Induced radioactivity in the forward shielding and semiconductor tracker of the ATLAS detector.
Bĕdajánek, I; Linhart, V; Stekl, I; Pospísil, S; Kolros, A; Kovalenko, V
2005-01-01
The radioactivity induced in the forward shielding, copper collimator and semiconductor tracker modules of the ATLAS detector has been studied. The ATLAS detector is a long-term experiment which, during operation, will require to have service and access to all of its parts and components. The radioactivity induced in the forward shielding was calculated by Monte Carlo methods based on GEANT3 software tool. The results show that the equivalent dose rates on the outer surface of the forward shielding are very low (at most 0.038 microSv h(-1)). On the other hand, the equivalent dose rates are significantly higher on the inner surface of the forward shielding (up to 661 microSv h(-1)) and, especially, at the copper collimator close to the beampipe (up to 60 mSv h(-1)). The radioactivity induced in the semiconductor tracker modules was studied experimentally. The module was activated by neutrons in a training nuclear reactor and the delayed gamma ray spectra were measured. From these measurements, the equivalent dose rate on the surface of the semiconductor tracker module was estimated to be < 100 microSv h(-1) after 100 d of Large Hadron Collider (LHC) operation and 10 d of cooling.
An Automatic System of Testing the Best Stress of Installation for Semiconductor Refrigeration Piece
NASA Astrophysics Data System (ADS)
Chen, Hongyan; Song, Ping
Concerning the problems of the impact on the factors of installation about semiconductor refrigeration piece are rarely studied in China and abroad, a reasonable structure of test device is designed, using stepper motor to test the temperature of the cold surface under different stress of installation to get the best stress of installation for the semiconductor refrigeration piece. Experiments shows that the system is of good noise immunity, high controlling and measuring precision.
Demonstration of in-vivo Multi-Probe Tracker Based on a Si/CdTe Semiconductor Compton Camera
NASA Astrophysics Data System (ADS)
Takeda, Shin'ichiro; Odaka, Hirokazu; Ishikawa, Shin-nosuke; Watanabe, Shin; Aono, Hiroyuki; Takahashi, Tadayuki; Kanayama, Yousuke; Hiromura, Makoto; Enomoto, Shuichi
2012-02-01
By using a prototype Compton camera consisting of silicon (Si) and cadmium telluride (CdTe) semiconductor detectors, originally developed for the ASTRO-H satellite mission, an experiment involving imaging multiple radiopharmaceuticals injected into a living mouse was conducted to study its feasibility for medical imaging. The accumulation of both iodinated (131I) methylnorcholestenol and 85Sr into the mouse's organs was simultaneously imaged by the prototype. This result implies that the Compton camera is expected to become a multi-probe tracker available in nuclear medicine and small animal imaging.
46 CFR 111.33-5 - Installation.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 46 Shipping 4 2014-10-01 2014-10-01 false Installation. 111.33-5 Section 111.33-5 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Power Semiconductor Rectifier Systems § 111.33-5 Installation. Each semiconductor rectifier system...
46 CFR 111.33-5 - Installation.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 46 Shipping 4 2012-10-01 2012-10-01 false Installation. 111.33-5 Section 111.33-5 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Power Semiconductor Rectifier Systems § 111.33-5 Installation. Each semiconductor rectifier system...
46 CFR 111.33-5 - Installation.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 46 Shipping 4 2013-10-01 2013-10-01 false Installation. 111.33-5 Section 111.33-5 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Power Semiconductor Rectifier Systems § 111.33-5 Installation. Each semiconductor rectifier system...
46 CFR 111.33-5 - Installation.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 4 2011-10-01 2011-10-01 false Installation. 111.33-5 Section 111.33-5 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Power Semiconductor Rectifier Systems § 111.33-5 Installation. Each semiconductor rectifier system...
46 CFR 111.33-5 - Installation.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 4 2010-10-01 2010-10-01 false Installation. 111.33-5 Section 111.33-5 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Power Semiconductor Rectifier Systems § 111.33-5 Installation. Each semiconductor rectifier system...
40 CFR 63.7188 - What are my monitoring installation, operation, and maintenance requirements?
Code of Federal Regulations, 2011 CFR
2011-07-01
... Semiconductor Manufacturing Compliance Requirements § 63.7188 What are my monitoring installation, operation... emissions of your semiconductor process vent through a closed vent system to a control device, you must...
40 CFR 63.7188 - What are my monitoring installation, operation, and maintenance requirements?
Code of Federal Regulations, 2010 CFR
2010-07-01
... Semiconductor Manufacturing Compliance Requirements § 63.7188 What are my monitoring installation, operation... emissions of your semiconductor process vent through a closed vent system to a control device, you must...
Novel approach to improve the attitude update rate of a star tracker.
Zhang, Shuo; Xing, Fei; Sun, Ting; You, Zheng; Wei, Minsong
2018-03-05
The star tracker is widely used in attitude control systems of spacecraft for attitude measurement. The attitude update rate of a star tracker is important to guarantee the attitude control performance. In this paper, we propose a novel approach to improve the attitude update rate of a star tracker. The electronic Rolling Shutter (RS) imaging mode of the complementary metal-oxide semiconductor (CMOS) image sensor in the star tracker is applied to acquire star images in which the star spots are exposed with row-to-row time offsets, thereby reflecting the rotation of star tracker at different times. The attitude estimation method with a single star spot is developed to realize the multiple attitude updates by a star image, so as to reach a high update rate. The simulation and experiment are performed to verify the proposed approaches. The test results demonstrate that the proposed approach is effective and the attitude update rate of a star tracker is increased significantly.
Optical Alignment of the Global Precipitation Measurement (GPM) Star Trackers
NASA Technical Reports Server (NTRS)
Hetherington, Samuel; Osgood, Dean; McMann, Joe; Roberts, Viki; Gill, James; Mclean, Kyle
2013-01-01
The optical alignment of the star trackers on the Global Precipitation Measurement (GPM) core spacecraft at NASA Goddard Space Flight Center (GSFC) was challenging due to the layout and structural design of the GPM Lower Bus Structure (LBS) in which the star trackers are mounted as well as the presence of the star tracker shades that blocked line-of-sight to the primary star tracker optical references. The initial solution was to negotiate minor changes in the original LBS design to allow for the installation of a removable item of ground support equipment (GSE) that could be installed whenever measurements of the star tracker optical references were needed. However, this GSE could only be used to measure secondary optical reference cube faces not used by the star tracker vendor to obtain the relationship information and matrix transformations necessary to determine star tracker alignment. Unfortunately, due to unexpectedly large orthogonality errors between the measured secondary adjacent cube faces and the lack of cube calibration data, we required a method that could be used to measure the same reference cube faces as originally measured by the vendor. We describe an alternative technique to theodolite auto-collimation for measurement of an optical reference mirror pointing direction when normal incidence measurements are not possible. This technique was used to successfully align the GPM star trackers and has been used on a number of other NASA flight projects. We also discuss alignment theory as well as a GSFC-developed theodolite data analysis package used to analyze angular metrology data.
46 CFR 183.360 - Semiconductor rectifier systems.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 7 2011-10-01 2011-10-01 false Semiconductor rectifier systems. 183.360 Section 183.360... TONS) ELECTRICAL INSTALLATION Power Sources and Distribution Systems § 183.360 Semiconductor rectifier systems. (a) Each semiconductor rectifier system must have an adequate heat removal system that prevents...
46 CFR 183.360 - Semiconductor rectifier systems.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 7 2010-10-01 2010-10-01 false Semiconductor rectifier systems. 183.360 Section 183.360... TONS) ELECTRICAL INSTALLATION Power Sources and Distribution Systems § 183.360 Semiconductor rectifier systems. (a) Each semiconductor rectifier system must have an adequate heat removal system that prevents...
46 CFR 129.360 - Semiconductor-rectifier systems.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 4 2011-10-01 2011-10-01 false Semiconductor-rectifier systems. 129.360 Section 129.360... INSTALLATIONS Power Sources and Distribution Systems § 129.360 Semiconductor-rectifier systems. (a) Each semiconductor-rectifier system must have an adequate heat-removal system to prevent overheating. (b) If a...
46 CFR 120.360 - Semiconductor rectifier systems.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 4 2011-10-01 2011-10-01 false Semiconductor rectifier systems. 120.360 Section 120.360... INSTALLATION Power Sources and Distribution Systems § 120.360 Semiconductor rectifier systems. (a) Each semiconductor rectifier system must have an adequate heat removal system that prevents overheating. (b) Where a...
46 CFR 129.360 - Semiconductor-rectifier systems.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 4 2010-10-01 2010-10-01 false Semiconductor-rectifier systems. 129.360 Section 129.360... INSTALLATIONS Power Sources and Distribution Systems § 129.360 Semiconductor-rectifier systems. (a) Each semiconductor-rectifier system must have an adequate heat-removal system to prevent overheating. (b) If a...
46 CFR 120.360 - Semiconductor rectifier systems.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 4 2010-10-01 2010-10-01 false Semiconductor rectifier systems. 120.360 Section 120.360... INSTALLATION Power Sources and Distribution Systems § 120.360 Semiconductor rectifier systems. (a) Each semiconductor rectifier system must have an adequate heat removal system that prevents overheating. (b) Where a...
NASA Astrophysics Data System (ADS)
Rumyantsev, Valery D.; Ashcheulov, Yury V.; Chekalin, Alexander V.; Chumakov, Yury S.; Shvarts, Maxim Z.; Timofeev, Vladimir V.
2014-09-01
As a rule, the HCPV modules are mounted on solar trackers in a form of a flat panel. Wind pressure is one of the key factors limiting the operation capabilities of such type solar installations. At the PV Lab of the Ioffe Institute, the sun-trackers with step-like frame for modules have been proposed and developed, which have a potential for significant reduction of wind pressure. Such a reduction is realized in a wide range of the frame tilt angles the most typical for day-light operation of solar installations. In the present work, theoretical consideration and indoor experiments with mechanical models of installation frames have been carried out. A wind tunnel has been used as an experimental instrument for quantitative comparison in conventional units of expected wind loads on module frames of different designs.
46 CFR 129.360 - Semiconductor-rectifier systems.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 46 Shipping 4 2014-10-01 2014-10-01 false Semiconductor-rectifier systems. 129.360 Section 129.360 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) OFFSHORE SUPPLY VESSELS ELECTRICAL INSTALLATIONS Power Sources and Distribution Systems § 129.360 Semiconductor-rectifier systems. (a) Each...
46 CFR 129.360 - Semiconductor-rectifier systems.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 46 Shipping 4 2013-10-01 2013-10-01 false Semiconductor-rectifier systems. 129.360 Section 129.360 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) OFFSHORE SUPPLY VESSELS ELECTRICAL INSTALLATIONS Power Sources and Distribution Systems § 129.360 Semiconductor-rectifier systems. (a) Each...
46 CFR 129.360 - Semiconductor-rectifier systems.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 46 Shipping 4 2012-10-01 2012-10-01 false Semiconductor-rectifier systems. 129.360 Section 129.360 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) OFFSHORE SUPPLY VESSELS ELECTRICAL INSTALLATIONS Power Sources and Distribution Systems § 129.360 Semiconductor-rectifier systems. (a) Each...
46 CFR 183.360 - Semiconductor rectifier systems.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 46 Shipping 7 2014-10-01 2014-10-01 false Semiconductor rectifier systems. 183.360 Section 183.360 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) SMALL PASSENGER VESSELS (UNDER 100 GROSS TONS) ELECTRICAL INSTALLATION Power Sources and Distribution Systems § 183.360 Semiconductor rectifier...
46 CFR 183.360 - Semiconductor rectifier systems.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 46 Shipping 7 2012-10-01 2012-10-01 false Semiconductor rectifier systems. 183.360 Section 183.360 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) SMALL PASSENGER VESSELS (UNDER 100 GROSS TONS) ELECTRICAL INSTALLATION Power Sources and Distribution Systems § 183.360 Semiconductor rectifier...
46 CFR 183.360 - Semiconductor rectifier systems.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 46 Shipping 7 2013-10-01 2013-10-01 false Semiconductor rectifier systems. 183.360 Section 183.360 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) SMALL PASSENGER VESSELS (UNDER 100 GROSS TONS) ELECTRICAL INSTALLATION Power Sources and Distribution Systems § 183.360 Semiconductor rectifier...
AMS Blanket and TTCS Wedge Install during EVA 32
2015-10-28
Close-up view of the Alpha Magnetic Spectrometer-02 (AMS-02), in the area where the Tracker Thermal Control System (TTCS) wedge will be installed. Image was taken by Extravehicular Crewmember 2 (EV2) during Extravehicular Activity 32 (EVA 32) and released on social media.
Astronaut Peggy Whitson Installs SUBSA Experiment
NASA Technical Reports Server (NTRS)
2002-01-01
Expedition Five flight engineer Peggy Whitson is shown installing the Solidification Using a Baffle in Sealed Ampoules (SUBSA) experiment in the Microgravity Science Glovebox (MSG) in the Destiny laboratory aboard the International Space Station (ISS). SUBSA examines the solidification of semiconductor crystals from a melted material. Semiconductor crystals are used for many products that touch our everyday lives. They are found in computer chips, integrated circuits, and a multitude of other electronic devices, such as sensors for medical imaging equipment and detectors of nuclear radiation. Materials scientists want to make better semiconductor crystals to be able to further reduce the size of high-tech devices. In the microgravity environment, convection and sedimentation are reduced, so fluids do not remove and deform. Thus, space laboratories provide an ideal environment of studying solidification from the melt. This investigation is expected to determine the mechanism causing fluid motion during production of semiconductors in space. It will provide insight into the role of the melt motion in production of semiconductor crystals, advancing our knowledge of the crystal growth process. This could lead to a reduction of defects in semiconductor crystals produced in space and on Earth.
Design of the forward straw tube tracker for the PANDA experiment
NASA Astrophysics Data System (ADS)
Smyrski, J.; Apostolou, A.; Biernat, J.; Czyżycki, W.; Filo, G.; Fioravanti, E.; Fiutowski, T.; Gianotti, P.; Idzik, M.; Korcyl, G.; Korcyl, K.; Lisowski, E.; Lisowski, F.; Płażek, J.; Przyborowski, D.; Przygoda, W.; Ritman, J.; Salabura, P.; Savrie, M.; Strzempek, P.; Swientek, K.; Wintz, P.; Wrońska, A.
2017-06-01
The design of the Forward Tracker for the Forward Spectrometer of the PANDA experiment is described. The tracker consists of 6 tracking stations, each comprising 4 planar double layers of straw tube detectors, and has a total material budget of only 2% X0. The straws are made self-supporting by a 1 bar over-pressure of the working gas mixture (Ar/CO2). This allows to use lightweight and compact rectangular support frames for the double layers and to split the frames into pairs of C-shaped half-frames for an easier installation on the beam line.
Electrical production testing of the D0 Silicon microstrip tracker detector modules
DOE Office of Scientific and Technical Information (OSTI.GOV)
D0, SMT Production Testing Group; /Fermilab
The D0 Silicon Microstrip Tracker (SMT) is the innermost system of the D0 detector in Run 2. It consists of 912 detector units, corresponding to 5 different types of assemblies, which add up to a system with 792,576 readout channels. The task entrusted to the Production Testing group was to thoroughly debug, test and grade each detector module before its installation in the tracker. This note describes the production testing sequence and the procedures by which the detector modules were electrically tested and characterized at the various stages of their assembly.
Fusion of electromagnetic trackers to improve needle deflection estimation: simulation study.
Sadjadi, Hossein; Hashtrudi-Zaad, Keyvan; Fichtinger, Gabor
2013-10-01
We present a needle deflection estimation method to anticipate needle bending during insertion into deformable tissue. Using limited additional sensory information, our approach reduces the estimation error caused by uncertainties inherent in the conventional needle deflection estimation methods. We use Kalman filters to combine a kinematic needle deflection model with the position measurements of the base and the tip of the needle taken by electromagnetic (EM) trackers. One EM tracker is installed on the needle base and estimates the needle tip position indirectly using the kinematic needle deflection model. Another EM tracker is installed on the needle tip and estimates the needle tip position through direct, but noisy measurements. Kalman filters are then employed to fuse these two estimates in real time and provide a reliable estimate of the needle tip position, with reduced variance in the estimation error. We implemented this method to compensate for needle deflection during simulated needle insertions and performed sensitivity analysis for various conditions. At an insertion depth of 150 mm, we observed needle tip estimation error reductions in the range of 28% (from 1.8 to 1.3 mm) to 74% (from 4.8 to 1.2 mm), which demonstrates the effectiveness of our method, offering a clinically practical solution.
Utility accommodation and conflict tracker (UACT) installation and configuration manual.
DOT National Transportation Integrated Search
2009-02-01
Project 0-5475 performed a comprehensive analysis of utility conflict data/information flows between utility : accommodation stakeholders in the Texas Department of Transportation project development process, : developed data models to accommodate wo...
Bin, Wong Saw; Richardson, Stanley; Yeow, Paul H P
2010-01-01
The study aimed to conduct an ergonomic intervention on a conventional line (CL) in a semiconductor factory in Malaysia, an industrially developing country (IDC), to improve workers' occupational health and safety (OHS). Low-cost and simple (LCS) ergonomics methods were used (suitable for IDCs), e.g., subjective assessment, direct observation, use of archival data and assessment of noise. It was found that workers were facing noise irritation, neck and back pains and headache in the various processes in the CL. LCS ergonomic interventions to rectify the problems included installing noise insulating covers, providing earplugs, installing elevated platforms, slanting visual display terminals and installing extra exhaust fans. The interventions cost less than 3 000 USD but they significantly improved workers' OHS, which directly correlated with an improvement in working conditions and job satisfaction. The findings are useful in solving OHS problems in electronics industries in IDCs as they share similar manufacturing processes, problems and limitations.
Rep. McCaul, Michael T. [R-TX-10
2012-06-21
House - 07/11/2012 Referred to the Subcommittee on Intellectual Property, Competition and the Internet. (All Actions) Tracker: This bill has the status IntroducedHere are the steps for Status of Legislation:
Research on the aircraft level measurement by laser tracker
NASA Astrophysics Data System (ADS)
Ye, Xiaowen; Tang, Wuzhong; Cao, Chun
2014-09-01
The measuring principle of laser tracking system was introduced. The aircraft level measurement was completed by establish the measurement datum mark, select public sites, set up the aircraft coordinate system and transfer stations. Laser tracking measurement technology improved the work efficiency and ensured the installation precision of key components.
NASA Technical Reports Server (NTRS)
1996-01-01
The Stak-Tracker CEM (Continuous Emission Monitor) Gas Analyzer is an air quality monitor capable of separating the various gases in a bulk exhaust stream and determining the amounts of individual gases present within the stream. The monitor is produced by GE Reuter- Stokes, a subsidiary of GE Corporate Research & Development Center. The Stak-Tracker uses a Langley Research Center software package which measures the concentration of a target gas by determining the degree to which molecules of that gas absorb an infrared beam. The system is environmental-friendly, fast and has relatively low installation and maintenance costs. It is applicable to gas turbines and various industries including glass, paper and cement.
Central tracker for BM@N experiment based on double side Si-microstrip detectors
NASA Astrophysics Data System (ADS)
Kovalev, Yu.; Kapishin, M.; Khabarov, S.; Shafronovskaia, A.; Tarasov, O.; Makankin, A.; Zamiatin, N.; Zubarev, E.
2017-07-01
Design of central tracker system based on Double-Sided Silicon Detectors (DSSD) for BM@N experiment is described. A coordinate plane with 10240 measuring channels, pitch adapter, reading electronics was developed. Each element was tested and assembled into a coordinate plane. The first tests of the plane with 106Ru source were carried out before installation for the BM@N experiment. The results of the study indicate that noisy channels and inefficient channels are less than 3%. In general, single clusters 87% (one group per module of consecutive strips) and 75% of clusters with a width equal to one strip.
30 CFR 18.68 - Tests for intrinsic safety.
Code of Federal Regulations, 2014 CFR
2014-07-01
... normal use. (iii) Semiconductors shall be amply sized. Rectifiers and transistors shall be operated at... battery, or installed as close to the battery terminal as practicable. (3) Transistors of battery-operated...
NASA Technical Reports Server (NTRS)
Collis, Ward J.; Abul-Fadl, Ali
1988-01-01
The purpose of this research is to design, install and operate a metal-organic chemical vapor deposition system which is to be used for the epitaxial growth of 3-5 semiconductor binary compounds, and ternary and quaternary alloys. The long-term goal is to utilize this vapor phase deposition in conjunction with existing current controlled liquid phase epitaxy facilities to perform hybrid growth sequences for fabricating integrated optoelectronic devices.
NAOMI: a low-order adaptive optics system for the VLT interferometer
NASA Astrophysics Data System (ADS)
Gonté, Frédéric Yves J.; Alonso, Jaime; Aller-Carpentier, Emmanuel; Andolfato, Luigi; Berger, Jean-Philippe; Cortes, Angela; Delplancke-Strobele, Françoise; Donaldson, Rob; Dorn, Reinhold J.; Dupuy, Christophe; Egner, Sebastian E.; Huber, Stefan; Hubin, Norbert; Kirchbauer, Jean-Paul; Le Louarn, Miska; Lilley, Paul; Jolley, Paul; Martis, Alessandro; Paufique, Jérôme; Pasquini, Luca; Quentin, Jutta; Ridings, Robert; Reyes, Javier; Shchkaturov, Pavel; Suarez, Marcos; Phan Duc, Thanh; Valdes, Guillermo; Woillez, Julien; Le Bouquin, Jean-Baptiste; Beuzit, Jean-Luc; Rochat, Sylvain; Vérinaud, Christophe; Moulin, Thibaut; Delboulbé, Alain; Michaud, Laurence; Correia, Jean-Jacques; Roux, Alain; Maurel, Didier; Stadler, Eric; Magnard, Yves
2016-08-01
The New Adaptive Optics Module for Interferometry (NAOMI) will be developed for and installed at the 1.8-metre Auxiliary Telescopes (ATs) at ESO Paranal. The goal of the project is to equip all four ATs with a low-order Shack- Hartmann adaptive optics system operating in the visible. By improving the wavefront quality delivered by the ATs for guide stars brighter than R = 13 mag, NAOMI will make the existing interferometer performance less dependent on the seeing conditions. Fed with higher and more stable Strehl, the fringe tracker(s) will achieve the fringe stability necessary to reach the full performance of the second-generation instruments GRAVITY and MATISSE.
High Bandwidth Optical Links for Micro-Satellite Support
NASA Technical Reports Server (NTRS)
Chao, Tien-Hsin (Inventor); Wilson, Keith E. (Inventor); Coste, Keith (Inventor)
2016-01-01
A method, systems, apparatus and device enable high bandwidth satellite communications. An onboard tracking detector, installed in a low-earth orbit satellite, detects a position of an incoming optical beam received/transmitted from a first ground station of one or more ground stations. Tracker electronics determine orientation information of the incoming optical beam based on the position. Control electronics receive the orientation information from the tracker electronics, and control a waveguide drive electronics. The waveguide drive electronics control a voltage that is provided to an electro-optic waveguide beam steering device. The electro-optic waveguide beam steering device steers an outgoing optical beam to one of the one or more ground stations based on the voltage.
Beam-based measurement of the center of the new STAR pipe
DOE Office of Scientific and Technical Information (OSTI.GOV)
Robert-Demolaize, G.
During the RHIC Shutdown preceding Run13 for polarized protons, various upgrades were brought to the STAR detector, one of which being the partial installation of the Forward GEM Tracker (FGT). This installation includes a new beam pipe at the center of the detector with an internal radius half the size of what the replaced pipe was, from 40 mm to 20 mm. The following reviews the results of a vertical aperture scans in the STAR interaction region performed at injection energy with both beams, and gives an estimate of the measured transverse offset of the new STAR pipe.
NASA Technical Reports Server (NTRS)
1983-01-01
The process technology for the manufacture of semiconductor-grade silicon in a large commercial plant by 1986, at a price less than $14 per kilogram of silicon based on 1975 dollars is discussed. The engineering design, installation, checkout, and operation of an Experimental Process System Development unit was discussed. Quality control of scaling-up the process and an economic analysis of product and production costs are discussed.
NASA Technical Reports Server (NTRS)
1980-01-01
The design, fabrication, and installation of an experimental process system development unit (EPSDU) were analyzed. Supporting research and development were performed to provide an information data base usable for the EPSDU and for technological design and economical analysis for potential scale-up of the process. Iterative economic analyses were conducted for the estimated product cost for the production of semiconductor grade silicon in a facility capable of producing 1000-MT/Yr.
International Space Station (ISS)
2002-07-05
Expedition Five flight engineer Peggy Whitson is shown installing the Solidification Using a Baffle in Sealed Ampoules (SUBSA) experiment in the Microgravity Science Glovebox (MSG) in the Destiny laboratory aboard the International Space Station (ISS). SUBSA examines the solidification of semiconductor crystals from a melted material. Semiconductor crystals are used for many products that touch our everyday lives. They are found in computer chips, integrated circuits, and a multitude of other electronic devices, such as sensors for medical imaging equipment and detectors of nuclear radiation. Materials scientists want to make better semiconductor crystals to be able to further reduce the size of high-tech devices. In the microgravity environment, convection and sedimentation are reduced, so fluids do not remove and deform. Thus, space laboratories provide an ideal environment of studying solidification from the melt. This investigation is expected to determine the mechanism causing fluid motion during production of semiconductors in space. It will provide insight into the role of the melt motion in production of semiconductor crystals, advancing our knowledge of the crystal growth process. This could lead to a reduction of defects in semiconductor crystals produced in space and on Earth.
Experimental Highlights: Heavy Quark Physics in Heavy-Ion Collisions at RHIC
Nouicer, Rachid
2017-03-22
The discovery at RHIC of large high-p T suppression and flow of electrons from heavy quarks flavors have altered our view of the hot and dense matter formed in central Au + Au collisions at √s NN = 200 GeV. These results suggest a large energy loss and flow of heavy quarks in the hot, dense matter. In recent years, the RHIC experiments upgraded the detectors; (1) PHENIX Collaboration installed silicon vertex tracker (VTX) at midrapidity region and forward silicon vertex tracker (FVTX) at the forward rapidity region, and (2) STAR Collaboration installed the heavy flavor tracker (HFT) and themore » muon telescope detector (MTD) both at the mid-rapidity region. The PHENIX experiments established measurements of ψ (1S ) and ψ (2S ) production as a function of system size, p + p, p + Al, p + Au, and 3He + Au collisions at √s NN = 200 GeV. In p/ 3He + A collisions at forward rapidity, we observe no difference in the ψ (2S )/ψ (1S ) ratio relative to p + p collisions. At backward rapidity, where the comoving particle density is higher, we find that the ψ (2S ) is preferentially suppressed by a factor of two. STAR Collaboration presents the first J/ ψ measurements in the di-muon decay channel in Au + Au at √s NN = 200 GeV at mid-rapidity. In conclusion, we observe a clear J/ψ R AA suppression and qualitatively well described by transport models, including dissociation and regeneration simultaneously.« less
NASA Astrophysics Data System (ADS)
Fei, Yang-yang; Meng, Xiang-dong; Gao, Ming; Yang, Yi; Wang, Hong; Ma, Zhi
2018-07-01
The temperature of the semiconductor diode increases under strong light illumination whether thermoelectric cooler is installed or not, which changes the output wavelength of the laser (Lee et al., 2017). However, other characteristics also vary as temperature increases. These variations may help the eavesdropper in practical quantum key distribution systems. We study the effects of temperature increase on gain-switched semiconductor lasers by simulating temperature dependent rate equations. The results show that temperature increase may cause large intensity fluctuation, decrease the output intensity and lead the signal state and decoy state distinguishable. We also propose a modified photon number splitting attack by exploiting the effects of temperature increase. Countermeasures are also proposed.
NASA Astrophysics Data System (ADS)
Coe, P. A.; Howell, D. F.; Nickerson, R. B.
2004-11-01
ATLAS is the largest particle detector under construction at CERN Geneva. Frequency scanning interferometry (FSI), also known as absolute distance interferometry, will be used to monitor shape changes of the SCT (semiconductor tracker), a particle tracker in the inaccessible, high radiation environment at the centre of ATLAS. Geodetic grids with several hundred fibre-coupled interferometers (30 mm to 1.5 m long) will be measured simultaneously. These lengths will be measured by tuning two lasers and comparing the resulting phase shifts in grid line interferometers (GLIs) with phase shifts in a reference interferometer. The novel inexpensive GLI design uses diverging beams to reduce sensitivity to misalignment, albeit with weaker signals. One micrometre precision length measurements of grid lines will allow 10 µm precision tracker shape corrections to be fed into ATLAS particle tracking analysis. The technique was demonstrated by measuring a 400 mm interferometer to better than 400 nm and a 1195 mm interferometer to better than 250 nm. Precise measurements were possible, even with poor quality signals, using numerical analysis of thousands of intensity samples. Errors due to drifts in interferometer length were substantially reduced using two lasers tuned in opposite directions and the precision was further improved by linking measurements made at widely separated laser frequencies.
Beam collimation and focusing and error analysis of LD and fiber coupling system based on ZEMAX
NASA Astrophysics Data System (ADS)
Qiao, Lvlin; Zhou, Dejian; Xiao, Lei
2017-10-01
Laser diodde has many advantages, such as high efficiency, small volume, low cost and easy integration, so it is widely used. Because of its poor beam quality, the application of semiconductor laser has also been seriously hampered. In view of the poor beam quality, the ZEMAX optical design software is used to simulate the far field characteristics of the semiconductor laser beam, and the coupling module of the semiconductor laser and the optical fiber is designed and optimized. And the beam is coupled into the fiber core diameter d=200µm, the numerical aperture NA=0.22 optical fiber, the output power can reach 95%. Finally, the influence of the three docking errors on the coupling efficiency during the installation process is analyzed.
NASA Astrophysics Data System (ADS)
Sabatie, Franck
2017-09-01
The latest development in Micromegas trackers includes the Micromegas Vertex Tracker (MVT) soon to be installed in Jefferson Lab Hall B, in the CLAS12 central tracking system. The MVT is composed of 6 cylindrical layers and 6 flat disks of resistive bulk Micromegas detectors. They have been designed to withstand the high particle flux environment and the high magnetic field using a low material budget of less than 0.5% of a radiation length per detector. The MVT is read out using front-end electronics based on the ``Dream'' Asic developed at CEA Saclay/Irfu. The low material budget requirements and very stringent space restrictions of the central tracking system surrounded by a 5T solenoid prevent the use of on-detector frontend electronics. The ability of the Dream chip to work with high-capacitance detectors allows deploying the electronics some 2 m away using flat micro-coaxial cables. After a short introduction to Micromegas detectors and the state-of-the-art achievements in this technology, I will focus on the CLAS12 MVT detector system, from the fabrication techniques to the readout electronics. Possible future developments will briefly be presented as well.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gray, J; Kuhlman, J
1981-01-31
The tracker uses a single photo sensor, and a rotating aperature to obtain tracking accuracies better than 1.5 mrads (0.1 degs). Peak signal detection is used to eliminate tracking of false sources, i.e., clouds, etc. A prism is employed to obtain an extended field of view (150 degs axially - 360 degs radially). The tracker digitally measures the Suns displacement angle relative to the concentrator axis, and repositions it incrementally. This arrangement permits the use of low cost non-servo motors. The local controller contains microprocessor based electronics, incorporating digital signal processing. A single controller may be time shared by amore » maximum of sixteen trackers, providing a high performance, cost effective solar tracking system, suitable for both line and point focus concentrators. An installation may have the local controller programmed as a standalone unit or slaved to a central controller. When used with a central controller, dynamic data monitoring and logging is available, together with the ability to change system modes and parameters, as desired.« less
Shi, Chaoyang; Tercero, Carlos; Ikeda, Seiichi; Ooe, Katsutoshi; Fukuda, Toshio; Komori, Kimihiro; Yamamoto, Kiyohito
2012-09-01
It is desirable to reduce aortic stent graft installation time and the amount of contrast media used for this process. Guidance with augmented reality can achieve this by facilitating alignment of the stent graft with the renal and mesenteric arteries. For this purpose, a sensor fusion is proposed between intravascular ultrasound (IVUS) and magnetic trackers to construct three-dimensional virtual reality models of the blood vessels, as well as improvements to the gradient vector flow snake for boundary detection in ultrasound images. In vitro vasculature imaging experiments were done with hybrid probe and silicone models of the vasculature. The dispersion of samples for the magnetic tracker in the hybrid probe increased less than 1 mm when the IVUS was activated. Three-dimensional models of the descending thoracic aorta, with cross-section radius average error of 0.94 mm, were built from the data fusion. The development of this technology will enable reduction in the amount of contrast media required for in vivo and real-time three-dimensional blood vessel imaging. Copyright © 2012 John Wiley & Sons, Ltd.
ProteinTracker: an application for managing protein production and purification
2012-01-01
Background Laboratories that produce protein reagents for research and development face the challenge of deciding whether to track batch-related data using simple file based storage mechanisms (e.g. spreadsheets and notebooks), or commit the time and effort to install, configure and maintain a more complex laboratory information management system (LIMS). Managing reagent data stored in files is challenging because files are often copied, moved, and reformatted. Furthermore, there is no simple way to query the data if/when questions arise. Commercial LIMS often include additional modules that may be paid for but not actually used, and often require software expertise to truly customize them for a given environment. Findings This web-application allows small to medium-sized protein production groups to track data related to plasmid DNA, conditioned media samples (supes), cell lines used for expression, and purified protein information, including method of purification and quality control results. In addition, a request system was added that includes a means of prioritizing requests to help manage the high demand of protein production resources at most organizations. ProteinTracker makes extensive use of existing open-source libraries and is designed to track essential data related to the production and purification of proteins. Conclusions ProteinTracker is an open-source web-based application that provides organizations with the ability to track key data involved in the production and purification of proteins and may be modified to meet the specific needs of an organization. The source code and database setup script can be downloaded from http://sourceforge.net/projects/proteintracker. This site also contains installation instructions and a user guide. A demonstration version of the application can be viewed at http://www.proteintracker.org. PMID:22574679
Open Heavy Flavor and Quarkonia Results at RHIC
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nouicer, Rachid
RHIC experiments carry out a comprehensive physics program which studies open heavy flavor and quarkonium production in relativistic heavy-ion collisions. The discovery at RHIC of large high-pT suppression and flow of electrons from heavy quarks flavors have altered our view of the hot and dense matter formed in central Au + Au collisions at √S NN = 200 GeV. These results suggest a large energy loss and flow of heavy quarks in the hot, dense matter. In recent years, the RHIC experiments upgraded the detectors; (1) PHENIX Collaboration installed silicon vertex tracker (VTX) at mid-rapidity region and forward silicon vertexmore » tracker (FVTX) at the forward rapidity region, and (2) STAR Collaboration installed the heavy flavor tracker (HFT) and the muon telescope detector (MTD) both at the mid-rapidity region. With these new upgrades, both experiments have collected large data samples. These new detectors enhance the capability of heavy flavor measurements via precision tracking. The PHENIX experiments established measurements of ψ(1S) and ψ(2S) production as a function of system size, p + p, p + Al, p + Au, and 3He + Au collisions at √S NN = 200 GeV. In p/ 3He + A collisions at forward rapidity, we observe no difference in the ψ(2S)/ψ(1S) ratio relative to p + p collisions. At backward rapidity, where the comoving particle density is higher, we find that the ψ(2S) is preferentially suppressed by a factor of two. STAR Collaboration presents the first J/ψ and Υ measurements in the di-muon decay channel in Au + Au collisions at GeV at mid-rapidity at RHIC. Here, we observe clear J/ψ RAA suppression and qualitatively well described by transport models simultaneously accounting for dissociation and regeneration processes.« less
Open Heavy Flavor and Quarkonia Results at RHIC
NASA Astrophysics Data System (ADS)
Nouicer, Rachid
2017-12-01
RHIC experiments carry out a comprehensive physics program which studies open heavy flavor and quarkonium production in relativistic heavy-ion collisions. The discovery at RHIC of large high-pT suppression and flow of electrons from heavy quarks flavors have altered our view of the hot and dense matter formed in central Au + Au collisions at GeV. These results suggest a large energy loss and flow of heavy quarks in the hot, dense matter. In recent years, the RHIC experiments upgraded the detectors; (1) PHENIX Collaboration installed silicon vertex tracker (VTX) at mid-rapidity region and forward silicon vertex tracker (FVTX) at the forward rapidity region, and (2) STAR Collaboration installed the heavy flavor tracker (HFT) and the muon telescope detector (MTD) both at the mid-rapidity region. With these new upgrades, both experiments have collected large data samples. These new detectors enhance the capability of heavy flavor measurements via precision tracking. The PHENIX experiments established measurements of ψ(1S) and ψ(2S) production as a function of system size, p + p, p + Al, p + Au, and 3He + Au collisions at GeV. In p/3He + A collisions at forward rapidity, we observe no difference in the ψ(2S)/ψ(1S) ratio relative to p + p collisions. At backward rapidity, where the comoving particle density is higher, we find that the ψ(2S) is preferentially suppressed by a factor of two. STAR Collaboration presents the first J/ψ and ϒ measurements in the di-muon decay channel in Au + Au collisions at GeV at mid-rapidity at RHIC. We observe clear J/ψ RAA suppression and qualitatively well described by transport models simultaneously accounting for dissociation and regeneration processes.
Open Heavy Flavor and Quarkonia Results at RHIC
Nouicer, Rachid
2017-12-05
RHIC experiments carry out a comprehensive physics program which studies open heavy flavor and quarkonium production in relativistic heavy-ion collisions. The discovery at RHIC of large high-pT suppression and flow of electrons from heavy quarks flavors have altered our view of the hot and dense matter formed in central Au + Au collisions at √S NN = 200 GeV. These results suggest a large energy loss and flow of heavy quarks in the hot, dense matter. In recent years, the RHIC experiments upgraded the detectors; (1) PHENIX Collaboration installed silicon vertex tracker (VTX) at mid-rapidity region and forward silicon vertexmore » tracker (FVTX) at the forward rapidity region, and (2) STAR Collaboration installed the heavy flavor tracker (HFT) and the muon telescope detector (MTD) both at the mid-rapidity region. With these new upgrades, both experiments have collected large data samples. These new detectors enhance the capability of heavy flavor measurements via precision tracking. The PHENIX experiments established measurements of ψ(1S) and ψ(2S) production as a function of system size, p + p, p + Al, p + Au, and 3He + Au collisions at √S NN = 200 GeV. In p/ 3He + A collisions at forward rapidity, we observe no difference in the ψ(2S)/ψ(1S) ratio relative to p + p collisions. At backward rapidity, where the comoving particle density is higher, we find that the ψ(2S) is preferentially suppressed by a factor of two. STAR Collaboration presents the first J/ψ and Υ measurements in the di-muon decay channel in Au + Au collisions at GeV at mid-rapidity at RHIC. Here, we observe clear J/ψ RAA suppression and qualitatively well described by transport models simultaneously accounting for dissociation and regeneration processes.« less
The ATLAS SemiConductor Tracker operation and performance
NASA Astrophysics Data System (ADS)
Pater, J. R.
2012-04-01
The ATLAS SemiConductor Tracker (SCT) is a key precision tracking detector in the ATLAS experiment at CERN's Large Hadron Collider. The SCT is composed of 4088 planar p-in-n silicon micro-strip detectors. The signals from the strips are processed in the front-end ABCD3TA ASICs, which operate in binary readout mode; data are transferred to the off-detector readout electronics via optical fibres. The SCT was completed in 2007. An extensive commissioning phase followed, during which calibration data were collected and analysed to determine the noise performance of the system, and further performance parameters of the detector were determined using cosmic ray data, both with and without magnetic field. After the commissioning phase, the SCT was ready for the first LHC proton-proton collisions in December 2009. From the beginning of data taking, the completed SCT has been in very good shape with more than 99% of its 6.3 million strips operational; the detector is well timed-in and the operational channels are 99.9% efficient in data acquisition. The noise occupancy and hit efficiency are better than the design specifications. The detector geometry is monitored continuously with a laser-based alignment system and is stable to the few-micron level; the alignment accuracy as determined by tracks is near specification and improving as statistics increase. The sensor behaviour in the 2T solenoidal magnetic field has been studied by measuring the Lorentz angle. Radiation damage in the silicon is monitored by periodic measurements of the leakage current; these measurements are in reasonable agreement with predictions.
Cancer and reproductive risks in the semiconductor industry.
LaDou, Joseph; Bailar, John C
2007-01-01
Although many reproductive toxicants and carcinogens are used in the manufacture of semiconductor chips, and worrisome findings have been reported, no broad epidemiologic study has been conducted to define possible risks in a comprehensive way. With few exceptions, the American semiconductor industry has not supported access for independent studies. Older technologies are exported to newly industrialized countries as newer technologies are installed in Japan, the United States, and Europe. Thus there is particular concern about the many workers, mostly in countries that are still industrializing, who have jobs that use chemicals, technologies, and equipment that are no longer in use in developed countries. Since most countries lack cancer registries and have inadequate reproductive and cancer reporting mechanisms, industry efforts to control exposures to carcinogens are of particular importance. Government agencies, the courts, industry, publishers, and academia, on occasion, collude to ignore or to downplay the importance of occupational diseases. Examples of how this happens in the semiconductor industry are presented.
Automated System Tests High-Power MOSFET's
NASA Technical Reports Server (NTRS)
Huston, Steven W.; Wendt, Isabel O.
1994-01-01
Computer-controlled system tests metal-oxide/semiconductor field-effect transistors (MOSFET's) at high voltages and currents. Measures seven parameters characterizing performance of MOSFET, with view toward obtaining early indication MOSFET defective. Use of test system prior to installation of power MOSFET in high-power circuit saves time and money.
The cylindrical GEM detector of the KLOE-2 experiment
NASA Astrophysics Data System (ADS)
Bencivenni, G.; Branchini, P.; Ciambrone, P.; Czerwinski, E.; De Lucia, E.; Di Cicco, A.; Domenici, D.; Felici, G.; Fermani, P.; Morello, G.
2017-07-01
The KLOE-2 experiment started its data taking campaign in November 2014 with an upgraded tracking system at the DAΦNE electron-positron collider at the Frascati National Laboratory of INFN. The new tracking device, the Inner Tracker, operated together with the KLOE-2 Drift Chamber, has been installed to improve track and vertex reconstruction capabilities of the experimental apparatus. The Inner Tracker is a cylindrical GEM detector composed of four cylindrical triple-GEM detectors, each provided with an X-V strips-pads stereo readout. Although GEM detectors are already used in high energy physics experiments, this device is considered a frontier detector due to its fully-cylindrical geometry: KLOE-2 is the first experiment benefiting of this novel detector technology. Alignment and calibration of this detector will be presented together with its operating performance and reconstruction capabilities.
Compressed baryonic matter at FAIR: JINR participation
NASA Astrophysics Data System (ADS)
Kurilkin, P.; Ladygin, V.; Malakhov, A.; Senger, P.
2015-11-01
The scientific mission of the Compressed Baryonic Matter(CBM) experiment is the study of the nuclear matter properties at the high baryon densities in heavy ion collisions at the Facility of Antiproton and Ion Research (FAIR) in Darmstadt. We present the results on JINR participation in the CBM experiment. JINR teams are responsible on the design, the coordination of superconducting(SC) magnet manufacture, its testing and installation in CBM cave. Together with Silicon Tracker System it will provide the momentum resolution better 1% for different configuration of CBM setup. The characteristics and technical aspects of the magnet are discussed. JINR plays also a significant role in the manufacture of two straw tracker station for the muon detection system. JINR team takes part in the development of new method for simulation, processing and analysis experimental data for different basic detectors of CBM.
Performance verification of the CMS Phase-1 Upgrade Pixel detector
NASA Astrophysics Data System (ADS)
Veszpremi, V.
2017-12-01
The CMS tracker consists of two tracking systems utilizing semiconductor technology: the inner pixel and the outer strip detectors. The tracker detectors occupy the volume around the beam interaction region between 3 cm and 110 cm in radius and up to 280 cm along the beam axis. The pixel detector consists of 124 million pixels, corresponding to about 2 m 2 total area. It plays a vital role in the seeding of the track reconstruction algorithms and in the reconstruction of primary interactions and secondary decay vertices. It is surrounded by the strip tracker with 10 million read-out channels, corresponding to 200 m 2 total area. The tracker is operated in a high-occupancy and high-radiation environment established by particle collisions in the LHC . The current strip detector continues to perform very well. The pixel detector that has been used in Run 1 and in the first half of Run 2 was, however, replaced with the so-called Phase-1 Upgrade detector. The new system is better suited to match the increased instantaneous luminosity the LHC would reach before 2023. It was built to operate at an instantaneous luminosity of around 2×1034 cm-2s-1. The detector's new layout has an additional inner layer with respect to the previous one; it allows for more efficient tracking with smaller fake rate at higher event pile-up. The paper focuses on the first results obtained during the commissioning of the new detector. It also includes challenges faced during the first data taking to reach the optimal measurement efficiency. Details will be given on the performance at high occupancy with respect to observables such as data-rate, hit reconstruction efficiency, and resolution.
Rep. Coble, Howard [R-NC-6
2009-10-27
House - 02/12/2010 Referred to the Subcommittee on Federal Workforce, Post Office, and the District of Columbia. (All Actions) Tracker: This bill has the status IntroducedHere are the steps for Status of Legislation:
Development of Real-Time Image and In Situ Data Analysis at Sea
1991-10-16
for continuous capture from multiple satellites. The Blackhole System is the analysis machine used either by researchers to process/analyze their...Orbital Tracker and the antenna subsystem was overhauled. THE BLACKHOLE ANALYSIS SYSTEM A new HP9000/350 workstation was installed at SSOC to perform...L 4)L Scripps Satellite Oceanography Center Blackhole System Diagram (Analysis Machine) HP 350 Workstation Motorola 68020 CPU 2 - 512 MB hard disks
Rep. Norton, Eleanor Holmes [D-DC-At Large
2014-02-27
House - 02/28/2014 Referred to the Subcommittee on Economic Development, Public Buildings and Emergency Management. (All Actions) Tracker: This bill has the status IntroducedHere are the steps for Status of Legislation:
Concrete pedestals for high-performance semiconductor production equipment
NASA Astrophysics Data System (ADS)
Vogen, Wayne; Franklin, Craig L.; Morneault, Joseph
1999-09-01
Concrete pedestals have many vibration and stiffness characteristics that make them a superior choice for sensitive semiconductor production equipment including scanners, scanning electron microscopes, focused ion beam millers and optical inspection equipment. Among the advantages of concrete pedestals are high inherent damping, monolithic construction that eliminates low stiffness joints common in steep pedestals, ability to reuse and ease of installation. Steel pedestals that have plates attached to the top of the frame are easily excited by acoustic excitation, especially in the range from 50 Hertz to 400 Hertz. Concrete pedestals do not suffer from this phenomenon because of the high mass and damping of the top surface.
STS-100 Photo-op/Shut-up/Depart O&C/Launch Endeavour On Orbit/Landing/Crew Egress
NASA Technical Reports Server (NTRS)
2001-01-01
This video shows an overview of crew activities from STS-100. The crew of Space Shuttle Shuttle Endeavour includes: Commander Kent Rominger; Pilot Jeffrey Ashby; and Mission Specialists Chris Hadfield, John Phillips, Scott Parazynski, Umberto Guidoni, and Yuri Lonchakov. Sections of the video include: Photo-op; Suit-up; Depart O&C; Ingress; Launch with Playbacks; On-orbit; Landing with Playbacks; Crew Egress & Departure. Voiceover narration introduces the astronauts at their pre-flight meal, and continues during the video, except for the launch and landing sequences. Launch playback views include: NEXT; Beach Tracker; VAB; PAD-A; Tower-1; UCS-15; Grandstand; OTV-60; OTV-70; OTV-71; DOAMS; UCS-10 Tracker; UCS-23 Tracker; On-board Ascent Camera. The On-orbit section of the video shows preparations for an extravehicular activity (EVA) to install Canadarm 2 on the International Space Station (ISS). Preparation for docking with the ISS, and the docking of the orbiter and ISS are shown. The attachment of Canadarm 2 and the Raffaello Logistics Module, a resupply vehicle, are shown. The crew also undertakes some maintenance of the ISS. Landing playback views include: TV-1; TV-2; LRO-1; LRO-2; PPOV.
HVMUX, a high voltage multiplexing for the ATLAS Tracker upgrade
NASA Astrophysics Data System (ADS)
Giulio Villani, E.; Phillips, P.; Matheson, J.; Zhang, Z.; Lynn, D.; Kuczewski, P.; Hommels, L. B. A.; Gregor, I.; Bessner, M.; Tackmann, K.; Newcomer, F. M.; Spencer, E.; Greenall, A.
2017-01-01
The HV biasing solution adopted in the current ATLAS detector uses one HV conductor for each sensor. This approach easily allows disabling of malfunctioning sensors without affecting the others, but space constraints and material budget considerations renders this approach impractical for the Upgraded detector. In fact, the increased luminosity of the Upgraded LHC will require more channels in the upgraded ATLAS Tracker, as a result of the finer detector segmentation. Different approaches to bring the HV biasing to the detectors, including the use of a shared HV line to bias several sensors and employing semiconductor switches for the HV routing (HVMUX), have been investigated. Beside the size constraints, particular attention must be paid to the radiation tolerance of any proposed solution, which, for the strips detector, requires proper operation up to fluences of the order of 2ṡ 1015 1MeV neq/cm2 and TID in excess of 300 kGy. In this paper, a description of the proposed HVMUX solution, along with electrical and radiation tests results will be presented and discussed.
Golden Rays - December 2017 | Solar Research | NREL
. Installers place solar panels on the roof of a commercial building. Less Guesswork with New Analysis Tool for PV + Storage Using NREL's new REopt Lite web tool, commercial building owners can evaluate the semiconductors in the future," said Kwangwook Park, one of the NREL researchers. Where Can Commercial
Sensors for process control Focus Team report
NASA Astrophysics Data System (ADS)
At the Semiconductor Technology Workshop, held in November 1992, the Semiconductor Industry Association (SIA) convened 179 semiconductor technology experts to assess the 15-year outlook for the semiconductor manufacturing industry. The output of the Workshop, a document entitled 'Semiconductor Technology: Workshop Working Group Reports,' contained an overall roadmap for the technology characteristics envisioned in integrated circuits (IC's) for the period 1992-2007. In addition, the document contained individual roadmaps for numerous key areas in IC manufacturing, such as film deposition, thermal processing, manufacturing systems, exposure technology, etc. The SIA Report did not contain a separate roadmap for contamination free manufacturing (CFM). A key component of CFM for the next 15 years is the use of sensors for (1) defect reduction, (2) improved product quality, (3) improved yield, (4) improved tool utilization through contamination reduction, and (5) real time process control in semiconductor fabrication. The objective of this Focus Team is to generate a Sensors for Process Control Roadmap. Implicit in this objective is the identification of gaps in current sensor technology so that research and development activity in the sensor industry can be stimulated to develop sensor systems capable of meeting the projected roadmap needs. Sensor performance features of interest include detection limit, specificity, sensitivity, ease of installation and maintenance, range, response time, accuracy, precision, ease and frequency of calibration, degree of automation, and adaptability to in-line process control applications.
Fukushima Daiichi Muon Imaging
NASA Astrophysics Data System (ADS)
Miyadera, Haruo
2015-10-01
Japanese government announced cold-shutdown condition of the reactors at Fukushima Daiichi by the end of 2011, and mid- and long-term roadmap towards decommissioning has been drawn. However, little is known for the conditions of the cores because access to the reactors has been limited by the high radiation environment. The debris removal from the Unit 1 - 3 is planned to start as early as 2020, but the dismantlement is not easy without any realistic information of the damage to the cores, and the locations and amounts of the fuel debris. Soon after the disaster of Fukushima Daiichi, several teams in the US and Japan proposed to apply muon transmission or scattering imagings to provide information of the Fukushima Daiichi reactors without accessing inside the reactor building. GEANT4 modeling studies of Fukushima Daiichi Unit 1 and 2 showed clear superiority of the muon scattering method over conventional transmission method. The scattering method was demonstrated with a research reactor, Toshiba Nuclear Critical Assembly (NCA), where a fuel assembly was imaged with 3-cm resolution. The muon scattering imaging of Fukushima Daiichi was approved as a national project and is aiming at installing muon trackers to Unit 2. A proposed plan includes installation of muon trackers on the 2nd floor (operation floor) of turbine building, and in front of the reactor building. Two 7mx7m detectors were assembled at Toshiba and tested.
A faster and more reliable data acquisition system for the full performance of the SciCRT
Sasai, Y.; Matsubara, Y.; Itow, Y.; ...
2017-01-03
The SciBar Cosmic Ray Telescope (SciCRT) is a massive scintillator tracker to observe cosmic rays at a very high-altitude environment in Mexico. The fully active tracker is based on the Scintillator Bar (SciBar) detector developed as a near detector for the KEK-to-Kamioka long-baseline neutrino oscillation experiment (K2K) in Japan. Since the data acquisition (DAQ) system was developed for the accelerator experiment, we determined to develop a new robust DAQ system to optimize it to our cosmic-ray experiment needs at the top of Mt. Sierra Negra (4600 m). One of our special requirements is to achieve a 10 times faster readoutmore » rate. We started to develop a new fast readout back-end board (BEB) based on 100 Mbps SiTCP, a hardware network processor developed for DAQ systems for high energy physics experiments. Then we developed the new BEB which has a potential of 20 times faster than the current one in the case of observing neutrons. Lastly, we installed the new DAQ system including the new BEBs to a part of the SciCRT in July 2015. The system has been operating since then. In this article, we describe the development, the basic performance of the new BEB, the status after the installation in the SciCRT, and the future performance.« less
Power components for the Space Station 20-kHz power distribution system
NASA Technical Reports Server (NTRS)
Renz, David D.
1988-01-01
Since 1984, NASA Lewis Research Center was developing high power, high frequency space power components as part of The Space Station Advanced Development program. The purpose of the Advanced Development program was to accelerate existing component programs to ensure their availability for use on the Space Station. These components include a rotary power transfer device, remote power controllers, remote bus isolators, high power semiconductor, a high power semiconductor package, high frequency-high power cable, high frequency-high power connectors, and high frequency-high power transformers. All the components were developed to the prototype level and will be installed in the Lewis Research Center Space Station power system test bed.
Power components for the space station 20-kHz power distribution system
NASA Technical Reports Server (NTRS)
Renz, David D.
1988-01-01
Since 1984, NASA Lewis Research Center was developing high power, high frequency space power components as part of The Space Station Advanced Development program. The purpose of The Advanced Development program was to accelerate existing component programs to ensure their availability for use on the Space Station. These components include a rotary power transfer device, remote power controllers, remote bus isolators, high power semiconductor, a high power semiconductor package, high frequency-high power cable, high frequency-high power connectors, and high frequency-high power transformers. All the components were developed to the prototype level and will be installed in the Lewis Research Center Space Station power system test bed.
NASA Astrophysics Data System (ADS)
Haino, S.
2011-06-01
The Alpha Magnetic Spectrometer (AMS) is a large acceptance cosmic-ray detector which will be installed as an independent module on the International Space Station (ISS). The instrument will provide a precise measurement of the cosmic-ray energy spectra and extensive antimatter search up to several TeV for particle charges up to Z = 26. The spectrometer will be delivered to the ISS by STS-134 flight in February 2011. In August 2010 the calibration and performance evaluation of the spectrometer were performed with test beam at CERN.
NASA tracking ship navigation systems
NASA Technical Reports Server (NTRS)
Mckenna, J. J.
1976-01-01
The ship position and attitude measurement system that was installed aboard the tracking ship Vanguard is described. An overview of the entire system is given along with a description of how precise time and frequency is utilized. The instrumentation is broken down into its basic components. Particular emphasis is given to the inertial navigation system. Each navigation system used, a mariner star tracker, navigation satellite system, Loran C and OMEGA in conjunction with the inertial system is described. The accuracy of each system is compared along with their limitations.
Fast front-end electronics for semiconductor tracking detectors: Trends and perspectives
NASA Astrophysics Data System (ADS)
Rivetti, Angelo
2014-11-01
In the past few years, extensive research efforts pursued by both the industry and the academia have lead to major improvements in the performance of Analog to Digital Converters (ADCs) and Time to Digital Converters (TDCs). ADCs achieving 8-10 bit resolution, 50-100 MHz conversion frequency and less than 1 mW power consumption are the today's standard, while TDCs have reached sub-picosecond time resolution. These results have been made possible by architectural upgrades combined with the use of ultra deep submicron CMOS technologies with minimum feature size of 130 nm or smaller. Front-end ASICs in which a prompt digitization is followed by signal conditioning in the digital domain can now be envisaged also within the tight power budget typically available in high density tracking systems. Furthermore, tracking detectors embedding high resolution timing capabilities are gaining interest. In the paper, ADC's and TDC's developments which are of particular relevance for the design front-end electronics for semiconductor trackers are discussed along with the benefits and challenges of exploiting such high performance building blocks in implementing the next generation of ASICs for high granularity particle detectors.
Tracking-integrated systems for concentrating photovoltaics
NASA Astrophysics Data System (ADS)
Apostoleris, Harry; Stefancich, Marco; Chiesa, Matteo
2016-04-01
Concentrating photovoltaic (CPV) systems, which use optical elements to focus light onto small-area solar cells, have the potential to minimize the costs, while improving efficiency, of photovoltaic technology. However, CPV is limited by the need to track the apparent motion of the Sun. This is typically accomplished using high-precision mechanical trackers that rotate the entire module to maintain normal light incidence. These machines are large, heavy and expensive to build and maintain, deterring commercial interest and excluding CPV from the residential market. To avoid this issue, some attention has recently been devoted to the development of tracking-integrated systems, in which tracking is performed inside the CPV module itself. This creates a compact system geometry that could be less expensive and more suitable for rooftop installation than existing CPV trackers. We review the basic tracking principles and concepts exploited in these systems, describe and categorize the existing designs, and discuss the potential impact of tracking integration on CPV cost models and commercial potential.
Deployment of the Hobby-Eberly Telescope wide-field upgrade
NASA Astrophysics Data System (ADS)
Hill, Gary J.; Drory, Niv; Good, John M.; Lee, Hanshin; Vattiat, Brian L.; Kriel, Herman; Ramsey, Jason; Bryant, Randy; Elliot, Linda; Fowler, Jim; Häuser, Marco; Landiau, Martin; Leck, Ron; Odewahn, Stephen; Perry, Dave; Savage, Richard; Schroeder Mrozinski, Emily; Shetrone, Matthew; DePoy, D. L.; Prochaska, Travis; Marshall, J. L.; Damm, George; Gebhardt, Karl; MacQueen, Phillip J.; Martin, Jerry; Armandroff, Taft; Ramsey, Lawrence W.
2016-07-01
The Hobby-Eberly Telescope (HET) is an innovative large telescope, located in West Texas at the McDonald Observatory. The HET operates with a fixed segmented primary and has a tracker, which moves the four-mirror corrector and prime focus instrument package to track the sidereal and non-sidereal motions of objects. We have completed a major multi-year upgrade of the HET that has substantially increased the pupil size to 10 meters and the field of view to 22 arcminutes by replacing the corrector, tracker, and prime focus instrument package. The new wide field HET will feed the revolutionary integral field spectrograph called VIRUS, in support of the Hobby-Eberly Telescope Dark Energy Experiment (HETDEX§), a new low resolution spectrograph (LRS2), an upgraded high resolution spectrograph (HRS2), and later the Habitable Zone Planet Finder (HPF). The upgrade is being commissioned and this paper discusses the completion of the installation, the commissioning process and the performance of the new HET.
Ultrawide-Bandgap Semiconductors: Research Opportunities and Challenges
2017-02-03
particularly for power electronics applications in hybrid and electric vehicles, power supplies, and photovoltaic ( PV ) inverters. Ultrawide-Bandgap...the one hand, Ga2O3-based optoelectronic devices such as solar -blind DUV photodetectors are expected to be useful for a variety of applications (e.g...system, and which are core components in aircraft, spacecraft, solar photovoltaic installations, electric vehicles, and military systems such as all
Field testing of a next generation pointer/tracker for IRCM
NASA Astrophysics Data System (ADS)
Chapman, Stuart; Wildgoose, Iain; McDonald, Eric; Duncan, Stuart
2008-10-01
SELEX Galileo has been involved in the development, manufacture and support of high performance electro-optic pointing and stabilisation systems for over forty years. The Company currently supplies the pointer/trackers for the AN/AAQ-24(V) NEMESIS DIRCM system, for which over 1,000 combat-proven units have been produced and deployed in the US, the UK and other nations. In 2007, SELEX Galileo embarked on an internally funded programme to develop ECLIPSE, a new advanced, lightweight, low-cost IRCM pointer/tracker, exploiting the extensive knowledge and experience gained from previous targeting and IRCM programmes. The ECLIPSE design is centred on a low inertia, two-axis servo mechanism with a strap-down inertial sensor and advanced sightline control algorithms, allowing effective tracking through the nadir and providing superior sightline performance. The programme involved the production of three demonstrator units in 2007, and two pre-production units in 2008. The demonstrator units were first trialled as part of a NEMESIS DIRCM system in late 2007, and in April 2008 100% success was achieved in jamming live-fire demonstrations. Helicopter installation and ground testing of a UK only trials system is complete, initial flight testing has just begun, and the airborne test and evaluation scheduled for late summer 2008 will bring the ECLIPSE System to technology readiness to level 7 (TRL7). This paper describes the Eclipse performance demonstrated to date.
Control of VOCs emissions by condenser pre-treatment in a semiconductor fab.
Lin, Yu-Chih; Chang, Feng-Tang; Bai, Hsunling; Pei, Bau-Shei
2005-04-11
The performance of a modified design of local condensers to pre-treat a variety of volatile organic compounds (VOCs) emitted from the stripping process of a semiconductor fab was tested in this study. The reaction temperature of the condensers was controlled at around 10 degrees C, it is relatively higher than the traditional condenser reaction temperature. Both VOCs and water vapors were condensed and formed liquid films. This resulted in an enhancement of the VOCs removals, especially for VOCs of high boiling points or solubility. This can help to prevent the follow up zeolite concentrator from damage. The performance of the integrated system of condenser/zeolite concentrator could, therefore, remain highly efficient for a longer operation time. Its annualized cost would also be lower than installing the zeolite concentrator only.
Tracker: Image-Processing and Object-Tracking System Developed
NASA Technical Reports Server (NTRS)
Klimek, Robert B.; Wright, Theodore W.
1999-01-01
Tracker is an object-tracking and image-processing program designed and developed at the NASA Lewis Research Center to help with the analysis of images generated by microgravity combustion and fluid physics experiments. Experiments are often recorded on film or videotape for analysis later. Tracker automates the process of examining each frame of the recorded experiment, performing image-processing operations to bring out the desired detail, and recording the positions of the objects of interest. It can load sequences of images from disk files or acquire images (via a frame grabber) from film transports, videotape, laser disks, or a live camera. Tracker controls the image source to automatically advance to the next frame. It can employ a large array of image-processing operations to enhance the detail of the acquired images and can analyze an arbitrarily large number of objects simultaneously. Several different tracking algorithms are available, including conventional threshold and correlation-based techniques, and more esoteric procedures such as "snake" tracking and automated recognition of character data in the image. The Tracker software was written to be operated by researchers, thus every attempt was made to make the software as user friendly and self-explanatory as possible. Tracker is used by most of the microgravity combustion and fluid physics experiments performed by Lewis, and by visiting researchers. This includes experiments performed on the space shuttles, Mir, sounding rockets, zero-g research airplanes, drop towers, and ground-based laboratories. This software automates the analysis of the flame or liquid s physical parameters such as position, velocity, acceleration, size, shape, intensity characteristics, color, and centroid, as well as a number of other measurements. It can perform these operations on multiple objects simultaneously. Another key feature of Tracker is that it performs optical character recognition (OCR). This feature is useful in extracting numerical instrumentation data that are embedded in images. All the results are saved in files for further data reduction and graphing. There are currently three Tracking Systems (workstations) operating near the laboratories and offices of Lewis Microgravity Science Division researchers. These systems are used independently by students, scientists, and university-based principal investigators. The researchers bring their tapes or films to the workstation and perform the tracking analysis. The resultant data files generated by the tracking process can then be analyzed on the spot, although most of the time researchers prefer to transfer them via the network to their offices for further analysis or plotting. In addition, many researchers have installed Tracker on computers in their office for desktop analysis of digital image sequences, which can be digitized by the Tracking System or some other means. Tracker has not only provided a capability to efficiently and automatically analyze large volumes of data, saving many hours of tedious work, but has also provided new capabilities to extract valuable information and phenomena that was heretofore undetected and unexploited.
Radio frequency tags systems to initiate system processing
NASA Astrophysics Data System (ADS)
Madsen, Harold O.; Madsen, David W.
1994-09-01
This paper describes the automatic identification technology which has been installed at Applied Magnetic Corp. MR fab. World class manufacturing requires technology exploitation. This system combines (1) FluoroTrac cassette and operator tracking, (2) CELLworks cell controller software tools, and (3) Auto-Soft Inc. software integration services. The combined system eliminates operator keystrokes and errors during normal processing within a semiconductor fab. The methods and benefits of this system are described.
NASA Astrophysics Data System (ADS)
Arbuzov, Yuri D.; Evdokimov, Vladimir M.; Shepovalova, Olga V.
2018-05-01
Angle-dependent spectral photoresponse characteristics for theoretically perfect and physically implementable tunnel cascade (multi-junction) photoelectric converters (PC), for example high-voltage planar PV cells, have been studied as functions of technological parameters and number of single PCs in cascade. Angle-dependent spectral photoresponse characteristics values for real cascade silicon structures have been determined in visible and ultraviolet radiation spectra. Characteristic values of radiation incidence angle corresponding to the twofold photocurrent reduction in relation to normal incidence have been found depending on the number of single PCs in cascade, `dead' layer thickness of tunnel junction and photosensitivity of the base PC. The possibility and practicability of solar trackers use in PV systems with proposed PCs under study have been evaluated.
NASA Astrophysics Data System (ADS)
Zierer, Joseph J.; Beno, Joseph H.; Weeks, Damon A.; Soukup, Ian M.; Good, John M.; Booth, John A.; Hill, Gary J.; Rafal, Marc D.
2012-09-01
Engineers from The University of Texas at Austin Center for Electromechanics and McDonald Observatory have designed, built, and laboratory tested a high payload capacity, precision hexapod for use on the Hobby-Eberly telescope as part of the HETDEX Wide Field Upgrade (WFU). The hexapod supports the 4200 kg payload which includes the wide field corrector, support structure, and other optical/electronic components. This paper provides a recap of the hexapod actuator mechanical and electrical design including a discussion on the methods used to help determine the actuator travel to prevent the hexapod payload from hitting any adjacent, stationary hardware. The paper describes in detail the tooling and methods used to assemble the full hexapod, including many of the structures and components which are supported on the upper hexapod frame. Additionally, details are provided on the installation of the hexapod onto the new tracker bridge, including design decisions that were made to accommodate the lift capacity of the Hobby- Eberly Telescope dome crane. Laboratory testing results will be presented verifying that the performance goals for the hexapod, including positioning, actuator travel, and speeds have all been achieved. This paper may be of interest to mechanical and electrical engineers responsible for the design and operations of precision hardware on large, ground based telescopes. In summary, the hexapod development cycle from the initial hexapod actuator performance requirements and design, to the deployment and testing on the newly designed HET tracker system is all discussed, including lessons learned through the process.
Virtual environment display for a 3D audio room simulation
NASA Astrophysics Data System (ADS)
Chapin, William L.; Foster, Scott
1992-06-01
Recent developments in virtual 3D audio and synthetic aural environments have produced a complex acoustical room simulation. The acoustical simulation models a room with walls, ceiling, and floor of selected sound reflecting/absorbing characteristics and unlimited independent localizable sound sources. This non-visual acoustic simulation, implemented with 4 audio ConvolvotronsTM by Crystal River Engineering and coupled to the listener with a Poihemus IsotrakTM, tracking the listener's head position and orientation, and stereo headphones returning binaural sound, is quite compelling to most listeners with eyes closed. This immersive effect should be reinforced when properly integrated into a full, multi-sensory virtual environment presentation. This paper discusses the design of an interactive, visual virtual environment, complementing the acoustic model and specified to: 1) allow the listener to freely move about the space, a room of manipulable size, shape, and audio character, while interactively relocating the sound sources; 2) reinforce the listener's feeling of telepresence into the acoustical environment with visual and proprioceptive sensations; 3) enhance the audio with the graphic and interactive components, rather than overwhelm or reduce it; and 4) serve as a research testbed and technology transfer demonstration. The hardware/software design of two demonstration systems, one installed and one portable, are discussed through the development of four iterative configurations. The installed system implements a head-coupled, wide-angle, stereo-optic tracker/viewer and multi-computer simulation control. The portable demonstration system implements a head-mounted wide-angle, stereo-optic display, separate head and pointer electro-magnetic position trackers, a heterogeneous parallel graphics processing system, and object oriented C++ program code.
Final Technical Report for EE0006091: H2Pump Hydrogen Recycling System Demonstration
DOE Office of Scientific and Technical Information (OSTI.GOV)
Staudt, Rhonda
The objective of this project is to demonstrate the product readiness and to quantify the benefits and customer value proposition of H2Pump’s Hydrogen Recycling System (HRS-100™) by installing and analyzing the operation of multiple prototype 100-kg per day systems in real world customer locations. The data gathered will be used to measure reliability, demonstrate the value proposition to customers, and validate our business model. H2Pump will install, track and report multiple field demonstration systems in industrial heat treating and semi-conductor applications. The customer demonstrations will be used to develop case studies and showcase the benefits of the technology to drivemore » market adoption.« less
An on-line acoustic fluorocarbon coolant mixture analyzer for the ATLAS silicon tracker
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bates, R.; Battistin, M.; Berry, S.
2011-07-01
The ATLAS silicon tracker community foresees an upgrade from the present octafluoro-propane (C{sub 3}F{sub 8}) evaporative cooling fluid - to a composite fluid with a probable 10-20% admixture of hexafluoro-ethane (C{sub 2}F{sub 6}). Such a fluid will allow a lower evaporation temperature and will afford the tracker silicon substrates a better safety margin against leakage current-induced thermal runaway caused by cumulative radiation damage as the luminosity profile at the CERN Large Hadron Collider increases. Central to the use of this new fluid is a new custom-developed speed-of-sound instrument for continuous real-time measurement of the C{sub 3}F{sub 8}/C{sub 2}F{sub 6} mixturemore » ratio and flow. An acoustic vapour mixture analyzer/flow meter with new custom electronics allowing ultrasonic frequency transmission through gas mixtures has been developed for this application. Synchronous with the emission of an ultrasound 'chirp' from an acoustic transmitter, a fast readout clock (40 MHz) is started. The clock is stopped on receipt of an above threshold sound pulse at the receiver. Sound is alternately transmitted parallel and anti-parallel with the vapour flow for volume flow measurement from transducers that can serve as acoustic transmitters or receivers. In the development version, continuous real-time measurement of C{sub 3}F{sub 8}/C{sub 2}F{sub 6} flow and calculation of the mixture ratio is performed within a graphical user interface developed in PVSS-II, the Supervisory, Control and Data Acquisition standard chosen for LHC and its experiments at CERN. The described instrument has numerous potential applications - including refrigerant leak detection, the analysis of hydrocarbons, vapour mixtures for semiconductor manufacture and anesthetic gas mixtures. (authors)« less
An On-Line Acoustic Fluorocarbon Coolant Mixture Analyzer for the ATLAS Silicon Tracker
NASA Astrophysics Data System (ADS)
Bates, R.; Battistin, M.; Berry, S.; Bitadze, A.; Bonneau, P.; Bousson, N.; Boyd, G.; Botelho-Direito, J.; DiGirolamo, B.; Doubek, M.; Egorov, K.; Godlewski, J.; Hallewell, G.; Katunin, S.; Mathieu, M.; McMahon, S.; Nagai, K.; Perez-Rodriguez, E.; Rozanov, A.; Vacek, V.; Vitek, M.
2012-10-01
The ATLAS silicon tracker community foresees an upgrade from the present octafluoropropane (C3F8) evaporative cooling fluid to a composite fluid with a probable 10-20% admixture of hexafluoroethane (C2F6). Such a fluid will allow a lower evaporation temperature and will afford the tracker silicon substrates a better safety margin against leakage current-induced thermal runaway caused by cumulative radiation damage as the luminosity profile at the CERN Large Hadron Collider increases. Central to the use of this new fluid is a new custom-developed speed-of-sound instrument for continuous real-time measurement of the C3F8/C2F6 mixture ratio and flow. An acoustic vapour mixture analyzer/flow meter with new custom electronics allowing ultrasonic frequency transmission through gas mixtures has been developed for this application. Synchronous with the emission of an ultrasound `chirp' from an acoustic transmitter, a fast readout clock (40 MHz) is started. The clock is stopped on receipt of an above threshold sound pulse at the receiver. Sound is alternately transmitted parallel and anti-parallel with the vapour flow for volume flow measurement from transducers that can serve as acoustic transmitters or receivers. In the development version, continuous real-time measurement of C3F8/C2F6 flow and calculation of the mixture ratio is performed within a graphical user interface developed in PVSS-II, the Supervisory, Control and Data Acquisition standard chosen for LHC and its experiments at CERN. The described instrument has numerous potential applications - including refrigerant leak detection, the analysis of hydrocarbons, vapour mixtures for semi-conductor manufacture and anesthetic gas mixtures.
NASA Astrophysics Data System (ADS)
Poley, L.; Bloch, I.; Edwards, S.; Friedrich, C.; Gregor, I.-M.; Jones, T.; Lacker, H.; Pyatt, S.; Rehnisch, L.; Sperlich, D.; Wilson, J.
2016-05-01
The Phase-II upgrade of the ATLAS detector for the High Luminosity Large Hadron Collider (HL-LHC) includes the replacement of the current Inner Detector with an all-silicon tracker consisting of pixel and strip detectors. The current Phase-II detector layout requires the construction of 20,000 strip detector modules consisting of sensor, circuit boards and readout chips, which are connected mechanically using adhesives. The adhesive used initially between readout chips and circuit board is a silver epoxy glue as was used in the current ATLAS SemiConductor Tracker (SCT). However, this glue has several disadvantages, which motivated the search for an alternative. This paper presents a study of six ultra-violet (UV) cure glues and a glue pad for possible use in the assembly of silicon strip detector modules for the ATLAS upgrade. Trials were carried out to determine the ease of use, thermal conduction and shear strength. Samples were thermally cycled, radiation hardness and corrosion resistance were also determined. These investigations led to the exclusion of three UV cure glues as well as the glue pad. Three UV cure glues were found to be possible better alternatives than silver loaded glue. Results from electrical tests of first prototype modules constructed using these glues are presented.
Kostyukevich, Yury; Efremov, Denis; Ionov, Vladimir; Kukaev, Eugene; Nikolaev, Eugene
2017-11-01
The detection of explosives and drugs in hard-to-reach places is a considerable challenge. We report the development and initial experimental characterization of the air analysis system that includes Field Asymmetric Ion Mobility Spectrometer, array of the semiconductor gas sensors and is installed on multicopter. The system was developed based on the commercially available DJI Matrix 100 platform. For data collection and communication with operator, the special compact computer (Intel Compute Stick) was installed onboard. The total weight of the system was 3.3 kg. The system allows the 15-minute flight and provides the remote access to the obtained data. The developed system can be effectively used for the detection of impurities in the air, ecology monitoring, detection of chemical warfare agents, and explosives, what is especially important in light of recent terroristic attacks. The capabilities of the system were tested on the several explosives such as trinitrotoluene and nitro powder. Copyright © 2017 John Wiley & Sons, Ltd.
Tracking integration in concentrating photovoltaics using laterally moving optics.
Duerr, Fabian; Meuret, Youri; Thienpont, Hugo
2011-05-09
In this work the concept of tracking-integrated concentrating photovoltaics is studied and its capabilities are quantitatively analyzed. The design strategy desists from ideal concentration performance to reduce the external mechanical solar tracking effort in favor of a compact installation, possibly resulting in lower overall cost. The proposed optical design is based on an extended Simultaneous Multiple Surface (SMS) algorithm and uses two laterally moving plano-convex lenses to achieve high concentration over a wide angular range of ±24°. It achieves 500× concentration, outperforming its conventional concentrating photovoltaic counterparts on a polar aligned single axis tracker.
Improved ATIR concentrator photovoltaic module
NASA Astrophysics Data System (ADS)
Adriani, Paul M.; Mao, Erwang
2013-09-01
Novel aggregated total internal reflection (ATIR) concentrator photovoltaic module design comprises 2-D shaped primary and secondary optics that effectively combine optical efficiency, low profile, convenient range of acceptance angles, reliability, and manufacturability. This novel optical design builds upon previous investigations by improving the shapes of primary and secondary optics to enable improved long-term reliability and manufacturability. This low profile, low concentration (5x to 10x) design fits well with one-axis trackers that are often used for flat plate crystalline silicon photovoltaic modules in large scale ground mount installations. Standard mounting points, materials, and procedures apply without changes from flat plate modules.
Rep. Shea-Porter, Carol [D-NH-1
2018-05-22
House - 05/22/2018 Referred to the Committee on Veterans' Affairs, and in addition to the Committee on Armed Services, for a period to be subsequently determined by the Speaker, in each case for consideration of such provisions as fall within the jurisdiction of the committee... (All Actions) Tracker: This bill has the status IntroducedHere are the steps for Status of Legislation:
NASA Astrophysics Data System (ADS)
Lipiec, Andrzej
2017-08-01
In heavy ion collisions at relativistic energies conducted at Relativistic Heavy Ion Collider (RHIC, Upton, USA) a new state of matter, Quark Gluon Plasma (QGP), is produced. QGP is a state of matter with partonic (i.e. gluons + quarks) degrees of freedom and is believed to be existing only during first moments after the Big Bang, and possibly inside of the heaviest neutron stars. One of the key QGP signatures is the elliptic flow (v2) - a coefficient that describes spatial assymetry of particle yield. It has been observed that v2 of particles composed of light quarks (i.e. up, down and strange) follow the same trends when scaled to the number of constituent quarks. Such observations implied that all light quarks gain the same flow in the heavy ion collision. On the other hand it was speculated that heavy quarks (charm and bottom) should have smaller v2 because of their in-medium energy losses. Due to their heavy mass, c quarks are produced mostly before QGP is formed, which makes them excellent probes to study this hot, dense and strongly interacting medium. The Solenoidal Tracker At RHIC (STAR) experiment took data with the newly installed Heavy Flavor Tracker (HFT) detector. Thanks to the state-of-the-art tracking resolution of the HFT it is possible to measure D0 mesons with unprecedented precision. This paper presents the STAR experiment measurement of D0 elliptic flow.
Alignment of the Pixel and SCT Modules for the 2004 ATLAS Combined Test Beam
DOE Office of Scientific and Technical Information (OSTI.GOV)
ATLAS Collaboration; Ahmad, A.; Andreazza, A.
2008-06-02
A small set of final prototypes of the ATLAS Inner Detector silicon tracking system(Pixel Detector and SemiConductor Tracker), were used to take data during the 2004 Combined Test Beam. Data were collected from runs with beams of different flavour (electrons, pions, muons and photons) with a momentum range of 2 to 180 GeV/c. Four independent methods were used to align the silicon modules. The corrections obtained were validated using the known momenta of the beam particles and were shown to yield consistent results among the different alignment approaches. From the residual distributions, it is concluded that the precision attained inmore » the alignmentof the silicon modules is of the order of 5 mm in their most precise coordinate.« less
Experience from the construction and operation of the STAR PXL detector
NASA Astrophysics Data System (ADS)
Greiner, L.; Anderssen, E. C.; Contin, G.; Schambach, J.; Silber, J.; Stezelberger, T.; Sun, X.; Szelezniak, M.; Vu, C.; Wieman, H. H.; Woodmansee, S.
2015-04-01
A new silicon based vertex detector called the Heavy Flavor Tracker (HFT) was installed at the Soleniodal Tracker At RHIC (STAR) experiment for the Relativistic Heavy Ion Collider (RHIC) 2014 heavy ion run to improve the vertex resolution and extend the measurement capabilities of STAR in the heavy flavor domain. The HFT consists of four concentric cylinders around the STAR interaction point composed of three different silicon detector technologies based on strips, pads and for the first time in an accelerator experiment CMOS monolithic active pixels (MAPS) . The two innermost layers at a radius of 2.8 cm and 8 cm from the beam line are constructed with 400 high resolution MAPS sensors arranged in 10-sensor ladders mounted on 10 thin carbon fiber sectors giving a total silicon area of 0.16 m2. Each sensor consists of a pixel array of nearly 1 million pixels with a pitch of 20.7 μm with column-level discriminators, zero-suppression circuitry and output buffer memory integrated into one silicon die with a sensitive area of ~ 3.8 cm2. The pixel (PXL) detector has a low power dissipation of 170 mW/cm2, which allows air cooling. This results in a global material budget of 0.5% radiation length per layer for detector used in this run. A novel mechanical approach to detector insertion allows for the installation and integration of the pixel sub detector within a 12 hour period during an on-going STAR run. The detector specifications, experience from the construction and operation, lessons learned and initial measurements of the PXL performance in the 200 GeV Au-Au run will be presented.
Cheng, Jianhua; Chen, Daidai; Sun, Xiangyu; Wang, Tongda
2015-02-04
To obtain the absolute position of a target is one of the basic topics for non-cooperated target tracking problems. In this paper, we present a simultaneously calibration method for an Inertial navigation system (INS)/Global position system (GPS)/Laser distance scanner (LDS) integrated system based target positioning approach. The INS/GPS integrated system provides the attitude and position of observer, and LDS offers the distance between the observer and the target. The two most significant errors are taken into jointly consideration and analyzed: (1) the attitude measure error of INS/GPS; (2) the installation error between INS/GPS and LDS subsystems. Consequently, a INS/GPS/LDS based target positioning approach considering these two errors is proposed. In order to improve the performance of this approach, a novel calibration method is designed to simultaneously estimate and compensate these two main errors. Finally, simulations are conducted to access the performance of the proposed target positioning approach and the designed simultaneously calibration method.
Development of a MeV proton beam irradiation system.
Park, Bum-Sik; Cho, Yong-Sub; Hong, In-Seok
2008-02-01
A proton beam irradiation system for the application of the MeV class proton beam, such as an implantation for a power semiconductor device and a smart-cut technology for a semiconductor production process, has been developed. This system consists of a negative ion source, an Einzel lens for a low energy beam transport, accelerating tubes, a gas stripper, a Cockroft-Walton high voltage power supply with 1 MV, a vacuum pumping system, and a high pressure insulating gas system. The negative hydrogen ion source is based on TRIUMF's design. Following the tandem accelerator, a pair of magnets is installed for raster scanning of the MeV proton beam to obtain a uniform irradiation pattern on the target. The system is 7 m long from the ion source to the target and is optimized for the proton beam irradiation. The details of the system development will be described.
New type of heating system for clothes dryer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Itoh, K.; Itoh, C.
1995-12-01
The basic technology to improve serviceability and reliability of the electric clothes dryer relies on the heater and heat exchanger. This paper describes the status of stress analysis and the evaluation of reliability for semiconductors consisting of BaTiO{sub 3} for disk-type heat exchangers/heaters with honeycomb openings. If the authors could keep the Curie temperature of the semiconductor lower than the ignition temperature of clothing during the drying cycle, installation of two legally limited thermostats would no longer be required and reliability of the control system could be further improved due to its simplified structure. The heater can be made moremore » compact by designing a honeycomb-type heater/heat exchangers but the structural requirements for the heat exchanger and the heater would conflict. An approximate solution to heater/heat exchanger stress is being sought as a thermal stress issue for an equivalent solid compound disc.« less
Silica-Based Optical Time-Shift Network.
1996-03-01
consisted of semiconductor lasers and detectors, RF transfer -switches, low noise RF amplifiers (LNA), and T2L circuitries installed to enable switching...F/O TRANSFER BOX (1) RADIATING ELEMENTS 1:8 POWER DIVIDER (24 CARDS) 1.4 POWER DIVIDER (24) Tr/R MODULE (24) F/O DELAY WITH 2 TRANSFER SWITCHES AND 1...of the mode can travel is the velocity of light (= c/ni) in the outer clad, the part of it that lies beyond a critical radius Rc would not be able to
Uprated fine guidance sensor study
NASA Technical Reports Server (NTRS)
1984-01-01
Future orbital observatories will require star trackers of extremely high precision. These sensors must maintain high pointing accuracy and pointing stability simultaneously with a low light level signal from a guide star. To establish the fine guidance sensing requirements and to evaluate candidate fine guidance sensing concepts, the Space Telescope Optical Telescope Assembly was used as the reference optical system. The requirements review was separated into three areas: Optical Telescope Assembly (OTA), Fine Guidance Sensing and astrometry. The results show that the detectors should be installed directly onto the focal surface presented by the optics. This would maximize throughput and minimize point stability error by not incoporating any additional optical elements.
NASA Astrophysics Data System (ADS)
Dyshkant, A.; Beznosko, D.; Blazey, G.; Fisk, E.; Hahn, E.; Rykalin, V.; Wayne, M.; Zutshi, V.
2006-12-01
Detailed measurements of the wavelength shifting fiber response to a stable and reliable light source are presented. Particulars about materials, a double reference method, and measurement technique are included. The fibers studied were several hundred Kuraray, Y-11, multiclad, 1.2-mm outer diameter wavelength shifting fibers, each cut from a reel to about one meter length. The fibers were polished, mirrored, and the mirrors were UV epoxy protected. Each fiber passed quality control requirements before installation. About 94% of the fibers tested have a response within 1% of the overall mean
Flat-plate collector research area: Silicon material task
NASA Technical Reports Server (NTRS)
Lutwack, R.
1982-01-01
Silane decomposition in a fluidized-bed reactor (FBR) process development unit (PDU) to make semiconductor-grade Si is reviewed. The PDU was modified by installation of a new heating system to provide the required temperature profile and better control, and testing was resumed. A process for making trichlorosilane by the hydrochlorination of metallurgical-grade Si and silicon tetrachloride is reported. Fabrication and installation of the test system employing a new 2-in.-dia reactor was completed. A process that converts trichlorosilane to dichlorosilane (DCS), which is reduced by hydrogen to make Si by a chemical vapor deposition step in a Siemens-type reactor is described. Testing of the DCS PDU integraled with Si deposition reactors continued. Experiments in a 2-in.-dia reactor to define the operating window and to investigate the Si deposition kinetics were completed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
MacKinnon, Barry A.; Ruffell, John P.
In 1953 the Raytheon CK722 transistor was priced at $7.60. Based upon this, an Intel Xeon Quad Core processor containing 820,000,000 transistors should list at $6.2 billion. Particle accelerator technology plays an important part in the remarkable story of why that Intel product can be purchased today for a few hundred dollars. Most people of the mid twentieth century would be astonished at the ubiquity of semiconductors in the products we now buy and use every day. Though relatively expensive in the nineteen fifties they now exist in a wide range of items from high-end multicore microprocessors like the Intelmore » product to disposable items containing 'only' hundreds or thousands like RFID chips and talking greeting cards. This historical development has been fueled by continuous advancement of the several individual technologies involved in the production of semiconductor devices including Ion Implantation and the charged particle beamlines at the heart of implant machines. In the course of its 40 year development, the worldwide implanter industry has reached annual sales levels around $2B, installed thousands of dedicated machines and directly employs thousands of workers. It represents in all these measures, as much and possibly more than any other industrial application of particle accelerator technology. This presentation discusses the history of implanter development. It touches on some of the people involved and on some of the developmental changes and challenges imposed as the requirements of the semiconductor industry evolved.« less
Case study of a central-station grid-intertie photovoltaic system with V-trough concentration
DOE Office of Scientific and Technical Information (OSTI.GOV)
Freilich, J.; Gordon, J.M.
1991-01-01
This presentation is a cast study of an installed, central-station (no storage), utility-intertie photovoltaic (PV) system in Sede Boqer, Israel (latitude 30.9{degree}N). The nominally 12 kW peak PV system is comprised of 189 polycrystalline silicon modules mounted on inexpensive, one-axis north-south horizontal trackers with V-trough mirrors for optical boost. The power conditioning unit operates at a fixed voltage rather than at maximum power point (MPP). The primary task in analyzing the installed system was to investigate the cause of measured power output significantly below the design predictions of the installers, and to recommend system design modifications. Subsequent tasks included themore » quantitative assessment of fixed-voltage operation and of the energetic value of V-trough concentration and one-axis tracking for this system. Sample results show: (1) fixed-voltage operation at the best fixed voltage (BFV) can achieve around 96% of the yearly energy of MPP operation; (2) the sensitivity of the yearly energy delivery to the selection of fixed voltage and its marked asymmetry about the BFV; (3) the influences of inverter current constraints on yearly energy delivery and BFV; and (4) how the separate effects of tracking and optical concentration increase yearly energy delivery.« less
A happy conclusion to the SALT image quality saga
NASA Astrophysics Data System (ADS)
Crause, Lisa A.; O'Donoghue, Darragh E.; O'Connor, James E.; Strumpfer, Francois; Strydom, Ockert J.; Sass, Craig; du Plessis, Charl A.; Wiid, Eben; Love, Jonathan; Brink, Janus D.; Wilkinson, Martin; Coetzee, Chris
2012-09-01
Images obtained with the Southern African Large Telescope (SALT) during its commissioning phase showed degradation due to a large focus gradient and a variety of other optical aberrations. An extensive forensic investigation eventually traced the problem to the mechanical interface between the telescope and the secondary optics that form the Spherical Aberration Corrector (SAC). The SAC was brought down from the telescope in 2009 April, the problematic interface was replaced and the four corrector mirrors were optically tested and re-aligned. The surface figures of the SAC mirrors were confirmed to be within specification and a full system test following the re-alignment process yielded a RMS wavefront error of just 0.15 waves. The SAC was re-installed on the tracker in 2010 August and aligned with respect to the payload and primary mirror. Subsequent on-sky tests produced alarming results which were due to spurious signals being sent to the tracker by the auto-collimator, the instrument responsible for controlling the attitude of the SAC with respect to the primary mirror. Once this minor issue was resolved, we obtained uniform 1.1 arcsecond star images over the full 10 arcminute field of view of the telescope.
Highlights from PHENIX at RHIC
NASA Astrophysics Data System (ADS)
Nouicer, Rachid
2018-02-01
Hadrons conveying strange quarks or heavy quarks are essential probes of the hot and dense medium created in relativistic heavy-ion collisions. With hidden strangeness, ϕ meson production and its transport in the nuclear medium have attracted high interest since its discovery. Heavy quark-antiquark pairs, like charmonium and bottomonium mesons, are mainly produced in initial hard scattering processes of partons. While some of the produced pairs form bound quarkonia, the vast majority hadronize into particles carrying open heavy flavor. In this context, the PHENIX collaboration carries out a comprehensive physics program which studies the ϕ meson production, and heavy flavor production in relativistic heavy-ion collisions at RHIC. In recent years, the PHENIX experiment upgraded the detector in installing silicon vertex tracker (VTX) at mid-rapidity region and forward silicon vertex tracker (FVTX) at the forward rapidity region. With these new upgrades, the experiment has collected large data samples, and enhanced the capability of heavy flavor measurements via precision tracking. This paper summarizes the latest PHENIX results concerning ϕ meson, open and closed charm and beauty heavy quark production in relativistic heavy-ion collisions. These results are presented as a function of rapidity, energy and system size, and their interpretation with respect to the current theoretical understanding.
Study of the material of the ATLAS inner detector for Run 2 of the LHC
Aaboud, M.; Aad, G.; Abbott, B.; ...
2017-12-07
The ATLAS inner detector comprises three different sub-detectors: the pixel detector, the silicon strip tracker, and the transition-radiation drift-tube tracker. The Insertable B-Layer, a new innermost pixel layer, was installed during the shutdown period in 2014, together with modifications to the layout of the cables and support structures of the existing pixel detector. The material in the inner detector is studied with several methods, using a low-luminosity √s=13 TeV pp collision sample corresponding to around 2.0 nb -1 collected in 2015 with the ATLAS experiment at the LHC. In this paper, the material within the innermost barrel region is studiedmore » using reconstructed hadronic interaction and photon conversion vertices. For the forward rapidity region, the material is probed by a measurement of the efficiency with which single tracks reconstructed from pixel detector hits alone can be extended with hits on the track in the strip layers. The results of these studies have been taken into account in an improved description of the material in the ATLAS inner detector simulation, resulting in a reduction in the uncertainties associated with the charged-particle reconstruction efficiency determined from simulation.« less
NASA Astrophysics Data System (ADS)
Wang, T.; Barbero, M.; Berdalovic, I.; Bespin, C.; Bhat, S.; Breugnon, P.; Caicedo, I.; Cardella, R.; Chen, Z.; Degerli, Y.; Egidos, N.; Godiot, S.; Guilloux, F.; Hemperek, T.; Hirono, T.; Krüger, H.; Kugathasan, T.; Hügging, F.; Marin Tobon, C. A.; Moustakas, K.; Pangaud, P.; Schwemling, P.; Pernegger, H.; Pohl, D.-L.; Rozanov, A.; Rymaszewski, P.; Snoeys, W.; Wermes, N.
2018-03-01
Depleted monolithic active pixel sensors (DMAPS), which exploit high voltage and/or high resistivity add-ons of modern CMOS technologies to achieve substantial depletion in the sensing volume, have proven to have high radiation tolerance towards the requirements of ATLAS in the high-luminosity LHC era. DMAPS integrating fast readout architectures are currently being developed as promising candidates for the outer pixel layers of the future ATLAS Inner Tracker, which will be installed during the phase II upgrade of ATLAS around year 2025. In this work, two DMAPS prototype designs, named LF-Monopix and TJ-Monopix, are presented. LF-Monopix was fabricated in the LFoundry 150 nm CMOS technology, and TJ-Monopix has been designed in the TowerJazz 180 nm CMOS technology. Both chips employ the same readout architecture, i.e. the column drain architecture, whereas different sensor implementation concepts are pursued. The paper makes a joint description of the two prototypes, so that their technical differences and challenges can be addressed in direct comparison. First measurement results for LF-Monopix will also be shown, demonstrating for the first time a fully functional fast readout DMAPS prototype implemented in the LFoundry technology.
Study of the material of the ATLAS inner detector for Run 2 of the LHC
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aaboud, M.; Aad, G.; Abbott, B.
The ATLAS inner detector comprises three different sub-detectors: the pixel detector, the silicon strip tracker, and the transition-radiation drift-tube tracker. The Insertable B-Layer, a new innermost pixel layer, was installed during the shutdown period in 2014, together with modifications to the layout of the cables and support structures of the existing pixel detector. The material in the inner detector is studied with several methods, using a low-luminosity √s=13 TeV pp collision sample corresponding to around 2.0 nb -1 collected in 2015 with the ATLAS experiment at the LHC. In this paper, the material within the innermost barrel region is studiedmore » using reconstructed hadronic interaction and photon conversion vertices. For the forward rapidity region, the material is probed by a measurement of the efficiency with which single tracks reconstructed from pixel detector hits alone can be extended with hits on the track in the strip layers. The results of these studies have been taken into account in an improved description of the material in the ATLAS inner detector simulation, resulting in a reduction in the uncertainties associated with the charged-particle reconstruction efficiency determined from simulation.« less
Study of the material of the ATLAS inner detector for Run 2 of the LHC
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aaboud, M.; Aad, G.; Abbott, B.
The ATLAS inner detector comprises three different sub-detectors: the pixel detector, the silicon strip tracker, and the transition-radiation drift-tube tracker. The Insertable B-Layer, a new innermost pixel layer, was installed during the shutdown period in 2014, together with modifications to the layout of the cables and support structures of the existing pixel detector. The material in the inner detector is studied with several methods, using a low-luminosity √s = 13 TeV pp collision sample corresponding to around 2.0 nb -1 collected in 2015 with the ATLAS experiment at the LHC. In this paper, the material within the innermost barrel regionmore » is studied using reconstructed hadronic interaction and photon conversion vertices. For the forward rapidity region, the material is probed by a measurement of the efficiency with which single tracks reconstructed from pixel detector hits alone can be extended with hits on the track in the strip layers. The results of these studies have been taken into account in an improved description of the material in the ATLAS inner detector simulation, resulting in a reduction in the uncertainties associated with the charged-particle reconstruction efficiency determined from simulation.« less
Feature-aided multiple target tracking in the image plane
NASA Astrophysics Data System (ADS)
Brown, Andrew P.; Sullivan, Kevin J.; Miller, David J.
2006-05-01
Vast quantities of EO and IR data are collected on airborne platforms (manned and unmanned) and terrestrial platforms (including fixed installations, e.g., at street intersections), and can be exploited to aid in the global war on terrorism. However, intelligent preprocessing is required to enable operator efficiency and to provide commanders with actionable target information. To this end, we have developed an image plane tracker which automatically detects and tracks multiple targets in image sequences using both motion and feature information. The effects of platform and camera motion are compensated via image registration, and a novel change detection algorithm is applied for accurate moving target detection. The contiguous pixel blob on each moving target is segmented for use in target feature extraction and model learning. Feature-based target location measurements are used for tracking through move-stop-move maneuvers, close target spacing, and occlusion. Effective clutter suppression is achieved using joint probabilistic data association (JPDA), and confirmed target tracks are indicated for further processing or operator review. In this paper we describe the algorithms implemented in the image plane tracker and present performance results obtained with video clips from the DARPA VIVID program data collection and from a miniature unmanned aerial vehicle (UAV) flight.
Study of the material of the ATLAS inner detector for Run 2 of the LHC
NASA Astrophysics Data System (ADS)
Aaboud, M.; Aad, G.; Abbott, B.; Abdallah, J.; Abdinov, O.; Abeloos, B.; Abidi, S. H.; AbouZeid, O. S.; Abraham, N. L.; Abramowicz, H.; Abreu, H.; Abreu, R.; Abulaiti, Y.; Acharya, B. S.; Adachi, S.; Adamczyk, L.; Adelman, J.; Adersberger, M.; Adye, T.; Affolder, A. A.; Agatonovic-Jovin, T.; Agheorghiesei, C.; Aguilar-Saavedra, J. A.; Ahlen, S. P.; Ahmadov, F.; Aielli, G.; Akatsuka, S.; Akerstedt, H.; Åkesson, T. P. A.; Akilli, E.; Akimov, A. V.; Alberghi, G. L.; Albert, J.; Albicocco, P.; Alconada Verzini, M. J.; Aleksa, M.; Aleksandrov, I. N.; Alexa, C.; Alexander, G.; Alexopoulos, T.; Alhroob, M.; Ali, B.; Aliev, M.; Alimonti, G.; Alison, J.; Alkire, S. P.; Allbrooke, B. M. M.; Allen, B. W.; Allport, P. P.; Aloisio, A.; Alonso, A.; Alonso, F.; Alpigiani, C.; Alshehri, A. A.; Alstaty, M.; Alvarez Gonzalez, B.; Álvarez Piqueras, D.; Alviggi, M. G.; Amadio, B. T.; Amaral Coutinho, Y.; Amelung, C.; Amidei, D.; Amor Dos Santos, S. P.; Amorim, A.; Amoroso, S.; Amundsen, G.; Anastopoulos, C.; Ancu, L. S.; Andari, N.; Andeen, T.; Anders, C. F.; Anders, J. K.; Anderson, K. J.; Andreazza, A.; Andrei, V.; Angelidakis, S.; Angelozzi, I.; Angerami, A.; Anisenkov, A. V.; Anjos, N.; Annovi, A.; Antel, C.; Antonelli, M.; Antonov, A.; Antrim, D. J.; Anulli, F.; Aoki, M.; Aperio Bella, L.; Arabidze, G.; Arai, Y.; Araque, J. P.; Araujo Ferraz, V.; Arce, A. T. H.; Ardell, R. E.; Arduh, F. A.; Arguin, J.-F.; Argyropoulos, S.; Arik, M.; Armbruster, A. J.; Armitage, L. J.; Arnaez, O.; Arnold, H.; Arratia, M.; Arslan, O.; Artamonov, A.; Artoni, G.; Artz, S.; Asai, S.; Asbah, N.; Ashkenazi, A.; Asquith, L.; Assamagan, K.; Astalos, R.; Atkinson, M.; Atlay, N. B.; Augsten, K.; Avolio, G.; Axen, B.; Ayoub, M. K.; Azuelos, G.; Baas, A. E.; Baca, M. J.; Bachacou, H.; Bachas, K.; Backes, M.; Backhaus, M.; Bagnaia, P.; Bahrasemani, H.; Baines, J. T.; Bajic, M.; Baker, O. K.; Baldin, E. M.; Balek, P.; Balli, F.; Balunas, W. K.; Banas, E.; Banerjee, Sw.; Bannoura, A. A. E.; Barak, L.; Barberio, E. L.; Barberis, D.; Barbero, M.; Barillari, T.; Barisits, M.-S.; Barkeloo, J. T.; Barklow, T.; Barlow, N.; Barnes, S. L.; Barnett, B. M.; Barnett, R. M.; Barnovska-Blenessy, Z.; Baroncelli, A.; Barone, G.; Barr, A. J.; Barranco Navarro, L.; Barreiro, F.; Barreiro Guimarães da Costa, J.; Bartoldus, R.; Barton, A. E.; Bartos, P.; Basalaev, A.; Bassalat, A.; Bates, R. L.; Batista, S. J.; Batley, J. R.; Battaglia, M.; Bauce, M.; Bauer, F.; Bawa, H. S.; Beacham, J. B.; Beattie, M. D.; Beau, T.; Beauchemin, P. H.; Bechtle, P.; Beck, H. P.; Becker, K.; Becker, M.; Beckingham, M.; Becot, C.; Beddall, A. J.; Beddall, A.; Bednyakov, V. A.; Bedognetti, M.; Bee, C. P.; Beermann, T. A.; Begalli, M.; Begel, M.; Behr, J. K.; Bell, A. S.; Bella, G.; Bellagamba, L.; Bellerive, A.; Bellomo, M.; Belotskiy, K.; Beltramello, O.; Belyaev, N. L.; Benary, O.; Benchekroun, D.; Bender, M.; Bendtz, K.; Benekos, N.; Benhammou, Y.; Benhar Noccioli, E.; Benitez, J.; Benjamin, D. P.; Benoit, M.; Bensinger, J. R.; Bentvelsen, S.; Beresford, L.; Beretta, M.; Berge, D.; Bergeaas Kuutmann, E.; Berger, N.; Beringer, J.; Berlendis, S.; Bernard, N. R.; Bernardi, G.; Bernius, C.; Bernlochner, F. U.; Berry, T.; Berta, P.; Bertella, C.; Bertoli, G.; Bertolucci, F.; Bertram, I. A.; Bertsche, C.; Bertsche, D.; Besjes, G. J.; Bessidskaia Bylund, O.; Bessner, M.; Besson, N.; Betancourt, C.; Bethani, A.; Bethke, S.; Bevan, A. J.; Beyer, J.; Bianchi, R. M.; Biebel, O.; Biedermann, D.; Bielski, R.; Biesuz, N. V.; Biglietti, M.; Bilbao De Mendizabal, J.; Billoud, T. R. V.; Bilokon, H.; Bindi, M.; Bingul, A.; Bini, C.; Biondi, S.; Bisanz, T.; Bittrich, C.; Bjergaard, D. M.; Black, C. W.; Black, J. E.; Black, K. M.; Blair, R. E.; Blazek, T.; Bloch, I.; Blocker, C.; Blue, A.; Blum, W.; Blumenschein, U.; Blunier, S.; Bobbink, G. J.; Bobrovnikov, V. S.; Bocchetta, S. S.; Bocci, A.; Bock, C.; Boehler, M.; Boerner, D.; Bogavac, D.; Bogdanchikov, A. G.; Bohm, C.; Boisvert, V.; Bokan, P.; Bold, T.; Boldyrev, A. S.; Bolz, A. E.; Bomben, M.; Bona, M.; Boonekamp, M.; Borisov, A.; Borissov, G.; Bortfeldt, J.; Bortoletto, D.; Bortolotto, V.; Boscherini, D.; Bosman, M.; Bossio Sola, J. D.; Boudreau, J.; Bouffard, J.; Bouhova-Thacker, E. V.; Boumediene, D.; Bourdarios, C.; Boutle, S. K.; Boveia, A.; Boyd, J.; Boyko, I. R.; Bracinik, J.; Brandt, A.; Brandt, G.; Brandt, O.; Bratzler, U.; Brau, B.; Brau, J. E.; Breaden Madden, W. D.; Brendlinger, K.; Brennan, A. J.; Brenner, L.; Brenner, R.; Bressler, S.; Briglin, D. L.; Bristow, T. M.; Britton, D.; Britzger, D.; Brochu, F. M.; Brock, I.; Brock, R.; Brooijmans, G.; Brooks, T.; Brooks, W. K.; Brosamer, J.; Brost, E.; Broughton, J. H.; Bruckman de Renstrom, P. A.; Bruncko, D.; Bruni, A.; Bruni, G.; Bruni, L. S.; Brunt, BH; Bruschi, M.; Bruscino, N.; Bryant, P.; Bryngemark, L.; Buanes, T.; Buat, Q.; Buchholz, P.; Buckley, A. G.; Budagov, I. A.; Buehrer, F.; Bugge, M. K.; Bulekov, O.; Bullock, D.; Burch, T. J.; Burckhart, H.; Burdin, S.; Burgard, C. D.; Burger, A. M.; Burghgrave, B.; Burka, K.; Burke, S.; Burmeister, I.; Burr, J. T. P.; Busato, E.; Büscher, D.; Büscher, V.; Bussey, P.; Butler, J. M.; Buttar, C. M.; Butterworth, J. M.; Butti, P.; Buttinger, W.; Buzatu, A.; Buzykaev, A. R.; Cabrera Urbán, S.; Caforio, D.; Cairo, V. M.; Cakir, O.; Calace, N.; Calafiura, P.; Calandri, A.; Calderini, G.; Calfayan, P.; Callea, G.; Caloba, L. P.; Calvente Lopez, S.; Calvet, D.; Calvet, S.; Calvet, T. P.; Camacho Toro, R.; Camarda, S.; Camarri, P.; Cameron, D.; Caminal Armadans, R.; Camincher, C.; Campana, S.; Campanelli, M.; Camplani, A.; Campoverde, A.; Canale, V.; Cano Bret, M.; Cantero, J.; Cao, T.; Capeans Garrido, M. D. M.; Caprini, I.; Caprini, M.; Capua, M.; Carbone, R. M.; Cardarelli, R.; Cardillo, F.; Carli, I.; Carli, T.; Carlino, G.; Carlson, B. T.; Carminati, L.; Carney, R. M. D.; Caron, S.; Carquin, E.; Carrá, S.; Carrillo-Montoya, G. D.; Carvalho, J.; Casadei, D.; Casado, M. P.; Casolino, M.; Casper, D. W.; Castelijn, R.; Castillo Gimenez, V.; Castro, N. F.; Catinaccio, A.; Catmore, J. R.; Cattai, A.; Caudron, J.; Cavaliere, V.; Cavallaro, E.; Cavalli, D.; Cavalli-Sforza, M.; Cavasinni, V.; Celebi, E.; Ceradini, F.; Cerda Alberich, L.; Cerqueira, A. S.; Cerri, A.; Cerrito, L.; Cerutti, F.; Cervelli, A.; Cetin, S. A.; Chafaq, A.; Chakraborty, D.; Chan, S. K.; Chan, W. S.; Chan, Y. L.; Chang, P.; Chapman, J. D.; Charlton, D. G.; Chau, C. C.; Chavez Barajas, C. A.; Che, S.; Cheatham, S.; Chegwidden, A.; Chekanov, S.; Chekulaev, S. V.; Chelkov, G. A.; Chelstowska, M. A.; Chen, C.; Chen, H.; Chen, S.; Chen, S.; Chen, X.; Chen, Y.; Cheng, H. C.; Cheng, H. J.; Cheplakov, A.; Cheremushkina, E.; Cherkaoui El Moursli, R.; Chernyatin, V.; Cheu, E.; Cheung, K.; Chevalier, L.; Chiarella, V.; Chiarelli, G.; Chiodini, G.; Chisholm, A. S.; Chitan, A.; Chiu, Y. H.; Chizhov, M. V.; Choi, K.; Chomont, A. R.; Chouridou, S.; Christodoulou, V.; Chromek-Burckhart, D.; Chu, M. C.; Chudoba, J.; Chuinard, A. J.; Chwastowski, J. J.; Chytka, L.; Ciftci, A. K.; Cinca, D.; Cindro, V.; Cioara, I. A.; Ciocca, C.; Ciocio, A.; Cirotto, F.; Citron, Z. H.; Citterio, M.; Ciubancan, M.; Clark, A.; Clark, B. L.; Clark, M. R.; Clark, P. J.; Clarke, R. N.; Clement, C.; Coadou, Y.; Cobal, M.; Coccaro, A.; Cochran, J.; Colasurdo, L.; Cole, B.; Colijn, A. P.; Collot, J.; Colombo, T.; Conde Muiño, P.; Coniavitis, E.; Connell, S. H.; Connelly, I. A.; Constantinescu, S.; Conti, G.; Conventi, F.; Cooke, M.; Cooper-Sarkar, A. M.; Cormier, F.; Cormier, K. J. R.; Corradi, M.; Corriveau, F.; Cortes-Gonzalez, A.; Cortiana, G.; Costa, G.; Costa, M. J.; Costanzo, D.; Cottin, G.; Cowan, G.; Cox, B. E.; Cranmer, K.; Crawley, S. J.; Creager, R. A.; Cree, G.; Crépé-Renaudin, S.; Crescioli, F.; Cribbs, W. A.; Cristinziani, M.; Croft, V.; Crosetti, G.; Cueto, A.; Cuhadar Donszelmann, T.; Cukierman, A. R.; Cummings, J.; Curatolo, M.; Cúth, J.; Czirr, H.; Czodrowski, P.; D'amen, G.; D'Auria, S.; D'eramo, L.; D'Onofrio, M.; Da Cunha Sargedas De Sousa, M. J.; Da Via, C.; Dabrowski, W.; Dado, T.; Dai, T.; Dale, O.; Dallaire, F.; Dallapiccola, C.; Dam, M.; Dandoy, J. R.; Daneri, M. F.; Dang, N. P.; Daniells, A. C.; Dann, N. S.; Danninger, M.; Dano Hoffmann, M.; Dao, V.; Darbo, G.; Darmora, S.; Dassoulas, J.; Dattagupta, A.; Daubney, T.; Davey, W.; David, C.; Davidek, T.; Davies, M.; Davis, D. R.; Davison, P.; Dawe, E.; Dawson, I.; De, K.; de Asmundis, R.; De Benedetti, A.; De Castro, S.; De Cecco, S.; De Groot, N.; de Jong, P.; De la Torre, H.; De Lorenzi, F.; De Maria, A.; De Pedis, D.; De Salvo, A.; De Sanctis, U.; De Santo, A.; De Vasconcelos Corga, K.; De Vivie De Regie, J. B.; Dearnaley, W. J.; Debbe, R.; Debenedetti, C.; Dedovich, D. V.; Dehghanian, N.; Deigaard, I.; Del Gaudio, M.; Del Peso, J.; Del Prete, T.; Delgove, D.; Deliot, F.; Delitzsch, C. M.; Dell'Acqua, A.; Dell'Asta, L.; Dell'Orso, M.; Della Pietra, M.; della Volpe, D.; Delmastro, M.; Delporte, C.; Delsart, P. A.; DeMarco, D. A.; Demers, S.; Demichev, M.; Demilly, A.; Denisov, S. P.; Denysiuk, D.; Derendarz, D.; Derkaoui, J. E.; Derue, F.; Dervan, P.; Desch, K.; Deterre, C.; Dette, K.; Devesa, M. R.; Deviveiros, P. O.; Dewhurst, A.; Dhaliwal, S.; Di Bello, F. A.; Di Ciaccio, A.; Di Ciaccio, L.; Di Clemente, W. K.; Di Donato, C.; Di Girolamo, A.; Di Girolamo, B.; Di Micco, B.; Di Nardo, R.; Di Petrillo, K. F.; Di Simone, A.; Di Sipio, R.; Di Valentino, D.; Diaconu, C.; Diamond, M.; Dias, F. A.; Diaz, M. A.; Diehl, E. B.; Dietrich, J.; Díez Cornell, S.; Dimitrievska, A.; Dingfelder, J.; Dita, P.; Dita, S.; Dittus, F.; Djama, F.; Djobava, T.; Djuvsland, J. I.; do Vale, M. A. B.; Dobos, D.; Dobre, M.; Doglioni, C.; Dolejsi, J.; Dolezal, Z.; Donadelli, M.; Donati, S.; Dondero, P.; Donini, J.; Dopke, J.; Doria, A.; Dova, M. T.; Doyle, A. T.; Drechsler, E.; Dris, M.; Du, Y.; Duarte-Campderros, J.; Dubreuil, A.; Duchovni, E.; Duckeck, G.; Ducourthial, A.; Ducu, O. A.; Duda, D.; Dudarev, A.; Dudder, A. Chr.; Duffield, E. M.; Duflot, L.; Dührssen, M.; Dumancic, M.; Dumitriu, A. E.; Duncan, A. K.; Dunford, M.; Duran Yildiz, H.; Düren, M.; Durglishvili, A.; Duschinger, D.; Dutta, B.; Dyndal, M.; Dziedzic, B. S.; Eckardt, C.; Ecker, K. M.; Edgar, R. C.; Eifert, T.; Eigen, G.; Einsweiler, K.; Ekelof, T.; El Kacimi, M.; El Kosseifi, R.; Ellajosyula, V.; Ellert, M.; Elles, S.; Ellinghaus, F.; Elliot, A. A.; Ellis, N.; Elmsheuser, J.; Elsing, M.; Emeliyanov, D.; Enari, Y.; Endner, O. C.; Ennis, J. S.; Erdmann, J.; Ereditato, A.; Ernis, G.; Ernst, M.; Errede, S.; Escalier, M.; Escobar, C.; Esposito, B.; Estrada Pastor, O.; Etienvre, A. I.; Etzion, E.; Evans, H.; Ezhilov, A.; Ezzi, M.; Fabbri, F.; Fabbri, L.; Facini, G.; Fakhrutdinov, R. M.; Falciano, S.; Falla, R. J.; Faltova, J.; Fang, Y.; Fanti, M.; Farbin, A.; Farilla, A.; Farina, C.; Farina, E. M.; Farooque, T.; Farrell, S.; Farrington, S. M.; Farthouat, P.; Fassi, F.; Fassnacht, P.; Fassouliotis, D.; Faucci Giannelli, M.; Favareto, A.; Fawcett, W. J.; Fayard, L.; Fedin, O. L.; Fedorko, W.; Feigl, S.; Feligioni, L.; Feng, C.; Feng, E. J.; Feng, H.; Fenton, M. J.; Fenyuk, A. B.; Feremenga, L.; Fernandez Martinez, P.; Fernandez Perez, S.; Ferrando, J.; Ferrari, A.; Ferrari, P.; Ferrari, R.; Ferreira de Lima, D. E.; Ferrer, A.; Ferrere, D.; Ferretti, C.; Fiedler, F.; Filipčič, A.; Filipuzzi, M.; Filthaut, F.; Fincke-Keeler, M.; Finelli, K. D.; Fiolhais, M. C. N.; Fiorini, L.; Fischer, A.; Fischer, C.; Fischer, J.; Fisher, W. C.; Flaschel, N.; Fleck, I.; Fleischmann, P.; Fletcher, R. R. M.; Flick, T.; Flierl, B. M.; Flores Castillo, L. R.; Flowerdew, M. J.; Forcolin, G. T.; Formica, A.; Förster, F. A.; Forti, A.; Foster, A. G.; Fournier, D.; Fox, H.; Fracchia, S.; Francavilla, P.; Franchini, M.; Franchino, S.; Francis, D.; Franconi, L.; Franklin, M.; Frate, M.; Fraternali, M.; Freeborn, D.; Fressard-Batraneanu, S. M.; Freund, B.; Froidevaux, D.; Frost, J. A.; Fukunaga, C.; Fusayasu, T.; Fuster, J.; Gabaldon, C.; Gabizon, O.; Gabrielli, A.; Gabrielli, A.; Gach, G. P.; Gadatsch, S.; Gadomski, S.; Gagliardi, G.; Gagnon, L. G.; Galea, C.; Galhardo, B.; Gallas, E. J.; Gallop, B. J.; Gallus, P.; Galster, G.; Gan, K. K.; Ganguly, S.; Gao, Y.; Gao, Y. S.; Garay Walls, F. M.; García, C.; García Navarro, J. E.; García Pascual, J. A.; Garcia-Sciveres, M.; Gardner, R. W.; Garelli, N.; Garonne, V.; Gascon Bravo, A.; Gasnikova, K.; Gatti, C.; Gaudiello, A.; Gaudio, G.; Gavrilenko, I. L.; Gay, C.; Gaycken, G.; Gazis, E. N.; Gee, C. N. P.; Geisen, J.; Geisen, M.; Geisler, M. P.; Gellerstedt, K.; Gemme, C.; Genest, M. H.; Geng, C.; Gentile, S.; Gentsos, C.; George, S.; Gerbaudo, D.; Gershon, A.; Geßner, G.; Ghasemi, S.; Ghneimat, M.; Giacobbe, B.; Giagu, S.; Giannetti, P.; Gibson, S. M.; Gignac, M.; Gilchriese, M.; Gillberg, D.; Gilles, G.; Gingrich, D. M.; Giokaris, N.; Giordani, M. P.; Giorgi, F. M.; Giraud, P. F.; Giromini, P.; Giugni, D.; Giuli, F.; Giuliani, C.; Giulini, M.; Gjelsten, B. K.; Gkaitatzis, S.; Gkialas, I.; Gkougkousis, E. L.; Gkountoumis, P.; Gladilin, L. K.; Glasman, C.; Glatzer, J.; Glaysher, P. C. F.; Glazov, A.; Goblirsch-Kolb, M.; Godlewski, J.; Goldfarb, S.; Golling, T.; Golubkov, D.; Gomes, A.; Gonçalo, R.; Goncalves Gama, R.; Goncalves Pinto Firmino Da Costa, J.; Gonella, G.; Gonella, L.; Gongadze, A.; González de la Hoz, S.; Gonzalez-Sevilla, S.; Goossens, L.; Gorbounov, P. A.; Gordon, H. A.; Gorelov, I.; Gorini, B.; Gorini, E.; Gorišek, A.; Goshaw, A. T.; Gössling, C.; Gostkin, M. I.; Gottardo, C. A.; Goudet, C. R.; Goujdami, D.; Goussiou, A. G.; Govender, N.; Gozani, E.; Graber, L.; Grabowska-Bold, I.; Gradin, P. O. J.; Gramling, J.; Gramstad, E.; Grancagnolo, S.; Gratchev, V.; Gravila, P. M.; Gray, C.; Gray, H. M.; Greenwood, Z. D.; Grefe, C.; Gregersen, K.; Gregor, I. M.; Grenier, P.; Grevtsov, K.; Griffiths, J.; Grillo, A. A.; Grimm, K.; Grinstein, S.; Gris, Ph.; Grivaz, J.-F.; Groh, S.; Gross, E.; Grosse-Knetter, J.; Grossi, G. C.; Grout, Z. J.; Grummer, A.; Guan, L.; Guan, W.; Guenther, J.; Guescini, F.; Guest, D.; Gueta, O.; Gui, B.; Guido, E.; Guillemin, T.; Guindon, S.; Gul, U.; Gumpert, C.; Guo, J.; Guo, W.; Guo, Y.; Gupta, R.; Gupta, S.; Gustavino, G.; Gutierrez, P.; Gutierrez Ortiz, N. G.; Gutschow, C.; Guyot, C.; Guzik, M. P.; Gwenlan, C.; Gwilliam, C. B.; Haas, A.; Haber, C.; Hadavand, H. K.; Haddad, N.; Hadef, A.; Hageböck, S.; Hagihara, M.; Hakobyan, H.; Haleem, M.; Haley, J.; Halladjian, G.; Hallewell, G. D.; Hamacher, K.; Hamal, P.; Hamano, K.; Hamilton, A.; Hamity, G. N.; Hamnett, P. G.; Han, L.; Han, S.; Hanagaki, K.; Hanawa, K.; Hance, M.; Haney, B.; Hanke, P.; Hansen, J. B.; Hansen, J. D.; Hansen, M. C.; Hansen, P. H.; Hara, K.; Hard, A. S.; Harenberg, T.; Hariri, F.; Harkusha, S.; Harrington, R. D.; Harrison, P. F.; Hartmann, N. M.; Hasegawa, M.; Hasegawa, Y.; Hasib, A.; Hassani, S.; Haug, S.; Hauser, R.; Hauswald, L.; Havener, L. B.; Havranek, M.; Hawkes, C. M.; Hawkings, R. J.; Hayakawa, D.; Hayden, D.; Hays, C. P.; Hays, J. M.; Hayward, H. S.; Haywood, S. J.; Head, S. J.; Heck, T.; Hedberg, V.; Heelan, L.; Heidegger, K. K.; Heim, S.; Heim, T.; Heinemann, B.; Heinrich, J. J.; Heinrich, L.; Heinz, C.; Hejbal, J.; Helary, L.; Held, A.; Hellman, S.; Helsens, C.; Henderson, R. C. W.; Heng, Y.; Henkelmann, S.; Henriques Correia, A. M.; Henrot-Versille, S.; Herbert, G. H.; Herde, H.; Herget, V.; Hernández Jiménez, Y.; Herr, H.; Herten, G.; Hertenberger, R.; Hervas, L.; Herwig, T. C.; Hesketh, G. G.; Hessey, N. P.; Hetherly, J. W.; Higashino, S.; Higón-Rodriguez, E.; Hill, E.; Hill, J. C.; Hiller, K. H.; Hillier, S. J.; Hils, M.; Hinchliffe, I.; Hirose, M.; Hirschbuehl, D.; Hiti, B.; Hladik, O.; Hoad, X.; Hobbs, J.; Hod, N.; Hodgkinson, M. C.; Hodgson, P.; Hoecker, A.; Hoeferkamp, M. R.; Hoenig, F.; Hohn, D.; Holmes, T. R.; Homann, M.; Honda, S.; Honda, T.; Hong, T. M.; Hooberman, B. H.; Hopkins, W. H.; Horii, Y.; Horton, A. J.; Hostachy, J.-Y.; Hou, S.; Hoummada, A.; Howarth, J.; Hoya, J.; Hrabovsky, M.; Hrdinka, J.; Hristova, I.; Hrivnac, J.; Hryn'ova, T.; Hrynevich, A.; Hsu, P. J.; Hsu, S.-C.; Hu, Q.; Hu, S.; Huang, Y.; Hubacek, Z.; Hubaut, F.; Huegging, F.; Huffman, T. B.; Hughes, E. W.; Hughes, G.; Huhtinen, M.; Huo, P.; Huseynov, N.; Huston, J.; Huth, J.; Iacobucci, G.; Iakovidis, G.; Ibragimov, I.; Iconomidou-Fayard, L.; Idrissi, Z.; Iengo, P.; Igonkina, O.; Iizawa, T.; Ikegami, Y.; Ikeno, M.; Ilchenko, Y.; Iliadis, D.; Ilic, N.; Introzzi, G.; Ioannou, P.; Iodice, M.; Iordanidou, K.; Ippolito, V.; Isacson, M. F.; Ishijima, N.; Ishino, M.; Ishitsuka, M.; Issever, C.; Istin, S.; Ito, F.; Ponce, J. M. Iturbe; Iuppa, R.; Iwasaki, H.; Izen, J. M.; Izzo, V.; Jabbar, S.; Jackson, P.; Jacobs, R. M.; Jain, V.; Jakobi, K. B.; Jakobs, K.; Jakobsen, S.; Jakoubek, T.; Jamin, D. O.; Jana, D. K.; Jansky, R.; Janssen, J.; Janus, M.; Janus, P. A.; Jarlskog, G.; Javadov, N.; Javůrek, T.; Javurkova, M.; Jeanneau, F.; Jeanty, L.; Jejelava, J.; Jelinskas, A.; Jenni, P.; Jeske, C.; Jézéquel, S.; Ji, H.; Jia, J.; Jiang, H.; Jiang, Y.; Jiang, Z.; Jiggins, S.; Jimenez Pena, J.; Jin, S.; Jinaru, A.; Jinnouchi, O.; Jivan, H.; Johansson, P.; Johns, K. A.; Johnson, C. A.; Johnson, W. J.; Jon-And, K.; Jones, R. W. L.; Jones, S. D.; Jones, S.; Jones, T. J.; Jongmanns, J.; Jorge, P. M.; Jovicevic, J.; Ju, X.; Juste Rozas, A.; Köhler, M. K.; Kaczmarska, A.; Kado, M.; Kagan, H.; Kagan, M.; Kahn, S. J.; Kaji, T.; Kajomovitz, E.; Kalderon, C. W.; Kaluza, A.; Kama, S.; Kamenshchikov, A.; Kanaya, N.; Kanjir, L.; Kantserov, V. A.; Kanzaki, J.; Kaplan, B.; Kaplan, L. S.; Kar, D.; Karakostas, K.; Karastathis, N.; Kareem, M. J.; Karentzos, E.; Karpov, S. N.; Karpova, Z. M.; Karthik, K.; Kartvelishvili, V.; Karyukhin, A. N.; Kasahara, K.; Kashif, L.; Kass, R. D.; Kastanas, A.; Kataoka, Y.; Kato, C.; Katre, A.; Katzy, J.; Kawade, K.; Kawagoe, K.; Kawamoto, T.; Kawamura, G.; Kay, E. F.; Kazanin, V. F.; Keeler, R.; Kehoe, R.; Keller, J. S.; Kempster, J. J.; Kendrick, J.; Keoshkerian, H.; Kepka, O.; Kerševan, B. P.; Kersten, S.; Keyes, R. A.; Khader, M.; Khalil-zada, F.; Khanov, A.; Kharlamov, A. G.; Kharlamova, T.; Khodinov, A.; Khoo, T. J.; Khovanskiy, V.; Khramov, E.; Khubua, J.; Kido, S.; Kilby, C. R.; Kim, H. Y.; Kim, S. H.; Kim, Y. K.; Kimura, N.; Kind, O. M.; King, B. T.; Kirchmeier, D.; Kirk, J.; Kiryunin, A. E.; Kishimoto, T.; Kisielewska, D.; Kitali, V.; Kiuchi, K.; Kivernyk, O.; Kladiva, E.; Klapdor-Kleingrothaus, T.; Klein, M. H.; Klein, M.; Klein, U.; Kleinknecht, K.; Klimek, P.; Klimentov, A.; Klingenberg, R.; Klingl, T.; Klioutchnikova, T.; Kluge, E.-E.; Kluit, P.; Kluth, S.; Kneringer, E.; Knoops, E. B. F. G.; Knue, A.; Kobayashi, A.; Kobayashi, D.; Kobayashi, T.; Kobel, M.; Kocian, M.; Kodys, P.; Koffas, T.; Koffeman, E.; Köhler, N. M.; Koi, T.; Kolb, M.; Koletsou, I.; Komar, A. A.; Komori, Y.; Kondo, T.; Kondrashova, N.; Köneke, K.; König, A. C.; Kono, T.; Konoplich, R.; Konstantinidis, N.; Kopeliansky, R.; Koperny, S.; Kopp, A. K.; Korcyl, K.; Kordas, K.; Korn, A.; Korol, A. A.; Korolkov, I.; Korolkova, E. V.; Kortner, O.; Kortner, S.; Kosek, T.; Kostyukhin, V. V.; Kotwal, A.; Koulouris, A.; Kourkoumeli-Charalampidi, A.; Kourkoumelis, C.; Kourlitis, E.; Kouskoura, V.; Kowalewska, A. B.; Kowalewski, R.; Kowalski, T. Z.; Kozakai, C.; Kozanecki, W.; Kozhin, A. S.; Kramarenko, V. A.; Kramberger, G.; Krasnopevtsev, D.; Krasny, M. W.; Krasznahorkay, A.; Krauss, D.; Kremer, J. A.; Kretzschmar, J.; Kreutzfeldt, K.; Krieger, P.; Krizka, K.; Kroeninger, K.; Kroha, H.; Kroll, J.; Kroll, J.; Kroseberg, J.; Krstic, J.; Kruchonak, U.; Krüger, H.; Krumnack, N.; Kruse, M. C.; Kubota, T.; Kucuk, H.; Kuday, S.; Kuechler, J. T.; Kuehn, S.; Kugel, A.; Kuger, F.; Kuhl, T.; Kukhtin, V.; Kukla, R.; Kulchitsky, Y.; Kuleshov, S.; Kulinich, Y. P.; Kuna, M.; Kunigo, T.; Kupco, A.; Kupfer, T.; Kuprash, O.; Kurashige, H.; Kurchaninov, L. L.; Kurochkin, Y. A.; Kurth, M. G.; Kus, V.; Kuwertz, E. S.; Kuze, M.; Kvita, J.; Kwan, T.; Kyriazopoulos, D.; La Rosa, A.; La Rosa Navarro, J. L.; La Rotonda, L.; Lacasta, C.; Lacava, F.; Lacey, J.; Lacker, H.; Lacour, D.; Ladygin, E.; Lafaye, R.; Laforge, B.; Lagouri, T.; Lai, S.; Lammers, S.; Lampl, W.; Lançon, E.; Landgraf, U.; Landon, M. P. J.; Lanfermann, M. C.; Lang, V. S.; Lange, J. C.; Langenberg, R. J.; Lankford, A. J.; Lanni, F.; Lantzsch, K.; Lanza, A.; Lapertosa, A.; Laplace, S.; Laporte, J. F.; Lari, T.; Lasagni Manghi, F.; Lassnig, M.; Laurelli, P.; Lavrijsen, W.; Law, A. T.; Laycock, P.; Lazovich, T.; Lazzaroni, M.; Le, B.; Le Dortz, O.; Le Guirriec, E.; Le Quilleuc, E. P.; LeBlanc, M.; LeCompte, T.; Ledroit-Guillon, F.; Lee, C. A.; Lee, G. R.; Lee, S. C.; Lee, L.; Lefebvre, B.; Lefebvre, G.; Lefebvre, M.; Legger, F.; Leggett, C.; Lehan, A.; Lehmann Miotto, G.; Lei, X.; Leight, W. A.; Leite, M. A. L.; Leitner, R.; Lellouch, D.; Lemmer, B.; Leney, K. J. C.; Lenz, T.; Lenzi, B.; Leone, R.; Leone, S.; Leonidopoulos, C.; Lerner, G.; Leroy, C.; Lesage, A. A. J.; Lester, C. G.; Levchenko, M.; Levêque, J.; Levin, D.; Levinson, L. J.; Levy, M.; Lewis, D.; Li, B.; Li, Changqiao; Li, H.; Li, L.; Li, Q.; Li, S.; Li, X.; Li, Y.; Liang, Z.; Liberti, B.; Liblong, A.; Lie, K.; Liebal, J.; Liebig, W.; Limosani, A.; Lin, S. C.; Lin, T. H.; Lindquist, B. E.; Lionti, A. E.; Lipeles, E.; Lipniacka, A.; Lisovyi, M.; Liss, T. M.; Lister, A.; Litke, A. M.; Liu, B.; Liu, H.; Liu, H.; Liu, J. K. K.; Liu, J.; Liu, J. B.; Liu, K.; Liu, L.; Liu, M.; Liu, Y. L.; Liu, Y.; Livan, M.; Lleres, A.; Llorente Merino, J.; Lloyd, S. L.; Lo, C. Y.; Lo Sterzo, F.; Lobodzinska, E. M.; Loch, P.; Loebinger, F. K.; Loesle, A.; Loew, K. M.; Loginov, A.; Lohse, T.; Lohwasser, K.; Lokajicek, M.; Long, B. A.; Long, J. D.; Long, R. E.; Longo, L.; Looper, K. A.; Lopez, J. A.; Lopez Mateos, D.; Lopez Paz, I.; Lopez Solis, A.; Lorenz, J.; Martinez, N. Lorenzo; Losada, M.; Lösel, P. J.; Lou, X.; Lounis, A.; Love, J.; Love, P. A.; Lu, H.; Lu, N.; Lu, Y. J.; Lubatti, H. J.; Luci, C.; Lucotte, A.; Luedtke, C.; Luehring, F.; Lukas, W.; Luminari, L.; Lundberg, O.; Lund-Jensen, B.; Luzi, P. M.; Lynn, D.; Lysak, R.; Lytken, E.; Lyubushkin, V.; Ma, H.; Ma, L. L.; Ma, Y.; Maccarrone, G.; Macchiolo, A.; Macdonald, C. M.; Maček, B.; Machado Miguens, J.; Madaffari, D.; Madar, R.; Mader, W. F.; Madsen, A.; Maeda, J.; Maeland, S.; Maeno, T.; Maevskiy, A. S.; Magradze, E.; Mahlstedt, J.; Maiani, C.; Maidantchik, C.; Maier, A. A.; Maier, T.; Maio, A.; Majersky, O.; Majewski, S.; Makida, Y.; Makovec, N.; Malaescu, B.; Malecki, Pa.; Maleev, V. P.; Malek, F.; Mallik, U.; Malon, D.; Malone, C.; Maltezos, S.; Malyukov, S.; Mamuzic, J.; Mancini, G.; Mandelli, L.; Mandić, I.; Maneira, J.; Filho, L. Manhaes de Andrade; Manjarres Ramos, J.; Mann, A.; Manousos, A.; Mansoulie, B.; Mansour, J. D.; Mantifel, R.; Mantoani, M.; Manzoni, S.; Mapelli, L.; Marceca, G.; March, L.; Marchese, L.; Marchiori, G.; Marcisovsky, M.; Marjanovic, M.; Marley, D. E.; Marroquim, F.; Marsden, S. P.; Marshall, Z.; Martensson, M. U. F.; Marti-Garcia, S.; Martin, C. B.; Martin, T. A.; Martin, V. J.; dit Latour, B. Martin; Martinez, M.; Martinez Outschoorn, V. I.; Martin-Haugh, S.; Martoiu, V. S.; Martyniuk, A. C.; Marzin, A.; Masetti, L.; Mashimo, T.; Mashinistov, R.; Masik, J.; Maslennikov, A. L.; Massa, L.; Mastrandrea, P.; Mastroberardino, A.; Masubuchi, T.; Mättig, P.; Maurer, J.; Maxfield, S. J.; Maximov, D. A.; Mazini, R.; Maznas, I.; Mazza, S. M.; McFadden, N. C.; McGoldrick, G.; McKee, S. P.; McCarn, A.; McCarthy, R. L.; McCarthy, T. G.; McClymont, L. I.; McDonald, E. F.; Mcfayden, J. A.; Mchedlidze, G.; McMahon, S. J.; McNamara, P. C.; McPherson, R. A.; Meehan, S.; Megy, T. J.; Mehlhase, S.; Mehta, A.; Meideck, T.; Meier, K.; Meirose, B.; Melini, D.; Mellado Garcia, B. R.; Mellenthin, J. D.; Melo, M.; Meloni, F.; Menary, S. B.; Meng, L.; Meng, X. T.; Mengarelli, A.; Menke, S.; Meoni, E.; Mergelmeyer, S.; Mermod, P.; Merola, L.; Meroni, C.; Merritt, F. S.; Messina, A.; Metcalfe, J.; Mete, A. S.; Meyer, C.; Meyer, J.-P.; Meyer, J.; Theenhausen, H. Meyer Zu; Miano, F.; Middleton, R. P.; Miglioranzi, S.; Mijović, L.; Mikenberg, G.; Mikestikova, M.; Mikuž, M.; Milesi, M.; Milic, A.; Miller, D. W.; Mills, C.; Milov, A.; Milstead, D. A.; Minaenko, A. A.; Minami, Y.; Minashvili, I. A.; Mincer, A. I.; Mindur, B.; Mineev, M.; Minegishi, Y.; Ming, Y.; Mir, L. M.; Mistry, K. P.; Mitani, T.; Mitrevski, J.; Mitsou, V. A.; Miucci, A.; Miyagawa, P. S.; Mizukami, A.; Mjörnmark, J. U.; Mkrtchyan, T.; Mlynarikova, M.; Moa, T.; Mochizuki, K.; Mogg, P.; Mohapatra, S.; Molander, S.; Moles-Valls, R.; Monden, R.; Mondragon, M. C.; Mönig, K.; Monk, J.; Monnier, E.; Montalbano, A.; Montejo Berlingen, J.; Monticelli, F.; Monzani, S.; Moore, R. W.; Morange, N.; Moreno, D.; Moreno Llácer, M.; Morettini, P.; Morgenstern, S.; Mori, D.; Mori, T.; Morii, M.; Morinaga, M.; Morisbak, V.; Morley, A. K.; Mornacchi, G.; Morris, J. D.; Morvaj, L.; Moschovakos, P.; Mosidze, M.; Moss, H. J.; Moss, J.; Motohashi, K.; Mount, R.; Mountricha, E.; Moyse, E. J. W.; Muanza, S.; Mudd, R. D.; Mueller, F.; Mueller, J.; Mueller, R. S. P.; Muenstermann, D.; Mullen, P.; Mullier, G. A.; Munoz Sanchez, F. J.; Murray, W. J.; Musheghyan, H.; Muškinja, M.; Myagkov, A. G.; Myska, M.; Nachman, B. P.; Nackenhorst, O.; Nagai, K.; Nagai, R.; Nagano, K.; Nagasaka, Y.; Nagata, K.; Nagel, M.; Nagy, E.; Nairz, A. M.; Nakahama, Y.; Nakamura, K.; Nakamura, T.; Nakano, I.; Naranjo Garcia, R. F.; Narayan, R.; Narrias Villar, D. I.; Naryshkin, I.; Naumann, T.; Navarro, G.; Nayyar, R.; Neal, H. A.; Nechaeva, P. Yu.; Neep, T. J.; Negri, A.; Negrini, M.; Nektarijevic, S.; Nellist, C.; Nelson, A.; Nelson, M. E.; Nemecek, S.; Nemethy, P.; Nessi, M.; Neubauer, M. S.; Neumann, M.; Newman, P. R.; Ng, T. Y.; Nguyen Manh, T.; Nickerson, R. B.; Nicolaidou, R.; Nielsen, J.; Nikolaenko, V.; Nikolic-Audit, I.; Nikolopoulos, K.; Nilsen, J. K.; Nilsson, P.; Ninomiya, Y.; Nisati, A.; Nishu, N.; Nisius, R.; Nitsche, I.; Nitta, T.; Nobe, T.; Noguchi, Y.; Nomachi, M.; Nomidis, I.; Nomura, M. A.; Nooney, T.; Nordberg, M.; Norjoharuddeen, N.; Novgorodova, O.; Nowak, S.; Nozaki, M.; Nozka, L.; Ntekas, K.; Nurse, E.; Nuti, F.; O'connor, K.; O'Neil, D. C.; O'Rourke, A. A.; O'Shea, V.; Oakham, F. G.; Oberlack, H.; Obermann, T.; Ocariz, J.; Ochi, A.; Ochoa, I.; Ochoa-Ricoux, J. P.; Oda, S.; Odaka, S.; Ogren, H.; Oh, A.; Oh, S. H.; Ohm, C. C.; Ohman, H.; Oide, H.; Okawa, H.; Okumura, Y.; Okuyama, T.; Olariu, A.; Oleiro Seabra, L. F.; Olivares Pino, S. A.; Oliveira Damazio, D.; Olszewski, A.; Olszowska, J.; Onofre, A.; Onogi, K.; Onyisi, P. U. E.; Oreglia, M. J.; Oren, Y.; Orestano, D.; Orlando, N.; Orr, R. S.; Osculati, B.; Ospanov, R.; Garzon, G. Otero y.; Otono, H.; Ouchrif, M.; Ould-Saada, F.; Ouraou, A.; Oussoren, K. P.; Ouyang, Q.; Owen, M.; Owen, R. E.; Ozcan, V. E.; Ozturk, N.; Pachal, K.; Pacheco Pages, A.; Pacheco Rodriguez, L.; Padilla Aranda, C.; Pagan Griso, S.; Paganini, M.; Paige, F.; Palacino, G.; Palazzo, S.; Palestini, S.; Palka, M.; Pallin, D.; Panagiotopoulou, E. St.; Panagoulias, I.; Pandini, C. E.; Panduro Vazquez, J. G.; Pani, P.; Panitkin, S.; Pantea, D.; Paolozzi, L.; Papadopoulou, Th. D.; Papageorgiou, K.; Paramonov, A.; Paredes Hernandez, D.; Parker, A. J.; Parker, M. A.; Parker, K. A.; Parodi, F.; Parsons, J. A.; Parzefall, U.; Pascuzzi, V. R.; Pasner, J. M.; Pasqualucci, E.; Passaggio, S.; Pastore, Fr.; Pataraia, S.; Pater, J. R.; Pauly, T.; Pearson, B.; Pedraza Lopez, S.; Pedro, R.; Peleganchuk, S. V.; Penc, O.; Peng, C.; Peng, H.; Penwell, J.; Peralva, B. S.; Perego, M. M.; Perepelitsa, D. V.; Peri, F.; Perini, L.; Pernegger, H.; Perrella, S.; Peschke, R.; Peshekhonov, V. D.; Peters, K.; Peters, R. F. Y.; Petersen, B. A.; Petersen, T. C.; Petit, E.; Petridis, A.; Petridou, C.; Petroff, P.; Petrolo, E.; Petrov, M.; Petrucci, F.; Pettersson, N. E.; Peyaud, A.; Pezoa, R.; Phillips, F. H.; Phillips, P. W.; Piacquadio, G.; Pianori, E.; Picazio, A.; Piccaro, E.; Pickering, M. A.; Piegaia, R.; Pilcher, J. E.; Pilkington, A. D.; Pin, A. W. J.; Pinamonti, M.; Pinfold, J. L.; Pirumov, H.; Pitt, M.; Plazak, L.; Pleier, M.-A.; Pleskot, V.; Plotnikova, E.; Pluth, D.; Podberezko, P.; Poettgen, R.; Poggi, R.; Poggioli, L.; Pohl, D.; Polesello, G.; Poley, A.; Policicchio, A.; Polifka, R.; Polini, A.; Pollard, C. S.; Polychronakos, V.; Pommès, K.; Ponomarenko, D.; Pontecorvo, L.; Pope, B. G.; Popeneciu, G. A.; Poppleton, A.; Pospisil, S.; Potamianos, K.; Potrap, I. N.; Potter, C. J.; Poulard, G.; Poulsen, T.; Poveda, J.; Pozo Astigarraga, M. E.; Pralavorio, P.; Pranko, A.; Prell, S.; Price, D.; Price, L. E.; Primavera, M.; Prince, S.; Proklova, N.; Prokofiev, K.; Prokoshin, F.; Protopopescu, S.; Proudfoot, J.; Przybycien, M.; Puri, A.; Puzo, P.; Qian, J.; Qin, G.; Qin, Y.; Quadt, A.; Queitsch-Maitland, M.; Quilty, D.; Raddum, S.; Radeka, V.; Radescu, V.; Radhakrishnan, S. K.; Radloff, P.; Rados, P.; Ragusa, F.; Rahal, G.; Raine, J. A.; Rajagopalan, S.; Rangel-Smith, C.; Rashid, T.; Raspopov, S.; Ratti, M. G.; Rauch, D. M.; Rauscher, F.; Rave, S.; Ravinovich, I.; Rawling, J. H.; Raymond, M.; Read, A. L.; Readioff, N. P.; Reale, M.; Rebuzzi, D. M.; Redelbach, A.; Redlinger, G.; Reece, R.; Reed, R. G.; Reeves, K.; Rehnisch, L.; Reichert, J.; Reiss, A.; Rembser, C.; Ren, H.; Rescigno, M.; Resconi, S.; Resseguie, E. D.; Rettie, S.; Reynolds, E.; Rezanova, O. L.; Reznicek, P.; Rezvani, R.; Richter, R.; Richter, S.; Richter-Was, E.; Ricken, O.; Ridel, M.; Rieck, P.; Riegel, C. J.; Rieger, J.; Rifki, O.; Rijssenbeek, M.; Rimoldi, A.; Rimoldi, M.; Rinaldi, L.; Ripellino, G.; Ristić, B.; Ritsch, E.; Riu, I.; Rizatdinova, F.; Rizvi, E.; Rizzi, C.; Roberts, R. T.; Robertson, S. H.; Robichaud-Veronneau, A.; Robinson, D.; Robinson, J. E. M.; Robson, A.; Rocco, E.; Roda, C.; Rodina, Y.; Rodriguez Bosca, S.; Rodriguez Perez, A.; Rodriguez Rodriguez, D.; Roe, S.; Rogan, C. S.; RØhne, O.; Roloff, J.; Romaniouk, A.; Romano, M.; Romano Saez, S. M.; Romero Adam, E.; Rompotis, N.; Ronzani, M.; Roos, L.; Rosati, S.; Rosbach, K.; Rose, P.; Rosien, N.-A.; Rossi, E.; Rossi, L. P.; Rosten, J. H. N.; Rosten, R.; Rotaru, M.; Roth, I.; Rothberg, J.; Rousseau, D.; Rozanov, A.; Rozen, Y.; Ruan, X.; Rubbo, F.; Rühr, F.; Ruiz-Martinez, A.; Rurikova, Z.; Rusakovich, N. A.; Russell, H. L.; Rutherfoord, J. P.; Ruthmann, N.; Ryabov, Y. F.; Rybar, M.; Rybkin, G.; Ryu, S.; Ryzhov, A.; Rzehorz, G. F.; Saavedra, A. F.; Sabato, G.; Sacerdoti, S.; Sadrozinski, H. F.-W.; Sadykov, R.; Safai Tehrani, F.; Saha, P.; Sahinsoy, M.; Saimpert, M.; Saito, M.; Saito, T.; Sakamoto, H.; Sakurai, Y.; Salamanna, G.; Salazar Loyola, J. E.; Salek, D.; Sales De Bruin, P. H.; Salihagic, D.; Salnikov, A.; Salt, J.; Salvatore, D.; Salvatore, F.; Salvucci, A.; Salzburger, A.; Sammel, D.; Sampsonidis, D.; Sampsonidou, D.; Sánchez, J.; Sanchez Martinez, V.; Sanchez Pineda, A.; Sandaker, H.; Sandbach, R. L.; Sander, C. O.; Sandhoff, M.; Sandoval, C.; Sankey, D. P. C.; Sannino, M.; Sano, Y.; Sansoni, A.; Santoni, C.; Santonico, R.; Santos, H.; Santoyo Castillo, I.; Sapronov, A.; Saraiva, J. G.; Sarrazin, B.; Sasaki, O.; Sato, K.; Sauvan, E.; Savage, G.; Savard, P.; Savic, N.; Sawyer, C.; Sawyer, L.; Saxon, J.; Sbarra, C.; Sbrizzi, A.; Scanlon, T.; Scannicchio, D. A.; Scarcella, M.; Scarfone, V.; Schaarschmidt, J.; Schacht, P.; Schachtner, B. M.; Schaefer, D.; Schaefer, L.; Schaefer, R.; Schaeffer, J.; Schaepe, S.; Schaetzel, S.; Schäfer, U.; Schaffer, A. C.; Schaile, D.; Schamberger, R. D.; Scharf, V.; Schegelsky, V. A.; Scheirich, D.; Schernau, M.; Schiavi, C.; Schier, S.; Schildgen, L. K.; Schillo, C.; Schioppa, M.; Schlenker, S.; Schmidt-Sommerfeld, K. R.; Schmieden, K.; Schmitt, C.; Schmitt, S.; Schmitz, S.; Schnoor, U.; Schoeffel, L.; Schoening, A.; Schoenrock, B. D.; Schopf, E.; Schott, M.; Schouwenberg, J. F. P.; Schovancova, J.; Schramm, S.; Schuh, N.; Schulte, A.; Schultens, M. J.; Schultz-Coulon, H.-C.; Schulz, H.; Schumacher, M.; Schumm, B. A.; Schune, Ph.; Schwartzman, A.; Schwarz, T. A.; Schweiger, H.; Schwemling, Ph.; Schwienhorst, R.; Schwindling, J.; Sciandra, A.; Sciolla, G.; Scuri, F.; Scutti, F.; Searcy, J.; Seema, P.; Seidel, S. C.; Seiden, A.; Seixas, J. M.; Sekhniaidze, G.; Sekhon, K.; Sekula, S. J.; Semprini-Cesari, N.; Senkin, S.; Serfon, C.; Serin, L.; Serkin, L.; Sessa, M.; Seuster, R.; Severini, H.; Sfiligoj, T.; Sforza, F.; Sfyrla, A.; Shabalina, E.; Shaikh, N. W.; Shan, L. Y.; Shang, R.; Shank, J. T.; Shapiro, M.; Shatalov, P. B.; Shaw, K.; Shaw, S. M.; Shcherbakova, A.; Shehu, C. Y.; Shen, Y.; Sherafati, N.; Sherwood, P.; Shi, L.; Shimizu, S.; Shimmin, C. O.; Shimojima, M.; Shipsey, I. P. J.; Shirabe, S.; Shiyakova, M.; Shlomi, J.; Shmeleva, A.; Shoaleh Saadi, D.; Shochet, M. J.; Shojaii, S.; Shope, D. R.; Shrestha, S.; Shulga, E.; Shupe, M. A.; Sicho, P.; Sickles, A. M.; Sidebo, P. E.; Sideras Haddad, E.; Sidiropoulou, O.; Sidoti, A.; Siegert, F.; Sijacki, Dj.; Silva, J.; Silverstein, S. B.; Simak, V.; Simic, Lj.; Simion, S.; Simioni, E.; Simmons, B.; Simon, M.; Sinervo, P.; Sinev, N. B.; Sioli, M.; Siragusa, G.; Siral, I.; Sivoklokov, S. Yu.; Sjölin, J.; Skinner, M. B.; Skubic, P.; Slater, M.; Slavicek, T.; Slawinska, M.; Sliwa, K.; Slovak, R.; Smakhtin, V.; Smart, B. H.; Smiesko, J.; Smirnov, N.; Smirnov, S. Yu.; Smirnov, Y.; Smirnova, L. N.; Smirnova, O.; Smith, J. W.; Smith, M. N. K.; Smith, R. W.; Smizanska, M.; Smolek, K.; Snesarev, A. A.; Snyder, I. M.; Snyder, S.; Sobie, R.; Socher, F.; Soffer, A.; Soh, D. A.; Sokhrannyi, G.; Solans Sanchez, C. A.; Solar, M.; Soldatov, E. Yu.; Soldevila, U.; Solodkov, A. A.; Soloshenko, A.; Solovyanov, O. V.; Solovyev, V.; Sommer, P.; Son, H.; Sopczak, A.; Sosa, D.; Sotiropoulou, C. L.; Soualah, R.; Soukharev, A. M.; South, D.; Sowden, B. C.; Spagnolo, S.; Spalla, M.; Spangenberg, M.; Spanò, F.; Sperlich, D.; Spettel, F.; Spieker, T. M.; Spighi, R.; Spigo, G.; Spiller, L. A.; Spousta, M.; St. Denis, R. D.; Stabile, A.; Stamen, R.; Stamm, S.; Stanecka, E.; Stanek, R. W.; Stanescu, C.; Stanitzki, M. M.; Stapf, B. S.; Stapnes, S.; Starchenko, E. A.; Stark, G. H.; Stark, J.; Stark, S. H.; Staroba, P.; Starovoitov, P.; Stärz, S.; Staszewski, R.; Steinberg, P.; Stelzer, B.; Stelzer, H. J.; Stelzer-Chilton, O.; Stenzel, H.; Stewart, G. A.; Stockton, M. C.; Stoebe, M.; Stoicea, G.; Stolte, P.; Stonjek, S.; Stradling, A. R.; Straessner, A.; Stramaglia, M. E.; Strandberg, J.; Strandberg, S.; Strauss, M.; Strizenec, P.; Ströhmer, R.; Strom, D. M.; Stroynowski, R.; Strubig, A.; Stucci, S. A.; Stugu, B.; Styles, N. A.; Su, D.; Su, J.; Suchek, S.; Sugaya, Y.; Suk, M.; Sulin, V. V.; Sultan, DMS; Sultansoy, S.; Sumida, T.; Sun, S.; Sun, X.; Suruliz, K.; Suster, C. J. E.; Sutton, M. R.; Suzuki, S.; Svatos, M.; Swiatlowski, M.; Swift, S. P.; Sykora, I.; Sykora, T.; Ta, D.; Tackmann, K.; Taenzer, J.; Taffard, A.; Tafirout, R.; Taiblum, N.; Takai, H.; Takashima, R.; Takasugi, E. H.; Takeshita, T.; Takubo, Y.; Talby, M.; Talyshev, A. A.; Tanaka, J.; Tanaka, M.; Tanaka, R.; Tanaka, S.; Tanioka, R.; Tannenwald, B. B.; Tapia Araya, S.; Tapprogge, S.; Tarem, S.; Tartarelli, G. F.; Tas, P.; Tasevsky, M.; Tashiro, T.; Tassi, E.; Tavares Delgado, A.; Tayalati, Y.; Taylor, A. C.; Taylor, G. N.; Taylor, P. T. E.; Taylor, W.; Teixeira-Dias, P.; Temple, D.; Ten Kate, H.; Teng, P. K.; Teoh, J. J.; Tepel, F.; Terada, S.; Terashi, K.; Terron, J.; Terzo, S.; Testa, M.; Teuscher, R. J.; Theveneaux-Pelzer, T.; Thomas, J. P.; Thomas-Wilsker, J.; Thompson, P. D.; Thompson, A. S.; Thomsen, L. A.; Thomson, E.; Tibbetts, M. J.; Ticse Torres, R. E.; Tikhomirov, V. O.; Tikhonov, Yu. A.; Timoshenko, S.; Tipton, P.; Tisserant, S.; Todome, K.; Todorova-Nova, S.; Tojo, J.; Tokár, S.; Tokushuku, K.; Tolley, E.; Tomlinson, L.; Tomoto, M.; Tompkins, L.; Toms, K.; Tong, B.; Tornambe, P.; Torrence, E.; Torres, H.; Torró Pastor, E.; Toth, J.; Touchard, F.; Tovey, D. R.; Treado, C. J.; Trefzger, T.; Tresoldi, F.; Tricoli, A.; Trigger, I. M.; Trincaz-Duvoid, S.; Tripiana, M. F.; Trischuk, W.; Trocmé, B.; Trofymov, A.; Troncon, C.; Trottier-McDonald, M.; Trovatelli, M.; Truong, L.; Trzebinski, M.; Trzupek, A.; Tsang, K. W.; Tseng, J. C.-L.; Tsiareshka, P. V.; Tsipolitis, G.; Tsirintanis, N.; Tsiskaridze, S.; Tsiskaridze, V.; Tskhadadze, E. G.; Tsui, K. M.; Tsukerman, I. I.; Tsulaia, V.; Tsuno, S.; Tsybychev, D.; Tu, Y.; Tudorache, A.; Tudorache, V.; Tulbure, T. T.; Tuna, A. N.; Tupputi, S. A.; Turchikhin, S.; Turgeman, D.; Turk Cakir, I.; Turra, R.; Tuts, P. M.; Ucchielli, G.; Ueda, I.; Ughetto, M.; Ukegawa, F.; Unal, G.; Undrus, A.; Unel, G.; Ungaro, F. C.; Unno, Y.; Unverdorben, C.; Urban, J.; Urquijo, P.; Urrejola, P.; Usai, G.; Usui, J.; Vacavant, L.; Vacek, V.; Vachon, B.; Vaidya, A.; Valderanis, C.; Valdes Santurio, E.; Valentinetti, S.; Valero, A.; Valéry, L.; Valkar, S.; Vallier, A.; Valls Ferrer, J. A.; Van Den Wollenberg, W.; van der Graaf, H.; van Gemmeren, P.; Van Nieuwkoop, J.; van Vulpen, I.; van Woerden, M. C.; Vanadia, M.; Vandelli, W.; Vaniachine, A.; Vankov, P.; Vardanyan, G.; Vari, R.; Varnes, E. W.; Varni, C.; Varol, T.; Varouchas, D.; Vartapetian, A.; Varvell, K. E.; Vasquez, J. G.; Vasquez, G. A.; Vazeille, F.; Vazquez Schroeder, T.; Veatch, J.; Veeraraghavan, V.; Veloce, L. M.; Veloso, F.; Veneziano, S.; Ventura, A.; Venturi, M.; Venturi, N.; Venturini, A.; Vercesi, V.; Verducci, M.; Verkerke, W.; Vermeulen, A. T.; Vermeulen, J. C.; Vetterli, M. C.; Viaux Maira, N.; Viazlo, O.; Vichou, I.; Vickey, T.; Boeriu, O. E. Vickey; Viehhauser, G. H. A.; Viel, S.; Vigani, L.; Villa, M.; Villaplana Perez, M.; Vilucchi, E.; Vincter, M. G.; Vinogradov, V. B.; Vishwakarma, A.; Vittori, C.; Vivarelli, I.; Vlachos, S.; Vogel, M.; Vokac, P.; Volpi, G.; von der Schmitt, H.; von Toerne, E.; Vorobel, V.; Vorobev, K.; Vos, M.; Voss, R.; Vossebeld, J. H.; Vranjes, N.; Vranjes Milosavljevic, M.; Vrba, V.; Vreeswijk, M.; Vuillermet, R.; Vukotic, I.; Wagner, P.; Wagner, W.; Wagner-Kuhr, J.; Wahlberg, H.; Wahrmund, S.; Wakabayashi, J.; Walder, J.; Walker, R.; Walkowiak, W.; Wallangen, V.; Wang, C.; Wang, C.; Wang, F.; Wang, H.; Wang, H.; Wang, J.; Wang, J.; Wang, Q.; Wang, R.; Wang, S. M.; Wang, T.; Wang, W.; Wang, W.; Wang, Z.; Wanotayaroj, C.; Warburton, A.; Ward, C. P.; Wardrope, D. R.; Washbrook, A.; Watkins, P. M.; Watson, A. T.; Watson, M. F.; Watts, G.; Watts, S.; Waugh, B. M.; Webb, A. F.; Webb, S.; Weber, M. S.; Weber, S. W.; Weber, S. A.; Webster, J. S.; Weidberg, A. R.; Weinert, B.; Weingarten, J.; Weirich, M.; Weiser, C.; Weits, H.; Wells, P. S.; Wenaus, T.; Wengler, T.; Wenig, S.; Wermes, N.; Werner, M. D.; Werner, P.; Wessels, M.; Whalen, K.; Whallon, N. L.; Wharton, A. M.; White, A. S.; White, A.; White, M. J.; White, R.; Whiteson, D.; Whitmore, B. W.; Wickens, F. J.; Wiedenmann, W.; Wielers, M.; Wiglesworth, C.; Wiik-Fuchs, L. A. M.; Wildauer, A.; Wilk, F.; Wilkens, H. G.; Williams, H. H.; Williams, S.; Willis, C.; Willocq, S.; Wilson, J. A.; Wingerter-Seez, I.; Winkels, E.; Winklmeier, F.; Winston, O. J.; Winter, B. T.; Wittgen, M.; Wobisch, M.; Wolf, T. M. H.; Wolff, R.; Wolter, M. W.; Wolters, H.; Wong, V. W. S.; Worm, S. D.; Wosiek, B. K.; Wotschack, J.; Wozniak, K. W.; Wu, M.; Wu, S. L.; Wu, X.; Wu, Y.; Wyatt, T. R.; Wynne, B. M.; Xella, S.; Xi, Z.; Xia, L.; Xu, D.; Xu, L.; Xu, T.; Yabsley, B.; Yacoob, S.; Yamaguchi, D.; Yamaguchi, Y.; Yamamoto, A.; Yamamoto, S.; Yamanaka, T.; Yamatani, M.; Yamauchi, K.; Yamazaki, Y.; Yan, Z.; Yang, H.; Yang, H.; Yang, Y.; Yang, Z.; Yao, W.-M.; Yap, Y. C.; Yasu, Y.; Yatsenko, E.; Yau Wong, K. H.; Ye, J.; Ye, S.; Yeletskikh, I.; Yigitbasi, E.; Yildirim, E.; Yorita, K.; Yoshihara, K.; Young, C.; Young, C. J. S.; Yu, J.; Yu, J.; Yuen, S. P. Y.; Yusuff, I.; Zabinski, B.; Zacharis, G.; Zaidan, R.; Zaitsev, A. M.; Zakharchuk, N.; Zalieckas, J.; Zaman, A.; Zambito, S.; Zanzi, D.; Zeitnitz, C.; Zemaityte, G.; Zemla, A.; Zeng, J. C.; Zeng, Q.; Zenin, O.; Ženiš, T.; Zerwas, D.; Zhang, D.; Zhang, F.; Zhang, G.; Zhang, H.; Zhang, J.; Zhang, L.; Zhang, L.; Zhang, M.; Zhang, P.; Zhang, R.; Zhang, R.; Zhang, X.; Zhang, Y.; Zhang, Z.; Zhao, X.; Zhao, Y.; Zhao, Z.; Zhemchugov, A.; Zhou, B.; Zhou, C.; Zhou, L.; Zhou, M.; Zhou, M.; Zhou, N.; Zhu, C. G.; Zhu, H.; Zhu, J.; Zhu, Y.; Zhuang, X.; Zhukov, K.; Zibell, A.; Zieminska, D.; Zimine, N. I.; Zimmermann, C.; Zimmermann, S.; Zinonos, Z.; Zinser, M.; Ziolkowski, M.; Živković, L.; Zobernig, G.; Zoccoli, A.; Zou, R.; zur Nedden, M.; Zwalinski, L.
2017-12-01
The ATLAS inner detector comprises three different sub-detectors: the pixel detector, the silicon strip tracker, and the transition-radiation drift-tube tracker. The Insertable B-Layer, a new innermost pixel layer, was installed during the shutdown period in 2014, together with modifications to the layout of the cables and support structures of the existing pixel detector. The material in the inner detector is studied with several methods, using a low-luminosity √s=13 TeV pp collision sample corresponding to around 2.0 nb-1 collected in 2015 with the ATLAS experiment at the LHC. In this paper, the material within the innermost barrel region is studied using reconstructed hadronic interaction and photon conversion vertices. For the forward rapidity region, the material is probed by a measurement of the efficiency with which single tracks reconstructed from pixel detector hits alone can be extended with hits on the track in the strip layers. The results of these studies have been taken into account in an improved description of the material in the ATLAS inner detector simulation, resulting in a reduction in the uncertainties associated with the charged-particle reconstruction efficiency determined from simulation.
Study of the material of the ATLAS inner detector for Run 2 of the LHC
Aaboud, M.; Aad, G.; Abbott, B.; ...
2017-12-07
The ATLAS inner detector comprises three different sub-detectors: the pixel detector, the silicon strip tracker, and the transition-radiation drift-tube tracker. The Insertable B-Layer, a new innermost pixel layer, was installed during the shutdown period in 2014, together with modifications to the layout of the cables and support structures of the existing pixel detector. The material in the inner detector is studied with several methods, using a low-luminosity √s = 13 TeV pp collision sample corresponding to around 2.0 nb -1 collected in 2015 with the ATLAS experiment at the LHC. In this paper, the material within the innermost barrel regionmore » is studied using reconstructed hadronic interaction and photon conversion vertices. For the forward rapidity region, the material is probed by a measurement of the efficiency with which single tracks reconstructed from pixel detector hits alone can be extended with hits on the track in the strip layers. The results of these studies have been taken into account in an improved description of the material in the ATLAS inner detector simulation, resulting in a reduction in the uncertainties associated with the charged-particle reconstruction efficiency determined from simulation.« less
Singlet fission/silicon solar cell exceeding 100% EQE (Conference Presentation)
NASA Astrophysics Data System (ADS)
Pazos, Luis M.; Lee, Jumin; Kirch, Anton; Tabachnyk, Maxim; Friend, Richard H.; Ehrler, Bruno
2016-09-01
Current matching limits the commercialization of tandem solar cells due to their instability over spectral changes, leading to the need of using solar concentrators and trackers to keep the spectrum stable. We demonstrate that voltage-matched systems show far higher performance over spectral changes; caused by clouds, dust and other variations in atmospheric conditions. Singlet fission is a process in organic semiconductors which has shown very efficient, 200%, down-conversion yield and the generated excitations are long-lived, ideal for solar cells. As a result, the number of publications has grown exponentially in the past 5 years. Yet, so far no one has achieved to combine singlet fission with most low bandgap semiconductors, including crystalline silicon, the dominating solar cell material with a 90% share of the PV Market. Here we show that singlet fission can facilitate the fabrication of voltage-matched systems, opening a simple design route for the effective implementation of down-conversion in commercially available photovoltaic technologies, with no modification of the electronic circuitry of such. The implemention of singlet fission is achieved simply by decoupling the fabrication of the individual subcells. For this demonstration we used an ITO/PEDOT/P3HT/Pentacene/C60/Ag wide-bandgap subcell, and a commercial silicon solar cell as the low-bandgap component. We show that the combination of the two leads to the first tandem silicon solar cell which exceeds 100% external quantum efficiency.
Performance of a Prototype Stationary Catadioptric Concentrating Photovoltaic Module
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lloyd, John V.; Kozodoy, Peter; Gladden, Christopher
A stationary catadioptric concentrating photovoltaic module with aperture area over 100 cm2, geometric concentration of 180x, and collection within 60° of polar incidence was designed, prototyped, and characterized. The module performance followed modeling closely with a peak power conversion efficiency of 26% for direct irradiance. Tracking of the sun is accomplished via translational micro-tracking completely internal to the module, avoiding the cost and complexity of mechanical two-axis trackers that point towards the sun. This study demonstrates the potential for concentrating photovoltaic modules with significantly higher efficiency than industry standard silicon photovoltaic modules that could be installed in stationary configurations onmore » rooftops.« less
An isocenter estimation tool for proton gantry alignment
NASA Astrophysics Data System (ADS)
Hansen, Peter; Hu, Dongming
2017-12-01
A novel tool has been developed to automate the process of locating the isocenter, center of rotation, and sphere of confusion of a proton therapy gantry. The tool uses a Radian laser tracker to estimate how the coordinate frame of the front-end beam-line components changes as the gantry rotates. The coordinate frames serve as an empirical model of gantry flexing. Using this model, the alignment of the front and back-end beam-line components can be chosen to minimize the sphere of confusion, improving the overall beam positioning accuracy of the gantry. This alignment can be performed without the beam active, improving the efficiency of installing new systems at customer sites.
2008-04-23
CAPE CANAVERAL, Fla. -- At the Astrotech payload processing facility in Titusville, Fla., workers prepare NASA's Gamma-ray Large Area Space Telescope, or GLAST, spacecraft for star tracker sun shade installation. The GLAST is a powerful space observatory that will explore the Universe's ultimate frontier, where nature harnesses forces and energies far beyond anything possible on Earth; probe some of science's deepest questions, such as what our Universe is made of, and search for new laws of physics; explain how black holes accelerate jets of material to nearly light speed; and help crack the mystery of stupendously powerful explosions known as gamma-ray bursts. A launch date is still to be determined. Photo credit: NASA/Cory Huston
2008-04-25
CAPE CANAVERAL, Fla. – At the Astrotech payload processing facility, technicians install insulation blankets around the star tracker sunshades on NASA's Gamma-ray Large Area Space Telescope, or GLAST, spacecraft. The GLAST is a powerful space observatory that will explore the Universe's ultimate frontier, where nature harnesses forces and energies far beyond anything possible on Earth; probe some of science's deepest questions, such as what our Universe is made of, and search for new laws of physics; explain how black holes accelerate jets of material to nearly light speed; and help crack the mystery of stupendously powerful explosions known as gamma-ray bursts. A launch date is still to be determined. Photo credit: NASA/Jim Grossmann
2008-04-23
CAPE CANAVERAL, Fla. -- At the Astrotech payload processing facility in Titusville, Fla., a worker adjusts the star tracker sun shade installed on NASA's Gamma-ray Large Area Space Telescope, or GLAST, spacecraft. The GLAST is a powerful space observatory that will explore the Universe's ultimate frontier, where nature harnesses forces and energies far beyond anything possible on Earth; probe some of science's deepest questions, such as what our Universe is made of, and search for new laws of physics; explain how black holes accelerate jets of material to nearly light speed; and help crack the mystery of stupendously powerful explosions known as gamma-ray bursts. A launch date is still to be determined. Photo credit: NASA/Kim Shiflett
2008-04-23
CAPE CANAVERAL, Fla. -- At the Astrotech payload processing facility in Titusville, Fla., workers install another of the star tracker sun shades on NASA's Gamma-ray Large Area Space Telescope, or GLAST, spacecraft. The GLAST is a powerful space observatory that will explore the Universe's ultimate frontier, where nature harnesses forces and energies far beyond anything possible on Earth; probe some of science's deepest questions, such as what our Universe is made of, and search for new laws of physics; explain how black holes accelerate jets of material to nearly light speed; and help crack the mystery of stupendously powerful explosions known as gamma-ray bursts. A launch date is still to be determined. Photo credit: NASA/Kim Shiflett
2008-04-25
CAPE CANAVERAL, Fla. – At the Astrotech payload processing facility, technicians install insulation blankets around the star tracker sunshades on NASA's Gamma-ray Large Area Space Telescope, or GLAST, spacecraft. The GLAST is a powerful space observatory that will explore the Universe's ultimate frontier, where nature harnesses forces and energies far beyond anything possible on Earth; probe some of science's deepest questions, such as what our Universe is made of, and search for new laws of physics; explain how black holes accelerate jets of material to nearly light speed; and help crack the mystery of stupendously powerful explosions known as gamma-ray bursts. A launch date is still to be determined. Photo credit: NASA/Jim Grossmann
2008-04-23
CAPE CANAVERAL, Fla. -- At the Astrotech payload processing facility in Titusville, Fla., workers install one of the star tracker sun shades on NASA's Gamma-ray Large Area Space Telescope, or GLAST, spacecraft. The GLAST is a powerful space observatory that will explore the Universe's ultimate frontier, where nature harnesses forces and energies far beyond anything possible on Earth; probe some of science's deepest questions, such as what our Universe is made of, and search for new laws of physics; explain how black holes accelerate jets of material to nearly light speed; and help crack the mystery of stupendously powerful explosions known as gamma-ray bursts. A launch date is still to be determined. Photo credit: NASA/Kim Shiflett
2008-04-23
CAPE CANAVERAL, Fla. -- At the Astrotech payload processing facility in Titusville, Fla., a worker adjusts the star tracker sun shades installed on NASA's Gamma-ray Large Area Space Telescope, or GLAST, spacecraft. The GLAST is a powerful space observatory that will explore the Universe's ultimate frontier, where nature harnesses forces and energies far beyond anything possible on Earth; probe some of science's deepest questions, such as what our Universe is made of, and search for new laws of physics; explain how black holes accelerate jets of material to nearly light speed; and help crack the mystery of stupendously powerful explosions known as gamma-ray bursts. A launch date is still to be determined. Photo credit: NASA/Kim Shiflett
2008-04-23
CAPE CANAVERAL, Fla. -- At the Astrotech payload processing facility in Titusville, Fla., a worker cleans around the area where star tracker sun shades will be installed on NASA's Gamma-ray Large Area Space Telescope, or GLAST, spacecraft. The GLAST is a powerful space observatory that will explore the Universe's ultimate frontier, where nature harnesses forces and energies far beyond anything possible on Earth; probe some of science's deepest questions, such as what our Universe is made of, and search for new laws of physics; explain how black holes accelerate jets of material to nearly light speed; and help crack the mystery of stupendously powerful explosions known as gamma-ray bursts. A launch date is still to be determined. Photo credit: NASA/Kim Shiflett
2008-04-23
CAPE CANAVERAL, Fla. -- At the Astrotech payload processing facility in Titusville, Fla., the star tracker sun shades are waiting to be installed on NASA's Gamma-ray Large Area Space Telescope, or GLAST, spacecraft. The GLAST is a powerful space observatory that will explore the Universe's ultimate frontier, where nature harnesses forces and energies far beyond anything possible on Earth; probe some of science's deepest questions, such as what our Universe is made of, and search for new laws of physics; explain how black holes accelerate jets of material to nearly light speed; and help crack the mystery of stupendously powerful explosions known as gamma-ray bursts. A launch date is still to be determined. Photo credit: NASA/Kim Shiflett
2008-04-23
CAPE CANAVERAL, Fla. -- At the Astrotech payload processing facility in Titusville, Fla., workers prepare NASA's Gamma-ray Large Area Space Telescope, or GLAST, spacecraft for star tracker sun shade installation. The GLAST is a powerful space observatory that will explore the Universe's ultimate frontier, where nature harnesses forces and energies far beyond anything possible on Earth; probe some of science's deepest questions, such as what our Universe is made of, and search for new laws of physics; explain how black holes accelerate jets of material to nearly light speed; and help crack the mystery of stupendously powerful explosions known as gamma-ray bursts. A launch date is still to be determined. Photo credit: NASA/Cory Huston
2008-04-25
CAPE CANAVERAL, Fla. – At the Astrotech payload processing facility, technicians install insulation blankets around the star tracker sunshades on NASA's Gamma-ray Large Area Space Telescope, or GLAST, spacecraft. The GLAST is a powerful space observatory that will explore the Universe's ultimate frontier, where nature harnesses forces and energies far beyond anything possible on Earth; probe some of science's deepest questions, such as what our Universe is made of, and search for new laws of physics; explain how black holes accelerate jets of material to nearly light speed; and help crack the mystery of stupendously powerful explosions known as gamma-ray bursts. A launch date is still to be determined. Photo credit: NASA/Jim Grossmann
2008-04-23
CAPE CANAVERAL, Fla. -- At the Astrotech payload processing facility in Titusville, Fla., workers install one of the star tracker sun shades on NASA's Gamma-ray Large Area Space Telescope, or GLAST, spacecraft. The GLAST is a powerful space observatory that will explore the Universe's ultimate frontier, where nature harnesses forces and energies far beyond anything possible on Earth; probe some of science's deepest questions, such as what our Universe is made of, and search for new laws of physics; explain how black holes accelerate jets of material to nearly light speed; and help crack the mystery of stupendously powerful explosions known as gamma-ray bursts. A launch date is still to be determined. Photo credit: NASA/Kim Shiflett
Performance of a Prototype Stationary Catadioptric Concentrating Photovoltaic Module
Lloyd, John V.; Kozodoy, Peter; Gladden, Christopher; ...
2018-03-28
A stationary catadioptric concentrating photovoltaic module with aperture area over 100 cm2, geometric concentration of 180x, and collection within 60° of polar incidence was designed, prototyped, and characterized. The module performance followed modeling closely with a peak power conversion efficiency of 26% for direct irradiance. Tracking of the sun is accomplished via translational micro-tracking completely internal to the module, avoiding the cost and complexity of mechanical two-axis trackers that point towards the sun. This study demonstrates the potential for concentrating photovoltaic modules with significantly higher efficiency than industry standard silicon photovoltaic modules that could be installed in stationary configurations onmore » rooftops.« less
Long reach DWDM-PON with 12.5 GHz channel spacing based on comb source seeding
NASA Astrophysics Data System (ADS)
Zhou, Zhao; Nie, Hai-tao; Wang, Yao-jun
2016-07-01
A long reach dense wavelength division multiplexing passive optical network (DWDM-PON) with 12.5 GHz channel spacing is proposed and experimentally demonstrated. An optical frequency comb source is used to provide the multiwavelength seeding light, while reflective semiconductor optical amplifiers (RSOAs) are installed in both optical line terminal (OLT) and optical network units (ONUs) as colorless transmitter. The experimental results show that the bidirectional transmission for 1.2 Gbit/s data rate is achieved over 80 km single mode fiber (SMF).
Photovoltaic energy technologies: Health and environmental effects document
NASA Astrophysics Data System (ADS)
Moskowitz, P. D.; Hamilton, L. D.; Morris, S. C.; Rowe, M. D.
1980-09-01
The potential health and environmental consequences of producing electricity by photovoltaic energy systems was analyzed. Potential health and environmental risks are identified in representative fuel and material supply cycles including extraction, processing, refining, fabrication, installation, operation, and isposal for four photovoltaic energy systems (silicon N/P single crystal, silicon metal/insulator/semiconductor (MIS) cell, cadmium sulfide/copper sulfide backwall cell, and gallium arsenide heterojunction cell) delivering equal amounts of useful energy. Each step of the fuel and material supply cycles, materials demands, byproducts, public health, occupational health, and environmental hazards is identified.
Latest Results from the Multi-Object Keck Exoplanet Tracker
NASA Astrophysics Data System (ADS)
Van Eyken, Julian C.; Ge, J.; Wan, X.; Zhao, B.; Hariharan, A.; Mahadevan, S.; DeWitt, C.; Guo, P.; Cohen, R.; Fleming, S. W.; Crepp, J.; Warner, C.; Kane, S.; Leger, F.; Pan, K.
2006-12-01
The W. M. Keck Exoplanet Tracker is a precision Doppler radial velocity instrument based on dispersed fixed-delay interferometry (DFDI) which takes advantage of the new technique to allow multi-object RV surveying. Installed at the 2.5m Sloan telescope at Apache Point Observatory, the combination of Michelson interferometer and medium resolution spectrograph allows design for simultaneous Doppler measurements of up to 60 targets, while maintaining high instrument throughput. Using a single-object prototype of the instrument at the Kitt Peak National Observatory 2.1m telescope, we previously discovered a 0.49MJup planet, HD 102195b (ET-1), orbiting with a 4.11d period, and other interesting targets are being followed up. From recent trial observations, the Keck Exoplanet Tracker now yields 59 usable simultaneous fringing stellar spectra, of a quality sufficient to attempt to detect short period hot-Jupiter type planets. Recent engineering improvements reduced errors by a factor of 2, and typical photon limits for stellar data are now at the 30m/s level for magnitude V 10.5 (depending on spectral type and v sin i), with a best value of 6.9m/s at V=7.6. Preliminary RMS precisions from solar data (daytime sky) are around 10m/s over a few days, with some spectra reaching close to their photon limit of 6-7m/s on the short term ( 1 hour). A number of targets showing interesting RV variability are currently being followed up independently. Additional engineering work is planned which should make for further significant gains in Doppler precision. Here we present the latest results and updates from the most recent engineering and observing runs with the Keck ET.
Popular Nutrition-Related Mobile Apps: A Feature Assessment
Fallaize, Rosalind; Lovegrove, Julie A; Hwang, Faustina
2016-01-01
Background A key challenge in human nutrition is the assessment of usual food intake. This is of particular interest given recent proposals of eHealth personalized interventions. The adoption of mobile phones has created an opportunity for assessing and improving nutrient intake as they can be used for digitalizing dietary assessments and providing feedback. In the last few years, hundreds of nutrition-related mobile apps have been launched and installed by millions of users. Objective This study aims to analyze the main features of the most popular nutrition apps and to compare their strategies and technologies for dietary assessment and user feedback. Methods Apps were selected from the two largest online stores of the most popular mobile operating systems—the Google Play Store for Android and the iTunes App Store for iOS—based on popularity as measured by the number of installs and reviews. The keywords used in the search were as follows: calorie(s), diet, diet tracker, dietician, dietitian, eating, fit, fitness, food, food diary, food tracker, health, lose weight, nutrition, nutritionist, weight, weight loss, weight management, weight watcher, and ww calculator. The inclusion criteria were as follows: English language, minimum number of installs (1 million for Google Play Store) or reviews (7500 for iTunes App Store), relation to nutrition (ie, diet monitoring or recommendation), and independence from any device (eg, wearable) or subscription. Results A total of 13 apps were classified as popular for inclusion in the analysis. Nine apps offered prospective recording of food intake using a food diary feature. Food selection was available via text search or barcode scanner technologies. Portion size selection was only textual (ie, without images or icons). All nine of these apps were also capable of collecting physical activity (PA) information using self-report, the global positioning system (GPS), or wearable integrations. Their outputs focused predominantly on energy balance between dietary intake and PA. None of these nine apps offered features directly related to diet plans and motivational coaching. In contrast, the remaining four of the 13 apps focused on these opportunities, but without food diaries. One app—FatSecret—also had an innovative feature for connecting users with health professionals, and another—S Health—provided a nutrient balance score. Conclusions The high number of installs indicates that there is a clear interest and opportunity for diet monitoring and recommendation using mobile apps. All the apps collecting dietary intake used the same nutrition assessment method (ie, food diary record) and technologies for data input (ie, text search and barcode scanner). Emerging technologies, such as image recognition, natural language processing, and artificial intelligence, were not identified. None of the apps had a decision engine capable of providing personalized diet advice. PMID:27480144
Popular Nutrition-Related Mobile Apps: A Feature Assessment.
Franco, Rodrigo Zenun; Fallaize, Rosalind; Lovegrove, Julie A; Hwang, Faustina
2016-08-01
A key challenge in human nutrition is the assessment of usual food intake. This is of particular interest given recent proposals of eHealth personalized interventions. The adoption of mobile phones has created an opportunity for assessing and improving nutrient intake as they can be used for digitalizing dietary assessments and providing feedback. In the last few years, hundreds of nutrition-related mobile apps have been launched and installed by millions of users. This study aims to analyze the main features of the most popular nutrition apps and to compare their strategies and technologies for dietary assessment and user feedback. Apps were selected from the two largest online stores of the most popular mobile operating systems-the Google Play Store for Android and the iTunes App Store for iOS-based on popularity as measured by the number of installs and reviews. The keywords used in the search were as follows: calorie(s), diet, diet tracker, dietician, dietitian, eating, fit, fitness, food, food diary, food tracker, health, lose weight, nutrition, nutritionist, weight, weight loss, weight management, weight watcher, and ww calculator. The inclusion criteria were as follows: English language, minimum number of installs (1 million for Google Play Store) or reviews (7500 for iTunes App Store), relation to nutrition (ie, diet monitoring or recommendation), and independence from any device (eg, wearable) or subscription. A total of 13 apps were classified as popular for inclusion in the analysis. Nine apps offered prospective recording of food intake using a food diary feature. Food selection was available via text search or barcode scanner technologies. Portion size selection was only textual (ie, without images or icons). All nine of these apps were also capable of collecting physical activity (PA) information using self-report, the global positioning system (GPS), or wearable integrations. Their outputs focused predominantly on energy balance between dietary intake and PA. None of these nine apps offered features directly related to diet plans and motivational coaching. In contrast, the remaining four of the 13 apps focused on these opportunities, but without food diaries. One app-FatSecret-also had an innovative feature for connecting users with health professionals, and another-S Health-provided a nutrient balance score. The high number of installs indicates that there is a clear interest and opportunity for diet monitoring and recommendation using mobile apps. All the apps collecting dietary intake used the same nutrition assessment method (ie, food diary record) and technologies for data input (ie, text search and barcode scanner). Emerging technologies, such as image recognition, natural language processing, and artificial intelligence, were not identified. None of the apps had a decision engine capable of providing personalized diet advice.
NASA Astrophysics Data System (ADS)
Adloff, C.; Blaha, J.; Blaising, J.-J.; Drancourt, C.; Espargilière, A.; Gaglione, R.; Geffroy, N.; Karyotakis, Y.; Prast, J.; Vouters, G.; Bilki, B.; Francis, K.; Repond, J.; Smith, J.; Xia, L.; Baldolemar, E.; Li, J.; Park, S. T.; Sosebee, M.; White, A. P.; Yu, J.; Buanes, T.; Eigen, G.; Mikami, Y.; Watson, N. K.; Mavromanolakis, G.; Thomson, M. A.; Ward, D. R.; Yan, W.; Benchekroun, D.; Hoummada, A.; Khoulaki, Y.; Benyamna, M.; Cârloganu, C.; Fehr, F.; Gay, P.; Manen, S.; Royer, L.; Blazey, G. C.; Boona, S.; Chakraborty, D.; Dyshkant, A.; Hedin, D.; Lima, J. G. R.; Powell, J.; Rykalin, V.; Scurti, N.; Smith, M.; Tran, N.; Zutshi, V.; Hostachy, J.-Y.; Morin, L.; Cornett, U.; David, D.; Dietrich, J.; Falley, G.; Gadow, K.; Göttlicher, P.; Günter, C.; Hermberg, B.; Karstensen, S.; Krivan, F.; Lucaci-Timoce, A.-I.; Lu, S.; Lutz, B.; Marchesini, I.; Morozov, S.; Morgunov, V.; Reinecke, M.; Sefkow, F.; Smirnov, P.; Terwort, M.; Vargas-Trevino, A.; Feege, N.; Garutti, E.; Eckert, P.; Kaplan, A.; Schultz-Coulon, H.-Ch; Shen, W.; Stamen, R.; Tadday, A.; Norbeck, E.; Onel, Y.; Wilson, G. W.; Kawagoe, K.; Uozumi, S.; Dauncey, P. D.; Magnan, A.-M.; Bartsch, V.; Wing, M.; Salvatore, F.; Calvo Alamillo, E.; Fouz, M.-C.; Puerta-Pelayo, J.; Bobchenko, B.; Chadeeva, M.; Danilov, M.; Epifantsev, A.; Markin, O.; Mizuk, R.; Novikov, E.; Rusinov, V.; Tarkovsky, E.; Kirikova, N.; Kozlov, V.; Soloviev, Y.; Buzhan, P.; Dolgoshein, B.; Ilyin, A.; Kantserov, V.; Kaplin, V.; Karakash, A.; Popova, E.; Smirnov, S.; Frey, A.; Kiesling, C.; Seidel, K.; Simon, F.; Soldner, C.; Weuste, L.; Bonis, J.; Bouquet, B.; Callier, S.; Cornebise, P.; Doublet, Ph; Dulucq, F.; Faucci Giannelli, M.; Fleury, J.; Li, H.; Martin-Chassard, G.; Richard, F.; de la Taille, Ch; Pöschl, R.; Raux, L.; Seguin-Moreau, N.; Wicek, F.; Anduze, M.; Boudry, V.; Brient, J.-C.; Jeans, D.; Mora de Freitas, P.; Musat, G.; Reinhard, M.; Ruan, M.; Videau, H.; Bulanek, B.; Zacek, J.; Cvach, J.; Gallus, P.; Havranek, M.; Janata, M.; Kvasnicka, J.; Lednicky, D.; Marcisovsky, M.; Polak, I.; Popule, J.; Tomasek, L.; Tomasek, M.; Ruzicka, P.; Sicho, P.; Smolik, J.; Vrba, V.; Zalesak, J.; Belhorma, B.; Ghazlane, H.; Takeshita, T.
2012-04-01
A prototype module for an International Linear Collider (ILC) detector was built, installed, and tested between 2006 and 2009 at CERN and Fermilab as part of the CALICE test beam program, in order to study the possibilities of extending energy sampling behind a hadronic calorimeter and to study the possibilities of providing muon tracking. The ``tail catcher/muon tracker'' (TCMT) is composed of 320 extruded scintillator strips (dimensions 1000 × 50 × 5 mm3) packaged in 16 one-meter square planes interleaved between steel plates. The scintillator strips were read out with wavelength shifting fibers and silicon photomultipliers. The planes were arranged with alternating horizontal and vertical strip orientations. Data were collected for muons and pions in the energy range 6 GeV to 80 GeV. Utilizing data taken in 2006, this paper describes the design and construction of the TCMT, performance characteristics, and a beam-based evaluation of the ability of the TCMT to improve hadronic energy resolution in a prototype ILC detector. For a typical configuration of an ILC detector with a coil situated outside a calorimeter system with a thickness of 5.5 nuclear interaction lengths, a TCMT would improve relative energy resolution by 6-16% for pions between 20 and 80 GeV.
Determination of use of a real time tone tracker to obtain same beam interferometry data
NASA Technical Reports Server (NTRS)
Nandi, S.; Border, J. S.; Folkner, W. M.
1993-01-01
The radio metric tracking technique known as Same-Beam Interferometry (SBI) has been shown to improve orbit determination accuracy for the Magellan and Pioneer 12 orbiter. Previous efforts to explore the technique were carried out by making open loop recordings of the carrier signals from the two spacecraft and extracting their phases through post processing. This paper reports on the use of a closed loop receiver to simultaneously measure the carrier signals from two spacecraft in order to produce SBI data in near real time. The Experiment Tone Tracker is a digital closed loop receiver installed in two of NASA's Deep Space Network stations which can simultaneously extract the phase of up to eight tones. The receivers were used in late September and October of 1992 to collect Doppler and SBI data from Pioneer 12 and Magellan. The demise of the Pionner 12 on October 8th during the start-up phase of our tests precluded the collection of an extensive set of SBI data, however two passes of SBI and several arcs of single spacecraft Doppler data were recorded. The SBI data were analyzed and determined to have statistical errors consistent with error models and similar to open loop data.
Solid state RF power: The route to 1W per euro cent
DOE Office of Scientific and Technical Information (OSTI.GOV)
Heid, Oliver
2013-04-19
In most particle accelerators RF power is a decisive design constraint due to high costs and relative inflexibility of current electron beam based RF sources, i.e. Klystrons, Magnetrons, Tetrodes etc. At VHF/UHF frequencies the transition to solid state devices promises to fundamentally change the situation. Recent progress brings 1 Watt per Euro cent installed cost within reach. We present a Silicon Carbide semiconductor solution utilising the Solid State Direct Drive technology at unprecedented efficiency, power levels and power densities. The proposed solution allows retrofitting of existing RF accelerators and opens the route to novel particle accelerator concepts.
Development of semiconductor tracking: The future linear collider case
NASA Astrophysics Data System (ADS)
Savoy-Navarro, Aurore
2011-04-01
An active R&D on silicon tracking for the linear collider, SiLC, is pursued since several years to develop the new generation of large area silicon trackers for the future linear collider(s). The R&D objectives on new sensors, new front end processing of the signal, and the related mechanical and integration challenges for building such large detectors within the proposed detector concepts are described. Synergies and differences with the LHC construction and upgrades are explained. The differences between the linear collider projects, namely the international linear collider, ILC, and the compact linear collider, CLIC, are discussed as well. Two final objectives are presented for the construction of this important sub-detector for the future linear collider experiments: a relatively short term design based on micro-strips combined or not with a gaseous central tracker and a longer term design based on an all-pixel tracker.The R&D objectives on sensors include single sided micro-strips as baseline for the shorter term with the strips from large wafers (at least 6 in), 200 μm thick, 50 μm pitch and the edgeless and alignment friendly options. This work is conducted by SiLC in collaboration with three technical research centers in Italy, Finland, and Spain and HPK. SiLC is studied as well, using advanced Si sensor technologies for higher granularity trackers especially short strips and pixels all based on 3D technology. New Deep Sub-Micron CMOS mix mode (analog and digital) FE and readout electronics are developed to fully process the detector signals currently adapted to the ILC cycle. It is a high-level processing and a fully programmable ASIC; highly fault tolerant. In its latest version, handling 128 channels will equip these next coming years larger size silicon tracking prototypes at test beams. Connection of the FEE chip on the silicon detector especially in the strip case is a major issue. Very preliminary results with inline pitch adapter based on wiring were just achieved. Bump-bonding or 3D vertical interconnect is the other SiLC R&D objective. The goal is to simplify the overall architecture and decrease the material budget of these devices. Three tracking concepts are briefly discussed, two of which are part of the ILC Letter of Intent of the ILD and SiD detector concepts. These last years, SiLC successfully performed beam tests to experience and test these R&D lines.
NASA Technical Reports Server (NTRS)
Li, Rongsheng (Inventor); Wu, Yeong-Wei Andy (Inventor); Hein, Douglas H. (Inventor)
2004-01-01
A method and apparatus for determining star tracker misalignments is disclosed. The method comprises the steps of defining a defining a reference frame for the star tracker assembly according to a boresight of the primary star tracker and a boresight of a second star tracker wherein the boresight of the primary star tracker and a plane spanned by the boresight of the primary star tracker and the boresight of the second star tracker at least partially define a datum for the reference frame for the star tracker assembly; and determining the misalignment of the at least one star tracker as a rotation of the defined reference frame.
AMS results on the fluxes of light nuclei in cosmic rays
NASA Astrophysics Data System (ADS)
Bertucci, Bruna; AMS Collaboration
2017-01-01
AMS-02 is a wide acceptance high-energy physics experiment installed on the International Space Station in May 2011 and it has been operating continuously since then. AMS-02 is able to separate cosmic rays light nuclei species (1 <= Z <= 8) with contaminations less than 10-3 thanks to the redundant measurement of the particle charge in eight silicon tracker layers, four scintillator planes and the Ring Imaging Cherenkov detector. The accurate measure of their spectrum in the GeV-TeV range is performed by the magnetic spectrometer with a maximum detectable rigidity of 2-3 TV. Precise measurements from AMS will be presented, including proton, helium, boron to carbon flux ratio, and highlights of ongoing analyses discussed. On behalf of the AMS Collaboration.
Open Bottom Production in Au+Au Collisions at s NN = 200 GeV with the STAR Experiment
NASA Astrophysics Data System (ADS)
Zhang, Shenghui
In these proceedings, we present measurements of open bottom hadron production through multiple decay channels in Au+Au collisions at s NN = 200 GeV by the STAR experiment. Namely, measurements of nuclear modification factors for electrons, J/ψ, and D0 from open bottom hadron decays are shown. The decay products are topologically identified utilizing the Heavy Flavor Tracker, a silicon vertex detector installed at STAR during the period of 2014 - 2016. It enables precise reconstruction of displaced decay vertices. The results show large suppression for non-prompt J/ψ and non-prompt D0 at high transverse momenta, and indicate less suppression for electrons from bottom hadron decays than for those from charm hadron decays at ˜ 2σ significance level.
High Speed Solid State Circuit Breaker
NASA Technical Reports Server (NTRS)
Podlesak, Thomas F.
1993-01-01
The U.S. Army Research Laboratory, Fort Monmouth, NJ, has developed and is installing two 3.3 MW high speed solid state circuit breakers at the Army's Pulse Power Center. These circuit breakers will interrupt 4160V three phase power mains in no more than 300 microseconds, two orders of magnitude faster than conventional mechanical contact type circuit breakers. These circuit breakers utilize Gate Turnoff Thyristors (GTO's) and are currently utility type devices using air cooling in an air conditioned enclosure. Future refinements include liquid cooling, either water or two phase organic coolant, and more advanced semiconductors. Each of these refinements promises a more compact, more reliable unit.
Chapter 6: CPV Tracking and Trackers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Luque-Heredia, Ignacio; Magalhaes, Pedro; Muller, Matthew
2016-04-15
This chapter explains the functional requirements of a concentrator photovoltaic (CPV) sun tracker. It derives the design specifications of a CPV tracker. The chapter presents taxonomy of trackers describing the most common tracking architectures, based on the number of axes, their relative position, and the foundation and placing of tracking drives. It deals with the structural issues related to tracker design, mainly related to structural flexure and its impact on the system's acceptance angle. The chapter analyzes the auto-calibrated sun tracking control, by describing the state of the art and its development background. It explores the sun tracking accuracy measurementmore » with a practical example. The chapter discusses tracker manufacturing and tracker field works. It reviews survey of different types of tracker designs obtained from different manufacturers. Finally, the chapter deals with IEC62817, the technical standard developed for CPV sun trackers.« less
Zhitomirsky, Benny; Farber, Hodaya; Assaraf, Yehuda G
2018-04-01
LysoTracker and MitoTracker Red are fluorescent probes widely used for viable cell staining of lysosomes and mitochondria, respectively. They are utilized to study organelle localization and their resident proteins, assess organelle functionality and quantification of organelle numbers. The ATP-driven efflux transporter P-glycoprotein (P-gp) is expressed in normal and malignant tissues and extrudes structurally distinct endogenous and exogenous cytotoxic compounds. Thus, once aromatic hydrophobic compounds such as the above-mentioned fluorescent probes are recognized as transport substrates, efflux pumps including P-gp may abolish their ability to reach their cellular target organelles. Herein, we show that LysoTracker and MitoTracker Red are expelled from P-gp-overexpressing cancer cells, thus hindering their ability to fluorescently mark target organelles. We further demonstrate that tariquidar, a potent P-gp transport inhibitor, restores LysoTracker and MitoTracker Red cell entry. We conclude that LysoTracker and MitoTracker Red are P-gp transport substrates, and therefore, P-gp expression must be taken into consideration prior to cellular applications using these probes. Importantly, as MitoTracker was a superior P-gp substrate than LysoTracker Red, we discuss the implications for the future design of chemotherapeutics evading cancer multidrug resistance. Furthermore, restoration of MitoTracker Red fluorescence in P-gp-overexpressing cells may facilitate the identification of potent P-gp transport inhibitors (i.e. chemosensitizers). © 2018 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.
NASA Astrophysics Data System (ADS)
Lipomi, Darren J.
2016-09-01
This presentation describes my group's efforts to understand the molecular and microstructural basis for the mechanical properties of organic semiconductors for organic photovoltaic (OPV) devices. Our work is motivated by two goals. The first goal is to mitigate mechanical forms of degradation of printed modules during roll-to-roll fabrication, installation, and environmental forces—i.e., wind, rain, snow, and thermal expansion and contraction. Mechanical stability is a prerequisite for inexpensive processing on flexible substrates: to encapsulate devices in glass is to surrender this advantage. The second goal is to enable the next generation of ultra-flexible and stretchable solar cells for collapsible, portable, and wearable applications, and as low-cost sources of energy—"solar tarps"—for disaster relief and for the developing world. It may seem that organic semiconductors, due to their carbon framework, are already sufficiently compliant for these applications. We have found, however, that the mechanical properties (stiffness and brittleness) occupy a wide range of values, and can be difficult to predict from molecular structure alone. We are developing an experimental and theoretical framework for how one can combine favorable charge-transport properties and mechanical compliance in organic semiconductor films. In particular, we have explored the roles of the backbone, alkyl side chain, microstructural order, the glass transition, molecular packing with fullerenes, plasticizing effects of additives, extent of separation of [60]PCBM and [70]PCBM, structural randomness in low-bandgap polymers, and reinforcement by encapsulation, on the mechanical compliance. We are exploring the applicability of semi-empirical "back-of-the-envelope" models, along with multi-scale molecular dynamics simulations, with the ultimate goal of designing electroactive organic materials whose mechanical properties can be dialed-in. We have used the insights we have developed to demonstrate several new applications for OPV that demand extreme compliance, including biaxial stretching and conformal bonding of whole devices to hemispheres, and devices with ultrathin encapsulation mounted on human skin that survive significant cyclic mechanical deformation in the outdoor environment.
Gualtieri, Lisa; Rosenbluth, Sandra; Phillips, Jeffrey
2016-11-30
Wearable activity trackers (trackers) are increasingly popular devices used to track step count and other health indicators. Trackers have the potential to benefit those in need of increased physical activity, such as adults who are older and face significant health challenges. These populations are least likely to purchase trackers and most likely to face challenges in using them, yet may derive educational, motivational, and health benefits from their use once these barriers are removed. The aim of this pilot research is to investigate the use of trackers by adults with chronic medical conditions who have never used trackers previously. Specifically, we aim to determine (1) if participants would accept and use trackers to increase their physical activity; (2) if there were barriers to use besides cost and training; (3) if trackers would educate participants on their baseline and ongoing activity levels and support behavior change; and (4) if clinical outcomes would show improvements in participants' health. This study was conducted with patients (N=10) in a 12-week physician-led wellness group offered by Family Doctors, LLC. Patients were given trackers in the second week of The Wellness Group and were interviewed 2 to 4 weeks after it ended. The study investigators analyzed the interview notes to extract themes about the participants' attitudes and behavior changes and collected and analyzed participants' clinical data, including weight and low-density lipoprotein (LDL) cholesterol over the course of the study. Over the 12 to 14 weeks of tracker use, improvements were seen in clinical outcomes, attitudes towards the trackers, and physical activity behaviors. Participants lost an average of 0.5 lbs per week (SD 0.4), with a mean total weight loss of 5.97 lbs (P=.004). Other short-term clinical outcomes included a 9.2% decrease in LDL levels (P=.038). All participants reported an increase in well-being and confidence in their ability to lead more active lives. We identified the following 6 major attitudinal themes from our qualitative analysis of the interview notes: (1) barriers to tracker purchase included cost, perceived value, and choice confusion; (2) attitudes towards the trackers shifted for many, from half of the participants expressing excitement and hope and half expressing hesitation or trepidation, to all participants feeling positive towards their tracker at the time of the interviews; (3) trackers served as educational tools for baseline activity levels; (4) trackers provided concrete feedback on physical activity, which motivated behavior change; (5) tracker use reinforced wellness group activities and goals; and (6) although commitment to tracker use did not waver, external circumstances influenced some participants' ongoing use. Our findings suggest that adding trackers to wellness groups comprising primarily older adults with chronic medical conditions can support education and behavior change to be more physically active. The trackers increased participant self-efficacy by providing a tangible, visible reminder of a commitment to increasing activity and immediate feedback on step count and progress towards a daily step goal. While acceptance was high and attitudes ultimately positive, training and support are needed and short-term drop-off in participant use is to be expected. Future research will further consider the potential of trackers in older adults with chronic medical conditions who are unlikely to purchase them, and studies will use larger samples, continue over a longer period of time, and evaluate outcomes independent of a wellness group. ©Lisa Gualtieri, Sandra Rosenbluth, Jeffrey Phillips. Originally published in JMIR Research Protocols (http://www.researchprotocols.org), 30.11.2016.
Electron/proton separation and analysis techniques used in the AMS-02 (e+ + e-) flux measurement
NASA Astrophysics Data System (ADS)
Graziani, Maura; AMS-02 Collaboration
2016-04-01
AMS-02 is a large acceptance cosmic ray detector which has been installed on the International Space Station (ISS) in May 2011, where it is collecting cosmic rays up to TeV energies. The search for Dark Matter indirect signatures in the rare components of the cosmic ray fluxes is among the main objectives of the experiment. AMS-02 is providing cosmic electrons and positrons data with an unprecedented precision. This is achieved by means to the excellent hadron/electron separation power obtained combining the independent measurements from the Transition Radiation Detector, electromagnetic Calorimeter and Tracker detectors. In this contribution we will detail the analysis techniques used to distinguish electrons from the hadronic background and show the in-flight performances of these detectors relevant for the electron/positron measurements.
NASA Astrophysics Data System (ADS)
Junqueira Leão, Rodrigo; Raffaelo Baldo, Crhistian; Collucci da Costa Reis, Maria Luisa; Alves Trabanco, Jorge Luiz
2018-03-01
The building blocks of particle accelerators are magnets responsible for keeping beams of charged particles at a desired trajectory. Magnets are commonly grouped in support structures named girders, which are mounted on vertical and horizontal stages. The performance of this type of machine is highly dependent on the relative alignment between its main components. The length of particle accelerators ranges from small machines to large-scale national or international facilities, with typical lengths of hundreds of meters to a few kilometers. This relatively large volume together with micrometric positioning tolerances make the alignment activity a classical large-scale dimensional metrology problem. The alignment concept relies on networks of fixed monuments installed on the building structure to which all accelerator components are referred. In this work, the Sirius accelerator is taken as a case study, and an alignment network is optimized via computational methods in terms of geometry, densification, and surveying procedure. Laser trackers are employed to guide the installation and measure the girders’ positions, using the optimized network as a reference and applying the metric developed in part I of this paper. Simulations demonstrate the feasibility of aligning the 220 girders of the Sirius synchrotron to better than 0.080 mm, at a coverage probability of 95%.
Development of metal matrix composite gridlines for space photovoltaics
NASA Astrophysics Data System (ADS)
Abudayyeh, Omar Kamal
Space vehicles today are primarily powered by multi-junction photovoltaic cells due to their high efficiency and high radiation hardness in the space environment. While multi-junction solar cells provide high efficiency, microcracks develop in the crystalline semiconductor due to a variety of reasons, including: growth defects, film stress due to lattice constant mismatch, and external mechanical stresses introduced during shipping, installation, and operation. These microcracks have the tendency to propagate through the different layers of the semiconductor reaching the metal gridlines of the cell, resulting in electrically isolated areas from the busbar region, ultimately lowering the power output of the cell and potentially reducing the lifetime of the space mission. Pre-launch inspection are often expensive and difficult to perform, in which individual cells and entire modules must be replaced. In many cases, such microcracks are difficult to examine even with a thorough inspection. While repairs are possible pre-launch of the space vehicle, and even to some extent in low-to-earth missions, they are virtually impossible for deep space missions, therefore, efforts to mitigate the effects of these microcracks have substantial impact on the cell performance and overall success of the space mission. In this effort, we have investigated the use of multi-walled carbon nanotubes as mechanical reinforcement to the metal gridlines capable of bridging gaps generated in the underlying semiconductor while providing a redundant electrical conduction pathway. The carbon nanotubes are embedded in a silver matrix to create a metal matrix composite, which are later integrated onto commercial triple-junction solar cells.
Sun-Relative Pointing for Dual-Axis Solar Trackers Employing Azimuth and Elevation Rotations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Riley, Daniel; Hansen, Clifford W.
Dual axis trackers employing azimuth and elevation rotations are common in the field of photovoltaic (PV) energy generation. Accurate sun-tracking algorithms are widely available. However, a steering algorithm has not been available to accurately point the tracker away from the sun such that a vector projection of the sun beam onto the tracker face falls along a desired path relative to the tracker face. We have developed an algorithm which produces the appropriate azimuth and elevation angles for a dual axis tracker when given the sun position, desired angle of incidence, and the desired projection of the sun beam ontomore » the tracker face. Development of this algorithm was inspired by the need to accurately steer a tracker to desired sun-relative positions in order to better characterize the electro-optical properties of PV and CPV modules.« less
Shock isolator for diode laser operation on a closed-cycle refrigerator
NASA Technical Reports Server (NTRS)
Jennings, D. E.; Hillman, J. J.
1977-01-01
Closed-cycle helium refrigerators are widely used as coolers for semiconductor diode lasers. These refrigerators pose several difficulties including temperature oscillations due to varying refrigerator capacity during the Solvay cycle, and impact shocks delivered to the diode in the cycle's expansion phase. A shock isolator has been designed to isolate diode lasers from such impact shocks. Slow diode current scans have been made before installation of the shock isolator, with the isolator but no thermal damper, and with both devices. With the isolator and no damper, the diode output frequency oscillated at the refrigerator cycle rate, deviating by plus or minus 40 MHz. Using the isolator and the damper no frequency fluctuation was detected.
Testing FlowTracker2 Performance and Wading Rod Flow Disturbance in Laboratory Tow Tanks
NASA Astrophysics Data System (ADS)
Fan, X.; Wagenaar, D.
2016-12-01
The FlowTracker2 was released in February 2016 by SonTek (Xylem) to be a more feature-rich and technologically advanced replacement to the Original FlowTracker ADV. These instruments are Acoustic Doppler Velocimeters (ADVs) used for taking high-precision wading discharge and velocity measurements. The accuracy of the FlowTracker2 probe was tested in tow tanks at three different facilities: the USGS Hydrologic Instrumentation Facility (HIF), the Swiss Federal Institute for Metrology (METAS), and at the SonTek Research and Development facility. Multiple mounting configurations were examined, including mounting the ADV probe directly to the tow carts, and incorporating the two most-used wading rods for the FlowTracker (round and hex). Tow speeds ranged from 5cm/s to 1.5m/s, and different tow tank seeding schemes and wait times were examined. In addition, the performance of the FlowTracker2 probe in low Signal-to-Noise Ratio (SNR) environments was compared to the Original FlowTracker ADV. Results confirmed that the FlowTracker2 probe itself performed well within the 1%+0.25cm/s accuracy specification advertised. Tows using the wading rods created a reduced measured velocity by 1.3% of the expected velocity due to flow disturbance, a result similar to the Original FlowTracker ADV despite the change in the FlowTracker2 probe design. Finally, due to improvements in its electronics, the FlowTracker2's performance in low SNR tests exceeded that of the Original FlowTracker ADV, showing less standard error in these conditions compared to its predecessor.
Thermal design of the Mu2e detector solenoid
Dhanaraj, N.; Wands, R.; Buehler, M.; ...
2014-12-18
The reference design for a superconducting detector solenoid (DS) for the Mu2e experiment has been completed. In this study, the main functions of the DS are to provide a graded field in the region of the stopping target, which ranges from 2 to 1 T and a uniform precision magnetic field of 1 T in a volume large enough to house a tracker downstream of the stopping target. The inner diameter of the magnet cryostat is 1.9 m and the length is 10.9 m. The gradient section of the magnet is about 4 m long and the spectrometer section withmore » a uniform magnetic field is about 6 m long. The inner cryostat wall supports the stopping target, tracker, calorimeter and other equipment installed in the DS. This warm bore volume is under vacuum during operation. It is sealed on one end by the muon beam stop, while it is open on the other end where it interfaces with the Transport Solenoid. The operating temperature of the magnetic coil is 4.7 K and is indirectly cooled with helium flowing in a thermosiphon cooling scheme. This paper describes the thermal design of the solenoid, including the design aspects of the thermosiphon for the coil cooling, forced flow cooling of the thermal shields with 2 phase LN2 (Liquid Nitrogen) and the transient studies of the cool down of the cold mass as well.« less
Infrared Submillimeter and Radio Astronomy Research and Analysis Program
NASA Technical Reports Server (NTRS)
Traub, Wesley A.
2000-01-01
This program entitled "Infrared Submillimeter and Radio Astronomy Research and Analysis Program" with NASA-Ames Research Center (ARC) was proposed by the Smithsonian Astrophysical Observatory (SAO) to cover three years. Due to funding constraints only the first year installment of $18,436 was funded, but this funding was spread out over two years to try to maximize the benefit to the program. During the tenure of this contact, the investigators at the SAO, Drs. Wesley A. Traub and Nathaniel P. Carleton, worked with the investigators at ARC, Drs. Jesse Bregman and Fred Wittebom, on the following three main areas: 1. Rapid scanning SAO and ARC collaborated on purchasing and constructing a Rapid Scan Platform for the delay arm of the Infrared-Optical Telescope Array (IOTA) interferometer on Mt. Hopkins, Arizona. The Rapid Scan Platform was tested and improved by the addition of stiffening plates which eliminated a very small but noticeable bending of the metal platform at the micro-meter level. 2. Star tracking Bregman and Wittebom conducted a study of the IOTA CCD-based star tracker system, by constructing a device to simulate star motion having a specified frequency and amplitude of motion, and by examining the response of the tracker to this simulated star input. 3. Fringe tracking. ARC, and in particular Dr. Robert Mah, developed a fringe-packet tracking algorithm, based on data that Bregman and Witteborn obtained on IOTA. The algorithm was tested in the laboratory at ARC, and found to work well for both strong and weak fringes.
DiFeliceantonio, Alexandra G.; Berridge, Kent C.
2012-01-01
Pavlovian cues that have been paired with reward can gain incentive salience. Drug addicts find drug cues motivationally attractive and binge eaters are attracted by food cues. But the level of incentive salience elicited by a cue re-encounter still varies across time and brain states. In an animal model, cues become attractive and ‘wanted’ in an ‘autoshaping’ paradigm, where different targets of incentive salience emerge for different individuals. Some individuals (sign-trackers) find a predictive discrete cue attractive while others find a reward contiguous and goal cue more attractive (location where reward arrives: goal-trackers). Here we assessed whether central amygdala mu opioid receptor stimulation enhances the phasic incentive salience of the goal-cue for goal-trackers during moments of predictive cue presence (expressed in both approach and consummatory behaviors to goal cue), just as it enhances the attractiveness of the predictive cue target for sign-trackers. Using detailed video analysis we measured the approaches, nibbles, sniffs, and bites directed at their preferred target for both sign-trackers and goal-trackers. We report that DAMGO microinjections in central amygdala made goal-trackers, like sign-trackers, show phasic increases in appetitive nibbles and sniffs directed at the goal-cue expressed selectively whenever the predictive cue was present. This indicates enhancement of incentive salience attributed by both goal trackers and sign-trackers, but attributed in different directions: each to their own target cue. For both phenotypes, amygdala opioid stimulation makes the individual’s prepotent cue into a stronger motivational magnet at phasic moments triggered by a CS that predicts the reward UCS. PMID:22391118
Autonomous star tracker based on active pixel sensors (APS)
NASA Astrophysics Data System (ADS)
Schmidt, U.
2017-11-01
Star trackers are opto-electronic sensors used onboard of satellites for the autonomous inertial attitude determination. During the last years, star trackers became more and more important in the field of the attitude and orbit control system (AOCS) sensors. High performance star trackers are based up today on charge coupled device (CCD) optical camera heads. The Jena-Optronik GmbH is active in the field of opto-electronic sensors like star trackers since the early 80-ties. Today, with the product family ASTRO5, ASTRO10 and ASTRO15, all marked segments like earth observation, scientific applications and geo-telecom are supplied to European and Overseas customers. A new generation of star trackers can be designed based on the APS detector technical features. The measurement performance of the current CCD based star trackers can be maintained, the star tracker functionality, reliability and robustness can be increased while the unit costs are saved.
Alley, Stephanie; Schoeppe, Stephanie; Guertler, Diana; Jennings, Cally; Vandelanotte, Corneel
2016-01-01
Objectives Pedometers are an effective self-monitoring tool to increase users' physical activity. However, a range of advanced trackers that measure physical activity 24 hours per day have emerged (eg, Fitbit). The current study aims to determine people's current use, interest and preferences for advanced trackers. Design and participants A cross-sectional national telephone survey was conducted in Australia with 1349 respondents. Outcome measures Regression analyses were used to determine whether tracker interest and use, and use of advanced trackers over pedometers is a function of demographics. Preferences for tracker features and reasons for not wanting to wear a tracker are also presented. Results Over one-third of participants (35%) had used a tracker, and 16% are interested in using one. Multinomial regression (n=1257) revealed that the use of trackers was lower in males (OR=0.48, 95% CI 0.36 to 0.65), non-working participants (OR=0.43, 95% CI 0.30 to 0.61), participants with lower education (OR=0.52, 95% CI 0.38 to 0.72) and inactive participants (OR=0.52, 95% CI 0.39 to 0.70). Interest in using a tracker was higher in younger participants (OR=1.73, 95% CI 1.15 to 2.58). The most frequently used tracker was a pedometer (59%). Logistic regression (n=445) revealed that use of advanced trackers compared with pedometers was higher in males (OR=1.67, 95% CI 1.01 to 2.79) and younger participants (OR=2.96, 95% CI 1.71 to 5.13), and lower in inactive participants (OR=0.35, 95% CI 0.19 to 0.63). Over half of current or interested tracker users (53%) prefer to wear it on their wrist, 31% considered counting steps the most important function and 30% regarded accuracy as the most important characteristic. The main reasons for not wanting to use a tracker were, ‘I don't think it would help me’ (39%), and ‘I don't want to increase my activity’ (47%). Conclusions Activity trackers are a promising tool to engage people in self-monitoring a physical activity. Trackers used in physical activity interventions should align with the preferences of target groups, and should be able to be worn on the wrist, measure steps and be accurate. PMID:27388359
Precision Pointing Control System (PPCS) star tracker test
NASA Technical Reports Server (NTRS)
1972-01-01
Tests performed on the TRW precision star tracker are described. The unit tested was a two-axis gimballed star tracker designed to provide star LOS data to an accuracy of 1 to 2 sec. The tracker features a unique bearing system and utilizes thermal and mechanical symmetry techniques to achieve high precision which can be demonstrated in a one g environment. The test program included a laboratory evaluation of tracker functional operation, sensitivity, repeatibility, and thermal stability.
Small star trackers for modern space vehicles
NASA Astrophysics Data System (ADS)
Kouzmin, Vladimir; Jushkov, Vladimir; Zaikin, Vladimir
2017-11-01
Based on experience of many years creation of spacecrafts' star trackers with diversified detectors (from the first star trackers of 60's to tens versions of star trackers in the following years), using technological achievements in the field of optics and electronics the NPP "Geofizika-Cosmos" has provided celestial orientation for all the space vehicles created in Russia and now has developed a series of new star trackers with CCD matrix and special processors, which are able to meet needs in celestial orientation of the modern spacecrafts for the nearest 10-15 years. In the given article the main characteristics and description of some star trackers' versions are presented. The star trackers have various levels of technical characteristics and use both combined (Russian and foreign) procurement parts, and only national (Russian) procurement parts for the main units.
A MAPS Based Micro-Vertex Detector for the STAR Experiment
Schambach, Joachim; Anderssen, Eric; Contin, Giacomo; ...
2015-06-18
For the 2014 heavy ion run of RHIC a new micro-vertex detector called the Heavy Flavor Tracker (HFT) was installed in the STAR experiment. The HFT consists of three detector subsystems with various silicon technologies arranged in 4 approximately concentric cylinders close to the STAR interaction point designed to improve the STAR detector’s vertex resolution and extend its measurement capabilities in the heavy flavor domain. The two innermost HFT layers are placed at radii of 2.8 cm and 8 cm from the beam line. These layers are constructed with 400 high resolution sensors based on CMOS Monolithic Active Pixel Sensormore » (MAPS) technology arranged in 10-sensor ladders mounted on 10 thin carbon fiber sectors to cover a total silicon area of 0.16 m 2. Each sensor of this PiXeL (“PXL”) sub-detector combines a pixel array of 928 rows and 960 columns with a 20.7 μm pixel pitch together with front-end electronics and zero-suppression circuitry in one silicon die providing a sensitive area of ~3.8 cm 2. This sensor architecture features 185.6 μs readout time and 170 mW/cm 2 power dissipation. This low power dissipation allows the PXL detector to be air-cooled, and with the sensors thinned down to 50 μm results in a global material budget of only 0.4% radiation length per layer. A novel mechanical approach to detector insertion allows us to effectively install and integrate the PXL sub-detector within a 12 hour period during an on-going multi-month data taking period. The detector requirements, architecture and design, as well as the performance after installation, are presented in this paper.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schambach, Joachim; Anderssen, Eric; Contin, Giacomo
For the 2014 heavy ion run of RHIC a new micro-vertex detector called the Heavy Flavor Tracker (HFT) was installed in the STAR experiment. The HFT consists of three detector subsystems with various silicon technologies arranged in 4 approximately concentric cylinders close to the STAR interaction point designed to improve the STAR detector’s vertex resolution and extend its measurement capabilities in the heavy flavor domain. The two innermost HFT layers are placed at radii of 2.8 cm and 8 cm from the beam line. These layers are constructed with 400 high resolution sensors based on CMOS Monolithic Active Pixel Sensormore » (MAPS) technology arranged in 10-sensor ladders mounted on 10 thin carbon fiber sectors to cover a total silicon area of 0.16 m 2. Each sensor of this PiXeL (“PXL”) sub-detector combines a pixel array of 928 rows and 960 columns with a 20.7 μm pixel pitch together with front-end electronics and zero-suppression circuitry in one silicon die providing a sensitive area of ~3.8 cm 2. This sensor architecture features 185.6 μs readout time and 170 mW/cm 2 power dissipation. This low power dissipation allows the PXL detector to be air-cooled, and with the sensors thinned down to 50 μm results in a global material budget of only 0.4% radiation length per layer. A novel mechanical approach to detector insertion allows us to effectively install and integrate the PXL sub-detector within a 12 hour period during an on-going multi-month data taking period. The detector requirements, architecture and design, as well as the performance after installation, are presented in this paper.« less
Two year performance of a 10 kW CPV system installed in two areas of Saudi Arabia
NASA Astrophysics Data System (ADS)
Khonkar, Hussam; Alowais, Abdullah; Sheikho, Ayman; Alyahya, Abdulaziz; Alghamdi, Ahmed; Alsaedan, Abdullah; Eugenio, Nunilo N.; Alalweet, Fahad; Halawani, Mohammad; Alsaferan, Abdulrahman
2014-09-01
The three year KACST/IBM collaboration in solar technology research led to the design and development of a 10kW CPV system. The system is comprised of 81 PV modules, inverters and a tracking system and is grid connected. A primary and secondary optics were employed to reach 1600x concentration on multijunction solar cells. Two CPV trackers were installed in the city of Riyadh and one in the eastern coastal city of Al Khafji. These two areas differ in climatic conditions. Riyadh is mostly dry and very often hit by very strong sand storms while Al Khafji is very humid with sand storms. Very fine dusts and dirt carried by the storms hits the surface of the primary optics, Fresnel lens, of the system. In Riyadh, the particles stick to the lenses but accumulation in the surface is not much since it is blown away by wind. However, the humid condition of the coastal areas wets the dusts and makes it sticky, cumulating more dusts and dirt. This paper discusses in details the parts of the 10kW CPV system. It presents a comprehensive analysis of the system's performance since the time they were installed and operated. CPV systems are operated with the least number of personnel and supervision. However, dust and dirt lessens the amount of sunlight passing through the primary optics. It requires periodic cleaning of the Fresnel lens. Different methods of cleaning were tried to identify the efficient way to clean the system that results to a higher power generation. Corrections and modifications of the system to further increase power production are presented.
Two-Photon-Absorption Scheme for Optical Beam Tracking
NASA Technical Reports Server (NTRS)
Ortiz, Gerardo G.; Farr, William H.
2011-01-01
A new optical beam tracking approach for free-space optical communication links using two-photon absorption (TPA) in a high-bandgap detector material was demonstrated. This tracking scheme is part of the canonical architecture described in the preceding article. TPA is used to track a long-wavelength transmit laser while direct absorption on the same sensor simultaneously tracks a shorter-wavelength beacon. The TPA responsivity was measured for silicon using a PIN photodiode at a laser beacon wavelength of 1,550 nm. As expected, the responsivity shows a linear dependence with incident power level. The responsivity slope is 4.5 x 10(exp -7) A/W2. Also, optical beam spots from the 1,550-nm laser beacon were characterized on commercial charge coupled device (CCD) and complementary metal-oxide semiconductor (CMOS) imagers with as little as 13.7 microWatts of optical power (see figure). This new tracker technology offers an innovative solution to reduce system complexity, improve transmit/receive isolation, improve optical efficiency, improve signal-to-noise ratio (SNR), and reduce cost for free-space optical communications transceivers.
Improved charge injection device and a focal plane interface electronics board for stellar tracking
NASA Technical Reports Server (NTRS)
Michon, G. J.; Burke, H. K.
1984-01-01
An improved Charge Injection Device (CID) stellar tracking sensor and an operating sensor in a control/readout electronics board were developed. The sensor consists of a shift register scanned, 256x256 CID array organized for readout of 4x4 subarrays. The 4x4 subarrays can be positioned anywhere within the 256x256 array with a 2 pixel resolution. This allows continuous tracking of a number of stars simultaneously since nine pixels (3x3) centered on any star can always be read out. Organization and operation of this sensor and the improvements in design and semiconductor processing are described. A hermetic package incorporating an internal thermoelectric cooler assembled using low temperature solders was developed. The electronics board, which contains the sensor drivers, amplifiers, sample hold circuits, multiplexer, analog to digital converter, and the sensor temperature control circuits, is also described. Packaged sensors were evaluated for readout efficiency, spectral quantum efficiency, temporal noise, fixed pattern noise, and dark current. Eight sensors along with two tracker electronics boards were completed, evaluated, and delivered.
NASA Astrophysics Data System (ADS)
Mongeon, R. J.
1984-11-01
The beam of a laser radar is moved over the field of view by means of a pair of scanner/trackers arranged in cascade along the laser beam. One of the scanner/trackers operates at high speed, with high resolution and a wide field and is located in the demagnified portion of the laser beam. The two scanner/trackers complement each other to achieve high speed, high resolution scanning as well as tracking of moving targets. A beam steering telescope for an airborne laser radar which incorporates the novel dual mode scanner/tracker is also shown. The other scanner/tracker operates at low speed with low resolution and a wide field and is located in the magnified portion of the laser beam.
A Novel Performance Evaluation Methodology for Single-Target Trackers.
Kristan, Matej; Matas, Jiri; Leonardis, Ales; Vojir, Tomas; Pflugfelder, Roman; Fernandez, Gustavo; Nebehay, Georg; Porikli, Fatih; Cehovin, Luka
2016-11-01
This paper addresses the problem of single-target tracker performance evaluation. We consider the performance measures, the dataset and the evaluation system to be the most important components of tracker evaluation and propose requirements for each of them. The requirements are the basis of a new evaluation methodology that aims at a simple and easily interpretable tracker comparison. The ranking-based methodology addresses tracker equivalence in terms of statistical significance and practical differences. A fully-annotated dataset with per-frame annotations with several visual attributes is introduced. The diversity of its visual properties is maximized in a novel way by clustering a large number of videos according to their visual attributes. This makes it the most sophistically constructed and annotated dataset to date. A multi-platform evaluation system allowing easy integration of third-party trackers is presented as well. The proposed evaluation methodology was tested on the VOT2014 challenge on the new dataset and 38 trackers, making it the largest benchmark to date. Most of the tested trackers are indeed state-of-the-art since they outperform the standard baselines, resulting in a highly-challenging benchmark. An exhaustive analysis of the dataset from the perspective of tracking difficulty is carried out. To facilitate tracker comparison a new performance visualization technique is proposed.
Wellbeing in the Making: Peoples' Experiences with Wearable Activity Trackers.
Karapanos, Evangelos; Gouveia, Rúben; Hassenzahl, Marc; Forlizzi, Jodi
Wearable activity trackers have become a viable business opportunity. Nevertheless, research has raised concerns over their potentially detrimental effects on wellbeing. For example, a recent study found that while counting steps with a pedometer increased steps taken throughout the day, at the same time it decreased the enjoyment people derived from walking. This poses a serious threat to the incorporation of healthy routines into everyday life. Most studies aim at proving the effectiveness of activity trackers. In contrast, a wellbeing-oriented perspective calls for a deeper understanding of how trackers create and mediate meaningful experiences in everyday life. We present a study of real life experiences with three wearable activity trackers: Fitbit , Jawbone Up and Nike + Fuelband . Using need fulfillment as a theoretical lens, we study recent, memorable experiences submitted by 133 users of activity trackers. We reveal a two-dimensional structure of users' experience driven by the needs of physical thriving or relatedness. Our qualitative findings further show a nuanced picture of the adoption of activity trackers and their impact on wellbeing. For instance, while reflection about own exercising practices lost its relevance over time, users continued to wear the tracker to document and collect their runs. More than just supporting behavioral change, we find trackers to provide multiple psychological benefits. For instance, they enhance feelings of autonomy as people gain more control about their exercising regime. Others experience relatedness, when family members purchase a tracker for relatives and join them in their efforts towards a better, healthier self. The study highlights that activity trackers can be more than "tools" to change behavior. Through incorporation in daily life, they offer new social experiences, new ways of boosting our self-esteem and getting closer to our ideal selves.
2017-01-01
Background As commercially available activity trackers are being utilized in clinical trials, the research community remains uncertain about reliability of the trackers, particularly in studies that involve walking aids and low-intensity activities. While these trackers have been tested for reliability during walking and running activities, there has been limited research on validating them during low-intensity activities and walking with assistive tools. Objective The aim of this study was to (1) determine the accuracy of 3 Fitbit devices (ie, Zip, One, and Flex) at different wearing positions (ie, pants pocket, chest, and wrist) during walking at 3 different speeds, 2.5, 5, and 8 km/h, performed by healthy adults on a treadmill; (2) determine the accuracy of the mentioned trackers worn at different sites during activities of daily living; and (3) examine whether intensity of physical activity (PA) impacts the choice of optimal wearing site of the tracker. Methods We recruited 15 healthy young adults to perform 6 PAs while wearing 3 Fitbit devices (ie, Zip, One, and Flex) on their chest, pants pocket, and wrist. The activities include walking at 2.5, 5, and 8 km/h, pushing a shopping cart, walking with aid of a walker, and eating while sitting. We compared the number of steps counted by each tracker with gold standard numbers. We performed multiple statistical analyses to compute descriptive statistics (ie, ANOVA test), intraclass correlation coefficient (ICC), mean absolute error rate, and correlation by comparing the tracker-recorded data with that of the gold standard. Results All the 3 trackers demonstrated good-to-excellent (ICC>0.75) correlation with the gold standard step counts during treadmill experiments. The correlation was poor (ICC<0.60), and the error rate was significantly higher in walker experiment compared to other activities. There was no significant difference between the trackers and the gold standard in the shopping cart experiment. The wrist worn tracker, Flex, counted several steps when eating (P<.01). The chest tracker was identified as the most promising site to capture steps in more intense activities, while the wrist was the optimal wearing site in less intense activities. Conclusions This feasibility study focused on 6 PAs and demonstrated that Fitbit trackers were most accurate when walking on a treadmill and least accurate during walking with a walking aid and for low-intensity activities. This may suggest excluding participants with assistive devices from studies that focus on PA interventions using commercially available trackers. This study also indicates that the wearing site of the tracker is an important factor impacting the accuracy performance. A larger scale study with a more diverse population, various activity tracker vendors, and a larger activity set are warranted to generalize our results. PMID:28801304
Hydraulic laboratory testing of Sontek-IQ Plus
Fulford, Janice M.; Kimball, Scott
2015-11-10
The SonTek-IQ Plus (IQ Plus) is a bottom-mounted Doppler instrument used for the measurement of water depth and velocity. Evaluation testing of the IQ Plus was performed to assess the accuracy of water depth, discharge, and velocity measurements. The IQ Plus met the manufacturer’s specifications and the U.S. Geological Survey (USGS) standard for depth accuracy measurement when the unit was installed, according to the manufacturer’s instructions, at 0 degrees pitch and roll. However, because of the limited depth testing conducted, the depth measurement is not recommended as a primary stage measurement. The IQ Plus was tested in a large indoor tilting flume in a 5-foot (ft) wide, approximately 2.3-ft deep section with mean velocities of 0.5, 1, 2, and 3 ft per second. Four IQ Plus instruments using firmware 1.52 tested for water-discharge accuracy using SonTek’s “theoretical” discharge method had a negative bias of -2.4 to -11.6 percent when compared with discharge measured with a SonTek FlowTracker and the midsection discharge method. The IQ Pluses with firmware 1.52 did not meet the manufacturer’s specification of +/-1 percent for measuring velocity. Three IQ Pluses using firmware 1.60 and SonTek’s “theoretical” method had a difference of -1.6 to -7.9 percent when compared with discharge measured with a SonTek FlowTracker and the midsection method. Mean-velocity measurements with firmware 1.60 met the manufacturer’s specification and Price Type AA meter accuracy requirements when compared with FlowTracker measurements. Because of the instrument’s velocity accuracy, the SonTek-IQ Plus with firmware 1.60 is considered acceptable for use as an index velocity instrument for the USGS. The discharge computed by the SonTek-IQ Plus during the tests had a substantial negative bias and will not be as accurate as a discharge computed with the index velocity method. The USGS does not recommend the use of undocumented computation methods, such as SonTek’s “theoretical” method for computing discharge.
Integration and Testing of the Lunar Reconnaissance Orbiter Attitude Control System
NASA Technical Reports Server (NTRS)
Simpson, Jim; Badgley, Jason; McCaughey, Ken; Brown, Kristen; Calhoun, Philip; Davis, Edward; Garrick, Joseph; Gill, Nathaniel; Hsu, Oscar; Jones, Noble;
2010-01-01
Throughout the Lunar Reconnaissance Orbiter (LRO) Integration and Testing (I&T) phase of the project, the Attitude Control System (ACS) team completed numerous tests on each hardware component in ever more flight like environments. The ACS utilizes a select group of attitude sensors and actuators. This paper chronicles the evolutionary steps taken to verify each component was constantly ready for flight as well as providing invaluable trending experience with the actual hardware. The paper includes a discussion of each ACS hardware component, lessons learned of the various stages of I&T, a discussion of the challenges that are unique to the LRO project, as well as a discussion of work for future missions to consider as part of their I&T plan. LRO ACS sensors were carefully installed, tested, and maintained over the 18 month I&T and prelaunch timeline. Care was taken with the optics of the Adcole Coarse Sun Sensors (CSS) to ensure their critical role in the Safe Hold mode was fulfilled. The use of new CSS stimulators provided the means of testing each CSS sensor independently, in ambient and vacuum conditions as well as over a wide range of thermal temperatures. Extreme bright light sources were also used to test the CSS in ambient conditions. The integration of the two SELEX Galileo Star Trackers was carefully planned and executed. Optical ground support equipment was designed and used often to check the performance of the star trackers throughout I&T in ambient and thermal/vacuum conditions. A late discovery of potential contamination of the star tracker light shades is discussed in this paper. This paper reviews how each time the spacecraft was at a new location and orientation, the Honeywell Miniature Inertial Measurement Unit (MIMU) was checked for data output validity. This gyro compassing test was performed at several key testing points in the timeline as well as several times while LRO was on the launch pad. Sensor alignment tests were completed several times to ensure that hardware remained on a rigid platform.
NASA Technical Reports Server (NTRS)
1974-01-01
The feasibility is evaluated of an evolutionary development for use of a single-axis gimbal star tracker from prior two-axis gimbal star tracker based system applications. Detailed evaluation of the star tracker gimbal encoder is considered. A brief system description is given including the aspects of tracker evolution and encoder evaluation. System analysis includes evaluation of star availability and mounting constraints for the geosynchronous orbit application, and a covariance simulation analysis to evaluate performance potential. Star availability and covariance analysis digital computer programs are included.
Blow molding electric drives of Mechanical Engineering
NASA Astrophysics Data System (ADS)
Bukhanov, S. S.; Ramazanov, M. A.; Tsirkunenko, A. T.
2018-03-01
The article considers the questions about the analysis of new possibilities, which gives the use of adjustable electric drives for blowing mechanisms of plastic production. Thus, the use of new semiconductor converters makes it possible not only to compensate the instability of the supply network by using special dynamic voltage regulators, but to improve (correct) the power factor. The calculation of economic efficiency in controlled electric drives of blowing mechanisms is given. On the basis of statistical analysis, the calculation of the reliability parameters of the regulated electric drives’ elements under consideration is given. It is shown that an increase in the reliability of adjustable electric drives is possible both due to overestimation of the electric drive’s installed power, and in simpler schemes with pulse-vector control.
2009-03-19
CAPE CANAVERAL, Fla. – The Materials Science Research Rack-1, or MSRR-1, arrived at NASA's Kennedy Space Center in Florida for final flight preparations. The size of a large refrigerator, MSRR-1 is 6 feet high, 3.5 feet wide and 40 inches deep and weighs about 1 ton. MSRR-1 is the payload for the STS-128 mission targeted to launch in August. The rack will be installed in the Leonardo Multi-Purpose Logistics Module for transport to the International Space Station . After arriving at the station, the rack will be housed in the U.S. Destiny laboratory. MSRR-1 will allow for study of a variety of materials including metals, ceramics, semiconductor crystals and glasses onboard the orbiting laboratory. Photo credit: NASA/Jim Grossmann
2009-03-19
CAPE CANAVERAL, Fla. – At NASA's Kennedy Space Center in Florida, a technician checks out the Materials Science Research Rack-1, or MSRR-1, which will undergo final flight preparations. The size of a large refrigerator, MSRR-1 is 6 feet high, 3.5 feet wide and 40 inches deep and weighs about 1 ton. MSRR-1 is the payload for the STS-128 mission targeted to launch in August. The rack will be installed in the Leonardo Multi-Purpose Logistics Module for transport to the International Space Station . After arriving at the station, the rack will be housed in the U.S. Destiny laboratory. MSRR-1 will allow for study of a variety of materials including metals, ceramics, semiconductor crystals and glasses onboard the orbiting laboratory. Photo credit: NASA/Jim Grossmann
NASA Astrophysics Data System (ADS)
Zhilenkov, A. A.; Chernyi, S. G.; Nyrkov, A. P.; Sokolov, S. S.
2017-10-01
Nitrides of group III elements are a very suitable basis for deriving light-emitting devices with the radiating modes lengths of 200-600 nm. The use of such semiconductors allows obtaining full-color RGB light sources, increasing record density of a digital data storage device, getting high-capacity and efficient sources of white light. Electronic properties of such semi-conductors allow using them as a basis for high-power and high-frequency transistors and other electronic devices, the specifications of which are competitive with those of SiC-based devices. Only since 2000, the technology of cultivation of crystals III-N of group has come to the level of wide recognition by both abstract science, and the industry that has led to the creation of the multi-billion dollar market. And this is despite a rather low level of development of the production technology of devices on the basis of III-N of materials. The progress that has happened in the last decade requires the solution of the main problem, constraining further development of this technology today - ensuring cultivation of III-N structures of necessary quality. For this purpose, it is necessary to solve problems of the analysis and optimization of processes in installations of epitaxial growth, and, as a result, optimization of its constructions.
NASA Astrophysics Data System (ADS)
Wu, Zhangming; Li, Hao
2017-11-01
This paper proposes a novel adaptive sun tracker which is constructed by hybrid unsymmetric composite laminates. The adaptive sun tracker could be applied on spacecraft solar panels to increase their energy efficiency through decreasing the inclined angle between the sunlight and the solar panel normal. The sun tracker possesses a large rotation freedom and its rotation angle depends on the laminate temperature, which is affected by the light condition in the orbit. Both analytical model and finite element model (FEM) are developed for the sun tracker to predict its rotation angle in different light conditions. In this work, the light condition of the geosynchronous orbit on winter solstice is considered in the numerical prediction of the temperatures of the hybrid laminates. The final inclined angle between the sunlight and the solar panel normal during a solar day is computed using the finite element model. Parametric study of the adaptive sun tracker is conducted to improve its capacity and effectiveness of sun tracking. The improved adaptive sun tracker is lightweight and has a state-of-the-art design. In addition, the adaptive sun tracker does not consume any power of the solar panel, since it has no electrical driving devices. The proposed adaptive sun tracker provides a potential alternative to replace the traditional sophisticated electrical driving mechanisms for spacecraft solar panels.
High speed optical wireless data transmission system for particle sensors in high energy physics
NASA Astrophysics Data System (ADS)
Ali, W.; Corsini, R.; Ciaramella, E.; Dell'Orso, R.; Messineo, A.; Palla, F.
2015-08-01
High speed optical fiber or copper wire communication systems are frequently deployed for readout data links used in particle physics detectors. Future detector upgrades will need more bandwidth for data transfer, but routing requirements for new cables or optical fiber will be challenging due to space limitations. Optical wireless communication (OWC) can provide high bandwidth connectivity with an advantage of reduced material budget and complexity of cable installation and management. In a collaborative effort, Scuola Superiore Sant'Anna and INFN Pisa are pursuing the development of a free-space optical link that could be installed in a future particle physics detector or upgrade. We describe initial studies of an OWC link using the inner tracker of the Compact Muon Solenoid (CMS) detector as a reference architecture. The results of two experiments are described: the first to verify that the laser source transmission wavelength of 1550 nm will not introduce fake signals in silicon strip sensors while the second was to study the source beam diameter and its tolerance to misalignment. For data rates of 2.5 Gb/s and 10 Gb/s over a 10 cm working distance it was observed that a tolerance limit of ±0.25 mm to ±0.8 mm can be obtained for misaligned systems with source beam diameters of 0.38 mm to 3.5 mm, respectively.
Validation of an Electronic System for Recording Medical Student Patient Encounters
Nkoy, Flory L.; Petersen, Sarah; Matheny Antommaria, Armand H.; Maloney, Christopher G.
2008-01-01
The Liaison Committee for Medical Education requires monitoring of the students’ clinical experiences. Student logs, typically used for this purpose, have a number of limitations. We used an electronic system called Patient Tracker to passively generate student encounter data. The data contained in Patient Tracker was compared to the information reported on student logs and data abstracted from the patients’ charts. Patient Tracker identified 30% more encounters than the student logs. Compared to the student logs, Patient Tracker contained a higher average number of diagnoses per encounter (2.28 vs. 1.03, p<0.01). The diagnostic data contained in Patient Tracker was also more accurate under 4 different definitions of accuracy. Only 1.3% (9/677) of diagnoses in Patient Tracker vs. 16.9% (102/601) diagnoses in the logs could not be validated in patients’ charts (p<0.01). Patient Tracker is a more effective and accurate tool for documenting student clinical encounters than the conventional student logs. PMID:18999155
Alinia, Parastoo; Cain, Chris; Fallahzadeh, Ramin; Shahrokni, Armin; Cook, Diane; Ghasemzadeh, Hassan
2017-08-11
As commercially available activity trackers are being utilized in clinical trials, the research community remains uncertain about reliability of the trackers, particularly in studies that involve walking aids and low-intensity activities. While these trackers have been tested for reliability during walking and running activities, there has been limited research on validating them during low-intensity activities and walking with assistive tools. The aim of this study was to (1) determine the accuracy of 3 Fitbit devices (ie, Zip, One, and Flex) at different wearing positions (ie, pants pocket, chest, and wrist) during walking at 3 different speeds, 2.5, 5, and 8 km/h, performed by healthy adults on a treadmill; (2) determine the accuracy of the mentioned trackers worn at different sites during activities of daily living; and (3) examine whether intensity of physical activity (PA) impacts the choice of optimal wearing site of the tracker. We recruited 15 healthy young adults to perform 6 PAs while wearing 3 Fitbit devices (ie, Zip, One, and Flex) on their chest, pants pocket, and wrist. The activities include walking at 2.5, 5, and 8 km/h, pushing a shopping cart, walking with aid of a walker, and eating while sitting. We compared the number of steps counted by each tracker with gold standard numbers. We performed multiple statistical analyses to compute descriptive statistics (ie, ANOVA test), intraclass correlation coefficient (ICC), mean absolute error rate, and correlation by comparing the tracker-recorded data with that of the gold standard. All the 3 trackers demonstrated good-to-excellent (ICC>0.75) correlation with the gold standard step counts during treadmill experiments. The correlation was poor (ICC<0.60), and the error rate was significantly higher in walker experiment compared to other activities. There was no significant difference between the trackers and the gold standard in the shopping cart experiment. The wrist worn tracker, Flex, counted several steps when eating (P<.01). The chest tracker was identified as the most promising site to capture steps in more intense activities, while the wrist was the optimal wearing site in less intense activities. This feasibility study focused on 6 PAs and demonstrated that Fitbit trackers were most accurate when walking on a treadmill and least accurate during walking with a walking aid and for low-intensity activities. This may suggest excluding participants with assistive devices from studies that focus on PA interventions using commercially available trackers. This study also indicates that the wearing site of the tracker is an important factor impacting the accuracy performance. A larger scale study with a more diverse population, various activity tracker vendors, and a larger activity set are warranted to generalize our results. ©Parastoo Alinia, Chris Cain, Ramin Fallahzadeh, Armin Shahrokni, Diane Cook, Hassan Ghasemzadeh. Originally published in JMIR Mhealth and Uhealth (http://mhealth.jmir.org), 11.08.2017.
An analysis of automatic human detection and tracking
NASA Astrophysics Data System (ADS)
Demuth, Philipe R.; Cosmo, Daniel L.; Ciarelli, Patrick M.
2015-12-01
This paper presents an automatic method to detect and follow people on video streams. This method uses two techniques to determine the initial position of the person at the beginning of the video file: one based on optical flow and the other one based on Histogram of Oriented Gradients (HOG). After defining the initial bounding box, tracking is done using four different trackers: Median Flow tracker, TLD tracker, Mean Shift tracker and a modified version of the Mean Shift tracker using HSV color space. The results of the methods presented in this paper are then compared at the end of the paper.
A multi-hypothesis tracker for clicking whales.
Baggenstoss, Paul M
2015-05-01
This paper describes a tracker specially designed to track clicking beaked whales using widely spaced bottom-mounted hydrophones, although it can be adapted to different species and sensors. The input to the tracker is a sequence of static localization solutions obtained using time difference of arrival information at widely spaced hydrophones. To effectively handle input localizations with high ambiguity, the tracker is based on multi-hypothesis tracker concepts, so it considers all potential association hypotheses and keeps a large number of potential tracks in memory. The method is demonstrated on actual data and shown to successfully track multiple beaked whales at depth.
Molina, Wilson R; Pessoa, Rodrigo; Donalisio da Silva, Rodrigo; Kenny, McCabe C; Gustafson, Diedra; Nogueira, Leticia; Leo, Mark E; Yu, Michael K; Kim, Fernando J
2017-01-01
Approximately 12% of all ureteral stents placed are retained or "forgotten." Forgotten stents are associated with significant safety concerns as well as increased costs and legal issues. Retained ureteral stents (RUS) often occur due to lack of clinical follow-up, communication or language barriers, and economic concerns. We describe a multiplatform application that facilitates data collection to prevent RUS. The "Stent Tracker" application can be installed on mobile devices and computers. The encrypted and password-protected information is accessible from any device and provides information about each procedure, stent placement and removal dates, as well as product description. This multicenter retrospective study included 194 patients who underwent stent placement between July and October 2015. Nominal data was tallied and ordinal data was divided into quartiles of 25, 50, and 75%. A total of 194 patients from three institutions underwent ureteral stent placement. Reasons for stent placement include 122 cases post ureteroscopy (63%), 8 cases post percutaneous nephrolithotomy (PCNL) (4%), 14 cases post extracorporeal shock wave lithotripsy (SWL) (7%), 18 cases of cancer-related ureteral obstruction (9%), 21 cases of hydronephrosis (11%), and 11 for other reasons (6%). Of these patients, only one patient was lost to follow-up (0.5%). On average, ureteral stents were removed within 14 days of placement (IQR: 8-26 days). The "Stent Tracker" is a patient safety application that provides a secure and simplified interface, which can significantly reduce the incidence of RUS. Further developments could include automated notifications to patients and staff, color-coding, and integrated information with electronic patient charts.
Correlation tracking study for meter-class solar telescope on space shuttle. [solar granulation
NASA Technical Reports Server (NTRS)
Smithson, R. C.; Tarbell, T. D.
1977-01-01
The theory and expected performance level of correlation trackers used to control the pointing of a solar telescope in space using white light granulation as a target were studied. Three specific trackers were modeled and their performance levels predicted for telescopes of various apertures. The performance of the computer model trackers on computer enhanced granulation photographs was evaluated. Parametric equations for predicting tracker performance are presented.
Low-Frequency Error Extraction and Compensation for Attitude Measurements from STECE Star Tracker.
Lai, Yuwang; Gu, Defeng; Liu, Junhong; Li, Wenping; Yi, Dongyun
2016-10-12
The low frequency errors (LFE) of star trackers are the most penalizing errors for high-accuracy satellite attitude determination. Two test star trackers- have been mounted on the Space Technology Experiment and Climate Exploration (STECE) satellite, a small satellite mission developed by China. To extract and compensate the LFE of the attitude measurements for the two test star trackers, a new approach, called Fourier analysis, combined with the Vondrak filter method (FAVF) is proposed in this paper. Firstly, the LFE of the two test star trackers' attitude measurements are analyzed and extracted by the FAVF method. The remarkable orbital reproducibility features are found in both of the two test star trackers' attitude measurements. Then, by using the reproducibility feature of the LFE, the two star trackers' LFE patterns are estimated effectively. Finally, based on the actual LFE pattern results, this paper presents a new LFE compensation strategy. The validity and effectiveness of the proposed LFE compensation algorithm is demonstrated by the significant improvement in the consistency between the two test star trackers. The root mean square (RMS) of the relative Euler angle residuals are reduced from [27.95'', 25.14'', 82.43''], 3σ to [16.12'', 15.89'', 53.27''], 3σ.
Technology transfer: Imaging tracker to robotic controller
NASA Technical Reports Server (NTRS)
Otaguro, M. S.; Kesler, L. O.; Land, Ken; Erwin, Harry; Rhoades, Don
1988-01-01
The transformation of an imaging tracker to a robotic controller is described. A multimode tracker was developed for fire and forget missile systems. The tracker locks on to target images within an acquisition window using multiple image tracking algorithms to provide guidance commands to missile control systems. This basic tracker technology is used with the addition of a ranging algorithm based on sizing a cooperative target to perform autonomous guidance and control of a platform for an Advanced Development Project on automation and robotics. A ranging tracker is required to provide the positioning necessary for robotic control. A simple functional demonstration of the feasibility of this approach was performed and described. More realistic demonstrations are under way at NASA-JSC. In particular, this modified tracker, or robotic controller, will be used to autonomously guide the Man Maneuvering Unit (MMU) to targets such as disabled astronauts or tools as part of the EVA Retriever efforts. It will also be used to control the orbiter's Remote Manipulator Systems (RMS) in autonomous approach and positioning demonstrations. These efforts will also be discussed.
Software and mathematical support of Kazakhstani star tracker
NASA Astrophysics Data System (ADS)
Akhmedov, D.; Yelubayev, S.; Ten, V.; Bopeyev, T.; Alipbayev, K.; Sukhenko, A.
2016-10-01
Currently the specialists of Kazakhstan have been developing the star tracker that is further planned to use on Kazakhstani satellites of various purposes. At the first stage it has been developed the experimental model of star tracker that has following characteristics: field of view 20°, update frequency 2 Hz, exclusion angle 40°, accuracy of attitude determination of optical axis/around optical axis 15/50 arcsec. Software and mathematical support are the most high technology parts of star tracker. The results of software and mathematical support development of experimental model of Kazakhstani star tracker are represented in this article. In particular, there are described the main mathematical models and algorithms that have been used as a basis for program units of preliminary image processing of starry sky, stars identification and star tracker attitude determination. The results of software and mathematical support testing with the help of program simulation complex using various configurations of defects including image sensor noises, point spread function modeling, optical system distortion up to 2% are presented. Analysis of testing results has shown that accuracy of attitude determination of star tracker is within the permissible range
Breadboard stellar tracker system test report, volume 1
NASA Technical Reports Server (NTRS)
Kollodge, J. C.; Hubbard, M. W.; Jain, S.; Schons, C. A.
1981-01-01
The performance of a star tracker equipped with a focal plane detector was evaluated. The CID board is an array of 256 x 256 pixels which are 20 x 20 micrometers in dimension. The tracker used for test was a breadboard tracker system developed by BASD. Unique acquisition and tracking algorithms are employed to enhance performance. A pattern recognition process is used to test for proper image spread function and to avoid false acquisition on noise. A very linear, high gain, interpixel transfer function is derived for interpolating star position. The lens used in the tracker has an EFL of 100 mm. The tracker has an FOV of 2.93 degrees resulting in a pixel angular subtense of 41.253 arc sec in each axis. The test procedure used for the program presented a star to the tracker in a circular pattern of positions; the pattern was formed by projecting a simulated star through a rotatable deviation wedge. Further tests determined readout noise, Noise Equivalent Displacement during track, and spatial noise during acquisition by taking related data and reducing it.
Optical System Error Analysis and Calibration Method of High-Accuracy Star Trackers
Sun, Ting; Xing, Fei; You, Zheng
2013-01-01
The star tracker is a high-accuracy attitude measurement device widely used in spacecraft. Its performance depends largely on the precision of the optical system parameters. Therefore, the analysis of the optical system parameter errors and a precise calibration model are crucial to the accuracy of the star tracker. Research in this field is relatively lacking a systematic and universal analysis up to now. This paper proposes in detail an approach for the synthetic error analysis of the star tracker, without the complicated theoretical derivation. This approach can determine the error propagation relationship of the star tracker, and can build intuitively and systematically an error model. The analysis results can be used as a foundation and a guide for the optical design, calibration, and compensation of the star tracker. A calibration experiment is designed and conducted. Excellent calibration results are achieved based on the calibration model. To summarize, the error analysis approach and the calibration method are proved to be adequate and precise, and could provide an important guarantee for the design, manufacture, and measurement of high-accuracy star trackers. PMID:23567527
A protocol for evaluating video trackers under real-world conditions.
Nawaz, Tahir; Cavallaro, Andrea
2013-04-01
The absence of a commonly adopted performance evaluation framework is hampering advances in the design of effective video trackers. In this paper, we present a single-score evaluation measure and a protocol to objectively compare trackers. The proposed measure evaluates tracking accuracy and failure, and combines them for both summative and formative performance assessment. The proposed protocol is composed of a set of trials that evaluate the robustness of trackers on a range of test scenarios representing several real-world conditions. The protocol is validated on a set of sequences with a diversity of targets (head, vehicle and person) and challenges (occlusions, background clutter, pose changes and scale changes) using six state-of-the-art trackers, highlighting their strengths and weaknesses on more than 187000 frames. The software implementing the protocol and the evaluation results are made available online and new results can be included, thus facilitating the comparison of trackers.
Determinants for Sustained Use of an Activity Tracker: Observational Study
Moons, Jonas; Kerkhof, Peter; Wiekens, Carina; De Groot, Martijn
2017-01-01
Background A lack of physical activity is considered to cause 6% of deaths globally. Feedback from wearables such as activity trackers has the potential to encourage daily physical activity. To date, little research is available on the natural development of adherence to activity trackers or on potential factors that predict which users manage to keep using their activity tracker during the first year (and thereby increasing the chance of healthy behavior change) and which users discontinue using their trackers after a short time. Objective The aim of this study was to identify the determinants for sustained use in the first year after purchase. Specifically, we look at the relative importance of demographic and socioeconomic, psychological, health-related, goal-related, technological, user experience–related, and social predictors of feedback device use. Furthermore, this study tests the effect of these predictors on physical activity. Methods A total of 711 participants from four urban areas in France received an activity tracker (Fitbit Zip) and gave permission to use their logged data. Participants filled out three Web-based questionnaires: at start, after 98 days, and after 232 days to measure the aforementioned determinants. Furthermore, for each participant, we collected activity data tracked by their Fitbit tracker for 320 days. We determined the relative importance of all included predictors by using Random Forest, a machine learning analysis technique. Results The data showed a slow exponential decay in Fitbit use, with 73.9% (526/711) of participants still tracking after 100 days and 16.0% (114/711) of participants tracking after 320 days. On average, participants used the tracker for 129 days. Most important reasons to quit tracking were technical issues such as empty batteries and broken trackers or lost trackers (21.5% of all Q3 respondents, 130/601). Random Forest analysis of predictors revealed that the most influential determinants were age, user experience–related factors, mobile phone type, household type, perceived effect of the Fitbit tracker, and goal-related factors. We explore the role of those predictors that show meaningful differences in the number of days the tracker was worn. Conclusions This study offers an overview of the natural development of the use of an activity tracker, as well as the relative importance of a range of determinants from literature. Decay is exponential but slower than may be expected from existing literature. Many factors have a small contribution to sustained use. The most important determinants are technical condition, age, user experience, and goal-related factors. This finding suggests that activity tracking is potentially beneficial for a broad range of target groups, but more attention should be paid to technical and user experience–related aspects of activity trackers. PMID:29084709
Fontana, Jacopo M; Yin, Huijuan; Chen, Yun; Florez, Ricardo; Brismar, Hjalmar; Fu, Ying
2017-01-01
Colloidal semiconductor quantum dots (QDs) have been extensively researched and developed for biomedical applications, including drug delivery and biosensing assays. Hence, it is pivotal to understand their behavior in terms of intracellular transport and toxicological effects. In this study, we focused on 3-mercaptopropionic acid-coated CdSe-CdS/ZnS core-multishell quantum dots (3MPA-QDs) converted from the as-grown octadecylamine-coated quantum dots (ODA-QDs) and their direct and dynamic interactions with human umbilical vein endothelial cells (HUVECs). Live cell imaging using confocal fluorescence microscopy showed that 3MPA-QDs first attached to and subsequently aggregated on HUVEC plasma membrane ~25 min after QD deposition. The aggregated QDs started being internalized at ~2 h and reached their highest internalization degree at ~24 h. They were released from HUVECs after ~48 h. During the 48 h period, the HUVECs responded normally to external stimulations, grew, proliferated and wound healed without any perceptible apoptosis. Furthermore, 1) 3MPA-QDs were internalized in newly formed LysoTracker-stained early endosomes; 2) adenosine 5′-triphosphate-induced [Ca2+]i modulation caused a transient decrease in the fluorescence of 3MPA-QDs that were attached to the plasma membrane but a transient increase in the internalized 3MPA-QDs; and 3) fluorescence signal modulations of co-stained LysoTracker and QDs induced by the lysosomotropic agent Gly-Phe-β-naphthylamide were spatially co-localized and temporally synchronized. Our findings suggest that 3MPA-QDs converted from ODA-QDs are a potential nontoxic fluorescent probe for future use in clinical applications. Moreover, the photophysical strategy and techniques reported in this work are easily applicable to study of direct interactions between other nanoparticles and live cells; contributing to awareness and implementation of the safe applications of nanoparticles. PMID:29270011
Fontana, Jacopo M; Yin, Huijuan; Chen, Yun; Florez, Ricardo; Brismar, Hjalmar; Fu, Ying
2017-01-01
Colloidal semiconductor quantum dots (QDs) have been extensively researched and developed for biomedical applications, including drug delivery and biosensing assays. Hence, it is pivotal to understand their behavior in terms of intracellular transport and toxicological effects. In this study, we focused on 3-mercaptopropionic acid-coated CdSe-CdS/ZnS core-multishell quantum dots (3MPA-QDs) converted from the as-grown octadecylamine-coated quantum dots (ODA-QDs) and their direct and dynamic interactions with human umbilical vein endothelial cells (HUVECs). Live cell imaging using confocal fluorescence microscopy showed that 3MPA-QDs first attached to and subsequently aggregated on HUVEC plasma membrane ~25 min after QD deposition. The aggregated QDs started being internalized at ~2 h and reached their highest internalization degree at ~24 h. They were released from HUVECs after ~48 h. During the 48 h period, the HUVECs responded normally to external stimulations, grew, proliferated and wound healed without any perceptible apoptosis. Furthermore, 1) 3MPA-QDs were internalized in newly formed LysoTracker-stained early endosomes; 2) adenosine 5'-triphosphate-induced [Ca 2+ ] i modulation caused a transient decrease in the fluorescence of 3MPA-QDs that were attached to the plasma membrane but a transient increase in the internalized 3MPA-QDs; and 3) fluorescence signal modulations of co-stained LysoTracker and QDs induced by the lysosomotropic agent Gly-Phe-β-naphthylamide were spatially co-localized and temporally synchronized. Our findings suggest that 3MPA-QDs converted from ODA-QDs are a potential nontoxic fluorescent probe for future use in clinical applications. Moreover, the photophysical strategy and techniques reported in this work are easily applicable to study of direct interactions between other nanoparticles and live cells; contributing to awareness and implementation of the safe applications of nanoparticles.
Elliptically framed tip-tilt mirror optimized for stellar tracking
NASA Astrophysics Data System (ADS)
Clark, James H.; Penado, F. E.; Petak, Jeremy
2015-09-01
We compare a design innovation of an elliptically framed tip-tilt optical tracker with an existing circularly framed tracker for the Navy Precision Optical Interferometer. The tracker stabilizes a 12.5 cm stellar beam on a target hundreds of meters away and requires an increase in operational frequency. We reduced mass and size by integrating an elliptical mirror as one of the rotating components, which eliminated a rotating frame. We used the same materials as the existing tracker; however, light-weighted both the aluminum frame and Zerodur® mirror. We generated a computer-aided design model, converted it into a finite element model and performed modal analysis on two load cases. In load case 1, we tied down three points on the bottom surface of the tracker corresponding to the tie-down points of the comparison tracker. This reveals a first mode (lowest) frequency of 140 Hz, a factor of two over the baseline tracker's first mode frequency of 67 Hz. In load case 2, we constrained four additional points inboard of the corners of the tracker base, for a total of seven tie-downs, simulating a firmly bolted and secured mount. The first mode of vibration for this case is 211 Hz, an increase over load case 1 by a factor of 1.5 and more than three times the fundamental frequency of the existing tracker. We conclude that these geometrical changes with the additional tie-down bolts are a viable solution path forward to improve steering speed and recommend a continuation with this effort.
Diode and method of making the same
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dickerson, Jeramy Ray; Wierer, Jr., Jonathan; Kaplar, Robert
2018-03-13
A diode includes a second semiconductor layer over a first semiconductor layer. The diode further includes a third semiconductor layer over the second semiconductor layer, where the third semiconductor layer includes a first semiconductor element over the second semiconductor layer. The third semiconductor layer additionally includes a second semiconductor element over the second semiconductor layer, wherein the second semiconductor element surrounds the first semiconductor element. Further, the third semiconductor layer includes a third semiconductor element over the second semiconductor element. Furthermore, a hole concentration of the second semiconductor element is less than a hole concentration of the first semiconductor element.
Beekman, Emmylou; Braun, Susy M; Ummels, Darcy; van Vijven, Kim; Moser, Albine; Beurskens, Anna J
2017-01-01
For older people and people with a chronic disease, physical activity provides health benefits. Patients and healthcare professionals can use commercially available activity trackers to objectively monitor (alterations in) activity levels and patterns and to support physical activity. However, insight in the validity, reliability, and feasibility of these trackers in people with a chronic disease is needed. In this article, a study protocol is described in which the validity, reliability (part A), and feasibility from a patient and therapist's point of view (part B) of commercially available activity trackers in daily life and health care is investigated. In part A, a quantitative cross-sectional study, an activity protocol that simulates everyday life activities will be used to determine the validity and reliability of nine commercially available activity trackers. Video recordings will act as the gold standard. In part B, a qualitative participatory action research study will be performed to gain insight in the use of activity trackers in peoples' daily life and therapy settings. Objective feasibility of the activity trackers will be measured with questionnaires, and subjective feasibility (experiences) will be explored in a community of practice. Physical therapists ( n = 8) will regularly meet during 6 months to learn from each other regarding the actual use of activity trackers in therapy. Therapists and patients ( n = 48) will decide together which tracker will be used in therapy and for which purpose (e.g., monitoring, goal setting). Data from the therapist' and patients' experiences will be collected by interviews (individual and focus groups) and analyzed by a directed content analysis. At the time of submission, selection of activity trackers, development of the activity protocol, and the ethical approval process are finished. Data collection and data processing are ongoing. The relevance of the study as well as the advantages and disadvantages of several aspects of the chosen design are discussed. The results acquired from both study parts can be used to create decision aids that may assist therapists and people with a chronic disease in choosing a suitable activity tracker, and to facilitate use of these activity trackers in health care settings. Ethical approval has been obtained from two medical-ethical committees (nr. 15-N-109, 15-N-48 and MEC-15-07).
Grumman S2F-1 Tracker at NACA Lewis
1956-08-21
The NACA’s Lewis Flight Propulsion Laboratory acquired the Grumman S2F-1 Tracker from the Navy in 1955 to study icing instrumentation. Lewis’s icing research program was winding down at the time. The use of jet engines was increasing thus reducing the threat of ice accumulation. Nonetheless Lewis continued research on the instrumentation used to detect icing conditions. The S2F-1 Tracker was a carrier-based submarine hunter for the Navy. Grumman developed the Tracker as a successor to its Korean War-era Guardian patrol aircraft. Prototypes first flew in late 1952 and battle-ready versions entered Naval service in early 1954. The Navy utilized the Trackers to protect fleets from attack.
Geometric Model for Tracker-Target Look Angles and Line of Slight Distance
2015-10-20
412TW-PA-15239 Geometric Model for Tracker -Target Look Angles and Line of Slight Distance DANIEL T. LAIRD AIR FORCE TEST CENTER EDWARDS...15 – 23 OCT 15 4. TITLE AND SUBTITLE Geometric Model for Tracker -Target Look Angles and Line of Slight Distance 5a. CONTRACT...include area code) 661-277-8615 Standard Form 298 (Rev. 8-98) Prescribed by ANSI Std. Z39.18 GEOMETRIC MODEL FOR TRACKER -TARGET LOOK ANGLES
Integration of an Apple II Plus Computer into an Existing Dual Axis Sun Tracker System.
1984-06-01
Identify by block number) S, tpec l Sun Tracker System Solar Energy Apple II Plus Computer 20. ABSTRACT (’ ntlnue on reveree ide If neceesery end...14 4. Dual Axis Sun Tracker (Side View) ----------------- 15 5. Solar Tracker System Block Diagram ---------------- 17 6. Plug Wiring Diagram for Top...sources will be competitive. Already many homes have solar collectors and other devices designed to decrease the consumption of gas, oil, and
NASA Astrophysics Data System (ADS)
Shibata, Hiromi; Kobayashi, Koichi; Iwai, Takeo; Hamabe, Yoshimi; Sasaki, Sho; Hasegawa, Sunao; Yano, Hajime; Fujiwara, Akira; Ohashi, Hideo; Kawamura, Toru; Nogami, Ken-ichi
2001-01-01
A microparticle (dust) ion source has been installed in the 3.75 MV Van de Graaff electrostatic accelerator and a new beam line for microparticle experiments has been built at the HIT facility of Research Center for Nuclear Science and Technology, the University of Tokyo. Microparticle acceleration has been successful in obtaining expected velocities of 1-20 km/s or more for micron- or submicron-sized particles. Development of in situ dust detectors on board satellites and spacecraft in the expected mass and velocity range of micrometeoroids and investigation of hypervelocity impact phenomena by using time-of-flight mass spectrometry, impact flash measurement and scanning electron microscope observation for metals, polymers and semiconductors bombarded by micron-sized particles have been started.
2009-03-19
CAPE CANAVERAL, Fla. – This close-up shows some of the components of the Materials Science Research Rack-1, or MSRR-1, which arrived at NASA's Kennedy Space Center in Florida for final flight preparations. The size of a large refrigerator, MSRR-1 is 6 feet high, 3.5 feet wide and 40 inches deep and weighs about 1 ton. MSRR-1 is the payload for the STS-128 mission targeted to launch in August. The rack will be installed in the Leonardo Multi-Purpose Logistics Module for transport to the International Space Station . After arriving at the station, the rack will be housed in the U.S. Destiny laboratory. MSRR-1 will allow for study of a variety of materials including metals, ceramics, semiconductor crystals and glasses onboard the orbiting laboratory. Photo credit: NASA/Jim Grossmann
Ummels, Darcy; Beekman, Emmylou; Theunissen, Kyra; Braun, Susy; Beurskens, Anna J
2018-04-02
Measuring physical activity with commercially available activity trackers is gaining popularity. People with a chronic disease can especially benefit from knowledge about their physical activity pattern in everyday life since sufficient physical activity can contribute to wellbeing and quality of life. However, no validity data are available for this population during activities of daily living. The aim of this study was to investigate the validity of 9 commercially available activity trackers for measuring step count during activities of daily living in people with a chronic disease receiving physiotherapy. The selected activity trackers were Accupedo (Corusen LLC), Activ8 (Remedy Distribution Ltd), Digi-Walker CW-700 (Yamax), Fitbit Flex (Fitbit inc), Lumoback (Lumo Bodytech), Moves (ProtoGeo Oy), Fitbit One (Fitbit inc), UP24 (Jawbone), and Walking Style X (Omron Healthcare Europe BV). In total, 130 persons with chronic diseases performed standardized activity protocols based on activities of daily living that were recorded on video camera and analyzed for step count (gold standard). The validity of the trackers' step count was assessed by correlation coefficients, t tests, scatterplots, and Bland-Altman plots. The correlations between the number of steps counted by the activity trackers and the gold standard were low (range: -.02 to .33). For all activity trackers except for Fitbit One, a significant systematic difference with the gold standard was found for step count. Plots showed a wide range in scores for all activity trackers; Activ8 showed an average overestimation and the other 8 trackers showed underestimations. This study showed that the validity of 9 commercially available activity trackers is low measuring steps while individuals with chronic diseases receiving physiotherapy engage in activities of daily living. ©Darcy Ummels, Emmylou Beekman, Kyra Theunissen, Susy Braun, Anna J Beurskens. Originally published in JMIR Mhealth and Uhealth (http://mhealth.jmir.org), 02.04.2018.
Co-training Framework of Generative and Disciminative Trackers with Partial Occlusion Handling
2011-01-01
ARO W911NF-06-1-0094. The first author was also supported by the Vietnam Education Foundation. We thank Zdenek Kalal for his help with the P-N Tracker...handling challenging situations with cluttered background. Recently, Kalal et al. [11] proposed the P-N Tracker us- ing positive and negative constraints to...Vietnam Education Foundation. We thank Zdenek Kalal for his help with the P-N Tracker [11]. References [1] A. Adam, E. Rivlin, and I. Shimshoni. Robust
Muralikrishnan, B.; Blackburn, C.; Sawyer, D.; Phillips, S.; Bridges, R.
2010-01-01
We describe a method to estimate the scale errors in the horizontal angle encoder of a laser tracker in this paper. The method does not require expensive instrumentation such as a rotary stage or even a calibrated artifact. An uncalibrated but stable length is realized between two targets mounted on stands that are at tracker height. The tracker measures the distance between these two targets from different azimuthal positions (say, in intervals of 20° over 360°). Each target is measured in both front face and back face. Low order harmonic scale errors can be estimated from this data and may then be used to correct the encoder’s error map to improve the tracker’s angle measurement accuracy. We have demonstrated this for the second order harmonic in this paper. It is important to compensate for even order harmonics as their influence cannot be removed by averaging front face and back face measurements whereas odd orders can be removed by averaging. We tested six trackers from three different manufacturers. Two of those trackers are newer models introduced at the time of writing of this paper. For older trackers from two manufacturers, the length errors in a 7.75 m horizontal length placed 7 m away from a tracker were of the order of ± 65 μm before correcting the error map. They reduced to less than ± 25 μm after correcting the error map for second order scale errors. Newer trackers from the same manufacturers did not show this error. An older tracker from a third manufacturer also did not show this error. PMID:27134789
Beekman, Emmylou; Theunissen, Kyra; Braun, Susy; Beurskens, Anna J
2018-01-01
Background Measuring physical activity with commercially available activity trackers is gaining popularity. People with a chronic disease can especially benefit from knowledge about their physical activity pattern in everyday life since sufficient physical activity can contribute to wellbeing and quality of life. However, no validity data are available for this population during activities of daily living. Objective The aim of this study was to investigate the validity of 9 commercially available activity trackers for measuring step count during activities of daily living in people with a chronic disease receiving physiotherapy. Methods The selected activity trackers were Accupedo (Corusen LLC), Activ8 (Remedy Distribution Ltd), Digi-Walker CW-700 (Yamax), Fitbit Flex (Fitbit inc), Lumoback (Lumo Bodytech), Moves (ProtoGeo Oy), Fitbit One (Fitbit inc), UP24 (Jawbone), and Walking Style X (Omron Healthcare Europe BV). In total, 130 persons with chronic diseases performed standardized activity protocols based on activities of daily living that were recorded on video camera and analyzed for step count (gold standard). The validity of the trackers’ step count was assessed by correlation coefficients, t tests, scatterplots, and Bland-Altman plots. Results The correlations between the number of steps counted by the activity trackers and the gold standard were low (range: –.02 to .33). For all activity trackers except for Fitbit One, a significant systematic difference with the gold standard was found for step count. Plots showed a wide range in scores for all activity trackers; Activ8 showed an average overestimation and the other 8 trackers showed underestimations. Conclusions This study showed that the validity of 9 commercially available activity trackers is low measuring steps while individuals with chronic diseases receiving physiotherapy engage in activities of daily living. PMID:29610110
Reliability and Validity of Ten Consumer Activity Trackers Depend on Walking Speed.
Fokkema, Tryntsje; Kooiman, Thea J M; Krijnen, Wim P; VAN DER Schans, Cees P; DE Groot, Martijn
2017-04-01
To examine the test-retest reliability and validity of ten activity trackers for step counting at three different walking speeds. Thirty-one healthy participants walked twice on a treadmill for 30 min while wearing 10 activity trackers (Polar Loop, Garmin Vivosmart, Fitbit Charge HR, Apple Watch Sport, Pebble Smartwatch, Samsung Gear S, Misfit Flash, Jawbone Up Move, Flyfit, and Moves). Participants walked three walking speeds for 10 min each; slow (3.2 km·h), average (4.8 km·h), and vigorous (6.4 km·h). To measure test-retest reliability, intraclass correlations (ICC) were determined between the first and second treadmill test. Validity was determined by comparing the trackers with the gold standard (hand counting), using mean differences, mean absolute percentage errors, and ICC. Statistical differences were calculated by paired-sample t tests, Wilcoxon signed-rank tests, and by constructing Bland-Altman plots. Test-retest reliability varied with ICC ranging from -0.02 to 0.97. Validity varied between trackers and different walking speeds with mean differences between the gold standard and activity trackers ranging from 0.0 to 26.4%. Most trackers showed relatively low ICC and broad limits of agreement of the Bland-Altman plots at the different speeds. For the slow walking speed, the Garmin Vivosmart and Fitbit Charge HR showed the most accurate results. The Garmin Vivosmart and Apple Watch Sport demonstrated the best accuracy at an average walking speed. For vigorous walking, the Apple Watch Sport, Pebble Smartwatch, and Samsung Gear S exhibited the most accurate results. Test-retest reliability and validity of activity trackers depends on walking speed. In general, consumer activity trackers perform better at an average and vigorous walking speed than at a slower walking speed.
Individual Differences in the Attribution of Incentive Salience to a Pavlovian Alcohol Cue.
Villaruel, Franz R; Chaudhri, Nadia
2016-01-01
Individual differences exist in the attribution of incentive salience to conditioned stimuli associated with food. Here, we investigated whether individual differences also manifested with a Pavlovian alcohol conditioned stimulus (CS). We compiled data from five experiments that used a Pavlovian autoshaping paradigm and tests of conditioned reinforcement. In all experiments, male, Long-Evans rats with unrestricted access to food and water were acclimated to 15% ethanol. Next, rats received Pavlovian autoshaping training, in which a 10 s presentation of a retractable lever served as the CS and 0.2 mL of 15% ethanol served as the unconditioned stimulus (US). Finally, rats underwent conditioned reinforcement tests in which nose-pokes to an active aperture led to brief presentations of the lever-CS, but nose-pokes to an inactive aperture had no consequence. Rats were categorized as sign-trackers, goal-trackers and intermediates based on a response bias score that reflected their tendencies to sign-track or goal-track at different times during training. We found that distinct groups of rats either consistently interacted with the lever-CS ("sign-trackers") or routinely approached the port during the lever-CS ("goal-trackers") across a majority of the training sessions. However, some individuals ("shifted sign-trackers") with an early tendency to goal-track later shifted to comparable asymptotic levels of sign-tracking as the group identified as sign-trackers. The lever-CS functioned as a conditioned reinforcer for sign-trackers and shifted sign-trackers, but not for goal-trackers. These results provide evidence of robust individual differences in the extent to which a Pavlovian alcohol cue gains incentive salience and functions as a conditioned reinforcer.
Precision Attitude Determination System (PADS) design and analysis. Two-axis gimbal star tracker
NASA Technical Reports Server (NTRS)
1973-01-01
Development of the Precision Attitude Determination System (PADS) focused chiefly on the two-axis gimballed star tracker and electronics design improved from that of Precision Pointing Control System (PPCS), and application of the improved tracker for PADS at geosynchronous altitude. System design, system analysis, software design, and hardware design activities are reported. The system design encompasses the PADS configuration, system performance characteristics, component design summaries, and interface considerations. The PADS design and performance analysis includes error analysis, performance analysis via attitude determination simulation, and star tracker servo design analysis. The design of the star tracker and electronics are discussed. Sensor electronics schematics are included. A detailed characterization of the application software algorithms and computer requirements is provided.
Sun tracker for clear or cloudy weather
NASA Technical Reports Server (NTRS)
Scott, D. R.; White, P. R.
1979-01-01
Sun tracker orients solar collector so that they absorb maximum possible sunlight without being fooled by bright clouds, holes in cloud cover, or other atmospheric conditions. Tracker follows sun within 0.25 deg arc and is accurate within + or - 5 deg when sun is hidden.
Walker, Rachel K; Hickey, Amanda M; Freedson, Patty S
2016-12-01
Exercise, light physical activity, and decreased sedentary time all have been associated with health benefits following cancer diagnoses. Commercially available wearable activity trackers may help patients monitor and self-manage their behaviors to achieve these benefits. This article highlights some advantages and limitations clinicians should be aware of when discussing the use of activity trackers with cancer survivors. Limited research has assessed the accuracy of commercially available activity trackers compared to research-grade devices. Because most devices use confidential, proprietary algorithms to convert accelerometry data to meaningful output like total steps, assessing whether these algorithms account for differences in gait abnormalities, functional limitations, and different body morphologies can be difficult. Quantification of sedentary behaviors and light physical activities present additional challenges. The global market for activity trackers is growing, which presents clinicians with a tremendous opportunity to incorporate these devices into clinical practice as tools to promote activity. This article highlights important considerations about tracker accuracy and usage by cancer survivors.
Spacecraft angular velocity estimation algorithm for star tracker based on optical flow techniques
NASA Astrophysics Data System (ADS)
Tang, Yujie; Li, Jian; Wang, Gangyi
2018-02-01
An integrated navigation system often uses the traditional gyro and star tracker for high precision navigation with the shortcomings of large volume, heavy weight and high-cost. With the development of autonomous navigation for deep space and small spacecraft, star tracker has been gradually used for attitude calculation and angular velocity measurement directly. At the same time, with the dynamic imaging requirements of remote sensing satellites and other imaging satellites, how to measure the angular velocity in the dynamic situation to improve the accuracy of the star tracker is the hotspot of future research. We propose the approach to measure angular rate with a nongyro and improve the dynamic performance of the star tracker. First, the star extraction algorithm based on morphology is used to extract the star region, and the stars in the two images are matched according to the method of angular distance voting. The calculation of the displacement of the star image is measured by the improved optical flow method. Finally, the triaxial angular velocity of the star tracker is calculated by the star vector using the least squares method. The method has the advantages of fast matching speed, strong antinoise ability, and good dynamic performance. The triaxial angular velocity of star tracker can be obtained accurately with these methods. So, the star tracker can achieve better tracking performance and dynamic attitude positioning accuracy to lay a good foundation for the wide application of various satellites and complex space missions.
Experimental predictions drawn from a computational model of sign-trackers and goal-trackers.
Lesaint, Florian; Sigaud, Olivier; Clark, Jeremy J; Flagel, Shelly B; Khamassi, Mehdi
2015-01-01
Gaining a better understanding of the biological mechanisms underlying the individual variation observed in response to rewards and reward cues could help to identify and treat individuals more prone to disorders of impulsive control, such as addiction. Variation in response to reward cues is captured in rats undergoing autoshaping experiments where the appearance of a lever precedes food delivery. Although no response is required for food to be delivered, some rats (goal-trackers) learn to approach and avidly engage the magazine until food delivery, whereas other rats (sign-trackers) come to approach and engage avidly the lever. The impulsive and often maladaptive characteristics of the latter response are reminiscent of addictive behaviour in humans. In a previous article, we developed a computational model accounting for a set of experimental data regarding sign-trackers and goal-trackers. Here we show new simulations of the model to draw experimental predictions that could help further validate or refute the model. In particular, we apply the model to new experimental protocols such as injecting flupentixol locally into the core of the nucleus accumbens rather than systemically, and lesioning of the core of the nucleus accumbens before or after conditioning. In addition, we discuss the possibility of removing the food magazine during the inter-trial interval. The predictions from this revised model will help us better understand the role of different brain regions in the behaviours expressed by sign-trackers and goal-trackers. Copyright © 2014 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
John, J.; Prajapati, V.; Vermang, B.; Lorenz, A.; Allebe, C.; Rothschild, A.; Tous, L.; Uruena, A.; Baert, K.; Poortmans, J.
2012-08-01
Bulk crystalline Silicon solar cells are covering more than 85% of the world's roof top module installation in 2010. With a growth rate of over 30% in the last 10 years this technology remains the working horse of solar cell industry. The full Aluminum back-side field (Al BSF) technology has been developed in the 90's and provides a production learning curve on module price of constant 20% in average. The main reason for the decrease of module prices with increasing production capacity is due to the effect of up scaling industrial production. For further decreasing of the price per wattpeak silicon consumption has to be reduced and efficiency has to be improved. In this paper we describe a successive efficiency improving process development starting from the existing full Al BSF cell concept. We propose an evolutionary development includes all parts of the solar cell process: optical enhancement (texturing, polishing, anti-reflection coating), junction formation and contacting. Novel processes are benchmarked on industrial like baseline flows using high-efficiency cell concepts like i-PERC (Passivated Emitter and Rear Cell). While the full Al BSF crystalline silicon solar cell technology provides efficiencies of up to 18% (on cz-Si) in production, we are achieving up to 19.4% conversion efficiency for industrial fabricated, large area solar cells with copper based front side metallization and local Al BSF applying the semiconductor toolbox.
Structural Fluctuations and Thermophysical Properties of Molten II-VI Compounds
NASA Technical Reports Server (NTRS)
Su, Ching-Hua; Zhu, Shen; Li, Chao; Scripa, R.; Lehoczky, Sandra L.; Kim, Y. W.; Baird, J. K.; Lin, B.; Ban, Heng; Benmore, Chris
2003-01-01
The objectives of the project are to conduct ground-based experimental and theoretical research on the structural fluctuations and thermophysical properties of molten II-VI compounds to enhance the basic understanding of the existing flight experiments in microgravity materials science programs as well as to study the fundamental heterophase fluctuation phenomena in these melts by: 1) conducting neutron scattering analysis and measuring quantitatively the relevant thermophysical properties of the II-VI melts (such as viscosity, electrical conductivity, thermal diffusivity and density) as well as the relaxation characteristics of these properties to advance the understanding of the structural properties and the relaxation phenomena in these melts and 2) performing theoretical analyses on the melt systems to interpret the experimental results. All the facilities required for the experimental measurements have been procured, installed and tested. It has long been recognized that liquid Te presents a unique case having properties between those of metals and semiconductors. The electrical conductivity for Te melt increases rapidly at melting point, indicating a semiconductor-metal transition. Te melts comprise two features, which are usually considered to be incompatible with each other: covalently bound atoms and metallic-like behavior. Why do Te liquids show metallic behavior? is one of the long-standing issues in liquid metal physics. Since thermophysical properties are very sensitive to the structural variations of a melt, we have conducted extensive thermophysical measurements on Te melt.
NASA Astrophysics Data System (ADS)
Tan, Samantha H.; Chen, Ning; Liu, Shi; Wang, Kefei
2003-09-01
As part of the semiconductor industry "contamination-free manufacturing" effort, significant emphasis has been placed on reducing potential sources of contamination from process equipment and process equipment components. Process tools contain process chambers and components that are exposed to the process environment or process chemistry and in some cases are in direct contact with production wafers. Any contamination from these sources must be controlled or eliminated in order to maintain high process yields, device performance, and device reliability. This paper discusses new nondestructive analytical methods for quantitative measurement of the cleanliness of metal, quartz, polysilicon and ceramic components that are used in process equipment tools. The goal of these new procedures is to measure the effectiveness of cleaning procedures and to verify whether a tool component part is sufficiently clean for installation and subsequent routine use in the manufacturing line. These procedures provide a reliable "qualification method" for tool component certification and also provide a routine quality control method for reliable operation of cleaning facilities. Cost advantages to wafer manufacturing include higher yields due to improved process cleanliness and elimination of yield loss and downtime resulting from the installation of "bad" components in process tools. We also discuss a representative example of wafer contamination having been linked to a specific process tool component.
Post flight analysis of NASA standard star trackers recovered from the solar maximum mission
NASA Technical Reports Server (NTRS)
Newman, P.
1985-01-01
The flight hardware returned after the Solar Maximum Mission Repair Mission was analyzed to determine the effects of 4 years in space. The NASA Standard Star Tracker would be a good candidate for such analysis because it is moderately complex and had a very elaborate calibration during the acceptance procedure. However, the recovery process extensively damaged the cathode of the image dissector detector making proper operation of the tracker and a comparison with preflight characteristics impossible. Otherwise, the tracker functioned nominally during testing.
Personal Activity Trackers and the Quantified Self.
Hoy, Matthew B
2016-01-01
Personal activity trackers are an inexpensive and easy way for people to record their physical activity and simple biometric data. As these devices have increased in availability and sophistication, their use in daily life and in medicine has grown. This column will briefly explore what these devices are, what types of data they can track, and how that data can be used. It will also discuss potential problems with trackers and how librarians can help patients and physicians manage and protect activity data. A brief list of currently available activity trackers is also included.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chung, Donald; Davidson, Carolyn; Fu, Ran
The price of photovoltaic (PV) systems in the United States (i.e., the cost to the system owner) has continued to decline across all major market sectors. This report provides a Q1 2015 update regarding the prices of residential, commercial, and utility scale PV systems, based on an objective methodology that closely approximates the book value of a PV system. Several cases are benchmarked to represent common variations in business models, labor rates, and system architecture choice. We estimate a weighted-average cash purchase price of $3.09/W for residential scale rooftop systems, $2.15/W for commercial scale rooftop systems, $1.77/W for utility scalemore » systems with fixed mounting structures, and $1.91/W for utility scale systems using single-axis trackers. All systems are modeled assuming standard-efficiency, polycrystalline-silicon PV modules, and further assume installation within the United States.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gjersdal, H.; /Oslo U.; Bolle, E.
2012-05-07
A 3D silicon sensor fabricated at Stanford with electrodes penetrating throughout the entire silicon wafer and with active edges was tested in a 1.4 T magnetic field with a 180 GeV/c pion beam at the CERN SPS in May 2009. The device under test was bump-bonded to the ATLAS pixel FE-I3 readout electronics chip. Three readout electrodes were used to cover the 400 {micro}m long pixel side, this resulting in a p-n inter-electrode distance of {approx} 71 {micro}m. Its behavior was confronted with a planar sensor of the type presently installed in the ATLAS inner tracker. Time over threshold, chargemore » sharing and tracking efficiency data were collected at zero and 15{sup o} angles with and without magnetic field. The latest is the angular configuration expected for the modules of the Insertable B-Layer (IBL) currently under study for the LHC phase 1 upgrade expected in 2014.« less
Radar sensors for intersection collision avoidance
NASA Astrophysics Data System (ADS)
Jocoy, Edward H.; Phoel, Wayne G.
1997-02-01
On-vehicle sensors for collision avoidance and intelligent cruise control are receiving considerably attention as part of Intelligent Transportation Systems. Most of these sensors are radars and `look' in the direction of the vehicle's headway, that is, in the direction ahead of the vehicle. Calspan SRL Corporation is investigating the use of on- vehicle radar for Intersection Collision Avoidance (ICA). Four crash scenarios are considered and the goal is to design, develop and install a collision warning system in a test vehicle, and conduct both test track and in-traffic experiments. Current efforts include simulations to examine ICA geometry-dependent design parameters and the design of an on-vehicle radar and tracker for threat detection. This paper discusses some of the simulation and radar design efforts. In addition, an available headway radar was modified to scan the wide angles (+/- 90 degree(s)) associated with ICA scenarios. Preliminary proof-of-principal tests are underway as a risk reduction effort. Some initial target detection results are presented.
Helicopter Approach Capability Using the Differential Global Positioning System
NASA Technical Reports Server (NTRS)
Kaufmann, David N.
1994-01-01
The results of flight tests to determine the feasibility of using the Global Positioning System (GPS) in the Differential mode (DGPS) to provide high accuracy, precision navigation and guidance for helicopter approaches to landing are presented. The airborne DGPS receiver and associated equipment is installed in a NASA UH-60 Black Hawk helicopter. The ground-based DGPS reference receiver is located at a surveyed test site and is equipped with a real-time VHF data link to transmit correction information to the airborne DGPS receiver. The corrected airborne DGPS information, together with the preset approach geometry, is used to calculate guidance commands which are sent to the aircraft's approach guidance instruments. The use of DGPS derived guidance for helicopter approaches to landing is evaluated by comparing the DGPS data with the laser tracker truth data. The errors indicate that the helicopter position based on DGPS guidance satisfies the International Civil Aviation Organization (ICAO) Category 1 (CAT 1) lateral and vertical navigational accuracy requirements.
2013-03-05
CAPE CANAVERAL, Fla. – A telemetry antenna and tracker camera is attached to the roof of the Launch Control Center, or LCC, in Launch Complex 39 at NASA's Kennedy Space Center in Florida. This antenna and camera system is the first of three to be installed on the LCC roof for the Radio Frequency and Telemetry Station RFTS, which will be used to monitor radio frequency communications from a launch vehicle at Launch Pad 39A or B as well as provide radio frequency relay for a launch vehicle in the Vehicle Assembly Building. The RFTS replaces the shuttle-era communications and tracking labs at Kennedy. The modern RFTS checkout station is designed to primarily support NASA's Space Launch System, or SLS, and Orion spacecraft, but can support multi-user radio frequency tests as the space center transitions to support a variety of rockets and spacecraft. For more information on the modernization efforts at Kennedy, visit the Ground Systems Development and Operations, or GSDO, website at http://go.nasa.gov/groundsystems. Photo credit: NASA/Jim Grossmann
Progress in manufacturing the first 8.4 m off-axis segment for the Giant Magellan Telescope
NASA Astrophysics Data System (ADS)
Martin, H. M.; Burge, J. H.; Cuerden, B.; Davison, W. B.; Kingsley, J. S.; Kittrell, W. C.; Lutz, R. D.; Miller, S. M.; Zhao, C.; Zobrist, T.
2008-07-01
The first of the 8.4 m off-axis segments for the primary mirror of the Giant Magellan Telescope is being manufactured at the Steward Observatory Mirror Lab. In addition to the manufacture of the segment, this project includes the development of a complete facility to make and measure all seven segments. We have installed a new 28 m test tower and designed a set of measurements to guide the fabrication and qualify the finished segments. The first test, a laser-tracker measurement of the ground surface, is operational. The principal optical test is a full-aperture interferometric test with a null corrector that includes a 3.75 m spherical mirror, a smaller sphere, and a computer-generated hologram. We have also designed a scanning pentaprism test to validate the measurement of low-order aberrations. The first segment has been cast and generated, and is in the process of loose-abrasive grinding.
Waring, George O
2009-10-01
To describe recent technological additions to the NIDEK CXIII and Quest excimer lasers. A summary article with data from previous published studies outlining the benefits of newer technology. The addition of a 1-kHz infrared eye tracker decreased the spread of laser spot placement from a mean of 228.79 microm without a tracker to 38.47 microm with the eye tracker. The addition of real-time torsion error correction produced a statistically significantly lower cylinder dispersion, mean manifest refractive cylinder, and error of angle postoperatively in eyes that underwent LASIK. The incorporation of an ultrahigh speed eye tracker and active cyclotorsion correction surpasses the minimal technology criteria required for accurate wavefront-based ablations. Copyright 2009, SLACK Incorporated.
Log-polar mapping-based scale space tracking with adaptive target response
NASA Astrophysics Data System (ADS)
Li, Dongdong; Wen, Gongjian; Kuai, Yangliu; Zhang, Ximing
2017-05-01
Correlation filter-based tracking has exhibited impressive robustness and accuracy in recent years. Standard correlation filter-based trackers are restricted to translation estimation and equipped with fixed target response. These trackers produce an inferior performance when encountered with a significant scale variation or appearance change. We propose a log-polar mapping-based scale space tracker with an adaptive target response. This tracker transforms the scale variation of the target in the Cartesian space into a shift along the logarithmic axis in the log-polar space. A one-dimensional scale correlation filter is learned online to estimate the shift along the logarithmic axis. With the log-polar representation, scale estimation is achieved accurately without a multiresolution pyramid. To achieve an adaptive target response, a variance of the Gaussian function is computed from the response map and updated online with a learning rate parameter. Our log-polar mapping-based scale correlation filter and adaptive target response can be combined with any correlation filter-based trackers. In addition, the scale correlation filter can be extended to a two-dimensional correlation filter to achieve joint estimation of the scale variation and in-plane rotation. Experiments performed on an OTB50 benchmark demonstrate that our tracker achieves superior performance against state-of-the-art trackers.
Real-Time Visualization of Spacecraft Telemetry for the GLAST and LRO Missions
NASA Technical Reports Server (NTRS)
Stoneking, Eric T.; Shah, Neerav; Chai, Dean J.
2010-01-01
GlastCam and LROCam are closely-related tools developed at NASA Goddard Space Flight Center for real-time visualization of spacecraft telemetry, developed for the Gamma-Ray Large Area Space Telescope (GLAST) and Lunar Reconnaissance Orbiter (LRO) missions, respectively. Derived from a common simulation tool, they use related but different architectures to ingest real-time spacecraft telemetry and ground predicted ephemerides, and to compute and display features of special interest to each mission in its operational environment. We describe the architectures of GlastCam and LROCam, the customizations required to fit into the mission operations environment, and the features that were found to be especially useful in early operations for their respective missions. Both tools have a primary window depicting a three-dimensional Cam view of the spacecraft that may be freely manipulated by the user. The scene is augmented with fields of view, pointing constraints, and other features which enhance situational awareness. Each tool also has another "Map" window showing the spacecraft's groundtrack projected onto a map of the Earth or Moon, along with useful features such as the Sun, eclipse regions, and TDRS satellite locations. Additional windows support specialized checkout tasks. One such window shows the star tracker fields of view, with tracking window locations and the mission star catalog. This view was instrumental for GLAST in quickly resolving a star tracker mounting polarity issue; visualization made the 180-deg mismatch immediately obvious. Full access to GlastCam's source code also made possible a rapid coarse star tracker mounting calibration with some on the fly code adjustments; adding a fine grid to measure alignment offsets, and introducing a calibration quaternion which could be adjusted within GlastCam without perturbing the flight parameters. This calibration, from concept to completion, took less than half an hour. Both GlastCam and LROCam were developed in the C language, with non-proprietary support libraries, for ease of customization and portability. This no-blackboxes aspect enables engineers to adapt quickly to unforeseen circumstances in the intense operations environment. GlastCam and LROCam were installed on multiple workstations in the operations support rooms, allowing independent use by multiple subsystems, systems engineers and managers, with negligible draw on telemetry system resources.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sfyrla, Anna
2008-03-10
In the first part of this work, we present a search for WW and WZ production in charged lepton, neutrino plus jets final states produced in pmore » $$\\bar{p}$$ collisions with √s = 1.96 TeV at the Fermilab Tevatron, using 1.2 fb -1 of data accumulated with the CDF II detector. This channel is yet to be observed in hadron colliders due to the large singleWplus jets background. However, this decay mode has a much larger branching fraction than the cleaner fully leptonic mode making it more sensitive to anomalous triple gauge couplings that manifest themselves at higher transverse W momentum. Because the final state is topologically similar to associated production of a Higgs boson with a W, the techniques developed in this analysis are also applicable in that search. An Artificial Neural Network has been used for the event selection optimization. The theoretical prediction for the cross section is σ WW/WZ theory x Br(W → ℓv; W/Z → jj) = 2.09 ± 0.14 pb. They measured N Signal = 410 ± 212(stat) ± 102(sys) signal events that correspond to a cross section σ WW/WZ x Br(W → ℓv; W/Z → jj) = 1.47 ± 0.77(stat) ± 0.38(sys) pb. The 95% CL upper limit to the cross section is estimated to be σ x Br(W → ℓv; W/Z → jj) < 2.88 pb. The second part of the present work is technical and concerns the ATLAS SemiConductor Tracker (SCT) assembly phase. Although technical, the work in the SCT assembly phase is of prime importance for the good performance of the detector during data taking. The production at the University of Geneva of approximately one third of the silicon microstrip end-cap modules is presented. This collaborative effort of the university of Geneva group that lasted two years, resulted in 655 produced modules, 97% of which were good modules, constructed within the mechanical and electrical specifications and delivered in the SCT collaboration for assembly on the end-cap disks. The SCT end-caps and barrels consist of 4088 silicon modules, with a total of 6.3 million readout channels. The coherent and safe operation of the SCT during commissioning and subsequent operation is the essential task of the Detector Control System (DCS). The main building blocks of the DCS are the cooling system, the power supplies and the environmental system. The DCS has been initially developed for the SCT assembly phase and this system is described in the present work. Particular emphasis is given in the environmental hardware and software components, that were my major contributions. Results from the DCS testing during the assembly phase are also reported.« less
Infant Eyes: A Window on Cognitive Development
ERIC Educational Resources Information Center
Aslin, Richard N.
2012-01-01
Eye-trackers suitable for use with infants are now marketed by several commercial vendors. As eye-trackers become more prevalent in infancy research, there is the potential for users to be unaware of dangers lurking "under the hood" if they assume the eye-tracker introduces no errors in measuring infants' gaze. Moreover, the influx of voluminous…
Analyzing Virtual Physics Simulations with Tracker
ERIC Educational Resources Information Center
Claessens, Tom
2017-01-01
In the physics teaching community, Tracker is well known as a user-friendly open source video analysis software, authored by Douglas Brown. With this tool, the user can trace markers indicated on a video or on stroboscopic photos and perform kinematic analyses. Tracker also includes a data modeling tool that allows one to fit some theoretical…
Space Shuttle Star Tracker Challenges
NASA Technical Reports Server (NTRS)
Herrera, Linda M.
2010-01-01
The space shuttle fleet of avionics was originally designed in the 1970's. Many of the subsystems have been upgraded and replaced, however some original hardware continues to fly. Not only fly, but has proven to be the best design available to perform its designated task. The shuttle star tracker system is currently flying as a mixture of old and new designs, each with a unique purpose to fill for the mission. Orbiter missions have tackled many varied missions in space over the years. As the orbiters began flying to the International Space Station (ISS), new challenges were discovered and overcome as new trusses and modules were added. For the star tracker subsystem, the growing ISS posed an unusual problem, bright light. With two star trackers on board, the 1970's vintage image dissector tube (IDT) star trackers track the ISS, while the new solid state design is used for dim star tracking. This presentation focuses on the challenges and solutions used to ensure star trackers can complete the shuttle missions successfully. Topics include KSC team and industry partner methods used to correct pressurized case failures and track system performance.
A low-cost, CCD solid state star tracker
NASA Technical Reports Server (NTRS)
Chmielowski, M.; Wynne, D.
1992-01-01
Applied Research Corporation (ARC) has developed an engineering model of a multi-star CCD-based tracker for space applications requiring radiation hardness, high reliability and low power consumption. The engineering unit compared favorably in functional performance tests to the standard NASA single-star tracker. Characteristics of the ARC star tracker are: field of view = 10 deg x 7.5 deg, sensitivity range of -1 to +5 star magnitude, NEA = 3 in x 3 in, linearity = 5 in x 5 in, and power consumption of 1-3 W (operating mode dependent). The software is upgradable through a remote link. The hardware-limited acquisition rate is 1-5 Hz for stars of +2 to +5 magnitude and 10-30 Hz for -1 to +2 magnitude stars. Mechanical and electrical interfaces are identical to the standard NASA star tracker.
The Si/CdTe semiconductor camera of the ASTRO-H Hard X-ray Imager (HXI)
NASA Astrophysics Data System (ADS)
Sato, Goro; Hagino, Kouichi; Watanabe, Shin; Genba, Kei; Harayama, Atsushi; Kanematsu, Hironori; Kataoka, Jun; Katsuragawa, Miho; Kawaharada, Madoka; Kobayashi, Shogo; Kokubun, Motohide; Kuroda, Yoshikatsu; Makishima, Kazuo; Masukawa, Kazunori; Mimura, Taketo; Miyake, Katsuma; Murakami, Hiroaki; Nakano, Toshio; Nakazawa, Kazuhiro; Noda, Hirofumi; Odaka, Hirokazu; Onishi, Mitsunobu; Saito, Shinya; Sato, Rie; Sato, Tamotsu; Tajima, Hiroyasu; Takahashi, Hiromitsu; Takahashi, Tadayuki; Takeda, Shin`ichiro; Yuasa, Takayuki
2016-09-01
The Hard X-ray Imager (HXI) is one of the instruments onboard the ASTRO-H mission [1-4] to be launched in early 2016. The HXI is the focal plane detector of the hard X-ray reflecting telescope that covers an energy range from 5 to 80 keV. It will execute observations of astronomical objects with a sensitivity for point sources as faint as 1/100,000 of the Crab nebula at > 10 keV. The HXI camera - the imaging part of the HXI - is realized by a hybrid semiconductor detector system that consists of silicon (Si) and cadmium telluride (CdTe) semiconductor detectors. Here, we present the final design of the HXI camera and report on the development of the flight model. The camera is composed of four layers of Double-sided Silicon Strip Detectors (DSSDs) and one layer of CdTe Double-sided Strip Detector (CdTe-DSD), each with an imaging area of 32 mm×32 mm. The strip pitch of the Si and CdTe sensors is 250 μm, and the signals from all 1280 strips are processed by 40 Application Specified Integrated Circuits (ASICs) developed for the HXI. The five layers of sensors are vertically stacked with a 4 mm spacing to increase the detection efficiency. The thickness of the sensors is 0.5 mm for the Si, and 0.75 mm for the CdTe. In this configuration, soft X-ray photons will be absorbed in the Si part, while hard X-ray photons will go through the Si part and will be detected in the CdTe part. The design of the sensor trays, peripheral circuits, power connections, and readout schemes are also described. The flight models of the HXI camera have been manufactured, tested and installed in the HXI instrument and then on the satellite.
Intelligent error correction method applied on an active pixel sensor based star tracker
NASA Astrophysics Data System (ADS)
Schmidt, Uwe
2005-10-01
Star trackers are opto-electronic sensors used on-board of satellites for the autonomous inertial attitude determination. During the last years star trackers became more and more important in the field of the attitude and orbit control system (AOCS) sensors. High performance star trackers are based up today on charge coupled device (CCD) optical camera heads. The active pixel sensor (APS) technology, introduced in the early 90-ties, allows now the beneficial replacement of CCD detectors by APS detectors with respect to performance, reliability, power, mass and cost. The company's heritage in star tracker design started in the early 80-ties with the launch of the worldwide first fully autonomous star tracker system ASTRO1 to the Russian MIR space station. Jena-Optronik recently developed an active pixel sensor based autonomous star tracker "ASTRO APS" as successor of the CCD based star tracker product series ASTRO1, ASTRO5, ASTRO10 and ASTRO15. Key features of the APS detector technology are, a true xy-address random access, the multiple windowing read out and the on-chip signal processing including the analogue to digital conversion. These features can be used for robust star tracking at high slew rates and under worse conditions like stray light and solar flare induced single event upsets. A special algorithm have been developed to manage the typical APS detector error contributors like fixed pattern noise (FPN), dark signal non-uniformity (DSNU) and white spots. The algorithm works fully autonomous and adapts to e.g. increasing DSNU and up-coming white spots automatically without ground maintenance or re-calibration. In contrast to conventional correction methods the described algorithm does not need calibration data memory like full image sized calibration data sets. The application of the presented algorithm managing the typical APS detector error contributors is a key element for the design of star trackers for long term satellite applications like geostationary telecom platforms.
Reliability and validity of ten consumer activity trackers.
Kooiman, Thea J M; Dontje, Manon L; Sprenger, Siska R; Krijnen, Wim P; van der Schans, Cees P; de Groot, Martijn
2015-01-01
Activity trackers can potentially stimulate users to increase their physical activity behavior. The aim of this study was to examine the reliability and validity of ten consumer activity trackers for measuring step count in both laboratory and free-living conditions. Healthy adult volunteers (n = 33) walked twice on a treadmill (4.8 km/h) for 30 min while wearing ten different activity trackers (i.e. Lumoback, Fitbit Flex, Jawbone Up, Nike+ Fuelband SE, Misfit Shine, Withings Pulse, Fitbit Zip, Omron HJ-203, Yamax Digiwalker SW-200 and Moves mobile application). In free-living conditions, 56 volunteers wore the same activity trackers for one working day. Test-retest reliability was analyzed with the Intraclass Correlation Coefficient (ICC). Validity was evaluated by comparing each tracker with the gold standard (Optogait system for laboratory and ActivPAL for free-living conditions), using paired samples t-tests, mean absolute percentage errors, correlations and Bland-Altman plots. Test-retest analysis revealed high reliability for most trackers except for the Omron (ICC .14), Moves app (ICC .37) and Nike+ Fuelband (ICC .53). The mean absolute percentage errors of the trackers in laboratory and free-living conditions respectively, were: Lumoback (-0.2, -0.4), Fibit Flex (-5.7, 3.7), Jawbone Up (-1.0, 1.4), Nike+ Fuelband (-18, -24), Misfit Shine (0.2, 1.1), Withings Pulse (-0.5, -7.9), Fitbit Zip (-0.3, 1.2), Omron (2.5, -0.4), Digiwalker (-1.2, -5.9), and Moves app (9.6, -37.6). Bland-Altman plots demonstrated that the limits of agreement varied from 46 steps (Fitbit Zip) to 2422 steps (Nike+ Fuelband) in the laboratory condition, and 866 steps (Fitbit Zip) to 5150 steps (Moves app) in the free-living condition. The reliability and validity of most trackers for measuring step count is good. The Fitbit Zip is the most valid whereas the reliability and validity of the Nike+ Fuelband is low.
Development of the FitSight Fitness Tracker to Increase Time Outdoors to Prevent Myopia.
Verkicharla, Pavan K; Ramamurthy, Dharani; Nguyen, Quang Duc; Zhang, Xinquan; Pu, Suan-Hui; Malhotra, Rahul; Ostbye, Truls; Lamoureux, Ecosse L; Saw, Seang-Mei
2017-06-01
To develop a fitness tracker (FitSight) to encourage children to increase time spent outdoors. To evaluate the wear pattern for this tracker and outdoor time pattern by estimating light illumination levels among children. The development of the FitSight fitness tracker involved the designing of two components: (1) the smartwatch with custom-made FitSight watch application (app) to log the instant light illuminance levels the wearer is exposed to, and (2) a companion smartphone app that synchronizes the time outdoors recorded by the smartwatch to smartphone via Bluetooth communication. Smartwatch wear patterns and tracker-recorded daily light illuminance levels data were gathered over 7 days from 23 Singapore children (mean ± standard deviation age: 9.2 ± 1.4 years). Feedback about the tracker was obtained from 14 parents using a three-level rating scale: very poor/poor/good. Of the 14 parents, 93% rated the complete "FitSight fitness tracker" as good and 64% rated its wearability as good. While 61% of 23 children wore the watch on all study days (i.e., 0 nonwear days), 26% had 1 nonwear day, and 4.5% children each had 3, 4, and 5 nonwear days, respectively. On average, children spent approximately 1 hour in light levels greater than 1000 lux on weekdays and 1.3 hours on weekends (60 ± 46 vs. 79 ± 53 minutes, P = 0.19). Mean number of outdoor "spurts" (light illuminance levels >1000 lux) per day was 8 ± 3 spurts with spurt duration of 34 ± 32 minutes. The FitSight tracker with its novel features may motivate children to increase time outdoors and play an important role in supplementing community outdoor programs to prevent myopia. If the developed noninvasive, wearable, smartwatch-based fitness tracker, FitSight, promotes daytime outdoor activity among children, it will be beneficial in addressing the epidemic of myopia.
Manufacturability improvements in EUV resist processing toward NXE:3300 processing
NASA Astrophysics Data System (ADS)
Kuwahara, Yuhei; Matsunaga, Koichi; Shimoaoki, Takeshi; Kawakami, Shinichiro; Nafus, Kathleen; Foubert, Philippe; Goethals, Anne-Marie; Shimura, Satoru
2014-03-01
As the design rule of semiconductor process gets finer, extreme ultraviolet lithography (EUVL) technology is aggressively studied as a process for 22nm half pitch and beyond. At present, the studies for EUV focus on manufacturability. It requires fine resolution, uniform, smooth patterns and low defectivity, not only after lithography but also after the etch process. In the first half of 2013, a CLEAN TRACKTM LITHIUS ProTMZ-EUV was installed at imec for POR development in preparation of the ASML NXE:3300. This next generation coating/developing system is equipped with state of the art defect reduction technology. This tool with advanced functions can achieve low defect levels. This paper reports on the progress towards manufacturing defectivity levels and latest optimizations towards the NXE:3300 POR for both lines/spaces and contact holes at imec.
Compensation for Time-Dependent Star Tracker Thermal Deformation on the Aqua Spacecraft
NASA Technical Reports Server (NTRS)
Hashmall, Joseph A.; Natanson, Gregory; Glickman, Jonathan; Sedlak, Joseph
2004-01-01
Analysis of attitude sensor data from the Aqua mission showed small but systematic differences between batch least-squares and extended Kalman filter attitudes. These differences were also found to be correlated with star tracker residuals, gyro bias estimates, and star tracker baseplate temperatures. This paper describes the analysis that shows that these correlations are all consistent with a single cause: time-dependent thermal deformation of star tracker alignments. These varying alignments can be separated into relative and common components. The relative misalignments can be determined and compensated for. The common misalignments can only be determined in special cases.
Users' experiences of wearable activity trackers: a cross-sectional study.
Maher, Carol; Ryan, Jillian; Ambrosi, Christina; Edney, Sarah
2017-11-15
Wearable activity trackers offer considerable promise for helping users to adopt healthier lifestyles. This study aimed to explore users' experience of activity trackers, including usage patterns, sharing of data to social media, perceived behaviour change (physical activity, diet and sleep), and technical issues/barriers to use. A cross-sectional online survey was developed and administered to Australian adults who were current or former activity tracker users. Results were analysed descriptively, with differences between current and former users and wearable brands explored using independent samples t-tests, Mann-Whitney, and chi square tests. Participants included 200 current and 37 former activity tracker users (total N = 237) with a mean age of 33.1 years (SD 12.4, range 18-74 years). Fitbit (67.5%) and Garmin devices (16.5%) were most commonly reported. Participants typically used their trackers for sustained periods (5-7 months) and most intended to continue usage. Participants reported they had improved their physical activity (51-81%) more commonly than they had their diet (14-40%) or sleep (11-24%), and slightly more participants reported to value the real time feedback (89%) compared to the long-term monitoring (78%). Most users (70%) reported they had experienced functionality issues with their devices, most commonly related to battery life and technical difficulties. Results suggest users find activity trackers appealing and useful tools for increasing perceived physical activity levels over a sustained period.
Arba-Mosquera, Samuel; Aslanides, Ioannis M.
2012-01-01
Purpose To analyze the effects of Eye-Tracker performance on the pulse positioning errors during refractive surgery. Methods A comprehensive model, which directly considers eye movements, including saccades, vestibular, optokinetic, vergence, and miniature, as well as, eye-tracker acquisition rate, eye-tracker latency time, scanner positioning time, laser firing rate, and laser trigger delay have been developed. Results Eye-tracker acquisition rates below 100 Hz correspond to pulse positioning errors above 1.5 mm. Eye-tracker latency times to about 15 ms correspond to pulse positioning errors of up to 3.5 mm. Scanner positioning times to about 9 ms correspond to pulse positioning errors of up to 2 mm. Laser firing rates faster than eye-tracker acquisition rates basically duplicate pulse-positioning errors. Laser trigger delays to about 300 μs have minor to no impact on pulse-positioning errors. Conclusions The proposed model can be used for comparison of laser systems used for ablation processes. Due to the pseudo-random nature of eye movements, positioning errors of single pulses are much larger than observed decentrations in the clinical settings. There is no single parameter that ‘alone’ minimizes the positioning error. It is the optimal combination of the several parameters that minimizes the error. The results of this analysis are important to understand the limitations of correcting very irregular ablation patterns.
Collaborative engineering and design management for the Hobby-Eberly Telescope tracker upgrade
NASA Astrophysics Data System (ADS)
Mollison, Nicholas T.; Hayes, Richard J.; Good, John M.; Booth, John A.; Savage, Richard D.; Jackson, John R.; Rafal, Marc D.; Beno, Joseph H.
2010-07-01
The engineering and design of systems as complex as the Hobby-Eberly Telescope's* new tracker require that multiple tasks be executed in parallel and overlapping efforts. When the design of individual subsystems is distributed among multiple organizations, teams, and individuals, challenges can arise with respect to managing design productivity and coordinating successful collaborative exchanges. This paper focuses on design management issues and current practices for the tracker design portion of the Hobby-Eberly Telescope Wide Field Upgrade project. The scope of the tracker upgrade requires engineering contributions and input from numerous fields including optics, instrumentation, electromechanics, software controls engineering, and site-operations. Successful system-level integration of tracker subsystems and interfaces is critical to the telescope's ultimate performance in astronomical observation. Software and process controls for design information and workflow management have been implemented to assist the collaborative transfer of tracker design data. The tracker system architecture and selection of subsystem interfaces has also proven to be a determining factor in design task formulation and team communication needs. Interface controls and requirements change controls will be discussed, and critical team interactions are recounted (a group-participation Failure Modes and Effects Analysis [FMEA] is one of special interest). This paper will be of interest to engineers, designers, and managers engaging in multi-disciplinary and parallel engineering projects that require coordination among multiple individuals, teams, and organizations.
Puri, Arjun; Kim, Ben; Nguyen, Olivier; Stolee, Paul; Tung, James
2017-01-01
Background Wearable activity trackers are newly emerging technologies with the anticipation for successfully supporting aging-in-place. Consumer-grade wearable activity trackers are increasingly ubiquitous in the market, but the attitudes toward, as well as acceptance and voluntary use of, these trackers in older population are poorly understood. Objective The aim of this study was to assess acceptance and usage of wearable activity trackers in Canadian community-dwelling older adults, using the potentially influential factors as identified in literature and technology acceptance model. Methods A mixed methods design was used. A total of 20 older adults aged 55 years and older were recruited from Southwestern Ontario. Participants used 2 different wearable activity trackers (Xiaomi Mi Band and Microsoft Band) separately for each segment in the crossover design study for 21 days (ie, 42 days total). A questionnaire was developed to capture acceptance and experience at the end of each segment, representing 2 different devices. Semistructured interviews were conducted with 4 participants, and a content analysis was performed. Results Participants ranged in age from 55 years to 84 years (mean age: 64 years). The Mi Band gained higher levels of acceptance (16/20, 80%) compared with the Microsoft Band (10/20, 50%). The equipment characteristics dimension scored significantly higher for the Mi Band (P<.05). The amount a participant was willing to pay for the device was highly associated with technology acceptance (P<.05). Multivariate logistic regression with 3 covariates resulted in an area under the curve of 0.79. Content analysis resulted in the formation of the following main themes: (1) smartphones as facilitators of wearable activity trackers; (2) privacy is less of a concern for wearable activity trackers, (3) value proposition: self-awareness and motivation; (4) subjective norm, social support, and sense of independence; and (5) equipment characteristics matter: display, battery, comfort, and aesthetics. Conclusions Older adults were mostly accepting of wearable activity trackers, and they had a clear understanding of its value for their lives. Wearable activity trackers were uniquely considered more personal than other types of technologies, thereby the equipment characteristics including comfort, aesthetics, and price had a significant impact on the acceptance. Results indicated that privacy was less of concern for older adults, but it may have stemmed from a lack of understanding of the privacy risks and implications. These findings add to emerging research that investigates acceptance and factors that may influence acceptance of wearable activity trackers among older adults. PMID:29141837
NASA Astrophysics Data System (ADS)
Sargent, Dusty; Chen, Chao-I.; Wang, Yuan-Fang
2010-02-01
The paper reports a fully-automated, cross-modality sensor data registration scheme between video and magnetic tracker data. This registration scheme is intended for use in computerized imaging systems to model the appearance, structure, and dimension of human anatomy in three dimensions (3D) from endoscopic videos, particularly colonoscopic videos, for cancer research and clinical practices. The proposed cross-modality calibration procedure operates this way: Before a colonoscopic procedure, the surgeon inserts a magnetic tracker into the working channel of the endoscope or otherwise fixes the tracker's position on the scope. The surgeon then maneuvers the scope-tracker assembly to view a checkerboard calibration pattern from a few different viewpoints for a few seconds. The calibration procedure is then completed, and the relative pose (translation and rotation) between the reference frames of the magnetic tracker and the scope is determined. During the colonoscopic procedure, the readings from the magnetic tracker are used to automatically deduce the pose (both position and orientation) of the scope's reference frame over time, without complicated image analysis. Knowing the scope movement over time then allows us to infer the 3D appearance and structure of the organs and tissues in the scene. While there are other well-established mechanisms for inferring the movement of the camera (scope) from images, they are often sensitive to mistakes in image analysis, error accumulation, and structure deformation. The proposed method using a magnetic tracker to establish the camera motion parameters thus provides a robust and efficient alternative for 3D model construction. Furthermore, the calibration procedure does not require special training nor use expensive calibration equipment (except for a camera calibration pattern-a checkerboard pattern-that can be printed on any laser or inkjet printer).
Czarnuch, Stephen; Mihailidis, Alex
2015-03-27
We present the development and evaluation of a robust hand tracker based on single overhead depth images for use in the COACH, an assistive technology for people with dementia. The new hand tracker was designed to overcome limitations experienced by the COACH in previous clinical trials. We train a random decision forest classifier using ∼5000 manually labeled, unbalanced, training images. Hand positions from the classifier are translated into task actions based on proximity to environmental objects. Tracker performance is evaluated using a large set of ∼24 000 manually labeled images captured from 41 participants in a fully-functional washroom, and compared to the system's previous colour-based hand tracker. Precision and recall were 0.994 and 0.938 for the depth tracker compared to 0.981 and 0.822 for the colour tracker with the current data, and 0.989 and 0.466 in the previous study. The improved tracking performance supports integration of the depth-based tracker into the COACH toward unsupervised, real-world trials. Implications for Rehabilitation The COACH is an intelligent assistive technology that can enable people with cognitive disabilities to stay at home longer, supporting the concept of aging-in-place. Automated prompting systems, a type of intelligent assistive technology, can help to support the independent completion of activities of daily living, increasing the independence of people with cognitive disabilities while reducing the burden of care experienced by caregivers. Robust motion tracking using depth imaging supports the development of intelligent assistive technologies like the COACH. Robust motion tracking also has application to other forms of assistive technologies including gaming, human-computer interaction and automated assessments.
Behavior Change Techniques Present in Wearable Activity Trackers: A Critical Analysis
Mercer, Kathryn; Li, Melissa; Giangregorio, Lora; Burns, Catherine
2016-01-01
Background Wearable activity trackers are promising as interventions that offer guidance and support for increasing physical activity and health-focused tracking. Most adults do not meet their recommended daily activity guidelines, and wearable fitness trackers are increasingly cited as having great potential to improve the physical activity levels of adults. Objective The objective of this study was to use the Coventry, Aberdeen, and London-Refined (CALO-RE) taxonomy to examine if the design of wearable activity trackers incorporates behavior change techniques (BCTs). A secondary objective was to critically analyze whether the BCTs present relate to known drivers of behavior change, such as self-efficacy, with the intention of extending applicability to older adults in addition to the overall population. Methods Wearing each device for a period of 1 week, two independent raters used CALO-RE taxonomy to code the BCTs of the seven wearable activity trackers available in Canada as of March 2014. These included Fitbit Flex, Misfit Shine, Withings Pulse, Jawbone UP24, Spark Activity Tracker by SparkPeople, Nike+ FuelBand SE, and Polar Loop. We calculated interrater reliability using Cohen's kappa. Results The average number of BCTs identified was 16.3/40. Withings Pulse had the highest number of BCTs and Misfit Shine had the lowest. Most techniques centered around self-monitoring and self-regulation, all of which have been associated with improved physical activity in older adults. Techniques related to planning and providing instructions were scarce. Conclusions Overall, wearable activity trackers contain several BCTs that have been shown to increase physical activity in older adults. Although more research and development must be done to fully understand the potential of wearables as health interventions, the current wearable trackers offer significant potential with regard to BCTs relevant to uptake by all populations, including older adults. PMID:27122452
Behavior Change Techniques Present in Wearable Activity Trackers: A Critical Analysis.
Mercer, Kathryn; Li, Melissa; Giangregorio, Lora; Burns, Catherine; Grindrod, Kelly
2016-04-27
Wearable activity trackers are promising as interventions that offer guidance and support for increasing physical activity and health-focused tracking. Most adults do not meet their recommended daily activity guidelines, and wearable fitness trackers are increasingly cited as having great potential to improve the physical activity levels of adults. The objective of this study was to use the Coventry, Aberdeen, and London-Refined (CALO-RE) taxonomy to examine if the design of wearable activity trackers incorporates behavior change techniques (BCTs). A secondary objective was to critically analyze whether the BCTs present relate to known drivers of behavior change, such as self-efficacy, with the intention of extending applicability to older adults in addition to the overall population. Wearing each device for a period of 1 week, two independent raters used CALO-RE taxonomy to code the BCTs of the seven wearable activity trackers available in Canada as of March 2014. These included Fitbit Flex, Misfit Shine, Withings Pulse, Jawbone UP24, Spark Activity Tracker by SparkPeople, Nike+ FuelBand SE, and Polar Loop. We calculated interrater reliability using Cohen's kappa. The average number of BCTs identified was 16.3/40. Withings Pulse had the highest number of BCTs and Misfit Shine had the lowest. Most techniques centered around self-monitoring and self-regulation, all of which have been associated with improved physical activity in older adults. Techniques related to planning and providing instructions were scarce. Overall, wearable activity trackers contain several BCTs that have been shown to increase physical activity in older adults. Although more research and development must be done to fully understand the potential of wearables as health interventions, the current wearable trackers offer significant potential with regard to BCTs relevant to uptake by all populations, including older adults.
IMM tracking of a theater ballistic missile during boost phase
NASA Astrophysics Data System (ADS)
Hutchins, Robert G.; San Jose, Anthony
1998-09-01
Since the SCUD launches in the Gulf War, theater ballistic missile (TBM) systems have become a growing concern for the US military. Detection, tracking and engagement during boost phase or shortly after booster cutoff are goals that grow in importance with the proliferation of weapons of mass destruction. This paper addresses the performance of tracking algorithms for TBMs during boost phase and across the transition to ballistic flight. Three families of tracking algorithms are examined: alpha-beta-gamma trackers, Kalman-based trackers, and the interactive multiple model (IMM) tracker. In addition, a variation on the IMM to include prior knowledge of a booster cutoff parameter is examined. Simulated data is used to compare algorithms. Also, the IMM tracker is run on an actual ballistic missile trajectory. Results indicate that IMM trackers show significant advantage in tracking through the model transition represented by booster cutoff.
Robust object tacking based on self-adaptive search area
NASA Astrophysics Data System (ADS)
Dong, Taihang; Zhong, Sheng
2018-02-01
Discriminative correlation filter (DCF) based trackers have recently achieved excellent performance with great computational efficiency. However, DCF based trackers suffer boundary effects, which result in the unstable performance in challenging situations exhibiting fast motion. In this paper, we propose a novel method to mitigate this side-effect in DCF based trackers. We change the search area according to the prediction of target motion. When the object moves fast, broad search area could alleviate boundary effects and reserve the probability of locating object. When the object moves slowly, narrow search area could prevent effect of useless background information and improve computational efficiency to attain real-time performance. This strategy can impressively soothe boundary effects in situations exhibiting fast motion and motion blur, and it can be used in almost all DCF based trackers. The experiments on OTB benchmark show that the proposed framework improves the performance compared with the baseline trackers.
Sign-tracking predicts increased choice of cocaine over food in rats.
Tunstall, Brendan J; Kearns, David N
2015-03-15
The purpose of this study was to determine whether the tendency to sign-track to a food cue was predictive of rats' choice of cocaine over food. First, rats were trained on a procedure where insertion of a retractable lever was paired with food. A sub-group of rats - sign-trackers - primarily approached and contacted the lever, while another sub-group - goal-trackers - approached the site of food delivery. Rats were then trained on a choice task where they could choose between an infusion of cocaine (1.0 mg/kg) and a food pellet (45 mg). Sign-trackers chose cocaine over food significantly more often than did goal-trackers. These results support the incentive-salience theory of addiction and add to a growing number of studies which suggest that sign-trackers may model an addiction-prone phenotype. Copyright © 2014 Elsevier B.V. All rights reserved.
Mechanical stability of the CMS strip tracker measured with a laser alignment system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sirunyan, A. M.; Tumasyan, A.; Adam, W.
Here, the CMS tracker consists of 206 m 2 of silicon strip sensors assembled on carbon fibre composite structures and is designed for operation in the temperature range from –25 to +25°C. The mechanical stability of tracker components during physics operation was monitored with a few μm resolution using a dedicated laser alignment system as well as particle tracks from cosmic rays and hadron-hadron collisions. During the LHC operational period of 2011–2013 at stable temperatures, the components of the tracker were observed to experience relative movements of less than 30μm. In addition, temperature variations were found to cause displacements ofmore » tracker structures of about 2μm°C, which largely revert to their initial positions when the temperature is restored to its original value.« less
Mechanical stability of the CMS strip tracker measured with a laser alignment system
Sirunyan, A. M.; Tumasyan, A.; Adam, W.; ...
2017-04-21
Here, the CMS tracker consists of 206 m 2 of silicon strip sensors assembled on carbon fibre composite structures and is designed for operation in the temperature range from –25 to +25°C. The mechanical stability of tracker components during physics operation was monitored with a few μm resolution using a dedicated laser alignment system as well as particle tracks from cosmic rays and hadron-hadron collisions. During the LHC operational period of 2011–2013 at stable temperatures, the components of the tracker were observed to experience relative movements of less than 30μm. In addition, temperature variations were found to cause displacements ofmore » tracker structures of about 2μm°C, which largely revert to their initial positions when the temperature is restored to its original value.« less
Adaptive Neural Star Tracker Calibration for Precision Spacecraft Pointing and Tracking
NASA Technical Reports Server (NTRS)
Bayard, David S.
1996-01-01
The Star Tracker is an essential sensor for precision pointing and tracking in most 3-axis stabilized spacecraft. In the interest (of) improving pointing performance by taking advantage of dramatic increases in flight computer power and memory anticipated over the next decade, this paper investigates the use of a neural net for adaptive in-flight calibration of the Star Tracker.
Improvement of Hungarian Joint Terminal Attack Program
2013-06-13
LST Laser Spot Tracker NVG Night Vision Goggle ROMAD Radio Operator Maintainer and Driver ROVER Remotely Operated Video Enhanced Receiver TACP...visual target designation. The other component consists of a laser spot tracker (LST), which identifies targets by tracking laser energy reflecting...capability for every type of night time missions, laser spot tracker for laser spot search missions, remotely operated video enhanced receiver
A survey of current solid state star tracker technology
NASA Astrophysics Data System (ADS)
Armstrong, R. W.; Staley, D. A.
1985-12-01
This paper is a survey of the current state of the art in design of star trackers for spacecraft attitude determination systems. Specific areas discussed are sensor technology, including the current state-of-the-art solid state sensors and techniques of mounting and cooling the sensor, analog image preprocessing electronics performance, and digital processing hardware and software. Three examples of area array solid state star tracker development are presented - ASTROS, developed by the Jet Propulsion Laboratory, the Retroreflector Field Tracker (RFT) by Ball Aerospace, and TRW's MADAN. Finally, a discussion of solid state line arrays explores the possibilities for one-dimensional imagers which offer simplified scan control electronics.
An accuracy measurement method for star trackers based on direct astronomic observation
Sun, Ting; Xing, Fei; Wang, Xiaochu; You, Zheng; Chu, Daping
2016-01-01
Star tracker is one of the most promising optical attitude measurement devices and it is widely used in spacecraft for its high accuracy. However, how to realize and verify such an accuracy remains a crucial but unsolved issue until now. The authenticity of the accuracy measurement method of a star tracker will eventually determine the satellite performance. A new and robust accuracy measurement method for a star tracker based on the direct astronomical observation is proposed here. In comparison with the conventional method with simulated stars, this method utilizes real navigation stars as observation targets which makes the measurement results more authoritative and authentic. Transformations between different coordinate systems are conducted on the account of the precision movements of the Earth, and the error curves of directional vectors are obtained along the three axes. Based on error analysis and accuracy definitions, a three-axis accuracy evaluation criterion has been proposed in this paper, which could determine pointing and rolling accuracy of a star tracker directly. Experimental measurements confirm that this method is effective and convenient to implement. Such a measurement environment is close to the in-orbit conditions and it can satisfy the stringent requirement for high-accuracy star trackers. PMID:26948412
Exposure Time Optimization for Highly Dynamic Star Trackers
Wei, Xinguo; Tan, Wei; Li, Jian; Zhang, Guangjun
2014-01-01
Under highly dynamic conditions, the star-spots on the image sensor of a star tracker move across many pixels during the exposure time, which will reduce star detection sensitivity and increase star location errors. However, this kind of effect can be compensated well by setting an appropriate exposure time. This paper focuses on how exposure time affects the star tracker under highly dynamic conditions and how to determine the most appropriate exposure time for this case. Firstly, the effect of exposure time on star detection sensitivity is analyzed by establishing the dynamic star-spot imaging model. Then the star location error is deduced based on the error analysis of the sub-pixel centroiding algorithm. Combining these analyses, the effect of exposure time on attitude accuracy is finally determined. Some simulations are carried out to validate these effects, and the results show that there are different optimal exposure times for different angular velocities of a star tracker with a given configuration. In addition, the results of night sky experiments using a real star tracker agree with the simulation results. The summarized regularities in this paper should prove helpful in the system design and dynamic performance evaluation of the highly dynamic star trackers. PMID:24618776
An accuracy measurement method for star trackers based on direct astronomic observation.
Sun, Ting; Xing, Fei; Wang, Xiaochu; You, Zheng; Chu, Daping
2016-03-07
Star tracker is one of the most promising optical attitude measurement devices and it is widely used in spacecraft for its high accuracy. However, how to realize and verify such an accuracy remains a crucial but unsolved issue until now. The authenticity of the accuracy measurement method of a star tracker will eventually determine the satellite performance. A new and robust accuracy measurement method for a star tracker based on the direct astronomical observation is proposed here. In comparison with the conventional method with simulated stars, this method utilizes real navigation stars as observation targets which makes the measurement results more authoritative and authentic. Transformations between different coordinate systems are conducted on the account of the precision movements of the Earth, and the error curves of directional vectors are obtained along the three axes. Based on error analysis and accuracy definitions, a three-axis accuracy evaluation criterion has been proposed in this paper, which could determine pointing and rolling accuracy of a star tracker directly. Experimental measurements confirm that this method is effective and convenient to implement. Such a measurement environment is close to the in-orbit conditions and it can satisfy the stringent requirement for high-accuracy star trackers.
Analyzing Virtual Physics Simulations with Tracker
NASA Astrophysics Data System (ADS)
Claessens, Tom
2017-12-01
In the physics teaching community, Tracker is well known as a user-friendly open source video analysis software, authored by Douglas Brown. With this tool, the user can trace markers indicated on a video or on stroboscopic photos and perform kinematic analyses. Tracker also includes a data modeling tool that allows one to fit some theoretical equations of motion onto experimentally obtained data. In the field of particle mechanics, Tracker has been effectively used for learning and teaching about projectile motion, "toss up" and free-fall vertical motion, and to explain the principle of mechanical energy conservation. Also, Tracker has been successfully used in rigid body mechanics to interpret the results of experiments with rolling/slipping cylinders and moving rods. In this work, I propose an original method in which Tracker is used to analyze virtual computer simulations created with a physics-based motion solver, instead of analyzing video recording or stroboscopic photos. This could be an interesting approach to study kinematics and dynamics problems in physics education, in particular when there is no or limited access to physical labs. I demonstrate the working method with a typical (but quite challenging) problem in classical mechanics: a slipping/rolling cylinder on a rough surface.
TE-Tracker: systematic identification of transposition events through whole-genome resequencing.
Gilly, Arthur; Etcheverry, Mathilde; Madoui, Mohammed-Amin; Guy, Julie; Quadrana, Leandro; Alberti, Adriana; Martin, Antoine; Heitkam, Tony; Engelen, Stefan; Labadie, Karine; Le Pen, Jeremie; Wincker, Patrick; Colot, Vincent; Aury, Jean-Marc
2014-11-19
Transposable elements (TEs) are DNA sequences that are able to move from their location in the genome by cutting or copying themselves to another locus. As such, they are increasingly recognized as impacting all aspects of genome function. With the dramatic reduction in cost of DNA sequencing, it is now possible to resequence whole genomes in order to systematically characterize novel TE mobilization in a particular individual. However, this task is made difficult by the inherently repetitive nature of TE sequences, which in some eukaryotes compose over half of the genome sequence. Currently, only a few software tools dedicated to the detection of TE mobilization using next-generation-sequencing are described in the literature. They often target specific TEs for which annotation is available, and are only able to identify families of closely related TEs, rather than individual elements. We present TE-Tracker, a general and accurate computational method for the de-novo detection of germ line TE mobilization from re-sequenced genomes, as well as the identification of both their source and destination sequences. We compare our method with the two classes of existing software: specialized TE-detection tools and generic structural variant (SV) detection tools. We show that TE-Tracker, while working independently of any prior annotation, bridges the gap between these two approaches in terms of detection power. Indeed, its positive predictive value (PPV) is comparable to that of dedicated TE software while its sensitivity is typical of a generic SV detection tool. TE-Tracker demonstrates the benefit of adopting an annotation-independent, de novo approach for the detection of TE mobilization events. We use TE-Tracker to provide a comprehensive view of transposition events induced by loss of DNA methylation in Arabidopsis. TE-Tracker is freely available at http://www.genoscope.cns.fr/TE-Tracker . We show that TE-Tracker accurately detects both the source and destination of novel transposition events in re-sequenced genomes. Moreover, TE-Tracker is able to detect all potential donor sequences for a given insertion, and can identify the correct one among them. Furthermore, TE-Tracker produces significantly fewer false positives than common SV detection programs, thus greatly facilitating the detection and analysis of TE mobilization events.
A star tracker insensitive to stray light generated by radiation sources close to the field of view
NASA Astrophysics Data System (ADS)
Romoli, A.; Gambicorti, L.; Simonetti, F.; Zuccaro Marchi, A.
2017-11-01
Aim of this work is to propose an innovative star tracker, practically insensitive to the radiation coming from the sun or from other strong planetary sources out of (but near) the Field of View. These sources need to be stopped in some way. The classical solution to reject the unwanted radiation is to place a shadow (or baffle) before the star tracker objective. The shadow size depends on the Field of View and on the minimum angle subtended by the source (i.e. the sun) with respect to the optical axis of the star tracker. The lower is this angle the larger is the shadow. Requests for star trackers able to work with the sun as close as possible to the Field of View are increasing, due to the need of maximum mission flexibility. The innovation of this proposed star tracker is conceived by using spatial filtering with a concept complementary to that of coronagraph for sun corona observation, allowing to drastically reduce the size of the shadow. It can also work close to antennas and other part of the platform, which, when illuminated by the sun, become secondary sources capable to blind the star tracker. This kind of accommodation offers three main advantages: no cumbersome shadows (baffle), maximum flexibility in terms of mission profile, less platform location constraints. This new star sensor concept, dated 2007, is now patent pending. Galileo Avionica (now Selex Galileo) is the owner of the patent.
NASA Astrophysics Data System (ADS)
Reaungamornrat, S.; Otake, Y.; Uneri, A.; Schafer, S.; Mirota, D. J.; Nithiananthan, S.; Stayman, J. W.; Khanna, A. J.; Reh, D. D.; Gallia, G. L.; Taylor, R. H.; Siewerdsen, J. H.
2012-02-01
Conventional surgical tracking configurations carry a variety of limitations in line-of-sight, geometric accuracy, and mismatch with the surgeon's perspective (for video augmentation). With increasing utilization of mobile C-arms, particularly those allowing cone-beam CT (CBCT), there is opportunity to better integrate surgical trackers at bedside to address such limitations. This paper describes a tracker configuration in which the tracker is mounted directly on the Carm. To maintain registration within a dynamic coordinate system, a reference marker visible across the full C-arm rotation is implemented, and the "Tracker-on-C" configuration is shown to provide improved target registration error (TRE) over a conventional in-room setup - (0.9+/-0.4) mm vs (1.9+/-0.7) mm, respectively. The system also can generate digitally reconstructed radiographs (DRRs) from the perspective of a tracked tool ("x-ray flashlight"), the tracker, or the C-arm ("virtual fluoroscopy"), with geometric accuracy in virtual fluoroscopy of (0.4+/-0.2) mm. Using a video-based tracker, planning data and DRRs can be superimposed on the video scene from a natural perspective over the surgical field, with geometric accuracy (0.8+/-0.3) pixels for planning data overlay and (0.6+/-0.4) pixels for DRR overlay across all C-arm angles. The field-of-view of fluoroscopy or CBCT can also be overlaid on real-time video ("Virtual Field Light") to assist C-arm positioning. The fixed transformation between the x-ray image and tracker facilitated quick, accurate intraoperative registration. The workflow and precision associated with a variety of realistic surgical tasks were significantly improved using the Tracker-on-C - for example, nearly a factor of 2 reduction in time required for C-arm positioning, reduction or elimination of dose in "hunting" for a specific fluoroscopic view, and confident placement of the x-ray FOV on the surgical target. The proposed configuration streamlines the integration of C-arm CBCT with realtime tracking and demonstrated utility in a spectrum of image-guided interventions (e.g., spine surgery) benefiting from improved accuracy, enhanced visualization, and reduced radiation exposure.
A Bit of Fit: Minimalist Intervention in Adolescents Based on a Physical Activity Tracker
Gaudet, Jeffrey; Gallant, François
2017-01-01
Background Only 5% of Canadian youth meet the recommended 60 minutes of moderate to vigorous physical activity (MVPA) per day, with leisure time being increasingly allocated to technology usage. Direct-to-consumer mHealth devices that promote physical activity, such as wrist-worn physical activity trackers, have features with potential appeal to youth. Objective The primary purpose of this study was to determine whether a minimalist physical activity tracker-based intervention would lead to an increase in physical activity in young adolescents. A secondary aim of this study was to assess change in physical activity across a 7-week intervention, as measured by the tracker. Methods Using a quasi-experimental crossover design, two groups of 23 young adolescents (aged 13-14 years) were randomly assigned to immediate intervention or delayed intervention. The intervention consisted of wearing a Fitbit-Charge-HR physical activity tracker over a 7-week period. Actical accelerometers were used to measure participants’ levels of MVPA before and at the end of intervention periods for each group. Covariates such as age, sex, stage of change for physical activity behavior, and goal commitment were also measured. Results There was an increase in physical activity over the course of the study period, though it was not related to overall physical activity tracker use. An intervention response did, however, occur in a subset of participants. Specifically, exposure to the physical activity tracker was associated with an average daily increase in MVPA by more than 15 minutes (P=.01) among participants who reported being in the action and maintenance stages of behavior change in relation to participation in physical activity. Participants in the precontemplation, contemplation, and preparation stages of behavior change had no change in their level of MVPA (P=.81). Conclusions These results suggest that physical activity trackers may elicit improved physical activity related behavior in young adolescents demonstrating a readiness to be active. Future studies should seek to investigate if integrating physical activity trackers as part of more intensive interventions leads to greater increases in physical activity across different levels of stages of behavior change and if these changes can be sustained over longer periods of time. PMID:28684384
On-Orbit Solar Dynamics Observatory (SDO) Star Tracker Warm Pixel Analysis
NASA Technical Reports Server (NTRS)
Felikson, Denis; Ekinci, Matthew; Hashmall, Joseph A.; Vess, Melissa
2011-01-01
This paper describes the process of identification and analysis of warm pixels in two autonomous star trackers on the Solar Dynamics Observatory (SDO) mission. A brief description of the mission orbit and attitude regimes is discussed and pertinent star tracker hardware specifications are given. Warm pixels are defined and the Quality Index parameter is introduced, which can be explained qualitatively as a manifestation of a possible warm pixel event. A description of the algorithm used to identify warm pixel candidates is given. Finally, analysis of dumps of on-orbit star tracker charge coupled devices (CCD) images is presented and an operational plan going forward is discussed. SDO, launched on February 11, 2010, is operated from the NASA Goddard Space Flight Center (GSFC). SDO is in a geosynchronous orbit with a 28.5 inclination. The nominal mission attitude points the spacecraft X-axis at the Sun, with the spacecraft Z-axis roughly aligned with the Solar North Pole. The spacecraft Y-axis completes the triad. In attitude, SDO moves approximately 0.04 per hour, mostly about the spacecraft Z-axis. The SDO star trackers, manufactured by Galileo Avionica, project the images of stars in their 16.4deg x 16.4deg fields-of-view onto CCD detectors consisting of 512 x 512 pixels. The trackers autonomously identify the star patterns and provide an attitude estimate. Each unit is able to track up to 9 stars. Additionally, each tracker calculates a parameter called the Quality Index, which is a measure of the quality of the attitude solution. Each pixel in the CCD measures the intensity of light and a warns pixel is defined as having a measurement consistently and significantly higher than the mean background intensity level. A warns pixel should also have lower intensity than a pixel containing a star image and will not move across the field of view as the attitude changes (as would a dim star image). It should be noted that the maximum error introduced in the star tracker attitude solution during suspected warm pixel corruptions is within the specified 36 attitude error budget requirement of [35, 70, 70] arcseconds. Thus, the star trackers provided attitude accuracy within the specification for SDO. The star tracker images are intentionally defocused so each star image is detected in more than one CCD pixel. The position of each star is calculated as an intensity-weighted average of the illuminated pixels. The exact method of finding the positions is proprietary to the tracker manufacturer. When a warm pixel happens to be in the vicinity of a star, it can corrupt the calculation of the position of that particular star, thereby corrupting the estimate of the attitude.
Puri, Arjun; Kim, Ben; Nguyen, Olivier; Stolee, Paul; Tung, James; Lee, Joon
2017-11-15
Wearable activity trackers are newly emerging technologies with the anticipation for successfully supporting aging-in-place. Consumer-grade wearable activity trackers are increasingly ubiquitous in the market, but the attitudes toward, as well as acceptance and voluntary use of, these trackers in older population are poorly understood. The aim of this study was to assess acceptance and usage of wearable activity trackers in Canadian community-dwelling older adults, using the potentially influential factors as identified in literature and technology acceptance model. A mixed methods design was used. A total of 20 older adults aged 55 years and older were recruited from Southwestern Ontario. Participants used 2 different wearable activity trackers (Xiaomi Mi Band and Microsoft Band) separately for each segment in the crossover design study for 21 days (ie, 42 days total). A questionnaire was developed to capture acceptance and experience at the end of each segment, representing 2 different devices. Semistructured interviews were conducted with 4 participants, and a content analysis was performed. Participants ranged in age from 55 years to 84 years (mean age: 64 years). The Mi Band gained higher levels of acceptance (16/20, 80%) compared with the Microsoft Band (10/20, 50%). The equipment characteristics dimension scored significantly higher for the Mi Band (P<.05). The amount a participant was willing to pay for the device was highly associated with technology acceptance (P<.05). Multivariate logistic regression with 3 covariates resulted in an area under the curve of 0.79. Content analysis resulted in the formation of the following main themes: (1) smartphones as facilitators of wearable activity trackers; (2) privacy is less of a concern for wearable activity trackers, (3) value proposition: self-awareness and motivation; (4) subjective norm, social support, and sense of independence; and (5) equipment characteristics matter: display, battery, comfort, and aesthetics. Older adults were mostly accepting of wearable activity trackers, and they had a clear understanding of its value for their lives. Wearable activity trackers were uniquely considered more personal than other types of technologies, thereby the equipment characteristics including comfort, aesthetics, and price had a significant impact on the acceptance. Results indicated that privacy was less of concern for older adults, but it may have stemmed from a lack of understanding of the privacy risks and implications. These findings add to emerging research that investigates acceptance and factors that may influence acceptance of wearable activity trackers among older adults. ©Arjun Puri, Ben Kim, Olivier Nguyen, Paul Stolee, James Tung, Joon Lee. Originally published in JMIR Mhealth and Uhealth (http://mhealth.jmir.org), 15.11.2017.
Combinations of 148 navigation stars and the star tracker
NASA Technical Reports Server (NTRS)
Duncan, R.
1980-01-01
The angular separation of all star combinations for 148 nav star on the onboard software for space transportation system-3 flight and following missions is presented as well as the separation of each pair that satisfies the viewing constraints of using both star trackers simultaneously. Tables show (1) shuttle star catalog 1980 star position in M 1950 coordinates; (2) two star combination of 148 nav stars; and (3) summary of two star-combinations of the star tracker 5 deg filter. These 148 stars present 10,875 combinations. For the star tracker filters of plus or minus 5 deg, there are 875 combinations. Formalhaut (nav star 26) has the best number of combinations, which is 33.
Blanco Rodríguez, P; Vera Tomé, F; Lozano, J C
2014-01-01
Low-level alpha spectrometry techniques using semiconductor detectors (PIPS) and liquid scintillation (LKB Quantulus 1220™) were used to determine the activity concentration of (238)U, (234)U, (230)Th, (226)Ra, (232)Th, and (210)Pb in soil samples. The soils were collected from an old disused uranium mine located in southwest Spain. The soils were sampled from areas with different levels of influence from the installation and hence had different levels of contamination. The vertical profiles of the soils (down to 40 cm depth) were studied in order to evaluate the vertical distribution of the natural radionuclides. To determine the origin of these natural radionuclides the Enrichment Factor was used. Also, study of the activity ratios between radionuclides belonging to the same radioactive series allowed us to assess the different types of behaviors of the radionuclides involved. The vertical profiles for the radionuclide members of the (238)U series were different at each sampling point, depending on the level of influence of the installation. However, the profiles of each point were similar for the long-lived radionuclides of the (238)U series ((238)U, (234)U, (230)Th, and (226)Ra). Moreover, a major imbalance was observed between (210)Pb and (226)Ra in the surface layer, due to (222)Rn exhalation and the subsequent surface deposition of (210)Pb. Copyright © 2013 Elsevier Ltd. All rights reserved.
Robust Visual Tracking Revisited: From Correlation Filter to Template Matching.
Liu, Fanghui; Gong, Chen; Huang, Xiaolin; Zhou, Tao; Yang, Jie; Tao, Dacheng
2018-06-01
In this paper, we propose a novel matching based tracker by investigating the relationship between template matching and the recent popular correlation filter based trackers (CFTs). Compared to the correlation operation in CFTs, a sophisticated similarity metric termed mutual buddies similarity is proposed to exploit the relationship of multiple reciprocal nearest neighbors for target matching. By doing so, our tracker obtains powerful discriminative ability on distinguishing target and background as demonstrated by both empirical and theoretical analyses. Besides, instead of utilizing single template with the improper updating scheme in CFTs, we design a novel online template updating strategy named memory, which aims to select a certain amount of representative and reliable tracking results in history to construct the current stable and expressive template set. This scheme is beneficial for the proposed tracker to comprehensively understand the target appearance variations, recall some stable results. Both qualitative and quantitative evaluations on two benchmarks suggest that the proposed tracking method performs favorably against some recently developed CFTs and other competitive trackers.
Chemoreception of hunger levels alters the following behaviour of a freshwater snail.
Larcher, Marie; Crane, Adam L
2015-12-01
Chemically-mediated orientation is essential for many animals that must locate sites containing resources such as mates or food. One way to find these areas is by using publically-available information from other individuals. We tested a freshwater snail, Physa gyrina, for chemoreception of conspecific cues and predicted they could discriminate between cues based on information regarding hunger levels. We placed 'tracker' snails into a 2-arm arena where they could either follow or avoid an area previously used by a 'marker' snail. The hunger levels of both trackers and markers was manipulated, being either starved or fed. Starved and fed trackers did not differ in their following response when markers were hungry, but starved trackers were significantly more likely to follow fed markers, compared to fed trackers that tended to avoid areas used by fed markers. This outcome suggests that P. gyrina uses conspecific chemical cues to find food and potentially in some situations to avoid intra-specific food competition. Copyright © 2015 Elsevier B.V. All rights reserved.
Star tracker operation in a high density proton field
NASA Technical Reports Server (NTRS)
Miklus, Kenneth J.; Kissh, Frank; Flynn, David J.
1993-01-01
Algorithms that reject transient signals due to proton effects on charge coupled device (CCD) sensors have been implemented in the HDOS ASTRA-l Star Trackers to be flown on the TOPEX mission scheduled for launch in July 1992. A unique technique for simulating a proton-rich environment to test trackers is described, as well as the test results obtained. Solar flares or an orbit that passes through the South Atlantic Anomaly can subject the vehicle to very high proton flux levels. There are three ways in which spurious proton generated signals can impact tracker performance: the many false signals can prevent or extend the time to acquire a star; a proton-generated signal can compromise the accuracy of the star's reported magnitude and position; and the tracked star can be lost, requiring reacquisition. Tests simulating a proton-rich environment were performed on two ASTRA-1 Star Trackers utilizing these new algorithms. There were no false acquisitions, no lost stars, and a significant reduction in reported position errors due to these improvements.
Method of producing strained-layer semiconductor devices via subsurface-patterning
Dodson, Brian W.
1993-01-01
A method is described for patterning subsurface features in a semiconductor device, wherein the semiconductor device includes an internal strained layer. The method comprises creating a pattern of semiconductor material over the semiconductor device, the semiconductor material having a predetermined thickness which stabilizes areas of the strained semiconductor layer that lie beneath the pattern. Subsequently, a heating step is applied to the semiconductor device to cause a relaxation in areas of the strained layer which do not lie beneath the semiconductor material pattern, whereby dislocations result in the relaxed areas and impair electrical transport therethrough.
2012-12-01
photovoltaic (PV) system to use a maximum power point tracker ( MPPT ) to increase... photovoltaic (PV) system to use a maximum power point tracker ( MPPT ) to increase the power output of the solar array. Currently, most military... MPPT ) is an optimizing circuit that is used in conjunction with photovoltaic (PV) arrays to achieve the maximum delivery of power from the array
A Methodology to Analyze Photovoltaic Tracker Uptime
DOE Office of Scientific and Technical Information (OSTI.GOV)
Muller, Matthew T; Ruth, Dan
A metric is developed to analyze the daily performance of single-axis photovoltaic (PV) trackers. The metric relies on comparing correlations between the daily time series of the PV power output and an array of simulated plane-of-array irradiances for the given day. Mathematical thresholds and a logic sequence are presented, so the daily tracking metric can be applied in an automated fashion on large-scale PV systems. The results of applying the metric are visually examined against the time series of the power output data for a large number of days and for various systems. The visual inspection results suggest that overall,more » the algorithm is accurate in identifying stuck or functioning trackers on clear-sky days. Visual inspection also shows that there are days that are not classified by the metric where the power output data may be sufficient to identify a stuck tracker. Based on the daily tracking metric, uptime results are calculated for 83 different inverters at 34 PV sites. The mean tracker uptime is calculated at 99% based on 2 different calculation methods. The daily tracking metric clearly has limitations, but as there is no existing metrics in the literature, it provides a valuable tool for flagging stuck trackers.« less
Serchi, V; Peruzzi, A; Cereatti, A; Della Croce, U
2016-01-01
The knowledge of the visual strategies adopted while walking in cognitively engaging environments is extremely valuable. Analyzing gaze when a treadmill and a virtual reality environment are used as motor rehabilitation tools is therefore critical. Being completely unobtrusive, remote eye-trackers are the most appropriate way to measure the point of gaze. Still, the point of gaze measurements are affected by experimental conditions such as head range of motion and visual stimuli. This study assesses the usability limits and measurement reliability of a remote eye-tracker during treadmill walking while visual stimuli are projected. During treadmill walking, the head remained within the remote eye-tracker workspace. Generally, the quality of the point of gaze measurements declined as the distance from the remote eye-tracker increased and data loss occurred for large gaze angles. The stimulus location (a dot-target) did not influence the point of gaze accuracy, precision, and trackability during both standing and walking. Similar results were obtained when the dot-target was replaced by a static or moving 2D target and "region of interest" analysis was applied. These findings foster the feasibility of the use of a remote eye-tracker for the analysis of gaze during treadmill walking in virtual reality environments.
Kanstrup, Anne Marie; Bertelsen, Pernille; Jensen, Martin B
2018-01-01
Activity trackers are designed to support individuals in monitoring and increasing their physical activity. The use of activity trackers among individuals diagnosed with depression and anxiety has not yet been examined. This pilot study investigates how this target group engages with an activity tracker during a 10-week health intervention aimed to increase their physical activity level and improve their physical and mental health. Two groups of 11 young adults (aged 18-29 years) diagnosed with depression or anxiety participated in the digital health intervention. The study used mixed methods to investigate the research question. Quantitative health data were used to assess the intervention's influence on the participants' health and qualitative data provided insights into the participants' digital health experience. The study demonstrated an ambiguous influence from the use of an activity tracker with positive physical and mental health results, but a fading and even negative digital health engagement and counterproductive competition. The ambiguous results identify a need for (1) developing strategies for health professionals to provide supervised use of activity trackers and support the target groups' abilities to convert health information about physical activity into positive health strategies, and (2) designing alternatives for health promoting IT targeted users who face challenges and need motivation beyond self-tracking and competition.
Star Tracker Performance Estimate with IMU
NASA Technical Reports Server (NTRS)
Aretskin-Hariton, Eliot D.; Swank, Aaron J.
2015-01-01
A software tool for estimating cross-boresight error of a star tracker combined with an inertial measurement unit (IMU) was developed to support trade studies for the Integrated Radio and Optical Communication project (iROC) at the National Aeronautics and Space Administration Glenn Research Center. Typical laser communication systems, such as the Lunar Laser Communication Demonstration (LLCD) and the Laser Communication Relay Demonstration (LCRD), use a beacon to locate ground stations. iROC is investigating the use of beaconless precision laser pointing to enable laser communication at Mars orbits and beyond. Precision attitude knowledge is essential to the iROC mission to enable high-speed steering of the optical link. The preliminary concept to achieve this precision attitude knowledge is to use star trackers combined with an IMU. The Star Tracker Accuracy (STAcc) software was developed to rapidly assess the capabilities of star tracker and IMU configurations. STAcc determines the overall cross-boresight error of a star tracker with an IMU given the characteristic parameters: quantum efficiency, aperture, apparent star magnitude, exposure time, field of view, photon spread, detector pixels, spacecraft slew rate, maximum stars used for quaternion estimation, and IMU angular random walk. This paper discusses the supporting theory used to construct STAcc, verification of the program and sample results.
Pineros, Oscar E
2002-01-01
Eye tracker systems have been developed concomitantly with small scanning beams to theoretically reduce ablation zone decentration and for accurate registration of all the laser pulses on the cornea. The purpose of the study was to compare the tracker-assisted with the manual centration method. Twenty-five patients (48 eyes) with myopia and/or astigmatism had laser in situ keratomileusis (LASIK) between August 1998 and February 1999 with the Technolas 117C laser. Twenty patients (38 eyes, 80%) were available for follow-up at 3 months after surgery. Eyes were assigned randomly to one of two ablation zone centration methods: Group 1: Tracker-assisted (20 eyes), Group 2: Manual (18 eyes). Mean distance between the ablation zone center and the pupillary center in the tracker-assisted centration group was 0.55 +/- 0.30 mm (range, 0.10 to 1.4 mm), and in the manual centration group, 0.43 +/- 0.23 mm (range, 0.10 to 1.0 mm) (P = .177). There was no statistically significant difference in postoperative contrast sensitivity, glare, and Topographical Corneal Surface Regularity Index (SRI) between the two groups. We obtained good results with both centration methods. We did not find superiority of the tracker-assisted over manual regarding ablation zone centration, vision quality, or regularity of the ablation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Panuganti, SriHarsha
Production of quality electron bunches using e cient ways of generation is a crucial aspect of accelerator technology. Radio frequency electron guns are widely used to generate and rapidly accelerate electron beams to relativistic energies. In the current work, we primarily study the charge generation processes of photoemission and eld emission inside an RF gun installed at Fermilab's High Brightness Electron Source Laboratory (HBESL). Speci cally, we study and characterize second-order nonlinear photoemission from a Cesium Telluride (Cs 2Te) semiconductor photocathode, and eld emission from carbon based cathodes including diamond eld emission array (DFEA) and carbon nanotube (CNT) cathodes locatedmore » in the RF gun's cavity. Finally, we discuss the application experiments conducted at the facility to produce soft x-rays via inverse Compton scattering (ICS), and to generate uniformly lled ellipsoidal bunches and temporally shaped electron beams from the Cs 2Te photocathode.« less
Materials Science Research Rack Onboard the International Space Station
NASA Technical Reports Server (NTRS)
Reagan, Shawn E.; Lehman, John R.; Frazier, Natalie C.
2014-01-01
The Materials Science Research Rack (MSRR) is a highly automated facility developed in a joint venture/partnership between NASA and ESA center dot Allows for the study of a variety of materials including metals, ceramics, semiconductor crystals, and glasses onboard the International Space Station (ISS) center dot Multi-user facility for high temperature materials science research center dot Launched on STS-128 in August 2009, and is currently installed in the U.S. Destiny Laboratory Module ?Research goals center dot Provide means of studying materials processing in space to develop a better understanding of the chemical and physical mechanisms involved center dot Benefit materials science research via the microgravity environment of space where the researcher can better isolate the effects of gravity during solidification on the properties of materials center dot Use the knowledge gained from experiments to make reliable predictions about conditions required on Earth to achieve improved materials
NASA Astrophysics Data System (ADS)
Colombo, E.; Calusi, S.; Cossio, R.; Giuntini, L.; Giudice, A. Lo; Mandò, P. A.; Manfredotti, C.; Massi, M.; Mirto, F. A.; Vittone, E.
2008-04-01
A new ionoluminescence (IL) apparatus has been successfully installed at the external scanning microbeam facility of the 3 MV Tandetron accelerator of the INFN LABEC in Firenze; the apparatus for photon detection has been fully integrated in the existing ion beam analysis (IBA) set-up, for the simultaneous acquisition of IL and PIXE/PIGE/BS spectra and maps. The potential of the new set-up is illustrated in this paper by some results extracted by the analysis of art objects and advanced semiconductor materials. In particular, the adequacy of the new IBA set-up in the field of cultural heritage is pointed out by the coupled PIXE/IL micro-analysis of a lapis lazuli stone; concerning applications in material science, IL spectra from a N doped diamond sample were acquired and compared with CL analyses to evaluate the relevant sensitivities and the effect of ion damage.
NASA Astrophysics Data System (ADS)
Gharib, A.; Hagedorn, D.; Della Corte, A.; Fiamozzi Zignani, C.; Turtu, S.; Brown, D.; Rout, C.
2004-06-01
For the protection of the LHC superconducting magnets, about 2100 specially developed by-pass diodes were manufactured by DYNEX SEMICONDUCTOR LTD (Lincoln, GB) and about 1300 of these diodes were mounted into diode stacks and submitted to tests at cryogenic temperatures. To date about 800 dipole diode stacks and about 250 quadrupole diode stacks for the protection of the superconducting lattice dipole and lattice quadrupole magnets have been assembled at OCEM (Bologna,Italy) and successfully tested in liquid helium at ENEA (Frascati, Italy). This report gives an overview of the test results obtained so far. After a short description of the test installations and test procedures, a statistical analysis is presented for test data during diode production as well as for the performance of the diode stacks during testing in liquid helium, including failure rates and degradation of the diodes.
Colored ultrathin hybrid photovoltaics with high quantum efficiency
Lee, Kyu -Tae; Lee, Jae Yong; Seo, Sungyong; ...
2014-10-24
Most current solar panels are fabricated via complex processes using expensive semiconductor materials, and they are rigid and heavy with a dull, black appearance. As a result of their non-aesthetic appearance and weight, they are primarily installed on rooftops to minimize their negative impact on building appearance. The large surfaces and interiors of modern buildings are not efficiently utilized for potential electric power generation. Here, we introduce dual-function solar cells based on ultrathin dopant-free amorphous silicon embedded in an optical cavity that not only efficiently extract the photogenerated carriers but also display distinctive colors with the desired angle-insensitive appearances. Light-energy-harvestingmore » colored signage is demonstrated. Furthermore, a cascaded photovoltaics scheme based on tunable spectrum splitting can be employed to increase power efficiency by absorbing a broader band of light energy. Furthermore, this study pioneers a new approach to architecturally compatible and decorative thin-film photovoltaics.« less
Colored ultrathin hybrid photovoltaics with high quantum efficiency
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Kyu -Tae; Lee, Jae Yong; Seo, Sungyong
Most current solar panels are fabricated via complex processes using expensive semiconductor materials, and they are rigid and heavy with a dull, black appearance. As a result of their non-aesthetic appearance and weight, they are primarily installed on rooftops to minimize their negative impact on building appearance. The large surfaces and interiors of modern buildings are not efficiently utilized for potential electric power generation. Here, we introduce dual-function solar cells based on ultrathin dopant-free amorphous silicon embedded in an optical cavity that not only efficiently extract the photogenerated carriers but also display distinctive colors with the desired angle-insensitive appearances. Light-energy-harvestingmore » colored signage is demonstrated. Furthermore, a cascaded photovoltaics scheme based on tunable spectrum splitting can be employed to increase power efficiency by absorbing a broader band of light energy. Furthermore, this study pioneers a new approach to architecturally compatible and decorative thin-film photovoltaics.« less
The NASA computer aided design and test system
NASA Technical Reports Server (NTRS)
Gould, J. M.; Juergensen, K.
1973-01-01
A family of computer programs facilitating the design, layout, evaluation, and testing of digital electronic circuitry is described. CADAT (computer aided design and test system) is intended for use by NASA and its contractors and is aimed predominantly at providing cost effective microelectronic subsystems based on custom designed metal oxide semiconductor (MOS) large scale integrated circuits (LSIC's). CADAT software can be easily adopted by installations with a wide variety of computer hardware configurations. Its structure permits ease of update to more powerful component programs and to newly emerging LSIC technologies. The components of the CADAT system are described stressing the interaction of programs rather than detail of coding or algorithms. The CADAT system provides computer aids to derive and document the design intent, includes powerful automatic layout software, permits detailed geometry checks and performance simulation based on mask data, and furnishes test pattern sequences for hardware testing.
Open circuit potential monitored digital photocorrosion of GaAs/AlGaAs quantum well microstructures
NASA Astrophysics Data System (ADS)
Aithal, Srivatsa; Dubowski, Jan J.
2018-04-01
Nanostructuring of semiconductor wafers with an atomic level depth resolution is a challenging task, primarily due to the limited availability of instruments for in situ monitoring of such processes. Conventional digital etching relies on calibration procedures and cumbersome diagnostics applied between or at the end of etching cycles. We have developed a photoluminescence (PL) based process for monitoring in situ digital photocorrosion (DPC) of GaAs/AlGaAs microstructures at rates below 0.2 nm per cycle. In this communication, we demonstrate that DPC of GaAs/AlGaAs microstructures could be monitored with open circuit potential (OCP) measured between the photocorroding surface of a microstructure and an Ag/AgCl reference electrode installed in the sample chamber. The excellent correlation between the position of both PL and OCP maxima indicates that the DPC process could be monitored in situ for materials that do not necessarily exhibit measurable PL emission.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-08-13
... Semiconductor, Inc., Technical Information Center, Tempe, AZ; Freescale Semiconductor, Inc., Technical... October 1, 2009, applicable to workers of Freescale Semiconductor, Inc., Technical Information Center..., Massachusetts location of Freescale Semiconductor, Inc., Technical Information Center. The intent of the...
Using CarbonTracker carbon flux estimates to improve a terrestrial carbon cycle model
NASA Astrophysics Data System (ADS)
Peters, W.; Krol, M.; Miller, J. B.; Tans, P. P.; Carvalhais, N.; Schaefer, K.
2009-12-01
Estimates of net ecosystem exchange (NEE) from NOAA’s CarbonTracker CO2 data assimilation system show patterns of annual net uptake not represented in most terrestrial carbon cycle models. This is mainly because such models lack information on the land-use history of individual ecosystems, which is the main driver of long-term mean carbon exchange. Instead, they assume the biosphere to be in steady-state, with annual gross photosynthesis equalling ecosystem respiration everywhere. This limits their use in interpreting observations of carbon dynamics such as with eddy-covariance techniques or through atmospheric CO2 records. We have implemented a method that takes the long-term mean NEE estimates from CarbonTracker to derive the size of the dominant carbon pool in each ecosystem of the SIBCASA biosphere model. With the new pool sizes, the SIBCASA model is no longer in steady-state and reproduces annual carbon uptake patterns from CarbonTracker. We will show that the non steady-state SIBCASA model is not only much more consistent with the atmospheric CO2 record, but also with independent data on standing wood biomass and forest age from the Forest Inventory and Analysis (FIA) Program of the U.S. Forest Service. Four years of CarbonTracker NEE are needed to reliably derive a long term mean for this process, and we use three other years from CarbonTracker to evaluate the non steady state SIBCASA NEE. We will furthermore show that the non steady-state SIBCASA NEE is a much better first-guess for the CarbonTracker data assimilation process, allowing more confidence in its final NEE estimate, and reducing a systematic bias in CarbonTracker modeled atmospheric CO2. This overcomes a long standing issue in inverse modeling, and opens the way for further assessment and improvement of carbon cycle models such as SIBCASA.
Youth Oriented Activity Trackers: Comprehensive Laboratory- and Field-Based Validation
2017-01-01
Background Commercial activity trackers are growing in popularity among adults and some are beginning to be marketed to children. There is, however, a paucity of independent research examining the validity of these devices to detect physical activity of different intensity levels. Objectives The purpose of this study was to determine the validity of the output from 3 commercial youth-oriented activity trackers in 3 phases: (1) orbital shaker, (2) structured indoor activities, and (3) 4 days of free-living activity. Methods Four units of each activity tracker (Movband [MB], Sqord [SQ], and Zamzee [ZZ]) were tested in an orbital shaker for 5-minutes at three frequencies (1.3, 1.9, and 2.5 Hz). Participants for Phase 2 (N=14) and Phase 3 (N=16) were 6-12 year old children (50% male). For Phase 2, participants completed 9 structured activities while wearing each tracker, the ActiGraph GT3X+ (AG) research accelerometer, and a portable indirect calorimetry system to assess energy expenditure (EE). For Phase 3, participants wore all 4 devices for 4 consecutive days. Correlation coefficients, linear models, and non-parametric statistics evaluated the criterion and construct validity of the activity tracker output. Results Output from all devices was significantly associated with oscillation frequency (r=.92-.99). During Phase 2, MB and ZZ only differentiated sedentary from light intensity (P<.01), whereas the SQ significantly differentiated among all intensity categories (all comparisons P<.01), similar to AG and EE. During Phase 3, AG counts were significantly associated with activity tracker output (r=.76, .86, and .59 for the MB, SQ, and ZZ, respectively). Conclusions Across study phases, the SQ demonstrated stronger validity than the MB and ZZ. The validity of youth-oriented activity trackers may directly impact their effectiveness as behavior modification tools, demonstrating a need for more research on such devices. PMID:28724509
Optically switched graphene/4H-SiC junction bipolar transistor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chandrashekhar, MVS; Sudarshan, Tangali S.; Omar, Sabih U.
A bi-polar device is provided, along with methods of making the same. The bi-polar device can include a semiconductor substrate doped with a first dopant, a semiconductor layer on the first surface of the semiconductor substrate, and a Schottky barrier layer on the semiconductor layer. The method of forming a bi-polar device can include: forming a semiconductor layer on a first surface of a semiconductor substrate, where the semiconductor substrate comprises a first dopant and where the semiconductor layer comprises a second dopant that has an opposite polarity than the first dopant; and forming a Schottky barrier layer on amore » first portion of the semiconductor layer while leaving a second portion of the semiconductor layer exposed.« less
Ptak, Aaron Joseph; Lin, Yong; Norman, Andrew; Alberi, Kirstin
2015-05-26
A method of producing semiconductor materials and devices that incorporate the semiconductor materials are provided. In particular, a method is provided of producing a semiconductor material, such as a III-V semiconductor, on a spinel substrate using a sacrificial buffer layer, and devices such as photovoltaic cells that incorporate the semiconductor materials. The sacrificial buffer material and semiconductor materials may be deposited using lattice-matching epitaxy or coincident site lattice-matching epitaxy, resulting in a close degree of lattice matching between the substrate material and deposited material for a wide variety of material compositions. The sacrificial buffer layer may be dissolved using an epitaxial liftoff technique in order to separate the semiconductor device from the spinel substrate, and the spinel substrate may be reused in the subsequent fabrication of other semiconductor devices. The low-defect density semiconductor materials produced using this method result in the enhanced performance of the semiconductor devices that incorporate the semiconductor materials.
Nelson, Sandahl H; Weiner, Lauren S
2018-01-01
Background There has been a rapid increase in the use of technology-based activity trackers to promote behavior change. However, little is known about how individuals use these trackers on a day-to-day basis or how tracker use relates to increasing physical activity. Objective The aims were to use minute level data collected from a Fitbit tracker throughout a physical activity intervention to examine patterns of Fitbit use and activity and their relationships with success in the intervention based on ActiGraph-measured moderate to vigorous physical activity (MVPA). Methods Participants included 42 female breast cancer survivors randomized to the physical activity intervention arm of a 12-week randomized controlled trial. The Fitbit One was worn daily throughout the 12-week intervention. ActiGraph GT3X+ accelerometer was worn for 7 days at baseline (prerandomization) and end of intervention (week 12). Self-reported frequency of looking at activity data on the Fitbit tracker and app or website was collected at week 12. Results Adherence to wearing the Fitbit was high and stable, with a mean of 88.13% of valid days over 12 weeks (SD 14.49%). Greater adherence to wearing the Fitbit was associated with greater increases in ActiGraph-measured MVPA (binteraction=0.35, P<.001). Participants averaged 182.6 minutes/week (SD 143.9) of MVPA on the Fitbit, with significant variation in MVPA over the 12 weeks (F=1.91, P=.04). The majority (68%, 27/40) of participants reported looking at their tracker or looking at the Fitbit app or website once a day or more. Changes in Actigraph-measured MVPA were associated with frequency of looking at one’s data on the tracker (b=−1.36, P=.07) but not significantly associated with frequency of looking at one’s data on the app or website (P=.36). Conclusions This is one of the first studies to explore the relationship between use of a commercially available activity tracker and success in a physical activity intervention. A deeper understanding of how individuals engage with technology-based trackers may enable us to more effectively use these types of trackers to promote behavior change. Trial Registration ClinicalTrials.gov NCT02332876; https://clinicaltrials.gov/ct2/show/NCT02332876?term=NCT02332876 &rank=1 (Archived by WebCite at http://www.webcitation.org/6wplEeg8i). PMID:29402761
Hartman, Sheri J; Nelson, Sandahl H; Weiner, Lauren S
2018-02-05
There has been a rapid increase in the use of technology-based activity trackers to promote behavior change. However, little is known about how individuals use these trackers on a day-to-day basis or how tracker use relates to increasing physical activity. The aims were to use minute level data collected from a Fitbit tracker throughout a physical activity intervention to examine patterns of Fitbit use and activity and their relationships with success in the intervention based on ActiGraph-measured moderate to vigorous physical activity (MVPA). Participants included 42 female breast cancer survivors randomized to the physical activity intervention arm of a 12-week randomized controlled trial. The Fitbit One was worn daily throughout the 12-week intervention. ActiGraph GT3X+ accelerometer was worn for 7 days at baseline (prerandomization) and end of intervention (week 12). Self-reported frequency of looking at activity data on the Fitbit tracker and app or website was collected at week 12. Adherence to wearing the Fitbit was high and stable, with a mean of 88.13% of valid days over 12 weeks (SD 14.49%). Greater adherence to wearing the Fitbit was associated with greater increases in ActiGraph-measured MVPA (b interaction =0.35, P<.001). Participants averaged 182.6 minutes/week (SD 143.9) of MVPA on the Fitbit, with significant variation in MVPA over the 12 weeks (F=1.91, P=.04). The majority (68%, 27/40) of participants reported looking at their tracker or looking at the Fitbit app or website once a day or more. Changes in Actigraph-measured MVPA were associated with frequency of looking at one's data on the tracker (b=-1.36, P=.07) but not significantly associated with frequency of looking at one's data on the app or website (P=.36). This is one of the first studies to explore the relationship between use of a commercially available activity tracker and success in a physical activity intervention. A deeper understanding of how individuals engage with technology-based trackers may enable us to more effectively use these types of trackers to promote behavior change. ClinicalTrials.gov NCT02332876; https://clinicaltrials.gov/ct2/show/NCT02332876?term=NCT02332876 &rank=1 (Archived by WebCite at http://www.webcitation.org/6wplEeg8i). ©Sheri J Hartman, Sandahl H Nelson, Lauren S Weiner. Originally published in JMIR Mhealth and Uhealth (http://mhealth.jmir.org), 05.02.2018.
Tracking Detectors in the STAR Experiment at RHIC
NASA Astrophysics Data System (ADS)
Wieman, Howard
2015-04-01
The STAR experiment at RHIC is designed to measure and identify the thousands of particles produced in 200 Gev/nucleon Au on Au collisions. This talk will focus on the design and construction of two of the main tracking detectors in the experiment, the TPC and the Heavy Flavor Tracker (HFT) pixel detector. The TPC is a solenoidal gas filled detector 4 meters in diameter and 4.2 meters long. It provides precise, continuous tracking and rate of energy loss in the gas (dE/dx) for particles at + - 1 units of pseudo rapidity. The tracking in a half Tesla magnetic field measures momentum and dE/dX provides particle ID. To detect short lived particles tracking close to the point of interaction is required. The HFT pixel detector is a two-layered, high resolution vertex detector located at a few centimeters radius from the collision point. It determines origins of the tracks to a few tens of microns for the purpose of extracting displaced vertices, allowing the identification of D mesons and other short-lived particles. The HFT pixel detector uses detector chips developed by the IPHC group at Strasbourg that are based on standard IC Complementary Metal-Oxide-Semiconductor (CMOS) technology. This is the first time that CMOS pixel chips have been incorporated in a collider application.
Electric field induced spin-polarized current
Murakami, Shuichi; Nagaosa, Naoto; Zhang, Shoucheng
2006-05-02
A device and a method for generating an electric-field-induced spin current are disclosed. A highly spin-polarized electric current is generated using a semiconductor structure and an applied electric field across the semiconductor structure. The semiconductor structure can be a hole-doped semiconductor having finite or zero bandgap or an undoped semiconductor of zero bandgap. In one embodiment, a device for injecting spin-polarized current into a current output terminal includes a semiconductor structure including first and second electrodes, along a first axis, receiving an applied electric field and a third electrode, along a direction perpendicular to the first axis, providing the spin-polarized current. The semiconductor structure includes a semiconductor material whose spin orbit coupling energy is greater than room temperature (300 Kelvin) times the Boltzmann constant. In one embodiment, the semiconductor structure is a hole-doped semiconductor structure, such as a p-type GaAs semiconductor layer.
High resolution energy-sensitive digital X-ray
Nygren, David R.
1995-01-01
An apparatus and method for detecting an x-ray and for determining the depth of penetration of an x-ray into a semiconductor strip detector. In one embodiment, a semiconductor strip detector formed of semiconductor material is disposed in an edge-on orientation towards an x-ray source such that x-rays From the x-ray source are incident upon and substantially perpendicular to the front edge of the semiconductor strip detector. The semiconductor strip detector is formed of a plurality of segments. The segments are coupled together in a collinear arrangement such that the semiconductor strip detector has a length great enough such that substantially all of the x-rays incident on the front edge of the semiconductor strip detector interact with the semiconductor material which forms the semiconductor strip detector. A plurality of electrodes are connected to the semiconductor strip detect or such that each one of the of semiconductor strip detector segments has at least one of the of electrodes coupled thereto. A signal processor is also coupled to each one of the electrodes. The present detector detects an interaction within the semiconductor strip detector, between an x-ray and the semiconductor material, and also indicates the depth of penetration of the x-ray into the semiconductor strip detector at the time of the interaction.
High resolution energy-sensitive digital X-ray
Nygren, D.R.
1995-07-18
An apparatus and method for detecting an x-ray and for determining the depth of penetration of an x-ray into a semiconductor strip detector. In one embodiment, a semiconductor strip detector formed of semiconductor material is disposed in an edge-on orientation towards an x-ray source such that x-rays from the x-ray source are incident upon and substantially perpendicular to the front edge of the semiconductor strip detector. The semiconductor strip detector is formed of a plurality of segments. The segments are coupled together in a collinear arrangement such that the semiconductor strip detector has a length great enough such that substantially all of the x-rays incident on the front edge of the semiconductor strip detector interact with the semiconductor material which forms the semiconductor strip detector. A plurality of electrodes are connected to the semiconductor strip detector such that each one of the semiconductor strip detector segments has at least one of the of electrodes coupled thereto. A signal processor is also coupled to each one of the electrodes. The present detector detects an interaction within the semiconductor strip detector, between an x-ray and the semiconductor material, and also indicates the depth of penetration of the x-ray into the semiconductor strip detector at the time of the interaction. 5 figs.
Breadboard stellar tracker system test report, volume 2
NASA Technical Reports Server (NTRS)
1981-01-01
Complete data from a test program designed to evaluate the performance of a star tracker, a breadboard tracker system, is presented in tabular form. All data presented was normalized to the pixel dimension of 20 micrometers. Data from determination of maximum spatial noise as it applies to the coarse and fine acquisition modes is presented. Pointing accuracy test data, raw pixel data for the track cycle, and data from equipment related tests is also presented.
S-band range tracker and Surveillance Lab interface
NASA Astrophysics Data System (ADS)
Bush, B. D.
1983-09-01
This report documents the design, construction, test and laboratory integration of the range tracker and associated subsystems for the RADC/OC Surveillance Laboratory's S-Band tracking radar. This development was accomplished over the period from December 1981 to November 1983 and was designed, constructed and tested entirely in-house. This report contains information on the use of the range tracker, its interfaces to other laboratory equipment, the philosophy behind its design, the detailed design of the hardware (including schematics, timing and cabling diagrams), the detailed software design (including flowcharts), and the mathematical description of its algorithms. The range tracker will be used in conjunction with other equipment in the OC Surveillance Lab in the taking and recording of radar data during flight tests.
Reduction of low frequency error for SED36 and APS based HYDRA star trackers
NASA Astrophysics Data System (ADS)
Ouaknine, Julien; Blarre, Ludovic; Oddos-Marcel, Lionel; Montel, Johan; Julio, Jean-Marc
2017-11-01
In the frame of the CNES Pleiades satellite, a reduction of the star tracker low frequency error, which is the most penalizing error for the satellite attitude control, was performed. For that purpose, the SED36 star tracker was developed, with a design based on the flight qualified SED16/26. In this paper, the SED36 main features will be first presented. Then, the reduction process of the low frequency error will be developed, particularly the optimization of the optical distortion calibration. The result is an attitude low frequency error of 1.1" at 3 sigma along transverse axes. The implementation of these improvements to HYDRA, the new multi-head APS star tracker developed by SODERN, will finally be presented.
Weiss, Shimon [Pinole, CA; Bruchez, Jr., Marcel; Alivisatos, Paul [Oakland, CA
2008-01-01
A semiconductor nanocrystal compound is described capable of linking to an affinity molecule. The compound comprises (1) a semiconductor nanocrystal capable of emitting electromagnetic radiation and/or absorbing energy, and/or scattering or diffracting electromagnetic radiation--when excited by an electromagnetic radiation source or a particle beam; and (2) an affinity molecule linked to the semiconductor nanocrystal. The semiconductor nanocrystal is linked to an affinity molecule to form a semiconductor nanocrystal probe capable of bonding with a detectable substance. Exposure of the semiconductor nanocrystal to excitation energy will excite the semiconductor nanocrystal causing the emission of electromagnetic radiation. Further described are processes for respectively: making the luminescent semiconductor nanocrystal compound; making the semiconductor nanocrystal probe; and using the probe to determine the presence of a detectable substance in a material.
tkLayout: a design tool for innovative silicon tracking detectors
NASA Astrophysics Data System (ADS)
Bianchi, G.
2014-03-01
A new CMS tracker is scheduled to become operational for the LHC Phase 2 upgrade in the early 2020's. tkLayout is a software package developed to create 3d models for the design of the CMS tracker and to evaluate its fundamental performance figures. The new tracker will have to cope with much higher luminosity conditions, resulting in increased track density, harsher radiation exposure and, especially, much higher data acquisition bandwidth, such that equipping the tracker with triggering capabilities is envisaged. The design of an innovative detector involves deciding on an architecture offering the best trade-off among many figures of merit, such as tracking resolution, power dissipation, bandwidth, cost and so on. Quantitatively evaluating these figures of merit as early as possible in the design phase is of capital importance and it is best done with the aid of software models. tkLayout is a flexible modeling tool: new performance estimates and support for different detector geometries can be quickly added, thanks to its modular structure. Besides, the software executes very quickly (about two minutes), so that many possible architectural variations can be rapidly modeled and compared, to help in the choice of a viable detector layout and then to optimize it. A tracker geometry is generated from simple configuration files, defining the module types, layout and materials. Support structures are automatically added and services routed to provide a realistic tracker description. The tracker geometries thus generated can be exported to the standard CMS simulation framework (CMSSW) for full Monte Carlo studies. tkLayout has proven essential in giving guidance to CMS in studying different detector layouts and exploring the feasibility of innovative solutions for tracking detectors, in terms of design, performance and projected costs. This tool has been one of the keys to making important design decisions for over five years now and has also enabled project engineers and simulation experts to focus their efforts on other important or specific issues. Even if tkLayout was designed for the CMS tracker upgrade project, its flexibility makes it experiment-agnostic, so that it could be easily adapted to model other tracking detectors. The technology behind tkLayout is presented, as well as some of the results obtained in the context of the CMS silicon tracker design studies.
A Bit of Fit: Minimalist Intervention in Adolescents Based on a Physical Activity Tracker.
Gaudet, Jeffrey; Gallant, François; Bélanger, Mathieu
2017-07-06
Only 5% of Canadian youth meet the recommended 60 minutes of moderate to vigorous physical activity (MVPA) per day, with leisure time being increasingly allocated to technology usage. Direct-to-consumer mHealth devices that promote physical activity, such as wrist-worn physical activity trackers, have features with potential appeal to youth. The primary purpose of this study was to determine whether a minimalist physical activity tracker-based intervention would lead to an increase in physical activity in young adolescents. A secondary aim of this study was to assess change in physical activity across a 7-week intervention, as measured by the tracker. Using a quasi-experimental crossover design, two groups of 23 young adolescents (aged 13-14 years) were randomly assigned to immediate intervention or delayed intervention. The intervention consisted of wearing a Fitbit-Charge-HR physical activity tracker over a 7-week period. Actical accelerometers were used to measure participants' levels of MVPA before and at the end of intervention periods for each group. Covariates such as age, sex, stage of change for physical activity behavior, and goal commitment were also measured. There was an increase in physical activity over the course of the study period, though it was not related to overall physical activity tracker use. An intervention response did, however, occur in a subset of participants. Specifically, exposure to the physical activity tracker was associated with an average daily increase in MVPA by more than 15 minutes (P=.01) among participants who reported being in the action and maintenance stages of behavior change in relation to participation in physical activity. Participants in the precontemplation, contemplation, and preparation stages of behavior change had no change in their level of MVPA (P=.81). These results suggest that physical activity trackers may elicit improved physical activity related behavior in young adolescents demonstrating a readiness to be active. Future studies should seek to investigate if integrating physical activity trackers as part of more intensive interventions leads to greater increases in physical activity across different levels of stages of behavior change and if these changes can be sustained over longer periods of time. ©Jeffrey Gaudet, François Gallant, Mathieu Bélanger. Originally published in JMIR Mhealth and Uhealth (http://mhealth.jmir.org), 06.07.2017.
... certain health conditions External Resources Weight loss, weight management, nutrition, meal planning tools… Super Tracker SuperTracker: My Plan Food Diary [PDF – 34KB] Physical Activity Diary [PDF – 52KB] ...
High-accuracy local positioning network for the alignment of the Mu2e experiment.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hejdukova, Jana B.
This Diploma thesis describes the establishment of a high-precision local positioning network and accelerator alignment for the Mu2e physics experiment. The process of establishing new network consists of few steps: design of the network, pre-analysis, installation works, measurements of the network and making adjustments. Adjustments were performed using two approaches. First is a geodetic approach of taking into account the Earth’s curvature and the metrological approach of a pure 3D Cartesian system on the other side. The comparison of those two approaches is performed and evaluated in the results and compared with expected differences. The effect of the Earth’s curvaturemore » was found to be significant for this kind of network and should not be neglected. The measurements were obtained with Absolute Tracker AT401, leveling instrument Leica DNA03 and gyrotheodolite DMT Gyromat 2000. The coordinates of the points of the reference network were determined by the Least Square Meth od and the overall view is attached as Annexes.« less
Solar concentrator modules with silicone-onglass Fresnel lens panels and multijunction cells.
Rumyantsev, Valery D
2010-04-26
High-efficiency multijunction (MJ) solar cells, being very expensive to manufacture, should only be used in combination with solar concentrators in terrestrial applications. An essential cost reduction of electric power produced by photovoltaic (PV) installations with MJ cells, may be expected by the creation of highly-effective, but inexpensive, elements for optical concentration and sun tracking. This article is an overview of the corresponding approach under development at the Ioffe Physical Technical Institute. The approach to R&D of the solar PV modules is based on the concepts of sunlight concentration by small-aperture area Fresnel lenses and "all-glass" module design. The small-aperture area lenses are arranged as a panel with silicone-on-glass structure where the glass plate serves as the front surface of a module. In turn, high-efficiency InGaP/(In)GaAs/Ge cells are arranged on a rear module panel mounted on a glass plate which functions as a heat sink and integrated protective cover for the cells. The developed PV modules and sun trackers are characterized by simple design, and are regarded as the prototypes for further commercialization.
Field experience and performance evaluation of a medium-concentration CPV system
NASA Astrophysics Data System (ADS)
Norton, Matthew; Bentley, Roger; Georghiou, George E.; Chonavel, Sylvain; De Mutiis, Alfredo
2012-10-01
With the aim of gaining experience and performance data from location with a harsh summer climate, a 70 X concentrating photovoltaic (CPV) system was installed in Janurary 2009 in Nicosia, Cyprus. The performance of this system has been monitored using regular current-voltage characterisations for three years. Over this period, the output of the system has remained fairly constant. Measured performance ratios varied from 0.79 to 0.86 in the winter, but fell to 0.64 over the year when left uncleaned. Operating cell temperatures were modeled and found to be similar to those of flat plate modules. The most significant causes of energy loss have been identified as originating from tracking issues and soiling. Losses due to soiling could account for a drop in output of 0.2% per day. When cleaned and properly oriented, the normalized output of the system has remained constant, suggesting that this particular design is tolerant to the physical strain of long-term outdoor exposure in harsh summer conditions. Regular cleaning and reliable tracker operation are shown to be essential for maximizing energy yield.
2013-03-05
CAPE CANAVERAL, Fla. – With the help of a crane, a worker helps guide a parabolic telemetry antenna and tracker camera to the roof of the Launch Control Center, or LCC, in Launch Complex 39 at NASA's Kennedy Space Center in Florida. This antenna and camera system is the first of three that will be installed on the LCC roof for the Radio Frequency and Telemetry Station RFTS, which will be used to monitor radio frequency communications from a launch vehicle at Launch Pad 39A or B as well as provide radio frequency relay for a launch vehicle in the Vehicle Assembly Building. The RFTS replaces the shuttle-era communications and tracking labs at Kennedy. The modern RFTS checkout station is designed to primarily support NASA's Space Launch System, or SLS, and Orion spacecraft, but can support multi-user radio frequency tests as the space center transitions to support a variety of rockets and spacecraft. For more information on the modernization efforts at Kennedy, visit the Ground Systems Development and Operations, or GSDO, website at http://go.nasa.gov/groundsystems. Photo credit: NASA/Jim Grossmann
First Experiences Of ISFOC In The Maintenance Of CPV Plants
NASA Astrophysics Data System (ADS)
Sánchez, D.; Martínez, M.; Gil, E.; Rubio, F.; Pachón, J. L.; Banda, P.
2010-10-01
ISFOC CPV Plants are now working in normal operation, so ISFOC is beginning with the Maintenance. Like a first approximation, we have analyzed the incidences in the Energy generation. This analysis results that the tracker is the most vulnerable element of the installation, what it is reasonable, because it is the only mechanical element. In this business, the corrective actions for the Maintenance are very expensive; therefore it is mandatory to define a good policy for the Preventive Maintenance. With this idea, ISFOC is implementing Industrial tools (SCP) to control the Energy generation in order to maintain the Plants operating at its full potential. In this paper, we present the approach we are making to adapt the method to measure the energy generated by the concentrators and how the control charts can be used to organize the Preventive Maintenance actions. Finally, the first results are presented, where we show the potential of this method to organize the Maintenance at the same time we have initial calculations for the availability of the plants obtained with this method.
Centroid tracker and aimpoint selection
NASA Astrophysics Data System (ADS)
Venkateswarlu, Ronda; Sujata, K. V.; Venkateswara Rao, B.
1992-11-01
Autonomous fire and forget weapons have gained importance to achieve accurate first pass kill by hitting the target at an appropriate aim point. Centroid of the image presented by a target in the field of view (FOV) of a sensor is generally accepted as the aimpoint for these weapons. Centroid trackers are applicable only when the target image is of significant size in the FOV of the sensor but does not overflow the FOV. But as the range between the sensor and the target decreases the image of the target will grow and finally overflow the FOV at close ranges and the centroid point on the target will keep on changing which is not desirable. And also centroid need not be the most desired/vulnerable point on the target. For hardened targets like tanks, proper aimpoint selection and guidance up to almost zero range is essential to achieve maximum kill probability. This paper presents a centroid tracker realization. As centroid offers a stable tracking point, it can be used as a reference to select the proper aimpoint. The centroid and the desired aimpoint are simultaneously tracked to avoid jamming by flares and also to take care of the problems arising due to image overflow. Thresholding of gray level image to binary image is a crucial step in centroid tracker. Different thresholding algorithms are discussed and a suitable algorithm is chosen. The real-time hardware implementation of centroid tracker with a suitable thresholding technique is presented including the interfacing to a multimode tracker for autonomous target tracking and aimpoint selection. The hardware uses very high speed arithmetic and programmable logic devices to meet the speed requirement and a microprocessor based subsystem for the system control. The tracker has been evaluated in a field environment.
Use of LysoTracker dyes: a flow cytometric study of autophagy.
Chikte, Shaheen; Panchal, Neelam; Warnes, Gary
2014-02-01
The flow cytometric use of LysoTracker dyes was employed to investigate the autophagic process and to compare this with the upregulation of autophagy marker, the microtubule-associated protein LC3B. Although the mechanism of action of LysoTracker dyes is not fully understood, they have been used in microscopy to image acidic spherical organelles, and their use in flow cytometry has not been thoroughly investigated in the study of autophagy. This investigation uses numerous autophagy-inducing agents including chloroquine (CQ), rapamycin, low serum (<1%) RPMI, and nutrient starvation to induce autophagy in Jurkat T-cell leukemia and K562 erythromyeloid cell lines. LC3B showed an increase with CQ treatment although this was different to LysoTracker signals in terms of dose and time. Rapamycin, low serum (<1%) RPMI, and nutrient starvation induction of autophagy also induced an increase in LysoTracker and LC3B signals. CQ also induced apoptosis in cell lines, which was blocked by pan-caspase inhibitor z-VAD resulting in a reduction in cells undergoing apoptosis and a subsequent upregulation of autophagic markers LC3B and lysosomal dye signals. Given that LC3B and LysoTracker are measuring different biological events in the autophagic process, they surprisingly both upregulated during autophagic process. This study, however, shows that although LysoTracker dyes do not specifically label lysosomes or autophagosomes within the cell, they allow the simultaneous measurement of an autophagy-related process and other live-cell functions, which are not possible with the standard LC3B antibody-labeling technique. This method has the advantage of other live-cell LCB-GFP-tagged experiments in that be used to analyze patient cells as well as easier to use and significantly less costly. Copyright © 2013 International Society for Advancement of Cytometry.
NASA Astrophysics Data System (ADS)
Aguilar-Marín, Pablo; Chavez-Bacilio, Mario; Jáuregui-Rosas, Segundo
2018-05-01
Tracker is a piece of freeware software, designed to use video recorded images of the motion of objects as input data, and has been mostly applied in physics education to analyse and simulate physical phenomena in mechanics. In this work we report the application of Tracker to the study of experiments in electricity and magnetism using analog instruments for electrical signal measurements. As we are unable to directly video-track the motion of electrons in electric circuits, the angular deflections of the instruments’ pointers were video captured instead. The kinematic variables (angular position as a function of time) had to be related to the electrical ones (voltages and currents as a function of time). Two well-known experiments in physics teaching, the RC circuit for charging and discharging a capacitor and Faraday electromagnetic induction, were chosen to illustrate the procedures. The third experiment analysed and modeled with Tracker was the rather well-known electromagnetic retardation of disk- or cylinder-shaped magnets falling inside non-magnetic metallic pipes. Instead of metallic pipes we used an aluminum plate with an arrangement of a couple of parallelepiped-shaped magnets falling parallel to the plate. In the three cases studied, the experimental and the Tracker simulation results were in very good agreement. These outcomes show that it is possible to exploit the potential of Tracker software in areas other than mechanics, in areas where electrical signals are involved. The experiments are inexpensive and simple to perform, and are suitable for high school and introductory undergraduate courses in electricity, magnetism and electronics. We propose the use of Tracker combined with analog measuring devices to explore further its applications in electricity, magnetism, electronics and in other experimental sciences where electrical signals are involved.
Santiani, Alexei; Ugarelli, Alejandra; Evangelista-Vargas, Shirley
2016-10-01
Epididymal alpaca sperm represent an alternative model for the study of alpaca semen. The objective of this study was to characterize the normal values of some functional variables in epididymal alpaca sperm using imaging flow cytometry. Alpaca testicles (n=150) were processed and sperm were recovered from the cauda epididymides. Only 76 samples with acceptable motility and sperm count were considered for assessment by imaging flow cytometry. Acrosome integrity and integrity/viability were assessed by FITC-PSA/PI and FITC-PNA/PI. Mitochondrial membrane potential (MMP) was assessed by MitoTracker CMXRos and MitoTracker Deep Red FM. Lipid peroxidation was evaluated using BODIPY 581/591 C11. Results show that the mean values for acrosome-intact sperm were 95.03±6.39% and 93.34±7.96%, using FITC-PSA and FITC-PNA, respectively. The mean values for acrosome-intact viable sperm were 60.58±12.12% with FITC-PSA/PI and 58.81±12.94% with FITC-PNA/PI. Greater MMP was detected in 65.03±15.92% and 59.52±19.19%, using MitoTracker CMXRos and MitoTracker Deep Red FM, respectively. Lipid peroxidation was 0.84±0.95%. Evaluation of acrosome-intact and acrosome-intact viable sperm with FITC-PSA/PI compared with. FITC-PNA/PI or MMP with MitoTracker CMXRos compared with MitoTracker Deep Red FM were correlated (P<0.05). The MMP using MitoTracker CMXRos was the only variable correlated (P<0.05) with sperm motility (r=0.3979). This report provides a basis for future research related to alpaca semen using the epididymal sperm model. Copyright © 2016 Elsevier B.V. All rights reserved.
Minimum Error Bounded Efficient L1 Tracker with Occlusion Detection (PREPRINT)
2011-01-01
Minimum Error Bounded Efficient `1 Tracker with Occlusion Detection Xue Mei\\ ∗ Haibin Ling† Yi Wu†[ Erik Blasch‡ Li Bai] \\Assembly Test Technology...proposed BPR-L1 tracker is tested on several challenging benchmark sequences involving chal- lenges such as occlusion and illumination changes. In all...point method de - pends on the value of the regularization parameter λ. In the experiments, we found that the total number of PCG is a few hundred. The
Long-life 3-axis satellite attitude sensing, phase 1
NASA Technical Reports Server (NTRS)
Arild, Tor
1987-01-01
The purpose was to investigate the feasibility of new, moderate-cost, high reliability navigation sensors for high-altitude satellites, using stellar sources to obviate the use of gyroscopic devices. The primary investigation focused on the need for developing a star tracker model to replace an old star tracker which is still needed for current probe and satellite programs. One innovative element of the proposed star tracker was the design, development, and testing of technology components related to a phase scrambler plate. The purpose of the phase scrambler plate is to convert the impulse response of the optical system from a point image to a uniformly bright, square, angularly large, in-focus image of the star source. A collimated star source was built and tested. A breadboard star tracker with an 8 x 8 degree field of view was designed and built. It was tested in normal quad-cell mode (without the phase scrambler plate) and with the phase scrambler plate. Although the phase scrambler plate was crudely made, the performance of the star tracker breadboard was greatly improved using the phase scrambler plate, instead of system defocus. If further developed, the phase scrambler plate may be added as a low-cost retroconversion to any objective lens to greatly improve quad-cell or CCD array tracking; applications include star trackers, laser metrology, laser machining optics, and surveying instrumentation.
Development of a digital mobile solar tracker
NASA Astrophysics Data System (ADS)
Baidar, S.; Kille, N.; Ortega, I.; Sinreich, R.; Thomson, D.; Hannigan, J.; Volkamer, R.
2015-11-01
We have constructed and deployed a fast digital solar tracker aboard a moving ground-based platform. The tracker consists of two rotating mirrors, a lens, an imaging camera, and a motion compensation system that provides the Euler angles of the mobile platform in real time. The tracker can be simultaneously coupled to UV-Vis and FTIR spectrometers making it a versatile tool to measure the absorption of trace gases using solar incoming radiation. The integrated system allows the tracker to operate autonomously while the mobile laboratory is in motion. Mobile direct sun Differential Optical Absorption Spectroscopy (mobile DS-DOAS) observations using this tracker were conducted during summer 2014 as part of the Front Range Photochemistry and Pollution Experiment (FRAPPE) in Colorado, USA. We demonstrate an angular precision of 0.052° (about 1/10 of the solar disk diameter) during research drives, and verify this tracking precision from measurements of the center to limb darkening (CLD, the changing appearance of Fraunhofer lines) in the mobile DS-DOAS spectra. The high photon flux from direct sun observation enables measurements of nitrogen dioxide (NO2) slant columns with high temporal resolution, and reveals spatial detail in the variations of NO2 vertical column densities (VCDs). The NO2 VCD from DS-DOAS is compared with a co-located MAX-DOAS instrument. Overall good agreement is observed amid a highly heterogeneous air mass.
Development of a digital mobile solar tracker
NASA Astrophysics Data System (ADS)
Baidar, Sunil; Kille, Natalie; Ortega, Ivan; Sinreich, Roman; Thomson, David; Hannigan, James; Volkamer, Rainer
2016-03-01
We have constructed and deployed a fast digital solar tracker aboard a moving ground-based platform. The tracker consists of two rotating mirrors, a lens, an imaging camera, and a motion compensation system that provides the Euler angles of the mobile platform in real time. The tracker can be simultaneously coupled to UV-Vis and Fourier transform infrared spectrometers, making it a versatile tool to measure the absorption of trace gases using solar incoming radiation. The integrated system allows the tracker to operate autonomously while the mobile laboratory is in motion. Mobile direct sun differential optical absorption spectroscopy (mobile DS-DOAS) observations using this tracker were conducted during summer 2014 as part of the Front Range Air Pollution and Photochemistry Experiment (FRAPPE) in Colorado, USA. We demonstrate an angular precision of 0.052° (about 1/10 of the solar disk diameter) during research drives and verify this tracking precision from measurements of the center to limb darkening (CLD, the changing appearance of Fraunhofer lines) in the mobile DS-DOAS spectra. The high photon flux from direct sun observation enables measurements of nitrogen dioxide (NO2) slant columns with high temporal resolution and reveals spatial detail in the variations of NO2 vertical column densities (VCDs). The NO2 VCD from DS-DOAS is compared with a co-located MAX-DOAS instrument. Overall good agreement is observed amid a highly heterogeneous air mass.
Bush, Nigel E; Ouellette, Gary; Kinn, Julie
2014-12-01
Many military personnel returning from deployment experience increases in psychological symptoms, including post-traumatic stress disorder (PTSD), depression, and mood changes. Patient health diaries are commonly used for self-reporting over time away from the clinic. "T2 Mood Tracker" is an application ("app") for smartphones and other mobile devices that enables users to rate their moods, to self-monitor across time, and to report their emotional experiences to health providers. We designed T2 Mood Tracker to track symptoms associated with deployment-related behavioral health issues, including PTSD, Head Injury, Stress, Depression, Anxiety, and General Well-Being. We field-tested T2 Mood Tracker with a small sample of redeployed soldiers under treatment for behavioral health issues at a Warrior Transition Unit. Participants used the app an average of 10 different days over the 2- to 3-week test period. Consensus was that T2 Mood Tracker was easy to use, useful and beneficial. The majority said they would use the app in the future, would recommend it to other service members, and would use the app to share their mood information with a provider. Warrior Transition Unit providers were enthusiastic about the potential of T2 Mood Tracker as a tool for use with their patients. Reprint & Copyright © 2014 Association of Military Surgeons of the U.S.
NASA Astrophysics Data System (ADS)
Acero, R.; Santolaria, J.; Pueo, M.; Aguilar, J. J.; Brau, A.
2015-11-01
High-range measuring equipment like laser trackers need large dimension calibrated reference artifacts in their calibration and verification procedures. In this paper, a new verification procedure for portable coordinate measuring instruments based on the generation and evaluation of virtual distances with an indexed metrology platform is developed. This methodology enables the definition of an unlimited number of reference distances without materializing them in a physical gauge to be used as a reference. The generation of the virtual points and reference lengths derived is linked to the concept of the indexed metrology platform and the knowledge of the relative position and orientation of its upper and lower platforms with high accuracy. It is the measuring instrument together with the indexed metrology platform one that remains still, rotating the virtual mesh around them. As a first step, the virtual distances technique is applied to a laser tracker in this work. The experimental verification procedure of the laser tracker with virtual distances is simulated and further compared with the conventional verification procedure of the laser tracker with the indexed metrology platform. The results obtained in terms of volumetric performance of the laser tracker proved the suitability of the virtual distances methodology in calibration and verification procedures for portable coordinate measuring instruments, broadening and expanding the possibilities for the definition of reference distances in these procedures.
Vann, Charles S.
2003-09-09
This small, inexpensive, non-contact laser sensor can detect the location of a retroreflective target in a relatively large volume and up to six degrees of position. The tracker's laser beam is formed into a plane of light which is swept across the space of interest. When the beam illuminates the retroreflector, some of the light returns to the tracker. The intensity, angle, and time of the return beam is measured to calculate the three dimensional location of the target. With three retroreflectors on the target, the locations of three points on the target are measured, enabling the calculation of all six degrees of target position. Until now, devices for three-dimensional tracking of objects in a large volume have been heavy, large, and very expensive. Because of the simplicity and unique characteristics of this tracker, it is capable of three-dimensional tracking of one to several objects in a large volume, yet it is compact, light-weight, and relatively inexpensive. Alternatively, a tracker produces a diverging laser beam which is directed towards a fixed position, and senses when a retroreflective target enters the fixed field of view. An optically bar coded target can be read by the tracker to provide information about the target. The target can be formed of a ball lens with a bar code on one end. As the target moves through the field, the ball lens causes the laser beam to scan across the bar code.
Semiconductor structure and recess formation etch technique
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lu, Bin; Sun, Min; Palacios, Tomas Apostol
2017-02-14
A semiconductor structure has a first layer that includes a first semiconductor material and a second layer that includes a second semiconductor material. The first semiconductor material is selectively etchable over the second semiconductor material using a first etching process. The first layer is disposed over the second layer. A recess is disposed at least in the first layer. Also described is a method of forming a semiconductor structure that includes a recess. The method includes etching a region in a first layer using a first etching process. The first layer includes a first semiconductor material. The first etching processmore » stops at a second layer beneath the first layer. The second layer includes a second semiconductor material.« less
A novel design of dual-channel optical system of star-tracker based on non-blind area PAL system
NASA Astrophysics Data System (ADS)
Luo, Yujie; Bai, Jian
2016-07-01
Star-tracker plays an important role in satellite navigation. Considering the satellites on near-Earth orbit, the system usually has two optical systems: one for observing the profile of Earth and the other for capturing the positions of stars. In this paper, we demonstrate a novel kind of dual-channel optical observation system of star-tracker with non-blind area PAL imaging system based on dichroic filter, which can combine both different observation channels into an integrated structure and realize the feature of miniaturization. According to the practical usage of star-tracker and the features of dichroic filter, we set the ultraviolet band as the PAL channel to observe the Earth with the FOV ranging from 40°-60°, and set the visible band as the front imaging channel to capture the stars far away from this system with the FOV ranging from 0°-20°. Consequently, the rays of both channels are converged on the same image plane, improving the efficiency of pixels of detector and reducing the weight and size of whole star-tracker system.
Ground Testing Strategies for Verifying the Slew Rate Tolerance of Star Trackers
Dzamba, Tom; Enright, John
2014-01-01
The performance of a star tracker is largely based on the availability of its attitude solution. Several methods exist to assess star tracker availability under both static and dynamic imaging conditions. However, these methods typically make various idealizations that can limit the accuracy of these results. This study aims to increase the fidelity of star tracker availability modeling by accounting for the effects of detection logic and pixel saturation on star detection. We achieve this by developing an analytical model for the focal plane intensity distribution of a star in the presence of sensor slew. Using the developed model, we examine the effects of slew rate on star detection using simulations and lab tests. The developed approach allows us to determine the maximum slew rate for which a star of a given stellar magnitude can still be detected. This information can then be used to describe the availability of a star tracker attitude solution as a function of slew rate, both spatially, across the entire celestial sphere, or locally, along a specified orientation track. PMID:24577522
Effective Visual Tracking Using Multi-Block and Scale Space Based on Kernelized Correlation Filters
Jeong, Soowoong; Kim, Guisik; Lee, Sangkeun
2017-01-01
Accurate scale estimation and occlusion handling is a challenging problem in visual tracking. Recently, correlation filter-based trackers have shown impressive results in terms of accuracy, robustness, and speed. However, the model is not robust to scale variation and occlusion. In this paper, we address the problems associated with scale variation and occlusion by employing a scale space filter and multi-block scheme based on a kernelized correlation filter (KCF) tracker. Furthermore, we develop a more robust algorithm using an appearance update model that approximates the change of state of occlusion and deformation. In particular, an adaptive update scheme is presented to make each process robust. The experimental results demonstrate that the proposed method outperformed 29 state-of-the-art trackers on 100 challenging sequences. Specifically, the results obtained with the proposed scheme were improved by 8% and 18% compared to those of the KCF tracker for 49 occlusion and 64 scale variation sequences, respectively. Therefore, the proposed tracker can be a robust and useful tool for object tracking when occlusion and scale variation are involved. PMID:28241475
Effective Visual Tracking Using Multi-Block and Scale Space Based on Kernelized Correlation Filters.
Jeong, Soowoong; Kim, Guisik; Lee, Sangkeun
2017-02-23
Accurate scale estimation and occlusion handling is a challenging problem in visual tracking. Recently, correlation filter-based trackers have shown impressive results in terms of accuracy, robustness, and speed. However, the model is not robust to scale variation and occlusion. In this paper, we address the problems associated with scale variation and occlusion by employing a scale space filter and multi-block scheme based on a kernelized correlation filter (KCF) tracker. Furthermore, we develop a more robust algorithm using an appearance update model that approximates the change of state of occlusion and deformation. In particular, an adaptive update scheme is presented to make each process robust. The experimental results demonstrate that the proposed method outperformed 29 state-of-the-art trackers on 100 challenging sequences. Specifically, the results obtained with the proposed scheme were improved by 8% and 18% compared to those of the KCF tracker for 49 occlusion and 64 scale variation sequences, respectively. Therefore, the proposed tracker can be a robust and useful tool for object tracking when occlusion and scale variation are involved.
Development and Testing of the AMEGO Silicon Tracker System
NASA Astrophysics Data System (ADS)
Griffin, Sean; Amego Team
2018-01-01
The All-sky Medium Energy Gamma-ray Observatory (AMEGO) is a probe-class mission in consideration for the 2020 decadal review designed to operate at energies from ˜ 200 keV to > 10 GeV. Operating a detector in this energy regime is challenging due to the crossover in the interaction cross-section for Compton scattering and pair production. AMEGO is made of four major subsystems: a plastic anticoincidence detector for rejecting cosmic-ray events, a silicon tracker for measuring the energies of Compton scattered electrons and pair-production products, a CZT calorimeter for measuring the energy and location of Compton scattered photons, and a CsI calorimeter for measuring the energy of the pair-production products at high energies. The tracker comprises layers of dual-sided silicon strip detectors which provide energy and localization information for Compton scattering and pair-production events. A prototype tracker system is under development at GSFC; in this contribution we provide details on the verification, packaging, and testing of the prototype tracker, as well as present plans for the development of the front-end electronics, beam tests, and a balloon flight.
Long Term Outdoor Testing of Low Concentration Solar Modules
NASA Astrophysics Data System (ADS)
Fraas, Lewis; Avery, James; Minkin, Leonid; Huang, H. X.; Hebrink, Tim; Hurt, Rik; Boehm, Robert
2011-12-01
A 1-axis carousel tracker equipped with four 3-sun low-concentration mirror modules has now been under test outdoors at the University of Nevada in Las Vegas (UNLV) for three years. There are three unique features associated with this unit. First, simple linear mirrors are used to reduce the amount of expensive single crystal silicon in order to potentially lower the module cost while potentially maintaining cell efficiencies over 20% and high module efficiency. Simple linear mirrors also allow the use of a single axis tracker. Second, the azimuth carousel tracker is also unique allowing trackers to be used on commercial building rooftops. Third, an experiment is underway comparing aluminum based mirrors with novel 3M Company multilayer polymeric mirrors which are potentially very low cost. Comparing the data from March of 2008 through March of 2011 shows that the aluminum mirror degradation to date is negligible and that the carousel tracker has been operating continuously and reliable. Also, no degradation has been observed for the 3M brand cool mirrors after one year in use.
Robust visual tracking via multiscale deep sparse networks
NASA Astrophysics Data System (ADS)
Wang, Xin; Hou, Zhiqiang; Yu, Wangsheng; Xue, Yang; Jin, Zefenfen; Dai, Bo
2017-04-01
In visual tracking, deep learning with offline pretraining can extract more intrinsic and robust features. It has significant success solving the tracking drift in a complicated environment. However, offline pretraining requires numerous auxiliary training datasets and is considerably time-consuming for tracking tasks. To solve these problems, a multiscale sparse networks-based tracker (MSNT) under the particle filter framework is proposed. Based on the stacked sparse autoencoders and rectifier linear unit, the tracker has a flexible and adjustable architecture without the offline pretraining process and exploits the robust and powerful features effectively only through online training of limited labeled data. Meanwhile, the tracker builds four deep sparse networks of different scales, according to the target's profile type. During tracking, the tracker selects the matched tracking network adaptively in accordance with the initial target's profile type. It preserves the inherent structural information more efficiently than the single-scale networks. Additionally, a corresponding update strategy is proposed to improve the robustness of the tracker. Extensive experimental results on a large scale benchmark dataset show that the proposed method performs favorably against state-of-the-art methods in challenging environments.
Method of making photovoltaic cell
Cruz-Campa, Jose Luis; Zhou, Xiaowang; Zubia, David
2017-06-20
A photovoltaic solar cell comprises a nano-patterned substrate layer. A plurality of nano-windows are etched into an intermediate substrate layer to form the nano-patterned substrate layer. The nano-patterned substrate layer is positioned between an n-type semiconductor layer composed of an n-type semiconductor material and a p-type semiconductor layer composed of a p-type semiconductor material. Semiconductor material accumulates in the plurality of nano-windows, causing a plurality of heterojunctions to form between the n-type semiconductor layer and the p-type semiconductor layer.
... 3 years 4 years 5 years Milestone Tracker App Milestones in Action: Photos & Videos 2 months 4 ... milestone checklists (PDF) Download the Milestone Tracker mobile app View the Milestones in Action photo and video ...
75 FR 5996 - Submission for OMB Review; Comment Request
Federal Register 2010, 2011, 2012, 2013, 2014
2010-02-05
... and OMB Number: Synchronized Predeployment and Operational Tracker (SPOT) System; OMB Control Number... Operational Tracker (SPOT) System before deployment outside the United States. Data collection on contractors...
NASA Technical Reports Server (NTRS)
Otaguro, W. S.; Kesler, L. O.; Land, K. C.; Rhoades, D. E.
1987-01-01
An intelligent tracker capable of robotic applications requiring guidance and control of platforms, robotic arms, and end effectors has been developed. This packaged system capable of supervised autonomous robotic functions is partitioned into a multiple processor/parallel processing configuration. The system currently interfaces to cameras but has the capability to also use three-dimensional inputs from scanning laser rangers. The inputs are fed into an image processing and tracking section where the camera inputs are conditioned for the multiple tracker algorithms. An executive section monitors the image processing and tracker outputs and performs all the control and decision processes. The present architecture of the system is presented with discussion of its evolutionary growth for space applications. An autonomous rendezvous demonstration of this system was performed last year. More realistic demonstrations in planning are discussed.
Context Aware Programmable Trackers for the Next Generation Internet
NASA Astrophysics Data System (ADS)
Sousa, Pedro
This work introduces and proposes the concept of context aware programmable trackers for the next generation Internet. The proposed solution gives ground for the development of advanced applications based on the P2P paradigm and will foster collaborative efforts among several network entities (e.g. P2P applications and ISPs). The proposed concept of context aware programmable trackers allows that several peer selection strategies might be supported by a P2P tracker entity able to improve the peer selection decisions according with pre-defined objectives and external inputs provided by specific services. The flexible, adaptive and enhanced peer selection semantics that might be achieved by the proposed solution will contribute for devising novel P2P based services and business models for the future Internet.
Optical orientation in ferromagnet/semiconductor hybrids
NASA Astrophysics Data System (ADS)
Korenev, V. L.
2008-11-01
The physics of optical pumping of semiconductor electrons in ferromagnet/semiconductor hybrids is discussed. Optically oriented semiconductor electrons detect the magnetic state of a ferromagnetic film. In turn, the ferromagnetism of the hybrid can be controlled optically with the help of a semiconductor. Spin-spin interactions near the ferromagnet/semiconductor interface play a crucial role in the optical readout and the manipulation of ferromagnetism.
Fabrication of Metallic Hollow Nanoparticles
NASA Technical Reports Server (NTRS)
Lillehei, Peter T. (Inventor); Chu, Sang-Hyon (Inventor); Park, Yeonjoon (Inventor); Kim, Jae-Woo (Inventor); Choi, Sr., Sang H. (Inventor); King, Glen C. (Inventor); Elliott, James R. (Inventor)
2016-01-01
Metal and semiconductor nanoshells, particularly transition metal nanoshells, are fabricated using dendrimer molecules. Metallic colloids, metallic ions or semiconductors are attached to amine groups on the dendrimer surface in stabilized solution for the surface seeding method and the surface seedless method, respectively. Subsequently, the process is repeated with additional metallic ions or semiconductor, a stabilizer, and NaBH.sub.4 to increase the wall thickness of the metallic or semiconductor lining on the dendrimer surface. Metallic or semiconductor ions are automatically reduced on the metallic or semiconductor nanoparticles causing the formation of hollow metallic or semiconductor nanoparticles. The void size of the formed hollow nanoparticles depends on the dendrimer generation. The thickness of the metallic or semiconductor thin film around the dendrimer depends on the repetition times and the size of initial metallic or semiconductor seeds.
78 FR 38695 - Submission for OMB Review; Comment Request
Federal Register 2010, 2011, 2012, 2013, 2014
2013-06-27
..., Associated Form and OMB Number: Synchronized Predeployment and Operational Tracker (SPOT) System; OMB Control... Operational Tracker (SPOT) System before deployment outside of the United States. Data collection on...
Optical contacting for gravity probe star tracker
NASA Technical Reports Server (NTRS)
Wright, J. J.; Zissa, D. E.
1984-01-01
A star-tracker telescope, constructed entirely of fused silica elements optically contacted together, has been proposed to provide submilliarc-second pointing accuracy for Gravity Probe. A bibliography and discussion on optical contacting (the bonding of very flat, highly polished surfaces without the use of adhesives) are presented. Then results from preliminary experiments on the strength of optical contacts including a tensile strength test in liquid helium are discussed. Suggestions are made for further study to verify an optical contacting method for the Gravity Probe star-tracker telescope.
2016-09-19
REPORT TYPE 3. DATES COVERED (From - To) 21-10-16 Conference Proceedings 10/2015 – 03/2016 4. TITLE AND SUBTITLE Which eye tracker is right for...Force Research Laboratory 711th Human Performance Wing Airman Systems Directorate Warfighter Interface Division Applied Neuroscience Branch Wright...88ABW-2016-1334; Human Factors and Ergonomics Society 2016 Annual Meeting 19 – 23 Sept 2016 14. Though not often mentioned, the price point of many
Radiation-Hard Breadboard Star Tracker. Attachment 1.
1985-09-01
fdL RETURN DONE !! * . *• , . -+., -• -: . . E+ . . .. j , ’ - - V.r.*r - , It - ’Cjf0 Q -****r.. ... " * *. " . -. tu ’ * Checkadapt 3- 2"Jj...TRACK POSITION, it will use the 3 70! CURRENT STAR #, X POSITION, Y POSITION for 5180 ! information sent to the tracker interface. 7_390 5t0 0 Track _it...CRITERIA which is currently defines as the number of times 57 20 ! the tracker will try and track the star before it is dropped, 5730 it will also
Star tracker error analysis: Roll-to-pitch nonorthogonality
NASA Technical Reports Server (NTRS)
Corson, R. W.
1979-01-01
An error analysis is described on an anomaly isolated in the star tracker software line of sight (LOS) rate test. The LOS rate cosine was found to be greater than one in certain cases which implied that either one or both of the star tracker measured end point unit vectors used to compute the LOS rate cosine had lengths greater than unity. The roll/pitch nonorthogonality matrix in the TNB CL module of the IMU software is examined as the source of error.
Method of physical vapor deposition of metal oxides on semiconductors
Norton, David P.
2001-01-01
A process for growing a metal oxide thin film upon a semiconductor surface with a physical vapor deposition technique in a high-vacuum environment and a structure formed with the process involves the steps of heating the semiconductor surface and introducing hydrogen gas into the high-vacuum environment to develop conditions at the semiconductor surface which are favorable for growing the desired metal oxide upon the semiconductor surface yet is unfavorable for the formation of any native oxides upon the semiconductor. More specifically, the temperature of the semiconductor surface and the ratio of hydrogen partial pressure to water pressure within the vacuum environment are high enough to render the formation of native oxides on the semiconductor surface thermodynamically unstable yet are not so high that the formation of the desired metal oxide on the semiconductor surface is thermodynamically unstable. Having established these conditions, constituent atoms of the metal oxide to be deposited upon the semiconductor surface are directed toward the surface of the semiconductor by a physical vapor deposition technique so that the atoms come to rest upon the semiconductor surface as a thin film of metal oxide with no native oxide at the semiconductor surface/thin film interface. An example of a structure formed by this method includes an epitaxial thin film of (001)-oriented CeO.sub.2 overlying a substrate of (001) Ge.
Semiconductor Lasers and Their Application in Optical Fiber Communication.
ERIC Educational Resources Information Center
Agrawal, Govind P.
1985-01-01
Working principles and operating characteristics of the extremely compact and highly efficient semiconductor lasers are explained. Topics include: the p-n junction; Fabry-Perot cavity; heterostructure semiconductor lasers; materials; emission characteristics; and single-frequency semiconductor lasers. Applications for semiconductor lasers include…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dahal, Rajendra P.; Bhat, Ishwara B.; Chow, Tat-Sing
Methods for facilitating fabricating semiconductor structures are provided which include: providing a multilayer structure including a semiconductor layer, the semiconductor layer including a dopant and having an increased conductivity; selectively increasing, using electrochemical processing, porosity of the semiconductor layer, at least in part, the selectively increasing porosity utilizing the increased conductivity of the semiconductor layer; and removing, at least in part, the semiconductor layer with the selectively increased porosity from the multilayer structure. By way of example, the selectively increasing porosity may include selectively, anodically oxidizing, at least in part, the semiconductor layer of the multilayer structure.
Method for removing semiconductor layers from salt substrates
Shuskus, Alexander J.; Cowher, Melvyn E.
1985-08-27
A method is described for removing a CVD semiconductor layer from an alkali halide salt substrate following the deposition of the semiconductor layer. The semiconductor-substrate combination is supported on a material such as tungsten which is readily wet by the molten alkali halide. The temperature of the semiconductor-substrate combination is raised to a temperature greater than the melting temperature of the substrate but less than the temperature of the semiconductor and the substrate is melted and removed from the semiconductor by capillary action of the wettable support.
Photovoltaic cell with nano-patterned substrate
Cruz-Campa, Jose Luis; Zhou, Xiaowang; Zubia, David
2016-10-18
A photovoltaic solar cell comprises a nano-patterned substrate layer. A plurality of nano-windows are etched into an intermediate substrate layer to form the nano-patterned substrate layer. The nano-patterned substrate layer is positioned between an n-type semiconductor layer composed of an n-type semiconductor material and a p-type semiconductor layer composed of a p-type semiconductor material. Semiconductor material accumulates in the plurality of nano-windows, causing a plurality of heterojunctions to form between the n-type semiconductor layer and the p-type semiconductor layer.
Tauke-Pedretti, Anna; Nielson, Gregory N; Cederberg, Jeffrey G; Cruz-Campa, Jose Luis
2015-05-12
A method includes etching a release layer that is coupled between a plurality of semiconductor devices and a substrate with an etch. The etching includes etching the release layer between the semiconductor devices and the substrate until the semiconductor devices are at least substantially released from the substrate. The etching also includes etching a protuberance in the release layer between each of the semiconductor devices and the substrate. The etch is stopped while the protuberances remain between each of the semiconductor devices and the substrate. The method also includes separating the semiconductor devices from the substrate. Other methods and apparatus are also disclosed.
Reducing leakage current in semiconductor devices
Lu, Bin; Matioli, Elison de Nazareth; Palacios, Tomas Apostol
2018-03-06
A semiconductor device includes a first region having a first semiconductor material and a second region having a second semiconductor material. The second region is formed over the first region. The semiconductor device also includes a current blocking structure formed in the first region between first and second terminals of the semiconductor device. The current blocking structure is configured to reduce current flow in the first region between the first and second terminals.
Autonomous star sensor ASTRO APS: flight experience on Alphasat
NASA Astrophysics Data System (ADS)
Schmidt, U.; Fiksel, T.; Kwiatkowski, A.; Steinbach, I.; Pradarutti, B.; Michel, K.; Benzi, E.
2015-06-01
Jena-Optronik GmbH, located in Jena/Germany, has profound experience in designing and manufacturing star trackers since the early 80s. Today the company has a worldwide leading position in supplying geo-stationary and Earth observation satellites with robust and reliable star tracker systems. In the first decade of the new century Jena-Optronik received a development contract (17317/2003/F/WE) from the European Space Agency to establish the technologically challenging elements for which advanced star tracker technologies as CMOS Active Pixel Sensors were being introduced or were considered strategic. This activity was performed in the frame of the Alphabus large platform pre-development lead by ESA and the industrial Joint Project Team consisting of Astrium (now Airbus Defence and Space), Thales Alenia Space and CNES (Centre national d'études spatiales). The new autonomous star tracker, ASTRO APS (Active Pixel Sensor), extends the Jena-Optronik A stro-series CCD-based star tracker products taken the full benefit of the CMOS APS technology. ASTRO APS is a fully autonomous compact star tracker carrying either the space-qualified radiation hard STAR1000 or the HAS2 APS detectors. The star tracker is one of four Technology Demonstration Payloads (TDP6) carried by Alphasat as hosted payload in the frame of a successful Private Public Partnership between ESA and Inmarsat who owns and operates the satellite as part of its geo-stationary communication satellites fleet. TDP6 supports also directly TDP1, a Laser Communication Terminal, for fine pointing tasks. Alphasat was flawlessly brought in orbit at the end of July 2013 by a European Ariane 5 launcher. Only a few hours after launch the star tracker received its switch ON command and acquired nominally within 6 s the inertial 3-axes attitude. In the following days of the early in-orbit operations of Alphasat the TDP6 unit tracked reliably all the spacecraft maneuvers including the 0.1 and 0.2°/s spin stabilization for Sun pointing, all of the apogee engine thrusts, Moon field of view transits and recovered to stable tracking after several Earth and Sun blindings before the spacecraft entered a preliminary Earth pointing in a nominal geo-stationary attitude. The Jena-Optronik TDP6 operation center received daily the star tracker status and attitude data. The huge amount of acquired raw data has been evaluated to characterize the ASTRO APS (STAR1000) star tracker in-orbit performance. The paper will present in detail these data processing activities and will show the extraordinary good results. Due to the diverse transfer orbit satellite operations the key performance star tracker data like attitude random noise, single star noise, star brightness measurement, baffle Sun exclusion angle, temperature control, etc., could be derived and have been compared to the ground based laboratory and field measurements. The ultimate performance parameters achieved and verified as well as the lessons learned from the comparison to the ground test data are summarized in the conclusion of the paper.
Star Identification Without Attitude Knowledge: Testing with X-Ray Timing Experiment Data
NASA Technical Reports Server (NTRS)
Ketchum, Eleanor
1997-01-01
As the budget for the scientific exploration of space shrinks, the need for more autonomous spacecraft increases. For a spacecraft with a star tracker, the ability to determinate attitude from a lost in space state autonomously requires the capability to identify the stars in the field of view of the tracker. Although there have been efforts to produce autonomous star trackers which perform this function internally, many programs cannot afford these sensors. The author previously presented a method for identifying stars without a priori attitude knowledge specifically targeted for onboard computers as it minimizes the necessary computer storage. The method has previously been tested with simulated data. This paper provides results of star identification without a priori attitude knowledge using flight data from two 8 by 8 degree charge coupled device star trackers onboard the X-Ray Timing Experiment.
A Brightness-Referenced Star Identification Algorithm for APS Star Trackers
Zhang, Peng; Zhao, Qile; Liu, Jingnan; Liu, Ning
2014-01-01
Star trackers are currently the most accurate spacecraft attitude sensors. As a result, they are widely used in remote sensing satellites. Since traditional charge-coupled device (CCD)-based star trackers have a limited sensitivity range and dynamic range, the matching process for a star tracker is typically not very sensitive to star brightness. For active pixel sensor (APS) star trackers, the intensity of an imaged star is valuable information that can be used in star identification process. In this paper an improved brightness referenced star identification algorithm is presented. This algorithm utilizes the k-vector search theory and adds imaged stars' intensities to narrow the search scope and therefore increase the efficiency of the matching process. Based on different imaging conditions (slew, bright bodies, etc.) the developed matching algorithm operates in one of two identification modes: a three-star mode, and a four-star mode. If the reference bright stars (the stars brighter than three magnitude) show up, the algorithm runs the three-star mode and efficiency is further improved. The proposed method was compared with other two distinctive methods the pyramid and geometric voting methods. All three methods were tested with simulation data and actual in orbit data from the APS star tracker of ZY-3. Using a catalog composed of 1500 stars, the results show that without false stars the efficiency of this new method is 4∼5 times that of the pyramid method and 35∼37 times that of the geometric method. PMID:25299950
A brightness-referenced star identification algorithm for APS star trackers.
Zhang, Peng; Zhao, Qile; Liu, Jingnan; Liu, Ning
2014-10-08
Star trackers are currently the most accurate spacecraft attitude sensors. As a result, they are widely used in remote sensing satellites. Since traditional charge-coupled device (CCD)-based star trackers have a limited sensitivity range and dynamic range, the matching process for a star tracker is typically not very sensitive to star brightness. For active pixel sensor (APS) star trackers, the intensity of an imaged star is valuable information that can be used in star identification process. In this paper an improved brightness referenced star identification algorithm is presented. This algorithm utilizes the k-vector search theory and adds imaged stars' intensities to narrow the search scope and therefore increase the efficiency of the matching process. Based on different imaging conditions (slew, bright bodies, etc.) the developed matching algorithm operates in one of two identification modes: a three-star mode, and a four-star mode. If the reference bright stars (the stars brighter than three magnitude) show up, the algorithm runs the three-star mode and efficiency is further improved. The proposed method was compared with other two distinctive methods the pyramid and geometric voting methods. All three methods were tested with simulation data and actual in orbit data from the APS star tracker of ZY-3. Using a catalog composed of 1500 stars, the results show that without false stars the efficiency of this new method is 4~5 times that of the pyramid method and 35~37 times that of the geometric method.
ALF: a facility for x-ray lithography II--a progress report
NASA Astrophysics Data System (ADS)
Lesoine, L. G.; Kukkonen, Kenneth W.; Leavey, Jeffrey A.
1992-07-01
In our previous paper which we presented here two years ago, we described the ALF (Advanced Lithography Facility), IBM's new facility for X-ray lithography which was built as an addition to the Advanced Semiconductor Technology Center at IBM's semiconductor plant in Hopewell Jct., NY. At that time, we described the structure, its utilities, facilities and special features such as the radiation shielding, control room, clean room and vibration resistant design. The building has been completed and occupied. By the time this paper is presented the storage ring will be commissioned, the clean room occupied, and two beamlines with one stepper operational. In this paper we will review the successful completion of the facility with its associated hardware. The installation of the synchrotron will be described elsewhere. We will also discuss the first measurements of vibration, clean room cleanliness and the effectiveness of the radiation shielding. The ALF was completed on schedule and cost objectives were met. This is attributed to careful planning, close cooperation among all the parties involved from the technical team in IBM Research, the system vendor (Oxford Instruments of Oxford England) to the many contractors and subcontractors and to strong support from IBM senior management. All the planned building specifications were met and the facility has come on-line with a minimum of problems. Most important, the initial measurements show that the radiation shielding plan is sound and that with a few modifications the dose limit of 10% of background will be met. Any concerns about an electron accelerator and synchrotron in an industrial setting have been eliminated.
Unitary lens semiconductor device
Lear, Kevin L.
1997-01-01
A unitary lens semiconductor device and method. The unitary lens semiconductor device is provided with at least one semiconductor layer having a composition varying in the growth direction for unitarily forming one or more lenses in the semiconductor layer. Unitary lens semiconductor devices may be formed as light-processing devices such as microlenses, and as light-active devices such as light-emitting diodes, photodetectors, resonant-cavity light-emitting diodes, vertical-cavity surface-emitting lasers, and resonant cavity photodetectors.
Method of doping a semiconductor
Yang, Chiang Y.; Rapp, Robert A.
1983-01-01
A method for doping semiconductor material. An interface is established between a solid electrolyte and a semiconductor to be doped. The electrolyte is chosen to be an ionic conductor of the selected impurity and the semiconductor material and electrolyte are jointly chosen so that any compound formed from the impurity and the semiconductor will have a free energy no lower than the electrolyte. A potential is then established across the interface so as to allow the impurity ions to diffuse into the semiconductor. In one embodiment the semiconductor and electrolyte may be heated so as to increase the diffusion coefficient.
Coincident site lattice-matched growth of semiconductors on substrates using compliant buffer layers
Norman, Andrew
2016-08-23
A method of producing semiconductor materials and devices that incorporate the semiconductor materials are provided. In particular, a method is provided of producing a semiconductor material, such as a III-V semiconductor, on a silicon substrate using a compliant buffer layer, and devices such as photovoltaic cells that incorporate the semiconductor materials. The compliant buffer material and semiconductor materials may be deposited using coincident site lattice-matching epitaxy, resulting in a close degree of lattice matching between the substrate material and deposited material for a wide variety of material compositions. The coincident site lattice matching epitaxial process, as well as the use of a ductile buffer material, reduce the internal stresses and associated crystal defects within the deposited semiconductor materials fabricated using the disclosed method. As a result, the semiconductor devices provided herein possess enhanced performance characteristics due to a relatively low density of crystal defects.
Stable surface passivation process for compound semiconductors
Ashby, Carol I. H.
2001-01-01
A passivation process for a previously sulfided, selenided or tellurated III-V compound semiconductor surface. The concentration of undesired mid-gap surface states on a compound semiconductor surface is reduced by the formation of a near-monolayer of metal-(sulfur and/or selenium and/or tellurium)-semiconductor that is effective for long term passivation of the underlying semiconductor surface. Starting with the III-V compound semiconductor surface, any oxidation present thereon is substantially removed and the surface is then treated with sulfur, selenium or tellurium to form a near-monolayer of chalcogen-semiconductor of the surface in an oxygen-free atmosphere. This chalcogenated surface is then contacted with a solution of a metal that will form a low solubility chalcogenide to form a near-monolayer of metal-chalcogen-semiconductor. The resulting passivating layer provides long term protection for the underlying surface at or above the level achieved by a freshly chalcogenated compound semiconductor surface in an oxygen free atmosphere.
Mercer, Kathryn; Giangregorio, Lora; Schneider, Eric; Chilana, Parmit; Li, Melissa; Grindrod, Kelly
2016-01-27
Physical inactivity and sedentary behavior increase the risk of chronic illness and death. The newest generation of "wearable" activity trackers offers potential as a multifaceted intervention to help people become more active. To examine the usability and usefulness of wearable activity trackers for older adults living with chronic illness. We recruited a purposive sample of 32 participants over the age of 50, who had been previously diagnosed with a chronic illness, including vascular disease, diabetes, arthritis, and osteoporosis. Participants were between 52 and 84 years of age (mean 64); among the study participants, 23 (72%) were women and the mean body mass index was 31 kg/m(2). Participants tested 5 trackers, including a simple pedometer (Sportline or Mio) followed by 4 wearable activity trackers (Fitbit Zip, Misfit Shine, Jawbone Up 24, and Withings Pulse) in random order. Selected devices represented the range of wearable products and features available on the Canadian market in 2014. Participants wore each device for at least 3 days and evaluated it using a questionnaire developed from the Technology Acceptance Model. We used focus groups to explore participant experiences and a thematic analysis approach to data collection and analysis. Our study resulted in 4 themes: (1) adoption within a comfort zone; (2) self-awareness and goal setting; (3) purposes of data tracking; and (4) future of wearable activity trackers as health care devices. Prior to enrolling, few participants were aware of wearable activity trackers. Most also had been asked by a physician to exercise more and cited this as a motivation for testing the devices. None of the participants planned to purchase the simple pedometer after the study, citing poor accuracy and data loss, whereas 73% (N=32) planned to purchase a wearable activity tracker. Preferences varied but 50% felt they would buy a Fitbit and 42% felt they would buy a Misfit, Jawbone, or Withings. The simple pedometer had a mean acceptance score of 56/95 compared with 63 for the Withings, 65 for the Misfit and Jawbone, and 68 for the Fitbit. To improve usability, older users may benefit from devices that have better compatibility with personal computers or less-expensive Android mobile phones and tablets, and have comprehensive paper-based user manuals and apps that interpret user data. For older adults living with chronic illness, wearable activity trackers are perceived as useful and acceptable. New users may need support to both set up the device and learn how to interpret their data.
Mercer, Kathryn; Giangregorio, Lora; Schneider, Eric; Chilana, Parmit; Li, Melissa
2016-01-01
Background Physical inactivity and sedentary behavior increase the risk of chronic illness and death. The newest generation of “wearable” activity trackers offers potential as a multifaceted intervention to help people become more active. Objective To examine the usability and usefulness of wearable activity trackers for older adults living with chronic illness. Methods We recruited a purposive sample of 32 participants over the age of 50, who had been previously diagnosed with a chronic illness, including vascular disease, diabetes, arthritis, and osteoporosis. Participants were between 52 and 84 years of age (mean 64); among the study participants, 23 (72%) were women and the mean body mass index was 31 kg/m2. Participants tested 5 trackers, including a simple pedometer (Sportline or Mio) followed by 4 wearable activity trackers (Fitbit Zip, Misfit Shine, Jawbone Up 24, and Withings Pulse) in random order. Selected devices represented the range of wearable products and features available on the Canadian market in 2014. Participants wore each device for at least 3 days and evaluated it using a questionnaire developed from the Technology Acceptance Model. We used focus groups to explore participant experiences and a thematic analysis approach to data collection and analysis. Results Our study resulted in 4 themes: (1) adoption within a comfort zone; (2) self-awareness and goal setting; (3) purposes of data tracking; and (4) future of wearable activity trackers as health care devices. Prior to enrolling, few participants were aware of wearable activity trackers. Most also had been asked by a physician to exercise more and cited this as a motivation for testing the devices. None of the participants planned to purchase the simple pedometer after the study, citing poor accuracy and data loss, whereas 73% (N=32) planned to purchase a wearable activity tracker. Preferences varied but 50% felt they would buy a Fitbit and 42% felt they would buy a Misfit, Jawbone, or Withings. The simple pedometer had a mean acceptance score of 56/95 compared with 63 for the Withings, 65 for the Misfit and Jawbone, and 68 for the Fitbit. To improve usability, older users may benefit from devices that have better compatibility with personal computers or less-expensive Android mobile phones and tablets, and have comprehensive paper-based user manuals and apps that interpret user data. Conclusions For older adults living with chronic illness, wearable activity trackers are perceived as useful and acceptable. New users may need support to both set up the device and learn how to interpret their data. PMID:26818775
Lieffers, Jessica R L; Haresign, Helen; Mehling, Christine; Hanning, Rhona M
2016-09-15
Little is known about use of goal setting and tracking tools within online programs to support nutrition and physical activity behaviour change. In 2011, Dietitians of Canada added "My Goals," a nutrition and physical activity behaviour goal setting and tracking tool to their free publicly available self-monitoring website (eaTracker® ( http://www.eaTracker.ca/ )). My Goals allows users to: a) set "ready-made" SMART (Specific, Measurable, Attainable, Realistic, Time-related) goals (choice of n = 87 goals from n = 13 categories) or "write your own" goals, and b) track progress using the "My Goals Tracker." The purpose of this study was to characterize: a) My Goals user demographics, b) types of goals set, and c) My Goals Tracker use. Anonymous data on all goals set using the My Goals feature from December 6/2012-April 28/2014 by users ≥19y from Ontario and Alberta, Canada were obtained. This dataset contained: anonymous self-reported user demographic data, user set goals, and My Goals Tracker use data. Write your own goals were categorized by topic and specificity. Data were summarized using descriptive statistics. Multivariate binary logistic regression was used to determine associations between user demographics and a) goal topic areas and b) My Goals Tracker use. Overall, n = 16,511 goal statements (75.4 % ready-made; 24.6 % write your own) set by n = 8,067 adult users 19-85y (83.3 % female; mean age 41.1 ± 15.0y, mean BMI 28.8 ± 7.6kg/m(2)) were included for analysis. Overall, 33.1 % of ready-made goals were from the "Managing your Weight" category. Of write your own goal entries, 42.3 % were solely distal goals (most related to weight management); 38.6 % addressed nutrition behaviour change (16.6 % had unspecific general eating goals); 18.1 % addressed physical activity behaviour change (47.3 % had goals without information on exercise amount and type). Many write your own goals were poor quality (e.g., non-specific (e.g., missing amounts)), and possibly unrealistic (e.g., no sugar). Few goals were tracked (<10 %). Demographic variables had statistically significant relations with goal topic areas and My Goals Tracker use. eaTracker® users had high interest in goal setting and the My Goals feature, however, self-written goals were often poor quality and goal tracking was rare. Further research is needed to better support users.
pyhector: A Python interface for the simple climate model Hector
DOE Office of Scientific and Technical Information (OSTI.GOV)
N Willner, Sven; Hartin, Corinne; Gieseke, Robert
2017-04-01
Pyhector is a Python interface for the simple climate model Hector (Hartin et al. 2015) developed in C++. Simple climate models like Hector can, for instance, be used in the analysis of scenarios within integrated assessment models like GCAM1, in the emulation of complex climate models, and in uncertainty analyses. Hector is an open-source, object oriented, simple global climate carbon cycle model. Its carbon cycle consists of a one pool atmosphere, three terrestrial pools which can be broken down into finer biomes or regions, and four carbon pools in the ocean component. The terrestrial carbon cycle includes primary production andmore » respiration fluxes. The ocean carbon cycle circulates carbon via a simplified thermohaline circulation, calculating air-sea fluxes as well as the marine carbonate system (Hartin et al. 2016). The model input is time series of greenhouse gas emissions; as example scenarios for these the Pyhector package contains the Representative Concentration Pathways (RCPs)2. These were developed to cover the range of baseline and mitigation emissions scenarios and are widely used in climate change research and model intercomparison projects. Using DataFrames from the Python library Pandas (McKinney 2010) as a data structure for the scenarios simplifies generating and adapting scenarios. Other parameters of the Hector model can easily be modified when running the model. Pyhector can be installed using pip from the Python Package Index.3 Source code and issue tracker are available in Pyhector's GitHub repository4. Documentation is provided through Readthedocs5. Usage examples are also contained in the repository as a Jupyter Notebook (Pérez and Granger 2007; Kluyver et al. 2016). Courtesy of the Mybinder project6, the example Notebook can also be executed and modified without installing Pyhector locally.« less
jTracker and Monte Carlo Comparison
NASA Astrophysics Data System (ADS)
Selensky, Lauren; SeaQuest/E906 Collaboration
2015-10-01
SeaQuest is designed to observe the characteristics and behavior of `sea-quarks' in a proton by reconstructing them from the subatomic particles produced in a collision. The 120 GeV beam from the main injector collides with a fixed target and then passes through a series of detectors which records information about the particles produced in the collision. However, this data becomes meaningful only after it has been processed, stored, analyzed, and interpreted. Several programs are involved in this process. jTracker (sqerp) reads wire or hodoscope hits and reconstructs the tracks of potential dimuon pairs from a run, and Geant4 Monte Carlo simulates dimuon production and background noise from the beam. During track reconstruction, an event must meet the criteria set by the tracker to be considered a viable dimuon pair; this ensures that relevant data is retained. As a check, a comparison between a new version of jTracker and Monte Carlo was made in order to see how accurately jTracker could reconstruct the events created by Monte Carlo. In this presentation, the results of the inquest and their potential effects on the programming will be shown. This work is supported by U.S. DOE MENP Grant DE-FG02-03ER41243.
Encoding color information for visual tracking: Algorithms and benchmark.
Liang, Pengpeng; Blasch, Erik; Ling, Haibin
2015-12-01
While color information is known to provide rich discriminative clues for visual inference, most modern visual trackers limit themselves to the grayscale realm. Despite recent efforts to integrate color in tracking, there is a lack of comprehensive understanding of the role color information can play. In this paper, we attack this problem by conducting a systematic study from both the algorithm and benchmark perspectives. On the algorithm side, we comprehensively encode 10 chromatic models into 16 carefully selected state-of-the-art visual trackers. On the benchmark side, we compile a large set of 128 color sequences with ground truth and challenge factor annotations (e.g., occlusion). A thorough evaluation is conducted by running all the color-encoded trackers, together with two recently proposed color trackers. A further validation is conducted on an RGBD tracking benchmark. The results clearly show the benefit of encoding color information for tracking. We also perform detailed analysis on several issues, including the behavior of various combinations between color model and visual tracker, the degree of difficulty of each sequence for tracking, and how different challenge factors affect the tracking performance. We expect the study to provide the guidance, motivation, and benchmark for future work on encoding color in visual tracking.
Intelligent modular star and target tracker: a new generation of attitude sensors
NASA Astrophysics Data System (ADS)
Schmidt, Uwe; Strobel, Rainer; Wunder, Dietmar; Graf, Eberhart
2018-04-01
This paper, "Intelligent modular star and target tracker: a new generation of attitude sensors," was presented as part of International Conference on Space Optics—ICSO 1997, held in Toulouse, France.
Unitary lens semiconductor device
Lear, K.L.
1997-05-27
A unitary lens semiconductor device and method are disclosed. The unitary lens semiconductor device is provided with at least one semiconductor layer having a composition varying in the growth direction for unitarily forming one or more lenses in the semiconductor layer. Unitary lens semiconductor devices may be formed as light-processing devices such as microlenses, and as light-active devices such as light-emitting diodes, photodetectors, resonant-cavity light-emitting diodes, vertical-cavity surface-emitting lasers, and resonant cavity photodetectors. 9 figs.
Process for forming shaped group III-V semiconductor nanocrystals, and product formed using process
Alivisatos, A. Paul; Peng, Xiaogang; Manna, Liberato
2001-01-01
A process for the formation of shaped Group III-V semiconductor nanocrystals comprises contacting the semiconductor nanocrystal precursors with a liquid media comprising a binary mixture of phosphorus-containing organic surfactants capable of promoting the growth of either spherical semiconductor nanocrystals or rod-like semiconductor nanocrystals, whereby the shape of the semiconductor nanocrystals formed in said binary mixture of surfactants is controlled by adjusting the ratio of the surfactants in the binary mixture.
Process for forming shaped group II-VI semiconductor nanocrystals, and product formed using process
Alivisatos, A. Paul; Peng, Xiaogang; Manna, Liberato
2001-01-01
A process for the formation of shaped Group II-VI semiconductor nanocrystals comprises contacting the semiconductor nanocrystal precursors with a liquid media comprising a binary mixture of phosphorus-containing organic surfactants capable of promoting the growth of either spherical semiconductor nanocrystals or rod-like semiconductor nanocrystals, whereby the shape of the semiconductor nanocrystals formed in said binary mixture of surfactants is controlled by adjusting the ratio of the surfactants in the binary mixture.
Organic electronics on fibers for energy conversion applications
NASA Astrophysics Data System (ADS)
O'Connor, Brendan T.
Currently, there is great demand for pollution-free and renewable sources of electricity. Solar cells are particularly attractive from the standpoint of sunlight abundance. However, truly widespread adoption of solar cells is impeded by the high cost and poor scalability of existing technologies. For example, while 53,000 mi2 of 10% efficient solar cell modules would be required to supply the current U.S. energy demand, only about 50 mi2 have been installed worldwide. Organic semiconductors potentially offer a route to realizing low-cost solar cell modules, but currently suffer from low conversion efficiency. For organic-based solar cells to become commercially viable, further research is required to improve device performance, develop scalable manufacturing methods, and reduce installation costs via, for example, novel device form factors. This thesis makes several contributions to the field of organic solar cells, including the replacement of costly and brittle indium tin oxide (ITO) electrodes by inexpensive and malleable, thin metal films, and the application of external dielectric coatings to improve power conversion efficiency. Furthermore, we show that devices with non-planar geometries (e.g. organic solar cells deposited onto long fibers) can have higher efficiencies than conventional planar devices. Building on these results, we demonstrate novel fiber-based organic light emitting devices (OLEDs) that offer substantially improved color quality and manufacturability as a next-generation solid-state lighting technology. An intriguing possibility afforded by the fiber-based device architectures is the ability to integrate energy conversion and lighting functionalities with textiles, a mature, commodity-scale technology.
Jin Lee, Su; Kim, Yong-Jae; Young Yeo, So; Lee, Eunji; Sun Lim, Ho; Kim, Min; Song, Yong-Won; Cho, Jinhan; Ah Lim, Jung
2015-01-01
Here we report the first demonstration for centro-apical self-organization of organic semiconductors in a line-printed organic semiconductor: polymer blend. Key feature of this work is that organic semiconductor molecules were vertically segregated on top of the polymer phase and simultaneously crystallized at the center of the printed line pattern after solvent evaporation without an additive process. The thickness and width of the centro-apically segregated organic semiconductor crystalline stripe in the printed blend pattern were controlled by varying the relative content of the organic semiconductors, printing speed, and solution concentrations. The centro-apical self-organization of organic semiconductor molecules in a printed polymer blend may be attributed to the combination of an energetically favorable vertical phase-separation and hydrodynamic fluids inside the droplet during solvent evaporation. Finally, a centro-apically phase-separated bilayer structure of organic semiconductor: polymer blend was successfully demonstrated as a facile method to form the semiconductor and dielectric layer for OFETs in one- step. PMID:26359068
Lee, Su Jin; Kim, Yong-Jae; Yeo, So Young; Lee, Eunji; Lim, Ho Sun; Kim, Min; Song, Yong-Won; Cho, Jinhan; Lim, Jung Ah
2015-09-11
Here we report the first demonstration for centro-apical self-organization of organic semiconductors in a line-printed organic semiconductor: polymer blend. Key feature of this work is that organic semiconductor molecules were vertically segregated on top of the polymer phase and simultaneously crystallized at the center of the printed line pattern after solvent evaporation without an additive process. The thickness and width of the centro-apically segregated organic semiconductor crystalline stripe in the printed blend pattern were controlled by varying the relative content of the organic semiconductors, printing speed, and solution concentrations. The centro-apical self-organization of organic semiconductor molecules in a printed polymer blend may be attributed to the combination of an energetically favorable vertical phase-separation and hydrodynamic fluids inside the droplet during solvent evaporation. Finally, a centro-apically phase-separated bilayer structure of organic semiconductor: polymer blend was successfully demonstrated as a facile method to form the semiconductor and dielectric layer for OFETs in one- step.
Retroreflector field tracker. [noncontact optical position sensor for space application
NASA Technical Reports Server (NTRS)
Wargocki, F. E.; Ray, A. J.; Hall, G. E.
1984-01-01
An electrooptical position-measuring instrument, the Retroreflector Field Tracker or RFT, is described. It is part of the Dynamic Augmentation Experiment - a part of the payload of Space Shuttle flight 41-D in Summer 1984. The tracker measures and outputs the position of 23 reflective targets placed on a 32-m solar array to provide data for determination of the dynamics of the lightweight structure. The sensor uses a 256 x 256 pixel CID detector; the processor electronics include three Z-80 microprocessors. A pulsed laser diode illuminator is used.
Morrison, Leanne G; Hargood, Charlie; Lin, Sharon Xiaowen; Dennison, Laura; Joseph, Judith; Hughes, Stephanie; Michaelides, Danius T; Johnston, Derek; Johnston, Marie; Michie, Susan; Little, Paul; Smith, Peter Wf; Weal, Mark J; Yardley, Lucy
2014-10-22
Advancements in mobile phone technology offer huge potential for enhancing the timely delivery of health behavior change interventions. The development of smartphone-based health interventions (apps) is a rapidly growing field of research, yet there have been few longitudinal examinations of how people experience and use these apps within their day-to-day routines, particularly within the context of a hybrid Web- and app-based intervention. This study used an in-depth mixed-methods design to examine individual variation in (1) impact on self-reported goal engagement (ie, motivation, self-efficacy, awareness, effort, achievement) of access to a weight management app (POWeR Tracker) when provided alongside a Web-based weight management intervention (POWeR) and (2) usage and views of POWeR Tracker. Thirteen adults were provided access to POWeR and were monitored over a 4-week period. Access to POWeR Tracker was provided in 2 alternate weeks (ie, weeks 1 and 3 or weeks 2 and 4). Participants' goal engagement was measured daily via self-report. Mixed effects models were used to examine change in goal engagement between the weeks when POWeR Tracker was and was not available and whether the extent of change in goal engagement varied between individual participants. Usage of POWeR and POWeR Tracker was automatically recorded for each participant. Telephone interviews were conducted and analyzed using inductive thematic analysis to further explore participants' experiences using POWeR and POWeR Tracker. Access to POWeR Tracker was associated with a significant increase in participants' awareness of their eating (β1=0.31, P=.04) and physical activity goals (β1=0.28, P=.03). The level of increase varied between individual participants. Usage data showed that participants used the POWeR website for similar amounts of time during the weeks when POWeR Tracker was (mean 29 minutes, SD 31 minutes) and was not available (mean 27 minutes, SD 33 minutes). POWeR Tracker was mostly accessed in short bursts (mean 3 minutes, SD 2 minutes) during convenient moments or moments when participants deemed the intervention content most relevant. The qualitative data indicated that nearly all participants agreed that it was more convenient to access information on-the-go via their mobiles compared to a computer. However, participants varied in their views and usage of the Web- versus app-based components and the informational versus tracking tools provided by POWeR Tracker. This study provides evidence that smartphones have the potential to improve individuals' engagement with their health-related goals when used as a supplement to an existing online intervention. The perceived convenience of mobile access to information does not appear to deter use of Web-based interventions or strengthen the impact of app access on goal engagement. A mixed-methods design enabled exploration of individual variation in daily usage of the app-based tools.
Hargood, Charlie; Lin, Sharon Xiaowen; Dennison, Laura; Joseph, Judith; Hughes, Stephanie; Michaelides, Danius T; Johnston, Derek; Johnston, Marie; Michie, Susan; Little, Paul; Smith, Peter WF; Weal, Mark J; Yardley, Lucy
2014-01-01
Background Advancements in mobile phone technology offer huge potential for enhancing the timely delivery of health behavior change interventions. The development of smartphone-based health interventions (apps) is a rapidly growing field of research, yet there have been few longitudinal examinations of how people experience and use these apps within their day-to-day routines, particularly within the context of a hybrid Web- and app-based intervention. Objective This study used an in-depth mixed-methods design to examine individual variation in (1) impact on self-reported goal engagement (ie, motivation, self-efficacy, awareness, effort, achievement) of access to a weight management app (POWeR Tracker) when provided alongside a Web-based weight management intervention (POWeR) and (2) usage and views of POWeR Tracker. Methods Thirteen adults were provided access to POWeR and were monitored over a 4-week period. Access to POWeR Tracker was provided in 2 alternate weeks (ie, weeks 1 and 3 or weeks 2 and 4). Participants’ goal engagement was measured daily via self-report. Mixed effects models were used to examine change in goal engagement between the weeks when POWeR Tracker was and was not available and whether the extent of change in goal engagement varied between individual participants. Usage of POWeR and POWeR Tracker was automatically recorded for each participant. Telephone interviews were conducted and analyzed using inductive thematic analysis to further explore participants’ experiences using POWeR and POWeR Tracker. Results Access to POWeR Tracker was associated with a significant increase in participants’ awareness of their eating (β1=0.31, P=.04) and physical activity goals (β1=0.28, P=.03). The level of increase varied between individual participants. Usage data showed that participants used the POWeR website for similar amounts of time during the weeks when POWeR Tracker was (mean 29 minutes, SD 31 minutes) and was not available (mean 27 minutes, SD 33 minutes). POWeR Tracker was mostly accessed in short bursts (mean 3 minutes, SD 2 minutes) during convenient moments or moments when participants deemed the intervention content most relevant. The qualitative data indicated that nearly all participants agreed that it was more convenient to access information on-the-go via their mobiles compared to a computer. However, participants varied in their views and usage of the Web- versus app-based components and the informational versus tracking tools provided by POWeR Tracker. Conclusions This study provides evidence that smartphones have the potential to improve individuals’ engagement with their health-related goals when used as a supplement to an existing online intervention. The perceived convenience of mobile access to information does not appear to deter use of Web-based interventions or strengthen the impact of app access on goal engagement. A mixed-methods design enabled exploration of individual variation in daily usage of the app-based tools. PMID:25355131
Examining the role of dopamine D2 and D3 receptors in Pavlovian conditioned approach behaviors.
Fraser, Kurt M; Haight, Joshua L; Gardner, Eliot L; Flagel, Shelly B
2016-05-15
Elucidating the neurobiological mechanisms underlying individual differences in the extent to which reward cues acquire the ability to act as incentive stimuli may contribute to the development of successful treatments for addiction and related disorders. We used the sign-tracker/goal-tracker animal model to examine the role of dopamine D2 and D3 receptors in the propensity to attribute incentive salience to reward cues. Following Pavlovian training, wherein a discrete lever-cue was paired with food reward, rats were classified as sign- or goal-trackers based on the resultant conditioned response. We examined the effects of D2/D3 agonists, 7-OH-DPAT (0.01-0.32mg/kg) or pramipexole (0.032-0.32mg/kg), the D2/D3 antagonist raclopride (0.1mg/kg), and the selective D3 antagonist, SB-277011A (6 or 24mg/kg), on the expression of sign- and goal-tracking conditioned responses. The lever-cue acquired predictive value and elicited a conditioned response for sign- and goal-trackers, but only for sign-trackers did it also acquire incentive value. Following administration of either 7-OH-DPAT, pramipexole, or raclopride, the performance of the previously acquired conditioned response was attenuated for both sign- and goal-trackers. For sign-trackers, the D2/D3 agonist, 7-OH-DPAT, also attenuated the conditioned reinforcing properties of the lever-cue. The selective D3 antagonist did not affect either conditioned response. Alterations in D2/D3 receptor signaling, but not D3 signaling alone, transiently attenuate a previously acquired Pavlovian conditioned response, regardless of whether the response is a result of incentive motivational processes. These findings suggest activity at the dopamine D2 receptor is critical for a reward cue to maintain either its incentive or predictive qualities. Copyright © 2016 Elsevier B.V. All rights reserved.
A refined technique to calculate finite helical axes from rigid body trackers.
McLachlin, Stewart D; Ferreira, Louis M; Dunning, Cynthia E
2014-12-01
Finite helical axes (FHAs) are a potentially effective tool for joint kinematic analysis. Unfortunately, no straightforward guidelines exist for calculating accurate FHAs using prepackaged six degree-of-freedom (6 DOF) rigid body trackers. Thus, this study aimed to: (1) describe a protocol for calculating FHA parameters from 6 DOF rigid body trackers using the screw matrix and (2) to maximize the number of accurate FHAs generated from a given data set using a moving window analysis. Four Optotrak® Smart Markers were used as the rigid body trackers, two moving and two fixed, at different distances from the hinge joint of a custom-machined jig. 6D OF pose information was generated from 51 static positions of the jig rotated and fixed in 0.5 deg increments up to 25 deg. Output metrics included the FHA direction cosines, the rotation about the FHA, the translation along the axis, and the intercept of the FHA with the plane normal to the jig's hinge joint. FHA metrics were calculated using the relative tracker rotation from the starting position, and using a moving window analysis to define a minimum acceptable rotational displacement between the moving tracker data points. Data analysis found all FHA rotations calculated from the starting position were within 0.15 deg of the prescribed jig rotation. FHA intercepts were most stable when determined using trackers closest to the hinge axis. Increasing the moving window size improved the FHA direction cosines and center of rotation accuracy. Window sizes larger than 2 deg had an intercept deviation of less than 1 mm. Furthermore, compared to the 0 deg window size, the 2 deg window had a 90% improvement in FHA intercept precision while generating almost an equivalent number of FHA axes. This work identified a solution to improve FHA calculations for biomechanical researchers looking to describe changes in 3D joint motion.
Deep coupling of star tracker and MEMS-gyro data under highly dynamic and long exposure conditions
NASA Astrophysics Data System (ADS)
Sun, Ting; Xing, Fei; You, Zheng; Wang, Xiaochu; Li, Bin
2014-08-01
Star trackers and gyroscopes are the two most widely used attitude measurement devices in spacecrafts. The star tracker is supposed to have the highest accuracy in stable conditions among different types of attitude measurement devices. In general, to detect faint stars and reduce the size of the star tracker, a method with long exposure time method is usually used. Thus, under dynamic conditions, smearing of the star image may appear and result in decreased accuracy or even failed extraction of the star spot. This may cause inaccuracies in attitude measurement. Gyros have relatively good dynamic performance and are usually used in combination with star trackers. However, current combination methods focus mainly on the data fusion of the output attitude data levels, which are inadequate for utilizing and processing internal blurred star image information. A method for tracking deep coupling stars and MEMS-gyro data is proposed in this work. The method achieves deep fusion at the star image level. First, dynamic star image processing is performed based on the angular velocity information of the MEMS-gyro. Signal-to-noise ratio (SNR) of the star spot could be improved, and extraction is achieved more effectively. Then, a prediction model for optimal estimation of the star spot position is obtained through the MEMS-gyro, and an extended Kalman filter is introduced. Meanwhile, the MEMS-gyro drift can be estimated and compensated though the proposed method. These enable the star tracker to achieve high star centroid determination accuracy under dynamic conditions. The MEMS-gyro drift can be corrected even when attitude data of the star tracker are unable to be solved and only one navigation star is captured in the field of view. Laboratory experiments were performed to verify the effectiveness of the proposed method and the whole system.
Examining the Role of Dopamine D2 and D3 Receptors in Pavlovian Conditioned Approach Behaviors
Fraser, Kurt M.; Haight, Joshua L.; Gardner, Eliot L.; Flagel, Shelly B.
2016-01-01
Elucidating the neurobiological mechanisms underlying individual differences in the extent to which reward cues acquire the ability to act as incentive stimuli may contribute to the development of successful treatments for addiction and related disorders. We used the sign-tracker/goal-tracker animal model to examine the role of dopamine D2 and D3 receptors in the propensity to attribute incentive salience to reward cues. Following Pavlovian training, wherein a discrete lever-cue was paired with food reward, rats were classified as sign- or goal-trackers based on the resultant conditioned response. We examined the effects of D2/D3 agonists, 7-OH-DPAT (0.01–0.32 mg/kg) or pramipexole (0.032–0.32 mg/kg), the D2/D3 antagonist raclopride (0.1 mg/kg), and the selective D3 antagonist, SB-277011A (6 or 24 mg/kg), on the expression of sign- and goal-tracking conditioned responses. The lever-cue acquired predictive value and elicited a conditioned response for sign- and goal-trackers, but only for sign-trackers did it also acquire incentive value. Following administration of either 7-OH-DPAT, pramipexole, or raclopride, the performance of the previously acquired conditioned response was attenuated for both sign- and goal-trackers. For sign-trackers, the D2/D3 agonist, 7-OH-DPAT, also attenuated the conditioned reinforcing properties of the lever-cue. The selective D3 antagonist did not affect either conditioned response. Alterations in D2/D3 receptor signaling, but not D3 signaling alone, transiently attenuate a previously acquired Pavlovian conditioned response, regardless of whether the response is a result of incentive motivational processes. These findings suggest activity at the dopamine D2 receptor is critical for a reward cue to maintain either its incentive or predictive qualities. PMID:26909847
Swarm- Validation of Star Tracker and Accelerometer Data
NASA Astrophysics Data System (ADS)
Schack, Peter; Schlicht, Anja; Pail, Roland; Gruber, Thomas
2016-08-01
The ESA Swarm mission is designed to advance studies in the field of magnetosphere, thermosphere and gravity field. To be fortunate on this task precise knowledge of the orientation of the Swarm satellites is required together with knowledge about external forces acting on the satellites. The key sensors providing this information are the star trackers and the accelerometers. Based on star tracker studies conducted by the Denmark Technical University (DTU), we found interesting patterns in the interboresight angles on all three satellites, which are partly induced by temperature alterations. Additionally, structures of horizontal stripes seem to be caused by the unique distribution of observed stars on the charge-coupled device of the star trackers. Our accelerometer analyses focus on spikes and pulses in the observations. Those short term events on Swarm might originate from electrical processes introduced by sunlight illuminating the nadir foil. Comparisons to GOCE and GRACE are included.
Compressed normalized block difference for object tracking
NASA Astrophysics Data System (ADS)
Gao, Yun; Zhang, Dengzhuo; Cai, Donglan; Zhou, Hao; Lan, Ge
2018-04-01
Feature extraction is very important for robust and real-time tracking. Compressive sensing provided a technical support for real-time feature extraction. However, all existing compressive tracking were based on compressed Haar-like feature, and how to compress many more excellent high-dimensional features is worth researching. In this paper, a novel compressed normalized block difference feature (CNBD) was proposed. For resisting noise effectively in a highdimensional normalized pixel difference feature (NPD), a normalized block difference feature extends two pixels in the original formula of NPD to two blocks. A CNBD feature can be obtained by compressing a normalized block difference feature based on compressive sensing theory, with the sparse random Gaussian matrix as the measurement matrix. The comparative experiments of 7 trackers on 20 challenging sequences showed that the tracker based on CNBD feature can perform better than other trackers, especially than FCT tracker based on compressed Haar-like feature, in terms of AUC, SR and Precision.
Combined Feature Based and Shape Based Visual Tracker for Robot Navigation
NASA Technical Reports Server (NTRS)
Deans, J.; Kunz, C.; Sargent, R.; Park, E.; Pedersen, L.
2005-01-01
We have developed a combined feature based and shape based visual tracking system designed to enable a planetary rover to visually track and servo to specific points chosen by a user with centimeter precision. The feature based tracker uses invariant feature detection and matching across a stereo pair, as well as matching pairs before and after robot movement in order to compute an incremental 6-DOF motion at each tracker update. This tracking method is subject to drift over time, which can be compensated by the shape based method. The shape based tracking method consists of 3D model registration, which recovers 6-DOF motion given sufficient shape and proper initialization. By integrating complementary algorithms, the combined tracker leverages the efficiency and robustness of feature based methods with the precision and accuracy of model registration. In this paper, we present the algorithms and their integration into a combined visual tracking system.
Miniaturized star tracker for micro spacecraft with high angular rate
NASA Astrophysics Data System (ADS)
Li, Jianhua; Li, Zhifeng; Niu, Zhenhong; Liu, Jiaqi
2017-10-01
There is a clear need for miniaturized, lightweight, accurate and inexpensive star tracker for spacecraft with large anglar rate. To face these new constraints, the Beijing Institute of Space Long March Vehicle has designed, built and flown a low cost miniaturized star tracker that provides autonomous ("Lost in Space") inertial attitude determination, 2 Hz 3-axis star tracking, and digital imaging with embedded compression. Detector with high sensitivity is adopted to meet the dynamic and miniature requirement. A Sun and Moon avoiding method based on the calculation of Sun and Moon's vector by astronomical theory is proposed. The produced prototype weight 0.84kg, and can be used for a spacecraft with 6°/s anglar rate. The average angle measure error is less than 43 arc second. The ground verification and application of the star tracker during the pick-up flight test showed that the capability of the product meet the requirement.
Semiconductor devices incorporating multilayer interference regions
Biefeld, Robert M.; Drummond, Timothy J.; Gourley, Paul L.; Zipperian, Thomas E.
1990-01-01
A semiconductor high reflector comprising a number of thin alternating layers of semiconductor materials is electrically tunable and may be used as a temperature insensitive semiconductor laser in a Fabry-Perot configuration.
Variable temperature semiconductor film deposition
Li, X.; Sheldon, P.
1998-01-27
A method of depositing a semiconductor material on a substrate is disclosed. The method sequentially comprises (a) providing the semiconductor material in a depositable state such as a vapor for deposition on the substrate; (b) depositing the semiconductor material on the substrate while heating the substrate to a first temperature sufficient to cause the semiconductor material to form a first film layer having a first grain size; (c) continually depositing the semiconductor material on the substrate while cooling the substrate to a second temperature sufficient to cause the semiconductor material to form a second film layer deposited on the first film layer and having a second grain size smaller than the first grain size; and (d) raising the substrate temperature, while either continuing or not continuing to deposit semiconductor material to form a third film layer, to thereby anneal the film layers into a single layer having favorable efficiency characteristics in photovoltaic applications. A preferred semiconductor material is cadmium telluride deposited on a glass/tin oxide substrate already having thereon a film layer of cadmium sulfide.
Variable temperature semiconductor film deposition
Li, Xiaonan; Sheldon, Peter
1998-01-01
A method of depositing a semiconductor material on a substrate. The method sequentially comprises (a) providing the semiconductor material in a depositable state such as a vapor for deposition on the substrate; (b) depositing the semiconductor material on the substrate while heating the substrate to a first temperature sufficient to cause the semiconductor material to form a first film layer having a first grain size; (c) continually depositing the semiconductor material on the substrate while cooling the substrate to a second temperature sufficient to cause the semiconductor material to form a second film layer deposited on the first film layer and having a second grain size smaller than the first grain size; and (d) raising the substrate temperature, while either continuing or not continuing to deposit semiconductor material to form a third film layer, to thereby anneal the film layers into a single layer having favorable efficiency characteristics in photovoltaic applications. A preferred semiconductor material is cadmium telluride deposited on a glass/tin oxide substrate already having thereon a film layer of cadmium sulfide.
A room-temperature magnetic semiconductor from a ferromagnetic metallic glass
NASA Astrophysics Data System (ADS)
Liu, Wenjian; Zhang, Hongxia; Shi, Jin-An; Wang, Zhongchang; Song, Cheng; Wang, Xiangrong; Lu, Siyuan; Zhou, Xiangjun; Gu, Lin; Louzguine-Luzgin, Dmitri V.; Chen, Mingwei; Yao, Kefu; Chen, Na
2016-12-01
Emerging for future spintronic/electronic applications, magnetic semiconductors have stimulated intense interest due to their promises for new functionalities and device concepts. So far, the so-called diluted magnetic semiconductors attract many attentions, yet it remains challenging to increase their Curie temperatures above room temperature, particularly those based on III-V semiconductors. In contrast to the concept of doping magnetic elements into conventional semiconductors to make diluted magnetic semiconductors, here we propose to oxidize originally ferromagnetic metals/alloys to form new species of magnetic semiconductors. We introduce oxygen into a ferromagnetic metallic glass to form a Co28.6Fe12.4Ta4.3B8.7O46 magnetic semiconductor with a Curie temperature above 600 K. The demonstration of p-n heterojunctions and electric field control of the room-temperature ferromagnetism in this material reflects its p-type semiconducting character, with a mobility of 0.1 cm2 V-1 s-1. Our findings may pave a new way to realize high Curie temperature magnetic semiconductors with unusual multifunctionalities.
SRC Engineering Research Center for Environmentally Benign Semiconductor Manufacturing (ERC ) ** Bringing Sustainability to Semiconductor Manufacturing ** A multi-university research center leading the way to environmentally friendly semiconductor manufacturing, sponsored by the Semiconductor Research
Semiconductor devices incorporating multilayer interference regions
Biefeld, R.M.; Drummond, T.J.; Gourley, P.L.; Zipperian, T.E.
1987-08-31
A semiconductor high reflector comprising a number of thin alternating layers of semiconductor materials is electrically tunable and may be used as a temperature insensitive semiconductor laser in a Fabry-Perot configuration. 8 figs.
Method of making silicon on insalator material using oxygen implantation
Hite, Larry R.; Houston, Ted; Matloubian, Mishel
1989-01-01
The described embodiments of the present invention provide a semiconductor on insulator structure providing a semiconductor layer less susceptible to single event upset errors (SEU) due to radiation. The semiconductor layer is formed by implanting ions which form an insulating layer beneath the surface of a crystalline semiconductor substrate. The remaining crystalline semiconductor layer above the insulating layer provides nucleation sites for forming a crystalline semiconductor layer above the insulating layer. The damage caused by implantation of the ions for forming an insulating layer is left unannealed before formation of the semiconductor layer by epitaxial growth. The epitaxial layer, thus formed, provides superior characteristics for prevention of SEU errors, in that the carrier lifetime within the epitaxial layer, thus formed, is less than the carrier lifetime in epitaxial layers formed on annealed material while providing adequate semiconductor characteristics.
Kuhn, Brittany N; Klumpner, Marin S; Covelo, Ignacio R; Campus, Paolo; Flagel, Shelly B
2018-04-01
The paraventricular nucleus of the thalamus (PVT) has been shown to mediate cue-motivated behaviors, such as sign- and goal-tracking, as well as reinstatement of drug-seeking behavior. However, the role of the PVT in mediating individual variation in cue-induced drug-seeking behavior remains unknown. This study aimed to determine if inactivation of the PVT differentially mediates cue-induced drug-seeking behavior in sign-trackers and goal-trackers. Rats were characterized as sign-trackers (STs) or goal-trackers (GTs) based on their Pavlovian conditioned approach behavior. Rats were then exposed to 15 days of cocaine self-administration, followed by a 2-week forced abstinence period and then extinction training. Rats then underwent tests for cue-induced reinstatement and general locomotor activity, prior to which they received an infusion of either saline (control) or baclofen/muscimol (B/M) to inactivate the PVT. Relative to control animals of the same phenotype, GTs show a robust increase in cue-induced drug-seeking behavior following PVT inactivation, whereas the behavior of STs was not affected. PVT inactivation did not affect locomotor activity in either phenotype. In GTs, the PVT appears to inhibit the expression of drug-seeking, presumably by attenuating the incentive value of the drug cue. Thus, inactivation of the PVT releases this inhibition in GTs, resulting in an increase in cue-induced drug-seeking behavior. PVT inactivation did not affect cue-induced drug-seeking behavior in STs, suggesting that the role of the PVT in encoding the incentive motivational value of drug cues differs between STs and GTs.
El-Amrawy, Fatema
2015-01-01
Objectives The new wave of wireless technologies, fitness trackers, and body sensor devices can have great impact on healthcare systems and the quality of life. However, there have not been enough studies to prove the accuracy and precision of these trackers. The objective of this study was to evaluate the accuracy, precision, and overall performance of seventeen wearable devices currently available compared with direct observation of step counts and heart rate monitoring. Methods Each participant in this study used three accelerometers at a time, running the three corresponding applications of each tracker on an Android or iOS device simultaneously. Each participant was instructed to walk 200, 500, and 1,000 steps. Each set was repeated 40 times. Data was recorded after each trial, and the mean step count, standard deviation, accuracy, and precision were estimated for each tracker. Heart rate was measured by all trackers (if applicable), which support heart rate monitoring, and compared to a positive control, the Onyx Vantage 9590 professional clinical pulse oximeter. Results The accuracy of the tested products ranged between 79.8% and 99.1%, while the coefficient of variation (precision) ranged between 4% and 17.5%. MisFit Shine showed the highest accuracy and precision (along with Qualcomm Toq), while Samsung Gear 2 showed the lowest accuracy, and Jawbone UP showed the lowest precision. However, Xiaomi Mi band showed the best package compared to its price. Conclusions The accuracy and precision of the selected fitness trackers are reasonable and can indicate the average level of activity and thus average energy expenditure. PMID:26618039
El-Amrawy, Fatema; Nounou, Mohamed Ismail
2015-10-01
The new wave of wireless technologies, fitness trackers, and body sensor devices can have great impact on healthcare systems and the quality of life. However, there have not been enough studies to prove the accuracy and precision of these trackers. The objective of this study was to evaluate the accuracy, precision, and overall performance of seventeen wearable devices currently available compared with direct observation of step counts and heart rate monitoring. Each participant in this study used three accelerometers at a time, running the three corresponding applications of each tracker on an Android or iOS device simultaneously. Each participant was instructed to walk 200, 500, and 1,000 steps. Each set was repeated 40 times. Data was recorded after each trial, and the mean step count, standard deviation, accuracy, and precision were estimated for each tracker. Heart rate was measured by all trackers (if applicable), which support heart rate monitoring, and compared to a positive control, the Onyx Vantage 9590 professional clinical pulse oximeter. The accuracy of the tested products ranged between 79.8% and 99.1%, while the coefficient of variation (precision) ranged between 4% and 17.5%. MisFit Shine showed the highest accuracy and precision (along with Qualcomm Toq), while Samsung Gear 2 showed the lowest accuracy, and Jawbone UP showed the lowest precision. However, Xiaomi Mi band showed the best package compared to its price. The accuracy and precision of the selected fitness trackers are reasonable and can indicate the average level of activity and thus average energy expenditure.
Into the deep: Evaluation of SourceTracker for assessment of faecal contamination of coastal waters.
Henry, Rebekah; Schang, Christelle; Coutts, Scott; Kolotelo, Peter; Prosser, Toby; Crosbie, Nick; Grant, Trish; Cottam, Darren; O'Brien, Peter; Deletic, Ana; McCarthy, David
2016-04-15
Faecal contamination of recreational waters is an increasing global health concern. Tracing the source of the contaminant is a vital step towards mitigation and disease prevention. Total 16S rRNA amplicon data for a specific environment (faeces, water, soil) and computational tools such as the Markov-Chain Monte Carlo based SourceTracker can be applied to microbial source tracking (MST) and attribution studies. The current study applied artificial and in-laboratory derived bacterial communities to define the potential and limitations associated with the use of SourceTracker, prior to its application for faecal source tracking at three recreational beaches near Port Phillip Bay (Victoria, Australia). The results demonstrated that at minimum multiple model runs of the SourceTracker modelling tool (i.e. technical replicates) were required to identify potential false positive predictions. The calculation of relative standard deviations (RSDs) for each attributed source improved overall predictive confidence in the results. In general, default parameter settings provided high sensitivity, specificity, accuracy and precision. Application of SourceTracker to recreational beach samples identified treated effluent as major source of human-derived faecal contamination, present in 69% of samples. Site-specific sources, such as raw sewage, stormwater and bacterial populations associated with the Yarra River estuary were also identified. Rainfall and associated sand resuspension at each location correlated with observed human faecal indicators. The results of the optimised SourceTracker analysis suggests that local sources of contamination have the greatest effect on recreational coastal water quality. Copyright © 2016 Elsevier Ltd. All rights reserved.
Ramot, Daniel; Johnson, Brandon E.; Berry, Tommie L.; Carnell, Lucinda; Goodman, Miriam B.
2008-01-01
Background Caenorhabditis elegans locomotion is a simple behavior that has been widely used to dissect genetic components of behavior, synaptic transmission, and muscle function. Many of the paradigms that have been created to study C. elegans locomotion rely on qualitative experimenter observation. Here we report the implementation of an automated tracking system developed to quantify the locomotion of multiple individual worms in parallel. Methodology/Principal Findings Our tracking system generates a consistent measurement of locomotion that allows direct comparison of results across experiments and experimenters and provides a standard method to share data between laboratories. The tracker utilizes a video camera attached to a zoom lens and a software package implemented in MATLAB®. We demonstrate several proof-of-principle applications for the tracker including measuring speed in the absence and presence of food and in the presence of serotonin. We further use the tracker to automatically quantify the time course of paralysis of worms exposed to aldicarb and levamisole and show that tracker performance compares favorably to data generated using a hand-scored metric. Conclusions/Signficance Although this is not the first automated tracking system developed to measure C. elegans locomotion, our tracking software package is freely available and provides a simple interface that includes tools for rapid data collection and analysis. By contrast with other tools, it is not dependent on a specific set of hardware. We propose that the tracker may be used for a broad range of additional worm locomotion applications including genetic and chemical screening. PMID:18493300
Tripi, Jordan A; Dent, Micheal L; Meyer, Paul J
2017-02-01
Individuals prone to attribute incentive salience to food-associated stimuli ("cues") are also more sensitive to cues during drug seeking and drug taking. This may be due in part to a difference in sensitivity to the affective or other stimulus properties of the drug. In rats, these properties are associated with 50-kHz ultrasonic vocalizations (USVs), in that they are elicited during putative positive affective and motivational states, including in response to drugs of abuse. We sought to determine whether individual differences in the tendency to attribute incentive salience to a food cue (as measured by approach) were associated with differences in cocaine-induced USVs. We also tested whether the food cue would elicit USVs and if this response was related to approach to the food cue. In experiment 1, rats underwent Pavlovian conditioned approach (PavCA) training where they learned to associate a cue (an illuminated lever) with the delivery of a food pellet into a food cup. Subjects were categorized based on their approach to the cue ("sign-trackers") or to the food cup ("goal-trackers"). Rats subsequently underwent nine testing days in which they were given saline or cocaine (10 mg/kg i.p) and placed into a locomotor chamber. In experiment 2, rats were first tested in the locomotor chambers for one saline-treated day followed by one cocaine-treated day and then trained in PavCA. USVs were recorded from a subset of individuals during the last day of PavCA to determine if the food cue would elicit USVs. Sign-trackers produced 5-24 times more cocaine-induced 50 kHz USVs compared to goal-trackers for all days of experiment 1, and this response sensitized with repeated cocaine, only in sign-trackers. Similarly in experiment 2, individuals that produced the most cocaine-induced USVs on a single exposure also showed the greatest tendency to sign-track during PavCA. Lastly, while sign-trackers produced more USVs during PavCA generally, the cue itself did not elicit additional USVs in sign- or goal-trackers. These results indicate a robust and consistent relationship between approach to a food cue and cocaine-induced USV production. Thus, these USVs may index the neurobiological differences underlying the behavioral distinctions of sign- and goal-trackers.
Controlling the stoichiometry and doping of semiconductor materials
Albin, David; Burst, James; Metzger, Wyatt; Duenow, Joel; Farrell, Stuart; Colegrove, Eric
2016-08-16
Methods for treating a semiconductor material are provided. According to an aspect of the invention, the method includes annealing the semiconductor material in the presence of a compound that includes a first element and a second element. The first element provides an overpressure to achieve a desired stoichiometry of the semiconductor material, and the second element provides a dopant to the semiconductor material.
SRC Engineering Research Center for Environmentally Benign Semiconductor Manufacturing (ERC ) ** Bringing Sustainability to Semiconductor Manufacturing ** A multi-university research center leading the way to environmentally friendly semiconductor manufacturing, sponsored by the Semiconductor Research
Bi-Se doped with Cu, p-type semiconductor
Bhattacharya, Raghu Nath; Phok, Sovannary; Parilla, Philip Anthony
2013-08-20
A Bi--Se doped with Cu, p-type semiconductor, preferably used as an absorber material in a photovoltaic device. Preferably the semiconductor has at least 20 molar percent Cu. In a preferred embodiment, the semiconductor comprises at least 28 molar percent of Cu. In one embodiment, the semiconductor comprises a molar percentage of Cu and Bi whereby the molar percentage of Cu divided by the molar percentage of Bi is greater than 1.2. In a preferred embodiment, the semiconductor is manufactured as a thin film having a thickness less than 600 nm.
Weiss, Shimon; Bruchez, Jr., Marcel; Alivisatos, Paul
2006-09-05
A semiconductor nanocrystal compound is described capable of linking to an affinity molecule. The compound comprises (1) a semiconductor nanocrystal capable of emitting electromagnetic radiation and/or absorbing energy, and/or scattering or diffracting electromagnetic radiation--when excited by an electromagnetic radiation source or a particle beam; and (2) at least one linking agent, having a first portion linked to the semiconductor nanocrystal and a second portion capable of linking to an affinity molecule. The compound is linked to an affinity molecule to form a semiconductor nanocrystal probe capable of bonding with a detectable substance. subsequent exposure to excitation energy will excite the semiconductor nanocrystal in the probe causing the emission of electromagnetic radiation. Further described are processes for respectively: making the luminescent semiconductor nanocrystal compound; making the semiconductor nanocrystal probe; and using the probe to determine the presence of a detectable substance in a material.
Weiss, Shimon [Pinole, CA; Bruchez, Jr., Marcel; Alivisatos, Paul [Oakland, CA
2004-03-02
A semiconductor nanocrystal compound is described capable of linking to an affinity molecule. The compound comprises (1) a semiconductor nanocrystal capable of emitting electromagnetic radiation and/or absorbing energy, and/or scattering or diffracting electromagnetic radiation--when excited by an electromagnetic radiation source or a particle beam; and (2) at least one linking agent, having a first portion linked to the semiconductor nanocrystal and a second portion capable of linking to an affinity molecule. The compound is linked to an affinity molecule to form a semiconductor nanocrystal probe capable of bonding with a detectable substance. Subsequent exposure to excitation energy will excite the semiconductor nanocrystal in the probe, causing the emission of electromagnetic radiation. Further described are processes for respectively: making the semiconductor nanocrystal compound; making the semiconductor nanocrystal probe; and using the probe to determine the presence of a detectable substance in a material.
Weiss, Shimon; Bruchez, Jr., Marcel; Alivisatos, Paul
2005-08-09
A semiconductor nanocrystal compound is described capable of linking to an affinity molecule. The compound comprises (1) a semiconductor nanocrystal capable of emitting electromagnetic radiation and/or absorbing energy, and/or scattering or diffracting electromagnetic radiation--when excited by an electromagnetic radiation source or a particle beam; and (2) at least one linking agent, having a first portion linked to the semiconductor nanocrystal and a second portion capable of linking to an affinity molecule. The compound is linked to an affinity molecule to form a semiconductor nanocrystal probe capable of bonding with a detectable substance. Subsequent exposure to excitation energy will excite the semiconductor nanocrystal in the probe causing the emission of electromagnetic radiation. Further described are processes for respectively: making the luminescent semiconductor nanocrystal compound; making the semiconductor nanocrystal probe; and using the probe to determine the presence of a detectable substance in a material.
Weiss, Shimon; Bruchez, Jr., Marcel; Alivisatos, Paul
2002-01-01
A semiconductor nanocrystal compound is described capable of linking to an affinity molecule. The compound comprises (1) a semiconductor nanocrystal capable of emitting electromagnetic radiation and/or absorbing energy, and/or scattering or diffracting electromagnetic radiation--when excited by an electromagnetic radiation source or a particle beam; and (2) at least one linking agent, having a first portion linked to the semiconductor nanocrystal and a second portion capable of linking to an affity molecule. The compound is linked to an affinity molecule to form a semiconductor nanocrystal probe capable of bonding with a detectable substance. Subsequent exposure to excitation energy will excite the semiconductor nanocrystal in he probe, causing the emission of electromagnetic radiation. Further described are processes for respectively: making the semiconductor nanocrystal compound; making the semiconductor nanocrystal probe; and using the probe to determine the presence of a detectable substance in a material.
Back-side readout semiconductor photomultiplier
Choong, Woon-Seng; Holland, Stephen E
2014-05-20
This disclosure provides systems, methods, and apparatus related to semiconductor photomultipliers. In one aspect, a device includes a p-type semiconductor substrate, the p-type semiconductor substrate having a first side and a second side, the first side of the p-type semiconductor substrate defining a recess, and the second side of the p-type semiconductor substrate being doped with n-type ions. A conductive material is disposed in the recess. A p-type epitaxial layer is disposed on the second side of the p-type semiconductor substrate. The p-type epitaxial layer includes a first region proximate the p-type semiconductor substrate, the first region being implanted with p-type ions at a higher doping level than the p-type epitaxial layer, and a second region disposed on the first region, the second region being doped with p-type ions at a higher doping level than the first region.
Bulk semiconducting scintillator device for radiation detection
Stowe, Ashley C.; Burger, Arnold; Groza, Michael
2016-08-30
A bulk semiconducting scintillator device, including: a Li-containing semiconductor compound of general composition Li-III-VI.sub.2, wherein III is a Group III element and VI is a Group VI element; wherein the Li-containing semiconductor compound is used in one or more of a first mode and a second mode, wherein: in the first mode, the Li-containing semiconductor compound is coupled to an electrical circuit under bias operable for measuring electron-hole pairs in the Li-containing semiconductor compound in the presence of neutrons and the Li-containing semiconductor compound is also coupled to current detection electronics operable for detecting a corresponding current in the Li-containing semiconductor compound; and, in the second mode, the Li-containing semiconductor compound is coupled to a photodetector operable for detecting photons generated in the Li-containing semiconductor compound in the presence of the neutrons.
Sintered silver joints via controlled topography of electronic packaging subcomponents
Wereszczak, Andrew A.
2014-09-02
Disclosed are sintered silver bonded electronic package subcomponents and methods for making the same. Embodiments of the sintered silver bonded EPSs include topography modification of one or more metal surfaces of semiconductor devices bonded together by the sintered silver joint. The sintered silver bonded EPSs include a first semiconductor device having a first metal surface, the first metal surface having a modified topography that has been chemically etched, grit blasted, uniaxial ground and/or grid sliced connected to a second semiconductor device which may also include a first metal surface with a modified topography, a silver plating layer on the first metal surface of the first semiconductor device and a silver plating layer on the first metal surface of the second semiconductor device and a sintered silver joint between the silver plating layers of the first and second semiconductor devices which bonds the first semiconductor device to the second semiconductor device.
Weiss, Shimon; Bruchez, Marcel; Alivisatos, Paul
2014-01-28
A semiconductor nanocrystal compound and probe are described. The compound is capable of linking to one or more affinity molecules. The compound comprises (1) one or more semiconductor nanocrystals capable of, in response to exposure to a first energy, providing a second energy, and (2) one or more linking agents, having a first portion linked to the one or more semiconductor nanocrystals and a second portion capable of linking to one or more affinity molecules. One or more semiconductor nanocrystal compounds are linked to one or more affinity molecules to form a semiconductor nanocrystal probe capable of bonding with one or more detectable substances in a material being analyzed, and capable of, in response to exposure to a first energy, providing a second energy. Also described are processes for respectively: making the semiconductor nanocrystal compound; making the semiconductor nanocrystal probe; and treating materials with the probe.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weiss, Shimon; Bruchez, Marcel; Alivisatos, Paul A.
2016-12-27
A semiconductor nanocrystal compound and probe are described. The compound is capable of linking to one or more affinity molecules. The compound comprises (1) one or more semiconductor nanocrystals capable of, in response to exposure to a first energy, providing a second energy, and (2) one or more linking agents, having a first portion linked to the one or more semiconductor nanocrystals and a second portion capable of linking to one or more affinity molecules. One or more semiconductor nanocrystal compounds are linked to one or more affinity molecules to form a semiconductor nanocrystal probe capable of bonding with onemore » or more detectable substances in a material being analyzed, and capable of, in response to exposure to a first energy, providing a second energy. Also described are processes for respectively: making the semiconductor nanocrystal compound; making the semiconductor nanocrystal probe; and treating materials with the probe.« less
NASA Astrophysics Data System (ADS)
Moriya, Gentaro; Chikatsu, Hirofumi
2011-07-01
Recently, pixel numbers and functions of consumer grade digital camera are amazingly increasing by modern semiconductor and digital technology, and there are many low-priced consumer grade digital cameras which have more than 10 mega pixels on the market in Japan. In these circumstances, digital photogrammetry using consumer grade cameras is enormously expected in various application fields. There is a large body of literature on calibration of consumer grade digital cameras and circular target location. Target location with subpixel accuracy had been investigated as a star tracker issue, and many target location algorithms have been carried out. It is widely accepted that the least squares models with ellipse fitting is the most accurate algorithm. However, there are still problems for efficient digital close range photogrammetry. These problems are reconfirmation of the target location algorithms with subpixel accuracy for consumer grade digital cameras, relationship between number of edge points along target boundary and accuracy, and an indicator for estimating the accuracy of normal digital close range photogrammetry using consumer grade cameras. With this motive, an empirical testing of several algorithms for target location with subpixel accuracy and an indicator for estimating the accuracy are investigated in this paper using real data which were acquired indoors using 7 consumer grade digital cameras which have 7.2 mega pixels to 14.7 mega pixels.
Semiconductor electrode with improved photostability characteristics
Frank, A.J.
1985-02-19
An electrode is described for use in photoelectrochemical cells having an electrolyte which includes an aqueous constituent. The electrode consists of a semiconductor and a hydrophobic film disposed between the semiconductor and the aqueous constituent. The hydrophobic film is adapted to permit charges to pass therethrough while substantially decreasing the activity of the aqueous constituent at the semiconductor surface thereby decreasing the photodegradation of the semiconductor electrode.
Semiconductor electrode with improved photostability characteristics
Frank, Arthur J.
1987-01-01
An electrode is disclosed for use in photoelectrochemical cells having an electrolyte which includes an aqueous constituent. The electrode includes a semiconductor and a hydrophobic film disposed between the semiconductor and the aqueous constituent. The hydrophobic film is adapted to permit charges to pass therethrough while substantially decreasing the activity of the aqueous constituent at the semiconductor surface thereby decreasing the photodegradation of the semiconductor electrode.
Remote control radioactive-waste removal system uses modulated laser transmitter
NASA Technical Reports Server (NTRS)
Burcher, E. E.; Kopia, L. P.; Rowland, C. W.; Sinclair, A. R.
1971-01-01
Laser remote control system consists of transmitter, auto tracker, and receiver. Transmitter and tracker, packaged together and bore sighted, constitute control station, receiver is slave station. Model has five command channels and optical link operating range of 110 m.
Enhanced online convolutional neural networks for object tracking
NASA Astrophysics Data System (ADS)
Zhang, Dengzhuo; Gao, Yun; Zhou, Hao; Li, Tianwen
2018-04-01
In recent several years, object tracking based on convolution neural network has gained more and more attention. The initialization and update of convolution filters can directly affect the precision of object tracking effective. In this paper, a novel object tracking via an enhanced online convolution neural network without offline training is proposed, which initializes the convolution filters by a k-means++ algorithm and updates the filters by an error back-propagation. The comparative experiments of 7 trackers on 15 challenging sequences showed that our tracker can perform better than other trackers in terms of AUC and precision.
A laser-based eye-tracking system.
Irie, Kenji; Wilson, Bruce A; Jones, Richard D; Bones, Philip J; Anderson, Tim J
2002-11-01
This paper reports on the development of a new eye-tracking system for noninvasive recording of eye movements. The eye tracker uses a flying-spot laser to selectively image landmarks on the eye and, subsequently, measure horizontal, vertical, and torsional eye movements. Considerable work was required to overcome the adverse effects of specular reflection of the flying-spot from the surface of the eye onto the sensing elements of the eye tracker. These effects have been largely overcome, and the eye-tracker has been used to document eye movement abnormalities, such as abnormal torsional pulsion of saccades, in the clinical setting.
Design of a cost-effective laser spot tracker
NASA Astrophysics Data System (ADS)
Artan, Göktuǧ Gencehan; Sari, Hüseyin
2017-05-01
One of the most important aspects of guided systems is detection. The most convenient detection in the sense of precision can be achieved with a laser spot tracker. This study deals with a military grade, high performance and cost-effective laser spot tracker for a guided system. The aim is to develop a high field of view system that will detect a laser spot from a distance of 3 kilometers in which the target is designated from 3 kilometers with a laser. The study basically consists of the system design, modeling, producing and the conducting performance tests of the whole system.
Low-Frequency Error Extraction and Compensation for Attitude Measurements from STECE Star Tracker
Lai, Yuwang; Gu, Defeng; Liu, Junhong; Li, Wenping; Yi, Dongyun
2016-01-01
The low frequency errors (LFE) of star trackers are the most penalizing errors for high-accuracy satellite attitude determination. Two test star trackers- have been mounted on the Space Technology Experiment and Climate Exploration (STECE) satellite, a small satellite mission developed by China. To extract and compensate the LFE of the attitude measurements for the two test star trackers, a new approach, called Fourier analysis, combined with the Vondrak filter method (FAVF) is proposed in this paper. Firstly, the LFE of the two test star trackers’ attitude measurements are analyzed and extracted by the FAVF method. The remarkable orbital reproducibility features are found in both of the two test star trackers’ attitude measurements. Then, by using the reproducibility feature of the LFE, the two star trackers’ LFE patterns are estimated effectively. Finally, based on the actual LFE pattern results, this paper presents a new LFE compensation strategy. The validity and effectiveness of the proposed LFE compensation algorithm is demonstrated by the significant improvement in the consistency between the two test star trackers. The root mean square (RMS) of the relative Euler angle residuals are reduced from [27.95′′, 25.14′′, 82.43′′], 3σ to [16.12′′, 15.89′′, 53.27′′], 3σ. PMID:27754320
DOE Office of Scientific and Technical Information (OSTI.GOV)
Argo, P.E.; DeLapp, D.; Sutherland, C.D.
TRACKER is an extension of a three-dimensional Hamiltonian raytrace code developed some thirty years ago by R. Michael Jones. Subsequent modifications to this code, which is commonly called the {open_quotes}Jones Code,{close_quotes} were documented by Jones and Stephensen (1975). TRACKER incorporates an interactive user`s interface, modern differential equation integrators, graphical outputs, homing algorithms, and the Ionospheric Conductivity and Electron Density (ICED) ionosphere. TRACKER predicts the three-dimensional paths of radio waves through model ionospheres by numerically integrating Hamilton`s equations, which are a differential expression of Fermat`s principle of least time. By using continuous models, the Hamiltonian method avoids false caustics and discontinuousmore » raypath properties often encountered in other raytracing methods. In addition to computing the raypath, TRACKER also calculates the group path (or pulse travel time), the phase path, the geometrical (or {open_quotes}real{close_quotes}) pathlength, and the Doppler shift (if the time variation of the ionosphere is explicitly included). Computational speed can be traded for accuracy by specifying the maximum allowable integration error per step in the integration. Only geometrical optics are included in the main raytrace code; no partial reflections or diffraction effects are taken into account. In addition, TRACKER does not lend itself to statistical descriptions of propagation -- it requires a deterministic model of the ionosphere.« less
Popelka, Stanislav; Stachoň, Zdeněk; Šašinka, Čeněk; Doležalová, Jitka
2016-01-01
The mixed research design is a progressive methodological discourse that combines the advantages of quantitative and qualitative methods. Its possibilities of application are, however, dependent on the efficiency with which the particular research techniques are used and combined. The aim of the paper is to introduce the possible combination of Hypothesis with EyeTribe tracker. The Hypothesis is intended for quantitative data acquisition and the EyeTribe is intended for qualitative (eye-tracking) data recording. In the first part of the paper, Hypothesis software is described. The Hypothesis platform provides an environment for web-based computerized experiment design and mass data collection. Then, evaluation of the accuracy of data recorded by EyeTribe tracker was performed with the use of concurrent recording together with the SMI RED 250 eye-tracker. Both qualitative and quantitative results showed that data accuracy is sufficient for cartographic research. In the third part of the paper, a system for connecting EyeTribe tracker and Hypothesis software is presented. The interconnection was performed with the help of developed web application HypOgama. The created system uses open-source software OGAMA for recording the eye-movements of participants together with quantitative data from Hypothesis. The final part of the paper describes the integrated research system combining Hypothesis and EyeTribe.
Stachoň, Zdeněk; Šašinka, Čeněk; Doležalová, Jitka
2016-01-01
The mixed research design is a progressive methodological discourse that combines the advantages of quantitative and qualitative methods. Its possibilities of application are, however, dependent on the efficiency with which the particular research techniques are used and combined. The aim of the paper is to introduce the possible combination of Hypothesis with EyeTribe tracker. The Hypothesis is intended for quantitative data acquisition and the EyeTribe is intended for qualitative (eye-tracking) data recording. In the first part of the paper, Hypothesis software is described. The Hypothesis platform provides an environment for web-based computerized experiment design and mass data collection. Then, evaluation of the accuracy of data recorded by EyeTribe tracker was performed with the use of concurrent recording together with the SMI RED 250 eye-tracker. Both qualitative and quantitative results showed that data accuracy is sufficient for cartographic research. In the third part of the paper, a system for connecting EyeTribe tracker and Hypothesis software is presented. The interconnection was performed with the help of developed web application HypOgama. The created system uses open-source software OGAMA for recording the eye-movements of participants together with quantitative data from Hypothesis. The final part of the paper describes the integrated research system combining Hypothesis and EyeTribe. PMID:27087805
NASA Technical Reports Server (NTRS)
Lee, Michael
1995-01-01
Since the original post-launch calibration of the FHSTs (Fixed Head Star Trackers) on EUVE (Extreme Ultraviolet Explorer) and UARS (Upper Atmosphere Research Satellite), the Flight Dynamics task has continued to analyze the FHST performance. The algorithm used for inflight alignment of spacecraft sensors is described and the equations for the errors in the relative alignment for the simple 2 star tracker case are shown. Simulated data and real data are used to compute the covariance of the relative alignment errors. Several methods for correcting the alignment are compared and results analyzed. The specific problems seen on orbit with UARS and EUVE are then discussed. UARS has experienced anomalous tracker performance on an FHST resulting in continuous variation in apparent tracker alignment. On EUVE, the FHST residuals from the attitude determination algorithm showed a dependence on the direction of roll during survey mode. This dependence is traced back to time tagging errors and the original post launch alignment is found to be in error due to the impact of the time tagging errors on the alignment algorithm. The methods used by the FDF (Flight Dynamics Facility) to correct for these problems is described.
Could we do better? Behavioural tracking on recommended consumer health websites.
Burkell, Jacquelyn; Fortier, Alexandre
2015-09-01
This study examines behavioural tracking practices on consumer health websites, contrasting tracking on sites recommended by information professionals with tracking on sites returned by Google. Two lists of consumer health websites were constructed: sites recommended by information professionals and sites returned by Google searches. Sites were divided into three groups according to source (Recommended-Only, Google-Only or both) and type (Government, Not-for-Profit or Commercial). Behavioural tracking practices on each website were documented using a protocol that detected cookies, Web beacons and Flash cookies. The presence and the number of trackers that collect personal information were contrasted across source and type of site; a second set of analyses specifically examined Advertising trackers. Recommended-Only sites show lower levels of tracking - especially tracking by advertisers - than do Google-Only sites or sites found through both sources. Government and Not-for-Profit sites have fewer trackers, particularly from advertisers, than do Commercial sites. Recommended sites, especially those from Government or Not-for-Profit organisations, present a lower privacy threat than sites returned by Google searches. Nonetheless, most recommended websites include some trackers, and half include at least one Advertising tracker. To protect patron privacy, information professionals should examine the tracking practices of the websites they recommend. © 2015 Health Libraries Group.
NASA Astrophysics Data System (ADS)
Riegel, C.; Backhaus, M.; Van Hoorne, J. W.; Kugathasan, T.; Musa, L.; Pernegger, H.; Riedler, P.; Schaefer, D.; Snoeys, W.; Wagner, W.
2017-01-01
A part of the upcoming HL-LHC upgrade of the ATLAS Detector is the construction of a new Inner Tracker. This upgrade opens new possibilities, but also presents challenges in terms of occupancy and radiation tolerance. For the pixel detector inside the inner tracker, hybrid modules containing passive silicon sensors and connected readout chips are presently used, but require expensive assembly techniques like fine-pitch bump bonding. Silicon devices fabricated in standard commercial CMOS technologies, which include part or all of the readout chain, are also investigated offering a reduced cost as they are cheaper per unit area than traditional silicon detectors. If they contain the full readout chain, as for a fully monolithic approach, there is no need for the expensive flip-chip assembly, resulting in a further cost reduction and material savings. In the outer pixel layers of the ATLAS Inner Tracker, the pixel sensors must withstand non-ionising energy losses of up to 1015 n/cm2 and offer a timing resolution of 25 ns or less. This paper presents test results obtained on a monolithic test chip, the TowerJazz 180nm Investigator, towards these specifications. The presented program of radiation hardness and timing studies has been launched to investigate this technology's potential for the new ATLAS Inner Tracker.
Kim, Youngdeok; Lumpkin, Angela; Lochbaum, Marc; Stegemeier, Steven; Kitten, Karla
2018-08-01
This study examined the effects of utilizing a wearable activity tracker in a credit-based physical activity instructional program (PAIP) for promoting physical activity (PA) in college students. Fourteen PAIP courses in a large public university were randomly assigned into intervention (k = 7; n = 101) and control (k = 7; n = 86) groups. All courses focused on a core curriculum that covers basic exercise and behavioral science contents through lectures and activity sessions. A Misfit Flash activity tracker was provided to students in the intervention group. Objective PA assessments occurred at baseline, mid-, and end-of-semester during a 15-week academic semester. The control group showed a significant reduction in moderate- and vigorous-intensity PA (MVPA) minutes from baseline to the end-of-semester (P <.05), whereas the intervention group showed no changes in MVPA minutes over time. However, the intervention group also showed increased sedentary time and decreased time spent in light-intensity PA during the intervention period. Taken together, the present study found null effects of utilizing the wearable activity tracker in promoting PA in college students suggesting that intervention of primary using the wearable activity tracker as a behavior change strategy may not be effective to increase in PA in this setting.
Tsai, Jason Sheng-Hong; Du, Yan-Yi; Huang, Pei-Hsiang; Guo, Shu-Mei; Shieh, Leang-San; Chen, Yuhua
2011-07-01
In this paper, a digital redesign methodology of the iterative learning-based decentralized adaptive tracker is proposed to improve the dynamic performance of sampled-data linear large-scale control systems consisting of N interconnected multi-input multi-output subsystems, so that the system output will follow any trajectory which may not be presented by the analytic reference model initially. To overcome the interference of each sub-system and simplify the controller design, the proposed model reference decentralized adaptive control scheme constructs a decoupled well-designed reference model first. Then, according to the well-designed model, this paper develops a digital decentralized adaptive tracker based on the optimal analog control and prediction-based digital redesign technique for the sampled-data large-scale coupling system. In order to enhance the tracking performance of the digital tracker at specified sampling instants, we apply the iterative learning control (ILC) to train the control input via continual learning. As a result, the proposed iterative learning-based decentralized adaptive tracker not only has robust closed-loop decoupled property but also possesses good tracking performance at both transient and steady state. Besides, evolutionary programming is applied to search for a good learning gain to speed up the learning process of ILC. Copyright © 2011 ISA. Published by Elsevier Ltd. All rights reserved.
Participatory Sensing Marine Debris: Current Trends and Future Opportunities
NASA Astrophysics Data System (ADS)
Jambeck, J.; Johnsen, K.
2016-02-01
The monitoring of litter and debris is challenging at the global scale because of spatial and temporal variability, disconnected local organizations and the use of paper and pen for documentation. The Marine Debris Tracker mobile app and citizen science program allows for the collection of global standardized data at a scale, speed and efficiency that was not previously possible. The app itself also serves as an outreach and education tool, creating an engaged participatory sensing instrument. This instrument is characterized by several aspects including range and frequency, accuracy and precision, accessibility, measurement dimensions, participant performance, and statistical analysis. Also, important to Marine Debris Tracker is open data and transparency. A web portal provides data that users have logged allowing immediate feedback to users and additional education opportunities. The engagement of users through a top tracker competition and social media keeps participants interested in the Marine Debris Tracker community. Over half a million items have been tracked globally, and maps provide both global and local distribution of data. The Marine Debris Tracker community and dataset continues to grow daily. We will present current usage and engagement, participatory sensing data distributions, choropleth maps of areas of active tracking, and discuss future technologies and platforms to expand data collection and conduct statistical analysis.
Sloan, Robert A; Kim, Youngdeok; Sahasranaman, Aarti; Müller-Riemenschneider, Falk; Biddle, Stuart J H; Finkelstein, Eric A
2018-03-22
A recent meta-analysis surmised pedometers were a useful panacea to independently reduce sedentary time (ST). To further test and expand on this deduction, we analyzed the ability of a consumer-wearable activity tracker to reduce ST and prolonged sedentary bouts (PSB). We originally conducted a 12-month randomized control trial where 800 employees from 13 organizations were assigned to control, activity tracker, or one of two activity tracker plus incentive groups designed to increase step count. The primary outcome was accelerometer measured moderate-to-vigorous physical activity. We conducted a secondary analysis on accelerometer measured daily ST and PSB bouts. A general linear mixed model was used to examine changes in ST and prolonged sedentary bouts, followed by between-group pairwise comparisons. Regression analyses were conducted to examine the association of changes in step counts with ST and PSB. The changes in ST and PSB were not statistically significant and not different between the groups (P < 0.05). Increases in step counts were concomitantly associated with decreases in ST and PSB, regardless of intervention (P < 0.05). Caution should be taken when considering consumer-wearable activity trackers as a means to reduce sedentary behavior. Trial registration NCT01855776 Registered: August 8, 2012.
Brakenridge, C L; Fjeldsoe, B S; Young, D C; Winkler, E A H; Dunstan, D W; Straker, L M; Healy, G N
2016-11-04
Office workers engage in high levels of sitting time. Effective, context-specific, and scalable strategies are needed to support widespread sitting reduction. This study aimed to evaluate organisational-support strategies alone or in combination with an activity tracker to reduce sitting in office workers. From one organisation, 153 desk-based office workers were cluster-randomised (by team) to organisational support only (e.g., manager support, emails; 'Group ORG', 9 teams, 87 participants), or organisational support plus LUMOback activity tracker ('Group ORG + Tracker', 9 teams, 66 participants). The waist-worn tracker provided real-time feedback and prompts on sitting and posture. ActivPAL3 monitors were used to ascertain primary outcomes (sitting time during work- and overall hours) and other activity outcomes: prolonged sitting time (≥30 min bouts), time between sitting bouts, standing time, stepping time, and number of steps. Health and work outcomes were assessed by questionnaire. Changes within each group (three- and 12 months) and differences between groups were analysed by linear mixed models. Missing data were multiply imputed. At baseline, participants (46 % women, 23-58 years) spent (mean ± SD) 74.3 ± 9.7 % of their workday sitting, 17.5 ± 8.3 % standing and 8.1 ± 2.7 % stepping. Significant (p < 0.05) reductions in sitting time (both work and overall) were observed within both groups, but only at 12 months. For secondary activity outcomes, Group ORG significantly improved in work prolonged sitting, time between sitting bouts and standing time, and overall prolonged sitting time (12 months), and in overall standing time (three- and 12 months); while Group ORG + Tracker, significantly improved in work prolonged sitting, standing, stepping and overall standing time (12 months). Adjusted for confounders, the only significant between-group differences were a greater stepping time and step count for Group ORG + Tracker relative to Group ORG (+20.6 min/16 h day, 95 % CI: 3.1, 38.1, p = 0.021; +846.5steps/16 h day, 95 % CI: 67.8, 1625.2, p = 0.033) at 12 months. Observed changes in health and work outcomes were small and not statistically significant. Organisational-support strategies with or without an activity tracker resulted in improvements in sitting, prolonged sitting and standing; adding a tracker enhanced stepping changes. Improvements were most evident at 12 months, suggesting the organisational-support strategies may have taken time to embed within the organisation. Australian New Zealand Clinical Trial Registry: ACTRN12614000252617 . Registered 10 March 2014.
A room-temperature magnetic semiconductor from a ferromagnetic metallic glass.
Liu, Wenjian; Zhang, Hongxia; Shi, Jin-An; Wang, Zhongchang; Song, Cheng; Wang, Xiangrong; Lu, Siyuan; Zhou, Xiangjun; Gu, Lin; Louzguine-Luzgin, Dmitri V; Chen, Mingwei; Yao, Kefu; Chen, Na
2016-12-08
Emerging for future spintronic/electronic applications, magnetic semiconductors have stimulated intense interest due to their promises for new functionalities and device concepts. So far, the so-called diluted magnetic semiconductors attract many attentions, yet it remains challenging to increase their Curie temperatures above room temperature, particularly those based on III-V semiconductors. In contrast to the concept of doping magnetic elements into conventional semiconductors to make diluted magnetic semiconductors, here we propose to oxidize originally ferromagnetic metals/alloys to form new species of magnetic semiconductors. We introduce oxygen into a ferromagnetic metallic glass to form a Co 28.6 Fe 12.4 Ta 4.3 B 8.7 O 46 magnetic semiconductor with a Curie temperature above 600 K. The demonstration of p-n heterojunctions and electric field control of the room-temperature ferromagnetism in this material reflects its p-type semiconducting character, with a mobility of 0.1 cm 2 V -1 s -1 . Our findings may pave a new way to realize high Curie temperature magnetic semiconductors with unusual multifunctionalities.
A room-temperature magnetic semiconductor from a ferromagnetic metallic glass
Liu, Wenjian; Zhang, Hongxia; Shi, Jin-an; Wang, Zhongchang; Song, Cheng; Wang, Xiangrong; Lu, Siyuan; Zhou, Xiangjun; Gu, Lin; Louzguine-Luzgin, Dmitri V.; Chen, Mingwei; Yao, Kefu; Chen, Na
2016-01-01
Emerging for future spintronic/electronic applications, magnetic semiconductors have stimulated intense interest due to their promises for new functionalities and device concepts. So far, the so-called diluted magnetic semiconductors attract many attentions, yet it remains challenging to increase their Curie temperatures above room temperature, particularly those based on III–V semiconductors. In contrast to the concept of doping magnetic elements into conventional semiconductors to make diluted magnetic semiconductors, here we propose to oxidize originally ferromagnetic metals/alloys to form new species of magnetic semiconductors. We introduce oxygen into a ferromagnetic metallic glass to form a Co28.6Fe12.4Ta4.3B8.7O46 magnetic semiconductor with a Curie temperature above 600 K. The demonstration of p–n heterojunctions and electric field control of the room-temperature ferromagnetism in this material reflects its p-type semiconducting character, with a mobility of 0.1 cm2 V−1 s−1. Our findings may pave a new way to realize high Curie temperature magnetic semiconductors with unusual multifunctionalities. PMID:27929059
Where the chips fall: environmental health in the semiconductor industry.
Chepesiuk, R
1999-09-01
Three recent lawsuits are focusing public attention on the environmental and occupational health effects of the world's largest and fastest growing manufacturing sector-the $150 billion semiconductor industry. The suits allege that exposure to toxic chemicals in semiconductor manufacturing plants led to adverse health effects such as miscarriage and cancer among workers. To manufacture computer components, the semiconductor industry uses large amounts of hazardous chemicals including hydrochloric acid, toxic metals and gases, and volatile solvents. Little is known about the long-term health consequences of exposure to chemicals by semiconductor workers. According to industry critics, the semiconductor industry also adversely impacts the environment, causing groundwater and air pollution and generating toxic waste as a by-product of the semiconductor manufacturing process. In contrast, the U.S. Bureau of Statistics shows the semiconductor industry as having a worker illness rate of about one-third of the average of all manufacturers, and advocates defend the industry, pointing to recent research collaborations and product replacement as proof that semiconductor manufacturers adequately protect both their employees and the environment.
Where the chips fall: environmental health in the semiconductor industry.
Chepesiuk, R
1999-01-01
Three recent lawsuits are focusing public attention on the environmental and occupational health effects of the world's largest and fastest growing manufacturing sector-the $150 billion semiconductor industry. The suits allege that exposure to toxic chemicals in semiconductor manufacturing plants led to adverse health effects such as miscarriage and cancer among workers. To manufacture computer components, the semiconductor industry uses large amounts of hazardous chemicals including hydrochloric acid, toxic metals and gases, and volatile solvents. Little is known about the long-term health consequences of exposure to chemicals by semiconductor workers. According to industry critics, the semiconductor industry also adversely impacts the environment, causing groundwater and air pollution and generating toxic waste as a by-product of the semiconductor manufacturing process. In contrast, the U.S. Bureau of Statistics shows the semiconductor industry as having a worker illness rate of about one-third of the average of all manufacturers, and advocates defend the industry, pointing to recent research collaborations and product replacement as proof that semiconductor manufacturers adequately protect both their employees and the environment. PMID:10464084
RMG An Open Source Electronic Structure Code for Multi-Petaflops Calculations
NASA Astrophysics Data System (ADS)
Briggs, Emil; Lu, Wenchang; Hodak, Miroslav; Bernholc, Jerzy
RMG (Real-space Multigrid) is an open source, density functional theory code for quantum simulations of materials. It solves the Kohn-Sham equations on real-space grids, which allows for natural parallelization via domain decomposition. Either subspace or Davidson diagonalization, coupled with multigrid methods, are used to accelerate convergence. RMG is a cross platform open source package which has been used in the study of a wide range of systems, including semiconductors, biomolecules, and nanoscale electronic devices. It can optionally use GPU accelerators to improve performance on systems where they are available. The recently released versions (>2.0) support multiple GPU's per compute node, have improved performance and scalability, enhanced accuracy and support for additional hardware platforms. New versions of the code are regularly released at http://www.rmgdft.org. The releases include binaries for Linux, Windows and MacIntosh systems, automated builds for clusters using cmake, as well as versions adapted to the major supercomputing installations and platforms. Several recent, large-scale applications of RMG will be discussed.
Electrical-optical characterization of multijunction solar cells under 2000X concentration
NASA Astrophysics Data System (ADS)
Bonsignore, Gaetano; Gallitto, Aurelio Agliolo; Agnello, Simonpietro; Barbera, Marco; Candia, Roberto; Cannas, Marco; Collura, Alfonso; Dentici, Ignazio; Gelardi, Franco Mario; Cicero, Ugo Lo; Montagnino, Fabio Maria; Paredes, Filippo; Sciortino, Luisa
2014-09-01
In the framework of the FAE "Fotovoltaico ad Alta Efficienza" ("High Efficiency Photovoltaic") Research Project (PO FESR Sicilia 2007/2013 4.1.1.1), we have performed electrical and optical characterizations of commercial InGaP/InGaAs/Ge triple-junction solar cells (1 cm2) mounted on a prototype HCPV module, installed in Palermo (Italy). This system uses a reflective optics based on rectangular off-axis parabolic mirror with aperture 45×45 cm2 leading to a geometrical concentration ratio of 2025. In this study, we report the I-V curve measured under incident power of about 700 W/m2 resulting in an electrical power at maximum point (PMP) of 41.4 W. We also investigated the optical properties by the electroluminescence (EL) spectra of the top (InGaP) and middle (InGaAs) subcells. From the analysis of the experimental data we extracted the bandgap energies of these III-V semiconductors in the range 305÷385 K.
Atomic-level imaging, processing and characterization of semiconductor surfaces
Kazmerski, Lawrence L.
1995-01-01
A method for selecting and removing single specific atoms from a solid material surface uses photon biasing to break down bonds that hold the selected atom in the lattice and to reduce barrier effects that hold the atom from transferring to a probe. The photon bias is preferably light or other electromagnetic radiation with a wavelength and frequency that approximately matches the wave function of the target atom species to be removed to induce high energy, selective thermionic-like vibration. An electric field potential is then applied between the probe and the surface of the solid material to pull the atom out of the lattice and to transfer the atom to the probe. Different extrinsic atoms can be installed in the lattice sites that are vacated by the removed atoms by using a photon bias that resonates the extrinsic atom species, reversing polarity of the electric field, and blowing gas comprising the extrinsic atoms through a hollow catheter probe.
Atomic-level imaging, processing and characterization of semiconductor surfaces
Kazmerski, L.L.
1995-08-22
A method for selecting and removing single specific atoms from a solid material surface uses photon biasing to break down bonds that hold the selected atom in the lattice and to reduce barrier effects that hold the atom from transferring to a probe. The photon bias is preferably light or other electromagnetic radiation with a wavelength and frequency that approximately matches the wave function of the target atom species to be removed to induce high energy, selective thermionic-like vibration. An electric field potential is then applied between the probe and the surface of the solid material to pull the atom out of the lattice and to transfer the atom to the probe. Different extrinsic atoms can be installed in the lattice sites that are vacated by the removed atoms by using a photon bias that resonates the extrinsic atom species, reversing polarity of the electric field, and blowing gas comprising the extrinsic atoms through a hollow catheter probe. 8 figs.
Semiconductor nanocrystal-based phagokinetic tracking
Alivisatos, A Paul; Larabell, Carolyn A; Parak, Wolfgang J; Le Gros, Mark; Boudreau, Rosanne
2014-11-18
Methods for determining metabolic properties of living cells through the uptake of semiconductor nanocrystals by cells. Generally the methods require a layer of neutral or hydrophilic semiconductor nanocrystals and a layer of cells seeded onto a culture surface and changes in the layer of semiconductor nanocrystals are detected. The observed changes made to the layer of semiconductor nanocrystals can be correlated to such metabolic properties as metastatic potential, cell motility or migration.
Semiconductor devices having a recessed electrode structure
Palacios, Tomas Apostol; Lu, Bin; Matioli, Elison de Nazareth
2015-05-26
An electrode structure is described in which conductive regions are recessed into a semiconductor region. Trenches may be formed in a semiconductor region, such that conductive regions can be formed in the trenches. The electrode structure may be used in semiconductor devices such as field effect transistors or diodes. Nitride-based power semiconductor devices are described including such an electrode structure, which can reduce leakage current and otherwise improve performance.
Diode having trenches in a semiconductor region
Palacios, Tomas Apostol; Lu, Bin; Matioli, Elison de Nazareth
2016-03-22
An electrode structure is described in which conductive regions are recessed into a semiconductor region. Trenches may be formed in a semiconductor region, such that conductive regions can be formed in the trenches. The electrode structure may be used in semiconductor devices such as field effect transistors or diodes. Nitride-based power semiconductor devices are described including such an electrode structure, which can reduce leakage current and otherwise improve performance.
Solid state radiative heat pump
Berdahl, P.H.
1984-09-28
A solid state radiative heat pump operable at room temperature (300 K) utilizes a semiconductor having a gap energy in the range of 0.03-0.25 eV and operated reversibly to produce an excess or deficit of change carriers as compared equilibrium. In one form of the invention an infrared semiconductor photodiode is used, with forward or reverse bias, to emit an excess or deficit of infrared radiation. In another form of the invention, a homogenous semiconductor is subjected to orthogonal magnetic and electric fields to emit an excess or deficit of infrared radiation. Three methods of enhancing transmission of radiation the active surface of the semiconductor are disclosed. In one method, an anti-refection layer is coated into the active surface of the semiconductor, the anti-reflection layer having an index of refraction equal to the square root of that of the semiconductor. In the second method, a passive layer is speaced trom the active surface of the semiconductor by a submicron vacuum gap, the passive layer having an index of refractive equal to that of the semiconductor. In the third method, a coupler with a paraboloid reflecting surface surface is in contact with the active surface of the semiconductor, the coupler having an index of refraction about the same as that of the semiconductor.
Wafer-fused semiconductor radiation detector
Lee, Edwin Y.; James, Ralph B.
2002-01-01
Wafer-fused semiconductor radiation detector useful for gamma-ray and x-ray spectrometers and imaging systems. The detector is fabricated using wafer fusion to insert an electrically conductive grid, typically comprising a metal, between two solid semiconductor pieces, one having a cathode (negative electrode) and the other having an anode (positive electrode). The wafer fused semiconductor radiation detector functions like the commonly used Frisch grid radiation detector, in which an electrically conductive grid is inserted in high vacuum between the cathode and the anode. The wafer-fused semiconductor radiation detector can be fabricated using the same or two different semiconductor materials of different sizes and of the same or different thicknesses; and it may utilize a wide range of metals, or other electrically conducting materials, to form the grid, to optimize the detector performance, without being constrained by structural dissimilarity of the individual parts. The wafer-fused detector is basically formed, for example, by etching spaced grooves across one end of one of two pieces of semiconductor materials, partially filling the grooves with a selected electrical conductor which forms a grid electrode, and then fusing the grooved end of the one semiconductor piece to an end of the other semiconductor piece with a cathode and an anode being formed on opposite ends of the semiconductor pieces.
Individual Differences in the Attribution of Incentive Salience to a Pavlovian Alcohol Cue
Villaruel, Franz R.; Chaudhri, Nadia
2016-01-01
Individual differences exist in the attribution of incentive salience to conditioned stimuli associated with food. Here, we investigated whether individual differences also manifested with a Pavlovian alcohol conditioned stimulus (CS). We compiled data from five experiments that used a Pavlovian autoshaping paradigm and tests of conditioned reinforcement. In all experiments, male, Long-Evans rats with unrestricted access to food and water were acclimated to 15% ethanol. Next, rats received Pavlovian autoshaping training, in which a 10 s presentation of a retractable lever served as the CS and 0.2 mL of 15% ethanol served as the unconditioned stimulus (US). Finally, rats underwent conditioned reinforcement tests in which nose-pokes to an active aperture led to brief presentations of the lever-CS, but nose-pokes to an inactive aperture had no consequence. Rats were categorized as sign-trackers, goal-trackers and intermediates based on a response bias score that reflected their tendencies to sign-track or goal-track at different times during training. We found that distinct groups of rats either consistently interacted with the lever-CS (“sign-trackers”) or routinely approached the port during the lever-CS (“goal-trackers”) across a majority of the training sessions. However, some individuals (“shifted sign-trackers”) with an early tendency to goal-track later shifted to comparable asymptotic levels of sign-tracking as the group identified as sign-trackers. The lever-CS functioned as a conditioned reinforcer for sign-trackers and shifted sign-trackers, but not for goal-trackers. These results provide evidence of robust individual differences in the extent to which a Pavlovian alcohol cue gains incentive salience and functions as a conditioned reinforcer. PMID:28082877
Federal Register 2010, 2011, 2012, 2013, 2014
2013-04-10
... Status, Hemlock Semiconductor Corporation, (Polysilicon), Hemlock, Michigan Pursuant to its authority... polysilicon manufacturing facility of Hemlock Semiconductor Corporation, located in Hemlock, Michigan (FTZ... manufacturing of polysilicon at the facility of Hemlock Semiconductor Corporation, located in Hemlock, Michigan...
NASA Astrophysics Data System (ADS)
Biyikli, Necmi; Haider, Ali
2017-09-01
In this paper, we present the progress in the growth of nanoscale semiconductors grown via atomic layer deposition (ALD). After the adoption by semiconductor chip industry, ALD became a widespread tool to grow functional films and conformal ultra-thin coatings for various applications. Based on self-limiting and ligand-exchange-based surface reactions, ALD enabled the low-temperature growth of nanoscale dielectric, metal, and semiconductor materials. Being able to deposit wafer-scale uniform semiconductor films at relatively low-temperatures, with sub-monolayer thickness control and ultimate conformality, makes ALD attractive for semiconductor device applications. Towards this end, precursors and low-temperature growth recipes are developed to deposit crystalline thin films for compound and elemental semiconductors. Conventional thermal ALD as well as plasma-assisted and radical-enhanced techniques have been exploited to achieve device-compatible film quality. Metal-oxides, III-nitrides, sulfides, and selenides are among the most popular semiconductor material families studied via ALD technology. Besides thin films, ALD can grow nanostructured semiconductors as well using either template-assisted growth methods or bottom-up controlled nucleation mechanisms. Among the demonstrated semiconductor nanostructures are nanoparticles, nano/quantum-dots, nanowires, nanotubes, nanofibers, nanopillars, hollow and core-shell versions of the afore-mentioned nanostructures, and 2D materials including transition metal dichalcogenides and graphene. ALD-grown nanoscale semiconductor materials find applications in a vast amount of applications including functional coatings, catalysis and photocatalysis, renewable energy conversion and storage, chemical sensing, opto-electronics, and flexible electronics. In this review, we give an overview of the current state-of-the-art in ALD-based nanoscale semiconductor research including the already demonstrated and future applications.
Semiconductor assisted metal deposition for nanolithography applications
Rajh, Tijana; Meshkov, Natalia; Nedelijkovic, Jovan M.; Skubal, Laura R.; Tiede, David M.; Thurnauer, Marion
2001-01-01
An article of manufacture and method of forming nanoparticle sized material components. A semiconductor oxide substrate includes nanoparticles of semiconductor oxide. A modifier is deposited onto the nanoparticles, and a source of metal ions are deposited in association with the semiconductor and the modifier, the modifier enabling electronic hole scavenging and chelation of the metal ions. The metal ions and modifier are illuminated to cause reduction of the metal ions to metal onto the semiconductor nanoparticles.
Semiconductor assisted metal deposition for nanolithography applications
Rajh, Tijana; Meshkov, Natalia; Nedelijkovic, Jovan M.; Skubal, Laura R.; Tiede, David M.; Thurnauer, Marion
2002-01-01
An article of manufacture and method of forming nanoparticle sized material components. A semiconductor oxide substrate includes nanoparticles of semiconductor oxide. A modifier is deposited onto the nanoparticles, and a source of metal ions are deposited in association with the semiconductor and the modifier, the modifier enabling electronic hole scavenging and chelation of the metal ions. The metal ions and modifier are illuminated to cause reduction of the metal ions to metal onto the semiconductor nanoparticles.
Electrochemical characterization of bilayer lipid membrane-semiconductor junctions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao, Xiao Kang; Baral, S.; Fendler, J.H.
Three different systems of glyceryl monooleate (GMO), bilayer lipid membrane (BLM) supported semiconductor particles have been prepared and characterized. A single composition of particulate semiconductor deposited only on one side of the BLM constituted system A, two different compositions of particulate semiconductors sequentially deposited on the same side of the BLM represented system B, and two different compositions of particulate semiconductors deposited on the opposite sides of the BLM made up system C.
NASA Astrophysics Data System (ADS)
Tuteja, Mohit
Cadmium Telluride (CdTe), a chalcogenide semiconductor, is currently used as the absorber layer in one of the highest efficiency thin film solar cell technologies. Current efficiency records are over 22%. In 2011, CdTe solar cells accounted for 8% of all solar cells installed. This is because, in part, CdTe has a low degradation rate, high optical absorption coefficient, and high tolerance to intrinsic defects. Solar cells based on polycrystalline CdTe exhibit a higher short-circuit current, fill factor, and power conversion efficiency than their single crystal counterparts. This is despite the fact that polycrystalline CdTe devices exhibit lower open-circuit voltages. This is contrary to the observation for silicon and III-V semiconductors, where material defects cause a dramatic drop in device performance. For example, grain boundaries in covalently-bonded semiconductors (a) act as carrier recombination centers, and (b) lead to localized energy states, causing carrier trapping. Despite significant research to date, the mechanism responsible for the superior current collection properties of polycrystalline CdTe solar cells has not been conclusively answered. This dissertation focuses on the macro-scale electronic band structure, and micro scale electronic properties of grains and grain boundaries in device-grade CdTe thin films to answer this open question. My research utilized a variety of experimental techniques. Samples were obtained from leading groups fabricating the material and devices. A CdCl 2 anneal is commonly performed as part of this fabrication and its effects were also investigated. Photoluminescence (PL) spectroscopy was employed to study the band structure and defect states in CdTe polycrystals. Cadmium vacancy- and chlorine-related states lead to carrier recombination, as in CdTe films grown by other methods. Comparing polycrystalline and single crystal CdTe, showed that the key to explaining the improved performance of polycrystalline CdTe does not lie in macroscopic analysis. The nanoscale majority carrier concentration was studied using scanning microwave impedance microscopy, which revealed an existence of majority carrier depletion along the grain boundaries, independent of the growth process used, which was absent in films that were not subjected to CdCl2 annealing. This effect promotes carrier separation and collection. Conductive atomic force microscopy showed enhanced conduction of electrons along the grain boundaries in samples subjected to the CdCl2 anneal treatment while holes were shown to move through the grain bulk. The separation of conduction channels minimizes recombination while simultaneously reducing series resistance and hence enhancing fill factor. Several technical capabilities demonstrated in this work can be easily extended to other semiconductor materials.
78 FR 18563 - Proposed Collection; Comment Request
Federal Register 2010, 2011, 2012, 2013, 2014
2013-03-27
... Tracker (SPOT) System; OMB Control Number 0704-0460. Needs and Uses: In accordance with section 861 of... data into the Synchronized Predeployment and Operational Tracker (SPOT) System before deployment... designated the SPOT as the joint Web- based database to assist the Combatant Commander (CCDR) in maintaining...
Oregon regional intelligent transportation systems (ITS) integration program. Final phase II report
DOT National Transportation Integrated Search
2002-07-12
The purpose of the Transit Tracker evaluation is to collect and analyze data related to a change in bus riders behaviors and perceptions of service and security as a result of the Transit Tracker information displays. Four measures of effectivenes...
DOT National Transportation Integrated Search
2003-11-14
Transit Tracker uses global positioning system (GPS) technology to track how far a bus is along its scheduled route. This document presents the evaluation strategies and objectives, the data collection methodologies, and the results of the evaluation...
Semiconductors: A 21st Century Social Studies Topic.
ERIC Educational Resources Information Center
Sunal, Cynthia
2000-01-01
Addresses the reasons for exploring semiconductor technology and organic semiconductors in schools for either middle school or secondary students in an interdisciplinary social studies and science environment. Provides background information on transistors and semiconductors. Offers three social studies lessons and related science lessons if an…
Semiconductor photoelectrochemistry
NASA Technical Reports Server (NTRS)
Buoncristiani, A. M.; Byvik, C. E.
1983-01-01
Semiconductor photoelectrochemical reactions are investigated. A model of the charge transport processes in the semiconductor, based on semiconductor device theory, is presented. It incorporates the nonlinear processes characterizing the diffusion and reaction of charge carriers in the semiconductor. The model is used to study conditions limiting useful energy conversion, specifically the saturation of current flow due to high light intensity. Numerical results describing charge distributions in the semiconductor and its effects on the electrolyte are obtained. Experimental results include: an estimate rate at which a semiconductor photoelectrode is capable of converting electromagnetic energy into chemical energy; the effect of cell temperature on the efficiency; a method for determining the point of zero zeta potential for macroscopic semiconductor samples; a technique using platinized titanium dioxide powders and ultraviolet radiation to produce chlorine, bromine, and iodine from solutions containing their respective ions; the photoelectrochemical properties of a class of layered compounds called transition metal thiophosphates; and a technique used to produce high conversion efficiency from laser radiation to chemical energy.
A post-processing algorithm for time domain pitch trackers
NASA Astrophysics Data System (ADS)
Specker, P.
1983-01-01
This paper describes a powerful post-processing algorithm for time-domain pitch trackers. On two successive passes, the post-processing algorithm eliminates errors produced during a first pass by a time-domain pitch tracker. During the second pass, incorrect pitch values are detected as outliers by computing the distribution of values over a sliding 80 msec window. During the third pass (based on artificial intelligence techniques), remaining pitch pulses are used as anchor points to reconstruct the pitch train from the original waveform. The algorithm produced a decrease in the error rate from 21% obtained with the original time domain pitch tracker to 2% for isolated words and sentences produced in an office environment by 3 male and 3 female talkers. In a noisy computer room errors decreased from 52% to 2.9% for the same stimuli produced by 2 male talkers. The algorithm is efficient, accurate, and resistant to noise. The fundamental frequency micro-structure is tracked sufficiently well to be used in extracting phonetic features in a feature-based recognition system.
ASME B89.4.19 Performance Evaluation Tests and Geometric Misalignments in Laser Trackers
Muralikrishnan, B.; Sawyer, D.; Blackburn, C.; Phillips, S.; Borchardt, B.; Estler, W. T.
2009-01-01
Small and unintended offsets, tilts, and eccentricity of the mechanical and optical components in laser trackers introduce systematic errors in the measured spherical coordinates (angles and range readings) and possibly in the calculated lengths of reference artifacts. It is desirable that the tests described in the ASME B89.4.19 Standard [1] be sensitive to these geometric misalignments so that any resulting systematic errors are identified during performance evaluation. In this paper, we present some analysis, using error models and numerical simulation, of the sensitivity of the length measurement system tests and two-face system tests in the B89.4.19 Standard to misalignments in laser trackers. We highlight key attributes of the testing strategy adopted in the Standard and propose new length measurement system tests that demonstrate improved sensitivity to some misalignments. Experimental results with a tracker that is not properly error corrected for the effects of the misalignments validate claims regarding the proposed new length tests. PMID:27504211
Real-Time Visual Tracking through Fusion Features
Ruan, Yang; Wei, Zhenzhong
2016-01-01
Due to their high-speed, correlation filters for object tracking have begun to receive increasing attention. Traditional object trackers based on correlation filters typically use a single type of feature. In this paper, we attempt to integrate multiple feature types to improve the performance, and we propose a new DD-HOG fusion feature that consists of discriminative descriptors (DDs) and histograms of oriented gradients (HOG). However, fusion features as multi-vector descriptors cannot be directly used in prior correlation filters. To overcome this difficulty, we propose a multi-vector correlation filter (MVCF) that can directly convolve with a multi-vector descriptor to obtain a single-channel response that indicates the location of an object. Experiments on the CVPR2013 tracking benchmark with the evaluation of state-of-the-art trackers show the effectiveness and speed of the proposed method. Moreover, we show that our MVCF tracker, which uses the DD-HOG descriptor, outperforms the structure-preserving object tracker (SPOT) in multi-object tracking because of its high-speed and ability to address heavy occlusion. PMID:27347951
Kernelized correlation tracking with long-term motion cues
NASA Astrophysics Data System (ADS)
Lv, Yunqiu; Liu, Kai; Cheng, Fei
2018-04-01
Robust object tracking is a challenging task in computer vision due to interruptions such as deformation, fast motion and especially, occlusion of tracked object. When occlusions occur, image data will be unreliable and is insufficient for the tracker to depict the object of interest. Therefore, most trackers are prone to fail under occlusion. In this paper, an occlusion judgement and handling method based on segmentation of the target is proposed. If the target is occluded, the speed and direction of it must be different from the objects occluding it. Hence, the value of motion features are emphasized. Considering the efficiency and robustness of Kernelized Correlation Filter Tracking (KCF), it is adopted as a pre-tracker to obtain a predicted position of the target. By analyzing long-term motion cues of objects around this position, the tracked object is labelled. Hence, occlusion could be detected easily. Experimental results suggest that our tracker achieves a favorable performance and effectively handles occlusion and drifting problems.
Action-Driven Visual Object Tracking With Deep Reinforcement Learning.
Yun, Sangdoo; Choi, Jongwon; Yoo, Youngjoon; Yun, Kimin; Choi, Jin Young
2018-06-01
In this paper, we propose an efficient visual tracker, which directly captures a bounding box containing the target object in a video by means of sequential actions learned using deep neural networks. The proposed deep neural network to control tracking actions is pretrained using various training video sequences and fine-tuned during actual tracking for online adaptation to a change of target and background. The pretraining is done by utilizing deep reinforcement learning (RL) as well as supervised learning. The use of RL enables even partially labeled data to be successfully utilized for semisupervised learning. Through the evaluation of the object tracking benchmark data set, the proposed tracker is validated to achieve a competitive performance at three times the speed of existing deep network-based trackers. The fast version of the proposed method, which operates in real time on graphics processing unit, outperforms the state-of-the-art real-time trackers with an accuracy improvement of more than 8%.
"Sturdy as a house with four windows," the star tracker of the future
NASA Astrophysics Data System (ADS)
Duivenvoorde, Tom; Leijtens, Johan; van der Heide, Erik J.
2017-11-01
Ongoing miniaturization of spacecraft demands the reduction in size of Attitude and Orbit Control Systems (AOCS). Therefore TNO has created a new design of a multi aperture, high performance, and miniaturized star tracker. The innovative design incorporates the latest developments in camera technology, attitude calculation and mechanical design into a system with 5 arc seconds accuracy, making the system usable for many applications. In this paper the results are presented of the system design and analysis, as well as the performance predictions for the Multi Aperture Baffled Star Tracker (MABS). The highly integrated system consists of multiple apertures without the need for external baffles, resulting in major advantages in mass, volume, alignment with the spacecraft and relative aperture stability. In the analysis part of this paper, the thermal and mechanical stability are discussed. In the final part the simulation results will be described that have lead to the predicted accuracy of the star tracker system and a peek into the future of attitude sensors is given.
NASA Astrophysics Data System (ADS)
Tykhonov, A.; Ambrosi, G.; Asfandiyarov, R.; Azzarello, P.; Bernardini, P.; Bertucci, B.; Bolognini, A.; Cadoux, F.; D'Amone, A.; De Benedittis, A.; De Mitri, I.; Di Santo, M.; Dong, Y. F.; Duranti, M.; D'Urso, D.; Fan, R. R.; Fusco, P.; Gallo, V.; Gao, M.; Gargano, F.; Garrappa, S.; Gong, K.; Ionica, M.; La Marra, D.; Lei, S. J.; Li, X.; Loparco, F.; Marsella, G.; Mazziotta, M. N.; Peng, W. X.; Qiao, R.; Salinas, M. M.; Surdo, A.; Vagelli, V.; Vitillo, S.; Wang, H. Y.; Wang, J. Z.; Wang, Z. M.; Wu, D.; Wu, X.; Zhang, F.; Zhang, J. Y.; Zhao, H.; Zimmer, S.
2018-06-01
The DArk Matter Particle Explorer (DAMPE) is a space-borne particle detector designed to probe electrons and gamma-rays in the few GeV to 10 TeV energy range, as well as cosmic-ray proton and nuclei components between 10 GeV and 100 TeV. The silicon-tungsten tracker-converter is a crucial component of DAMPE. It allows the direction of incoming photons converting into electron-positron pairs to be estimated, and the trajectory and charge (Z) of cosmic-ray particles to be identified. It consists of 768 silicon micro-strip sensors assembled in 6 double layers with a total active area of 6.6 m2. Silicon planes are interleaved with three layers of tungsten plates, resulting in about one radiation length of material in the tracker. Internal alignment parameters of the tracker have been determined on orbit, with non-showering protons and helium nuclei. We describe the alignment procedure and present the position resolution and alignment stability measurements.
In-flight evaluation of a fiber optic helmet-mounted display
NASA Astrophysics Data System (ADS)
Jennings, Sion A.; Gubbels, Arthur W.; Swail, Carl P.; Craig, Greg
1998-08-01
The National Research Council of Canada (NRC), in conjunction with the Canadian Department of National Defence (DND), is investigating the use of helmet-mounted displays (HMD) to improve pilot situational awareness in all-weather search and rescue helicopter operations. The National Research Council has installed a visually coupled HMD system in the NRC Bell 205 Airborne Simulator. Equipped with a full authority fly-by-wire control system, the Bell 205 has variable stability characteristics, which makes the airborne simulator the ideal platform for the integrated flight testing of HMDs in a simulated operational environment. This paper presents preliminary results from flight test of the NRC HMD. These results are in the form of numerical head tracker data, and subjective handling qualities ratings. Flight test results showed that the HMD degraded handling qualities due to reduced acuity, limited field-of-view, time delays in the sensor platform, and fatigue caused by excessive helmet inertia. Some evidence was found to support the hypothesis of an opto-kinetic cervical reflex whereby a pilot pitches and rolls his head in response to aircraft movements to maintain a level horizon in their field-of- view.
Magdalena Ridge Observatory Interferometer - New Path to First Light
NASA Astrophysics Data System (ADS)
Creech-Eakman, Michelle J.; Payne, Ifan; Haniff, Chris; Buscher, David; Young, John; Romero, Van; Magdalena Ridge Observatory Interferometer Team
2016-01-01
The Magdalena Ridge Observatory Interferometer (MROI), a 10-telescope optical/near-IR interferometer with baselines ranging from 7.8 to 343 meters, has been conceived to be the most ambitious optical/NIR interferometric array under construction to date. U.S. Congressional, N.M. State and university funding (from NM Tech and partner funding at the University of Cambridge) attained from 2000-13 provided for a nearly complete system design, installation of a large portion of the physical infrastructure at the Magdalena Ridge, the first telescope, delay line, fringe tracker and many other necessary sub-systems. New funding has recently been obtained under a cooperative agreement between NM Tech and the Air Force Research Lab (AFRL) to bring the facility to three fully operational telescopes and associated hardware such that first fringes and closure phase will be realized within 5 years. The completed facility will be able to provide support for observing geosynchronous satellites as well as many exciting observations of astronomical targets. An update on the MROI status, plans moving forward for the next 5 years, and some examples of observational applications feasible at different phases of the array's completion will be presented.
Solar concentrator modules with silicone-on-glass Fresnel lens panels and multijunction cells.
Rumyantsev, Valery D
2010-04-26
High-efficiency multijunction (MJ) solar cells, being very expensive to manufacture, should only be used in combination with solar concentrators in terrestrial applications. An essential cost reduction of electric power produced by photovoltaic (PV) installations with MJ cells, may be expected by the creation of highly-effective, but inexpensive, elements for optical concentration and sun tracking. This article is an overview of the corresponding approach under development at the Ioffe Physical Technical Institute. The approach to R&D of the solar PV modules is based on the concepts of sunlight concentration by small-aperture area Fresnel lenses and "all-glass" module design. The small-aperture area lenses are arranged as a panel with silicone-on-glass structure where the glass plate serves as the front surface of a module. In turn, high-efficiency InGaP/(In)GaAs/Ge cells are arranged on a rear module panel mounted on a glass plate which functions as a heat sink and integrated protective cover for the cells. The developed PV modules and sun trackers are characterized by simple design, and are regarded as the prototypes for further commercialization.
Method of Promoting Single Crystal Growth During Melt Growth of Semiconductors
NASA Technical Reports Server (NTRS)
Su, Ching-Hua (Inventor)
2013-01-01
The method of the invention promotes single crystal growth during fabrication of melt growth semiconductors. A growth ampoule and its tip have a semiconductor source material placed therein. The growth ampoule is placed in a first thermal environment that raises the temperature of the semiconductor source material to its liquidus temperature. The growth ampoule is then transitioned to a second thermal environment that causes the semiconductor source material in the growth ampoule's tip to attain a temperature that is below the semiconductor source material's solidus temperature. The growth ampoule so-transitioned is then mechanically perturbed to induce single crystal growth at the growth ampoule's tip.
Will Future Measurement Needs of the Semiconductor Industry Be Met?
Bennett, Herbert S
2007-01-01
We discuss the ability of the nation's measurement system to meet future metrology needs of the semiconductor industry. Lacking an acceptable metric for assessing the health of metrology for the semiconductor industry, we identify a limited set of unmet measurement needs. Assuming that this set of needs may serve as proxy for the galaxy of semiconductor measurement needs, we examine it from the perspective of what will be required to continue the semiconductor industry's powerful impact in the world's macro-economy and maintain its exceptional record of numerous technological innovations. This paper concludes with suggestions about ways to strengthen the measurement system for the semiconductor industry.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-07-05
..., Texas; Notification of Proposed Production Activity; Samsung Austin Semiconductor, LLC (Semiconductors); Austin, Texas Samsung Austin Semiconductor, LLC (Samsung), operator of Subzone 183B, submitted a... June 26, 2013. Samsung currently has authority to produce semiconductor memory devices for export...
40 CFR 63.7182 - What parts of my facility does this subpart cover?
Code of Federal Regulations, 2011 CFR
2011-07-01
... CATEGORIES (CONTINUED) National Emission Standards for Hazardous Air Pollutants for Semiconductor... manufactures semiconductors. (b) An affected source subject to this subpart is the collection of all semiconductor manufacturing process units used to manufacture p-type and n-type semiconductors and active solid...
Characterization of the Ecosole HCPV tracker and single module inverter
NASA Astrophysics Data System (ADS)
Carpanelli, Maurizio; Borelli, Gianni; Verdilio, Daniele; De Nardis, Davide; Migali, Fabrizio; Cancro, Carmine; Graditi, Giorgio
2015-09-01
BECAR, the Beghelli group's R&D company, is leading ECOSOLE (Elevated COncentration SOlar Energy), one of the largest European Demonstration projects in solar photovoltaic. ECOSOLE, started in 2012, is focused on the study, design, and realization of new HCPV generator made of high efficiency PV modules equipped with SoG (Silicone on Glass) fresnel lenses and III-V solar cells, and a low cost matched solar tracker with distributed inverters approach. The project also regards the study and demonstration of new high throughput methods for the industrial large scale productions, at very low manufacturing costs. This work reports the description of the characterization of the tracker and single module.
Reconstruction software of the silicon tracker of DAMPE mission
NASA Astrophysics Data System (ADS)
Tykhonov, A.; Gallo, V.; Wu, X.; Zimmer, S.
2017-10-01
DAMPE is a satellite-borne experiment aimed to probe astroparticle physics in the GeV-TeV energy range. The Silicon tracker (STK) is one of the key components of DAMPE, which allows the reconstruction of trajectories (tracks) of detected particles. The non-negligible amount of material in the tracker poses a challenge to its reconstruction and alignment. In this paper we describe methods to address this challenge. We present the track reconstruction algorithm and give insight into the alignment algorithm. We also present our CAD-to-GDML converter, an in-house tool for implementing detector geometry in the software from the CAD drawings of the detector.
P-Type Silicon Strip Sensors for the new CMS Tracker at HL-LHC
NASA Astrophysics Data System (ADS)
Adam, W.; Bergauer, T.; Brondolin, E.; Dragicevic, M.; Friedl, M.; Frühwirth, R.; Hoch, M.; Hrubec, J.; König, A.; Steininger, H.; Waltenberger, W.; Alderweireldt, S.; Beaumont, W.; Janssen, X.; Lauwers, J.; Van Mechelen, P.; Van Remortel, N.; Van Spilbeeck, A.; Beghin, D.; Brun, H.; Clerbaux, B.; Delannoy, H.; De Lentdecker, G.; Fasanella, G.; Favart, L.; Goldouzian, R.; Grebenyuk, A.; Karapostoli, G.; Lenzi, Th.; Léonard, A.; Luetic, J.; Postiau, N.; Seva, T.; Vanlaer, P.; Vannerom, D.; Wang, Q.; Zhang, F.; Abu Zeid, S.; Blekman, F.; De Bruyn, I.; De Clercq, J.; D'Hondt, J.; Deroover, K.; Lowette, S.; Moortgat, S.; Moreels, L.; Python, Q.; Skovpen, K.; Van Mulders, P.; Van Parijs, I.; Bakhshiansohi, H.; Bondu, O.; Brochet, S.; Bruno, G.; Caudron, A.; Delaere, C.; Delcourt, M.; De Visscher, S.; Francois, B.; Giammanco, A.; Jafari, A.; Komm, M.; Krintiras, G.; Lemaitre, V.; Magitteri, A.; Mertens, A.; Michotte, D.; Musich, M.; Piotrzkowski, K.; Quertenmont, L.; Szilasi, N.; Vidal Marono, M.; Wertz, S.; Beliy, N.; Caebergs, T.; Daubie, E.; Hammad, G. H.; Härkönen, J.; Lampén, T.; Luukka, P.; Peltola, T.; Tuominen, E.; Tuovinen, E.; Eerola, P.; Tuuva, T.; Baulieu, G.; Boudoul, G.; Caponetto, L.; Combaret, C.; Contardo, D.; Dupasquier, T.; Gallbit, G.; Lumb, N.; Mirabito, L.; Perries, S.; Vander Donckt, M.; Viret, S.; Agram, J.-L.; Andrea, J.; Bloch, D.; Bonnin, C.; Brom, J.-M.; Chabert, E.; Chanon, N.; Charles, L.; Conte, E.; Fontaine, J.-Ch.; Gross, L.; Hosselet, J.; Jansova, M.; Tromson, D.; Autermann, C.; Feld, L.; Karpinski, W.; Kiesel, K. M.; Klein, K.; Lipinski, M.; Ostapchuk, A.; Pierschel, G.; Preuten, M.; Rauch, M.; Schael, S.; Schomakers, C.; Schulz, J.; Schwering, G.; Wlochal, M.; Zhukov, V.; Pistone, C.; Fluegge, G.; Kuensken, A.; Pooth, O.; Stahl, A.; Aldaya, M.; Asawatangtrakuldee, C.; Beernaert, K.; Bertsche, D.; Contreras-Campana, C.; Eckerlin, G.; Eckstein, D.; Eichhorn, T.; Gallo, E.; Garay Garcia, J.; Hansen, K.; Haranko, M.; Harb, A.; Hauk, J.; Keaveney, J.; Kalogeropoulos, A.; Kleinwort, C.; Lohmann, W.; Mankel, R.; Maser, H.; Mittag, G.; Muhl, C.; Mussgiller, A.; Pitzl, D.; Reichelt, O.; Savitskyi, M.; Schuetze, P.; Walsh, R.; Zuber, A.; Biskop, H.; Buhmann, P.; Centis-Vignali, M.; Garutti, E.; Haller, J.; Hoffmann, M.; Lapsien, T.; Matysek, M.; Perieanu, A.; Scharf, Ch.; Schleper, P.; Schmidt, A.; Schwandt, J.; Sonneveld, J.; Steinbrück, G.; Vormwald, B.; Wellhausen, J.; Abbas, M.; Amstutz, C.; Barvich, T.; Barth, Ch.; Boegelspacher, F.; De Boer, W.; Butz, E.; Caselle, M.; Colombo, F.; Dierlamm, A.; Freund, B.; Hartmann, F.; Heindl, S.; Husemann, U.; Kornmayer, A.; Kudella, S.; Muller, Th.; Simonis, H. J.; Steck, P.; Weber, M.; Weiler, Th.; Anagnostou, G.; Asenov, P.; Assiouras, P.; Daskalakis, G.; Kyriakis, A.; Loukas, D.; Paspalaki, L.; Siklér, F.; Veszprémi, V.; Bhardwaj, A.; Dalal, R.; Jain, G.; Ranjan, K.; Bakhshiansohl, H.; Behnamian, H.; Khakzad, M.; Naseri, M.; Cariola, P.; Creanza, D.; De Palma, M.; De Robertis, G.; Fiore, L.; Franco, M.; Loddo, F.; Silvestris, L.; Maggi, G.; Martiradonna, S.; My, S.; Selvaggi, G.; Albergo, S.; Cappello, G.; Chiorboli, M.; Costa, S.; Di Mattia, A.; Giordano, F.; Potenza, R.; Saizu, M. A.; Tricomi, A.; Tuve, C.; Barbagli, G.; Brianzi, M.; Ciaranfi, R.; Ciulli, V.; Civinini, C.; D'Alessandro, R.; Focardi, E.; Latino, G.; Lenzi, P.; Meschini, M.; Paoletti, S.; Russo, L.; Scarlini, E.; Sguazzoni, G.; Strom, D.; Viliani, L.; Ferro, F.; Lo Vetere, M.; Robutti, E.; Dinardo, M. E.; Fiorendi, S.; Gennai, S.; Malvezzi, S.; Manzoni, R. A.; Menasce, D.; Moroni, L.; Pedrini, D.; Azzi, P.; Bacchetta, N.; Bisello, D.; Dall'Osso, M.; Pozzobon, N.; Tosi, M.; De Canio, F.; Gaioni, L.; Manghisoni, M.; Nodari, B.; Riceputi, E.; Re, V.; Traversi, G.; Comotti, D.; Ratti, L.; Alunni Solestizi, L.; Biasini, M.; Bilei, G. M.; Cecchi, C.; Checcucci, B.; Ciangottini, D.; Fanò, L.; Gentsos, C.; Ionica, M.; Leonardi, R.; Manoni, E.; Mantovani, G.; Marconi, S.; Mariani, V.; Menichelli, M.; Modak, A.; Morozzi, A.; Moscatelli, F.; Passeri, D.; Placidi, P.; Postolache, V.; Rossi, A.; Saha, A.; Santocchia, A.; Storchi, L.; Spiga, D.; Androsov, K.; Azzurri, P.; Arezzini, S.; Bagliesi, G.; Basti, A.; Boccali, T.; Borrello, L.; Bosi, F.; Castaldi, R.; Ciampa, A.; Ciocci, M. A.; Dell'Orso, R.; Donato, S.; Fedi, G.; Giassi, A.; Grippo, M. T.; Ligabue, F.; Lomtadze, T.; Magazzu, G.; Martini, L.; Mazzoni, E.; Messineo, A.; Moggi, A.; Morsani, F.; Palla, F.; Palmonari, F.; Raffaelli, F.; Rizzi, A.; Savoy-Navarro, A.; Spagnolo, P.; Tenchini, R.; Tonelli, G.; Venturi, A.; Verdini, P. G.; Bellan, R.; Costa, M.; Covarelli, R.; Da Rocha Rolo, M.; Demaria, N.; Rivetti, A.; Dellacasa, G.; Mazza, G.; Migliore, E.; Monteil, E.; Pacher, L.; Ravera, F.; Solano, A.; Fernandez, M.; Gomez, G.; Jaramillo Echeverria, R.; Moya, D.; Gonzalez Sanchez, F. J.; Vila, I.; Virto, A. L.; Abbaneo, D.; Ahmed, I.; Albert, E.; Auzinger, G.; Berruti, G.; Bianchi, G.; Blanchot, G.; Bonnaud, J.; Caratelli, A.; Ceresa, D.; Christiansen, J.; Cichy, K.; Daguin, J.; D'Auria, A.; Detraz, S.; Deyrail, D.; Dondelewski, O.; Faccio, F.; Frank, N.; Gadek, T.; Gill, K.; Honma, A.; Hugo, G.; Jara Casas, L. M.; Kaplon, J.; Kornmayer, A.; Kottelat, L.; Kovacs, M.; Krammer, M.; Lenoir, P.; Mannelli, M.; Marchioro, A.; Marconi, S.; Mersi, S.; Martina, S.; Michelis, S.; Moll, M.; Onnela, A.; Orfanelli, S.; Pavis, S.; Peisert, A.; Pernot, J.-F.; Petagna, P.; Petrucciani, G.; Postema, H.; Rose, P.; Tropea, P.; Troska, J.; Tsirou, A.; Vasey, F.; Vichoudis, P.; Verlaat, B.; Zwalinski, L.; Bachmair, F.; Becker, R.; di Calafiori, D.; Casal, B.; Berger, P.; Djambazov, L.; Donega, M.; Grab, C.; Hits, D.; Hoss, J.; Kasieczka, G.; Lustermann, W.; Mangano, B.; Marionneau, M.; Martinez Ruiz del Arbol, P.; Masciovecchio, M.; Meinhard, M.; Perozzi, L.; Roeser, U.; Starodumov, A.; Tavolaro, V.; Wallny, R.; Zhu, D.; Amsler, C.; Bösiger, K.; Caminada, L.; Canelli, F.; Chiochia, V.; de Cosa, A.; Galloni, C.; Hreus, T.; Kilminster, B.; Lange, C.; Maier, R.; Ngadiuba, J.; Pinna, D.; Robmann, P.; Taroni, S.; Yang, Y.; Bertl, W.; Deiters, K.; Erdmann, W.; Horisberger, R.; Kaestli, H.-C.; Kotlinski, D.; Langenegger, U.; Meier, B.; Rohe, T.; Streuli, S.; Cussans, D.; Flacher, H.; Goldstein, J.; Grimes, M.; Jacob, J.; Seif El Nasr-Storey, S.; Cole, J.; Hoad, C.; Hobson, P.; Morton, A.; Reid, I. D.; Auzinger, G.; Bainbridge, R.; Dauncey, P.; Hall, G.; James, T.; Magnan, A.-M.; Pesaresi, M.; Raymond, D. M.; Uchida, K.; Garabedian, A.; Heintz, U.; Narain, M.; Nelson, J.; Sagir, S.; Speer, T.; Swanson, J.; Tersegno, D.; Watson-Daniels, J.; Chertok, M.; Conway, J.; Conway, R.; Flores, C.; Lander, R.; Pellett, D.; Ricci-Tam, F.; Squires, M.; Thomson, J.; Yohay, R.; Burt, K.; Ellison, J.; Hanson, G.; Olmedo, M.; Si, W.; Yates, B. R.; Gerosa, R.; Sharma, V.; Vartak, A.; Yagil, A.; Zevi Della Porta, G.; Dutta, V.; Gouskos, L.; Incandela, J.; Kyre, S.; Mullin, S.; Patterson, A.; Qu, H.; White, D.; Dominguez, A.; Bartek, R.; Cumalat, J. P.; Ford, W. T.; Jensen, F.; Johnson, A.; Krohn, M.; Leontsinis, S.; Mulholland, T.; Stenson, K.; Wagner, S. R.; Apresyan, A.; Bolla, G.; Burkett, K.; Butler, J. N.; Canepa, A.; Cheung, H. W. K.; Chramowicz, J.; Christian, D.; Cooper, W. E.; Deptuch, G.; Derylo, G.; Gingu, C.; Grünendahl, S.; Hasegawa, S.; Hoff, J.; Howell, J.; Hrycyk, M.; Jindariani, S.; Johnson, M.; Kahlid, F.; Lei, C. M.; Lipton, R.; Lopes De Sá, R.; Liu, T.; Los, S.; Matulik, M.; Merkel, P.; Nahn, S.; Prosser, A.; Rivera, R.; Schneider, B.; Sellberg, G.; Shenai, A.; Spiegel, L.; Tran, N.; Uplegger, L.; Voirin, E.; Berry, D. R.; Chen, X.; Ennesser, L.; Evdokimov, A.; Evdokimov, O.; Gerber, C. E.; Hofman, D. J.; Makauda, S.; Mills, C.; Sandoval Gonzalez, I. D.; Alimena, J.; Antonelli, L. J.; Francis, B.; Hart, A.; Hill, C. S.; Parashar, N.; Stupak, J.; Bortoletto, D.; Bubna, M.; Hinton, N.; Jones, M.; Miller, D. H.; Shi, X.; Tan, P.; Baringer, P.; Bean, A.; Khalil, S.; Kropivnitskaya, A.; Majumder, D.; Wilson, G.; Ivanov, A.; Mendis, R.; Mitchell, T.; Skhirtladze, N.; Taylor, R.; Anderson, I.; Fehling, D.; Gritsan, A.; Maksimovic, P.; Martin, C.; Nash, K.; Osherson, M.; Swartz, M.; Xiao, M.; Bloom, K.; Claes, D. R.; Fangmeier, C.; Gonzalez Suarez, R.; Monroy, J.; Siado, J.; Hahn, K.; Sevova, S.; Sung, K.; Trovato, M.; Bartz, E.; Gershtein, Y.; Halkiadakis, E.; Kyriacou, S.; Lath, A.; Nash, K.; Osherson, M.; Schnetzer, S.; Stone, R.; Walker, M.; Malik, S.; Norberg, S.; Ramirez Vargas, J. E.; Alyari, M.; Dolen, J.; Godshalk, A.; Harrington, C.; Iashvili, I.; Kharchilava, A.; Nguyen, D.; Parker, A.; Rappoccio, S.; Roozbahani, B.; Alexander, J.; Chaves, J.; Chu, J.; Dittmer, S.; McDermott, K.; Mirman, N.; Rinkevicius, A.; Ryd, A.; Salvati, E.; Skinnari, L.; Soffi, L.; Tao, Z.; Thom, J.; Tucker, J.; Zientek, M.; Akgün, B.; Ecklund, K. M.; Kilpatrick, M.; Nussbaum, T.; Zabel, J.; Betchart, B.; Covarelli, R.; Demina, R.; Hindrichs, O.; Petrillo, G.; Eusebi, R.; Osipenkov, I.; Perloff, A.; Ulmer, K. A.
2017-06-01
The upgrade of the LHC to the High-Luminosity LHC (HL-LHC) is expected to increase the LHC design luminosity by an order of magnitude. This will require silicon tracking detectors with a significantly higher radiation hardness. The CMS Tracker Collaboration has conducted an irradiation and measurement campaign to identify suitable silicon sensor materials and strip designs for the future outer tracker at the CMS experiment. Based on these results, the collaboration has chosen to use n-in-p type silicon sensors and focus further investigations on the optimization of that sensor type. This paper describes the main measurement results and conclusions that motivated this decision.
Thermoelectric generator and method for the fabrication thereof
Benson, David K.; Tracy, C. Edwin
1987-01-01
A thermoelectric generator using semiconductor elements for responding to a temperature gradient to produce electrical energy with all of the semiconductor elements being of the same type is disclosed. A continuous process for forming substrates on which the semiconductor elements and superstrates are deposited and a process for forming the semiconductor elements on the substrates are also disclosed. The substrates with the semiconductor elements thereon are combined with superstrates to form modules for use thermoelectric generators.
Thermoelectric generator and method for the fabrication thereof
Benson, D.K.; Tracy, C.E.
1984-08-01
A thermoelectric generator using semiconductor elements for responding to a temperature gradient to produce electrical energy with all of the semiconductor elements being of the same type is disclosed. A continuous process for forming substrates on which the semiconductor elements and superstrates are deposited and a process for forming the semiconductor elements on the substrates are also disclosed. The substrates with the semiconductor elements thereon are combined with superstrates to form modules for use as thermoelectric generators.
Sopori, Bhushan
2014-05-27
Methods for contact formation and gettering of precipitated impurities by multiple firing during semiconductor device fabrication are provided. In one embodiment, a method for fabricating an electrical semiconductor device comprises: a first step that includes gettering of impurities from a semiconductor wafer and forming a backsurface field; and a second step that includes forming a front contact for the semiconductor wafer, wherein the second step is performed after completion of the first step.
Using "Tracker" to Prove the Simple Harmonic Motion Equation
ERIC Educational Resources Information Center
Kinchin, John
2016-01-01
Simple harmonic motion (SHM) is a common topic for many students to study. Using the free, though versatile, motion tracking software; "Tracker", we can extend the students experience and show that the general equation for SHM does lead to the correct period of a simple pendulum.
Radar Detection of Marine Mammals
2010-09-30
associative tracker using the Munkres algorithm was used. This was then expanded to include a track - before - detect algorithm, the Baysean Field...small, slow moving objects (i.e. whales). In order to address the third concern (M2 mode), we have tested using a track - before - detect tracker termed
Summer 1980 Directory of Navy Electro-Optical Professionals.
1981-01-19
4864 E-0 Oceanographic Applications Pressman , A. 335 4864 Satellite Analysis-, Environinental/Intelligence Tooma. S, 332 4810 E-0 Measurement of Sea...Teate. George 3924 372 1/ TV Trackers 3722 Teppo, E. A. 3151 3723 Laser Technology Thomas, Virgil 31404 5283 TV Camera/Trackers Thompson, Barry 3943
75 FR 45093 - Submission for OMB Review; Comment Request
Federal Register 2010, 2011, 2012, 2013, 2014
2010-08-02
...; student tracker database updates, 16 hours. Burden Hours: 11,328. Needs and Uses: Under the authority of... application, by academic professors/advisors. NOAA OEd student scholar alumni are also requested to provide... tracker database with the required student information. In addition, the collected student data supports...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sandoval, D. M.; Strittmatter, R. B.; Abeyta, J. D.
2004-01-01
The initial objectives of this effort were to provide a hardware and software platform that can address the requirements for the accountability of classified removable electronic media and vault access logging. The Media Tracker system software assists classified media custodian in managing vault access logging and Media Tracking to prevent the inadvertent violation of rules or policies for the access to a restricted area and the movement and use of tracked items. The MediaTracker system includes the software tools to track and account for high consequence security assets and high value items. The overall benefits include: (1) real-time access tomore » the disposition of all Classified Removable Electronic Media (CREM), (2) streamlined security procedures and requirements, (3) removal of ambiguity and managerial inconsistencies, (4) prevention of incidents that can and should be prevented, (5) alignment with the DOE's initiative to achieve improvements in security and facility operations through technology deployment, and (6) enhanced individual responsibility by providing a consistent method of dealing with daily responsibilities. In response to initiatives to enhance the control of classified removable electronic media (CREM), the Media Tracker software suite was developed, piloted and implemented at the Los Alamos National Laboratory beginning in July 2000. The Media Tracker software suite assists in the accountability and tracking of CREM and other high-value assets. One component of the MediaTracker software suite provides a Laboratory-approved media tracking system. Using commercial touch screen and bar code technology, the MediaTracker (MT) component of the MediaTracker software suite provides an efficient and effective means to meet current Laboratory requirements and provides new-engineered controls to help assure compliance with those requirements. It also establishes a computer infrastructure at vault entrances for vault access logging, and can accommodate several methods of positive identification including smart cards and biometrics. Currently, we have three mechanisms that provide added security for accountability and tracking purposes. One mechanism consists of a portable, hand-held inventory scanner, which allows the custodian to physically track the items that are not accessible within a particular area. The second mechanism is a radio frequency identification (RFID) consisting of a monitoring portal, which tracks and logs in a database all activity tagged of items that pass through the portals. The third mechanism consists of an electronic tagging of a flash memory device for automated inventory of CREM in storage. By modifying this USB device the user is provided with added assurance, limiting the data from being obtained from any other computer.« less
Federal Register 2010, 2011, 2012, 2013, 2014
2013-11-15
... DEPARTMENT OF COMMERCE Foreign-Trade Zones Board [B-70-2013] Subzone 183B; Authorization of Production Activity; Samsung Austin Semiconductor, LLC (Semiconductors); Austin, Texas On June 26, 2013, Samsung Austin Semiconductor, LLC submitted a notification of proposed export production activity to the...
40 CFR 63.7195 - What definitions apply to this subpart?
Code of Federal Regulations, 2012 CFR
2012-07-01
... units used to manufacture p-type and n-type semiconductors or active solid state devices from a wafer.... Examples of semiconductor or related solid state devices include semiconductor diodes, semiconductor stacks... permanently attached to motor vehicles such as trucks, railcars, barges, or ships; (2) Flow-through tanks...
40 CFR 63.7195 - What definitions apply to this subpart?
Code of Federal Regulations, 2013 CFR
2013-07-01
... units used to manufacture p-type and n-type semiconductors or active solid state devices from a wafer.... Examples of semiconductor or related solid state devices include semiconductor diodes, semiconductor stacks... permanently attached to motor vehicles such as trucks, railcars, barges, or ships; (2) Flow-through tanks...
40 CFR 63.7195 - What definitions apply to this subpart?
Code of Federal Regulations, 2014 CFR
2014-07-01
... units used to manufacture p-type and n-type semiconductors or active solid state devices from a wafer.... Examples of semiconductor or related solid state devices include semiconductor diodes, semiconductor stacks... permanently attached to motor vehicles such as trucks, railcars, barges, or ships; (2) Flow-through tanks...
Uncertainty estimation and multi sensor fusion for kinematic laser tracker measurements
NASA Astrophysics Data System (ADS)
Ulrich, Thomas
2013-08-01
Laser trackers are widely used to measure kinematic tasks such as tracking robot movements. Common methods to evaluate the uncertainty in the kinematic measurement include approximations specified by the manufacturers, various analytical adjustment methods and the Kalman filter. In this paper a new, real-time technique is proposed, which estimates the 4D-path (3D-position + time) uncertainty of an arbitrary path in space. Here a hybrid system estimator is applied in conjunction with the kinematic measurement model. This method can be applied to processes, which include various types of kinematic behaviour, constant velocity, variable acceleration or variable turn rates. The new approach is compared with the Kalman filter and a manufacturer's approximations. The comparison was made using data obtained by tracking an industrial robot's tool centre point with a Leica laser tracker AT901 and a Leica laser tracker LTD500. It shows that the new approach is more appropriate to analysing kinematic processes than the Kalman filter, as it reduces overshoots and decreases the estimated variance. In comparison with the manufacturer's approximations, the new approach takes account of kinematic behaviour with an improved description of the real measurement process and a reduction in estimated variance. This approach is therefore well suited to the analysis of kinematic processes with unknown changes in kinematic behaviour as well as the fusion among laser trackers.
Liu, Jun; Liu, Wenjing; Yang, Jun
2016-02-11
We confirmed that ATP is released from cochlear marginal cells in the stria vascular but the cell organelle in which ATP stores was not identified until now. Thus, we studied the ATP-containing cell organelles and suggest that these are lysosomes. Primary cultures of marginal cells of Sprague-Dawley rats aged 1-3 days was established. Vesicles within marginal cells stained with markers were identified under confocal laser scanning microscope and transmission electron microscope (TEM). Then ATP release from marginal cells was measured after glycyl-L-phenylalanine-ß- naphthylamide (GPN) treatment using a bioluminescent assay. Quinacrine-stained granules within marginal cells were labeled with LysoTracker, a lysosome tracer, and lysosomal-associated membrane protein 1(LAMP1), but not labeled with the mitochondrial tracer MitoTracker. Furthermore, LysoTracker-labelled puncta showed accumulation of Mant-ATP, an ATP analog. Treatment with 200 μM GPN quenched fluorescently labeled puncta after incubation with LysoTracker or quinacrine, but not MitoTracker. Quinacrine-labeled organelles observed by TEM were lysosomes, and an average 27.7 percent increase in ATP luminescence was observed in marginal cells extracellular fluid after GPN treatment. ATP-containing vesicles in cochlear marginal cells of the stria vascular from neonatal rats are likely lysosomes. ATP release from marginal cells may be via Ca(2+)-dependent lysosomal exocytosis.
Malone, Michael L.; Vollbrecht, Marsha; Stephenson, Jeff; Burke, Laura; Pagel, Patti; Goodwin, James S.
2014-01-01
This article describes an innovative method to disseminate the Acute Care for Elders (ACE) model of care for hospitalized older patients implemented at 11 community hospitals in Wisconsin. The ACE Tracker is a computer-generated checklist of all older patients in a facility that takes information from multiple areas of the electronic medical record to identify the older patients’ risk factors for functional decline and poor outcomes. The ACE Tracker report was validated against in-person observation of the older patients and found to be accurate. Interdisciplinary teams on medical–surgical units use this summary report to review each patient’s plan of care and to efficiently assess the patients who are vulnerable to poor hospital outcomes. The ACE Tracker is also used during regular consultation provided through teleconferencing between an off-site geriatrician (e-Geriatrician) and the local ACE team. The effect of the ACE Tracker and e-Geriatrician models was assessed by measuring use of urinary catheters, physical restraints, high-risk medications, and social service evaluation at a single hospital for the 6 months before and after implementation of the models. There were significant improvements in urinary catheter and physical therapy referrals but no significant changes in the other outcomes. There was no change in the length of stay or in the rate of hospital readmission within 30 days. PMID:20122048
Bertelsen, Pernille
2018-01-01
Objective Activity trackers are designed to support individuals in monitoring and increasing their physical activity. The use of activity trackers among individuals diagnosed with depression and anxiety has not yet been examined. This pilot study investigates how this target group engages with an activity tracker during a 10-week health intervention aimed to increase their physical activity level and improve their physical and mental health. Methods Two groups of 11 young adults (aged 18–29 years) diagnosed with depression or anxiety participated in the digital health intervention. The study used mixed methods to investigate the research question. Quantitative health data were used to assess the intervention’s influence on the participants’ health and qualitative data provided insights into the participants’ digital health experience. Results The study demonstrated an ambiguous influence from the use of an activity tracker with positive physical and mental health results, but a fading and even negative digital health engagement and counterproductive competition. Conclusions The ambiguous results identify a need for (1) developing strategies for health professionals to provide supervised use of activity trackers and support the target groups’ abilities to convert health information about physical activity into positive health strategies, and (2) designing alternatives for health promoting IT targeted users who face challenges and need motivation beyond self-tracking and competition.
Effective star tracking method based on optical flow analysis for star trackers.
Sun, Ting; Xing, Fei; Wang, Xiaochu; Li, Jin; Wei, Minsong; You, Zheng
2016-12-20
Benefiting from rapid development of imaging sensor technology, modern optical technology, and a high-speed computing chip, the star tracker's accuracy, dynamic performance, and update rate have been greatly improved with low power consumption and miniature size. The star tracker is currently one of the most competitive attitude measurement sensors. However, due to restrictions of the optical imaging system, difficulties still exist in moving star spot detection and star tracking when in special motion conditions. An effective star tracking method based on optical flow analysis for star trackers is proposed in this paper. Spot-based optical flow, based on a gray gradient between two adjacent star images, is analyzed to distinguish the star spot region and obtain an accurate star spot position so that the star tracking can keep continuous under high dynamic conditions. The obtained star vectors and extended Kalman filter (EKF) are then combined to conduct an angular velocity estimation to ensure region prediction of the star spot; this can be combined with the optical flow analysis result. Experiment results show that the method proposed in this paper has advantages in conditions of large angular velocity and large angular acceleration, despite the presence of noise. Higher functional density and better performance can be achieved; thus, the star tracker can be more widely applied in small satellites, remote sensing, and other complex space missions.
Liu, Jun; Liu, Wenjing; Yang, Jun
2016-01-01
We confirmed that ATP is released from cochlear marginal cells in the stria vascular but the cell organelle in which ATP stores was not identified until now. Thus, we studied the ATP-containing cell organelles and suggest that these are lysosomes. Primary cultures of marginal cells of Sprague-Dawley rats aged 1–3 days was established. Vesicles within marginal cells stained with markers were identified under confocal laser scanning microscope and transmission electron microscope (TEM). Then ATP release from marginal cells was measured after glycyl-L-phenylalanine-ß- naphthylamide (GPN) treatment using a bioluminescent assay. Quinacrine-stained granules within marginal cells were labeled with LysoTracker, a lysosome tracer, and lysosomal-associated membrane protein 1(LAMP1), but not labeled with the mitochondrial tracer MitoTracker. Furthermore, LysoTracker-labelled puncta showed accumulation of Mant-ATP, an ATP analog. Treatment with 200 μM GPN quenched fluorescently labeled puncta after incubation with LysoTracker or quinacrine, but not MitoTracker. Quinacrine-labeled organelles observed by TEM were lysosomes, and an average 27.7 percent increase in ATP luminescence was observed in marginal cells extracellular fluid after GPN treatment. ATP-containing vesicles in cochlear marginal cells of the stria vascular from neonatal rats are likely lysosomes. ATP release from marginal cells may be via Ca2+-dependent lysosomal exocytosis. PMID:26864824
Bar coded retroreflective target
Vann, Charles S.
2000-01-01
This small, inexpensive, non-contact laser sensor can detect the location of a retroreflective target in a relatively large volume and up to six degrees of position. The tracker's laser beam is formed into a plane of light which is swept across the space of interest. When the beam illuminates the retroreflector, some of the light returns to the tracker. The intensity, angle, and time of the return beam is measured to calculate the three dimensional location of the target. With three retroreflectors on the target, the locations of three points on the target are measured, enabling the calculation of all six degrees of target position. Until now, devices for three-dimensional tracking of objects in a large volume have been heavy, large, and very expensive. Because of the simplicity and unique characteristics of this tracker, it is capable of three-dimensional tracking of one to several objects in a large volume, yet it is compact, light-weight, and relatively inexpensive. Alternatively, a tracker produces a diverging laser beam which is directed towards a fixed position, and senses when a retroreflective target enters the fixed field of view. An optically bar coded target can be read by the tracker to provide information about the target. The target can be formed of a ball lens with a bar code on one end. As the target moves through the field, the ball lens causes the laser beam to scan across the bar code.
Electrodes for Semiconductor Gas Sensors
Lee, Sung Pil
2017-01-01
The electrodes of semiconductor gas sensors are important in characterizing sensors based on their sensitivity, selectivity, reversibility, response time, and long-term stability. The types and materials of electrodes used for semiconductor gas sensors are analyzed. In addition, the effect of interfacial zones and surface states of electrode–semiconductor interfaces on their characteristics is studied. This study describes that the gas interaction mechanism of the electrode–semiconductor interfaces should take into account the interfacial zone, surface states, image force, and tunneling effect. PMID:28346349
NASA Technical Reports Server (NTRS)
Park, Yeonjoon (Inventor); Choi, Sang H. (Inventor); King, Glen C. (Inventor)
2011-01-01
Hetero-epitaxial semiconductor materials comprising cubic crystalline semiconductor alloys grown on the basal plane of trigonal and hexagonal substrates, in which misfit dislocations are reduced by approximate lattice matching of the cubic crystal structure to underlying trigonal or hexagonal substrate structure, enabling the development of alloyed semiconductor layers of greater thickness, resulting in a new class of semiconductor materials and corresponding devices, including improved hetero-bipolar and high-electron mobility transistors, and high-mobility thermoelectric devices.
Servy, Hervé; Molto, Anna; Sellam, Jérémie; Foltz, Violaine; Gandjbakhch, Frédérique; Hudry, Christophe; Mitrovic, Stéphane; Fautrel, Bruno; Gossec, Laure
2018-01-01
Background Physical activity can be tracked using mobile devices and is recommended in rheumatoid arthritis (RA) and axial spondyloarthritis (axSpA) management. The World Health Organization (WHO) recommends at least 150 min per week of moderate to vigorous physical activity (MVPA). Objective The objectives of this study were to assess and compare physical activity and its patterns in patients with RA and axSpA using an activity tracker and to assess the feasibility of mobile devices in this population. Methods This multicentric prospective observational study (ActConnect) included patients who had definite RA or axSpA, and a smartphone. Physical activity was assessed over 3 months using a mobile activity tracker, recording the number of steps per minute. The number of patients reaching the WHO recommendations was calculated. RA and axSpA were compared, using linear mixed models, for number of steps, proportion of morning steps, duration of total activity, and MVPA. Physical activity trajectories were identified using the K-means method, and factors related to the low activity trajectory were explored by logistic regression. Acceptability was assessed by the mean number of days the tracker was worn over the 3 months (ie, adherence), the percentage of wearing time, and by an acceptability questionnaire. Results A total of 157 patients (83 RA and 74 axSpA) were analyzed; 36.3% (57/157) patients were males, and their mean age was 46 (standard deviation [SD] 12) years and mean disease duration was 11 (SD 9) years. RA and axSpA patients had similar physical activity levels of 16 (SD 11) and 15 (SD 12) min per day of MVPA (P=.80), respectively. Only 27.4% (43/157) patients reached the recommendations with a mean MVPA of 106 (SD 77) min per week. The following three trajectories were identified with constant activity: low (54.1% [85/157] of patients), moderate (42.7% [67/157] of patients), and high (3.2% [5/157] of patients) levels of MVPA. A higher body mass index was significantly related to less physical activity (odds ratio 1.12, 95% CI 1.11-1.14). The activity trackers were worn during a mean of 79 (SD 17) days over the 90 days follow-up. Overall, patients considered the use of the tracker very acceptable, with a mean score of 8 out 10. Conclusions Patients with RA and axSpA performed insufficient physical activity with similar levels in both groups, despite the differences between the 2 diseases. Activity trackers allow longitudinal assessment of physical activity in these patients. The good adherence to this study and the good acceptability of wearing activity trackers confirmed the feasibility of the use of a mobile activity tracker in patients with rheumatic diseases. PMID:29295810
Method for manufacturing electrical contacts for a thin-film semiconductor device
Carlson, David E.; Dickson, Charles R.; D'Aiello, Robert V.
1988-11-08
A method of fabricating spaced-apart back contacts on a thin film of semiconductor material by forming strips of buffer material on top of the semiconductor material in locations corresponding to the desired dividing lines between back contacts, forming a film of metal substantially covering the semiconductor material and buffer strips, and scribing portions of the metal film overlying the buffer strips with a laser without contacting the underlying semiconductor material to separate the metal layer into a plurality of back contacts. The buffer material serves to protect the underlying semiconductor material from being damaged during the laser scribing. Back contacts and multi-cell photovoltaic modules incorporating such back contacts also are disclosed.
Electrical contacts for a thin-film semiconductor device
Carlson, David E.; Dickson, Charles R.; D'Aiello, Robert V.
1989-08-08
A method of fabricating spaced-apart back contacts on a thin film of semiconductor material by forming strips of buffer material on top of the semiconductor material in locations corresponding to the desired dividing lines between back contacts, forming a film of metal substantially covering the semiconductor material and buffer strips, and scribing portions of the metal film overlying the buffer strips with a laser without contacting the underlying semiconductor material to separate the metal layer into a plurality of back contacts. The buffer material serves to protect the underlying semiconductor material from being damaged during the laser scribing. Back contacts and multi-cell photovoltaic modules incorporating such back contacts also are disclosed.
Lattice matched semiconductor growth on crystalline metallic substrates
Norman, Andrew G; Ptak, Aaron J; McMahon, William E
2013-11-05
Methods of fabricating a semiconductor layer or device and said devices are disclosed. The methods include but are not limited to providing a metal or metal alloy substrate having a crystalline surface with a known lattice parameter (a). The methods further include growing a crystalline semiconductor alloy layer on the crystalline substrate surface by coincident site lattice matched epitaxy. The semiconductor layer may be grown without any buffer layer between the alloy and the crystalline surface of the substrate. The semiconductor alloy may be prepared to have a lattice parameter (a') that is related to the lattice parameter (a). The semiconductor alloy may further be prepared to have a selected band gap.
Will Future Measurement Needs of the Semiconductor Industry Be Met?
Bennett, Herbert S.
2007-01-01
We discuss the ability of the nation’s measurement system to meet future metrology needs of the semiconductor industry. Lacking an acceptable metric for assessing the health of metrology for the semiconductor industry, we identify a limited set of unmet measurement needs. Assuming that this set of needs may serve as proxy for the galaxy of semiconductor measurement needs, we examine it from the perspective of what will be required to continue the semiconductor industry’s powerful impact in the world’s macro-economy and maintain its exceptional record of numerous technological innovations. This paper concludes with suggestions about ways to strengthen the measurement system for the semiconductor industry. PMID:27110452
Teaching Astronomy Using Tracker
ERIC Educational Resources Information Center
Belloni, Mario; Christian, Wolfgang; Brown, Douglas
2013-01-01
A recent paper in this journal presented a set of innovative uses of video analysis for introductory physics using Tracker. In addition, numerous other papers have described how video analysis can be a meaningful part of introductory courses. Yet despite this, there are few resources for using video analysis in introductory astronomy classes. In…
Federal Register 2010, 2011, 2012, 2013, 2014
2010-04-22
... completion of a NOAA student scholar reference form in support of the scholarship application by academic... internal tracking purposes. NOAA OEd grantees are required to update the student tracker database with the... tracker database form, 16 hours; graduate application form, 8 hours; undergraduate application form, 8...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-06-23
... Tracker (SPOT) (DFARS Case 2011-D030) AGENCY: Defense Acquisition Regulations System, Department of... requirements associated with the Synchronized Predeployment and Operational Tracker (SPOT) system. DATES... (SPOT)-generated letter of authorization.'' The change in title is being made at DFARS 225.7402-3(e) and...
A Bio-Energetic Model for North Atlantic Right Whales: Locomotion, Anatomy and Diving Behavior
2008-01-01
tracker was visualized with Avizo , formerly Amira, software (Mercury Computing, Inc.) (Figure 3). The particle tracker feature greatly increased our...plots in Figures 3 and 4, respectively. Figure 3. Example of a network script from Avizo that controls the manipulation and visualization
Band-Gap Engineering at a Semiconductor-Crystalline Oxide Interface
Jahangir-Moghadam, Mohammadreza; Ahmadi-Majlan, Kamyar; Shen, Xuan; ...
2015-02-09
The epitaxial growth of crystalline oxides on semiconductors provides a pathway to introduce new functionalities to semiconductor devices. Key to integrating the functionalities of oxides onto semiconductors is controlling the band alignment at interfaces between the two materials. Here we apply principles of band gap engineering traditionally used at heterojunctions between conventional semiconductors to control the band offset between a single crystalline oxide and a semiconductor. Reactive molecular beam epitaxy is used to realize atomically abrupt and structurally coherent interfaces between SrZr xTi 1-xO₃ and Ge, in which the band gap of the former is enhanced with Zr content x.more » We present structural and electrical characterization of SrZr xTi 1-xO₃-Ge heterojunctions and demonstrate a type-I band offset can be achieved. These results demonstrate that band gap engineering can be exploited to realize functional semiconductor crystalline oxide heterojunctions.« less
Light emitting diode with porous SiC substrate and method for fabricating
Li, Ting; Ibbetson, James; Keller, Bernd
2005-12-06
A method and apparatus for forming a porous layer on the surface of a semiconductor material wherein an electrolyte is provided and is placed in contact with one or more surfaces of a layer of semiconductor material. The electrolyte is heated and a bias is introduced across said electrolyte and the semiconductor material causing a current to flow between the electrolyte and the semiconductor material. The current forms a porous layer on the one or more surfaces of the semiconductor material in contact with the electrolyte. The semiconductor material with its porous layer can serve as a substrate for a light emitter. A semiconductor emission region can be formed on the substrate. The emission region is capable of emitting light omnidirectionally in response to a bias, with the porous layer enhancing extraction of the emitting region light passing through the substrate.
Milotti, Valeria; Pietsch, Manuel; Strunk, Karl-Philipp; Melzer, Christian
2018-01-01
We report a Kelvin-probe method to investigate the lateral charge-transport properties of semiconductors, most notably the charge-carrier mobility. The method is based on successive charging and discharging of a pre-biased metal-insulator-semiconductor stack by an alternating voltage applied to one edge of a laterally confined semiconductor layer. The charge carriers spreading along the insulator-semiconductor interface are directly measured by a Kelvin-probe, following the time evolution of the surface potential. A model is presented, describing the device response for arbitrary applied biases allowing the extraction of the lateral charge-carrier mobility from experimentally measured surface potentials. The method is tested using the organic semiconductor poly(3-hexylthiophene), and the extracted mobilities are validated through current voltage measurements on respective field-effect transistors. Our widely applicable approach enables robust measurements of the lateral charge-carrier mobility in semiconductors with weak impact from the utilized contact materials.
NASA Astrophysics Data System (ADS)
Milotti, Valeria; Pietsch, Manuel; Strunk, Karl-Philipp; Melzer, Christian
2018-01-01
We report a Kelvin-probe method to investigate the lateral charge-transport properties of semiconductors, most notably the charge-carrier mobility. The method is based on successive charging and discharging of a pre-biased metal-insulator-semiconductor stack by an alternating voltage applied to one edge of a laterally confined semiconductor layer. The charge carriers spreading along the insulator-semiconductor interface are directly measured by a Kelvin-probe, following the time evolution of the surface potential. A model is presented, describing the device response for arbitrary applied biases allowing the extraction of the lateral charge-carrier mobility from experimentally measured surface potentials. The method is tested using the organic semiconductor poly(3-hexylthiophene), and the extracted mobilities are validated through current voltage measurements on respective field-effect transistors. Our widely applicable approach enables robust measurements of the lateral charge-carrier mobility in semiconductors with weak impact from the utilized contact materials.
Organic photosensitive cells grown on rough electrode with nano-scale morphology control
Yang, Fan [Piscataway, NJ; Forrest, Stephen R [Ann Arbor, MI
2011-06-07
An optoelectronic device and a method for fabricating the optoelectronic device includes a first electrode disposed on a substrate, an exposed surface of the first electrode having a root mean square roughness of at least 30 nm and a height variation of at least 200 nm, the first electrode being transparent. A conformal layer of a first organic semiconductor material is deposited onto the first electrode by organic vapor phase deposition, the first organic semiconductor material being a small molecule material. A layer of a second organic semiconductor material is deposited over the conformal layer. At least some of the layer of the second organic semiconductor material directly contacts the conformal layer. A second electrode is deposited over the layer of the second organic semiconductor material. The first organic semiconductor material is of a donor-type or an acceptor-type relative to the second organic semiconductor material, which is of the other material type.
Photovoltaic healing of non-uniformities in semiconductor devices
Karpov, Victor G.; Roussillon, Yann; Shvydka, Diana; Compaan, Alvin D.; Giolando, Dean M.
2006-08-29
A method of making a photovoltaic device using light energy and a solution to normalize electric potential variations in the device. A semiconductor layer having nonuniformities comprising areas of aberrant electric potential deviating from the electric potential of the top surface of the semiconductor is deposited onto a substrate layer. A solution containing an electrolyte, at least one bonding material, and positive and negative ions is applied over the top surface of the semiconductor. Light energy is applied to generate photovoltage in the semiconductor, causing a redistribution of the ions and the bonding material to the areas of aberrant electric potential. The bonding material selectively bonds to the nonuniformities in a manner such that the electric potential of the nonuniformities is normalized relative to the electric potential of the top surface of the semiconductor layer. A conductive electrode layer is then deposited over the top surface of the semiconductor layer.