric confinement at small scales. To approach these variability problems, I choose Si-doped GaAs nanowires as an example. I investigate transport in Si-doped GaAs nanowire (NW) samples contacted by lithographically patterned Gold-Titanium films as function of temperature T. I find a drastically different temperature dependence between the wire resistance RW, which is relatively weak, and the zero bias resistance RC, which is strong. I show that the data are consistent with a model based on a sharp donor energy level slightly above the bottom of the semiconductor conduction band and develop a simple method for using transport measurements for estimates of the doping density after nanowire growth. I discuss the predictions of effective free carrier density n eff as function of the surface state density Ds and wire size dW. I also describe a correction to the widely used model of Schottky contacts that improves thermodynamic consistency of the Schottky tunnel barrier profile and show that the original theory may underestimate the barrier conductance under certain conditions. I also provide analytical calculations for shallow silicon dopant energy in GaAs crystals, and find the presence of dielectrics (dielectric screening) and free carriers (Coulomb screening) cause a reduction of ionization energy and shift the donor energy level ED upward, accompanying conduction band EC shift downward due to band gap narrowing for doped semiconductor material. The theoretical results are in a reasonable agreement with previous experimental data. I also find that when the material reduces to nanoscale, dielectric confinement and surface depletion compete with both Coulomb screening and dielectric screening that shift the donor level ED down towards the band gap. The calculation should be appropriate for all types of semiconductors and dopant species.
Observation of quantum oscillation of work function in ultrathin-metal/semiconductor junctions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Takhar, Kuldeep; Meer, Mudassar; Khachariya, Dolar
2015-09-15
Quantization in energy level due to confinement is generally observed for semiconductors. This property is used for various quantum devices, and it helps to improve the characteristics of conventional devices. Here, the authors have demonstrated the quantum size effects in ultrathin metal (Ni) layers sandwiched between two large band-gap materials. The metal work function is found to oscillate as a function of its thickness. The thermionic emission current bears the signature of the oscillating work function, which has a linear relationship with barrier heights. This methodology allows direct observation of quantum oscillations in metals at room temperature using a Schottkymore » diode and electrical measurements using source-measure-units. The observed phenomena can provide additional mechanism to tune the barrier height of metal/semiconductor junctions, which are used for various electronic devices.« less
Chen, Hua-Jun; Zhu, Ka-Di
2015-01-01
In the present work, we theoretically propose an optical scheme to detect the possible signature of Majorana fermions via the optical pump-probe spectroscopy, which is very different from the current tunneling measurement based on electrical methods. The scheme consists of a metal nanoparticle and a semiconductor quantum dot coupled to a hybrid semiconductor/superconductor heterostructures. The results show that the probe absorption spectrum of the quantum dot presents a distinct splitting due to the existence of Majorana fermions. Owing to surface plasmon enhanced effect, this splitting will be more obvious, which makes Majorana fermions more easy to be detectable. The technique proposed here open the door for new applications ranging from robust manipulation of Majorana fermions to quantum information processing based on Majorana fermions. PMID:26310929
Radio-frequency measurement in semiconductor quantum computation
NASA Astrophysics Data System (ADS)
Han, TianYi; Chen, MingBo; Cao, Gang; Li, HaiOu; Xiao, Ming; Guo, GuoPing
2017-05-01
Semiconductor quantum dots have attracted wide interest for the potential realization of quantum computation. To realize efficient quantum computation, fast manipulation and the corresponding readout are necessary. In the past few decades, considerable progress of quantum manipulation has been achieved experimentally. To meet the requirements of high-speed readout, radio-frequency (RF) measurement has been developed in recent years, such as RF-QPC (radio-frequency quantum point contact) and RF-DGS (radio-frequency dispersive gate sensor). Here we specifically demonstrate the principle of the radio-frequency reflectometry, then review the development and applications of RF measurement, which provides a feasible way to achieve high-bandwidth readout in quantum coherent control and also enriches the methods to study these artificial mesoscopic quantum systems. Finally, we prospect the future usage of radio-frequency reflectometry in scaling-up of the quantum computing models.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sharma, Aartee, E-mail: aartee.sharma08@gmail.com; Yadav, N.; Ghosh, S.
2015-07-31
A detailed study of the quantum modification of acousto-helicon wave spectra due to Bohm potential and Fermi degenerate pressure in colloids laden semiconductor plasma has been presented. We have used quantum hydrodynamic model of plasmas to arrive at most general dispersion relation in presence of magnetic field. This dispersion relation has been analyzed in three different velocity regimes and the expressions for gain constants have been obtained. From the present study it has been concluded that the quantum effect and the magnetic field significantly modify the wave characteristics particularly in high doping regime in semiconductor plasma medium in presence ofmore » colloids in it.« less
Semiconductor quantum dot-sensitized solar cells.
Tian, Jianjun; Cao, Guozhong
2013-10-31
Semiconductor quantum dots (QDs) have been drawing great attention recently as a material for solar energy conversion due to their versatile optical and electrical properties. The QD-sensitized solar cell (QDSC) is one of the burgeoning semiconductor QD solar cells that shows promising developments for the next generation of solar cells. This article focuses on recent developments in QDSCs, including 1) the effect of quantum confinement on QDSCs, 2) the multiple exciton generation (MEG) of QDs, 3) fabrication methods of QDs, and 4) nanocrystalline photoelectrodes for solar cells. We also make suggestions for future research on QDSCs. Although the efficiency of QDSCs is still low, we think there will be major breakthroughs in developing QDSCs in the future.
Localized end states in density modulated quantum wires and rings.
Gangadharaiah, Suhas; Trifunovic, Luka; Loss, Daniel
2012-03-30
We study finite quantum wires and rings in the presence of a charge-density wave gap induced by a periodic modulation of the chemical potential. We show that the Tamm-Shockley bound states emerging at the ends of the wire are stable against weak disorder and interactions, for discrete open chains and for continuum systems. The low-energy physics can be mapped onto the Jackiw-Rebbi equations describing massive Dirac fermions and bound end states. We treat interactions via the continuum model and show that they increase the charge gap and further localize the end states. The electrons placed in the two localized states on the opposite ends of the wire can interact via exchange interactions and this setup can be used as a double quantum dot hosting spin qubits. The existence of these states could be experimentally detected through the presence of an unusual 4π Aharonov-Bohm periodicity in the spectrum and persistent current as a function of the external flux.
NASA Astrophysics Data System (ADS)
Liu, Xiangming; Tomita, Yasuo; Oshima, Juro; Chikama, Katsumi; Matsubara, Koutatsu; Nakashima, Takuya; Kawai, Tsuyoshi
2009-12-01
We report on the fabrication of centimeter-size transmission Bragg gratings in semiconductor CdSe quantum dots dispersed 50 μm thick photopolymer films. This was done by holographic assembly of CdSe quantum dots in a photopolymerizable monomer blend. Periodic patterning of CdSe quantum dots in polymer was confirmed by a fluorescence microscope and confocal Raman imaging. The diffraction efficiency from the grating of 1 μm spacing was near 100% in the green with 0.34 vol % CdSe quantum dots, giving the refractive index modulation as large as 5.1×10-3.
Cavity-Mediated Coherent Coupling between Distant Quantum Dots
NASA Astrophysics Data System (ADS)
Nicolí, Giorgio; Ferguson, Michael Sven; Rössler, Clemens; Wolfertz, Alexander; Blatter, Gianni; Ihn, Thomas; Ensslin, Klaus; Reichl, Christian; Wegscheider, Werner; Zilberberg, Oded
2018-06-01
Scalable architectures for quantum information technologies require one to selectively couple long-distance qubits while suppressing environmental noise and cross talk. In semiconductor materials, the coherent coupling of a single spin on a quantum dot to a cavity hosting fermionic modes offers a new solution to this technological challenge. Here, we demonstrate coherent coupling between two spatially separated quantum dots using an electronic cavity design that takes advantage of whispering-gallery modes in a two-dimensional electron gas. The cavity-mediated, long-distance coupling effectively minimizes undesirable direct cross talk between the dots and defines a scalable architecture for all-electronic semiconductor-based quantum information processing.
Reliability improvement of wire bonds subjected to fatigue stresses.
NASA Technical Reports Server (NTRS)
Ravi, K. V.; Philofsky, E. M.
1972-01-01
The failure of wire bonds due to repeated flexure when semiconductor devices are operated in an on-off mode has been investigated. An accelerated fatigue testing apparatus was constructed and the major fatigue variables, aluminum alloy composition, and bonding mechanism, were tested. The data showed Al-1% Mg wires to exhibit superior fatigue characteristics compared to Al-1% Cu or Al-1% Si and ultrasonic bonding to be better than thermocompression bonding for fatigue resistance. Based on these results highly reliable devices were fabricated using Al-1% Mg wire with ultrasonic bonding which withstood 120,000 power cycles with no failures.
A semiconductor bridge ignited hot gas piston ejector
NASA Technical Reports Server (NTRS)
Grubelich, M. C.; Bickes, Robert W., Jr.
1993-01-01
The topics are presented in viewgraph form and include the following: semiconductor bridge technology (SCB); SCB philosophy; technology transfer; simplified sketch of SCB; SCB processing; SCB design; SCB test assembly; 5 mJ SCB burst based on a polaroid photograph; micro-convective heat transfer hypothesis; SCB fire set; comparison of SCB and hot-wire actuators; satellite firing sets; logic fire set; SCB smart component; SCB smart firing set; semiconductor design considerations; and the adjustable actuator system.
Rocksalt nitride metal/semiconductor superlattices: A new class of artificially structured materials
NASA Astrophysics Data System (ADS)
Saha, Bivas; Shakouri, Ali; Sands, Timothy D.
2018-06-01
Artificially structured materials in the form of superlattice heterostructures enable the search for exotic new physics and novel device functionalities, and serve as tools to push the fundamentals of scientific and engineering knowledge. Semiconductor heterostructures are the most celebrated and widely studied artificially structured materials, having led to the development of quantum well lasers, quantum cascade lasers, measurements of the fractional quantum Hall effect, and numerous other scientific concepts and practical device technologies. However, combining metals with semiconductors at the atomic scale to develop metal/semiconductor superlattices and heterostructures has remained a profoundly difficult scientific and engineering challenge. Though the potential applications of metal/semiconductor heterostructures could range from energy conversion to photonic computing to high-temperature electronics, materials challenges primarily had severely limited progress in this pursuit until very recently. In this article, we detail the progress that has taken place over the last decade to overcome the materials engineering challenges to grow high quality epitaxial, nominally single crystalline metal/semiconductor superlattices based on transition metal nitrides (TMN). The epitaxial rocksalt TiN/(Al,Sc)N metamaterials are the first pseudomorphic metal/semiconductor superlattices to the best of our knowledge, and their physical properties promise a new era in superlattice physics and device engineering.
GaN/NbN epitaxial semiconductor/superconductor heterostructures.
Yan, Rusen; Khalsa, Guru; Vishwanath, Suresh; Han, Yimo; Wright, John; Rouvimov, Sergei; Katzer, D Scott; Nepal, Neeraj; Downey, Brian P; Muller, David A; Xing, Huili G; Meyer, David J; Jena, Debdeep
2018-03-07
Epitaxy is a process by which a thin layer of one crystal is deposited in an ordered fashion onto a substrate crystal. The direct epitaxial growth of semiconductor heterostructures on top of crystalline superconductors has proved challenging. Here, however, we report the successful use of molecular beam epitaxy to grow and integrate niobium nitride (NbN)-based superconductors with the wide-bandgap family of semiconductors-silicon carbide, gallium nitride (GaN) and aluminium gallium nitride (AlGaN). We apply molecular beam epitaxy to grow an AlGaN/GaN quantum-well heterostructure directly on top of an ultrathin crystalline NbN superconductor. The resulting high-mobility, two-dimensional electron gas in the semiconductor exhibits quantum oscillations, and thus enables a semiconductor transistor-an electronic gain element-to be grown and fabricated directly on a crystalline superconductor. Using the epitaxial superconductor as the source load of the transistor, we observe in the transistor output characteristics a negative differential resistance-a feature often used in amplifiers and oscillators. Our demonstration of the direct epitaxial growth of high-quality semiconductor heterostructures and devices on crystalline nitride superconductors opens up the possibility of combining the macroscopic quantum effects of superconductors with the electronic, photonic and piezoelectric properties of the group III/nitride semiconductor family.
Theory of electron g-tensor in bulk and quantum-well semiconductors
NASA Astrophysics Data System (ADS)
Lau, Wayne H.; Flatte', Michael E.
2004-03-01
We present quantitative calculations for the electron g-tensors in bulk and quantum-well semiconductors based on a generalized P.p envelope function theory solved in a fourteen-band restricted basis set. The dependences of g-tensor on structure, magnetic field, carrier density, temperature, and spin polarization have been explored and will be described. It is found that at temperatures of a few Kelvin and fields of a few Tesla, the g-tensors for bulk semiconductors develop quasi-steplike dependences on carrier density or magnetic field due to magnetic quantization, and this effect is even more pronounced in quantum-well semiconductors due to the additional electric quantization along the growth direction. The influence of quantum confinement on the electron g-tensors in QWs is studied by examining the dependence of electron g-tensors on well width. Excellent agreement between these calculated electron g-tensors and measurements [1-2] is found for GaAs/AlGaAs QWs. This work was supported by DARPA/ARO. [1] A. Malinowski and R. T. Harley, Phys. Rev. B 62, 2051 (2000);[2] Le Jeune et al., Semicond. Sci. Technol. 12, 380 (1997).
In Situ Electrochemical Deposition of Microscopic Wires
NASA Technical Reports Server (NTRS)
Yun, Minhee; Myung, Nosang; Vasquez, Richard
2005-01-01
A method of fabrication of wires having micron and submicron dimensions is built around electrochemical deposition of the wires in their final positions between electrodes in integrated circuits or other devices in which the wires are to be used. Heretofore, nanowires have been fabricated by a variety of techniques characterized by low degrees of controllability and low throughput rates, and it has been necessary to align and electrically connect the wires in their final positions by use of sophisticated equipment in expensive and tedious post-growth assembly processes. The present method is more economical, offers higher yields, enables control of wire widths, and eliminates the need for post-growth assembly. The wires fabricated by this method could be used as simple electrical conductors or as transducers in sensors. Depending upon electrodeposition conditions and the compositions of the electroplating solutions in specific applications, the wires could be made of metals, alloys, metal oxides, semiconductors, or electrically conductive polymers. In this method, one uses fabrication processes that are standard in the semiconductor industry. These include cleaning, dry etching, low-pressure chemical vapor deposition, lithography, dielectric deposition, electron-beam lithography, and metallization processes as well as the electrochemical deposition process used to form the wires. In a typical case of fabrication of a circuit that includes electrodes between which microscopic wires are to be formed on a silicon substrate, the fabrication processes follow a standard sequence until just before the fabrication of the microscopic wires. Then, by use of a thermal SiO-deposition technique, the electrodes and the substrate surface areas in the gaps between them are covered with SiO. Next, the SiO is electron-beam patterned, then reactive-ion etched to form channels having specified widths (typically about 1 m or less) that define the widths of the wires to be formed. Drops of an electroplating solution are placed on the substrate in the regions containing the channels thus formed, then the wires are electrodeposited from the solution onto the exposed portions of the electrodes and into the channels. The electrodeposition is a room-temperature, atmospheric-pressure process. The figure shows an example of palladium wires that were electrodeposited into 1-mm-wide channels between gold electrodes.
Tuneable photonic device including an array of metamaterial resonators
Brener, Igal; Wanke, Michael; Benz, Alexander
2017-03-14
A photonic apparatus includes a metamaterial resonator array overlying and electromagnetically coupled to a vertically stacked plurality of quantum wells defined in a semiconductor body. An arrangement of electrical contact layers is provided for facilitating the application of a bias voltage across the quantum well stack. Those portions of the semiconductor body that lie between the electrical contact layers are conformed to provide an electrically conductive path between the contact layers and through the quantum well stack.
NASA Astrophysics Data System (ADS)
Hussain, S.; Mahmood, S.
2018-01-01
Low frequency magnetosonic wave excitations are investigated in semiconductor hole-electron plasmas. The quantum mechanical effects such as Fermi pressure, quantum tunneling, and exchange-correlation of holes and electrons in the presence of the magnetic field are considered. The two fluid quantum magnetohydrodynamic model is used to study magnetosonic wave dynamics, while electric and magnetic fields are coupled via Maxwell equations. The dispersion relation of the magnetosonic wave in electron-hole semiconductor plasma propagating in the perpendicular direction of the magnetic field is obtained, and its dispersion effects are discussed. The Korteweg-de Vries equation (KdV) for magnetosonic solitons is derived by employing the reductive perturbation method. For numerical analysis, the plasma parameters are taken from the semiconductors such as GaAs, GaSb, GaN, and InP already existing in the literature. It is found that the phase velocity of the magnetosonic wave is increased with the inclusion of exchange-correlation force in the model. The soliton dip structures of the magnetosonic wave in GaN semiconductor plasma are obtained, which satisfy the quantum plasma conditions for electron and hole fluids. The magnetosonic soliton dip structures move with speed less than the magnetosonic wave phase speed in the lab frame. The effects of exchange-correlation force in the model and variations of magnetic field intensity and electron/hole density on the magnetosonic wave dip structures are also investigated numerically for illustration.
NASA Astrophysics Data System (ADS)
Henderson, Gregory Newell
Semiconductor device dimensions are rapidly approaching a fundamental limit where drift-diffusion equations and the depletion approximation are no longer valid. In this regime, quantum effects can dominate device response. To increase further device density and speed, new devices must be designed that use these phenomena to positive advantage. In addition, quantum effects provide opportunities for a new class of devices which can perform functions previously unattainable with "conventional" semiconductor devices. This thesis has described research in the analysis of electron wave effects in semiconductors and the development of methods for the design, fabrication, and characterization of quantum devices based on these effects. First, an exact set of quantitative analogies are presented which allow the use of well understood optical design and analysis tools for the development of electron wave semiconductor devices. Motivated by these analogies, methods are presented for modeling electron wave grating diffraction using both an exact rigorous coupled-wave analysis and approximate analyses which are useful for grating design. Example electron wave grating switch and multiplexer designs are presented. In analogy to thin-film optics, the design and analysis of electron wave Fabry-Perot interference filters are also discussed. An innovative technique has been developed for testing these (and other) electron wave structures using Ballistic Electron Emission Microscopy (BEEM). This technique uses a liquid-helium temperature scanning tunneling microscope (STM) to perform spectroscopy of the electron transmittance as a function of electron energy. Experimental results show that BEEM can resolve even weak quantum effects, such as the reflectivity of a single interface between materials. Finally, methods are discussed for incorporating asymmetric electron wave Fabry-Perot filters into optoelectronic devices. Theoretical and experimental results show that such structures could be the basis for a new type of electrically pumped mid - to far-infrared semiconductor laser.
NASA Astrophysics Data System (ADS)
Panmand, Rajendra P.; Kumar, Ganapathy; Mahajan, Satish M.; Kulkarni, Milind V.; Amalnerkar, D. P.; Kale, Bharat B.; Gosavi, Suresh. W.
2011-02-01
We report optical studies with magneto-optic properties of Bi2S3 quantum dot/wires-glass nanocomposite. The size of the Q-dot was observed to be in the range 3-15 nm along with 11 nm Q-wires. Optical study clearly demonstrated the size quantization effect with drastic band gap variation with size. Faraday rotation tests on the glass nanocomposites show variation in Verdet constant with Q-dot size. Bi2S3 Q-dot/wires glass nanocomposite demonstrated 190 times enhanced Verdet constant compared to the host glass. Prima facie observations exemplify the significant enhancement in Verdet constant of Q-dot glass nanocomposites and will have potential application in magneto-optical devices.
Dependence of structure factor and correlation energy on the width of electron wires
NASA Astrophysics Data System (ADS)
Ashokan, Vinod; Bala, Renu; Morawetz, Klaus; Pathak, Kare Narain
2018-02-01
The structure factor and correlation energy of a quantum wire of thickness b ≪ a B are studied in random phase approximation (RPA) and for the less investigated region r s < 1. Using the single-loop approximation, analytical expressions of the structure factor are obtained. The exact expressions for the exchange energy are also derived for a cylindrical and harmonic wire. The correlation energy in RPA is found to be represented by ɛ c ( b, r s ) = α( r s )/ b + β( r s ) ln( b) + η( r s ), for small b and high densities. For a pragmatic width of the wire, the correlation energy is in agreement with the quantum Monte Carlo simulation data.
Sculpting oscillators with light within a nonlinear quantum fluid
NASA Astrophysics Data System (ADS)
Tosi, G.; Christmann, G.; Berloff, N. G.; Tsotsis, P.; Gao, T.; Hatzopoulos, Z.; Savvidis, P. G.; Baumberg, J. J.
2012-03-01
Seeing macroscopic quantum states directly remains an elusive goal. Particles with boson symmetry can condense into quantum fluids, producing rich physical phenomena as well as proven potential for interferometric devices. However, direct imaging of such quantum states is only fleetingly possible in high-vacuum ultracold atomic condensates, and not in superconductors. Recent condensation of solid-state polariton quasiparticles, built from mixing semiconductor excitons with microcavity photons, offers monolithic devices capable of supporting room-temperature quantum states that exhibit superfluid behaviour. Here we use microcavities on a semiconductor chip supporting two-dimensional polariton condensates to directly visualize the formation of a spontaneously oscillating quantum fluid. This system is created on the fly by injecting polaritons at two or more spatially separated pump spots. Although oscillating at tunable THz frequencies, a simple optical microscope can be used to directly image their stable archetypal quantum oscillator wavefunctions in real space. The self-repulsion of polaritons provides a solid-state quasiparticle that is so nonlinear as to modify its own potential. Interference in time and space reveals the condensate wavepackets arise from non-equilibrium solitons. Control of such polariton-condensate wavepackets demonstrates great potential for integrated semiconductor-based condensate devices.
Direct photonic coupling of a semiconductor quantum dot and a trapped ion.
Meyer, H M; Stockill, R; Steiner, M; Le Gall, C; Matthiesen, C; Clarke, E; Ludwig, A; Reichel, J; Atatüre, M; Köhl, M
2015-03-27
Coupling individual quantum systems lies at the heart of building scalable quantum networks. Here, we report the first direct photonic coupling between a semiconductor quantum dot and a trapped ion and we demonstrate that single photons generated by a quantum dot controllably change the internal state of a Yb^{+} ion. We ameliorate the effect of the 60-fold mismatch of the radiative linewidths with coherent photon generation and a high-finesse fiber-based optical cavity enhancing the coupling between the single photon and the ion. The transfer of information presented here via the classical correlations between the σ_{z} projection of the quantum-dot spin and the internal state of the ion provides a promising step towards quantum-state transfer in a hybrid photonic network.
Fine structure and optical pumping of spins in individual semiconductor quantum dots
NASA Astrophysics Data System (ADS)
Bracker, Allan S.; Gammon, Daniel; Korenev, Vladimir L.
2008-11-01
We review spin properties of semiconductor quantum dots and their effect on optical spectra. Photoluminescence and other types of spectroscopy are used to probe neutral and charged excitons in individual quantum dots with high spectral and spatial resolution. Spectral fine structure and polarization reveal how quantum dot spins interact with each other and with their environment. By taking advantage of the selectivity of optical selection rules and spin relaxation, optical spin pumping of the ground state electron and nuclear spins is achieved. Through such mechanisms, light can be used to process spins for use as a carrier of information.
Gallardo, E; Martínez, L J; Nowak, A K; van der Meulen, H P; Calleja, J M; Tejedor, C; Prieto, I; Granados, D; Taboada, A G; García, J M; Postigo, P A
2010-06-07
We study the optical emission of single semiconductor quantum dots weakly coupled to a photonic-crystal micro-cavity. The linearly polarized emission of a selected quantum dot changes continuously its polarization angle, from nearly perpendicular to the cavity mode polarization at large detuning, to parallel at zero detuning, and reversing sign for negative detuning. The linear polarization rotation is qualitatively interpreted in terms of the detuning dependent mixing of the quantum dot and cavity states. The present result is relevant to achieve continuous control of the linear polarization in single photon emitters.
Quantum-well exciton polariton emission from multi-quantum-well wire structures
NASA Astrophysics Data System (ADS)
Kohl, M.; Heitmann, D.; Grambow, P.; Ploog, K.
The radiative decay of quantum-well exciton (QWE) polaritons in microstructured Al0.3Ga0.7As - GaAs multi-quantum wells (MQW) has been studied by photoluminescence spectroscopy. Periodic wire structures with lateral periodicities a = 250-500 nm and lateral widths t = 100-200 nm have been fabricated by plasma etching. The thickness of the QWs was 13 nm. In the QW wire samples the free-exciton photoluminescence was strongly reduced and the QWE polariton emission was observed as a maximum peaked at a 3 meV higher energy than the free QWE transition. In samples which had only a microstructured cladding layer, the free-exciton photoluminescence was dominant in the spectrum and the QWE polariton emission was observed as a shoulder on the high-energy side of the free QWE transition. In addition, two transitions at the low energy side of the free QWE photoluminescence were present in the microstructured samples, which were related to etching induced states.
NASA Astrophysics Data System (ADS)
Felici, Marco; Birindelli, Simone; Trotta, Rinaldo; Francardi, Marco; Gerardino, Annamaria; Notargiacomo, Andrea; Rubini, Silvia; Martelli, Faustino; Capizzi, Mario; Polimeni, Antonio
2014-12-01
In dilute-nitride semiconductors, the possibility to selectively passivate N atoms by spatially controlled hydrogen irradiation allows for tailoring the effective N concentration of the host—and, therefore, its electronic and structural properties—with a precision of a few nanometers. In the present work, this technique is applied to the realization of ordered arrays of GaAs1 -xNx/GaAs1 -xNx∶H wires oriented at different angles with respect to the crystallographic axes of the material. The creation of a strongly anisotropic strain field in the plane of the sample, due to the lattice expansion of the fully hydrogenated regions surrounding the GaAs1 -xNx wires, is directly responsible for the peculiar polarization properties observed for the wire emission. Temperature-dependent polarization-resolved microphotoluminescence measurements, indeed, reveal a nontrivial dependence of the degree of linear polarization on the wire orientation, with maxima for wires parallel to the [110] and [1 1 ¯ 0 ] directions and a pronounced minimum for wires oriented along the [100] axis. In addition, the polarization direction is found to be precisely perpendicular to the wire when the latter is oriented along high-symmetry crystal directions, whereas significant deviations from a perfect orthogonality are measured for all other wire orientations. These findings, which are well reproduced by a theoretical model based on finite-element calculations of the strain profile of our GaAs1 -xNx/GaAs1 -xNx∶H heterostructures, demonstrate our ability to control the polarization properties of dilute-nitride micro- and nanostructures via H-assisted strain engineering. This additional degree of freedom may prove very useful in the design and optimization of innovative photonic structures relying on the integration of dilute-nitride-based light emitters with photonic crystal microcavities.
NASA Astrophysics Data System (ADS)
Bayramov, F. B.; Poloskin, E. D.; Chernev, A. L.; Toporov, V. V.; Dubina, M. V.; Sprung, C.; Lipsanen, H. K.; Bairamov, B. Kh.
2018-01-01
Results of studying nanocrystalline nc-Si/SiO2 quantum dots (QDs) functionalized by short oligonucleotides show that complexes of isolated crystalline semiconductor QDs are unique objects for detecting the manifestation of new quantum confinement phenomena. It is established that narrow lines observed in high-resolution spectra of inelastic light scattering can be used for determining the characteristic time scale of vibrational excitations of separate nucleotide molecules and for studying structural-dynamic properties of fast oscillatory processes in biomacromolecules.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bharti, Shivani; Tripathi, S. K., E-mail: surya@pu.ac.in; Kaur, Gurvir
2015-08-28
Bio-functionalization or surface modification is an important technique to obtain biocompatibility in semiconductor nanoparticles for biomedical applications. In this study semiconductor core/shell quantum dots of CdSe/ZnS have been prepared by chemical reduction method and then further PEGylated using Poly(ethylene glycol) diamine of M{sub w} 2000. They were characterized by UV-vis spectroscopy & Fourier transform infrared spectroscopy. The results reveals the successful PEGylation of CdSe/ZnS quantum dots.
Synthesis and Characterization of Quantum Dots: A Case Study Using PbS
ERIC Educational Resources Information Center
Pan, Yi; Li, Yue Ru; Zhao, Yu; Akins, Daniel L.
2015-01-01
A research project for senior undergraduates of chemistry has been developed to introduce syntheses of a series of monodispersed semiconductor PbS quantum dots (QDs) and their characterization methodologies. In this paper, we report the preparation of monodispersed semiconductor PbS QDs with sizes smaller than the exciton Bohr radius using a…
Electric currents induced by twisted light in Quantum Rings.
Quinteiro, G F; Berakdar, J
2009-10-26
We theoretically investigate the generation of electric currents in quantum rings resulting from the optical excitation with twisted light. Our model describes the kinetics of electrons in a two-band model of a semiconductor-based mesoscopic quantum ring coupled to light having orbital angular momentum (twisted light). We find the analytical solution, which exhibits a "circular" photon-drag effect and an induced magnetization, suggesting that this system is the circular analog of that of a bulk semiconductor excited by plane waves. For realistic values of the electric field and material parameters, the computed electric current can be as large as microA; from an applied perspective, this opens new possibilities to the optical control of the magnetization in semiconductors.
In situ synchrotron X-ray diffraction study on epitaxial-growth dynamics of III–V semiconductors
NASA Astrophysics Data System (ADS)
Takahasi, Masamitu
2018-05-01
The application of in situ synchrotron X-ray diffraction (XRD) to the molecular-beam epitaxial (MBE) growth of III–V semiconductors is overviewed along with backgrounds of the diffraction theory and instrumentation. X-rays are sensitive not only to the surface of growing films but also to buried interfacial structures because of their large penetration depth. Moreover, a spatial coherence length up to µm order makes X-rays widely applicable to the characterization of low-dimensional structures, such as quantum dots and wires. In situ XRD studies during growth were performed using an X-ray diffractometer, which was combined with an MBE chamber. X-ray reciprocal space mapping at a speed matching a typical growth rate was achieved using intense X-rays available from a synchrotron light source and an area detector. The importance of measuring the three-dimensional distribution of XRD intensity in a reciprocal space map is demonstrated for the MBE growth of two-, one-, and zero-dimensional structures. A large amount of information about the growth process of two-dimensional InGaAs/GaAs(001) epitaxial films has been provided by three-dimensional X-ray reciprocal mappings, including the anisotropic strain relaxation, the compositional inhomogeneity, and the evolution of surface and interfacial roughness. For one-dimensional GaAs nanowires grown in a Au-catalyzed vapor-liquid–solid mode, the relationship between the diameter of the nanowires and the formation of polytypes has been suggested on the basis of in situ XRD measurements. In situ three-dimensional X-ray reciprocal space mapping is also shown to be useful for determining the lateral and vertical sizes of self-assembled InAs/GaAs(001) quantum dots as well as their internal strain distributions during growth.
Interpretation of quantum yields exceeding unity in photoelectrochemical systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Szklarczyk, M.; Allen, R.E.
1986-10-20
In photoelectrochemical systems involving light shining on a semiconductor interfaced with an electrolyte, the quantum yield as a function of photon frequency ..nu.. is observed to exhibit a peak at h..nu..roughly-equal2E/sub g/, where E/sub g/ is the band gap of the semiconductor. The maximum in this peak is sometimes found to exceed unity. We provide an interpretation involving surface states and inelastic electron-electron scattering. The theory indicates that the effect should be observable for p-type semiconductors, but not n-type.
Quantum simulation of a Fermi-Hubbard model using a semiconductor quantum dot array.
Hensgens, T; Fujita, T; Janssen, L; Li, Xiao; Van Diepen, C J; Reichl, C; Wegscheider, W; Das Sarma, S; Vandersypen, L M K
2017-08-02
Interacting fermions on a lattice can develop strong quantum correlations, which are the cause of the classical intractability of many exotic phases of matter. Current efforts are directed towards the control of artificial quantum systems that can be made to emulate the underlying Fermi-Hubbard models. Electrostatically confined conduction-band electrons define interacting quantum coherent spin and charge degrees of freedom that allow all-electrical initialization of low-entropy states and readily adhere to the Fermi-Hubbard Hamiltonian. Until now, however, the substantial electrostatic disorder of the solid state has meant that only a few attempts at emulating Fermi-Hubbard physics on solid-state platforms have been made. Here we show that for gate-defined quantum dots this disorder can be suppressed in a controlled manner. Using a semi-automated and scalable set of experimental tools, we homogeneously and independently set up the electron filling and nearest-neighbour tunnel coupling in a semiconductor quantum dot array so as to simulate a Fermi-Hubbard system. With this set-up, we realize a detailed characterization of the collective Coulomb blockade transition, which is the finite-size analogue of the interaction-driven Mott metal-to-insulator transition. As automation and device fabrication of semiconductor quantum dots continue to improve, the ideas presented here will enable the investigation of the physics of ever more complex many-body states using quantum dots.
Wavelength-resonant surface-emitting semiconductor laser
Brueck, Steven R. J.; Schaus, Christian F.; Osinski, Marek A.; McInerney, John G.; Raja, M. Yasin A.; Brennan, Thomas M.; Hammons, Burrell E.
1989-01-01
A wavelength resonant semiconductor gain medium is disclosed. The essential feature of this medium is a multiplicity of quantum-well gain regions separated by semiconductor spacer regions of higher bandgap. Each period of this medium consisting of one quantum-well region and the adjacent spacer region is chosen such that the total width is equal to an integral multiple of 1/2 the wavelength in the medium of the radiation with which the medium is interacting. Optical, electron-beam and electrical injection pumping of the medium is disclosed. This medium may be used as a laser medium for single devices or arrays either with or without reflectors, which may be either semiconductor or external.
Quantum properties of light emitted by dipole nano-laser
NASA Astrophysics Data System (ADS)
Ghannam, Talal
Recent technological advances allow entire optical systems to be lithographically implanted on small silicon chips. These systems include tiny semiconductor lasers that function as light sources for digital optical signals. Future advances will rely on even smaller components. At the theoretical limit of this process, the smallest lasers will have an active medium consisting of a single atom (natural or artificial). Several suggestions for how this can be accomplished have already been published, such as nano-lasers based on photonic crystals and nano wires. In particular, the "dipole nanolaser" consists of a single quantum dot functioning as the active medium. It is optically coupled to a metal nanoparticles that form a resonant cavity. Laser light is generated from the near-field optical signal. The proposed work is a theoretical exploration of the nature of the resulting laser light. The dynamics of the system will be studied and relevant time scales described. These will form the basis for a set of operator equations describing the quantum properties of the emitted light. The dynamics will be studied in both density matrix and quantum Langevin formulations, with attention directed to noise sources. The equations will be linearized and solved using standard techniques. The result of the study will be a set of predicted noise spectra describing the statistics of the emitted light. The goal will be to identify the major noise contributions and suggest methods for suppressing them. This will be done by studying the probability of getting squeezed light from the nanoparticle for the certain scheme of parameters.
Magnetism in Mn-nanowires and -clusters as δ-doped layers in group IV semiconductors (Si, Ge)
NASA Astrophysics Data System (ADS)
Simov, K. R.; Glans, P.-A.; Jenkins, C. A.; Liberati, M.; Reinke, P.
2018-01-01
Mn doping of group-IV semiconductors (Si/Ge) is achieved by embedding nanostructured Mn-layers in group-IV matrix. The Mn-nanostructures are monoatomic Mn-wires or Mn-clusters and capped with an amorphous Si or Ge layer. The precise fabrication of δ-doped Mn-layers is combined with element-specific detection of the magnetic signature with x-ray magnetic circular dichroism. The largest moment (2.5 μB/Mn) is measured for Mn-wires with ionic bonding character and a-Ge overlayer cap; a-Si capping reduces the moment due to variations of bonding in agreement with theoretical predictions. The moments in δ-doped layers dominated by clusters is quenched with an antiferromagnetic component from Mn-Mn bonding.
Diamagnetic excitons and exciton magnetopolaritons in semiconductors
NASA Astrophysics Data System (ADS)
Seisyan, R. P.
2012-05-01
Interband magneto-absorption in semiconductors is reviewed in the light of the diamagnetic exciton (DE) concept. Beginning with a proof of the exciton nature of oscillating-magnetoabsorption (the DE discovery), development of the DE concept is discussed, including definition of observation conditions, quasi-cubic approximation for hexagonal crystals, quantum-well effects in artificial structures, and comprehension of an important role of the DE polariton. The successful use of the concept application to a broad range of substances is reviewed, namely quasi-Landau magnetic spectroscopy of the ‘Rydberg’ exciton states in cubic semiconductors such as InP and GaAs and in hexagonal ones such as CdSe, the proof of exciton participation in the formation of optical spectra in narrow-gap semiconductors such as InSb, InAs, and, especially, PbTe, observation of DE spectra in semiconductor solid solutions like InGaAs. The most fundamental findings of the DE spectroscopy for various quantum systems are brought together, including the ‘Coulomb-well’ effect, fine structure of discrete oscillatory states in the InGaAs/GaAs multiple quantum wells, the magneto-optical observation of above-barrier exciton. Prospects of the DE physics in ultrahigh magnetic field are discussed, including technological creation of controllable low-dimensional objects with extreme oscillator strengths, formation of magneto-quantum exciton polymer, and even modelling of the hydrogen behaviour in the atmosphere of a neutron star.
Experimental researches on quantum transport in semiconductor two-dimensional electron systems
Kawaji, Shinji
2008-01-01
The author reviews contribution of Gakushuin University group to the progress of the quantum transport in semiconductor two-dimensional electron systems (2DES) for forty years from the birth of the 2DES in middle of the 1960s till the finding of temperature dependent collapse of the quantized Hall resistance in the beginning of this century. PMID:18941299
GaN/NbN epitaxial semiconductor/superconductor heterostructures
NASA Astrophysics Data System (ADS)
Yan, Rusen; Khalsa, Guru; Vishwanath, Suresh; Han, Yimo; Wright, John; Rouvimov, Sergei; Katzer, D. Scott; Nepal, Neeraj; Downey, Brian P.; Muller, David A.; Xing, Huili G.; Meyer, David J.; Jena, Debdeep
2018-03-01
Epitaxy is a process by which a thin layer of one crystal is deposited in an ordered fashion onto a substrate crystal. The direct epitaxial growth of semiconductor heterostructures on top of crystalline superconductors has proved challenging. Here, however, we report the successful use of molecular beam epitaxy to grow and integrate niobium nitride (NbN)-based superconductors with the wide-bandgap family of semiconductors—silicon carbide, gallium nitride (GaN) and aluminium gallium nitride (AlGaN). We apply molecular beam epitaxy to grow an AlGaN/GaN quantum-well heterostructure directly on top of an ultrathin crystalline NbN superconductor. The resulting high-mobility, two-dimensional electron gas in the semiconductor exhibits quantum oscillations, and thus enables a semiconductor transistor—an electronic gain element—to be grown and fabricated directly on a crystalline superconductor. Using the epitaxial superconductor as the source load of the transistor, we observe in the transistor output characteristics a negative differential resistance—a feature often used in amplifiers and oscillators. Our demonstration of the direct epitaxial growth of high-quality semiconductor heterostructures and devices on crystalline nitride superconductors opens up the possibility of combining the macroscopic quantum effects of superconductors with the electronic, photonic and piezoelectric properties of the group III/nitride semiconductor family.
Recent advances in biocompatible semiconductor nanocrystals for immunobiological applications.
Nanda, Sitansu Sekhar; Kim, Min Jik; Kim, Kwangmeyung; Papaefthymiou, Georgia C; Selvan, Subramanian Tamil; Yi, Dong Kee
2017-11-01
Quantum confinement in inorganic semiconductor nanocrystals produces brightly luminescent nanoparticles endowed with unique photo-physical properties, such as tunable optical properties. These have found widespread applications in nanotechnology. The ability to render such nanostructures biocompatible, while maintaining their tunable radiation in the visible range of the electromagnetic spectrum, renders them appropriate for bio-applications. Promising in vitro and in vivo diagnostic applications have been demonstrated, such as fluorescence-based detection of biological interactions, single molecule tracking, multiplexing and immunoassaying. In particular, these fluorescent inorganic semiconductor nanocrystals, generally known as quantum dots, have the potential of remarkable immunobiological applications. This review focuses on the current status of biocompatible quantum dots and their applications in immunobiology - immunosensing, immunofluorescent imaging and immunotherapy. Copyright © 2017 Elsevier B.V. All rights reserved.
Low temperature nano-spin filtering using a diluted magnetic semiconductor core-shell quantum dot
NASA Astrophysics Data System (ADS)
Chattopadhyay, Saikat; Sen, Pratima; Andrews, Joshep Thomas; Sen, Pranay Kumar
2014-07-01
The spin polarized electron transport properties and spin polarized tunneling current have been investigated analytically in a diluted magnetic semiconductor core-shell quantum dot in the presence of applied electric and magnetic fields. Assuming the electron wave function to satisfy WKB approximation, the electron energy eigenvalues have been calculated. The spin polarized tunneling current and the spin dependent tunneling coefficient are obtained by taking into account the exchange interaction and Zeeman splitting. Numerical estimates made for a specific diluted magnetic semiconductor, viz., Zn1-xMnxSe/ZnS core-shell quantum dot establishes the possibility of a nano-spin filter for a particular biasing voltage and applied magnetic field. Influence of applied voltage on spin polarized electron transport has been investigated in a CSQD.
Infrared emitting device and method
Kurtz, S.R.; Biefeld, R.M.; Dawson, L.R.; Howard, A.J.; Baucom, K.C.
1997-04-29
The infrared emitting device comprises a III-V compound semiconductor substrate upon which are grown a quantum-well active region having a plurality of quantum-well layers formed of a ternary alloy comprising InAsSb sandwiched between barrier layers formed of a ternary alloy having a smaller lattice constant and a larger energy bandgap than the quantum-well layers. The quantum-well layers are preferably compressively strained to increase the threshold energy for Auger recombination; and a method is provided for determining the preferred thickness for the quantum-well layers. Embodiments of the present invention are described having at least one cladding layer to increase the optical and carrier confinement in the active region, and to provide for waveguiding of the light generated within the active region. Examples have been set forth showing embodiments of the present invention as surface- and edge-emitting light emitting diodes (LEDs), an optically-pumped semiconductor laser, and an electrically-injected semiconductor diode laser. The light emission from each of the infrared emitting devices of the present invention is in the midwave infrared region of the spectrum from about 2 to 6 microns. 8 figs.
Anisotropic Formation of Quantum Turbulence Generated by a Vibrating Wire in Superfluid {}4{He}
NASA Astrophysics Data System (ADS)
Yano, H.; Ogawa, K.; Chiba, Y.; Obara, K.; Ishikawa, O.
2017-06-01
To investigate the formation of quantum turbulence in superfluid {}4{He}, we have studied the emission of vortex rings with a ring size of larger than 38 μm in diameter from turbulence generated by a vibrating wire. The emission rate of vortex rings from a turbulent region remains low until the beginning of high-rate emissions, suggesting that some of the vortex lines produced by the wire combine to form a vortex tangle, until an equilibrium is established between the rate of vortex line combination with the tangle and dissociation. The formation times of equilibrium turbulence are proportional to ɛ ^{-1.2} and ɛ ^{-0.6} in the directions perpendicular and parallel to the vibrating direction of the generator, respectively, indicating the anisotropic formation of turbulence. Here, ɛ is the generation power of the turbulence. This power dependence may be associated with the characteristics of quantum turbulence with a constant energy flux.
Spin-polarized current in Zeeman-split d-wave superconductor/quantum wire junctions
NASA Astrophysics Data System (ADS)
Emamipour, Hamidreza
2016-06-01
We study a thin-film quantum wire/unconventional superconductor junction in the presence of an intrinsic exchange field for a d-wave symmetry of the superconducting order parameter. A strongly spin-polarized current is generated due to an interplay between Zeeman splitting of bands and the nodal structure of the superconducting order parameter. We show that strongly spin-polarized current is achievable for both metallic and tunnel junctions. This is because of the presence of a quantum wire (one-dimensional metal) in our junction. While in two-dimensional junctions with both conventional [F. Giazotto, F. Taddei, Phys. Rev. B 77 (2008) 132501] and unconventional [J. Linder, T. Yokoyama, Y. Tanaka, A. Sudbo, Phys. Rev. B 78 (2008) 014516] pairing states, highly spin polarized current takes place just for a tunnel junction. Also, the obtained spin-polarized current is tunable in sign and magnitude in terms of exchange field and applied bias voltage.
Thermoelectric Mechanism and Interface Characteristics of Cyanide-Free Nanogold-Coated Silver Wire
NASA Astrophysics Data System (ADS)
Tseng, Yi-Wei; Hung, Fei-Yi; Lui, Truan-Sheng
2016-01-01
Traditional bath-plated gold contains a cyanide complex, which is an environmental hazard. In response, our study used a green plating process to produce cyanide-free gold-coated silver (cyanide-free ACA) bonding wire that has been proven to be a feasible alternative to gold bonding wire in semiconductor packaging. In this work, ACA wire annealed at 550°C was found to have stable microstructure and superior mechanical properties. Intermetallic compounds Ag2Al and AuAl2 grew from Ag-Au balls and Al pads after aging at 175°C for 500 h. After current testing, ACA wire was found to have improved electrical properties due to equiaxed grain growth. The gold nanolayer on the Ag surface increased the oxidation resistance. These results provide insights regarding the reliability of ACA wire in advanced bonding processes.
NASA Astrophysics Data System (ADS)
Poszwa, A.
2018-05-01
We investigate quantum decoherence of spin states caused by Rashba spin-orbit (SO) coupling for an electron confined to a planar quantum dot (QD) in the presence of a magnetic field (B). The Schrödinger equation has been solved in a frame of second-order perturbation theory. The relationship between the von Neumann (vN) entropy and the spin polarization is obtained. The relation is explicitly demonstrated for the InSb semiconductor QD.
Microscopic Theory and Simulation of Quantum-Well Intersubband Absorption
NASA Technical Reports Server (NTRS)
Li, Jianzhong; Ning, C. Z.
2004-01-01
We study the linear intersubband absorption spectra of a 15 nm InAs quantum well using the intersubband semiconductor Bloch equations with a three-subband model and a constant dephasing rate. We demonstrate the evolution of intersubband absorption spectral line shape as a function of temperature and electron density. Through a detailed examination of various contributions, such as the phase space filling effects, the Coulomb many-body effects and the non-parabolicity effect, we illuminate the underlying physics that shapes the spectra. Keywords: Intersubband transition, linear absorption, semiconductor heterostructure, InAs quantum well
Few-Photon Model of the Optical Emission of Semiconductor Quantum Dots
NASA Astrophysics Data System (ADS)
Richter, Marten; Carmele, Alexander; Sitek, Anna; Knorr, Andreas
2009-08-01
The Jaynes-Cummings model provides a well established theoretical framework for single electron two level systems in a radiation field. Similar exactly solvable models for semiconductor light emitters such as quantum dots dominated by many particle interactions are not known. We access these systems by a generalized cluster expansion, the photon-probability cluster expansion: a reliable approach for few-photon dynamics in many body electron systems. As a first application, we discuss vacuum Rabi oscillations and show that their amplitude determines the number of electrons in the quantum dot.
Theory of few photon dynamics in light emitting quantum dot devices
NASA Astrophysics Data System (ADS)
Carmele, Alexander; Richter, Marten; Sitek, Anna; Knorr, Andreas
2009-10-01
We present a modified cluster expansion to describe single-photon emitters in a semiconductor environment. We calculate microscopically to what extent semiconductor features in quantum dot-wetting layer systems alter the exciton and photon dynamics in comparison to the atom-like emission dynamics. We access these systems by the photon-probability-cluster-expansion: a reliable approach for few photon dynamics in many body electron systems. As a first application, we show that the amplitude of vacuum Rabi flops determines the number of electrons in the quantum dot.
Cho, Kyung-Sang; Heo, Keun; Baik, Chan-Wook; Choi, Jun Young; Jeong, Heejeong; Hwang, Sungwoo; Lee, Sang Yeol
2017-10-10
We report color-selective photodetection from intermediate, monolayered, quantum dots buried in between amorphous-oxide semiconductors. The proposed active channel in phototransistors is a hybrid configuration of oxide-quantum dot-oxide layers, where the gate-tunable electrical property of silicon-doped, indium-zinc-oxide layers is incorporated with the color-selective properties of quantum dots. A remarkably high detectivity (8.1 × 10 13 Jones) is obtained, along with three major findings: fast charge separation in monolayered quantum dots; efficient charge transport through high-mobility oxide layers (20 cm 2 V -1 s -1 ); and gate-tunable drain-current modulation. Particularly, the fast charge separation rate of 3.3 ns -1 measured with time-resolved photoluminescence is attributed to the intermediate quantum dots buried in oxide layers. These results facilitate the realization of efficient color-selective detection exhibiting a photoconductive gain of 10 7 , obtained using a room-temperature deposition of oxide layers and a solution process of quantum dots. This work offers promising opportunities in emerging applications for color detection with sensitivity, transparency, and flexibility.The development of highly sensitive photodetectors is important for image sensing and optical communication applications. Cho et al., report ultra-sensitive photodetectors based on monolayered quantum dots buried in between amorphous-oxide semiconductors and demonstrate color-detecting logic gates.
High-performance semiconductor quantum-dot single-photon sources
NASA Astrophysics Data System (ADS)
Senellart, Pascale; Solomon, Glenn; White, Andrew
2017-11-01
Single photons are a fundamental element of most quantum optical technologies. The ideal single-photon source is an on-demand, deterministic, single-photon source delivering light pulses in a well-defined polarization and spatiotemporal mode, and containing exactly one photon. In addition, for many applications, there is a quantum advantage if the single photons are indistinguishable in all their degrees of freedom. Single-photon sources based on parametric down-conversion are currently used, and while excellent in many ways, scaling to large quantum optical systems remains challenging. In 2000, semiconductor quantum dots were shown to emit single photons, opening a path towards integrated single-photon sources. Here, we review the progress achieved in the past few years, and discuss remaining challenges. The latest quantum dot-based single-photon sources are edging closer to the ideal single-photon source, and have opened new possibilities for quantum technologies.
Quantum weak turbulence with applications to semiconductor lasers
NASA Astrophysics Data System (ADS)
Lvov, Yuri Victorovich
Based on a model Hamiltonian appropriate for the description of fermionic systems such as semiconductor lasers, we describe a natural asymptotic closure of the BBGKY hierarchy in complete analogy with that derived for classical weak turbulence. The main features of the interaction Hamiltonian are the inclusion of full Fermi statistics containing Pauli blocking and a simple, phenomenological, uniformly weak two particle interaction potential equivalent to the static screening approximation. The resulting asymytotic closure and quantum kinetic Boltzmann equation are derived in a self consistent manner without resorting to a priori statistical hypotheses or cumulant discard assumptions. We find a new class of solutions to the quantum kinetic equation which are analogous to the Kolmogorov spectra of hydrodynamics and classical weak turbulence. They involve finite fluxes of particles and energy across momentum space and are particularly relevant for describing the behavior of systems containing sources and sinks. We explore these solutions by using differential approximation to collision integral. We make a prima facie case that these finite flux solutions can be important in the context of semiconductor lasers. We show that semiconductor laser output efficiency can be improved by exciting these finite flux solutions. Numerical simulations of the semiconductor Maxwell Bloch equations support the claim.
Carrier-envelope phase-controlled quantum interference of injected photocurrents in semiconductors.
Fortier, T M; Roos, P A; Jones, D J; Cundiff, S T; Bhat, R D R; Sipe, J E
2004-04-09
We demonstrate quantum interference control of injected photocurrents in a semiconductor using the phase stabilized pulse train from a mode-locked Ti:sapphire laser. Measurement of the comb offset frequency via this technique results in a signal-to-noise ratio of 40 dB (10 Hz resolution bandwidth), enabling solid-state detection of carrier-envelope phase shifts of a Ti:sapphire oscillator.
Weakly-coupled quasi-1D helical modes in disordered 3D topological insulator quantum wires
NASA Astrophysics Data System (ADS)
Dufouleur, J.; Veyrat, L.; Dassonneville, B.; Xypakis, E.; Bardarson, J. H.; Nowka, C.; Hampel, S.; Schumann, J.; Eichler, B.; Schmidt, O. G.; Büchner, B.; Giraud, R.
2017-04-01
Disorder remains a key limitation in the search for robust signatures of topological superconductivity in condensed matter. Whereas clean semiconducting quantum wires gave promising results discussed in terms of Majorana bound states, disorder makes the interpretation more complex. Quantum wires of 3D topological insulators offer a serious alternative due to their perfectly-transmitted mode. An important aspect to consider is the mixing of quasi-1D surface modes due to the strong degree of disorder typical for such materials. Here, we reveal that the energy broadening γ of such modes is much smaller than their energy spacing Δ, an unusual result for highly-disordered mesoscopic nanostructures. This is evidenced by non-universal conductance fluctuations in highly-doped and disordered Bi2Se3 and Bi2Te3 nanowires. Theory shows that such a unique behavior is specific to spin-helical Dirac fermions with strong quantum confinement, which retain ballistic properties over an unusually large energy scale due to their spin texture. Our result confirms their potential to investigate topological superconductivity without ambiguity despite strong disorder.
Weakly-coupled quasi-1D helical modes in disordered 3D topological insulator quantum wires
Dufouleur, J.; Veyrat, L.; Dassonneville, B.; Xypakis, E.; Bardarson, J. H.; Nowka, C.; Hampel, S.; Schumann, J.; Eichler, B.; Schmidt, O. G.; Büchner, B.; Giraud, R.
2017-01-01
Disorder remains a key limitation in the search for robust signatures of topological superconductivity in condensed matter. Whereas clean semiconducting quantum wires gave promising results discussed in terms of Majorana bound states, disorder makes the interpretation more complex. Quantum wires of 3D topological insulators offer a serious alternative due to their perfectly-transmitted mode. An important aspect to consider is the mixing of quasi-1D surface modes due to the strong degree of disorder typical for such materials. Here, we reveal that the energy broadening γ of such modes is much smaller than their energy spacing Δ, an unusual result for highly-disordered mesoscopic nanostructures. This is evidenced by non-universal conductance fluctuations in highly-doped and disordered Bi2Se3 and Bi2Te3 nanowires. Theory shows that such a unique behavior is specific to spin-helical Dirac fermions with strong quantum confinement, which retain ballistic properties over an unusually large energy scale due to their spin texture. Our result confirms their potential to investigate topological superconductivity without ambiguity despite strong disorder. PMID:28374744
Weakly-coupled quasi-1D helical modes in disordered 3D topological insulator quantum wires.
Dufouleur, J; Veyrat, L; Dassonneville, B; Xypakis, E; Bardarson, J H; Nowka, C; Hampel, S; Schumann, J; Eichler, B; Schmidt, O G; Büchner, B; Giraud, R
2017-04-04
Disorder remains a key limitation in the search for robust signatures of topological superconductivity in condensed matter. Whereas clean semiconducting quantum wires gave promising results discussed in terms of Majorana bound states, disorder makes the interpretation more complex. Quantum wires of 3D topological insulators offer a serious alternative due to their perfectly-transmitted mode. An important aspect to consider is the mixing of quasi-1D surface modes due to the strong degree of disorder typical for such materials. Here, we reveal that the energy broadening γ of such modes is much smaller than their energy spacing Δ, an unusual result for highly-disordered mesoscopic nanostructures. This is evidenced by non-universal conductance fluctuations in highly-doped and disordered Bi2Se3 and Bi 2 Te 3 nanowires. Theory shows that such a unique behavior is specific to spin-helical Dirac fermions with strong quantum confinement, which retain ballistic properties over an unusually large energy scale due to their spin texture. Our result confirms their potential to investigate topological superconductivity without ambiguity despite strong disorder.
Emergence of resonant mode-locking via delayed feedback in quantum dot semiconductor lasers.
Tykalewicz, B; Goulding, D; Hegarty, S P; Huyet, G; Erneux, T; Kelleher, B; Viktorov, E A
2016-02-22
With conventional semiconductor lasers undergoing external optical feedback, a chaotic output is typically observed even for moderate levels of the feedback strength. In this paper we examine single mode quantum dot lasers under strong optical feedback conditions and show that an entirely new dynamical regime is found consisting of spontaneous mode-locking via a resonance between the relaxation oscillation frequency and the external cavity repetition rate. Experimental observations are supported by detailed numerical simulations of rate equations appropriate for this laser type. The phenomenon constitutes an entirely new mode-locking mechanism in semiconductor lasers.
A Quantum Dot with Spin-Orbit Interaction--Analytical Solution
ERIC Educational Resources Information Center
Basu, B.; Roy, B.
2009-01-01
The practical applicability of a semiconductor quantum dot with spin-orbit interaction gives an impetus to study analytical solutions to one- and two-electron quantum dots with or without a magnetic field.
Thermally activated delayed photoluminescence from pyrenyl-functionalized CdSe quantum dots
NASA Astrophysics Data System (ADS)
Mongin, Cédric; Moroz, Pavel; Zamkov, Mikhail; Castellano, Felix N.
2018-02-01
The generation and transfer of triplet excitons across semiconductor nanomaterial-molecular interfaces will play an important role in emerging photonic and optoelectronic technologies, and understanding the rules that govern such phenomena is essential. The ability to cooperatively merge the photophysical properties of semiconductor quantum dots with those of well-understood and inexpensive molecular chromophores is therefore paramount. Here we show that 1-pyrenecarboxylic acid-functionalized CdSe quantum dots undergo thermally activated delayed photoluminescence. This phenomenon results from a near quantitative triplet-triplet energy transfer from the nanocrystals to 1-pyrenecarboxylic acid, producing a molecular triplet-state 'reservoir' that thermally repopulates the photoluminescent state of CdSe through endothermic reverse triplet-triplet energy transfer. The photoluminescence properties are systematically and predictably tuned through variation of the quantum dot-molecule energy gap, temperature and the triplet-excited-state lifetime of the molecular adsorbate. The concepts developed are likely to be applicable to semiconductor nanocrystals interfaced with molecular chromophores, enabling potential applications of their combined excited states.
New insights into ETS-10 and titanate quantum wire: a comprehensive characterization.
Jeong, Nak Cheon; Lee, Young Ju; Park, Jung-Hyun; Lim, Hyunjin; Shin, Chae-Ho; Cheong, Hyeonsik; Yoon, Kyung Byung
2009-09-16
The titanate quantum wires in ETS-10 crystals remain intact during ion exchange of the pristine cations (Na(+)(0.47) + K(+)(0.53)) with M(n+) ions (M(n+) = Na(+), K(+), Mg(2+), Ca(2+), Sr(2+), Ba(2+), Pb(2+), Cd(2+), Zn(2+)) and during reverse exchange of the newly exchanged cations with Na(+). The binding energies of O(1s) and Ti(2p) decrease as the electronegativity of the cation decreases, and they are inversely proportional to the negative partial charge of the framework oxygen [-delta(O(f))]. At least five different oxygen species were identified, and their binding energies (526.1-531.9 eV) indicate that the titanate-forming oxides are much more basic than those of aluminosilicate zeolites (530.2-533.3 eV), which explains the vulnerability of the quantum wire to acids and oxidants. The chemical shifts of the five NMR-spectroscopically nonequivalent Si sites, delta(I(A)), delta(I(B)), delta(II(A)), delta(II(B)), and delta(III), shift downfield as -delta(O(f)) increases, with slopes of 2.5, 18.6, 133.5, 216.3, and 93.8 ppm/[-delta(O(f))], respectively. The nonuniform responses of the chemical shifts to -delta(O(f)) arise from the phenomenon that the cations in the 12-membered-ring channels shift to the interiors of the cages surrounded by four seven-membered-ring windows. On the basis of the above, we assign delta(I(A)), delta(I(B)), delta(II(A)), and delta(II(B)) to the chemical shifts arising from Si(12,12), Si(12,7), Si(7,12), and Si(7,7) atoms, respectively. The frequency of the longitudinal stretching vibration of the titanate quantum wire increases linearly and the bandwidth decreases nonlinearly with increasing -delta(O(f)), indicating that the titanate quantum wire resembles a metallic carbon nanotube. As the degree of hydration increases, the vibrational frequency shifts linearly to higher frequencies while the bandwidth decreases. We identified another normal mode of vibration of the quantum wire, which vibrates in the region of 274-280 cm(-1). In the dehydrated state, the band-gap energy and the first absorption maximum shift to lower energies as -delta(O(f)) increases, indicating the oxide-to-titanium(IV) charge-transfer nature of the transitions.
NASA Astrophysics Data System (ADS)
Granger, G.; Kam, A.; Studenikin, S. A.; Sachrajda, A. S.; Aers, G. C.; Williams, R. L.; Poole, P. J.
2010-09-01
The purpose of this work is to fabricate ribbon-like InGaAs and InAsP wires embedded in InP ridge structures and investigate their transport properties. The InP ridge structures that contain the wires are selectively grown by chemical beam epitaxy (CBE) on pre-patterned InP substrates. To optimize the growth and micro-fabrication processes for electronic transport, we explore the Ohmic contact resistance, the electron density, and the mobility as a function of the wire width using standard transport and Shubnikov-de Haas measurements. At low temperatures the ridge structures reveal reproducible mesoscopic conductance fluctuations. We also fabricate ridge structures with submicron gate electrodes that exhibit non-leaky gating and good pinch-off characteristics acceptable for device operation. Using such wrap gate electrodes, we demonstrate that the wires can be split to form quantum dots evidenced by Coulomb blockade oscillations in transport measurements.
Energy-Conversion Properties of Vapor-Liquid-Solid-Grown Silicon Wire-Array Photocathodes
NASA Astrophysics Data System (ADS)
Boettcher, Shannon W.; Spurgeon, Joshua M.; Putnam, Morgan C.; Warren, Emily L.; Turner-Evans, Daniel B.; Kelzenberg, Michael D.; Maiolo, James R.; Atwater, Harry A.; Lewis, Nathan S.
2010-01-01
Silicon wire arrays, though attractive materials for use in photovoltaics and as photocathodes for hydrogen generation, have to date exhibited poor performance. Using a copper-catalyzed, vapor-liquid-solid-growth process, SiCl4 and BCl3 were used to grow ordered arrays of crystalline p-type silicon (p-Si) microwires on p+-Si(111) substrates. When these wire arrays were used as photocathodes in contact with an aqueous methyl viologen2+/+ electrolyte, energy-conversion efficiencies of up to 3% were observed for monochromatic 808-nanometer light at fluxes comparable to solar illumination, despite an external quantum yield at short circuit of only 0.2. Internal quantum yields were at least 0.7, demonstrating that the measured photocurrents were limited by light absorption in the wire arrays, which filled only 4% of the incident optical plane in our test devices. The inherent performance of these wires thus conceptually allows the development of efficient photovoltaic and photoelectrochemical energy-conversion devices based on a radial junction platform.
Energy-conversion properties of vapor-liquid-solid-grown silicon wire-array photocathodes.
Boettcher, Shannon W; Spurgeon, Joshua M; Putnam, Morgan C; Warren, Emily L; Turner-Evans, Daniel B; Kelzenberg, Michael D; Maiolo, James R; Atwater, Harry A; Lewis, Nathan S
2010-01-08
Silicon wire arrays, though attractive materials for use in photovoltaics and as photocathodes for hydrogen generation, have to date exhibited poor performance. Using a copper-catalyzed, vapor-liquid-solid-growth process, SiCl4 and BCl3 were used to grow ordered arrays of crystalline p-type silicon (p-Si) microwires on p+-Si(111) substrates. When these wire arrays were used as photocathodes in contact with an aqueous methyl viologen(2+/+) electrolyte, energy-conversion efficiencies of up to 3% were observed for monochromatic 808-nanometer light at fluxes comparable to solar illumination, despite an external quantum yield at short circuit of only 0.2. Internal quantum yields were at least 0.7, demonstrating that the measured photocurrents were limited by light absorption in the wire arrays, which filled only 4% of the incident optical plane in our test devices. The inherent performance of these wires thus conceptually allows the development of efficient photovoltaic and photoelectrochemical energy-conversion devices based on a radial junction platform.
Narrowband light detection via internal quantum efficiency manipulation of organic photodiodes
NASA Astrophysics Data System (ADS)
Armin, Ardalan; Jansen-van Vuuren, Ross D.; Kopidakis, Nikos; Burn, Paul L.; Meredith, Paul
2015-02-01
Spectrally selective light detection is vital for full-colour and near-infrared (NIR) imaging and machine vision. This is not possible with traditional broadband-absorbing inorganic semiconductors without input filtering, and is yet to be achieved for narrowband absorbing organic semiconductors. We demonstrate the first sub-100 nm full-width-at-half-maximum visible-blind red and NIR photodetectors with state-of-the-art performance across critical response metrics. These devices are based on organic photodiodes with optically thick junctions. Paradoxically, we use broadband-absorbing organic semiconductors and utilize the electro-optical properties of the junction to create the narrowest NIR-band photoresponses yet demonstrated. In this context, these photodiodes outperform the encumbent technology (input filtered inorganic semiconductor diodes) and emerging technologies such as narrow absorber organic semiconductors or quantum nanocrystals. The design concept allows for response tuning and is generic for other spectral windows. Furthermore, it is material-agnostic and applicable to other disordered and polycrystalline semiconductors.
Narrowband Light Detection via Internal Quantum Efficiency Manipulation of Organic Photodiodes
Armin, A.; Jansen-van Vuuren, R. D.; Kopidakis, N.; ...
2015-02-01
Spectrally selective light detection is vital for full-colour and near-infrared (NIR) imaging and machine vision. This is not possible with traditional broadband-absorbing inorganic semiconductors without input filtering, and is yet to be achieved for narrowband absorbing organic semiconductors. We demonstrate the first sub-100 nm full-width-at-half-maximum visible-blind red and NIR photodetectors with state-of-the-art performance across critical response metrics. These devices are based on organic photodiodes with optically thick junctions. Paradoxically, we use broadband-absorbing organic semiconductors and utilize the electro-optical properties of the junction to create the narrowest NIR-band photoresponses yet demonstrated. In this context, these photodiodes outperform the encumbent technology (inputmore » filtered inorganic semiconductor diodes) and emerging technologies such as narrow absorber organic semiconductors or quantum nanocrystals. The design concept allows for response tuning and is generic for other spectral windows. Furthermore, it is materialagnostic and applicable to other disordered and polycrystalline semiconductors.« less
Hybrid quantum-classical modeling of quantum dot devices
NASA Astrophysics Data System (ADS)
Kantner, Markus; Mittnenzweig, Markus; Koprucki, Thomas
2017-11-01
The design of electrically driven quantum dot devices for quantum optical applications asks for modeling approaches combining classical device physics with quantum mechanics. We connect the well-established fields of semiclassical semiconductor transport theory and the theory of open quantum systems to meet this requirement. By coupling the van Roosbroeck system with a quantum master equation in Lindblad form, we introduce a new hybrid quantum-classical modeling approach, which provides a comprehensive description of quantum dot devices on multiple scales: it enables the calculation of quantum optical figures of merit and the spatially resolved simulation of the current flow in realistic semiconductor device geometries in a unified way. We construct the interface between both theories in such a way, that the resulting hybrid system obeys the fundamental axioms of (non)equilibrium thermodynamics. We show that our approach guarantees the conservation of charge, consistency with the thermodynamic equilibrium and the second law of thermodynamics. The feasibility of the approach is demonstrated by numerical simulations of an electrically driven single-photon source based on a single quantum dot in the stationary and transient operation regime.
The electronic and optical properties of quantum nano-structures
NASA Astrophysics Data System (ADS)
Ham, Heon
In semiconducting quantum nano-structures, the excitonic effects play an important role when we fabricate opto-electronic devices, such as lasers, diodes, detectors, etc. To gain a better understanding of the excitonic effects in quantum nano-structures, we investigated the exciton binding energy, oscillator strength, and linewidth in quantum nano-structures using both the infinite and finite well models. We investigated also the hydrogenic impurity binding energy and the photoionization cross section of the hydrogenic impurity in a spherical quantum dot. In our work, the variational approach is used in all calculations, because the Hamiltonian of the system is not separable, due to the different symmetries of the Coulomb and confining potentials. In the infinite well model of the semiconducting quantum nanostructures, the binding energy of the exciton increases with decreasing width of the potential barriers due to the increase in the effective strength of the Coulomb interaction between the electron and hole. In the finite well model, the exciton binding energy reaches a peak value, and the binding energy decreases with further decrease in the width of the potential barriers. The exciton linewidth in the infinite well model increases with decreasing wire radius, because the scattering rate of the exciton increases with decreasing wire radius. In the finite well model, the exciton linewidth in a cylindrical quantum wire reaches a peak value and the exciton linewidth decreases with further decrease in the wire radius, because the exciton is not well confined at very smaller wire radii. The binding energy of the hydrogenic impurity in a spherical quantum dot has also calculated using both the infinite and the finite well models. The binding energy of the hydrogenic impurity was calculated for on center and off center impurities in the spherical quantum dots. With decreasing radii of the dots, the binding energy of the hydrogenic impurity increases in the infinite well model. The binding energy of the hydrogenic impurity in the finite well model reaches a peak value and decreases with further decrease in the dot radii for both on center and off center impurities. We have calculated the photoionization cross section as a function of the radius and the frequency using both the infinite and finite well models. The photoionizaton cross section has a peak value at a frequency where the photon energy equals the difference between the final and initial state energies of the impurity. The behavior of the cross section with dot radius depends upon the location of the impurity and the polarization of the electromagnetic field.
Ko, Heasin; Choi, Byung-Seok; Choe, Joong-Seon; Kim, Kap-Joong; Kim, Jong-Hoi; Youn, Chun Ju
2017-08-21
Most polarization-based BB84 quantum key distribution (QKD) systems utilize multiple lasers to generate one of four polarization quantum states randomly. However, random bit generation with multiple lasers can potentially open critical side channels that significantly endangers the security of QKD systems. In this paper, we show unnoticed side channels of temporal disparity and intensity fluctuation, which possibly exist in the operation of multiple semiconductor laser diodes. Experimental results show that the side channels can enormously degrade security performance of QKD systems. An important system issue for the improvement of quantum bit error rate (QBER) related with laser driving condition is further addressed with experimental results.
MURI Center for Photonic Quantum Information Systems
2009-10-16
conversion; solid- state quantum gates based on quantum dots in semiconductors and on NV centers in diamond; quantum memories using optical storage...of our high-speed quantum cryptography systems, and also by continuing to work on quantum information encoding into transverse spatial modes. 14...make use of cavity QED effects for quantum information processing, the quantum dot needs to be addressed coherently . We have probed the QD-cavity
Nonequilibrium Langevin approach to quantum optics in semiconductor microcavities
NASA Astrophysics Data System (ADS)
Portolan, S.; di Stefano, O.; Savasta, S.; Rossi, F.; Girlanda, R.
2008-01-01
Recently, the possibility of generating nonclassical polariton states by means of parametric scattering has been demonstrated. Excitonic polaritons propagate in a complex interacting environment and contain real electronic excitations subject to scattering events and noise affecting quantum coherence and entanglement. Here, we present a general theoretical framework for the realistic investigation of polariton quantum correlations in the presence of coherent and incoherent interaction processes. The proposed theoretical approach is based on the nonequilibrium quantum Langevin approach for open systems applied to interacting-electron complexes described within the dynamics controlled truncation scheme. It provides an easy recipe to calculate multitime correlation functions which are key quantities in quantum optics. As a first application, we analyze the buildup of polariton parametric emission in semiconductor microcavities including the influence of noise originating from phonon-induced scattering.
Metal colloids and semiconductor quantum dots: Linear and nonlinear optical properties
NASA Technical Reports Server (NTRS)
Henderson, D. O.; My, R.; Tung, Y.; Ueda, A.; Zhu, J.; Collins, W. E.; Hall, Christopher
1995-01-01
One aspect of this project involves a collaborative effort with the Solid State Division of ORNL. The thrust behind this research is to develop ion implantion for synthesizing novel materials (quantum dots wires and wells, and metal colloids) for applications in all optical switching devices, up conversion, and the synthesis of novel refractory materials. In general the host material is typically a glass such as optical grade silica. The ions of interest are Au, Ag, Cd, Se, In, P, Sb, Ga and As. An emphasis is placed on host guest interactions between the matrix and the implanted ion and how the matrix effects and implantation parameters can be used to obtain designer level optical devices tailored for specific applications. The specific materials of interest are: CdSe, CdTe, InAs, GaAs, InP, GaP, InSb, GaSb and InGaAs. A second aspect of this research program involves using porous glass (25-200 A) for fabricating materials of finite size. In this part of the program, we are particularly interested in characterizing the thermodynamic and optical properties of these non-composite materials. We also address how phase diagram of the confined material is altered by the interfacial properties between the confined material and the pore wall.
Controllable Quantum States Mesoscopic Superconductivity and Spintronics (MS+S2006)
NASA Astrophysics Data System (ADS)
Takayanagi, Hideaki; Nitta, Junsaku; Nakano, Hayato
2008-10-01
Mesoscopic effects in superconductors. Tunneling measurements of charge imbalance of non-equilibrium superconductors / R. Yagi. Influence of magnetic impurities on Josephson current in SNS junctions / T. Yokoyama. Nonlinear response and observable signatures of equilibrium entanglement / A. M. Zagoskin. Stimulated Raman adiabatic passage with a Cooper pair box / Giuseppe Falci. Crossed Andreev reflection-induced giant negative magnetoresistance / Francesco Giazotto -- Quantum modulation of superconducting junctions. Adiabatic pumping through a Josephson weak link / Fabio Taddei. Squeezing of superconducting qubits / Kazutomu Shiokawa. Detection of Berrys phases in flux qubits with coherent pulses / D. N. Zheng. Probing entanglement in the system of coupled Josephson qubits / A. S. Kiyko. Josephson junction with tunable damping using quasi-particle injection / Ryuta Yagi. Macroscopic quantum coherence in rf-SQUIDs / Alexey V. Ustinov. Bloch oscillations in a Josephson circuit / D. Esteve. Manipulation of magnetization in nonequilibrium superconducting nanostructures / F. Giazotto -- Superconducting qubits. Decoherence and Rabi oscillations in a qubit coupled to a quantum two-level system / Sahel Ashhab. Phase-coupled flux qubits: CNOT operation, controllable coupling and entanglement / Mun Dae Kim. Characteristics of a switchable superconducting flux transformer with a DC-SQUID / Yoshihiro Shimazu. Characterization of adiabatic noise in charge-based coherent nanodevices / E. Paladino -- Unconventional superconductors. Threshold temperatures of zero-bias conductance peak and zero-bias conductance dip in diffusive normal metal/superconductor junctions / Iduru Shigeta. Tunneling conductance in 2DEG/S junctions in the presence of Rashba spin-orbit coupling / T. Yokoyama. Theory of charge transport in diffusive ferromagnet/p-wave superconductor junctions / T. Yokoyama. Theory of enhanced proximity effect by the exchange field in FS bilayers / T. Yokoyama. Theory of Josephson effect in diffusive d-wave junctions / T. Yokoyama. Quantum dissipation due to the zero energy bound states in high-T[symbol] superconductor junctions / Shiro Kawabata. Spin-polarized heat transport in ferromagnet/unconventional superconductor junctions / T. Yokoyama. Little-Parks oscillations in chiral p-wave superconducting rings / Mitsuaki Takigawa. Theoretical study of synergy effect between proximity effect and Andreev interface resonant states in triplet p-wave superconductors / Yasunari Tanuma. Theory of proximity effect in unconventional superconductor junctions / Y. Tanaka -- Quantum information. Analyzing the effectiveness of the quantum repeater / Kenichiro Furuta. Architecture-dependent execution time of Shor's algorithm / Rodney Van Meter -- Quantum dots and Kondo effects. Coulomb blockade properties of 4-gated quantum dot / Shinichi Amaha. Order-N electronic structure calculation of n-type GaAs quantum dots / Shintaro Nomura. Transport through double-dots coupled to normal and superconducting leads / Yoichi Tanaka. A study of the quantum dot in application to terahertz single photon counting / Vladimir Antonov. Electron transport through laterally coupled double quantum dots / T. Kubo. Dephasing in Kondo systems: comparison between theory and experiment / F. Mallet. Kondo effect in quantum dots coupled with noncollinear ferromagnetic leads / Daisuke Matsubayashi. Non-crossing approximation study of multi-orbital Kondo effect in quantum dot systems / Tomoko Kita. Theoretical study of electronic states and spin operation in coupled quantum dots / Mikio Eto. Spin correlation in a double quantum dot-quantum wire coupled system / S. Sasaki. Kondo-assisted transport through a multiorbital quantum dot / Rui Sakano. Spin decay in a quantum dot coupled to a quantum point contact / Massoud Borhani -- Quantum wires, low-dimensional electrons. Control of the electron density and electric field with front and back gates / Masumi Yamaguchi. Effect of the array distance on the magnetization configuration of submicron-sized ferromagnetic rings / Tetsuya Miyawaki. A wide GaAs/GaAlAs quantum well simultaneously containing two dimensional electrons and holes / Ane Jensen. Simulation of the photon-spin quantum state transfer process / Yoshiaki Rikitake. Magnetotransport in two-dimensional electron gases on cylindrical surface / Friedland Klaus-Juergen. Full counting statistics for a single-electron transistor at intermediate conductance / Yasuhiro Utsumi. Creation of spin-polarized current using quantum point contacts and its detection / Mikio Eto. Density dependent electron effective mass in a back-gated quantum well / S. Nomura. The supersymmetric sigma formula and metal-insulator transition in diluted magnetic semiconductors / I. Kanazawa. Spin-photovoltaic effect in quantum wires / A. Fedorov -- Quantum interference. Nonequilibrium transport in Aharonov-Bohm interferometer with electron-phonon interaction / Akiko Ueda. Fano resonance and its breakdown in AB ring embedded with a molecule / Shigeo Fujimoto, Yuhei Natsume. Quantum resonance above a barrier in the presence of dissipation / Kohkichi Konno. Ensemble averaging in metallic quantum networks / F. Mallet -- Coherence and order in exotic materials. Progress towards an electronic array on liquid helium / David Rees. Measuring noise and cross correlations at high frequencies in nanophysics / T. Martin. Single wall carbon nanotube weak links / K. Grove-Rasmussen. Optical preparation of nuclear spins coupled to a localized electron spin / Guido Burkard. Topological effects in charge density wave dynamics / Toru Matsuura. Studies on nanoscale charge-density-wave systems: fabrication technique and transport phenomena / Katsuhiko Inagaki. Anisotropic behavior of hysteresis induced by the in-plane field in the v = 2/3 quantum Hall state / Kazuki Iwata. Phase diagram of the v = 2 bilayer quantum Hall state / Akira Fukuda -- Trapped ions (special talk). Quantum computation with trapped ions / Hartmut Häffner.
NASA Astrophysics Data System (ADS)
Huber, Daniel; Reindl, Marcus; Aberl, Johannes; Rastelli, Armando; Trotta, Rinaldo
2018-07-01
More than 80 years have passed since the first publication on entangled quantum states. Over this period, the concept of spookily interacting quantum states became an emerging field of science. After various experiments proving the existence of such non-classical states, visionary ideas were put forward to exploit entanglement in quantum information science and technology. These novel concepts have not yet come out of the experimental stage, mostly because of the lack of suitable, deterministic sources of entangled quantum states. Among many systems under investigation, semiconductor quantum dots are particularly appealing emitters of on-demand, single polarization-entangled photon pairs. While it was originally believed that quantum dots must exhibit a limited degree of entanglement related to decoherence effects typical of the solid-state, recent studies have invalidated this preconception. We review the relevant experiments which have led to these important discoveries and discuss the remaining challenges for the anticipated quantum technologies.
Optical Spectroscopy of Hybrid Semiconductor Quantum Dots and Metal Nanoparticles
2014-11-07
Theoretical studies of spin- photon entangled complementarity”. Mr. Anderson Hayes in physics finished B.S. degree in May 2013 with a capstone thesis entitled...working on “Semiconductor quantum dots and photon entanglement ”. Mr. Quinn Allen Hailes, undergraduate student in physics completed B.S. degree in...great interests for the Department of Defense’s (DoD) photonic applications. Our research focused on developing and characterizing advanced optical
Quantum Dots Based Rad-Hard Computing and Sensors
NASA Technical Reports Server (NTRS)
Fijany, A.; Klimeck, G.; Leon, R.; Qiu, Y.; Toomarian, N.
2001-01-01
Quantum Dots (QDs) are solid-state structures made of semiconductors or metals that confine a small number of electrons into a small space. The confinement of electrons is achieved by the placement of some insulating material(s) around a central, well-conducting region. Thus, they can be viewed as artificial atoms. They therefore represent the ultimate limit of the semiconductor device scaling. Additional information is contained in the original extended abstract.
Spin-dependent quantum transport in nanoscaled geometries
NASA Astrophysics Data System (ADS)
Heremans, Jean J.
2011-10-01
We discuss experiments where the spin degree of freedom leads to quantum interference phenomena in the solid-state. Under spin-orbit interactions (SOI), spin rotation modifies weak-localization to weak anti-localization (WAL). WAL's sensitivity to spin- and phase coherence leads to its use in determining the spin coherence lengths Ls in materials, of importance moreover in spintronics. Using WAL we measure the dependence of Ls on the wire width w in narrow nanolithographic ballistic InSb wires, ballistic InAs wires, and diffusive Bi wires with surface states with Rashba-like SOI. In all three systems we find that Ls increases with decreasing w. While theory predicts the increase for diffusive wires with linear (Rashba) SOI, we experimentally conclude that the increase in Ls under dimensional confinement may be more universal, with consequences for various applications. Further, in mesoscopic ring geometries on an InAs/AlGaSb 2D electron system (2DES) we observe both Aharonov-Bohm oscillations due to spatial quantum interference, and Altshuler-Aronov-Spivak oscillations due to time-reversed paths. A transport formalism describing quantum coherent networks including ballistic transport and SOI allows a comparison of spin- and phase coherence lengths extracted for such spatial- and temporal-loop quantum interference phenomena. We further applied WAL to study the magnetic interactions between a 2DES at the surface of InAs and local magnetic moments on the surface from rare earth (RE) ions (Gd3+, Ho3+, and Sm3+). The magnetic spin-flip rate carries information about magnetic interactions. Results indicate that the heavy RE ions increase the SOI scattering rate and the spin-flip rate, the latter indicating magnetic interactions. Moreover Ho3+ on InAs yields a spin-flip rate with an unusual power 1/2 temperature dependence, possibly characteristic of a Kondo system. We acknowledge funding from DOE (DE-FG02-08ER46532).
Andreev reflection, a tool to investigate vortex dynamics and quantum turbulence in 3He-B.
Fisher, Shaun Neil; Jackson, Martin James; Sergeev, Yuri A; Tsepelin, Viktor
2014-03-25
Andreev reflection of quasiparticle excitations provides a sensitive and passive probe of flow in superfluid (3)He-B. It is particularly useful for studying complex flows generated by vortex rings and vortex tangles (quantum turbulence). We describe the reflection process and discuss the results of numerical simulations of Andreev reflection from vortex rings and from quantum turbulence. We present measurements of vortices generated by a vibrating grid resonator at very low temperatures. The Andreev reflection is measured using an array of vibrating wire sensors. At low grid velocities, ballistic vortex rings are produced. At higher grid velocities, the rings collide and reconnect to produce quantum turbulence. We discuss spatial correlations of the fluctuating vortex signals measured by the different sensor wires. These reveal detailed information about the formation of quantum turbulence and about the underlying vortex dynamics.
Andreev reflection, a tool to investigate vortex dynamics and quantum turbulence in 3He-B
Fisher, Shaun Neil; Jackson, Martin James; Sergeev, Yuri A.; Tsepelin, Viktor
2014-01-01
Andreev reflection of quasiparticle excitations provides a sensitive and passive probe of flow in superfluid 3He-B. It is particularly useful for studying complex flows generated by vortex rings and vortex tangles (quantum turbulence). We describe the reflection process and discuss the results of numerical simulations of Andreev reflection from vortex rings and from quantum turbulence. We present measurements of vortices generated by a vibrating grid resonator at very low temperatures. The Andreev reflection is measured using an array of vibrating wire sensors. At low grid velocities, ballistic vortex rings are produced. At higher grid velocities, the rings collide and reconnect to produce quantum turbulence. We discuss spatial correlations of the fluctuating vortex signals measured by the different sensor wires. These reveal detailed information about the formation of quantum turbulence and about the underlying vortex dynamics. PMID:24704872
Quantum-dot spin-photon entanglement via frequency downconversion to telecom wavelength.
De Greve, Kristiaan; Yu, Leo; McMahon, Peter L; Pelc, Jason S; Natarajan, Chandra M; Kim, Na Young; Abe, Eisuke; Maier, Sebastian; Schneider, Christian; Kamp, Martin; Höfling, Sven; Hadfield, Robert H; Forchel, Alfred; Fejer, M M; Yamamoto, Yoshihisa
2012-11-15
Long-distance quantum teleportation and quantum repeater technologies require entanglement between a single matter quantum bit (qubit) and a telecommunications (telecom)-wavelength photonic qubit. Electron spins in III-V semiconductor quantum dots are among the matter qubits that allow for the fastest spin manipulation and photon emission, but entanglement between a single quantum-dot spin qubit and a flying (propagating) photonic qubit has yet to be demonstrated. Moreover, many quantum dots emit single photons at visible to near-infrared wavelengths, where silica fibre losses are so high that long-distance quantum communication protocols become difficult to implement. Here we demonstrate entanglement between an InAs quantum-dot electron spin qubit and a photonic qubit, by frequency downconversion of a spontaneously emitted photon from a singly charged quantum dot to a wavelength of 1,560 nanometres. The use of sub-10-picosecond pulses at a wavelength of 2.2 micrometres in the frequency downconversion process provides the necessary quantum erasure to eliminate which-path information in the photon energy. Together with previously demonstrated indistinguishable single-photon emission at high repetition rates, the present technique advances the III-V semiconductor quantum-dot spin system as a promising platform for long-distance quantum communication.
Generating single microwave photons in a circuit.
Houck, A A; Schuster, D I; Gambetta, J M; Schreier, J A; Johnson, B R; Chow, J M; Frunzio, L; Majer, J; Devoret, M H; Girvin, S M; Schoelkopf, R J
2007-09-20
Microwaves have widespread use in classical communication technologies, from long-distance broadcasts to short-distance signals within a computer chip. Like all forms of light, microwaves, even those guided by the wires of an integrated circuit, consist of discrete photons. To enable quantum communication between distant parts of a quantum computer, the signals must also be quantum, consisting of single photons, for example. However, conventional sources can generate only classical light, not single photons. One way to realize a single-photon source is to collect the fluorescence of a single atom. Early experiments measured the quantum nature of continuous radiation, and further advances allowed triggered sources of photons on demand. To allow efficient photon collection, emitters are typically placed inside optical or microwave cavities, but these sources are difficult to employ for quantum communication on wires within an integrated circuit. Here we demonstrate an on-chip, on-demand single-photon source, where the microwave photons are injected into a wire with high efficiency and spectral purity. This is accomplished in a circuit quantum electrodynamics architecture, with a microwave transmission line cavity that enhances the spontaneous emission of a single superconducting qubit. When the qubit spontaneously emits, the generated photon acts as a flying qubit, transmitting the quantum information across a chip. We perform tomography of both the qubit and the emitted photons, clearly showing that both the quantum phase and amplitude are transferred during the emission. Both the average power and voltage of the photon source are characterized to verify performance of the system. This single-photon source is an important addition to a rapidly growing toolbox for quantum optics on a chip.
Thermoelectric device with multiple, nanometer scale, elements
NASA Technical Reports Server (NTRS)
Fleurial, Jean-Pierre (Inventor); Ryan, Margaret A. (Inventor); Borshchevsky, Alexander (Inventor); Herman, Jennifer (Inventor)
2006-01-01
A thermoelectric device formed of nanowires on the nm scale. The nanowires are preferably of a size that causes quantum confinement effects within the wires. The wires are connected together into a bundle to increase the power density.
Double-sided coaxial circuit QED with out-of-plane wiring
NASA Astrophysics Data System (ADS)
Rahamim, J.; Behrle, T.; Peterer, M. J.; Patterson, A.; Spring, P. A.; Tsunoda, T.; Manenti, R.; Tancredi, G.; Leek, P. J.
2017-05-01
Superconducting circuits are well established as a strong candidate platform for the development of quantum computing. In order to advance to a practically useful level, architectures are needed which combine arrays of many qubits with selective qubit control and readout, without compromising on coherence. Here, we present a coaxial circuit quantum electrodynamics architecture in which qubit and resonator are fabricated on opposing sides of a single chip, and control and readout wiring are provided by coaxial wiring running perpendicular to the chip plane. We present characterization measurements of a fabricated device in good agreement with simulated parameters and demonstrating energy relaxation and dephasing times of T1 = 4.1 μs and T2 = 5.7 μs, respectively. The architecture allows for scaling to large arrays of selectively controlled and measured qubits with the advantage of all wiring being out of the plane.
Modeling Ballistic Current Flow in Carbon Nanotube Wires
NASA Technical Reports Server (NTRS)
Anantram, M. P.; Biegel, Bryan (Technical Monitor)
2001-01-01
Experiments have shown carbon nanotubes (CNT) to be almost perfect conductors at small applied biases. The features of the CNT band structure, large velocity of the crossing subbands and the small number of modes that an electron close to the band center / Fermi energy can scatter into, are the reasons for the near perfect small bias conductance. We show that the CNT band structure does not help at large applied biases - electrons injected into the non crossing subbands can either be Bragg reflected or undergo Zener-type tunneling. This limits the current carrying capacity of CNT. We point out that the current carrying capacity of semiconductor quantum wires in the ballistic limit is different, owing to its band structure. The second aspect addressed is the relationship of nanotube chirality in determining the physics of metal-nanotube coupling. We show that a metallic-zigzag nanotube couples better than an armchair nanotube to a metal contact. This arises because in the case of armchair nanotubes, while the pi band couples well, the pi* band does not couple well to the metal. In the case of zigzag nanotube both crossing modes couple reasonably well to the metal. Many factors such as the role of curvature, strain and defects will play a role in determining the suitability of nanotubes as nanowires. From the limited view point of metal-nanotube coupling, we feel that metallic-zigzag nanotubes are preferable to armchair nanotubes.
NASA Astrophysics Data System (ADS)
Lee, El-Hang; Lee, S. G.; O, B. H.; Park, S. G.; Noh, H. S.; Kim, K. H.; Song, S. H.
2006-09-01
A collective overview and review is presented on the original work conducted on the theory, design, fabrication, and in-tegration of micro/nano-scale optical wires and photonic devices for applications in a newly-conceived photonic systems called "optical printed circuit board" (O-PCBs) and "VLSI photonic integrated circuits" (VLSI-PIC). These are aimed for compact, high-speed, multi-functional, intelligent, light-weight, low-energy and environmentally friendly, low-cost, and high-volume applications to complement or surpass the capabilities of electrical PCBs (E-PCBs) and/or VLSI electronic integrated circuit (VLSI-IC) systems. These consist of 2-dimensional or 3-dimensional planar arrays of micro/nano-optical wires and circuits to perform the functions of all-optical sensing, storing, transporting, processing, switching, routing and distributing optical signals on flat modular boards or substrates. The integrated optical devices include micro/nano-scale waveguides, lasers, detectors, switches, sensors, directional couplers, multi-mode interference devices, ring-resonators, photonic crystal devices, plasmonic devices, and quantum devices, made of polymer, silicon and other semiconductor materials. For VLSI photonic integration, photonic crystals and plasmonic structures have been used. Scientific and technological issues concerning the processes of miniaturization, interconnection and integration of these systems as applicable to board-to-board, chip-to-chip, and intra-chip integration, are discussed along with applications for future computers, telecommunications, and sensor-systems. Visions and challenges toward these goals are also discussed.
Spatially selective assembly of quantum dot light emitters in an LED using engineered peptides.
Demir, Hilmi Volkan; Seker, Urartu Ozgur Safak; Zengin, Gulis; Mutlugun, Evren; Sari, Emre; Tamerler, Candan; Sarikaya, Mehmet
2011-04-26
Semiconductor nanocrystal quantum dots are utilized in numerous applications in nano- and biotechnology. In device applications, where several different material components are involved, quantum dots typically need to be assembled at explicit locations for enhanced functionality. Conventional approaches cannot meet these requirements where assembly of nanocrystals is usually material-nonspecific, thereby limiting the control of their spatial distribution. Here we demonstrate directed self-assembly of quantum dot emitters at material-specific locations in a color-conversion LED containing several material components including a metal, a dielectric, and a semiconductor. We achieve a spatially selective immobilization of quantum dot emitters by using the unique material selectivity characteristics provided by the engineered solid-binding peptides as smart linkers. Peptide-decorated quantum dots exhibited several orders of magnitude higher photoluminescence compared to the control groups, thus, potentially opening up novel ways to advance these photonic platforms in applications ranging from chemical to biodetection.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cho, Edward Namkyu; Shin, Yong Hyeon; Yun, Ilgu, E-mail: iyun@yonsei.ac.kr
2014-11-07
A compact quantum correction model for a symmetric double gate (DG) metal-oxide-semiconductor field-effect transistor (MOSFET) is investigated. The compact quantum correction model is proposed from the concepts of the threshold voltage shift (ΔV{sub TH}{sup QM}) and the gate capacitance (C{sub g}) degradation. First of all, ΔV{sub TH}{sup QM} induced by quantum mechanical (QM) effects is modeled. The C{sub g} degradation is then modeled by introducing the inversion layer centroid. With ΔV{sub TH}{sup QM} and the C{sub g} degradation, the QM effects are implemented in previously reported classical model and a comparison between the proposed quantum correction model and numerical simulationmore » results is presented. Based on the results, the proposed quantum correction model can be applicable to the compact model of DG MOSFET.« less
Gate-controlled electromechanical backaction induced by a quantum dot
NASA Astrophysics Data System (ADS)
Okazaki, Yuma; Mahboob, Imran; Onomitsu, Koji; Sasaki, Satoshi; Yamaguchi, Hiroshi
2016-04-01
Semiconductor-based quantum structures integrated into mechanical resonators have emerged as a unique platform for generating entanglement between macroscopic phononic and mesocopic electronic degrees of freedom. A key challenge to realizing this is the ability to create and control the coupling between two vastly dissimilar systems. Here, such coupling is demonstrated in a hybrid device composed of a gate-defined quantum dot integrated into a piezoelectricity-based mechanical resonator enabling milli-Kelvin phonon states to be detected via charge fluctuations in the quantum dot. Conversely, the single electron transport in the quantum dot can induce a backaction onto the mechanics where appropriate bias of the quantum dot can enable damping and even current-driven amplification of the mechanical motion. Such electron transport induced control of the mechanical resonator dynamics paves the way towards a new class of hybrid semiconductor devices including a current injected phonon laser and an on-demand single phonon emitter.
Quantum control and process tomography of a semiconductor quantum dot hybrid qubit.
Kim, Dohun; Shi, Zhan; Simmons, C B; Ward, D R; Prance, J R; Koh, Teck Seng; Gamble, John King; Savage, D E; Lagally, M G; Friesen, Mark; Coppersmith, S N; Eriksson, Mark A
2014-07-03
The similarities between gated quantum dots and the transistors in modern microelectronics--in fabrication methods, physical structure and voltage scales for manipulation--have led to great interest in the development of quantum bits (qubits) in semiconductor quantum dots. Although quantum dot spin qubits have demonstrated long coherence times, their manipulation is often slower than desired for important future applications, such as factoring. Furthermore, scalability and manufacturability are enhanced when qubits are as simple as possible. Previous work has increased the speed of spin qubit rotations by making use of integrated micromagnets, dynamic pumping of nuclear spins or the addition of a third quantum dot. Here we demonstrate a qubit that is a hybrid of spin and charge. It is simple, requiring neither nuclear-state preparation nor micromagnets. Unlike previous double-dot qubits, the hybrid qubit enables fast rotations about two axes of the Bloch sphere. We demonstrate full control on the Bloch sphere with π-rotation times of less than 100 picoseconds in two orthogonal directions, which is more than an order of magnitude faster than any other double-dot qubit. The speed arises from the qubit's charge-like characteristics, and its spin-like features result in resistance to decoherence over a wide range of gate voltages. We achieve full process tomography in our electrically controlled semiconductor quantum dot qubit, extracting high fidelities of 85 per cent for X rotations (transitions between qubit states) and 94 per cent for Z rotations (phase accumulation between qubit states).
Intrinsic errors in transporting a single-spin qubit through a double quantum dot
NASA Astrophysics Data System (ADS)
Li, Xiao; Barnes, Edwin; Kestner, J. P.; Das Sarma, S.
2017-07-01
Coherent spatial transport or shuttling of a single electron spin through semiconductor nanostructures is an important ingredient in many spintronic and quantum computing applications. In this work we analyze the possible errors in solid-state quantum computation due to leakage in transporting a single-spin qubit through a semiconductor double quantum dot. In particular, we consider three possible sources of leakage errors associated with such transport: finite ramping times, spin-dependent tunneling rates between quantum dots induced by finite spin-orbit couplings, and the presence of multiple valley states. In each case we present quantitative estimates of the leakage errors, and discuss how they can be minimized. The emphasis of this work is on how to deal with the errors intrinsic to the ideal semiconductor structure, such as leakage due to spin-orbit couplings, rather than on errors due to defects or noise sources. In particular, we show that in order to minimize leakage errors induced by spin-dependent tunnelings, it is necessary to apply pulses to perform certain carefully designed spin rotations. We further develop a formalism that allows one to systematically derive constraints on the pulse shapes and present a few examples to highlight the advantage of such an approach.
Infrared emitting device and method
Kurtz, Steven R.; Biefeld, Robert M.; Dawson, L. Ralph; Howard, Arnold J.; Baucom, Kevin C.
1997-01-01
An infrared emitting device and method. The infrared emitting device comprises a III-V compound semiconductor substrate upon which are grown a quantum-well active region having a plurality of quantum-well layers formed of a ternary alloy comprising InAsSb sandwiched between barrier layers formed of a ternary alloy having a smaller lattice constant and a larger energy bandgap than the quantum-well layers. The quantum-well layers are preferably compressively strained to increase the threshold energy for Auger recombination; and a method is provided for determining the preferred thickness for the quantum-well layers. Embodiments of the present invention are described having at least one cladding layer to increase the optical and carrier confinement in the active region, and to provide for waveguiding of the light generated within the active region. Examples have been set forth showing embodiments of the present invention as surface- and edge-emitting light emitting diodes (LEDs), an optically-pumped semiconductor laser, and an electrically-injected semiconductor diode laser. The light emission from each of the infrared emitting devices of the present invention is in the midwave infrared region of the spectrum from about 2 to 6 microns.
Three-dimensional patterning methods and related devices
DOE Office of Scientific and Technical Information (OSTI.GOV)
Putnam, Morgan C.; Kelzenberg, Michael D.; Atwater, Harry A.
2016-12-27
Three-dimensional patterning methods of a three-dimensional microstructure, such as a semiconductor wire array, are described, in conjunction with etching and/or deposition steps to pattern the three-dimensional microstructure.
Homogeneous spectral spanning of terahertz semiconductor lasers with radio frequency modulation.
Wan, W J; Li, H; Zhou, T; Cao, J C
2017-03-08
Homogeneous broadband and electrically pumped semiconductor radiation sources emitting in the terahertz regime are highly desirable for various applications, including spectroscopy, chemical sensing, and gas identification. In the frequency range between 1 and 5 THz, unipolar quantum cascade lasers employing electron inter-subband transitions in multiple-quantum-well structures are the most powerful semiconductor light sources. However, these devices are normally characterized by either a narrow emission spectrum due to the narrow gain bandwidth of the inter-subband optical transitions or an inhomogeneous broad terahertz spectrum from lasers with heterogeneous stacks of active regions. Here, we report the demonstration of homogeneous spectral spanning of long-cavity terahertz semiconductor quantum cascade lasers based on a bound-to-continuum and resonant phonon design under radio frequency modulation. At a single drive current, the terahertz spectrum under radio frequency modulation continuously spans 330 GHz (~8% of the central frequency), which is the record for single plasmon waveguide terahertz lasers with a bound-to-continuum design. The homogeneous broadband terahertz sources can be used for spectroscopic applications, i.e., GaAs etalon transmission measurement and ammonia gas identification.
Homogeneous spectral spanning of terahertz semiconductor lasers with radio frequency modulation
Wan, W. J.; Li, H.; Zhou, T.; Cao, J. C.
2017-01-01
Homogeneous broadband and electrically pumped semiconductor radiation sources emitting in the terahertz regime are highly desirable for various applications, including spectroscopy, chemical sensing, and gas identification. In the frequency range between 1 and 5 THz, unipolar quantum cascade lasers employing electron inter-subband transitions in multiple-quantum-well structures are the most powerful semiconductor light sources. However, these devices are normally characterized by either a narrow emission spectrum due to the narrow gain bandwidth of the inter-subband optical transitions or an inhomogeneous broad terahertz spectrum from lasers with heterogeneous stacks of active regions. Here, we report the demonstration of homogeneous spectral spanning of long-cavity terahertz semiconductor quantum cascade lasers based on a bound-to-continuum and resonant phonon design under radio frequency modulation. At a single drive current, the terahertz spectrum under radio frequency modulation continuously spans 330 GHz (~8% of the central frequency), which is the record for single plasmon waveguide terahertz lasers with a bound-to-continuum design. The homogeneous broadband terahertz sources can be used for spectroscopic applications, i.e., GaAs etalon transmission measurement and ammonia gas identification. PMID:28272492
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alonso-Álvarez, D.; Thomas, T.; Führer, M.
Quantum wires (QWRs) form naturally when growing strain balanced InGaAs/GaAsP multi-quantum wells (MQW) on GaAs [100] 6° misoriented substrates under the usual growth conditions. The presence of wires instead of wells could have several unexpected consequences for the performance of the MQW solar cells, both positive and negative, that need to be assessed to achieve high conversion efficiencies. In this letter, we study QWR properties from the point of view of their performance as solar cells by means of transmission electron microscopy, time resolved photoluminescence and external quantum efficiency (EQE) using polarised light. We find that these QWRs have longermore » lifetimes than nominally identical QWs grown on exact [100] GaAs substrates, of up to 1 μs, at any level of illumination. We attribute this effect to an asymmetric carrier escape from the nanostructures leading to a strong 1D-photo-charging, keeping electrons confined along the wire and holes in the barriers. In principle, these extended lifetimes could be exploited to enhance carrier collection and reduce dark current losses. Light absorption by these QWRs is 1.6 times weaker than QWs, as revealed by EQE measurements, which emphasises the need for more layers of nanostructures or the use light trapping techniques. Contrary to what we expected, QWR show very low absorption anisotropy, only 3.5%, which was the main drawback a priori of this nanostructure. We attribute this to a reduced lateral confinement inside the wires. These results encourage further study and optimization of QWRs for high efficiency solar cells.« less
NASA Astrophysics Data System (ADS)
Alonso-Álvarez, D.; Thomas, T.; Führer, M.; Hylton, N. P.; Ekins-Daukes, N. J.; Lackner, D.; Philipps, S. P.; Bett, A. W.; Sodabanlu, H.; Fujii, H.; Watanabe, K.; Sugiyama, M.; Nasi, L.; Campanini, M.
2014-08-01
Quantum wires (QWRs) form naturally when growing strain balanced InGaAs/GaAsP multi-quantum wells (MQW) on GaAs [100] 6° misoriented substrates under the usual growth conditions. The presence of wires instead of wells could have several unexpected consequences for the performance of the MQW solar cells, both positive and negative, that need to be assessed to achieve high conversion efficiencies. In this letter, we study QWR properties from the point of view of their performance as solar cells by means of transmission electron microscopy, time resolved photoluminescence and external quantum efficiency (EQE) using polarised light. We find that these QWRs have longer lifetimes than nominally identical QWs grown on exact [100] GaAs substrates, of up to 1 μs, at any level of illumination. We attribute this effect to an asymmetric carrier escape from the nanostructures leading to a strong 1D-photo-charging, keeping electrons confined along the wire and holes in the barriers. In principle, these extended lifetimes could be exploited to enhance carrier collection and reduce dark current losses. Light absorption by these QWRs is 1.6 times weaker than QWs, as revealed by EQE measurements, which emphasises the need for more layers of nanostructures or the use light trapping techniques. Contrary to what we expected, QWR show very low absorption anisotropy, only 3.5%, which was the main drawback a priori of this nanostructure. We attribute this to a reduced lateral confinement inside the wires. These results encourage further study and optimization of QWRs for high efficiency solar cells.
The Quantum Socket: Wiring for Superconducting Qubits - Part 3
NASA Astrophysics Data System (ADS)
Mariantoni, M.; Bejianin, J. H.; McConkey, T. G.; Rinehart, J. R.; Bateman, J. D.; Earnest, C. T.; McRae, C. H.; Rohanizadegan, Y.; Shiri, D.; Penava, B.; Breul, P.; Royak, S.; Zapatka, M.; Fowler, A. G.
The implementation of a quantum computer requires quantum error correction codes, which allow to correct errors occurring on physical quantum bits (qubits). Ensemble of physical qubits will be grouped to form a logical qubit with a lower error rate. Reaching low error rates will necessitate a large number of physical qubits. Thus, a scalable qubit architecture must be developed. Superconducting qubits have been used to realize error correction. However, a truly scalable qubit architecture has yet to be demonstrated. A critical step towards scalability is the realization of a wiring method that allows to address qubits densely and accurately. A quantum socket that serves this purpose has been designed and tested at microwave frequencies. In this talk, we show results where the socket is used at millikelvin temperatures to measure an on-chip superconducting resonator. The control electronics is another fundamental element for scalability. We will present a proposal based on the quantum socket to interconnect a classical control hardware to a superconducting qubit hardware, where both are operated at millikelvin temperatures.
Li, Jingrui; Kondov, Ivan; Wang, Haobin; Thoss, Michael
2015-04-10
A recently developed methodology to simulate photoinduced electron transfer processes at dye-semiconductor interfaces is outlined. The methodology employs a first-principles-based model Hamiltonian and accurate quantum dynamics simulations using the multilayer multiconfiguration time-dependent Hartree approach. This method is applied to study electron injection in the dye-semiconductor system coumarin 343-TiO2. Specifically, the influence of electronic-vibrational coupling is analyzed. Extending previous work, we consider the influence of Dushinsky rotation of the normal modes as well as anharmonicities of the potential energy surfaces on the electron transfer dynamics.
NASA Astrophysics Data System (ADS)
Ma, Nan; Jena, Debdeep
2015-03-01
In this work, the consequence of the high band-edge density of states on the carrier statistics and quantum capacitance in transition metal dichalcogenide two-dimensional semiconductor devices is explored. The study questions the validity of commonly used expressions for extracting carrier densities and field-effect mobilities from the transfer characteristics of transistors with such channel materials. By comparison to experimental data, a new method for the accurate extraction of carrier densities and mobilities is outlined. The work thus highlights a fundamental difference between these materials and traditional semiconductors that must be considered in future experimental measurements.
Tunneling conductance in semiconductor-superconductor hybrid structures
NASA Astrophysics Data System (ADS)
Stenger, John; Stanescu, Tudor D.
2017-12-01
We study the differential conductance for charge tunneling into a semiconductor wire-superconductor hybrid structure, which is actively investigated as a possible scheme for realizing topological superconductivity and Majorana zero modes. The calculations are done based on a tight-binding model of the heterostructure using both a Blonder-Tinkham-Klapwijk approach and a Keldysh nonequilibrium Green's function method. The dependence of various tunneling conductance features on the coupling strength between the semiconductor and the superconductor, the tunnel barrier height, and temperature is systematically investigated. We find that treating the parent superconductor as an active component of the system, rather than a passive source of Cooper pairs, has qualitative consequences regarding the low-energy behavior of the differential conductance. In particular, the presence of subgap states in the parent superconductor, due to disorder and finite magnetic fields, leads to characteristic particle-hole asymmetric features and to the breakdown of the quantization of the zero-bias peak associated with the presence of Majorana zero modes localized at the ends of the wire. The implications of these findings for the effort toward the realization of Majorana bound states with true non-Abelian properties are discussed.
NASA Astrophysics Data System (ADS)
Rotta, Davide; Sebastiano, Fabio; Charbon, Edoardo; Prati, Enrico
2017-06-01
Even the quantum simulation of an apparently simple molecule such as Fe2S2 requires a considerable number of qubits of the order of 106, while more complex molecules such as alanine (C3H7NO2) require about a hundred times more. In order to assess such a multimillion scale of identical qubits and control lines, the silicon platform seems to be one of the most indicated routes as it naturally provides, together with qubit functionalities, the capability of nanometric, serial, and industrial-quality fabrication. The scaling trend of microelectronic devices predicting that computing power would double every 2 years, known as Moore's law, according to the new slope set after the 32-nm node of 2009, suggests that the technology roadmap will achieve the 3-nm manufacturability limit proposed by Kelly around 2020. Today, circuital quantum information processing architectures are predicted to take advantage from the scalability ensured by silicon technology. However, the maximum amount of quantum information per unit surface that can be stored in silicon-based qubits and the consequent space constraints on qubit operations have never been addressed so far. This represents one of the key parameters toward the implementation of quantum error correction for fault-tolerant quantum information processing and its dependence on the features of the technology node. The maximum quantum information per unit surface virtually storable and controllable in the compact exchange-only silicon double quantum dot qubit architecture is expressed as a function of the complementary metal-oxide-semiconductor technology node, so the size scale optimizing both physical qubit operation time and quantum error correction requirements is assessed by reviewing the physical and technological constraints. According to the requirements imposed by the quantum error correction method and the constraints given by the typical strength of the exchange coupling, we determine the workable operation frequency range of a silicon complementary metal-oxide-semiconductor quantum processor to be within 1 and 100 GHz. Such constraint limits the feasibility of fault-tolerant quantum information processing with complementary metal-oxide-semiconductor technology only to the most advanced nodes. The compatibility with classical complementary metal-oxide-semiconductor control circuitry is discussed, focusing on the cryogenic complementary metal-oxide-semiconductor operation required to bring the classical controller as close as possible to the quantum processor and to enable interfacing thousands of qubits on the same chip via time-division, frequency-division, and space-division multiplexing. The operation time range prospected for cryogenic control electronics is found to be compatible with the operation time expected for qubits. By combining the forecast of the development of scaled technology nodes with operation time and classical circuitry constraints, we derive a maximum quantum information density for logical qubits of 2.8 and 4 Mqb/cm2 for the 10 and 7-nm technology nodes, respectively, for the Steane code. The density is one and two orders of magnitude less for surface codes and for concatenated codes, respectively. Such values provide a benchmark for the development of fault-tolerant quantum algorithms by circuital quantum information based on silicon platforms and a guideline for other technologies in general.
Silicon Mie resonators for highly directional light emission from monolayer MoS2
NASA Astrophysics Data System (ADS)
Cihan, Ahmet Fatih; Curto, Alberto G.; Raza, Søren; Kik, Pieter G.; Brongersma, Mark L.
2018-05-01
Controlling light emission from quantum emitters has important applications, ranging from solid-state lighting and displays to nanoscale single-photon sources. Optical antennas have emerged as promising tools to achieve such control right at the location of the emitter, without the need for bulky, external optics. Semiconductor nanoantennas are particularly practical for this purpose because simple geometries such as wires and spheres support multiple, degenerate optical resonances. Here, we start by modifying Mie scattering theory developed for plane wave illumination to describe scattering of dipole emission. We then use this theory and experiments to demonstrate several pathways to achieve control over the directionality, polarization state and spectral emission that rely on a coherent coupling of an emitting dipole to optical resonances of a silicon nanowire. A forward-to-backward ratio of 20 was demonstrated for the electric dipole emission at 680 nm from a monolayer MoS2 by optically coupling it to a silicon nanowire.
Fullerenes, carbon nanotubes, and graphene for molecular electronics.
Pinzón, Julio R; Villalta-Cerdas, Adrián; Echegoyen, Luis
2012-01-01
With the constant growing complexity of electronic devices, the top-down approach used with silicon based technology is facing both technological and physical challenges. Carbon based nanomaterials are good candidates to be used in the construction of electronic circuitry using a bottom-up approach, because they have semiconductor properties and dimensions within the required physical limit to establish electrical connections. The unique electronic properties of fullerenes for example, have allowed the construction of molecular rectifiers and transistors that can operate with more than two logical states. Carbon nanotubes have shown their potential to be used in the construction of molecular wires and FET transistors that can operate in the THz frequency range. On the other hand, graphene is not only the most promising material for replacing ITO in the construction of transparent electrodes but it has also shown quantum Hall effect and conductance properties that depend on the edges or chemical doping. The purpose of this review is to present recent developments on the utilization carbon nanomaterials in molecular electronics.
Wang, Fuan; Liu, Xiaoqing; Willner, Itamar
2013-01-18
Light-triggered biological processes provide the principles for the development of man-made optobioelectronic systems. This Review addresses three recently developed topics in the area of optobioelectronics, while addressing the potential applications of these systems. The topics discussed include: (i) the reversible photoswitching of the bioelectrocatalytic functions of redox proteins by the modification of proteins with photoisomerizable units or by the integration of proteins with photoisomerizable environments; (ii) the integration of natural photosynthetic reaction centers with electrodes and the construction of photobioelectrochemical cells and photobiofuel cells; and (iii) the synthesis of biomolecule/semiconductor quantum dots hybrid systems and their immobilization on electrodes to yield photobioelectrochemical and photobiofuel cell elements. The fundamental challenge in the tailoring of optobioelectronic systems is the development of means to electrically contact photoactive biomolecular assemblies with the electrode supports. Different methods to establish electrical communication between the photoactive biomolecular assemblies and electrodes are discussed. These include the nanoscale engineering of the biomolecular nanostructures on surfaces, the development of photoactive molecular wires and the coupling of photoinduced electron transfer reactions with the redox functions of proteins. The different possible applications of optobioelectronic systems are discussed, including their use as photosensors, the design of biosensors, and the construction of solar energy conversion and storage systems. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Technical Reports Server (NTRS)
Gunapala, Sarath D. (Inventor); Bandara, Sumith V. (Inventor); Liu, John K. (Inventor)
2006-01-01
Devices and techniques for coupling radiation to intraband quantum-well semiconductor sensors that are insensitive to the wavelength of the coupled radiation. At least one reflective surface is implemented in the quantum-well region to direct incident radiation towards the quantum-well layers.
Surface plasmon oscillations in a semi-bounded semiconductor plasma
NASA Astrophysics Data System (ADS)
M, SHAHMANSOURI; A, P. MISRA
2018-02-01
We study the dispersion properties of surface plasmon (SP) oscillations in a semi-bounded semiconductor plasma with the effects of the Coulomb exchange (CE) force associated with the spin polarization of electrons and holes as well as the effects of the Fermi degenerate pressure and the quantum Bohm potential. Starting from a quantum hydrodynamic model coupled to the Poisson equation, we derive the general dispersion relation for surface plasma waves. Previous results in this context are recovered. The dispersion properties of the surface waves are analyzed in some particular cases of interest and the relative influence of the quantum forces on these waves are also studied for a nano-sized GaAs semiconductor plasma. It is found that the CE effects significantly modify the behaviors of the SP waves. The present results are applicable to understand the propagation characteristics of surface waves in solid density plasmas.
Electrical control of single hole spins in nanowire quantum dots.
Pribiag, V S; Nadj-Perge, S; Frolov, S M; van den Berg, J W G; van Weperen, I; Plissard, S R; Bakkers, E P A M; Kouwenhoven, L P
2013-03-01
The development of viable quantum computation devices will require the ability to preserve the coherence of quantum bits (qubits). Single electron spins in semiconductor quantum dots are a versatile platform for quantum information processing, but controlling decoherence remains a considerable challenge. Hole spins in III-V semiconductors have unique properties, such as a strong spin-orbit interaction and weak coupling to nuclear spins, and therefore, have the potential for enhanced spin control and longer coherence times. A weaker hyperfine interaction has previously been reported in self-assembled quantum dots using quantum optics techniques, but the development of hole-spin-based electronic devices in conventional III-V heterostructures has been limited by fabrication challenges. Here, we show that gate-tunable hole quantum dots can be formed in InSb nanowires and used to demonstrate Pauli spin blockade and electrical control of single hole spins. The devices are fully tunable between hole and electron quantum dots, which allows the hyperfine interaction strengths, g-factors and spin blockade anisotropies to be compared directly in the two regimes.
Experimental observation of Fano effect in Ag nanoparticle-CdTe quantum dot hybrid system
NASA Astrophysics Data System (ADS)
Gurung, Sabina; Jayabalan, J.; Singh, Asha; Khan, Salahuddin; Chari, Rama
2018-04-01
We have experimentally measured the optical properties of Ag nanoparticle-CdTe quantum dot hybrid system and compared it with that of bare CdTe quantum dot colloid. It has been shown that the photoluminescence line shape of CdTe quantum dots becomes asymmetric in presence of Ag nanoparticles. The observed changes in the PL spectrum closely match the expected changes in the line shape due to Fano interaction between discrete level and continuum levels. Our experiment shows that a very small fraction of metal nanoparticles in the metal-semiconductor hybrid is sufficient to induce such changes in line shape which is in contrary to the earlier reported theoretical prediction on metal-semiconductor hybrid.
Gate tunable parallel double quantum dots in InAs double-nanowire devices
NASA Astrophysics Data System (ADS)
Baba, S.; Matsuo, S.; Kamata, H.; Deacon, R. S.; Oiwa, A.; Li, K.; Jeppesen, S.; Samuelson, L.; Xu, H. Q.; Tarucha, S.
2017-12-01
We report fabrication and characterization of InAs nanowire devices with two closely placed parallel nanowires. The fabrication process we develop includes selective deposition of the nanowires with micron scale alignment onto predefined finger bottom gates using a polymer transfer technique. By tuning the double nanowire with the finger bottom gates, we observed the formation of parallel double quantum dots with one quantum dot in each nanowire bound by the normal metal contact edges. We report the gate tunability of the charge states in individual dots as well as the inter-dot electrostatic coupling. In addition, we fabricate a device with separate normal metal contacts and a common superconducting contact to the two parallel wires and confirm the dot formation in each wire from comparison of the transport properties and a superconducting proximity gap feature for the respective wires. With the fabrication techniques established in this study, devices can be realized for more advanced experiments on Cooper-pair splitting, generation of Parafermions, and so on.
NASA Astrophysics Data System (ADS)
Bhowmik, Dhrubajyoti; Saha, Apu Kr; Dutta, Paramartha; Nandi, Supratim
2017-08-01
Quantum-dot Cellular Automata (QCA) is one of the most substitutes developing nanotechnologies for electronic circuits, as a result of lower force utilization, higher speed and smaller size in correlation with CMOS innovation. The essential devices, a Quantum-dot cell can be utilized to logic gates and wires. As it is the key building block on nanotechnology circuits. By applying simple gates, the hardware requirements for a QCA circuit can be decreased and circuits can be less complex as far as level, delay and cell check. This article exhibits an unobtrusive methodology for actualizing novel upgraded simple and universal gates, which can be connected to outline numerous variations of complex QCA circuits. Proposed gates are straightforward in structure and capable as far as implementing any digital circuits. The main aim is to build all basic and universal gates in a simple circuit with and without crossbar-wire. Simulation results and physical relations affirm its handiness in actualizing each advanced circuit.
Prediction of Spin-Polarization Effects in Quantum Wire Transport
NASA Astrophysics Data System (ADS)
Fasol, Gerhard; Sakaki, Hiroyuki
1994-01-01
We predict a new effect for transport in quantum wires: spontaneous spin polarization. Most work on transport in mesoscopic devices has assumed a model of non interacting, spin-free electrons. We introduce spin, electron pair scattering and microscopic crystal properties into the design of mesoscopic devices. The new spin polarization effect results from the fact that in a single mode quantum wire, electron and hole bands still have two spin subbands. In general, these two spin subbands are expected to be split even in zero magnetic field. At sufficiently low temperatures the electron pair scattering rates for one spin subband ( e.g., the spin-down) can be much larger than for the other spin subband. This effect can be used for an active spin polarizer device: hot electrons in one subband ( e.g., `spin up') pass with weak pair scattering, while electrons in the opposite subband ( e.g., `spin down'), have high probability of scattering into the `spin-up' subband, resulting in spin polarization of a hot electron beam.
Long lifetimes of ultrahot particles in interacting Fermi systems
NASA Astrophysics Data System (ADS)
Bard, M.; Protopopov, I. V.; Mirlin, A. D.
2018-05-01
The energy dependence of the relaxation rate of hot electrons due to interaction with the Fermi sea is studied. We consider 2D and 3D systems, quasi-1D quantum wires with multiple transverse bands, as well as single-channel 1D wires. Our analysis includes both spinful and spin-polarized setups, with short-range and Coulomb interactions. We show that, quite generally, the relaxation rate is a nonmonotonic function of the electron energy and decays as a power law at high energies. In other words, ultrahot electrons regain their coherence with increasing energy. Such a behavior was observed in a recent experiment on multiband quantum wires, J. Reiner et al., Phys. Rev. X 7, 021016 (2017)., 10.1103/PhysRevX.7.021016
Disordered wires and quantum chaos in a momentum-space lattice
NASA Astrophysics Data System (ADS)
Meier, Eric; An, Fangzhao; Angonga, Jackson; Gadway, Bryce
2017-04-01
We present two topics: topological wires subjected to disorder and quantum chaos in a spin-J model. These studies are experimentally realized through the use of a momentum-space lattice, in which the dynamics of 87Rb atoms are recorded. In topological wires, a transition to a trivial phase is seen when disorder is applied to either the tunneling strengths or site energies. This transition is detected using both charge-pumping and Hamiltonian-quenching techniques. In the spin-J study we observe the effects of both linear and non-linear spin operations by measuring the linear entropy of the system as well as the out-of-time order correlation function. We further probe the chaotic signatures of the paradigmatic kicked top model.
Ultrafast single photon emitting quantum photonic structures based on a nano-obelisk.
Kim, Je-Hyung; Ko, Young-Ho; Gong, Su-Hyun; Ko, Suk-Min; Cho, Yong-Hoon
2013-01-01
A key issue in a single photon source is fast and efficient generation of a single photon flux with high light extraction efficiency. Significant progress toward high-efficiency single photon sources has been demonstrated by semiconductor quantum dots, especially using narrow bandgap materials. Meanwhile, there are many obstacles, which restrict the use of wide bandgap semiconductor quantum dots as practical single photon sources in ultraviolet-visible region, despite offering free space communication and miniaturized quantum information circuits. Here we demonstrate a single InGaN quantum dot embedded in an obelisk-shaped GaN nanostructure. The nano-obelisk plays an important role in eliminating dislocations, increasing light extraction, and minimizing a built-in electric field. Based on the nano-obelisks, we observed nonconventional narrow quantum dot emission and positive biexciton binding energy, which are signatures of negligible built-in field in single InGaN quantum dots. This results in efficient and ultrafast single photon generation in the violet color region.
Effects of photon field on heat transport through a quantum wire attached to leads
NASA Astrophysics Data System (ADS)
Abdullah, Nzar Rauf; Tang, Chi-Shung; Manolescu, Andrei; Gudmundsson, Vidar
2018-01-01
We theoretically investigate photo-thermoelectric transport through a quantum wire in a photon cavity coupled to electron reservoirs with different temperatures. Our approach, based on a quantum master equation, allows us to investigate the influence of a quantized photon field on the heat current and thermoelectric transport in the system. We find that the heat current through the quantum wire is influenced by the photon field resulting in a negative heat current in certain cases. The characteristics of the transport are studied by tuning the ratio, ħωγ /kB ΔT, between the photon energy, ħωγ, and the thermal energy, kB ΔT. The thermoelectric transport is enhanced by the cavity photons when kB ΔT > ħωγ. By contrast, if kB ΔT < ħωγ, the photon field is dominant and a suppression in the thermoelectric transport can be found in the case when the cavity-photon field is close to a resonance with the two lowest one-electron states in the system. Our approach points to a new technique to amplify thermoelectric current in nano-devices.
Nature of magnetization and lateral spin-orbit interaction in gated semiconductor nanowires.
Karlsson, H; Yakimenko, I I; Berggren, K-F
2018-05-31
Semiconductor nanowires are interesting candidates for realization of spintronics devices. In this paper we study electronic states and effects of lateral spin-orbit coupling (LSOC) in a one-dimensional asymmetrically biased nanowire using the Hartree-Fock method with Dirac interaction. We have shown that spin polarization can be triggered by LSOC at finite source-drain bias,as a result of numerical noise representing a random magnetic field due to wiring or a random background magnetic field by Earth magnetic field, for instance. The electrons spontaneously arrange into spin rows in the wire due to electron interactions leading to a finite spin polarization. The direction of polarization is, however, random at zero source-drain bias. We have found that LSOC has an effect on orientation of spin rows only in the case when source-drain bias is applied.
Nature of magnetization and lateral spin–orbit interaction in gated semiconductor nanowires
NASA Astrophysics Data System (ADS)
Karlsson, H.; Yakimenko, I. I.; Berggren, K.-F.
2018-05-01
Semiconductor nanowires are interesting candidates for realization of spintronics devices. In this paper we study electronic states and effects of lateral spin–orbit coupling (LSOC) in a one-dimensional asymmetrically biased nanowire using the Hartree–Fock method with Dirac interaction. We have shown that spin polarization can be triggered by LSOC at finite source-drain bias,as a result of numerical noise representing a random magnetic field due to wiring or a random background magnetic field by Earth magnetic field, for instance. The electrons spontaneously arrange into spin rows in the wire due to electron interactions leading to a finite spin polarization. The direction of polarization is, however, random at zero source-drain bias. We have found that LSOC has an effect on orientation of spin rows only in the case when source-drain bias is applied.
Semiconductor devices for entangled photon pair generation: a review
NASA Astrophysics Data System (ADS)
Orieux, Adeline; Versteegh, Marijn A. M.; Jöns, Klaus D.; Ducci, Sara
2017-07-01
Entanglement is one of the most fascinating properties of quantum mechanical systems; when two particles are entangled the measurement of the properties of one of the two allows the properties of the other to be instantaneously known, whatever the distance separating them. In parallel with fundamental research on the foundations of quantum mechanics performed on complex experimental set-ups, we assist today with bourgeoning of quantum information technologies bound to exploit entanglement for a large variety of applications such as secure communications, metrology and computation. Among the different physical systems under investigation, those involving photonic components are likely to play a central role and in this context semiconductor materials exhibit a huge potential in terms of integration of several quantum components in miniature chips. In this article we review the recent progress in the development of semiconductor devices emitting entangled photons. We will present the physical processes allowing the generation of entanglement and the tools to characterize it; we will give an overview of major recent results of the last few years and highlight perspectives for future developments.
Quantum Entanglement of Quantum Dot Spin Using Flying Qubits
2015-05-01
QUANTUM ENTANGLEMENT OF QUANTUM DOT SPIN USING FLYING QUBITS UNIVERSITY OF MICHIGAN MAY 2015 FINAL TECHNICAL REPORT APPROVED FOR PUBLIC RELEASE...To) SEP 2012 – DEC 2014 4. TITLE AND SUBTITLE QUANTUM ENTANGLEMENT OF QUANTUM DOT SPIN USING FLYING QUBITS 5a. CONTRACT NUMBER FA8750-12-2-0333...been to advance the frontier of quantum entangled semiconductor electrons using ultrafast optical techniques. The approach is based on
Modulation Effects in Multi-Section Semiconductor Lasers (Postprint)
2013-01-01
resonant modulation of semiconductor lasers beyond relaxation oscillation frequency,” Appl. Phys. Lett., 63, 1459–1461 (1993). [26] J. Helms and K. Petermann ...5, 4–6 (1993). [28] K. Petermann , “External optical feedback phenomena in semiconductor lasers,” IEEE J. Sel. Top. Quantum Elec- tron., 1, 480–489
Electron gas grid semiconductor radiation detectors
Lee, Edwin Y.; James, Ralph B.
2002-01-01
An electron gas grid semiconductor radiation detector (EGGSRAD) useful for gamma-ray and x-ray spectrometers and imaging systems is described. The radiation detector employs doping of the semiconductor and variation of the semiconductor detector material to form a two-dimensional electron gas, and to allow transistor action within the detector. This radiation detector provides superior energy resolution and radiation detection sensitivity over the conventional semiconductor radiation detector and the "electron-only" semiconductor radiation detectors which utilize a grid electrode near the anode. In a first embodiment, the EGGSRAD incorporates delta-doped layers adjacent the anode which produce an internal free electron grid well to which an external grid electrode can be attached. In a second embodiment, a quantum well is formed between two of the delta-doped layers, and the quantum well forms the internal free electron gas grid to which an external grid electrode can be attached. Two other embodiments which are similar to the first and second embodiment involve a graded bandgap formed by changing the composition of the semiconductor material near the first and last of the delta-doped layers to increase or decrease the conduction band energy adjacent to the delta-doped layers.
Inkjet printed fluorescent nanorod layers exhibit superior optical performance over quantum dots
NASA Astrophysics Data System (ADS)
Halivni, Shira; Shemesh, Shay; Waiskopf, Nir; Vinetsky, Yelena; Magdassi, Shlomo; Banin, Uri
2015-11-01
Semiconductor nanocrystals exhibit unique fluorescence properties which are tunable in size, shape and composition. The high quantum yield and enhanced stability have led to their use in biomedical imaging and flat panel displays. Here, semiconductor nanorod based inkjet inks are presented, overcoming limitations of the commonly reported quantum dots in printing applications. Fluorescent seeded nanorods were found to be outstanding candidates for fluorescent inks, due to their low particle-particle interactions and negligible self-absorption. This is manifested by insignificant emission shifts upon printing, even in highly concentrated printed layers and by maintenance of a high fluorescence quantum yield, unlike quantum dots which exhibit fluorescence wavelength shifts and quenching effects. This behavior results from the reduced absorption/emission overlap, accompanied by low energy transfer efficiencies between the nanorods as supported by steady state and time resolved fluorescence measurements. The new seeded nanorod inks enable patterning of thin fluorescent layers, for demanding light emission applications such as signage and displays.Semiconductor nanocrystals exhibit unique fluorescence properties which are tunable in size, shape and composition. The high quantum yield and enhanced stability have led to their use in biomedical imaging and flat panel displays. Here, semiconductor nanorod based inkjet inks are presented, overcoming limitations of the commonly reported quantum dots in printing applications. Fluorescent seeded nanorods were found to be outstanding candidates for fluorescent inks, due to their low particle-particle interactions and negligible self-absorption. This is manifested by insignificant emission shifts upon printing, even in highly concentrated printed layers and by maintenance of a high fluorescence quantum yield, unlike quantum dots which exhibit fluorescence wavelength shifts and quenching effects. This behavior results from the reduced absorption/emission overlap, accompanied by low energy transfer efficiencies between the nanorods as supported by steady state and time resolved fluorescence measurements. The new seeded nanorod inks enable patterning of thin fluorescent layers, for demanding light emission applications such as signage and displays. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr06248a
interdisciplinary fields of photoelectrochemistry, semiconductor-molecule interfaces, quantum size effects, electron photoelectrochemistry (hot carrier effects, size quantization effects, superlattice electrodes, quantum dot solar cells
Hot electron dynamics at semiconductor surfaces: Implications for quantum dot photovoltaics
NASA Astrophysics Data System (ADS)
Tisdale, William A., III
Finding a viable supply of clean, renewable energy is one of the most daunting challenges facing the world today. Solar cells have had limited impact in meeting this challenge because of their high cost and low power conversion efficiencies. Semiconductor nanocrystals, or quantum dots, are promising materials for use in novel solar cells because they can be processed with potentially inexpensive solution-based techniques and because they are predicted to have novel optoelectronic properties that could enable the realization of ultra-efficient solar power converters. However, there is a lack of fundamental understanding regarding the behavior of highly-excited, or "hot," charge carriers near quantum-dot and semiconductor interfaces, which is of paramount importance to the rational design of high-efficiency devices. The elucidation of these ultrafast hot electron dynamics is the central aim of this Dissertation. I present a theoretical framework for treating the electronic interactions between quantum dots and bulk semiconductor surfaces and propose a novel experimental technique, time-resolved surface second harmonic generation (TR-SHG), for probing these interactions. I then describe a series of experimental investigations into hot electron dynamics in specific quantum-dot/semiconductor systems. A two-photon photoelectron spectroscopy (2PPE) study of the technologically-relevant ZnO(1010) surface reveals ultrafast (sub-30fs) cooling of hot electrons in the bulk conduction band, which is due to strong electron-phonon coupling in this highly polar material. The presence of a continuum of defect states near the conduction band edge results in Fermi-level pinning and upward (n-type) band-bending at the (1010) surface and provides an alternate route for electronic relaxation. In monolayer films of colloidal PbSe quantum dots, chemical treatment with either hydrazine or 1,2-ethanedithiol results in strong and tunable electronic coupling between neighboring quantum dots. A TR-SHG study of these electronically-coupled quantum-dot films reveals temperature-activated cooling of hot charge carriers and coherent excitation of a previously-unidentified surface optical phonon. Finally, I report the first experimental observation of ultrafast electron transfer from the higher excited states of a colloidal quantum dot (PbSe) to delocalized conduction band states of a widely-used electron acceptor (TiO2). The electric field resulting from ultrafast (<50fs) separation of charge carriers across the PbSe/TiO2(110) interface excites coherent vibration of the TiO2 surface atoms, whose collective motions can be followed in real time.
Semiconductor quantum dots: synthesis and water-solubilization for biomedical applications.
Yu, William W
2008-10-01
Quantum dots (QDs) are generally nanosized inorganic particles. They have distinctive size-dependent optical properties due to their very small size (mostly < 10 nm). QDs are regarded as promising new fluorescent materials for biological labeling and imaging because of their superior properties compared with traditional organic molecular dyes. These properties include high quantum efficiency, long-term photostability and very narrow emission but broad absorption spectra. Recent developments in synthesizing high quality semiconductor QDs (mainly metal-chalcogenide compounds) and forming biocompatible structures for biomedical applications are discussed in this paper. This information may facilitate the research to create new materials/technologies for future clinical applications.
Reduction of CO2 to C1 products and fuel
Mill, T.; Ross, D.
2002-01-01
Photochemical semiconductor processes readily reduced CO2 to a broad range of C1 products. However the intrinsic and solar efficiencies for the processes were low. Improved quantum efficiencies could be realized utilizing quantum-sized particles, but at the expense of using less of the visible solar spectrum. Conversely, semiconductors with small bandgaps used more of the visible solar spectrum at the expense of quantum efficiency. Thermal reduction of CO2 with Fe(II) was thermodynamically favored for forming many kinds of organic compounds and occurred readily with olivine and other Fe(II) minerals above 200??C to form higher alkanes and alkenes. No added hydrogen was required.
Calic, M; Jarlov, C; Gallo, P; Dwir, B; Rudra, A; Kapon, E
2017-06-22
A system of two site-controlled semiconductor quantum dots (QDs) is deterministically integrated with a photonic crystal membrane nano-cavity. The two QDs are identified via their reproducible emission spectral features, and their coupling to the fundamental cavity mode is established by emission co-polarization and cavity feeding features. A theoretical model accounting for phonon interaction and pure dephasing reproduces the observed results and permits extraction of the light-matter coupling constant for this system. The demonstrated approach offers a platform for scaling up the integration of QD systems and nano-photonic elements for integrated quantum photonics applications.
Semiconductor Quantum Dots with Photoresponsive Ligands.
Sansalone, Lorenzo; Tang, Sicheng; Zhang, Yang; Thapaliya, Ek Raj; Raymo, Françisco M; Garcia-Amorós, Jaume
2016-10-01
Photochromic or photocaged ligands can be anchored to the outer shell of semiconductor quantum dots in order to control the photophysical properties of these inorganic nanocrystals with optical stimulations. One of the two interconvertible states of the photoresponsive ligands can be designed to accept either an electron or energy from the excited quantum dots and quench their luminescence. Under these conditions, the reversible transformations of photochromic ligands or the irreversible cleavage of photocaged counterparts translates into the possibility to switch luminescence with external control. As an alternative to regulating the photophysics of a quantum dot via the photochemistry of its ligands, the photochemistry of the latter can be controlled by relying on the photophysics of the former. The transfer of excitation energy from a quantum dot to a photocaged ligand populates the excited state of the species adsorbed on the nanocrystal to induce a photochemical reaction. This mechanism, in conjunction with the large two-photon absorption cross section of quantum dots, can be exploited to release nitric oxide or to generate singlet oxygen under near-infrared irradiation. Thus, the combination of semiconductor quantum dots and photoresponsive ligands offers the opportunity to assemble nanostructured constructs with specific functions on the basis of electron or energy transfer processes. The photoswitchable luminescence and ability to photoinduce the release of reactive chemicals, associated with the resulting systems, can be particularly valuable in biomedical research and can, ultimately, lead to the realization of imaging probes for diagnostic applications as well as to therapeutic agents for the treatment of cancer.
Microwave-Driven Coherent Operation of a Semiconductor Quantum Dot Charge Qubit
2015-02-16
indicating that understanding high frequency charge noise as well as charge relaxation at the sweet spot will be important for further development. The...Microwave-driven coherent operation of a semiconductor quantum dot charge qubit Dohun Kim,1 D. R. Ward,1 C. B. Simmons,1 John King Gamble,2 Robin...University of Wisconsin-Madison, Madison, WI 53706, USA A most intuitive realization of a qubit is a sin- gle electron charge sitting at two well -defined
Computational models for the berry phase in semiconductor quantum dots
DOE Office of Scientific and Technical Information (OSTI.GOV)
Prabhakar, S., E-mail: rmelnik@wlu.ca; Melnik, R. V. N., E-mail: rmelnik@wlu.ca; Sebetci, A.
2014-10-06
By developing a new model and its finite element implementation, we analyze the Berry phase low-dimensional semiconductor nanostructures, focusing on quantum dots (QDs). In particular, we solve the Schrödinger equation and investigate the evolution of the spin dynamics during the adiabatic transport of the QDs in the 2D plane along circular trajectory. Based on this study, we reveal that the Berry phase is highly sensitive to the Rashba and Dresselhaus spin-orbit lengths.
NASA Astrophysics Data System (ADS)
Schneebeli, L.; Kira, M.; Koch, S. W.
2008-08-01
It is shown that spectrally resolved photon-statistics measurements of the resonance fluorescence from realistic semiconductor quantum-dot systems allow for high contrast identification of the two-photon strong-coupling states. Using a microscopic theory, the second-rung resonance of Jaynes-Cummings ladder is analyzed and optimum excitation conditions are determined. The computed photon-statistics spectrum displays gigantic, experimentally robust resonances at the energetic positions of the second-rung emission.
2013-02-01
edge-emitting strained InxGa1−xSb/AlyGa1−ySb quantum well struc- tures using solid-source molecular beam epitaxy (MBE) with varying barrier heights...intersubband quantum wells. The most common high-power edge-emitting semiconductor lasers suffter from poor beam quality, due primarily to the linewidth...reduces the power scalability of semiconductor lasers. In vertical cavity surface emitting lasers ( VCSELs ), light propagates parallel to the growth
NASA Astrophysics Data System (ADS)
Mansur, Alexandra A. P.; Mansur, Herman S.; Mansur, Rafael L.; de Carvalho, Fernanda G.; Carvalho, Sandhra M.
2018-01-01
Colloidal semiconductor quantum dots (QDs) are light-emitting ultra-small nanoparticles, which have emerged as a new class of nanoprobes with unique optical properties for bioimaging and biomedical diagnostic. However, to be used for most biomedical applications the biocompatibility and water-solubility are mandatory that can achieved through surface modification forming QD-nanoconjugates. In this study, semiconductor II-VI quantum dots of type MX (M = Cd, Pb, Zn, X = S) were directly synthesized in aqueous media and at room temperature using carboxymethylcellulose sodium salt (CMC) behaving simultaneously as stabilizing and surface biofunctional ligand. These nanoconjugates were extensively characterized using UV-visible spectroscopy, photoluminescence spectroscopy, X-ray photoelectron spectroscopy, Fourier transform infrared spectroscopy, X-ray diffraction, transmission electron microscopy, dynamic light scattering and zeta potential. The results demonstrated that the biopolymer was effective on nucleating and stabilizing the colloidal nanocrystals of CdS, ZnS, and PbS with the average diameter ranging from 2.0 to 5.0 nm depending on the composition of the semiconductor core, which showed quantum-size confinement effect. These QD/polysaccharide conjugates showed luminescent activity from UV-visible to near-infrared range of the spectra under violet laser excitation. Moreover, the bioassays performed proved that these novel nanoconjugates were biocompatible and behaved as composition-dependent fluorescent nanoprobes for in vitro live cell bioimaging with very promising perspectives to be used in numerous biomedical applications and nanomedicine.
Hydrogen in Mono-Atomic Gold Wires
NASA Astrophysics Data System (ADS)
Barnett, Robert N.; Sherbakov, Andrew G.; Landman, Uzi; Hakkinen, Hannu
2004-03-01
Results of ab-initio scalar relativistic density functional calculations of the interaction between a mono-atomic gold wire (suspended between two gold tips) and a hydrogen molecule, at various stages of wire stretching, are presented. The hydrogen molecule does not bind to the wire until the wire is sufficiently stretched, i.e. starting to break, at which time the molecule inserts itself into the wire restoring a fraction of the conductance quantum g. With subsequent compression of the wire the axis of the molecule gradually tips away from the wire axis until it becomes "quasi-dissociated" with the H-H axis perpendicular to the wire. At this point the conductance almost vanishes, while for the bare wire the conductance at this tip-to-tip separation is close to 1g. These results, and the frequency of various vibrational modes of the hydrogen molecule, are compared with recent experimental and theoretical work involving platinum wires.
Deep-UV emission at 219 nm from ultrathin MBE GaN/AlN quantum heterostructures
NASA Astrophysics Data System (ADS)
Islam, S. M.; Protasenko, Vladimir; Lee, Kevin; Rouvimov, Sergei; Verma, Jai; Xing, Huili Grace; Jena, Debdeep
2017-08-01
Deep ultraviolet (UV) optical emission below 250 nm (˜5 eV) in semiconductors is traditionally obtained from high aluminum containing AlGaN alloy quantum wells. It is shown here that high-quality epitaxial ultrathin binary GaN quantum disks embedded in an AlN matrix can produce efficient optical emission in the 219-235 nm (˜5.7-5.3 eV) spectral range, far above the bulk bandgap (3.4 eV) of GaN. The quantum confinement energy in these heterostructures is larger than the bandgaps of traditional semiconductors, made possible by the large band offsets. These molecular beam epitaxy-grown extreme quantum-confinement GaN/AlN heterostructures exhibit an internal quantum efficiency of 40% at wavelengths as short as 219 nm. These observations together with the ability to engineer the interband optical matrix elements to control the direction of photon emission in such binary quantum disk active regions offer unique advantages over alloy AlGaN quantum well counterparts for the realization of deep-UV light-emitting diodes and lasers.
Unbound states in quantum heterostructures
Bastard, G
2006-01-01
We report in this review on the electronic continuum states of semiconductor Quantum Wells and Quantum Dots and highlight the decisive part played by the virtual bound states in the optical properties of these structures. The two particles continuum states of Quantum Dots control the decoherence of the excited electron – hole states. The part played by Auger scattering in Quantum Dots is also discussed.
Excitation of collective modes in a quantum flute
NASA Astrophysics Data System (ADS)
Torfason, Kristinn; Manolescu, Andrei; Molodoveanu, Valeriu; Gudmundsson, Vidar
2012-06-01
We use a generalized master equation (GME) formalism to describe the nonequilibrium time-dependent transport of Coulomb interacting electrons through a short quantum wire connected to semi-infinite biased leads. The contact strength between the leads and the wire is modulated by out-of-phase time-dependent potentials that simulate a turnstile device. We explore this setup by keeping the contact with one lead at a fixed location at one end of the wire, whereas the contact with the other lead is placed on various sites along the length of the wire. We study the propagation of sinusoidal and rectangular pulses. We find that the current profiles in both leads depend not only on the shape of the pulses, but also on the position of the second contact. The current reflects standing waves created by the contact potentials, like in a wind musical instrument (for example, a flute), but occurring on the background of the equilibrium charge distribution. The number of electrons in our quantum “flute” device varies between two and three. We find that for rectangular pulses the currents in the leads may flow against the bias for short time intervals, due to the higher harmonics of the charge response. The GME is solved numerically in small time steps without resorting to the traditional Markov and rotating wave approximations. The Coulomb interaction between the electrons in the sample is included via the exact diagonalization method. The system (leads plus sample wire) is described by a lattice model.
NASA Technical Reports Server (NTRS)
Leon, R.; Swift, G.; Magness, B.; Taylor, W.; Tang, Y.; Wang, K.; Dowd, P.; Zhang, Y.
2000-01-01
Successful implementation of technology using self-forming semiconductor Quantum Dots (QDs) has already demonstrated that temperature independent Dirac-delta density of states can be exploited in low current threshold QD lasers and QD infrared photodetectors.
Quasiclassical theory of disordered multi-channel Majorana quantum wires
NASA Astrophysics Data System (ADS)
Neven, Patrick; Bagrets, Dmitry; Altland, Alexander
2013-05-01
Multi-channel spin-orbit quantum wires, when subjected to a magnetic field and proximity coupled to an s-wave superconductor, may support Majorana states. We study what happens to these systems in the presence of disorder. Inspired by the widely established theoretical methods of mesoscopic superconductivity, we develop á la Eilenberger a quasiclassical approach to topological nanowires valid in the limit of strong spin-orbit coupling. We find that the ‘Majorana number’ {\\cal M} , distinguishing between the state with Majorana fermions (symmetry class B) and no Majorana fermions (class D), is given by the product of two Pfaffians of gapped quasiclassical Green's functions fixed by the right and left terminals connected to the wire. A numerical solution of the Eilenberger equations reveals that the class D disordered quantum wires are prone to the formation of the zero-energy anomaly (class D impurity spectral peak) in the local density of states that shares the key features of the Majorana peak. In this way, we confirm the robustness of our previous conclusions (Bagrets and Altland 2012 Phys. Rev. Lett. 109 227005) on a more restrictive system setup. Generally speaking, we find that the quasiclassical approach provides a highly efficient means to address disordered class D superconductors both in the presence and in the absence of topological structures.
NASA Astrophysics Data System (ADS)
Tiutiunnyk, A.; Tulupenko, V.; Akimov, V.; Demediuk, R.; Morales, A. L.; Mora-Ramos, M. E.; Radu, A.; Duque, C. A.
2015-11-01
This work concerns theoretical study of confined electrons in a low-dimensional structure consisting of three coupled triangular GaAs/AlxGa1-xAs quantum wires. Calculations have been made in the effective mass and parabolic band approximations. In the calculations a diagonalization method to find the eigenfunctions and eigenvalues of the Hamiltonian was used. A comparative analysis of linear and nonlinear optical absorption coefficients and the relative change in the refractive index was made, which is tied to the intersubband electron transitions.
Quantum ballistic transport in strained epitaxial germanium
NASA Astrophysics Data System (ADS)
Gul, Y.; Holmes, S. N.; Newton, P. J.; Ellis, D. J. P.; Morrison, C.; Pepper, M.; Barnes, C. H. W.; Myronov, M.
2017-12-01
Large scale fabrication using Complementary Metal Oxide Semiconductor compatible technology of semiconductor nanostructures that operate on the principles of quantum transport is an exciting possibility now due to the recent development of ultra-high mobility hole gases in epitaxial germanium grown on standard silicon substrates. We present here a ballistic transport study of patterned surface gates on strained Ge quantum wells with SiGe barriers, which confirms the quantum characteristics of the Ge heavy hole valence band structure in 1-dimension. Quantised conductance at multiples of 2e2/h is a universal feature of hole transport in Ge up to 10 × (2e2/h). The behaviour of ballistic plateaus with finite source-drain bias and applied magnetic field is elucidated. In addition, a reordering of the ground state is observed.
Site-controlled quantum dots fabricated using an atomic-force microscope assisted technique
Usuki, T; Ohshima, T; Sakuma, Y; Kawabe, M; Okada, Y; Takemoto, K; Miyazawa, T; Hirose, S; Nakata, Y; Takatsu, M; Yokoyama, N
2006-01-01
An atomic-force microscope assisted technique is developed to control the position and size of self-assembled semiconductor quantum dots (QDs). Presently, the site precision is as good as ± 1.5 nm and the size fluctuation is within ± 5% with the minimum controllable lateral diameter of 20 nm. With the ability of producing tightly packed and differently sized QDs, sophisticated QD arrays can be controllably fabricated for the application in quantum computing. The optical quality of such site-controlled QDs is found comparable to some conventionally self-assembled semiconductor QDs. The single dot photoluminescence of site-controlled InAs/InP QDs is studied in detail, presenting the prospect to utilize them in quantum communication as precisely controlled single photon emitters working at telecommunication bands.
NASA Astrophysics Data System (ADS)
Hu, Gangyi; Wijesinghe, Udumbara; Naquin, Clint; Maggio, Ken; Edwards, H. L.; Lee, Mark
2017-10-01
Intrinsic gain (AV) measurements on Si quantum well (QW) n-channel metal-oxide-semiconductor (NMOS) transistors show that these devices can have |AV| > 1 in quantum transport negative transconductance (NTC) operation at room temperature. QW NMOS devices were fabricated using an industrial 45 nm technology node process incorporating ion implanted potential barriers to define a lateral QW in the conduction channel under the gate. While NTC at room temperature arising from transport through gate-controlled QW bound states has been previously established, it was unknown whether the quantum NTC mechanism could support gain magnitude exceeding unity. Bias conditions were found giving both positive and negative AV with |AV| > 1 at room temperature. This result means that QW NMOS devices could be useful in amplifier and oscillator applications.
NASA Astrophysics Data System (ADS)
Saha, Dipika; Negi, Devendra P. S.
2018-01-01
The purpose of the present work was to develop a method for the sensing of thioacetamide by using spectroscopic techniques. Thioacetamide is a carcinogen and it is important to detect its presence in food-stuffs. Semiconductor quantum dots are frequently employed as sensing probes since their absorption and fluorescence properties are highly sensitive to the interaction with substrates present in the solution. In the present work, the interaction between thioacetamide and ZnO quantum dots has been investigated by using UV-visible, fluorescence and infrared spectroscopy. Besides, dynamic light scattering (DLS) has also been utilized for the interaction studies. UV-visible absorption studies indicated the bonding of the lone pair of sulphur atom of thioacetamide with the surface of the semiconductor. The fluorescence band of the ZnO quantum dots was found to be quenched in the presence of micromolar concentrations of thioacetamide. The quenching was found to follow the Stern-Volmer relationship. The Stern-Volmer constant was evaluated to be 1.20 × 105 M- 1. Infrared spectroscopic measurements indicated the participation of the sbnd NH2 group and the sulphur atom of thioacetamide in bonding with the surface of the ZnO quantum dots. DLS measurements indicated that the surface charge of the semiconductor was shielded by the thioacetamide molecules.
NASA Astrophysics Data System (ADS)
Schaibley, J. R.; Burgers, A. P.; McCracken, G. A.; Duan, L.-M.; Berman, P. R.; Steel, D. G.; Bracker, A. S.; Gammon, D.; Sham, L. J.
2013-04-01
The electron spin state of a singly charged semiconductor quantum dot has been shown to form a suitable single qubit for quantum computing architectures with fast gate times. A key challenge in realizing a useful quantum dot quantum computing architecture lies in demonstrating the ability to scale the system to many qubits. In this Letter, we report an all optical experimental demonstration of quantum entanglement between a single electron spin confined to a single charged semiconductor quantum dot and the polarization state of a photon spontaneously emitted from the quantum dot’s excited state. We obtain a lower bound on the fidelity of entanglement of 0.59±0.04, which is 84% of the maximum achievable given the timing resolution of available single photon detectors. In future applications, such as measurement-based spin-spin entanglement which does not require sub-nanosecond timing resolution, we estimate that this system would enable near ideal performance. The inferred (usable) entanglement generation rate is 3×103s-1. This spin-photon entanglement is the first step to a scalable quantum dot quantum computing architecture relying on photon (flying) qubits to mediate entanglement between distant nodes of a quantum dot network.
Schaibley, J R; Burgers, A P; McCracken, G A; Duan, L-M; Berman, P R; Steel, D G; Bracker, A S; Gammon, D; Sham, L J
2013-04-19
The electron spin state of a singly charged semiconductor quantum dot has been shown to form a suitable single qubit for quantum computing architectures with fast gate times. A key challenge in realizing a useful quantum dot quantum computing architecture lies in demonstrating the ability to scale the system to many qubits. In this Letter, we report an all optical experimental demonstration of quantum entanglement between a single electron spin confined to a single charged semiconductor quantum dot and the polarization state of a photon spontaneously emitted from the quantum dot's excited state. We obtain a lower bound on the fidelity of entanglement of 0.59±0.04, which is 84% of the maximum achievable given the timing resolution of available single photon detectors. In future applications, such as measurement-based spin-spin entanglement which does not require sub-nanosecond timing resolution, we estimate that this system would enable near ideal performance. The inferred (usable) entanglement generation rate is 3×10(3) s(-1). This spin-photon entanglement is the first step to a scalable quantum dot quantum computing architecture relying on photon (flying) qubits to mediate entanglement between distant nodes of a quantum dot network.
Electrical and Optical Measurements of the Bandgap Energy of a Light-Emitting Diode
ERIC Educational Resources Information Center
Petit, Matthieu; Michez, Lisa; Raimundo, Jean-Manuel; Dumas, Philippe
2016-01-01
Semiconductor materials are at the core of electronics. Most electronic devices are made of semiconductors. The operation of these components is well described by quantum physics which is often a difficult concept for students to understand. One of the intrinsic parameters of semiconductors is their bandgap energy E[subscript g]. In the case of…
Instability of the sliding Luttinger liquid
NASA Astrophysics Data System (ADS)
Fleurov, V.; Kagalovsky, V.; Lerner, I. V.; Yurkevich, I. V.
2018-05-01
We revise a phase diagram for the sliding Luttinger liquid (SLL) of coupled one-dimensional quantum wires packed in two- or three-dimensional arrays in the absence of a magnetic field. We analyse whether physically justifiable (reasonable) inter-wire interactions, i.e. either the screened Coulomb or ‘Coulomb-blockade’ type interactions, stabilise the SLL phase. Calculating the scaling dimensions of the most relevant perturbations (the inter-wire single-particle hybridisation, charge-density wave, and superconducting inter-wire couplings), we find that their combination always destroys the SLL phase for the repulsive intra-wire interaction. However, suppressing the inter-wire tunnelling of repulsive fermions (when the charge-density wave is the only remaining perturbation), one can observe a stability region emerging due to the inter-wire forward scattering interaction.
Braiding errors in interacting Majorana quantum wires
NASA Astrophysics Data System (ADS)
Sekania, Michael; Plugge, Stephan; Greiter, Martin; Thomale, Ronny; Schmitteckert, Peter
2017-09-01
Avenues of Majorana bound states (MBSs) have become one of the primary directions towards a possible realization of topological quantum computation. For a Y junction of Kitaev quantum wires, we numerically investigate the braiding of MBSs while considering the full quasiparticle background. The two central sources of braiding errors are found to be the fidelity loss due to the incomplete adiabaticity of the braiding operation as well as the finite hybridization of the MBSs. The explicit extraction of the braiding phase from the full many-particle states allows us to analyze the breakdown of the independent-particle picture of Majorana braiding. Furthermore, we find nearest-neighbor interactions to significantly affect the braiding performance for better or worse, depending on the sign and magnitude of the coupling.
NASA Astrophysics Data System (ADS)
Hughes, Stephen; Agarwal, Girish S.
2017-02-01
We describe how quantum dot semiconductor cavity systems can be engineered to realize anisotropy-induced dipole-dipole coupling between orthogonal dipole states in a single quantum dot. Quantum dots in single-mode cavity structures as well as photonic crystal waveguides coupled to spin states or linearly polarized excitons are considered. We demonstrate how the dipole-dipole coupling can control the radiative decay rate of excitons and form pure entangled states in the long time limit. We investigate both field-free entanglement evolution and coherently pumped exciton regimes, and show how a double-field pumping scenario can completely eliminate the decay of coherent Rabi oscillations and lead to population trapping. In the Mollow triplet regime, we explore the emitted spectra from the driven dipoles and show how a nonpumped dipole can take on the form of a spectral triplet, quintuplet, or a singlet, which has applications for producing subnatural linewidth single photons and more easily accessing regimes of high-field quantum optics and cavity-QED.
Hughes, Stephen; Agarwal, Girish S
2017-02-10
We describe how quantum dot semiconductor cavity systems can be engineered to realize anisotropy-induced dipole-dipole coupling between orthogonal dipole states in a single quantum dot. Quantum dots in single-mode cavity structures as well as photonic crystal waveguides coupled to spin states or linearly polarized excitons are considered. We demonstrate how the dipole-dipole coupling can control the radiative decay rate of excitons and form pure entangled states in the long time limit. We investigate both field-free entanglement evolution and coherently pumped exciton regimes, and show how a double-field pumping scenario can completely eliminate the decay of coherent Rabi oscillations and lead to population trapping. In the Mollow triplet regime, we explore the emitted spectra from the driven dipoles and show how a nonpumped dipole can take on the form of a spectral triplet, quintuplet, or a singlet, which has applications for producing subnatural linewidth single photons and more easily accessing regimes of high-field quantum optics and cavity-QED.
Zhou, Ming; Chang, Shoude; Grover, Chander
2004-06-28
Further to the optical coding based on fluorescent semiconductor quantum dots (QDs), a concept of using mixtures of multiple single-color QDs for creating highly secret cryptograms based on their absorption/emission properties was demonstrated. The key to readout of the optical codes is a group of excitation lights with the predetermined wavelengths programmed in a secret manner. The cryptograms can be printed on the surfaces of different objects such as valuable documents for security purposes.
Luminescence and related properties of nanocrystalline porous silicon
NASA Astrophysics Data System (ADS)
Koshida, N.
This document is part of subvolume C3 'Optical Properties' of volume 34 'Semiconductor quantum structures' of Landolt-Börnstein, Group III, Condensed Matter, on the optical properties of quantum structures based on group IV semiconductors. It discusses luminescence and related properties of nanocrystalline porous silicon. Topics include an overview of nanostructured silicon, its fabrication technology, and properties of nanocrystalline porous silicon such as confinement effects, photoluminescence, electroluminesce, carrier charging effects, ballistic transport and emission, and thermally induced acoustic emission.
2008-12-01
evident from Figure 7 that, if the applied bias is not correct, it is very likely that electrons will not tunnel into their intended energy state...the theoretical laser contrasts sharply to that of semiconductor lasers. Semiconductor lasers rely on electron hole recombination or interband ...the active layer of a forward- biased pn junction [26]. In contrast to this, the QCL is a unipolar device that uses a quantum well (QW) structure
Model of an Injection Semiconductor Quantum-Dot Laser
NASA Astrophysics Data System (ADS)
Koryukin, I. V.
2018-05-01
We propose an asymmetric electron-hole model of an injection semiconductor quantum-dot laser, which correctly allows for relaxation at transitions between the electron and hole levels. Steady-state solutions of the proposed model, conditions for the simultaneous operation at transitions between the ground and first excited state levels, and relaxation oscillations in the two-wave lasing regime are studied. It is shown that the model can be simplified when the relaxation between hole levels is much faster than the relaxation between electron levels.
Fermionic entanglement via quantum walks in quantum dots
NASA Astrophysics Data System (ADS)
Melnikov, Alexey A.; Fedichkin, Leonid E.
2018-02-01
Quantum walks are fundamentally different from random walks due to the quantum superposition property of quantum objects. Quantum walk process was found to be very useful for quantum information and quantum computation applications. In this paper we demonstrate how to use quantum walks as a tool to generate high-dimensional two-particle fermionic entanglement. The generated entanglement can survive longer in the presence of depolorazing noise due to the periodicity of quantum walk dynamics. The possibility to create two distinguishable qudits in a system of tunnel-coupled semiconductor quantum dots is discussed.
Ballistic superconductivity in semiconductor nanowires.
Zhang, Hao; Gül, Önder; Conesa-Boj, Sonia; Nowak, Michał P; Wimmer, Michael; Zuo, Kun; Mourik, Vincent; de Vries, Folkert K; van Veen, Jasper; de Moor, Michiel W A; Bommer, Jouri D S; van Woerkom, David J; Car, Diana; Plissard, Sébastien R; Bakkers, Erik P A M; Quintero-Pérez, Marina; Cassidy, Maja C; Koelling, Sebastian; Goswami, Srijit; Watanabe, Kenji; Taniguchi, Takashi; Kouwenhoven, Leo P
2017-07-06
Semiconductor nanowires have opened new research avenues in quantum transport owing to their confined geometry and electrostatic tunability. They have offered an exceptional testbed for superconductivity, leading to the realization of hybrid systems combining the macroscopic quantum properties of superconductors with the possibility to control charges down to a single electron. These advances brought semiconductor nanowires to the forefront of efforts to realize topological superconductivity and Majorana modes. A prime challenge to benefit from the topological properties of Majoranas is to reduce the disorder in hybrid nanowire devices. Here we show ballistic superconductivity in InSb semiconductor nanowires. Our structural and chemical analyses demonstrate a high-quality interface between the nanowire and a NbTiN superconductor that enables ballistic transport. This is manifested by a quantized conductance for normal carriers, a strongly enhanced conductance for Andreev-reflecting carriers, and an induced hard gap with a significantly reduced density of states. These results pave the way for disorder-free Majorana devices.
NASA Astrophysics Data System (ADS)
Liang, Yu-Han; Towe, Elias
2017-12-01
Al-rich III-nitride-based deep-ultraviolet (UV) (275-320 nm) light-emitting diodes are plagued with a low emission efficiency and high turn-on voltages. We report Al-rich (Al,Ga)N metal-insulator-semiconductor UV light-emitting Schottky diodes with low turn-on voltages of <3 V, which are about half those of typical (Al,Ga)N p-i-n diodes. Our devices use a thin AlN film as the insulator and an n-type Al0.58Ga0.42N film as the semiconductor. To improve the efficiency, we inserted a GaN quantum-well structure between the AlN insulator and the n-type Al x Ga1- x N semiconductor. The benefits of the quantum-well structure include the potential to tune the emission wavelength and the capability to confine carriers for more efficient radiative recombination.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nardin, Gaël; Li, Hebin; Autry, Travis M.
2015-03-21
We review our recent work on multi-dimensional coherent optical spectroscopy (MDCS) of semiconductor nanostructures. Two approaches, appropriate for the study of semiconductor materials, are presented and compared. A first method is based on a non-collinear geometry, where the Four-Wave-Mixing (FWM) signal is detected in the form of a radiated optical field. This approach works for samples with translational symmetry, such as Quantum Wells (QWs) or large and dense ensembles of Quantum Dots (QDs). A second method detects the FWM in the form of a photocurrent in a collinear geometry. This second approach extends the horizon of MDCS to sub-diffraction nanostructures,more » such as single QDs, nanowires, or nanotubes, and small ensembles thereof. Examples of experimental results obtained on semiconductor QW structures are given for each method. In particular, it is shown how MDCS can assess coupling between excitons confined in separated QWs.« less
Integrated Broadband Quantum Cascade Laser
NASA Technical Reports Server (NTRS)
Mansour, Kamjou (Inventor); Soibel, Alexander (Inventor)
2016-01-01
A broadband, integrated quantum cascade laser is disclosed, comprising ridge waveguide quantum cascade lasers formed by applying standard semiconductor process techniques to a monolithic structure of alternating layers of claddings and active region layers. The resulting ridge waveguide quantum cascade lasers may be individually controlled by independent voltage potentials, resulting in control of the overall spectrum of the integrated quantum cascade laser source. Other embodiments are described and claimed.
Quantum Dots in a Polymer Composite: A Convenient Particle-in-a-Box Laboratory Experiment
ERIC Educational Resources Information Center
Rice, Charles V.; Giffin, Guinevere A.
2008-01-01
Semiconductor quantum dots are at the forefront of materials science chemistry with applications in biological imaging and photovoltaic technologies. We have developed a simple laboratory experiment to measure the quantum-dot size from fluorescence spectra. A major roadblock of quantum-dot based exercises is the particle synthesis and handling;…
Design and Fabrication of an Implantable Cortical Semiconductor Integrated Circuit Electrode Array
1990-12-01
25 Array Pads....................25 Polyimide ....................26 III. METHODOLOGY.........................27 Brain Chip Electronics...38 Ionic Permeation. .................. 38 Polyimide . ................... 38 Implantation. .................... 39 Wire Bonding...53 Pad Sensitivity ................. 53 Ionic Permeat:.on. .................. 54 Polyimide . ................... 54 Implantation
Integrated Inductors for RF Transmitters in CMOS/MEMS Smart Microsensor Systems
Kim, Jong-Wan; Takao, Hidekuni; Sawada, Kazuaki; Ishida, Makoto
2007-01-01
This paper presents the integration of an inductor by complementary metal-oxide-semiconductor (CMOS) compatible processes for integrated smart microsensor systems that have been developed to monitor the motion and vital signs of humans in various environments. Integration of radio frequency transmitter (RF) technology with complementary metal-oxide-semiconductor/micro electro mechanical systems (CMOS/MEMS) microsensors is required to realize the wireless smart microsensors system. The essential RF components such as a voltage controlled RF-CMOS oscillator (VCO), spiral inductors for an LC resonator and an integrated antenna have been fabricated and evaluated experimentally. The fabricated RF transmitter and integrated antenna were packaged with subminiature series A (SMA) connectors, respectively. For the impedance (50 Ω) matching, a bonding wire type inductor was developed. In this paper, the design and fabrication of the bonding wire inductor for impedance matching is described. Integrated techniques for the RF transmitter by CMOS compatible processes have been successfully developed. After matching by inserting the bonding wire inductor between the on-chip integrated antenna and the VCO output, the measured emission power at distance of 5 m from RF transmitter was -37 dBm (0.2 μW).
NASA Astrophysics Data System (ADS)
Sadeghi, Seyed M.; Wing, Waylin J.; Gutha, Rithvik R.; Sharp, Christina
2018-01-01
We demonstrate that a metal-oxide plasmonic metafilm consisting of a Si/Al oxide junction in the vicinity of a thin gold layer can quarantine excitons in colloidal semiconductor quantum dots against their defect environments. This process happens while the plasmon fields of the gold layer enhance spontaneous emission decay rates of the quantum dots. We study the emission dynamics of such quantum dots when the distance between the Si/Al oxide junction and the gold thin layer is varied. The results show that for distances less than a critical value the lifetime of the quantum dots can be elongated while they experience intense plasmon fields. This suggests that the metal-oxide metafilm can keep photo-excited electrons in the cores of the quantum dots, suppressing their migration to the surface defect sites. This leads to suppression of Auger recombination, offering quantum dot super-emitters with emission that is enhanced not only by the plasmon fields (Purcell effect), but also by strong suppression of the non-radiative decay caused by the defect sites.
Imaginary geometric phases of quantum trajectories in high-order terahertz sideband generation
NASA Astrophysics Data System (ADS)
Yang, Fan; Liu, Ren-Bao
2014-03-01
Quantum evolution of particles under strong fields can be described by a small number of quantum trajectories that satisfy the stationary phase condition in the Dirac-Feynmann path integral. The quantum trajectories are the key concept to understand the high-order terahertz siedeband generation (HSG) in semiconductors. Due to the nontrivial ``vacuum'' states of band materials, the quantum trajectories of optically excited electron-hole pairs in semiconductors can accumulate geometric phases under the driving of an elliptically polarized THz field. We find that the geometric phase of the stationary trajectory is generally complex with both real and imaginary parts. In monolayer MoS2, the imaginary parts of the geometric phase leads to a changing of the polarization ellipticity of the sideband. We further show that the imaginary part originates from the quantum interference of many trajectories with different phases. Thus the observation of the polarization ellipticity of the sideband shall be a good indication of the quantum nature of the stationary trajectory. This work is supported by Hong Kong RGC/GRF 401512 and the CUHK Focused Investments Scheme.
NASA Astrophysics Data System (ADS)
Tuszynski, Jack A.; Woolf, Nancy
This chapter provides an introduction to the rest of the book, which has a multidisciplinary approach to the physics of consciousness. We summarize the various contributions and present our own point of view, which is that there are some deficiencies in defining higher-order consciousness in strict terms of classic physics. We favor a proposal that considers some aspects of quantum-mechanical operations among molecules involved with neurotransmission and mechanical transport of synaptic proteins. In our view, the wiring of the brain is not as complex, and certainly not as integrated, as commonly assumed. Instead, the wiring pattern redundantly obeys a few general principles focused on high resolution rather than crossmodal integration. Basing cognitive functions, such as higher-order consciousness, solely on electrophysiological responses in neural networks thus wired may not suffice. On the other hand, coherent quantum computing, executed by tubulins, the protein subunits of microtubules, may exert en masse influences over the transport of many receptor and scaffolding proteins to various activated synapses, thereby accounting for the unity of conscious experience. We discuss the potential problems of quantum computing, such as decoherence, and also present counterarguments, as well as recent empirical results consistent with the notion that quantum computing in the interiors of neurons, in particular, within the interiors of dendrites may indeed be possible.
EPR and Ferromagnetism in Diluted Magnetic Semiconductor Quantum Wells
NASA Astrophysics Data System (ADS)
König, Jürgen; MacDonald, Allan H.
2003-08-01
Motivated by recent measurements of electron paramagnetic resonance spectra in modulation-doped CdMnTe quantum wells [
Effect of the depolarization field on coherent optical properties in semiconductor quantum dots
NASA Astrophysics Data System (ADS)
Mitsumori, Yasuyoshi; Watanabe, Shunta; Asakura, Kenta; Seki, Keisuke; Edamatsu, Keiichi; Akahane, Kouichi; Yamamoto, Naokatsu
2018-06-01
We study the photon echo spectrum of self-assembled semiconductor quantum dots using femtosecond light pulses. The spectrum shape changes from a single-peaked to a double-peaked structure as the time delay between the two excitation pulses is increased. The spectrum change is reproduced by numerical calculations, which include the depolarization field induced by the biexciton-exciton transition as well as the conventional local-field effect for the exciton-ground-state transition in a quantum dot. Our findings suggest that various optical transitions in tightly localized systems generate a depolarization field, which renormalizes the resonant frequency with a change in the polarization itself, leading to unique optical properties.
Decoupling the effects of confinement and passivation on semiconductor quantum dots.
Rudd, Roya; Hall, Colin; Murphy, Peter J; Reece, Peter J; Charrault, Eric; Evans, Drew
2016-07-20
Semiconductor (SC) quantum dots (QDs) have recently been fabricated by both chemical and plasma techniques for specific absorption and emission of light. Their optical properties are governed by the size of the QD and the chemistry of any passivation at their surface. Here, we decouple the effects of confinement and passivation by utilising DC magnetron sputtering to fabricate SC QDs in a perfluorinated polyether oil. Very high band gaps are observed for fluorinated QDs with increasing levels of quantum confinement (from 4.2 to 4.6 eV for Si, and 2.5 to 3 eV for Ge), with a shift down to 3.4 eV for Si when oxygen is introduced to the passivation layer. In contrast, the fluorinated Si QDs display a constant UV photoluminescence (3.8 eV) irrespective of size. This ability to tune the size and passivation independently opens a new opportunity to extending the use of simple semiconductor QDs.
A nanocryotron comparator can connect single-flux-quantum circuits to conventional electronics
NASA Astrophysics Data System (ADS)
Zhao, Qing-Yuan; McCaughan, Adam N.; Dane, Andrew E.; Berggren, Karl K.; Ortlepp, Thomas
2017-04-01
Integration with conventional electronics offers a straightforward and economical approach to upgrading existing superconducting technologies, such as scaling up superconducting detectors into large arrays and combining single flux quantum (SFQ) digital circuits with semiconductor logic gates and memories. However, direct output signals from superconducting devices (e.g., Josephson junctions) are usually not compatible with the input requirements of conventional devices (e.g., transistors). Here, we demonstrate the use of a single three-terminal superconducting-nanowire device, called the nanocryotron (nTron), as a digital comparator to combine SFQ circuits with mature semiconductor circuits such as complementary metal oxide semiconductor (CMOS) circuits. Since SFQ circuits can digitize output signals from general superconducting devices and CMOS circuits can interface existing CMOS-compatible electronics, our results demonstrate the feasibility of a general architecture that uses an nTron as an interface to realize a ‘super-hybrid’ system consisting of superconducting detectors, superconducting quantum electronics, CMOS logic gates and memories, and other conventional electronics.
NASA Astrophysics Data System (ADS)
Smith, L. W.; Al-Taie, H.; Sfigakis, F.; See, P.; Lesage, A. A. J.; Xu, B.; Griffiths, J. P.; Beere, H. E.; Jones, G. A. C.; Ritchie, D. A.; Kelly, M. J.; Smith, C. G.
2014-07-01
The properties of conductance in one-dimensional (1D) quantum wires are statistically investigated using an array of 256 lithographically identical split gates, fabricated on a GaAs/AlGaAs heterostructure. All the split gates are measured during a single cooldown under the same conditions. Electron many-body effects give rise to an anomalous feature in the conductance of a one-dimensional quantum wire, known as the "0.7 structure" (or "0.7 anomaly"). To handle the large data set, a method of automatically estimating the conductance value of the 0.7 structure is developed. Large differences are observed in the strength and value of the 0.7 structure [from 0.63 to 0.84×(2e2/h)], despite the constant temperature and identical device design. Variations in the 1D potential profile are quantified by estimating the curvature of the barrier in the direction of electron transport, following a saddle-point model. The 0.7 structure appears to be highly sensitive to the specific confining potential within individual devices.
Current's Fluctuations through Molecular Wires Composed of Thiophene Rings.
Ojeda Silva, Judith Helena; Cortés Peñaranda, Juan Camilo; Gómez Castaño, Jovanny A; Duque, Carlos Alberto
2018-04-11
We study theoretically the electronic transport and quantum fluctuations in single-molecule systems using thiophene rings as integrated elementary functions, as well as the dependence of these properties with the increase of the coupled rings, i.e., as a quantum wire. In order to analyze the current flow through these molecular systems, the thiophene rings are considered to be connected to metal contacts, which, in general terms, will be related to the application of voltages (bias voltages or gate voltages) to generate non-equilibrium behavior between the contacts. Due to the nonlinear behavior that is generated when said voltages are applied, it is possible to observe quantum fluctuations in the transport properties of these molecular wires. For the calculation of the transport properties, we applied a tight-binding approach using the Landauer-Büttiker formalism and the Fischer-Lee relationship, by means of a semi-analytic Green's function method within a real-space renormalization (decimation procedure). Our results showed an excellent agreement with results using a tight-binding model with a minimal number of parameters reported so far for these molecular systems.
Quantum transport through disordered 1D wires: Conductance via localized and delocalized electrons
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gopar, Víctor A.
Coherent electronic transport through disordered systems, like quantum wires, is a topic of fundamental and practical interest. In particular, the exponential localization of electron wave functions-Anderson localization-due to the presence of disorder has been widely studied. In fact, Anderson localization, is not an phenomenon exclusive to electrons but it has been observed in microwave and acoustic experiments, photonic materials, cold atoms, etc. Nowadays, many properties of electronic transport of quantum wires have been successfully described within a scaling approach to Anderson localization. On the other hand, anomalous localization or delocalization is, in relation to the Anderson problem, a less studiedmore » phenomenon. Although one can find signatures of anomalous localization in very different systems in nature. In the problem of electronic transport, a source of delocalization may come from symmetries present in the system and particular disorder configurations, like the so-called Lévy-type disorder. We have developed a theoretical model to describe the statistical properties of transport when electron wave functions are delocalized. In particular, we show that only two physical parameters determine the complete conductance distribution.« less
Spin correlations in quantum wires
NASA Astrophysics Data System (ADS)
Sun, Chen; Pokrovsky, Valery L.
2015-04-01
We consider theoretically spin correlations in a one-dimensional quantum wire with Rashba-Dresselhaus spin-orbit interaction (RDI). The correlations of noninteracting electrons display electron spin resonance at a frequency proportional to the RDI coupling. Interacting electrons, upon varying the direction of the external magnetic field, transit from the state of Luttinger liquid (LL) to the spin-density wave (SDW) state. We show that the two-time total-spin correlations of these states are significantly different. In the LL, the projection of total spin to the direction of the RDI-induced field is conserved and the corresponding correlator is equal to zero. The correlators of two components perpendicular to the RDI field display a sharp electron-spin resonance driven by the RDI-induced intrinsic field. In contrast, in the SDW state, the longitudinal projection of spin dominates, whereas the transverse components are suppressed. This prediction indicates a simple way for an experimental diagnostic of the SDW in a quantum wire. We point out that the Luttinger model does not respect the spin conservation since it assumes the infinite Fermi sea. We propose a proper cutoff to correct this failure.
Thermalization dynamics of two correlated bosonic quantum wires after a split
NASA Astrophysics Data System (ADS)
Huber, Sebastian; Buchhold, Michael; Schmiedmayer, Jörg; Diehl, Sebastian
2018-04-01
Cherently splitting a one-dimensional Bose gas provides an attractive, experimentally established platform to investigate many-body quantum dynamics. At short enough times, the dynamics is dominated by the dephasing of single quasiparticles, and well described by the relaxation towards a generalized Gibbs ensemble corresponding to the free Luttinger theory. At later times on the other hand, the approach to a thermal Gibbs ensemble is expected for a generic, interacting quantum system. Here, we go one step beyond the quadratic Luttinger theory and include the leading phonon-phonon interactions. By applying kinetic theory and nonequilibrium Dyson-Schwinger equations, we analyze the full relaxation dynamics beyond dephasing and determine the asymptotic thermalization process in the two-wire system for a symmetric splitting protocol. The major observables are the different phonon occupation functions and the experimentally accessible coherence factor, as well as the phase correlations between the two wires. We demonstrate that, depending on the splitting protocol, the presence of phonon collisions can have significant influence on the asymptotic evolution of these observables, which makes the corresponding thermalization dynamics experimentally accessible.
Boundary Condition for Modeling Semiconductor Nanostructures
NASA Technical Reports Server (NTRS)
Lee, Seungwon; Oyafuso, Fabiano; von Allmen, Paul; Klimeck, Gerhard
2006-01-01
A recently proposed boundary condition for atomistic computational modeling of semiconductor nanostructures (particularly, quantum dots) is an improved alternative to two prior such boundary conditions. As explained, this boundary condition helps to reduce the amount of computation while maintaining accuracy.
Ahn, K J; Milde, F; Knorr, A
2007-01-12
Acoustic wave excitation of semiconductor quantum dots generates resonance fluorescence of electronic intersublevel excitations. Our theoretical analysis predicts acoustoluminescence, in particular, a conversion of acoustic into electromagnetic THz waves over a broad spectral range.
Quantum Confined Semiconductors for High Efficiency Photovoltaics
NASA Astrophysics Data System (ADS)
Beard, Matthew
2014-03-01
Semiconductor nanostructures, where at least one dimension is small enough to produce quantum confinement effects, provide new pathways for controlling energy flow and therefore have the potential to increase the efficiency of the primary photon-to-free energy conversion step. In this discussion, I will present the current status of research efforts towards utilizing the unique properties of colloidal quantum dots (NCs confined in three dimensions) in prototype solar cells and demonstrate that these unique systems have the potential to bypass the Shockley-Queisser single-junction limit for solar photon conversion. The solar cells are constructed using a low temperature solution based deposition of PbS or PbSe QDs as the absorber layer. Different chemical treatments of the QD layer are employed in order to obtain good electrical communication while maintaining the quantum-confined properties of the QDs. We have characterized the transport and carrier dynamics using a transient absorption, time-resolved THz, and temperature-dependent photoluminescence. I will discuss the interplay between carrier generation, recombination, and mobility within the QD layers. A unique aspect of our devices is that the QDs exhibit multiple exciton generation with an efficiency that is ~ 2 to 3 times greater than the parental bulk semiconductor.
NASA Astrophysics Data System (ADS)
Fei, Yang-yang; Meng, Xiang-dong; Gao, Ming; Yang, Yi; Wang, Hong; Ma, Zhi
2018-07-01
The temperature of the semiconductor diode increases under strong light illumination whether thermoelectric cooler is installed or not, which changes the output wavelength of the laser (Lee et al., 2017). However, other characteristics also vary as temperature increases. These variations may help the eavesdropper in practical quantum key distribution systems. We study the effects of temperature increase on gain-switched semiconductor lasers by simulating temperature dependent rate equations. The results show that temperature increase may cause large intensity fluctuation, decrease the output intensity and lead the signal state and decoy state distinguishable. We also propose a modified photon number splitting attack by exploiting the effects of temperature increase. Countermeasures are also proposed.
Nonvolatile gate effect in a ferroelectric-semiconductor quantum well.
Stolichnov, Igor; Colla, Enrico; Setter, Nava; Wojciechowski, Tomasz; Janik, Elzbieta; Karczewski, Grzegorz
2006-12-15
Field effect transistors with ferroelectric gates would make ideal rewritable nonvolatile memories were it not for the severe problems in integrating the ferroelectric oxide directly on the semiconductor channel. We propose a powerful way to avoid these problems using a gate material that is ferroelectric and semiconducting simultaneously. First, ferroelectricity in semiconductor (Cd,Zn)Te films is proven and studied using modified piezoforce scanning probe microscopy. Then, a rewritable field effect device is demonstrated by local poling of the (Cd,Zn)Te layer of a (Cd,Zn)Te/CdTe quantum well, provoking a reversible, nonvolatile change in the resistance of the 2D electron gas. The results point to a potential new family of nanoscale one-transistor memories.
Intermediate type excitons in Schottky barriers of A3B6 layer semiconductors and UV photodetectors
NASA Astrophysics Data System (ADS)
Alekperov, O. Z.; Guseinov, N. M.; Nadjafov, A. I.
2006-09-01
Photoelectric and photovoltaic spectra of Schottky barrier (SB) structures of InSe, GaSe and GaS layered semiconductors (LS) are investigated at quantum energies from the band edge excitons of corresponding materials up to 6.5eV. Spectral dependences of photoconductivity (PC) of photo resistors and barrier structures are strongly different at the quantum energies corresponding to the intermediate type excitons (ITE) observed in these semiconductors. It was suggested that high UV photoconductivity of A3B6 LS is due to existence of high mobility light carriers in the depth of the band structure. It is shown that SB of semitransparent Au-InSe is high sensitive photo detector in UV region of spectra.
Nonequilibrium carrier dynamics in transition metal dichalcogenide semiconductors
NASA Astrophysics Data System (ADS)
Steinhoff, A.; Florian, M.; Rösner, M.; Lorke, M.; Wehling, T. O.; Gies, C.; Jahnke, F.
2016-09-01
When exploring new materials for their potential in (opto)electronic device applications, it is important to understand the role of various carrier interaction and scattering processes. In atomically thin transition metal dichalcogenide semiconductors, the Coulomb interaction is known to be much stronger than in quantum wells of conventional semiconductors like GaAs, as witnessed by the 50 times larger exciton binding energy. The question arises, whether this directly translates into equivalently faster carrier-carrier Coulomb scattering of excited carriers. Here we show that a combination of ab initio band-structure and many-body theory predicts Coulomb-mediated carrier relaxation on a sub-100 fs time scale for a wide range of excitation densities, which is less than an order of magnitude faster than in quantum wells.
Electrically pumped edge-emitting photonic bandgap semiconductor laser
Lin, Shawn-Yu; Zubrzycki, Walter J.
2004-01-06
A highly efficient, electrically pumped edge-emitting semiconductor laser based on a one- or two-dimensional photonic bandgap (PBG) structure is described. The laser optical cavity is formed using a pair of PBG mirrors operating in the photonic band gap regime. Transverse confinement is achieved by surrounding an active semiconductor layer of high refractive index with lower-index cladding layers. The cladding layers can be electrically insulating in the passive PBG mirror and waveguide regions with a small conducting aperture for efficient channeling of the injection pump current into the active region. The active layer can comprise a quantum well structure. The quantum well structure can be relaxed in the passive regions to provide efficient extraction of laser light from the active region.
Funding Proposal for EDISON’20 Conference Buffalo, New York, 07/17 - 07/21, 2017
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bird, Jonathan
EDISON’20 – The 20th International Conference on Electron Dynamics in Semiconductors, Optoe- lectronics and Nanostructures – was held at the Hyatt Regency Hotel, Buffalo, NY from July 17 – 21, 2017. The technical focus of this conference was on the fundamental physics and applications of nonequilibrium classical and quantum carrier dynamics in semiconductors, optoelectronic de- vices, and nanostructures. This five-day, single-session conference featured a program consisting of some 15 invited talks, given by internationally-renowned academics from the U.S., Europe, and Japan. Their keynote presentations covered topics including: terahertz phenomena in semiconductors; quantum transport in novel two-dimensional semiconductors; topological insulators; mesoscopicmore » phenomena in semiconductors, and; semiconductor spintronics. The invited papers were supplemented by some 30 contributed talks, selected from almost 120 abstracts submitted in response to the conference’s call for papers, and by two poster sessions that each consisted of close to 40 different reports. This critical mass in terms of scientific content ensured a highly vibrant conference, in which leaders in the field had the opportunity to interact closely with early-career scientists.« less
Methods of Measurement for Semiconductor Materials, Process Control, and Devices
NASA Technical Reports Server (NTRS)
Bullis, W. M. (Editor)
1973-01-01
The development of methods of measurement for semiconductor materials, process control, and devices is reported. Significant accomplishments include: (1) Completion of an initial identification of the more important problems in process control for integrated circuit fabrication and assembly; (2) preparations for making silicon bulk resistivity wafer standards available to the industry; and (3) establishment of the relationship between carrier mobility and impurity density in silicon. Work is continuing on measurement of resistivity of semiconductor crystals; characterization of generation-recombination-trapping centers, including gold, in silicon; evaluation of wire bonds and die attachment; study of scanning electron microscopy for wafer inspection and test; measurement of thermal properties of semiconductor devices; determination of S-parameters and delay time in junction devices; and characterization of noise and conversion loss of microwave detector diodes.
Haggett, Stephanie; Krakowski, Michel; Montrosset, Ivo; Cataluna, Maria Ana
2014-09-22
A high-power tunable external cavity laser configuration with a tapered quantum-dot semiconductor optical amplifier at its core is presented, enabling a record output power for a broadly tunable semiconductor laser source in the 1.2 - 1.3 µm spectral region. Two distinct optical amplifiers are investigated, using either chirped or unchirped quantum-dot structures, and their merits are compared, considering the combination of tunability and high output power generation. At 1230 nm, the chirped quantum-dot laser achieved a maximum power of 0.62 W and demonstrated nearly 100-nm tunability. The unchirped laser enabled a tunability range of 32 nm and at 1254 nm generated a maximum power of 0.97 W, representing a 22-fold increase in output power compared with similar narrow-ridge external-cavity lasers at the same current density.
Optical orientation of electrons in compensated semiconductors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kokurin, I. A., E-mail: kokorinia@math.mrsu.ru; Petrov, P. V.; Averkiev, N. S.
2013-09-15
The theory of the optical orientation of charge carriers in compensated III-V semiconductors and quantum wells for the case where electrons are excited to the conduction band from Mn-charged acceptor states is presented. It is shown that, in GaAs/AlGaAs quantum wells, the degree of the spin orientation of conduction-band electrons in this excitation scheme can be as high as 85%. This spin-orientation enhancement results from an increase in the heavy-hole contribution to the acceptor state in the vicinity of the defect center rather than from level splitting caused by quantum confinement. It is shown that the degree of circular polarizationmore » of the photoluminescence emitted upon the recombination of electrons thermalized at the bottom of the band with holes occupying the acceptor ground state in a quantum well can exceed 70%.« less
Surface Traps in Colloidal Quantum Dots: A Combined Experimental and Theoretical Perspective.
Giansante, Carlo; Infante, Ivan
2017-10-19
Surface traps are ubiquitous to nanoscopic semiconductor materials. Understanding their atomistic origin and manipulating them chemically have capital importance to design defect-free colloidal quantum dots and make a leap forward in the development of efficient optoelectronic devices. Recent advances in computing power established computational chemistry as a powerful tool to describe accurately complex chemical species and nowadays it became conceivable to model colloidal quantum dots with realistic sizes and shapes. In this Perspective, we combine the knowledge gathered in recent experimental findings with the computation of quantum dot electronic structures. We analyze three different systems: namely, CdSe, PbS, and CsPbI 3 as benchmark semiconductor nanocrystals showing how different types of trap states can form at their surface. In addition, we suggest experimental healing of such traps according to their chemical origin and nanocrystal composition.
Two stream instability in n-type gallium arsenide semiconductor quantum plasma
NASA Astrophysics Data System (ADS)
Ghosh, S.; Muley, Apurva
2018-01-01
By using quantum hydrodynamic model, we derive a generalized dielectric response function for two stream instability (convective only) in n-type gallium arsenide semiconductor plasma. We investigate the phase and amplification profiles of two stream instability with externally applied electric field ranging from 2600 to 4000 kV m-1 in presence of non-dimensional quantum parameter- H. In this range, a significant number of electrons in satellite valley become comparable to the number of electrons in central valley. The presence of quantum corrections in plasma medium induces two novel modes; one of it has amplifying nature and propagates in forward direction. It also modifies the spectral profile of four pre-existing modes in classical plasma. The existence of two stream instability is also established analytically by deriving the real part of longitudinal electrokinetic power flow density.
Simulations of defect spin qubits in piezoelectric semiconductors
NASA Astrophysics Data System (ADS)
Seo, Hosung
In recent years, remarkable advances have been reported in the development of defect spin qubits in semiconductors for solid-state quantum information science and quantum metrology. Promising spin qubits include the nitrogen-vacancy center in diamond, dopants in silicon, and the silicon vacancy and divacancy spins in silicon carbide. In this talk, I will highlight some of our recent efforts devoted to defect spin qubits in piezoelectric wide-gap semiconductors for potential applications in mechanical hybrid quantum systems. In particular, I will describe our recent combined theoretical and experimental study on remarkably robust quantum coherence found in the divancancy qubits in silicon carbide. We used a quantum bath model combined with a cluster expansion method to identify the microscopic mechanisms behind the unusually long coherence times of the divacancy spins in SiC. Our study indicates that developing spin qubits in complex crystals with multiple types of atom is a promising route to realize strongly coherent hybrid quantum systems. I will also discuss progress and challenges in computational design of new spin defects for use as qubits in piezoelectric crystals such as AlN and SiC, including a new defect design concept using large metal ion - vacancy complexes. Our first principles calculations include DFT computations using recently developed self-consistent hybrid density functional theory and large-scale many-body GW theory. This work was supported by the National Science Foundation (NSF) through the University of Chicago MRSEC under Award Number DMR-1420709.
The diamagnetic susceptibility of a donor in a semiconductor core shell quantum dot
NASA Astrophysics Data System (ADS)
Sudharshan, M. S.; Subhash, P.; Shaik, Nagoor Babu; Kalpana, P.; Jayakumar, K.; Reuben, A. Merwyn Jasper D.
2015-06-01
The effect of Aluminium concentration, shell thickness and size of the core shell Quantum Dot on the Diamagnetic Susceptibility of a donor in the Core Shell Quantum Dot is calculated in the effective mass approximation using the variational method. The results are presented and discussed.
Quantum walks of interacting fermions on a cycle graph
Melnikov, Alexey A.; Fedichkin, Leonid E.
2016-01-01
Quantum walks have been employed widely to develop new tools for quantum information processing recently. A natural quantum walk dynamics of interacting particles can be used to implement efficiently the universal quantum computation. In this work quantum walks of electrons on a graph are studied. The graph is composed of semiconductor quantum dots arranged in a circle. Electrons can tunnel between adjacent dots and interact via Coulomb repulsion, which leads to entanglement. Fermionic entanglement dynamics is obtained and evaluated. PMID:27681057
Spin-Based Devices for Magneto-Optoelectronic Integrated Circuits
2009-04-29
bulk material and matches that in quantum wells. While these simple linear relationships hold for spin-polarized light-emitting diodes (spin-LEDs...temperature. The quantum efficiency and hence r| increases with decreasing temperature. The individual circuit elements, 33 therefore, exhibit the...Injection, Threshold Reduction and Output Circular Polarization Modulation in Quantum Well and Quantum Dot Semiconductor Spin Polarized Lasers working
Diluted Magnetic Semiconductors for Magnetic Field Tunable Infrared Detectors
2005-06-30
significantly improved performance and technological advances of quantum well infrared photodetectors (QWIPs)14 and quantum cascade lasers (QCLs)15...NUMBER FA8655-04-1-3069 5b. GRANT NUMBER 4. TITLE AND SUBTITLE Magnetic Field Tunable Terahertz Quantum Well Infrared Photodetector 5c...fabrication in II-VI materials, quantum well infrared photodetector device design and magneto-optical characterisation are all well understood
Xiang, Yu; Chen, Chen; Zhang, Chongfu; Qiu, Kun
2013-01-14
In this paper, we propose and demonstrate a novel integrated radio-over-fiber passive optical network (RoF-PON) system for both wired and wireless access. By utilizing the polarization multiplexed four-wave mixing (FWM) effect in a semiconductor optical amplifier (SOA), scalable generation of multi-frequency millimeter-waves (MMWs) can be provided so as to assist the configuration of multi-frequency wireless access for the wire/wireless access integrated ROF-PON system. In order to obtain a better performance, the polarization multiplexed FWM effect is investigated in detail. Simulation results successfully verify the feasibility of our proposed scheme.
Uniform Doping in Quantum-Dots-Based Dilute Magnetic Semiconductor.
Saha, Avijit; Shetty, Amitha; Pavan, A R; Chattopadhyay, Soma; Shibata, Tomohiro; Viswanatha, Ranjani
2016-07-07
Effective manipulation of magnetic spin within a semiconductor leading to a search for ferromagnets with semiconducting properties has evolved into an important field of dilute magnetic semiconductors (DMS). Although a lot of research is focused on understanding the still controversial origin of magnetism, efforts are also underway to develop new materials with higher magnetic temperatures for spintronics applications. However, so far, efforts toward quantum-dots(QDs)-based DMS materials are plagued with problems of phase separation, leading to nonuniform distribution of dopant ions. In this work, we have developed a strategy to synthesize highly crystalline, single-domain DMS system starting from a small magnetic core and allowing it to diffuse uniformly inside a thick CdS semiconductor matrix and achieve DMS QDs. X-ray absorption fine structure (XAFS) spectroscopy and energy-dispersive X-ray spectroscopy-scanning transmission electron microscopy (STEM-EDX) indicates the homogeneous distribution of magnetic impurities inside the semiconductor QDs leading to superior magnetic property. Further, the versatility of this technique was demonstrated by obtaining ultra large particles (∼60 nm) with uniform doping concentration as well as demonstrating the high quality magnetic response.
Modeling of THz Lasers Based on Intersubband Transitions in Semiconductor Quantum Wells
NASA Technical Reports Server (NTRS)
Liu, Ansheng; Woo, Alex C. (Technical Monitor)
1999-01-01
In semiconductor quantum well structures, the intersubband energy separation can be adjusted to the terahertz (THz) frequency range by changing the well width and material combinations. The electronic and optical properties of these nanostructures can also be controlled by an applied dc electric field. These unique features lead to a large frequency tunability of the quantum well devices. In the on-going project of modeling of the THz lasers, we investigate the possibility of using optical pumping to generate THz radiation based on intersubband transitions in semiconductor quantum wells. We choose the optical pumping because in the electric current injection it is difficult to realize population inversion in the THz frequency range due to the small intersubband separation (4-40 meV). We considered both small conduction band offset (GaAs/AlGaAs) and large band offset (InGaAs/AlAsSb) quantum well structures. For GaAs/AlGaAs quantum wells, mid-infrared C02 lasers are used as pumping sources. For InGaAs/AlAsSb quantum wells, the resonant intersubband transitions can be excited by the near-infrared diode lasers. For three- and four-subband quantum wells, we solve the pumpfield-induced nonequilibrium distribution function for each subband of the quantum well system from a set of rate equations that include both intrasubband and intersubband relaxation processes. Taking into account the coherent interactions between pump and THz (signal) waves, we calculate the optical gain for the THz field. The gain arising from population inversion and stimulated Raman processes is calculated in a unified manner. A graph shows the calculated THz gain spectra for three-subband GaAs/AlGaAs quantum wells. We see that the coherent pump and signal wave interactions contribute significantly to the gain. The pump intensity dependence of the THz gain is also studied. The calculated results are shown. Because of the optical Stark effect and pump-induced population redistribution, the maximum THz gain saturates at larger pump intensities.
Saha, Dipika; Negi, Devendra P S
2018-01-15
The purpose of the present work was to develop a method for the sensing of thioacetamide by using spectroscopic techniques. Thioacetamide is a carcinogen and it is important to detect its presence in food-stuffs. Semiconductor quantum dots are frequently employed as sensing probes since their absorption and fluorescence properties are highly sensitive to the interaction with substrates present in the solution. In the present work, the interaction between thioacetamide and ZnO quantum dots has been investigated by using UV-visible, fluorescence and infrared spectroscopy. Besides, dynamic light scattering (DLS) has also been utilized for the interaction studies. UV-visible absorption studies indicated the bonding of the lone pair of sulphur atom of thioacetamide with the surface of the semiconductor. The fluorescence band of the ZnO quantum dots was found to be quenched in the presence of micromolar concentrations of thioacetamide. The quenching was found to follow the Stern-Volmer relationship. The Stern-Volmer constant was evaluated to be 1.20×10 5 M -1 . Infrared spectroscopic measurements indicated the participation of the NH 2 group and the sulphur atom of thioacetamide in bonding with the surface of the ZnO quantum dots. DLS measurements indicated that the surface charge of the semiconductor was shielded by the thioacetamide molecules. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Marmalyuk, A. A.; Ryaboshtan, Yu L.; Gorlachuk, P. V.; Ladugin, M. A.; Padalitsa, A. A.; Slipchenko, S. O.; Lyutetskiy, A. V.; Veselov, D. A.; Pikhtin, N. A.
2018-03-01
The effect of the waveguide layer thickness on output characteristics of AlGaInAs/InP quantum-well semiconductor lasers is analysed. The samples of semiconductor lasers with narrow and wide waveguides are experimentally fabricated. Their comparison is carried out and the advantages of particular constructions depending on the current pump are demonstrated.
Optimum performance of electron beam pumped GaAs and GaN
NASA Astrophysics Data System (ADS)
Afify, M. S.; Moslem, W. M.; Hassouba, M. A.; Abu-El Hassan, A.
2018-05-01
This paper introduces a physical solution in order to overcome the damage to semiconductors, due to increasing temperature during the pumping process. For this purpose, we use quantum hydrodynamic fluid equations, including different quantum effects. This study concludes that nonlinear acoustic waves, in the form of soliton and shock-like (double layer) pulses, can propagate depending on the electron beam temperature and the streaming speed. Therefore, one can precisely tune the beam parameters in order to avoid such unfavorable noises that may lead to defects in semiconductors.
Fedin, Igor; Talapin, Dmitri V
2016-08-10
Semiconductor quantum rings are of great fundamental interest because their non-trivial topology creates novel physical properties. At the same time, toroidal topology is difficult to achieve for colloidal nanocrystals and epitaxially grown semiconductor nanostructures. In this work, we introduce the synthesis of luminescent colloidal CdSe nanorings and nanostructures with double and triple toroidal topology. The nanorings form during controlled etching and rearrangement of two-dimensional nanoplatelets. We discuss a possible mechanism of the transformation of nanoplatelets into nanorings and potential utility of colloidal nanorings for magneto-optical (e.g., Aharonov-Bohm effect) and other applications.
Using ‘particle in a box’ models to calculate energy levels in semiconductor quantum well structures
NASA Astrophysics Data System (ADS)
Ebbens, A. T.
2018-07-01
Although infinite potential ‘particle in a box’ models are widely used to introduce quantised energy levels their predictions cannot be quantitatively compared with atomic emission spectra. Here, this problem is overcome by describing how both infinite and finite potential well models can be used to calculate the confined energy levels of semiconductor quantum wells. This is done by using physics and mathematics concepts that are accessible to pre-university students. The results of the models are compared with experimental data and their accuracy discussed.
NASA Astrophysics Data System (ADS)
Kotb, Amer
2015-06-01
The modeling of all-optical logic XNOR gate is realized by a series combination of XOR and INVERT gates. This Boolean function is simulated by using Mach-Zehnder interferometers (MZIs) utilizing quantum-dots semiconductor optical amplifiers (QDs-SOAs). The study is carried out when the effect of amplified spontaneous emission (ASE) is included. The dependence of the output quality factor ( Q-factor) on signals and QDs-SOAs' parameters is also investigated and discussed. The simulation is conducted under a repetition rate of ˜1 Tb/s.
Dynamics in terahertz semiconductor microcavity: quantum noise spectra
NASA Astrophysics Data System (ADS)
Jabri, H.; Eleuch, H.
2018-05-01
We investigate the physics of an optical semiconductor microcavity containing a coupled double quantum well interacting with cavity photons. The photon statistics of the transmitted light by the cavity is explored. We show that the nonlinear interactions in the direct and indirect excitonic modes generate an important squeezing despite the weak nonlinearities. When the strong coupling regime is achieved, the noise spectra of the system is dominated by the indirect exciton distribution. At the opposite, in the weak regime, direct excitons contribute much larger in the noise spectra.
Inter-band optoelectronic properties in quantum dot structure of low band gap III-V semiconductors
NASA Astrophysics Data System (ADS)
Dey, Anup; Maiti, Biswajit; Chanda Sarkar, Debasree
2014-04-01
A generalized theory is developed to study inter-band optical absorption coefficient (IOAC) and material gain (MG) in quantum dot structures of narrow gap III-V compound semiconductor considering the wave-vector (k→) dependence of the optical transition matrix element. The band structures of these low band gap semiconducting materials with sufficiently separated split-off valance band are frequently described by the three energy band model of Kane. This has been adopted for analysis of the IOAC and MG taking InAs, InSb, Hg1-xCdxTe, and In1-xGaxAsyP1-y lattice matched to InP, as example of III-V compound semiconductors, having varied split-off energy band compared to their bulk band gap energy. It has been found that magnitude of the IOAC for quantum dots increases with increasing incident photon energy and the lines of absorption are more closely spaced in the three band model of Kane than those with parabolic energy band approximations reflecting the direct the influence of energy band parameters. The results show a significant deviation to the MG spectrum of narrow-gap materials having band nonparabolicity compared to the parabolic band model approximations. The results reflect the important role of valence band split-off energies in these narrow gap semiconductors.
Quantum effects on compressional Alfven waves in compensated semiconductors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Amin, M. R.
2015-03-15
Amplitude modulation of a compressional Alfven wave in compensated electron-hole semiconductor plasmas is considered in the quantum magnetohydrodynamic regime in this paper. The important ingredients of this study are the inclusion of the particle degeneracy pressure, exchange-correlation potential, and the quantum diffraction effects via the Bohm potential in the momentum balance equations of the charge carriers. A modified nonlinear Schrödinger equation is derived for the evolution of the slowly varying amplitude of the compressional Alfven wave by employing the standard reductive perturbation technique. Typical values of the parameters for GaAs, GaSb, and GaN semiconductors are considered in analyzing the linearmore » and nonlinear dispersions of the compressional Alfven wave. Detailed analysis of the modulation instability in the long-wavelength regime is presented. For typical parameter ranges of the semiconductor plasmas and at the long-wavelength regime, it is found that the wave is modulationally unstable above a certain critical wavenumber. Effects of the exchange-correlation potential and the Bohm potential in the wave dynamics are also studied. It is found that the effect of the Bohm potential may be neglected in comparison with the effect of the exchange-correlation potential in the linear and nonlinear dispersions of the compressional Alfven wave.« less
NASA Astrophysics Data System (ADS)
Liu, Ying-Feng; Hung, Wei-Ling; Hou, Tzh-Yin; Huang, Hsiu-Ying; Lin, Cheng-An J.
2016-04-01
Traditional fluorescent labelling techniques has severe photo-bleaching problem such as organic dyes and fluorescent protein. Quantum dots made up of traditional semiconductor (CdSe/ZnS) material has sort of biological toxicity. This research has developed novel Cd-free quantum dots divided into semiconductor (Indium phosphide, InP) and noble metal (Gold). Former has lower toxicity compared to traditional quantum dots. Latter consisting of gold (III) chloride (AuCl3) and toluene utilizes sonochemical preparation and different stimulus to regulate fluorescent wavelength. Amphoteric macromolecule surface technology and ligand Exchange in self-Assembled are involved to develop hydrophilic nanomaterials which can regulate the number of grafts per molecule of surface functional groups. Calcium phosphate (CaP) nanoparticle (NP) with an asymmetric lipid bilayer coating technology developed for intracellular delivery and labelling has synthesized Cd-free quantum dots possessing high brightness and multi-fluorescence successfully. Then, polymer coating and ligand exchange transfer to water-soluble materials to produce liposome nanomaterials as fluorescent probes and enhancing medical applications of nanotechnology.
Frequency doubling of an InGaAs multiple quantum wells semiconductor disk laser
NASA Astrophysics Data System (ADS)
Lidan, Jiang; Renjiang, Zhu; Maohua, Jiang; Dingke, Zhang; Yuting, Cui; Peng, Zhang; Yanrong, Song
2018-01-01
We demonstrate a good beam quality 483 nm blue coherent radiation from a frequency doubled InGaAs multiple quantum wells semiconductor disk laser. The gain chip is consisted of 6 repeats of strain uncompensated InGaAs/GaAs quantum wells and 25 pairs of GaAs/AlAs distributed Bragg reflector. A 4 × 4 × 7 mm3 type I phase-matched BBO nonlinear crystal is used in a V-shaped laser cavity for the second harmonic generation, and 210 mW blue output power is obtained when the absorbed pump power is 3.5 W. The M2 factors of the laser beam in x and y directions are about 1.04 and 1.01, respectively. The output power of the blue laser is limited by the relatively small number of the multiple quantum wells, and higher power can be expected by increasing the number of the multiple quantum wells and improving the heat management of the laser.
Magneto-ballistic transport in GaN nanowires
DOE Office of Scientific and Technical Information (OSTI.GOV)
Santoruvo, Giovanni, E-mail: giovanni.santoruvo@epfl.ch; Allain, Adrien; Ovchinnikov, Dmitry
2016-09-05
The ballistic filtering property of nanoscale crosses was used to investigate the effect of perpendicular magnetic fields on the ballistic transport of electrons on wide band-gap GaN heterostructures. The straight scattering-less trajectory of electrons was modified by a perpendicular magnetic field which produced a strong non-linear behavior in the measured output voltage of the ballistic filters and allowed the observation of semi-classical and quantum effects, such as quenching of the Hall resistance and manifestation of the last plateau, in excellent agreement with the theoretical predictions. A large measured phase coherence length of 190 nm allowed the observation of universal quantum fluctuationsmore » and weak localization of electrons due to quantum interference up to ∼25 K. This work also reveals the prospect of wide band-gap GaN semiconductors as a platform for basic transport and quantum studies, whose properties allow the investigation of ballistic transport and quantum phenomena at much larger voltages and temperatures than in other semiconductors.« less
Controlling the Properties of Matter with Quantum Dots
DOE Office of Scientific and Technical Information (OSTI.GOV)
Klimov, Victor
2017-03-22
Solar cells and photodetectors could soon be made from new types of materials based on semiconductor quantum dots, thanks to new insights based on ultrafast measurements capturing real-time photoconversion processes. Photoconversion is a process wherein the energy of a photon, or quantum of light, is converted into other forms of energy, for example, chemical or electrical. Semiconductor quantum dots are chemically synthesized crystalline nanoparticles that have been studied for more than three decades in the context of various photoconversion schemes including photovoltaics (generation of photo-electricity) and photo-catalysis (generation of “solar fuels”). The appeal of quantum dots comes from the unmatchedmore » tunability of their physical properties, which can be adjusted by controlling the size, shape and composition of the dots. At Los Alamos, the research connects to the institutional mission of solving national security challenges through scientific excellence, in this case focusing on novel physical principles for highly efficient photoconversion, charge manipulation in exploratory device structures and novel nanomaterials.« less
On-demand semiconductor single-photon source with near-unity indistinguishability.
He, Yu-Ming; He, Yu; Wei, Yu-Jia; Wu, Dian; Atatüre, Mete; Schneider, Christian; Höfling, Sven; Kamp, Martin; Lu, Chao-Yang; Pan, Jian-Wei
2013-03-01
Single-photon sources based on semiconductor quantum dots offer distinct advantages for quantum information, including a scalable solid-state platform, ultrabrightness and interconnectivity with matter qubits. A key prerequisite for their use in optical quantum computing and solid-state networks is a high level of efficiency and indistinguishability. Pulsed resonance fluorescence has been anticipated as the optimum condition for the deterministic generation of high-quality photons with vanishing effects of dephasing. Here, we generate pulsed single photons on demand from a single, microcavity-embedded quantum dot under s-shell excitation with 3 ps laser pulses. The π pulse-excited resonance-fluorescence photons have less than 0.3% background contribution and a vanishing two-photon emission probability. Non-postselective Hong-Ou-Mandel interference between two successively emitted photons is observed with a visibility of 0.97(2), comparable to trapped atoms and ions. Two single photons are further used to implement a high-fidelity quantum controlled-NOT gate.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carroll, Malcolm S.; rochette, sophie; Rudolph, Martin
We introduce a silicon metal-oxide-semiconductor quantum dot structure that achieves dot-reservoir tunnel coupling control without a dedicated barrier gate. The elementary structure consists of two accumulation gates separated spatially by a gap, one gate accumulating a reservoir and the other a quantum dot. Control of the tunnel rate between the dot and the reservoir across the gap is demonstrated in the single electron regime by varying the reservoir accumulation gate voltage while compensating with the dot accumulation gate voltage. The method is then applied to a quantum dot connected in series to source and drain reservoirs, enabling transport down tomore » the single electron regime. Finally, tuning of the valley splitting with the dot accumulation gate voltage is observed. This split accumulation gate structure creates silicon quantum dots of similar characteristics to other realizations but with less electrodes, in a single gate stack subtractive fabrication process that is fully compatible with silicon foundry manufacturing.« less
Method and apparatus for electron-only radiation detectors from semiconductor materials
Lund, James C.
2000-01-01
A system for obtaining improved resolution in room temperature semiconductor radiation detectors such as CdZnTe and Hgl.sub.2, which exhibit significant hole-trapping. A electrical reference plane is established about the perimeter of a semiconductor crystal and disposed intermediately between two oppositely biased end electrodes. The intermediate reference plane comprises a narrow strip of wire in electrical contact with the surface of the crystal, biased at a potential between the end electrode potentials and serving as an auxiliary electrical reference for a chosen electrode--typically the collector electrode for the more mobile charge carrier. This arrangement eliminates the interfering effects of the less mobile carriers as these are gathered by their electrode collector.
Control of spin defects in wide-bandgap semiconductors for quantum technologies
Heremans, F. Joseph; Yale, Christopher G.; Awschalom, David D.
2016-05-24
Deep-level defects are usually considered undesirable in semiconductors as they typically interfere with the performance of present-day electronic and optoelectronic devices. However, the electronic spin states of certain atomic-scale defects have recently been shown to be promising quantum bits for quantum information processing as well as exquisite nanoscale sensors due to their local environmental sensitivity. In this review, we will discuss recent advances in quantum control protocols of several of these spin defects, the negatively charged nitrogen-vacancy (NV -) center in diamond and a variety of forms of the neutral divacancy (VV 0) complex in silicon carbide (SiC). These defectsmore » exhibit a spin-triplet ground state that can be controlled through a variety of techniques, several of which allow for room temperature operation. Microwave control has enabled sophisticated decoupling schemes to extend coherence times as well as nanoscale sensing of temperature along with magnetic and electric fields. On the other hand, photonic control of these spin states has provided initial steps toward integration into quantum networks, including entanglement, quantum state teleportation, and all-optical control. Electrical and mechanical control also suggest pathways to develop quantum transducers and quantum hybrid systems. In conclusion, the versatility of the control mechanisms demonstrated should facilitate the development of quantum technologies based on these spin defects.« less
Spatially indirect excitons in coupled quantum wells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lai, Chih-Wei Eddy
2004-03-01
Microscopic quantum phenomena such as interference or phase coherence between different quantum states are rarely manifest in macroscopic systems due to a lack of significant correlation between different states. An exciton system is one candidate for observation of possible quantum collective effects. In the dilute limit, excitons in semiconductors behave as bosons and are expected to undergo Bose-Einstein condensation (BEC) at a temperature several orders of magnitude higher than for atomic BEC because of their light mass. Furthermore, well-developed modern semiconductor technologies offer flexible manipulations of an exciton system. Realization of BEC in solid-state systems can thus provide new opportunitiesmore » for macroscopic quantum coherence research. In semiconductor coupled quantum wells (CQW) under across-well static electric field, excitons exist as separately confined electron-hole pairs. These spatially indirect excitons exhibit a radiative recombination time much longer than their thermal relaxation time a unique feature in direct band gap semiconductor based structures. Their mutual repulsive dipole interaction further stabilizes the exciton system at low temperature and screens in-plane disorder more effectively. All these features make indirect excitons in CQW a promising system to search for quantum collective effects. Properties of indirect excitons in CQW have been analyzed and investigated extensively. The experimental results based on time-integrated or time-resolved spatially-resolved photoluminescence (PL) spectroscopy and imaging are reported in two categories. (i) Generic indirect exciton systems: general properties of indirect excitons such as the dependence of exciton energy and lifetime on electric fields and densities were examined. (ii) Quasi-two-dimensional confined exciton systems: highly statistically degenerate exciton systems containing more than tens of thousands of excitons within areas as small as (10 micrometer) 2 were observed. The spatial and energy distributions of optically active excitons were used as thermodynamic quantities to construct a phase diagram of the exciton system, demonstrating the existence of distinct phases. Optical and electrical properties of the CQW sample were examined thoroughly to provide deeper understanding of the formation mechanisms of these cold exciton systems. These insights offer new strategies for producing cold exciton systems, which may lead to opportunities for the realization of BEC in solid-state systems.« less
Novel engineered compound semiconductor heterostructures for advanced electronics applications
NASA Astrophysics Data System (ADS)
Stillman, Gregory E.; Holonyak, Nick, Jr.; Coleman, James J.
1992-06-01
To provide the technology base that will enable SDIO capitalization on the performance advantages offered through novel engineered multiple-lavered compound semiconductor structures, this project has focussed on three specific areas: (1) carbon doping of AlGaAs/GaAs and InP/InGaAs materials for reliable high frequency heterojunction bipolar transistors; (2) impurity induced layer disordering and the environmental degradation of AlxGal-xAs-GaAs quantum-well heterostructures and the native oxide stabilization of AlxGal-xAs-GaAs quantum well heterostructure lasers; and (3) non-planar and strained-layer quantum well heterostructure lasers and laser arrays. The accomplishments in this three year research are reported in fifty-six publications and the abstracts included in this report.
Analytical model of ground-state lasing phenomenon in broadband semiconductor quantum dot lasers
NASA Astrophysics Data System (ADS)
Korenev, Vladimir V.; Savelyev, Artem V.; Zhukov, Alexey E.; Omelchenko, Alexander V.; Maximov, Mikhail V.
2013-05-01
We introduce an analytical approach to the description of broadband lasing spectra of semiconductor quantum dot lasers emitting via ground-state optical transitions of quantum dots. The explicit analytical expressions describing the shape and the width of lasing spectra as well as their temperature and injection current dependences are obtained in the case of low homogeneous broadening. It is shown that in this case these dependences are determined by only two dimensionless parameters, which are the dispersion of the distribution of QDs over the energy normalized to the temperature and loss-to-maximum gain ratio. The possibility of optimization of laser's active region size and structure by using the intentionally introduced disorder is also carefully considered.
Semiconductor Quantum Dots for Biomedicial Applications
Shao, Lijia; Gao, Yanfang; Yan, Feng
2011-01-01
Semiconductor quantum dots (QDs) are nanometre-scale crystals, which have unique photophysical properties, such as size-dependent optical properties, high fluorescence quantum yields, and excellent stability against photobleaching. These properties enable QDs as the promising optical labels for the biological applications, such as multiplexed analysis of immunocomplexes or DNA hybridization processes, cell sorting and tracing, in vivo imaging and diagnostics in biomedicine. Meanwhile, QDs can be used as labels for the electrochemical detection of DNA or proteins. This article reviews the synthesis and toxicity of QDs and their optical and electrochemical bioanalytical applications. Especially the application of QDs in biomedicine such as delivering, cell targeting and imaging for cancer research, and in vivo photodynamic therapy (PDT) of cancer are briefly discussed. PMID:22247690
Entangling quantum-logic gate operated with an ultrabright semiconductor single-photon source.
Gazzano, O; Almeida, M P; Nowak, A K; Portalupi, S L; Lemaître, A; Sagnes, I; White, A G; Senellart, P
2013-06-21
We demonstrate the unambiguous entangling operation of a photonic quantum-logic gate driven by an ultrabright solid-state single-photon source. Indistinguishable single photons emitted by a single semiconductor quantum dot in a micropillar optical cavity are used as target and control qubits. For a source brightness of 0.56 photons per pulse, the measured truth table has an overlap with the ideal case of 68.4±0.5%, increasing to 73.0±1.6% for a source brightness of 0.17 photons per pulse. The gate is entangling: At a source brightness of 0.48, the Bell-state fidelity is above the entangling threshold of 50% and reaches 71.0±3.6% for a source brightness of 0.15.
Optimal and Local Connectivity Between Neuron and Synapse Array in the Quantum Dot/Silicon Brain
NASA Technical Reports Server (NTRS)
Duong, Tuan A.; Assad, Christopher; Thakoor, Anikumar P.
2010-01-01
This innovation is used to connect between synapse and neuron arrays using nanowire in quantum dot and metal in CMOS (complementary metal oxide semiconductor) technology to enable the density of a brain-like connection in hardware. The hardware implementation combines three technologies: 1. Quantum dot and nanowire-based compact synaptic cell (50x50 sq nm) with inherently low parasitic capacitance (hence, low dynamic power approx.l0(exp -11) watts/synapse), 2. Neuron and learning circuits implemented in 50-nm CMOS technology, to be integrated with quantum dot and nanowire synapse, and 3. 3D stacking approach to achieve the overall numbers of high density O(10(exp 12)) synapses and O(10(exp 8)) neurons in the overall system. In a 1-sq cm of quantum dot layer sitting on a 50-nm CMOS layer, innovators were able to pack a 10(exp 6)-neuron and 10(exp 10)-synapse array; however, the constraint for the connection scheme is that each neuron will receive a non-identical 10(exp 4)-synapse set, including itself, via its efficacy of the connection. This is not a fully connected system where the 100x100 synapse array only has a 100-input data bus and 100-output data bus. Due to the data bus sharing, it poses a great challenge to have a complete connected system, and its constraint within the quantum dot and silicon wafer layer. For an effective connection scheme, there are three conditions to be met: 1. Local connection. 2. The nanowire should be connected locally, not globally from which it helps to maximize the data flow by sharing the same wire space location. 3. Each synapse can have an alternate summation line if needed (this option is doable based on the simple mask creation). The 10(exp 3)x10(exp 3)-neuron array was partitioned into a 10-block, 10(exp 2)x10(exp 3)-neuron array. This building block can be completely mapped within itself (10,000 synapses to a neuron).
Rhenium ion beam for implantation into semiconductors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kulevoy, T. V.; Seleznev, D. N.; Alyoshin, M. E.
2012-02-15
At the ion source test bench in Institute for Theoretical and Experimental Physics the program of ion source development for semiconductor industry is in progress. In framework of the program the Metal Vapor Vacuum Arc ion source for germanium and rhenium ion beam generation was developed and investigated. It was shown that at special conditions of ion beam implantation it is possible to fabricate not only homogenous layers of rhenium silicides solid solutions but also clusters of this compound with properties of quantum dots. At the present moment the compound is very interesting for semiconductor industry, especially for nanoelectronics andmore » nanophotonics, but there is no very developed technology for production of nanostructures (for example quantum sized structures) with required parameters. The results of materials synthesis and exploration are presented.« less
Silicon Quantum Dots with Counted Antimony Donor Implants
DOE Office of Scientific and Technical Information (OSTI.GOV)
Singh, Meenakshi; Pacheco, Jose L.; Perry, Daniel Lee
2015-10-01
Deterministic control over the location and number of donors is crucial to donor spin quantum bits (qubits) in semiconductor based quantum computing. A focused ion beam is used to implant close to quantum dots. Ion detectors are integrated next to the quantum dots to sense the implants. The numbers of ions implanted can be counted to a precision of a single ion. Regular coulomb blockade is observed from the quantum dots. Charge offsets indicative of donor ionization, are observed in devices with counted implants.
Anisotropic exchange interaction induced by a single photon in semiconductor microcavities
NASA Astrophysics Data System (ADS)
Chiappe, G.; Fernández-Rossier, J.; Louis, E.; Anda, E. V.
2005-12-01
We investigate coupling of localized spins in a semiconductor quantum dot embedded in a microcavity. The lowest cavity mode and the quantum dot exciton are coupled and close in energy, forming a polariton. The fermions forming the exciton interact with localized spins via exchange. Exact diagonalization of a Hamiltonian in which photons, spins, and excitons are treated quantum mechanically shows that a single polariton induces a sizable indirect anisotropic exchange interaction between spins. At sufficiently low temperatures strong ferromagnetic correlations show up without an appreciable increase in exciton population. In the case of a (Cd,Mn)Te quantum dot, Mn-Mn ferromagnetic coupling is still significant at 1 K : spin-spin correlation around 3 for exciton occupation smaller than 0.3. We find that the interaction mediated by photon-polaritons is 10 times stronger than the one induced by a classical field for equal Rabi splitting.
Chaffin, R.J.; Dawson, L.R.; Fritz, I.J.; Osbourn, G.C.; Zipperian, T.E.
1987-06-08
A field effect transistor comprises a semiconductor having a source, a drain, a channel and a gate in operational relationship. The semiconductor is a strained layer superlattice comprising alternating quantum well and barrier layers, the quantum well layers and barrier layers being selected from the group of layer pairs consisting of InGaAs/AlGaAs, InAs/InAlGaAs, and InAs/InAlAsP. The layer thicknesses of the quantum well and barrier layers are sufficiently thin that the alternating layers constitute a superlattice which has a superlattice conduction band energy level structure in k-vector space. The layer thicknesses of the quantum well layers are selected to provide a superlattice L/sub 2D/-valley which has a shape which is substantially more two-dimensional than that of said bulk L-valley. 2 figs.
Semiconductor-inspired design principles for superconducting quantum computing.
Shim, Yun-Pil; Tahan, Charles
2016-03-17
Superconducting circuits offer tremendous design flexibility in the quantum regime culminating most recently in the demonstration of few qubit systems supposedly approaching the threshold for fault-tolerant quantum information processing. Competition in the solid-state comes from semiconductor qubits, where nature has bestowed some very useful properties which can be utilized for spin qubit-based quantum computing. Here we begin to explore how selective design principles deduced from spin-based systems could be used to advance superconducting qubit science. We take an initial step along this path proposing an encoded qubit approach realizable with state-of-the-art tunable Josephson junction qubits. Our results show that this design philosophy holds promise, enables microwave-free control, and offers a pathway to future qubit designs with new capabilities such as with higher fidelity or, perhaps, operation at higher temperature. The approach is also especially suited to qubits on the basis of variable super-semi junctions.
Surface Traps in Colloidal Quantum Dots: A Combined Experimental and Theoretical Perspective
2017-01-01
Surface traps are ubiquitous to nanoscopic semiconductor materials. Understanding their atomistic origin and manipulating them chemically have capital importance to design defect-free colloidal quantum dots and make a leap forward in the development of efficient optoelectronic devices. Recent advances in computing power established computational chemistry as a powerful tool to describe accurately complex chemical species and nowadays it became conceivable to model colloidal quantum dots with realistic sizes and shapes. In this Perspective, we combine the knowledge gathered in recent experimental findings with the computation of quantum dot electronic structures. We analyze three different systems: namely, CdSe, PbS, and CsPbI3 as benchmark semiconductor nanocrystals showing how different types of trap states can form at their surface. In addition, we suggest experimental healing of such traps according to their chemical origin and nanocrystal composition. PMID:28972763
NASA Astrophysics Data System (ADS)
Kim, Jungho
2013-11-01
We theoretically investigate the phase recovery acceleration of quantum-dot (QD) semiconductor optical amplifiers (SOAs) by means of the optical pump injection to the quantum-well (QW) wetting layer (WL). We compare the ultrafast gain and phase recovery responses of QD SOAs in either the electrical or the optical pumping scheme by numerically solving 1088 coupled rate equations. The ultrafast gain recovery responses on the order of sub-picosecond are nearly the same for the two pumping schemes. The ultrafast phase recovery is not significantly accelerated by increasing the electrical current density, but greatly improved by increasing the optical pumping power to the QW WL. Because the phase recovery time of QD SOAs with the optical pumping scheme can be reduced down to several picoseconds, the complete phase recovery can be achieved when consecutive pulse signals with a repetition rate of 100 GHz is injected.
One-dimensional quantum matter: gold-induced nanowires on semiconductor surfaces
NASA Astrophysics Data System (ADS)
Dudy, L.; Aulbach, J.; Wagner, T.; Schäfer, J.; Claessen, R.
2017-11-01
Interacting electrons confined to only one spatial dimension display a wide range of unusual many-body quantum phenomena, ranging from Peierls instabilities to the breakdown of the canonical Fermi liquid paradigm to even unusual spin phenomena. The underlying physics is not only of tremendous fundamental interest, but may also have bearing on device functionality in future micro- and nanoelectronics with lateral extensions reaching the atomic limit. Metallic adatoms deposited on semiconductor surfaces may form self-assembled atomic nanowires, thus representing highly interesting and well-controlled solid-state realizations of such 1D quantum systems. Here we review experimental and theoretical investigations on a few selected prototypical nanowire surface systems, specifically Ge(0 0 1)-Au and Si(hhk)-Au, and the search for 1D quantum states in them. We summarize the current state of research and identify open questions and issues.
Size-Dependent Optoelectronic Properties and Controlled Doping of Semiconductor Quantum Dots
NASA Astrophysics Data System (ADS)
Engel, Jesse Hart
Given a rapidly developing world, the need exists for inexpensive renewable energy alternatives to help avoid drastic climate change. Photovoltaics have the potential to fill the energy needs of the future, but significant cost decreases are necessary for widespread adoption. Semiconductor nanocrystals, also known as quantum dots, are a nascent technology with long term potential to enable inexpensive and high efficiency photovoltaics. When deposited as a film, quantum dots form unique nanocomposites whose electronic and optical properties can be broadly tuned through manipulation of their individual constituents. The contents of this thesis explore methods to understand and optimize the optoelectronic properties of PbSe quantum dot films for use in photovoltaic applications. Systematic optimization of photovoltaic performance is demonstrated as a function of nanocrystal size, establishing the potential for utilizing extreme quantum confinement to improve device energetics and alignment. Detailed investigations of the mechanisms of electrical transport are performed, revealing that electronic coupling in quantum dot films is significantly less than often assumed based on optical shifts. A method is proposed to employ extended regions of built-in electrical field, through controlled doping, to sidestep issues of poor transport. To this end, treatments with chemical redox agents are found to effect profound and reversible doping within nanocrystal films, sufficient to enable their use as chemical sensors, but lacking the precision required for optoelectronic applications. Finally, a novel doping method employing "redox buffers" is presented to enact precise, stable, and reversible charge-transfer doping in porous semiconductor films. An example of oxidatively doping PbSe quantum dot thin films is presented, and the future potential for redox buffers in photovoltaic applications is examined.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nozik, Arthur J; Beard, Matthew C
The challenge of photoconversion research is to produce photovoltaic electricity at costs much less than those based on fossil fuels. Novel photoactive semiconductors and molecules of various types and structures are discussed for this purpose.
Kjaergaard, M; Nichele, F; Suominen, H J; Nowak, M P; Wimmer, M; Akhmerov, A R; Folk, J A; Flensberg, K; Shabani, J; Palmstrøm, C J; Marcus, C M
2016-09-29
Coupling a two-dimensional (2D) semiconductor heterostructure to a superconductor opens new research and technology opportunities, including fundamental problems in mesoscopic superconductivity, scalable superconducting electronics, and new topological states of matter. One route towards topological matter is by coupling a 2D electron gas with strong spin-orbit interaction to an s-wave superconductor. Previous efforts along these lines have been adversely affected by interface disorder and unstable gating. Here we show measurements on a gateable InGaAs/InAs 2DEG with patterned epitaxial Al, yielding devices with atomically pristine interfaces between semiconductor and superconductor. Using surface gates to form a quantum point contact (QPC), we find a hard superconducting gap in the tunnelling regime. When the QPC is in the open regime, we observe a first conductance plateau at 4e 2 /h, consistent with theory. The hard-gap semiconductor-superconductor system demonstrated here is amenable to top-down processing and provides a new avenue towards low-dissipation electronics and topological quantum systems.
Ballistic superconductivity in semiconductor nanowires
Zhang, Hao; Gül, Önder; Conesa-Boj, Sonia; Nowak, Michał P.; Wimmer, Michael; Zuo, Kun; Mourik, Vincent; de Vries, Folkert K.; van Veen, Jasper; de Moor, Michiel W. A.; Bommer, Jouri D. S.; van Woerkom, David J.; Car, Diana; Plissard, Sébastien R; Bakkers, Erik P.A.M.; Quintero-Pérez, Marina; Cassidy, Maja C.; Koelling, Sebastian; Goswami, Srijit; Watanabe, Kenji; Taniguchi, Takashi; Kouwenhoven, Leo P.
2017-01-01
Semiconductor nanowires have opened new research avenues in quantum transport owing to their confined geometry and electrostatic tunability. They have offered an exceptional testbed for superconductivity, leading to the realization of hybrid systems combining the macroscopic quantum properties of superconductors with the possibility to control charges down to a single electron. These advances brought semiconductor nanowires to the forefront of efforts to realize topological superconductivity and Majorana modes. A prime challenge to benefit from the topological properties of Majoranas is to reduce the disorder in hybrid nanowire devices. Here we show ballistic superconductivity in InSb semiconductor nanowires. Our structural and chemical analyses demonstrate a high-quality interface between the nanowire and a NbTiN superconductor that enables ballistic transport. This is manifested by a quantized conductance for normal carriers, a strongly enhanced conductance for Andreev-reflecting carriers, and an induced hard gap with a significantly reduced density of states. These results pave the way for disorder-free Majorana devices. PMID:28681843
Optical Properties of A GaInNAs Multi-Quantum Well Semiconductor
NASA Astrophysics Data System (ADS)
Hughes, Timothy S.; Ren, Shang-Fen; Jiang, De-Sheng; Xiaogan, Liang
2002-03-01
Optoelectronic devices used today depend on lasers that have wavelengths in the optical fiber transmission window of 1.3 to 1.55 micrometers. When using GaAs substrate semiconductor lasers, we typically see this range of light emission. Quaternary materials, such as GaInNAs grown on this substrate, not only allow us to control the output wavelength, but it also allows us to manipulate the lattice constant. Further research has potential to produce low-costing highly efficient Vertical Cavity Surface Emitting Lasers (VCSEL). Using a Fourier-Transform Spectrometer, a method of using a Michelson Interferometer to measure the interference between two coherent beams, we measured and analyzed the photoluminescence spectra of a GaInNAs multi-quantum well semiconductor, grown using the Molecular Beam Epitaxy (MBE) growth technique. The experiments of this research were carried out in an undergraduate international research experience at the Chinese Semiconductor Institute supported by the Division of International Programs of NSF.
Comparison of the Optical Properties of Graphene and Alkyl-terminated Si and Ge Quantum Dots.
de Weerd, Chris; Shin, Yonghun; Marino, Emanuele; Kim, Joosung; Lee, Hyoyoung; Saeed, Saba; Gregorkiewicz, Tom
2017-10-31
Semiconductor quantum dots are widely investigated due to their size dependent energy structure. In particular, colloidal quantum dots represent a promising nanomaterial for optoelectronic devices, such as photodetectors and solar cells, but also luminescent markers for biotechnology, among other applications. Ideal materials for these applications should feature efficient radiative recombination and absorption transitions, altogether with spectral tunability over a wide range. Group IV semiconductor quantum dots can fulfill these requirements and serve as an alternative to the commonly used direct bandgap materials containing toxic and/or rare elements. Here, we present optical properties of butyl-terminated Si and Ge quantum dots and compare them to those of graphene quantum dots, finding them remarkably similar. We investigate their time-resolved photoluminescence emission as well as the photoluminescence excitation and linear absorption spectra. We contemplate that their emission characteristics indicate a (semi-) resonant activation of the emitting channel; the photoluminescence excitation shows characteristics similar to those of a molecule. The optical density is consistent with band-to-band absorption processes originating from core-related states. Hence, these observations strongly indicate a different microscopic origin for absorption and radiative recombination in the three investigated quantum dot systems.
Silicon Metal-oxide-semiconductor Quantum Dots for Single-electron Pumping
Rossi, Alessandro; Tanttu, Tuomo; Hudson, Fay E.; Sun, Yuxin; Möttönen, Mikko; Dzurak, Andrew S.
2015-01-01
As mass-produced silicon transistors have reached the nano-scale, their behavior and performances are increasingly affected, and often deteriorated, by quantum mechanical effects such as tunneling through single dopants, scattering via interface defects, and discrete trap charge states. However, progress in silicon technology has shown that these phenomena can be harnessed and exploited for a new class of quantum-based electronics. Among others, multi-layer-gated silicon metal-oxide-semiconductor (MOS) technology can be used to control single charge or spin confined in electrostatically-defined quantum dots (QD). These QD-based devices are an excellent platform for quantum computing applications and, recently, it has been demonstrated that they can also be used as single-electron pumps, which are accurate sources of quantized current for metrological purposes. Here, we discuss in detail the fabrication protocol for silicon MOS QDs which is relevant to both quantum computing and quantum metrology applications. Moreover, we describe characterization methods to test the integrity of the devices after fabrication. Finally, we give a brief description of the measurement set-up used for charge pumping experiments and show representative results of electric current quantization. PMID:26067215
Elastic strain relaxation in GaInAsP/InP membrane quantum wire structures
NASA Astrophysics Data System (ADS)
Ferdous, Fahmida; Haque, A.
2006-12-01
Strain distribution in GaInAsP/InP compressively strained membrane quantum wires (with low refractive index polymer cladding layers) fabricated by electron-beam lithography, reactive-ion etching and two-step epitaxial growth is theoretically calculated using finite element analysis. Results are compared with those of its conventional counterpart in which InP cladding layers are used. It is found that the etching away of the InP cladding layers in membrane structures causes a redistribution of elastic strain. The normal strain along the growth direction is the most affected component during this redistribution. We have also studied the effects of varying wire width, barrier tensile strain and other parameters on the strain relaxation. The effective bandgap in the presence of strain relaxation is also estimated. Results show that owing to the redistribution of strain, membrane structures exhibit an increase in the effective bandgap.
The ``Music'' of Light: Optical Resonances for Fun and Profit
NASA Astrophysics Data System (ADS)
Beausoleil, Raymond
Moore's Law has set great expectations that the performance/price ratio of commercially available semiconductor devices will continue to improve exponentially at least until the end of this decade. But the physics of the metal wires that connect the transistors on a silicon chip already places stringent limits on the performance of integrated circuits, making their continued dramatic improvement highly unlikely. In this talk, I will introduce the basic concept of an optical resonance in a microscopic dielectric cavity in the context of the same type of spatial boundary conditions that give each musical instrument its unique sound. Then I will illustrate applications of these resonances to information technology in a variety of forms and functions using examples from my own laboratory at HP, such as chip-scale optical networks, quantum bits based on spins in diamond, and ultrafast optical switches that could become the foundation for a new generation of optical computers. Our goal is to conduct advanced research that could precipitate an ``optical Moore's Law'' and allow exponential performance gains to continue through the end of the next decade.
NASA Astrophysics Data System (ADS)
Boettcher, Shannon
2010-03-01
Micron-scale Si wire arrays are three-dimensional photovoltaic absorbers that enable orthogonalization of light absorption and carrier collection and hence allow for the utilization of relatively impure Si in efficient solar cell designs. The wire arrays are grown by a vapor-liquid-solid-catalyzed process on a crystalline (111) Si wafer lithographically patterned with an array of metal catalyst particles. Following growth, such arrays can be embedded in polymethyldisiloxane (PDMS) and then peeled from the template growth substrate. The result is an unusual photovoltaic material: a flexible, bendable, wafer-thickness crystalline Si absorber. In this paper I will describe: 1. the growth of high-quality Si wires with controllable doping and the evaluation of their photovoltaic energy-conversion performance using a test electrolyte that forms a rectifying conformal semiconductor-liquid contact 2. the observation of enhanced absorption in wire arrays exceeding the conventional light trapping limits for planar Si cells of equivalent material thickness and 3. single-wire and large-area solid-state Si wire-array solar cell results obtained to date with directions for future cell designs based on optical and device physics. In collaboration with Michael Kelzenberg, Morgan Putnam, Joshua Spurgeon, Daniel Turner-Evans, Emily Warren, Nathan Lewis, and Harry Atwater, California Institute of Technology.
NASA Astrophysics Data System (ADS)
Dimastrodonato, Valeria; Pelucchi, Emanuele; Zestanakis, Panagiotis A.; Vvedensky, Dimitri D.
2013-07-01
We present a theoretical model of the formation of self-limited (Al)GaAs quantum wires within V-grooves on GaAs(001) substrates during metalorganic vapor-phase epitaxy. We identify the facet-dependent rates of the kinetic processes responsible for the formation of the self-limiting profile, which is accompanied by Ga segregation along the axis perpendicular to the bottom of the original template, and analyze their interplay with the facet geometry in the transient regime. A reduced model is adopted for the evolution of the patterned profile, as determined by the angle between the different crystallographic planes as a function of the growth conditions. Our results provide a comprehensive phenomenological understanding of the self-ordering mechanism on patterned surfaces which can be harnessed for designing the quantum optical properties of low-dimensional systems.
Non-abelian anyons and topological quantum information processing in 1D wire networks
NASA Astrophysics Data System (ADS)
Alicea, Jason
2012-02-01
Topological quantum computation provides an elegant solution to decoherence, circumventing this infamous problem at the hardware level. The most basic requirement in this approach is the ability to stabilize and manipulate particles exhibiting non-Abelian exchange statistics -- Majorana fermions being the simplest example. Curiously, Majorana fermions have been predicted to arise both in 2D systems, where non-Abelian statistics is well established, and in 1D, where exchange statistics of any type is ill-defined. An important question then arises: do Majorana fermions in 1D hold the same technological promise as their 2D counterparts? In this talk I will answer this question in the affirmative, describing how one can indeed manipulate and harness the non-Abelian statistics of Majoranas in a remarkably simple fashion using networks formed by quantum wires or topological insulator edges.
Photon-Electron Interactions in Dirac Quantum Materials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, Xiaodong
The objective of this proposal was to explore the fundamental light-matter interactions in a new class of Dirac quantum materials, atomically thin transition metal dichalcogenides (TMDs). Monolayer TMDs are newly discovered two-dimensional semiconductors with direct bandgap. Due to their hexagonal lattice structure, the band edge localizes at corner of Brillouin zone, i.e. “Dirac valleys”. This gives the corresponding electron states a “valley index” (or pseudospin) in addition to the real spin. Remarkably, the valley pseudospins have circularly polarized optical selection rules, providing the first solid state system for dynamic control of the valley degree of freedom. During this award, wemore » have developed a suite of advanced nano-optical spectroscopy tools in the investigation and manipulation of charge, spin, and valley degrees of freedom in monolayer semiconductors. Emerging physical phenomena, such as quantum coherence between valley pseudospins, have been demonstrated for the first time in solids. In addition to monolayers, we have developed a framework in engineering, formulating, and understanding valley pseudospin physics in 2D heterostructures formed by different monolayer semiconductors. We demonstrated long-lived valley-polarized interlayer excitons with valley-dependent many-body interaction effects. These works push the research frontier in understanding the light-matter interactions in atomically-thin quantum materials for protentional transformative energy technologies.« less
Increasing the critical thickness of InGaAs quantum wells using strain-relief technologies
NASA Astrophysics Data System (ADS)
Jones, Andrew Marquis
The advantages of optical communication through silica fiber have made long-distance electrical communication through copper wire obsolete. The two windows of operation for long-haul optical communication are centered around the wavelengths of 1.3 mum and 1.55 mum, which have minimal amounts of signal attenuation and dispersion. Benefits of optical communications within these windows include low system costs, high bandwidth, and high system reliability which have encouraged the development of emitters and receivers at these relatively long wavelengths. Long-wavelength semiconductor lasers are typically fabricated on InP substrates, but their performance suffers greatly with increases in operating temperature. Laser diodes on GaAs substrates are not as sensitive to operating temperature due to quantum-well active regions with relative deep potential barriers, but critical thickness limits the wavelength ceiling to 1.1 mum. Strain-relief technologies are currently being investigated to enable long-wavelength lasers with deeper potential wells leading to a corresponding increase in characteristic temperatures. Having a larger lattice constant than GaAs enables ternary InGaAs substrates to increase the 1.1-mum wavelength ceiling. Extending this ceiling to one of the optical communication windows could enable high-characteristic-temperature, long-wavelength lasers. Broad-area and buried-heterostructure lasers have demonstrated the potential of ternary substrates to increase characteristic temperatures and emission wavelengths. Wavelengths as long as 1.15 mum and characteristic temperatures as high as 145 K have been achieved. Reduced-area metalorganic chemical vapor deposition involves the deposition of strained materials on isolated islands. Due to the discontinuous nature of reduced-area epitaxy, strained materials are allowed to expand near the mesa edges, decreasing the overall strain in the structure. Laser diodes using this technology have been successfully fabricated, and evidence for partial relief of strain energy has been obtained. Compliant membranes enable strain relief by depositing on an ultra-thin semiconductor base. Unlike growth on typical thick substrates, expansion of the compliant membrane during strained-layer regrowth allows the membrane to accommodate most of the strain energy. Ternary InGaAs compliant films supported above a GaAs substrate with single AlGaAs pedestals have been utilized to fabricate long-wavelength (1.35 mum) InGaAs quantum wells on a GaAs substrate.
Senior Research Fellow Wins Major International Science Award | News | NREL
generation (MEG) in semiconductor nanocrystals, also called quantum dots, and recently found efficient MEG in silicon quantum dots. He shares the award with Stefan W. Glunz of the Fraunhofer Institute in Germany
Analysis of quantum semiconductor heterostructures by ballistic electron emission spectroscopy
NASA Astrophysics Data System (ADS)
Guthrie, Daniel K.
1998-09-01
The microelectronics industry is diligently working to achieve the goal of gigascale integration (GSI) by early in the 21st century. For the past twenty-five years, progress toward this goal has been made by continually scaling down device technology. Unfortunately, this trend cannot continue to the point of producing arbitrarily small device sizes. One possible solution to this problem that is currently under intensive study is the relatively new area of quantum devices. Quantum devices represent a new class of microelectronic devices that operate by utilizing the wave-like nature (reflection, refraction, and confinement) of electrons together with the laws of quantum mechanics to construct useful devices. One difficulty associated with these structures is the absence of measurement techniques that can fully characterize carrier transport in such devices. This thesis addresses this need by focusing on the study of carrier transport in quantum semiconductor heterostructures using a relatively new and versatile measurement technique known as ballistic electron emission spectroscopy (BEES). To achieve this goal, a systematic approach that encompasses a set of progressively more complex structures is utilized. First, the simplest BEES structure possible, the metal/semiconductor interface, is thoroughly investigated in order to provide a foundation for measurements on more the complex structures. By modifying the semiclassical model commonly used to describe the experimental BEES spectrum, a very complete and accurate description of the basic structure has been achieved. Next, a very simple semiconductor heterostructure, a Ga1-xAlxAs single-barrier structure, was measured and analyzed. Low-temperature measurements on this structure were used to investigate the band structure and electron-wave interference effects in the Ga1-xAlxAs single barrier structure. These measurements are extended to a simple quantum device by designing, measuring, and analyzing a set of complementary electron-wave Fabry-Perot quantum interference filters which included both a half- and a quarter-electron-wavelength resonant device. High-resolution, low noise, BEES spectra obtained on these devices at low-temperature were used to measure the zero-bias electron transmittance as a function of injected energy for these resonant devices. Finally, by analyzing BEES spectra taken at various spatial locations, one monolayer variations in the thickness of a buried quantum well have been detected.
Quantum currents and pair correlation of electrons in a chain of localized dots
NASA Astrophysics Data System (ADS)
Morawetz, Klaus
2017-03-01
The quantum transport of electrons in a wire of localized dots by hopping, interaction and dissipation is calculated and a representation by an equivalent RCL circuit is found. The exact solution for the electric-field induced currents allows to discuss the role of virtual currents to decay initial correlations and Bloch oscillations. The dynamical response function in random phase approximation (RPA) is calculated analytically with the help of which the static structure function and pair correlation function are determined. The pair correlation function contains a form factor from the Brillouin zone and a structure factor caused by the localized dots in the wire.
Long range spin qubit interaction mediated by microcavity polaritons
NASA Astrophysics Data System (ADS)
Piermarocchi, Carlo; Quinteiro, Guillermo F.; Fernandez-Rossier, Joaquin
2007-03-01
Planar microcavities are semiconductor devices that confine the electromagnetic field by means of two parallel semiconductor mirrors. When a quantum well (QW) is placed inside a planar microcavity, the excitons in the QW couple to confined electromagnetic modes. In the strong-coupling regime, excitons and cavity photons give rise to new states, cavity polaritons, which appear in two branches separated by a vacuum Rabi splitting. We study theoretically the dynamics of localized spins in the QW interacting with cavity polaritons. Our calculations consider localized electron spins of shallow neutral donors in GaAs (e.g., Si), but the theory is valid for other impurities and host semiconductors, as well as to charged quantum dots. In the strong-coupling regime, the vacuum Rabi splitting introduces anisotropies in the spin coupling. Moreover, due to their photon-like mass, polaritons provide an extremely long spin coupling range. This suggests the realization of two-qubit all-optical quantum operations within tens of picoseconds with spins localized as far as hundreds of nanometers apart. [G. F. Quinteiro et al., Phys. Rev. Lett. 97 097401, (2006)].
Antenna coupled photonic wire lasers
Kao, Tsung-Kao; Cai, Xiaowei; Lee, Alan W. M.; ...
2015-06-22
Slope efficiency (SE) is an important performance metric for lasers. In conventional semiconductor lasers, SE can be optimized by careful designs of the facet (or the modulation for DFB lasers) dimension and surface. However, photonic wire lasers intrinsically suffer low SE due to their deep sub-wavelength emitting facets. Inspired by microwave engineering techniques, we show a novel method to extract power from wire lasers using monolithically integrated antennas. These integrated antennas significantly increase the effective radiation area, and consequently enhance the power extraction efficiency. When applied to wire lasers at THz frequency, we achieved the highest single-side slope efficiency (~450more » mW/A) in pulsed mode for DFB lasers at 4 THz and a ~4x increase in output power at 3 THz compared with a similar structure without antennas. This work demonstrates the versatility of incorporating microwave engineering techniques into laser designs, enabling significant performance enhancements.« less
Fano Effect and Quantum Entanglement in Hybrid Semiconductor Quantum Dot-Metal Nanoparticle System.
He, Yong; Zhu, Ka-Di
2017-06-20
In this paper, we review the investigation for the light-matter interaction between surface plasmon field in metal nanoparticle (MNP) and the excitons in semiconductor quantum dots (SQDs) in hybrid SQD-MNP system under the full quantum description. The exciton-plasmon interaction gives rise to the modified decay rate and the exciton energy shift which are related to the exciton energy by using a quantum transformation method. We illustrate the responses of the hybrid SQD-MNP system to external field, and reveal Fano effect shown in the absorption spectrum. We demonstrate quantum entanglement between two SQD mediated by surface plasmon field. In the absence of a laser field, concurrence of quantum entanglement will disappear after a few ns. If the laser field is present, the steady states appear, so that quantum entanglement produced will reach a steady-state entanglement. Because one of all optical pathways to induce Fano effect refers to the generation of quantum entangled states, It is shown that the concurrence of quantum entanglement can be obtained by observation for Fano effect. In a hybrid system including two MNP and a SQD, because the two Fano quantum interference processes share a segment of all optical pathways, there is correlation between the Fano effects of the two MNP. The investigations for the light-matter interaction in hybrid SQD-MNP system can pave the way for the development of the optical processing devices and quantum information based on the exciton-plasmon interaction.
Fano Effect and Quantum Entanglement in Hybrid Semiconductor Quantum Dot-Metal Nanoparticle System
He, Yong; Zhu, Ka-Di
2017-01-01
In this paper, we review the investigation for the light-matter interaction between surface plasmon field in metal nanoparticle (MNP) and the excitons in semiconductor quantum dots (SQDs) in hybrid SQD-MNP system under the full quantum description. The exciton-plasmon interaction gives rise to the modified decay rate and the exciton energy shift which are related to the exciton energy by using a quantum transformation method. We illustrate the responses of the hybrid SQD-MNP system to external field, and reveal Fano effect shown in the absorption spectrum. We demonstrate quantum entanglement between two SQD mediated by surface plasmon field. In the absence of a laser field, concurrence of quantum entanglement will disappear after a few ns. If the laser field is present, the steady states appear, so that quantum entanglement produced will reach a steady-state entanglement. Because one of all optical pathways to induce Fano effect refers to the generation of quantum entangled states, It is shown that the concurrence of quantum entanglement can be obtained by observation for Fano effect. In a hybrid system including two MNP and a SQD, because the two Fano quantum interference processes share a segment of all optical pathways, there is correlation between the Fano effects of the two MNP. The investigations for the light-matter interaction in hybrid SQD-MNP system can pave the way for the development of the optical processing devices and quantum information based on the exciton-plasmon interaction. PMID:28632165
Sensing the THz Field by an Array of Carbon Nanotube Quantum Wells
2012-10-31
semiconductors. They are rather quasiparticles which are characterized by chirality and pseudospins. (iii) The electron transport occurs through numerous...approaches. (ii) The elementary excitations in the CNT are not mere electrons and holes as it is in regular semiconductors. They are rather quasiparticles
Advanced Space-Based Detector Research at the Air Force Research Laboratory (PREPRINT)
2006-10-01
purposes. The dark backgrounds place very stringent requirements on the noise characteristics of the sensor system, resulting in FPAs that must be cooled...2.1. Quantum interference Quantum well infrared photodetectors ( QWIPs ) are based on intersubband absorption in III–V semiconductor multi-quantum well...Although considerable progress has been made in QWIPs , their relatively low quantum efficiencies constitute their greatest problem for space-based
Aluminum-Scandium: A Material for Semiconductor Packaging
NASA Astrophysics Data System (ADS)
Geissler, Ute; Thomas, Sven; Schneider-Ramelow, Martin; Mukhopadhyay, Biswajit; Lang, Klaus-Dieter
2016-10-01
A well-known aluminum-scandium (Al-Sc) alloy, already used in lightweight sports equipment, is about to be established for use in electronic packaging. One application for Al-Sc alloy is manufacture of bonding wires. The special feature of the alloy is its ability to harden by precipitation. The new bonding wires with electrical conductivity similar to pure Al wires can be processed on common wire bonders for aluminum wedge/wedge (w/w) bonding. The wires exhibit very fine-grained microstructure. Small Al3Sc particles are the main reason for its high strength and prevent recrystallization and grain growth at higher temperatures (>150°C). After the wire-bonding process, the interface is well closed. Reliability investigations by active power cycling demonstrated considerably improved lifetime compared with pure Al heavy wires. Furthermore, the Al-Sc alloy was sputter-deposited onto silicon wafer to test it as chip metallization in copper (Cu) ball/wedge bonding technology. After deposition, the layers exhibited fine-grained columnar structure and small coherent Al3Sc particles with dimensions of a few nanometers. These particles inhibit softening processes such as Al splashing in fine wire bonding processes and increase the thickness of remnant Al under the copper balls to 85% of the initial thickness.
1993-05-14
Lent 6 I We have studied transmission in quantum waveguides in the presence of resonant cavities. This work was inspired by our previous modeling of the...conductance of resonantly- coupled quantum wire systems. We expected to find qualitatively the same phenomena as in the much studied case of double...transmission peaks does not give the location of the quasi-bound3 states, like for double-barrier resonant tunneling. In current work, we study
Spin-based quantum computation in multielectron quantum dots
NASA Astrophysics Data System (ADS)
Hu, Xuedong; Das Sarma, S.
2001-10-01
In a quantum computer the hardware and software are intrinsically connected because the quantum Hamiltonian (or more precisely its time development) is the code that runs the computer. We demonstrate this subtle and crucial relationship by considering the example of electron-spin-based solid-state quantum computer in semiconductor quantum dots. We show that multielectron quantum dots with one valence electron in the outermost shell do not behave simply as an effective single-spin system unless special conditions are satisfied. Our work compellingly demonstrates that a delicate synergy between theory and experiment (between software and hardware) is essential for constructing a quantum computer.
Kushwaha, Manvir S
2011-09-28
We report on the theoretical investigation of the elementary electronic excitations in a quantum wire made up of vertically stacked self-assembled InAs/GaAs quantum dots. The length scales (of a few nanometers) involved in the experimental setups prompt us to consider an infinitely periodic system of two-dimensionally confined (InAs) quantum dot layers separated by GaAs spacers. The resultant quantum wire is characterized by a two-dimensional harmonic confining potential in the x-y plane and a periodic (Kronig-Penney) potential along the z (or the growth) direction within the tight-binding approximation. Since the wells and barriers are formed from two different materials, we employ the Bastard's boundary conditions in order to determine the eigenfunctions along the z direction. These wave functions are then used to generate the Wannier functions, which, in turn, constitute the legitimate Bloch functions that govern the electron dynamics along the direction of periodicity. Thus, the Bloch functions and the Hermite functions together characterize the whole system. We then make use of the Bohm-Pines' (full) random-phase approximation in order to derive a general nonlocal, dynamic dielectric function. Thus, developed theoretical framework is then specified to work within a (lowest miniband and) two-subband model that enables us to scrutinize the single-particle as well as collective responses of the system. We compute and discuss the behavior of the eigenfunctions, band-widths, density of states, Fermi energy, single-particle and collective excitations, and finally size up the importance of studying the inverse dielectric function in relation with the quantum transport phenomena. It is remarkable to notice how the variation in the barrier- and well-widths can allow us to tailor the excitation spectrum in the desired energy range. Given the advantage of the vertically stacked quantum dots over the planar ones and the foreseen applications in the single-electron devices and in the quantum computation, it is quite interesting and important to explore the electronic, optical, and transport phenomena in such systems. © 2011 American Institute of Physics
DOE Office of Scientific and Technical Information (OSTI.GOV)
De Geronimo, G.; Li, S.; D'Andragora, A.
We present a front-end application-specific integrated circuit (ASIC) for a wire based time-projection-chamber (TPC) operating in liquid Argon (LAr). The LAr TPC will be used for long baseline neutrino oscillation experiments. The ASIC must provide a low-noise readout of the signals induced on the TPC wires, digitization of those signals at 2 MSamples/s, compression, buffering and multiplexing. A resolution of better than 1000 rms electrons at 200 pF input capacitance for an input range of 300 fC is required, along with low power and operation in LAr (at 87 K). We include the characterization of a commercial technology for operationmore » in the cryogenic environment and the first experimental results on the analog front end. The results demonstrate that complementary metal-oxide semiconductor transistors have lower noise and much improved dc characteristics at LAr temperature. Finally, we introduce the concept of '1/f equivalent' to model the low-frequency component of the noise spectral density, for use in the input metal-oxide semiconductor field-effect transistor optimization.« less
Landau quantization effects on hole-acoustic instability in semiconductor plasmas
NASA Astrophysics Data System (ADS)
Sumera, P.; Rasheed, A.; Jamil, M.; Siddique, M.; Areeb, F.
2017-12-01
The growth rate of the hole acoustic waves (HAWs) exciting in magnetized semiconductor quantum plasma pumped by the electron beam has been investigated. The instability of the waves contains quantum effects including the exchange and correlation potential, Bohm potential, Fermi-degenerate pressure, and the magnetic quantization of semiconductor plasma species. The effects of various plasma parameters, which include relative concentration of plasma particles, beam electron temperature, beam speed, plasma temperature (temperature of electrons/holes), and Landau electron orbital magnetic quantization parameter η, on the growth rate of HAWs, have been discussed. The numerical study of our model of acoustic waves has been applied, as an example, to the GaAs semiconductor exposed to electron beam in the magnetic field environment. An increment in either the concentration of the semiconductor electrons or the speed of beam electrons, in the presence of magnetic quantization of fermion orbital motion, enhances remarkably the growth rate of the HAWs. Although the growth rate of the waves reduces with a rise in the thermal temperature of plasma species, at a particular temperature, we receive a higher instability due to the contribution of magnetic quantization of fermions to it.
Thermal-Error Regime in High-Accuracy Gigahertz Single-Electron Pumping
NASA Astrophysics Data System (ADS)
Zhao, R.; Rossi, A.; Giblin, S. P.; Fletcher, J. D.; Hudson, F. E.; Möttönen, M.; Kataoka, M.; Dzurak, A. S.
2017-10-01
Single-electron pumps based on semiconductor quantum dots are promising candidates for the emerging quantum standard of electrical current. They can transfer discrete charges with part-per-million (ppm) precision in nanosecond time scales. Here, we employ a metal-oxide-semiconductor silicon quantum dot to experimentally demonstrate high-accuracy gigahertz single-electron pumping in the regime where the number of electrons trapped in the dot is determined by the thermal distribution in the reservoir leads. In a measurement with traceability to primary voltage and resistance standards, the averaged pump current over the quantized plateau, driven by a 1-GHz sinusoidal wave in the absence of a magnetic field, is equal to the ideal value of e f within a measurement uncertainty as low as 0.27 ppm.
Gioannini, Mariangela; Dommermuth, Marius; Drzewietzki, Lukas; Krestnikov, Igor; Livshits, Daniil; Krakowski, Michel; Breuer, Stefan
2014-01-01
We exploit the coupled emission-states of a single-chip semiconductor InAs/GaAs quantum-dot laser emitting simultaneously on ground-state (λGS = 1245 nm) and excited-state (λES = 1175 nm) to demonstrate coupled-two-state self-mixing velocimetry for a moving diffuse reflector. A 13 Hz-narrow Doppler beat frequency signal at 317 Hz is obtained for a reflector velocity of 3 mm/s, which exemplifies a 66-fold improvement in width as compared to single-wavelength self-mixing velocimetry. Simulation results reveal the physical origin of this signal, the coupling of excited-state and ground-state photons via the carriers, which is unique for quantum-dot lasers and reproduce the experimental results with excellent agreement. PMID:25321809
NASA Astrophysics Data System (ADS)
Zhang, Xiang; Dutta, Niloy K.
2018-01-01
We investigate all-optical logic operation in quantum-dot semiconductor optical amplifier (QD-SOA) based Mach-Zehnder interferometer considering the effects of two-photon absorption (TPA). TPA occurs during the propagation of sub-picosecond pulses in QD-SOA, which leads to a change in carrier recovery dynamics in quantum-dots. We utilize a rate equation model to take into account carrier refill through TPA and nonlinear dynamics including carrier heating and spectral hole burning in the QD-SOA. The simulation results show the TPA-induced pumping in the QD-SOA can reduce the pattern effect and increase the output quality of the all-optical logic operation. With TPA, this scheme is suitable for high-speed Boolean logic operation at 320 Gb/s.
Quantum Information Processing with Large Nuclear Spins in GaAs Semiconductors
NASA Astrophysics Data System (ADS)
Leuenberger, Michael N.; Loss, Daniel; Poggio, M.; Awschalom, D. D.
2002-10-01
We propose an implementation for quantum information processing based on coherent manipulations of nuclear spins I=3/2 in GaAs semiconductors. We describe theoretically an NMR method which involves multiphoton transitions and which exploits the nonequidistance of nuclear spin levels due to quadrupolar splittings. Starting from known spin anisotropies we derive effective Hamiltonians in a generalized rotating frame, valid for arbitrary I, which allow us to describe the nonperturbative time evolution of spin states generated by magnetic rf fields. We identify an experimentally observable regime for multiphoton Rabi oscillations. In the nonlinear regime, we find Berry phase interference.
NASA Astrophysics Data System (ADS)
Kim, Jungho
2014-02-01
The effect of additional optical pumping injection into the ground-state ensemble on the ultrafast gain and the phase recovery dynamics of electrically-driven quantum-dot semiconductor optical amplifiers is numerically investigated by solving 1088 coupled rate equations. The ultrafast gain and the phase recovery responses are calculated with respect to the additional optical pumping power. Increasing the additional optical pumping power can significantly accelerate the ultrafast phase recovery, which cannot be done by increasing the injection current density.
High speed all optical logic gates based on quantum dot semiconductor optical amplifiers.
Ma, Shaozhen; Chen, Zhe; Sun, Hongzhi; Dutta, Niloy K
2010-03-29
A scheme to realize all-optical Boolean logic functions AND, XOR and NOT using semiconductor optical amplifiers with quantum-dot active layers is studied. nonlinear dynamics including carrier heating and spectral hole-burning are taken into account together with the rate equations scheme. Results show with QD excited state and wetting layer serving as dual-reservoir of carriers, as well as the ultra fast carrier relaxation of the QD device, this scheme is suitable for high speed Boolean logic operations. Logic operation can be carried out up to speed of 250 Gb/s.
Kailasa, Suresh Kumar; Cheng, Kuang-Hung; Wu, Hui-Fen
2013-01-01
Semiconductor quantum dots (QDs) or nanoparticles (NPs) exhibit very unusual physico-chemcial and optical properties. This review article introduces the applications of semiconductor nanomaterials (NMs) in fluorescence spectroscopy and matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) for biomolecule analysis. Due to their unique physico-chemical and optical properties, semiconductors NMs have created many new platforms for investigating biomolecular structures and information in modern biology. These semiconductor NMs served as effective fluorescent probes for sensing proteins and cells and acted as affinity or concentrating probes for enriching peptides, proteins and bacteria proteins prior to MALDI-MS analysis. PMID:28788422
NASA Astrophysics Data System (ADS)
Gao, Guilong; Tian, Jinshou; Wang, Tao; He, Kai; Zhang, Chunmin; Zhang, Jun; Chen, Shaorong; Jia, Hui; Yuan, Fenfang; Liang, Lingliang; Yan, Xin; Li, Shaohui; Wang, Chao; Yin, Fei
2017-11-01
We report and experimentally demonstrate an ultrafast all-optical imaging technique capable of single-shot ultrafast recording with a picosecond-scale temporal resolution and a micron-order two-dimensional spatial resolution. A GaAs/AlxGa1 - xAs multiple-quantum-well (MQW) semiconductor with a picosecond response time, grown using molecular beam epitaxy (MBE) at a low temperature (LT), is used for the first time in ultrafast imaging technology. The semiconductor transforms the signal beam information to the probe beam, the birefringent delay crystal time-serializes the input probe beam, and the beam displacer maps different polarization probe beams onto different detector locations, resulting in two frames with an approximately 9 ps temporal separation and approximately 25 lp/mm spatial resolution in the visible range.
2013-01-01
GaN wires are grown on a Si (111) substrate by metal organic vapour-phase epitaxy on a thin deposited AlN blanket and through a thin SiNx layer formed spontaneously at the AlN/Si interface. N-doped wires are used as templates for the growth of core-shell InGaN/GaN multiple quantum wells coated by a p-doped shell. Standing single-wire heterostructures are connected using a metallic tip and a Si substrate backside contact, and the electroluminescence at room temperature and forward bias is demonstrated at 420 nm. This result points out the feasibility of lower cost nitride-based wires for light-emitting diode applications. PMID:23391377
2014-09-01
Squeezed light from injection- locked quantum well lasers ,” Phys. Rev. Lett., vol. 71, pp. 3951–3954, 1993. [30] A. E. Siegman , Lasers , 1st ed...AFRL-RY-WP-TP-2014-0297 TUNABLE OSCILLATIONS IN OPTICALLY INJECTED SEMICONDUCTOR LASERS WITH REDUCED SENSITIVITY TO PERTURBATIONS -POSTPRINT...OSCILLATIONS IN OPTICALLY INJECTED SEMICONDUCTOR LASERS WITH REDUCED SENSITIVITY TO PERTURBATIONS - POSTPRINT 5a. CONTRACT NUMBER In-House 5b. GRANT NUMBER
1988-05-31
Hooge parameter. 2. 1 / f Noise of the Recombination Current Generated in the Depletion Region The quantum i/ f ...theory. There are two forms of quantum 11f noise . In the first place C~ and Cn4 p n to quantum 1 / f noise theory. This would yield Hooge parameters S...Fundamental Quantum 1 / f Noise in Ultrasmall S~ iodcrD’vesadOtm.Dsgn P in. 12. PERSONAL AUTHOR(S) Handel, Peter H. (Princioal investiaat r) 13a. TYPE
The emission wavelength dependent photoluminescence lifetime of the N-doped graphene quantum dots
DOE Office of Scientific and Technical Information (OSTI.GOV)
Deng, Xingxia; School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210; University of Chinese Academy of Sciences, Beijing 100049
2015-12-14
Aromatic nitrogen doped graphene quantum dots were investigated by steady-state and time-resolved photoluminescence (PL) techniques. The PL lifetime was found to be dependent on the emission wavelength and coincident with the PL spectrum, which is different from most semiconductor quantum dots and fluorescent dyes. This result shows the synergy and competition between the quantum confinement effect and edge functional groups, which may have the potential to guide the synthesis and expand the applications of graphene quantum dots.
Quantum memory on a charge qubit in an optical microresonator
NASA Astrophysics Data System (ADS)
Tsukanov, A. V.
2017-10-01
A quantum-memory unit scheme on the base of a semiconductor structure with quantum dots is proposed. The unit includes a microresonator with single and double quantum dots performing frequencyconverter and charge-qubit functions, respectively. The writing process is carried out in several stages and it is controlled by optical fields of the resonator and laser. It is shown that, to achieve high writing probability, it is necessary to use high-Q resonators and to be able to suppress relaxation processes in quantum dots.
Effect of the Semiconductor Quantum Dot Shell Structure on Fluorescence Quenching by Acridine Ligand
NASA Astrophysics Data System (ADS)
Linkov, P. A.; Vokhmintcev, K. V.; Samokhvalov, P. S.; Laronze-Cochard, M.; Sapi, J.; Nabiev, I. R.
2018-02-01
The main line of research in cancer treatment is the development of methods for early diagnosis and targeted drug delivery to cancer cells. Fluorescent semiconductor core/shell nanocrystals of quantum dots (e.g., CdSe/ZnS) conjugated with an anticancer drug, e.g., an acridine derivative, allow real-time tracking and control of the process of the drug delivery to tumors. However, linking of acridine derivatives to a quantum dot can be accompanied by quantum dot fluorescence quenching caused by electron transfer from the quantum dot to the organic molecule. In this work, it has been shown that the structure of the shell of the quantum dot plays the decisive role in the process of photoinduced charge transfer from the quantum dot to the acridine ligand, which is responsible for fluorescence quenching. It has been shown that multicomponent ZnS/CdS/ZnS shells of CdSe cores of quantum dots, which have a relatively small thickness, make it possible to significantly suppress a decrease in the quantum yield of fluorescence of quantum dots as compared to both the classical ZnS thin shell and superthick shells of the same composition. Thus, core/multicomponent shell CdSe/ZnS/CdS/ZnS quantum dots can be used as optimal fluorescent probes for the development of systems for diagnosis and treatment of cancer with the use of anticancer compounds based on acridine derivatives.
Electronic structure and quantum transport properties of metallic and semiconducting nanowires
NASA Astrophysics Data System (ADS)
Simbeck, Adam J.
The future of the semiconductor industry hinges upon new developments to combat the scaling issues that currently afflict two main chip components: transistors and interconnects. For transistors this means investigating suitable materials to replace silicon for both the insulating gate and the semiconducting channel in order to maintain device performance with decreasing size. For interconnects this equates to overcoming the challenges associated with copper when the wire dimensions approach the confinement limit, as well as continuing to develop low-k dielectric materials that can assure minimal cross-talk between lines. In addition, such challenges make it increasingly clear that device design must move from a top-down to a bottom-up approach in which the desired electronic characteristics are tailored from first-principles. It is with such fundamental hurdles in mind that ab initio calculations on the electronic and quantum transport properties of nanoscale metallic and semiconducting wires have been performed. More specifically, this study seeks to elaborate on the role played by confinement, contacts, dielectric environment, edge decoration, and defects in altering the electronic and transport characteristics of such systems. As experiments continue to achieve better control over the synthesis and design of nanowires, these results are expected to become increasingly more important for not only the interpretation of electronic and transport trends, but also in engineering the electronic structure of nanowires for the needs of the devices of the future. For the metallic atomic wires, the quantum transport properties are first investigated by considering finite, single-atom chains of aluminum, copper, gold, and silver sandwiched between gold contacts. Non-equilibrium Green's function based transport calculations reveal that even in the presence of the contact the conductivity of atomic-scale aluminum is greater than that of the other metals considered. This is in opposition to the situation in the bulk where the conductivity of aluminum is well known to be the lowest amongst these four metals. The better performance of aluminum is attributed to its higher density of states near the Fermi energy, which is the determining factor in the ballistic limit. The results from the finite systems are corroborated by the study of the electronic structure of truly one-dimensional atomic wires where it is confirmed that aluminum is more conductive than copper, gold, or silver. The one-dimensional results are attributed to the higher number of eigenchannels available in aluminum wires, which is the determining factor in the periodic structure. For the semiconducting wires, ultra-thin and fully hydrogen-passivated silicon and germanium systems oriented along the [110] direction are considered in an attempt to understand the role of the substrate in modulating the band structure of the wire. The electronic structures of free-standing and graphene supported SiH2 and GeH2 atomic wires are investigated using a combination of first-principles density functional theory and many-body perturbation theory. The band gaps predicted from density functional theory are essentially unaffected by the presence of the graphene substrate, whereas the quasiparticle gaps computed under the GW approximation are substantially reduced. The quasiparticle band gaps of the SiH2 and GeH2 wires decrease by ˜1.1 eV when supported by graphene. This decrease is attributed to a substrate-induced polarization effect which is more effective at screening the Coulomb interaction. These results extend the substrate-induced quasiparticle band gap renormalization to semiconducting wires composed of silicon and germanium, and shows that besides size and orientation, the substrate can also be used to engineer the band gap of semiconducting wires. Finally, for both metallic and semiconducting nanowires, the role of oxygen edge functionalization in armchair graphene nanoribbons is investigated. Although the benefits of carbon-based nanomaterials have been well documented, their unique electronic properties have yet to be realized in a practical device. The results demonstrate that the introduction of oxygen results in a rich geometrical environment, which in turn determines the electronic and magnetic properties of the ribbon. If the geometry of the ribbon is forced to remain planar then a degenerate, magnetic ground state is predicted whose electronic structure depends upon the magnetic coupling between nanoribbon edges. Allowing the nanoribbon to adopt a non-planar geometry though drastically reduces the energy of the system and the magnetic coupling reported in the planar case is lost. The more energetically favorable non-planar geometry is attributed to a steric interaction resulting from the level of oxygen concentration. The electronic structures of the non-planar ribbons display three band gap families whose gaps generally decrease with increasing ribbon width. The band gap trends as a function of width for the 3p and 3p + 2 families are promising for larger width nanoribbons with sizable band gaps.
Reconfigurable quadruple quantum dots in a silicon nanowire transistor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Betz, A. C., E-mail: ab2106@cam.ac.uk; Broström, M.; Gonzalez-Zalba, M. F.
2016-05-16
We present a reconfigurable metal-oxide-semiconductor multi-gate transistor that can host a quadruple quantum dot in silicon. The device consists of an industrial quadruple-gate silicon nanowire field-effect transistor. Exploiting the corner effect, we study the versatility of the structure in the single quantum dot and the serial double quantum dot regimes and extract the relevant capacitance parameters. We address the fabrication variability of the quadruple-gate approach which, paired with improved silicon fabrication techniques, makes the corner state quantum dot approach a promising candidate for a scalable quantum information architecture.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baart, T. A.; Vandersypen, L. M. K.; Kavli Institute of Nanoscience, Delft University of Technology, P.O. Box 5046, 2600 GA Delft
We report the computer-automated tuning of gate-defined semiconductor double quantum dots in GaAs heterostructures. We benchmark the algorithm by creating three double quantum dots inside a linear array of four quantum dots. The algorithm sets the correct gate voltages for all the gates to tune the double quantum dots into the single-electron regime. The algorithm only requires (1) prior knowledge of the gate design and (2) the pinch-off value of the single gate T that is shared by all the quantum dots. This work significantly alleviates the user effort required to tune multiple quantum dot devices.
Plasmon-induced carrier polarization in semiconductor nanocrystals.
Yin, Penghui; Tan, Yi; Fang, Hanbing; Hegde, Manu; Radovanovic, Pavle V
2018-06-01
Spintronics 1 and valleytronics 2 are emerging quantum electronic technologies that rely on using electron spin and multiple extrema of the band structure (valleys), respectively, as additional degrees of freedom. There are also collective properties of electrons in semiconductor nanostructures that potentially could be exploited in multifunctional quantum devices. Specifically, plasmonic semiconductor nanocrystals 3-10 offer an opportunity for interface-free coupling between a plasmon and an exciton. However, plasmon-exciton coupling in single-phase semiconductor nanocrystals remains challenging because confined plasmon oscillations are generally not resonant with excitonic transitions. Here, we demonstrate a robust electron polarization in degenerately doped In 2 O 3 nanocrystals, enabled by non-resonant coupling of cyclotron magnetoplasmonic modes 11 with the exciton at the Fermi level. Using magnetic circular dichroism spectroscopy, we show that intrinsic plasmon-exciton coupling allows for the indirect excitation of the magnetoplasmonic modes, and subsequent Zeeman splitting of the excitonic states. Splitting of the band states and selective carrier polarization can be manipulated further by spin-orbit coupling. Our results effectively open up the field of plasmontronics, which involves the phenomena that arise from intrinsic plasmon-exciton and plasmon-spin interactions. Furthermore, the dynamic control of carrier polarization is readily achieved at room temperature, which allows us to harness the magnetoplasmonic mode as a new degree of freedom in practical photonic, optoelectronic and quantum-information processing devices.
Plasmon-induced carrier polarization in semiconductor nanocrystals
NASA Astrophysics Data System (ADS)
Yin, Penghui; Tan, Yi; Fang, Hanbing; Hegde, Manu; Radovanovic, Pavle V.
2018-06-01
Spintronics1 and valleytronics2 are emerging quantum electronic technologies that rely on using electron spin and multiple extrema of the band structure (valleys), respectively, as additional degrees of freedom. There are also collective properties of electrons in semiconductor nanostructures that potentially could be exploited in multifunctional quantum devices. Specifically, plasmonic semiconductor nanocrystals3-10 offer an opportunity for interface-free coupling between a plasmon and an exciton. However, plasmon-exciton coupling in single-phase semiconductor nanocrystals remains challenging because confined plasmon oscillations are generally not resonant with excitonic transitions. Here, we demonstrate a robust electron polarization in degenerately doped In2O3 nanocrystals, enabled by non-resonant coupling of cyclotron magnetoplasmonic modes11 with the exciton at the Fermi level. Using magnetic circular dichroism spectroscopy, we show that intrinsic plasmon-exciton coupling allows for the indirect excitation of the magnetoplasmonic modes, and subsequent Zeeman splitting of the excitonic states. Splitting of the band states and selective carrier polarization can be manipulated further by spin-orbit coupling. Our results effectively open up the field of plasmontronics, which involves the phenomena that arise from intrinsic plasmon-exciton and plasmon-spin interactions. Furthermore, the dynamic control of carrier polarization is readily achieved at room temperature, which allows us to harness the magnetoplasmonic mode as a new degree of freedom in practical photonic, optoelectronic and quantum-information processing devices.
Quantum theory of the electronic and optical properties of low-dimensional semiconductor systems
NASA Astrophysics Data System (ADS)
Lau, Wayne Heung
This thesis examines the electronic and optical properties of low-dimensional semiconductor systems. A theory is developed to study the electron-hole generation-recombination process of type-II semimetallic semiconductor heterojunctions based on a 3 x 3 k·p matrix Hamiltonian (three-band model) and an 8 x 8 k·p matrix Hamiltonian (eight-band model). A novel electron-hole generation and recombination process, which is called activationless generation-recombination process, is predicted. It is demonstrated that the current through the type-II semimetallic semiconductor heterojunctions is governed by the activationless electron-hole generation-recombination process at the heterointerfaces, and that the current-voltage characteristics are essentially linear. A qualitative agreement between theory and experiments is observed. The numerical results of the eight-band model are compared with those of the threeband model. Based on a lattice gas model, a theory is developed to study the influence of a random potential on the ionization equilibrium conditions for bound electron-hole pairs (excitons) in III--V semiconductor heterostructures. It is demonstrated that ionization equilibrium conditions for bound electron-hole pairs change drastically in the presence of strong disorder. It is predicted that strong disorder promotes dissociation of excitons in III--V semiconductor heterostructures. A theory of polariton (photon dressed by phonon) spontaneous emission in a III--V semiconductor doped with semiconductor quantum dots (QDs) or quantum wells (QWs) is developed. For the first time, superradiant and subradiant polariton spontaneous emission phenomena in a polariton-QD (QW) coupled system are predicted when the resonance energies of the two identical QDs (QWs) lie outside the polaritonic energy gap. It is also predicted that when the resonance energies of the two identical QDs (QWs) lie inside the polaritonic energy gap, spontaneous emission of polariton in the polariton-QD (QW) coupled system is inhibited and polariton bound states are formed within the polaritonic energy gap. A theory is also developed to study the polariton eigenenergy spectrum, polariton effective mass, and polariton spectral density of N identical semiconductor QDs (QWs) or a superlattice (SL) placed inside a III--V semiconductor. A polariton-impurity band lying within the polaritonic energy gap of the III--V semiconductor is predicted when the resonance energies of the QDs (QWs) lie inside the polaritonic energy gap. Hole-like polariton effective mass of the polariton-impurity band is predicted. It is also predicted that the spectral density of the polariton has a Lorentzian shape if the resonance energies of the QDs (QWs) lie outside the polaritonic gap.
Time-Resolved Electronic Relaxation Processes in Self-Organized Quantum Dots
2005-05-16
in a quantum dot infrared photodetector ,” paper CthM11, presented at CLEO, Baltimore, 2003. K. Kim, T. Norris, J. Singh, P. Bhattacharya...nanostructures have been equally spectacular. Following the development of quantum-well infrared photodetectors in the late 1980’s and early 90’s...4]. The quantum cascade laser is of course the best known of the new devices, as it constitutes an entirely new concept in semiconductor laser
2016-03-24
for and success in achieving single quantum dot vacuum Rabi splitting in 2004 (quantum strong coupling, currently 1,354 citations) [6, 7] was...Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity.” Nature 432, 200-203 (2004...7. G. Khitrova, H. M. Gibbs, M. Kira, S. W. Koch, and A. Scherer, “Vacuum Rabi splitting in semiconductors.” Nature Physics 2, 81 (2006). 8. G
Optical Properties of Fluorescent Mixtures: Comparing Quantum Dots to Organic Dyes
ERIC Educational Resources Information Center
Hutchins, Benjamin M.; Morgan, Thomas T.; Ucak-Astarlioglu, Mine G.; Wlilliams, Mary Elizabeth
2007-01-01
The study describes and compares the size-dependent optical properties of organic dyes with those of semiconductor nanocrystals or quantum dots (QDs). The analysis shows that mixtures of QDs contain emission colors that are sum of the individual QD components.
NASA Astrophysics Data System (ADS)
Gaudreau, Louis; Bogan, Alex; Korkusinski, Marek; Studenikin, Sergei; Austing, D. Guy; Sachrajda, Andrew S.
2017-09-01
Long distance entanglement distribution is an important problem for quantum information technologies to solve. Current optical schemes are known to have fundamental limitations. A coherent photon-to-spin interface built with quantum dots (QDs) in a direct bandgap semiconductor can provide a solution for efficient entanglement distribution. QD circuits offer integrated spin processing for full Bell state measurement (BSM) analysis and spin quantum memory. Crucially the photo-generated spins can be heralded by non-destructive charge detection techniques. We review current schemes to transfer a polarization-encoded state or a time-bin-encoded state of a photon to the state of a spin in a QD. The spin may be that of an electron or that of a hole. We describe adaptations of the original schemes to employ heavy holes which have a number of attractive properties including a g-factor that is tunable to zero for QDs in an appropriately oriented external magnetic field. We also introduce simple throughput scaling models to demonstrate the potential performance advantage of full BSM capability in a QD scheme, even when the quantum memory is imperfect, over optical schemes relying on linear optical elements and ensemble quantum memories.
Photon induced non-linear quantized double layer charging in quaternary semiconducting quantum dots.
Nair, Vishnu; Ananthoju, Balakrishna; Mohapatra, Jeotikanta; Aslam, M
2018-03-15
Room temperature quantized double layer charging was observed in 2 nm Cu 2 ZnSnS 4 (CZTS) quantum dots. In addition to this we observed a distinct non-linearity in the quantized double layer charging arising from UV light modulation of double layer. UV light irradiation resulted in a 26% increase in the integral capacitance at the semiconductor-dielectric (CZTS-oleylamine) interface of the quantum dot without any change in its core size suggesting that the cause be photocapacitive. The increasing charge separation at the semiconductor-dielectric interface due to highly stable and mobile photogenerated carriers cause larger electrostatic forces between the quantum dot and electrolyte leading to an enhanced double layer. This idea was supported by a decrease in the differential capacitance possible due to an enhanced double layer. Furthermore the UV illumination enhanced double layer gives us an AC excitation dependent differential double layer capacitance which confirms that the charging process is non-linear. This ultimately illustrates the utility of a colloidal quantum dot-electrolyte interface as a non-linear photocapacitor. Copyright © 2017 Elsevier Inc. All rights reserved.
Electrical control of a solid-state flying qubit.
Yamamoto, Michihisa; Takada, Shintaro; Bäuerle, Christopher; Watanabe, Kenta; Wieck, Andreas D; Tarucha, Seigo
2012-03-18
Solid-state approaches to quantum information technology are attractive because they are scalable. The coherent transport of quantum information over large distances is a requirement for any practical quantum computer and has been demonstrated by coupling super-conducting qubits to photons. Single electrons have also been transferred between distant quantum dots in times shorter than their spin coherence time. However, until now, there have been no demonstrations of scalable 'flying qubit' architectures-systems in which it is possible to perform quantum operations on qubits while they are being coherently transferred-in solid-state systems. These architectures allow for control over qubit separation and for non-local entanglement, which makes them more amenable to integration and scaling than static qubit approaches. Here, we report the transport and manipulation of qubits over distances of 6 µm within 40 ps, in an Aharonov-Bohm ring connected to two-channel wires that have a tunable tunnel coupling between channels. The flying qubit state is defined by the presence of a travelling electron in either channel of the wire, and can be controlled without a magnetic field. Our device has shorter quantum gates (<1 µm), longer coherence lengths (∼86 µm at 70 mK) and higher operating frequencies (∼100 GHz) than other solid-state implementations of flying qubits.
A Semimetal Nanowire Rectifier: Balancing Quantum Confinement and Surface Electronegativity.
Sanchez-Soares, Alfonso; Greer, James C
2016-12-14
For semimetal nanowires with diameters on the order of 10 nm, a semimetal-to-semiconductor transition is observed due to quantum confinement effects. Quantum confinement in a semimetal lifts the degeneracy of the conduction and valence bands in a "zero" gap semimetal or shifts energy levels with a "negative" overlap to form conduction and valence bands. For semimetal nanowires with diameters less than 10 nm, the band gap energy can be significantly larger than the thermal energy at room temperature resulting in a new class of semiconductors suitable for nanoelectronics. As a nanowire's diameter is reduced, its surface-to-volume ratio increases rapidly leading to an increased impact of surface chemistry on its electronic structure. Energy level shifts to states in the vicinity of the Fermi energy with varying surface electronegativity are shown to be comparable in magnitude to quantum confinement effects arising in nanowires with diameters of a few nanometer; these two effects can counteract one another leading to semimetallic behavior at nanowire cross sections at which confinement effects would otherwise dominate. Abruptly changing the surface terminating species along the length of a nanowire can lead to an abrupt change in the surface electronegativity. This can result in the formation of a semimetal-semiconductor junction within a monomaterial nanowire without impurity doping nor requiring the formation of a heterojunction. Using density functional theory in tandem with a Green's function approach to determine electronic structure and charge transport, respectively, current rectification is calculated for such a junction. Current rectification ratios of the order of 10 3 -10 5 are predicted at applied biases as low as 300 mV. It is concluded that rectification can be achieved at essentially molecular length scales with conventional biasing, while rivaling the performance of macroscopic semiconductor diodes.
Xiang, Chengxiang; Haber, Joel; Marcin, Martin; Mitrovic, Slobodan; Jin, Jian; Gregoire, John M
2014-03-10
Combinatorial synthesis and screening of light absorbers are critical to material discoveries for photovoltaic and photoelectrochemical applications. One of the most effective ways to evaluate the energy-conversion properties of a semiconducting light absorber is to form an asymmetric junction and investigate the photogeneration, transport and recombination processes at the semiconductor interface. This standard photoelectrochemical measurement is readily made on a semiconductor sample with a back-side metallic contact (working electrode) and front-side solution contact. In a typical combinatorial material library, each sample shares a common back contact, requiring novel instrumentation to provide spatially resolved and thus sample-resolved measurements. We developed a multiplexing counter electrode with a thin layer assembly, in which a rectifying semiconductor/liquid junction was formed and the short-circuit photocurrent was measured under chopped illumination for each sample in a material library. The multiplexing counter electrode assembly demonstrated a photocurrent sensitivity of sub-10 μA cm(-2) with an external quantum yield sensitivity of 0.5% for each semiconductor sample under a monochromatic ultraviolet illumination source. The combination of cell architecture and multiplexing allows high-throughput modes of operation, including both fast-serial and parallel measurements. To demonstrate the performance of the instrument, the external quantum yields of 1819 different compositions from a pseudoquaternary metal oxide library, (Fe-Zn-Sn-Ti)Ox, at 385 nm were collected in scanning serial mode with a throughput of as fast as 1 s per sample. Preliminary screening results identified a promising ternary composition region centered at Fe0.894Sn0.103Ti0.0034Ox, with an external quantum yield of 6.7% at 385 nm.
Thermal emitter comprising near-zero permittivity materials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Luk, Ting S.; Campione, Salvatore; Sinclair, Michael B.
A novel thermal source comprising a semiconductor hyperbolic metamaterial provides control of the emission spectrum and the angular emission pattern. These properties arise because of epsilon-near-zero conditions in the semiconductor hyperbolic metamaterial. In particular, the thermal emission is dominated by the epsilon-near-zero effect in the doped quantum wells composing the semiconductor hyperbolic metamaterial. Furthermore, different properties are observed for s and p polarizations, following the characteristics of the strong anisotropy of hyperbolic metamaterials.
Inorganic Chemistry Solutions to Semiconductor Nanocrystal Problems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alvarado, Samuel R.; Guo, Yijun; Ruberu, T. Purnima A.
2014-03-15
The optoelectronic and chemical properties of semiconductor nanocrystals heavily depend on their composition, size, shape and internal structure, surface functionality, etc. Available strategies to alter these properties through traditional colloidal syntheses and ligand exchange methods place a premium on specific reaction conditions and surfactant combinations. In this invited review, we apply a molecular-level understanding of chemical precursor reactivity to reliably control the morphology, composition and intimate architecture (core/shell vs. alloyed) of semiconductor nanocrystals. We also describe our work aimed at achieving highly selective, low-temperature photochemical methods for the synthesis of semiconductor–metal and semiconductor–metal oxide photocatalytic nanocomposites. In addition, we describemore » our work on surface modification of semiconductor nanocrystal quantum dots using new approaches and methods that bypass ligand exchange, retaining the nanocrystal's native ligands and original optical properties, as well as on spectroscopic methods of characterization useful in determining surface ligand organization and chemistry. Using recent examples from our group and collaborators, we demonstrate how these efforts have lead to faster, wider and more systematic application of semiconductor nanocrystal-based materials to biological imaging and tracking, and to photocatalysis of unconventional substrates. We believe techniques and methods borrowed from inorganic chemistry (including coordination, organometallic and solid state chemistry) have much to offer in reaching a better understanding of the synthesis, functionalization and real-life application of such exciting materials as semiconductor nanocrystals (quantum dots, rods, tetrapods, etc.).« less
Transition to Quantum Turbulence and the Propagation of Vortex Loops at Finite Temperatures
NASA Astrophysics Data System (ADS)
Yamamoto, Shinji; Adachi, Hiroyuki; Tsubota, Makoto
2011-02-01
We performed numerical simulation of the transition to quantum turbulence and the propagation of vortex loops at finite temperatures in order to understand the experiments using vibrating wires in superfluid 4He by Yano et al. We injected vortex rings to a finite volume in order to simulate emission of vortices from the wire. When the injected vortices are dilute, they should decay by mutual friction. When they are dense, however, vortex tangle are generated through vortex reconnections and emit large vortex loops. The large vortex loops can travel a long distance before disappearing, which is much different from the dilute case. The numerical results are consistent with the experimental results.
Aqueous synthesis of III-V semiconductor GaP and InP exhibiting pronounced quantum confinement.
Gao, Shanmin; Lu, Jun; Chen, Nan; Zhao, Yan; Xie, Yi
2002-12-21
A mild aqueous synthesis route was successfully established to synthesize well crystallized and monodisperse GaP and InP nanocrystals, which were proved to exhibit pronounced quantum confinement by room-temperature UV/Vis adsorption and photoluminescence (PL) spectra.
Seeded Nanowire and Microwire Growth from Lithium Alloys.
Han, Sang Yun; Boebinger, Matthew G; Kondekar, Neha P; Worthy, Trevor J; McDowell, Matthew T
2018-06-06
Although vapor-liquid-solid (VLS) growth of nanowires from alloy seed particles is common in various semiconductor systems, related wire growth in all-metal systems is rare. Here, we report the spontaneous growth of nano- and microwires from metal seed particles during the cooling of Li-rich bulk alloys containing Au, Ag, or In. The as-grown wires feature Au-, Ag-, or In-rich metal tips and LiOH shafts; the results indicate that the wires grow as Li metal and are converted to polycrystalline LiOH during and/or after growth due to exposure to H 2 O and O 2 . This new process is a simple way to create nanostructures, and the findings suggest that metal nanowire growth from alloy seeds is possible in a variety of systems.
Shell Filling and Magnetic Anisotropy In A Few Hole Silicon Metal-Oxide-Semiconductor Quantum Dot
NASA Astrophysics Data System (ADS)
Hamilton, Alex; Li., R.; Liles, S. D.; Yang, C. H.; Hudson, F. E.; Veldhorst, M. E.; Dzurak, A. S.
There is growing interest in hole spin states in group IV materials for quantum information applications. The near-absence of nuclear spins in group IV crystals promises long spin coherence times, while the strong spin-orbit interaction of the hole states provides fast electrical spin manipulation methods. However, the level-mixing and magnetic field dependence of the p-orbital hole states is non-trivial in nanostructures, and is not as well understood as for electron systems. In this work, we study the hole states in a gate-defined silicon metal-oxide-semiconductor quantum dot. Using an adjacent charge sensor, we monitor quantum dot orbital level spacing down to the very last hole, and find the standard two-dimensional (2D) circular dot shell filling structure. We can change the shell filling sequence by applying an out-of-plane magnetic field. However, when the field is applied in-plane, the shell filling is not changed. This magnetic field anisotropy suggests that the confined hole states are Ising-like.
Quantum metrology with a single spin-3/2 defect in silicon carbide
NASA Astrophysics Data System (ADS)
Soykal, Oney O.; Reinecke, Thomas L.
We show that implementations for quantum sensing with exceptional sensitivity and spatial resolution can be made using the novel features of semiconductor high half-spin multiplet defects with easy-to-implement optical detection protocols. To achieve this, we use the spin- 3 / 2 silicon monovacancy deep center in hexagonal silicon carbide based on our rigorous derivation of this defect's ground state and of its electronic and optical properties. For a single VSi- defect, we obtain magnetic field sensitivities capable of detecting individual nuclear magnetic moments. We also show that its zero-field splitting has an exceptional strain and temperature sensitivity within the technologically desirable near-infrared window of biological systems. Other point defects, i.e. 3d transition metal or rare-earth impurities in semiconductors, may also provide similar opportunities in quantum sensing due to their similar high spin (S >= 3 / 2) configurations. This work was supported in part by ONR and by the Office of Secretary of Defense, Quantum Science and Engineering Program.
Towards zero-threshold optical gain using charged semiconductor quantum dots
Wu, Kaifeng; Park, Young -Shin; Lim, Jaehoon; ...
2017-10-16
Colloidal semiconductor quantum dots are attractive materials for the realization of solution-processable lasers. However, their applications as optical-gain media are complicated by a non-unity degeneracy of band-edge states, because of which multiexcitons are required to achieve the lasing regime. This increases the lasing thresholds and leads to very short optical gain lifetimes limited by nonradiative Auger recombination. Here, we show that these problems can be at least partially resolved by employing not neutral but negatively charged quantum dots. By applying photodoping to specially engineered quantum dots with impeded Auger decay, we demonstrate a considerable reduction of the optical gain thresholdmore » due to suppression of ground-state absorption by pre-existing carriers. Moreover, by injecting approximately one electron per dot on average, we achieve a more than twofold reduction in the amplified spontaneous emission threshold, bringing it to the sub-single-exciton level. Furthermore, these measurements indicate the feasibility of ‘zero-threshold’ gain achievable by completely blocking the band-edge state with two electrons.« less
Nan, Fan; Cheng, Zi-Qiang; Wang, Ya-Lan; Zhang, Qing; Zhou, Li; Yang, Zhong-Jian; Zhong, Yu-Ting; Liang, Shan; Xiong, Qihua; Wang, Qu-Quan
2014-01-01
Colloidal semiconductor quantum dots have three-dimensional confined excitons with large optical oscillator strength and gain. The surface plasmons of metallic nanostructures offer an efficient tool to enhance exciton-exciton coupling and excitation energy transfer at appropriate geometric arrangement. Here, we report plasmon-mediated cooperative emissions of approximately one monolayer of ensemble CdSe/ZnS quantum dots coupled with silver nanorod complex cavities at room temperature. Power-dependent spectral shifting, narrowing, modulation, and amplification are demonstrated by adjusting longitudinal surface plasmon resonance of silver nanorods, reflectivity and phase shift of silver nanostructured film, and mode spacing of the complex cavity. The underlying physical mechanism of the nonlinear excitation energy transfer and nonlinear emissions are further investigated and discussed by using time-resolved photoluminescence and finite-difference time-domain numerical simulations. Our results suggest effective strategies to design active plasmonic complex cavities for cooperative emission nanodevices based on semiconductor quantum dots. PMID:24787617
Emerging technologies for high performance infrared detectors
NASA Astrophysics Data System (ADS)
Tan, Chee Leong; Mohseni, Hooman
2018-01-01
Infrared photodetectors (IRPDs) have become important devices in various applications such as night vision, military missile tracking, medical imaging, industry defect imaging, environmental sensing, and exoplanet exploration. Mature semiconductor technologies such as mercury cadmium telluride and III-V material-based photodetectors have been dominating the industry. However, in the last few decades, significant funding and research has been focused to improve the performance of IRPDs such as lowering the fabrication cost, simplifying the fabrication processes, increasing the production yield, and increasing the operating temperature by making use of advances in nanofabrication and nanotechnology. We will first review the nanomaterial with suitable electronic and mechanical properties, such as two-dimensional material, graphene, transition metal dichalcogenides, and metal oxides. We compare these with more traditional low-dimensional material such as quantum well, quantum dot, quantum dot in well, semiconductor superlattice, nanowires, nanotube, and colloid quantum dot. We will also review the nanostructures used for enhanced light-matter interaction to boost the IRPD sensitivity. These include nanostructured antireflection coatings, optical antennas, plasmonic, and metamaterials.
Quantum dot behavior in transition metal dichalcogenides nanostructures
NASA Astrophysics Data System (ADS)
Luo, Gang; Zhang, Zhuo-Zhi; Li, Hai-Ou; Song, Xiang-Xiang; Deng, Guang-Wei; Cao, Gang; Xiao, Ming; Guo, Guo-Ping
2017-08-01
Recently, transition metal dichalcogenides (TMDCs) semiconductors have been utilized for investigating quantum phenomena because of their unique band structures and novel electronic properties. In a quantum dot (QD), electrons are confined in all lateral dimensions, offering the possibility for detailed investigation and controlled manipulation of individual quantum systems. Beyond the definition of graphene QDs by opening an energy gap in nanoconstrictions, with the presence of a bandgap, gate-defined QDs can be achieved on TMDCs semiconductors. In this paper, we review the confinement and transport of QDs in TMDCs nanostructures. The fabrication techniques for demonstrating two-dimensional (2D) materials nanostructures such as field-effect transistors and QDs, mainly based on e-beam lithography and transfer assembly techniques are discussed. Subsequently, we focus on electron transport through TMDCs nanostructures and QDs. With steady improvement in nanoscale materials characterization and using graphene as a springboard, 2D materials offer a platform that allows creation of heterostructure QDs integrated with a variety of crystals, each of which has entirely unique physical properties.